
Pulling Out All the StopsPulling Out All the Stops
Application of Application of TclTcl user extensions user extensions

in a high performance multi-in a high performance multi-
threaded electronic designthreaded electronic design

applicationapplication
by Phil Brooksby Phil Brooks

CalibreCalibre Design Verification Design Verification

 Integrated Circuit DesignIntegrated Circuit Design

 Geometric Analysis ToolGeometric Analysis Tool

Layout vs. Schematic (LVS)Layout vs. Schematic (LVS)

 Schematic Schematic –– logical design of a circuit logical design of a circuit

 Layout Layout –– physical design of a circuit physical design of a circuit

 LVS makes sure Layout and SchematicLVS makes sure Layout and Schematic
designs describe the same circuit bydesigns describe the same circuit by
comparing themcomparing them

Device RecognitionDevice Recognition

 Device Recognition allows the user to turnDevice Recognition allows the user to turn
geometric shapes from the layout intogeometric shapes from the layout into
logical devices:logical devices:

Calibre Interactive
Tcl/Tk based application

management GUI

 Calibre Circuit Extraction
 C++ Mainline tool
 Does intentional
 Circuit and Device Extraction

Calibre SVRF
A standard
geometric

manipulation
language.

 Device ExtractionGeometry
Analysis and
Connectivity
Extraction

 Property Calculation

Data Collection

 User Script
 [
 PROPERTY W
 W = PERIMETER_COINCIDENT(GATE, SD)
]

Built-in Script LanguageBuilt-in Script Language

 Very SimpleVery Simple
 Very High PerformanceVery High Performance

Built-in Script LanguageBuilt-in Script Language
 byte compiled interpreted user programbyte compiled interpreted user program

 program configures data collection beforeprogram configures data collection before
execution startsexecution starts

 Very limited capabilitiesVery limited capabilities
 no loops, no allocationno loops, no allocation
 just data collection, arithmetic, andjust data collection, arithmetic, and

conditionalsconditionals

Built-in Script LanguageBuilt-in Script Language

 Data and temporary variables are pre-Data and temporary variables are pre-
allocatedallocated

 Byte code runs for each device that isByte code runs for each device that is
recognizedrecognized

DEVICE MP PGATE PGATE(G) SD(S) SD(D) DIFF
[
 property w, l
 w = 0.5 * (perim_co(S, G)
 + perim_in(S, G)
 + perim_co(D, G)
 + perim_in(D, G))
 l = area(G) / w
 if((bends(G) != 0))
 {
 if(w > l)
 w = w – 0.5 * bends(G) * l
 else l = l – 0.5 * bends(G) * w
 }
]

Built-in Script LanguageBuilt-in Script Language

Built-in Script LanguageBuilt-in Script Language
Byte Code

ADD temp3 perim_co(S,G) perim_in(S,G)
ADD temp2 temp3 perim_co(D,G)
ADD temp1 temp2 perim_in(D,G)
MUL w 0.5 temp1
DIV l area(G) w
NE bends(G) 0 [31] [70]
GT w l [37] [55]
MUL temp2 0.5 bends(G)
MUL temp1 temp2 l
SUB w w temp1
GOTO [70]
MUL temp2 0.5 bends(G)
MUL temp1 temp2 w
SUB l l temp1
HALT

Variable Name Value

w 0.0
l 0.0
temp1 0.0
temp2 0.0
temp3 0.0
perim_co(S,G) 4
perim_in(S,G) 6
perim_co(D,G) 4
perim_in(D,G) 6
area(G) 12
bends(G) 2

A1,P1 A2,P2
A4,P4

A3,P3

L1

L2

L3

W1 W2

W3

S2’S1

S3’
S4’

S5

S6

S3’’

W2’’

W2’

W2’”

W1’

W1’’

S2”

S4”

Reaching the Limits of Built-inReaching the Limits of Built-in
Enclosure Functions

Reaching the Limits of Built-inReaching the Limits of Built-in

 Complex measurementsComplex measurements

 No simple number representationNo simple number representation

 Summation capability requiredSummation capability required

Reaching the Limits of Built-inReaching the Limits of Built-in
DEVICE MP PGATE PGATE(G) SD(S) SD(D) DIFFDEVICE MP PGATE PGATE(G) SD(S) SD(D) DIFF
[[
 property W, L, SEFFA property W, L, SEFFA
 W = 0.5 * (W = 0.5 * (perimperim_co(S,G) +_co(S,G) +
 perimperim_in(S,G) + _in(S,G) + perimperim_co(D,G)_co(D,G)
 + + perimperim_in(D,G))_in(D,G))
 L = area(G) / W L = area(G) / W
 if((bends(G) != 0)) if((bends(G) != 0))
 { {
 if(W > L) if(W > L)
 W = W - 0.5 * bends(G) * L W = W - 0.5 * bends(G) * L
 else L = L - 0.5 * bends(G) * W else L = L - 0.5 * bends(G) * W
 } }
 S = ENC_PER (PGATE, DIFF, SD, 25) S = ENC_PER (PGATE, DIFF, SD, 25)
 SEFFA = W / SEFFA = W / SUMSUM(S::W / (S::A + 0.5*L)) - 0.5*L(S::W / (S::A + 0.5*L)) - 0.5*L
]]

Reaching the Limits of Built-inReaching the Limits of Built-in

 Sum functionality satisfied specificSum functionality satisfied specific
requirementsrequirements

 Soon a more general solution was neededSoon a more general solution was needed
 min/maxmin/max
 arbitrary calculations on array elementsarbitrary calculations on array elements
 a more complex measurement arraya more complex measurement array

-- Multi Finger Enclosure measurementsMulti Finger Enclosure measurements

Scripting Language RequirementsScripting Language Requirements

 Describe data collection prior to executionDescribe data collection prior to execution
 Built-in language data retrieval function configuresBuilt-in language data retrieval function configures

data collection algorithmsdata collection algorithms

 Leverage existing Built-in script engineLeverage existing Built-in script engine
 Customers have extensive existing usageCustomers have extensive existing usage
 Built-in engine has 31 data collection routinesBuilt-in engine has 31 data collection routines

 Get data collected to the scriptGet data collected to the script
 Get calculated results backGet calculated results back
 Overall Performance canOverall Performance can’’t slow down too mucht slow down too much

Why Why TclTcl??

 CalibreCalibre already has already has TclTcl interfaces inside interfaces inside
our geometric manipulation languageour geometric manipulation language

How How TclTcl??

 Add a function interface to the Built-inAdd a function interface to the Built-in
language language –– TVF_NUMERIC_FUNCTION TVF_NUMERIC_FUNCTION

(TVF_NUM_FUN for short)(TVF_NUM_FUN for short)

 Allows calling a Allows calling a TclTcl Function from within Function from within
the Built-in languagethe Built-in language

How How TclTcl??
DEVICE MP PGATE PGATE(G) SD(S) SD(D) DIFFDEVICE MP PGATE PGATE(G) SD(S) SD(D) DIFF
[[
 property W, L, SEFFA property W, L, SEFFA
 W = 0.5 * (W = 0.5 * (perimperim_co(S,G) +_co(S,G) +
 perimperim_in(S,G) + _in(S,G) + perimperim_co(D,G)_co(D,G)
 + + perimperim_in(D,G))_in(D,G))
 L = area(G) / W L = area(G) / W
 if((bends(G) != 0)) if((bends(G) != 0))
 { {
 if(W > L) if(W > L)
 W = W - 0.5 * bends(G) * L W = W - 0.5 * bends(G) * L
 else L = L - 0.5 * bends(G) * W else L = L - 0.5 * bends(G) * W
 } }
 S = ENC_PER (PGATE, DIFF, SD, 25) S = ENC_PER (PGATE, DIFF, SD, 25)
 SEFFA = TVF_NUM_FUN (SEFFA = TVF_NUM_FUN (
 "calc_ "calc_effeff_a",_a",
 "device_ "device_funcfunc ", S, W, L ", S, W, L
))
]]

How How TclTcl??

TVF FUNCTION device_TVF FUNCTION device_funcfunc [/* [/*
 proc calc_ proc calc_effeff_a { enc W L } {_a { enc W L } {
 tcltcl code ... code ...
 } }
/]/]

Requirements CheckRequirements Check

 Describe data collection before script runsDescribe data collection before script runs
•• Existing built-in script engine still provides the data collection functionsExisting built-in script engine still provides the data collection functions

 Leverage existing script engine and customer scriptsLeverage existing script engine and customer scripts
•• Add Add TclTcl calls to Existing built-in scripts calls to Existing built-in scripts

 Get data collected to Get data collected to TclTcl
•• Function call argumentsFunction call arguments

 Get data calculations back to Get data calculations back to CalibreCalibre
•• Return values of Return values of TclTcl functions called functions called

Overall Performance goalOverall Performance goal

Performance TestingPerformance Testing

 Test Circuits: Emphasize scripting languageTest Circuits: Emphasize scripting language
performance (not a real world test case)performance (not a real world test case)

 500,000 devices that run through the calculation script500,000 devices that run through the calculation script
 3 3 BuiltinBuiltin->->TclTcl calls for each device (1.5 million total) calls for each device (1.5 million total)
 10 10 TclTcl->->CalibreCalibre object callbacks (5 million total) object callbacks (5 million total)

 Realistic Device CalculationsRealistic Device Calculations

 Partitions into 18 equal partitions for Multi-Threaded executionPartitions into 18 equal partitions for Multi-Threaded execution

 Can be expressed as Can be expressed as TclTcl function or Built-In SUM function or Built-In SUM

Efficiently Calling Efficiently Calling TclTcl

 What call interface to choose:What call interface to choose:
 TclTcl__EvalEval
 TclTcl__EvalExEvalEx
 Tcl Tcl__EvalObjExEvalObjEx
 TclTcl__EvalObjvEvalObjv

Efficiently Calling Efficiently Calling TclTcl

Tcl_Eval vs. Builtin

0

10

20

30

40

50

1 2 3 4 5 6 7 8

Threads

S
e
c
o

n
d

s

Builtin
Tcl_Eval

Efficiently Calling Efficiently Calling TclTcl

Add Tcl_EvalEx +
TCL_EVAL_GLOBAL

0

10

20

30

40

50

1 2 3 4 5 6 7 8

Threads

Se
co

nd
s Builtin

Tcl_Eval
Tcl_EvalEx

Efficiently Calling Efficiently Calling TclTcl
Add Tcl_EvalObjv

0

10

20

30

40

50

1 2 3 4 5 6 7 8

Threads

S
ec

o
n

d
s Builtin

Tcl_Eval
Tcl_EvalEx
Tcl_EvalObjv

Efficiently Calling Efficiently Calling TclTcl

 Use of Use of TclTcl__EvalObjExEvalObjEx didn didn’’t differ significantly fromt differ significantly from
TclTcl__EvalObjvEvalObjv

 Argument HandlingArgument Handling
 Set up as much as possible before executionSet up as much as possible before execution
 Data passed through objects (Data passed through objects (TclTcl__CreateObjCommandCreateObjCommand) to avoid) to avoid

construction of argument objectsconstruction of argument objects

Getting Back to C++Getting Back to C++

 Data is passed back through a Data is passed back through a TclTcl__DoubleObjDoubleObj set as the set as the
““resultresult””

 TclTcl handles the result objects efficiently handles the result objects efficiently

Writing Efficient Writing Efficient TclTcl

 Beware the use of Beware the use of exprexpr without {} without {}

 changing changing exprexpr { ... } to { ... } to exprexpr
 reduced performance by 300%reduced performance by 300%

Writing Efficient Writing Efficient TclTcl

 Consider object interfaces that do the bookkeepingConsider object interfaces that do the bookkeeping
operations:operations:

set slice_count [$enc slice_count]set slice_count [$enc slice_count]
for { set i 0 } { $i<$slice_count } { for { set i 0 } { $i<$slice_count } { incrincr i } { i } {
 # slice specific code here uses index $i to access data # slice specific code here uses index $i to access data
 # from the $enc command object by passing it in as an argument # from the $enc command object by passing it in as an argument
}}

Writing Efficient Writing Efficient TclTcl

 Consider this interface where the $enc object performs indexConsider this interface where the $enc object performs index
calculationscalculations

set i [$enc first_slice]set i [$enc first_slice]
while { $i > 0 } {while { $i > 0 } {
 # slice specific code here index is implicit $enc will # slice specific code here index is implicit $enc will
 # access data from the current array slice. # access data from the current array slice.
 set i [$enc next_slice] set i [$enc next_slice]
}}

 Or, if you want to get fancy:Or, if you want to get fancy:
$$rtvalrtval = $enc = $enc eval eval { {
 # some sort of code that executes once for each slice # some sort of code that executes once for each slice
}}

Writing Efficient Writing Efficient TclTcl

Builtin iterator test

0
10
20
30
40
50
60
70

Builtin original for
loop

iterator

script run

se
co

nd
s

ThreadsThreads

 Data is partitioned for parallel executionData is partitioned for parallel execution
 Each thread recognizes devices independentlyEach thread recognizes devices independently
 Each thread runs its own copy of the built-in language engineEach thread runs its own copy of the built-in language engine

 How do threads perform with How do threads perform with TclTcl??

 Better to use MT Better to use MT TclTcl or Single Threaded or Single Threaded TclTcl??

ThreadsThreads

MT vs. non MT Tcl builds

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8

Threads

se
co

nd
s

8.4 MT Build

8.3 non MT
build
Built-in

Final Performance NumbersFinal Performance Numbers

Real chips showed no increase in required CPUReal chips showed no increase in required CPU
time for Device Recognitiontime for Device Recognition

