Applying tcltest to Tk Applications

Robert W. Techentin, Sharon K. Zahn, Barry K. Gilbert, Erik S. Daniel
Mayo Foundation, Rochester, Minnesota, 55905, USA

Abstract— This paper presents an approach for automating
testing of graphical Tcl/Tk applications using the tcltest package.
Some Graphical User Interface (GUI) test automation tools rely
on screen coordinates and screen captures to drive the program
under test, while others may drive at the widget level. This
new approach tests the application at the procedural level, but
supports starting and stopping the Tk windowing application
multiple times in the same test file.

I. INTRODUCTION

Tcltest, the testing package distributed with the Tcl pro-
gramming language [1] [2] [3] [4] is an established and robust
test harness supporting automated regression testing. Its inher-
ent portability, flexibility and scriptability make it suitable for
many platforms and environments. While tcltest was originally
developed specifically for testing Tcl interpreters, it can be
used to test procedures, objects, libraries and entire programs
written in Tcl or accessible from Tcl, and its speed makes it
possible to execute thousands of individual tests per minute.

To achieve high test throughput, tcltest runs all tests within a
single test file in the same Tcl interpreter. While this approach
provides excellent performance, it has the side effect of sharing
the interpreter state between tests, and it is up to the test
author to ensure that tests run independently. For application
testing, it is often desirable to discard all state and restart the
application. GUI applications based on the Tk toolkit are not
well suited to restarting in the same interpreter.

This paper presents a new technique for writing tcltest test
suites which exercise Tcl/Tk applications. Test scripts start the
application in a slave interpreter, which loads Tk and runs the
application. The test script has complete access to the internal
application programming interface (API) and application state
through the slave interpreter evaluation mechanism. When the
test is completed, the slave interpreter is destroyed, destroying
that instance of Tk. Each test script in the test file gets a
“clean” environment in a new slave interpreter.

In the following sections, this paper will review GUI ap-
plication test approaches and discuss limitations of the tcltest
package which make it difficult to test Tk-based programs.
This paper’s new technique, called the slave interpreter ap-
proach, will be presented and discussed with examples. After
discussing the limitations of the slave interpreter approach, an
application style will be suggested which could mitigate some
of the shortcomings.

II. TCLTEST AND APPLICATION TESTING

The tcltest framework supports running suites of multiple
test files, each of which usually contains many individual test
scripts. Tcltest options and constraints control which test files

and individual tests are run or skipped with a great deal of
granularity, but most test files will run multiple tests in the
same Tcl interpreter. Individual test scripts are coded to run
independently, so that a skipped or failed test does not affect
the rest of the tests in a file.

Tcltest has been employed extensively as a unit test frame-
work, primarily for libraries and applications coded in or
for the Tcl programming language. The preeminent test suite
based on tcltest is the collection of over 19,000 unit tests that
are distributed with the Tcl programming language and the
Tk toolkit. Most of these test cases, like those supported by
the various xUnit frameworks recently touted in the popular
literature [5] are unit tests, validating the functionality of
functions, classes or modules.

Tcltest can, however, easily support higher level integration
testing or even system level (application) testing. The power
of the Tcl packaging mechanism makes it possible for test
scripts to include significant functional blocks, and exercise
the interrelationships between them. Applications that have
integrated a Tcl interpreter for script automation can take
direct advantage of tcltest to exercise all functions that are
available to the interpreter.

But tcltest has not been employed extensively to perform
application-level testing. The “usual” tcltest approach is to
load script code or dynamically linked libraries into the same
interpreter with the test suite. For application testing, however,
it is often desirable to restart the entire application for each
test. The DejaGNU test framework [6], for testing the GNU
compilers, debuggers, and utilities, uses Tcl and Expect in
this fashion. The applications are controlled through standard
input, essentially emulating typing commands on a terminal.

GUI-based applications are, in general, not suited to control
from a terminal, and often require special test harnesses which
drive the GUI from either the window manager or GUI toolkit
level. Test harnesses based on GUI techniques will usually
start an instance of the application, and then inject a series of
recorded keyboard and mouse events to drive the application
to a known state. Test success or failure is determined by
evaluating the screen or widget states or application state.
A new test can restart the application and drive it to a
different state. But Tcl and Tk are not well suited to re-
initialization within a single interpreter. Including multiple,
independent application-level test scripts in one test file is
not straight forward, and without an effective means to restart
the application, test files would be limited to a single test
case each. In the case of Tk GUI application, it would be
necessary to use a specialized tool for recording and replaying
GUI interactions, even if the primary goal is exercising the

application logic, and not the GUL

III. GUI-BASED TESTING TOOLS

There are many GUI-based test tools available. Android [7],
an open source tool using the X window event mechanism,
and Winrunner [8], a commercial tool which runs only on
Microsoft Windows, both rely on screen snapshots to deter-
mine test success or failure, which can be fragile. A change in
screen resolution or font or window decorations can cause an
entire test suite to fail, even when the application is operating
correctly.

TkReplay [9] is tailored for testing Tcl/Tk applications,
driving the application at the widget level, and interacting with
the internal state of the application to evaluate test results. This
makes it possible to code white box™ tests in a framework like
TkTest [10], evaluating the application’s internal state, instead
of relying on screen snapshots to determine success or failure.

But these GUI-driven techniques have a distinct disadvan-
tage in that the test scripts usually have little in common with
the code they are testing. A recorded list of keystroke and
mouse events does not describe the test author’s intent. In
fact, most GUI tests must be recorded with a software tool,
perhaps with documentation added later. Tcltest test scripts,
on the other hand, are written by a tester and succinctly show
the intent of the test and the expected results.

IV. SLAVE INTERPRETER APPROACH

To overcome tcltest’s inadequacies, we have developed an
application-level testing approach that creates a new slave
interpreter for each test in the test suite. Each test is run
in a new Tcl interpreter, and can load code and extensions
(including Tk), define variables, perform I/O, and otherwise
act independently of other interpreters in the same process.
Each test can load Tk, build a GUI, and perform application
operations under control of the test script, and exit, without
affecting the master interpreter or the other tests.

This approach has several significant advantages. Testers
can write ”system level” scripts which start and stop an entire
Tk application without resorting to additional GUI driving
tools. These scripts can exercise the application’s internal API,
which is not always feasible in unit testing.

As an example, consider “Hello World!” program in List-
ing 1, coded in Tcl/Tk. Note that the functional logic of the
program is contained in the hello procedure. This procedure
is essentially the application’s programmable interface (API),
and if it were stored in a separate file, it would be simple to
create unit tests with tcltest. But in this case (and many cases in
“real world” applications), the logic is embedded in the GUI,
and testing the API requires running the entire application.

We could write a tcltest to exercise the hello procedure
using the slave interpreter technique. The test would have
to initialize the application, exercise the hello procedure, and
finally destroy the application by deleting the slave interpreter,
as shown in Listing 2.

The test setup code creates the slave interpreter and starts
the application using the source and update commands,

proc hello {} {
puts "Hello World!"
}

package require Tk

grid [button .b -text "Hello" -command hello]

Listing 1. Hello World example in file hello.tcl

package require tcltest 2

tcltest::test hello-1 {check return value} -setup {
set app [interp create]
Sapp eval {source hello.tcl}
Sapp eval {update}

} -body {
Sapp eval {hello}
} —result {} -cleanup {

interp delete S$app
}

Listing 2. Hello World test

which emulates launching the program and waiting for the
GUI to appear. The cleanup code simply deletes the slave
interpreter, which destroys Tk, closes all the GUI windows,
and also deletes all the program logic. The setup and cleanup
logic could be common to many tests, and could be better
implemented as a procedure in the test file, as shown in
Listing 3.

V. SLAVE INTERPRETER ISSUES

The slave interpreter execution environment is slightly dif-
ferent from that of the main interpreter. Several issues must
be handled by the test setup and cleanup processes.

To emulate executing an application, the slave interpreter
must source the application’s main program file, but the global
variables argv(, argv, and argc are not automatically defined.
The test setup code should ensure that these values are defined
in the slave interpreter before running the application.

The global environment array, env, is shared among all mas-
ter and slave interpreters. This feature is useful for communi-

package require tcltest 2

proc startApp {} {
global app
set app [interp create]
Sapp eval {source hello.tcl}
Sapp eval {update}
}

proc stophApp {} {
global app
interp delete $app
}

tcltest::test hello-1
Sapp eval {hello}
} —setup {startApp} -cleanup {stopApp} -result ({}

{check return value} -body {

Listing 3. Test Procedures for starting and stopping application

cation between interpreters. But in the case of running multiple
regression tests, we need to save and restore the environment
before running each test. This is easily accomplished using
Tcl’s array commands in the test setup and cleanup procedures.

Each slave interpreter inherits the standard channels, stdin,
stdout, and stderr, from the master interpreter. Output from the
slave is directed to the same channels as the master, so the
application will operate normally. Tcltest, however, intercepts
both stdout and stderr by redefining the puts command, and
records their contents for comparison when the -output or -
errorOutput options are employed. The slave interpreter must
have a similar replacement for the puts command so that the
output comparisons operate correctly. A simple alias to the
master interpreter’s puts will not suffice, as this causes output
to the application’s other channels to fail.

Finally, the slave interpreter should not call exit, as this
would exit all interpreters and terminate the test abruptly. An
alias can be defined for the slave’s exit command so that
it correctly deletes the slave interpreter and performs other
necessary cleanup. This exit procedure can also handle the
optional return code, so that application tests can check for
exit status.

The startApp and stopApp procedures can be generalized to
accept command line arguments, and perform all the required
initialization and cleanup for executing Tk applications. For
the general case, they must also be augmented by exitApp
and putsApp to handle application exits and standard channel
output.

VI. LIMITATIONS OF THE SLAVE INTERPRETER APPROACH

The slave interpreter concept was originally applied to a per-
sonal project (the soccer coach’s assistant), but the intent was
to develop tests for complex electronics modeling applications
being developed in support of advanced research programs.
The generalized slave interpreter application routines were
developed specifically to enable application testing of xm3:
the third generation of a transmission line modeling system
being developed at Mayo. Xm3 consists of about 7000 lines
of Tcl, supported by 1000 lines of custom C code and a score
of Tcl packages. Implementing slave interpreter tests revealed
several shortcomings in the approach.

Creating a slave interpreter and sourcing the main program
file for every test has about twenty times the overhead of
a traditional tcltest procedure. Adding on the overhead of
initializing Tk and drawing a window for every test is slower
by another order of magnitude. Running the tests for an entire
Tk application including building and destroying the GUI,
could be as much as 1000x slower than traditional unit tests. It
might be tempting to perform many different functions within
a single test script, but that would reduce the granularity of
the tests, and make errors more difficult to debug.

Fortunately, the slave interpreter approach could also be
used outside of the individual test script setup and cleanup
procedures, and groups of related tests could be run within a
single instance of the application, as shown in Listing 5. These
tests are for a soccer coach’s team management application,

proc startApp {argv0 args} {

save environment
global env envSave
set envSave [array get env]

create slave interpreter
global app
set app [interp create]

prevent exits
Sapp alias exit exitApp

redirect puts stdout/stderr to master

Sapp eval [list namespace eval tcltest::Replace {}]
Sapp eval [list rename puts tcltest::Replace::puts]
Sapp alias puts putsApp

set up command line args and run app
Sapp eval "set argv0 S$argv0"
Sapp eval "set argc [llength Sargs]"
Sapp eval "set argv [list $args]"
Sapp eval "source $argv0"
$app eval "update"

}

proc stopApp {} {

delete slave interpreter
global app
catch {interp delete S$app}

restore environment
global env envSave
array unset env *
array set env S$envSave

}

proc exitApp {{returnCode 0}} {
stopApp
return $returnCode

}

proc putsApp {args} {
global app
switch [llength $args] {
1 {
only string to be printed
puts [lindex S$args 0]

either -nonewline or channelID
switch [lindex $args 0] {
"-nonewline" -
"stdout" -
"stderr" {
eval puts S$args
}
default {
Sapp eval tcltest::Replace::puts $args
}

both -nonewline and channelID
switch [lindex $args 1] {
"stdout" -
"stderr" {
eval puts Sargs
}
default {
Sapp eval tcltest::Replace::puts $args
}

Listing 4. Generalized procedures for testing Tk applications

startApp soccerManager.tcl

tcltest::test player-1.1 {create a new player} {

}
tcltest::test player-1.2 {update a player phone} ({

}
tcltest::test player-1.3 {delete a player} {

}

stopApp

proc addPlayer {args} {
set p [Player %AUTO%]
if { [llength $args] > 0 } {
Sp configurelist $args
} else {
playerDialog $p
}
if { [$p valid] } {
$::team add $p
}

return $p

Listing 5. Multiple tcltests for one application invocation

written in Tcl/Tk. There are traditional tcltest unit tests for
application objects and procedures, and the slave interpreter
approach was used to create application level tests.

Some GUI implementations resist test automation using this
approach. Dialogs constructed using the BWidget library, for
example, use tkwait to suspend execution until the user closes
the dialog. This is convenient for the application programmer,
simply calling bialog draw, which returns only after the user
clicks on one of the dialog buttons. But these dialogs cannot
be exercised by automated test scripts.

There may also be problems with some extensions that are
not suitable for loading into multiple interpreters. Unlike pure
Tcl extensions, compiled extensions are loaded into the pro-
cess once using dlopen(). Just as some Tcl extensions are not
thread safe, some compiled extensions might not initialize cor-
rectly for multiple slave interpreters. BLT 2.4z, for example,
was released with a bug that prevents it from being used from
multiple interpreters. The problem was corrected, and a patch
can be downloaded from http://sourceforge.net/projects/blt/.
But the pre-compiled Windows distribution predates the patch.
Thus, the slave interpreter technique will not work on Win-
dows with applications using the pre-compiled BLT library.

VII. PROGRAMMING FOR TESTABILITY

Proponents of agile development methods [11] suggest that
tests should be developed before or during coding. Following
this philosophy makes it reasonable to design the application
in a style specifically for testability [12]. The slave interpreter
approach is particularly well suited to architectures with an
API as close to the GUI as possible.

It is theoretically possible to drive the GUI layer of the
application using tcltest and the slave interpreter approach. If
widget names are known, events can be synthesized directly
in the tcltest script using event generate, and the internal
state of the application can be inspected to deduce success or
failure. But this level of testing is better handled by a tool
like TkReplay, which specializes in capturing and replaying
widget events.

Just below the GUI layer, at the Application API, are the
procedures called directly by the GUI widgets (e.g., menu
buttons). These procedures could be exercised by test scripts if

Listing 6. Example of testable Application API procedure

they were designed to work around the limitations of the slave
interpreter approach, and if they were made to be testable.

For example, in the soccer coach’s application, one menu
button calls the addplayer procedure, which creates a new
player object and adds it to the list of players. Since this
application was implemented using BWidgets’ Dialogs, this
procedure must have the option of not actually drawing the
dialog. Testability can be implemented using optional argu-
ments for input, and a return value that can be validated. If
the addPlayer function in Listing 6 is called with parameters,
they are used to define the new player object. Otherwise, the
dialog is drawn and the user (or a GUI test program) supplies
the data values.

VIII. CONCLUSION

This paper presented a slave interpreter technique for testing
Tk applications using tcltest. This technique fills a niche
between unit testing, at which tcltest excels, and GUI testing
using specialized test harnesses like Android or TkReplay.
This new technique makes it possible to execute Tk programs
from within test scripts, controlling them through the appli-
cation API, and validating them by inspecting the application
state.

While the procedures presented here were implemented in
test script files, it would be relatively easy to implement
them as a package which could be loaded in addition to the
tcltest functionality. If the technique proves both useful and
successful in the long term, it might make sense to extend
the tcltest package to incorporate the concept of running
application code in slave interpreters. Tcltest 2.2, presently
shipping with the Tcl core 8.4, already supports options for
running entire test suites (many test files) in the same process
or in individual processes. This concept of running tests in
individual interpreters would be a natural extension to that
concept.

ACKNOWLEDGMENT

The authors would like to thank E.J. Hanlon for technical
assistance, and T.J. Funk, K.C. Garry, and D.D. Windhorst for
manuscript preparation.

REFERENCES

[1] Tcltest and Tcl/Tk are available at http://www.tcl.tk/

[9]

[10]

[11]

[12]

John Ousterhout, ”Tcl and the Tk Tookit,” Addison-Wesley Professional,
March 1994.

Brent Welch, Ken Jones, Jeffrey Hobbs, “Practical Programming in Tcl
and Tk (4th Edition),” Prentice Hall, June 2003.

David N. Welton, "Make it right using Tcl: Software Testing with Tcl
for Apache Rivet,” Free Software Magazine, May, 2005.

Panagiotis Louridas, ”JUnit: Unit Testing and Coding in Tandem,” IEEE
Software, vol. 22, no. 4, July/August 2005, pp 12-15.

Don Libes, “"Exploring Expect: A Tcl-based Toolkit for Automating
Interactive Programs,” O’Reilly Media, November 1996.

Larry Smith, Cameron Laird, “Android: Open-Source Scripting
for Testing and Automation,” Dr. Dobb’s Journal, July, 2001,
http://www.wildopensource.com/activities/larry-projects/android.php
Winrunner is available from Mercury Interactive,
http://www.mercury.com/us/products/quality-center/functional-
testing/winrunner/

Charles Crowley, “TkReplay: Record and Replay in Tk”,
Proceedings of the Third Tcl/Tk Workshop, July, 1995,
http://www.cs.unm.edu/%7Ecrowley/papers/replay.tk95.html

Clif Flynt, "TkTest: Cross Platform and Remote GUI Regression
Testing,” Proceedings of the 11th Tcl/Tk Conference, October 2004,
http://www.tcl.tk/community/tc12004/Papers/

Kent Beck, “Extreme Programming Explained: Embrace Change,”
Addison-Wesley, October 1999.

Antonia Bertolino, Paola Inverardi, Henry Muccini, Andrea Rosetti, ”An
Approach to Integration Testing based on Architectural Descriptions”,
Proceedings of the third IEEE International Conference on Engineering
of Complex Computer Systems, September 1997, pp 77-84.

