
CanvasPlus: an improved modular canvas implementation for Tk

J.Lima
jlima@eso.org

Physics Department
Faculty of Sciences, Univ. of Lisbon

1749-016 Lisbon, Portugal

Abstract

The standard canvas implementation in Tk lacks some
important features, like complex object encapsula-
tion, viewing transformations (zoom) and some object
transformations (rotations), which make it an unap-
propriate tool to implement modern drawing applica-
tions. Adding these features in an add-hoc fashion to
standard canvas implementation can solve some par-
ticular application problem, but will increase the can-
vas complexity and will always have a limited scope.
A different approach, described in this article, con-
sists of a modular canvas implementation, which com-
prises: a core providing a basic drawing interface
and bindings to events; a set of application specific
modules which implement the higher level commands.
High level commands can range from the very simple,
found in the standard canvas implementation, to more
structured commands which are necessary to imple-
ment complex 2D cad applications

1 Introduction

The CanvasPlus[1] is a Tk widget targeted for 2D
CAD applications. Its development was based on the
idea of developing a suite of EDA tools using Tcl/Tk

based GUI. That is, applications built in either C or
C++ featuring Tcl/Tk GUI. In addition, the Tcl script-
ing capabilities embedded into the application could
be used for configuration and macro processing.

Tcl/Tk is a suitable framework for application de-
velopment which supports both GUI construction and
scripting capabilities. However, full featured drawing
applications require specialized widgets. For simple
drawing applications, the standard Tk canvas widget
may be sufficient, but, as the complexity of the objects
being manipulated increases, more advanced and spe-
cialized widgets are necessary.

Tcl was considered very strong candidate to be used
as a scripting platform but also as a GUI construction
tool due to its natural bound to Tk. Even after con-
sidering other, more advanced toolkits, for instance,
Qt[4], wxWindows[5] or Gtk[6], the Tcl/Tk option
is still attractive because, although less featured, is
more lightweight. However, the choice of Tcl/Tk as
a GUI platform implies the development of a new can-
vas widget.

Another argument in favor of Tcl/Tk is the fact that
the GUI building is shifted from the compiled lan-
guages (C or C++) to the scripting environment. This
is a big advantage because it is usually much simpler,
and the process for improving the GUI will be much

1

Tcl’2005, Portland, USA CanvasPlus: an improved modular canvas implementation for Tk

more dynamic. Experience shows that building the
GUI is time consuming task. And often poorly de-
signed GUIs frustrate the intent of an application. So,
it is preferable to allow users to reconfigure the look
and feel of the GUI, or even completely redesign it.

The CanvasPluswidget, should provide a frame-
work for layered, 2D, interactive drawing applications.
Besides that, no more assumptions should be made re-
garding the nature of the supported applications. Such
general terms pose obvious implementation problems.
To overcome them, a modular, incremental develop-
ment model was adopted.

The design was also driven from the following key
ideas.

• The canvas functionality is implemented mostly
in low level (C/C++)

• Details of data representation and handling
should never be performed in TCL.

• Standard viewing operations (zoom, pan) and
standard geometrical transformations should be
implemented efficiently in low level and available
with the same semantics for every application.

• TCL code should be used only for configuration
and GUI building.

• However, TCL code should have access to object
properties.

2 Overview

The system consist of a core module dealing with Tk
and X internals and a set of extension modules im-
plementing application specific drawing modes. The
core module supports only a basic set of drawing op-
erations and geometric transformations. It provides the
API for extension writers and the infrastructure to load
and switch between drawing modes.

Every specialized canvas share a common subset of
drawing operations, all have to deal with the burden
of Tk and X details, and all have to interact somehow
with the TCL scripting environment. All this issues are
dealt only once by the core of theCanvasPlusimple-
mentation, while the drawing modes extensions will
deal with application details only.

This approach can considerably reduce the effort re-
quired to develop specialized canvases for layered 2D
drawing applications.

The CanvasPluswidget doesn’t provide a special-
ized canvas implementation. Instead, it provides a
framework to develop and use specialized, application
centric canvases.

3 The Modular Approach

When implementing theCanvasPluswidget, one
could choose to implement a very generic widget, cus-
tomizable by a Tcl script or, alternatively, implement
different application specific widgets with minimum
configuration options. The first option would lead to
very complex code, both in C and in Tcl. The second
option would lead to code duplication and wouldn’t
promote the reuse of the widget for other purposes.

A third approach is to implement the canvas widget
in a modular fashion: a basic canvas widget with mini-
mum functionality, and thus very generic, dealing with
all Tk and X internals; and a set of high level applica-
tion specific modules.

The modular approach to implement theCanvas-
Plushas two main advantages over the monolithic ap-
proach. The first one is that one can adapt the ba-
sic canvas module to a particular application simply
by writing a higher level module, which can be made
portable between architectures, since it doesn’t include
GUI dependent code. The second is that it will pro-
mote code re-usability because the generic code is
shared amongst all canvas extensions.

2

Tcl’2005, Portland, USA CanvasPlus: an improved modular canvas implementation for Tk

As a result, a core module implements a canvas wid-
get which virtualizes a drawing canvas with a physi-
cal (in true physical dimensions) Cartesian coordinate
system where extensions can draw using configurable
pens. Extensions can interact with the canvas in ei-
ther direction: they can draw and configure the canvas
properties; they will be notified to process certain class
of events.

Housekeeping operations, like, for instance, re-
drawing the canvas in response to expose events, are
handled by the canvas core transparently. Also zoom
and pan operations are handled by the core.

Application specific operations, like, for instance,
placing a transistor in a schematic sheet, are handled
by extension modules.

Figure 1 illustrates the concept just described.

Figure 1: CanvasPlus modular architecture

4 Canvas Drawing Modes

Connected with theCanvasPlusmodular approach,
there is the concept ofdrawing mode. The drawing
modeconsists of certain canvas vocabulary and the as-
sociated semantics that are loaded by a particular high

levelCanvasPlusmodule.
To emulate the standard Tk canvas, a high level

CanvasPlusmodule would implement the following
commands:

addtag, bbox, bind, canvasx, canvasy,
cget, configure, coords, create,
dchars, delete, dtag, find, focus,
gettags, icursor, index, insert,
itemcget, itemconfigure, lower, move,
postscript, raise, scale, scan,
select, type, xview, or yview

Of course, nobody would care to use theCanvas-
Plus to emulate the standard Tk canvas. For that, it
would be better to just use the later.

The idea ofCanvasPlusis to implement higher level
drawing environments which are application centric.
The simplest scenario one can imagine is the one in
which each application uses a single extension mod-
ule. However, sometimes, several applications share
some common functionality. In these cases, the best
would be to use a stack of extension modules and each
application would load its required module combina-
tion, thus improving the code reuse.

To load a particular mode, one uses theCanvasPlus
commandsetmode . This command takes as argu-
ment the mode name. It will work as long as the re-
quired extension modules have been previously loaded
with the load command. The following example il-
lustrates this idea.

load ./modetest.so
canvas+ .c
.c setmode modetest

Thesetmode command returns a TCL interpreter
which shall be used for further interaction with the
canvas, as described in the following section.

5 Canvas Commands Interface

Unlike the standard Tk canvas — where the commands
to draw or interact with the canvas contents are per-
formed by canvas subcommands, like for instance,

3

Tcl’2005, Portland, USA CanvasPlus: an improved modular canvas implementation for Tk

.c create rectangle 10 10 130 60 \
-fill red

which creates a rectangle in the.c canvas — in
the CanvasPlus, the subcommand approach is used
only for a set of core widget commands like the
configure or cget , while the commands to inter-
act with its content are executed inside a dedicated in-
terpreter which is bound to theCanvasPlusin runtime.

For example, once one initializes a drawing mode
in the canvas with the command

set canvas_interp \
[.c setmode <mode name>]

the above task to create a rectangle would be done
with

set script {create rectangle \
10 10 130 60 -fill red}

$canvas_interp eval $script

This subtle syntax difference has several advan-
tages. First of all, one can easily write multi-line
scripts which are independent of the canvas where
they are to be executed, in the sense that the canvas
name doesn’t appear in the script. Try to do that with
the normal canvas approach. Second, in the context
of a bind procedure, the code can have access to
global variables with details associated to the trigger-
ing event. These variables are global only in the canvas
interpreter, and different canvas will not interfere with
each other. This is a much more elegant approach than
the traditional way to access event details in thebind
command.

A complete example for the usage of the bind com-
mand is shown in the listing bellow. The usual Tcl/Tk
way of doing it is preserved almost intact. The only
difference lays on the bound procedures which evalu-
ate the code in the context of the$I interpreter, and
use the local interpreter variables$_X_ and$_Y_.

set I [$C setmode modetest1]

$I eval {set moving 0}
$C bind all <ButtonPress-1> picOrDrop
$C bind all <ButtonRelease-1> picOrDrop
$C bind all <Motion> move

proc move {} {
$::I eval {

if { $moving } {
@move $prevX $prevY $_X_ $_Y_
@puts move $_I_ \

$prevX $prevY $_X_ $_Y_
set prevX $_X_
set prevY $_Y_

}
}

}
proc picOrDrop {} {

$::I eval {
if { $moving } {

set moving 0
@puts droping

} else {
set moving 1
set prevX $_X_
set prevY $_Y_
@puts pic $_X_ $_Y_

}
}

}

6 Extensions Writer Interface

More important than the improvements and additional
features on the Tcl/Tk side, is the C/C++ API. In fact,
one of the ideas ofCanvasPlusis to allow a better in-
tegration of C and C++ into TCL based graphic appli-
cations than it was possible with bare Tcl/Tk. For that
one needs a carefully designed API which must meet
the following requirements:

• Provide the simplest yet powerful set of drawing
primitives

4

Tcl’2005, Portland, USA CanvasPlus: an improved modular canvas implementation for Tk

• Handle events behind the scenes through the use
of well documented hooks

• Hide Tk internals by stressing the completeness
of the API.

• Provide C as well as C++ interface

Typically a extension writer forCanvasPluswill
implement a a new drawing mode. The concept of
drawing mode is flexible and powerful enough for the
majority of the cases. It is not possible to describe the
complete API in this article. But there is minimum
framework which is necessary for the simplest exten-
sion which must be known

The following C functions are mandatory and must
be implemented in every drawing mode extension:

static ClientData
allocProc(CanvasPlus *canvas);

static void freeProc(ClientData cd);

static int initProc(CP_Mode *mode);

static void
drawProc(ClientData cd,

CP_DrawOps *ops,
CP_Area *a);

static CP_Item
*closestProc(ClientData cd,

CP_Point *pt,
double dist);

The function names are self explanatory.
allocProc and freeProc are called when
the drawing mode is created and deleted respectively.
While the initProc is called whenever the mode
becomes the active mode.

ThedrawProc() hook is used to give one the op-
portunity to draw the graphics content. TheCanvas-
Pluscore module will take care of invoking the hook

right when it’s necessary. The pointer to structure of
typeCP_DrawOps is used to access the drawing op-
erations. One may wonder why this approach is nec-
essary. With this approach no assumptions are made
regarding where the graphics contents is to be drawn.
The CanvasPluscore can arrange to send the content
to a printer or exporting to a file.

TheclosestProc() hook is used for processing
GUI events. More exactly to find the item closest to the
pointer position.

In addition, the following structures must be initial-
ized:

static CP_RegisterInfo _info[] = {
CP_ENTRY("@puts", putsProc),
CP_ENTRY("@rect", rectProc),
CP_ENTRY("@elipse", arcProc),
CP_ENTRY("@move", moveProc),
CP_LAST_ENTRY

};

static CP_ModeOps _operations = {
allocProc,
initProc,
freeProc,
drawProc,
closestProc

};

The CP_RegisterInfo array is an array of
structures that contain the information necessary to
register procedures in the Tcl interpreter associated
with the drawing mode. The ’@’ caracter in the be-
ginning of each procedure name obeys to a convention
adopted by the author to distinguish from other proce-
dures.

The macrosCP_ENTRY() andCP_LAST_ENTRY
are convenient ways of filling the structure array with-
out caring with the details.

The structureCP_ModeOpsholds pointers to the
drawing mode interface hooks.

5

Tcl’2005, Portland, USA CanvasPlus: an improved modular canvas implementation for Tk

The following function is called by Tcl when the
library is loaded and will register the module calling
CPDefineMode() .

int Modetest_Init(Tcl_Interp *interp)
{

if (CPDefineMode("modetest1",
_info, &_operations)!=TCL_OK)

return TCL_ERROR;

return TCL_OK;
}

The name of this function is derived from the
its library name. This is the standard way for the
Tcl load command to initialize library code [3][2].
Of course, theCPDefineMode() is a Canvas-
Plus specific function. Note that the only symbol
which should be declared external is the function
Modetest_Init() , otherwise name clashes are
likely to occur when multiple extensions are loaded
simultaneously. The code for this function, apart
from its name and the module name string passed to
CPDefineMode() , will probably be the same for
most extensions.

7 Conclusions

A CanvasPlusprototype has been developed and is us-
able, although some important features are still miss-
ing. Once a real-world extension is written, theCan-
vasPlusmay already be used for development pur-
poses. For the time being, one shall highlight theCan-
vasPluskey ideas:

• Modular design approach.

• The use of coordinates with true physical mean-
ing,

• Tcl drawing interface based in a slave interpreter,
instead of using a sub-command approach.

7.1 Work in progress

One of missing features inCanvasPlusis an anti-
aliasing font renderer. This is a must, because of the
zoom feature in present in the canvas. Apparently, the
best option would be to just use the font selection and
rendering mechanism present in Tk. This approach
may work if the system has only scalable fonts in-
stalled. If this is not the case, you could simply take
care not selecting non-scalable fonts, or even provide a
mechanism to reject them. In the author opinion, none
of this solutions is satisfactory, because, with respect
to font resizing the Tk API doesn’t make the job easy
and doesn’t give any guarantees on the actual rendered
font size.

For these reasons alternative font selection and ren-
dering mechanisms are being developed.

In the mean time an extension to implement vector
drawing application is being studied.

References

[1] CanvasPlushome page:
http://kdataserv.fis.fc.ul.pt/ jmal

[2] Brent B. Welch, Practical Programming in
TclTk. Prentice Hall PTR, 3rd Ed, 2000.

[3] John K. Ousterhout,Tcl and the Tk Toolkit. Ad-
dison Wesley, 1993.

[4] QT toolkik homepage: http://www.trolltech.com

[5] wxWidgets homepage:
http://www.wxwindows.org/

[6] Gtk homepage: http://www.gtk.org

6

