:- lib(ic_sets).
:- lib(ic).
steiner(N, Sets) :-
NB is N * (N-1) // 6, % compute number of triplets
intsets(Sets, NB, 1, N), % initialise the set variables
( foreach(S,Sets) do
#(S,3) % constrain their cardinality
),
( fromto(Sets,[S1|Ss],Ss,[]) do
( foreach(S2,Ss), param(S1) do
#(S1 /\ S2, C), % constrain the cardinality
C #=< 1 % of pairwise intersections
)
),
label_sets(Sets). % search
label_sets([]).
label_sets([S|Ss]) :-
insetdomain(S,_,_,_),
label_sets(Ss).
|
Running this program yields the following first solution:
?- steiner(9,X).
X = [[1, 2, 3], [1, 4, 5], [1, 6, 7], [1, 8, 9],
[2, 4, 6], [2, 5, 8], [2, 7, 9], [3, 4, 9],
[3, 5, 7], [3, 6, 8], [4, 7, 8], [5, 6, 9]] More? (;)