
 1

 �
Abstract--The NSCL is a national nuclear physics research

facility. Modern experiments in nuclear physics feature an
increasing number and type of remotely controlled electronics
including detector bias power supplies, discriminators,
amplifiers and gas handling systems. These devices in turn
connect to the computers controlling them via a wide variety of
interfaces including Ethernet, CAN, VME, and even the
venerable CAMAC.

 This paper will describe an open, extensible control system

for these sorts of devices that uses a pair of Metakit databases in
an attempt to impose some sort of order on this chaos. The
system described allows system integrators to rapidly add
support for new devices and even new interface subsystems.
Experimenters, using a simple GUI, can describe the devices in
their experiment. This description of the experiment drives the
automated generation of a control panel for the devices they use.

I. BACKGROUND AND GOALS

The National Superconducting Cyclotron Laboratory
(NSCL) is an NSF funded national laboratory dedicated to
basic research in heavy ion nuclear physics. The NSCL is
the world’s premiere facility for studies of nuclei far from
stability, and a leading candidate for the location of the Rare
Isotope Accelerator project. Research at the NSCL spans a
wide variety of topics including nuclear structure,
spectroscopy, nuclear statistical mechanics nuclear
astrophysics, and even nanotechnology. Additionally the
Single Event Effect (SEE) beam line funded by the National
Aeronautics and Space Administration (NASA) allows
researches to expose prototypes of satellite instrumentation
systems to radiation fields that can be expected in-flight.
The NSCL serves a user community spread out across the
U.S. and has also hosted experimenters from the European,
Asian and other international collaborations.

The preparation time-scale of typical NSCL experiments is
short relative to that of the high energy physics experiments
for which most software toolkits have been built. Where an
experiment such as ATLAS at the LHC has had over a
decade to prepare the software and hardware packages prior
to its first beam-time, the turnaround from proposal to

1Ron Fox is with the National Superconducting Cyclotron Laboratory at

Michigan State University in East Lansing, MI

experiment at the NSCL can be under a year. While
collaborations preparing large scale high energy physics
experiments can take the time to integrate sets of loose
software toolkits into finely tuned experimental support
software, NSCL users must have access to software tools
that require very little integration. Preferably software
components that approach the state and quality of a finished
application.

 In addition to the digitization hardware described in a
paper presented at tcl2004[1], experimenters must have
accurate and simple control over a variety of programmable
electronics. The settings for these programmable
electronics are usually tuned prior to production running,
and remain stable over the course of several runs within an
experiment. These settings comprise an important set of
parameters that partially describe the conditions of a data
taking run. Control systems for these sorts of electronics
devices are traditionally called slow control systems to
distinguish their relatively lax timing requirements from
those of the main experimental data flow.

This paper describes a development initiative to produce an
open framework for slow control that approaches the
readiness and quality of a finished program. The goals of
this initiative were to prototype a system that:

1. Is open and extensible
2. Allows experimenters to quickly define their

electronics without detailed knowledge of how
modules are controlled

3. Supports the generation of a control panel for the
entire slow controls system of an experiment from
the experimenters description of the electronics

4. Supports the ability to record and restore the
settings of sections of or the entire control system.

Subsequent sections of this paper describe the data model on
which the software was built, and how it supports the
necessary extensibility of the system. We describe the roles a
user may take when interacting with the system and the
expectations for each role. The software structure is described
along with the applications that have been built to support
each anticipated user role. I will wrap up the paper with a

Slow Controls for Experiments in Nuclear
Physics

R. Fox1

 2

summary of the status of the software and an evaluation of the
degree to which the effort has been successful.

II. DATA MODEL

The slow control system is driven by a pair of Metakit[2]
databases. The first of these describes the set of supported
hardware, while the second describes the experiment itself.

We call the first of these databases the “system” database, and
the second one the “experiment” database. The system
database lives in a centralized location. One instance of the
system database exists so that changes to this database are
picked up by all applications next time they are run. The
system database changes infrequently over the lifetime of
several experiments.

 The experiment database describes the set of modules used by
the experiment, and contains saved settings created throughout
the lifetime of the experiment. An instance of the experiment
database (usually located in the experiment’s account home
directory tree) exists for each experiment. The configuration
part of the experiment database may change several times
during the planning and initial test runs of an experiment.
The settings part of the experimental database will be
somewhat fluid during the initial runs, as the electronics are
tuned to maximize the detector systems, but tends to be
relatively stable once an experiment enters production mode.

Subsection A will describe the system database. Subsection B
will describe the experiment database. Finally, Subsection C
will show how a bus and a module type in that bus are
represented as well as how that module type is represented as
configured into an experiment.

A. The system database

Devices supported by the slow control system can connect to
host computers in a wide variety of ways ranging from classic
instrumentation busses to Ethernet or CAN[3] networks. Each
supported module must be described in a way that makes it
possible to determine solely from the information in that
database:
�� The set of supported instrumentation busses
�� How addressing on each instrumentation bus works.
�� For each supported module the instrumentation bus it

lives in.
�� For each supported module how the module is to be

controlled both by the user and by the software.

The data model for the system database is shown in Figure 1.
The Module Types table contains one entry for each
supported electronic module. Each module is uniquely
identified by an integer key, has a descriptive name, and an

integer code that identifies the instrumentation bus in which
the module lives. The module descriptive name is used to
generate the name of a Tcl package that knows how to control
the module. The bus type code is used to join module to a
record in the Instrumentation Busses table.

The Instrumentation Busses table defines the set of
instrumentation busses that are known to the system. Each
instrumentation bus is given a unique integer code and a
meaningful name. The code is used not only to join a
supported module to the bus it supports, but also to join the
bus record to records in the Bus Address Fields table that
describe the addressing of each bus.

cd System database

BusAddressFields

 «column» moduleBusT ype: SM ALLINT
 «column» addressFieldNum ber: INT EGER
 «column» addressFieldNam e: VARCHAR(50)
 «column» lowLim it: BIGINT
 «column» highLim it: BIGINT

InstrumentationBusses

 «colum n» m oduleBusType: SMALLINT
 «colum n» Busname: VARCHAR(50)

+ «unique» UQ_Instrum entationBusses_m oduleBusType()

ModuleTypes

 «column» m oduleType: SMALLINT
 «column» M odelNam e: VARCHAR(50)
 «column» m oduleBusT ype: SM ALLINT

+ «unique» UQ_ModuleTypes_m oduleType(SMALLINT)

moduleBusT ype

1..*

m oduleBusT ype

Nam e:
Package:
Version:
Author:

System database
Data M odel
1.0
Ron Fox

Figure 1 Data model of the system database

The Bus Address Fields table is used to describe how
addressing on a bus works. Each bus may have any number
of address fields. In a CAMAC system, for example one will
typically address a module by three fields, Branch, Crate, and
slot. On the VME bus, a single base address field, and an

 3

associated address space (address modifier) code addresses a
module, while a high voltage power supply with an Ethernet
interface may be identified by the four octets of its IP address.
Each record of the Bus Address Fields table describes a single
bus address field and contains:

1. The bus type code (moduleBusType) identifying
which bus the record belongs to.

2. The address field number, which provides field
ordering.

3. The name of the address field, which identifies the
field to the human users of the system.

4. Low and high limits on the values of the address field
(for example a CAMAC crate in a parallel branch
highway system may have a low limit of 1 and a high
limit of 7).

B. The Experiment Database

The experiment database is a set of tables that describe the
current experiment setup. The experiment database also stores
saved settings created by the experiment control panel. The
data model for the experiment database is shown in Figure 2.

The starting point for the experiment configuration is the
Configuration table. Each entry in this table represents a
module is being used in the experiment. The moduleType
field is an integer code that joins this module to a module type
in the Module Types table in the system database. The
moduleId field is a unique identifier for that module within the
experiment, and is used to join modules across the other tables
in the experiment database. The moduleName is a human
readable name chosen by the experimenter to identify this
module within the experiment.

The moduleAddresses table contains actual addressing
information for each module in the Configuration table. The
records in moduleAddresses contain the address values
assigned the module for each ordered field in the bus in which
the module lives. These addresses are assigned to the module
by the experimenter when configuring the system. They are
used by the module’s physical driver to establish a connection
to the hardware.

In the course of running an experiment, the user may decide
the slow control system is in a state that is worth saving for
later re-use. The bottom set of tables in Figure 2 are
responsible for maintaining these settings.

The main problem I had to solve for the settings database, was
how to describe the settings associated with modules in an
extensible system. The slow control system can control high
voltage controllers, discriminators, amplifiers, and modules

that I have not yet seen and know nothing about. A fixed set
of setting attributes would never be workable, or extensible.
Instead, I chose to use property lists to store setting
information. A property list is a set of name/value pairs. In
Tcl, a property list is easily represented by a list of 2 element
sub lists. For example:

{{hv1 100} {hv2 205} {ilimit 200} ...}

Is a property list that might describe a 2 channel ISEG
VME[4] detector bias supply, that is set with channel 1 at 100
volts, channel 2 at 205 volts, and with a global current limit
trip point set at 200mA and “...” means that there are further
properties not shown in this example.

 4

cd Experiment configuration

SettingDirectory

 «column» settingId: SMALLINT
 «column» settingNam e: VARCHAR(50)
 «column» com ment: VARCHAR(255)
 «column» tim eStamp: DAT ET IME

+ «unique» UQ_Settings_settingId(SM ALLINT)
+ «unique» UQ_Settings_settingNam e(VARCHAR)

SettingsValues

 «colum n» settingId: SM ALLINT
 «colum n» moduleId: SM ALLINT
 «colum n» propertyNam e: VARCHAR(50)
 «colum n» propertyValue: VARCHAR(50)

moduleAddresses

 «colum n» m oduleId: SM ALLINT
 «colum n» addressFieldNumber: INT EGER
 «colum n» addressFieldValue: BIGINT

Configuration

 «column» m oduleId: SMALLINT
 «column» m oduleNam e: VARCHAR(50)
 «column» m oduleType: SMALLINT

+ «unique» UQ_Configuration_m oduleNam e()

settingId

m oduleId

m oduleId
1..*

Name:
Package:
Version:
Author:

Experiment configuration
Data Model
1.0
Ron Fox

Figure 2 The experiment database

The user will want to be able to identify, and select the set of
property lists that make up a useful set of saved settings . This
function is provided by the SettingDirectory table. This table
contains, for each set of saved settings:

1. A user supplied name for the setting.
2. A user supplied optional comment.
3. A system provided timestamp indicating when the

`1setting was created.

4. A system provided unique setting id used to join the
SettingDirectory entry to associated property list
elements in the SettingsValues table.

The SettingsValues table contains the property list elements
for all of the settings. Each record in this table contains:

1. A setting id that corresponds to a unique setting id in
the SettingDirectory table identifying which setting
this element belongs to.

2. A moduleId that corresponds to a unique moduleId in
the Configuration table, that identifies which
module’s property list this element is a member of.

3. The name of the property
4. The value for the property.

C. Database Examples

This section provides the following examples of database
content:

1. The description of the CAMAC parallel branch
highway subsystem as it might appear in the system
database.

2. The description of a CAEN C805[5] constant fraction
discriminator as it could appear in the system
database.

3. The configuration of a CAEN C805 constant fraction
discriminator as it could appear in the experiment
database.

1) Describing the CAMAC parallel branch highway
system

The CAMAC parallel branch highway system is an
instrumentation bus and interconnection system that were
designed for large CAMAC based setups. The specification
defines a CAMAC system as consisting of one or more
branches. Each branch has up to 7 instrumentation chassis
called crates numbered 1-7. Each crate has 23 usable slots
and modules are geographically addressed within the crate.
One CAMAC[6] interface used at the NSCL is the CES CBD
8210[7]. The 8210 is a VME based branch highway controller
that
supports up to 8 branches per VME crate. The NSCL Data
Acquisition system supports up to 8 VME crates per host.
The branch highway driver base addresses are determined by
the branch number set in each controllers configuration
switches.

 To summarize, addressing an NSCL CAMAC module
requires the following address fields:

 5

Field name Low limit High limit
Vmecrate 0 7
Branch 0 7
Crate 1 7
Slot 1 23

Table 1 Address fields for a CAMAC branch highway
system

Suppose the branch highway system was allocated bus id 0.
The Instrumentation Busses table entry for the CAMAC
branch highway system might contain:

Field Contents
moduleBusType 0
Busname CAMAC Branch highway

Table 2 Instrumentation Busses record for CAMAC
Branch highway

There would be four records in the BusAddressFields table
that describe this bus:

bustype fieldno name lowlimit hilimit
0 0 VmeCrate 0 7
0 1 Branch 0 7
0 2 CamacCrat

e
1 7

0 3 Slot 1 23

Table 3 Fields of a parallel branch highway

2) The CAEN C805 in the system database
The CAEN C805 is a 16 channel constant fraction
discriminator housed in a single width CAMAC module.
Continuing the previous example. If this module had been
allocated module Id 12, it would have the following record in
the ModuleTypes table of the system database:

Field Name Contents
moduleType 12
ModelName CAENC805
moduleBusType 0 (CAMAC Branch Highway)

Table 4 CAEN C805 in the system database

3) A C805 constant fraction in an experiment.

Suppose an experimenter has decided to use a CAEN C805
described as in the previous two examples. She decides to call
the module detector hits and installs it in slot 4 of CAMAC
crate 1 in branch 0 of VME crate 0. If the experiment
database has allocated module id 1 to this module, the
Configuration table record for this module will contain:

Field Contents
moduleId 1
moduleName detector hits
moduleType 12 (CAENC805 module type)

Table 5 Configuration table entry for a CAEN C805

The moduleAddresses table of the experiment database will
contain four records for this module which will contain:

moduleId addressFieldnumber addressFieldValu

e
1 (detector hits) 0 (Vmecrate) 0
1 1 (Branch) 0
1 2 (CamacCrate) 1
1 3 (Slot) 4

Table 6 module Addresses of a CAEN C805

III. USER ROLES

The slow controls system software has been defined with three
user roles in mind. A user fulfilling each role has specific
functions that he or she is expected to perform. These roles,
in order of decreasing sophistication are:
�� System integrator
�� Experiment designer
�� Shift operator

A. The system integrator

The system integrator is the only role that requires
programming knowledge. The system integrator is
responsible for ensuring that the required modules have
drivers and that they and the busses they live in are correctly
described in the system database. To support a new module
type, the system integrator must:
�� Create a driver package for the module and install it

where it will be found by Tcl automatic package loader.
Typically this driver will be implemented as a pair of
packages, a GUI package which is responsible for
managing an instance of the user interface for the
module in a frame, and a hardware interface package
that is responsible for abstracting communication with
hardware.

�� If the bus in which the module lives is not yet in the
system database, the system integrator must describe
the bus, its address fields and the limits on each field.

�� The system integrator must add an entry to the module
types table of the system database.

 6

The system integrator has a pair of applications that she can
use to edit the system database. These applications are bus
and module editors.

The bus editor allows the user to create a new bus or to edit an
existing bus. The screen shot in Figure 3 , shows how the
description of the CAMAC Branch highway might look when
being edited. Clicking the New button creates a new address
field which the user can fill in and Accept. Clicking on a line
of the field table loads its definition into the form allowing it
to be modified. Finally, the selected table line can be moved
up or down in the field order using the arrow buttons to the
right of the table. Once the fields are defined as desired, the
Ok button saves the bus definition in the database. The
Cancel button exits the editor without making any database
modifications.

The module definition editor is shown in Figure 4. The table
at the top of the GUI lists the set of currently supported
module types. This table grows scrollbars if needed. Creating
a new module is a matter of clicking the New button, typing
the module type name in the Type entry, and selecting a bus
from the Bus drop down list. If a module has been described
as living in the wrong bus type, clicking its line in the table

Figure 3 Editing a bus address definition

loads its entry into the middle form where a new bus can be
selected from the drop down list. The OK button saves all
database changes, while the Cancel button exits and leaves the
database unmodified.

B. The Experiment Designer

The experiment designer is responsible for the electronics
design of the experiment. From the point of view of the slow
controls system, this means that she must fill in the
Configuration and moduleAddresses table for each module
that will be under the control of the system.

Figure 4 The module definition application

To do this, the experiment designer will interact with an
experiment editor. The experiment editor allows the
experiment designer to add, remove and edit modules that are
in the experiment configuration. The experiment editor is
shown in action in Figure 5.

Figure 5 The experiment editor

The modules that are currently configured into the experiment
are shown in the table at the top of the GUI. If a line of this
table is clicked, the addressing information for the module is
loaded into the lower part of the GUI. where it can be edited.
Hitting the Delete key deletes the selected module. The New
button allows the user to type a new module definition into the
lower table. The module type is selected from the set of
supported modules through the drop down list, and the name
is typed in the name field. Once the module type is selected,

 7

the appropriate address field names get loaded into the table,
and the user can enter values for each field.

The Accept button either adds the new module or accepts an
edit to an existing module. Accept also range checks each
address field against the limits defined for that field in the
system database, refusing to commit the change if an address
field is invalid. Clicking on Ok writes the new experiment
definition to the experiment database. Clicking on Revert
reloads the top table from the database, and clicking on
Cancel dismisses the editor without making any changes to
the database.

C. Shift operators

Shift operators are the people who actually run the experiment.
They will be operating the controls for the experimental
electronics defined by the experiment designer. They interact
with the electronics through a control panel application.

.When the control panel starts, it reads the experiment
database to determine the set of modules, their types and
locations in the bus. For each module, a page is created in a
BLT[8] tabbed notebook widget. The page widget is handed
to the driver for the module along with the bus addressing
information. The driver is responsible for establishing
communication with the specific device, a drawing the GUI
for that device in the page it was given, and responding
appropriately to events in the GUI. Existing pages are
implemented as Snit[9] mega widgets.

A sample control panel page for the CAEN C808
discriminator is shown in Figure 6.

Figure 6 The control panel in action

The pages of the notebook are created with tear-off enabled in
case the user wants to view multiple pages simultaneously.

The File menu provides access to the saved settings part of
the experiment database. Figure 7 shows the dialog that pops
up in response to the File->Restore... menu entry.

Figure 7 The Settings restoration dialog

The user selects a setting line and clicks Ok to load that
setting. Note the timestamps and comment fields. The table
will grow scroll bars as needed. The File->Save... menu
entry brings up a similar dialog with the addition of a New
Button that allows you to create a new setting, rather than
overwriting an existing setting.

When settings are saved, the control panel simply asks each
page driver to return its property list. These get tagged with
the module and settings ids and written to the database.
Similarly, when a setting is restored, the control panel
application distributes the appropriate property list to each
page driver and that driver interacts with the hardware so as to
restore the settings described by the property list. Periodically,
the control panel automatically saves settings in a “failsafe”
setting allowing the user to return to a recent state in the event
of system failure or power outage.

IV. IMPLEMENTATION

The system block diagram is shown in Figure 8.

 8

Heavy use was made of Snit types and Snit mega widgets.
This is seen most clearly in the interface between the control
panel and the Page drivers. Page drivers are Snit mega
widgets, Page drivers must implement a constructor that
recognizes an –address option that will contain the ordered
address list, as well the widget path to the page in which they
must draw their GUI. They are also responsible for
implementing two methods in order to support the settings
save/restore subsystem:

�� getProperties must return a property list that will

restore the device to its current setting.
�� setProperties must accept a property list and restore the

device to the state described by that list.

While figure 8 only shows a single concrete driver, additional
drivers would be added by the system integrator to support
other module types.

The other salient feature of figure 8 is the database isolation
modules. All database accesses go through these modules

insulating the system from changes in both database structure
and database package choice.

The entire system consists of about 2800 lines of Tcl/Tk/Snit
code including integration tests. Unit tests, for non-graphical
modules make up another 1200 lines of tcltest code.

V. STATUS AND CONCLUSIONS

An implementation of this system is in use. Currently two
discriminator modules are supported while the utility and
usability of the software are being evaluated.

While it was relatively simple to use Metakit to implement the
database, I wonder if an implementation on top of an SQL
based system such as SQLite[11] might have made the
management of joins between tables much simpler to handle.
If the system transitions from its current prototypical
implementation to a production implementation, the insulation
of the applications from the database via the database adaptor
modules should make such a switch relatively painless.

System
database

Experiment
databaseSystemDatabase ExperimentDatabase

BusEditor ModuleEditor ExperimentEditor

ControlPanel PageDriver
+Constructor()
+getProperties()
+setProperties()

CAENC808
+Constructor()
+getProperties()
+setProperties()

For example

Modules *

Figure 8 System block diagram

 9

There are several shortcomings in system design that I would
remedy in a reimplementation of the system:

�� It might be well to formally recognize the split between

physical device driver and page driver. This would
allow system integrators to provide several alternative
GUI’s for a single device.

�� Regardless, the driver package names should be in the
database rather than derived from the module name.

�� Some thought should be given to how to handle
multiple interface types to the same bus system. For
example, we have illustrated the use of CAMAC via a
CES CBD 8210 VME branch highway system. Also
supported by the NSCL are the Wiener VC32/CC32
VME[11] to CAMAC interface, and support has also
been contributed for the Wiener PCDA-CC32[12] PCI
to CAMAC interface. It is likely that support will be
contributed to for the Wiener USB-CC USB[13]
CAMAC interface as well. These all have slightly
different addressing schemes, however sufficient
insulation of the page driver from the underlying
hardware driver should make it possible to re-use the
control interface even if the underlying hardware driver
for each of these is slightly different.

�� The model of addressing via a set of numeric fields is
somewhat simplistic. For example, a device that
contains an Ethernet interface should be addressable via
its DNS name. In this more open model of addressing,
more complex validation is required, perhaps requiring
a system integrator to either select validation scripts
from a set of pre-written scripts or to supply a new
script to support unforeseen validation needs.

Things that work well:

�� The choice of a property list representation of device
settings has made it quite easy to build the save and
restore subsystem on top of modules with unknown
parameter sets.

�� The automatic derivation of the user interface from
the experiment configuration database is very
friendly to the user.

�� The use of Snit mega widgets to produce the user
interfaces of both the page drivers and the GUI’s of
the various configuration utilities simplified the user
interface logic.

�� While Metakit may not be the best choice of a
database package, nonetheless, the limited set of
queries required by the system meant that once these
queries were written it nice to be able to rely on a
debugged database package as a basis for
implementing the data model of the system.

All in all this was an enjoyable project. It has been
contributed to a group at Oregon State University which uses it
as is in the experiment design and shift operator roles, and
have been favorably impressed with the system’s
configurability and stability.

VI. REFERENCES

[1] NSCLSpecTcl Meeting the Needs of Preliminary Nuclear Physics Data

Analysis. Proceedings of Tcl 2004 New Orleans available at
http://www.tcl.tk/community/tcl2004/Papers/RonFox/fox.pdf

[2] http://www.equi4.com/metakit.html
[3] CAN Specification 2.0 Robert Bosch gmbh available online at

http://www.semiconductors.bosch.de/pdf/can2spec.pdf
[4] Precision High Voltage Supply VME STANDARD series Operators

Manual iseg Spezialelektronik GmbH. Available online at:
http://www.iseg-hv.com/download.php/483/file_url_en/vhqx0x_eng.pdf

[5] Technical Information Manual: Mod. C8080 16 Channel Constant
Fraction Discriminator Costruzioni Apparechiature Elettroniche Nucleari
(CAEN) Available online at
http://www.caen.it/nuclear/product.php?mod=C808

[6] IEEE Std 583-1975 IEEE Standard Modular Instrumentation and Digital
Interface System (CAMAC).

[7] Creative Electronics Systems CBD 8210 CAMAC Branch Driver CES
Document CBD8210.ds Rev 0.01.

[8] http://www.sourceforge.net/projects/blt
[9] http://www.wjduquette.com/snit/
[10] http://www.sqlite.org
[11] VME – to – CAMAC CC32 CAMAC Crate Controller with VC32 VME

Interface User Manual W-ie-Ne-R Plein-Baus gmbh available online at
http://67.15.74.137/documents/contentdocuments/12.pdf

[12] PCI-CAMAC CC32 CAMAC Crate Controller with PCI Interface available
online at Interface User Manual W-ie-Ne-R Plein-Baus gmbh available
online at http://67.15.74.137/documents/contentdocuments/8.pdf

[13] CC-USB User Manual W-ie-Ne-R Plein-Baus gmbh available online at
http://www.wiener-d.com/documents/contentdocuments/18.pdf

