
APWTCL
(A Lite Weight Tcl

Interpreter for cell phones)

2

History
• Start was about March 2012
• Based on itclinjavascript and Jim Tcl
• That version version was also written in javascript
• Looking for a version to run under Android
• Source code should be as similar as possible

3

• Use a javascript interpreter and run the javascript version
• Proved to be very slow
• In that version there are 3 levels of interpretation:

- Java
- javascript
- Tcl

• Wanted to know how fast/similar a Java version would be

Alternatives

4

Design of Code
• Use Classes for:

- TclObj
- all the obj_types
- all the core commands

• Build ScriptTokens when parsing script
• Evaluation mechanism for ScriptTokens
• Core commands are classes
• Core commands can have subcommands (ensembles)
• Conversions depending on wanted OBJ_TYPE

5

Example of objtypes
• OBJ_TYPE_ARRAY
• OBJ_TYPE_DICT
• OBJ_TYPE_INT
• OBJ_TYPE_ITCL
• OBJ_TYPE_NAMESPACE
• OBJ_TYPE_SCRIPT
• OBJ_TYPE_SOURCE
• OBJ_TYPE_STATEMENT
• OBJ_TYPE_STRING

6

The parser
• Parser based on dodekalogue
• Parser does tokenizing
• Tokens are stored in a TclObj
• TclObj has methods to convert to different objtypes
• Parser takes first token as command and executes with parameters
• Result code is as in Tcl (OK, ERROR, BREAK, RETURN, …)
• Result TclObj for returning the result of the execution

7

Callframes
• Very similar to C-Implementation of Tcl
• Container for all local variables
• Container for info about proc/function calls
• Reference to current namespace
• Reference Itcl object (if that is an Itcl call)
• Type of call (PROC,METHOD, UPLEVEL, EVAL, UPVAR, ...)

8

Namespaces (1)
• Very similar to C-Implementation of Tcl
• Provide namespace type for later implementation of Itcl
• Provide info about functions/variables for Itcl
• Provide mechanism for resolvers (command/variable)
• Reference for parent namespace
• Reference for child namespaces
• Namespace type:

• NAMESPACE
• ITCL_CLASS
• ITCL_EXTENDEDCLASS
• TYPE_CLASS

9

Namespaces (2)
• Lookup functionality:

• Procs as in Tcl implementation
• Methods as in Tcl/Itcl using resolver
• Variables:

• Reimplementation of Tcl's C-Implemenation:
• LookupVariableEx
• LookupSimpleVariable
• GetNamespaceForQualName
• FindNamespaceVar

• Using resolver

10

Tcl command (proc)
• TclCommand object containing info
• Is built when parsing a proc statement
• Contains:

• argument list
• body

• When called:
• build current arguments
• be aware of special args argument
• add default values for optional arguments if needed
• store info in callframe stack
• call proc (execute body) with arguments in callframe
• return result

11

Itcl method implementation
• For Itcl object use ItclCommand similar to a TclCommand
• It's an adapter which does the following:

• check in the namespace, if the subcommand exists
• provide info on the callframe stack about the itcl object
• switch to the relevant namespace
• prepare the argument list as for TclCommand in callframe
• call the method (execute body)
• return the result

12

Tokenizing

T

• Idea:
• technique „borrowed“ from Jim Tcl
• do tokenizing without expanding (ParseToken)
• Convert ParseTokens to ScriptTokens
• use that info for later execution
• expand necessary stuff based on ScriptTokens directly before
executing
• Example:

• puts hello
• set $i xy [foo]BAR

13

ScriptToken Example

S

• ScriptTokens:
• TOKEN_LINE 2
• TOKEN_ESC puts
• TOKEN_ESC hello
• TOKEN_LINE 4
• TOKEN_ESC set
• TOKEN_VAR i
• TOKEN_WORD 2
• TOKEN_VAR x
• TOKEN_VAR y
• TOKEN_WORD 2
• TOKEN_CMD foo
• TOKEN_ESC BAR

14

Evaluation of Statements

E

• Execute every command sequentially until end of script or error
• First token of the line is always TOKEN_LINE
• Populate the arguments objects
• Fast path if token does not need interpolation (word_tokens == 1)
• Interpret token

• for TOKEN_COMMAND and TOKEN_BRACE call recursively
• otherwise call substOneToken

• If word_tokens != 1 call interpolateTokens
• Get command from first token
• Interpret proc body if PROC, else call native implemented command
• Check for error and return relevant return code

15

Commands with conditionals
• Some commands need conditionals:

• if
• while

• Use of expression handler (same as for [expr] command)
• Makes these commands easy to implement

16

Android Version
• Written in Java
• Converted from Javascript version as similar as possible
• All Tcl core commands are an own class in java
• Dynamic loading and instantiating of core commands when needed
• Core commands are precompiled Java modules

17

iOS Version
• Written in Objective C
• Converted from Java version as similar as possible
• All Tcl core commands are an own class in Objective C
• Dynamic instantiating of core commands when needed
• Core command classes are loaded as Objective C classes

18

Status

S

• Time frame Javascript version Nov. 2011 - Feb. 2012 (30.000 LOC)
• Time frame Java version February to March 2012 (30.000 LOC)
• Time frame Objective C version April to May 2012 (45.000 LOC)
• Support of itcl classes (class, extendedclass, type, macro) and

objects
• Support of [trace] command
• Support of [upvar] and [uplevel] command
• Support of namespaces
• Support of basic functionality of [tcltest]
• Support of [package] command (with pkgIndex.tcl)
• Good base for starting with Tk

19

Todos

T

• Test suite
• Complete integration of a lot of subcommands
• Additional commands
• Prepare alpha version
• Take care of feedback to that version
• Documentation
• Demos

20

Demo URL's

D

• Sorry none

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

