APWTCL
(A Lite Weight Tcl
Interpreter for cell phones)

History

Start was about March 2012

Based on itclinjavascript and Jim Tcl

That version version was also written in javascript
Looking for a version to run under Android

Source code should be as similar as possible

Alternatives

Use a javascript interpreter and run the javascript version
Proved to be very slow

In that version there are 3 levels of interpretation:

- Java

- javascript

- Tcl

Wanted to know how fast/similar a Java version would be

Design of Code

Use Classes for:

- TclObj

- all the obj types

- all the core commands

Build ScriptTokens when parsing script

Evaluation mechanism for ScriptTokens

Core commands are classes

Core commands can have subcommands (ensembles)

Conversions depending on wanted OBJ TYPE

Example of objtypes

OBJ TYPE ARRAY

OBJ TYPE DICT

OBJ TYPE INT

OBJ TYPE ITCL

OBJ TYPE NAMESPACE
OBJ TYPE SCRIPT

OBJ TYPE SOURCE

OBJ TYPE STATEMENT
OBJ TYPE STRING

The parser

Parser based on dodekalogue

Parser does tokenizing

Tokens are stored in a TclOb;

TclObj has methods to convert to different objtypes

Parser takes first token as command and executes with parameters

Result code is as in Tcl (OK, ERROR, BREAK, RETURN, ...)
Result TclObj for returning the result of the execution

Calltrames

Very similar to C-Implementation of Tcl

Container for all local variables

Container for info about proc/function calls

Reference to current namespace

Reference Itcl object (if that is an Itcl call)

Type of call (PROC,METHOD, UPLEVEL, EVAL, UPVAR, ...

Namespaces (1)

Very similar to C-Implementation of Tcl
Provide namespace type for later implementation of Itcl
Provide info about functions/variables for Itcl
Provide mechanism for resolvers (command/variable)
Reference for parent namespace
Reference for child namespaces
Namespace type:

* NAMESPACE

*ITCL CLASS

*ITCL EXTENDEDCLASS

*TYPE CLASS

Namespaces (2)

* Lookup functionality:
* Procs as 1n Tcl implementation
* Methods as in Tcl/Itcl using resolver
* Variables:
* Reimplementation of Tcl's C-Implemenation:
* LookupVariableEx
* LookupSimpleVariable
* GetNamespaceForQualName
* FindNamespaceVar
* Using resolver

Tcl command (proc)

TclCommand object containing info
Is built when parsing a proc statement
Contains:
e argument list
*body
When called:
* build current arguments
*be aware of special args argument
* add default values for optional arguments if needed
* store info in callframe stack
* call proc (execute body) with arguments in callframe

* return result

[tcl method implementation

* For Itcl object use ItclCommand similar to a TclCommand
* It's an adapter which does the following:
* check 1n the namespace, 1f the subcommand exists
* provide info on the callframe stack about the itcl object
* switch to the relevant namespace
* prepare the argument list as for TclCommand in callframe
* call the method (execute body)

* return the result

Tokenizing

* Idea:
* technique ,,borrowed* from Jim Tcl
* do tokenizing without expanding (ParseToken)
* Convert ParseTokens to ScriptTokens
* use that info for later execution

* expand necessary stuff based on ScriptTokens directly before
executing

* Example:
* puts hello
*set $1 $x8y [foo]BAR

ScriptToken Example

ScriptTokens:

* TOKEN LINE 2
*TOKEN_ ESC puts
*TOKEN ESC hello
« TOKEN_LINE 4

* TOKEN_ESC set
*TOKEN VAR i

* TOKEN_WORD 2
*TOKEN VAR x
*TOKEN VAR y

* TOKEN_WORD 2
* TOKEN_CMD foo
* TOKEN_ESC BAR

Evaluation of Statements

Execute every command sequentially until end of script or error
First token of the line is always TOKEN LINE
Populate the arguments objects
Fast path if token does not need interpolation (word tokens == 1)
Interpret token
* for TOKEN COMMAND and TOKEN BRACE call recursively
* otherwise call substOneToken
If word tokens !=1 call interpolateTokens
Get command from first token
Interpret proc body if PROC, else call native implemented command

Check for error and return relevant return code

Commands with conditionals

* Some commands need conditionals:
°if
* while
* Use of expression handler (same as for [expr] command)

* Makes these commands easy to implement

Android Version

Written in Java

Converted from Javascript version as similar as possible

All Tcl core commands are an own class in java

Dynamic loading and instantiating of core commands when needed

Core commands are precompiled Java modules

i0S Version

Written 1n Objective C

Converted from Java version as similar as possible

All Tcl core commands are an own class 1n Objective C
Dynamic instantiating of core commands when needed

Core command classes are loaded as Objective C classes

Status

Time frame Javascript version Nov. 2011 - Feb. 2012 (30.000 LOC)
Time frame Java version February to March 2012 (30.000 LOC)
Time frame Objective C version April to May 2012 (45.000 LOC)

Support of itcl classes (class, extendedclass, type, macro) and
objects

Support of [trace] command

Support of [upvar] and [uplevel] command
Support of namespaces

Support of basic functionality of [tcltest]

Support of [package] command (with pkglndex.tcl)
Good base for starting with Tk

Todos

Test suite

Complete integration of a lot of subcommands
Additional commands

Prepare alpha version

Take care of feedback to that version
Documentation

Demos

Demo URL's

* Sorry none

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

