ure

Pure Language and Library
Documentation
Release 0.64

Albert Graf (Editor)

October 28, 2014

ii

Contents

1

The Pure Manual

1.1

1.2

1.3

1.4

Introduction
1.1.1 FurtherReading
1.1.2 Typographical Conventions
InvokingPure e
121 Options e
122 Overviewof Operation.
123 Compiling Scripts. L o
124 Tagging Scripts
12,5 Running Interactively
1.2.6 Verbosity and Debugging Options
12.7 CompilationOptions
Code GenerationOptions
Conditional Compilation
WarningOptions o
128 StartupFiles
129 Environment oo
PureOverview e
1.3.1 LexicalMatters
1.3.2 Definitions and Expression Evaluation.
Variablesin Equations
1.3.3 ExpressionSyntax oo
Primary Expressions
Simple Expressions oo
Special Expressions o oo
134 SpecialForms o
135 Toplevel
136 ScopingRules
RuleSyntax e
141 Patterns
The “Head = Function” Rule
ConstantPatterns o o L.
The Anonymous Variable

1.5

1.6

1.7

Non-Linear Patterns and Syntactic Equality 47

Special Patterns Lo oo 48
142 TypeTags e 49
143 GeneralRules o 52
144 SimpleRules. o . 54
145 TypeRules 55
Examples 60
1.5.1 Hello,World e 60

Passing Parameters 61

Executable Scripts oo 61

Compiled Scripts o 62
152 Running the Interpreter 63
153 BasicExamples o o . 67
154 Defining Functions L. 72
155 PatternMatching o oL 76
1.5.6 Local Functions and Variables 79
157 DataTypes. e 82
158 Recursion e 85

A NumericRootFinder 89

The Same-Fringe Problem 91
159 Higher-Order Functions 95
1.5.10 ListProcessing e 97
1.5.11 String Processing 103
1.5.12 List Comprehensions 106
1.5.13 Lazy Evaluationand Streams 108
1.5.14 Matricesand Vectors o . 111
1.5.15 Symbolic Matrices 118
1516 RecordData 120
1517 TheQuote o i e e 124
Declarations e 126
1.6.1 Symbol Declarations 126
1.6.2 Interface Types 130
1.6.3 Modulesand Imports L oo L 135
1.64 Namespaces ittt 137

Using Namespaces 139

Symbol Lookup and Creation 140

PrivateSymbols L 143

Namespace Brackets 144

Hierarchical Namespaces 146

Scoped Namespaces, 147
Macros 149
171 OptimizationRules 149
172 Recursive Macros i o oo 151
1.7.3 User-Defined Special Forms 152
174 MacroHygiene 0 ... 153
1.7.5 Built-in Macros and Special Expressions 154
1.7.6 Advanced Optimization 159

1.7.7 Reflection e 161

1.8 ExceptionHandling 163
19 Standard Library 165
1.10 Clnterface o . i i e e e e e 167
1.10.1 Extern Declarations 167
1.10.2 VariadicCFunctions i 169
1103 CTIypes . . o v v 170
BasicCTypes 170

Pointer Types 171

Pointers and Matrices 172

Pointer Examples L o oL 173

1.10.4 Importing Dynamic Libraries 175
1.10.5 Importing LLVM Bitcode 175
1.10.6 InlineCode @ . . . e e 178
1.10.7 Interfacingto C++ 180
1.10.8 Interfacingto ATS. 181
1.10.9 InterfacingtoFaust 183

1.11 Interactive Usage 189
1.11.1 Command Syntax 189
1112 OnlineHelp 191
1.11.3 Interactive Commands 192
1.11.4 Specifying Symbol Selections 196
1.11.5 Theshow Commando.... 197
1.11.6 DefinitionLevels e 200
1.11.7 Debugging e 202
1.11.8 LastResult e e 208
1.11.9 Pretty-Printing, 209
1.11.10 User-Defined Commands 211
1.11.11 InteractiveStartup L oo 213

1.12 Batch Compilation 214
1121 Example e 216
1.12.2 Options Affecting CodeSize 218
1.12.3 Other Output Code Formats. 219
1.12.4 Calling Pure Functions FromC 222

1.13 Caveatsand Notes i e e e 223
1.13.1 Etymology e 223
1.13.2 Backward Compatibility 223
1.13.3 ErrorRecovery, 226
1.13.4 Splicing Tuples and Matrices 226
1.13.5 Withandwhen 227
1.13.6 Non-Linear Patterns 228
1.13.7 “As” Patterns e e e e 229
1.13.8 “Head = Function” Pitfalls 229
1.13.9 Defined Functions e 230
1.13.10Stack Size and Tail Recursion 232
1.13.11 Handling of Asynchronous Signals 233
1.13.12Recursive Types L 234

1.13. 13 Interfaces o . e e e 236

1.13.14 Numeric Calculations 237
1.13.15Constant Definitions 238
1.13.16 External CFunctions e 240
1.13.17 Calling Special Forms, . 241
1.13.18Laziness v i e e e e e e e e e e 241
1.13.19Name Capture. i 242

1.14 Author e e e 244
1.15 Acknowledgements L o o 244
116 Copying e 244
1.17 Referencesand Links e 245
Pure Library Manual 247
21 Prelude e e e e 247
21.1 Constantsand Operators 247
212 PreludeTypes e 249
2.1.3 BasicCombinators 250
214 ListsandTuples. o .. 252
215 Slicing e 257
216 HashPairs e 258
2.1.7 ListFunctions e 259
Common List Functions 259

List Generators i e e e 261
ZipandFriends oo o oo 261

218 StringFunctions. L o o 262
Basic String Functions 0 o oo L 262

Low-Level Operations 265

2.1.9 MatrixFunctions e 267
Matrix Construction and Conversions 268

Matrix Inspection and Manipulation 271

Pointers and Matrices 274

2.1.10 Record Functions e 275
2.1.11 Primitives o e e e e e e e e 277
Special Constants o oo 277

Arithmetic e 278
COoNVersionS v v v v it e e e e e e e e e e e e e 280

Predicates e 281

Inspection 283

Evaland Friends 289

Expression Serialization 293

Other Special Primitives 294

Pointer Operations 294

Sentries. e e 295

Tagged Pointers 298

Expression References 300

Pointer Arithmetic e 301

2.2 Mathematical Functions e 302

221 Imports. e 302

222 BasicMathFunctions. 302

223 ComplexNumbers 304

224 Rational Numbers 305

225 Semantic Number Predicatesand Types 306

23 Enumerated Types 307
24 ContainerTypes e 309
241 Arrayso e 310
Imports. 310

Operations 310

Examples 311

242 Heaps e 312
Imports. 312

Operations 312

Examples 313

243 Dictionaries o i i e e e e e e e e e 313
Imports. 314

Operations 314

Examples 316

244 SetsandBags o oo 318
Imports. 319

Operations e 319

Examples 321

25 SystemlInterface L 322
251 Imports. e 322

252 Errmmoand Friends e 322

253 POSIXLocale e 323

254 SignalHandling. o 323

255 TimeFunctions e 324

256 ProcessFunctions 327
2.5.7 Basicl/Olnterface e 328

258 StatandFriends e 332

259 ReadingDirectories. 0L 333
2510 ShellGlobbing 333
2511 RegexMatching, 333
BasicExamples o o 336

Regex Substitutions and Splitting 337
EmptyMatches 338
Submatches 338

Perl Regex Compatibility 339

2.5.12 Additional POSIX Functions 340
2513 OptionParsing L 340

3 pure-avahi: Pure Avahi Interface 343
31 Copying o e 343
3.2 Installation e e 344
33 Usage e 344

3.4 Publishing Services L
3.5 Discovering Services o e
36 Example

pure-bonjour: Pure Bonjour Interface

41 Copying e
42 Installation e
43 Usage
44 Publishing Services L o e
45 Discovering Services oo e
46 Example

pure-doc

51 Copying
52 Imstallation L
53 Usage e
5.4 Literate Programming oo
5.5 Hyperlink Targets and Index Generation.
5.6 Generating and Installing Local Documentation
57 FormattingTips

pure-ffi

6.1 Copying e
6.2 Installation e e
6.3 Usage e
6.4 TODO e e e

pure-gen: Pure interface generator
71 Name e e
72 SYNOPSIS
73 Options
731 GeneralOptions
73.2 PreprocessorOptions. o o
733 GeneratorOptions
734 OutputOptions
74 Description. L e
75 FHiltering
76 NameMangling
77 GeneratingCCode
7.8 DealingwithCStructs
79 Notes e e
710 Example
701 License oo e e e
712 Authors L
713 See AlsO e

pure-readline

Vi

9 pure-sockets: Pure Sockets Interface 377

9.1 Installation e e e 377
92 Usage o o 377
9.2.1 Creating and Inspecting Socket Addresses 378

9.22 Creatingand Closing Sockets 379
9.2.3 Establishing Connections 379
924 SocketI/O e e e 379
9.25 SocketInformation e 380

93 Example 380
10 pure-stldict 383
10.1 Copying o e 383
10.2 Installation L e e e 383
103 Usage oo e 384
10.4 Types o o o e 384
10.5 Operations L e 385
10.5.1 BasicOperations 386
10.5.2 Comparisons 388
10.5.3 Set-Like Operations. 389
10.5.4 List-Like Operations 389
1055 Tterators e e 390
10.5.6 Low-Level Operations 391
10.5.7 Pretty-Printing 391
10.6 Examples 392
11 pure-stllib 395
111 Copying o o e 395
11.2 Installation e e 396
113 Usage o oo e 396
11.4 Documentation 0 i i e e e 396
115 Changes o e 397
12 pure-stimap 399
121 Copying o e 399
12.2 Introduction e e 399
12.2.1 Supported Containers 400
1222 Interface e 400
12.3 Installation e 400
124 Examples e 401
125 Quick Start e e e e e e 401
12.5.1 Example Containers 401
1252 Constructors o o e e e e e e 402
1253 Ranges 402
12.5.4 Inserting and Replacing Elements 403
1255 ACCESS . . . v v e e e 404
125.6 ErasingElements 405
1257 Conversions v v v v i e e e e e e e e e 405

vii

12.5.8 Functional Programming 406

12.6 Concepts e 407
12.6.1 Containersand Elements 407
1262 Ranges e 408
12.6.3 Tterators e e e e e 408
12.6.4 Selecting Elements UsingKeys 409
12.6.5 C++Implementation 409

12.7 Modules e e e 410
12.7.1 ThestlhmapModule 410
1272 ThestlmapModule 411
12.7.3 ThestimmapModule 411

12.8 Container Operations 412
12.8.1 Container Construction 412
12.8.2 Information 413
12.8.3 Modification e e e e 414
12.8.4 AccessingElements. 417
12.8.5 CONVErSIONS . . v v v v v o e e e e e e e e e e e e e 419
12.8.6 Functional Programming 420
12.8.7 Comparison 421
12.8.8 Set Algorithms L oo 423
12.89 DirectCCalls e e 424

12.9 Tterators o o e e e e e e e e e e e e e 424
129.1 Concepts o 424
1292 Exceptions e 426
12.9.3 Functions i i e e e 426
1294 Examples 428

12.10Backward Compatibilty 429
12.10.1 pure-stlmap-0.2 Lo 429
12.10.2pure-stlmap-0.3 L 429

13 pure-stlvec 431

131 Copyingo e 431

13.2 Installation e e 431

13.3 OVEIVIEW . . . o o o i e e e e e e e e e e e e e e e e 432
13.3.1 Modules e e 432
13.3.2 Simple Examples o o L 432
13.3.3 Members and Sequences of Members 434
13.3.4 STL Iterators and Value Semantics 434
13.35 IteratorTuples 435
13.3.6 Predefined Iterator TupleIndexes 436
13.3.7 Back InsertIterators 436
13.3.8 DataStructure e e 436
1339 Types oo 437
13.3.10 Copy-On-Write Semantics 437
13.3.11 Documentation e e e e e 438
13.3.12Parameter Names 0 i i it e e e e e e 438

134 ErrorHandling 439

viii

13.4.1 ExceptionSymbols o L 439

1342 Examples 440

13.5 Operations Included in the sttvecModule 441
1351 Imports. 441
13.5.2 Operations in the Global Namespace 441
13.5.3 Operations in the stt Namespace 443
1354 Examples 444

13.6 STL Nonmodifying Algorithms 444
13.6.1 Imports. 444
13.6.2 Operations e 444
13.6.3 Examples 445

13.7 STL Modifying Algorithms 445
1371 Imports. e 445
13.7.2 Operations e 446
13.7.3 Examples 448

13.8 STL Sort Algorithms 448
13.81 Imports. 448
13.8.2 Operations e 448
13.8.3 Examples e 449

13.9 STL Merge Algorithms 449
1391 Imports. 449
139.2 Operations e 450
1393 Examples 450
13.10STL Heap Algorithms 451
13101 Importso 451
13.10.20perations 451
13.103Examples 451
13.11Min/Max STL Algorithms 451
1311 1Imports. oo e 452
13.11.20perations L 452
13.11.3Examples 452
13.12STL Numeric Algorithms 452
13121 Imports oo 453
13.1220perations 453
13123 Examples 453
13.13Reference Counting o oo 453
13.14Backward Compatibiltyo o L. 453
13.14.1pure-stlvec-0.2. L 454
13.142pure-stlvec-0.3 L 454
13.143pure-stlvec-0.4 L 454

14 Gnumeric/Pure: A Pure Plugin for Ghumeric 455
14.1 Introduction L 455
142 Copying e 456
14.3 Installation L 456
144 Setup e 458
145 BasicUsage e 458

14.6 Interactive PureShell e 459

14.7 Defining Your Own Functions 461
14.7.1 Creatinga SimplePlugin 461
14.7.2 ThepluginxmlFile 462
1473 LoadingthePlugin 464
1474 SpicingItUp 465

14.8 Gnumeric/Pure Interface oo . 466
14.8.1 Function Descriptions 466
14.8.2 Conversions Between Pure and Gnumeric Values 469

149 Advanced Features 470
149.1 Calling Gnumeric fromPure 470
14.9.2 Accessing SpreadsheetCells 470
14.9.3 Asynchronous DataSources 472
14.9.4 Triggers e 473
149.5 SheetObjects 474
149.6 OpenGLInterface 475

Pure-GLPK - GLPK interface for the Pure programming language 479

151 Installation L 479

152 ErrorHandling 480

15.3 Further Information and Examples 481

15.4 Interface description L o 481

15.5 Descriptions of interface functions, . 481
15.5.1 Basic APIroutines 481

Problem creating and modifying routines 481
Problem retrieving routines Lo L. 490
Row and column searching routines 496
Problem scaling routines 498
LP basis constructing routines o 0oL 500
Simplex method routines 0L 503
Interior-point method routines 512
Mixed integer programming routines 515
Additional routines Lo L oL Lo 523
15.5.2 Utility APIroutines 524
Problem data reading/writing routines 524
Routines for MathProgmodels 527
Problem solution reading/writing routines 530
15.5.3 Advanced APIroutines 534
LPbasisroutines 534
Simplex tableauroutines Lo o 0oL 541
15.5.4 Branch-and-cut APIroutines 546
Basicroutines o o o oo 546
The search tree exploring routines 550
The cutpoolroutines 553
15.5.5 Graph and network APIroutines 555
Basic graphroutines 555

Graph analysisroutines 558

15.5.6

Minimum cost flow problem .
Maximum flow problem
Miscellaneous routines
Library environment routines .

16 Gnuplot bindings
161 Copying
16.2 Introduction
16.3 Function Reference

16.3.1
16.3.2
16.3.3
16.3.4
16.3.5

Open / Closing Functions . . .
Low-Level Commands
Plot Commands
PlotOptions
Private Functions

17 pure-gsl - GNU Scientific Library Interface for Pure
171 Polynomials

17.1.1
17.1.2

Routines
Examples

17.2 Special Functions

17.2.1
17.2.2
17.2.3
17.24
17.2.5
17.2.6
17.2.7
17.2.8
17.2.9

Airy Functions
Examples
Bessel Functions
Examples
Clausen Functions
Examples
Colomb Functions
Examples
Coupling Coefficients

17210 Examples
17.2.11 Dawson Function
17212 Examples
17.2.13 Debye Functions
17.2.14Examples
17.2.15Dilogarithm
17216 Examples
17.217Examples
17.3 Matrices

17.3.1
17.3.2
17.3.3

Matrix Creation
Matrix Operators and Functions
Singular Value Decomposition

17.4 Least-Squares Fitting

17.4.1
17.4.2

Routines
Examples

17.5 Statistics,

17.5.1
17.5.2

Routines
Examples

Xi

18

19

20

17.6 Random Number Distributions
17.6.1 Routines e e e e e e e e e
17.6.2 Examples e

17.7 Sorting e
17.7.1 Routines e e e e e e e
17.72 Examples

pure-mpfr

181 Copying o e

18.2 Imstallation e e e

183 Usage o oo e
18.3.1 Precisionand Rounding
18.3.2 MPERNumbers e
18.3.3 CONVersionsS v v v i e e e e e e e e e e e e e
18.3.4 Arithmetic e
18.3.5 Math Functions i e
18.3.6 Complex Number Support

184 Examples e

pure-octave

19.1 Introduction e e e e e e
192 Copying e
19.3 Installation e e e e e e
194 BasicUsage e
19.5 Direct Function Calls e
19.6 Data Conversions o v v i i i it e e e e e e e e e e e e
19.7 Calling BackIntoPure
19.8 GnuplotInterface L L o
19.9 Caveatsand Notes e

Pure-Rational - Rational number library for the Pure programming language
20.1 Copying . . . o v
20.2 Installation oL
20.3 Introduction e e e e e
20.3.1 The Rational Module
20.3.2 The Files and the Default Prelude
math.pureand OtherFiles
rationalpure. L Lo L o
rat_intervalpure o oo
20.3.3 Notation e
204 TheRational Type o
20.4.1 Constructors o oo e e e e
20.4.2 ‘Deconstructors’ e e e e e e e e
2043 Typeand ValueTests
20.5 Arithmetic e e
20.5.1 Operators e
20.5.2 MoreonDivision L L e

Xii

20.5.3 Relations — Equality and Inequality Tests 646

20.54 ComparisonFunction 646

20.6 Mathematical Functions, 646
20.6.1 Absolute Valueand Sign 647
20.6.2 Greatest Common Divisor (GCD) and Least Common Multiple (LCM) 647
20.6.3 Extrema (Minima and Maxima) 649

20.7 Special Rational Functions 649
20.7.1 Complexity 649
Complexity Relations 649

Complexity Comparison Function 650

Complexity Extrema 650

Other Complexity Functions 651

20.7.2 Mediants and Farey Sequences 651
20.7.3 Rational Type Simplification. 652

208 Q->Z—Rounding e 653
20.8.1 RoundingtoInteger 653
20.8.2 Integer and FractionParts 654

209 RoundingtoMultiples o oo 654
20.10Q >R —Conversion / Casting 656
20.11R ->Q — Approximation e 656
20.11.1Intervals 656
Interval Constructors and ‘Deconstructors” 657

Interval Type Tests 657

Interval Arithmetic Operators and Relations 658
IntervalMaths L 661

20.11.2 Least Complex Approximation within Epsilon 661
20.11.3 Best Approximation with Bounded Denominator 662
20.12Decomposition e 664
20.13Continued Fractions o . 664
20.13.1Introduction 664
20.13.2 Generating Continued Fractions 664
Exact 664

Inexact 664

20.13.3 Evaluating Continued Fractions 665
Convergents e 665
20.14Rational Complex Numbers 666
20.14.1 Rational Complex Constructors and ‘Deconstructors” 666
20.14.2 Rational Complex Type and Value Tests 668
20.14.3 Rational Complex Arithmetic Operators and Relations 669
20.14.4 Rational ComplexMaths 670
20.14.5 Rational Complex Type Simplification 671
20.155tring Formatting and Evaluation 672
20.15.1 The Naming of the String Conversion Functions 672
20.15.2 Internationalisation and Format Structures 672
20.153Digit Grouping e 674
20.154Radices 674
20.15.5Error Terms 674

21

20.16Q <-> Fraction String (“i+n/d”) oo oo L 675

20.16.1 Formatting to Fraction Strings 675
20.16.2 Evaluation of Fraction Strings 676
20.17Q <-> Recurring Numeral Expansion String (“ILFR”) 676
20.17.1 Formatting to Recurring Expansion Strings 677
20.17.2 Evaluation of Recurring Expansion Strings 678
20.18Q <-> Numeral Expansion String (“LLF x 10E”) 679
20.18.1 Formatting to Expansion Strings 679
Functions for Fixed Decimal Places 679

Functions for Significant Figures 680

Functions for Scientific Notation and Engineering Notation 681

20.18.2 Evaluation of Expansion Strings 682
20.19Numeral String -> Q — Approximation 683
Computer Algebra with Pure: A Reduce Interface 685
211 Copying . . . o o 686
21.2 Installation oL e 686
21.3 Low-Level Interface e 687
21.4 High-LevelInterface 687
21.4.1 Starting and StoppingReduce.o L. 687
21.4.2 Maintenance Operations 688
2143 Evaluation e 688

21.5 BasicExamples 690
21.6 Examplesby Topic 694
21.6.1 Differentiation L e 694
21.6.2 Integration o 694
21.6.3 Length,MapandSelect 696
21.6.4 Partial Fractions 698
21.65 Solving e 698
21.6.6 Evenand Odd Operators 700
21.6.7 Linear Operators 700
21.6.8 Non-commuting Operators 701
21.6.9 Symmetric and Antisymmetric Operators 701
21.6.10 Creating/Removing Variable Dependencies 702
21.6.11 Internal Order of Variables 702
21.6.12 Parts of Algebraic Expressions 703
21.6.13 Polynomials and Rationals 703
21.6.14 Substitution e e 706
21.6.15Assignment L e 706
21.6.16 Matrix Calculations L 707
21.6.17Limits e e e 709
21.6.18 Ordinary differential equationssolver 709
21.6.19 Series Summation and Products 710
21.6.20Taylor Series 710
21.6.21 Boolean Expressions oo 711
21.6.22 Mathematical Functions 712
21.6.23 DefiniteIntegrals o o oo 714

Xiv

21.6.24 Declarations, Switches and Loading

21.6.25Plotting
21.6.26 References

22 Pure-CSV - Comma Separated Value Interface for the Pure Programming Language

23

24

25

22.1
22.2

Installation
Usage
22.2.1 Handling Errors . . .
22.2.2 Creating Dialects . .
22.2.3 Opening CSV Files .

2224 FileReading Functions

22.2.5 File Writing Functions
222.6 Examples

pure-fastcgi: FastCGI module for Pure

23.1
23.2
23.3

Copying
Installation

Usage

Pure-ODBC - ODBC interface for the Pure programming language

241
242
24.3
24.4
24.5
24.6
247
24.8
249

Copying
Installation

Opening and Closing a Data Source
Getting Information about a Data Source

Executing SQL Queries . . .
Low-Level Operations . . .
Lazy Processing
Error Handling
Caveatsand Bugs

24.10Further Information and Examples

Pure-Sql3

25.1

25.2
25.3
254
25.5

Introduction
25.1.1 Simple Example . . .
25.1.2 More Examples . . .

25.1.3 SQLite Documentation,
25.1.4 Sqlite3 - The SQLite Command-Line Utility

Copying
Installation

Data Structure
Core Database Operations .
25.5.1 Database Connections

Opening a Database Connection
Failure to Open a Database Connection

Testing a db_ptr . . .

Closing a Database Connection

25.5.2 Prepared Statements

XV

26

27

28

29

30

Constructing Prepared Statements
Testingastmt_ptr.

Executing Prepared Statements

Executing Lazily

Executing Directlyonadb_ptr

Executing Against a Busy Database

Grouping Execution with Transactions

Finalizing Prepared Statements

2553 Exceptions
SQLite ErrorCodes i e

25.6 Advanced Features
25.6.1 Custom SQL Functions.
Scalar SQL Functions e

Aggregate SQL Functions,

25.6.2 Accessing the Rest of SQLite’s C Interface
25.6.3 Custom Binding Types for Prepared Statements

25.7 ThreadingModes L

Pure-XML - XML/XSLT interface

26.1 Copying o i

26.2 Installation e e

263 Usage o o e e

26.4 DataStructure e e e e
26.4.1 The DocumentTree i ittt e .
2642 DocumentTypes

26.5 Operations e
26.5.1 Document Operations
26.5.2 Traversing Documents
26.5.3 NodeInformation. i
26.54 NodeManipulation. L.
26.5.5 Transformations. i i i e

pure-g2

Pure OpenGL Bindings

28.1 Copying o i
28.2 Installation e e e e e
28.3 Usingthe GLBindings
28.4 Regenerating theBindings

Pure GTK+ Bindings

29.1 Copying o oo
29.2 Installation e
293 Usage . . . v v oo e

pure-tk
30.1 Introduction 0 o e e e e e e

771

773
773
774
774
775

777
777
778
778

779

XVi

31

32

33

30.2 Copying oo e
30.3 Installation e e e e
304 BasicUsage i
30.5 Callbacks o o e e e
30.6 TheMainLoop
30.7 Accessing Tcl Variables o oo
30.8 Conversions Between Pureand Tcl Values
309 Tipsand Tricks

faust2pd: Pd Patch Generator for Faust
311 Copying o oo
31.2 Requirements e
31.3 Installation e e e
31.4 Quickstart e e e e
31.5 Control Interface e
31.6 Examples
31.7 Wrapping DSPs with faust2pd
31.8 Conclusion e e e e e e e
31.8.1 Acknowledgements
319 Appendix: faustxmlo L Lo o
3191 Usage oo i e
31.9.2 DataStructure e e
3193 Operations o e

pd-faust

32.1 Copying o e

322 Installation e

323 Usage v o e
32.3.1 The fdsp~ and fsynth~Objects
3232 GUISubpatches
3233 Examples
32.3.4 OperatingthePatches
32.3.5 External MIDI and OSC Controllers
32.3.6 Tweaking the GUILayout
32.3.7 RemoteControl

324 CaveatsandBugs

pd-pure: Pd loader for Pure scripts

33.1 Copying o oo

33.2 Installation e e
3321 pd-pureonWindows oo o

333 Usage oo e

33.4 Control Objects e
33.4.1 SimpleObjects
33.4.2 Creation Arguments,
33.43 The[pure]Object
33.44 Configuring Inletsand Outlets

33.4.5 Variadic Creation Functions 814

334.6 LocalState e e e 815

335 AudioObjects 815
33.6 Advanced Features 821
33.6.1 AsynchronousMessages 821

33.6.2 WirelessMessaging 822

33.6.3 Reading and Writing AudioData 823

33.6.4 Controlling the Runtime 824

33.6.5 Livecoding 824

33.6.6 RemoteControl e 826

33.6.7 CompilingObjects 827

33.6.8 Programming Interface 827

34 pure-audio 831
34.1 Installation e e e 831
34.2 LICENSE . . . v v o o e e e e e e e e e e e e e 832

35 pure-faust 833
351 Copying o e 833
35.2 Installation e e e e 834
353 Usage o o e 834
35.4 Faust2 Compatibility 838
35.5 Acknowledgements Lo Lo o 838
36 pure-liblo 839
36.1 Copying o e 839
36.2 Description e 839

37 pure-lilv: Pure Lilv Interface 841
371 Copying oo 841
37.2 Installation e e e e 841
373 Description e 841

38 pure-lv2 845
38.1 Copying o i 845
38.2 Installation e e e e 845
383 Description e 845
38.4 Requirements and Limitations 846
385 Usage o e e 847

39 pure-midi 849
39.1 Installation e e e e e 849
39.2 LICENSE . . . v o o e e e e e e e e e e e e e e e 850

40 Installing Pure (and LLVM) 851
40.1 QuickSummary 851
40.2 BasicInstallation e 853
40.3 EmacsPure Mode e e 859

XViii

40.4
40.5

40.6
40.7

40.8

TeXmacsPlugin
Installing an LLVM-capable C/C++ Compiler.
4051 clang e
40.5.2 1Ivi-gcco
40.5.3 dragonegg
Installing From Development Sources
Other Build and Installation Options
40.7.1 InstallationPath.
40.7.2 Tool Prefixand LLVM Version
40.7.3 Versioned Installations
40.7.4 Separate Build Directory o0 L.
40.7.5 Compiler and Linker Options
40.7.6 Predefined Build Types
40.7.7 Running Pure From The Source Directory
40.7.8 OtherTargets
40.79 Pkg-configSupport L
System Notes e
40.8.1 AllPlatforms e e e
40.82 LLVM25 . . . e
40.8.3 LLVM 3.3 . . o o o e e e e
40.8.4 LLVM B34+ o ot e
40.8.5 PowerPC e e
40.8.6 Linux e e e e e
40.8.7 MacOS X e e
40.8.8 BSD e
40.89 MSWINdOWS o i it e e e e

41 Running Pure on Windows

42 Using PurePad

42.1
42.2
42.3
42.4
42.5

Getting Started
Editing Scripts
Running Scripts
UsingtheLog e
Locating SourceLines.

43 Reporting Bugs

Module Index

Index

873

875
875
877
877
878
879

881

883

885

Xix

XX

Pure Language and Library Documentation, Release 0.64

This manual collects all of Pure’s online documentation: The Pure Manual which covers the
Pure language and the operation of the Pure interpreter; the Pure Library Manual which de-
scribes the standard library modules included in the distribution of the Pure interpreter;
all available documentation for the various addon modules which can be downloaded as
separate packages from the Pure website; and an appendix with installation instructions and
additional information for Windows users.

Most of the Pure documentation is distributed under the GNU Free Documentation License.
The authors of the current edition are listed below. (This just lists the primary section au-
thors in alphabetical order; please check the different parts of this manual for additional
authorship and licensing information.)

o Albert Graf (The Pure Manual; Pure Library Manual; various addon manuals)

Rob Hubbard (Pure-Rational - Rational number library for the Pure programming language)

Kay-Uwe Kirstein (Gnuplot bindings)

Eddie Rucker (Pure-CSV - Comma Separated Value Interface for the Pure Programming Lan-
quage; pure-gsl - GNU Scientific Library Interface for Pure)

Jiri Spitz (Pure-GLPK - GLPK interface for the Pure programming language)
¢ Peter Summerland (Pure-5Sql3, pure-stlimap, pure-stlvec)

The Pure programming system is free and open source software. The interpreter runtime,
the standard library and most of the addon modules are distributed under the GNU Lesser
General Public License or the 3-clause BSD License which allow for commercial applica-
tions. Some parts of the system also use the GNU General Public License (typically because
they interface to other GPL'ed software such as Gnumeric, GSL and Octave). Details about
authorship and license conditions can be found in the sources or in the various manual sec-
tions.

For more information, discussions, feedback, questions, suggestions etc. please see:
* Pure website: http:/ /purelang.bitbucket.org
¢ Pure mailing list: http://groups.google.com/group/pure-lang

http://www.gnu.org/copyleft/fdl.html
http://www.gnu.org/copyleft/lgpl.html
http://www.gnu.org/copyleft/lgpl.html
http://www.opensource.org/licenses/bsd-license.php
http://www.gnu.org/copyleft/gpl.html
http://purelang.bitbucket.org
http://groups.google.com/group/pure-lang

Pure Language and Library Documentation, Release 0.64

Chapter

The Pure Manual

Version 0.64, October 28, 2014
Albert Grif <aggraef@gmail.com>

Copyright (c) 2009-2014 by Albert Graf. This document is available under the GNU Free
Documentation License. Also see the Copying section for licensing information of the soft-
ware.

This manual describes the Pure programming language and how to invoke the Pure inter-
preter program. To read the manual inside the interpreter, just type help at the command
prompt. See the Online Help section for details.

There is a companion to this manual, the Pure Library Manual which contains the description
of the standard library operations. More information about Pure and the latest sources can
be found under the following URLs:

* Pure website: http:/ /purelang.bitbucket.org
¢ Pure mailing list: http://groups.google.com/group/pure-lang

Information about how to install Pure can be found in the document Installing Pure (and
LLVM).

1.1 Introduction

Pure is a functional programming language based on term rewriting. This means that all
your programs are essentially just collections of symbolic equations which the interpreter
uses to reduce expressions to their simplest (“normal”) form. This makes for a rather power-
ful and flexible programming model featuring dynamic typing and general polymorphism.
In addition, Pure programs are compiled to efficient native code on the fly, using the LLVM
compiler framework, so programs are executed reasonably fast and interfacing to C is very
easy. If you have the necessary 3rd party compilers installed then you can even inline func-
tions written in C and a number of other languages and call them just like any other Pure

3

mailto:aggraef@gmail.com
http://www.gnu.org/copyleft/fdl.html
http://www.gnu.org/copyleft/fdl.html
http://purelang.bitbucket.org
http://groups.google.com/group/pure-lang

Pure Language and Library Documentation, Release 0.64

function. The ease with which you can interface to 3rd party software makes Pure useful for
a wide range of applications from symbolic algebra and scientific programming to database,
web and multimedia applications.

The Pure language is implemented by the Pure interpreter program. Just like other pro-
gramming language interpreters, the Pure interpreter provides an interactive environment
in which you can type definitions and expressions, which are executed as you type them at
the interpreter’s command prompt. However, despite its name the Pure interpreter never
really “interprets” any Pure code. Rather, it acts as a frontend to the Pure compiler, which
takes care of incrementally compiling Pure code to native (machine) code. This has the bene-
fit that the compiled code runs much faster than the usual kinds of “bytecode” that you find
in traditional programming language interpreters.

You can use the interpreter interactively as a sophisticated kind of “desktop calculator” pro-
gram. Simply run the program from the shell as follows:

$ pure

— N | | — =\ Pure 0.64 (x86_64-unknown-linux-gnu)

| [| [| 7/ Copyright (c) 2008-2014 by Albert Graef
/A N D W (Type 'help’ for help, 'help copying’

—| for license information.)
Loaded prelude from /usr/lib/pure/prelude.pure.
>

The interpreter prints its sigh-on message and leaves you atits “>"” command prompt, where
you can start typing definitions and expressions to be evaluated:

> 17/12+23;

24.4166666666667

> fact n = if n>0 then nxfact (n-1) else 1;
> map fact (1..10);
[1,2,6,24,120,720,5040,40320,362880,3628800]

Typing the quit command or the end-of-file character (Ctrl-d on Unix systems) at the be-
ginning of the command line exits the interpreter and takes you back to the shell.

The interpreter can actually be invoked in a number of different ways. Instead of typing
definitions and evaluating expressions in an interactive fashion as shown above, you can
also put the same code in an (ASCII or UTF-8) text file called a Pure program or script
which can then be executed by the interpreter in “batch mode”, or compiled to a standalone
executable which can be run directly from the command line. As an aid for writing script
files, a bunch of syntax highlighting files and programming modes for various popular text
editors are included in the Pure sources.

More information about invoking the Pure interpreter can be found in the Invoking Pure
section below. This is followed by a description of the Pure language in Pure Overview and
subsequent sections, including an extensive Examples section which can serve as a mini-
tutorial on Pure. The interactive facilities of the Pure interpreter are discussed in the Inter-
active Usage section, while the Batch Compilation section explains how to translate Pure

4 1.1 Introduction

Pure Language and Library Documentation, Release 0.64

programs to native executables and a number of other object file formats. The Caveats and
Notes section discusses useful tips and tricks, as well as various pitfalls and how to avoid
them. The manual concludes with some authorship and licensing information and pointers
to related software.

1.1.1 Further Reading

This manual is not intended as a general introduction to functional programming, so at least
some familiarity with this programming style is assumed. If Pure is your first functional
language then you might want to look at the Functional Programming wikipedia article to
see what it is all about and find pointers to current literature on the subject. In any case we
hope that you'll find Pure helpful in exploring functional programming, as it is fairly easy
to learn but a very powerful language.

As already mentioned, Pure uses term rewriting as its underlying computational model,
which goes well beyond functional programming in some ways. Term rewriting has long
been used in computer algebra systems, and Michael O’Donnell pioneered its use as a pro-
gramming language already in the 1980s. But until recently implementations have not really
been efficient enough to be useful as general-purpose programming languages; Pure strives
to change that. A good introduction to the theory of the term rewriting calculus and its
applications is the book by Baader and Nipkow.

1.1.2 Typographical Conventions
Program examples are always set in typewriter font. Here’s how a typical code sample may

look like:

fact n = if n>0 then nxfact(n-1) else 1;

These can either be saved to a file and then loaded into the interpreter, or you can also just
type them directly in the interpreter. If some lines start with the interpreter prompt “> ”
this indicates an example interaction with the interpreter. Everything following the prompt
(excluding the “> ” itself) is meant to be typed exactly as written. Lines lacking the “> "
prefix show results printed by the interpreter. Example:

> fact n = if n>0 then nxfact(n-1) else 1;
> map fact (1..10);
[1,2,6,24,120,720,5040,40320,362880,3628800]

Similarly, lines starting with the “$ ” prompt indicate shell interactions. For instance,
$ pure

indicates that you should type the command pure on your system’s command line.

The grammar notation in this manual uses an extended form of BNF (Backus-Naur form),
which looks as follows:

1.1.1 Further Reading 5

http://en.wikipedia.org/wiki/Functional_programming

Pure Language and Library Documentation, Release 0.64

expression = “{" expr_list (";"” expr_list)x [";"] “}"
expr_list = expression (‘,’ expression)x*

Parentheses are used to group syntactical elements, while brackets denote optional elements.
We also use the regular expression operators * and + to denote repetitions (as usual, * de-
notes zero or more, + one or more repetitions of the preceding element). Terminals (literal
elements such as keywords and delimiters) are enclosed in double or single quotes.

These EBNF rules are used for both lexical and syntactical elements, but note that the former
are concerned with entities formed from single characters and thus tokens are meant to be
typed exactly as written, whereas the latter deal with larger syntactical structures where
whitespace between tokens is generally insignificant.

1.2 Invoking Pure

The Pure interpreter can be invoked from the shell in one of two different ways:

pure [options ...] [-x] script [args ...]
pure [options ...] [-b|-c|-i] [script ...] [-- args ...]

Use pure -h to get help about the command line options. Just the pure command without
any command line parameters invokes the interpreter in interactive mode, see Running
Interactively below for details.

The first form above is used if the interpreter is invoked on exactly one script file, which is
loaded and executed, after which the interpreter exits. Any arguments following the script
name are not processed by the interpreter, but are passed to the executing script by means
of the argv variable. This is also known as script mode, and is commonly used if a script
is to be run as a standalone program. Script mode can also be indicated explicitly with the
-x option, but this is optional unless you want to combine it with one of the -b, -c and
-1 options discussed below. If the -x option is present, it must be followed by the name
of a script to be executed. Also note that in script mode, all interpreter options need to be
specified before the script name; all remaining arguments (including options) are simply
passed to the executing script.

The second form is used if there may be any number of scripts which are to be executed in
batch mode (-b, -c) or interactive mode (-1i), respectively. In this case all options on the
command line will be processed by the interpreter, up to the - - option (if any), which stops
option processing and indicates that the remaining arguments should be passed in the argv
variable. Any non-option arguments (before the - - option, if any) are interpreted as scripts
which should be loaded by the interpreter. If no scripts are specified, or if the -i option
is present, the interpreter starts in interactive mode (after loading the given scripts, if any).
Otherwise, if one of the -b and -c options is specified, the given scripts are run in batch
mode, after which the interpreter exits. (In the case of -c, the interpreter then also dumps
the program as a native executable, performing batch compilation, see Compiling Scripts
below.)

6 1.2 Invoking Pure

Pure Language and Library Documentation, Release 0.64

Batch mode is also entered if the interpreter is invoked with one of the - -ctags and - -etags
options. However, in this case the given scripts are not executed at all, but only parsed in
order to produce a vi or emacs tags file, see Tagging Scripts below.

Here are some common ways to invoke the interpreter:

pure Runs the interpreter interactively, without any script. Only the prelude gets loaded.
pure -g Runs the interpreter interactively, with debugging support.

pure -b script ... Runs the given scripts in batch mode.

pure -i script ... Runs the given scripts in batch mode as above, but then enters the
interactive command loop. (Add -g to also get debugging support, and -q to suppress
the sign-on message.)

pure script [arg ...] Runs the given script with the given parameters. The script name
and command line arguments are available in the global argv variable.

pure -c script [-o prog] Batch compilation: Runs the given script, compiling it to a na-
tive executable prog (a.out by default).

pure --etags script ... [-T TAGS] Parses the given scripts and produces an emacs
tags file. (Use - -ctags to create a vi tags file instead. In either case, the actual name of
the tags file can be set with the -T option.)

The following commands provide helpful information about the interpreter, after which the
interpreter exits immediately:

pure --help Print a short help message describing the command line syntax and available
options. This can also be abbreviated as pure -h.

pure --version Print version information.

Depending on your local setup, there may be additional ways to run the Pure interpreter. In
particular, if you have Emacs Pure mode installed, then you can just open a script in Emacs
and run it with the C-c C-k keyboard command. For Emacs aficionados, this is probably
the most convenient way to execute a Pure script interactively in the interpreter. Pure mode
actually turns Emacs into a full IDE (integrated development environment) for Pure, which
offers a lot of convenient features such as syntax highlighting, automatic indentation, online
help and different ways to interact with the Pure interpreter.

1.2.1 Options

The interpreter accepts various options which are described in more detail below.

-b

Batch mode (execute the given scripts and exit).
-C

Batch compilation (compile the given scripts to a native binary).
--ctags

1.2.1 Options 7

Pure Language and Library Documentation, Release 0.64

--etags
Create a tags file in ctags (vi) or etags (emacs) format.

--disable optname
Disable source option (conditional compilation).

--eager-jit
Enable eager JIT compilation. This requires LLVM 2.7 or later, otherwise this flag will
be ignored.

--enable optname
Enable source option (conditional compilation).

--escape char
Interactive commands are prefixed with the specified character. Permitted prefixes are:
P $%&*, 1<>@\|.
-fPIC
-fpic
Create position-independent code (batch compilation).
-9
Enable symbolic debugging.
-h
--help
Print help message and exit.

Interactive mode (read commands from stdin after sourcing the given scripts, if any).

-I directory
Add a directory to be searched for included source scripts.

-L directory
Add a directory to be searched for dynamic libraries.

-1 libname
Library to be linked in batch compilation.

-mopt=val
Add llc machine options in batch compilation.

--main name
Name of main entry point in batch compilation.

--noediting
Disable command-line editing.

-n
--noprelude
Do not load the prelude.

--norc
Do not run the interactive startup files.

8 1.2 Invoking Pure

Pure Language and Library Documentation, Release 0.64

-o filename
Output filename for batch compilation.

-q
Quiet startup (suppresses sign-on message in interactive mode).
-T filename
Tags file to be written by - -ctags or --etags.
- -texmacs
Run Pure inside TeXmacs.
-u
Do not strip unused functions in batch compilation.
-v[levell
Set verbosity level.
--version
Print version information and exit.
-wW
Enable compiler warnings.
-X

Script mode (execute a script with the given command line arguments).

Stop option processing and pass the remaining command line arguments in the argv
variable.

Besides these, the interpreter also understands a number of other command line switches
for setting various compilation options; please see Compilation Options below for details.

Note: Option parsing follows the usual (Unix) conventions, but is somewhat more rigid
than the GNU getopt conventions. In particular, it is not possible to combine short options,
and there are no abbreviations for “long” options. Mixing options and other command line
parameters is generally possible, but note that all option processing stops right after -x and
- - (or the first non-option parameter in script mode), passing the remaining parameters to
the executing script in the Pure argv variable.

As usual, if an option takes a required argument, the argument may be written either as a
separate command line parameter immediately following the option (as in -I directory or
--enable optname), or directly after the option (-Idirectory or --enable=optname; note the
equals sign in the case of a long option). Options with optional arguments work in the same
fashion, but in this case the argument, if present, must be written directly behind the option.

1.2.1 Options 9

Pure Language and Library Documentation, Release 0.64

1.2.2 Overview of Operation

If any source scripts are specified on the command line, they are loaded and executed, after
which the interpreter exits. Otherwise the interpreter enters the interactive read-eval-print
loop, see Running Interactively below. You can also use the - i option to enter the interactive
loop (continue reading from stdin) even after processing some source scripts.

Options and source files are processed in the order in which they are given on the command
line. Processing of options and source files ends when either the -- or the -x option is
encountered, or after the first script (non-option) argument in script mode (i.e., if none of the
options -b, -1, --ctags and --etags is present). In either case, any remaining parameters
are passed to the executing script by means of the global argc and argv variables, denoting
the number of arguments and the list of the actual parameter strings, respectively. In script
mode this also includes the script name as argv!0.

Script mode is useful, in particular, to turn Pure scripts into executable programs by includ-
ing a “shebang” like the following as the first line in your main script. (This trick only works
with Unix shells, though.)

#!/usr/local/bin/pure

The following variables are always predefined by the interpreter:

variable argc

variable argv
The number of extra command line arguments and the arguments themselves as a list
of strings; see above. These are useful if a script is usually run non-interactively and
takes its input from the command line.

variable compiling
A flag indicating whether the program is executed in a batch compilation (- ¢ option),
see Compiling Scripts below.

variable version

variable sysinfo
The version string of the Pure interpreter and a string identifying the host system.
These are useful if parts of your script depend on the particular version of the inter-
preter and the system it runs on. (An alternative way to deal with version and system
dependencies is to use conditional compilation; see Conditional Compilation.)

If available, the prelude script prelude.pure is loaded by the interpreter prior to any other
definitions, unless the -n or - -noprelude option is specified. The prelude is searched for in
the directory specified with the PURELIB environment variable. If the PURELIB variable is not
set, a system-specific default is used. Relative pathnames of other source scripts specified on
the command line are interpreted relative to the current working directory. In addition, the
executed program may load other scripts and libraries via a using declaration in the source,
which are searched for in a number of locations, including the directories named with the - I
and - L options; see the Declarations and C Interface sections for details.

10 1.2 Invoking Pure

Pure Language and Library Documentation, Release 0.64

1.2.3 Compiling Scripts

The interpreter compiles scripts, as well as definitions that you enter interactively, automati-
cally. This is done in an incremental fashion, as the code is needed, and is therefore known as
JIT (just in time) compilation. Thus the interpreter never really “interprets” the source pro-
gram or some intermediate representation, it just acts as a frontend to the compiler, taking
care of compiling source code to native machine code before it gets executed.

Pure’s LLVM backend does “lazy JIT compilation” by default, meaning that each function
(global or local) is compiled no sooner than it is run for the first time. With the - -eager-jit
option, however, it will also compile all other (global or local) functions that may be called by
the compiled function. (The PURE_EAGER_JIT environment variable, when set to any value,
has the same effect, so that you do not have to specify the --eager-jit option each time
you run the interpreter.) Eager JIT compilation may be more efficient in some cases (since
bigger chunks of compilation work can be done in one go) and less efficient in others (e.g.,
eager JITing may compile large chunks of code which aren’t actually called later, except in
rare circumstances).

Note that the eager JIT mode is only available with LLVM 2.7 or later; otherwise this option
will be ignored.

It is also possible to compile your scripts to native code beforehand, using the - ¢ batch com-
pilation option. This option forces the interpreter to batch mode (unless - i is specified as
well, which overrides -c). Any scripts specified on the command line are then executed as
usual, but after execution the interpreter takes a snapshot of the program and compiles it
to one of several supported output formats, LLVM assembler (.11) or bitcode (.bc), native as-
sembler (.s) or object (.0), or a native executable, depending on the output filename specified
with -o. If the output filename ends in the .1l extension, an LLVM assembler file is created
which can then be processed with the LLVM toolchain. If the output filename is just -, the
assembler file is written to standard output, which is useful if you want to pass the gener-
ated code to the LLVM tools in a pipeline. If the output filename ends in the .bc extension,
an LLVM bitcode file is created instead.

The .1l and .bc formats are supported natively by the Pure interpreter, no external tools are
required to generate these. If the target is an .s, .0 or executable file, the Pure interpreter
creates a temporary bitcode file on which it invokes the LLVM tools opt and llc to create a
native assembler or object file, and then uses the C/C++ compiler to link the resulting pro-
gram (if requested). You can also specify additional libraries to be linked into the executable
with the - 1 option. If the output filename is omitted, it defaults to a.out (a.exe on Windows).

The C/C++ compiler invoked by the batch compiler is normally gcc by default, but you
can change this with the CC and CXX environment variables. The LLVM tools opt and llc
are usually located on the PATH or in a system-specific directory determined at installation
time. It is also possible to use custom versions of these programs with the batch compiler,
by placing them into the Pure library directory, as specified at installation time or by the
PURELIB environment variable. (Note that this lets you use the batch compiler on systems
which don’t have the LLVM toolchain installed. In fact, you could even deploy a stand-alone
version of the interpreter together with the requisite LLVM tools on systems which don’t
have LLVM installed at all, by linking both the Pure runtime and the opt and llc programs

1.2.3 Compiling Scripts 11

Pure Language and Library Documentation, Release 0.64

statically against LLVM.)

The - c option provides a convenient way to quickly turn a Pure script into a standalone ex-
ecutable which can be invoked directly from the shell. One advantage of compiling your
script is that this eliminates the JIT compilation time and thus considerably reduces the
startup time of the program. Another reason to prefer a standalone executable is that it
lets you deploy the program on systems without a full Pure installation (usually only the
runtime library is required on the target system). On the other hand, compiled scripts also
have some limitations, mostly concerning the use of the built-in eval function. Please see
the Batch Compilation section for details.

The -v64 (or -v0100) verbosity option can be used to have the interpreter print the com-
mands it executes during compilation, see Verbosity and Debugging Options below. When
creating an object file, this also prints the suggested linker command (including all the dy-
namic modules loaded by the script, which also have to be linked in to create a working
executable), to which you only have to add the options describing the desired output file.

1.2.4 Tagging Scripts

Pure programs often have declarations and definitions of global symbols scattered out over
many different source files. The - - ctags and - -etags options let you create a tags file which
allows you to quickly locate these items in text editors such as vi and emacs which support
this feature.

If --ctags or --etags is specified, the interpreter enters a special variation of batch mode
in which it only parses source files without executing them and collects information about
the locations of global symbol declarations and definitions. The collected information is
then written to a tags file in the ctags or etags format used by vi and emacs, respectively.
The desired name of the tags file can be specified with the - T option; it defaults to tags for
--ctags and TAGS for - -etags (which matches the default tags file names used by vi and
emacs, respectively).

The tags file contains information about the global constant, variable, macro, function and
operator symbols of all scripts specified on the command line, as well as the prelude and
other scripts included via a using clause. Tagged scripts which are located in the same di-
rectory as the tags file (or, recursively, in one of its subdirectories) are specified using relative
pathnames, while scripts outside this hierarchy (such as included scripts from the standard
library) are denoted with absolute pathnames. This scheme makes it possible to move an
entire directory together with its tags file and have the tags information still work in the new
location.

1.2.5 Running Interactively

If the interpreter runs in interactive mode, it repeatedly prompts you for input (which may
be any legal Pure code or some special interpreter commands provided for interactive us-
age), and prints computed results. This is also known as the read-eval-print loop and is
described in much more detail in the Interactive Usage section. To exit the interpreter, just

12 1.2 Invoking Pure

http://en.wikipedia.org/wiki/Ctags

Pure Language and Library Documentation, Release 0.64

type the quit command or the end-of-file character (Ctrl-d on Unix) at the beginning of the
command line.

The interpreter may also source a few additional interactive startup files immediately be-
fore entering the interactive loop, unless the - - norc option is specified. First .purerc in the
user’s home directory is read, then .purerc in the current working directory. These are ordi-
nary Pure scripts which can be used to provide additional definitions for interactive usage.
Finally, a .pure file in the current directory (usually containing a dump from a previous in-
teractive session) is loaded if it is present.

When the interpreter is in interactive mode and reads from a tty, unless the --noediting
option is specified, commands are usually read using readline or some compatible replace-
ment, providing completion for all commands listed under Interactive Usage, as well as for
symbols defined in the running program. When exiting the interpreter, the command history
is stored in ~/.pure_history, from where it is restored the next time you run the interpreter.

The interpreter also provides a simple source level debugger when run in interactive mode,
see Debugging for details. To enable the debugger, you need to specify the -g option when
invoking the interpreter. This option causes your script to run much slower, so you should
only use this option if you want to run the debugger.

1.2.6 Verbosity and Debugging Options

The - v option is useful for debugging the interpreter, or if you are interested in the code your
program gets compiled to. The level argument is optional; it defaults to 1. Seven different
levels are implemented at this time. Only the first two levels will be useful for the average
Pure programmer; the remaining levels are mostly intended for maintenance purposes.

1 (0x1, 001) denotes echoing of parsed definitions and expressions.

2 (0x2, 002) adds special annotations concerning local bindings (de Bruijn indices, subterm
paths; this can be helpful to debug tricky variable binding issues).

4 (0x4, 004) adds descriptions of the matching automata for the left-hand sides of equations
(you probably want to see this only when working on the guts of the interpreter).

8 (0x8, 010) dumps the “real” output code (LLVM assembler, which is as close to the native
machine code for your program as it gets; you definitely don’t want to see this unless
you have to inspect the generated code for bugs or performance issues).

16 (0x10, 020) adds debugging messages from the bison(1) parser; useful for debugging the
parser.

32 (0x20, 040) adds debugging messages from the flex(1) lexer; useful for debugging the
lexer.

64 (0x40, 0100) turns on verbose batch compilation; this is useful if you want to see exactly
which commands get executed during batch compilation (-c).

These values can be or’ed together, and, for convenience, can be specified in either decimal,
hexadecimal or octal. Thus Oxff or 0777 always gives you full debugging output (which

1.2.6 Verbosity and Debugging Options 13

Pure Language and Library Documentation, Release 0.64

isn’t likely to be used by anyone but the Pure developers). Some useful flag combinations
for experts are (in octal) 007 (echo definitions along with de Bruijn indices and matching
automata), 011 (definitions and assembler code), 021 (parser debugging output along with
parsed definitions) and 0100 (verbose batch compilation).

Note that the -v option is only applied after the prelude has been loaded. If you want
to debug the prelude, use the -n option and specify the prelude.pure file explicitly on the
command line. Verbose output is also suppressed for modules imported through a using
clause. As a remedy, you can use the interactive show command (see the Interactive Usage
section) to list definitions along with additional debugging information.

1.2.7 Compilation Options

Besides the options listed above, the interpreter also understands some additional command
line switches and corresponding environment variables to control various compilation op-
tions.

Code Generation Options

These options take the form --opt and - -noopt, respectively, where opt denotes the option
name (see below for a list of supported options). By default, these options are all enabled;
--noopt disables the option, --opt reenables it. In addition, for each option opt there is
also a corresponding environment variable PURE_NOOPT (with the option name in uppercase)
which, when set, disables the option by default. (Setting this variable to any value will do,
the interpreter only checks whether the variable exists in the environment.)

For instance, the checks option controls stack and signal checks. Thus --nochecks on the
command line disables the option, and setting the PURE_NOCHECKS environment variable
makes this the default, in which case you can use - - checks on the command line to reenable
the option.

Each code generation option can also be used as a pragma (compiler directive) in source
code so that you can control it on a per-rule basis. The pragma must be on a line by itself,
starting in column 1, and takes the following form (using - -nochecks as an example):

#! --nochecks // line-oriented comment may go here

Currently, the following code generation options are recognized:

--checks

--nochecks
Enable or disable various extra stack and signal checks. By default, the interpreter
checks for stack overflows and pending signals on entry to every function, see Stack
Size and Tail Recursion and Handling of Asynchronous Signals for details. This is
needed to catch these conditions in a reliable way, so we recommend to leave this
enabled. However, these checks also make programs run a little slower (typically
some 5%, YMMYV). If performance is critical then you can disable the checks with the

14 1.2 Invoking Pure

Pure Language and Library Documentation, Release 0.64

--nochecks option. (Even then, a minimal amount of checking will be done, usually
on entry to every global function.)

--const

--noconst
Enable or disable the precomputing of constant values in batch compilation (cf. Com-
piling Scripts). If enabled (which is the default), the values of constants in const defi-
nitions are precomputed at compile time (if possible) and then stored in the generated
executable. This usually yields faster startup times but bigger executables. You can
disable this option with - -noconst to get smaller executables at the expense of slower
startup times. Please see the Batch Compilation section for an example.

--fold

--nofold
Enable or disable constant folding in the compiler frontend. This means that constant
expressions involving int and double values and the usual arithmetic and logical op-
erations on these are precomputed at compile time. (This is mostly for cosmetic pur-
poses; the LLVM backend will perform this optimization anyway when generating
machine code.) For instance:

> foo X = 2%3%Xx;
> show foo
foo x = 6xx;

Disabling constant folding in the frontend causes constant expressions to be shown as
you entered them:

> #! --nofold

> bar x = 2x3xx;
> show bar

bar x = 2x3x%X;

The same option also determines the handling of type aliases at compile time, see Type
Rules.

--symbolic

--nosymbolic
Enable or disable symbolic mode. Pure’s default behaviour is to evaluate function ap-
plications in a symbolic fashion using the equations (rewriting rules) supplied by the
programmet, cf. Definitions and Expression Evaluation. This means that it is not nor-
mally an error if there is no equation which applies to the given function application to
be evaluated; rather, the unevaluated function becomes a “constructor symbol” which
is applied to the provided arguments to form a literal (“normal form”) term which
stands for itself. E.g., here’s what you get if you try to add an (undefined) symbol and
a number:

> a+l;
a+l

The --nosymbolic option changes this behaviour so that if a global function has any
defining equations, then an attempt to invoke the function on a combination of argu-

1.2.7 Compilation Options 15

Pure Language and Library Documentation, Release 0.64

ments for which there is no applicable equation, raises an exception. So if the inter-
preter is invoked with - -nosymbolic then you'll see this instead:

> a+l;
<stdin>, line 1: unhandled exception ’'failed_match’ while evaluating ’'a+1’

This behaviour is more in line with traditional languages where it is an error if a “de-
fined function” cannot be evaluated in case of argument mismatch. It makes it eas-
ier to spot argument mismatch errors which might well go unnoticed if a program
is executed in Pure’s default symbolic mode. However, it also makes it impossible
to perform symbolic expression evaluations which is one of the key features of term
rewriting as a programming language.

Much of Pure’s library and many programming examples assume Pure’s default mode
of symbolic evaluation, so that it is generally not advisable to run the interpreter with a
global - -nosymbolic option, except maybe for debugging purposes. More commonly
--nosymbolic is used as a pragma in source code where it only applies to a specific col-
lection of function definitions. In addition, there’s a - - defined pragma which enables
you to mark individual functions as “defined functions”, see below.

--tc

--notc
Enable or disable tail call optimization (TCO). TCO is needed to make tail-recursive
functions execute in constant stack space, so we recommend to leave this enabled.
However, at the time of this writing LLVM’s TCO support is still bug-ridden on some
platforms, so the - -notc option allows you to disable it. (Note that TCO can also be
disabled when compiling the Pure interpreter, in which case these options have no
effect; see the installation instructions for details.)

Note: All of the options above also have a corresponding “option symbol” so that they can
be queried and set using the facilities described under Conditional Compilation below. (The
symbol is just the name of the option, e.g., checks for the - -checks, - -nochecks option and

pragma.)

Besides these, there are the following special pragmas affecting the evaluation of some global
function or macro, which is specified in the pragma. These pragmas can only be used in
source code, they cannot be controlled using command line options or environment vari-
ables. Note that the given symbol fun may in fact be an arbitrary symbol (not just an iden-
tifier), so that these pragmas can also be applied to special operator symbols (cf. Lexical
Matters). Also note that each of these pragmas also implicitly declares the symbol, so if a
symbol needs any special attributes then it must be declared before any pragmas involving
it (cf. Symbol Declarations).

--eager fun
Instruct the interpreter to JIT-compile the given function eagerly. This means that na-
tive code will be created for the function, as well as all other (global or local) functions
that may be called by the compiled function, as soon as the function gets recompiled.
This avoids the hiccups you get when a function is compiled on the fly if it is run for the

16 1.2 Invoking Pure

Pure Language and Library Documentation, Release 0.64

tirst time, which is particularly useful for functions which are to be run in realtime (typ-
ically in multimedia applications). Please note that, in difference to the - -eager-jit
option, this feature is available for all LLVM versions (it doesn’t require LLVM 2.7 or
later).

--required fun
Inform the batch compiler (cf. Compiling Scripts) that the given function symbol fun
should never be stripped from the program. This is useful, e.g., if a function is never
called explicitly but only through eval. Adding a - - required pragma for the function
then makes sure that the function is always linked into the program. Please see the
Batch Compilation section for an example.

--defined fun

--nodefined fun
These pragmas change the behaviour of global functions defined in a Pure program.
The - -defined pragma marks the given function or operator symbol as a “defined
function” so that an exception is raised if the function is applied to a combination
of arguments for which there is no applicable equation. This works similarly to the
--nosymbolic pragma (see above), but allows you to mark individual functions as
“defined”. For instance:

> #! --defined +
> a+l;
<stdin>, line 2: unhandled exception ’'failed_match’ while evaluating ’'a+1’

The - -defined status of a function can be changed at any time (causing the function
to be recompiled on the fly if necessary), and the - -nodefined pragma restores the
default behaviour of returning a normal form upon failure:

> #! --nodefined +
> a+l;
a+l

More information and examples for common uses of the - -defined and - -nosymbolic
pragmas can be found under Defined Functions in the Caveats and Notes section.

--quoteargs fun
This pragma tells the macro evaluator (cf. Macros) that the given macro should receive
its arguments unevaluated, i.e., in quoted form. This is described in more detail in the
Built-in Macros and Special Expressions section.

Conditional Compilation

As of version 0.49, Pure also provides a rudimentary facility for denoting optional and al-
ternative code paths. This is supposed to cover the most common cases where conditional
compilation is needed. (For more elaborate needs you can always use real Pure code which
enables you to configure your program at runtime using, e.g., the eval function.)

Pure’s conditional compilation pragmas are based on the notion of user-defined symbols
(which can be really any text that does not contain whitespace or any of the shell wildcard

1.2.7 Compilation Options 17

Pure Language and Library Documentation, Release 0.64

characters *?[]) called compilation options. By default, all options are undefined and enabled.
An option becomes defined as soon as it is set explicitly, either with an environment variable
or one of the --enable and - -disable pragmas, see below.

You can define the value of an option by setting a corresponding environment variable
PURE_OPTION_OPT, where OPT is the option symbol in uppercase. The value of the environ-
ment variable should either be 0 (disabled) or 1 (enabled).

Options can be enabled and disabled in Pure scripts with the following pragmas, which are
also available as command line options when invoking the Pure interpreter:

--enable option

--disable option
Enable or disable the given option, respectively. Note that an option specified in the
environment is overridden by a value specified with these options on the command
line, which in turn is overridden by a corresponding pragma in source code.

The actual conditional compilation pragmas work in pretty much the same fashion as the
C preprocessor directives #if, #ifdef etc. (except that, as already mentioned, an option is
always enabled if it is undefined).

--ifdef option

--ifndef option
Begins a code section which should be included in the program if the given option is
defined or undefined, respectively.

--if option

--ifnot option
Begins a code section which should be included in the program if the given option is
enabled or disabled, respectively.

--else
Begins an alternative code section which is included in the program if the correspond-
ing - -ifdef, --ifndef, --if or --ifnot section was excluded, and vice versa.

--endif
Ends a conditional code section.

Conditional code sections may be nested to an arbitrary depth. Each --ifdef, --ifndef,
--if or --ifnot pragma must be followed by a matching --endif. The --else section is
optional; if present, it applies to the most recent - -ifdef, - -ifndef, --if or --ifnot section
not terminated by a matching - -endif. Unmatched conditional pragmas warrant an error
message by the compiler.

Conditional code is handled at the level of the lexical analyzer. Excluded code sections are
treated like comments, i.e., the parser never gets to see them.

The --ifdef and --ifndef pragmas are typically used to change the default of an option
without clobbering defaults set by the user through an environment variable or a command
line option. For instance:

18 1.2 Invoking Pure

Pure Language and Library Documentation, Release 0.64

#! --ifndef opt
#! --disable opt
#! --endif

Here’s a (rather contrived) example which shows all these pragmas in action. You may
want to type this in the interpreter to verify that the code sections are indeed included and
excluded from the Pure program as indicated:

// disable the ’'bar’ option
#! --disable bar

#! --ifdef foo
1/2; // excluded
#! --endif

#! --ifndef bar
1/3; // excluded

#! --endif

#! --if foo

foo x = x+1; // included
#! --1if bar

bar x = x-1; // excluded
#! --else

bar x = x/2; // included
#! --endif // bar
#! --endif // foo

// reenable the ’'bar’ option
#! --enable bar

#! --if bar
bar 99; // included
#! --endif // bar

#! --ifnot foo
baz x = 2xx; // excluded
#! --endif // not foo

A few options are always predefined as “builtins” by the interpreter. This includes all of the
options described under Code Generation Options and Warning Options, so that these can
also be queried with --if, --ifnot and set with - -enable, - -disable. For instance:

#! --ifnot checks

puts "This program uses deep recursion, so we enable stack checks here!";
#! --enable checks

#! --endif // not checks

#! --1if warn

puts "Beware of bugs in the above code.";

puts "I have only proved it correct, not tried it.";
#! --endif // warn

1.2.7 Compilation Options 19

Pure Language and Library Documentation, Release 0.64

Moreover, the following options are provided as additional builtins which are useful for
handling special compilation requirements as well as system and version dependencies.

¢ The compiled option is enabled if a program is batch-compiled. This lets you pick al-

ternative code paths depending on whether a script is compiled to a native executable
or not. Please see the example at the end of the Batch Compilation section for details.

The interactive and debugging options are enabled if a program runs in interactive
(-1) and/or debugging (- g) mode, respectively. These options are read-only; they can-
not be changed with - -enable, - -disable. Example:

#! --if interactive

puts "Usage: run ’'main filename’";
#1 --else

main (argv!l);

#! --endif

The version-x.y option indicates a check against the version of the host Pure inter-
preter. x.y indicates the required (major/minor) version. You can also use x.y+ to
indicate version x.y or later, or x.y- for version x.y or earlier. By combining these,
you can pick code depending on a particular range of Pure versions, or you can re-
verse the test to check for anything later or earlier than a given version:

#! --if version-0.36+

#! --1if version-0.48-

// code to be executed for Pure versions 0.36..0.48 (inclusive)
#! --endif

#! --endif

#! --ifnot version-0.48-
// code to be executed for Pure versions > 0.48
#! --endif

Last but not least, the interpreter always defines the target triplet of the host system
as an option symbol. This is the same as what sysinfo returns, so you can check for a
specific system like this:

#! --if x86_64-unknown-linux-gnu
// 64 bit Linux-specific code goes here
#! --endif

It goes without saying that this method isn’t very practical if you want to check for a
wide range of systems. As a remedy, the --if and --ifnot pragmas treat shell glob
patterns in tests for option symbols in a special way, by matching the pattern against
the host triplet to see whether the condition holds. This allows you to write a generic
test, e.g., for Windows systems like this:

#! --if x-mingw32
// Windows-specific code goes here
#! --endif

20

1.2 Invoking Pure

Pure Language and Library Documentation, Release 0.64

Warning Options

The -w option enables some additional warnings which are useful to check your scripts for
possible errors. In particular, it will report implicit declarations of function and type sym-
bols, which might indicate undefined or mistyped symbols that need to be fixed, see Symbol
Lookup and Creation for details.

This option can also be controlled on a per-rule basis by adding the following pragmas to
your script:

--warn
--nowarn
Enable or disable compiler warnings. The -w flag sets the default for these pragmas.

--rewarn
Reset compiler warnings to the default, as set with the -w flag (or not).

The latter pragma is useful to enable or disable warnings in a section of code and reset it to
the default afterwards:

#! --warn
// Code with warnings goes here.
#! --rewarn

(The same could also be achieved with conditional compilation, but only much more clum-
sily. However, note that - - rewarn only provides a single level of “backup”, so nesting such
sections is not supported.)

1.2.8 Startup Files

The interpreter may source various files during its startup. These are:

~/.pure_history
Interactive command history.

~/.purerc, .purerc, .pure
Interactive startup files. The latter is usually a dump from a previous interactive ses-
sion.

prelude.pure
Standard prelude. If available, this script is loaded before any other definitions, unless
-n was specified.

1.2.9 Environment

Various aspects of the interpreter can be configured through the following shell environment
variables:

cC

1.2.8 Startup Files 21

Pure Language and Library Documentation, Release 0.64

CXX
C and C++ compiler used by the Pure batch compiler (pure -c) to compile and link
native executables. Defaults to gcc and g++, respectively.

BROWSER
If the PURE_HELP variable is not set (see below), this specifies a colon-
separated list of browsers to try for reading the online documentation. See
http:/ /catb.org/~esr/BROWSER/.

PURELIB
Directory to search for library scripts, including the prelude. If PURELIB is not set, it
defaults to some location specified at installation time.

PURE_EAGER_JIT
Enable eager JIT compilation (same as - -eager-jit), see Compiling Scripts for details.

PURE_ESCAPE
If set, interactive commands are prefixed with the first character in the value of this
variable (same as - -escape), see Interactive Usage for details.

PURE_HELP
Command used to browse the Pure manual. This must be a browser capable of dis-
playing html files. Default is w3m.

PURE_INCLUDE
Additional directories (in colon-separated format) to be searched for included scripts.

PURE_LIBRARY
Additional directories (in colon-separated format) to be searched for dynamic libraries.

PURE_MORE
Shell command to be used for paging through output of the show command, when the
interpreter runs in interactive mode. PURE_LESS does the same for evaluation results
printed by the interpreter.

PURE_PS
Command prompt used in the interactive command loop (“> " by default).

PURE_STACK
Maximum stack size in kilobytes (0 = unlimited). A reasonable default is provided
(currently this is always 8192K - 128K for interpreter and runtime, which should work
on most modern PCs). If you're still getting segfaults due to stack overflow then you’ll
either have to reduce this value or increase the actual stack space available to programs.

Besides these, the interpreter also understands a number of other environment variables
for setting various compilation options (see Compilation Options above) and commands to
invoke different LLVM compilers on inline code (see Inline Code).

22 1.2 Invoking Pure

http://catb.org/~esr/BROWSER/

Pure Language and Library Documentation, Release 0.64

1.3 Pure Overview

Pure is a fairly simple yet powerful language. Programs are basically collections of term
rewriting rules, which are used to reduce expressions to normal form in a symbolic fash-
ion. For convenience, Pure also offers some extensions to the basic term rewriting calculus,
like global variables and constants, nested scopes of local function and variable definitions,
anonymous functions (lambdas), exception handling and a built-in macro facility. These are
all described below and in the following sections.

Most basic operations are defined in the standard prelude. This includes the usual arithmetic
and logical operations, as well as the basic string, list and matrix functions. The prelude is
always loaded by the interpreter, so that you can start using the interpreter as a sophisti-
cated kind of desktop calculator right away. Other useful operations are provided through
separate library modules. Some of these, like the system interface and the container data
structures, are distributed with the interpreter, others are available as separate add-on pack-
ages from the Pure website. A (very) brief overview of some of the modules distributed with
the Pure interpreter can be found in the Standard Library section.

In this section we first give a brief overview of the most important elements of the Pure lan-
guage. After starting out with a discussion of the lexical syntax, we proceed by explaining
definitions and expressions, which are the major ingredients of Pure programs. After study-
ing this section you should be able to write simple Pure programs. Subsequent sections then
describe the concepts and notions introduced here in much greater detail and also cover the
more advanced language elements which we only gloss over here.

1.3.1 Lexical Matters

Pure is a free-format language, i.e., whitespace is insignificant (unless it is used to delimit
other symbols). Thus, in contrast to “layout-based” languages like Haskell, you must use
the proper delimiters (;) and keywords (end) to terminate definitions and block structures.
In particular, definitions and expressions at the toplevel have to be terminated with a semi-
colon, even if you're typing them interactively in the interpreter.

Comments use the same syntax as in C++: // for line-oriented, and /* ... */ for multiline
comments. The latter must not be nested. Lines beginning with #! are treated as comments,
too; as already discussed above, on Unix-like systems this allows you to add a “shebang” to
your main script in order to turn it into an executable program.

A few ASCII symbols are reserved for special uses, namely the semicolon, the “at” symbol
@, the equals sign =, the backslash \, the Unix pipe symbol |, parentheses (), brackets [] and
curly braces {}. (Among these, only the semicolon is a “hard delimiter” which is always a
lexeme by itself; the other symbols can be used inside operator symbols.) Moreover, there
are some keywords which cannot be used as identifiers:

case const def else end extern if
infix infixl infixr interface let namespace nonfix
of otherwise outfix postfix prefix private public
then type using when with

1.3 Pure Overview 23

Pure Language and Library Documentation, Release 0.64

Pure fully supports the Unicode character set or, more precisely, UTF-8. This is an ASCII ex-
tension capable of representing all Unicode characters, which provides you with thousands
of characters from most of the languages of the world, as well as an abundance of special
symbols for almost any purpose. If your text editor supports the UTF-8 encoding (most
editors do nowadays), you can use all Unicode characters in your Pure programs, not only
inside strings, but also for denoting identifiers and special operator symbols.

The customary notations for identifiers, numbers and strings are all provided. In addition,
Pure also allows you to define your own operator symbols. Identifiers and other symbols
are described by the following grammar rules in EBNF format:

symbol = identifier | special
identifier = letter (letter | digit)=x
special = punct+

letter u= “AT LTz a2
digit = “"]...]"9"

punct u= S el -l I Sl e Tl I Vil I

Pure uses the following rules to distinguish “punctuation” (which may only occur in de-
clared operator symbols) and “letters” (identifier constituents). In addition to the punctua-
tion symbols in the 7 bit ASCII range, the following code points in the Unicode repertoire
are considered as punctuation: U+00A1 through U+00BF, U+00D7, U+00F7, and U+20D0
through U+2BFF. This comprises the special symbols in the Latin-1 repertoire, as well as
the Combining Diacritical Marks for Symbols, Letterlike Symbols, Number Forms, Arrows,
Mathematical Symbols, Miscellaneous Technical Symbols, Control Pictures, OCR, Enclosed
Alphanumerics, Box Drawing, Blocks, Geometric Shapes, Miscellaneous Symbols, Dingbats,
Miscellaneous Mathematical Symbols A, Supplemental Arrows A, Supplemental Arrows B,
Miscellaneous Mathematical Symbols B, Supplemental Mathematical Operators, and Mis-
cellaneous Symbols and Arrows. This should cover almost everything you’'d ever want to
use in an operator symbol. All other extended Unicode characters are effectively treated as
“letters” which can be used as identifier constituents. (Charts of all Unicode symbols can be
found at the Code Charts page of the Unicode Consortium.)

The following are examples of valid identifiers: foo, foo_bar, FooBar, BAR, bar99. Case is
significant in identifiers, so Bar and bar are distinct identifiers, but otherwise the case of
letters carries no meaning. Special symbols consist entirely of punctuation, such as ::=.
These may be used as operator symbols, but have to be declared before they can be used
(see Symbol Declarations).

Pure also has a notation for qualified symbols which carry a namespace prefix. These take
the following format (note that no whitespace is permitted between the namespace prefix
and the symbol):

qualified_symbol
qualified_identifier
qualifier

[qualifier] symbol
[qualifier] identifier
[identifier] "::"” (identifier "::")x

Example: foo: :bar.

24 1.3 Pure Overview

http://www.unicode.org/charts/
http://www.unicode.org/

Pure Language and Library Documentation, Release 0.64

Number literals come in three flavours: integers, bigints (denoted with an L suffix) and
floating point numbers (indicated by the presence of the decimal point and/or a base 10
scaling factor). Integers and bigints may be written in different bases (decimal, binary, octal
and hexadecimal), while floating point numbers are always denoted in decimal.

number u= integer | integer “L” | float
integer = digit+

| MOH (llXIIl"X") hexidigit_'_

| MOH (llB"l"b") bin_digit+

| “0" oct digit+

oct_digit == “0"|...|"7"
hex_digit == “O0"|...|"9"|"A"|...|"F"|"a"|...|"f"
bin_digit =:== “0"|"1"
float = digit+ [".” digit+] exponent

| digit* ”.” digit+ [exponent]
exponent n= (“E"|"e") ["+"|"-"] digit+

Examples: 4711, 4711L, 1.2e-3. Numbers in different bases: 1000 (decimal), 6x3e8 (hex-
adecimal), 01750 (octal), 0b1111101000 (binary).

String literals are arbitrary sequences of characters enclosed in double quotes, such as
"Hello, world!".

“n

string = charx

any

Special escape sequences may be used to denote double quotes and backslashes (\", \\), con-
trol characters (\b, \f, \n, \r, \t, these have the same meaning as in C), and arbitrary Uni-
code characters given by their number or XML entity name (e.g., \169, \0xa9 and \©
all denote the Unicode copyright character, code point U+00A9). As indicated, numeric es-
capes can be specified in any of the supported bases for integer literals. For disambiguating
purposes, these can also be enclosed in parentheses. E.g., "\ (123)4" is a string consisting of
the character \123 followed by the digit 4. Strings can also be continued across line ends by
escaping the line end with a backslash. The escaped line end is ignored (use \n if you need
to embed a newline in a string). For instance,

"Hello, |\
world.\n"

denotes the same string literal as

"Hello, world.\n"

1.3.2 Definitions and Expression Evaluation

The real meat of a Pure program is in its definitions. In Pure these generally take the form
of equations which tell the interpreter how expressions are to be evaluated. For instance,
the following two equations together define a function fact which computes, for each given
integer n, the factorial of n:

1.3.2 Definitions and Expression Evaluation 25

http://www.w3.org/TR/xml-entity-names/

Pure Language and Library Documentation, Release 0.64

fact 0 = 1;
fact n::int = nxfact (n-1) if n>0;

The first equation covers the case that n is zero, in which case the result is 1. The second
equation handles the case of a positive integer. Note the n::int construct on the left-hand
side, which means that the equation is restricted to (machine) integers n. This construct is
also called a “type tag” in Pure parlance. In addition, the n>0 in the condition part of the
second equation ensures that n is positive. If these conditions are met, the equation becomes
applicable and we recursively compute fact (n-1) and multiply by n to obtain the result.
The fact function thus computes the product of all positive integers up to n, which is indeed
just how the factorial is defined in mathematics.

To give this definition a try, you can just enter it at the command prompt of the interpreter
as follows:

> fact 0 = 1;

> fact n::int = nxfact (n-1) if n>0;
> fact 10;

3628800

On the surface, Pure is quite similar to other modern functional languages like Haskell and
ML. But under the hood it is a much more dynamic language, more akin to Lisp. In par-
ticular, Pure is dynamically typed, so functions can process arguments of as many different
types as you like. In fact, you can add to the definition of an existing function at any time.
For instance, we can extend our example above to make the fact function work with floating
point numbers, too:

> fact 0.0 = 1.0;

> fact n::double = nxfact (n-1) if n>0;
> fact 10.0;

3628800.0

Here we employed the constant 0.0 and the double type tag to define the factorial for the
case of floating point numbers. Both int and double are built-in types of the Pure language.
Our earlier definition for the int case still works as well:

> fact 10;
3628800

In FP parlance, we say that a function like fact is polymorphic, because it applies to dif-
ferent argument types. More precisely, the kind of polymorphism at work here is ad-hoc
polymorphism, because we have two distinct definitions of the same function which be-
have differently for different argument types.

Note that in this specific case, the two definitions are in fact very similar, to the point that
the right-hand sides of the definitions are almost the same. Observing these similarities, we
may also define fact in a completely generic way:

> clear fact
> fact n = 1 if n==0;
> fact n = nxfact (n-1) if n>0;

26 1.3 Pure Overview

Pure Language and Library Documentation, Release 0.64

(Note that before we can enter the new definition, we first need to scratch our previous
definition of fact, that’s what the clear fact command does. This is necessary because, as
we already saw, the interpreter would otherwise just keep adding equations to the definition
of fact that we already have.)

Our new definition doesn’t have any type tags on the left-hand side and will thus work with
any type of numbers:

> fact 10; // int

3628800

> fact 30.0; // floating point

2.65252859812191e+32

> fact 50L; // bigint
30414093201713378043612608166064768844377641568960512000000000000L

Let’s now take a look at how the equations are actually applied in the evaluation process.
Conceptually, Pure employs term rewriting as its underlying model of computation, so the
equations are applied as rewriting rules, reading them from left to right. An equation is
applicable if its left-hand side matches the target term to be evaluated, in which case we can
bind the variables in the left-hand side to the corresponding subterms in the target term.
Equations are tried in the order in which they are written; as soon as the left-hand side of
an equation matches (and the condition part of the equation, if any, is satisfied), it can be
applied to reduce the target term to the corresponding right-hand side.

For instance, let’s take a look at the target term fact 3. This matches both equations of our
generic definition of fact from above, with n bound to 3. But the condition 3==0 of the first
equation fails, so we come to consider the second equation, whose condition 3>0 holds. Thus
we can perform the reduction fact 3 ==> 3xfact (3-1) and then evaluate the new target
term 3xfact (3-1) recursively.

At this point, we have to decide which of the several subterms we should reduce first. This
is also called the reduction strategy and there are different ways to go about it. For instance,
we might follow the customary “call-by-value” strategy where the arguments of a function
application are evaluated recursively before the function gets applied to it, and this is also
what Pure normally does. More precisely, expressions are evaluated using the “leftmost-
innermost” reduction strategy where the arguments are considered from left to right.

So this means that on the right-hand side of the second equation, first n-1 (being the ar-
gument of fact) is evaluated, then fact (n-1) (which is an argument to the * operator),
and finally fact (n-1) is multiplied by n to give the value of fact n. Thus the evaluation
of fact 3 actually proceeds as follows (abbreviating reductions for the built-in arithmetic
operations):

fact 3 => 3xfact 2 => 3*2xfact 1 => 3x2x1lxfact 0 => 3*x2x1x1 => 6.

We mention in passing here that Pure also has a few built-in “special forms” which take
some or all of their arguments unevaluated, using “call by name” argument passing. This is
needed to handle some constructs such as logical operations and conditionals in an efficient
manner, and it also provides a way to implement “lazy” data structures. We’ll learn about
these later.

1.3.2 Definitions and Expression Evaluation 27

Pure Language and Library Documentation, Release 0.64

One of the convenient aspects of the rewriting model of computation is that it enables you to
define a function by pattern matching on structured argument types. For instance, we might
compute the sum of the elements of a list as follows:

> sum [] = 0;
> sum (X:XS) = X+sum XS;

This discriminates over the different cases for the argument value which might either be
the empty list [] or a non-empty list of the from x:xs where the variables x and xs refer to
the head element and the rest of the list, respectively. (The “:” infix operator is Pure’s way
of writing Lisp’s “cons”; this works the same as in other modern FPLs and is discussed in
much more detail later.)

Let’s give it a try:

> sum (1..10);
55

Note that 1. .10 denotes the list of all positive integers up to 10 here, so we get the sum of
the numbers 1 thru 10 as the result, which is indeed 55. (The ‘. .” operation is provided in
Pure’s prelude, i.e., it is part of the standard library.)

Due to its term rewriting semantics, Pure actually goes beyond most other functional lan-
guages in that it can do symbolic evaluations just as well as “normal” computations:

> square X = X*X;
> square 4;

16

> square (a+b);
(a+b)*(a+b)

In fact, leaving aside the built-in support for some common data structures such as numbers
and strings, all the Pure interpreter really does is evaluate expressions in a symbolic fash-
ion, rewriting expressions using the equations supplied by the programmer, until no more
equations are applicable. The result of this process is called a normal form which represents
the “value” of the original expression. Moreover, there’s no distinction between “defined”
and “constructor” function symbols in Pure, so any function symbol or operator can be used
anywhere on the left-hand side of an equation, and may act as a constructor symbol if it hap-
pens to occur in a normal form term. This enables you to work with algebraic rules like
associativity and distributivity in a direct fashion:

> (X+Y)*Z = Xkz+y*z; Xk (y+z) = X¥y+X*Z;
> xx(y*xz) = (xky)*z; Xx+(y+z) = (x+y)+z;
> square (a+b);
axa+axb+b*xa+bxb

The above isn’t possible in languages like Haskell and ML which always enforce that only
“pure” constructor symbols (without any defining equations) may occur as a subterm on
the left-hand side of a definition; this is also known as the constructor discipline. Thus
equational definitions like the above are forbidden in these languages. Pure doesn’t enforce
the constructor discipline, so it doesn’t keep you from writing such symbolic rules if you
need them.

28 1.3 Pure Overview

Pure Language and Library Documentation, Release 0.64

Another way of looking at this is that Pure allows you to have constructor equations. For
instance, the following equation makes lists automatically stay sorted:

> X:y:xs = y:x:xs if x>y;
> [13,7,9,7,1]1+[1,9,7,5];
[1,1,5,7,7,7,9,9,13]

This isn’t possible in Haskell and ML either because it violates the constructor discipline;
since “:” is a constructor it can’t simultaneously be a defined function in these languages.
Pure gives you much more freedom there.

This symbolic mode of evaluation is rather unusual outside of the realm of symbolic algebra
systems, but it provides the programmer with a very flexible model of computation and is
one of Pure’s most distinguishing features. In some cases, however, the unevaluated normal
forms may also become a nuisance since they may obscure possible programming errors.
Therefore Pure provides special - -nosymbolic and - - defined pragmas (cf. Code Generation
Options) which force functions to be treated as defined functions, so that they become more
like functions in traditional untyped languages such as Lisp and Python which raise an
exception under such conditions. This is described in more detail under Defined Functions
in the Caveats and Notes section.

Variables in Equations

Taking another look at the examples above, you might wonder how the Pure interpreter fig-
ures out what the parameters (a.k.a. “variables”) in an equation are. This is quite obvious
in rules involving just variables and special operator symbols, such as (x+y)*z = x*z+yx*z.
However, what about an equation like foo (foo bar) = bar? Since most of the time we
don’t declare any symbols in Pure, how does the interpreter know that foo is a literal func-
tion symbol here, while bar is a variable?

The answer is that the interpreter considers the different positions in the left-hand side ex-
pression of an equation. Basically, a Pure expression is just a tree formed by applying ex-
pressions to other expressions, with the atomic subexpressions like numbers and symbols
at the leaves of the tree. (This is true even for infix expressions like x+y, since in Pure these
are always equivalent to a function application of the form (+) x y which has the atomic
subterms (+), x and y at its leaves.)

Now the interpreter divides the leaves of the expression tree into “head” (or “function”)
and “parameter” (or “variable”) positions based on which leaves are leftmost in a function
application or not. Thus, in an expression like f x y z, f is in the head or function position,
while x, y and z are in parameter or variable positions. (Note that in an infix expression like
x+y, (+) is the head symbol, not x, as the expression is really parsed as (+) x y, see above.)

Identifiers in head positions are taken as literal function symbols by the interpreter, while
identifiers in variable positions denote, well, variables. We also refer to this convention
as the head = function rule. It is quite intuitive and lets us get away without declaring
the variables in equations. (There are some corner cases not covered here, however. In
particular, Pure allows you to declare special “nonfix” symbols, if you need a symbol to be

1.3.2 Definitions and Expression Evaluation 29

Pure Language and Library Documentation, Release 0.64

recognized as a literal even if it occurs in a variable position. This is done by means of a
nonfix declaration, see Symbol Declarations for details.)

1.3.3 Expression Syntax

Like in other functional languages, expressions are the central ingredient of all Pure pro-
grams. All computation performed by a Pure program consists in the evaluation of expres-
sions, and expressions also form the building blocks of the equational rules which are used
to define the constants, variables, functions and macros of a Pure program.

Typical examples of the different expression types are summarized in the following table.
Note that lambdas bind most weakly, followed by the special case, when and with con-
structs, followed by conditional expressions (if-then-else), followed by the simple expres-
sions. Operators are a part of the simple expression syntax, and are parsed according to
their declared precedences and associativities (cf. Symbol Declarations). Function applica-
tion binds stronger than all operators. Parentheses can be used to group expressions and
override default precedences as usual.

Type Example Description
Block \X y->2%X-y anonymous function (lambda)

case f u of x,y = x+y end case expression

x+y when x,y = f u end local variable definition

f u with f (x,y) = x+y end local function definition
Conditional | if x>0 then x else -x conditional expression
Simple X+y, -X, x mod y operator application

sin x,max a b function application
Primary 4711, 4711L,1.2e-3 number

"Hello, world!\n" string

foo, X, (+) function or variable symbol

(1,2,31,(1,2,3) list and tuple

{1,2;3,4} matrix

[x,-y | x=1..n; y=1..m; x<y] | list comprehension

{i==j | i=1..n; j=1..m} matrix comprehension

The formal syntax of expressions is as follows. (Note that the rule and simple_rule ele-
ments are part of the definition syntax, which is explained in the Rule Syntax section.)

30 1.3 Pure Overview

Pure Language and Library Documentation, Release 0.64

au n

expr n= “\" prim_expr+ “->
“case” expr “of” rules “end”
expr “when” simple_rules “end”

I
I
| expr “with” rules “end”
I
|

expr

“if"” expr “then” expr “else” expr
simple_expr
simple_expr u= simple_expr op simple_expr
| op simple_expr
| simple_expr op
| application
application n= application prim_expr
| prim_expr
prim_expr n= qualified_symbol
| number
string
“(" op)"
left_op right_op
simple_expr op
op simple_expr

|
|
|
|
|
| “(" expr ")"
|
|
|
|
|

M(II H)"

ll(" ")"

M(II II)II

left_op expr right_op
II[II exprs ll]"

ll{" exprs (";" exprs)* [";"] ll}"

“I" expr “|" simple_rules “]"
“{" expr “|" simple_rules “}"
exprs = expr (”,"” expr)*
op = qualified_symbol
left_op = qualified_symbol
right_op = qualified_symbol
rules = rule (";” rule)x [";"]
simple_rules := simple_rule (";"” simple_rule)x* [";"]

Primary Expressions

The Pure language provides built-in support for machine integers (32 bit), bigints (imple-
mented using GMP), floating point values (double precision IEEE 754) and character strings
(UTF-8 encoded). These can all be denoted using the corresponding literals described in
Lexical Matters. Truth values are encoded as machine integers; as you might expect, zero
denotes false and any non-zero value true, and the prelude also provides symbolic constants
false and true to denote these. Pure also supports generic C pointers, but these don’t have
a syntactic representation in Pure, except that the predefined constant NULL may be used
to denote a generic null pointer; other pointer values need to be created with external C
functions.

Together, these atomic types of expressions make up most of Pure’s primary expression

1.3.3 Expression Syntax 31

Pure Language and Library Documentation, Release 0.64

syntax. Pure also provides built-in support for some types of “compound primaries” (lists,
tuples and matrices). We also list these here since they are typically denoted in some kind of
bracketed form, even though some related non-primary expression types such as x:y or x,y
really belong to the simple expressions.

Numbers: 4711, 4711L, 1.2e-3

The usual C notations for integers (decimal: 1000, hexadecimal: 0x3e8, octal: 01750)
and floating point values are all provided. Integers can also be denoted in base 2 by
using the 0b or 0B prefix: 0b1111101000. Integer constants that are too large to fit into
machine integers are promoted to bigints automatically. Moreover, integer literals im-
mediately followed by the uppercase letter L are always interpreted as bigint constants,
even if they fit into machine integers. This notation is also used when printing bigint
constants, to distinguish them from machine integers.

Strings: "Hello, world!\n”
String constants are double-quoted and terminated with a null character, like in C.
In contrast to C, strings are always encoded in UTF-8, and character escapes in Pure
strings have a more flexible syntax (borrowed from the author’s Q language) which
provides notations to specify any Unicode character. Please refer to Lexical Matters for
details.

Function and variable symbols: foo, foo_bar, BAR, foo::bar

These consist of the usual sequence of letters (including the underscore) and digits,
starting with a letter. Case is significant, thus foo, Foo and FO00 are distinct identifiers.
The “_* symbol, when occurring on the left-hand side of an equation, is special; it de-
notes the anonymous variable which matches any value without actually binding a
variable. Identifiers can also be prefixed with a namespace identifier, like in foo: :bar.
(This requires that the given namespace has already been created, as explained under
Namespaces in the Declarations section.)

Operator symbols: +, ==, not

For convenience, Pure also provides you with a limited means to extend the syntax of
the language with special operator symbols by means of a corresponding fixity dec-
laration, as discussed in section Symbol Declarations. Besides the usual infix, prefix
and postfix operators, Pure also provides outfix (bracket) and nonfix (nullary opera-
tor) symbols. (Nonfix symbols actually work more or less like ordinary identifiers, but
the nonfix attribute tells the compiler that when such a symbol occurs on the left-hand
side of an equation, it is always to be interpreted as a literal, cf. The “Head = Function”
Rule.)

Operator (and nonfix) symbols may take the form of an identifier or a sequence of
punctuation characters, which may optionally be qualified with a namespace prefix.
These symbols must always be declared before use. Once declared, they are always
special, and can’t be used as ordinary identifiers any more. However, like in Haskell,
by enclosing an operator in parentheses, such as (+) or (not), you can turn it into an
ordinary function symbol.

Lists: [x,y,z], x:xs
Pure’s basic list syntax is the same as in Haskell, thus [] is the empty list and x:xs
denotes a list with head element x and tail list xs. The infix constructor symbol “:” is

32 1.3 Pure Overview

Pure Language and Library Documentation, Release 0.64

declared in the prelude. It associates to the right, so that x:y: z is the same as x: (y:z).
The usual syntactic sugar for list values in brackets is also provided, thus [x,y,z] is
exactly the same as x:y:z:[]. (This kind of list value is also called a “proper” list.
Pure also permits “improper” list values such as 1:2:3 with a non-list value in the tail.
These aren’t of much use as ordinary list values, but are frequently used in patterns or
symbolic expressions such as x:y where the tail usually is a variable.)

Lists can be nested to an arbitrary depth. Also note that, in contrast to Haskell, lists
are not required to be homogeneous, so in general they may contain an arbitary mix
of element types. E.g., [1,2.0, [x,y]] is a three-element list consisting of an integer, a
floating point number and a nested list containing two symbols.

Pure also provides a notation for arithmetic sequences such as 1. .5, which denotes the
list [1,2,3,4,5]. Note the missing brackets; Pure doesn’t use any special syntax for
arithmetic sequences, the “..” symbol is just an ordinary infix operator declared and
defined in the prelude. Sequences with arbitrary stepsizes can be written by denoting
the first two sequence elements using the “:* operator,asin 1.0:1.2..3.0. To prevent
unwanted artifacts due to rounding errors, the upper bound in a floating point se-
quence is always rounded to the nearest grid point. Thus, e.g., 0.0:0.1..0.29 actually
yields [0.0,0.1,0.2,0.3],as does 0.0:0.1..0.31.

Tuples: (x,y,2z)

Pure’s tuples are a flat variant of lists which are often used as aggregate function ar-
guments and results when no elaborate hierarchical structure is needed. They are con-
structed using the infix “pairing” operator *,, for which the empty tuple () acts as
a neutral element (i.e., (),x is just x, as is x, ()). Pairs always associate to the right,
meaning that x,y,z = x,(y,z) = (x,y),z, where x, (y,z) is the normalized repre-
sentation. These rules imply that tuples can’t be nested and that there are no “true”
1-tuples distinct from their single members; if you need this then you should use lists
instead (cf. Splicing Tuples and Matrices).

Note that the parentheses are not really part of the tuple syntax in Pure, they’re just
used to group expressions. So (x,y,z) denotes just x,y, z. But since the *,” operator
has a low precedence, the parentheses are often needed to include tuples in other con-
texts. In particular, the parentheses are required to set off tuple elements in lists and
matrices. E.g., [(1,2),3,(4,5)] denotes a three element list consisting of two tuples
and an integer.

Mathematically, Pure’s notion of tuples corresponds to a monoid with an associative
binary operation ‘,” and neutral element (). This is different from the usual definition
of tuples in mathematical logic, which are nestable and correspond to Pure’s notion
of lists. So in Pure you can take your pick and use either flat tuples or nestable lists,
whatever is most convenient for the problem at hand.

Matrices: {1.0,2.0,3.0}, {1,2;3,4}, {cos t,-sin t;sin t,cos t}
Pure also offers matrices, a kind of two-dimensional arrays, as a built-in data structure
which provides efficient storage and element access. These work more or less like their
Octave/MATLAB equivalents, but using curly braces instead of brackets. Component
values may either be individual elements (“scalars”) or submatrices which are com-
bined to form a larger matrix, provided that all dimensions match up. Here, a scalar

1.3.3 Expression Syntax 33

Pure Language and Library Documentation, Release 0.64

is any expression which doesn’t yield a matrix; these are considered to be 1x1 sub-
matrices for the purpose of matrix construction. (Note that this “splicing” behaviour
pertains to matrix construction only; nested matrix patterns are always matched liter-

ally.)

The comma arranges submatrices and scalars in columns, while the semicolon ar-
ranges them in rows. So, if both x and y are n x m matrices, then {x,y} becomes an
n x 2*m matrix consisting of all the columns of x followed by all the columns of y. Like-
wise, {x;y} becomes a 2xn x m matrix (all the rows of x above of all rows of y). For
instance, {{1;3},{2;4}} is another way to write the 2x2 matrix {1,2;3,4}. Row vec-
tors are denoted as 1 x n matrices ({1, 2, 3}), column vectors as n x 1 matrices ({1;2;3}).
More examples can be found in the Matrices and Vectors section.

Pure supports both numeric and symbolic matrices. The former are homogeneous ar-
rays of double, complex double or (machine) int matrices, while the latter can contain
any mixture of Pure expressions. Pure will pick the appropriate type for the data at
hand. If a matrix contains values of different types, or Pure values which cannot be
stored in a numeric matrix, then a symbolic matrix is created instead (this also in-
cludes the case of bigints, which are considered as symbolic values as far as matrix
construction is concerned). Numeric matrices use an internal data layout that is fully
compatible with the GNU Scientific Library (GSL), and can readily be passed to GSL
routines via the C interface. (The Pure interpreter does not require GSL, however, so
numeric matrices will work even if GSL is not installed.)

Comprehensions: [x,y | x=1..n; y=1..m; x<y], {f x | x=1..n}

Pure provides both list and matrix comprehensions as a convenient means to construct
list and matrix values from a “template” expression and one or more “generator” and
“filter” clauses. The former bind a pattern to values drawn from a list or matrix, the
latter are just predicates determining which generated elements should actually be
added to the result. Comprehensions are in fact just syntactic sugar for a combination
of lambdas, conditional expressions and certain list and matrix operations, but they
are often much easier to write.

Thus, for instance, [f x | x=1..n] is pretty much the same as map f (1..n), while
[x | x=xs; x>0] correspondsto filter (>0) xs. However, comprehensions are con-
siderably more general in that they allow you to draw values from different kinds of
aggregates including lists, matrices and strings. Also, matrix comprehensions alter-
nate between row and column generation so that most common mathematical abbre-
viations carry over quite easily. Patterns can be used on the left-hand side of generator
clauses as usual, and will be matched against the actual list or matrix elements; any
unmatched elements are filtered out automatically, like in Haskell.

More details and examples can be found in the Examples section; in particular, see List
Comprehensions and Matrices and Vectors.

34

1.3 Pure Overview

Pure Language and Library Documentation, Release 0.64

Simple Expressions

The rest of Pure’s expression syntax mostly revolves around the notion of function appli-
cations. For convenience, Pure also allows you to declare pre-, post-, out- and infix opera-
tor symbols, but these are in fact just syntactic sugar for function applications; see Symbol
Declarations for details. Function and operator applications are used to combine primary
expressions to compound terms, also referred to as simple expressions; these are the data
elements which are manipulated by Pure programs.

As in other modern FPLs, function applications are written simply as juxtaposition (i.e., in
“curried” form) and associate to the left. This means that in fact all functions only take a
single argument. Multi-argument functions are represented as chains of single-argument
functions. For instance, in f x y = (f x) vy first the function f is applied to the first ar-
gument ¥, yielding the function f x which in turn gets applied to the second argument y.
This makes it possible to derive new functions from existing ones using partial applications
which only specify some but not all arguments of a function. For instance, taking the max
function from the prelude as an example, max 0 is the function which, for a given x, returns
x itself if it is nonnegative and zero otherwise. This works because (max 0) x = max 0 xis
the maximum of 0 and x.

One major advantage of having curried function applications is that, without any further
ado, functions become first-class objects. That is, they can be passed around freely both as
parameters and as function return values. Much of the power of functional programming
languages stems from this feature.

Operator applications are written using prefix, postfix, outfix or infix notation, as the decla-
ration of the operator demands, but are just ordinary function applications in disguise. As
already mentioned, enclosing an operator in parentheses turns it into an ordinary function
symbol, thus x+y is exactly the same as (+) x y. For convenience, partial applications of
infix operators can also be written using so-called operator sections. A left section takes the
form (x+) which is equivalent to the partial application (+) x. A right section takes the form
(+x) and is equivalent to the term flip (+) x. (This uses the flip combinator from the pre-
lude which is defined as flip f x y = f y x.) Thus (x+) yisequivalent to x+y, while (+x)
y reduces to y+x. For instance, (1/) denotes the reciprocal and (+1) the successor function.
(Note that, in contrast, (-x) always denotes an application of unary minus; the section (+-x)
can be used to indicate a function which subtracts x from its argument.)

The common operator symbols like +, -, *, / etc. are all declared at the beginning of the
prelude, see the Pure Library Manual for a list of these. Arithmetic and relational operators
mostly follow C conventions. However, since !, & and | are used for other purposes in Pure,
the logical and bitwise operations, as well as the negated equality predicates are named a
bit differently: ~, & and || denote logical negation, conjunction and disjunction, while the
corresponding bitwise operations are named not, and and or. Moreover, following these
conventions, inequality is denoted ~=. Also note that & and || are special forms which are
evaluated in short-circuit mode (see Special Forms below), whereas the bitwise connectives
receive their arguments using call-by-value, just like the other arithmetic operations.

1.3.3 Expression Syntax 35

Pure Language and Library Documentation, Release 0.64

Special Expressions

Some special notations are provided for conditional expressions as well as anonymous func-
tions (lambdas) and local function and variable definitions. The latter are also called block
expressions since they introduce local bindings of variable and function symbols which may
override other global or local bindings of these symbols. This gives rise to a kind of block
structure similar to Algol-like programming languages. Please check Scoping Rules below
for more information about this.

The constructs described here are called “special” because, in contrast to the other forms
of expressions, they cannot occur in normal form terms as first-class values (at least not
literally; there is an alternative quoted representation of special expressions, however, which
can be manipulated with macros and functions for meta programming purposes, cf. Built-in
Macros and Special Expressions).

Conditional expressions: if x then y else z
Evaluates to y or z depending on whether x is “true” (i.e., a nonzero integer). A
failed_cond exception is raised if the condition is not an integer.

Lambdas: \x -> vy
These denote anonymous functions and work pretty much like in Haskell. A lambda
matches its argument against the left-hand side pattern x and then evaluates the right-
hand side body y with the variables in x bound to their corresponding values. Pure
supports multiple-argument lambdas (e.g, \x y -> xxy), as well as pattern-matching
lambda abstractions such as \ (x,y) -> xxy. A failed_match exception is raised if the
actual arguments do not match the given patterns.

Case expressions: case x of u = v; ... end
Matches an expression, discriminating over a number of different cases, similar to the
Haskell case construct. The expression x is matched in turn against each left-hand side
pattern u in the rule list, and the first pattern which matches x gives the value of the
entire expression, by evaluating the corresponding right-hand side v with the variables
in the pattern bound to their corresponding values. A failed_match exception is raised
if the target expression doesn’t match any of the patterns.

When expressions: x when u = v; ... end

An alternative way to bind local variables by matching a collection of subject terms
against corresponding patterns, similar to Aardappel’s when construct. A single bind-
ing x when u = v endis equivalent to the lambda expression (\u -> x) v or the case
expression case v of u = x end, so it matches v against the pattern u and evaluates x
with the variables in u bound to their corresponding values (or raises a failed_match
exception if v doesn’t match u). However, a when clause may contain multiple defini-
tions, which are processed from left to right, so that later definitions may refer to the
variables in earlier ones. (This is exactly the same as several nested single definitions,
with the first binding being the “outermost” one.)

With expressions: x with u = v; ... end
Defines local functions. Like Haskell’s where construct, but it can be used anywhere in-
side an expression (just like Aardappel’s where, but Pure uses the keyword with which

36 1.3 Pure Overview

Pure Language and Library Documentation, Release 0.64

better lines up with case and when). Several functions can be defined in a single with
clause, and the definitions can be mutually recursive and consist of as many equations
as you want. Local functions are applied in the same way as global ones, i.e., the ar-
gument patterns of each rule are matched against the actual function arguments and
the first rule which matches has its right-hand side evaluated with the variables in the
argument patterns bound to their corresponding values. If none of the rules match
then the function application remains unevaluated (it becomes a normal form), so no
exception is raised in this case. (This is in contrast to a lambda which otherwise is
pretty much like a nameless local function defined by a single rule.)

The block constructs are similar to those available in most modern functional languages. In
Pure these constructs are all implemented in terms of the basic term rewriting machinery,
using lambda lifting to eliminate local functions, and the following equivalences which re-
duce lambdas as well as case and when expressions to special kinds of local functions or local
function applications:

\X1 ... Xn ->y

== f with f x1 ... xn=vy; f _ ... _ = throw failed_match end

case x of yl = z1; ...; yn = zn end

== f x with f y1l = z1; ...; f yn = 2zn; f _ = throw failed_match end

X when y = z end

== f z with f y = x; f _ = throw failed_match end
x when yl = z1; ...; yn = zn end
== X when yn = zn end ... when yl = z1 end

Note that by convention these constructs report a failed_match exception in case of argu-
ment mismatch. So they’re treated like defined functions, which is somewhat at odds with
the term rewriting semantics. This is done for convenience, however, so that the programmer
doesn’t have to deal with unevaluated applications of nameless block constructs in normal
form terms. The case of named local functions is considered different because it effectively
represents a local rewriting system which should be treated accordingly, in order to allow
for symbolic evaluation.

1.3.4 Special Forms

As already mentioned, some operations are actually implemented as special forms which
process some or all of their arguments using call-by-name.

if x then y else z
The conditional expression is a special form with call-by-name arguments y and z; only
one of the branches is actually evaluated, depending on the value of x.

x &&y

x|y
The logical connectives evaluate their operands in short-circuit mode. Thus the second

operand is passed by name and will only be evaluated if the first operand fails to

1.3.4 Special Forms 37

http://en.wikipedia.org/wiki/Lambda_lifting

Pure Language and Library Documentation, Release 0.64

determine the value of the expression. For instance, x&&y immediately becomes false
if x evaluates to false; otherwise y is evaluated to give the value of the expression. The
built-in definitions of these operations work as if they were defined by the following
equations (but note that the second operand is indeed passed by name):

x::int & y = if x then y else x;
x::int || y = if x then x else y;

Note that this isn’t quite the same as in C, as the results of these operations are not
normalized, i.e., they may return nonzero values other than 1 to denote “true”. (This
has the advantage that these operations can be implemented tail-recursively, see Stack
Size and Tail Recursion.) Thus, if you need a normalized truth value then you'll have
to make sure that either both operands are already normalized, or you'll have to nor-
malize the result yourself. (A quick way to turn a machine int x into a normalized truth
value is to compute ~~x or x~=0.)

Moreover, if the built-in definition fails because the first operand is not a machine
int, then the second operand will be evaluated anyway and the resulting application
becomes a normal form, which gives you the opportunity to extend these operations
with your own definitions just like the other built-in operations. Note, however, that
in this case the operands are effectively passed by value.

X$$y

X &

The sequencing operator $$ evaluates its left operand, immediately throws the result
away and then goes on to evaluate the right operand which gives the result of the
entire expression. This operator is useful to write imperative-style code such as the
following prompt-input interaction:

> using system;

> puts "Enter a number:" $$ scanf "S%g";
Enter a number:

21

21.0

We mention in passing here that the same effect can be achieved with a when clause,
which also allows you to execute a function solely for its side-effects and just ignore
the return value:

> scanf "%g" when puts "Enter a number:" end;
Enter a number:

21

21.0

The & operator does lazy evaluation. This is the only postfix operator defined in the
standard prelude. It turns its operand into a kind of parameterless anonymous closure,
deferring its evaluation. These kinds of objects are also commonly known as thunks
or futures. When the value of a future is actually needed (during pattern-matching,
or when the value becomes an argument of a C call), it is evaluated automatically and
gets memoized, i.e., the computed result replaces the thunk so that it only has to be
computed once.

38

1.3 Pure Overview

Pure Language and Library Documentation, Release 0.64

Futures are useful to implement all kinds of lazy data structures in Pure, in particular:
lazy lists a.k.a. streams. A stream is simply a list with a thunked tail, which allows it
to be infinite. The Pure prelude defines many functions for creating and manipulating
these kinds of objects; for further details and examples please Lazy Evaluation and
Streams in the Examples section.

quote x

fx
This special form quotes an expression, i.e., quote x (or, equivalently, ’x) returns just
x itself without evaluating it. The prelude also provides a function eval which can be
used to evaluate a quoted expression at a later time. For instance:

> let x = '(2%42+42"°12); Xx;
2%42+2°12

> eval Xx;

4180.0

This enables some powerful metaprogramming techniques, which should be well fa-
miliar to Lisp programmers. However, there are some notable differences to Lisp’s
quote, please see The Quote in the Examples section for details and more examples.

1.3.5 Toplevel

At the toplevel, a Pure program basically consists of rewriting rules (which are used to de-
fine functions, macros and types), constant and variable definitions, and expressions to be
evaluated:

script itemx

item n= “let” simple_rule ";”
“const” simple_rule ";"
“def” macro_rule ";"

nm.,n

I
|
| “type” type_rule ”;
|
I

n.,n

rule ”;

n.,n

expr ”;

These elements are discussed in more detail in the Rule Syntax section. Also, a few addi-
tional toplevel elements are part of the declaration syntax, see Declarations.

lhs = rhs;
Rewriting rules always combine a left-hand side pattern (which must be a simple ex-
pression) and a right-hand side (which can be any kind of Pure expression described
above). The same format is also used in with, when and case expressions. In toplevel
rules, with and case expressions, this basic form can also be augmented with a con-
dition if guard tacked on to the end of the rule, where guard is an integer expression
which determines whether the rule is applicable. Moreover, the keyword otherwise
may be used to denote an empty guard which is always true (this is syntactic sugar
to point out the “default” case of a definition; the interpreter just treats this as a com-
ment). Pure also provides some abbreviations for factoring out common left-hand or

1.3.5 Toplevel 39

Pure Language and Library Documentation, Release 0.64

right-hand sides in collections of rules; see the Rule Syntax section for details.

type lhs = rhs;

A rule starting with the keyword type defines a type predicate. This works pretty
much like an ordinary rewriting rule, except that only a single right-hand side is per-
mitted (which may also be omitted in some cases) and the left-hand side may involve
at most one argument expression; see the Type Rules section for details. There’s also
an alternative syntax which lets you define types in a more abstract way and have
the compiler generate the type rules for you; this is described in the Interface Types
section.

def lhs = rhs;
A rule starting with the keyword def defines a macro function. No guards or multiple
right-hand sides are permitted here. Macro rules are used to preprocess expressions
on the right-hand side of other definitions at compile time, and are typically employed
to implement user-defined special forms and simple kinds of optimization rules. See
the Macros section below for details and examples.

let lhs = rhs;
Binds every variable in the left-hand side pattern to the corresponding subterm of the
right-hand side (after evaluating it). This works like a when clause, but serves to bind
global variables occurring free on the right-hand side of other function and variable
definitions.

const lhs = rhs;

An alternative form of let which defines constants rather than variables. (These are
not to be confused with nonfix symbols which simply stand for themselves!) Like let,
this construct binds the variable symbols on the left-hand side to the corresponding
values on the right-hand side (after evaluation). The difference is that const symbols
can only be defined once, and thus their values do not change during program ex-
ecution. This also allows the compiler to apply some special optimizations such as
constant folding.

expr;
A singleton expression at the toplevel, terminated with a semicolon, simply causes the
given value to be evaluated (and the result to be printed, when running in interactive
mode).

1.3.6 Scoping Rules

A few remarks about the scope of identifiers and other symbols are in order here. Special
expressions introduce local scopes of functions and variables. Specifically, lambda expres-
sions, as well as the left-hand sides of rules in case, when and with expressions, bind the vari-
ables in the patterns to their corresponding values. In addition, a with expression also binds
function names to the corresponding functions defined by the rules given in the expression.
In either case, these bindings are limited to the scope of the corresponding construct. Inside
that scope they override other (global or local) definitions of the same symbols which may
be present in the surrounding program code. This gives rise to a hierarchical block structure

40 1.3 Pure Overview

Pure Language and Library Documentation, Release 0.64

where each occurrence of a symbol refers to the innermost definition of that symbol visible
at that point of the program.

The precise scoping rules for the different constructs are as follows:

* \x -> y: The scope of the variables bound by the pattern x is the lambda body y.

* case x of u=v; ... end: The scope of the variables bound by the pattern u in
each rule is the corresponding right-hand side v.

* x when u = v; ... end: The scope of the variables bound by the pattern u in each
rule extends over the right-hand sides of all subsequent rules and the target expression
X.

* x with u = v; ... end: The scope of the variables bound by the pattern u in each

rule is the corresponding right-hand side v. In addition, the scope of the function names
defined by the with clause (i.e., the head symbols of the rules) extends over the right-
hand sides of all rules and the target expression x. Note that this allows local function
definitions to be mutually recursive, since the right-hand side of each rule in the with
clause may refer to any other function defined by the with clause.

Like most modern functional languages, Pure uses lexical or static binding for local func-
tions and variables. What this means is that the binding of a local name is completely de-
termined at compile time by the surrounding program text, and does not change as the
program is being executed. In particular, if a function returns another (anonymous or local)
function, the returned function captures the environment it was created in, i.e., it becomes a
(lexical) closure. For instance, the following function, when invoked with a single argument
x, returns another function which adds x to its argument:

> foo x = bar with bar y = x+y end;

> let f = foo 99; f;
bar

> f 10, f 20;
109,119

This works the same no matter what other bindings of x may be in effect when the closure is
invoked:

> let x = 77; f 10, (f 20 when x = 88 end);
109,119

In contrast to local bindings, Pure’s toplevel environment binds global symbols dynami-
cally, so that the bindings can be changed easily at any time during an interactive session.
This is mainly a convenience for interactive usage, but works the same no matter whether the
source code is entered interactively or being read from a script, in order to ensure consistent
behaviour between interactive and batch mode operation.

In particular, you can easily bind a global variable to a new value by just entering a cor-
responding let command. For instance, contrast the following with the local bar function
from above which had the x value bound in the surrounding context:

1.3.6 Scoping Rules 41

Pure Language and Library Documentation, Release 0.64

> clear x
> bar y = x+y;
> bar 10, bar 20;

X+10,x+20

> let x = 99;

> bar 10, bar 20;
109,119

> let x = 77;

> bar 10, bar 20;
87,97

Observe how changing the value of the global x variable immediately affects the value com-
puted by the global bar function. This works pretty much like global variables in imperative
languages, but note that in Pure the value of a global variable can only be changed with a
let command at the toplevel. Thus referential transparency is unimpaired; while the value
of a global variable may change between different toplevel expressions, it will always take
the same value in a single evaluation.

Similarly, you can also add new equations to an existing function at any time. The Pure
interpreter will then automatically recompile the function as needed. For instance:

> fact 0 = 1;

> fact n::int = nxfact (n-1) if n>0;
> fact 10;

3628800

> fact 10.0;

fact 10.0

> fact 1.0 = 1.0;

> fact n::double = nxfact (n-1) if n>1;
> fact 10.0;

3628800.0

> fact 10;

3628800

In interactive mode, it is even possible to completely erase a function definition and redo it
from scratch, see section Interactive Usage for details.

So, while the meaning of a local symbol never changes once its definition has been pro-
cessed, toplevel definitions may well evolve while the program is being processed, and the
interpreter will always use the latest definitions at a given point in the source when an ex-
pression is evaluated.

Note: As already mentioned, this behaviour makes Pure much more convenient to use in
an interactive setting. We should point out, however, that dynamic environments are often
frowned upon by functional programming purists (for good reasons), and Pure’s dynamic
toplevel certainly has its pitfalls just like any other. Specifically, even in a script file you'll
have to take care that all symbols needed in an evaluation are completely defined before en-
tering the expression to be evaluated. Nevertheless, it is expected that most Pure program-
mers will use Pure interactively most of the time, and so tailoring the design to interactive
usage seems justifiable in this case.

42 1.3 Pure Overview

Pure Language and Library Documentation, Release 0.64

1.4 Rule Syntax

Basically, the same rule syntax is used in all kinds of global and local definitions. However,
some constructs (specifically, when, let, const, type and def) use a variation of the basic rule
syntax which does away with guards and/or multiple left-hand or right-hand sides. The
syntax of these elements is captured by the following grammar rules:

rule x= pattern (“|” pattern)* “=" expr [guard]
(";" “=" expr [guard])x
type_rule u= pattern (“|” pattern)x [“=" expr [guard]]
macro_rule = pattern (“|” pattern)* “=" expr
simple_rule := pattern “=" expr | expr
pattern = simple_expr
guard = “if"” simple_expr
| “otherwise”

| guard “when” simple_rules “end”
| guard “with” rules “end”

When matching against a function or macro call, or the subject term in a case expression,
the rules are always considered in the order in which they are written, and the first matching
rule (whose guard evaluates to a nonzero value, if applicable) is picked. (Again, the when
construct is treated differently, because each rule is actually a separate definition.)

1.41 Patterns

The left-hand side of a rule is a special kind of simple expression, called a pattern. The
variables in a pattern serve as placeholders which are bound to corresponding values when
the rule is applied to a target expression. To these ends, the pattern is matched against
the target expression, i.e., the literal parts of the pattern are compared against the target
expression and, if everything matches up, the variables in the pattern are bound to (set to
the value of) the corresponding subterms of the target expression.

Patterns are pervasive in Pure; they are used on the left-hand side of function and macro
definitions, just as well as in global and local variable definitions. For instance, the follow-
ing variable definition matches the result of evaluating the right-hand side list expression
against the pattern x:y:xs and binds the variables x and y to the first two elements of the
resulting list and xs to the list of remaining elements, respectively. We can then place x and
y at the end of the list, thereby performing a kind of “rotation” of the first two list members:

> let x:y:xs = 1..10;
> xs+[x,y];
[3,4,5,6,7,8,9,10,1,2]

The same works with a local variable definition:

1.4 Rule Syntax 43

Pure Language and Library Documentation, Release 0.64

> xs+[x,y] when x:y:xs = 1..10 end;
[3,4,5,6,7,8,9,10,1,2]

Or with a case expression:

> case 1..10 of x:y:xs = xs+[x,y] end;
[3,4,5,6,7,8,9,10,1,2]

The arguments of functions (and macros) are handled in the same fashion, too:

> rot2 (x:y:xs) = xs+[x,yl;
> rot2 (1..10);
[3!4!5!6!7!8!9!10I112]

However, there is a big difference here. For global and local variable definitions, it is an error
if the pattern does not match the target expression:

> let x:y:xs = [1];
<stdin>, line 7: failed match while evaluating ’'let x:y:xs = [1]’

The same holds if the target expression doesn’t match any of the left-hand side patterns in a
case expression:

> case [1] of x:y:xs = xs+[x,y] end;
<stdin>, line 8: unhandled exception ’'failed_match’ while evaluating
"case [1] of x:y:xs = xs+[x,y] end’

(The error message is slightly different in this case, but the reported kind of exception is
actually the same as with the let expression above.)

This doesn’t normally happen with functions and macros. Instead, a match failure just
means that the corresponding rule will be bypassed and other rules will be tried instead.
If there are no more rules, the target expression becomes a normal form which is simply
returned as is:

> rot2 [1];
rot2 [1]

This may come as a surprise (other functional languages will give you an error in such cases),
but is a crucial feature of term rewriting languages, as it opens the door to symbolic evalua-
tion techniques, see Definitions and Expression Evaluation.

There are two different ways to force a function definition to bail out with an error if you
prefer that behaviour. First, you can provide an explicit rule which raises an exception (cf.
Exception Handling). But this can make it difficult or even impossible to add more rules to
the function later, as discussed below. Instead, you may want to use the - -defined pragma
as follows:

> #! --defined rot2
> rot2 [1];
<stdin>, line 13: unhandled exception ’'failed_match’ while evaluating ’'rot2 [1]’

44 1.4 Rule Syntax

Pure Language and Library Documentation, Release 0.64

Note: This pragma tells the compiler that rot2 is supposed to be a “defined” function,
which means that it should be an error if no rule applies to it; please see Defined Functions
in the Caveats and Notes section for details. Also note that exceptions will always interfere
with symbolic evaluation and thus the use of this facility isn’t really recommended. How-
ever, there are situations in which it can make your life a lot easier.

One of Pure’s key features is that you can usually just keep on adding new rules to existing
function definitions in order to handle different kinds of arguments. As already mentioned,
the rules will then be considered in the order in which they are written, and the first rule
which matches the given arguments will be used to reduce the function application. For
instance, adding the following rule we can make the rot2 function also work with tuples:

> rot2 (X,y,Xs) = Xs,X,Y;
> rot2 (1,2,3,4,5);
3,4,5,1,2

This is also known as ad-hoc polymorphism. By these means, you can make a function ap-
ply to as many different kinds of arguments as you want, and the pattern matching handles
the necessary “dispatching” so that the right rule gets invoked for the provided arguments.

Pattern matching is not limited to the predefined aggregates such as lists, tuples and matri-
ces. In principle, any legal Pure expression can occur as a pattern on the left-hand side of a
rule or definition, so you can also write something like:

> rot2 (point x y z) = point z x y;
> rot2 (point 1 2 3);

point 3 1 2

Or even:

> foo (foo x) = foo x;

> bar (foo x) = foo (bar x);

> foo (bar (foo 99));
foo (bar 99)

Note that symbolic rules like in the latter example (which in this case express the idempo-
tence of foo and a kind of commutativity with respect to bar) often involve symbols which
play the role of both a function and a constructor symbol.

Syntactically, patterns are simple expressions, thus special expressions need to be parenthe-
sized if you want to include them in a pattern. (In fact, special expressions are given special
treatment if they occur in patterns, see the Macros section for details.) A few other special
elements in patterns are discussed below.

The “Head = Function” Rule

A central ingredient of all patterns are of course the variables which get bound in the pattern
matching process. Pure is a rather terse language and thus it has no explicit way to declare

1.4.1 Patterns 45

Pure Language and Library Documentation, Release 0.64

which identifiers are the variables. Instead, the compiler figures them out on its own, using
a rather intuitive rule already explained in Variables in Equations.

Recall that the variables in a pattern are the identifiers in “variable positions”. The head
= function rule tells us that a variable position is any leaf (atomic subexpression) of the
expression tree which is not the head symbol of a function application. Thus a pattern like
f (g x) y contains the variables x and y, whereas f and g are interpreted as literal function
symbols. This rule also applies to the case of infix, prefix or postfix operator symbols, if we
write the corresponding application in its unsugared form. E.g., x+y*z is equivalent to (+) x
((x) y z) which contains the variables x, y and z and the literal function symbols (+) and
().

There are some exceptions to the “head = function” rule. Specifically, it is possible to declare
an identifier as a nonfix symbol so that it will be interpreted as a literal function symbol
even if it occurs in a variable position, see Symbol Declarations for details. For instance:

nonfix nil;
foo nil = 0;

Note that since nil is declared as a nonfix symbol here, the symbol is interpreted as a literal
rather than a variable in the left-hand side foo nil, and thus foo will return 0 for a literal
nil value only.

Another case which needs special consideration are patterns consisting of a single identi-
fier, such as x. Here the meaning depends on the kind of construct. All variable-binding
constructs (let, const, when and case) treat a singleton identifier as a variable (unless it is
declared nonfix). Thus all of the following constructs will have the expected result of bind-
ing the variable x to the given list value [1,2,3]. In either case the resultis [0,1,2,3]:

let x = [1,2,3]; 0:x;
0:x when x = [1,2,3] end;
case [1,2,3] of x = 0:x end;

In contrast, a single identifier is always interpreted as a literal if it occurs on the left-hand
side of a function or macro definition, so that the following rule defines a parameterless
function y:

y = [1,2,3]; 0:y;
(While they yield the same values here, there are some notable differences between the pa-

rameterless function y and the global variable x defined above; see Defining Functions for
details.)

Please also check “Head = Function” Pitfalls in the Caveats and Notes section which has
some some further interesting details and workarounds concerning the “head = function”
rule.

Constant Patterns

Constants in patterns must be matched literally. For instance:

46 1.4 Rule Syntax

Pure Language and Library Documentation, Release 0.64

foo 0 = 1;

This will only match an application of foo to the machine integer 0, not 6.0 or 0L (even
though these compare equal to 0 using the ‘==" operator).

The Anonymous Variable

The “_’ symbol is special in patterns; it denotes the anonymous variable which matches an
arbitrary value (independently for all occurrences) without actually binding a variable. This
is useful if you don’t care about an argument or one of its components, in which case you
can just use the anonymous variable as a placeholder for the value and don’t have to invent
a variable name for it. For instance:

foo _ _ = 0;

This will match the application of foo to any combination of two arguments (and just ignore
the values of these arguments).

Non-Linear Patterns and Syntactic Equality

In contrast to Haskell, patterns may contain repeated variables (other than the anonymous
variable), i.e., they may be non-linear. Thus rules like the following are legal in Pure, and
will only be matched if all occurrences of the same variable in the left-hand side pattern are
matched to the same value:

foo x X = Xx;
foo 1 1;

Non-linear patterns are particularly useful for computer algebra where you will frequently
encounter rules such as the following:

> Xky+X*z = X*k(y+2);
> ax(3x4)+ax5;
ax1l7

The notion of “sameness” employed here is that of syntactical identity, which means that the
matched subterms must be identical in structure and content. The prelude provides syntactic
equality as a function same and a comparison predicate ‘===". Thus the above definition of
foo is roughly equivalent to the following;:

foo x y = x if same x y;

It is important to note the differences between syntactic equality embodied by same and
‘===', and the “semantic” equality operator ‘==". The former are always defined on all terms,

1.4.1 Patterns 47

Pure Language and Library Documentation, Release 0.64

whereas ‘==" is only available on data where it has been defined explicitly, either in the pre-
lude or by the programmer. Also note that ‘==" may assert that two terms are equal even if
they are syntactically different. Consider, e.g.:

> 0==0.0;
1
> 0===0.0;
0

This distinction is actually quite useful. It gives the programmer the flexibility to define ‘==*
in any way that he sees fit, which is consistent with the way the other comparison operators
like ‘<* and “>" are handled in Pure.

Syntactic equality is also used in pattern matching in order to decide whether a constant in
a pattern matches the corresponding subterm in the target expression. This explains why
the pattern foo 0, as already mentioned, only matches an application of foo to the machine
integer 0, not 0.0 or 0L which aren’t syntactically equal to 0.

However, there is one caveat here. Due to its term rewriting heritage, Pure distinguishes
between literal function symbols in patterns and named functions. The latter are runtime
objects which are only considered syntactically equal if they not only have the same name
but actually refer to the same (global or local) closure. In contrast, a function symbol in a
pattern is just a literal symbol without reference to any particular closure that the symbol
may be bound to in some context. Thus a function symbol in a pattern matches any instance
of the symbol in the target expression, no matter whether it happens to be a pure constructor,
quoted symbol or any named closure bound to that symbol.

This leads to some discrepancies between pattern matching and syntactic equality which
may be surprising at first sight. For instance, consider:

foo x = case x of bar y = x===bar y end;
bar x y = x+y;
foo (bar 99);
foo ('bar 99);

foo (bar 99) with bar x y = xxy end;

©V ©V =V VYV

Note that the argument term bar 99 matches the pattern bar y in the case expression in
either case, even though in the last two expressions bar is not considered syntactically equal
to the global bar function because it is quoted (cf. The Quote) or bound to a local closure of
the same name, respectively.

Special Patterns
Last but not least, patterns may also contain the following special elements which are not
permitted in right-hand side expressions:

¢ A Haskell-style “as” pattern of the form variable @ pattern binds the given variable to
the expression matched by the subpattern pattern (in addition to the variables bound

48 1.4 Rule Syntax

Pure Language and Library Documentation, Release 0.64

by pattern itself). This is convenient if the value matched by the subpattern is to be
used on the right-hand side of an equation.

¢ A left-hand side variable (including the anonymous variable) may be followed by a
type tag of the form :: name, where name is either one of the built-in type symbols
int, bigint, double, string, matrix, pointer, or an identifier denoting a user-defined
data type. The variable can then match only values of the designated type. Thus, for
instance, ‘x: : int’ only matches machine integers. See the Type Tags section below for
details.

To these ends, the expression syntax is augmented with the following grammar rule (but
note that this form of expression is in fact only allowed on the left-hand side of a rule):

prim_expr = qualified_identifier
("::" qualified_identifier | “@" prim_expr)

As shown, both “as” patterns and type tags are primary expressions, and the subpattern of
an “as” pattern is a primary expression, too. Thus, if a compound expression is to be used
as the subpattern, it must be parenthesized. For instance, the following function duplicates
the head element of a list:

foo xs@(x:_) = X:XS;

Note that if you accidentally forget the parentheses around the subpattern x:_, you still get
a syntactically correct definition:

foo Xs@x:_ = X:XS;
But this gets parsed as (foo xs@x):_ = x:xs, which is most certainly not what you want. It

is thus a good idea to just always enclose the subpattern with parentheses in order to prevent
such glitches.

Note: Another pitfall is that the notation foo: :bar is also used to denote “qualified sym-
bols” in Pure, cf. Namespaces. Usually this will be resolved correctly, but if foo happens to
also be a valid namespace then most likely you'll get an error message about an undeclared
symbol. You can always work around this by adding spaces around the “: :” symbol, as in
foo :: bar. Spaces are never permitted in qualified symbols, so this makes it clear that
the construct denotes a type tag. The same applies if the variable or the tag is a qualified
identifier; in this case they should always be separated by whitespace.

1.4.2 Type Tags

Like Lisp, Pure is essentially a typeless language and doesn’t really have a built-in notion of
“data types”. Rather, all data belongs to the same universe of terms. However, for conve-
nience it is possible to describe data domains by means of (unary) type predicates which may
denote arbitrary sets of terms. The names of these type predicates can then be used as type
tags on variables, so that they can only be matched by values of the given type.

1.4.2 Type Tags 49

Pure Language and Library Documentation, Release 0.64

We have to emphasize here that Pure’s notion of types has nothing to do with static typing.
Type tags are merely used at runtime to restrict the kind of data that can be matched by a
rule (and by the compiler to generate better code in some cases). But they will never cause
the compiler to impose a static typing discipline and spit out corresponding “type errors”.
(This wouldn’t make any sense in Pure anyway, as failure to match any of the rules given in
the definition of a function simply means that a function application is in normal form.)

Some basic types are built into the language. The corresponding tags enable you to match
the built-in types of terms for which there is no way to spell out all “constructors”, as there
are infinitely many (or none, as in the case of pointer values which are constructed and in-
spected using special primitives, but are otherwise “opaque” at the Pure level). Specifically,
the following data types are built-in (in fact, the pattern matcher has special knowledge
about these so that they can be matched very efficiently):

type int
The type of machine integers.

type bigint
The type of arbitrary precision integers (GMP bigints).

type double
The type of double precision floating point numbers.

type string
The type of character strings.

type matrix
The type of all numeric and symbolic matrix values.

type pointer
The type of C pointer values.

Pure’s standard library provides additional data types along with the corresponding opera-
tions, such as rational and complex numbers, lists, tuples and the container data types (sets,
dictionaries, etc.). These are all described in the Pure Library Manual.

You can define your own data types using a special kind of rule syntax which is explained in
Type Rules below. For instance, we might represent points in the plane using a constructor
symbol Point which gets applied to pairs of coordinates. We can then define the point data
type as follows:

type point (Point x y);

This introduces the type symbol point and specifies that this type consists of terms of the
form Point x y. We can now equip this data type with an operation point to construct a
point from its coordinates, two operations xcoord and ycoord to retrieve the coordinates,
and an operation move to change the coordinates to the given values:

point x y = Point X y;
xcoord (Point x y) = x;
ycoord (Point x y) = vy;
move (Point _ _) x y = Point x y;

50 1.4 Rule Syntax

Pure Language and Library Documentation, Release 0.64

Next we might define a function translate which shifts the coordinates of a point by a given
amount in the x and y directions as follows:

translate x y p::point = move p (xcoord p+x) (ycoord p+y);

Note the use of point as a type tag on the p variable. By these means, we can ensure that the
argument is actually an instance of the point data type we just defined. The type tag acts just
like an extra guard of the equation defining translate, but all the necessary type checking is
done automatically during pattern matching. This is often more convenient (and, depending
on the implementation, the compiler may generate more efficient code for a type tag than
for an ordinary guard).

The translate function can be invoked as follows:

> let p::point = point 3 3;
> p; translate 1 2 p;

Point 3 3

Point 4 5

One important point to note here is that translate can be defined without knowing or as-
suming anything about the internal representation of the point data type. We have defined
point as a concrete data type in this example, making its constructor and internal structure
visible in the rest of the program. This is often convenient, but the Point constructor might
just as well be hidden by making it a private member of some namespace (cf. Namespaces),
so that all accesses to the data structure would have to be done through the provided oper-
ations. Such a data type is also known as an abstract data type (ADT).

Note: Aswe’ve already seen, Pure has some powerful capabilities which enable you to write
functions to inspect and manipulate terms in a completely generic fashion. Thus the internal
structure of term data is never truly opaque in Pure and it is always possible to break the
“abstraction barrier” provided by an ADT. But if the user of an ADT plays such dirty tricks
to wreak havoc on the internal representation of an ADT, he gets what he deserves.

Pure provides some additional facilities to ease the handling of abstract data types. Specif-
ically, instead of defining point as a concrete data type using a type rule, we might also
specify it as an interface type which merely lists the supported operations as follows:

interface point with
xcoord p::point;
ycoord p::point;
move p::point x y;
end;

We can implement this type the same way as before:

point x y = Point X y;
xcoord (Point x y) = x;
ycoord (Point x vy) y;
move (Point _ _) x y = Point x y;

1.4.2 Type Tags 51

Pure Language and Library Documentation, Release 0.64

The definition of the translate function is also unchanged:

translate x y p::point = move p (xcoord p+x) (ycoord p+y);

The difference is that now the structure of members of the type is not made explicit anywhere
in the definition of the type. Instead, the compiler figures out which data matches the point
tag on its own. We can check the actual term patterns making up the point type with the
show interface command:

> show interface point
type point (Point x y);

As you can see, the compiler derived our previous definition of the type. But in fact
translate will now work with any data type which implements the point interface (i.e.,
provides the xcoord, ycoord and move operations), so we may swap out the underlying data
structure on a whim. For instance, if we’d like to use vectors instead of constructor terms,
all we have to do is to provide a corresponding construction function and implement the
interface operations:

vpoint x y = {X,y};
xcoord {x,y} = Xx;
ycoord {x,y} =vy;

move {_,_} xy = {X,y};

After these definitions the new data representation works just fine with existing point oper-
ations such as translate:

> show interface point

type point (Point x y);
type point {x,y};

> let p::point = vpoint 3 3;
> p; translate (1,2) p;
{3,3}

{4,5}

This separation of interface and implementation of a data structure is an important ingredi-
ent of software engineering techniques. More examples and detailed explanations of Pure’s
notions of type predicates and interface types can be found in the Type Rules and Interface
Types sections.

1.4.3 General Rules

The most general type of rule, used in function definitions and case expressions, consists
of a left-hand side pattern, a right-hand side expression and an optional guard. The left-
hand side of a rule can be omitted if it is the same as for the previous rule. This provides
a convenient means to write out a collection of equations for the same left-hand side which
discriminates over different conditions:

lhs

rhs if guard;
rhs if guard;

52 1.4 Rule Syntax

Pure Language and Library Documentation, Release 0.64

= rhs otherwise;

For instance:

fact n nxfact (n-1) if n>0;

1 otherwise;

This expands to:

fact n = nxfact (n-1) if n>0;
fact n 1 otherwise;

Pure also allows a collection of rules with different left-hand sides but the same right-hand
side(s) to be abbreviated as follows:

lhs |
lhs = rhs;

This is useful, e.g., if you specialize a rule to different type tags on the left-hand side vari-
ables. For instance:

fact n::int
fact n::double

nxfact(n-1) if n>0;
1 otherwise;

This expands to:

fact n::int nxfact(n-1) if n>0;
1 otherwise;
nxfact(n-1) if n>0;

1 otherwise;

fact n::double

In fact, the left-hand sides don’t have to be related at all, so you can also write something
like:

foo x | bar y = xxy;

Which expands to:

foo X = xx*y;
bar y = xxy;

But more often you'll have an “as” pattern which binds a common variable to a parameter
value after checking that it matches one of several possible argument patterns (which is
slightly more efficient than using an equivalent type-checking guard). E.g., the following
definition binds the xs variable to the parameter of foo, which may be either the empty list
or a list starting with an integer:

foo xs@[] | foo xs@(_::int:_) = bar xs;

The | notation also works in case expressions, which is convenient if different cases should
be mapped to the same value, e.g.:

1.4.3 General Rules 53

Pure Language and Library Documentation, Release 0.64

case ans of "y" | "Y" =1; _ = 0; end;

Sometimes it is useful if local definitions (when and with) can be shared by the right-hand
side and the guard of a rule. This can be done by placing the local definitions behind the
guard, as follows (we only show the case of a single when clause here, but of course there
may be any number of when and with clauses behind the guard):

lhs = rhs if guard when defns end;

Note that this is different from the following, which indicates that the definitions only apply
to the guard but not the right-hand side of the rule:

lhs = rhs if (guard when defns end);

Conversely, definitions placed before the guard only apply to the right-hand side but not the
guard (no parentheses are required in this case):

lhs = rhs when defns end if guard;

An example showing the use of a local variable binding spanning both the right-hand side
and the guard of a rule is the following quadratic equation solver, which returns the (real)
solutions of the equation x*2+p*x+q = 0 if the discriminantd = p~2/4-q is nonnegative:

> using math;

> solve p q = -p/2+sqrt d,-p/2-sqrt d if d>=0 when d = p"2/4-q end;
> solve 4 2; solve 2 4;

-0.585786437626905, -3.41421356237309

solve 2 4

Note that the above definition leaves the case of a negative discriminant undefined.

1.4.4 Simple Rules

As already mentioned, when, let and const use a simplified kind of rule syntax which just
consists of a left-hand and a right-hand side separated by the equals sign. In this case the
meaning of the rule is to bind the variables in the left-hand side of the rule to the correspond-
ing subterms of the value of the right-hand side. This is also called a pattern binding.

Guards or multiple left-hand or right-hand sides are not permitted in these rules. However,
it is possible to omit the left-hand side if it is just the anonymous variable “_’ by itself, indi-
cating that you don’t care about the result. The right-hand side is still evaluated, if only for
its side-effects, which is handy, e.g., for adding debugging statements to your code. For in-
stance, here is a variation of the quadratic equation solver which also prints the discriminant
after it has been computed:

> using math, systenm;

> solve p q = -p/2+sqrt d,-p/2-sqrt d if d>=0

> when d = p~2/4-q; printf "The discriminant is: %g\n" d; end;
> solve 4 2;

The discriminant is: 2

54 1.4 Rule Syntax

Pure Language and Library Documentation, Release 0.64

-0.585786437626905, -3.41421356237309
> solve 2 4;

The discriminant is: -3

solve 2 4

Note that simple rules of the same form lhs = rhs are also used in macro definitions (def),
to be discussed in the Macros section. In this case, however, the rule denotes a real rewriting
rule, not a pattern binding, hence the left-hand side is mandatory in these rules.

1.4.5 Type Rules

In Pure the definition of a type takes a somewhat unusual form, since it is not a static dec-
laration of the structure of the type’s members, but rather an arbitrary predicate which de-
termines through a runtime check which terms belong to the type. Thus the definition of
a type looks more like an ordinary function definition (and that’s essentially what it is, al-
though types live in their own space where they can’t be confused with functions of the same
name).

The definition of a type thus consists of one or more type rules which basically have the same
format as the general rules, but with the keyword type in front of each rule. Also, each left-
hand side must have at most one argument pattern and exactly one right-hand side. Hence,
if the definition of a type requires several right-hand sides, you normally have to write a
separate type rule for each of them. Multiple left-hand sides work the same as in the general
rule format, though.

As already mentioned, there is an alternative way for defining types in an indirect way
through so-called interface types from which the corresponding type rules are derived auto-
matically. These are part of Pure’s declaration syntax and thus will be discussed later in the
Declarations section. In this section we focus on how you can write your own type rules in
order to define types in a direct fashion.

The identifier in the head of the left-hand side of a type rule is the name of the type which
can then be used as a type tag in other equations, cf. Type Tags. This is just a normal,
possibly qualified identifier subject to the same namespace mechanisms as other symbols;
see Namespaces for details. However, as the type symbol only gets used as a type tag, it can
never collide with function and variable symbols and hence the same symbol can be used
both as a type and as a function or variable name.

A collection of type rules specifies a predicate, i.e. a unary, truth-valued function which
denotes a set of terms. The type consists precisely of those terms for which the type predicate
yields a nonzero result. For instance, the following type defines the type triple as the set of
all tuples with exactly three elements:

type triple (x,y,z) = ~tuplep z;

Note that the type check consists of two parts here: The left-hand side pattern (x,y,z) re-
stricts the set to all tuples with at least three elements. The right-hand side ~tuplep z then
verifies that the last component z is not a tuple itself, and thus the entire tuple consists of
exactly three elements.

1.4.5 Type Rules 55

Pure Language and Library Documentation, Release 0.64

Another important point here is that the definition of the triple predicate is partial, as the
given rule only applies to tuples with at least three elements. A value will only match the
triple type tag if the predicate explicitly returns true; otherwise the match will fail, no
matter what the result is (and even if the predicates just fails, i.e., returns an unevaluated
normal form). Thus there is no need to make the predicate work on all terms (and in fact
there are good reasons to not do so, see below).

In general, you should try to make your type definitions as specific as possible. This makes
it possible to extend the predicate later, just like Pure allows you to extend the definition of
a function to new types of arguments. For instance, if you later decide that lists with three
elements should be considered as triples, too, then you may add the following type rule:

type triple [x,y,z] = true;

This makes it possible to define a type in a piecemeal fashion. Each subsequent rule enlarges
the term set of the type. Conversely, consider a definition like:

type pair x = tuplep x && #x==2;

In this case the type rule applies to all values x and thus the type definition is complete; there
is no way to extend it later. Whether to prefer the former or latter kind of definition depends
on the situation. If you want to keep a type extensible, so that you can later make existing
definitions of operations on the type work with new data representations, then you should
use the former approach, otherwise the latter.

As an example for an extensible type definition, consider the following type nat which de-
notes the type of positive (machine) integers:

type nat x::int = x>0;

This definition is complete for the case of machine integers, but allows the type to be ex-
tended for other base types, and we’ll do that in a moment. But first let’s define the factorial
on nat values as follows:

fact n::nat = if n==1 then 1 else n *x fact (n-1);

Note that this definition would loop on zero or negative values if we permitted arbitrary int
arguments. But since we restricted the argument type to nat, this case cannot occur and so
the definition is safe:

> fact 0;

fact 0

> map fact (1..10);
[1,2,6,24,120,720,5040,40320,362880,3628800]

The way we defined fact, it works on positive machine integers, but nothing else:

> fact 10L;
fact 10L

If we later decide that positive bigints should be considered as members of nat as well, we
can simply add another rule for the nat type:

56 1.4 Rule Syntax

Pure Language and Library Documentation, Release 0.64

type nat x::bigint = x>0;

Et voila, our fact routine now magically works with bigints, too:

> map fact (OL..10L);
[fact OL,1,2L,6L,24L,120L,720L,5040L,40320L,362880L,3628800L]

Note that we did all this without ever touching our original definition of fact. This works
because the bigint data type already provides all the operations which we expect to use
with the nat type. Pulling off this trick with other, more exotic kinds of data requires more
preparation, since we'll first have to provide the required operations. In this case, we need
at least multiplication, as well as comparisons with 1 and subtraction by 1. For instance,
and just for the fun of it, let’s implement our own variation of the nat type using Peano
arithmetic:

type nat (s x) = true;

// addition

X + 0 = X;
X + 1 =S X;
X+ Sy =5 (Xty);

// multiplication
X * 0 =0;
X *x 1 = X;
X % Sy =X + Xxy,;

// subtract 1
s X -1=x;

// comparison with 0 and 1
s x == 0 = false;
SX==1=X==;

This implements just the bare bones, but that should be enough to make fact work. Let’s
give it a try:

> fact (s (s (s 0)));
s (s (s (s (s (s 0)))))

So, counting the s’s, the factorial of 3 is 6. Works! (It goes without saying, though, that this
implementation of nat is not very practical; you'll get mountains of s’s for larger values of

n.)

As you can see, a type definition may in general consist of many type rules which may be
scattered out over different parts of a program. This works in exactly the same way as with
ordinary functions.

There’s an additional convenience provided for type rules, namely that the right-hand side
may be omitted if it’s just true. For instance, the rule

1.4.5 Type Rules 57

Pure Language and Library Documentation, Release 0.64

type nat (s x) = true;

from above can also be written simply as:

type nat (s x);

This kind of notation is particularly convenient for “algebraic types” which are usually given
by a collection of constructors with different arities. For instance, a binary tree data type
might be defined as follows (here we employ the | symbol to separate the different left-hand
sides so that we can give all the constructor patterns in one go):

nonfix nil;
type bintree nil | bintree (bin x left right);

This method is also useful if you define your own abstract data types. In this case you're
free to choose any suitable representation, so you might just wrap up all data objects of the
type with a special constructor symbol, which makes checking the type simple and efficient.
This is also the approach taken in the point example in Type Tags above, as well as by the
container data types in the standard library.

The same notation can also be used to quickly make one type a “subtype” of another, or to
create a type which is the union of several existing types. The following example can be
found in the standard library:

type integer x::int | integer x::bigint;

A type rule can also take the form of a function definition without arguments. The corre-
sponding right-hand side may either be another type symbol, or any kind of closure denot-
ing a (curried) type predicate. In this case the defined type is simply an alias for the type
denoted on the right-hand side. This is often done, e.g., for numeric types, to document that
they actually stand for special kinds of quantities:

type speed = double;
type size = int;

Note that the definition of a type alias is always complete; there’s no way to extend the
corresponding type later. Therefore type aliases are normally resolved at compile time, so
that they incur no additional runtime cost. For instance:

> half x::speed = x/2;
> show half
half x::double = x/2;

(If necessary, this “type folding” can also be disabled with the - -nofold pragma.)

Finally, it’s also possible to just specify the type name, without giving the right-hand side:
type thing;

This doesn’t have any effect other than just declaring the type symbol, so that it can be used

as a type tag in subsequent definitions. You then still have to give a proper definition of the
type later (either as an explicit predicate or an alias).

58 1.4 Rule Syntax

Pure Language and Library Documentation, Release 0.64

Type aliases can also be used to quickly turn an existing predicate into a “convenience” type
which can be used as a tag on the left-hand side of equations. The prelude defines a number
of these, see Prelude Types. For instance:

type closure = closurep;

Conversely, you can turn any type tag into an ordinary predicate which can be used on the
right-hand side of other definitions. To these ends, the prelude provides the typep predicate
which takes a type symbol and the value to be checked as arguments. For instance:

type odd x::int = x mod 2;
type even x::int = ~odd x;

odd x = typep odd x;
even x = typep even Xx;

With those definitions you get:

> map odd (0..10);
[0,1,0,1,0,1,0,1,0,1,0]
> map even (0..10);
[1,0,1,0,1,0,1,0,1,0,1]

There’s one caveat here. As the type symbol passed to typep gets evaluated in normal code
you have to be careful if the symbol is also defined as a parameterless function or a variable;
in such a case you’ll have to quote the symbol, as described in section The Quote. For in-
stance, we might rewrite the above definitions as follows, giving “pointless” definitions of
the odd and even predicates in terms of typep:

type odd x::int = x mod 2;
type even x::int = ~odd x;

odd = typep (’odd);
even = typep (’even);

Note that the quotes on odd and even are really needed here to prevent the predicate defi-
nitions from looping. If you need this a lot then you might define a little helper macro (cf.
Macros) which quotes the type symbol in an automatic fashion:

def typep ty::symbol = typep ('ty);

(However, this gets in the way if you want to check for computed type symbols, that's why
this macro isn’t defined in the prelude.)

Pure places no a priori restrictions on the rules defining a data type (other than that they
must either define a unary predicate or an alias for an existing data type). As far as Pure is
concerned, types are just subsets of the universe of terms. Thus any type of relation between
two data types is possible; they might be unrelated (disjoint) term sets, one may be a subset
of another, or they might be related in some other way (some terms may be members of both
types, while others aren’t).

For instance, consider the types nat and odd from above. Both are subtypes of the int type

1.4.5 Type Rules 59

Pure Language and Library Documentation, Release 0.64

(assuming our original definition of nat as the positive int values), but neither is a sub-
type of the other. It's sometimes useful to define the “intersection type” of two such types,
which can be done in a straightforward way using the logical conjunction of the two type
predicates:

x>0;
X mod 2;
typep nat x && typep odd x;

type nat x::int
type odd x::int
type odd_nat x

Similarly, a variation of the integer union type from above could be defined using logical
disjunction (this employs the intp and bigintp predicates from the prelude):

type myinteger x = intp x || bigintp x;

(Note that this isn’t quite the same as the previous definition, which uses explicit patterns in
order to make the definition extensible.)

Since the right-hand side of a type definition may in general be any predicate, it is up to
the programmer to ensure that the definition of a type is actually computable. In fact, you
should strive for the best possible efficiency in type predicates. A type definition which
has worse than O(1) complexity may well be a serious performance hog depending on the
way in which it is used, see Recursive Types in the Caveats and Notes section for more
information about this.

Finally, note that in general it may be hard or even impossible to predict exactly when the
code of a type definition will be executed at runtime. Thus, as a general rule, a type definition
should not rely on side effects such as doing I/O (except maybe for debugging purposes),
modifying references or external data structures via C pointers, etc.

1.5 Examples

This section assumes that you've read the Pure Overview and Rule Syntax sections, so that
you are familiar with the basic elements of the Pure language. We now bring the pieces
together and show you how simple but typical problems can be solved using Pure. You
might use this section as a mini-tutorial on the Pure language. As we haven’t discussed the
more advanced elements of the Pure language yet, the scope of this section is necessarily
limited. But it should give you a pretty good idea of how Pure programs looks like. After
working through these examples you should be able to write useful Pure programs and
understand the more advanced features discussed in subsequent sections.

1.5.1 Hello, World

The notorious “hello world” program can be written in Pure as follows:

using system;
puts "Hello, world!";

60 1.5 Examples

Pure Language and Library Documentation, Release 0.64

This employs the puts function from Pure’s system module (which is in fact just the puts
function from the C library). If you put these lines into a script file, say, hello.pure, you can
run the program from the command line as follows:

$ pure hello.pure
Hello, world!

You may notice a slight delay when executing the script, before the “Hello, world!” mes-
sage appears. That’s because the interpreter first has to compile the definitions in your script
as well as the prelude and other imported modules before the puts "Hello, world!" ex-
pression can be evaluated. The startup times can be reduced (sometimes considerably) by
compiling scripts to native executables, see Compiled Scripts below.

Passing Parameters

Sometimes you may want to pass parameters to a script from the command line. To these
ends, just follow the script name with the required parameters. The interpreter makes the
command line parameters (including the script name) available as a list of strings in the argv
variable. For instance, here is a version of the “hello world” program which uses printf to
print the line Hello, foo! where foo is whatever was specified as the first command line
parameter:

using system;
printf "Hello, %s!/\n" (argv!l);

This script is invoked as:

$ pure hello.pure foo
Hello, foo!

Of course, many real-world programs will require more elaborate processing of command
line parameters, such as recognizing program options. We won'’t discuss this here, but you
can have a look at the getopt module which provides that kind of functionality in a conve-
nient package.

Executable Scripts

It is often convenient if you can turn a script into a standalone executable which can be
invoked by just typing its name on the command line. There are several ways to do this.

First, on most systems you can invoke the Pure script through some kind of shell script or
command file which contains the command to invoke the interpreter. The details of this
depend on the operating system and type of shell that you use, however, so we won’t go
into this here.

Second, on Unix-like systems it is possible to make any script file executable like this:

1.5.1 Hello, World 61

Pure Language and Library Documentation, Release 0.64

$ chmod a+x hello.pure

However, we also have to tell the shell about the command interpreter which should be
invoked to run the script. (Otherwise the shell itself may try to execute the script, which
won’t work because it’s not a shell script.) As already mentioned in Overview of Operation,
this is done by adding a special kind of comment, a “shebang”, to the beginning of the script,
so that it looks like:

#!/usr/local/bin/pure
using system;
puts "Hello, world!";

Note that you must give the full path to the Pure interpreter in the shebang line. This path of
course depends on where you installed Pure. The above shebang will work with an instal-
lation from source, unless you changed the installation prefix when configuring the source
package. If you installed the interpreter from a binary package, the proper path will often be
/usr/bin/pure instead. In any case, you can find out where the interpreter lives by typing
the following command in the shell:

$ which pure
/usr/local/bin/pure

If you get anything else on your system then you'll have to fix the shebang accordingly. You
should then be able to run the script as follows:

$./hello.pure
Hello, world!

Note: Many modern Unix-like systems provide the /usr/bin/env utility which can perform
a search for the interpreter executable, so that you can also use a shebang like:

#!/usr/bin/env pure
This has the advantage that you don’t have to hardcode the path to the Pure interpreter into

the shebang; the /usr/bin/env utility will locate the interpreter for you, provided that it is
installed somewhere on the system PATH.

Compiled Scripts

Last but not least, you can also turn a Pure script into an executable by “batch-compiling” it.
This works on all supported systems (provided that you have the necessary LLVM tools and
3rd party compilers installed, see the installation instructions for details). The result is a real
native executable which can then be run directly just like any other binary program on your
system. To these ends, the interpreter is run with the - ¢ option which tells it to run in batch
compilation mode, and the - 0 option which specifies the desired name of the executable. For
instance:

62 1.5 Examples

Pure Language and Library Documentation, Release 0.64

$ pure -c hello.pure -o hello
Hello, world!

$./hello

Hello, world!

You'll notice that the compilation command in the first line above also prints the Hello,
world! message. This reveals a rather unusual aspect of Pure’s batch compiler: it actually
executes the script even during batch compilation. The reasons for this behaviour and poten-
tial uses are discussed in the Batch Compilation section. If you want to suppress the program
output during batch compilation, you can rewrite the program as follows:

using system;
main = puts "Hello, world!";
compiling || main;

Note that here we turned the code to be executed into a separate main function. This isn’t
really necessary, but often convenient, since it allows us to run the code to be executed by
just evaluating a single function. (Note that in contrast to C, the name main has no special
significance in Pure; it’s just a function like any other. We still have to include a call to this
function at the end of our program so that it gets executed.)

The last line now reads compiling || main which is a shorthand for “if the compiling vari-
able is nonzero then do nothing, otherwise evaluate the main function”. In a batch compi-
lation the interpreter sets this variable to a nonzero value so that the evaluation of main is
skipped:

$ pure -c hello.pure -o hello
$./hello
Hello, world!

We should mention here that batch-compiled scripts have some limitations because the com-
piled executable runs under a trimmed-down runtime system. This disables some of the
advanced compile time features which are only available when running a script with the
interpreter or at batch-compilation time. However, this won’t usually affect run-of-the-mill
scripts like the one above. More information about this can be found in the Batch Compila-
tion section.

1.5.2 Running the Interpreter

While Pure scripts can be run as standalone programs directly from the shell, most of the
time you'll probably use the Pure interpreter in an interactive way. You then simply run it
like this:

$ pure

— N I —l =\ Pure 0.64 (x86_64-unknown-linux-gnu)

| [| [| _/ Copyright (c) 2008-2014 by Albert Graef
/A N P V| (Type 'help’ for help, 'help copying’

—| for license information.)

1.5.2 Running the Interpreter 63

Pure Language and Library Documentation, Release 0.64

Loaded prelude from /usr/lib/pure/prelude.pure.
>

The interpreter prints its sign-on message and leaves you at its command prompt. (You
can also try pure --plain for a less fancy sign-on, or pure -q to completely suppress the
message.)

At this point you can just start typing definitions and expressions to be evaluated. For in-
stance:

> fact n = if n<=0 then 1 else nxfact (n-1);
> map fact (1..10);
[1,2,6,24,120,720,5040,40320,362880,3628800]

Note that Pure is a free-format language, and thus definitions and expressions must be ter-
minated with a semicolon, so that the interpreter knows when you're done entering each
item. This probably needs getting used to, but it’s convenient because you can easily type
more than one expression on a single line, or split longer constructs across multiple lines:

> 6x7; 16.3805%5.0;

42

81.9025

> 16753418726345

> % 991726534256718265234;
16614809890429729930396098173389730L

If the interpreter appears to just eat away expressions without printing any results, then
most likely you forgot to enter the terminating semicolon. In such a case you can just type
the semicolon on a line by itself:

> 6%7
>
(This won’t do any harm even if it’s not needed, because an empty item is always valid input
at Pure’s toplevel.)

The interpreter also reports syntax errors if you mistype an expression:

> 16.3805%(5;
<stdin>, line 8: syntax error, unexpected ’;

’

, expecting when or with or ")’

In such a case, just correct the error and resubmit the offending input. The interpreter’s
readline facility makes this pretty convenient, because you can use the cursor keys to recall
previous input lines and edit them as needed.

Other kinds of errors may happen at runtime, when evaluating a syntactically correct ex-
pression. These give rise to so-called exceptions. For instance:

> 1 div 0;
<stdin>, line 9: unhandled exception ’'signal 8' while evaluating 'l div 0’

64 1.5 Examples

Pure Language and Library Documentation, Release 0.64

Besides integer division by zero (flagged as “signal 8" here), common sources of exceptions
are failed matches and conditionals, interrupts (e.g., if the user aborts an evaluation with
Ctrl-c)and stack overflows (cf. Stack Size and Tail Recursion). Normally these are fatal and
require you to fix the program or the expression that you entered, but programs can also
catch these errors and handle them in any desired way, cf. Exception Handling,.

Note that in contrast to most other programming languages, undefined identifiers are gen-
erally not an error in Pure. Instead, you'll simply get an unevaluated normal form:

> foo 5;
foo 5

Therefore, we recommend invoking the interpreter with the -w option so that it at least warns
you about unknown symbols. You can also enter this option interactively or in a script using
the - -warn pragma:

> #! --warn

> bar 5;

<stdin>, line 12: warning: implicit declaration of ’'bar’
bar 5

The interpreter has a global variable environment in which you can store intermediate re-
sults:

> let x = 16.3805%5;
> X; X/2; 1/X%;
81.9025

40.95125
0.0122096395103935
> let vy = 2xx; vy;
163.805

Another handy feature is the special built-in function ans which yields the most recent result
printed by the interpreter:

> 16.3805x%5;
81.9025
> ansx*2;
163.805

The interpreter recognizes a few other special commands which, like ans, are only available
when it is run interactively. For instance, you can purge the value of a variable like this (this
also works with any other defined item, such as constants, functions and macros):

> clear x
> X;
X

Another useful command is show which prints the definition of anything that you can define
in a Pure script, such as variables and functions. For instance:

> show fact
fact n = if n<=0 then 1 else nxfact (n-1);

1.5.2 Running the Interpreter 65

Pure Language and Library Documentation, Release 0.64

You can also just type show to print all definitions done interactively at the command prompt,
which lets us review our accomplishments so far:

> show
fact n = if n<=0 then 1 else nxfact (n-1);
let y = 163.805;

The dump command saves these definitions in a file for later use:

> dump

This command doesn’t print anything, but you can have a look at the written file in a text
editor and maybe edit it as needed. By default, dump saves interactive definitions in a hidden
file named . pure in the current directory, which gets reloaded automatically if we later rerun
the interpreter in the same directory. We can also print this file, e.g., with the Unix cat
command (note that ‘! executes a shell command):

> lcat .pure

// dump written Wed Sep 5 10:00:15 2012
fact n = if n<=0 then 1 else nxfact (n-1);
let y = 163.805;

If we mess up badly, it’s often convenient to just rerun the interpreter from scratch so that
we can try again in a clean environment:

> run

As we've saved our scribblings with dump previously, those definitions will be reloaded au-

tomatically:

> show
fact n = if n<=0 then 1 else nxfact (n-1);
let y = 163.805;

If you don’t want this then you can just remove the .pure file or rename it before invoking
run.

Another helpful command is help which brings up the online documentation (this requires
that you've configured the interpreter for the web browser that you use; see Online Help):

> help help

Last but not least, you can use the following command to exit the interpreter and return to
the command shell:

> quit
Typing just an end-of-file character (usually Ctrl-d on Unix-like systems) at the beginning
of the command line does the same.

There are a few other built-in commands that you may find useful when working with the
interpreter, and you can even define your own. These interactive commands are special; they

66 1.5 Examples

Pure Language and Library Documentation, Release 0.64

have their own syntax and need to be typed on a separate line. Please refer to Interactive
Usage for a detailed explanation of the command syntax and the available commands.

1.5.3 Basic Examples

Pure has a few built-in data types, namely numbers (machine integers, bigints and double
precision floating point numbers), strings, matrices, symbols, functions and pointer values.
Compound expressions are formed from these using function application. In the syntax of
the Pure language, these are also known as simple expressions. For want of a catchier name,
we also simply call them terms. Pure is a programming language based on term rewriting,
so all computations performed in Pure consist of the rewriting of terms. Some terms may
reduce to other terms, others simply stand for themselves; the latter are also called normal
forms and are what constitutes a “value” in the Pure language.

When the Pure interpreter starts up, it normally loads a collection of Pure scripts collectively
called the prelude. The prelude defines many of the usual operations on numbers, strings,
lists and other basic data structures that you may need, so you can start using the interpreter
as a sophisticated kind of desktop calculator right away. Let’s begin with some simple cal-
culations involving integer and floating point numbers:

> 6x%7;

42

> 16.3805%5.0;

81.9025

> 16753418726345 * 991726534256718265234;
16614809890429729930396098173389730L

Note that the integer constants in the last example exceeded the 32 bit range of machine
integers, so they were promoted to bigints. The result is again a bigint (indicated by the L
suffix). You can also turn any integer constant into a bigint by explicitly adding the L suffix:

> 6Lx7L;
42L

Arithmetic with mixed operands will generally return the most general type capable of hold-
ing the result:

> 6x7L;

42L

> 16.3805x%5;
81.9025

> 16.3805x*5L;
81.9025

But note that most operations involving only machine integers will produce another ma-
chine integer; the result is never promoted to a bigint automatically, even in case of “over-
flow” (i.e., wrap-around). So the following will yield the same kind of signed 32 bit result as
you'd get in C:

1.5.3 Basic Examples 67

Pure Language and Library Documentation, Release 0.64

> 2147483647 + 1;
-2147483648

This has the advantage that you always know the type of the result of each operation be-
forehand by just looking at the types of the operands. It also makes it possible to compile
machine integer operations to efficient native code. Therefore, if you suspect that a machine
integer operation may wrap around and you’d thus prefer to do the calculation with bigints
instead, you'll have to convert at least one of the operands to a bigint beforehand:

> 2147483647L + 1;
2147483648L

Also note that, in contrast to C or Fortran, the result of the / (division) and * (exponentiation)
operators is always a floating point value in Pure, even if both operands are integers:

> 14/12;
1.16666666666667

> 2L760L;
1.15292150460685e+18

Integer division and modulo are done with the div and mod operators, and exact powers of
machine integers and bigints can be computed with the pow function:

> 14 div 12; 14 mod 12;
1

2

> pow 2 60;
1152921504606846976L

Also note that many of the standard math functions are available in a separate math module,
so we need to import that module if we want to use one of these (see Modules and Imports
for a detailed explanation of Pure’s module system). For instance:

> using math;
> sqrt (16.3805%5)/.05;
181.0

The math module also provides you with complex and rational number types for doing more
advanced calculations, but we won’t go into that here.

Before we proceed, a few remarks about the syntax of function applications are in order.
Function application is an explicit operation in Pure, so that functions become first class
values which can be passed around as function arguments and results. Like in most modern
functional languages, function application is simply denoted by juxtaposition:

> sqrt 2;
1.4142135623731

In this case, you may also write sqrt(2) instead, but multiple arguments are normally spec-
ified as f x y z rather than f(x,y,z). The former notation is known as currying (named
after the American mathematician and logician Haskell B. Curry), and is ubiquitous in mod-
ern functional programming languages. The latter notation can be used in Pure as well, but

68 1.5 Examples

Pure Language and Library Documentation, Release 0.64

it actually indicates that f is called on a single, structured argument (in this case a tuple).
However, most predefined functions use the curried notation in Pure. For instance, the max
function defined in the prelude takes two separate arguments, so it is invoked as follows:

> max 4 7;
7

Function application associates to the left, so the above is parsed as (max 4) 7, where max
4 is called a partial application of the max function. A partial application is a function in its
own right; e.g., max 4 denotes the function which computes max 4 y for each giveny.

Parentheses are used for grouping expressions as usual. In particular, since function appli-
cation associates to the left, a nested function application in a function argument must be
parenthesized as follows:

> sqrt (sqrt 2);
1.18920711500272

The same is true for any kind of expression involving operators, since function application
binds stronger than any of these:

> sqrt (2x3);
2.44948974278318

The map function lets us apply a function to each member of a given list, which gives us a
quick way of tabulating function values:

> map sqrt (0..2);
[0.0,1.0,1.4142135623731]

Here, the list argument is specified as an arithmetic sequence 0. .2 which evaluates to the
list [0,1,2]. This is fairly convenient when tabulating values of numeric functions. Here
is another example which employs a partial application of the max function as the function
argument:

> map (max 0) (-3..3);
[0,0,0,0,1,2,3]

Note that when the max 0 function gets applied, say, to the first list member -3, we obtain
the application max 0 (-3) which now has all the arguments that it needs; we also say that
max 0 (-3) isasaturated application, which means that it’s “ready to go”. Evaluating max ©
(-3) gives 0 which becomes the first member of the result list returned by map. The other list
members are calculated in an analogous fashion. It is easy to see that max 0 thus computes
what mathematicians call the “positive part” of its argument x, which is x itself if it is greater
than 0 and 0 otherwise.

Operators aren’t special either, they are just functions in disguise. You can turn any operator
into an ordinary function by enclosing it in parentheses. Thus (+) denotes the function
which adds its two arguments, and x+1 can also be written as (+) x 1; in fact, the former
expression is nothing but syntactic sugar for the latter. You can easily verify this in the
interpreter:

1.5.3 Basic Examples 69

Pure Language and Library Documentation, Release 0.64

> (+) x 1;
x+1

You can also have partial applications of operators like (*) 2 which denotes a function
which doubles its argument:

> map ((*) 2) [1,2,3,4,5];
[2,4,6,8,10]

Moreover, Pure offers some convenient syntactic sugar to denote so-called operator sections
which specify a binary operator with only either its left or right operand. So the doubling
function above may also be denoted as (2#) or (*2). Similarly, (+1) denotes the “increment
by 1”7 and (1/) the reciprocal function:

> map (+1) (1..5);

[2,3,4,5,6]

> map (1/) (1..5);
[1.0,0.5,0.333333333333333,0.25,0.2]

Note that the latter kind of section (also called a left section) is just a convenient shorthand

for a partial application:

> (1/);
(/) 1

The former kind (a right section) can’t be handled this way, because it’s the first operand
which is missing, and partial applications only allow you to omit trailing arguments. In-
stead, right sections expand to a partial application of the flip function,

> (+1);

flip (+) 1

which is defined in the prelude as follows:

flip f xy="~fyx;

Note that flip (+) 1 thus denotes a function which, when the missing operand is supplied,
reduces to an application of the first (function) argument while also flipping around the

operands. For another example, here’s how you can compute third powers 3”x of some
numbers x with a right section of the “** operator:

> map ("3) (1..5);
[1.0,8.0,27.0,64.0,125.0]

Note that this is exactly the same as:

> map (flip () 3) (1..5);
[1.0,8.0,27.0,64.0,125.0]

Such explicit applications of flip also work with ordinary functions like pow, so if we want
to compute the cubes as exact bigint numbers, we can also write:

70 1.5 Examples

Pure Language and Library Documentation, Release 0.64

> map (flip pow 3) (1..5);
[1L,8L,27L,64L,125L]

Note the difference between flip pow 3 which computes third powers, and pow 3 which is
a partial application that computes powers of 3.

Sometimes it is convenient to have function application as an explicit operation which can
be passed as a function value to other functions. The $ operator is provided for this purpose.
f $ xisjust f x, so you can write, e.g.:

> map ($1) [(+2),(%2),(/2)];
[3,2,0.5]

Recall that ($1) is a right section which, when applied to an argument f, evaluates to f $
1 = f 1. E.g., we have that ($1) (+2) = (+2) $ 1 = (+2) 1 = 1+2 = 3. Hence the above
expression actually applies a list of functions to the given argument 1.

The $ operator has a low precedence and is right-associative, so that it is sometimes used
to eliminate the parentheses in cascading function calls. For instance, sqrt $ sqrt $ 2«3is
the same as sqrt (sqrt (2x3)).

Another convenient operation for combining functions is the function composition operator,
denoted “.”. It applies two functions in sequence, so that (f.g) x evaluates to f (g x). For
instance:

> g X = 2¥x-1;

>map g (-3..3);
[-7,-5,-3,-1,1,3,5]

> map (max 0 . g) (-3..3);
[0,0,0,0,1,3,5]

Operations like “.”, which take functions as arguments and return other functions as results,
are also called higher-order functions. We’ll have a closer look at these later.

As already mentioned, the interpreter also has a global variable environment in which you
can store arbitrary expression values. This provides a means to define abbreviations for
frequently-used expressions and for storing intermediate results. Global variable definitions
are done with let. For instance:

> let x = 16.3805%5;
> X;
81.9025

As we’ve explained above, functions are first-class citizens and can thus be assigned to vari-
ables as well:

> let f = sqrt;
> f x/0.05;
181.0

The value of a global variable can be changed at any time. So we can type:

1.5.3 Basic Examples 71

Pure Language and Library Documentation, Release 0.64

> let f = sin;
> f x/0.05;
4.38588407225469

You can also bind several variables at once by using an expression pattern as the left-hand
side of a variable definition. This is useful if we need to extract elements from an aggregate
value such as a list:

> let x1:x2:xs = map ("3) (1..5);
> x1,x2,xs;
1.0,8.0,[27.0,64.0,125.0]

Pure also provides a kind of “read-only” variables a.k.a. constants. They are defined pretty
much like global variables (using the const keyword in lieu of let), but work more like a
parameterless function whose value is precomputed at compile time:

> const 71 = 4xatan 1.0;

> show 7T

const 7 = 3.14159265358979;

> h x = sin (2*x7w*Xx);

> show h

h x = sin (6.28318530717959*Xx) ;

>map h [-1/4,-1/8,0,1/8,1/4];
[-1.0,-0.707106781186547,0.0,0.707106781186547,1.0]

Note that the compiler normally computes constant subexpressions at compile time, such
as 2*7T in the function h. This works with all simple scalars (machine ints and doubles), see
Constant Definitions for details.

As an aside, the last example also shows that Pure has no problems with Unicode. 7 is a
Greek letter and thus an identifier as good as any other, although you will have a hard time
finding that letter on an English keyboard. Fortunately, most operating systems nowadays
provide you with an applet that lets you enter foreign language characters and other special
symbols with ease.

1.5.4 Defining Functions

Now that we’ve learned how to run the interpreter and evaluate some expressions, it’s time
to embark on some real programming. Like in other functional programming languages,
we do this by defining functions which perform the desired computation. The form these
definitions take in Pure is a collection of rewriting rules which specify how an application
of the function reduces to another expression which then gets evaluated recursively to give
the value of the function application.

In the simplest case, the left-hand side of a rewriting rule may just specify the function name
along with some argument names. For instance:

square X = X*X;

72 1.5 Examples

Pure Language and Library Documentation, Release 0.64

Now, if we evaluate an expression like square 7, it reduces to 77 which in turn reduces to
49 by the built-in rules for integer arithmetic. You can verify this by entering the definition
in the interpreter:

> square X = X*X;
> square 7;
49

In fact, the above definition is completely generic; since x is an unqualified variable, we can
apply square to any value x and have it evaluate to x*x:

> square 7.0;
49.0

> square 7L;
49L

> square (a+b);
(a+b)*(a+b)

As the last example shows, this will even work if the supplied argument is no number at all,
which is useful, e.g., if we want to do symbolic evaluations.

Functions can have as many arguments as you like, subject to the constraint that each equa-
tion defining the function has the same number of arguments on the left-hand side. For
instance, suppose that we want to calculate the sum of two squares. We can do this using
the square function from above as follows:

> sumsquares X y = square X + square y;
> sumsquares 3 4;
25

The interpreter keeps track of the number of arguments of each defined function, so if we
accidentally try to define sumsquares with three arguments later then we’ll get an error mes-
sage:

> sumsquares X y z = square X + square y + square z;

<stdin>, line 8: function ’'sumsquares’ was previously defined with 2 args

This actually makes perfect sense if you think about the way curried function applications
work. If the above was permitted, then an expression like sumsquares x y would become
ambiguous (would it denote an invocation of the binary sumsquares or a partial application
of the ternary one?).

Thus Pure doesn’t really have variadic functions which take a variable number of argu-
ments. There are ways to emulate this behaviour in some cases, but usually it’s easier to just
pass the arguments as a single structured value instead. It is customary to employ tuples
for this purpose, so that the call uses the familiar notation f (x,y,z). A typical example are
optional arguments. For instance, suppose that we’d like to define a function incr which
increments a numeric value, where the amount to be added can be specified as an optional
second value which defaults to 1. This can be done in Pure as follows:

incr (x,y) = x+y;
incr x = x+1 otherwise;

1.5.4 Defining Functions 73

Pure Language and Library Documentation, Release 0.64

These equations must be in the indicated order. Pure considers different equations for the
same function in the order in which they are written. Therefore “special case” rules, like the
one for incr (x,y) in this example, must be listed first. (Note that if the second equation
came first, incr (5,2) would reduce to (5, 2)+1 rather than 5+2, because x also matches, in
particular, any tuple x,y.)

Functions taking a single tuple argument are also (somewhat misleadingly) called uncurried
functions, because their arguments have to be given all in one go, which precludes partial
applications of the function. While curried functions are often preferred, uncurried functions
can be more convenient at times, e.g., if you have to map a function to a list containing given
combinations of arguments. For instance, given the above definition of incr we may write:

> map incr [(5,1),(5,2),(6,3),(7,5)];
[6,7,9,12]

To make this work with curried functions, the prelude provides a function uncurry which
turns a curried function of two arguments into an uncurried one which takes a single tuple
argument:

> map (uncurry (+)) [(5,1),(5,2),(6,3),(7,5)];
[6,7,9,12]

On the other hand, some generic list processing functions such as foldl expect curried func-
tions, so the reverse transformation curry is also provided:

> foldl (curry incr) 0 (1..10);
55

In fact, the definitions of curry and uncurry don’t involve any special magic, they just trans-
late curried calls to uncurried ones and vice versa. From the horse’s mouth:

> show curry uncurry
curry f xy = f (x,y);
uncurry f (x,y) = f x vy;

A function can also have zero arguments, i.e., you can define parameterless functions such
as:

foo = 1..3;

The function is then simply invoked without any arguments:

> foo;
[1,2,3]

It is worth noting the difference between this and the variable definition:

let bar = 1..3;

While bar and foo yield the same result [1, 2, 3], they do so in different ways. bar is a global
variable whose value is computed once and then stored under its name, so that the value can
be simply recalled when bar is later invoked in an expression. Also, the value of bar can be

74 1.5 Examples

Pure Language and Library Documentation, Release 0.64

changed at any time with an appropriate let statement. (If the value is not supposed to
change later then you can also define it as a const instead.)

In contrast, foo is a function which recomputes the list value on each invocation. To avoid
the overhead of recalculating the same value each time it is needed, a variable or constant is
usually preferred over a parameterless function in Pure. However, a parameterless function
will be needed if the computation involves some hidden side effects which cause a new value
to be produced for each invocation. For instance, the math module provides a parameterless
function random which computes a new pseudo random number each time it is called:

> using math;
> random, random, random;
-795755684,581869302, -404620562

Many functions also involve conditionals which let them take different computation paths
depending on the outcome of a condition. One way to do this is to employ a conditional
expression. For instance, we may compute the sign of a number as follows:

> sign x = if x>0 then 1 else if x<0 then -1 else 0;
> map sign (-3..3);
['11'11'110111111]

Alternatively, you can also use a collection of conditional rules instead:

sign x = 1 if x>0;
= -1 if x<0;
0 otherwise;

Note that here we omitted the left-hand side in the second and third equations, in which case
the compiler assumes that it’s the same as for the first equation; cf. Rule Syntax for details.
Also note that the otherwise keyword is only syntactic sugar in Pure, you can always omit
it. However, it tends to improve readability by marking the default case of a definition.

Both styles are frequently used in Pure programs; it depends on the situation which one is
more appropriate. Conditional rules make the conditions stick out more clearly and hence
tend to improve readability. On the other hand, conditional expressions can be nested more
easily and thus facilitate the programming of complicated decision trees.

Function definitions may also be recursive, i.e., a function may invoke itself either directly or
indirectly in its definition. For instance, here is a definition of the Ackerman function using
conditional rules:

ack x y = y+1 if x == 0;
ack (x-1) 1 if y == 0;
ack (x-1) (ack x (y-1)) otherwise;

We will have more to say about recursive functions later; see Recursion below.

1.5.4 Defining Functions 75

Pure Language and Library Documentation, Release 0.64

1.5.5 Pattern Matching

So far we have only seen function definitions involving just unqualified variables as pa-
rameters. In general it is possible to specify arbitrary patterns for the parameters, in which
case the actual arguments are checked against the patterns and, if everything matches up,
the right-hand side of the rule is invoked with the variables in the patterns bound to their
corresponding values.

The simplest nontrivial patterns are type tags which can be placed on a variable to restrict
the type of value an argument can match. For instance:

> square X::int = xxx;
> square 7;
49

Note that in contrast to our previous generic definition of the square function we gave in
Defining Functions, this definition now only applies to the case of an int argument:

> square 7.0;
square 7.0

Polymorphic definitions can be made by giving separate equations for the different argu-
ment types. For instance, we can easily add an equation for the double case:

> square x::double = xx*Xx;
> show square

square x::int = xxx;
square x::double = xxXx;
> square 7; square 7.0;
49

49.0

Here the right-hand sides of both rules are the same. Pure has a convenient shorthand nota-
tion for this case which lets you factor out the common right-hand side using the “|“ delimiter
as follows:

square x::int | square x::double = xxXx;

The compiler expands this to the same two rules as above:

square x::int = xxXx;
square x::double = xxXx;

Let’s compare this to our earlier generic definition of square:

square X = X*X;

There are two different kinds of polymorphism at work here. The latter, generic definition
is an example of parametric polymorphism; it applies to any type of argument x whatso-
ever (at least if it makes sense to multiply a member of the type with itself). Also note that
this definition is “closed”; because equations are considered in the order in which they are
written, there’s no way you could add another “special case” rule to this definition later.

76 1.5 Examples

Pure Language and Library Documentation, Release 0.64

In contrast, the former definition leaves any application of square to a value other than int
or double undefined. This gives us the opportunity to define square on as many types of
arguments as we like, and (this is the crucial point) define the function in different ways for
different argument types. This is also known as ad-hoc polymorphism or function over-
loading. For instance, if we later need to square 2x2 matrices, we might add a rule like:

square {a,b;c,d} = {axa+bxc,axb+bxd;cxa+dxc,cxb+dxd};

Pure places no restriction on the number of equations used to define a function, and the dif-
ferent equations may in fact be scattered out over many different places. So as long as the
left-hand side patterns properly discriminate between the different cases, you can overload
any operation in Pure to handle as many argument types as you want. However, it is im-
portant to note that in contrast to overloaded functions in statically typed languages such as
C++, there’s really only one square function here which handles all the different argument
types. The necessary “dispatching” to select the proper rewriting rule for the argument val-
ues at hand is done at runtime by pattern matching.

Parametric polymorphism has the advantage that it lets you define polymorphic functions in
a very concise way. On the other hand, ad-hoc polymorphism lets you deal with disparate
cases of an operation which cannot easily be reconciled. It also allows you to tailor the
definition to the specific case at hand, which might be more efficient than using a generic
rule. You can also combine both approaches, but in this case you have to list the special case
rules before the generic ones. For instance:

square x::int | square x::double |
square X = X*X;

(Note that the first two rules are just specialization of the last rule to int and double argu-
ments, so we could in fact eliminate the special case rules here and still get the same results.
But the type tags tell the compiler that the argument in these rules is always an int or double,
respectively, so it may generate more efficient code for these cases.)

Patterns may also involve constant values, in which case the constant must be matched liter-
ally in the argument. For instance, here is another definition of the Ackerman function from
Defining Functions which uses constant argument patterns instead of conditional rules:

ack 0 y = y+1;
ack x 0 = ack (x-1) 1;
ack x y = ack (x-1) (ack x (y-1)) otherwise;

The first two rules take care of the “base cases” x==0 and y==0. Note that these rules must
be given in the indicated order to make them work. Specifically, the left-hand side ack x y
of the last equation also matches, in particular, terms like ack 0 y and ack x 0, so placing
the last equation before the first two will “shadow” those rules and cause non-termination,
resulting in a stack overflow. Similarly, placing the second equation before the first one will
cause the definition to loop on ack 0 0.

Another point that deserves mentioning here is that constants on the left-hand side of a
rule must be matched literally, cf. Constant Patterns. E.g., ack 0 y only matches if the first
argument is really 0, not 0.0 or 0L (although these compare equal to 0). So the above defi-

1.5.5 Pattern Matching 77

Pure Language and Library Documentation, Release 0.64

nition of ack isn’t quite the same as our previous definition from Defining Functions. If you
wanted the definition above to also work with double and bigint values, you’d have to add
corresponding rules for the 0.0 and 0L cases.

Last but not least, patterns are also used to “deconstruct” structured values like lists, tuples
and matrices, binding variables to the component values. For instance, to compute the sum
of a list of values, you may write:

> sum [] = 0;

> sum (X:XS) = X+sum XS;
> sum (1..100);

5050

This definition works in a straightforward recursive manner. The first rule involves the
constant pattern [] and thus handles the base case of an empty list, in which case the sum
is zero. The second rule has a structured argument pattern x:xs which denotes a list with
head element x and tail xs; in this case the result is x added to the sum of the remaining list
elements xs. (In fact, this computational pattern is so common that the prelude provides a
family of functions such as foldl and foldr to do this kind of operation in a generic way.
Our sum function above is actually equivalent to foldr (+) 0, see List Processing below for
details.)

Instead of placing the patterns directly into the left-hand sides of the function definition, you
might also do the necessary pattern-matching in the right hand side, by employing a case
expression:

sum xs = case xs of [] = 0; Xx:xs = x+sum Xs end;

This works a bit different, though, since a case expression raises an exception if the target
expression is not matched (cf. Patterns):

> sum (1:2:Xxs);
<stdin>, line 2: unhandled exception ’'failed_match’ while evaluating ’'sum (1:2:xs)’

To avoid that, you may want to add a type tag, which ensures that the argument of sum is of
the proper type:

sum xs::list = case xs of [] = 0; Xx:xs = x+sum XS end;

Now the case of an improper list is handled a bit more gracefully, yielding the same normal
form expression you'd get with the first definition of sum above:

> sum (1:2:Xxs);
1+(2+sum xs)

Pure also allows to define sum in a more traditional way which will be familiar to Lisp pro-

7 “”

grammers (note that head and tail correspond to Lisp’s “car” and “cdr”):

sum Xs::list = if null xs then 0 else head xs + sum (tail xs);

Choosing one or the other is again a question of style. However, if you're dealing with
concrete data structures such as lists, pattern-matching definitions are often more convenient

78 1.5 Examples

Pure Language and Library Documentation, Release 0.64

and easier to understand.

Pattern matching also works with user-defined constructors (cf. Data Types). For instance,
here’s how to implement an insertion operation which can be used to construct a binary tree
data structure useful for sorting and searching:

nonfix nil;

insert nil y
insert (bin x L R) y

bin y nil nil;
bin x (insert L y) R if y<x;
bin x L (insert R y) otherwise;

Note that nil needs to be declared as a nonfix symbol here, so that the compiler doesn’t
mistake it for a variable; see The “Head = Function” Rule for details. The following example
illustrates how the above definition may be used to obtain a binary tree data structure from
a list:

> tree [] = nil;

> tree (x:xs) = insert (tree xs) x;

> tree [7,12,9,5];

bin 5 nil (bin 9 (bin 7 nil nil) (bin 12 nil nil))

Conversely, it’s also easy to convert such a tree structure back to a list. We can then combine
these operations to sort a list in ascending order:

> list nil = [1;

> list (bin x L R) = list L + (x:list R);
> list (tree [7,12,9,5]1);

[5,7,9,12]

1.5.6 Local Functions and Variables

Up to this point our examples only involved global functions and variables. When the prob-
lems to be solved become more difficult, it will be necessary to structure the solution in some
way, so that you'll often end up with many small functions which need to work in concert to
solve the problem at hand. Typically only a few of these functions will serve as actual entry
points, while other functions are only to be used internally. Pure supports this through local
functions and variables whose scope is limited either to the right-hand side of a rule or one
of its subexpression. This offers two main advantages:

* Local functions and variables are hidden from the main scope so that they can only be
used in the context where they are needed and don’t clutter up the global environment.
This provides a way to define functions in a modular fashion while hiding internal
details from the rest of the program.

¢ The right-hand sides of local definitions have full access to other local functions and
variables in their parent environments, which eliminates the “plumbing” which would
otherwise be needed to pass these values around. For instance, a local function nested
in another function can freely access the parent function’s arguments and other local
variables in its scope.

1.5.6 Local Functions and Variables 79

Pure Language and Library Documentation, Release 0.64

Local functions are defined using the with construct, while local variables can be introduced
with a when or case expression, see Special Expressions for details. These constructs can be
tacked on to any expression, and they can also be nested. For instance:

> f 5 with f x = y+y when y = x*x end end;
50

Note that the local function f there computes twice the square of its argument x. To these
ends, first x*x is assigned to the local variable y whose value is then doubled by computing
y+y which becomes the result of f.

Local functions can also be created without actually naming them, by employing a so-called
lambda abstraction. For instance, a function which squares its argument might be denoted
as \x -> xxx. This is pretty much the same as a local function f with f x = x*x end except
that the function remains nameless. This notation is pretty convenient for making up little
“one-off” functions which are to be applied on the spot or passed as function arguments or
results to other functions. For instance, here’s how you can compute the first ten squares,
first with an ordinary (named) local function, and then with an equivalent lambda:

>map f (1..10) with f x = x*x end;
[1,4,9,16,25,36,49,64,81,100]

> map (\x -> x*x) (1..10);
[1,4,9,16,25,36,49,64,81,100]

For obvious reasons lambdas work best for non-recursive functions. While there are tech-
niques to create recursive functions out of lambdas using so-called fixed point combinators
(cf. fix), named functions are much more convenient for that purpose.

Pattern matching works in local definitions as usual. For instance, here are several ways
to swap two values represented as a tuple, using either a local function or a when or case
expression:

> swap (1,2) with swap (x,y) = y,x end;
2,1

> (\(x,y) ->y,x) (1,2);

2,1

> y,x when x,y = 1,2 end;

2,1

> case 1,2 of x,y = y,x end;

2,1

You'll also frequently find code like the following, where a global “wrapper” function just
sets up some initial parameter values and then invokes a local “worker” function which
does all the real work. The following function calculates the sum of the positive integers up
to n (the “accumulating parameters” technique used in this example will be explained later,
cf. Recursion).

sum n = sum 0 n with
sum s n =s if n < 0;
sum (s+n) (n-1) otherwise;

end;

80 1.5 Examples

Pure Language and Library Documentation, Release 0.64

Note that there are actually two separate functions named sum here. This works because
according to the scoping rules the right-hand side of the global definition is under the scope
of the with clause, and thus the call sum @ n on the right-hand refers to the local sum function,
not the global one. (While it is perfectly correct and even makes sense in this example, this
style may be somewhat confusing, so we often prefer to give wrapper and worker different
names for clarity.)

As discussed in Scoping Rules, a local function can refer to other local functions and vari-
ables in its parent environments. It can also be returned as a function value, which is where
things get really interesting. The local function value then becomes a lexical closure which
carries around with it the local variable environment it was created in. For instance:

> adder x = add with add y = x+y end;
> let g = adder 5; g; map g (1..5);
add

[6,7,8,9,10]

Note that here the local function add refers to the argument value x of its parent function
adder. The invocation adder 5 thus returns an instance of add which has x bound to the
value 5, so that add y reduces to 5+y for each y. This works as if this instance of the add
closure had an invisible x argument of 5 attached to it. (And this is in fact how closures
are implemented internally, using a transformation called lambda lifting which effectively
turns local functions into global ones.) You should study this example carefully until you
fully understand how it works; we’ll see a bunch of other, more complicated examples of
this kind later.

Lexical closures also provide a means to encapsulate data in a way reminiscent of object-
oriented programming. For instance:

nonfix coords;

point (x,y) = \msg -> case msg of
coords = Xx,y;
move (dx,dy) = point (x+dx,y+dy);
end;

The anonymous function returned by point in fact works like an “object” which can be
queried for its coordinates and moved by a given offset through corresponding “messages”
passed as arguments to the object:

> let p = point (1,2); p;
#<closure 0x7f420660e658>

> p coords; p (move (2,3)) coords;
1,2

3,5

Note that this still lacks some typical features of object-oriented programming such as mu-
tability and inheritance. It isn’t really hard to add these, but this requires the use of some of
Pure’s more advanced machinery which we didn’t discuss yet. For instance, mutability can
be implemented in Pure by using so-called expression references, a kind of mutable storage
cells which can hold arbitrary expression values:

1.5.6 Local Functions and Variables 81

http://en.wikipedia.org/wiki/Lambda_lifting

Pure Language and Library Documentation, Release 0.64

> let x = ref 99; get x;
99

> put x 2;

2

> get x;

2

Using these we can rewrite our definition of the point object as follows:

nonfix coords;

point (x,y) = (\msg -> case msg of
coords = get x, get y;
move (dx,dy) = put x (get x+dx), put y (get y+dy);

end) when
x,y = ref x,ref y;
end;

Note that the coordinates are kept in corresponding expression references assigned to the
local x and y variables, which now shadow the x and y arguments of point. This makes it
possible to have move actually modify the point object in-place:

et p = point (1,2); p coords;

’

’

1
2
p (move (2,3)); p coords;
5
5

w wyVvV eV

’

It goes without saying that this style isn’t preferred in functional programs, but it certainly
has its uses, especially when interfacing to imperative code written in other languages such
as C.

1.5.7 Data Types

Before we consider the more advanced uses of functions in Pure, a few remarks about data
types are in order. Like Lisp, Pure is basically a “typeless” language. That doesn’t mean that
there are no data types; in fact, they’re a dime a dozen in Pure. But Pure lets you make up
your own data structures as you go, without even formally defining a data type. Data types
can be defined and associated with a name pretty much in the same way as functions, but
that’s just a convenience and completely optional. This sets Pure apart from statically typed
languages like ML and Haskell, where explicit data type definitions are mandatory if you
want to introduce new data structures.

As we’ve seen, Pure knows about a few built-in types such as numbers, strings, symbols
and functions; everything else is a function application. If a symbol is defined as a function,
which merely means that there are some rewriting rules for it, then an application of that
function to some arguments may evaluate to something else. But if it doesn’t, then Pure is
perfectly happy with that; it just means that the function application is in normal form and
thus becomes a “value”. For instance:

82 1.5 Examples

Pure Language and Library Documentation, Release 0.64

> cons 3 (cons 5 nil);
cons 3 (cons 5 nil)

There’s nothing mysterious about this; the cons and nil symbols being used here aren’t
defined anywhere, and thus any terms constructed with these symbols are just “data”, no
questions asked. We also call such symbols constructors. (Note that these are different from
constructors in object-oriented programming; constructor applications in term rewriting and
functional programming normally don’t execute any code, they’re just literal data objects.)

We can now go ahead and define some operations on this kind of data. (To these ends, it’s
necessary to declare nil as a nonfix symbol so that we can use it as a literal in patterns; cf.
Pattern Matching.)

nonfix nil;

#nil = 0;
#cons X XS = #xs+1;

head (cons x xs)
tail (cons x xs)

X;
XS;

nil + ys = ys;
CONS X XS + ys = cons X (XS + ys);

Et voila, we’ve just created our own list data structure! It’s admittedly still a bit paltry, but
if we keep at it and define all the other functions that we need then we could turn it into
a full-blown replacement for Pure’s list data structure. In fact Pure’s lists work in a very
similar fashion, using the infix “:” constructor and the empty list [] in lieu of cons and nil,
respectively.

If we want, we can define a new data type for the data structure we just invented. This
works by giving a number of type rules similar to those used in function definitions. In
general, these may denote arbitrary unary predicates, but in our case it’s sufficient to just list
the patterns of terms which are supposed to be members of the type (see Type Rules for an
explanation of the definition syntax):

type mylist nil | mylist (cons x xs);

This definition lets us use the mylist type as a tag on the left-hand side of an equation, cf.
Pattern Matching. But if we’re content with using the patterns directly then we might just as
well do without that.

Types consisting solely of constructor term patterns are sometimes also called algebraic
types. In fact, most user-defined data structures are algebraic types in Pure, and there are
plenty of examples of these in the standard library as well. In particular, lists and tuples
are algebraic types, as are complex and rational numbers, and most of Pure’s container data
types such as dictionaries and sets are also implemented as algebraic types.

Pure differs from most functional languages in that symbols may act as both constructors and
defined functions, depending on the arguments. Thus Pure allows you to have “constructors
with equations”. For instance:

1.5.7 Data Types 83

Pure Language and Library Documentation, Release 0.64

cons nil ys = ys;
cons (cons X XSs) ys = cons X (cons XS ys);

Now cons has become a (partially) defined function. Note that these rules make cons asso-
ciative and turn nil into a left-neutral element for cons. This in fact makes cons behave like
concatenation, so that our lists are always flat now:

> cons (cons 1 (cons 2 nil)) (cons 3 nil);
cons 1 (cons 2 (cons 3 nil))

Examples of such constructor equations can be found in the standard library as well, such as
the rules used to flatten tuples, keep rational numbers in lowest terms, or confine the angles
of complex numbers in polar notation.

Another possible use of constructor equations is to check the well-formedness of constructor
terms. For instance, in our example we might want to preclude terms like cons 1 2 which
don’t have a mylist in the second argument to cons. This can be done with a constructor
equation which raises an exception in such cases (cf. Exception Handling):

> cons x y = throw (bad_mylist y) if ~typep mylist y;
> cons 1 2;
<stdin>, line 18: unhandled exception ’'bad_mylist 2’ while evaluating ’'cons 1 2’

A specific kind of algebraic data types which are useful in many applications are the enu-
merated types. In this case the type consists of symbolic constants (nonfix symbols) only,
which are the elements of the type. For instance:

nonfix sun mon tue wed thu fri sat;
type day sun | day mon | day tue | day wed | day thu | day fri | day sat;

However, to make this type actually work as an enumerated type, we may want to provide
definitions for basic arithmetic, ord, succ, etc. This is rather straightforward, but tedious. So
as of Pure 0.56, the standard library provides a little utility module, enum, which generates
the necessary definitions in an automatic fashion. All we have to do is to import the module
and then invoke the enum function on the type and we’re set:

using enum;
enum day;

It’s also possible to define the type and make it enumerable in one go using the defenum
function:

defenum day [sun,mon,tue,wed,thu,fri,sat];

In either case, we can now perform calculations with the members of the type just like with
other predefined enumerated types such as numbers and characters:

> ord sun;

0

> day (ans+3);
wed

84 1.5 Examples

Pure Language and Library Documentation, Release 0.64

> pred sat;

fri

> sun+3;

wed

> fri-2;

wed

> fri-tue;

3

> mon..fri;

[mon, tue,wed, thu, fril
> sun:tue..sat;
[sun, tue, thu,sat]

> sat:fri..mon;
[sat,fri,thu,wed, tue,mon]

A more abstract way to define algebraic types are the interface types. For instance, if we
take another look at the operations defined on our list type, we may observe that the data
structure is quite apparent from the patterns in the rules of operations such as ‘# and ‘+'.
Pure lets us leverage that information by creating an algebraic type from a collection of
operation patterns it supports. For instance, we may write:

interface list_alike with
#x::list_alike;
x::list_alike + y;

end;

This defines a generic type consisting of all terms which may be passed as an argument to
both ‘#" and ‘+'. We can ask the interpreter about the patterns actually matched by the type
as follows:

> show interface list_alike
type list_alike s::string;
type list _alike [];

type list_alike (x:xs);

type list_alike nil;

type list_alike (cons x xs);

Note that the list_alike type not only includes our own list type, but also any other data
structure providing the ‘#" and ‘+ operations. This also comprises the standard list and
string types for which there are definitions of the ‘# and ‘+ operations in the prelude.

Pure’s interface types are a first attempt at formalizing the notion of Duck typing in Pure.
They are thus still a bit experimental and require some diligence in defining the interface
operations in a suitable way. Please check Interface Types in the Declarations section for
more information and examples.

1.5.8 Recursion

Recursion means that a function calls itself, either directly or indirectly. It is one of the most
fundamental techniques in functional programming, and you won’t find many useful Pure

1.5.8 Recursion 85

http://en.wikipedia.org/wiki/Duck_typing

Pure Language and Library Documentation, Release 0.64

programs which don’t use it in one form or another. That’s because most interesting pro-
grams execute pieces of code repeatedly. Pure doesn’t have any special looping constructs,
so recursion is the only way to do this in Pure. We've already seen various examples of this
throughout the manual, so let’s take a closer look at it now and learn a few related tricks
along the way.

For a simple example, consider the factorial. In order to compute the factorial of an integer
n, we need to multiply the positive integers up to n. There’s a straightforward recursive
definition which does this:

fact n = if n>0 then nxfact (n-1) else 1;

If you prefer conditional rules instead, you can also write:

fact n = nxfact (n-1) if n>0;
= 1 otherwise;

It’s not hard to see how this definition operates. The first rule only applies if n>0, otherwise
the second rule kicks in so that fact nbecomes 1if nis zero or negative (which is consistent
with our informal description because in this case the product of all positive integers up to n
is the empty product which is 1 by mathematical convention). The first rule is the interesting
one where the recursion happens. If n>0 then we may compute fact n by computing fact
(n-1) recursively and multiplying that with n, giving n*(n-1)x*...x1. Let’s check that this
works:

> map fact (1..10);
[1,2,6,24,120,720,5040,40320,362880,3628300]

Note that these numbers grow fairly quickly; they outgrow the 32 bit range and start wrap-
ping around already at n==13. To avoid that, you'll have to do the computation with bigints,
or you could use floating point values if you don’t mind the limited precision.

> fact 13;

1932053504

> fact 13L;

6227020800L

> fact 30L;
265252859812191058636308480000000L
> fact 30.0;

2.65252859812191e+32

However, you'll run into another, more serious obstacle if you want to compute factorials
for some really big values of n. For instance:

> fact 200000L;
<stdin>, line 7: unhandled exception ’stack_fault’ while evaluating ’'fact 200000L’

Oops. What happened there? Well, each recursive invocation of fact needs some small
amount of memory on the execution stack, a so-called “stack frame”. Thus, when n becomes
big enough then our definition is in danger of running out of stack space. (This is also why
you keep hearing in most CS 101 courses that you should try to avoid recursion. If you've

86 1.5 Examples

Pure Language and Library Documentation, Release 0.64

forgotten how subroutine calls are executed by keeping the execution context on a stack then
it’s time to revisit those CS 101 lecture notes now.)

So how can we avoid using all that stack space? In a language like C we’d be using a spe-
cialized loop construct instead of recursion, e.g.:

int fact(int n)

{
int p = 1;
while (n>0) { p = nxp; n =n-1; }
return p;

}

Pure doesn’t have a while loop, but we can rewrite the definition so that it becomes tail-
recursive. This means that the recursive call becomes the final operation on the right-hand
side of the recursive rule. The Pure compiler treats this pretty much like a loop in traditional
programming languages.

The trick of the trade to turn a recursive function into a tail-recursive one is the accumulating
parameter technique. The idea here is to have a separate “worker” function which carries
around an extra argument representing the intermediate result for the current iteration. The
final value of that parameter is then returned as the result. In the case of the factorial this
can be done as follows:

fact n = loop n 1 with
loop n p = loop (n-1) (nxp) if n>0;
p otherwise;

end;

Note that fact has now become a simple “wrapper” which supplies the initial value of the
accumulating parameter (p in this case) for the “worker” function loop which does all the
hard work. This kind of design is fairly common in functional programs.

Our worker function is tail-recursive since the recursive call to loop is indeed the final call
on the right-hand side of the first equation defining loop. The Pure compiler generates code
which optimizes such “tail calls” so that they reuse the stack frame of the calling function.
Thus a tail-recursive function like loop will execute in constant stack space; in fact it will
be just as efficient as the while loop in our little C snippet above (up to constant factors, of
course). After entering our new definition of fact we can now compute fact 200000L just
fine (this may take a little while, though, depending on how fast your computer is; the result
has 973351 digits):

> fact 200000L;
14202253454703144049669463336823059760899... // lots of digits follow

The accumulating parameter technique isn’t fully general, but it covers all the kinds of sim-
ple iterative algorithms which you’d do using loop constructs in traditional programming
languages. Some algorithms may require additional techniques such as tabulation (keeping
track of some or all intermediate results), however, so that they can be written in an iterative
form. To see how this can be done in Pure, let’s consider the Fibonacci numbers. These can
be computed with the following naive recursive definition:

1.5.8 Recursion 87

Pure Language and Library Documentation, Release 0.64

fib n = if n<=1 then n else fib (n-2) + fib (n-1);

Here are some members of this famous sequence:

> map fib (0..20);
[e,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181,6765]

Note that the right-hand side of the definition above involves two recursive invocations of
fib in the else branch. This is bad because it means our definition will need exponential
running time. (More precisely, you'll find that the ratio between the running times of succes-
sive invocations quickly starts approaching the golden ratio ¢ = 1.618..., which is no accident
because the times are proportional to the Fibonacci function itself!)

Using a simple iterative algorithm, it is possible to calculate the Fibonacci numbers in lin-
ear time instead. Observe that each member of the sequence is simply the sum of the two
preceding members. If we keep track of the last two members of the sequence then we can
compute the next member with a single addition. This yields the following tail-recursive
implementation which uses the same kind of “wrapper-worker” design:

fib n = loop n OL 1L with
loopnab loop (n-1) b (a+b) if n>0;
a otherwise;

end;

Note that as a matter of prudence we primed the iteration with the bigints 6L and 1L so that
we can compute large Fibonacci numbers without suffering wrap-around. For instance, try
the following:

> fib 1000000;
1953282128707757731632014947596256332443... // lots of digits follow

Recursion also naturally occurs when traversing recursive data structures. We’ve already
seen various examples of these, such as the binary tree data structure:

nonfix nil;

insert nil y
insert (bin x L R) y

bin y nil nil;
bin x (insert L y) R if y<x;
bin x L (insert R y) otherwise;

The insert function implements a binary tree insertion algorithm which keeps the tree (rep-
resented with the bin and nil constructor symbols) sorted. To these ends, it recurses into
the left or right subtree, depending on whether the element y to be inserted is less than the
current element x or not. The final result is a new tree which has a nil subtree replaced with
anew bin y nil nil subtree at the right location.

If we do an inorder traversal of such a binary tree (at each non-nil subtree, first visit the
left subtree, then note the element at the top of the current subtree, and finally visit the
right subtree), we obtain the elements of the tree in ascending order. This traversal is also
implemented recursively, e.g., as follows:

88 1.5 Examples

Pure Language and Library Documentation, Release 0.64

list nil = [];
list (bin x L R) = list L + (x:list R);

Note that these functions can’t be made tail-recursive using the accumulating parameter
technique, because traversing a tree structure requires more general forms of recursion.
There is in fact a more general continuation passing technique to do this, which we will look
at in The Same-Fringe Problem below; alas, it’s not as easy as accumulating parameters. For-
tunately, some important recursive structures such as lists only involve simple recursion and
can thus be traversed and manipulated in a tail-recursive fashion more easily. For instance,
consider our earlier definition of the sum function:

sum [] = 0O;
sum (X:XS) = X+sum XS;

This definition isn’t tail-recursive, but we can easily massage it into this form using the
accumulating parameter technique:

sum xs::list = loop O xs with
loop s [] = s;
loop s (x:xs)
end;

= loop (s+x) xs;

Functions can also be mutually recursive, in which case two or more functions are defined
in terms of each other. For instance, suppose that we’d like to skip every other element of a
list (i.e., return a list with only the elements having either even or odd indices, respectively).
One way to do this involves two functions (named pick and skip here) which recursively
call each other:

> pick [1 = [1; pick (x:xs) = x:skip xs;
> skip [1 = [1; skip (x:xs) = pick xs;
> pick (1..10);

[1,3,5,7,9]

> skip (1..10);

[2,4,6,8,10]

A Numeric Root Finder

Let’s now see how we can apply the techniques explained above in the context of a some-
what more practical example: a numeric root finder. That is, we're going to write a function
which takes another function f and determines a (double) value x such that f x becomes
(close to) zero.

We'll develop this in a bottom-up fashion. The method we employ here is known as the
Newton-Raphson algorithm, whose basic building block is the following routine improve
which improves a given candidate solution x by computing a first-order approximation of
the root. This involves computing (a numeric approximation of) the first derivative at the
given point, which we do using a second function derive:

1.5.8 Recursion 89

http://en.wikipedia.org/wiki/Continuation-passing_style

Pure Language and Library Documentation, Release 0.64

improve f x = x - f x / derive f x;
derive f x = (f (x+dx) - f x) / dx;

If you still remember your calculus then these should look familiar. Note that in both func-
tions, f is our target function to be solved and x the current candidate solution. The second
equation is nothing but the difference quotient of the function at the point x, using dx as
the increment along the x axis. The improve function computes the intersection of the corre-
sponding secant of f with the x axis.

To illustrate how the method works, let’s perform a few improvement steps manually, using
the target function f x = xxx-2 which becomes zero at the square root of 2. Here we choose
a dx value of le-8 and start from the initial guess 2:

let dx = le-8;

improve f x = x - f x / derive f x;
derive f x = (f (x+dx) - f x) / dx;
f X = X*x-2;

improve f 2;

.49999999696126

improve f ans;

.41666666616021

improve f ans;

.41421568628522

improve f ans;

.41421356237468

VLV EHEV LYV VYV VYV

It should be apparent by now that this converges to the square root of 2 rather quickly. To
automate this process, we need another little helper function which iterates improve until
the current candidate solution is “good enough”. A suitable termination criterion is that the
improvement drops below a certain threshold (i.e., abs (x-f x) <= dy for some reasonably
small dy). For extra safety, we’ll also bail out of the loop if a prescribed number n of iterations
has been performed. This function can be implemented in a tail-recursive fashion as follows:

loop n f x = x if n <= 0;
= if abs (x-y) < dy then y else loop (n-1) f y when y = f x end;

Let’s give it a try:

> let dy = le-12;

> loopnfx=xif n<=0;

> = if abs (x-y) < dy then y else loop (n-1) f y when y = f x end;
> loop 20 (improve dx f) 2;

1.4142135623731

> ansx*ans;

2.0

Looks good. So let’s finally wrap this up in a main entry point solve which takes the function
to be solved and an initial guess as parameters. Our little helper functions improve, derive
and loop are only used internally, so we can turn them into local functions of solve. The
additional parameters of the algorithm are implemented as global variables so that we can
easily modify their values if needed. The end result looks as follows. Note that the initial

90 1.5 Examples

Pure Language and Library Documentation, Release 0.64

guess x is an implicit parameter of the solve function, so the function actually gets invoked
as solve f x.

let dx = 1le-8; // delta value for the approximation of the derivative
let dy le-12; // delta value for testing convergence
let nmax = 20; // maximum number of iterations

solve f = loop nmax (improve f) with
loop n f x = x if n <= 0;
= if abs (x-y) < dy then y else loop (n-1) f y when y = f x end;
improve f x = x - f x / derive f x;
derive f x = (f (x+dx) - f x) / dx;
end;

Here are some examples showing how the solve function is used. Note that we specify the
target functions to be solved as lambdas here. E.g.,\t -> t"3-x denotes a function mapping
t to t73-x, which becomes zero if t equals the cube root of x.

> sqrt x = solve (\t -> txt-x) x;
> sqrt 2; sqrt 5;

1.4142135623731

2.23606797749979

> cubrt x = solve (\t -> t"3-x) x;
> cubrt 8;

2.0

Our little root finder isn’t perfect. It needs a fairly well-behaved target function and/or a
good initial guess to work properly. For instance, consider:

> solve (\t -> 1/t-2) 1;
0.00205230175365927

Here solve didn't find the real root at 0.5 at all. In fact, if you print the solution candidates
then you will find that solve converges rather slowly in this case and thus bails out after 20
iterations before a good solution is found. Increasing the nmax value fixes this:

> let nmax = 50;
> solve (\t -> 1/t-2) 1;
0.5

There are other pathological cases where the algorithm performs even more poorly. Further
improvements of the method presented here can be found in textbooks on numeric algo-
rithms; the interested reader may want to cut his teeth on these algorithms by translating
them to Pure in the way we’ve shown here.

The Same-Fringe Problem

This is one of the classical problems in functional programming which has a straightforward
recursive solution, but needs some thought if we want to solve it in an efficient way. Con-
sider a (rooted, directed) tree consisting of branches and leaves. To keep things simple, we
may represent these structures as nested lists, e.g.:

1.5.8 Recursion 91

Pure Language and Library Documentation, Release 0.64

let t1 = [[a,b],c,[[d]],e,[f,[[g,nh]]]];
let t2 = [a,b,c,[[d],[],e],[f,[g,[h]1]]];
let t3 = [[a,b],d,[[c]],e,[f,[[g,h]]]];

Thus each inner node of the tree is represented as a list containing its (zero or more) subtrees,
and the leaves are the “atomic” (non-list) elements. The fringe of such a structure is the list
of all leaves in left-to-right order, which can be computed as follows:

fringe t = if listp t then catmap fringe t else [t];

Note that listp is a predicate which decides whether its argument is a (proper or improper)
list and the catmap function applies the given function to a list, like map, and concatenates all
the resulting lists, like cat. Thus, if the argument t is an “atom” (leaf) then fringe simply
returns [t], otherwise it recursively applies itself to all the subtrees and concatenates the
results:

> fringe t1;
[a,b,c,d,e,f,g,h]
> fringe t2;
[a,b,c,d,e,f,qg,h]
> fringe t3;
[a,b,d,c,e,f,qg,h]

Note that t1 and t2 differ in structure but have the same fringe, while t1 and t3 have the
same structure but different fringes. The problem now is to decide, given any two trees,
whether they have the same fringe. Of course, we can easily solve this by just computing the
fringes and comparing them with ‘===’ (note that we employ syntactic equality here which
also allows us to compare symbols, for which ‘==" isn’t normally defined):

> fringe tl === fringe t2;
1
> fringe t3 === fringe t2;
0

However, this is rather inefficient since we always have to fully construct the fringes which
may need considerable extra time and space if the trees are large. Most of this effort may
be completely wasted if we only need to inspect a tiny fraction of the fringes to find out
that they’re different, as in the case of t2 and t3. Also note that our version of the fringe
function isn’t tail-recursive and we may thus run into stack overflows for large trees.

This problem, while posed in an abstract way here, is not only of academic interest. For in-
stance, trees may be used as an alternative string data structure which implements concate-
nation in constant time by just delaying it. In this case we certainly don’t want to explicitly
carry out all those concatenations in order to decide whether two such objects are the same.

Therefore, this problem has been studied extensively and more efficient approaches have
been developed. One way to solve the problem involves the technique of continuation
passing which is a generalization of the accumulating parameter technique we already dis-
cussed. It never constructs any part of the fringes explicitly and also works in constant stack
space. The algorithm can be implemented in Pure as follows. (This is a slightly modified

92 1.5 Examples

Pure Language and Library Documentation, Release 0.64

transliteration of a Lisp program given in Henry Baker’s article “Iterators: Signs of Weak-
ness in Object-Oriented Languages”, ACM OOPS Messenger 4(3), 1993, pp. 18-25, which is
also available from Henry Baker’s Archive of Research Papers.)

samefringe tl t2 =
samefringe (\c -> genfringe t1 c done) (\c -> genfringe t2 c done) with
done ¢ = ¢ [] done;
samefringe gl g2 =
gl (\x1 g1 -> g2 (\x2 g2 -> x1l===x2 && (x1===[] || samefringe gl g2)));
genfringe [] c g =g c;
genfringe (x:t) ¢ g = genfringe x c (\c -> genfringe t c g);
genfringe x ¢ g = ¢ X g;
end;

As Baker admits himself, this style of programming isn’t “particularly perspicuous”, so we’ll
explain the algorithm in a moment. But first let us verify that the program indeed works
as advertized. It’s helpful to print out the actual comparisons performed in the innermost
lambda in the definition of the local samefringe function, which can be done by adding a
little debugging statement as follows (this also needs an import clause “using system;” to
make the printf function available):

samefringe gl g2 =
gl (\x1 gl -> g2 (\x2 g2 -> printf "%s === %s?\n" (str x1,str x2) $$
x1===x2 && (x1===[] || samefringe gl g2)));

With this we get:

samefringe tl1 t2;
=== a?
=== Db?
=== C?
=== d?

>

a

b

C

d

e === e?
f === f?

g === g?

h === h?

[1 === [17

1

So in this case we do a complete traversal of both trees which is the best that we can hope for
if the fringes are the same. Note that the final comparison [] === [] ensures that we also
hit the end of the two fringes at the same time. This test deals with the corner case that one
fringe is a prefix of the other. For instance:

let t4 = [[a,b]l,c,[[d]],e,[f,[[g,h,i]1]]1];
samefringe t4 t2;

=== b?
=== C?
=== (?
=== e?
=== f?

- ® Q 0 T X V V
|
|

1.5.8 Recursion 93

http://home.pipeline.com/~hbaker1/

Pure Language and Library Documentation, Release 0.64

=== h?
=== [17

O H T Q

Things go a bit differently, however, when comparing t3 and t2; as soon as we hit the first
discrepany between the two fringes, the algorithm bails out and correctly asserts that the
fringes are different:

> samefringe t3 t2;
a === a?

b === b?

d === ¢?

0

Let’s take a closer look at the various parts of the algorithm now. First, the genfringe func-
tion:

genfringe [] c g =g c;
genfringe (x:t) c g = genfringe x ¢ (\c -> genfringe t c g);
genfringe x c g = C X g;

This routine generates the fringe of a tree, given as the first argument, on the fly. The second
argument c (the “consumer”) is a function which gets invoked on the current leaf, to do any
required processing. (As we’ll see later, it may also get invoked with the special “sentinel”
value [] to indicate the end of the fringe.)

The third argument g (the “generator”) is a continuation, a kind of “callback function” to
be invoked after the current subtree has been traversed, in order to process the remainder
of the tree. It takes the consumer function c as its sole argument. Consequently, genfringe
simply invokes the continuation g on the consumer ¢ when applied to an empty subtree [],
i.e., if there aren’t any leaves to be processed. This case is handled in the first equation for
genfringe.

The second equation for genfringe is the interesting one where the recursion happens. It
deals with a nonempty tree x: t by invoking itself recursively on X, setting up a new contin-
uation \c -> genfringe t c g, which will take care of processing the rest of the subtree t,
after which it chains to the previous continuation g which will handle the rest of the tree.

The third equation for genfringe handles the case of a non-list argument, i.e., a leaf. In this
case we just pass the leaf x to the consumer function ¢ along with the continuation g. The
consumer processes x as needed and may then decide to call the continuation g on itself
in order to continue processing the rest of the tree, or simply bail out, returning any value.
Note that this entire process is tail-recursive, as long as c chains to g as the last call. It thus
only needs constant stack space in addition to what c itself uses.

Note that we need an initial continuation g to get the process started. This is provided by
the done function:

done ¢ = ¢ [] done;

924 1.5 Examples

Pure Language and Library Documentation, Release 0.64

As we’ve defined it, done invokes the consumer ¢ on an empty list to signal the end of
the fringe. For good measure, it also passes itself as the continuation argument; however,
normally the consumer will never use this argument and just bail out when invoked on the
[1 value.

To see how this works, we can just enter done and genfringe as global functions and invoke
them on a suitable consumer function, e.g.:

done ¢ = ¢ [] done;
genfringe [] c g =g c;
genfringe (x:t) ¢ g = genfringe x c¢ (\c -> genfringe t c g);
genfringe x c g = C X g;
c x g = if x===[] then g else printf "%s... " (str x) $$ g c;
genfringe tl1 c done;

.b... c...d... e... f... g... h... done

Q VV VYV VYV

In the case of samefringe, we use the local samefringe function as our consumer instead.
This works pretty much the same, except that samefringe employs two continuations g1 and
g2 to traverse both trees at the same time:

samefringe gl g2 =
gl (\x1 g1 -> g2 (\x2 g2 -> x1l===x2 && (x1===[] || samefringe gl g2)));

Note that the outer lambda (\x1 g1 -> ...) becomes the consumer for the first generator
g1 which traverses t1. When called, it then invokes the second generator g2, which traverses
t2, on the consumer (inner lambda) (\x2 g2 -> ...). This in turn does the necessary tests
to verify that the current leaf elements are the same, or to bail out from the recursion if they
aren’t or if we reached the end of the fringes. Also note that this is still tail-recursive because
the short-circuit logical operations && and | | are both tail-recursive in their second operand
(cf. Stack Size and Tail Recursion).

1.5.9 Higher-Order Functions

As we have seen, functions are first-class citizens in Pure which can be created on the fly
(using partial applications as well as lambdas and local functions), assigned to variables
and passed around freely as function arguments and results. Thus it becomes possible to
define higher-order functions which take other functions as arguments and/or return them
as results. This is generally considered a hallmark feature of functional programming, and
much of the power of functional programming stems from it. In fact, higher-order functions
are so deeply ingrained in the modern functional programming style that you'll hardly find
a nontrivial program that doesn’t use them in some way, and we have already seen many
examples of them throughout the manual. While most imperative programming languages
today let you treat functions as values, too, they’re typically much more limited in the ways
that new functions can be created dynamically. Only recently have partial application and
anonymous closures arrived in some mainstream imperative languages, and they are often
still rather awkward to use.

The simplest case of a higher-order function is a function which takes another function as
an argument. For instance, we have seen the function map which applies a function to each

1.5.9 Higher-Order Functions 95

Pure Language and Library Documentation, Release 0.64

member of a list. If it wasn’t in the prelude, it could be defined as follows:

].

map f [] = ;
=f x : map T xs;

[
map T (x:xs)

(Note that this isn’t the actual definition from the prelude, which goes to some lengths to
make the operation tail-recursive and properly handle lazy lists. But we won’t dive into
these technicalities here since we’re only interested in the higher-order aspect right now.)

This definition is rather straightforward: To map a function f to a list, just apply it to the
head element x and recurse into the tail xs. The recursion stops at the empty list which is
returned as is. For instance:

> map (*2) (0..10);
[0,2,4,6,8,10,12,14,16,18,20]

The prelude includes an entire collection of such generic list functions which have proven
their utility as basic building blocks for many list processing tasks. We’ll have a closer look
at these later, see List Processing.

Another numerical example is the function derive which we used in our root finder example
to calculate the difference quotient of a function f at a given point x:

derive f x = (f (x+dx) - f x) / dx;

This example is also interesting because we can turn derive into a function mapping func-
tions to other functions, by partially applying it to the target function. So we may write:

> let dx = le-8;
> map (derive square) (1..4) with square x = x*x end;
[1.99999998784506,3.99999997569012,5.99999996353517,7.99999995138023]

This illustrates an easy way to create new functions from existing ones: partial application.
(In fact we also did that when we applied the operator section (*2) using map above. Note
that (*2) is a function which doubles its single argument.) This simple recipe is surprisingly
powerful. For instance, the prelude defines the function composition operator *.” as:

(f.g) x = f (g x);

The partial application f.g thus applies two given functions f and g in sequence (first g,
then f). Functions of this kind, which create new functions by combining existing ones, are
also known as combinators. For instance, using “.” we can easily create a function which
“clamps” its argument between given bounds by just combining the min and max functions
from the prelude as follows:

> clamp a b = max a . min b;
> map (clamp (-3) 3) (-5..5);
['31'31'31'21'1101112131313]

Note that partial application works with constructor symbols, too:

96 1.5 Examples

Pure Language and Library Documentation, Release 0.64

> map (0:) [1..3,4..6,7..9];
(re,1,2,3],[0,4,5,61,[0,7,8,91]]

Another more direct way to define combinators is to make them return a local or anonymous
function. For instance, the following equations lift the ‘+" and ’-* operators to pointwise
operations:

f+q
f-g

\x -> f x + g x if nargs f > 0 & nargs g > 0;
\x -> f x - g x if nargs f > 0 & nargs g > 0;

This employs the nargs function from the standard library which returns the argument count
of a global or local function. We use this here to check that the operands are defined functions
taking at least one argument. The result is a function which applies the function operands
to the given argument and computes their sum and difference, respectively. For instance:

> map (f+g-h) (1..10) with f x = 2*x+1; g x = xxx; h x = 3 end;
[1,6,13,22,33,46,61,78,97,118]

These rules also handle functions taking multiple arguments, so that you can write, e.g.:

> (max-min) 2 5;
3

Constructors can be extended in exactly the same way:

,9 =\x -> f x, g x if nargs f > 0 & nargs g > 0;
max,min,max-min) 2 5;
3

vV Vv

f
(
,2

’

1.5.10 List Processing

Pure’s list data structure provides you with a convenient way to represent sequences of
arbitrary values. This is one of the few compound data structures which has built-in support
by the compiler, so that some syntactic sugar is available which allows you to express certain
list operations in a convenient way. But for the most part, lists are implemented in the
prelude just like any other data structure.

The empty list is denoted [], and compound lists can be put together in a right-recursive
fashion using the “:* operator. The customary bracketed notation is provided as well, and
this is also the syntax the interpreter normally uses to print list values:

> 1:2:3:[1;
[1,2,3]

Note that the bracketed notation is just syntactic sugar; internally all list values are repre-
sented as right-recursive applications of the “:* operator. Thus it is possible to match the
head and tail of a list using a pattern like x: xs:

> case [1,2,3] of x:xs = Xx,Xxs end;
1,[2,3]

1.5.10 List Processing 97

Pure Language and Library Documentation, Release 0.64

Lists can contain any combination of elements (also from different types) and they may also
be nested:

> [1,2.0,[x,y],"a string"];
[1,2.0,[x,y],"a string"]

List concatenation is denoted +, and the #, ! and !! operators can be used to compute the
length of a list and extract elements and slices of a list using zero-based indexing:

> [a,b,c]+[x,y,2];

[a,b,c,x,y,2]
> #ans, ans!5, ans!![2,3];
6,z,[c,x]

Note that lists are immutable in Pure (just like most of Pure’s built-in and predefined data
structures), so there are no operations which modify lists in-place. E.g., concatenation works
as if it was defined recursively by the following rules:

[1+ys = ys;
(x:xs) + ys = x : (Xs+ys);

So a new list is created which replaces the empty list in the last component of the left operand
with the right operand. This even works if the second operand is no list at all, in which case
an improper list value is produced:

> [a,b,c]+y;
a:b:c:y

These can be useful, e.g., to represent symbolic list values. Note that a proper list value
contains the empty list [] in its rightmost component; an improper list value is one which
doesn’t. There are some list functions like reverse which really need proper lists to work and
will throw an exception otherwise, but many predefined operations will deal with improper
lists just fine:

>map f (x:y:z);
f x:f yimap f z
Lists can also be compared using the == and ~= operators:

> [1,2,3] == [1,2,4];
0

Arithmetic sequences are denoted with the .. operator:

> 1..10; 10:9..1; 0.0:0.1..1.0;
[1,2,3,4,5,6,7,8,9,10]

[10,9,8,7,6,5,4,3,2,1]
[0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0]

List comprehensions provide another way to construct (proper) list values using a conve-
nient math-like notation:

98 1.5 Examples

Pure Language and Library Documentation, Release 0.64

> [2”x | x = 1..10];
[2.0,4.0,8.0,16.0,32.0,64.0,128.0,256.0,512.0,1024.0]

We'll discuss this construct in more detail later, see List Comprehensions.

The prelude provides a fairly comprehensive collection of useful list functions, including
some powerful generic operations which let you do most common list manipulations with
ease. For instance, we have already seen the map function:

> map (\x->2%x-1) (1..10);
[1,3,5,7,9,11,13,15,17,19]

There’s also a function do which works in the same fashion but throws away all the results
and simply returns (). Of course this makes sense only if the applied function has some
interesting side-effect. E.g., here’s a quick way to print all members of a list, one per line.
This combines the str function (which converts any Pure expression to its printable rep-
resentation, cf. String Processing below) with the puts function from the system module
(which is just the corresponding C function, so it prints a string on the terminal, followed by
a newline).

> using systenm;

> do (puts.str) (1..3);
1

2

3

()

Another useful list function is filter which applies a predicate to each member of a list and
collects all list elements which satisfy the predicate:

> odd x = x mod 2; even x = ~odd x;
> filter odd (1..20);
[1,3,5,7,9,11,13,15,17,19]

> filter even (1..20);
[2,4,6,8,10,12,14,16,18,20]

In addition, the all and any functions can be used to check whether all or any list elements
satisfy a given predicate:

> any even (1:3..20);
0

> all odd (1:3..20);
1

There’s also a family of functions such as foldl which generalize the notion of aggregate
functions such as list sums and products. Starting from a given initial value a, foldl iterates
a binary function f over a list xs and returns the accumulated result. It’s defined as follows:

foldl f a [] = a;
foldl f a (x:xs) = foldl f (f a x) xs;

For instance, we can use foldl to compute list sums and products:

1.5.10 List Processing 99

Pure Language and Library Documentation, Release 0.64

> foldl (+) 0 (1..10);
55

> foldl (%) 1 (1..10);
3628800

Note that foldl (“fold-left”) accumulates results from left to right, so the result accumulated
so far is passed as the left argument to the function f. There’s a foldr (“fold-right”) function
which works analogously but collects results from right to left, and accordingly passes the
accumulated result in the right argument. Usually this won’t make a difference if the iterated
function is associative, but foldl and foldr have lots of applications beyond these simple
use cases. For instance, we may use foldl to reverse a list as follows:

> foldl (flip (:)) [1 (1..10);
[10,9,8,7,6,5,4,3,2,1]

Note that we have to flip the arguments of the “:* constructor here, since foldl passes the
accumulated list in the left argument, but “:“ wants it on the right. Conversely, we have that:

> foldr (:) [] (1..10);
[1121314151617,8,9,10]

This just returns the list unchanged. So the order in which we accumulate results does matter
here.

In a similar fashion, we might use foldl (or foldr) to build any kind of compound data
structure from a list of its members. For instance, recall our binary tree example:

nonfix nil;
insert nil y
insert (bin X L R) y

bin y nil nil;
bin x (insert L y) R if y<x;
bin x L (insert R y) otherwise;

We can then use foldl insert to construct a binary tree from its member list as follows:

> foldl insert nil [7,12,9,5];
bin 7 (bin 5 nil nil) (bin 12 (bin 9 nil nil) nil)

Sometimes we’d like to know not just the final result of an aggregate function, but all the
intermediate results as well. The scanl function does this. For instance:

> scanl (+) 0 (1..10);
[0,1,3,6,10,15,21,28,36,45,55]

Note that this computes the same list of partial sums as:

> [foldl (+) 0 (1..n) | n = 0..10];
[0,1,3,6,10,15,21,28,36,45,55]

However, the former is more efficient since it does all the partial sums in one go.

Like foldl, scanl also has a sibling called scanr which collects results from right to left,
starting at the end of the list:

100 1.5 Examples

Pure Language and Library Documentation, Release 0.64

> scanr (+) 0 (1..10);
[55,54,52,49,45,40,34,27,19,10,0]

Another useful list generation function is iterwhile which keeps applying a function start-
ing at a given initial value, as long as the current value satisfies the given predicate. So
another way to generate the odd numbers up to 20 is:

> iterwhile (<=20) (+2) 1;
[1,3,5,7,9,11,13,15,17,19]

Or we might collect all powers of 2 which fall into the 16 bit range:

> iterwhile (<0x10000) (*2) 1;
[1,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192,16384,32768]

There are also various functions to partition a list into different parts according to various
criteria. The simplest of these are the head and tail functions:

> let xs = 1..10;

> head xs; tail xs;
1
[2,3,4,5,6,7,8,9,10]

Conversely, the last and init functions give you the last element of a list, and all but the
last element, respectively:

> last xs; init xs;
10
[1!2!3!4!5!6!7!8!9]

The take and drop functions take or remove a given number of initial elements, while
takewhile and dropwhile take or remove initial elements while a given predicate is sat-
isfied:

> take 4 xs; drop 4 xs;

[1,2,3,4]

[5,6,7,8,9,10]

> takewhile (<=4) xs; dropwhile (<=4) xs;
[1,2,3,4]

[5,6,7,8,9,10]

Lists can be reversed with reverse and sorted using sort:

> reverse Xs;

[10,9,8,7,6,5,4,3,2,1]

> sort (<) (xs + ans);
[1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10]

You can also concatenate a list of lists with the cat function:

> cat [1..n | n=1..5];
[1,1,2,1,2,3,1,2,3,4,1,2,3,4,5]

1.5.10 List Processing 101

Pure Language and Library Documentation, Release 0.64

Last but not least, there is the zip family of functions which let you combine members of
two or more lists in different ways. The zip function itself collects pairs of corresponding
elements in two input lists:

> zip (1..5) ("a".."e");
[(1,"a"),(2,"b"),(3,"c"), (4,"d"), (5,"e")]

The effect of zip can be undone with unzip which returns a pair of lists:

> unzip ans;
[1’2’3’4’5]’ ["a","b","C","d","e”]

The zipwith function is a generic version of zip which combines corresponding members
from two lists using a given binary function f:

> zipwith (%) (1..10) (1..10);
[1,4,9,16,25,36,49,64,81,100]

You might also consider zipwith a variant of map working with two lists at the same time (in
fact this operation is also known as map2 in some functional programming languages). There
are also variations of these functions which work with three lists (zip3, unzip3, zipwith3).

Note that zip itself is equivalent to zipwith (,):

> zipwith (,) (1..5) ("a".."e");
[(1,"a"),(2,"b"),(3,"c"), (4,"d"), (5,"e")]

Also note that since tuples are formed by just applying the ‘,” operator repeatedly, you can
use multiple calls of zip to piece together tuples of any length:

> zip (1..3) (zip ("a".."c") l[a,b,cl]);
[(1,"a",a),(2,"b",b),(3,"c",c)]

This can be achieved even more easily by folding zip over a list of lists; here we employ a
variation foldrl of foldr which takes the initial value from the beginning of the list.

> foldrl zip [1..3,"a".."c",[a,b,cl];
[(1,"a",a),(2,"b",b),(3,"c",c)]

Note that this method easily scales up to as many element lists as you want. Recovering
the original element lists is a bit trickier, though, but it can be done using this little helper
function:

xs 1f n<=1;
xs,unzipn (n-1) ys when xs,ys = unzip xs end otherwise;

unzipn n xs

For instance:

> foldrl zip [1..3,"a".."c",[a,b,cl];
[(1,"a",a),(2,"b",b),(3,"c",c)]

> unzipn 3 ans;
[1,2,3],["a","b","c"],[a,b,c]

102 1.5 Examples

Pure Language and Library Documentation, Release 0.64

Also, the elements to be zipped don’t have to be singletons, they can themselves be tuples
of any size:

> foldrl zip [[1,2,3],[a,(),cl,[x,y,(z,t)]];
[(1,a,x),(2,y),(3,c,z,t)]

But note that in this case you loose the information which elements came from which sub-
lists, so unzip won’t be able to recover the original lists any more. If you need to avoid that
then it’s best to use other aggregates such as lists or vectors for the sublist elements.

There are other interesting list functions in the prelude, but we’ll leave it at that for now.
Please check the Pure Library Manual for a full account of the available operations.

1.5.11 String Processing

Let’s take a short break from lists and look at strings. We postponed that until now since
strings are in many ways just like lists of characters. In fact the similarities run so deep
that in some languages, most notably Haskell, strings are in fact just lists. Pure doesn’t go
quite that far; it still represents strings as null-terminated arrays of characters in the UTF-8
encoding, which is a much more compact representation and eases interoperability with C.
However, most common list operations also work on strings in an analogous fashion. Thus
you can concatenate strings, compute their length, and index, slice and compare them as
usual:

S "abC"+"XyZ";

"abcxyz"

> f#fans, ans!5, ans!![2,3];
6,"z","cx"

> Ilabcll==llabdll;

0

In addition, strings can also be ordered lexicographically:

"abd"<"ade";

"abd">"ade";

V=V oV

sort (<) ["the","little","brown",6"fox"];
["brown","fox","little","the"]

Where it makes sense, list operations on strings return again a string result:

> head "abc"; tail "abc";

Ilall

IIbCII

> take 4 "abcdefg"; drop 4 "abcdefg";
Ilabcdll

Ilefgll

A slight complication arises with the map function, because in this case the result is not guar-
anteed to be a string in all cases. For instance:

1.5.11 String Processing 103

Pure Language and Library Documentation, Release 0.64

> map ord "HAL";
[72,65,76]

To have map work consistently, it will thus yield a list even in cases where the result could
again be represented as a string. If you want a string result instead, you’ll have to do the
conversion explicitly, using the string function:

> map (+1) "HAL";

[IIIII’IIBII’IIMII]
> string ans;
" TBM"

Conversely, you can also convert a string to a list of its characters using either chars or the
generic list conversion function:

> list ans;
[IIIII , IIBII , IIMII]

As in the case of map, this conversion is usually done automatically if a list operation from
the prelude is applied to a string. This also happens if a list comprehension draws values
from a string:

> [x-1 | x = "IBM"];
[“H“,“A“,“L“]

Talking about characters, these are simply single character strings, so Pure has no separate
data type for them. However, there is a type tag char for the single character strings which
can be used in pattern matching;:

> isupper x::char = "A"<=x && x<= "Z";

> filter isupper "The Little Brown Fox";
"TLBF"

> any isupper "The Little Brown Fox";

1

Maybe you wondered how that "HAL" => "IBM" transformation above came about? Well,
the prelude also defines basic arithmetic on characters:

> "a"+1, "a"+2, "z"-1;
npt men

> "z"-"a",;

25

This considers characters as an enumerated data type where each character corresponds to
a numeric code point in Unicode. Hence, e.g., "a"+1 gives "b" because "b" is the code point
following "a" in Unicode, and "b"-"a" gives 1 for the same reason.

So here’s the rot13 encoding in Pure:

rotl3 x::string = string (map rotl3 x) with

rotl3 c = c+13 if "a" <= lower c && lower c <= "m";
c-13 if "n" <= lower c && lower c <= "z";
c otherwise;

104 1.5 Examples

Pure Language and Library Documentation, Release 0.64

lower ¢ = "a"+(c-"A") if "A"<=c && c<="2Z";
= c otherwise;
end;

For instance:

> rotl3 "The quick brown fox";
"Gur dhvpx oebja sbk"

> rotl3 ans;

"The quick brown fox"

Character arithmetic also makes arithmetic sequences of characters work as expected:

> "g".."k"; "k":"j".."a";
["a","b","c","d", "e", """, "g","h", "i","j","k"]
["k","j","i","h", "g", "f", "e", "d","c","b","a"]
> string ("a":"c".."z");

"acegikmogsuwy"

You can also convert between characters and their ordinal numbers using the ord and chr
functions:

> ord "a";

97

> chr (ans+l);
Ilbll

Thus using Horner’s rule we might convert a string of decimal digits to its numeric repre-
sentation as follows:

> foldl (\x ¢ -> 10*x+ord c-ord "0@") 0 "123456";
123456

However, there are much easier and more general ways to convert between strings and Pure
expressions. Specifically, val and str can be used to convert between any Pure value and its
string representation:

> val "2x(3+4)"; str ans;
2x(3+4)
II2*(3+4)II

If you also want to evaluate the string representation of a Pure expression then eval is your
friend:

> eval "2x(3+4)";
14

Two other convenient functions are split which breaks apart a string at a given delimiter
string, and join which concatenates a list of strings, interpolating the delimiter string be-
tween successive list elements:

> split " " "The quick brown fox";
[IIThell , IIquickll , IIbrownll , " fOXII]

1.5.11 String Processing 105

Pure Language and Library Documentation, Release 0.64

> join ans;
"The:quick:brown: fox"

If you don’t need the intervening delimiters then you can also concatenate string lists simply
with strcat:

> strcat ["The","quick","brown","fox"];
"Thequickbrownfox"

These operations are all implemented in an efficient way so that they run in linear time.
(Note that the string conversion function we mentioned above is in fact just strcat on lists
of strings, but it also works with other aggregates such as vectors of strings.)

For more elaborate needs there’s also a suite of functions for doing regular expression match-
ing in the regex module, and the system module provides the usual facilities for reading and
writing strings from/to text files and the terminal, as well as the printf and scanf family of
functions which are used to print and parse strings according to a given format string. These
are all explained in detail in the Pure Library Manual.

1.5.12 List Comprehensions

List comprehensions are Pure’s main workhorse for generating and processing all kinds of
list values. You can think of them as a combination of map and filter using a prettier syntax
reminiscent of the way in which sets are commonly specified in mathematics. List compre-
hensions are in fact just syntactic sugar, so anything that can be done with them can also be
accomplished with Pure’s generic list functions; but often they are much easier to write and
understand.

In the simplest case, list comprehensions are just a shorthand for map with lambdas:

> [2#x-1 | x = 1..10];
[1,3,5,7,9,11,13,15,17,19]

This can be read aloud as “the list of all 2xx-1 for which x runs through the list 1..10”. The
part x = 1..10is called a generator clause. The comprehension binds x to each member of
thelist 1. .10 in turn and evaluates the target expression 2+x+1 in the context of this binding.
This is equivalent to the following map expression:

> map (\x->2xx-1) (1..10);
[1,3,5,7,9,11,13,15,17,19]

List comprehensions may also involve filter clauses: predicates which determine the ele-
ments that are to be included in the result list.

> [2xx-1 | x = 1..10; x mod 3];
[1,3,7,9,13,15,19]

This can be read as “the list of all 2xx-1 for which x runs through 1. .10 and for which x mod
3 is non-zero” (which means that x is not a multiple of 3). It is roughly equivalent to:

106 1.5 Examples

Pure Language and Library Documentation, Release 0.64

> map (\x->2*x-1) (filter (\x->x mod 3) (1..10));
[1,3,7,9,13,15,19]

List comprehensions can also draw values from other kinds of aggregates such as strings
and matrices, but the result is always a list:

> [x-1 | x = "IBM"];

[IIHII’IIAII,IILII]

> [1/x | x = {1,2,3,;4,5,6}; ~x mod 2];
[0.5,0.25,0.166666666666667]

List comprehensions can have as many generator and filter clauses as you want. The clauses
are considered in left-to-right order so that later clauses may refer to any variables intro-
duced in earlier generator clauses. E.g., here’s how you can generate the list of all pairs
(i,3j) with 1<=i<=j<=5 such that i+j is even:

>[i,j | 1 =1..5; j =1..5; ~(i+j) mod 2];
[(1,1),(1,3),(1,5),(2,2),(2,4),(3,3),(3,5),(4,4),(5,5)]

The left-hand side of a generator clause can be an arbitary pattern, which is useful if you
need to peek at the list elements to see what’s inside. For instance, let’s take the previous
result and check that the sums of the number pairs are in fact all even:

> [i+j | 1,j = ans];
[2!4!6!4!6!6!8!8!10]

Generator clauses involving patterns also act as filters; unmatched elements are filtered out
automatically:

> [i+j | 1,j = ["to be ignored",(1,1),(2,2),311;
[2,4]

List comprehensions can also be nested to an arbitrary depth. For instance, we may rewrite
the “even sums” comprehension from above as follows, in order to group the pairs into
sublists for each value of i:

> [[i,i | j = i..5; ~(i+j) mod 2] | i = 1..5];
[(f(1,1),(1,3),(1,5)1,0(2,2),(2,4)1,0(3,3),(3,5)1,[(4,4)1,[(5,5)]1]

A notorious example is the following recursive algorithm which implements a variation
of Erathosthenes’ classical prime sieve. (This method is actually rather slow and thus not
suitable for computing large primes, but we’re not concerned with that here.)

primes n = sieve (2..n) with

sieve [] =[1;

sieve (p:qs) = p : sieve [gq | g = gs; q mod pl;
end;

Note that the sieve recursively filters out the multiples of the current front element p of the
list, which, by virtue of the construction, is always a prime number. The result is the list of
all primes up to n:

1.5.12 List Comprehensions 107

Pure Language and Library Documentation, Release 0.64

> primes 100;
[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97]

List comprehensions are also a useful device to organize backtracking searches. For instance,
here’s an algorithm for the n queens problem, which returns the list of all placements of n
queens on an n x n board (encoded as lists of n pairs (i,j) withi = 1..n), so that no two
queens hold each other in check:

search n 1 [] with
[reverse p] if i>n;
cat [search n (i+l) ((i,j):p) | j = 1..n; safe (i,j) pl;
safe (i,j) p ~any (check (i,j)) p;
check (il,jl1) (i2,j2)
= i1==i2 || j1==j2 || il+jl==i2+j2 || il-jl==i2-j2;

queens n
search n i p

end;

1.5.13 Lazy Evaluation and Streams

As already mentioned, lists can also be evaluated in a “lazy” fashion, by just turning the tail
of a list into a future. This special kind of list is also called a stream. Streams enable you to
work with infinite lists (or finite lists which are so huge that you would never want to keep
them in memory in their entirety). E.g., here’s one way to define the infinite stream of all
Fibonacci numbers:

> let fibs = fibs OL 1L with fibs a b = a : fibs b (a+b) & end;
> fibs;
OL:#<thunk 0xb5d54320>

Note the & on the tail of the list in the definition of the local fibs function. This turns the
result of fibs into a stream, which is required to prevent the function from recursing into
samadhi. Also note that we work with bigints in this example because the Fibonacci num-
bers grow quite rapidly, so with machine integers the values would soon start wrapping
around to negative integers.

Streams like these can be worked with in pretty much the same way as with lists. Of course,
care must be taken not to invoke “eager” operations such as # (which computes the size
of a list) on infinite streams, to prevent infinite recursion. However, many list operations
work with infinite streams just fine, and return the appropriate stream results. E.g., the take
function (which retrieves a given number of elements from the front of a list) works with
streams just as well as with “eager” lists:

> take 10 fibs;
OL:#<thunk 0xb5d54350>

Hmm, not much progress there, but that’s just how streams work (or rather they don't,
they’re lazy bums indeed!). Nevertheless, the stream computed with take is in fact finite
and we can readily convert it to an ordinary list, forcing its evaluation:

108 1.5 Examples

Pure Language and Library Documentation, Release 0.64

> list (take 10 fibs);
[e,1L,1L,2L,3L,5L,8L,13L,21L,34L]

An alternative way to achieve this is to cut a “slice” from the stream:

> fibs!!(0..10);
[e,1L,1L,2L,3L,5L,8L,13L,21L,34L,55L]

Note that since we bound the stream to a variable, the already computed prefix of the stream
has been memoized, so that this portion of the stream is now readily available in case we
need to have another look at it later. By these means, possibly costly reevaluations are
avoided, trading memory for execution speed:

> fibs;
OL:1L:1L:2L:3L:5L:8L:13L:21L:34L:55L :#<thunk 0xb5d54590>

The prelude also provides some convenience operations for generating stream values. In-
finite arithmetic sequences are specified using inf or -inf to denote an upper (or lower)
infinite bound for the sequence, e.g.:

> let u=1..inf; let v = -1.0:-1.2..-inf;

> u!!(0..10); v!!(0..10);

[1,2,3,4,5,6,7,8,9,10,11]
[-1.0,-1.2,-1.4,-1.6,-1.8,-2.0,-2.2,-2.4,-2.6,-2.8,-3.0]

Other useful stream generator functions are iterate, which keeps applying the same func-
tion over and over again, repeat, which just repeats its argument forever, and cycle, which
cycles through the elements of the given list:

> iterate (%2) 1!!(0..10);
[1,2,4,8,16,32,64,128,256,512,1024]
> repeat 1!1(0..10);
(1,1,1,1,1,1,1,1,1,1,1]

> cycle [0,1]!!(0..10);
[0,1,0,1,0,1,0,1,0,1,0]

Moreover, list comprehensions can draw values from streams and return the appropriate
stream result:

> let rats = [m,n-m | n=2..inf; m=1..n-1; gcd m (n-m) == 1]; rats;
(1,1) :#<thunk 0xb5d54950>

> rats!!(0..10);
[(1,1),(1,2),(2,1),(1,3),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(5,1)1]

We can also rewrite our prime sieve so that it generates the infinite stream of all prime num-
bers:

all_primes = sieve (2..inf) with
sieve (p:qs) = p : sieve [q | 9 = qs; q mod p] &;
end;

Note that we can omit the empty list case of sieve here, since the sieve now never becomes
empty. Example:

1.5.13 Lazy Evaluation and Streams 109

Pure Language and Library Documentation, Release 0.64

> let P = all_primes;

> P!1(0..20);
[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73]
> P1299;

1987

You can also just print the entire stream. Note that this sieve algorithm isn’t tail-recursive,
so the following will eventually result in a stack overflow. But this will take a while, so you
may want to hit Ctrl-c when you get bored:

> using system;
> do (printf "%d\n") all_primes;
2

3
5

It’s also possible to convert an ordinary list to a stream:

> stream (1..10);
1:#<thunk 0x7f2692a0f138>

This may seem like a silly thing to do, because the original list is already fully known before-
hand. But this transformation allows us to traverse the list in a lazy fashion, which can be
useful if the list is employed in a list comprehension or processed by functions such as cat
and map. For instance, we can use this to rewrite the fringe function from The Same-Fringe
Problem so that it calculates the fringe in a lazy fashion:

lazyfringe t = if listp t then catmap lazyfringe (stream t) else [t];

Recall that the fringe of a tree is the list of its leaves in left-to-right order. The tree itself
is represented as a nested list, to which lazyfringe applies stream recursively so that the
fringe becomes a stream whose elements are only produced on demand:

> lazyfringe [[a,b]l,c,[[d]l],e,[f,[[g,h]1]11];
a:#<thunk 0x7f127fc1f090>

> list ans;

[a,b,c,d,e,f,qg,h]

Hence a simple syntactic equality check now suffices to solve the same-fringe problem in
an efficient way. For instance, consider the following sample trees from The Same-Fringe
Problem:

let t1
let t2
let t3

[[a,b],c,[[d]],e, [f,[[g,h]]]];
la,b,c,[[d],[],e]l,[f,[g,[h]1]]];
[[a,b],d, [[c]],e, [f,[[9,h]1]]];

Let’s also bind the fringes to some variables so that we can check which parts actually get
evaluated:

let 11
let 12

lazyfringe t1;
lazyfringe t2;

110 1.5 Examples

Pure Language and Library Documentation, Release 0.64

let 13 = lazyfringe t3;

Now comparing 13 and 12 we get:

> 13 === 12; 13; 12;

0

a:b:d:#<thunk 0x7fd308116178>
a:b:c:#<thunk 0x7fd308116060>

As you can see, the two fringes were only constructed as far as needed to decide that they
differ. Of course, if we compare 11 and 12 then the fringes will still be fully constructed
before we find that they’re equal:

> 11 === 12; 11; 12;
1

[a,b,c,d,e,f,qg,h]
[a,b,c,d,e,f,qg,h]

But this doesn’t really matter if we construct the fringes as temporary values, as in:

> fringe tl1 === fringe t2;

Now only the parts of the fringes are in memory which are currently under scrutiny as the
‘===" operator passes over them; the prefixes which have already been found to be equal
can be garbage-collected immediately. Moreover, the ‘===" operator is tail-recursive so that
the entire equality test can be executed in constant stack space. This gives us an easier way
to solve the same-fringe problem which has pretty much the same benefits as our earlier
solution using continuations. The latter might still be considered more elegant, because it
works without actually constructing the fringes at all. But the solution using lazy evaluation
is certainly much simpler.

1.5.14 Matrices and Vectors

Pure has a versatile matrix data structure offering compact storage and efficient random ac-
cess to its members. Pure matrices work pretty much like in MATLAB or Octave, except
that indexes are zero-based and elements are stored in C’s row-major rather than Fortran’s
column-major format. They are also binary-compatible with the GNU Scientific Library
(GSL) so that they can readily be passed to GSL functions for doing numeric calculations.

Pure offers a number of basic matrix operations, such as matrix construction, pattern match-
ing, indexing, slicing, as well as getting the size and dimensions of a matrix. It does not
supply built-in support for matrix arithmetic and other linear algebra algorithms, but it’s
easy to roll your own if desired, as we’ll see below. (Usually this won't offer the same per-
formance as the GSL and other carefully optimized C and Fortran routines, however. So if
you need to do some heavy-duty number crunching then you might want to take a look at
the pure-gsl module available at the Pure website, which is an ongoing project to make the
GSL functions available in Pure.)

Matrices are denoted using curly braces in Pure:

1.5.14 Matrices and Vectors 111

Pure Language and Library Documentation, Release 0.64

> let x = {1,2,3;4,5,6}; Xx;
{1,2,3;4,5,6}

Note that the semicolon is used to separate different rows, while the elements inside each
row are separated with commas. Thus the above denotes a 2x3 matrix (2 rows, 3 columns).
The dim function lets you check the dimensions, while the ‘#’ operator gives the total number
of elements:

> dim x; #x;
2,3

6

There’s no separate data type for vectors; row and column vectors are simply represented as
1 x n and n x 1 matrices, respectively:

> dim {1,2,3}; dim {1;2;3};
1,3
3,1

Singleton and empty matrices can be denoted as follows:

> dim {1}; dim {};
1,1
0,0

The transpose function turns columns into rows and vice versa; in particular, you can also
use this to convert between row and column vectors:

> transpose X;

{1,4;2,5;3,6}

> transpose {1,2,3}; transpose {1;2;3};
{1;2;3}

{1,2,3}

Note that matrices are immutable in Pure, so matrix functions like transpose always return a
new matrix, leaving the original matrix unchanged. (If you need to modify matrices in-place
for efficiency, then you can use the GSL or other C or Fortran functions.)

You can change the dimensions of a matrix with the redim function, provided that the size
stays the same. So, for instance, we can turn the matrix x into a row vector as follows:

> redim (1,6) Xx;
{1,2,3,4,5,6}

Again, this doesn’t change the original matrix, but returns a new matrix with the same con-
tents and the requested dimensions. This operation also allows you to change the dimen-
sions of an empty matrix which, as we’ve seen above, has dimensions 0,0 by default. Of
course, this requires that either the number of rows or columns is still zero. For instance:

> redim (3,0) {};
{

> dim ans;

3,0

112 1.5 Examples

Pure Language and Library Documentation, Release 0.64

Another way to do this is to just construct a zero matrix with zero rows or columns directly,
see below. (Note that these different kinds of empty matrices are needed to represent the
corner cases. E.g., a linear mapping from 3-dimensional vectors to the zero vector space
corresponds to a 0x3 matrix which yields a 3x0 matrix when transposed.)

A number of other specific conversion operations are available, such as rowvector and
colvector which convert a matrix to a row or column vector, respectively, or diag which
extracts the main diagonal of a matrix:

> rowvector Xx;
{1,2,3,4,5,6}
> colvector x;
{1;2;3;4;5;6}
> diag x;

{1,5}

You can also extract the rows and columns of a matrix, which yields a list of the correspond-
ing row and column vectors, respectively:

> rows X; cols Xx;
[{1,2,3},{4,5,6}]
[{1;4},{2;5},{3;6}]

There are a number of other operations which convert between matrices and different kinds
of aggregates; please check the Matrix Functions section in the Pure Library Manual for details.

/II

Element access uses the index operator “!”. You can either specify a pair (i,j) of row and
column indices, or a single index i which treats the entire matrix as a single vector in row-
major order:

> x!(0,2);

3

> x!3;

4

Slicing is done with the “! " operator. The index range can be specified in different ways.
First, a pair of lists of row and column indices cuts a rectangular slice from the matrix:

> x!1(0..1,1..2);
{2,3;5,6}

Second, a pair of a list and a row or column index cuts slices from individual rows or
columns:

> x!1(0,1..2); x!1(0..1,2);
{2,3}
{3;6}

Third, a list of pairs of row and column indices, or a list of element indices gives a row vector

with all the corresponding elements:

> x!1[(0,2),(1,2)];
{3,6}

1.5.14 Matrices and Vectors 113

Pure Language and Library Documentation, Release 0.64

> x!1(2..3);
{3,4}

While most of the slices above are contiguous (a case which the prelude optimizes for), you
can also specify indices in any order, possibly with duplicates. So we may not only cut
submatrix slices, but also permute and/or copy rows and columns of a matrix along the
way:

> x!1([1,0,11,0..2);
{4,5,6;1,2,3;4,5,6}

Matrices can also be constructed from submatrices by arranging the submatrices in rows
or columns. In fact, the curly braces accept any combination of submatrices and scalars,
provided that all dimensions match up:

> {1,{2,3};{4,5},6};
{1,2,3;4,5,6}
> {{1;4},{2,3;5,6}};
{1,2,3;4,5,6}
> {{1;2;3},{4:;5;6}};
{1,4;2,5;3,6}

The end result must be a rectangular matrix, however, otherwise you’ll get an exception
indicating a submatrix whose dimensions don’t match:

> {1,{2,3};{4,5}};
<stdin>, line 24: unhandled exception ’'bad_matrix_value {4,5}’
while evaluating '{1,{2,3};{4,5}}'

This “splicing” of submatrices is especially useful when doing linear algebra, where matrices
are often composed from smaller “block matrices” or vectors; we’ll see an example of this
later. (Sometimes this behaviour also gets in the way, and thus there are ways to disable it;
see Symbolic Matrices below.)

Pure actually provides several different types of numeric matrices, which correspond to
the different GSL matrix types for integer, floating point and complex numbers. (Note that
complex numbers aren’t a built-in data type in Pure, but there are ways to specify this kind
of numbers and perform calculations with them; see the math module for details.) Which
type of matrix is created by the curly braces depends on the element types. Homogeneous
matrices which contain only int, double or complex values yield the corresponding type
of GSL matrix. Matrices can also hold any other type of Pure value or an arbitrary mix of
values, in which case they become symbolic matrices; we’ll discuss these later.

The functions imatrix, dmatrix and cmatrix can be used to convert between the different
kinds of numeric matrices. For instance:

> dmatrix {1,2,3;4,
{1.0,2.0,3.0;4.0,5
> imatrix ans;
{1,2,3;4,5,6}
> cmatrix ans;

5,6};
,5.0,6.0}

114 1.5 Examples

Pure Language and Library Documentation, Release 0.64

{1.0+:0.0,2.0+:0.0,3.0+:0.0;4.0+:0.0,5.0+:0.0,6.0+:0.0}
> dmatrix ans;
{1.0,0.0,2.0,0.0,3.0,0.0;4.0,0.0,5.0,0.0,6.0,0.0}

(Note that the latter conversion turns a complex into a double matrix, interleaving the real
and imaginary parts of the original matrix.)

The same functions can also be used to construct zero matrices with given dimensions:

> imatrix (2,3);
{0,0,0;0,0,0}

> dmatrix (2,2);
{0.0,0.0;0.0,0.0}
> cmatrix (1,1);
{0.0+:0.0}

As already mentioned, this also gives you a direct way to create empty matrices with differ-
ent dimensions. For instance:

> imatrix (0,3); dim ans;

{}
0,3

The prelude offers matrix versions of the common list operations like map, foldl, zip etc.,
which provide a way to implement common matrix operations. E.g., multiplying a matrix x
with a scalar a amounts to mapping the function (a*) to x, which can be done as follows:

> type scalar x = ~matrixp x;

> a::scalar *x x::matrix = map (ax) Xx;
> 2x{1,2,3;4,5,6};

{2,4,6;8,10,12}

Note that the matrix type tag or the matrixp predicate can be used to restrict a variable
to matrix values. (The prelude provides a few other types and corresponding predicates
for various specific kinds of matrices, see the Pure Library Manual for details.) In addition,
we also introduced a convenience type scalar for non-matrix values here, so that we can
distinguish scalar from matrix multiplication which will be discussed below.

Matrix addition and other element-wise operations can be realized using zipwith, which
combines corresponding elements of two matrices using a given binary function:

> x::matrix + y::matrix = zipwith (+) x y if dim x == dim y;
> {1,2,3;4,5,6}+{1,2,1;3,2,3};
{2,4,4;7,7,9}

Another way to define matrix functions in Pure is to employ a matrix pattern. The Pure
language has built-in support for these, so that they work like the other kinds of patterns
we’ve already encountered. For instance, to compute the dot product of two 2D vectors, you
may write something like:

> {x1,y1}*x{x2,y2} = x1xx2+ylxy2;
> {2,3}*{1,4};

1.5.14 Matrices and Vectors 115

Pure Language and Library Documentation, Release 0.64

14

Or, to compute the determinant of a 2x2 matrix:

> det {a,b;c,d} = axd-bxc;
> det {1,2;3,4};
-2

These patterns are convenient if the dimensions of the involved matrices are small and
known beforehand. If this isn’t the case then it’s better to use matrix comprehensions in-
stead, which work with arbitrary dimensions and make it easy to express many simple kinds
of algorithms which would typically be done using for loops in conventional programming
languages.

Matrix comprehensions work pretty much like list comprehensions, but with a special twist:
if values are drawn from lists then the generator clauses alternate between row and column
generation. (More precisely, the last generator, which varies most quickly, yields a row, the
next-to-last one a column of these row vectors, and so on.) This makes matrix comprehen-
sions resemble customary mathematical notation very closely. For instance, here is how we
can define an operation to create a square identity matrix of a given dimension (note that the
i==j term is just a Pure idiom for the Kronecker symbol):

>eyen={i==j | 1 =1..n; j = 1..n};
> eye 3;
{1,0,0;0,1,0;0,0,1}

Of course, matrix comprehensions can also draw values from other matrices instead of lists.
In this case the block layout of the component matrices is preserved. For instance:

> {x,y | x ={1,2}; y = {a,b;c,d}};
{(1,a),(1,b),(2,a),(2,b);(1,c),(1,d),(2,c),(2,d)}

Note that a matrix comprehension involving filters may fail because the filtered re-
sult isn’t a rectangular matrix any more. E.g., {2*x|x={1,2,3,-4};x>0} works, as does
{2xx|x={-1,2;3,-4}; x>0}, but {2*x|x={1,2;3,-4};x>0} doesn’t because the rows of the
result matrix have different lengths.

As a slightly more comprehensive example (no pun intended!), here is a definition of matrix
multiplication in Pure:

x::matrix * y::matrix = {dot u v | u = rows x; v = cols y} with
dot u v = foldl (+) 0 $ zipwith (*) u (rowvector v);
end if m==n when _,m = dim x; n,_ = dim y end;

The basic building block in this example is the dot product of two vectors, which is defined
as a local function. The matrix product is obtained by simply calculating the dot product of
all the rows of x with all the columns of y. To make this work, the rows of x should be the
same length as the columns of y, we check this condition in the guard of the rule. Let’s give
ita try:

116 1.5 Examples

Pure Language and Library Documentation, Release 0.64

> {1,0;0,1}«{1,2;3,4};
{1,2;3,4}

> {0,1;1,0}x{1,2;3,4};
{3,4;1,2}

> {0,1;1,0;1,1}*{1,2,3;4,5,6};
{4,5,6;1,2,3;5,7,9}

> {1,2;3,4}*{1;1};

{3;7}

Well, that was easy. So let’s take a look at a more challenging example, Gaussian elimination,
which can be used to solve systems of linear equations. The algorithm brings a matrix into
“row echelon” form, a generalization of triangular matrices. The resulting system can then
be solved quite easily using back substitution.

Here is a Pure implementation of the algorithm. Note that the real meat is in the pivoting
and elimination step (step function) which is iterated over all columns of the input matrix.
In each step, x is the current matrix, i the current row index, j the current column index, and
p keeps track of the current permutation of the row indices performed during pivoting. The
algorithm returns the updated matrix x, row index i and row permutation p.

gauss_elimination x::matrix = p,x
when n,m = dim x; p,_,x = foldl step (0..n-1,0,x) (0..m-1) end;

// One pivoting and elimination step in column j of the matrix:
step (p,1i,x) j
= if max_x==0 then p,i,x
else
// updated row permutation and index:
transp i max_i p, i+1,
{// the top rows of the matrix remain unchanged:
x!'1(0..1i-1,0..m-1);
// the pivot row, divided by the pivot element:
{x!(i,1)/x!(1,]) | 1=0..m-1};
// subtract suitable multiples of the pivot row:
{x!(k, 1) -x"(k,j)*x!(i,1)/x!(i,j) | k=i+l..n-1; 1=0..m-1}}
when
n,m = dim x; max_i, max_x = pivot i (col x j);
x = if max_x>0 then swap x i max_i else x;

end with
pivot i x = foldl max (0,0) [j,abs (x!j)|j=1..#x-1];
max (i,x) (j,y) = if x<y then j,y else i, x;

end;

Please refer to any good textbook on numerical mathematics for a closer description of the
algorithm. But here is a brief rundown of what happens in each elimination step: First we
find the pivot element in column j of the matrix. (We're doing partial pivoting here, i.e.,
we only look for the element with the largest absolute value in column j, starting at row i.
That’s usually good enough to achieve numerical stability.) If the pivot is zero then we're
done (the rest of the pivot column is already zeroed out). Otherwise, we bring it into the
pivot position (swapping row i and the pivot row), divide the pivot row by the pivot, and
subtract suitable multiples of the pivot row to eliminate the elements of the pivot column in

1.5.14 Matrices and Vectors 117

Pure Language and Library Documentation, Release 0.64

all subsequent rows. Finally we update i and p accordingly and return the result.

In order to complete the implementation, we still need the following little helper functions
to swap two rows of a matrix (this is used in the pivoting step) and to apply a transposition
to a permutation (represented as a list):

swap X 1 j = x!!(transp i j (0..n-1),0..m-1) when n,m = dim X end;
transp 1 j p = [p!'tr k | k=0..#p-1]
with tr k = if k==i then j else if k==j then i else k end;

Finally, let us define a convenient print representation of double matrices a la Octave (the
meaning of the __show__ function is explained in Pretty-Printing):

using systenm;

__show__ x::matrix

= strcat [printd j (x!(i,j))]|i=0..n-1; j=0..m-1] + "\n"

with printd @ = sprintf "\n%10.5f"; printd _ = sprintf "%10.5f" end
when n,m = dim x end if dmatrixp x;

Example:

> let x = dmatrix {2,1,-1,8; -3,-1,2,-11; -2,1,2,-3};
> X; gauss_elimination x;

2.00000 1.00000 -1.00000 8.00000

-3.00000 -1.00000 2.00000 -11.00000

-2.00000 1.00000 2.00000 -3.00000

[1’2’0]1
1.00000 0.33333 -0.66667 3.66667
0.00000 1.00000 ©0.40000 2.60000

0.00000 0.00000 1.00000 -1.00000

1.5.15 Symbolic Matrices

As already mentioned, matrices may contain not just numbers but any kind of Pure values,
in which case they become symbolic matrices. For instance:

> {1,2.0,3L;a,b,c};
{1,2.0,3L;a,b,c}

The smatrixp predicate gives you a quick way to check whether a matrix is a symbolic one:

> smatrixp ans;
1

Note that this may not always be obvious. For instance, you can use the smatrix function to
explicitly convert a numeric matrix:

> smatrix {1,2;3,4};
{1,2;3,4}

This still looks the same as the original matrix, but smatrixp reveals that it’s in fact a sym-
bolic matrix:

118 1.5 Examples

Pure Language and Library Documentation, Release 0.64

> smatrixp ans;
1

Also note that the empty matrix is by default a symbolic matrix, as are matrices containing
bigints:

> smatrixp {};

1

> smatrixp {1L,2L;3L,4L};
1

However, you can easily convert these to a numeric type if needed, e.g.:

> dmatrix {1L,2L;3L,4L};
{1.0,2.0;3.0,4.0}

Symbolic matrices are a convenient data structure for storing arbitrary collections of values
which provides fast random access to its members. In particular, they can also be nested,
and thus multidimensional tensors or arrays of arbitrary dimension can be realized as nested
symbolic vectors. However, you have to be careful when constructing such values, because
the {. ..} construct normally combines submatrices to larger matrices. For instance:

> {{1,2},{3,4}};
{1,2,3,4}

One way to inhibit this splicing of the submatrices in a larger matrix is to use the quote
operator (cf. The Quote):

> "{{1,2},{3,4}};
{{1,2},4{3,4}}

Note that this result is really different from {1,2;3,4}. The latter is a 2x2 integer matrix,
while the former is a symbolic vector a.k.a. 1x2 matrix whose elements happen to be two
integer vectors. So a double index will be required to access the subvector elements:

> ans!0!1;
2

You can also match these values with a nested matrix pattern, e.g.:

let {{a,b},{c,d}} = "{{1,2},{3,4}};
a c,d;
2 4

= VvV Vv

Ibl
2,3

12

Unfortunately, the quote operator in fact inhibits evaluation of all embedded subterms which
may be undesirable if the matrix expression contains arithmetic (as in ' {{1+1,2%3}}), so this
method works best for constant matrices. A more general way to create a symbolic vector
of matrices is provided by the vector function from the prelude, which is applied to a list of
the vector elements as follows:

> vector [{1,2},{3,4}];
{{1,2},{3,4}}

1.5.15 Symbolic Matrices 119

Pure Language and Library Documentation, Release 0.64

Calls to the vector function can be nested to an arbitrary depth to obtain higher-dimensional
“arrays”:

> vector [vector [{1,2}],vector [{3,4}1];
{{{1,2}},{{3,4}}}

This obviously becomes a bit unwieldy for higher dimensions, but Pure 0.56 and later pro-
vide the following shorthand notation:

> {[{1,2},{3,4}|};
{{1,2},{3,4}}

> {[{I1{1,2}]},{1{3,4}|}I};
{{{1,2}},{{3,4}}}

This makes it much more convenient to denote nested vector values. Note that the {| |}
construct doesn’t use any special magic, it’s just a standard outfix operator implemented as
a Pure macro. For more details please check the description of the non-splicing vector brackets
in the Pure Library Manual.

1.5.16 Record Data

Symbolic matrices also provide a means to represent simple record-like data, by encoding
records as symbolic vectors consisting of “hash pairs” of the form key => value. This kind
of data structure is very convenient to represent aggregates with lots of different compo-
nents. Since the components of records can be accessed by indexing with key values, you
don’t have to remember which components are stored in which order, just knowing the keys
of the required members is enough. In contrast, tuples, lists and other kinds of constructor
terms quickly become unwieldy for such purposes.

The keys used for indexing the record data must be either symbols or strings, while the
corresponding values may be arbitrary Pure values. The prelude provides some operations
on these special kinds of matrices, which let you retrieve vector elements by indexing and
perform non-destructive updates, see the Record Functions section in the Pure Library Manual
for details. Here are a few examples which illustrate how to create records and work with
them:

> let r = {x=>5, y=>12};
> recordp r, member r x;
1,1

> rly; rll[y,x];

12

{12,5}

> insert r (x=>99);
{x=>99,y=>12}

> insert ans (z=>77);
{x=>99,y=>12,z=>77}

> delete ans z;
{x=>99,y=>12}

Records can also be nested:

120 1.5 Examples

Pure Language and Library Documentation, Release 0.64

> let r = {a => {b=>1,c=>2}, b => 2};
> rla, rlb, rlalb;
{b=>1,c=>2},2,1

Note the use of the “hash rocket” => which denotes the key=>value associations in a record.
The hash rocket is a constructor declared as an infix operator in the prelude, see the Hash
Pairs section in the Pure Library Manual for details. There’s one caveat here, however. Since
neither ‘=>" nor ! treat their key operand in a special way, you'll have to take care that the
key symbols do not evaluate to something else, as might be the case if they are bound to a
global or local variable or parameterless function:

> let u = 99;
> {u=>u};
{99=>99}

In the case of global variables and function symbols, you might protect the symbol with a
quote (see The Quote):

> {"u=>u};
{u=>99}

> ans!'u;
99

However, even the quote doesn’t save you from local variable substitution:

> {'u=>u} when u = 99 end;
{99=>99}

In such cases you'll either have to rename the local variable, or use the prelude function val
to quote the symbol:

> {'u=>v} when v = 99 end;
{u=>99}

> {val "u"=>u} when u = 99 end;
{u=>99}

It’s also possible to directly use strings as keys instead, which may actually be more conve-
nient in some cases:

> let r = {"x"=>5, "y"=>12};
> keys r; vals r;

{"x","y"}

{5,12}

> update r "y" (r!'"y"+1);
{"x"=>5,"y"=>13}

You can also mix strings and symbols as keys in the same record (but note that strings and
symbols are always distinct, so y and "y" are really two different keys here):

> insert r (y=>99);
'{“X"=>5, ||y||=>12’ y=>99}

1.5.16 Record Data 121

Pure Language and Library Documentation, Release 0.64

As records are in fact just special kinds of matrices, the standard matrix operations can be
used on record values as well. For instance, the matrix constructor provides an alternative
way to quickly augment a record with a collection of new key=>value associations:

> let r = {x=>5, y=>12};

> let r = {r, x=>7, z=>3}; r;
{x=>5,y=>12,x=>7,z=>3}

> rix, rlz;

7,3

> delete r x;
{x=>5,y=>12,z=>3}

> ans!x;

5

As the example shows, this may produce duplicate keys, but these are handled gracefully;
indexing and updates will always work with the last association for a given key in the record.
If necessary, you can remove duplicate entries from a record as follows; this will only keep
the last association for each key:

> record r;
{x=>7,y=>12,z=>3}

In fact, the record operation not only removes duplicates, but also orders the record entries
by keys. This produces a kind of normalized representation which is useful if you want to
compare or combine two record values irrespective of the ordering of the fields. For instance:

> record {x=>5, y=>12} === record {y=>12, x=>5};
1

The record function can also be used to construct a normalized record directly from a list or
tuple of hash pairs:

> record [x=>5, x=>7, y=>12];
{x=>7,y=>12}

Other matrix operations such as map, foldl, etc., and matrix comprehensions can be ap-
plied to records just as easily. This enables you to perform bulk updates of record data in
a straightforward way. For instance, here’s how you can define a function maprec which
applies a function to all values stored in a record:

> maprec f = map (\(u=>v) -> u=>f v);
> maprec (*2) {x=>5,y=>12};
{x=>10,y=>24}

Another example: The following ziprec function collects pairs of values stored under com-
mon keys in two records (we also normalize the result here so that duplicate keys are always
removed):

> ziprec x y = record {u=>(x'u,y'u) | u = keys x; member y u};
> ziprec {a=>3,x=>5,y=>12} {x=>10,y=>24,z=>7};
{x=>(5,10),y=>(12,24)}

122 1.5 Examples

Pure Language and Library Documentation, Release 0.64

Thus the full power of generic matrix operations is available for records, which turns them
into a much more versatile data structure than records in conventional programming lan-
guages, which are usually limited to constructing records and accessing or modifying their
components.

Note that since the values stored in records can be arbitrary Pure values, you can also have
records with mutable components by making use of Pure’s expression references. For instance:

> let r = {x=>ref 1,y=>ref 2}; maprec get r;

{x=>1,y=>2}

> put (r!x) 99; maprec get r;
99

{x=>99,y=>2}

Another interesting application of records are the “virtual method tables” used in object-
oriented programming. Pure has a built-in __locals__ macro which captures the environ-
ment of local functions at the point of the call and returns it as a list of hash pairs of function
symbols and the corresponding closures. We can readily convert this into a record data
structure which can be used as a virtual method table. For instance:

> record __locals__ with f x = x+1 end;
{f=>f}

> (ans!f) 99;

100

Here is a little helper macro that we can use to turn the virtual method table into an anony-
mous function which, when applied to a symbol, returns the appropriate closure:

def obj = (\x -> vt!x) when
vt = record __locals__;
end;

Continuing our example from Local Functions and Variables, we can now implement the
point object as follows:

point (x,y) obj with

coords () = get x,get y;

move (dx,dy) = put x (get x+dx), put y (get y+dy);
end when

x,y = ref x,ref y;
end;

Note that obj really needs to be implemented as a macro so that its body is inserted into
the point function and the _locals__ call is executed in the context of the local function
environment there. (A macro is like a function which gets evaluated at compile time; see the
Macros section for details.) Also note that we changed the coords “method” so that it takes a
dummy parameter () now; this prevents premature evaluation of the closure. If coords was
a parameterless function then its value would be fixed at the time we construct the virtual
method table, which is not what we want here.

Now we can write:

1.5.16 Record Data 123

Pure Language and Library Documentation, Release 0.64

et p = point (1,2);
coords ();

1

p

2

p move (2,3);
5

p coords ();
5

This provides us with an interesting way to represent stateful objects which works very
much like object-oriented programming. What’s still missing here is the inheritance of meth-
ods from other objects, but this can now be done by just combining virtual method tables
using the record operations we’ve already discussed above; we leave this as an exercise for
the interested reader.

1.5.17 The Quote

We’ve already seen some uses of the quote in previous examples, so let’s have a closer look
at it now. As described in Special Forms, the quote operation quotes an expression, so that
it can be passed around and manipulated freely until its value is needed, in which case you
can pass it to the eval function to obtain its value. For instance:

> let x = '(2%42427°12); X;
2%42+42712

> eval x;

4180.0

Lisp programmers will be well familiar with this operation which enables some powerful
metaprogramming techniques. However, there are some notable differences to Lisp’s quote.
In particular, quote only inhibits the evaluation of global variables, local variables are substi-
tuted as usual:

> (\x -> "(2*x+1)) 99;

2%99+1

> foo x = "(2%x+1);

> foo 99; foo $ '(7/y);

2x99+1

2x(7/y)+1

> '(x+1) when x = ’'(2x3) end;
2x3+1

> '(2%42+2”n) when n = 12 end;
2%42+27°12

Local parameterless functions are treated in the same fashion:

> '(2%42+2”n) with n = 12 end;
2x42+2712

Note that, in contrast, for global variables (and functions) we have:

124 1.5 Examples

Pure Language and Library Documentation, Release 0.64

> let n = 12;
> " (2%42+27™n);
2%42+427n

This discrepancy may come as a surprise (or even annoyance) to real Lisp weenies, but it
does have its advantages. As illustrated in the examples above, local variable substitution
makes it easy to fill in the variable parts in a quoted “template” expression, without any
need for an arguably complex tool like Lisp’s “quasiquote”. (But note that it is quite easy to
define the quasiquote in Pure if you want it. See the Recursive Macros section for a simplified

version; a full implementation can be found in the Pure library.)

If you do need to quote a symbol which is already being used as a local variable or function
in the current context, you can do this by supplying the symbol as a string to the prelude
function val:

> val "x"+x when x = 99 end;
X+99

Also note that while local functions are always substituted in a quoted expression, applica-
tions involving local functions can still be quoted:

> 'foo 99 with foo x = 2xx+1 end;
foo 99

> eval ans;

199

The quote also inhibits evaluation inside matrix expressions, including the “splicing” of em-
bedded submatrices:

> '{1,2+3,2%3};
{1,2+3,2%3}
> '{1,{2,3},4};
{1,{2,3},4}

Special expressions (conditionals, lambda and the case, when and with constructs) can be
quoted as well. But since these constructs cannot be directly represented at runtime, the
quote actually produces some ordinary “placeholder” terms for these:

> '"(x+1 when x = '(2%3) end);
x+1 __when__ [x-->"(2%x3)]

> eval ans;

2%3+1

> "(2%42+(f 6 with f n = 2°(2*n) end));
2+%42+(f 6 __with__ [f n-->2"(2%n)])

> eval ans;

4180.0

Note that these placeholders are in fact special built-in macros which reconstruct the special
expression when evaluated. Moreover, special expressions are implicitly quoted when they
occur on the left-hand side of an equation or as an argument of a “quoteargs” macro call.
This is often used to implement macros which manipulate these constructs as literals. For
instance, the following macro swaps the arguments in a lambda:

1.5.17 The Quote 125

Pure Language and Library Documentation, Release 0.64

> #! --quoteargs bar

> def bar (\x y ->z) = __eval__ ('"(\y x -> 2));

> show bar

def bar (__lambda__ [x,y] z) = __eval__ ('__lambda__ [y,x] z);

> baz = bar (\a b -> a-b);
> show baz

baz = \b a -> a-b;

> baz 2 3;

1

The Macros section explains in detail how this meta programming works.

1.6 Declarations

Pure is a very terse language by design. Usually you don’t declare much stuff, you just
define it and be done with it. However, there are a few constructs which let you declare
symbols with special attributes and manage programs consisting of several source modules:

¢ symbol declarations determine “scope” and “fixity” of a symbol;
* interface declarations specify abstract data types;

¢ extern declarations specify external C functions;

* using clauses let you include other scripts in a Pure script;

* namespace declarations let you avoid name clashes and thereby make it easier to man-
age large programs consisting of many separate modules.

These are toplevel elements (cf. Toplevel):

item = symbol_decl | interface_decl | extern_decl
| using_decl | namespace_decl

We defer the discussion of extern declarations to the C Interface section. The other kinds of
declarations are described in the following subsections.

1.6.1 Symbol Declarations

Symbol declarations declare special attributes of a symbol, such as their scope (whether
they are “public” or “private”) and their fixity (for operator symbols). The syntax of these
declarations is as follows:

126 1.6 Declarations

Pure Language and Library Documentation, Release 0.64

symbol_decl

n,.n
’

scope qualified_symbol+
| [scope] fixity qualified_symbol+

n.n

scope u= “public” | “private”
fixity = “nonfix” | “outfix”

| (“infix”|"infix1”|"infixr"”|"prefix”|"”postfix”) precedence
precedence = integer | “(” op ")"

Scope declarations take the following form:

public symbol ...;
private symbol ...;

This declares the listed symbols as public or private, respectively. Each symbol must either
be an identifier or a sequence of punctuation characters. The latter kind of symbols must
always be declared before use, whereas ordinary identifiers can be used without a prior
declaration in which case they are declared implicitly and default to public scope, meaning
that they are visible everywhere in a program. An explicit public declaration of ordinary
identifiers is thus rarely needed (unless you want to declare symbols as members of a specific
namespace, see Namespaces below). Symbols can also be declared private, meaning that the
symbol is visible only in the namespace it belongs to. This is explained in more detail under
Private Symbols in the Namespaces section below.

Note: The declared symbols may optionally be qualified with a namespace prefix, but
since new symbols can only be created in the current namespace, the namespace prefix
must match the current namespace (see Namespaces). Thus the namespace prefix isn’t really
needed, unless you want to declare a symbol which happens to be a reserved Pure keyword
(cf. Lexical Matters). In this specific case, it will be necessary to use a qualified name so that
the symbol isn’t mistaken for a keyword.

Note that to declare several symbols in a single declaration, you can list them all with white-
space in between. The same syntax applies to the other types of symbol declarations dis-
cussed below. (Commas are not allowed as delimiters here, as they may occur as legal sym-
bol constituents in the list of symbols.) The public and private keywords can also be used
as a prefix in any of the special symbol declarations discussed below, to specify the scope of
the declared symbols (if the scope prefix is omitted, it defaults to public).

The following “fixity” declarations are available for introducing special operator symbols.
This changes the way that these symbols are parsed and thus provides you with a limited
means to extend the Pure language at the lexical and syntactical level.

infix level symbol ...;

infix1l level symbol ...;
infixr level symbol ...;
prefix level symbol ...;

postfix level symbol ...;

Pure provides you with a theoretically unlimited number of different precedence levels for
user-defined infix, prefix and postfix operators. Precedence levels are numbered starting at

1.6.1 Symbol Declarations 127

Pure Language and Library Documentation, Release 0.64

0; larger numbers indicate higher precedence. (For practical reasons, the current implemen-
tation does require that precedence numbers can be encoded as 24 bit unsigned machine
integers, giving you a range from 0 to 16777215, but this should be large enough to incur no
real limitations on applications. Also, the operator declarations in the prelude have been set
up to leave enough “space” between the “standard” levels so that you can easily sneak in
new operator symbols at low, high or intermediate precedences.)

On each precedence level, you can declare (in order of increasing precedence) infix (binary
non-associative), infix1 (binary left-associative), infixr (binary right-associative), prefix
(unary prefix) and postfix (unary postfix) operators. For instance, here is a typical excerpt
from the prelude (the full table can be found in the Prelude section of the Pure Library Manual):

infix 1800
infix1l 2200 ;

infixl 2300 * / div mod ;
infixr 2500 ;

prefix 2600

><=>===~=;

> ¥ + A

H*

Note: Unary minus plays a special role in the syntax. Like in Haskell and following math-
ematical tradition, unary minus is the only prefix operator symbol which is also used as an
infix operator, and is always on the same precedence level as binary minus, whose prece-
dence may be chosen freely in the prelude. (The minus operator is the only symbol which
gets that special treatment; all other operators must have distinct lexical representations.)
Thus, with the standard prelude, -x+y will be parsed as (-x)+y, whereas -xx*y is the same
as - (xxy). Also note that the notation (-) always denotes the binary minus operator; the
unary minus operation can be denoted using the built-in neg function.

Instead of denoting the precedence by an explicit integer value, you can also specify an
existing operator symbol enclosed in parentheses. Thus the following declaration gives the
++ operator the same precedence as +:

infixl (+) ++ ;
The given symbol may be of a different fixity than the declaration, but it must have a proper
precedence level (i.e., it must be an infix, prefix or postfix symbol). E.g., the following dec-

laration gives " the same precedence level as the infix ~ symbol, but turns it into a postfix
operator:

postfix (~) ~ ;

Pure also provides unary outfix operators, which work like in Wm Leler’s constraint pro-
gramming language Bertrand. These can be declared as follows:

outfix left right ...;

Outfix operators let you define your own bracket structures. The operators must be given as
pairs of matching left and right symbols (which must be distinct). For instance:

128 1.6 Declarations

Pure Language and Library Documentation, Release 0.64

outfix |: :| BEGIN END;

After this declaration you can write bracketed expressions like |:x:| or BEGIN foo, bar
END. These are always at the highest precedence level (i.e., syntactically they work like paren-
thesized expressions). Just like other operators, you can turn outfix symbols into ordinary
functions by enclosing them in parentheses, but you have to specify the symbols in matching
pairs, such as (BEGIN END).

Pure also has a notation for “nullary” operators, that is, “operators without operands”.
These are used to denote special literals which simply stand for themselves. They are in-
troduced using a nonfix declaration:

nonfix symbol ...;
For instance:

nonfix red green blue;

Semantically, nonfix symbols are a kind of “symbolic constants”. However, it is important
to note the difference to defined constants, which are symbols bound to a constant value by
means of a const definition. In fact, there are some use cases where a symbol may be both
a defined constant and a nonfix symbol, see Constant Definitions in the Caveats and Notes
section for details.

Syntactically, nonfix symbols work just like ordinary identifiers, so they may stand
whereever an identifier is allowed (no parentheses are required to “escape” them). How-
ever, just like other kinds of operators, they may also consist of punctuation (which isn’t
allowed in ordinary identifiers). The other difference to ordinary identifiers is that nonfix
symbols are always interpreted as literals, even if they occur in a variable position on the
left-hand side of a rule. So, with the above declaration, you can write something like:

> foo x = case x of red = green; green = blue; blue = red end;
> map foo [red,green,bluel;
[green,blue, red]

Thus nonfix symbols are pretty much like nullary constructor symbols in languages like
Haskell. Non-fixity is just a syntactic attribute, however. Pure doesn’t enforce that such
values are irreducible, so you can still write a “constructor equation” like the following:

> red = blue;
> map foo [red,green,bluel;
[blue,blue,blue]

Examples for all types of symbol declarations can be found in the prelude which declares a
bunch of standard (arithmetic, relational, logical) operator symbols as well as the list and
pair constructors “:“ and ‘,’, and a few nonfix symbols (true and false, as well as different
kinds of exceptions).

1.6.1 Symbol Declarations 129

Pure Language and Library Documentation, Release 0.64

1.6.2 Interface Types

Besides the “concrete” types already described in the Type Rules section, Pure provides an-
other, more abstract way to characterize a type through the collection of operations it sup-
ports. These interface types work pretty much like in Google’s Go programming language.
They provide a safe form of Duck typing in which the operations available on a type are
stated explicitly, and hence members of the type are always known to provide all of the
listed operations.

An interface declaration gives the type name along with a collection of patterns, the so-called
signature which specifies the manifest operations of the type:

interface_decl “interface” qualified_identifier
q
“with” interface_itemx “end” ";”
pattern ";"
n n

| “interface” qualified_identifier ”;

interface_item

Interfaces thus consist of two kinds of items:

¢ The patterns, which indicate which operations are supported by the type, and which
arguments they expect. This may be anything that can occur as the left-hand side of an
ordinary function definition, cf. General Rules.

¢ The name of another interface type. This causes the signature of the named interface
type to be included in the interface type being defined, which effectively turns the new
interface type into a subtype of the existing one.

The gist of an interface is in its patterns, more precisely: in the pattern variables which have
the name of the interface as a type tag. The precise meaning of the patterns is as follows:

¢ The patterns are matched against the left-hand sides of ordinary function definitions. If
a left-hand side matches, any argument pattern substituted for a variable tagged with
the interface type becomes a “candidate pattern” of the type.

* The type consists of all candidate patterns which can be matched by some candidate
pattern of each interface function. That is, candidate patterns which are only supported
by some but not all of the interface functions, are eliminated.

¢ Finally, all trivial candidate patterns (x where x is just a variable without any type tag,
which thus matches any value) are eliminated as well.

Interface patterns often take a simple form like the following,

interface foo with foo x::foo y z; end;

specifying the number of arguments of the interface function along with the position of the
interface type argument. However, general patterns are permitted, in order to further restrict
the left-hand sides of the function definitions to be taken into consideration. Specifically, note
that type tags other than the interface type must always be matched literally on the left-hand
sides of equations. Thus,

130 1.6 Declarations

http://en.wikipedia.org/wiki/Duck_typing

Pure Language and Library Documentation, Release 0.64

interface foo with foo x::foo y::int; end;
matches any rule of the form
foo x y::int = ...;

but not:

foo x 0 = ...;
foo x y::bar v

(unless bar happens to be an alias of the int type, of course). In such cases it is necessary to
explicitly add these patterns to the interface if you want them to be included.

Interface patterns may contain the interface type tag any number of times, yielding candi-
date patterns for each occurrence of the interface type tag in the pattern. For instance, here
is a quick way to determine the type of all “addable” data structures in the prelude (this
uses the interactive show interface command to list the patterns actually matched by an
interface type, cf. The show Command):

> interface addable with x::addable + y::addable; end;
> show interface addable

type addable x::int;

type addable x::double;

type addable x::bigint;

type addable s::string;

type addable [];

type addable xs@(_:_);

On the other hand, interfaces may also contain “static” patterns which do not include the
interface type as a tag at all, such as:

interface foo with bar x::bar y; end;

These do not contribute anything to the candidate patterns of the type, but do restrict the
type just like the other patterns, in that the type will be empty unless the static patterns are
all “implemented”. In the example above, this means that the foo type will be empty unless
the bar function is defined and takes an element of the bar type as its first argument.

An interface may also be empty, in which case it matches any value. Thus,

interface any with end;

is just a fancy way to define the type:

type any _;

Interfaces can be composed in a piecemeal fashion, by adding more interface patterns. Thus,

interface foo with foo x::foo; end;
interface foo with bar x::foo; end;

is equivalent to:

1.6.2 Interface Types 131

Pure Language and Library Documentation, Release 0.64

interface foo with foo x::foo; bar x::foo; end;

It is also possible to include one interface in another, which effectively establishes a subtype
relationship. For instance, here’s yet another way to define the foo interface above:

interface bar with
bar x::bar;
end;

interface foo with

foo x::foo;
interface bar;
end;

This has the effect of including the signature of bar in foo (while renaming the interface type
tags in the bar signature accordingly):

> show foo
interface foo with
foo x::foo;
bar x::foo;
end;

Note: Including interfaces is a static operation. Only the interface patterns known at the
point of inclusion become part of the including interface; refining the included interface later
has no effect on the set of included patterns. In particular, this also prevents circular interface
definitions.

When composing interfaces in this fashion, it is easy to end up with duplicate interface
patterns from various sources. The compiler removes such duplicates, even if they only
match up to the renaming of variables. For instance:

> show bar foo
interface bar with

bar x::bar;

end;

interface foo with
foo x::foo;
bar x::foo;

end;

> interface baz with
> interface foo; interface bar;
> foo y::baz;
>
>

end;
show baz
interface baz with
foo x::baz;
bar x::baz;
end;

Also note that, despite the obvious similarities between interfaces and classes in object-

132 1.6 Declarations

Pure Language and Library Documentation, Release 0.64

oriented programming, they are really different things. The former are essentially just signa-
tures of functions living elsewhere, whereas the latter also include data layouts and method
implementations. More on the similarities and differences of interfaces and classes can be
found in the Go FAQ.

Let’s now take a look at the example of a stack data structure to see how this all works in
practice:

interface stack with
push s::stack x;

pop s::stack;
top s::stack;
end;

Note the use of the type tag stack in the operation patterns, which marks the positions of
stack arguments of the interface operations. The interface tells us that a stack provides three
operations push, pop and top which each take a stack as their first argument; also, push takes
two arguments, while pop and top just take a single (stack) argument.

This information is all that the compiler needs to figure out which terms are members of the
stack data type. To these ends, the compiler looks at existing definitions of push, pop and
top and extracts the patterns for arguments marked with the stack tag in the interface. The
stack patterns implemented by all of the interface operations make up the stack type; i.e.,
the members of the type are all the instances of these patterns.

Right now our stack type doesn’t have any members, because we didn’t implement the
interface operations yet, so let’s do this now. For instance, to implement stacks as lists, we
might define:

push xs@[] x | push xs@(_:_) X = X:Xs;
pop (x:xs) XS;
top (x:xs) X;

This is also known as “instantiating” the type. In addition, we will need an operation to
create an initial stack value. The following will do for our purposes:

stack xs::list = xs;

This yields a stack with the given initial contents. Let’s give it a go:

> top (push (stack []) 99);
99

Looks good so far. We can also check the actual definition of the type in terms of its type
rules using the show interface command:

> show interface stack
type stack xs@(_:_);

Wait, something seems to be wrong there. The empty list pattern of the push function is
missing, where did it go? Let’s restart the interpreter with warnings enabled (-w) and retype
the above definitions. The compiler then tells us:

1.6.2 Interface Types 133

http://golang.org/doc/go_faq.html#types

Pure Language and Library Documentation, Release 0.64

> show interface stack

warning: interface ’'stack’ may be incomplete

warning: function ’'pop’ might lack a rule for ’'xs@[]’
warning: function ’top’ might lack a rule for ’'xs@[]’
type stack xs@(_:_);

See? A pattern is only considered part of the type if it is supported by all the interface
operations. Since the pop and top operations don’t have any rules for empty list arguments,
empty lists are excluded from the type. We can fix this quite easily by adding the following
“error rules” which handle this case:

> pop [] = throw "empty stack";
> top [] = throw "empty stack";
> show interface stack

type stack xs@[];

type stack xs@(_:_);

This looks fine now, so let’s see how we can put our new stack data structure to good use.
Operations on the type are defined as usual, employing stack as a type tag for stack argu-
ments so that we can be sure that the push, pop and top operations are all supported. For
instance, let’s implement a little RPN (“Reverse Polish Notation”) calculator:

rpn xs::stack ops::list = foldl (call []) xs ops with
call ys xs op = push xs (foldl ($) op ys) if nargs op<=#ys;
call (top xs:ys) (pop xs) op otherwise;

end;

This takes an initial stack xs and a list ops of operands and operations as inputs and returns
the resulting stack after processing ops. Examples:

> rpn (stack []) [10,4,3,(+),2,(*%),(-)];

[-4]

> using math;

> rpn (stack []) [1,2,1n,(/)];

[1.44269504088896]

> rpn (stack []) [4,1,atan,(x)];

[3.14159265358979]

> rpn (stack []) [2,(*)];

<stdin>, line 5: unhandled exception ’'"empty stack"’ while evaluating
"rpn (stack [1) [2,(*)]’

Ok, this is all very nice, but it seems that so far we haven’t done much more than we could
have achieved just as easily with plain lists instead. So what are the benefits of having an
interface type?

First, an interface provides a fair amount of safety. As long as we stick to the interface
functions, we can be sure that the data is capable of carrying out the requested operations.
At the same time, the interface also serves as a valuable piece of documentation, since it tells
us at a glance exactly which operations are supported by the type.

Second, an interface provides data abstraction. We don’t need to know how the interface
operations are implemented, and in fact functions coded against the interface will work

134 1.6 Declarations

Pure Language and Library Documentation, Release 0.64

with any implementation of the interface. For instance, suppose that we’d like to provide a
“bounded stacks” data structure, i.e., stacks which don’t grow beyond a certain limit. These
can be implemented as follows:

push (n,xs@[]) x | push (n,xs@(_:_)) x =
if n>0 then (n-1,x:xs) else throw "full stack";
pop (n,x:xs) = n+l,xs;
top (n,x:xs) = x;
pop (n,[]) = throw "empty stack";
top (n,[]) throw "empty stack";

Note that we represent a bounded stack by a pair (n, xs) here, where xs is the list of elements
and n is the “free space” (number of elements we still allow to be pushed). We also add a
function to construct such values:

bstack n::int xs::list = (n-#xs,xs);

Without any further ado, our little RPN calculator works just fine with the new variation of
the data structure:

> rpn (bstack 3 []) [10,4,3,(+),2,(*),(-)];

2,[-4]

> rpn (bstack 2 []) [10,4,3,(+),2,(*),(-)];

<stdin>, line 7: unhandled exception '"full stack"’ while evaluating
"rpn (bstack 2 []) [10,4,3,(+),2,(*),(-)]"’

While they’re quite useful in general, Pure’s interface types also have their limitations. In
particular, the guarantees provided by an interface are of a purely syntactic nature; the sig-
nature doesn’t tell us anything about the actual meaning of the provided operations, so unit
testing is still needed to ensure certain semantic properties of the implementation. Some
further issues due to Pure’s dynamically typed nature are discussed under Interfaces in the
Caveats and Notes section.

1.6.3 Modules and Imports

Pure doesn’t offer separate compilation, but the following type of declaration provides a
simple but effective way to assemble a Pure program from several source modules.

n.,.n

using_decl := “using” name (”,"” name)x ”;
name = qualified identifier | string

The using declaration takes the following form (note that in contrast to symbol declarations,
the comma is used as a delimiter symbol here):

using name, ...;

This causes each given script to be included in the Pure program at the given point (if it
wasn’t already included before), which makes available all the definitions of the included
script in your program. Note that each included script is loaded only once, when the first
using clause for the script is encountered. Nested imports are allowed, i.e., an imported

1.6.3 Modules and Imports 135

Pure Language and Library Documentation, Release 0.64

module may itself import other modules, etc. A Pure program then basically is the con-
catenation of all the source modules given as command line arguments, with other modules
listed in using clauses inserted at the corresponding source locations.

(The using clause also has an alternative form which allows dynamic libraries and LLVM
bitcode modules to be loaded, this will be discussed in the C Interface section.)

For instance, the following declaration causes the math.pure script from the standard library
to be included in your program:

using math;

You can also import multiple scripts in one go:

using array, dict, set;

Moreover, Pure provides a notation for qualified module names which can be used to denote
scripts located in specific package directories, e.g.:

using examples::libor::bits;

In fact this is equivalent to the following using clause which spells out the real filename of

the script between double quotes (the .pure suffix can also be omitted in which case it is
added automatically):

using "examples/libor/bits.pure";
Both notations can be used interchangeably; the former is usually more convenient, but the
latter allows you to denote scripts whose names aren’t valid Pure identifiers.

Script identifiers are translated to the corresponding filenames by replacing the “:: sym-
bol with the pathname separator ‘/* and tacking on the “.pure’ suffix. The following table
illustrates this with a few examples.

Script identifier Filename

math "math.pure”
examples::libor::bits "examples/libor/bits.pure"
i:pure::examples::hello | "/pure/examples/hello.pure"”

Note the last example, which shows how an absolute pathname can be denoted using a

/

qualifier starting with “: :".

Unless an absolute pathname is given, the interpreter performs a search to locate the script.
The search algorithm considers the following directories in the given order:

¢ the directory of the current script, which is the directory of the script containing the
using clause, or the current working directory if the clause was read from standard
input (as is the case, e.g., in an interactive session);

¢ the directories named in - I options on the command line (in the given order);

¢ the colon-separated list of directories in the PURE_INCLUDE environment variable (in the
given order);

136 1.6 Declarations

Pure Language and Library Documentation, Release 0.64

¢ finally the directory named by the PURELIB environment variable.

Note that the current working directory is not searched by default (unless the using clause
is read from standard input), but of course you can force this by adding the option -I. to the
command line, or by including *.” in the PURE_INCLUDE variable.

The directory of the current script (the first item above) can be skipped by specifying the
script to be loaded as a filename in double quotes, prefixed with the special sys: tag. The
search then starts with the “system” directories (-I, PURE_INCLUDE and PURELIB) instead.
This is useful, e.g., if you want to provide your own custom version of a standard library
script which in turn imports that library script. For instance, a custom version of math.pure
might employ the following using clause to load the math.pure script from the Pure library:

using "sys:math";
// custom definitions go here
log2 x = ln x/ln 2;

The interpreter compares script names (to determine whether two scripts are actually the
same) by using the canonicalized full pathname of the script, following symbolic links to the
destination file (albeit only one level). Thus different scripts with the same basename, such
as foo/utils.pure and bar/utils.pure can both be included in the same program (unless they
link to the same file).

More precisely, canonicalizing a pathname involves the following steps:

* relative pathnames are expanded to absolute ones, using the search rules discussed
above;

¢ the directory part of the pathname is normalized to the form returned by the getcwd
system call;

e the ”.pure” suffix is added if needed;

¢ if the resulting script name is actually a symbolic link, the interpreter follows that link
to its destination, albeit only one level. (This is only done on Unix-like systems.)

The directory of the canonicalized pathname is also used when searching other scripts in-
cluded in a script. This makes it possible to have an executable script with a shebang line
in its own directory, which is then executed via a symbolic link placed on the system PATH.
In this case the script search performed in using clauses will use the real script directory
and thus other required scripts can be located there. This is the recommended practice for
installing standalone Pure applications in source form which are to be run directly from the
shell.

1.6.4 Namespaces

To facilitate modular development, Pure also provides namespaces as a means to avoid name
clashes between symbols, and to keep the global namespace tidy and clean. Namespaces
serve as containers holding groups of related identifiers and other symbols. Inside each
namespace, symbols must be unique, but the same symbol may be used to denote different
objects (variables, functions, etc.) in different namespaces. (Pure’s namespace system was

1.6.4 Namespaces 137

Pure Language and Library Documentation, Release 0.64

heavily inspired by C++ and works in a very similar fashion. So if you know C++ you should
feel right at home and skimming this section to pick up Pure’s syntax of the namespace
constructs should be enough to start using it.)

The global namespace is always available. By default, new symbols are created in this name-
space, which is also called the default namespace. Additional namespaces can be created
with the namespace declaration, which also switches to the given namespace (makes it the
current namespace), so that new symbols are then created in that namespace rather than the
default one. The current namespace also applies to all kinds of symbol declarations, includ-
ing operator and nonfix symbol declarations, as well as extern declarations (the latter are
described in the C Interface section).

The syntax of namespace declarations is captured by the following grammar rules:

namespace_decl “namespace” [name] [brackets] ";”

| “namespace” name [brackets] “with” item+ “end” ”;

n

| “using” “namespace” [name_spec (”,” name_spec)x*]
brackets n= “(" left_op right_op ")"
name_spec u= name ["” (" qualified_symbol+ ")"]

The basic form of the namespace declaration looks as follows (there’s also a “scoped” form
of the namespace declaration which will be discussed in Scoped Namespaces at the end of
this section):

namespace name;
// declarations and definitions in namespace ’name’
namespace;

The second form switches back to the default namespace. For instance, in order to define
two symbols with the same print name foo in two different namespaces foo and bar, you
can write:

namespace foo;
foo x = x+1;
namespace bar;
foo x = x-1;
namespace;

We can now refer to the symbols we just defined using qualified symbols of the form
namespace: :symbol:

> foo::foo 99;
100
> bar::foo 99;
98

This avoids any potential name clashes, since the qualified identifier notation always makes
it clear which namespace the given identifier belongs to.

A namespace can be “reopened” at any time to add new symbols and definitions to it. This
allows namespaces to be created that span several source modules. You can also create

138 1.6 Declarations

”,

!

n

Pure Language and Library Documentation, Release 0.64

several different namespaces in the same module.

Similar to the using declaration, a namespace declaration accepts either identifiers or double-
quoted strings as namespace names. E.g., the following two declarations are equivalent:

namespace foo;
namespace "foo";

The latter form also allows more descriptive labels which aren’t identifiers, e.g.:

namespace "Private stuff, keep out!";

Note that the namespace prefix in a qualified identifier must be a legal identifier, so it isn’t
possible to access symbols in namespaces with such descriptive labels in a direct fashion.
The only way to get at the symbols in this case is with namespace brackets or by using a
namespace or using namespace declaration (for the latter see Using Namespaces below).

Using Namespaces

Since it is rather inconvenient if you always have to write identifiers in their qualified form
outside of their “home” namespace, Pure allows you to specify a list of search namespaces
which are used to look up symbols not in the default or the current namespace. This is done
with the using namespace declaration, which takes the following form:

using namespace namel, name2, ...;
/] ...
using namespace;

As with namespace declarations, the second form without any namespace arguments gets
you back to the default empty list of search namespaces.

For instance, consider this example:

namespace foo;
foo x = x+1;
namespace bar;
foo x = x-1;
bar x = x+1;
namespace;

The symbols in these namespaces can be accessed unqualified as follows:

> using namespace foo;
> foo 99;

100

> using namespace bar;
> foo 99;

98

> bar 99;

100

1.6.4 Namespaces 139

Pure Language and Library Documentation, Release 0.64

This method is often to be preferred over opening a namespace with the namespace declara-
tion, since using namespace only gives you “read access” to the imported symbols, so you
can’t accidentally mess up the definitions of the namespace you're using. Another advan-
tage is that the using namespace declaration also lets you search multiple namespaces at
once:

using namespace foo, bar;

Be warned, however, that this brings up the very same issue of name clashes again:

> using namespace foo, bar;
> foo 99;
<stdin>, line 15: symbol ’'foo’ is ambiguous here

In such a case you'll have to resort to using namespace qualifiers again, in order to resolve
the name clash:

> foo::foo 99;
100

To avoid this kind of mishap, you can also selectively import just a few symbols from a
namespace instead. This can be done with a declaration of the following form:

using namespace namel (syml sym2 ...), name2 ... ;

As indicated, the symbols to be imported can optionally be placed as a whitespace-delimited
list inside parentheses, following the corresponding namespace name. (As with symbol dec-
larations, the symbols may optionally be qualified with a namespace prefix, which must
match the imported namespace here.) For instance:

> using namespace foo, bar (bar);

> foo 99;

100

> bar 99;

100

> bar::foo 99;
98

Note that now we have no clash on the foo symbol any more, because we restricted the
import from the bar namespace to the bar symbol, so that bar: : foo has to be denoted with
a qualified symbol now.

Symbol Lookup and Creation

Pure’s rules for looking up and creating symbols are fairly straightforward and akin to those
in other languages featuring namespaces. However, there are some intricacies involved,
because the rewriting rule format of definitions allows “referential” use of symbols not only
in the “body” (right-hand side) of a definition, but also in the left-hand side patterns. We
discuss this in detail below.

140 1.6 Declarations

Pure Language and Library Documentation, Release 0.64

The compiler searches for symbols first in the current namespace (if any), then in the cur-
rently active search namespaces (if any), and finally in the default (i.e., the global) name-
space, in that order. This automatic lookup can be bypassed by using an absolute namespace
qualifier of the form : : foo: :bar. In particular, : :bar always denotes the symbol bar in the
default namespace, while : : foo: :bar denotes the symbol bar in the foo namespace. (Nor-
mally, the latter kind of notation is only needed if you have to deal with nested namespaces,
see Hierarchical Namespaces below.)

If no existing symbol is found, a new symbol is created automatically, by implicitly declaring
a public symbol with default attributes. New unqualified symbols are always created in the
current namespace, while new qualified symbols are created in the namespace given by the
namespace prefix of the symbol.

Note: Pure’s implicit symbol declarations are a mixed blessing. They are convenient, espe-
cially in interactive usage, but they also let missing or mistyped symbols go unnoticed much
too easily. As a remedy, in the case of qualified symbols the compiler checks that the given
namespace prefix matches the current namespace, in order to catch typos and other silly
mistakes and prevent you from accidentally clobbering the contents of other namespaces.
For instance:

> namespace foo0;

> namespace;

> foo::bar x = 1/x;

<stdin>, line 3: undeclared symbol ’'foo::bar’

To make these errors go away it’s enough to just declare the symbols in their proper name-
spaces.

In addition, you can run the interpreter with the -w option (see Invoking Pure) to check
your scripts for (non-defining) uses of undeclared unqualified function symbols. This is
highly recommended. For instance, in the following example we forgot to import the system
module which defines the puts function. Running the interpreter with -w highlights such
potential errors:

$ pure -w

> puts "bla"; // missing import of system module
<stdin>, line 1: warning: implicit declaration of ’'puts’
puts "bla"

For legitimate uses (such as forward uses of a symbol which is defined later), you can make
these warnings go away by declaring the symbol before using it.

New symbols are also created if a global unqualified (and yet undeclared) symbol is being
“defined” in a rewriting rule or let/const definition, even if a symbol with the same print
name from another namespace is already visible in the current scope. To distinguish “defin-
ing” from “referring” uses of a global symbol, Pure uses the following (purely syntactic)
notions:

¢ A defining occurrence of a global function, macro or type symbol is any occurrence of the

1.6.4 Namespaces 141

Pure Language and Library Documentation, Release 0.64

symbol as the (leftmost) head symbol on the left-hand side of a rewriting rule.

* A defining occurrence of a global variable or constant symbol is any occurrence of the
symbol in a variable position (as given by the “head = function” rule, cf. Variables in
Equations) on the left-hand side of a let or const definition.

¢ All other occurrences of global symbols on the left-hand side, as well as all symbol
occurrences on the right-hand side of a definition are referring occurrences. (Note that
this also subsumes all occurrences of type tags on the left-hand side of an equation.)

The following example illustrates these notions:

namespace foo;

bar (bar x) = bar x;
let x,y = 1,2;
namespace;

Here, the first occurrence of bar on the left-hand side bar (bar x) of the first rule is a defining
occurrence, as are the occurrences of x and y on the left-hand side of the let definition.
Hence these symbols are created as new symbols in the namespace foo. On the other hand,
the other occurrences of bar in the first rule, as well as the *,” symbol on the left-hand side of
the let definition are referring occurrences. In the former case, bar refers to the bar symbol
defined by the rule, while in the latter case the *,” operator is actually declared in the prelude
and thus imported from the global namespace.

The same rules of lookup also apply to type tags on the left-hand side of an equation, but
in this case the interpreter will look specifically for type symbols, avoiding any other kinds
of symbols which might be visible in the same context. Thus, in the following example, the
type tag bar is correctly resolved to bar: :bar, even though the (function) symbol foo: :bar
is visible at this point:

namespace bar;

type bar;

namespace foo;

public bar;

using namespace bar;

foo x::bar = bar x;

show foo::foo

foo::foo x :: bar::bar = foo::bar x;

V V V VYV VYV

Note that special operator (and nonfix) symbols always require an explicit declaration. This
works as already discussed in the Symbol Declarations section, except that you first switch
to the appropriate namespace before declaring the symbols. For instance, here is how you
can create a new + operation which multiplies its operands rather than adding them:

> namespace my;
> infix1l 2200 +;
> Xty = X*y;

> 5+7;

35

Note that the new + operation really belongs to the namespace we created. The + operation

142 1.6 Declarations

Pure Language and Library Documentation, Release 0.64

in the default namespace works as before, and in fact you can use qualified symbols to pick
the version that you need:

> namespace;
> 5+7;

12

>5 11+ 7;
12
>5my::+ 7;
35

Here’s what you get if you happen to forget the declaration of the + operator:

> namespace my;
> Xty = X*y;
<stdin>, line 2: infix1l symbol '+’ was not declared in this namespace

Thus the compiler will never create a new instance of an operator symbol on the fly, an
explicit declaration is always needed in such cases.

Note that if you really wanted to redefine the global + operator, you can do this even while
the my namespace is current. You just have to use a qualified identifier in this case, as follows:

> namespace my;
> X ity = Xxy;
> a+b;

axb

This should rarely be necessary (in the above example you might just as well enter this rule
while in the global namespace), but it can be useful in some circumstances. Specifically, you
might want to “overload” a global function or operator with a definition that makes use of
private symbols of a namespace (which are only visible inside that namespace; see Private
Symbols below). For instance:

> pamespace my;
> private bar;

> bar X y = xxy;
> X ::+y =bar xvy;
> a+b;

axb

(The above is a rather contrived example, since the very same functionality can be accom-
plished much easier, but there are some situations where this method is needed.)

Private Symbols

Pure also allows you to have private symbols, as a means to hide away internal operations
which shouldn’t be accessed directly outside the namespace in which they are declared.
The scope of a private symbol is confined to its namespace, i.e., the symbol is only visible
when its “home” namespace is current. Symbols are declared private by using the private
keyword in the symbol declaration:

1.6.4 Namespaces 143

Pure Language and Library Documentation, Release 0.64

> namespace secret;

> private baz;

> // 'baz’ is a private symbol in namespace ’secret’ here
> baz x = 2%X;

> // you can use ’baz’ just like any other symbol here

> baz 99;

198

> namespace;

Note that, at this point, secret: :baz is now invisible, even if you have secret in the search
namespace list:

> using namespace secret;

> // this actually creates a 'baz’ symbol in the default namespace:
> baz 99;

baz 99

> secret::baz 99;

<stdin>, line 27: symbol ’'secret::baz’ is private here

The only way to bring the symbol back into scope is to make the secret namespace current
again:

> namespace secret;
> baz 99;

198

> secret::baz 99;
198

Namespace Brackets

All the namespace-related constructs we discussed so far only provide a means to switch
namespaces on a per-rule basis. Sometimes it is convenient if you can switch namespaces
on the fly inside an expression. This is especially useful if you want to embed a domain-
specific sublanguage (DSL) in Pure. DSLs typically provide their own system of operators
which differ from the standard Pure operators and thus need to be declared in their own
namespace.

To make this possible, Pure allows you to associate a namespace with a corresponding pair
of outfix symbols. This turns the outfix symbols into special namespace brackets which can
then be used to quickly switch namespaces in an expression by just enclosing a subexpres-
sion in the namespace brackets.

To these ends, the syntax of namespace declarations allows you to optionally specify a pair
of outfix symbols inside parentheses after the namespace name. The outfix symbols to be
used as namespace brackets must have been declared beforehand. For instance:

outfix « »;
namespace foo (« »);
infixr (::7) 7~

144 1.6 Declarations

Pure Language and Library Documentation, Release 0.64

XNy = 2%X+y;
namespace;

The code above introduces a foo namespace which defines a special variation of the (")
operator. It also associates the namespace with the « » brackets so that you can write:

> (a+b)”c+10;
(a+b)”~c+10

> «(a+b)”c»+10;
2x(a+b)+c+10

Note the use of the namespace brackets in the second input line. This changes the meaning
of the ~ operator, which now refers to foo: : ~ instead. Also note that the namespace brackets
themselves are removed from the resulting expression; they are only used to temporarily
switch the namespace to foo inside the bracketed subexpression. This works pretty much
like a namespace declaration (so any active search namespaces remain in effect), but is limited
in scope to the bracketed subexpression and only gives access to the public symbols of the
namespace (like a using namespace declaration would do).

The rules of visibility for the namespace bracket symbols themselves are the same as for any
other symbols. So they need to be in scope if you want to denote them in unqualified form
(which is always the case if they are declared in the default namespace, as in the example
above). If necessary, you can also specify them in their qualified form as usual.

Namespace brackets can be used anywhere inside an expression, even on the left-hand side
of a rule. So, for instance, we might also have written the example above as follows:

outfix « »;
namespace foo (« »);
infixr (::7) *~;
namespace;

«XTY» = 2%X+Y;

Note the use of the namespace brackets on the last line. This rule actually expands to:

X foo::™y = 2xx+y;

The special meaning of namespace brackets can be turned off and back on again at any time
with a corresponding namespace declaration. For instance:

> namespace (« »); // turn off the special meaning of « »
> «(atb)”c»+10;

« (a+b)”c »+10

> namespace foo (« »); // turn it on again

> namespace;

> «(a+b)”c»+10;

2*(a+b)+c+10

(Note that as a side effect these declarations also change the current namespace, so that
we use the namespace; declaration in the second last line to change back to the default
namespace.)

1.6.4 Namespaces 145

Pure Language and Library Documentation, Release 0.64

As shown in the first line of the example above, a namespace brackets declaration without
a namespace just turns off the special processing of the brackets. In order to define a name-
space bracket for the default namespace, you need to explicitly specify an empty namespace
instead, as follows:

> outfix «: :»;

> namespace "" («: :»);
> «(a+h) "« XNy i»»;
2% (a+b)+x"y

As this example illustrates, namespace brackets can also be nested, which is useful, e.g.,
if you need to combine subexpressions from several DSLs in a single expression. In this
example we employ the «:x"y:» subexpression to temporarily switch back to the default
namespace inside the « »-bracketed expression which is parsed in the foo namespace.

Hierarchical Namespaces

Namespace identifiers can themselves be qualified identifiers in Pure, which enables you
to introduce a hierarchy of namespaces. This is useful, e.g., to group related namespaces
together under a common “umbrella” namespace:

namespace my;
namespace my::old;
foo x = x+1;
namespace my::new;
foo x = x-1;

Note that the namespace my, which serves as the parent namespace, must be created before
the my::old and my: :new namespaces, even if it does not contain any symbols of its own.
After these declarations, the my: :old and my: : new namespaces are part of the my namespace
and will be considered in name lookup accordingly, so that you can write:

> using namespace my;
> old::foo 99;

100

> new::foo 99;

98

This works pretty much like a hierarchy of directories and files, where the namespaces play
the role of the directories (with the default namespace as the root directory), the symbols in
each namespace correspond to the files in a directory, and the using namespace declaration
functions similar to the shell’s PATH variable.

Sometimes it is necessary to tell the compiler to use a symbol in a specific namespace, bypass-
ing the usual symbol lookup mechanism. For instance, suppose that we introduce another
global old namespace and define yet another version of foo in that namespace:

namespace old;
foo x = 2xx;
namespace;

146 1.6 Declarations

Pure Language and Library Documentation, Release 0.64

Now, if we want to access that function, with my still active as the search namespace,
we cannot simply refer to the new function as old: :foo, since this name will resolve to
my::old::foo instead. As a remedy, the compiler accepts an absolute qualified identifier of
the form ::o0ld:: foo. This bypasses name lookup and thus always yields exactly the sym-
bol in the given namespace (if it exists; as mentioned previously, the compiler will complain
about an undeclared symbol otherwise):

> old::foo 99;
100

> ::old::foo 99;
198

Also note that, as a special case of the absolute qualifier notation, : : foo always denotes the
symbol foo in the default namespace.

Scoped Namespaces

Pure also provides an alternative scoped namespace construct which makes nested name-
space definitions more convenient. This construct takes the following form:

namespace name with ... end;

The part between with and end may contain arbitrary declarations and definitions, using the
same syntax as the toplevel. These are processed in the context of the given namespace, as if
you had written:

namespace name;
namespace;

However, the scoped namespace construct always returns you to the namespace which was
active before, and thus these declarations may be nested:

namespace foo with
// declarations and definitions in namespace foo
namespace bar with
// declarations and definitions in namespace bar
end;
// more declarations and definitions in namespace foo
end;

Note that this kind of nesting does not necessarily imply a namespace hierarchy as discussed
in Hierarchical Namespaces. However, you can achieve this by using the appropriate quali-
fied namespace names:

namespace foo with
/7 ...
namespace foo::bar with
// ...
end;

1.6.4 Namespaces 147

Pure Language and Library Documentation, Release 0.64

// ...
end;

Another special feature of the scoped namespace construct is that using namespace declara-
tions are always local to the current namespace scope (and other nested namespace scopes
inside it). Thus the previous setting is restored at the end of each scope:

using namespace foo;
namespace foo with
// still using namespace foo here
using namespace bar;
// now using namespace bar
namespace bar with
// still using namespace bar here
using namespace foo;
// now using namespace foo
end;
// back to using namespace bar
end;
// back to using namespace foo at toplevel

Finally, here’s a more concrete example which shows how scoped namespaces might be used
to declare two namespaces and populate them with various functions and operators:

namespace foo with
infixr (::7) 7~
foo x = x+1;
bar x = x-1;
XNy = 2%X+Y;
end;

namespace bar with
outfix <: :>;
foo x = x+2;
bar x = x-2;
end;

using namespace foo(” foo), bar(bar <: :>);

// namespace foo
foo x;
aH

// namespace bar
bar x;
<: X,y >

Pure’s namespaces can thus be used pretty much like “packages” or “modules” in languages
like Ada or Modula-2. They provide a structured way to describe program components
offering collections of related data and operations, which can be brought into scope in a
controlled way by making judicious use of using namespace declarations. They also provide
an abstraction barrier, since internal operations and data structures can be hidden away

148 1.6 Declarations

Pure Language and Library Documentation, Release 0.64

employing private symbols.

Please note that these facilities are not Pure’s main focus and thus they are somewhat limited
compared to programming languages specifically designed for big projects and large teams
of developers. Nevertheless they should be useful if your programs grow beyond a small
collection of simple source modules, and enable you to manage most Pure projects with ease.

1.7 Macros

Macros are a special type of functions to be executed as a kind of “preprocessing stage” at
compile time. In Pure these are typically used to define custom special forms and to perform
inlining of function calls and other kinds of source-level optimizations.

Whereas the macro facilities of most programming languages simply provide a kind of tex-
tual substitution mechanism, Pure macros operate on symbolic expressions and are imple-
mented by the same kind of rewriting rules that are also used to define ordinary functions
in Pure. This makes them robust and easy to use for most common preprocessing purposes.

Syntactically, a macro definition looks just like a function definition with the def keyword in
front of it. Only unconditional rewriting rules are permitted here, i.e., rules without guards
and multiple right-hand sides. However, multiple left-hand sides can be employed as usual
to abbreviate a collection of rules with the same left-hand side, as described in the General
Rules section.

The major difference between function and macro definitions is that the latter are processed
at compile time rather than run time. To these ends, macro calls on the right-hand sides
of function, constant and variable definitions are evaluated by reducing them to normal
form using the available macro rules. The resulting expressions are then substituted for the
macro calls. All macro substitution happens before constant substitutions and the actual
compilation step. Macros can be defined in terms of other macros (also recursively), and are
normally evaluated using call by value (i.e., macro calls in macro arguments are expanded
before the macro gets applied to its parameters).

In the first half of this section we start out with some common uses of macros which should
cover most aspects of macro programming that the average Pure programmer will need.
The remainder of this section then discusses some more advanced features of Pure’s macro
system intended for power users.

1.7.1 Optimization Rules

Let’s begin with a simple example of an optimization rule from the prelude, which eliminates
saturated instances of the right-associative function application operator (you can find this
near the beginning of prelude.pure):

def f $ x = f x;

1.7 Macros 149

Pure Language and Library Documentation, Release 0.64

Like in Haskell, “$" in fact just denotes function application, but it is a low-priority operator
which is handy to write cascading function calls. With the above macro rule, these will be
“inlined” as ordinary function applications automatically. Example:

> foo x = bar $ bar $ 2xx;
> show foo
foo x = bar (bar (2xx));

Note that a macro may have the same name as an ordinary Pure function, which is essential
if you want to inline calls to an existing function. (Just like ordinary functions, the number
of parameters in each rule for a given macro must be the same, but a macro may have a
different number of arguments than the corresponding function.)

When running interactively, you can follow the reduction steps the compiler performs dur-
ing macro evaluation. To these ends, you have to set “tracepoints” on the relevant macros,
using the trace command with the -m option; see Interactive Commands. (This works even
if the interpreter is run in non-debugging mode.) Note that since macro expansion is per-
formed at compile time, you'll have to do this before entering the definitions in which the
macro is used. However, in many cases you can also just enter the right-hand side of the
equation at the interpreter prompt to see how it gets expanded. For instance:

> trace -m $

> bar $ bar $ 2xx;

-- macro ($): bar$2xx --> bar (2x*x)

-- macro ($): bar$bar (2%x) --> bar (bar (2xx))
bar (bar (2xx))

Now let’s see how we can add our own optimization rules. Suppose we’d like to expand
saturated calls of the succ function. This function is defined in the prelude; it just adds 1 to
its single argument. We can inline such calls as follows:

def succ (x+y) = x+(y+l);

def succ x = x+1;

foo x = succ (succ (succ x));
show foo

foo X = x+3;

V V VYV

Again, let’s see exactly what’s going on there:

> trace -m succ

> succ (succ (succ x));

-- macro succ: succ X --> x+1

-- macro succ: succ (x+1) --> x+(1+1)

-- macro succ: succ (x+(1+1)) --> x+(1+1+1)
X+3

Note that the contraction of the subterm 1+1+1 to the integer constant 3 is actually done
by the compiler after macro expansion has been performed. This is also called “constant
folding”, see Constant Definitions in the Caveats and Notes section for details. It is also the
reason that we added the first rule for succ. This rule may seem superflous at first sight, but
actually it is needed to massage the sum into a form which enables constant folding.

150 1.7 Macros

Pure Language and Library Documentation, Release 0.64

Rules like these can help the compiler generate better code. Of course, the above examples
are still rather elementary. Pure macros can do much more elaborate optimizations, but for
this we first need to discuss how to write recursive macros, as well as macros which take
apart special terms like lambdas. After that we’ll return to the subject of optimization rules
in Advanced Optimization below.

1.7.2 Recursive Macros

Macros can also be recursive, in which case they usually consist of multiple rules and make
use of pattern-matching just like ordinary function definitions.

Note: Pure macros are just as powerful as (unconditional) term rewriting systems and thus
they are Turing-complete. This implies that a badly written macro may well send the Pure
compiler into an infinite recursion, which results in a stack overflow at compile time.

As a simple example, let’s see how we can inline invocations of the # size operator on list
constants:

def #[] = 0;
def #(x:xs) = #xs+1;

As you can see, the definition is pretty straightforward; exactly the same rules might also be
used for an ordinary function definition, although the standard library actually implements
a bit differently to make good use of tail recursion. Let’s check that this actually works:

> foo = #[1,2,3,4]1;
> show foo
foo = 4;

Note that the result of macro expansion is actually 0+1+1+1+1 here, you can check that by
running the macro with trace -m #. Constant folding contracts this to 4 after macro expan-
sion, as explained in the previous subsection.

This was rather easy. So let’s implement a more elaborate example: a basic Pure version of
Lisp’s quasiquote which allows you to create a quoted expression from a “template” while
substituting variable parts of the template. (For the sake of brevity, we present a somewhat
abridged version here which does not cover all corner cases. The full version of this macro
can be found as lib/quasiquote.pure in the Pure distribution.)

def quasiquote (unquote x) = X;

def quasiquote (f@_ (splice x)) foldl ($) (quasiquote f) x;
def quasiquote (f@_ x) quasiquote f (quasiquote Xx);
def quasiquote x quote Xx;

(Note the f@_, which is an anonymous “as” pattern forcing the compiler to recognize f as
a function variable, rather than a literal function symbol. See “As” Patterns in the Caveats
and Notes section for an explanation of this trick.)

1.7.2 Recursive Macros 151

Pure Language and Library Documentation, Release 0.64

The first rule above takes care of “unquoting” embedded subterms. The second rule
“splices” an argument list into an enclosing function application. The third rule recurses
into subterms of a function application, and the fourth and last rule takes care of quoting the
“atomic” subterms. Note that unquote and splice themselves are just passive constructor
symbols, the real work is done by quasiquote, using foldl at runtime to actually perform
the splicing. (Putting off the splicing until runtime makes it possible to splice argument lists
computed at runtime.)

If we want, we can also add some syntactic sugar for Lisp weenies. (Note that we cannot
have ’,” for unquoting, so we use *, $" instead.)

prefix 9 * ,$,@ ;
def ‘x = quasiquote x; def ,$x = unquote x; def ,@x = splice x;

Examples:

> ' (2%42+27°12);

2%42+27°12

> 1 (2%42+,%$(2712));

2x42+4096.0

> ‘foo 12 (,@'[2/3,3/4]) (5/6);

foo 1 2 (2/3) (3/4) (5/6)

> ‘foo 1 2 (,@args) (5/6) when args = '[2/3,3/4] end;
foo 1 2 (2/3) (3/4) (5/6)

1.7.3 User-Defined Special Forms

The quasiquote macro in the preceding subsection also provides an example of how you can
use macros to define your own special forms. This works because the actual evaluation of
macro arguments is put off until runtime, and thus we can safely pass them to built-in special
forms and other constructs which defer their evaluation at runtime. In fact, the right-hand
side of a macro rule may be an arbitrary Pure expression involving conditional expressions,
lambdas, binding clauses, etc. These are never evaluated during macro substitution, they
just become part of the macro expansion (after substituting the macro parameters).

Here is another useful example of a user-defined special form, the macro timex which em-
ploys the system function clock to report the cpu time in seconds needed to evaluate a given
expression, along with the computed result:

using systenm;

def timex x = (clock-t0)/CLOCKS_PER_SEC,y when t0 = clock; y = x end;
sum = foldl (+) OL;

timex $ sum (1L..100000L);

.43,5000050000L

©V V VYV

Note that the above definition of timex wouldn’t work as an ordinary function definition,
since by virtue of Pure’s basic eager evaluation strategy the x parameter would have been
evaluated already before it is passed to timex, making timex always return a zero time value.
Try it!

152 1.7 Macros

Pure Language and Library Documentation, Release 0.64

1.7.4 Macro Hygiene

Pure macros are lexically scoped, i.e., the binding of symbols in the right-hand-side of a
macro definition is determined statically by the text of the definition, and macro parameter
substitution also takes into account binding constructs, such as with and when clauses, in
the right-hand side of the definition. Macro facilities with these pleasant properties are also
known as hygienic macros. They are not susceptible to so-called “name capture,” which
makes macros in less sophisticated languages bug-ridden and hard to use.

Macro hygiene is a somewhat esoteric topic for most programmers, so let us take a brief look
at what it’s all about. The problem avoided by hygienic macros is that of name capture. There
are actually two kinds of name capture which may occur in unhygienic macro systems:

¢ A free symbol in the macro body inadvertently becomes bound to the value of a local
symbol in the context in which the macro is called.

* A free symbol in the macro call inadvertently becomes bound to the value of a local
symbol in the macro body.

Pure’s hygienic macros avoid both pitfalls. Here is an example for the first form of name
capture:

> def G x = x+y;
> G 10 when y = 99 end;
10+y

Note that the expansion of the G macro correctly uses the global instance of y, even though
y is locally defined in the context of the macro call. (In some languages this form of name
capture is sometimes used deliberately in order to make the macro use the binding of the
symbol which is active at the point of the macro call. Normally, this won’t work in Pure,
although there is a way to force this behaviour in Pure as well, see Name Capture in the
Caveats and Notes section.)

In contrast, the second form of name capture is usually not intended, and is therefore more
dangerous. Consider the following example:

> def F x = x+y when y = x+1 end;
> Fy;
y+(y+1)

Pure again gives the correct result here. You’'d have to be worried if you got (y+1)+(y+1)
instead, which would result from the literal expansion y+y when y = y+1 end, where the
(free) variable y passed to F gets captured by the local binding of y. In fact, that’s exactly
what you get with C macros:

#define F(x) { int y = x+1; return x+y; }

Here F(y) expandsto { int y = y+1; return y+y; } which is usually not what you want.

This completes our little introduction to Pure’s macro facilities. The above material should
in fact cover all the common uses of macros in Pure. However, if you want to become a real
Pure macro wizard then read on. In the following subsections we’re going to discover some

1.7.4 Macro Hygiene 153

Pure Language and Library Documentation, Release 0.64

more advanced features of Pure’s macro system which let you write macros for manipulating
special forms and give you access to Pure’s reflection capabilities.

1.7.5 Built-in Macros and Special Expressions

As already mentioned in The Quote, special expressions such as conditionals and lambdas
cannot be directly represented as runtime data in Pure. But they can be guoted in which
case they are replaced by corresponding “placeholder terms”. These placeholder terms are
in fact implemented as built-in macros which, when evaluated, construct the corresponding
specials.

macro _ifelse__xyz
This macro expands to the conditional expression if x then y else z during macro
evaluation.

macro __lambda__ [x1,...xn] y
Expands to the lambda expression \x1 ... xn ->y.

macro —case_ X [(x1 —> y1),...,(xn —> yn)]
Expands to the case expression case x of x1 = yl; ...; xn = yn end. Note that
the - -> symbol is used to separate the left-hand side and the right-hand side of each
rule (see below).

macro X —when_— [(x1 —> y1),...,(xn —> yn)]

Expands to the when expression x when x1 = y1; ...; xn = yn end. Here the left-
hand side of a rule may be omitted if it is just the anonymous variable; i.e., x __when__
[foo y] isthesameasx __when__ [_ --> foo y].

macro X —with__ [(x1 —> y1),...,(xn —> yn)]
Expands to the with expression x with x1 = y1; ...; xn = yn end.

Note that the following low-priority infix operators are used to denote equations in the
__case__,__when__ and __with__ macros:

constructor x -->y
Denotes an equation x = y.

constructor x _if__y
Attaches a guard to the right-hand side of an equation. That is, x -->y __if __
z denotes the conditional equation x = y if z. This symbol is only recognized in
__case__and __with__ calls.

In addition, patterns on the left-hand side of equations or in lambda arguments may be
decorated with the following constructor terms to indicate “as” patterns and type tags (these
are infix operators with a very high priority):

constructor x _as__y
Denotes an “as” pattern x @ vy.

constructor x _type__y
Denotes a type tag x :: .

154 1.7 Macros

Pure Language and Library Documentation, Release 0.64

Note that all these symbols are in fact just constructors which are only interpreted in the
context of the built-in macros listed above; they aren’t macros themselves.

It's good to remember the above when you're doing macro programming. However, to see
the placeholder term of a special, you can also just type a quoted expression in the inter-
preter:

> " (\x->x+1);

__lambda__ [x] (x+1)

> '(f with f x = y when y = x+1 end end);
f __with _ [f x-->y __when__ [y-->x+1]]

List and matrix comprehensions can also be quoted. These are basically syntactic sugar for
lambda applications, cf. Primary Expressions. The compiler expands them to their “un-
sugared” form already before macro substitution, so no special kinds of built-in macros are
needed to represent them. When quoted, comprehensions are thus denoted in their unsug-
ared form, which consists of a pile of lambda expressions and list or matrix construction
functions for the generation clauses, and possibly some conditionals for the filter clauses of
the comprehension. For instance:

> "[2xx | x = 1..3];
listmap (__lambda__ [x] (2x*x)) (1..3)

Here’s how type tags and “as” patterns in quoted specials look like:

> "(\x::int->x+1);

__lambda__ [x __type__ int] (x+1)

> "(dup (1..3) with dup xs@(x:_) = x:xs end);

dup (1..3) __with__ [dup (xs __as__ (x:_))-->x:xs]

Note that the placeholder terms for the specials are quoted here, and hence they are not
evaluated (quoting inhibits macro expansion, just like it prevents the evaluation of ordinary
function calls). Evaluating the placeholder terms executes the corresponding specials:

> "(dup (1..3) with dup xs@(x:_) = x:xs end);

dup (1..3) __with__ [dup (xs __as__ (x:_))-->x:xs]
> eval ans;

[1,1,2,3]

Of course, you can also just enter the macros directly (without quoting) to have them evalu-
ated:

> dup (1..3) __with__ [dup (xs __as__ (x:_))-->x:xs];
[1,1,2,3]

> __lambda__ [x __type__ int] (x+1);

#<closure 0x7f1934158dc8>

> ans 99;

100

The __str__ function can be used to pretty-print quoted specials:

1.7.5 Built-in Macros and Special Expressions 155

Pure Language and Library Documentation, Release 0.64

> __str__ ('__lambda__ [x __type__ int] (x+1));

"\\x::int -> x+1"

> __str__ ('(dup (1..3) __with__ [dup (xs __as__ (x:_))-->x:xs]));
"dup (1..3) with dup xs@(x:_) = x:xs end"

This is useful to see which expression a quoted special will expand to. Note that __str__ can
also be used to define print representations for quoted specials with __show__ (described in
Pretty-Printing) if you always want to have them printed that way by the interpreter.

As quoted specials are just ordinary Pure expressions, they can be manipulated by functions
just like any other term. For instance, here’s how you can define a function which takes a
quoted lambda and swaps its two arguments:

> swap (__lambda__ [x,y] z) = '"(__lambda__ [y,x] z);
> swap ('(\a b->a-b));

__lambda__ [b,a] (a-b)

> eval ans 2 3; // same as (\b a->a-b) 2 3

1

For convenience, a literal special expression can also be used on the left-hand side of an
equation, in which case it actually denotes the corresponding placeholder term. So the swap
function can also be defined like this (note that we first scratch the previous definition of
swap with the clear command, see Interactive Commands):

> clear swap

>swap (\x y ->2z) = "(\y x -> 2z);
> swap ('(\a b->a-b));

__lambda__ [b,a] (a-b)

This is usually easier to write and improves readability. However, there are cases in which
you want to work with the built-in macros in a direct fashion. In particular, this becomes
necessary when writing more generic rules which deal, e.g., with lambdas involving a vari-
able number of arguments, or if you need real (i.e., unquoted) type tags or “as” patterns in a
placeholder pattern. We’ll see examples of these later.

Quoted specials can be manipulated with macros just as well as with functions. In fact, this
is quite common and thus the macro evaluator has some special support to make this more
convenient. Specifically, it is possible to make a macro quote its arguments in an automatic
fashion, by means of the --quoteargs pragma. To illustrate this, let’s redefine swap as a
macro:

clear swap

#! --quoteargs swap

def swap (\x y -> z) = "(\y x -> z);
swap (\a b->a-b);

__lambda__ [b,a] (a-b)

V V V V

The --quoteargs pragma makes the swap macro receive its argument unevaluated, as if
it was quoted (but without a literal quote around it). Therefore the quote on the lambda
argument of swap can now be omitted. However, the result is still a quoted lambda. It’s
tempting to just omit the quote on the right-hand side of the macro definition as well, in

156 1.7 Macros

Pure Language and Library Documentation, Release 0.64

order to get a real lambda instead:

> clear swap

> def swap (\x y -> z) = \y x -> z;
> swap (\a b->a-b);

#<closure 0x7f1934156f00>

> ans 2 3;

a-b

We got a closure all right, but apparently it’s not the right one. Let’s use trace -m to figure
out what went wrong:

> trace -m swap

> swap (\a b->a-b);

-- macro swap: swap (\a b -> a-b) -->\y x -> a-b
#<closure 0x7f1934157248>

Ok, so the result is the lambda \y x -> a-b,not\b a -> a-bas we expected. This happens
because we used a literal (unquoted) lambda on the right-hand side, which does its own
variable binding; consequently, the variables x and y are bound by the lambda in this context,
not by the left-hand side of the macro rule.

So just putting an unquoted lambda on the right-hand side doesn’t do the job. One way to
deal with the situation is to just employ the __lambda__ macro in a direct way, as we’ve seen
before:

> clear swap

> def swap (__lambda__ [x,y] z) = __lambda__ [y,x] z;

> swap (\a b->a-b);

-- macro swap: swap (\a b -> a-b) --> __lambda__ [b,a] (a-b)
-- macro __lambda__: __lambda__ [b,a] (a-b) -->\b a -> a-b
#<closure 0x7f1934156f00>

> ans 2 3;

1

This works, but doesn’t look very nice. Often it’s more convenient to first construct a quoted
term involving the necessary specials and then have it evaluated during macro evaluation.
Pure provides yet another built-in macro for this purpose:

macro —eval__ x
Evaluate x at macro expansion time. This works by stripping one level of (outermost)
quotes from x and performing macro expansion on the resulting unquoted subexpres-
sions.

Using __eval__, we can implement the swap macro as follows:

> clear swap

> def swap (\x y -> z) = __eval__ ('"(\y x -> 2));

> swap (\a b->a-b);

-- macro swap: swap (\a b -> a-b) --> __eval__ (’'__lambda__ [b,a] (a-b))
-- macro __lambda__: __lambda__ [b,a] (a-b) -->\b a -> a-b

-- macro __eval__: __eval__ (’'__lambda__ [b,a] (a-b)) -->\b a -> a-b

#<closure 0x7f7elf867dc8>

1.7.5 Built-in Macros and Special Expressions 157

Pure Language and Library Documentation, Release 0.64

> ans 2 3;
1

Lisp programmers should note the difference. In Lisp, macros usually yield a quoted expres-
sion which is evaluated implicitly during macro expansion. This is never done automatically
in Pure, since many Pure macros work perfectly well without it. Instead, quotes in a macro
expansion are treated as literals, and you'll have to explicitly call __eval__ to remove them
during macro evaluation.

A final caveat: Placeholder terms for specials are just simple expressions; they don’t do any
variable binding by themselves. Thus the rules of macro hygiene don’t apply to them, which
makes it possible to manipulate lambdas and local definitions in any desired way. On the
other hand, this means that it is the programmer’s responsibility to avoid accidental name
capture when using these facilities. Most macro code will work all right when written in a
straightforward way, but there are some corner cases which need special attention (cf. Name
Capture).

Sometimes the only convenient way to avoid name capture is to create new symbols on the
fly. This will often be necessary if a macro generates an entire block construct (case, when,
with or lambda) from scratch. The following built-in macro is provided for this purpose:

macro __gensym__
Create a new unqualified symbol which is guaranteed to not exist at the time of the
macro call. These symbols typically look like __x123__ and can be used for any pur-
pose (i.e., as global or local as well as function or variable symbols).

For instance, here’s how we can implement a macro foo which creates alambda from a given
argument, using __gensym__ to generate a fresh local variable for the lambda argument.
This guarantees that variables in the argument expression don’t get captured by the lambda
variable when the closure is created with a call to the built-in __Tlambda__ macro.

> def foo x = bar __gensym__ x;

> def bar x y = __lambda__ [x] (x+y);

> trace -m foo

> foo (axb);

-- macro foo: foo (axb) --> bar __gensym__ (axb)

-- macro __gensym__: __gensym__ --> __Xx1__

-- macro bar: bar __x1__ (axb) --> __lambda__ [__x1__1 (__x1__+axb)
-- macro __lambda__: __lambda__ [__x1__] (__x1__+axb) --> __x1__ -> __x1__+axb
#<closure 0x7f66f6c88dho>

> ans 77;

77+axb

The __gensym__ macro returns a new variable for each invocation, and always ensures that
it doesn’t accidentally reuse a symbol already introduced by the user (even if it looks like a
symbol that __gensym__ might itself create):

> foo (a*x__x2__);

-- macro foo: foo (ax__x2__) --> bar __gensym__ (a*x__x2__)

-- macro __gensym__: __gensym__ --> __X3__

-- macro bar: bar __x3__ (a*x__x2__) --> __lambda__ [__x3__] (__x3__+a*x__x2__)

158 1.7 Macros

Pure Language and Library Documentation, Release 0.64

-- macro __lambda__: __Tlambda__ [__x3__]1 (__X3__+a*x__x2__) --> __X3__ -> __X3__+a*__X2__
#<closure 0x7f66f6c887e8>

> ans 77;

T7+a*x__x2__

1.7.6 Advanced Optimization

We are now in a position to have a look at some of the trickier optimization macros defined
in the prelude. The following __do__ macro can be found near the end of the prelude.pure
module; it is used to optimize the case of “throwaway” list and matrix comprehensions.
This is useful if a comprehension is evaluated solely for its side effects. To keep things
simple, we discuss a slightly abridged version of the __do__ macro which only deals with
list comprehensions and ignores some obscure corner cases. You can find this version in the
examples/do.pure script. Please also check the prelude for the full version of this macro.

Note that we define our own versions of void and __do__ here which are placed into the my
namespace to avoid conflicts with the prelude.

namespace my;
void _ = ();
#! --quoteargs my::__do__

def void [x] = void x;
def void (catmap f x) | void (listmap f x) = __do__ f x;

// Recurse into embedded generator clauses.

def __do__ (__lambda__ [x] y@(listmap _ _)) |
__do__ (__lambda__ [x] y@(catmap _ _)) =
__do__ $ (__lambda__ [x] (void y));

// Recurse into embedded filter clauses.
def __do__ (__lambda__ [x] (__ifelse__ y z [])) =
__do__ $ (__lambda__ [x] (__ifelse__ y (void z) ()));

// Eliminate extra calls to ’void’ in generator clauses.
def __do__ (__lambda__ [x] (void y)) = __do__ (__lambda__ [x] y);

// Eliminate extra calls to ’void’ in filter clauses.
def __do__ (__lambda__ [x] (__ifelse__ y (void z) ())) =
__do__ (__lambda__ [x] (__ifelse__y z ()));

// Any remaining instances reduce to a plain ’'do’ (this must come last).
def __do__ f = do f;

First, note that the void function simply throws away its argument and returns () instead.
The do function applies a function to every member of a list (like map), but throws away
all intermediate results and just returns (), which is much more efficient if you don’t need
those results anyway. These are both defined in the prelude, but we define our own version

1.7.6 Advanced Optimization 159

Pure Language and Library Documentation, Release 0.64

of void here so that we can hook it up to our simplified version of the __do__ macro.

The __do__ macro eventually reduces to just a plain do call, but applies some optimizations
along the way. While the above rules for __do__ are always valid optimizations for do,
it’s a good idea to use a separate macro here instead of clobbering do itself, so that these
optimizations do not interfere with calls to do in ordinary user code. The prelude handles
this in an analogous fashion.

Before we further delve into this example, a few remarks are in order about the way list
comprehensions are implemented in Pure. As already mentioned, list comprehensions are
just syntactic sugar; the compiler immediately transforms them to an equivalent expression
involving only lambdas and a few other list operations. The latter are essentially equivalent
to piles of nested filters and maps, but for various reasons they are actually implemented
using two special helper operations, catmap and listmap.

The catmap operation combines map and cat; this is needed, in particular, to accumulate the
results of nested generators, such as [i,j | 1 = 1..n; j = 1..m]. The same operation is
also used to implement filter clauses, you can see this below in the examples. However,
for efficiency simple generators like [2+i | i = 1..n] are translated to a listmap instead
(which is basically just map, but works with different aggregate types, so that list compre-
hensions can draw values from aggregates other than lists, such as matrices).

Now let’s see how the rules above transform a list comprehension if we “void” it. (Remem-
ber to switch to the my namespace when trying the following examples.)

catmap (\x -> if x mod 2 then [printf "%g\n" (2"x+1)] else []) (1..5);
do (\x -> if x mod 2 then printf "%gln" (2"x+1) else ()) (1..5);

> using system;

> using namespace my;

> f = [printf "Ssgln" (2"x+1) | x=1..5; x mod 2];

> g = void [printf "%g\n" (2”x+1) | x=1..5; x mod 2];
> show f ¢

f

g

As you can see, the catmap got replaced with a do, and the list brackets inside the lambda
were eliminated as well. These optimizations are just what’s needed to make this code go
essentially as fast as a for loop in traditional programming languages (up to constant factors,
of course). Here’s how it looks like when we run the g function:

> 0,

3

9

33

0

It’s also instructive to have a look at how the above macro rules work in concert to rewrite a
“voided” comprehension. To these ends, you can rerun the right-hand side of g with some
tracing enabled, as follows (we omit the tracing output here for brevity):

> trace -m my::void
> void [printf "%g\n" (2”x+1) | x=1..5; x mod 2];

The above optimization rules also take care of nested list comprehensions, since they recurse

160 1.7 Macros

Pure Language and Library Documentation, Release 0.64

into the lambda bodies of generator and filter clauses. For instance:

> h = void [puts $ str (x,y) | x=1..2; y=1..3];
> show h
h = do (\x -> do (\y -> puts (str (x,y))) (1..3)) (1..2);

Again, you should run this with macro tracing enabled to see how the __do__ macro recurses
into the outer lambda body of the list comprehension. Here’s the rule which actually does
this:

def __do__ (__lambda__ [x] y@(catmap _ _)) =
__do__ $ (__lambda__ [x] (void y));

Note that in order to make this work, __do__ is implemented as a “quoteargs” macro so
that it can inspect and recurse into the lambda terms in its argument. Also note the $ on
the right-hand side of this rule; this is also implemented as a macro in the prelude. Here
the $ operator is used to forcibly evaluate the macro argument __lambda__ [x] (void y),
so that the embedded call to the void macro gets expanded. (Without the $ the argument to
__do__ would be quoted and thus not be evaluated.) A similar rule is used to recurse into
embedded filter clauses, as in the example of the function g above.

It should be mentioned that, while our version of the __do__ macro will properly handle
most list comprehensions, there is a rather obscure corner case which it still refuses to opti-
mize: outermost filter clauses. For instance, consider:

> let c = 2;

> k = void [printf "sgln" (2"x+1) | c>0; x=1..3];

> show k

k = my::void (if c>0 then listmap (\x -> printf "sg\n" (2"x+1)) (1..3) else []);

It’s possible to handle this case as well, but we have to go to some lengths to achieve that.
The complication here is that we don’t want to mess with calls to void in ordinary user code,
so void itself cannot be a “quoteargs” macro. But the quoted form of void’s argument is
needed to detect the “outermost filter clause” situation. The interested reader may refer to
the prelude code to see how the prelude implementation of __do__ uses some helper macros
to make this work. Another detail of the full version of __do__ is the handling of patterns
on the left-hand side of generator clauses, which requires some special magic to filter out
unmatched list elements; we also omitted this here for brevity.

1.7.7 Reflection

The meta representation of specials discussed in Built-in Macros and Special Expressions is
also useful to obtain information about the running program and even modify it. Pure’s
runtime provides some built-in operations to implement these reflection capabilities, which
are comparable in scope to what the Lisp programming language offers.

Specifically, the get_fundef function allows you to retrieve the definition of a global Pure
function. Given the symbol denoting the function, get_fundef returns the list of rewriting

1.7.7 Reflection 161

Pure Language and Library Documentation, Release 0.64

rules implementing the functions, using the same lhs --> rhs formatused by the _case__,
__when__ and __with__ macros discussed above. For instance:

> fact n = 1 if n<=1;

> = nxfact (n-1) otherwise;

> get_fundef fact;

[(fact n-->1 __if__ n<=1), (fact n-->nxfact (n-1))]

Defining a new function or extending an existing function definition can be done just as
easily, using the add_fundef function:

> add_fundef $ '[(fib n-->1 __if__ n<=1), (fib n-->fib (n-2)+fib (n-1))1];
()

> show fib

fib n = 1 if n<=1;

fib n = fib (n-2)+fib (n-1);

> map fib (0..10);

[1,1,2,3,5,8,13,21,34,55,89]

Note that, to be on the safe side, we quoted the rule list passed to add_fundef to prevent
premature evaluation of symbols used in the rules. This is necessary because add_fundef is
an ordinary function, not a macro. (Of course, you could easily define a macro which would
take care of this, if you like. We leave this as an exercise to the reader.)

Also note that add_fundef doesn’t override existing function definitions. It simply keeps
on adding rules to the current program, just as if you typed the equations at the command
prompt of the interpreter. It is possible to delete individual equations with del_fundef:

> del_fundef $ ’'(fib n-->fib (n-2)+fib (n-1));
()

> show fib

fib n = 1 if n<=1;

Moreover, the clearsym function allows you to completely get rid of an existing function:

> clearsym fib 0;
()

> show fib

> fib 9;

fib 9

There’s also a companion function, globsym, which enables you to get a list of defined sym-
bols which match a given glob pattern:

> globsym "fact" 0;

[fact]

> globsym "x" 0;

[CH), (P0), (#),(3),(3%),...]
> #globsym "x" 0;

304

Note that globsym also returns symbols defined as types, macros, variables or constants. But
we can easily check for a given type of symbol by using the appropriate function to retrieve

162 1.7 Macros

Pure Language and Library Documentation, Release 0.64

the rules defining the symbol, and filter out symbols with an empty rule list:

> #[sym | sym = globsym "x" 0; ~null (get_fundef sym)];
253

Pure also provides the operations get_typedef, get_macdef, get_vardef and get_constdef,
which are completely analogous to get_fundef, but return the definitions of types, macros,
(global) variables and constants. Note that in the latter two cases the rule list takes the form
[var-->val] if the symbol is defined, [] if it isn’t.

For instance, let’s check the definition of the $ macro (cf. Optimization Rules) and the list
type (cf. Recursive Types):

> get_macdef ($);

[f$x-->F x]

> get_typedef list;

[(list [1-->1),(list (_:_)-->1)]

Or let’s lists all global variables along with their values:

> catmap get_vardef (globsym "x" 0);
[(argc-->0),(argv-->[1), (compiling-->0),
(sysinfo-->"x86_64-unknown-linux-gnu"), (version-->"0.64")]

The counterparts of add_fundef and del_fundef are provided as well. Not very surprisingly,
they are named add_typedef, del_typedef, etc. For instance:

> add_vardef [’'x-->3%33];
()

> show x
let x = 99;
> del_vardef ('x);

()

> show X

The above facilities should cover most metaprogramming needs. For even more exotic re-
quirements, you can also use the eval and evalcmd primitives to execute arbitrary Pure code
in text form; please see the Pure Library Manual for details.

Finally, a word of caution: The use of add_fundef, del_fundef and similar operations
to modify a running program breaks referential transparency and hence these functions
should be used with care. Moreover, at present the JIT compiler doesn’t support truly self-
modifying code (i.e., functions modifying themselves while they’re executing); this results
in undefined behaviour. Also, note that none of the inspection and mutation capabilities
provided by these operations will work in batch-compiled programs, please check the Batch
Compilation section for details.

1.8 Exception Handling

Pure also offers a useful exception handling facility. To raise an exception, you just invoke
the built-in function throw with the value to be thrown as the argument. Exceptions are

1.8 Exception Handling 163

Pure Language and Library Documentation, Release 0.64

caught with the built-in special form catch which is invoked as follows:

catch handler x
Catch an exception. The first argument denotes the exception handler (a function to be
applied to the exception value). The second (call-by-name) argument is the expression
to be evaluated.

For instance:

> catch error (throw hello_world);
error hello_world

Exceptions are also generated by the runtime system if the program runs out of stack space,
when a guard does not evaluate to a truth value, and when the subject term fails to match
the pattern in a pattern-matching lambda abstraction, or a let, case or when construct.
These types of exceptions are reported using the symbols stack_fault, failed_cond and
failed_match, respectively, which are declared as nonfix symbols in the standard prelude.
You can use catch to handle these kinds of exceptions just like any other. For instance:

> fact n = if n>0 then nxfact(n-1) else 1;
> catch error (fact foo);

error failed_cond

> catch error (fact 1000000);

error stack_fault

Unhandled exceptions are reported by the interpreter with a corresponding error message:

> fact foo;
<stdin>, line 2: unhandled exception ’'failed_cond’ while evaluating ’'fact foo’

Note that since the right-hand side of a type definition (cf. Type Rules) is just ordinary Pure
code, it may be susceptible to exceptions, too. Such exceptions are reported or caught just
like any other. In particular, if you want to make a type definition just fail silently in case of
an exception, you'll have to wrap it up in a suitable catch clause:

foo x = throw foo; // dummy predicate which always throws an exception
type bar x = foo x;

type baz x = catch (cst false) (foo x);

test_bar x::bar = x;

test_baz x::baz = x;

test_bar ();

<stdin>, line 6: unhandled exception ’'foo’ while evaluating ’test_bar ()’
> test_baz ();

test_baz ()

V V VYV VYV

Exceptions also provide a way to handle asynchronous signals. Pure’s system module pro-
vides symbolic constants for common POSIX signals and also defines the operation trap
which lets you rebind any signal to a signal exception. For instance, the following lets you
handle the SIGQUIT signal:

> using systenm;
> trap SIG_TRAP SIGQUIT;

164 1.8 Exception Handling

Pure Language and Library Documentation, Release 0.64

You can also use trap to just ignore a signal or revert to the system’s default handler (which
might take different actions depending on the type of signal, see signal(7) for details):

> trap SIG_IGN SIGQUIT; // signal is ignored
> trap SIG_DFL SIGQUIT; // reinstalls the default signal handler

Note that when the interpreter runs interactively, for convenience most standard termina-
tion signals (SIGINT, SIGTERM, etc.) are already set up to produce corresponding Pure ex-
ceptions of the form signal SIG where SIG is the signal number. If a script is to be run
non-interactively then you'll have to do this yourself (otherwise most signals will terminate
the program).

While exceptions are normally used to report abnormal error conditions, they also provide
a way to implement non-local value returns. For instance, here’s a variation of our n queens
algorithm (cf. List Comprehensions) which only returns the first solution. Note the use of
throw in the recursive search routine to bail out with a solution as soon as we found one. The
value thrown there is caught in the main routine. Also note the use of void in the second
equation of search. This effectively turns the list comprehension into a simple loop which
suppresses the normal list result and just returns () instead. Thus, if no value gets thrown
then the function regularly returns with () to indicate that there is no solution.

gqueens n = catch reverse (search n 1 []) with
search n i p = throw p if i>n;
= void [search n (i+l) ((i,j):p) | j = 1..n; safe (i,j) pl;
safe (i,j) p = ~any (check (i,j)) p;
check (il,jl) (i2,j2)
= il==i2 || j1l==j2 || il+jl==i2+j2 || il-jl==i2-j2;
end;

E.g., let’s compute a solution for a standard 8x8 board:

> queens 8;
[(1,1),(2,5),(3,8),(4,6),(5,3),(6,7),(7,2),(8,4)]

1.9 Standard Library

Pure comes with a collection of Pure library modules, which includes the standard prelude
(loaded automatically at startup time) and some other modules which can be loaded explic-
itly with a using clause. The prelude offers the necessary functions to work with the built-in
types (including arithmetic and logical operations) and to do most kind of list processing
you can find in ML- and Haskell-like languages. It also provides a collection of basic string
and matrix operations. Please refer to the Pure Library Manual for details on the provided
operations. Here is a very brief summary of some of the prelude operations which, besides
the usual arithmetic and logical operators, are probably used most frequently:

X+y
The arithmetic + operation is also used to denote list and string concatenation in Pure.

1.9 Standard Library 165

Pure Language and Library Documentation, Release 0.64

x:y
This is the list-consing operation. x becomes the head of the list, y its tail. As “:“is a
constructor symbol, you can use it in patterns on the left hand side of rewriting rules.

X..y
Constructs arithmetic sequences. x:y..z can be used to denote sequences with arbi-

trary stepsize y-x. Infinite sequences can be constructed using an infinite bound (i.e.,
inf or -inf). E.g., 1:3..inf denotes the stream of all odd integers starting at 1.

X,y
This is the pair constructor, used to create tuples of arbitrary sizes. Tuples provide
an alternative way to represent aggregate values in Pure. In contrast to lists, tuples
are always “flat”, so that (x,y),z and x, (y, z) denote the same triple x,y, z. (This is
explained in more detail in the Primary Expressions section.)

#x
The size (number of elements) of the list, tuple, matrix or string x. In addition, dim x
yields the dimensions (number of rows and columns) of a matrix.

xly
This is Pure’s indexing operation, which applies to lists, tuples, matrices and strings.
Note that all indices in Pure are zero-based, thus x!'0 and x! (#x-1) are the first and
last element of x. In the case of matrices, the subscript may also be a pair of row and
column indices, such as x! (1,2).

x!lys

This is the “slicing” operation, which returns the list, tuple, matrix or string of all
x!y while y runs through the elements of the list or matrix ys. Thus, e.g., x! ! (i..])
returns all the elements between i and j (inclusive). Indices which fall outside the
valid index range are quietly discarded. The index range ys may contain any number
of indices (also duplicates), in any order. Thus x! ! [0]i=1..n] returns the first element
of x n times, and, if ys is a permutation of the range 0..#x-1, then x!!ys yields the
corresponding permutation of the elements of x. In the case of matrices the index
range may also contain two-dimensional subscripts, or the index range itself may be
specified as a pair of row/column index lists such as x! ! (i..j,k..1).

The prelude also offers support operations for the implementation of list and matrix compre-
hensions, as well as the customary list operations like head, tail, drop, take, filter, map,
foldl, foldr, scanl, scanr, zip, unzip, etc., which make list programming so much fun in
modern FPLs. In Pure, these also work on strings as well as matrices, although, for reasons
of efficiency, these data structures are internally represented as arrays.

Besides the prelude, Pure’s standard library also comprises a growing number of additional
library modules which we can only mention in passing here. In particular, the math module
provides additional mathematical functions as well as Pure’s complex and rational number
data types. Common container data structures like sets and dictionaries are implemented in
the set and dict modules, among others. Moreover, the system interface can be found in
the system module. In particular, this module also provides operations to do basic C-style
I/0, including printf and scanf.

166 1.9 Standard Library

Pure Language and Library Documentation, Release 0.64

1.10 C Interface

Pure makes it very easy to call C functions (as well as functions in a number of other lan-
guages supported by the GNU compiler collection). To call an existing C function, you just
need an extern declaration of the function, as described below. By these means, all func-
tions in the standard C library and the Pure runtime are readily available to Pure scripts.
Functions can also be loaded from dynamic libraries and LLVM bitcode files at runtime. In
the latter case, you don’t even need to write any extern declarations, the interpreter will do
that for you. As of Pure 0.45, you can also add inline C/C++ and Fortran code to your Pure
scripts and have the Pure interpreter compile them on the fly, provided that you have the
corresponding compilers from the LLVM project installed.

In some cases you will still have to rely on big and complicated third-party and system
libraries which aren’t readily available in bitcode form. It goes without saying that writing
all the extern declarations for such libraries can be a daunting task. Fortunately, there is a
utility to help with this, by extracting the extern declarations automatically from C headers.
Please see External C Functions in the Caveats and Notes section for details.

1.10.1 Extern Declarations

To access an existing C function in Pure, you need an extern declaration of the function,
which is a simplified kind of C prototype. The syntax of these declarations is described by
the following grammar rules:

extern_decl := [scope] “extern” prototype (”,” prototype) ";"

prototype = c_type identifier “(” [parameters | "..."] ")" ["=" identifier]
parameters = parameter (”,” parameter)x [",” "..."]

parameter u= c_type [identifier]

c_type = identifier “x"x

Extern functions can be called in Pure just like any other. For instance, the following com-
mands, entered interactively in the interpreter, let you use the sin function from the C library
(of course you could just as well put the extern declaration into a script):

> extern double sin(double);
> sin 0.3;
0.29552020666134

An extern declaration can also be prefixed with a public/private scope specifier:

private extern double sin(double);

Multiple prototypes can be given in one extern declaration, separating them with commas:

extern double sin(double), double cos(double), double tan(double);

For clarity, the parameter types can also be annotated with parameter names (these only
serve informational purposes and are for the human reader; they are effectively treated as

1.10 C Interface 167

Pure Language and Library Documentation, Release 0.64

comments by the compiler):

extern double sin(double x);

Pointer types are indicated by following the name of the element type with one or more
asterisks, as in C. For instance:

> extern charx strchr(char *s, int c);
> strchr "foo bar" (ord "b");
Ilbarll

As you can see in the previous example, some pointer types get special treatment, allowing
you to pass certain kinds of Pure data (such as Pure strings as charx in this example). This
is discussed in more detail in C Types below.

The interpreter makes sure that the parameters in a call match; if not, then by default the call
is treated as a normal form expression:

> extern double sin(double);
> sin 0.3;

0.29552020666134

> sin 0;

sin 0

This gives you the opportunity to augment the external function with your own Pure equa-
tions. To make this work, you have to make sure that the extern declaration of the function
comes first. For instance, we might want to extend the sin function with a rule to handle
integers:

> sin x::int = sin (double x);
> sin 0;
0.0

Sometimes it is preferable to replace a C function with a wrapper function written in Pure. In
such a case you can specify an alias under which the original C function is known to the Pure
program, so that you can still call the C function from the wrapper. An alias is introduced
by terminating the extern declaration with a clause of the form = alias. For instance:

> extern double sin(double) = c_sin;
> sin x::double = c_sin x;

> sin x::int = c_sin (double x);

> sin 0.3; sin 0;

0.29552020666134

0.0

Aliases are just one way to declare a synonym of an external function. As an alternative, you
can also declare the C function in a special namespace (cf. Namespaces in the Declarations
section):

> namespace C;

> extern double sin(double);
> c::s5in 0.3;
0.29552020666134

168 1.10 C Interface

Pure Language and Library Documentation, Release 0.64

Note that the namespace qualification only affects the Pure side; the underlying C function is
still called under the unqualified name as usual. The way in which such qualified externs are
accessed is the same as for ordinary qualified symbols. In particular, the using namespace
declaration applies as usual, and you can declare such symbols as private if needed. It is
also possible to combine a namespace qualifier with an alias:

> namespace C;

> extern double sin(double) = mysin;
> c::mysin 0.3;

0.29552020666134

In either case, different synonyms of the same external function can be declared in slightly
different ways, which makes it possible to adjust the interpretation of pointer values on
the Pure side. This is particularly useful for string arguments which, as described below,
may be passed both as charx (which implies copying and conversion to or from the system
encoding) and as void* (which simply passes through the character pointers). For instance:

> extern char xstrchr(char *s, int c) = foo;
> extern void *xstrchr(void *s, int c) = bar;
> foo "foo bar" 98; bar "foo bar" 98;

"bar"

#<pointer 0x12c2f24>

Also note that, as far as Pure is concerned, different synonyms of an external function are
really different functions. In particular, they can each have their own set of augmenting Pure
equations. For instance:

extern double sin(double);
extern double sin(double) = mysin;
sin === sin;

sin === mysin;

sin 1.0; mysin 1.0;
.841470984807897
.841470984807897

sin x::int = sin (double Xx);
sin 1; mysin 1;
.841470984807897

mysin 1

®V VoOooVoV =YV VYV

1.10.2 Variadic C Functions

Variadic C functions are declared as usual by terminating the parameter list with an ellipsis

(vou):

> extern int printf(charx, ...);
> printf "Hello, world\n";
Hello, world

13

1.10.2 Variadic C Functions 169

Pure Language and Library Documentation, Release 0.64

Note that the variadic prototype is mandatory here, since the compiler needs to know about
the optional arguments so that it can generate the proper code to call the function. However,
in Pure a function always has a fixed arity, so, as far as Pure is concerned, the function is still
treated as if it had no extra arguments. Thus the above declaration only allows you to call
printf with a single argument.

To make it possible to pass optional arguments to a variadic function, you must explicitly
give the (non-variadic) prototypes with which the function is to be called. To these ends,
the additional prototypes are declared as synonyms of the original variadic function. This
works because the compiler only checks the non-variadic parameters for conformance. For
instance:

> extern int printf(charx, charx) = printf_s;
> printf_s "Hello, %s\n" "world";
Hello, world

13

> extern int printf(charx, int) = printf_d;
> printf_d "Hello, %d\n" 99;

Hello, 99

10

1.10.3 C Types

As indicated in the previous section, the data types in extern declarations are either C type
names or pointer types derived from these. The special expr* pointer type is simply passed
through; this provides a means to deal with Pure data in C functions in a direct fashion. For
all other C types, Pure values are “marshalled” (converted) from Pure to C when passed as
arguments to C functions, and the result returned by the C function is then converted back
from C to Pure. All of this is handled by the runtime system in a transparent way, of course.

Note that, to keep things simple, Pure does not provide any notations for C structs or func-
tion types, although it is possible to represent pointers to such objects using void* or some
other appropriate pointer types. In practice, this simplified system should cover most kinds
of calls that need to be done when interfacing to C libraries, but there are ways to work
around these limitations if you need to access C structs or call back from C to Pure, see
External C Functions in the Caveats and Notes section for details.

Basic C Types

Pure supports the usual range of basic C types: void, bool, char, short, int, long, float,
double, and converts between these and the corresponding Pure data types (machine ints,
bigints and double values) in a straightforward way.

The void type is only allowed in function results. It is converted to the empty tuple ().

Both float and double are supported as floating point types. Single precision float ar-
guments and return values are converted from/to Pure’s double precision floating point
numbers.

170 1.10 C Interface

Pure Language and Library Documentation, Release 0.64

A variety of C integer types (bool, char, short, int, long) are provided which are converted
from/to the available Pure integer types in a straightforward way. In addition, the synonyms
int8, int16 and int32 are provided for char, short and int, respectively, and int64 denotes
64 bit integers (a.k.a. ISO C99 long long). Note that long is equivalent to int32 on 32 bit
systems, whereas it is the same as int64 on most 64 bit systems. To make it easier to interface
to various system routines, there’s also a special size_t integer type which usually is 4 bytes
on 32 bit and 8 bytes on 64 bit systems.

All integer parameters take both Pure ints and bigints as actual arguments; truncation or
sign extension is performed as needed, so that the C interface behaves as if the argument
was “cast” to the C target type. Returned integers use the smallest Pure type capable of
holding the result, i.e., int for the C char, short and int types, bigint for int64.

Pure considers all integers as signed quantities, but it is possible to pass unsigned integers
as well (if necessary, you can use a bigint to pass positive values which are too big to fit
into a machine int). Also note that when an unsigned integer is returned by a C routine,
which is too big to fit into the corresponding signed integer type, it will “wrap around” and
become negative. In this case, depending on the target type, you can use the ubyte, ushort,
uint, ulong and uint64 functions provided by the prelude to convert the result back to an
unsigned quantity.

Pointer Types

The use of pointer types is also fairly straightforward, but Pure has some special rules for
the conversion of certain pointer types which make it easy to pass aggregate Pure data to
and from C routines, while also following the most common idioms for pointer usage in C.
The following types of pointers are recognized both as arguments and return values of C
functions.

Bidirectional pointer conversions:

¢ charx is used for string arguments and return values which are converted from Pure’s
internal utf-8 based string representation to the system encoding and vice versa. (Thus
a C routine can never modify the raw Pure string data in-place; if this is required then
youll have to pass the string argument as a voidx, see below.)

* voidx is for any generic pointer value, which is simply passed through unchanged.
When used as an argument, you can also pass Pure strings, matrices and bigints. In
this case the raw underlying data pointer (charx in the case of strings, int*, doublex
or exprx in the case of numeric and symbolic matrices, and the GMP type mpz_t in the
case of bigints) is passed, which allows the data to be modified in place (with care). In
particular, passing bigints as void* makes it possible to call most GMP integer routines
directly from Pure.

* dmatrixx, cmatrix*x and imatrix* allow you to pass numeric Pure matrices of the
appropriate types (double, complex, int). Here a pointer to the underlying GSL matrix
structure is passed (not just the data itself). This makes it possible to transfer GSL
matrices between Pure and GSL routines in a direct fashion without any overhead.

1.10.3 C Types 171

Pure Language and Library Documentation, Release 0.64

(For convenience, there are also some other pointer conversions for marshalling matrix
arguments to numeric C vectors, which are described in Pointers and Matrices below.)

¢ exprx is for any kind of Pure value. A pointer to the expression node is passed to or
from the C function. This type is to be used for C routines which are prepared to deal
with pristine Pure data, using the corresponding functions provided by the runtime.
You can find many examples of this in the standard library.

All other pointer types are simply taken at face value, allowing you to pass Pure pointer
values as is, without any conversions. This also includes pointers to arbitrary named types
which don’t have a predefined meaning in Pure, such as FILEx. As of Pure 0.45, the inter-
preter keeps track of the actual names of all pointer types and checks (at runtime) that the
types match in an external call, so that you can’t accidentally get a core dump by passing,
say, a FILEx for a char*. (The call will then simply fail and yield a normal form, which
gives you the opportunity to hook into the function with your own Pure definitions which
may supply any desired data conversions.) Typing information about pointer values is also
available to Pure scripts by means of corresponding library functions, please see the Tagged
Pointers section in the Pure Library Manual for details.

Pointers and Matrices

The following additional pointer conversions are provided to deal with Pure matrix values
in arguments of C functions, i.e., on the input side. These enable you to pass Pure matrices
for certain kinds of C vectors. Note that in any case, you can also simply pass a suitable
plain pointer value instead. Also, these types aren’t special in return values, where they will
simply yield a pointer value (with the exception of charx which gets special treatment as
explained in the previous subsection). Thus you will have to decode such results manually
if needed. The standard library provides various routines to do this, please see the String
Functions and Matrix Functions sections in the Pure Library Manual for details.

Numeric pointer conversions (input only):

e charx*, short*, int*, int64x, float*, double* can be used to pass numeric matrices
as C vectors. This kind of conversion passes just the matrix data (not the GSL matrix
structure, as the dmatrixx et al conversions do) and does conversions between integer
or floating point data of different sizes on the fly. You can either pass an int matrix as
a charx, short* int* or int64* argument, or a double or complex matrix as a floatx*
or doublex argument (complex values are then represented as two separate double
numbers, first the real, then the imaginary part, for each matrix element).

® charxx, shortxx, int**, int64x**, float**, doublex* provide yet another way to pass
numeric matrix arguments. This works analogously to the numeric vector conversions
above, but here a temporary C vector of pointers is passed to the C function, whose
elements point to the rows of the matrix.

Argv-style conversions (input only):

* charx** and void*x* can be used to pass argv-style vectors as arguments to C functions.
In this case, the Pure argument must be a symbolic vector of strings or generic pointer

172 1.10 C Interface

Pure Language and Library Documentation, Release 0.64

values. charxx converts the string elements to the system encoding, whereas voidxx
passes through character string data and other pointers unchanged (and allows in-
place modification of the data). A temporary C vector of these elements is passed to
the C function, which is always NULL-terminated and can thus be used for almost any
purpose which requires such argv-style vectors.

Note that in the numeric pointer conversions, the matrix data is passed “per reference” to
C routines, i.e., the C function may modify the data “in place”. This is true even for tar-
get data types such as shortx* or float** which involve automatic conversions and hence
need temporary storage. In this case the data from the temporary storage is written back to
the original matrix when the function returns, to maintain the illusion of in-place modifica-
tion. Temporary storage is also needed when the GSL matrix has the data in non-contiguous
storage. You may want to avoid this if performance is critical, by always using “packed”
matrices (see pack in Matrix Functions) of the appropriate types.

Pointer Examples

Let’s finally have a look at some instructive examples to explain some of the trickier pointer
types.

First, the matrix pointer types dmatrix*, cmatrix* and imatrix* can be used to pass double,
complex double and int matrices to GSL functions taking pointers to the corresponding GSL
types (gsl_matrix, gsl_matrix_complex and gsl_matrix_int) as arguments or returning
them as results. (Note that there is no special marshalling of Pure’s symbolic matrix type, as
these aren’t supported by GSL anyway.) Also note that matrices are always passed by refer-
ence. Thus, if you need to pass a matrix as an output parameter of a GSL matrix routine, you
should either create a zero matrix or a copy of an existing matrix to hold the result. The pre-
lude provides various operations for that purpose (in particular, see the dmatrix, cmatrix,
imatrix and pack functions in matrices.pure). For instance, here is how you can quickly
wrap up GSL’s double matrix addition function in a way that preserves value semantics:

> using "lib:gsl";

> extern int gsl_matrix_add(dmatrixx, dmatrixx);

> x::matrix + y::matrix = gsl_matrix_add x y $$ x when x = pack x end;
> let x = dmatrix {1,2,3}; let y = dmatrix {2,3,2}; x; y; x+y;

{ 0}

{ }

{ }

1.0,2.0,3.
2.0,3.0,2.0
3.0,5.0,5.0
Most GSL matrix routines can be wrapped in this fashion quite easily. A ready-made GSL
interface providing access to all of GSL’s numeric functions is in the works; please check the

Pure website for details.

For convenience, it is also possible to pass any kind of numeric matrix for a charx, shortx,
intx, int64*, float* or doublex parameter. This requires that the pointer and the matrix
type match up; conversions between char, short, int64 and int data and, likewise, between
float and double are handled automatically, however. For instance, here is how you can call
the puts routine from the C library with an int matrix encoding the string "Hello, world!"
as byte values (ASCII codes):

1.10.3 C Types 173

Pure Language and Library Documentation, Release 0.64

> extern int puts(charx);

> puts {72,101,108,108,111,44,32,119,111,114,108,100,33,0};
Hello, world!

14

Pure 0.45 and later also support char*, shortxx, int**, int64x*x*, float+* and doublexx
parameters which encode a matrix as a vector of row pointers instead. This kind of matrix
representation is often found in audio and video processing software (where the rows of the
matrix might denote different audio channels, display lines or video frames), but it’s also
fairly convenient to do any kind of matrix processing in C. For instance, here’s how to do
matrix multiplication (the naive algorithm):

void matmult(int n, int 1, int m, double x*xx, double *xy, double x*xz)
{
int i, j, k;
for (i = 0; i < n; i++)
for (j =0; j <m; j++) {
z[i][j] = 0.0;
for (k = 0; k < 1; k++)
z[11[j] += x[1i]1[KI*y[KI[jl;

}

As you can see, this multiplies a n times 1 matrix x with a 1 times m matrix y and puts the
result into the n times m matrix z:

extern void matmult(int, int, int, doublexx, doublexx*, doublexx);
let x = {0.11,0.12,0.13;0.21,0.22,0.23%};
let y = {1011.0,1012.0;1021.0,1022.0;1031.0,1032.0};

let z = dmatrix (2,2);
matmult 2 3 2 xy z $$ z;
{367.76,368.12;674.06,674.72}

V V V VYV

Also new in Pure 0.45 is the support for passing argv-style vectors as arguments. For in-
stance, here is how you can use fork and execvp to implement a poor man’s version of the
C system function. (This is Unix-specific and doesn’t do much error-checking, but you get
the idea.)

extern int fork();
extern int execvp(char *path, char xxargv);
extern int waitpid(int pid, int *xstatus, int options);

system cmd::string = case fork of
// child: execute the program, bail out if error
0 = execvp "/bin/sh" {"/bin/sh","-c",cmd} $$ exit 1;
// parent: wait for the child and return its exit code
pid = waitpid pid status 0 $$ status!0 >> 8
when status = {0} end if pid>=0;
end;

system "echo Hello, world!";

174 1.10 C Interface

Pure Language and Library Documentation, Release 0.64

system "ls -1 *.pure";
system "exit 1";

1.10.4 Importing Dynamic Libraries

By default, external C functions are resolved by the LLVM runtime, which first looks for
the symbol in the C library and Pure’s runtime library (or the interpreter executable, if the
interpreter was linked statically). Thus all C library and Pure runtime functions are readily
available in Pure programs. Other functions can be provided by adding them to the runtime,
or by linking them into the runtime or the interpreter executable. Better yet, you can just
“dlopen” shared libraries at runtime with a special form of the using clause:

using "lib:libname[.ext]";

For instance, if you want to call the functions from library libxyz directly from Pure:
using "lib:libxyz";

After this declaration the functions from the given library will be ready to be imported into
your Pure program by means of corresponding extern declarations.

Shared libraries opened with using clauses are searched for in the same way as source scripts
(see section Modules and Imports above), using the -L option and the PURE_LIBRARY envi-
ronment variable in place of -I and PURE_INCLUDE. If the library isn’t found by these means,
the interpreter will also consider other platform-specific locations searched by the dynamic
linker, such as the system library directories and LD_LIBRARY_PATH on Linux. The necessary
filename suffix (e.g., .so0 on Linux or .dll on Windows) will be supplied automatically when
needed. Of course you can also specify a full pathname for the library if you prefer that. If
a library file cannot be found, or if an extern declaration names a function symbol which
cannot be resolved, an appropriate error message is printed.

1.10.5 Importing LLVM Bitcode

As of Pure 0.44, the interpreter also provides a direct way to import LLVM bitcode modules
in Pure scripts. The main advantage of this method over the “plain” C interface explained
above is that the bitcode loader knows all the call interfaces and generates the necessary
extern declarations automatically. This is more than just a convenience, as it also eliminates
at least some of the mistakes in extern declarations that may arise when importing functions
manually from dynamic libraries.

Note: The facilities described below require that you have an LLVM-capable C/C++ com-
piler installed. The available options right now are clang, llvm-gcc and dragonegg. Please
check the Pure installation instructions on how to get one of these (or all of them) up and run-
ning. Note that clang and llvm-gcc are standalone compilers, while dragonegg is supplied
as a gcc plugin which hooks into your existing system compiler (gcc 4.5 or later is required
for that). Any of these enable you to compile C/C++ source to LLVM assembler or bitcode.

1.10.4 Importing Dynamic Libraries 175

Pure Language and Library Documentation, Release 0.64

The clang compiler is recommended for C/C++ development, as it offers faster compilation
times and has much better diagnostics than gcc. On the other hand, llvm-gcc and dragonegg
have the advantage that they also support alternative frontends so that you can compile For-
tran and Ada code as well. (But note that, as of LLVM 3.x, llvm-gcc is not supported any
more.)

LLVM bitcode is loaded in a Pure script using the following special format of the using
clause:

using "bc:modname[.bc]";

(Here the bc tag indicates a bitcode file, and the default .bc bitcode filename extension is
supplied automatically. Also, the bitcode file is searched for on the usual library search
path.)

That’s it, no explicit extern declarations are required on the Pure side. The Pure interpreter
automatically creates extern declarations (in the current namespace) for all the external
functions defined in the LLVM bitcode module, and generates the corresponding wrappers
to make the functions callable from Pure. (This also works when batch-compiling a Pure
script. In this case, the bitcode file actually gets linked into the output code, so the loaded
bitcode module only needs to be present at compile time.)

By default the imported symbols will be public. You can also specify the desired scope of
the symbols explicitly, by placing the public or private keyword before the module name.
For instance:

using private "bc:modname";

You can also import the same bitcode module several times, possibly in different name-
spaces. This will not actually reload the module, but it will create synonyms for the external
functions in different namespaces:

namespace foo;

using "bc:modname";
namespace bar;

using private "bc:modname";

You can load any number of bitcode modules along with shared libraries in a Pure script, in
any order. The JIT will try to satisfy external references in modules and libraries from other
loaded libraries and bitcode modules. This is deferred until the code is actually JIT-compiled,
so that you can make sure beforehand that all required libraries and bitcode modules have
been loaded. If the JIT fails to resolve a function, the interpreter will print its name and also
raise an exception at runtime when the function is being called from other C code. (You can
then run your script in the debugger to locate the external visible in Pure from which the
unresolved function is called.)

Let’s take a look at a concrete example to see how this actually works. Consider the follow-
ing C code which defines a little function to compute the greatest common divisor of two
(machine) integers:

176 1.10 C Interface

Pure Language and Library Documentation, Release 0.64

int mygcd(int x, int y)
{
if (y == 0)
return x;
else
return mygcd(y, X%y);
}

Let’s say that this code is in the file mygcd. ¢, then you’d compile it to a bitcode module using
clang as follows:

clang -emit-1lvm -c mygcd.c -o mygcd.bc

Note that the -emit-1lvm -c options instruct clang to build an LLVM bitcode module. Of
course, you can also add optimizations and other options to the compile command as de-
sired.

Using dragonegg is somewhat more involved, as it doesn’t provide a direct way to produce
a bitcode file yet. However, you can create an LLVM assembler file which can then be trans-
lated to bitcode using the llvm-as program as follows:

gcc -fplugin=dragonegg -flto -S mygcd.c -o mygcd.ll
1lvm-as mygcd.ll -o mygcd.bc

(Note that the - fplugin option instructs gcc to use the dragonegg plugin, which in conjunc-
tion with the - flto flag switches it to LLVM output. Please check the dragonegg website for
details.)

In either case, you can now load the resulting bitcode module and run the mygcd function in
the Pure interpreter simply as follows:

> using "bc:mygcd";
> mygcd 75 105;
15

To actually see the generated extern declaration of the imported function, you can use the
interactive show command:

> show mygcd
extern int mygcd(int, int);

Some more examples showing how to use the bitcode interface can be found in the Pure
sources. In particular, the interface also works with Fortran (using llvm-gfortran or gfortran
with dragonegg), and there is special support for interfacing to Grame’s functional DSP
programming language Faust (the latter uses a special variant of the bitcode loader, which
is selected with the dsp tag in the using clause). Further details about these can be found
below.

Please note that at this time the LLVM bitcode interface is still somewhat experimental, and
there are some known limitations:

¢ LLVM doesn’t distinguish between charx and voidx in bitcode, so all void* parameters

1.10.5 Importing LLVM Bitcode 177

Pure Language and Library Documentation, Release 0.64

and return values in C code will be promoted to charx on the Pure side. Also, pointers
to types which neither have a predefined meaning in Pure nor a proper type name in
the bitcode file, will become a generic pointer type (voidx, void*x, etc.) in Pure. If this
is a problem then you can just redeclare the corresponding functions under a synonym
after loading the bitcode module, giving the proper argument and result types (see
Extern Declarations above). For instance:

> using "bc:foo";

> show foo

extern charx foo(charx);

> extern void *xfoo(voidx) = myfoo;
> show myfoo

extern voidx foo(voidx) = myfoo;

¢ The bitcode interface is limited to the same range of C types as Pure’s plain C interface.
In practice, this should cover most C code, but it’s certainly possible that you run into
unsupported types for arguments and return values. The compiler will then print a
warning; the affected functions will still be linked in, but they will not be callable from
Pure. Also note that calling conventions for passing C structs by value depend on the
host ABI, so you should have a look at the resulting extern declaration (using show) to
determine how the function is actually to be called from Pure.

1.10.6 Inline Code

Instead of manually compiling source files to bitcode modules, you can also just place the
source code into a Pure script, enclosing it in %< ... %>. (Optionally, the opening brace
may also be preceded with a public or private scope specifier, which is used in the same
way as the scope specifier following the using keyword when importing bitcode files.)

For instance, here is a little script showing inline code for the mygcd function from the previ-
ous subsection:

%<
int mygcd(int x, int y)
{
if (y == 0)
return x;
else
return mygcd(y, x%y);

e

mygcd 75 105;

The interpreter automatically compiles the inlined code to LLVM bitcode which is then
loaded as usual. (Of course, this will only work if you have the corresponding LLVM com-
pilers installed.) This method has the advantage that you don’t have to write a Makefile
and you can create self-contained Pure scripts which include all required external functions.
The downside is that the inline code sections will have to be recompiled every time you run

178 1.10 C Interface

Pure Language and Library Documentation, Release 0.64

the script with the interpreter which may considerably increase startup times. If this is a
problem then it’s usually better to import a separate bitcode module instead (see Importing
LLVM Bitcode), or batch-compile your script to an executable (see Batch Compilation).

At present, C, C++, Fortran, ATS and Faust are supported as foreign source languages, with
clang, clang++, gfortran (with the dragonegg plugin), patscc and faust as the corresponding
(default) compilers. C is the default language. The desired source language can be selected
by placing an appropriate tag into the inline code section, immediately after the opening
brace. (The tag is removed before the code is submitted to compilation.) For instance:

%< -*- Fortran90 -x-
function fact(n) result(p)
integer n, p

p=1
doi=1,n

p = pxi
end do

end function fact

%>

fact n::int = fact_ {n};
map fact (1..10);

As indicated, the language tag takes the form -*- lang -x*- where lang can currently be any
of ¢, c++, fortran, ats and dsp (the latter indicates the Faust language). Case is insignificant
here, so you can also write C, C++, Fortran, ATS, DSP etc. For the fortran tag, you may
also have to specify the appropriate language standard, such as fortran96 which is used
in the example above. The language tag can also be followed by a module name, using
the format -x- lang:name -*-. This is optional for all languages except Faust (where the
module name specifies the namespace for the interface routines of the Faust module; see
Interfacing to Faust below). So, e.g., a Faust DSP named test would be specified with a
dsp:test tag. Case is significant in the module name.

The Pure interpreter has some built-in knowledge on how to invoke the LLVM compilers
to produce a working bitcode file ready to be loaded by the interpreter, so the examples
above should work out of the box if you have the required compilers installed on your PATH.
However, there are also some environment variables you can set for customization purposes.
Specifically, PURE_CC is the command to invoke the C compiler. This variable lets you specify
the exact name of the executable along with any debugging and optimization options that
you may want to add. Likewise, PURE_CXX, PURE_FC, PURE_ATS and PURE_FAUST are used for
the C++, Fortran, ATS and Faust compilers, respectively.

For instance, if you prefer to use llvm-gcc as your C compiler, and you’d like to invoke it
with the -03 optimization option, you would set PURE_CC to "1lvm-gcc -03". (To verify
the settings you made, you can have the interpreter echo the compilation commands which
are actually executed, by running Pure with the -v0100 option, see Verbosity and Debug-
ging Options. Also note that the options necessary to produce LLVM bitcode will be added
automatically, so you don’t have to specify these.)

Beginning with Pure 0.48, the dragonegg gcc plugin is also fully supported. To make this

1.10.6 Inline Code 179

Pure Language and Library Documentation, Release 0.64

work, you need to explicitly specify the name of the plugin in the compilation command, so
that the Pure interpreter can add the proper set of options needed for bitcode compilation.
For instance:

PURE_CC="gcc -fplugin=dragonegg -03"

Some further details on the bitcode support for specific target languages can be found in the
subsections below.

1.10.7 Interfacing to C++

Interfacing to C++ code requires additional preparations because of the name mangling per-
formed by C++ compilers. Usually, you won’t be able to call C++ functions and methods
directly, so you’ll have to expose the required functionality using functions with C binding
(extern "C"). For instance, the following example shows how to work with STL maps from
Pure.

%< -%- C++ -%-

#include <pure/runtime.h>
#include <string>
#include <map>

// An STL map mapping strings to Pure expressions.

using namespace std;
typedef map<string,pure_expr*> exprmap;

// Since we can’t directly deal with C++ classes in Pure, provide some C
// functions to create, destroy and manipulate these objects.

extern "C" exprmap *map_create()
{
return new exprmap;

}

extern "C" void map_add(exprmap *m, const char xkey, pure_expr *x)
{

exprmap::iterator it = m->find(string(key));

if (it !'= m->end()) pure_free(it->second);

(*m) [key] = pure_new(x);

}

extern "C" void map_del(exprmap *m, const char xkey)
{
exprmap::iterator it = m->find(key);
if (it !'= m->end()) {
pure_free(it->second);
m->erase(it);
}
}

180 1.10 C Interface

Pure Language and Library Documentation, Release 0.64

extern "C" pure_expr xmap_get(exprmap *m, const char xkey)
{

exprmap::iterator it = m->find(key);

return (it !'= m->end())?it->second:0;

}

extern "C" pure_expr xmap_keys(exprmap xm)
{
size_t 1 =0, n = m->size();
pure_expr xxXs = new pure_exprx[n];
for (exprmap::iterator it = m->begin(); it != m->end(); ++it)
XSs[i++] = pure_string_dup(it->first.c_str());
pure_expr xx = pure_listv(n, xs);
delete[] xs;

return x;
}
extern "C" void map_destroy(exprmap *m)
{
for (exprmap::iterator it = m->begin(); it !'= m->end(); ++it)
pure_free(it->second);
delete m;
}

o°
Y

// Create the STL map and add a sentry so that it garbage-collects itself.
let m = sentry map_destroy map_create;

// Populate the map with some arbitrary Pure data.
do (\(x=>y) -> map_add m x y) ["foo"=>99, "bar"=>bar 4711L, "baz"=>1..5];

// Query the map.
map_keys m; // => ["bar","baz","foo0"]
map (map_get m) (map_keys m); // => [bar 4711L,[1,2,3,4,5],99]

// Delete an element.

map_del m "foo";

map_keys m; // => ["bar", "baz"]

map (map_get m) (map_keys m); // => [bar 4711L,[1,2,3,4,5]]

1.10.8 Interfacing to ATS

ATS is a statically typed functional programming language somewhat similar to ML, which
also offers imperative and concurrent programming features. One of ATS’s most unusual
and interesting aspects is its highly expressive Applied Type System, which gives the lan-
guage its name. ATS has a very elaborate C interface which lets you expose functions written
in the language using C linkage. This makes it easy to call ATS functions from Pure via Pure’s
C interface.

1.10.8 Interfacing to ATS 181

http://ats-lang.sourceforge.net/DOCUMENT/INT2PROGINATS/HTML/c1995.html

Pure Language and Library Documentation, Release 0.64

Here is a simple example which illustrates how to implement the factorial in ATS and call
that function from Pure:

%< -x- ATS -x*-
#include "share/atspre_staload.hats"

// A recursive definition of the factorial relation.
// FACT (n, r) means ‘the factorial of n equals r’
// MUL (i, j, k) means ‘the product of i and j equals k’.
dataprop FACT (int, int) =

| FACT_base (0, 1)

| {n : nat} {rl, r : int}

FACT_induction (n, r) of
(FACT (n-1, rl), MUL (n, rl, r))

// Declare ifact as an ATS function that is referred to in C by the
// name ‘ifact_nonneg’. The ‘ifact_nonneg’ function returns an integer
// equal to r, where r satisfies the relation FACT (n, r).
extern fun ifact :
{n : nat} (int n) -<> [r : int] (FACT (n, r) | int r) =
"ext#ifact_nonneg"

implement ifact (n) =
let
fun fact {n : nat} .<n>. (n : int n) :<>
[r : int] (FACT (n, r) | int r) =

begin
if n > 0 then
let
val (pfl | rl) = ifact (n - 1)
val (pfmul | r) = glint_mul2 (n, rl)
in
(FACT_induction (pfl, pfmul) | r)
end
else
(FACT_base () | 1)
end
in
fact n
end

o°
Y

ifact n::int = ifact_nonneg n if 0 <= n;
map ifact (0..9);

To make this work in Pure, you need to have ATS2 (the current version of the ATS compiler)
installed. ATS2 in turn needs a suitable C compiler for generating LLVM bitcode. By default,
Pure uses clang for that purpose. If you have gcc’s dragonegg plugin installed, you can also
use gcc as the C compiler instead, by setting the PURE_ATS environment variable to patscc

182 1.10 C Interface

Pure Language and Library Documentation, Release 0.64

-fplugin=dragonegg. Also make sure that you have the PATSHOME environment variable set
to ATS’s library directory, as explained in the ATS installation instructions.

More information about ATS, as well as sources and binary packages of the ATS compiler
can be found on the ATS website.

1.10.9 Interfacing to Faust

Faust is a functional dsp (digital signal processing) programming language developed at
Grame, which is tailored to the task of generating and transforming streams of numeric data
at the sample level. It is typically used to program sound synthesis and audio effect units,
but can in fact be employed to process any kind of numeric vector and matrix data. The Faust
compiler is capable of generating very efficient code for such tasks which is comparable in
performance with carefully handcrafted C routines. Pure’s Faust interface lets you use these
capabilities in order to process sample data stored in Pure matrices.

Pure’s LLVM bitcode loader has some special knowledge about Faust built into it, which
makes interfacing to Faust programs simple and efficient. At present, you’ll need a special
LLVM-capable version of Faust to make this work, which is available under the “faust2”
branch in Faust’s git repository. Some information on how to get this up and running can be
found on the LLVM backend for Faust website.

Note: There’s also an alternative interface to Faust which is available as a separate package
and works with either Faust2 or the stable Faust version. Please check the pure-faust package
for details. This package also provides the faust2 compatibility module which implements
the pure-faust API on top of Pure’s built-in Faust interface, so that you can also use the
operations of this module instead. (The pure-faust API can in fact be more convenient to use
in some cases, especially if you want to load a lot of different Faust modules dynamically at
runtime.)

The -lang 11lvmoption instructs the Faust compiler to output LLVM bitcode. Also, you want
to add the -double option to make the compiled Faust module use double precision floating
point values for samples and control values. So you’d compile an existing Faust module in
the source file example.dsp as follows:

faust -double -lang llvm example.dsp -o example.bc

The -double option isn’t strictly necessary, but it makes interfacing between Pure and Faust
easier and more efficient, since Pure uses double as its native floating point format.

Alternatively, you can also use the Faust pure. c architecture (included in recent Faust2 re-
visions and also in the pure-faust package) to compile a Faust program to corresponding C
source which can then be fed into an LLVM-capable C compiler to produce bitcode which
is compatible with Pure’s Faust bitcode loader. This is useful, in particular, if you want to
make use of special optimization options provided by the C compiler, or if the Faust module
needs to be linked against additional C/C++ code. For instance:

1.10.9 Interfacing to Faust 183

http://www.ats-lang.org/Downloads.html#Install_source_compile
http://www.ats-lang.org/
https://bitbucket.org/purelang/pure-lang/wiki/Faust2

Pure Language and Library Documentation, Release 0.64

faust -double -a pure.c -lang c example.dsp -o example.c
clang -emit-1lvm -03 -c example.c -0 example.bc

A third possibility is to just inline Faust code in a Pure script, as described in the Inline Code
section. The compilation step is then handled by the Pure compiler and the -double option is
added automatically. The PURE_FAUST environment variable can be used to specify a custom
Faust command to be invoked by the Pure interpreter. This is useful if you'd like to invoke
the Faust compiler with some special options, e.g.:

PURE_FAUST="faust -single -vec"

(Note that you do not have to include the -1lang 1lvm option; the inline compiler will supply
it automatically.)

Moreover, you can also set the FAUST_OPT environment variable to specify any needed post-
processing of the output of the Faust compiler; this is typically used to invoke the LLVM
opt utility in a pipeline, in order to have some additional optimizations performed on the
Faust-generated code:

FAUST_OPT="| opt -03"

After loading or inlining the Faust module, the Pure compiler makes the interface routines
of the Faust module available in its own namespace. Thus, e.g., the interface routines for the
example.dsp module will end up in the example namespace.

Pure’s Faust interface offers another useful feature not provided by the general bitcode in-
terface, namely the ability to reload Faust modules on the fly. If you repeat the import clause
for a Faust module, the compiler checks whether the module was modified and, if so, re-
places the old module with the new one. Retyping an inline Faust code section has the same
effect. This is mainly intended as a convenience for interactive usage, so that you can test
different versions of a Faust module without having to restart the Pure interpreter. But it is
also put to good use in addon packages like pd-faust which allows Faust dsps to be reloaded
at runtime.

For instance, consider the following little Faust program, which takes a stereo audio signal
as input, mixes the two channels and multiplies the resulting mono signal with a gain value
given by a corresponding Faust control variable:

gain = nentry("gain", 0.3, 0, 10, 0.01);
process = + : x(gain);

The interface routines of this Faust module look as follows on the Pure side:

> show -g example::x*

extern void buildUserInterface(struct_dsp_examplex, struct_UIGluex) = example::buildUserInterface;

extern void classInit(int) = example::classInit;

extern void compute(struct_dsp_examplex, int, doublexx, doublexx) = example::compute;
extern void delete(struct_dsp_examplex) = example::delete;

extern void destroy(struct_dsp_examplex) = example::destroy;

extern int getNumInputs(struct_dsp_examplex) = example::getNumInputs;

extern int getNumOutputs(struct_dsp_examplex) = example::getNumOutputs;

184 1.10 C Interface

Pure Language and Library Documentation, Release 0.64

extern int getSampleRate(struct_dsp_examplex) = example::getSampleRate;
extern exprx info(struct_dsp_examplex) = example::info;

extern void init(struct_dsp_examplex, int) = example::init;

extern void instanceInit(struct_dsp_examplex, int) = example::instanceInit;
extern exprx meta() = example::meta;

extern void metadata(struct_MetaGluex) = example::metadata;

extern struct_dsp_examplex new() = example::new;

extern struct_dsp_examplex newinit(int) = example::newinit;

The most important interface routines are new, init and delete (used to create, initialize
and destroy an instance of the dsp) and compute (used to apply the dsp to a given block of
samples). Some useful convenience functions are added by the Pure compiler:

® newinit combines new and init;

* info yields pertinent information about the dsp as a Pure tuple containing the number
of input and output channels and the Faust control descriptions;

* meta yields metadata about the dsp, as declared in the Faust source.

The latter two are provided in a symbolic format ready to be used in Pure; more about that
below.

Note that there’s usually no need to explicitly invoke the delete routine in Pure pro-
grams; the Pure compiler makes sure that this routine is added automatically as a finalizer
(see sentry) to all dsp pointers created through the new and newinit routines so that dsp
instances are destroyed automatically when the corresponding Pure objects are garbage-
collected. (If you prefer to do the finalization manually then you must also remove the
sentry from the dsp object, so that it doesn’t get deleted twice.)

Another point worth mentioning here is that the Pure compiler always generates code that
ensures that the Faust dsp instances (the struct_dsp pointers) are fully typechecked at run-
time. Thus it is only possible to pass a dsp struct pointer to the interface routines of the Faust
module it was created with.

Let’s have a brief look at how we can actually run a Faust module in Pure to process some
audio samples.

Step 1: Load the Faust dsp. This assumes that the Faust source has already been compiled
to a bitcode file, as shown above. You can then load the module in Pure as follows:

> using "dsp:example";
Note that the .bc bitcode extension is supplied automatically. Also note the special dsp tag;

this tells the compiler that this is a Faust-generated module, so that it does some Faust-
specific processing while linking the module.

Alternatively, you can also just inline the code of the Faust module. For the example above,
the inline code section looks as follows:

%< -x- dsp:example -x*-
gain = nentry("gain", 0.3, 0, 10, 0.01);

1.10.9 Interfacing to Faust 185

Pure Language and Library Documentation, Release 0.64

process = + : x(gain);
>

o°

You can either add this code to a Pure script, or just type it directly in the Pure interpreter.

Finally, you may want to verify that the module has been properly loaded by typing show
-g example: :*. The output should look like the listing above.

Step 2: Create and initialize a dsp instance. After importing the Faust module you can now
create an instance of the Faust signal processor using the newinit routine, and assign it to a
Pure variable as follows:

> let dsp = example::newinit 44100;

Note that the constant 44100 denotes the desired sample rate in Hz. This can be an arbitrary
integer value, which is available in the Faust program by means of the SR variable. It’s
completely up to the dsp whether it actually uses this value in some way (our example
doesn’t, but we need to specify a value anyway).

The dsp is now fully initialized and we can use it to compute some samples. But before we
can do this, we’ll need to know how many channels of audio data the dsp consumes and
produces, and which control variables it provides. This information can be extracted with
the info function, and be assigned to some Pure variables as follows:

> let k,1,ui = example::info dsp;

(We'll have a closer look at the contents of the ui variable below.)

In a similar fashion, the meta function provides some “metadata” about the Faust dsp, as
a list of key=>val string pairs. This is static data which doesn’t belong to any particular
dsp instance, so it can be extracted without actually creating an instance. In our case the
metadata will be empty, since we didn’t supply any in the Faust program. If needed, we can
add some metadata as follows:

declare descr "Faust Hello World";
declare author "Faust Guru";

declare version "1.0";

gain = nentry("gain", 0.3, 0, 10, 0.01);
process = + : x(gain);

If we now reload the Faust dsp, we'll get:

> test::meta;
["descr"=>"Faust Hello World","author"=>"Faust Guru","version"=>"1.0"]

Step 3: Prepare input and output buffers. Pure’s Faust interface allows you to pass Pure
double matrices as sample buffers, which makes this step quite convenient. For given num-
bers k and 1 of input and output channels, respectively, we'll need a k x n matrix for the input
and a I x n matrix for the output, where n is the desired block size (the number of samples
to be processed per channel in one go). Note that the matrices have one row per input or
output channel. Here’s how we can create some suitable input and output matrices using a
Pure matrix comprehension and the dmatrix function available in the standard library:

186 1.10 C Interface

Pure Language and Library Documentation, Release 0.64

> let n = 10; // the block size
> let in {i*10.0+j | 1 = 1..k; j = 1..n};
> let out dmatrix (1,n);

In our example, k=2 and 1=1, thus we obtain the following matrices:

> in;
{11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0;
21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0}
> out;

{0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}

Step 4: Apply the dsp to compute some samples. With the in and out matrices as given
above, we can now apply the dsp by invoking its compute routine:

> example::compute dsp n in out;

This takes the input samples specified in the in matrix and stores the resulting output in the
out matrix. The output matrix now looks as follows:

> out;
{9.6,10.2,10.8,11.4,12.0,12.6,13.2,13.8,14.4,15.0}

Note that the compute routine also modifies the internal state of the dsp instance so that a
subsequent call will continue with the output stream where the previous call left off. (This
isn’t relevant in this specific example, but in general a Faust dsp may contain delays and
similar constructions which need a memory of past samples to be maintained between dif-
ferent invocations of compute.) Thus we can now just keep on calling compute (possibly with
different in buffers) to compute as much of the output signal as we need.

Step 5: Inspecting and modifying control variables. Recall that our sample dsp also has
a Faust control variable gain which lets us change the amplification of the output signal.
We’ve already assigned the corresponding information to the ui variable, let’s have a look
at it now:

> ui;

vgroup [] ("test",[nentry #<pointer 0x1611f00> [] ("gain",0.3,0.0,10.0,0.01)])

In general, this data structure takes the form of a tree which corresponds to the hierarchical
layout of the control groups and values in the Faust program. In this case, we just have
one toplevel group containing a single gain parameter, which is represented as a Pure term
containing the relevant information about the type, name, initial value, range and stepsize
of the control, along with a double pointer which can be used to inspect and modify the
control value. While it’s possible to access this information in a direct fashion, there’s also
a faustui.pure module in the standard library which makes this easier. First we extract the
mapping of control variable names to the corresponding double pointers as follows:

> using faustui;
> let ui = control_map $ controls ui; ui;
{"gain"=>#<pointer 0xd81820>}

1.10.9 Interfacing to Faust 187

Pure Language and Library Documentation, Release 0.64

The result is a record value indexed by control names, thus the pointer which belongs to our
gain control can now be obtained with ui!"gain". The faustui.pure module also provides
convenience functions to inspect a control and change its value:

let gain = ui!"gain";
get_control gain;

.3

put_control gain 1.0;
)

> get_control gain;
1.0

—~V ©oV Vv

Let’s rerun compute to get another block of samples from the same input data, using the new
gain value:

> example::compute dsp n in out;
> out;
{32.0,34.0,36.0,38.0,40.0,42.0,44.0,46.0,48.0,50.0}

Faust also allows metadata to be attached to individual controls and control groups, which
is available in the same form of a list of key=>val string pairs that we have seen already with
the meta operation. This metadata is used to provide auxiliary information about a control
to specific applications. It's completely up to the application how to interpret this metadata.
Typical examples are style hints about GUI renderings of a control, or the assignment of
external “MIDI” controllers. (MIDI is the “Musical Instruments Digital Interface”, a stan-
dardized hardware and software interface for electronic music instruments and other digital
multimedia equipment.)

In our example these metadata lists are all empty. Control metadata is specified in a Faust
program in the labels of the controls using the syntax [key:val], please see the Faust doc-
umentation for details. For instance, if we’d like to assign MIDI controller 7 (usually the
“volume controller” on MIDI keyboards) to our gain control, this might be done as follows:

gain = nentry("gain [midi:ctrl 7]", 0.3, 0, 10, 0.01);

After reloading the dsp and creating a new instance, this metadata is available in the ui
structure and can be extracted with the control_meta function of the faustui module as
follows:

> let dsp = test::newinit SR;

> let k,1,ui = example::info dsp;

> controls ui!Q;

nentry #<pointer 0x1c97070> ["midi"=>"ctrl 7"]1 ("gain",0.3,0.0,10.0,0.01)
> control_meta ans;

["midi"=>"ctrl 7"]

As you can see, all these steps are rather straightforward. Of course, in a real program we
would probably run compute in a loop which reads some samples from an audio device or
sound file, applies the dsp, and writes back the resulting samples to another audio device or
file. We might also have to process MIDI controller input and change the control variables
accordingly. This can all be done quite easily using the appropriate addon modules available

188 1.10 C Interface

Pure Language and Library Documentation, Release 0.64

on the Pure website.

We barely scratched the surface here, but it should be apparent that the programming tech-
niques sketched out in this section open the door to the realm of sophisticated multimedia
and signal processing applications. More Faust-related examples can be found in the Pure
distribution. Also, have a look at the pd-pure and pd-faust packages to see how these facilities
can be used in Pd modules written in Pure.

1.11 Interactive Usage

In interactive mode, the interpreter reads definitions and expressions and processes them as
usual. You can use the -1 option to force interactive mode when invoking the interpreter
with some script files. Additional scripts can be loaded interactively using either a using
declaration or the interactive run command (see the description of the run command below
for the differences between these). Or you can just start typing away, entering your own
definitions and expressions to be evaluated.

The input language is mostly the same as for source scripts, and hence individual defini-
tions and expressions must be terminated with a semicolon before they are processed. For
instance, here is a simple interaction which defines the factorial and then uses that definition
in some evaluations. Input lines begin with “> ", which is the interpreter’s default command
prompt:

> fact 1 = 1;

> fact n nxfact (n-1) if n>1;

> let x = fact 10; x;

3628800

> map fact (1..10);
[1,2,6,24,120,720,5040,40320,362880,3628800]

As indicated, in interactive mode the normal forms of toplevel expressions are printed after
each expression is entered. This is also commonly known as the read-eval-print loop. Nor-
mal form expressions are usually printed in the same form as you’d enter them. However,
there are a few special kinds of objects like anonymous closures, thunks (“lazy” values to
be evaluated when needed) and pointers which don’t have a textual representation in the
Pure syntax and will be printed in the format #<object description> by default. It is also possi-
ble to override the print representation of any kind of expression by means of the __show__
function, see Pretty-Printing below for details.

A number of other special features of Pure’s command line interface are discussed in the
following subsections.

1.11.1 Command Syntax

Besides Pure definitions and expressions, the interpreter also understands a number of spe-
cial interactive commands for performing basic maintenance tasks, such as loading source
scripts, exiting and restarting the interpreter, changing the working directory, escaping to

1.11 Interactive Usage 189

Pure Language and Library Documentation, Release 0.64

the shell, getting help and displaying definitions. In contrast to the normal input language,
the command language is line-oriented; it consists of special command words to be typed
at the beginning of an input line, which may be followed by some parameters as required
by the command. The command language is intended solely for interactive purposes and
thus doesn’t offer any programming facilities of its own. However, it can be extended with
user-defined commands implemented as ordinary Pure functions; this is described in the
User-Defined Commands section below.

In fact, as of Pure 0.56 the interpreter actually provides two slightly different command
syntaxes, which we’ll refer to as “default” and “escape mode”. The manual assumes that
you're running the interpreter in its traditional default mode where interactive commands
are typed simply as they are shown in the following subsections, with the command word at
the very beginning of the line. However, this mode has its pitfalls, especially for beginners.
As most of the commands look just like ordinary identifiers, you may run into situations
where the beginning of an expression or definition to be typed at the prompt can be mis-
taken for a command word. In such cases the default mode requires that you insert one
or more spaces at the beginning of the line, so that the interpreter reads the line as normal
Pure code. Unfortunately, it’s much too easy to forget this if you're not familiar with the
command language.

Therefore there is an alternative escape mode available which handles special command in-
put more like some other popular programming language interpreters. In escape mode all
interactive commands have to be escaped by prefixing them with a special character at the
very beginning of the line. The command itself must follow the prefix character, without any
intervening whitespace. Any line not prefixed with the prefix character will then be consid-
ered normal Pure code. This mode can be enabled with the - -escape option, which takes
the desired prefix character as an argument, or you can just set the PURE_ESCAPE variable in
your environment to enable escape mode by default.

For example, to set the escape character to “:* you'll invoke the interpreter as follows:

$ pure --escape=':’

Alternatively, you could also set the PURE_ESCAPE environment variable like this (using
Bourne shell syntax):

$ export PURE_ESCAPE=":"’

Note that specifying the prefix character with the - -escape option overrides the value of the
environment variable, and only the initial character in the value of - -escape or PURE_ESCAPE
will be used. If the specified value is empty, the interpreter reverts to the default mode.
The following prefix characters can be used: !$%&x,:<>@\|. Note that these all belong to
7 bit ASCII, and only some of the ASCII punctuation characters are permitted in order to
prevent conflicts with ordinary Pure code. In any case, all of these characters can also occur in
ordinary Pure code, so you should use a prefix that you aren’t likely to type at the beginning
of a line in your usual coding style.

Many Pure programmers prefer escape mode, and in fact we recommend it for Pure novices
even though it’s not the default (yet). Others may prefer default mode because it’s less effort
to type. For the manual we stick to the default mode syntax. This means that if you're

190 1.11 Interactive Usage

Pure Language and Library Documentation, Release 0.64

running the interpreter in escape mode then you’ll have to do the necessary translation of
the command syntax yourself. For instance, if the manual tells you to type the following
command,

> show foldl

and you are using “:“ as the command prefix, then you will have to type this in escape mode
instead:

> :show foldl

Note that in this case “!” continues to serve as a shell escape:
> | find . "x.pure’
This will not work, however, if you use ‘!“ as your command prefix. In this case you will

have to type two exclamation marks instead (the same caveat applies if you escape a shell
command in the debugger, cf. Debugging):

> Il find . "*x.pure’

This should be rather straightforward, so in the following we just use the default mode
command syntax throughout without further notice.

Note: Escape mode only applies to the interactive command line. It doesn’t affect the
evalcmd function in any way, so interactive commands in the string argument of evalcmd are
always specified without the escape character prefix no matter which mode the interpreter
is running in.

1.11.2 Online Help

Online help is available in the interpreter with the interactive help command, which gives
you access to all the available documentation in html format; this includes the present man-
ual, the Pure Library Manual, as well as all manuals of the addon modules available from the
Pure website.

You need to have a html browser installed to make this work. By default, the help com-
mand uses w3m, but you can change this by setting either the PURE_HELP or the BROWSER
environment variable accordingly.

When invoked without arguments, the help command displays an overview of the available
documentation, from which you can follow the links to the provided manuals:

> help
(If the interpreter gives you an error message when you do this then you haven’t installed

the documentation yet. The complete set of manuals is provided as a separate package at
the Pure website, please see the Pure installation instructions for details.)

1.11.2 Online Help 191

Pure Language and Library Documentation, Release 0.64

The help command also accepts a parameter which lets you specify a search term which is
looked up in the global index, e.g.:

> help foldl

Besides Pure functions, macros, variables and constants described in the manual you can
also look up program options and environment variables, e.g.:

> help -x
> help pure-gen -x
> help PURE_STACK

(Note that you can specify the program name to disambiguate between options for differ-
ent utilities, such as the -x option which is accepted both by the Pure interpreter and the
pure-gen program.)

If the search term doesn’t appear in the index, it is assumed to be a topic (a link target,
usually a section title) in the Pure manual. Note that the docutils tools used to generate the
html source of the Pure documentation mangle the section titles so that they are in lowercase
and blanks are replaced with hyphens. So to look up the present section in this manual you’'d
have to type:

> help online-help
The help files are in html format and located in the docs subdirectory of the Pure library

directory (i.e., /usr/local/lib/pure/docs by default). You can look up topics in any of the
help files with a command like the following:

> help pure-gsl#matrices
Here pure-gsl is the basename of the help file (library path and .html suffix are supplied

automatically), and matrices is a link target in that document. To just read the pure-gsl.html
file without specifying a target, type the following;:

> help pure-gsl#
(Note thatjust help pure-gsl won't work, since it would look for a search term in the index
or a topic in the Pure manual.)

Last but not least, you can also point the help browser to any html document (either a local
file or some website) denoted by a proper URL, provided that your browser program can
handle these. For instance:

> help file:mydoc.html#foo
> help http://purelang.bitbucket.org

1.11.3 Interactive Commands

The following built-in commands are always understood by the interpreter. (In addition,
you can define your own commands for frequently-used operations; see User-Defined Com-
mands below.)

192 1.11 Interactive Usage

http://docutils.sourceforge.net/

Pure Language and Library Documentation, Release 0.64

! command

Shell escape.

break [symbol ...]

Sets breakpoints on the given function or operator symbols. All symbols must be spec-
ified in fully qualified form, see the remarks below. If invoked without arguments,
prints all currently defined breakpoints. This requires that the interpreter was invoked
with the - g option to enable debugging support. See Debugging below for details.

bt
Prints a full backtrace of the call sequence of the most recent evaluation, if that eval-
uation ended with an unhandled exception. This requires that the interpreter was
invoked with the -g option to enable debugging support. See Debugging below for
details.

cd dir

Change the current working dir.

clear [option ...] [symbol ...]

Purge the definitions of the given symbols (functions, macros, constants or global vari-
ables). All symbols must be specified in fully qualified form, see the remarks below.
If invoked as clear ans, clears the ans value (see Last Result below). When invoked
without any arguments, clear purges all definitions at the current interactive “level”
(after confirmation) and returns you to the previous level, if any. (It might be a good
idea to first check your current definitions with show or back them up with dump before
you do that.) The desired level can be specified with the -t option. See the description
of the save command and Definition Levels below for further details. A description of
the common options accepted by the clear, dump and show commands can be found in
Specifying Symbol Selections below.

del [-b|-m|-t] [symbol ...]

dump

Deletes breakpoints and tracepoints on the given function or operator symbols. If the
-b option is specified then only breakpoints are deleted; similarly, del -t only deletes
tracepoints. If none of these are specified then both breakpoints and tracepoints are
deleted. All symbols must be specified in fully qualified form, see the remarks below.
If invoked without non-option arguments, del clears all currently defined breakpoints
and/or tracepoints (after confirmation); see Debugging below for details.

The -m option works similarly to - t, but deletes macro rather than function tracepoints,
see the description of the trace command below.

[-n filename] [option ...] [symbol ...]

Dump a snapshot of the current function, macro, constant and variable definitions in
Pure syntax to a text file. All symbols must be specified in fully qualified form, see the
remarks below. This works similar to the show command (see below), but writes the
definitions to a file. The default output file is .pure in the current directory, which is
then reloaded automatically the next time the interpreter starts up in interactive mode
in the same directory. This provides a quick-and-dirty way to save an interactive ses-
sion and have it restored later, but note that this isn’t perfect. In particular, declarations
of extern symbols won’t be saved unless they’re specified explicitly, and some objects

1.11.3 Interactive Commands 193

Pure Language and Library Documentation, Release 0.64

like closures, thunks and pointers don’t have a textual representation from which they
could be reconstructed. To handle these, you’ll probably have to prepare a correspond-
ing .purerc file yourself, see Interactive Startup below.

A different filename can be specified with the -n option, which expects the name of the
script to be written in the next argument, e.g: dump -n myscript.pure. You can then
edit that file and use it as a starting point for an ordinary script or a .purerc file, or you
can just run the file with the run command (see below) to restore the definitions in a
subsequent interpreter session.

help [topic]
Display online documentation. If a topic is given, it is looked up in the index. Alterna-
tively, you can also specify a link target in any of the installed help files, or any other
html document denoted by a proper URL. Please see Online Help above for details.

1s [args]
List files (shell Is command).

mem
Print current memory usage. This reports the number of expression cells currently in
use by the program, along with the size of the freelist (the number of allocated but cur-
rently unused expression cells). Note that the actual size of the expression storage may
be somewhat larger than this, since the runtime always allocates expression memory
in bigger chunks. Also, this figure does not reflect other heap-allocated memory in use
by the program, such as strings or malloc’ed pointers.

override
Enter “override” mode. This allows you to add equations “above” existing definitions
in the source script, possibly overriding existing equations. See Definition Levels be-
low for details.

pwd
Print the current working dir (shell pwd command).

quit
Exits the interpreter.

run [-g]|script]

When invoked without arguments or with the -g option, run does a “cold” restart of
the interpreter, with the scripts and options given on the interpreter’s original com-
mand line. If just - g is specified as the argument, the interpreter is run with debugging
enabled. Otherwise the interpreter is invoked without debugging support. (This over-
rides the corresponding option from the interpreter’s command line.) This command
provides a quick way to rerun the interpreter after changes in some of the loaded script
files, or if you want to enable or disable debugging on the fly (which requires a restart
of the interpreter). You'll also loose any definitions that you entered interactively in
the interpreter, so you may want to back them up with dump beforehand.

When invoked with a script name as argument, run loads the given script file and adds
its definitions to the current environment. This works more or less like a using clause,
but only searches for the script in the current directory and places the definitions in the

194 1.11 Interactive Usage

Pure Language and Library Documentation, Release 0.64

save

show

script at the current temporary level, so that clear can be used to remove them again.
Also note that namespace and pragma settings of scripts loaded with run stick around
after loading the script. This allows you to quickly set up your environment by just
running a script containing the necessary namespace declarations and compiler direc-
tives. (Alternatively, you can also use the interpreter’s startup files for that purpose,
see Interactive Startup below.)

Begin a new level of temporary definitions. A subsequent clear command (see above)
will purge the definitions made since the most recent save command. See Definition
Levels below for details.

[option ...] [symbol ...]

Show the definitions of symbols in various formats. See The show Command below for
details. All symbols must be specified in fully qualified form, see the remarks below. A
description of the common options accepted by the clear, dump and show commands
can be found in Specifying Symbol Selections below.

stats [-m] [on|off]

Enables (default) or disables “stats” mode, in which some statistics are printed after
an expression has been evaluated. Invoking just stats or stats on only prints the
cpu time in seconds for each evaluation. If the -m option is specified, memory usage is
printed along with the cpu time, which indicates the maximum amount of expression
memory (in terms of expression cells) used during the computation. Invoking stats
off disables stats mode, while stats -m off just disables the printing of the memory
usage statistics.

trace [-a] [-m] [-r] [-s] [symbol ...]

Sets tracepoints on the given function or operator symbols. Without the -m option,
this works pretty much like the break command (see above) but only prints rule in-
vocations and reductions without actually interrupting the evaluation; see Debugging
below for details.

The -m option allows you to trace macro (rather than function) calls. If this option is
specified, the compiler prints reduction sequences involving the given macro symbol,
which is useful when debugging macros; see the Macros section for details and ex-
amples. Note that macro tracing works even if the interpreter was invoked without
debugging mode.

If the -a option is specified, tracepoints are set on all global function or macro symbols,
respectively (in this case the symbol arguments are ignored). This is convenient if you
want to see any and all reductions performed in a computation.

Tracing can actually be performed in two different modes, recursive mode in which the
trace is triggered by any of the active tracepoints and continues until the corresponding
call is finished, or skip mode in which only calls by the active tracepoints are reported.
The former is usually more helpful and is the default. The -s option allows you to
switch to skip mode, while the - r option switches back to recursive mode.

Finally, if neither symbols nor any of the -a, -r and -s options are specified then the

1.11.3 Interactive Commands 195

Pure Language and Library Documentation, Release 0.64

currently defined tracepoints are printed. Note that, as with the break command, ex-
isting tracepoints can be deleted with the del command (see above).

underride
Exits “override” mode. This returns you to the normal mode of operation, where new
equations are added “below” previous rules of an existing function. See Definition
Levels below for details.

Commands that accept options generally also understand the -h (help) option which prints
a brief summary of the command syntax and the available options.

Note that symbols (identifiers, operators etc.) must always be specified in fully qualified
form. No form of namespace lookup is performed by commands like break, clear, show
etc. Thus the specified symbols always work the same no matter what namespace and using
namespace declarations are currently in effect.

Besides the commands listed above, the interpreter also provides some special commands
for the benefit of other programs such as emacs driving the interpreter; currently these are
completion_matches, help_matches and help_index. These aren’t supposed to be invoked
directly by the user, although they may sometimes be useful to implement custom function-
ality, see User-Defined Commands.

1.11.4 Specifying Symbol Selections

The clear, dump and show commands all accept the following options for specifying a subset
of symbols and definitions on which to operate. All symbols must be specified in fully
qualified form. Options may be combined, thus, e.g., show -mft is the same as show -m
-f -t. Some options specify optional numeric parameters; these must follow immediately
behind the option character if present, as in - t0.

-c¢ Select defined constants.
-f Select defined functions.

-g Indicates that the following symbols are actually shell glob patterns and that all match-
ing symbols should be selected.

-m Select defined macros.

-pflag Select only private symbols if flag is nonzero (the default), otherwise (flag is zero) se-
lect only public symbols. If this option is omitted then both private and public symbols
are selected.

-tlevel Select symbols and definitions at the given “level” of definitions and above. This
is described in more detail below. Briefly, the executing program and all imported
modules (including the prelude) are at level 0, while “temporary” definitions made
interactively in the interpreter are at level 1 and above. Thus a level of 1 restricts the
selection to all temporary definitions, whereas 0 indicates all definitions (i.e., every-
thing, including the prelude). If level is omitted, it defaults to the current definitions
level.

196 1.11 Interactive Usage

Pure Language and Library Documentation, Release 0.64

-v Select defined variables.
-y Select defined types.

In addition, the -h option prints a short help message describing all available options of the
command at hand.

If none of the -c, - f, -m, -v and -y options are specified, then all kinds of symbols (constants,
functions, macros, variables and types) are selected, otherwise only the specified categories
will be considered.

A reasonable default is used if the -t option is omitted. By default, if no symbols are spec-
ified, only temporary definitions are considered, which corresponds to -t1. Otherwise the
command applies to all corresponding definitions, no matter whether they belong to the ex-
ecuting program, the prelude, or some temporary level, which has the same effect as -t0.
This default choice can be overridden by specifying the desired level explicitly.

As a special case, just clear (without any other options or symbol arguments) always backs
out to the previous definitions level (instead of level #1). This is inconsistent with the rules
set out above, but is implemented this way for convenience and backward compatibility.
Thus, if you really want to delete all your temporary definitions, use clear -t1 instead.
When used in this way, the clear command will only remove temporary definitions; if you
need to remove definitions at level #0, you must specify those symbols explicitly.

Note that clear -g * will have pretty much the same disastrous consequences as the Unix
command rm -rf *, so don’t do that. Also note that a macro or function symbol may well
have defining equations at different levels, in which case a command like clear -tn foo
might only affect some part of foo’s definition. The dump and show commands work analo-
gously (albeit less destructively). See Definition Levels below for some examples.

1.11.5 The show Command

The show command can be used to obtain information about defined symbols in various
formats. Besides the common selection options discussed above, this command recognizes
the following additional options for specifying the content to be listed and the format to use.

-a Disassembles pattern matching automata. Works like the -v4 option of the interpreter.

-d Disassembles LLVM IR, showing the generated LLVM assembler code of a function.
Works like the -v8 option of the interpreter.

-e Annotate printed definitions with lexical environment information (de Bruijn indices,
subterm paths). Works like the -v2 option of the interpreter.

-1 Long format, prints definitions along with the summary symbol information. This
implies -s.

-s Summary format, print just summary information about listed symbols.

Symbols are always listed in lexicographic order. Note that some of the options (in partic-
ular, -a and -d) may produce excessive amounts of information. By setting the PURE_MORE

1.11.5 The show Command 197

Pure Language and Library Documentation, Release 0.64

environment variable, you can specify a shell command to be used for paging, usually more
or less.

For instance, to list all temporary definitions made in an interactive session, simply say:

> show

You can also list a specific symbol, no matter whether it comes from the interactive command
line, the executing script or the prelude:

> show foldl
foldl f a x::matrix

foldl f a (list x);

foldl f a s::string = foldl f a (chars s);
foldl f a [] = a;
foldl f a (x:xs) = foldl f (f a x) xs;

Wildcards can be used with the -g option, which is useful if you want to print an entire
family of related functions, e.g.:

> show -g foldlx

foldl f a x::matrix = foldl f a (list x);
foldl f a s::string = foldl f a (chars s);
foldl f a [] = a;

foldl f a (x:xs) = foldl f (f a x) xs;

foldll f x::matrix = foldll f (list x);
foldll f s::string = foldll f (chars s);
foldll f (x:xs) = foldl f x xs;

Or you can just specify multiple symbols as follows (this also works with multiple glob
patterns when you add the -g option):

> show min max
max x y = if x>=y then x else y;
min x y = if x<=y then x else y;

You can also select symbols by category. E.g., the following command shows summary
information about all the variable symbols along with their current values (using the “long”
format):

> show -lvg *

argc var argc = 0;

argv var argv = [];

compiling var compiling = 0;

sysinfo var sysinfo = "x86_64-unknown-linux-gnu";
version var version = "0.64";

5 variables

Or you can list just private symbols of the namespace foo, as follows:

> show -pg foo::x*

The following command will list each and every symbol that’s currently defined (instead of
-g * you can also use the -t0 option):

198 1.11 Interactive Usage

Pure Language and Library Documentation, Release 0.64

> show -g *

This usually produces a lot of output and is rarely needed, unless you'd like to browse
through an entire program including all library imports. (In that case you might consider
to use the dump command instead, which writes the definitions to a file which can then be
loaded into a text editor for easier viewing. This may occasionally be useful for debugging
purposes.)

The show command also has the following alternate forms which are used for special pur-
poses:

* show interface lists the actual type rules for an interface type. This is useful if you
want to verify which patterns will be matched by an interface type, see Interface Types
for details. For instance:

interface stack with
push xs::stack x;
pop xs::stack;
top xs::stack;
end;
push xs@[] x |
push xs@(_:_) X = X:XS;
pop (X:Xs) = Xxs;
top (x:xs) = x;
show interface stack
type stack xs@(_:_);
> pop [] = throw "empty stack";
> top [] = throw "empty stack";
> show interface stack
type stack xs@[];
type stack xs@(_:_);

>
>
>
>
>
>
>
>
>
>

* show namespace lists the current and search namespaces, while show namespaces lists
all declared namespaces. These come in handy if you have forgotten what namespaces
are currently active and which other namespaces are available in your program. For
instance:

> show namespace

> show namespaces
namespace C;
namespace matrix;

> using namespace C;
> namespace my;

> show namespace
namespace my;

using namespace C;

1.11.5 The show Command 199

Pure Language and Library Documentation, Release 0.64

1.11.6 Definition Levels

To help with incremental development, the interpreter offers some commands to manipu-
late the current set of definitions interactively. To these ends, definitions are organized into
different subsets called levels. As already mentioned, the prelude, as well as other source
programs specified when invoking the interpreter, are always at level 0, while the interactive
environment starts at level 1. Each save command introduces a new temporary level, and
each subsequent clear command (without any arguments) “pops” the definitions on the
current level and returns you to the previous one (if any). This gives you a “stack” of tem-
porary environments which enables you to “plug and play” in a (more or less) safe fashion,
without affecting the rest of your program.

For all practical purposes, this stack is unlimited, so that you can create as many levels as you
like. However, this facility also has its limitations. The interpreter doesn’t really keep a full
history of everything you entered interactively, it only records the level a variable, constant,
and function or macro rule belongs to so that the corresponding definitions can be removed
again when the level is popped. On the other hand, intermediate changes in variable values
are not recorded anywhere and cannot be undone. Moreover, global declarations (which
encompasses using clauses, extern declarations and special symbol declarations) always
apply to all levels, so they can’t be undone either.

That said, the temporary levels can still be pretty useful when you're playing around with
the interpreter. Here’s a little example which shows how to use clear to quickly get rid of a
definition that you entered interactively:

> foo (x:xs) = x+foo xs;

> foo []1 = 0;

> show

foo (x:xs) = x+foo xs;

foo [] = 0;

> foo (1..10);

55

> clear

This will clear all temporary definitions at level #1.
Continue (y/n)? y

> show

> foo (1..10);

foo [1,2,3,4,5,6,7,8,9,10]

We've seen already that normally, if you enter a sequence of equations, they will be recorded
in the order in which they were written. However, it is also possible to override definitions
in lower levels with the override command:

> foo (x:xs) = x+foo Xxs;
> foo [] = 0;

> show

foo (x:xs) = x+foo Xxs;
foo [] = 0;

> foo (1..10);

55

> save

200 1.11 Interactive Usage

Pure Language and Library Documentation, Release 0.64

save: now at temporary definitions level #2
> override
> foo (x:xs) = xxfoo xs;

> show

foo (x:xs) = xxfoo xs;
foo (x:xs) = x+foo xs;
foo [] = 0;

> foo (1..10);
warning: rule never reduced: foo (x:xs) = x+foo xs;
0

Note that the equation foo (x:xs) = xxfoo xs was inserted before the previous rule foo
(x:xs) = x+foo xs, which is at level #1. (The latter equation is now “shadowed” by the
rule we just entered, hence the compiler warns us that this rule can’t be reduced any more.)

Even in override mode, new definitions will be added after other definitions at the current
level. This allows us to just continue adding more high-priority definitions overriding lower-
priority ones:

> foo [] = 1;

> show

foo (x:xs) = xxfoo xs;

foo [] = 1;

foo (x:xs) = x+foo xs;

foo [] = 0;

> foo (1..10);

warning: rule never reduced: foo (x:xs) = x+foo xs;
warning: rule never reduced: foo [] = 0O;

3628800

Again, the new equation was inserted above the existing lower-priority rules, but below our
previous equation foo (x:xs) = x*foo xs entered at the same level. As you can see, we
have now effectively replaced our original definition of foo with a version that calculates
list products instead of sums, but of course we can easily go back one level to restore the
previous definition:

> clear

This will clear all temporary definitions at level #2.
Continue (y/n)? vy

clear: now at temporary definitions level #1

clear: override mode is on

> show

foo (x:xs) = x+foo xs;

foo [] = 0;

> foo (1..10);

55

Note that clear reminded us that override mode is still enabled (save will do the same if
override mode is on while pushing a new definitions level). To turn it off again, use the
underride command. This will revert to the normal behaviour of adding new equations
below existing ones:

1.11.6 Definition Levels 201

Pure Language and Library Documentation, Release 0.64

> underride

It’s also possible to use clear to back out multiple levels at once, if you specify the target
level to be cleared with the -t option. For instance:

> save
save: now at temporary definitions level #2
> let bar = 99;

> show

let bar = 99;

foo (x:xs) = x+foo xs;
foo [] = 0;

> // this scraps all our scribblings!

> clear -tl

This will clear all temporary definitions at level #1 and above.
Continue (y/n)? vy

clear: now at temporary definitions level #1

> show

>

The facilities described above are also available to Pure programs, as the save and clear
commands can also be executed under program control using the evalcmd primitive. Con-
versely, the library provides its own functions for inspecting and manipulating the source
program, which may also be useful in custom command definitions; see the Pure Library
Manual for details.

1.11.7 Debugging

The interpreter provides a simple but reasonably convenient symbolic debugging facility
when running interactively. To make this work, you have to specify the -g option when
invoking the interpreter (pure -g). If you're already at the interpreter’s command line, you
can also use the run -g command to enable the debugger. The -g option disables tail call
optimization (see Stack Size and Tail Recursion) to make it easier to debug programs. It also
causes special debugging code to be generated which will make your program run much
slower. Therefore the - g option should only be used if you actually need the debugger.

One common use of the debugger is “post mortem” debugging after an evaluation ended
with an unhandled exception. In such a case, the bt command of the interpreter prints a
backtrace of the call sequence which caused the exception. Note that this only works if
debugging mode was enabled. For instance:

> [1,2]1!'3;
<stdin>, line 2: unhandled exception ’'out_of_bounds’ while evaluating ’'[1,2]!3’
> bt
[1] ('): (x:xs)!'n::int = xs!'(n-1) if n>0;
n=3; x=1; xs = [2]
[2] (!): (x:xs)!'n::int = xs!(n-1) if n>0;
n=2; x=2; xs =11
[31 ('): [1'n::int = throw out_of_bounds;
n=1

202 1.11 Interactive Usage

Pure Language and Library Documentation, Release 0.64

>> [4] throw: extern void pure_throw(exprx) = throw;
x1 = out_of_bounds

The last call, which is also marked with the >> symbol, is the call that raised the exception.
The format is similar to the p command of the debugger, see below, but bt always prints a
full backtrace. (As with the show command of the interpreter, you can set the PURE_MORE en-
vironment variable to pipe the output through the corresponding command, or use evalcmd
to capture the output of bt in a string.)

The debugger can also be used interactively. To these ends, you can set breakpoints on
functions with the break command. The debugger then gets invoked as soon as a rule for
one of the given functions is executed. Example:

> fact n::int = if n>0 then nxfact (n-1) else 1;

> break fact

> fact 1;

xx [1] fact: fact n::int = if n>0 then nxfact (n-1) else 1;
n=1

(Type 'h' for help.)

xx [2] fact: fact n::int = if n>0 then nxfact (n-1) else 1;
n=20

++ [2] fact: fact n::int = if n>0 then nxfact (n-1) else 1;

n=20
-->1

xx [2] (%): x::intxy::int = xxy;
x=1;, y=1

++ [2] (*): x::intxy::int = xxy;

x=1,y=1
-->1
++ [1] fact: fact n::int = if n>0 then nxfact (n-1) else 1;
n=1
_.> 1

1

Lines beginning with ** indicate that the evaluation was interrupted to show the rule (or
external) which is currently being considered, along with the current depth of the call stack,
the invoked function and the values of parameters and other local variables in the current
lexical environment. In contrast, the prefix ++ denotes reductions which were actually per-
formed during the evaluation and the results that were returned by the function call (printed
as --> return value).

Sometimes you might also see funny symbols like #<closure>, #<case> or #<when> instead
of the function name. These indicate lambdas and the special variable-binding environ-
ments, which are all implemented as anonymous closures in Pure. Also note that the de-
bugger doesn’t know about the argument names of external functions (which are optional
in Pure and not recorded anywhere), so it will display the generic names x1, x2 etc. instead.

At the debugger prompt “:* you can enter various special debugger commands, or just keep

1.11.7 Debugging 203

Pure Language and Library Documentation, Release 0.64

on hitting the carriage return key to walk through an evaluation step by step, as we did in
the example above. (Command line editing works as usual at the debugger prompt, if it
is enabled.) The usual commands are provided to walk through an evaluation, print and
navigate the call stack, step over the current call, or continue the evaluation unattended
until you hit another breakpoint. If you know other source level debuggers like gdb then
you should feel right at home. You can type h at the debugger prompt to print the following
list:

: h
Debugger commands:
auto: step through the entire program, run unattended
[f] continue until next breakpoint, or given function f
help: print this list
next step: step over reduction
[n] print rule stack (n = number of frames)
run: finish evaluation without debugger
single step: step into reduction
move to the top or bottom of the rule stack
move up or down one level in the rule stack
exit the interpreter (after confirmation)
. reprint current rule
! cmd execute interpreter command
? expr evaluate expression
<cr> single step (same as 's’)
<eof> step through program, run unattended (same as 'a’)

X o« +Wn 5T S5 509
o T

Note: If you specified an - -escape prefix other than “!* (cf. Command Syntax), that prefix
will be used to execute interpreter commands instead, see below. The help message will tell
you which command prefix is in effect.

The command syntax is very simple. Besides the commands listed above you can also en-
ter comment lines (// comment text) which will just be ignored. Extra arguments on com-
mands which don’t expect any will generally be ignored as well. The single letter commands
all have to be separated from any additional parameters with whitespace, whereas the “!’,
‘?”and ’.” commands count as word delimiters and can thus be followed immediately by
an argument. For convenience, the *?* command can also be omitted if the expression to be
evaluated doesn’t start with a single letter or one of the special punctuation commands.

The debugger can be exited or suspended in the following ways:

* You can type c to continue the evaluation until the next breakpoint, or ¢ foo in order
to proceed until the debugger hits an invocation of the function foo.

* You can type r to run the rest of the evaluation without the debugger.

¢ The a (“auto”) command single-steps through the rest of the evaluation, running unat-
tended. This command can also be entered by just hitting the end-of-file key (Ctr1l-d
on Unix systems) at the debugger prompt.

* You can also type x to exit from the debugger and the interpreter immediately (after

204 1.11 Interactive Usage

Pure Language and Library Documentation, Release 0.64

confirmation).

In addition, you can use the ! command (or whatever command prefix has been set with the
- -escape option) to run any interpreter command while in the debugger. For instance:

s

This is particularly useful to invoke the break and del commands to change breakpoints.
Note that you can actually escape any valid input to the interpreter that way, not just the
special interactive commands. However, you shouldn’t try to modify the program while
you're debugging it. This may work in some cases, but will have nasty consequences if you
happen to change a function which is currently being executed.

The interpreter’s shell escape can also be used from the debugger. In default mode or when
using ! as the - -escape prefix, you'll have to escape shell commands with !!, otherwise a
single ! suffices.

At the debugger prompt, you can use the u (“up”), d (“down”), t (“top”) and b (“bottom”)
commands to move around on the current call stack. The p command