CCLRC / RUTHERFORD APPLETON LABORATORY SUN/211.27
Particle Physics & Astronomy Research Council

Starlink Project

Starlink User Note 211.27

R.F. Warren-Smith & D.S. Berry
29th April 2013

AST
A Library for Handling
World Coordinate Systems
in Astronomy

V7.3

Programmer’s (Guide

(C Version)

Geocentric apparent equatorial coordinates; epach J1997.5

Declination

Right ascension

Abstract

The AST library provides a comprehensive range of facilities for attaching world coordinate
systems to astronomical data, for retrieving and interpreting that information in a variety of
formats, including FITS-WCS, and for generating graphical output based on it.

This programmer’s manual should be of interest to anyone writing astronomical applications
which need to manipulate coordinate system data, especially celestial or spectral coordinate
systems. AST is portable and environment-independent.

ii

Copyright (C) 2013 Science & Technology Facilities Council

SUN/211.27

CONTENTS

Contents

1 Introduction

1.1 What Problems Does AST Tackle?
1.2 Other Design Objectives e
1.3 What Does “AST” Stand For?

Overview of AST Concepts

2.1 Relationships Between Coordinate Systems
2.2 Mappings Available
2.3 Compound Mappings o v i
2.4 Representing Coordinate Systems L.
2.5 Networks of Coordinate Systems
2.6 Input/Output Facilities
2.7 Producing Graphical Output o

How To...

3.1 ...Obtain and Install AST
3.2 ...Structure an AST Program
3.3 ...Build an AST Program
3.4 ...Read a WCS Calibration from a Dataset
3.5 ...Validate WCS Information
3.6 ...Display AST Data e
3.7 ...Convert Between Pixel and World Coordinates
3.8 ...Test if a WCS is a Celestial Coordinate System
3.9 ...Test if a WCS is a Spectral Coordinate System
3.10 ...Format Coordinates for Display,
3.11 ...Display Coordinates as they are Transformed
3.12 ...Read Coordinates Entered by a User
3.13 ...Create a New WCS Calibration
3.14 ...Modify a WCS Calibration
3.15 ... Write a Modified WCS Calibration to a Dataset
3.16 ...Display a Graphical Coordinate Grid
3.17 ...Switch to Plot a Different Celestial Coordinate Grid
3.18 ...Give a User Control Over the Appearance of a Plot

An AST Object Primer

4.1 AST Objects e e
4.2 Object Creation and Pointers
4.3 The Object Hierarchy
4.4 Displaying Objects
4.5 Getting Attribute Values
4.6 Setting Attribute Values
4.7 Testing, Clearing and Defaulting Attributes
4.8 Transforming Coordinates
4.9 Managing Object Pointers Lo o
4.10 AST Pointer Contexts—Begin and End
4.11 Exporting, Importing and Exempting AST Pointers
4.12 AST Objects within Multi-threaded Applications

iii

=N -

— O 3 O ot ot G

15
15
15
15
16
17
17
18
18
19
19
19
20
21
23
25
27
29
30

CONTENTS

4.12.1 Locking AST Objects for Exclusive Use 42

4.12.2 AST Pointer Contexts e 43
4.13 Copying Objects o 43
4.14 C Pointer Types o 44
4.15 Error Detection L e 45
4.16 Sharing the Error Status L L o 47
Inter-Relating Coordinate Systems (Mappings) 49
5.1 The Mapping Class 0 i 49
5.2 The Mapping Model 50
5.3 Input and Output Coordinate Numbers 50
5.4 Forward and Inverse Transformations. 50
5.5 Inverting Mappings L e 51
5.6 Finding the Rate of Change of a Mapping Output 51
5.7 Reporting Coordinate Transformations 51
5.8 Handling Missing (Bad) Coordinate Values 52
5.9 Example—the UnitMap e 52
5.10 Example—the PermMap Lo 53
Compound Mappings (CmpMaps) 57
6.1 Combining Mappings in Series e 57
6.2 Combining Mappings in Parallel 58
6.3 The Component Mappings v vt v it e 58
6.4 Creating More Complex Mappings 59
6.5 Example—Transforming Between Two Calibrated Images 59
6.6 Over-Complex Compound Mappings 60
6.7 Simplifying Compound Mappings 60
Representing Coordinate Systems (Frames) 63
7.1 The Frame Model 63
7.2 Creating a Frame 63
7.3 Using a Frame as a Mapping L o 63
7.4 Frame Axis Attributeso 64
7.5 Frame Attributes L e 65
7.6 Formatting Axis Values 67
7.7 Normalising Frame Coordinates 68
7.8 Reading Formatted Axis Values 68
7.9 Permuting Frame Axes L 72
7.10 Selecting Frame Axes e 72
7.11 Calculating Distances, Angles and Offsets 73
7.12 The Domain Attribute 75
7.13 Conventions for Domain Names 77
7.14 The Unit Attribute 78

7.14.1 The Syntax for Unit Strings 79

7.14.2 Side-effects of Changing the Unit attribute 80
Celestial Coordinate Systems (SkyFrames) 83
8.1 The SkyFrame Model 83

8.2 Creating a SkyFrame 83

CONTENTS

8.3
8.4
8.5
8.6
8.7
8.8

Specifying a Particular Celestial Coordinate System .
Attributes which Qualify Celestial Coordinate Systems
Using Default SkyFrame Attributes
Formatting Celestial Coordinates
Reading Formatted Celestial Coordinates
Representing Offsets from a Specified Sky Position . .

9 Spectral Coordinate Systems (SpecFrames)

9.1
9.2
9.3
9.4
9.5
9.6
9.7

The SpecFrame Model
Creating a Speckrame
Specifying a Particular Spectral Coordinate System . .
Attributes which Qualify Spectral Coordinate Systems
Using Default SpecFrame Attributes
Creating Spectral Cubes
Handling Dual-Sideband Spectra

10 Time Systems (TimeFrames)

10.1
10.2
10.3
104

The TimeFrame Model
Creating a TimeFrame
Specifying a Particular Time System
Attributes which Qualify Time Coordinate Systems . .

11 Compound Frames (CmpFrames)

11.1
11.2

Creating a CmpFrame
The Attributes of a CmpFrame

12 An Introduction to Coordinate System Conversions

12.1
12.2
12.3
12.4
12.5
12.6

Converting between Celestial Coordinate Systems . . .
Converting between Spectral Coordinate Systems . . .
Converting between Time Coordinate Systems
Handling SkyFrame Axis Permutations
Converting Between Frames
The Choice of Alignment System

13 Coordinate System Networks (FrameSets)

13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9

The FrameSet Model
Creating a FrameSet
Adding New Frames to a FrameSet
The Base and Current Frames
Referring to the Base and Current Frames
Using a FrameSet as a Mapping
Extracting a Mapping from a FrameSet
Using a FrameSet as a Frame
Extracting a Frame from a FrameSet

13.10Removing a Frame from a FrameSet

14 Higher Level Operations on FrameSets

14.1
14.2

Creating FrameSets with astConvert
Converting between FrameSet Coordinate Systems . .

83
84
85
86
88
90

93
93
93
93
94
95
96
97

99
99
99
99
100

101
101
101

103
103
105
107
107
108
108

111
111
112
112
113
114
115
115
116
117
117

vi CONTENTS

14.3 Example—Registering Two Images 122
14.4 Re-Defining a FrameSet Coordinate System 124
14.5 Example—Binning an Image oo 125
14.6 Maintaining the Integrity of FrameSets 126
14.7 Merging FrameSets 127
15 Saving and Restoring Objects (Channels) 131
15.1 The Channel Model 131
15.2 Creating a Channel L 131
15.3 Writing Objects to a Channel oL 132
15.4 Reading Objects from a Channel 132
15.5 Saving and Restoring Multiple Objects 133
15.6 Validating Input oo 133
15.7 Storing an ID String with an Object 133
15.8 The Textual Output Format 134
15.9 Controlling the Amount of Output 135
15.10Controlling Commenting e 137
15.11Editing Textual Qutput 138
15.12Mixing Objects with other Text 139
15.13Reading Objects from Files o 139
15.14Writing Objects to Files o 140
15.15Reading and Writing Objects to other Places 142
16 Storing AST Objects in FITS Headers (FitsChans) 143
16.1 The Native FITS Encoding 143
16.2 The FitsChan Model o 143
16.3 Creating a FitsChan L 144
16.4 Addressing Cards in a FitsChan 145
16.5 Writing Native Objects to a FitsChan 146
16.6 Extracting Individual Cards from a FitsChan 146
16.7 The Native FitsChan Output Format 147
16.8 Adding Individual Cards to a FitsChan 148
16.9 Adding Concatenated Cards to a FitsChan 149
16.10Reading Native Objects From a FitsChan 149
16.11Saving and Restoring Multiple Objects in a FitsChan 150
16.12Mixing Native Objects with Other FITS Cards 150
16.13Finding and Changing Cards in a FitsChan 150
16.14Source and Sink Functions for FitsChans 151
17 Using Foreign FITS Encodings 153
17.1 The Foreign FITS Encodings 153
17.2 Limitations of Foreign Encodings 154
17.3 Identifying Foreign Encodings on Input 155
17.4 Reading Foreign WCS Information from a FITS Header 157
17.5 Removing WCS Information from FITS Headers—the Destructive Read 158
17.6 Propagating WCS Information through Data Processing Steps 159
17.7 Writing Foreign WCS Information to a FITS Header 160

18 Storing AST Objects as XML (XmlChan) 163

CONTENTS vii

18.1 Reading IVOA Space-Time-Coordinates XML (STC-X) Descriptions 164
19 Reading and writing STC-S descriptions (StcsChans) 167
20 Creating Your Own Private Mappings (IntraMaps) 169
20.1 The Need for Extensibility o . 169
20.2 The IntraMap Model 169
20.3 Limitations of IntraMaps 169
20.4 Writing a Transformation Function 170
20.5 Registering a Transformation Function 171
20.6 Creating an IntraMap 172
20.7 Restricted Implementations of Transformation Functions 173
20.8 Variable Numbers of Coordinates, 173
20.9 Adapting a Transformation Function to Individual IntraMaps 174
20.10Simplifying IntraMaps 175
20.11Writing and Reading IntraMaps o o0 176
20.12Managing Transformation Functions in Libraries 177
21 Producing Graphical Output (Plots) 179
21.1 The Plot Model 179
21.2 Plotting Symbols 179
21.3 Plotting Geodesic Curves Lo 180
21.4 Plotting Curves Parallel to Axes 181
21.5 Plotting Generalized Curves o 181
21.6 Clipping« . o o o e 181
21.7 Using a Plot asa Mapping o 182
21.8 Usinga Plot asa Frame L o oo 182
21.9 Regions of Valid Physical Coordinates 183
21.10Plotting Borders L 183
21.11Plotting Text o L 184
21.12Plotting a Grid L. 184
21.13Controlling the Appearance of Sub-strings 184
21.14Producing Logarithmic Axes 185
21.15Choosing a Graphics Package o o 186
22 Compiling and Linking Software that Uses AST 187
22.1 Accessing the “ast.h” Header File, 187
22.2 Linking with AST Facilities 187
22.3 Building ADAM Applications that Use AST 188
A The AST Class Hierarchy 189
B AST Function Descriptions 191
C AST Attribute Descriptions 417
D AST Class Descriptions 523
E UNIX Command Descriptions 569

viii

F AST Memory Management and Utility Functions

G FITS-WCS Coverage

G.1 Paper I - General Linear Coordinates

G.1.1 Requirements for a Successful Write Operation

G.1.2 Use and Choice of CTYPE? keywords
G.1.3 Choice of Reference Point
G.1.4 Choice of Axis Ordering
G.1.5 Alternate Axis Descriptions
G.2 Paper II - Celestial Coordinates

G.2.1 Requirements for a Successful Write Operation

G.2.2 Choice of LONPOLE/LATPOLE
G.2.3 User Defined Fiducial Points
G.2.4 Common Non-Standard Features
G.3 Paper III - Spectral Coordinates

G.3.1 Requirements for a Successful Write Operation

G.3.2 Common Non-Standard Features
G.4 Paper IV - Coordinate Distortions
G.4.1 The “SIP” distortioncode

H Changes and New Features

H.1 Changes Introduced in V1.1
H.2 Changes Introduced in V1.2
H.3 Changes Introduced in V1.3
H.4 Changes Introduced in V1.4
H.5 Changes Introduced in V1.5
H.6 Changes Introduced in V1.6
H.7 Changes Introduced in V1.7
H.8 Changes Introduced in V1.8-2
H.9 Changes Introduced in V1.8-3
H.10 Changes Introduced in V1.8-4
H.11 Changes Introduced in V1.8-5
H.12 Changes Introduced in V1.8-7
H.13 Changes Introduced in V1.8-8
H.14 Changes Introduced in V1.8-13
H.15 Changes Introduced in V2.0
H.16 Changes Introduced in V3.0
H.17 Changes Introduced in V3.1
H.18 Changes Introduced in V3.2
H.19 Changes Introduced in V3.3
H.20 Changes Introduced in V3.4
H.21 Changes Introduced in V3.5
H.22 Changes Introduced in V3.6
H.23 Changes Introduced in V3.7
H.24 Changes Introduced in V4.0
H.25 Changes Introduced in V4.1
H.26 Changes Introduced in V4.2
H.27 Changes Introduced in V4.3

CONTENTS

573

SUN/211.27 ix

H.28 Changes Introduced in V4.4 619
H.29 Changes Introduced in V4.5 620
H.30 Changes Introduced in V4.6 621
H.31 Changes Introduced in V5.0 621
H.32 Changes Introduced in V5.1 621
H.33 Changes Introduced in V5.2 622
H.34 Changes Introduced in V5.3 623
H.35 Changes Introduced in V5.3-1 624
H.36 Changes Introduced in V5.3-2 625
H.37 Changes Introduced in V5.4-0 626
H.38 Changes Introduced in V5.5-0 626
H.39 Changes Introduced in V5.6-0 626
H.40 ChangesIntroduced in V5.6-1 627
H.41 Changes Introduced in V5.7-0 627
H.42 Changes Introduced in V5.7-1 628
H.43 Changes Introduced in V5.7-2 o 628
H.44 Changes Introduced in V6.0 629
H.45 Changes Introduced in V6.0-1 629
H.46 Changes Introduced in V7.0.0 o 629
H.47 Changes Introduced in V7.0.1 Lo 630
H.48 Changes Introduced in V7.0.2 L 630
H.49 Changes Introduced in V7.0.3 Lo 630
H.50 Changes Introduced in V7.0.4 o 631
H.51 Changes Introduced in V7.0.5 631
H.52 Changes Introduced in V7.0.6 631
H.53 Changes Introduced in V7.1.0 631
H.54 Changes Introduced in V7.1.1 632
H.55 Changes Introduced in V7.2.0 632
H.56 Changes Introduced in V7.3.0 632
H.57 Changes Introduced in V7.3.1 632

H.58 Changes Introduced in V7.3.2 633

SUN/211.27

AST
A Library for Handling
World Coordinate Systems
in Astronomy

V7.3

This is the C version of this document.
For the Fortran version, please see SUN/210.

1 Introduction

Welcome to the AST library. If you are writing software for astronomy and need to use celestial
coordinates (e.g. RA and Dec), spectral coordinates (e.g. wavelength, frequency, etc.), or other
coordinate system information, then this library should be of interest. It provides solutions for
most of the problems you will meet and allows you to write robust and flexible software. It is
able to read and write WCS information in a variety of formats, including FITS-WCS.

1.1 What Problems Does AST Tackle?

Here are some of the main problems you may face when handling world coordinate system
(WCS) information and the solutions that AST provides:

1. The Variety of Coordinate Systems

Astronomers use a wide range of differing coordinate systems to describe positions within
a variety of physical domains. For instance, there are a large number of celestial coordinate
systems in use within astronomy to describe positions on the sky. Understanding these,
and knowing how to convert coordinates between them, can require considerable expertise.
It can also be difficult to decide which of them your software should support. The same
applies to coordinate systems describing other domains, such as position within an electro-
magnetic spectrum.

Solution. AST has built-in knowledge of many coordinate systems and allows you to
convert freely between them without specialist knowledge. This avoids the need to embed
details of specific coordinate systems in your software. You also benefit automatically
when new coordinate systems are added to AST.

2 1 INTRODUCTION

2. Storing and Retrieving WCS Information
Storing coordinate system information in astronomical datasets and retrieving it later
can present a considerable challenge. Typically, it requires knowledge of rather complex
conventions (e.g. FITS) which are low-level, often mis-interpreted and may be subject to
change. Exchanging information with other software systems is further complicated by
the number of different conventions in use.

Solution. AST combines a unifying high-level description of WCS information with the
ability to save and restore this using a variety of formats. Details of the formats, which
include FITS, are handled internally by AST. This frees you from the need to understand
them or embed the details in your software. Again, you benefit automatically when new
formats are added to AST.

3. Generating Graphical Output
Producing graphical displays involving curvilinear coordinate systems, such as celestial
coordinate grids, can be complicated. Particular difficulties arise when handling large
areas of sky, the polar regions and discontinuous (e.g. segmented) sky projections. Even
just numbering and labelling curvilinear axes is rarely straightforward.

Solution. AST provides plotting facilities especially designed for use with curvilinear
coordinate systems. These include the plotting of axes and complete labelled coordinate
grids. A large number of options are provided for tailoring the output to your specific
needs. Three dimensional coordinate grids can also be produced.

4. Aligning Data from Different Sources
One of the main uses of coordinate systems is to facilitate the inter-comparison of data
from different sources. A typical use might be to plot (say) radio contours over an optical
image. In practice, however, different celestial coordinate systems may have been used,
making accurate alignment far from simple.

Solution AST provides a one-step method of aligning datasets, searching for all possible
intermediate coordinate systems. This makes it simple to directly inter-relate the pixel
coordinates of different datasets.

5. Handling Different Types of Coordinate System
Not all coordinate systems used in astronomy are celestial ones, so if you are writing
general-purpose software such as (say) a display tool, you may also need to handle axes
representing wavelength, distance, time or whatever else comes along. Obviously, you
would prefer not to handle each one as a special case.

Solution AST uses the same flexible high-level model to describe all types of coordinate
system. This allows you to write software that handles different kinds of coordinate axis
without introducing special cases.

1.2 Other Design Objectives

As well as its scientific objectives, the AST library’s design includes a number of technical
criteria intended to make it applicable to as wide a range of projects as possible. The main
considerations are described here:

1.2 Other Design Objectives 3

1. Minimum Software Dependencies. The AST library depends on no other other soft-

Warel .

2. Environment Independence. AST is designed so that it can operate in a variety of
“programming environments” and is not tied to any particular one. To allow this, it uses
simple, flexible interfaces to obtain the following services:

e Data Storage. Data I/O operations are based on text and/or FITS headers. This
makes it easy to interface to a wide variety of astronomical data formats in a machine-
independent way.

e Graphics. Graphical output is produced via a simple generic graphics interface,
which may easily be re-implemented over different graphics systems. AST pro-
vides a default implementation based on the widely-used PGPLOT graphics system
(SUN/15).

e Error Handling. Error messages are written to standard error by default, but go
through a simple generic interface similar to that used for graphics (above). This
permits error message delivery via other routes when necessary (e.g. in a graphical
interface).

3. Multiple Language Support. AST has been designed to be called from more than
one language. Both C and Fortran interfaces are available (see SUN/210 for the Fortran
version) and use from C++ is also straightforward if the C interface is included using:

extern "C" {
#include "ast.h"

3

A JNI interface (known as “JNIAST” - see http://www.starlink.ac.uk/jniast/) has also
been developed by Starlink which allows AST to be used from Java.

4. Object Oriented Design. AST uses “object oriented” techniques internally in order
to provide a flexible and easily-extended programming model. A fairly traditional call-
ing interface is provided, however, so that the library’s facilities are easily accessible to
programmers using C and Fortran.

5. Portability. AST is implemented entirely in ANSI standard C and, when called wvia its
C interface, makes no explicit use of any machine-dependent facilities.

The Fortran interface is, unavoidably, machine dependent. However, the potential for
problems has been minimised by encapsulating the interface layer in a compact set of C
macros which facilitate its transfer to other platforms. No Fortran compiler is needed to
build the library.

Currently, AST is supported by Starlink on PC Linux, Sun Solaris and Tru64 Unix (for-
merly DEC UNIX) platforms.

Tt comes with bundled copies of the IAU SOFA and Starlink PAL libraries which are built at the same time
as the other AST internal libraries. Alternatively, external PAL and SOFA libraries may be used by specifying
the “--with-external_pal” option when configuring AST

4 1 INTRODUCTION

1.3 What Does “AST” Stand For?

The library name “AST” stands for “ASTrometry Library”. The name arose when it was thought
that knowledge of “astrometry” (i.e. celestial coordinate systems) would form the bulk of the
library. In fact, it turns out that astrometry forms only a minor component, but the name AST
has stuck.

2 Overview of AST Concepts

This section presents a brief overview of AST concepts. It is intended as a basic orientation
course before you move on to the more technical considerations in subsequent sections.

2.1 Relationships Between Coordinate Systems

The relationships between coordinate systems are represented in AST by Objects called Map-
pings. A Mapping does not represent a coordinate system itself, but merely the process by which
you move from one coordinate system to another related one.

A convenient picture of a Mapping is as a “black box” (Figure 1) into which you can feed
sets of coordinates. For each set you feed in, the Mapping returns a corresponding set of

Forward
 ———
Input . Output
Coordinates A Mappmg Coordinates
-
Inverse

Figure 1: A Mapping viewed as a “black box” for transforming coordinates.

transformed coordinates. Since each set of coordinates represents a point in a coordinate space,
the Mapping acts to inter-relate corresponding positions in the two spaces, although what these
spaces represent is unspecified. Notice that a Mapping need not have the same number of input
and output coordinates. That is, the two coordinate spaces which it inter-relates need not have
the same number of dimensions.

In many cases, the transformation can, in principle, be performed in either direction: either
from the input coordinate space to the output, or vice versa. The first of these is termed the
forward transformation and the other the inverse transformation.

Further reading: For a more complete discussion of Mappings, see §5.

2.2 Mappings Available

The basic concept of a Mapping (§2.1) is rather generic and obviously it is necessary to have
specific Mappings that implement specific relationships between coordinate systems. AST pro-
vides a range of these, to perform transformations such as the following and, where appropriate,
their inverses:

e Conversions between various celestial coordinate systems (the SlaMap).

e Conversions between various spectral coordinate systems (the SpecMap and GrismMap).

6 2 OVERVIEW OF AST CONCEPTS

-

CmpMap

*—>o— >
Mapping A Mapping B
——»o—>»

o

Figure 2: A CmpMap (compound Mapping) composed of two component Mappings joined in
series. The output coordinates of the first Mapping feed into the input coordinates of the second
one, so that the whole entity behaves like a single Mapping.

e Conversions between various time systems (the TimeMap).

e Conversion between 2-dimensional spherical celestial coordinates (longitude and latitude)
and a 3-dimensional vectorial positions (the SphMap).

e Various projections of the celestial sphere on to 2-dimensional coordinate spaces—i.e. map
projections (the DssMap and WesMap).

e Permutation, introduction and elimination of coordinates (the PermMap).

e Various linear coordinate transformations (the MatrixMap, WinMap, ShiftMap and ZoomMap).
e General N-dimensional polynomial transformations (the PolyMap).

e Lookup tables (the LutMap).

e General-purpose transformations expressed using arithmetic operations and functions sim-
ilar to those available in C (the MathMap).

e Transformations for internal use within a program, based on private transformation func-
tions which you write yourself in C (the IntraMap).

Further reading: For a more complete description of each of the Mappings mentioned above,
see its entry in Appendix D. In addition, see the discussion of the PermMap in §5.10, the
UnitMap in §5.9 and the IntraMap in §20. The ZoomMap is used as an example throughout §4.

2.3 Compound Mappings

The Mappings described in §2.2 provide a set of basic building blocks from which more complex
Mappings may be constructed. The key to doing this is a type of Mapping called a CmpMap, or
compound Mapping. A CmpMap’s role is, in principle, very simple: it allows any other pair of
Mappings to be joined together into a single entity which behaves as if it were a single Mapping.
A CmpMap is therefore a container for another pair of Mappings.

A pair of Mappings may be combined using a CmpMap in either of two ways. The first of these,
in series, is illustrated in Figure 2. Here, the transformations implemented by each component
Mapping are performed one after the other, with the output from the first Mapping feeding into

2.4 Representing Coordinate Systems 7

/ CmpMap

Mapping A

Mapping B

Figure 3: A CmpMap composed of two Mappings joined in parallel. Each component Mapping
acts on a complementary subset of the input and output coordinates.

the second. The second way, in parallel, is shown in Figure 3. In this case, each Mapping acts
on a complementary subset of the input and output coordinates.?

The CmpMap forms the key to building arbitrarily complex Mappings because it is itself a form
of Mapping. This means that a CmpMap may contain other CmpMaps as components (e.g.
Figure 4). This nesting of CmpMaps can be repeated indefinitely, so that complex Mappings
may be built in a hierarchical manner out of simper ones. This gives AST great flexibility in
the coordinate transformations it can describe.

Further reading: For a more complete description of CmpMaps, see §6. Also see the CmpMap
entry in Appendix D.

2.4 Representing Coordinate Systems

While Mappings (§2.1) represent the relationships between coordinate systems in AST, the
coordinate systems themselves are represented by Objects called Frames (Figure 5). A Frame
is similar in concept to the frame you might draw around a graph. It contains information
about the labels which appear on the axes, the axis units, a title, knowledge of how to format
the coordinate values on each axis, etc. An AST Frame is not, however, restricted to two
dimensions and may have any number of axes.

A basic Frame may be used to represent a Cartesian coordinate system by setting values for
its attributes (all AST Objects have values associated with them called attributes, which may
be set and enquired). Usually, this would involve setting appropriate axis labels and units, for
example. Functions are provided for use with Frames to perform operations such as formatting
coordinate values as text, calculating distances between points, interchanging axes, etc.

2A pair of Mappings can be combined in a third way using a TranMap. A TranMap allows the forward
transformation of one Mapping to be combined with the inverse transformation of another to produce a single
Mapping.

8 2 OVERVIEW OF AST CONCEPTS

CmpMap

Mapping B

°
Y

Mapping A

°
Y

Mapping C

Figure 4: CmpMaps (compound Mappings) may be nested in order to construct complex Map-
pings out of simpler building blocks.

SkyFrame
RA
Dec

SkyFrame

Figure 5: (a) A basic Frame is used to represent a Cartesian coordinate system, here 2-
dimensional. (b) A SkyFrame represents a (spherical) celestial coordinate system. (c) The
axis order of any Frame may be permuted to match the coordinate space it describes.

2.5 Networks of Coordinate Systems 9

4 CmpFrame
(SkyFrame
RA)
Dec
o
Frame
A
Wavelength

Figure 6: A CmpFrame (compound Frame) formed by combining two simpler Frames. Note
how the special relationship which exists between the RA and Dec axes is preserved within this
data structure. As with compound Mappings (Figure 4), CmpFrames may be nested in order
to build more complex Frames.

There are several more specialised forms of Frame, which provide the additional functionality
required when handling coordinates within some specific physical domain. This ranges from
tasks such as formatting axis values, to complex tasks such as determining the transformation
between any pair of related coordinate systems. For instance, the SkyFrame (Figure 5b,c),
represents celestial coordinate systems, the SpecFrame represents spectral coordinate systems,
and the TimeFrame represents time coordinate systems. All these provide a wide range of
different systems for describing positions within their associated physical domain, and these
may be selected by setting appropriate attributes.

As with compound Mappings (§2.3), it is possible to merge two Frames together to form a com-
pound Frame, or CmpFrame, in which both sets of axes are combined. One could, for example,
have celestial coordinates on two axes and an unrelated coordinate (wavelength, perhaps) on a
third (Figure 6). Knowledge of the relationships between the axes is preserved internally by the
process of constructing the CmpFrame which represents them.

Further reading: For a more complete description of Frames see §7, for SkyFrames see §8 and
for SpecFrames see §9. Also see the Frame, SkyFrame, SpecFrame, TimeFrame and CmpFrame
entries in Appendix D.

2.5 Networks of Coordinate Systems

Mappings and Frames may be connected together to form networks called FrameSets, which
are used to represent sets of inter-related coordinate systems (Figure 7). A FrameSet may
be extended by adding a new Frame to it, together with an associated Mapping which relates
the new coordinate system to one which is already present. This process ensures that there is
always exactly one path, via Mappings, between any pair of Frames. A function is provided for
identifying this path and returning the complete Mapping.

One of the Frames in a FrameSet is termed its base Frame. This underlies the FrameSet’s
purpose, which is to calibrate datasets and other entities by attaching coordinate systems to

10 2 OVERVIEW OF AST CONCEPTS

Frame 1 Current Frame
Mappmg

Frame 3

Mappmg

Frame:2

Frames

Figure 7: A FrameSet is a network of Frames inter-connected by Mappings such that there is
exactly one conversion path, via Mappings, between any pair of Frames.

2.6 Input/Output Facilities 11

them. In this context, the base Frame represents the “native” coordinate system (for example,
the pixel coordinates of an image). Similarly, one Frame is termed the current Frame and
represents the “currently-selected” coordinates. It might, typically, be a celestial or spectral
coordinate system and would be used during interactions with a user, as when plotting axes on
a graph or producing a table of results. Other Frames within the FrameSet represent a library
of alternative coordinate systems which a software user can select by making them current.

Further reading: For a more complete description of FrameSets, see §13 and §14. Also see
the FrameSet entry in Appendix D.

2.6 Input/Output Facilities

AST allows you to convert any kind of Object into a stream of text which contains a full
description of that Object. This text may be written out by one program and read back in by
another, thus allowing the original Object to be reconstructed.

The filter which converts Objects into text and back again is itself a kind of Object, called a
Channel. A Channel provides a number of options for controlling the information content of the
text, such as the addition of comments for human interpretation. It is also possible to intercept
the text being processed by a Channel so that it may be redirected to/from any chosen external
data store, such as a text file, an astronomical dataset, or a network connection.

The text format used by the basic Channel class is peculiar to the AST library - no other
software will understand it. However, more specialised forms of Channel are provided which use
text formats more widely understood.

To further facilitate the storage of coordinate system information in astronomical datasets, a
more specialised form of Channel called a FitsChan is provided. Instead of using free-format
text, a FitsChan converts AST Objects to and from FITS header cards. It also allows the
information to be encoded in the FITS cards in a number of ways (called encodings), so that
WCS information from a variety of sources can be handled.

Another sub-class of Channel, called XmlChan, is a specialised form of Channel that stores
the text in the form of XML markup. Currently, two markup formats are provided by the
XmlChan class, one is closely related to the text format produced by the basic Channel class
(currently, no schema or DTD is available describing this format). The other is a subset of an
early draft of the IVOA Space-Time-Coordinates XML (STC-X) schema (V1.20) described at
http://www.ivoa.net/Documents/ WD /STC/STC-20050225.html 3. The version of STC-X that
has been adopted by the IVOA differs in several significant respects from V1.20, and therefore
this XmlChan format is of historical interest only.

Finally, the StcsChan class provides facilities for reading and writing IVOA STC-S region de-
scriptions. STC-S (see http://www.ivoa.net/Documents/latest/STC-S.html) is a linear string
syntax that allows simple specification of STC metadata. AST supports a subset of the STC-S
specification, allowing an STC-S description of a region within an AST-supported astronomical
coordinate system to be converted into an equivalent AST Region object, and vice-versa.

Further reading: For a more complete description of Channels see §15 and for FitsChans see
§16 and §17. Also see the Channel and FitsChan entries in Appendix D and the Encoding entry
in Appendix C.

3XML documents which use only the subset of the STC schema supported by AST can be read by the XmlChan
class to produce corresponding AST objects (subclasses of the Stc class). However, the reverse is not possible.
That is, AST objects can not currently be written out in the form of STC documents.

12 2 OVERVIEW OF AST CONCEPTS

Fcliptic coordinates; mean equinox J2000.0

Figure 8: A labelled coordinate grid for an all-sky zenithal equal area projection in ecliptic
coordinates. This was composed and drawn via a Plot using a single function call.

2.7 Producing Graphical Output

Two dimensional graphical output is supported by a specialised form of FrameSet called a Plot,
whose base Frame corresponds with the native coordinates of the underlying graphics system.
Plotting operations are specified in physical coordinates which correspond with the Plot’s current
Frame. Typically, this might be a celestial coordinate system.

Three dimensional plotting is also supported, via the Plot3D class - sub-class of Plot.

Operations, such as drawing lines, are automatically transformed from physical to graphical
coordinates before plotting, using an adaptive algorithm which ensures smooth curves (because
the transformation is usually non-linear). “Missing” coordinates (e.g. graphical coordinates
which do not project on to the celestial sphere), discontinuities and generalised clipping are all
consistently handled. It is possible, for example, to plot in equatorial coordinates and clip in
galactic coordinates. The usual plotting operations are provided (text, markers), but a geodesic
curve replaces the primitive straight line element. There is also a separate function for drawing
axis lines, since these are normally not geodesics.

In addition to drawing coordinate grids over an area of the sky, another common use of the Plot
class is to produce line plots such as flux against wavelength, displacement again time, etc. For
these situations the current Frame of the Plot would be a compound Frame (CmpFrame) con-
taining a pair of 1-dimensional Frames - the first representing the X axis quantity (wavelength,
time, etc), and the second representing the Y axis quantity (flux, displacement, etc). The Plot
class includes an option for axes to be plotted logarithmically.

Perhaps the most useful graphics function available is for drawing fully annotated coordinate
grids (e.g. Figure 8). This uses a general algorithm which does not depend on knowledge of

2.7 Producing Graphical Output 13

the coordinates being represented, so can also handle programmer-defined coordinate systems.
Grids for all-sky projections, including polar regions, can be drawn and most aspects of the
output (colour, line style, etc.) can be adjusted by setting appropriate Plot attributes.

Further reading: For a more complete description of Plots and how to produce graphical
output, see §21. Also see the Plot entry in Appendix D.

14

2 OVERVIEW OF AST CONCEPTS

15

3 How To...

For those of you with a plane to catch, this section provides some instant templates and recipes
for performing the most commonly-required operations using AST, but without going into detail.
The examples given (sort of) follow on from each other, so you should be able to construct a
variety of programs by piecing them together. Note that some of them appear longer than they
actually are, because we have included plenty of comments and a few options that you probably
won’t need.

If any of this material has you completely baffled, then you may want to read the introduction
to AST programming concepts in §4 first. Otherwise, references to more detailed reading are
given after each example, just in case they don’t quite do what you want.

3.1 ...Obtain and Install AST

The AST library is available both as a stand-alone package and also as part of the Starlink
Software Collection?. If your site has the Starlink Software Collection installed then AST should
already be available.

If not, you can download the AST library by itself from http://www.starlink.ac.uk/ast/.

3.2 ...Structure an AST Program

An AST program normally has the following structure:

/* Include the interface to the AST library. */
#include "ast.h"

/* Main program (or could be any function). */
main () {
<normal C declarations and statements>

/* Enclose the parts which use AST between the astBegin and astEnd macros. */
astBegin;
<C statements which use AST>
astEnd;

<maybe more C statements>

The use of astBegin and astEnd is optional, but has the effect of tidying up after you have
finished using AST, so is normally recommended. For more details of this, see §4.10. For details
of how to access the “ast.h” header file, see §22.1.

3.3 ...Build an AST Program

To build a simple AST program that doesn’t use graphics, use:

“The Starlink Software Collection can be downloaded from http://www.starlink.ac.uk/Download, .

16 3 HOW TO...

cc program.c -L/star/lib -I/star/include ‘ast_link‘ -o program

To build a program which uses PGPLOT for graphics, use:

cc program.c -L/star/1lib ‘ast_link -pgplot‘ -o program

For more details about accessing the “ast.h” header file, see §22.1. For more details about linking
programs, see §22.2 and the description of the “ast_link” command in Appendix E.

3.4 ...Read a WCS Calibration from a Dataset

Precisely how you extract world coordinate system (WCS) information from a dataset obviously
depends on what type of dataset it is. Usually, however, you should be able to obtain a set
of FITS header cards which contain the WCS information (and probably much more besides).
Suppose that “cards” is a pointer to a string containing a complete set of concatenated FITS
header cards (such as produced by the CFITSIO function fits_hdr2str). Then proceed as follows:

fitsfile *fptr;
AstFitsChan *fitschan;
AstFrameSet *wcsinfo;
char xheader;

int nkeys, status;

/* 0Obtain all the cards in the header concatenated into a single dynamically
allocated null-terminated character string. Note, we do not exclude
any cards since we may later modify the WCS information within the
header and consequently want to write the entire header out again. */
if(fits_hdr2str(fptr, 0, NULL, O, &header, &nkeys, &status))
printf (" Error getting header\n");

/* Header obtained succesfully... */
} else {

/* Create a FitsChan and fill it with FITS header cards. */
fitschan = astFitsChan(NULL, NULL, "");
astPutCards(fitschan, header);

/* Free the memory holding the concatenated header cards. */
header = free(header);

/* Read WCS information from the FitsChan. */
wcsinfo = astRead(fitschan);

3.5 ... Validate WCS Information 17

The result should be a pointer, “wcsinfo”, to a FrameSet which contains the WCS information.
This pointer can now be used to perform many useful tasks, some of which are illustrated in the
following recipes.

Some datasets which do not easily yield FITS header cards may require a different approach,
possibly involving use of a Channel or XmlChan (§15) rather than a FitsChan. In the case of
the Starlink NDF data format, for example, all the above may be replaced by a single call to the
function ndfGtwes—see SUN/33. The whole process can probably be encapsulated in a similar
way for most data systems, whether they use FITS header cards or not.

For more details about reading WCS information from datasets, see §17.3 and §17.4. For a more
general description of FitsChans and their use with FITS header cards, see §16 and §17. For
more details about FrameSets, see §13 and §14.

3.5 ...Validate WCS Information

Once you have read WCS information from a dataset, as in §3.4, you may wish to check that
you have been successful. The following will detect and classify the things that might possibly
go wrong:

#include <string.h>

if (lastOK) {
<an error occurred (a message will have been issued)>
} else if (wcsinfo == AST__NULL) {
<there was no WCS information present>
} else if (strcmp(astGetC(wcsinfo, "Class"), "FrameSet")) {
<something unexpected was read (i.e. not a FrameSet)>
} else {
<WCS information was read OK>

}

For more information about detecting errors in AST functions, see §4.15. For details of how to
validate input data read by AST, see §15.6 and §17.4.

3.6 ...Display AST Data

If you have a pointer to any AST Object, you can display the data stored in that Object in
textual form as follows:

astShow(wcsinfo);

Here, we have used a pointer to the FrameSet which we read earlier (§3.4). The result is written
to the program’s standard output stream. This can be very useful during debugging.

For more details about using astShow, see §4.4. For information about interpreting the output,
also see §15.8.

18 3 HOW TO...

3.7 ...Convert Between Pixel and World Coordinates

You may use a pointer to a FrameSet, such as we read in §3.4, to transform a set of points
between the pixel coordinates of an image and the associated world coordinates. If you are
working in two dimensions, proceed as follows:

double xpixel[N], ypixel[N];
double xworld[N], yworld[N 1;

astTran2(wcsinfo, N, xpixel, ypixel, 1, xworld, yworld);

Here, N is the number of points to be transformed, “xpixel” and “ypixel” hold the pixel coordi-
nates, and “xworld” and “yworld” receive the returned world coordinates.® To transform in the
opposite direction, interchange the two pairs of arrays (so that the world coordinates are given
as input) and change the fifth argument of astTran2 to zero.

To transform points in one dimension, use astTranl. In any other number of dimensions (or if
the number of dimensions is initially unknown), use astTranN or astTranP. These functions are
described in Appendix B.

For more information about transforming coordinates, see §4.8 and §13.6. For details of how to
handle missing coordinates, see §5.8.

3.8 ...Test if a WCS is a Celestial Coordinate System

The world coordinate system (WCS) currently associated with an image may often be a celestial
coordinate system, but this need not necessarily be the case. For instance, instead of right
ascension and declination, an image might have a WCS with axes representing wavelength and
slit position, or maybe just plain old pixels.

If you have obtained a WCS calibration for an image, as in §3.4, in the form of a pointer
“wesinfo” to a FrameSet, then you may determine if the current coordinate system is a celestial
one or not, as follows:

AstFrame *frame;
int issky;

/* Obtain a pointer to the current Frame and determine if it is a
SkyFrame. */

frame = astGetFrame(wcsinfo, AST__CURRENT);

issky = astIsASkyFrame(frame);

frame = astAnnul(frame);

This will set “issky” to 1 if the WCS is a celestial coordinate system, and to zero otherwise.

By pixel coordinates, we mean a coordinate system in which the first pixel in the image is centred on (1,1)
and each pixel is a unit square. Note that the world coordinates will not necessarily be celestial coordinates, but
if they are, then they will be in radians.

3.9 ...Test if a WCS is a Spectral Coordinate System 19

3.9 ...Test if a WCS is a Spectral Coordinate System

Testing for a spectral coordinate system is basically the same as testing for a celestial coordinate
system (see the previous section). The one difference is that you use the astIsASpecFrame
function in place of the astIsASkyFrame function.

3.10 ...Format Coordinates for Display

Once you have converted pixel coordinates into world coordinates (§3.7), you may want to
format them as text before displaying them. Typically, this would convert from (say) radians
into something more comprehensible. Using the FrameSet pointer “wcsinfo” obtained in §3.4
and a pair of world coordinates “xw” and “yw” (e.g. see §3.7), you could proceed as follows:

#include <stdio.h>
const char *xtext, *ytext;
double xw, yw;

astFormat (wcsinfo, 1, xw);
astFormat(wcsinfo, 2, yw);

xtext
ytext

(void) printf("Position = %s, %s\n", xtext, ytext);

Here, the second argument to astFormat is the axis number.

With celestial coordinates, this will usually result in sexagesimal notation, such as “12:34:56.7”.
However, the same method may be applied to any type of coordinates and appropriate formatting
will be employed.

For more information about formatting coordinate values and how to control the style of for-
matting used, see §7.6 and §8.6. If necessary, also see §7.7 for details of how to “normalise” a set
of coordinates so that they lie within the standard range (e.g. 0 to 24 hours for right ascension
and +£90° for declination).

3.11 ...Display Coordinates as they are Transformed

In addition to formatting coordinates as part of a program’s output, you may also want to
examine coordinate values while debugging your program. To save time, you can “eavesdrop”
on the coordinate values being processed every time they are transformed. For example, when
using the FrameSet pointer “wcsinfo” obtained in §3.4 to transform coordinates (§3.7), you could
inspect the coordinate values as follows:

astSet(wcsinfo, "Report=1");
astTran2(wcsinfo, N, xpixel, ypixel, 1, xworld, yworld);

By setting the FrameSet’s Report attribute to 1, coordinate transformations are automatically
displayed on the program’s standard output stream, appropriately formatted, for example:

20 3 HOW TO...

(42.1087, 20.2717) --> (2:06:03.0, 34:22:39)
(43.0197, 21.1705) --> (2:08:20.6, 35:31:24)
(43.9295, 22.0716) --> (2:10:38.1, 36:40:09)
(44.8382, 22.9753) --> (2:12:55.6, 37:48:55)
(45.7459, 23.8814) --> (2:15:13.1, 38:57:40)
(46.6528, 24.7901) --> (2:17:30.6, 40:06:25)
(47.5589, 25.7013) --> (2:19:48.1, 41:15:11)
(48.4644, 26.6149) --> (2:22:05.6, 42:23:56)
(49.3695, 27.5311) --> (2:24:23.1, 43:32:41)
(50.2742, 28.4499) --> (2:26:40.6, 44:41:27)

For a complete description of the Report attribute, see its entry in Appendix C. For further
details of how to set and enquire attribute values, see §4.6 and §4.5.

3.12 ...Read Coordinates Entered by a User

In addition to writing out coordinate values generated by your program (§3.10), you may also
need to accept coordinates entered by a user, or perhaps read from a file. In this case, you will
probably want to allow “free-format” input, so that the user has some flexibility in the format
that can be used. You will probably also want to detect any typing errors.

Let’s assume that you want to read a number of lines of text, each containing the world coordi-
nates of a single point, and to split each line into individual numerical coordinate values. Using
the FrameSet pointer “wcsinfo” obtained earlier (§3.4), you could proceed as follows:

#include <stdio.h>

char *t;

char text[MAXCHARS + 2 1;
double coord[10 1;

int iaxis, n, naxes;

/* Obtain the number of coordinate axes (if not already known). */
naxes = astGetI(wcsinfo, "Naxes");

/* Loop to read each line of input text, in this case from the
standard input stream (your programming environment will probably
provide a better way of reading text than this). Set the pointer
"t" to the start of each line read. */

while (t = fgets(text, MAXCHARS + 2, stdin)) {

/* Attempt to read a coordinate for each axis. */
for (iaxis = 1; iaxis <= naxes; iaxis++) {
n = astUnformat(wcsinfo, iaxis, t, &coord[iaxis - 1]);

/* If nothing was read and this is not the first axis or the
end-of-string, try stepping over a separator and reading again. */
if ('n && (iaxis > 1) && *t)

n = astUnformat(wcsinfo, iaxis, ++t, &coord[iaxis - 1]);

3.13 ...Create a New WCS Calibration 21

/* Quit if nothing was read, otherwise move on to the next coordinate. */
if ('n) break;
t += n;

}
/* Test for the possible errors that may occur... */
/* Error detected by AST (a message will have been issued). */
if (lastOK) {
break;

/* Error in input data at character t[n]. */

} else if (*t || 'n) {
<handle the error, or report your own message here>
break;

} else {

<coordinates were read O0K>

}

This algorithm has the advantage of accepting free-format input in whatever style is appropriate
for the world coordinates in use (under the control of the FrameSet whose pointer you provide).
For example, wavelength values might be read as floating point numbers (e.g. “1.047” or “4787"),
whereas celestial positions could be given in sexagesimal format (e.g. “12:34:56” or “12 34.5”)
and would be converted into radians. Individual coordinate values may be separated by white
space and/or any non-ambiguous separator character, such as a comma.

For more information on reading coordinate values using the astUnformat function, see §7.8.
For details of how sexagesimal formats are handled, and the forms of input that may be used
for celestial coordinates, see §8.7.

3.13 ...Create a New WCS Calibration

This section describes how to add a WCS calibration to a data set which you are creating from
scratch, rather than modifying an existing data set.

In most common cases, the simplest way to create a new WCS calibration from scratch is prob-
ably to create a set of strings describing the required calibration in terms of the keywords used
by the FITS WCS standard, and then convert these strings into an AST FrameSet describing
the calibration. This FrameSet can then be used for many other purposes, or simply stored in
the data set.

The full FITS-WCS standard is quite involved, currently running to four separate papers, but
the basic kernel is quite simple, involving the following keywords (all of which end with an
integer axis index, indicated below by < i >):

CRPIXji;
hold the pixel coordinates at a reference point

CRVAL;i,,
hold the corresponding WCS coordinates at the reference point

22 3 HOW TO...

CTYPE;i;,
name the quantity represented by the WCS axes, together with the projection algorithm
used to convert the scaled and rotated pixel coordinates to WCS coordinates.

CDiiz_ij¢
a set of keywords which specify the elements of a matrix. This matrix scales pixel offsets
from the reference point into the offsets required as input by the projection algorithm
specified by the CTYPE keywords. This matrix specifies the scale and rotation of the
image. If there is no rotation the off-diagonal elements of the matrix (e.g. CD1_2 and
CD2_1) can be omitted.

As an example consider the common case of a simple 2D image of the sky in which north is
parallel to the second pixel axis and east parallel to the (negative) first pixel axis. The image
scale is 1.2 arc-seconds per pixel on both axes, and the image is presumed to have been obtained
with a tangent plane projection. Furthermore, it is known that pixel coordinates (100.5,98.4)
correspond to an RA of 11:00:10 and a Dec. of -23:26:02. A suitable set of FITS-WCS header
cards could be:

CTYPE1 = ’RA-—-TAN’ / Axis 1 represents RA with a tan projection

CTYPE2 = ’DEC--TAN’ / Axis 2 represents Dec with a tan projection

CRPIX1 = 100.5 / Pixel coordinates of reference point

CRPIX2 = 98.4 / Pixel coordinates of reference point

CRVAL1 = 165.04167 / Degrees equivalent of "11:00:10" hours

CRVAL2 = -23.433889 / Decimal equivalent of "-23:26:02" degrees

CDh1_1 = -0.0003333333 / Decimal degrees equivalent of -1.2 arc-seconds
/

Cb2_2 = 0.0003333333 Decimal degrees equivalent of 1.2 arc-seconds

Notes:

e a FITS header card begins with the keyword name starting at column 1, has an equals
sign in column 9, and the keyword value in columns 11 to 80.

e string values must be enclosed in single quotes.
e celestial longitude and latitude must both be specified in decimal degrees.
e the CD1_1 value is negative to indicate that RA increases as the first pixel axis decreases.

e the (RA,Dec) coordinates will be taken as ICRS coordinates. For FK5 you should add:

RADESYS
EQUINOX

’FK5’
2005.6

The EQUINOX value defaults to J2000.0 if omitted. FK4 can also be used in place of
FK5, in which case EQUINOX defaults to B1950.0.

Once you have created these FITS-WCS header card strings, you should store them in a FitsChan
and then read the corresponding FrameSet from the FitsChan. How to do this is described in
§3.4.

3.14 ... Modify a WCS Calibration 23

Having created the WCS calibration, you may want to store it in a data file. How to do this is
described in §3.15).6

If the required WCS calibration cannot be described as a set of FITS-WCS headers, then a
different approach is necessary. In this case, you should first create a Frame describing pixel
coordinates, and store this Frame in a new FrameSet. You should then create a new Frame
describing the world coordinate system. This Frame may be a specific subclass of Frame such
as a SkyFrame for celestial coordinates, a SpecFrame for spectral coordinates, a Timeframe for
time coordinates, or a CmpFrame for a combination of different coordinates. You also need
to create a suitable Mapping which transforms pixel coordinates into world coordinates. AST
provides many different types of Mappings, all of which can be combined together in arbitrary
fashions to create more complicated Mappings. The WCS Frame should then be added into the
FrameSet, using the Mapping to connect the WCS Frame with the pixel Frame.

3.14 ...Modify a WCS Calibration

The usual reason for wishing to modify the WCS calibration associated with a dataset is that
the data have been geometrically transformed in some way (here, we will assume a 2-dimensional
image dataset). This causes the image features (stars, galaxies, etc.) to move with respect to
the grid of pixels which they occupy, so that any coordinate systems previously associated with
the image become invalid.

To correct for this, it is necessary to set up a Mapping which expresses the positions of image
features in the new data grid in terms of their positions in the old grid. In both cases, the grid
coordinates we use will have the first pixel centred at (1,1) with each pixel being a unit square.

AST allows you to correct for any type of geometrical transformation in this way, so long as a
suitable Mapping to describe it can be constructed. For purposes of illustration, we will assume
here that the new image coordinates “xnew” and “ynew” can be expressed in terms of the old
coordinates “xold” and “yold” as follows:

double xnew, xold, ynew, yold;
double m[4 1, z[2 1;

>

xnew = xold * m[0] + yold * m[1] + z[0];
ynew = xold * m[2] + yold * m[3] + z[1]

where “m” is a 2x2 transformation matrix and “z” represents a shift of origin. This is therefore
a general linear coordinate transformation which can represent displacement, rotation, magnifi-
cation and shear.

In AST, it can be represented by concatenating two Mappings. The first is a MatrixMap, which
implements the matrix multiplication. The second is a WinMap, which linearly transforms one
coordinate window on to another, but will be used here simply to implement the shift of origin
(alternatively, a ShiftMap could have been used in place of a WinMap). These Mappings may
be constructed and concatenated as follows:

STf you are writing the WCS calibration to a FITS file you obviously have the choice of storing the FITS-WCS
cards directly.

24 3 HOW TO...

AstCmpMap *newmap;
AstMatrixMap *matrixmap;
AstWinMap *winmap;

/* The MatrixMap may be constructed directly from the matrix "m". */
matrixmap = astMatrixMap(2, 2, 0, m, "");

/* For the WinMap, we set up the coordinates of the corners of a unit
square (window) and then the same square shifted by the required
amount. */

{
double inal] = { 0.0, 0.0 };
double inb[] = { 1.0, 1.0 };
double outal] = { z[01, z[1] };
double outb[] ={ 1.0+ z[01, 1.0+ z[11 };

/* The WinMap will then implement this shift. */
winmap = astWinMap(2, ina, inb, outa, outb, "");

}

/* Join the two Mappings together, so that they are applied one after
the other. */
newmap = astCmpMap(matrixmap, winmap, 1, "");

You might, of course, create any other form of Mapping depending on the type of geometrical
transformation involved. For an overview of the Mappings provided by AST, see §2.2, and for
a description of the capabilities of each class of Mapping, see its entry in Appendix D. For an
overview of how individual Mappings may be combined, see §2.3 (§6 gives more details).

Assuming you have obtained a WCS calibration for your original image in the form of a pointer to
a FrameSet, “wcsinfol” (§3.4), the Mapping created above may be used to produce a calibration
for the new image as follows:

AstFrameSet *wcsinfol, *wcsinfo2;

/* If necessary, make a copy of the WCS calibration, since we are
about to alter it. */
wcsinfo2 = astCopy(wecsinfol);

/* Re-map the base Frame so that it refers to the new data grid
instead of the old one. */
astRemapFrame (wcsinfo2, AST__BASE, newmap);

This will produce a pointer, “wcsinfo2”, to a new FrameSet in which all the coordinate systems
associated with your original image are modified so that they are correctly registered with the
new image instead.

For more information about re-mapping the Frames within a FrameSet, see §14.4. Also see §14.5
for a similar example to the above, applicable to the case of reducing the size of an image by
binning.

3.15 ... Write a Modified WCS Calibration to a Dataset 25

3.15 ... Write a Modified WCS Calibration to a Dataset

If you have modified the WCS calibration associated with a dataset, such as in the example
above (§3.14), then you will need to write the modified version out along with any new data.

In the same way as when reading a WCS calibration (§3.4), how you do this will depend on your
data system, but we will assume that you wish to generate a set of FITS header cards that can
be stored with the data. You should usually make preparations for doing this when you first
read the WCS calibration from your input dataset by modifying the example given in §3.4 as
follows:

AstFitsChan *fitschanl;
AstFrameSet *wcsinfol;
const char *encode;

/* Create an input FitsChan and fill it with FITS header cards. Note,
if you have all the header cards in a single string, use astPutCards in
place of astPutFits. */
fitschanl = astFitsChan(NULL, NULL, "");
for (icard = 0; icard < ncard; icard++) astPutFits(fitschanl, cards[icard], 0);

/* Note which encoding has been used for the WCS information. */
encode = astGetC(fitschanl, "Encoding");

/* Rewind the input FitsChan and read the WCS information from it. */
astClear(fitschanl, "Card");
wcsinfol = astRead(fitschanl);

Note how we have added an enquiry to determine how the WCS information is encoded in the
input FITS cards, storing a pointer to the resulting string in the “encode” variable. This must
be done before actually reading the WCS calibration.

(N.B. If you will be making extensive use of astGetC in your program, then you should allocate
a buffer and make a copy of this string, because the pointer returned by astGetC will only remain
valid for 50 invocations of the function, and you will need to use the Encoding value again later
on.)

Once you have produced a modified WCS calibration for the output dataset (e.g. §3.14), in
the form of a FrameSet identified by the pointer “wcsinfo2”, you can produce a new FitsChan
containing the output FITS header cards as follows:

AstFitsChan *fitschan2;
AstFrameSet *wcsinfo2;

/* Make a copy of the input FitsChan, AFTER the WCS information has
been read from it. This will propagate all the input FITS header
cards, apart from those describing the input WCS calibration. */

fitschan2 = astCopy(fitschanl);

26 3 HOW TO...

/* If necessary, make modifications to the cards in "fitschan2"
(e.g. you might need to change NAXIS1, NAXIS2, etc., to account for
a change in image size). You probably only need to do this if your
data system does not provide these facilities itself. */

<details not shown - see below>

/* Alternatively, if your data system handles the propagation of FITS
header cards to the output dataset for you, then simply create an
empty FitsChan to contain the output WCS information alone.

fitschan2 = astFitsChan(NULL, NULL, "");

*/

/* Rewind the new FitsChan (if necessary) and attempt to write the
output WCS information to it using the same encoding method as the
input dataset. */

astSet(fitschan2, "Card=1, Encoding=%s", encode);

if (lastWrite(fitschan2, wcsinfo2)) {

/* If this didn’t work (the WCS FrameSet has become too complex), then
use the native AST encoding instead. */
astSet(fitschan2, "Encoding=NATIVE");
(void) astWrite(fitschan2, wcsinfo2);

For details of how to modify the contents of the output FitsChan in other ways, such as by
adding, over-writing or deleting header cards, see §16.4, §16.9, §16.8 and §16.13.

Once you have assembled the output FITS cards, you may retrieve them from the FitsChan
that contains them as follows:

#include <stdio.h>
char card[81];

astClear(fitschan2, "Card");
while (astFindFits(fitschan2, "Y%f", card, 1)) (void) printf("Y%s\n", card);

Here, we have simply written each card to the standard output stream, but you would obviously
replace this with a function invocation to store the cards in your output dataset.

For data systems that do not use FITS header cards, a different approach may be needed,
possibly involving use of a Channel or XmlChan (§15) rather than a FitsChan. In the case of
the Starlink NDF data format, for example, all of the above may be replaced by a single call
to the function ndfPtwes—see SUN/33. The whole process can probably be encapsulated in a
similar way for most data systems, whether they use FITS header cards or not.

For an overview of how to propagate WCS information through data processing steps, see
§17.6. For more information about writing WCS information to FitsChans, see §16.5 and §17.7.
For information about the options for encoding WCS information in FITS header cards, see
§16.1, §17.1, and the description of the Encoding attribute in Appendix C. For a complete
understanding of FitsChans and their use with FITS header cards, you should read §16 and §17.

3.16 ... Display a Graphical Coordinate Grid 27

FK5 coordinates; mean equinox J2000.0

Declination

3 2 1 0 23 22 21 20 19 18
Right ascension

Figure 9: An example of a displayed image with a coordinate grid plotted over it.

3.16 ...Display a Graphical Coordinate Grid

A common requirement when displaying image data is to plot an associated coordinate grid
(e.g. Figure 9) over the displayed image. The use of AST in such circumstances is independent
of the underlying graphics system, so starting up the graphics system, setting up a coordinate
system, displaying the image, and closing down afterwards can all be done using the graphics
functions you would normally use.

However, displaying an image at a precise location can be a little fiddly with some graphics
systems, and obviously the grid drawn by AST will not be accurately registered with the image
unless this is done correctly. In the following template, we therefore illustrate both steps, basing
the image display on the C interface to the PGPLOT graphics package.” Plotting a coordinate
grid with AST then becomes a relatively minor part of what is almost a complete graphics
program.

Once again, we assume that a pointer, “wcsinfo”, to a suitable FrameSet associated with the
image has already been obtained (§3.4).

TAn interface is provided with AST that allows it to use PGPLOT (SUN/15) for its graphics, although
interfaces to other graphics systems may also be written.

28

3 HOW TO..

#include "cpgplot.h"

AstPlot *plot;

const float *data;

float hi, lo, scale, x1, x2, xleft, xright, xscale;
float y1, y2, ybottom, yscale, ytop;

int nx, ny;

/* Access the image data, which we assume has dimension sizes "nx" and
"ny", and will be accessed via the "data" pointer. Also derive
limits for scaling it, which we assign to the variables "hi" and
Illoll. */

<this stage depends on your data system, so is not shown>

/* Open PGPLOT using the device given by environment variable
PGPLOT_DEV and check for success. */
if(cpgbeg(0, " ", 1, 1) ==1) {

/* Clear the screen and ensure equal scales on both axes. */

cpgpage () ;
cpgwnad(0.0f, 1.0f, 0.0f, 1.0f);

/* Obtain the extent of the plotting area (not strictly necessary for
PGPLOT, but possibly for other graphics systems). From this, derive
the display scale in graphics units per pixel so that the image
will fit within the display area. */
cpgawin(&x1, &x2, &yl, &y2);
xscale = (x2 - x1) / nx;
yscale = (y2 - y1) / ny;
scale = (xscale < yscale) 7 xscale : yscale;

/* Calculate the extent of the area in graphics units that the image
will occupy, so as to centre it within the display area. */
xleft = 0.5f * (x1 + x2 - nx * scale);

xright = 0.5f * (x1 + x2 + nx * scale);
ybottom = 0.5f * (yl + y2 - ny * scale);
ytop = 0.5f * (y1 + y2 + ny * scale);

/* Set up a PGPLOT coordinate transformation matrix and display the
image data as a grey scale map (these details are specific to
PGPLOT) . */

{
float tr[] = { xleft - 0.5f * scale, scale, 0.0f,
ybottom - 0.5f * scale, 0.0f, scale };
cpggray(data, nx, ny, 1, nx, 1, ny, hi, lo, tr);

/* BEGINNING OF AST BIT */

/* */

/* Store the locations of the bottom left and top right corners of the
region used to display the image, in graphics coordinates. */

{

float gbox[] = { xleft, ybottom, xright, ytop };

3.17 ...Switch to Plot a Different Celestial Coordinate Grid 29

/* Similarly, store the locations of the image’s bottom left and top
right corners, in pixel coordinates -- with the first pixel centred
at (1,1). %/

double pbox[] = { 0.5, 0.5, nx + 0.5, ny + 0.5 };

/* Create a Plot, based on the FrameSet associated with the
image. This attaches the Plot to the graphics surface so that it
matches the displayed image. Specify that a complete set of grid
lines should be drawn (rather than just coordinate axes). */
plot = astPlot(wcsinfo, gbox, pbox, "Grid=1");
}

/* Optionally, we can now set other Plot attributes to control the
appearance of the grid. The values assigned here use the
colour/font indices defined by the underlying graphics system. */
astSet(plot, "Colour(grid)=2, Font(textlab)=3");

/* Use the Plot to draw the coordinate grid. */
astGrid(plot);

<maybe some more AST graphics here>
/* Annul the Plot when finished (or use the astBegin/astEnd technique
shown earlier). */

plot = astAnnul(plot);

/* END OF AST BIT */
/* */

/* Close down the graphics system. */
cpgend () ;

Note that once you have set up a Plot which is aligned with a displayed image, you may also use
it to generate further graphical output of your own, specified in the image’s world coordinate
system (such as markers to represent astronomical objects, annotation, etc.). There is also a
range of Plot attributes which gives control over most aspects of the output’s appearance. For
details of the facilities available, see §21 and the description of the Plot class in Appendix D.

For details of how to build a graphics program which uses PGPLOT, see §3.3 and the description
of the ast_link command in Appendix E.

3.17 ...Switch to Plot a Different Celestial Coordinate Grid

Once you have set up a Plot to draw a coordinate grid (§3.16), it is a simple matter to change
things so that the grid represents a different celestial coordinate system. For example, after
creating the Plot with astPlot, you could use:

astSet(plot, "System=Galactic");

or:

30 3 HOW TO...

astSet(plot, "System=FK5, Equinox=J2010");

and any axes and/or grid drawn subsequently would represent the new celestial coordinate
system you specified. Note, however, that this will only work if the original grid represented
celestial coordinates of some kind (see §3.8 for how to determine if this is the case®). If it did
not, you will get an error message.

For more information about the celestial coordinate systems available, see the descriptions of
the System, Equinox and Epoch attributes in Appendix C.

3.18 ...Give a User Control Over the Appearance of a Plot

The idea of using a Plot’s attributes to control the appearance of the graphical output it produces
(§3.16 and §3.17) can easily be extended to allow the user of a program complete control over
such matters.

For instance, if the file “plot.config” contains a series of plotting options in the form of Plot
attribute assignments (see below for an example), then we could create a Plot and implement
these assignments before producing the graphical output as follows:

#include <stdio.h>
#define MAXCHARS 120

FILE *stream;

char line[MAXCHARS + 2 1;
int base;

/* Create a Plot and define the default appearance of the graphical
output it will produce. */
plot = astPlot (wcsinfo, gbox, pbox,
"Grid=1, Colour(grid)=2, Font(textlab)=3");

/* Obtain the value of any Plot attributes we want to preserve. */
base = astGetI(plot, "Base");

/* Open the plot configuration file, if it exists. Read each line of
text and use it to set new Plot attribute values. Close the file
when done. */
if (stream = fopen("plot.config", "r")) {
while (fgets(line, MAXCHARS + 2, stream)) astSet(plot, "%s", line);
close(stream);

}

/* Restore any attribute values we are preserving. */
astSetI(plot, "Base", base);

/* Produce the graphical output (e.g.). */
astGrid(plot);

8Note that the methods applied to a FrameSet may be used equally well with a Plot.

3.18 ... Give a User Control Over the Appearance of a Plot 31

Notice that we take care that the Plot’s Base attribute is preserved so that the user cannot
change it. This is because graphical output will not be produced successfully if the base Frame
does not describe the plotting surface to which we attached the Plot when we created it.

The arrangement shown above allows the contents of the “plot.config” file to control most aspects
of the graphical output produced (including the coordinate system used; the colour, line style,
thickness and font used for each component; the positioning of axes and tick marks; the precision,
format and positioning of labels; etc.) via assignments of the form:

System=Galactic, Equinox = 2001
Border = 1, Colour(border) =1
Colour(grid) = 2

DrawAxes = 1

Colour(axes) = 3

Digits = 8

Labelling = Interior

For a more sophisticated interface, you could obviously perform pre-processing on this input—
for example, to translate words like “red”, “green” and “blue” into colour indices, to permit
comments and blank lines, etc.

For a full list of the attributes that may be used to control the appearance of graphical output,
see the description of the Plot class in Appendix D. For a complete description of each individual
attribute (e.g. those above), see the attribute’s entry in Appendix C.

32

3 HOW TO...

33

4 An AST Object Primer

The AST library deals throughout with entities called Objects and a basic understanding of
how to handle these is needed before you can use the library effectively. If you are already
familiar with an object-oriented language, such as C++, few of the concepts should seem new to
you. Be aware, however, that AST is designed to be used wvia fairly conventional C and Fortran
interfaces, so some things have to be done a little differently.

If you are not already familiar with object-oriented programming, then don’t worry—we will not
emphasise this aspect more than is necessary and will not assume any background knowledge.
Instead, this section concentrates on presenting all the fundamental information you will need,
explaining how AST Objects behave and how to manipulate them from conventional C programs.

If you like to read documents from cover to cover, then you can consider this section as an
introduction to the programming techniques used in the rest of the document. Otherwise, you
may prefer to skim through it on a first reading and return to it later as reference material.

4.1 AST Objects

An AST Object is an entity which is used to store information and Objects come in various
kinds, called classes, according to the sort of information they hold. Throughout this section,
we will make use of a simple Object belonging to the “ZoomMap” class to illustrate many of
the basic concepts.

A ZoomMap is an Object that contains a recipe for converting coordinates between two hypo-
thetical coordinate systems. It does this by multiplying all the coordinate values by a constant
called the Zoom factor. A ZoomMap is a very simple Object which exists mainly for use in
examples. It allows us to illustrate the ways in which Objects are manipulated and to introduce
the concept of a Mapping—a recipe for converting coordinates—which is fundamental to the
way the AST library works.

4.2 Object Creation and Pointers

Let us first consider how to create a ZoomMap. This is done very simply as follows:

#include "ast.h"
AstZoomMap *zoommap;

zoommap = astZoomMap(2, 5.0, "")

The first step is to include the header file “ast.h” which declares the interface to the AST
library. We then declare a pointer of type AstZoomMap# to receive the result and invoke the
function astZoomMap to create the ZoomMap. The pattern is the same for all other classes of
AST Object—you simply prefix “ast” to the class name to obtain the function that creates the
Object and prefix “Ast” to obtain the type of the returned pointer.

These functions are called constructor functions, or simply constructors (you can find an individ-
ual description of all AST functions in Appendix B) and the arguments passed to the constructor

34 4 AN AST OBJECT PRIMER

are used to initialise the new Object. In this case, we specify 2 as the number of coordinates (i.e.
we are going to work in a 2-dimensional space) and 5.0 as the Zoom factor to be applied. Note
that this is a C double value. We will return to the final argument, an empty string, shortly

(54.6).

The value returned by the constructor is termed an Object pointer or, in this case, a ZoomMap
pointer and is used to refer to the Object. You perform all subsequent operations on the Object
by passing this pointer to other AST functions.

4.3 The Object Hierarchy

Now that we have created our first ZoomMap, let us examine how it relates to other kinds of
Object before investigating what we can do with it.

We have so far indicated that a ZoomMap is a kind of Object and have also mentioned that it is
a kind of Mapping as well. These statements can be represented very simply using the following
hierarchy:

Object

Mapping
ZoomMap

which is a way of stating that a ZoomMap is a special class of Mapping, while a Mapping, in
turn, is a special class of Object. This is exactly like saying that an Oak is a special form of
Tree, while a Tree, in turn, is a special form of Plant. This may seem almost trivial, but before
you turn to read something less dull, be assured that it is a very important idea to keep in mind
in what follows.

If we look at some of the other Objects used by the AST library, we can see how these are all
related in a similar way (don’t worry about what they do at this stage):

Object

Mapping

Frame
FrameSet
Plot

UnitMap
ZoomMap

Channel
FitsChan
XmlChan

Notice that there are several different types of Mapping available (i.e. there are classes of Object
indented beneath the “Mapping” heading) and, in addition, other types of Object which are not
Mappings—Channels for instance (which are at the same hierarchical level as Mappings).

The most specialised Object we have shown here is the Plot (which we will not discuss in detail
until §21). As you can see, a Plot is a FrameSet. .. and a Frame... and a Mapping. .. and, like
everything else, ultimately an Object.

What this means is that you can use a Plot not only for its own specialised behaviour, but also
whenever any of these other less-specialised classes of Object is called for. The general rule is

4.4 Displaying Objects 35

that an Object of a particular class may substitute for any of the classes appearing above it in
this hierarchy. The Object is then said to inherit the behaviour of these higher classes. We can
therefore use our ZoomMap whenever a ZoomMap, a Mapping or an Object is called for.

Sometimes, this can lead to some spectacular short-cuts by avoiding the need to break large
Objects down in order to access their components. With some practice and a little lateral
thinking you should soon be able to spot opportunities for this.

You can find the full class hierarchy, as this is called, for the AST library in Appendix A and
you may need to refer to it occasionally until you are familiar with the classes you need to use.

4.4 Displaying Objects

Let us now return to the ZoomMap that we created earlier (§4.2) and examine what it’s made
of. There is a function for doing this, called astShow, which is provided mainly for looking at
Objects while you are debugging programs.

If you consult the description of astShow in Appendix B, you will find that it takes a pointer to
an Object (of type AstObject*) as its argument. Although we have only a ZoomMap pointer
available, this is not a problem. If you refer to the brief class hierarchy described above (§4.3),
you will see that a ZoomMap is an Object, albeit a specialised one, so it inherits the properties
of all Objects and can be substituted wherever an Object is required. We can therefore pass our
ZoomMap pointer directly to astShow, as follows:

astShow(zoommap);

The output from this will appear on the standard output stream and should look like the
following;:

Begin ZoomMap

Nin = 2
IsA Mapping
Zoom = 5

End ZoomMap

Here, the “Begin” and “End” lines mark the beginning and end of the ZoomMap, while the
values 2 and 5 are simply the values we supplied to initialise it (§4.2). These have been given
simple names to make them easy to refer to.

The line in the middle which says “IsA Mapping” is a dividing line between the two values.
It indicates that the “Nin” value is a property shared by all Mappings, so the ZoomMap has
inherited this from its parent class (Mapping). The “Zoom” value, however, is specific to a
ZoomMap and isn’t shared by other kinds of Mappings.

4.5 Getting Attribute Values

We saw above (§4.4) how to display the internal values of an Object, but what about accessing
these values from a program? Not all internal Object values are accessible in this way, but many

36 4 AN AST OBJECT PRIMER

are. Those that are, are called attributes. A description of all the attributes used by the AST
library can be found in Appendix C.

Attributes come in several data types (character string, integer, boolean and floating point) and
there is a standard way of obtaining their values. As an example, consider obtaining the value
of the Nin attribute for the ZoomMap created earlier. This could be done as follows:

int nin;

nin = astGetI(zoommap, "Nin");

Here, the function astGetl is used to extract the attribute value by giving it the ZoomMap pointer
and the attribute name (attribute names are not case sensitive, but we have used consistent
capitalisation in this document in order to identify them). Remember to use the “ast.h” header
file to include the function prototype.

If we had wanted the value of the Zoom attribute, we would probably have used astGetD instead,
this being a double version of the same function, for example:

double zoom;

zoom = astGetD(zoommap, "Zoom");

However, we could equally well have read the Nin value as double, or the Zoom value as an
integer, or whatever we wanted.

The data type you want returned is specified simply by replacing the final character of the
astGetX function name with C (character string), D (double), F (float), I (int) or L (long).
If possible, the value is converted to the type you want. If not, an error message will result.
Note that all floating point values are stored internally as double, and all integer values as int.
Boolean values are also stored as integers, but only take the values 1 and 0 (for true/false).

4.6 Setting Attribute Values

Some attribute values are read-only and cannot be altered after an Object has been created.
The Nin attribute of a ZoomMap (describing the number of coordinates) is like this. It is defined
when the ZoomMap is created, but cannot then be altered.

Other attributes, however, can be modified whenever you want. A ZoomMap’s Zoom attribute
is like this. If we wanted to change it, this could be done simply as follows:

astSetD(zoommap, "Zoom", 99.6);

which sets the value to 99.6. As when getting an attribute value (§4.5), you have a choice of
which data type you will use to supply the new value. For instance, you could use an integer
value, as in:

4.6 Setting Attribute Values 37

astSetI(zoommap, "Zoom", 99);

and the necessary data conversion would occur. You specify the data type you want to supply
simply by replacing the final character of the astSetX function name with C (character string),
D (double), F (float), I (int) or L (long). Setting a boolean attribute to any non-zero integer
causes it to take the value 1.

An alternative way of setting attribute values for Objects is to use the astSet function (i.e.
with no final character specifying a data type). In this case, you supply the attribute values in
a character string. The big advantage of this method is that you can assign values to several
attributes at once, separating them with commas. This also reads more naturally in programs.
For example:

astSet(zoommap, "Zoom=99.6, Report=1");

would set values for both the Zoom attribute and the Report attribute (about which more
shortly—=84.8). You don’t really have to worry about data types with this method, as any
character representation will do. Note, when using astSet, a literal comma may be included in
an attribute value by enclosed the value in quotation marks:

astSet(skyframe, ’SkyRef="12:13:32,-23:12:44"’);

Another attractive feature of astSet is that you can build the character string which contains
the attribute settings in the same way as when using the C run time library “printf” function.
This is most useful when the values you want to set are held in other variables. For example:

double zoom = 99.6;
int report = 1;

astSet(zoommap, "Zoom=Yg, Report=}d", zoom, report);

would replace the “%” conversion specifications by the values supplied as additional arguments.
Any number of additional arguments may be supplied and the formatting rules are exactly the
same as for the C “printf” family of functions. This is a very flexible technique, but does contain
one pitfall:

Pitfall. The default precision used by “printf” (and astSet) for floating point values
is only 6 decimal digits, corresponding approximately to float on most machines,
whereas the AST library stores such values internally as doubles. You should be
careful to specify a larger precision (such as DBL_DIG, as defined in <float.h>)
when necessary. For example:

#include <float.h>

astSet(zoommap, "Zoom=%.*g", DBL_DIG, double_value);

38 4 AN AST OBJECT PRIMER

Substituted strings may contain commas and this is a useful way of assigning such strings as
attribute values without the comma being interpreted as an assignment separator, for example:

astSet(object, "Attribute=Js", "A string, containing a comma");

This is equivalent to using astSetC and one of these two methods should always be used when
assigning string attribute values which might potentially contain a comma (e.g. strings obtained
from an external source). However, you should not attempt to use astSet to substitute strings
that contain newline characters, since these are used internally as separators between adjacent
attribute assignments.

Finally, a very convenient way of setting attribute values is to do so at the same time as you
create an Object. Every Object constructor function has a final character string argument which
allows you to do this. Although you can simply supply an empty string, it is an ideal opportunity
to initialise the Object to have just the attributes you want. For example, we might have created
our original ZoomMap with:

zoommap = astZoomMap(2, 5.0, "Report=1");

and it would then start life with its Report attribute set to 1. The “printf”-style substitution
described above may also be used here.

4.7 Testing, Clearing and Defaulting Attributes

You can use the astGetX family of functions (§4.5) to get a value for any Object attribute at
any time, regardless of whether a value has previously been set for it. If no value has been set,
the AST library will generate a suitable default value.

Often, the default value of an attribute will not simply be trivial (zero or blank) but may
involve considerable processing to calculate. Wherever possible, defaults are designed to be
real-life, sensible values that convey information about the state of the Object. In particular,
they may often be based on the values of other attributes, so their values may change in response
to changes in these other attributes. The ZoomMap class that we have studied so far is a little
too simple to show this behaviour, but we will meet it later on.

An attribute that returns a default value in this way is said to be un-set. Conversely, once an
explicit value has been assigned to an attribute, it becomes set and will always return precisely
that value, never a default.

The distinction between set and un-set attributes is important and affects the behaviour of
several key routines in the AST library. You can test if an attribute is set using the function
astTest, which returns a boolean (integer) result, as in:

if (astTest(zoommap, "Report")) {

<the Report attribute is set>

}

Once an attribute is set, you can return it to its un-set state using astClear. The effect is as if
it had never been set in the first place. For example:

astClear(zoommap, "Report");

would ensure that the default value of the Report attribute is used subsequently.

4.8 'Transforming Coordinates 39

4.8 Transforming Coordinates

We now have the necessary apparatus to start using our ZoomMap to show what it is really for.
Here, we will also encounter a routine that is a little more fussy about the type of pointer it will
accept.

The purpose of a ZoomMap is to multiply coordinates by a constant zoom factor. To witness
this in action, we will first set the Report attribute for our ZoomMap to a non-zero value:

astSet(zoommap, "Report=1");

This boolean (integer) attribute, which is present in all Mappings (and a ZoomMap is a Map-
ping), causes the automatic display of all coordinate values that the Mapping converts. It is not
a good idea to leave this feature turned on in a finished program, but it can save a lot of work
during debugging.

Our next step is to set up some coordinates for the ZoomMap to work on, using two arrays
“xin” and “yin”, and two arrays to receive the transformed coordinates, “xout” and “yout”.
Note that these are arrays of double, as are all coordinate data processed by the AST library:

double xin[10]
double yin[10 1]
double xout[10];
double yout[10 1;

{o0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 };
{o0.0, 2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0 };

B

We will now use the function astTran2 to transform the input coordinates. This is the most
commonly-used (2-dimensional) coordinate transformation function. If you look at its descrip-
tion in Appendix B, you will see that it requires a pointer to a Mapping, so we cannot supply
just any old Object pointer, as we could with the functions discussed previously. If we passed
it a pointer to an inappropriate Object, an error message would result.

Fortunately, a ZoomMap is a Mapping (Appendix A), so we can use it with