
TIP#257: Object Orientation for Tcl 1 Fellows et al.

Object Orientation for Tcl
(also available as TIP #257)

Donal K. Fellows <donal.k.fellows@manchester.ac.uk>

Will Duquette <will@wjduquette.com>
Steve Landers <steve@digitalsmarties.com>

Jeff Hobbs <jeffh@activestate.com>
Kevin Kenny <kennykb@users.sourceforge.net>

Miguel Sofer <mig@utdt.edu>

This TIP proposes adding OO support to the Tcl core, semantically based on XOTcl.
The commands it defines will be in the ::oo namespace, which is not used by any cur-
rent mainstream OO system, and it will be designed specifically to allow classic XOTcl
to be built on top.

1. Rationale and Basic Requirements
Tcl has a long history of being comparatively agnostic about object-oriented programming, not
favouring one OO system over another while promoting a wealth of OO extensions such as [incr
Tcl], OTcl, XOTcl, stooop, Snit, etc. because in general, one size fits nobody.

However, many application domains require OO systems and having a common such base system
will help prevent application and library authors from reinventing the wheel each time through
because they cannot rely on an OO framework being present with every Tcl installation. For ex-
ample, the http package supplied with Tcl has its own internal object model, and similar mecha-
nisms have been reinvented multiple times within tcllib. Other parts of tcllib do their own thing
(to say nothing of the fact that both stooop and Snit are in tcllib themselves). This does not pro-
mote efficient reuse of each others code, and ensures that each of these packages has a poor ob-
ject system. The request for an OO system is also one of the biggest feature requests for Tcl, and
would make it far easier to implement megawidgets. It also leaves Tcl open to the ill-informed
criticism that it does not support OO, despite being spoilt for choice in reality through the exten-
sions listed above.

Given all this, the time has come for the core to provide OO support. The aim of the core OO sys-
tem shall be that:

�� it is simple to get started with,

�� flexible so that it can take you a long way,

�� fast (we all know that we’re going to get compared on this front!), and

�� suitable for use as a foundation of many other things, including the reimplementation of
various existing OO extensions, including those that are currently compiled and also
those that are pure Tcl extensions.

TIP#257: Object Orientation for Tcl 2 Fellows et al.

Another requirement is that programmers should not have to alter all of their existing code in or-
der to get started with the new system; rather, they should be able to adopt it progressively, over
time, because it supports betters ways of working (e.g., faster and more flexible libraries).

2. The Foundational OO System
This TIP proposes that the foundation of the OO system should be based on XOTcl as that is fast,
semantically rich, well supported, and relatively compatible with the existing Tcl build system.

Some changes will be necessary. Certain aspects of XOTcl syntax are peculiar from a conven-
tional OO point-of-view, and it is deeply unfortunate that a very large number of methods are
predefined in the XOTcl base class. XOTcl’s approach to object creation options is also highly
idiosyncratic, and does not support the typical Tcl idioms. However, the changes must be made in
such that classic XOTcl can be built on the new framework; as a result, the classic XOTcl base
class will be derived from something more fundamental.

2.1 Key Features

�� Class-based object system. This is what most programmers expect from OO, and it is
very useful for many tasks.

�� Allows per-object customization and dynamic redefinition of classes.

�� Supports advanced OO features, such as:

meta-classes These are subclasses of class, which permit more advanced customization
of class behaviour.

filters These are constraints (implemented in Tcl code, naturally) on whether a
method may be called. They may also substitute another value for the re-
sult of a method.

mixins These allow functionality to be brought into an object from other objects
if necessary, enabling better separation of concerns.

invariants These ensure that assumptions about the behaviour of a class can be
checked.

2.2 Key Alterations

�� Object and class names in the core extension to be all lower-case, in line with best com-
mon practice.

�� Methods have to be capable of being non-exported, by which we mean that they are not
(simply) callable from contexts outside the object.

�� The majority of the API for updating an object or class’s definition is to be moved to a
separate utility command, oo::define.

TIP#257: Object Orientation for Tcl 3 Fellows et al.

�� More “conventional” naming of operations is to be used.

Note that this TIP does not propose to actually include any XOTcl (or [incr Tcl] or Snit or …)
compatibility packages in the core; it is about forming a foundation on which they can be built
(which happens to also be a comparatively lightweight OO system in itself). Such compatibility
packages can either remain separate code, or be the subject of future TIPs.

3. Outline Proposal
If you do not know XOTcl, you can probably skip forward to Section 4 below.

3.1 Essential Changes Relative to XOTcl

This section describes the essential changes to XOTcl behaviour required to meet the above goals
and the rationale for them. The paragraphs that describe the specific changes begin with the word
Therefore, in bold type. Note that wherever possible, the semantics of XOTcl are to be used even
where the syntax is not; deviations will be explicitly listed.

3.1.1 Exported vs. Non-exported Methods

In XOTcl, every class and every object has an associated namespace. The namespace associated
with a class ::myclass is ::xotcl::classes::myclass; the namespace associated with object
::myobject is simply ::myobject. XOTcl “instprocs” are simply procedures defined in a class (or
superclass) namespace; XOTcl per-object “procs” are simply procedures defined in an object’s
namespace. Every such procedure becomes an object subcommand.

This is part of the reason why XOTcl objects have such cluttered interfaces. Every method that is
of use to the object appears in the object’s interface – and there is no way to prevent this.

Therefore, in the new OO system “procs” and “instprocs” can be exported or non-exported. Ex-
ported procs appear as object subcommands; non-exported procs do not, but remain available as
subcommands of the my command. In this way, the object itself can still use them, but they need
appear in the object’s interface only if desired.

Additionally, the standard info method will need to be extended to allow introspection of which
methods are exported and which are not.

3.1.2 The oo::define Command

In XOTcl, the commands to define per-class methods, filters, and so on are subcommands of the
class object; the commands to define per-object methods, filters, and so on are subcommands of
the individual object. This is a problem, as it confuses the implementation-time interface with the
run-time interface. The design is logical, given XOTcl’s extreme dynamism; any implementation-
time activity, such as defining a method or adding a filter can indeed be done at run-time. Again,
this makes it difficult to define clean run-time interfaces for reuseable library code.

The solution described in the previous section, of making some methods private by declaring
them non-exported, does not give us a full solution; having the instproc subcommand available
only from instance code is not very useful.

TIP#257: Object Orientation for Tcl 4 Fellows et al.

Therefore, we add a new command, oo::define, which is used to define methods, filters, and so
on. It can be called in two ways. The first is as follows:

oo::define objectOrClass subcommand args...

For example, the following XOTcl code defines a class with two methods:

xotcl::Class myclass
myclass instproc dothis args { # body }
myclass instproc dothat args { # body }

In the new OO core, the matching code would be this:

oo::class myclass
oo::define myclass instproc dothis args { # body }
oo::define myclass instproc dothat args { # body }

oo::define can also be called with a script whose commands are aliased to the subcommands of
oo::define. Thus, the above code could also be written as follows:

oo::class myclass
oo::define myclass {
 instproc dothis args { # body }
 instproc dothat args { # body }
}

Finally, the class “create” method could be extended so that it could be called with such a script:

oo::class myclass {
 instproc dothis args { # body }
 instproc dothat args { # body }
}

This allows a class to be defined cleanly and concisely, while guaranteeing that all class details
can still be modified later on using oo::define.

Note that we do not lose any object-oriented flexibility by this scheme. An oo::xotcl package can
use the “forward” feature to forward “instproc” and its partners to oo::define, thus defining
them all as methods; and once they are methods, all of the usual techniques of method chaining,
mix-ins, and filters apply.

oo::define will need two subcommands XOTcl does not currently provide: export and unexport.
Export takes as arguments a list of method names; all named methods are exported and become
visible in the object or class’s interface. Unexport does the opposite. Each can include wildcards
in its argument list, just as namespace export does.

3.1.3 Standard Metaclasses

XOTcl defines two standard Metaclasses, xotcl::Object and xotcl::Class. xotcl::Object is the root
of the class hierarchy; all XOTcl classes implicitly inherit from xotcl::Object. XOTcl classes are
themselves objects, and are instances of xotcl::Class. xotcl::Class can itself be subclassed to pro-
duce different families of classes with different standard behaviours.

The new core object system will use the same basic mechanism, based on the metaclasses
oo::object and oo::class. However, one of the problems with XOTcl is that XOTcl objects have

TIP#257: Object Orientation for Tcl 5 Fellows et al.

too much standard behaviour; the new core object system must provide a simpler foundation, with
the XOTcl behaviour optionally available.

Therefore, we will decompose the features of xotcl::Object and xotcl::Class into a number of
simpler metaclasses.

oo::object will be the root of the class hierarchy. However, instances of oo::object will have a
minimal set of standard methods, so that clean interfaces can be built on top of it, as can be done
with Snit types and instances.

Core object system classes will be instances of oo::class or its subclasses. Likewise, oo::class
will define only minimal behaviour.

The majority of standard XOTcl class and object methods will be provided by a number of stan-
dard classes, all of which will be subclasses of oo::object. A user-defined class can include some
or all of the standard XOTcl behaviour by multiply inheriting from some or all of these standard
classes. Each such standard class will provide a subset of the standard XOTcl methods. The fol-
lowing is an incomplete list of the necessary classes:

�� oo::definer will define one method for each subcommand of oo::define; the methods
will be “forward”ed to oo::define.

�� oo::struct will define all of the data access methods, e.g., set, unset, lappend, incr, and
so forth.

Thus, oo::class is the mechanism for defining classes with clean interfaces and maximum data
hiding and encapsulation; oo::struct is the mechanism for defining classes for maximal public
access.

The above classes and metaclasses will be implemented such that they can be used as a founda-
tion for the ::xotcl::Class and ::xotcl::Object metaclasses (see below for a discussion).

3.1.4 Inheritance

A class may wish to make use of the capabilities of oo::struct internally without exporting its
methods.

Therefore, the inheritance mechanism should be extended such that the newly defined class can
declare whether a parent class’s methods should be exported or not.

3.1.5 Object Creation

XOTcl has a unique creation syntax. The object name can be followed by what look like Tk or
Snit options – but are not. Instead, any token in the argument list that begins with a hyphen is as-
sumed to be the name of one of the object’s methods; it must be followed by the method’s own
arguments. For example, a standard XOTcl class will have a “set” method, which has the same
syntax as the standard Tcl set command. Thus, the following code:

myclass myobj -set a 1 -set b 2

TIP#257: Object Orientation for Tcl 6 Fellows et al.

creates an instance of “myclass” called “myobj” whose instance variables “a” and “b” and set to 1
and 2 respectively. This is an intriguing and innovative interface, and it is unlike any other Tcl
object system. Additionally, it makes it difficult to implement standard Tk-like options.

Therefore, standard core object system classes will not use this mechanism (though it might be
available on demand by inheriting from some other standard metaclass). Instead, standard core
object system classes will have no creation behaviour other than that implemented by their de-
signers in their constructors.

Constructors may have any argument list the user pleases, including default arguments and the
“args” argument (as in the proc command). It is up to the developer to handle the arguments ap-
propriately.

It is expected that one of the key responsibilities of any XOTcl compatibility package would be to
define a constructor that parses the arguments in the expected way and uses them to invoke meth-
ods on the newly created object.

3.1.6 Constructor Syntax

In XOTcl, a class’s constructor is implemented using its “init” instproc. This is troubling; con-
structors are intended to do things just once, and are often written to take advantage of that,
whereas an “init” instproc can theoretically be called at any time. For any given class, then, one
of two conditions will obtain: either “init” must be written so that it can be called at any time, or
the class will have an inherent logic bug.

Therefore, the class constructor will not be implemented as a standard instproc. Instead, the
oo::define command will have a new subcommand, constructor, which will be used as follows:

oo::define myclass constructor {
 # body
}

The constructor so defined will act almost exactly like an instproc; it may have pre- and post-
conditions attached to it, it may call superclass constructors using the next command, etc. How-
ever, it may never be called explicitly, but only via the class’s create and new methods.

3.1.7 Destructor Syntax

In XOTcl, a class’s destructor is defined by overriding the “destroy” instproc. This is problematic
for two reasons: first, a destructor does not need an argument list, and has no need of precondi-
tions and postconditions. An instproc is too powerful for the task. Second, successful destruction
should not depend on the destructor’s chaining to its superclass destructors properly.

Therefore, the class destructor will be defined by a new subcommand of oo::define, destructor,
as follows:

oo::define myclass destructor {
 # Body
}

The destructor has no argument list, nor does it have any preconditions or postconditions.

TIP#257: Object Orientation for Tcl 7 Fellows et al.

The destructor cannot be called explicitly. Instead, the destructors are invoked in the proper order
by the standard destroy method (defined in oo::object), which need never be overridden.

3.2 Desirable Changes

The changes described in this section are not essential to meeting the goals described earlier.
However, they are desirable in that they lead to cleaner, more maintainable code.

3.2.1 Class vs. Object Method Naming

XOTcl has many features which can be applied to a class for use by all class instances, or to a
single object. For example, a “filter” can be defined for a single object, while an “instfilter” can
be defined for a class and applied to all instances of that class.

This is exactly backward. Most behaviour will be defined for classes; additional per-object behav-
iour is the special case, and consequently should have the less convenient name.

Therefore, all XOTcl subcommands that begin with “inst” will lose their “inst” prefix; the
matching per-object subcommands will gain a “self.” prefix, to indicate that it is operating on the
object itself and not the members of the class. Thus, a filter is defined on a class for its instances
using the “filter” subcommand; a filter is defined on a particular object using the “self.filter”
subcommand.

3.2.2 Procs vs. Methods

The word “proc” conveys a standalone function; an object’s subcommands are more typically
described as its “methods”.

Therefore, the XOTcl “instproc” and “proc” subcommands should be renamed as “instmethod”
and “method”, or, if the new naming convention described in the previous section is adopted,
method and self.method.

3.2.3 Public Names

In XOTcl, the main objects are xotcl::Class and xotcl::Object. However, the Tcl Style Guide dic-
tates that public command names begin with a lower-case letter.

Therefore, all public names in the oo:: namespace will begin with a lower case letter, e.g., the
standard core object system equivalents of xotcl::Class and xotcl::Object will be oo::class and
oo::object respectively.

The names in any oo::xotcl compatibility module would naturally follow the existing XOTcl con-
ventions.

4. API Specification
This section documents the core object system API in detail, based on the essential and desirable
changes discussed in the previous sections.

TIP#257: Object Orientation for Tcl 8 Fellows et al.

4.1 Helper Commands

The namespace(s) that define the following three commands are not defined in this specification;
all that is defined is that they will be on the object’s namespace path during the execution of any
method and should always be used without qualification.

4.1.1 my

The my command allows methods of the current object to be called during the execution of a
method, just as if they were invoked using the object’s command. Unlike the object’s command,
the my command may also invoke non-exported methods.

my methodName ?arg arg …?

4.1.2 next

The next command allows methods to invoke the implementation of the method with the same
name in their superclass (as determined by the normal inheritance rules; if a per-object method
overrides a method defined by the object’s class, then the next command inside the object’s
method implementation will invoke the class’s implementation of the method). The arguments to
the next command are the arguments to be passed to the superclass method (or the intercepted
method in the case of filters and mixins); this is in contrast to the XOTcl next command, but
other features in Tcl 8.5 make this approach viable and much easier to control. The current stack
level is temporarily bypassed for the duration of the processing of the next command; this is in
contrast to the XOTcl version of the next command, but it allows a method to always execute
identically with respect to the main calling context.

next ?arg arg ...?

It is an error to invoke the next command when there is no superclass definition of the current
method.

4.1.3 self

The self command allows executing methods to discover information about the object which they
are currently executing in. Without arguments, the self command returns the current fully-
qualified name of the object (to promote backward compatability). Otherwise, it is a command in
the form of an ensemble (though it is not defined whether it is manipulable with namespace en-
semble).

The following subcommands of self are defined. None of these subcommands take additional ar-
guments.

caller Returns a three-item list describing the class, object and method that in-
voked the current method, respectively. Syntax:

self caller

TIP#257: Object Orientation for Tcl 9 Fellows et al.

class Returns the name of the class that defines the currently executing method.
If the method was declared in the object instead of in the class, this re-
turns the class of the object containing the method definition. Syntax:

self class

filter When invoked inside a filter, returns a three-item list describing the ob-
ject or class for which the filter has been registered. The first element is
the name of the class or object, the second element is either method (for
a method defined in a class for its instances) or self.method (for a
method defined by a single object), and the third element is the name of
the method.

self filter

method Returns the name of the currently executing method. Syntax:

self method

namespace Returns the namespace associated with the current object. Syntax:

self namespace

next Returns the fully-qualified name of the method that will be executed
when the next command is invoked, or an empty string if there is no su-
perclass definition for the method. Syntax:

self next

object Returns the name of the current object, the same as if the self command is
invoked with no arguments. Syntax:

self object

target When invoked from a filter or mixin, returns a two-item list consisting of
the name of the class that holds the target method and the name of the
target method. Syntax:

self target

4.2 Core Objects

The following classes are defined, and are the only pre-constructed objects in the core system.

4.2.1 oo::object

oo::object name

Constructs a new object called name of class oo::object; the object is represented as a command
in the current scope. oo::object returns the fully qualified command name. If name is the empty

TIP#257: Object Orientation for Tcl 10 Fellows et al.

string, oo::object generates a name automatically that is guaranteed to not clash with any existing
command name.

The name of an object is also the name of a command in the form of an ensemble where the sub-
commands of the ensemble are the exported method names of the object.

The new object has two predefined non-exported methods: eval and variable. Other subcom-
mands and other behaviour can be added using oo::define.

oo::object serves as the base class for all other oo:: classes.

4.2.1.1 Methods

The instances of oo::object (i.e., all objects and classes) have the following methods:

eval This non-exported method concatenates its arguments according to the
rules of concat, and evaluates the resulting script in the namespace asso-
ciated with the object. The result of the script evaluation is the result of
the object eval method.

object eval ?arg arg …?

variable This non-exported method takes an arbitrary number of unqualified vari-
able names and binds the variable with that name in the object’s name-
space to the same name in the current scope. If an argument consists of a
two-element list, the first element is the name of the variable to bind in
the object’s namespace, and the second element is the name of the vari-
able to bind in the current scope.

object variable ?varName varName …?

4.2.1.2 Unknown Method Handling

When an attempt is made to invoke an unknown method on any object, the core then attempts to
pass all the arguments (including the command name) to the public unknown method of the ob-
ject. If no such method exists, an error message is generated. Instances of the core oo::object
class do not have an unknown method by default.

4.2.2 oo::class

This class is the class of all classes (i.e., its instances are objects that manufacture objects accord-
ing to a standard pattern). Note that oo::object is an instance of oo::class, as is oo::class itself.

oo::class name ?definition?

This creates a new class called name; the class is an object in its own right (of class oo::class),
and hence is represented as a command in the current scope. oo::class returns the fully qualified
command name. If name is the empty string, oo::class generates a name automatically.

The new class command is used to define objects that belong to the class, just as oo::object is. By
default, instances of the new class have no more behaviour than instances of oo::object do; new

TIP#257: Object Orientation for Tcl 11 Fellows et al.

class behaviour can be added to the class in two ways. First, a definition can be specified when
creating the class; second, additional behaviour can be added to the class using oo::define.

The definition, if given, consists of a series of statements that map to the subcommands of
oo::define. The following three code snippets are equivalent; each defines a class called ::dog
whose instances will have two subcommands: bark and chase.

Method 1
oo::class dog
oo::define dog method bark {} {
 puts "Woof, woof!"
}
oo::define dog method chase thing {
 puts "Chase $thing!"
}

Method 2
oo::class dog
oo::define dog {
 method bark {} {
 puts "Woof, woof!"
 }
 method chase thing {
 puts "Chase $thing!"
 }
}

Method 3
oo::class dog {
 method bark {} {
 puts "Woof, woof!"
 }
 method chase thing {
 puts "Chase $thing!"
 }
}

4.2.2.1 Constructor

The constructor for oo::class concatenates its arguments and passes the resulting script to
oo::define (along with the fully-qualified name of the created class, of course).

4.2.2.2 Methods

The instances of oo::class have the following methods:

create Creates a new instance of the class with the given name. All subsequent
arguments are given to the class’s constructor. The result of the create
method is always the fully-qualified name of the newly-created object.
Syntax:

TIP#257: Object Orientation for Tcl 12 Fellows et al.

class create objName ?arg arg ...?

new Creates a new instance of the class with an automatically chosen name.
All subsequent arguments are given to the class’s constructor. The result
of the new method is always the fully-qualified name of the newly-
created object. Syntax:

class new ?arg arg ...?

unknown Classes define an unknown-method handler. This is used to hand off at-
tempts to create a class using the syntax:

oo::class foo bar

to the create or new method, depending on whether the class name is an
empty string or not.

4.2.3 oo::definer

This metaclass (subclass of oo::class) arranges for its instances to have the following methods,
each of which is delegated to the identically-named subcommand of the oo::define command de-
scribed below, operating on the class instance that is an instance of oo::definer.

abstract, constructor, destructor, export, filter, filterguard, forward, invariant,
method, mixin, mixinguard, parameter, superclass, unexport

Thus, the following commands are equivalent:

Method 1
oo::definer dog
oo::define dog method bark {
 puts "Woof, woof!"
}

Method 2
oo::definer dog
dog method bark {
 puts "Woof, woof!"
}

4.2.3.1 Constructor

The oo::definer constructor just passes all its arguments to its parent constructor (i.e., the
oo::class constructor).

4.2.4 oo::struct

This class (subclass of oo::object) has no default constructor. It has the following exported meth-
ods:

append This is the analogue of the core Tcl append command except that the
variable name is resolved in the context of the object’s namespace.

TIP#257: Object Orientation for Tcl 13 Fellows et al.

struct append varName ?arg arg …?

array This is the analogue of the core Tcl array command except that the array
name is resolved in the context of the object’s namespace.

struct array subcommand varName ?arg arg …?

eval This is a public exposure of the eval method defined by the oo::object
class.

exists This is the analogue of the core Tcl info exists command except that the
variable name is resolved in the context of the object’s namespace.

struct exists varName

incr This is the analogue of the core Tcl incr command except that the vari-
able name is resolved in the context of the object’s namespace.

struct incr varName ?increment?

lappend This is the analogue of the core Tcl lappend command except that the
variable name is resolved in the context of the object’s namespace.

struct lappend varName ?arg arg …?

set This is the analogue of the core Tcl set command except that the variable
name is resolved in the context of the object’s namespace.

struct set varName ?value?

trace This is the analogue of the core Tcl trace command operating on vari-
ables (no other types of traceable items are supported by this method) ex-
cept that variable names are resolved in the context of the object’s name-
space.

struct trace subcommand ?arg arg …?

unset This is the analogue of the core Tcl unset command except that the vari-
able name is resolved in the context of the object’s namespace.

struct unset ?varName varName …?

vwait This is the analogue of the core Tcl vwait command except that the vari-
able name is resolved in the context of the object’s namespace.

struct vwait varName

The following non-exported methods are defined:

var This method takes one argument, the name of a variable to be resolved in
the context of the object’s namespace, and returns the fully qualified
name of the variable. This is suitable for use with core commands other

TIP#257: Object Orientation for Tcl 14 Fellows et al.

than those already supported above (e.g., selected dict subcommands) or
extensions such as Tk (e.g., for the -textvariable option of the label, but-
ton or entry widgets). This method does not assign any value to the vari-
able. Syntax:

struct var varName

It is expected that this convenience method will normally be used solely
through the my command within the context of a method, like this:

my var varName

4.3 Introspection Support

The core Tcl info command shall be extended in the following ways:

�� An object subcommand that shall provide information about a particular object. Its first
argument shall be the name of an object to get information about, its second argument
shall be a sub-subcommand indicating the type of information to retrieve and all subse-
quent arguments shall be arguments, as appropriate. The following types of information
shall be available:

args Returns the list of arguments to a method supported by an object.

info object object args method

body Returns the body of a method supported by an object.

info object object body method

check Returns the current list of enabled assertion types for an object (see the
documentation for oo::check for the list of acceptable assertion types).

info object object check

class Returns the class of an object, or if className is specified, whether the
object is (directly or indirectly through inheritance or mixin) an instance
of the named class.

info object object class ?className?

default Returns whether a particular argument to a method has a default value
specified, much as info default does for a normal procedure argument.

info object object default method argName defaultValueVar

filters Returns the list of filters defined for an object.

info object object filters

filterguards Returns the list of filter-guards for a particular filter.

TIP#257: Object Orientation for Tcl 15 Fellows et al.

info object object filterguards name

invariants Returns the list of invariants defined for an object.

info object object invariants

isa Returns boolean information about how an object relates to the class hier-
archy. Supports a range of subcommands to allow the specification of
what sort of test is to be performed:

class Returns whether the named object is a class.

info object object isa class

metaclass Returns whether the named object is a class that is not of
immediate type oo::class but rather one of its subtypes
instead.

info object object isa metaclass

mixin Returns whether the named object has mixinClassName
as one of its mixins.

info object object isa mixin mixinClassName

object Returns whether object really names an object.

info object object isa object

typeof Returns whether the object is of type class (i.e., an in-
stance of that class or an instance of a subclass of that
class).

info object object isa typeof class

methods Returns the list of methods defined for an object.

info object object methods

mixins Returns the list of mixins for an object.

info object object mixins

post Returns the postcondition for the named method, or an empty string if no
postcondition has been defined.

info object object post

pre Returns the precondition for the named method, or an empty string if no
precondition has been defined.

info object object pre

TIP#257: Object Orientation for Tcl 16 Fellows et al.

vars Returns the list of all variables defined within the object, or optionally
just those that match pattern according to the rules of string match.

info object object vars ?pattern?

�� A class subcommand that shall provide information about a particular class. Its first ar-
gument shall be the name of a class to get information about, its second argument shall
be a sub-subcommand indicating the type of information to retrieve and all subsequent
arguments shall be arguments, as appropriate. The following types of information shall
be available:

abstract Returns whether the named class is an abstract class.

info class class abstract

args Returns the list of arguments to a method supported by an object.

info class class args method

body Returns the body of a method supported by an object.

info class class body method

default Returns whether a particular argument to a method has a default value
specified, much as info default does for a normal procedure argument.

info class class default method argName defaultValueVar

filters Returns the list of filters defined for an object.

info class class filters

filterguards Returns the list of filter-guards for a particular filter.

info class class filterguards name

instances Returns a list of all direct instances of the class (but not instances of any
subclasses of the class).

info class class instances

invariants Returns the list of invariants defined for an object.

info class class invariants

methods Returns the list of methods defined for an object.

info class class methods

mixins Returns the list of mixins for an object.

info class class mixins

TIP#257: Object Orientation for Tcl 17 Fellows et al.

mixinguards Returns the list of mixin-guards for a particular mixin.

info class class mixinguards name

parameters Returns a list of all parameters defined by the class.

info class class parameters

post Returns the postcondition for the named method, or an empty string if no
postcondition has been defined.

info class class post method

pre Returns the precondition for the named method, or an empty string if no
precondition has been defined.

info class class pre method

subclasses Returns a list of all subclasses of the class, or optionally just those that
match pattern.

info class class subclasses ?pattern?

superclasses Returns a list of all superclasses of the named class in the class hierarchy.
The list will be ordered in inheritance-precedence order.

info class class superclasses

4.4 The oo::define Command
Syntax:

oo::define objectOrClass subcommand ?arg ...?
oo::define objectOrClass script

The oo::define command is used to add behaviour to objects or classes. In the second form, script
is a Tcl script whose commands are the subcommands of oo::define; this is a notational conven-
ience, as the two forms are semantically equivalent. (Note that the context in which script exe-
cutes is otherwise undefined.)

4.4.1 Class-related Subcommands

The subcommands of oo::define (which may be unambiguously abbreviated when not in the
script form) shall be:

abstract This is valid only for classes, takes no arguments, and marks the class so
that instances of the class cannot be created. Subclasses may be created
though; abstract-ness is not inherited.

constructor This is valid only for classes, takes two arguments (a proc-style argument
list, and a body script), and sets the constructor for the instances of the
class to be executed as defined by the body script after binding the actual
arguments to the call that creates an instance of the class to the formal ar-

TIP#257: Object Orientation for Tcl 18 Fellows et al.

guments listed. The constructor is called after the object is created (fol-
lowing checks for abstractness) but before any instance variables are
guaranteed to be set. If no constructor is specified, the constructor will
accept exactly the same arguments as the constructor in the parent class,
and will delegate all the arguments to that parent-class constructor. See
the method subcommand for a description of the behaviour of pre- and
postconditions.

oo::define class constructor argList body ?precondition? ?postcondi-
tion?

copy This creates an exact copy of an object with the given name. If name is
omitted or the empty string, a new name will be generated automatically.

oo::define object copy ?name?

destructor This is valid only for classes. It defines the class destructor; a destructor
is like a method but takes no arguments. It is called by the object’s de-
stroy method, which is defined automatically and which cannot be over-
ridden. The syntax is as follows:

oo::define class destructor body

In classic XOTcl, the destructor is simply a method; it must explicitly call
the parent destructor using XOTcl’s next command. In oo:: the chain of
destructors is called in the proper sequence automatically and independ-
ently of the content of any particular destructor.

Note that destructors are called whenever the object is deleted by any
mechanism (except when the overall interpreter is deleted, when execu-
tion of Tcl scripts has ceased to be possible anyway).

export This specifies that the named methods are exported, i.e., part of the public
API of the class’s instances. The syntax is as follows:

oo::define class export name ?name ...?

An exported method is accessible to clients of the object; an unexported
method is accessible only to the object’s own code through the my com-
mand.

filter this subcommand (operating on the class if the object is a class, and on
the object itself otherwise – see the self.filter subcommand for how to
force it the other way) controls the list of filter methods for a class or ob-
ject. Each filter method in the list is called when any method is invoked
on the class’s instances or the object, and it is up to the filter to decide
whether to invoke the filtered method call (using the next command) or
return a suitable replacement value.

oo::define objectOrClass filter filterList

TIP#257: Object Orientation for Tcl 19 Fellows et al.

filterguard This subcommand defines a list of guard expressions for a filter; the filter
is skipped (i.e., the underlying method call is invoked directly) if any of
the guards returns a false value. Syntax:

oo::define objectOrClass filterguard filterName guardList

forward This subcommand (operating on the class if the object is a class, and on
the object itself otherwise – see the self.forward subcommand for how to
force it the other way) defines a class method which is automatically for-
warded (i.e., delegated) to some other command, according to a simple
pattern. Each arg is used literally.

oo::define objectOrClass forward name targetCmd ?arg …?

invariant This subcommand (only valid for classes) defines a set of class invari-
ants, scripts that must return a true value both before and after every
method call. This set is inherited by subclasses. Note that invariant check-
ing is off by default. Syntax:

oo::define class invariant invariantList

method This subcommand (only valid for classes) defines a class method (i.e., a
method supported by every instance of the class). By default, methods are
exported if they start with a lower-case letter (i.e., any character in
\u0061 to \u007a inclusive) and are not exported otherwise. The op-
tional pre- and postconditions expressions are evaluated in the context of
the body of the method; the precondition must return a true value for the
method body to actually start executing, and the postcondition must re-
turn a true value after the method body has executed (unless an error was
generated) for a normal method exit to happen. The default error message
(on a false condition result) is “precondition failed” or “postcondition
failed”, but if the conditions return an error message that is used instead.
If only one condition is given, it is the precondition.

oo::define class method name args body ?precondition? ?postcondition?

mixin This subcommand defines a mixin for a class or object, which is a way of
bringing in additional method implementations (which may add to or
wrap existing methods) on an ad hoc basis. It operates on the class if the
object is a class and on the object itself otherwise – see the self.mixin
subcommand for how to force it the other way. The list of mixins is trav-
ersed when searching for methods before the inheritance hierarchy, and
mixed-in methods may chain to any methods they override using the next
command.

oo::define objectOrClass mixin mixinList

mixinguard This subcommand defines a list of guard expressions for a mixin; the
mixin is skipped (i.e., the underlying method call is invoked directly) if
any of the guards returns a false value. Syntax:

TIP#257: Object Orientation for Tcl 20 Fellows et al.

oo::define objectOrClass mixinguard filterName guardList

parameter This subcommand defines a parameter (or parameters), an instance vari-
able with an identically named and automatically defined access method.
If any name is a two-element list, the first element is the name of the
variable and the second element is the default value to assign to the vari-
able.

oo::define class parameter name ?name ...?

The access methods are always defined something like this, for a parame-
ter named bar in a class named foo:

oo::define foo method bar args {
 my variable bar vbl
 if {[llength $args] == 0} {
 return $vbl
 } elseif {[llength $args] == 1} {
 return [set vbl [lindex $args 0]]
 }
 return -code error "wrong # args: ..."
}

superclass This specifies the superclass (or classes) of a class. Inheritance will fol-
low the XOTcl pattern (except with a somewhat different class hierarchy,
of course). Syntax:

oo::define class superclass classList

unexport This specifies that the named methods are unexported, i.e., private. The
syntax is as follows:

oo::define class unexport name ?name ...?

An exported method is accessible to clients of the object; an unexported
method is accessible only to the object’s own code, through the my com-
mand.

4.4.2 Per-Object Subcommands

The following subcommands are all per-object versions of the class subcommands listed above.
When they are applied to a class, they operate on the class instance itself as an object, and not on
the instances (current and future) of that class (which is why the distinction is required).

self.class This subcommand gets and sets the class of an object. Changing the class
of an object can result in many methods getting added or removed.

self.export This increases the set of commands exported by the object.

self.filter This is a per-object version of the filter subcommand.

TIP#257: Object Orientation for Tcl 21 Fellows et al.

self.filterguard
This is a per-object version of the filterguard subcommand.

self.forward This is a per-object version of the forward subcommand.

self.invariant This is a per-object version of the invariant subcommand.

self.method This is a per-object version of the method subcommand.

self.mixin This is a per-object version of the mixin subcommand.

self.mixinguard
This is a per-object version of the mixinguard subcommand.

self.unexport This decreases the set of commands exported by the object.

4.5 Other Commands in the ::oo Namespace

4.5.1 oo::check

This controls the types of assertion checked for a particular object. The following types of asser-
tion may be controlled:

pre When specified, states that preconditions should be checked during the
processing of an object’s methods.

post When specified, states that postconditions should be checked during the
processing of an object’s methods.

invariants When specified, states that object-defined invariants should be checked
during the processing of an object’s methods.

classinvariants
When specified, states that class-defined invariants should be checked
during the processing of an object’s methods.

The set of types of assertion to check is specified as the second argument to the oo::check com-
mand, the first argument being the object to set the assertion checking behaviour of. The special
type all can be specified to select all assertion types.

oo::check object assertTypeList

5. XOTcl Features Omitted from the Core OO System
Object::autoname This is trivially implemented in a small procedure, and core objects can

pick names for themselves and are renameable.

Object::cleanup This is not an especially well-defined method (what if the object happens
to hold handles to complex resources such as network sockets; it is not

TIP#257: Object Orientation for Tcl 22 Fellows et al.

generally possible for the state of the remote server to be reset) and can
be added in any compatability layer.

Object::configure This feature has been deliberately omitted from the core object system.
This would be value added by any XOTcl extension.

Object::extractConfigureArg
This feature is part of configure.

Object::getExitHandler
This feature is not necessary for this version. If it existed, it would not
need to be a part of the base object.

Object::info The introspection features are moved into the core info command.

Object::move This feature is equivalent to the use of the standard rename operation.

Object::noinit This feature has been deliberately omitted from the core object system
because its use is dependent on the use of other deliberately-omitted fea-
tures (i.e., Object::configure). This would be value added by any XOTcl
extension.

Object::parametercmd
The core object system always handles parameters in the same simple
way; customisation of this process should be done by subclasses of
oo::class that override the parameter method.

Object::requireNamespace
It should be possible to do away with this feature through better integra-
tion with the core.

Object::setExitHandler
See the comments for Object::getExitHandler above.

Class::__unknown Auto-loading of unknown classes is handled by the standard core un-
known command.

Class::allinstances This feature is trivially implemented in a small procedure.

Class::alloc The core objects have no default behaviour, so the difference with the
basic core class behaviour is moot.

Class::create Core object creation is a much more sealed process, but the lack of con-
figure-like behaviour means that the complexity of this method is not
necessary. Instead, constructors are called automatically.

Class::parameterclass
Core object system parameters are not implemented by classes.

Class::volatile This feature is omitted.

TIP#257: Object Orientation for Tcl 23 Fellows et al.

6. Suggested Class Hierarchy for XOTcl Support
The XOTcl Object class should derive from the core oo::struct class. The XOTcl Class class
must derive from the core oo::definer and the XOTcl Object classes. This gives the following
diagram (core classes are yellow boxes with their labels in lower case and with their namespace
omitted, XOTcl classes are blue boxes with capitalized labels).

Figure 1: Base Class Hierarchy for XOTcl Clases

Note that class instances create objects (or subclasses thereof), but Class instances create Objects
(or subclasses thereof).

7. References
[incr Tcl] http://incrtcl.sourceforge.net/itcl/
OTcl http://bmrc.berkeley.edu/research/cmt/cmtdoc/otcl/
Snit http://www.wjduquette.com/snit/
stooop http://jfontain.free.fr/stooop.html
tcllib, http://tcllib.sourceforge.net/
XOTcl http://media.wu-wien.ac.at/

Class

class

Object

struct

object

definer

creates

creates

