
1

The MTI Panemanager Widget
A 2-d paned window for user configurable U/I

Brian Griffin
Mentor Graphics Corporation

8005 SW Boeckman Road
Wilsionville, Oregon 97070

503-685-0850

Abstract
This paper will present the basic functions of the Pane Manager
widget, a megawidget implemented in incrTcl used as an
application framework. The added features, such as Pane
Docking, and Pane Zoom, make this a powerful tool for
application frame development. Implementation details, problems
encountered, and future development will also be discussed.

Keywords
Tcl, Tk, [incrTcl], TIP, mega-widgets, user interface.

1. Introduction
Several years ago we were presented with the problem of having
too many toplevel windows in our application, cluttering the
desktop, and management of these windows was difficult for the
user. The decision was made to take an approach seen in other
IDE-like tools where information was provided in tiled panes
within the main application window. The large number of
windows would be managed by controlling visibility and through
the use of tabs. Also needed was a way to easily rearrange panes
since the application tasks required a different focus of attention at
different times. That coupled with user preferences required a
flexible way to manage these configurations.

Our first approach used a grid that defined a maximum of 5 rows
and any number of columns. Panes could be placed in a number
of configurations, but this turned out to be too limiting. The
second attempt uses nested Panedwindows where sets of panes can
be grouped into larger panes. The Panemanager widget, presented
here, is written in incrTcl and has an interface similar to the Tk
Panedwindow widget.

2. Background
ModelSim® is a software tool in the Electronic Design
Automation (EDA) industry used by digital hardware design

engineers for design verification. The graphical interface for this
tool is written using Tcl/Tk.

Hardware verification analysis involves many complex views
since the problem is multi-dimensional. The user interface is very
similar to software debuggers, such as Microsoft® Visual Studio®
or the GNU Data Display Debugger (ddd), which includes features
like source code viewing, structure browsing, and data viewing.
In addition to traditional software debugging tools, hardware
simulation involves concurrent processing and temporal sequences
that are unique to the hardware debug process. This adds another
dimension to the problem. Additional tools such as code coverage
analysis and performance profiling add even more views to the
U/I.

3. Application frame survey
Most applications limit their scope to a single activity requiring
only one or two views. Editor applications typically have a main
work area surrounded by tool-bars and palettes. Browsers have a
main view with a possible sidebar of tool-like features. These
tools may provide a tab mechanism for managing multiple views,
but typically only a single view is necessary at any given point.

Mail applications usually involve 3 common views on the display
at one time, a browser for organizing mail, a current folder content
list, and current letter view.

More complex editors such as a 3D graphics editor may involve
multiple views in addition to the tool palettes. Software used for
analysis as in financial, scientific, and engineering areas require
the ability to monitor multiple values simultaneously. Software
debuggers typically monitor source code, memory contents,
variable values, stack values, and register values.

ModelSim is essentially a software debugger for hardware
description languages (HDL), with one added dimension of
complexity: concurrent execution.

2

4. Simple Grid
We decided to use Visual Studio 6 as a model for the single
window U/I. We wanted to implement a similar interface, but also
wanted it to be more flexible. Our initial approach settled on a
grid of 5 rows with any number of panes in each row. The main
feature of this interface is the ability for the user to rearrange the
panes in whichever way was most useful as shown in Figure 1.

(a)

(b)

Figure 1. Grid based window pane manager, using two
rows (a), or all in one row (b).

The implementation used the Iwidgets Panedwindow [1], packing
5 of these into rows in the main window. Using the Panedwindow
megawidget provided dividers between window panes to allow
resizing of the windows. Each window pane is then given a row
and column position and is wrapped in a frame with a title bar at
the top. This title bar can be dragged with the mouse to a different
row/column location. The window locations are saved to a user
preference file so that the layout is retained between invocations
of the application.

This system worked well and provided all the features we were
looking for. This approach was chosen by other IDEs because the
environment centers around one primary pane, i.e., the source
editor. With ModelSim, some users perceive more than one
primary pane, or the primary pane changes. However, there were
limitations in layouts, namely that there were only 5 rows and no
window could span multiple rows. At this point, only a few of the
many windows had thus far been moved into the main window
and these limitations appeared to hinder effective use of the one
window model once all the windows were brought in.

5. Extending Panedwindows
At the same time we were looking for an alternative layout model,
we also moved to Tcl/Tk 8.4. This made available the Tk
Panedwindow widget [2]. This widget provided better look and
performance over the Iwidgets version. However, there were
some limitations to the widget that needed to be addressed before
it could be used as an effective replacement. What was missing
was the ability to hide panes. This feature is used to control
visibility of panes in the layout without having to add and remove
them. Instead, all windows are added to the layout and then
hidden when the user “closes” the window. This feature was
addressed through TIP #179: Add -hide Option to Panedwindow
Widget [3].

Another behavior of the Tk Panedwindow that was problematic
was the stretch behavior. The Panedwindow, being a geometry
manager, must decide how to allocate space to the various widgets
under its control. Space is allocated to each widget as requested
by the widget. Any remaining space, for example, if the geometry
of the Panedwindow is larger than the sum of the required spaces,
is allocated to the last window in the list. In most simple cases,
this is the appropriate behavior. However, with complex layouts
(multiple rows and columns) this behavior is not always what is
expected. Sometimes the best behavior is to allocate the space
evenly among all the windows, or proportionally. This led to TIP
#177: Add -stretch Option to Panedwindow Widget [4]. The
stretch option gives control to each pane to participate in the
distribution of extra space. The values “always” and “never”
enable or disable participation regardless of the window’s position
in the list, while the values “first”, “last”, and “middle”
conditionally enable participation depending on the relative
position of the window. The default behavior, as defined by the
original Panedwindow behavior, is “last”.

6. Nested panes
In order to address the layout limitations using a grid arrangement,
the Panemanager uses an approach in which each pane is also a
Panedwindow. For each window pane there is an outer
Panedwindow and an inner Panedwindow with the opposite
orientation as shown in Figure 2.

Figure 2. Nested Panedwindows

3

This allows adding a new window to the left, right, above, or
below an existing window. The Panedwindow add command was
modified to require 3 arguments: the window to be added, a target
window within the Panemanager, and a location; above, below,
left, or right. The remaining arguments are the same as the Tk
Panedwindow add command.

pathName add window target where ?arg arg ...?

In addition to these basic placement locations, it is also possible to
split a target window space so that the new window shares the
space. To do this, the Panemanager replaces the current pane with
a new Panedwindow, and then adds the target window and the
new window to the Panedwindow. The where argument controls
the location of the new window by specifying one of n, s, e, or w.
Another way to think about this is as placing the new window
inside (n, s, e, w) or outside (above, below, left, right) the target
window cell (see Figure 3.) The e-w or n-s locations are
redundant with the right-left or above-below locations, depending
on orientation.

Figure 3. Placement locations.

7. Pane placement
An application uses the Panemanager by adding all the available
windows up front, and then hides the ones that may not be
appropriate or that are not part of the initial default conditions.
When the time comes, usually under user control, the hidden
panes are made visible by simply modifying the -hide option for
the pane.

The initial default layout may not be to the user’s liking. To make
it easy to rearrange the windows, a title bar is given to each pane
and these bars are used to drag the windows to new locations.
When a drag operation is started, a simple wire frame is drawn on
the screen to illustrate the target location of the window.
Feedback is given to the user by snapping the wire frame to the
potential target locations, illustrated in Figure 4.

(a)

 (b)

(c)

Figure 4. Wire frame drag targets shown with the starting
position (a), the target location (b), and after the drop (c).

Implementing this interactive feature is simply a matter of
removing the window from the Panemanager, then adding it back
in the new location. Simple, except for determining the where
argument for the add command. This is done by walking through
the list of visible panes and computing a target drop zone for each
location: above, below, left, right, n, s, e, or w. Some of these
locations are redundant depending on the orientation of the
Panedwindow containing the target window. The drop zones are

4

then drawn on a canvas as rectangles and an associative map is
created, mapping each rectangle tag to a Panedwindow and
location (see Figure 5.) During the drag (mouse motion)
operation, the mouse location is mapped to the canvas to obtain
the nearest rectangle. The rectangle’s geometry is then used to
define the wire frame’s geometry. This makes the wire frame
calculations simple and fast. When dropped (button release), the
operation can be completed since all the necessary arguments have
already been calculated. One final required step, however, is clean
up. These operations can leave empty Panedwindows, so it is
necessary to do some cleanup and coalesce or flatten these
unnecessary widgets. Note that the canvas is never mapped to the
display, so it remains hidden from view.

Any and all possible arrangements of n rectangles can be
accomplished, however, it may take multiple moves to finalize a
given layout. The intermediate steps are necessary to cause a
change in the Panedwindow orientation.

Figure 5. Drag map canvas showing drop zones of Figure
4(a).

8. Maximize & Undocking
Two powerful features of the Panemanager are window maximize
and undocking. These operations are triggered by a click of a
button on the window pane’s title bar.

Window maximize is the ability to hide all the visible panes except
for the “maximized” window. The net effect is that the targeted
window now occupies the entire application frame. A second
click will restore the windows to the previous layout. This is
actually implemented by un-mapping the Panemanager’s topmost
frame and mapping the window pane in it’s place. A temporary
placeholder is put into the pane’s location in the Panedwindow to
hold its original location and attributes.

Docking and undocking of windows moves a window pane in and
out of the main frame, making it a separate toplevel window when
moved out. This can be achieved with either a toggle button on
the title bar, or by dragging the window outside the main frame.
This feature is implemented by using TIP #125 [5] which can
convert a frame to a toplevel window (and visa-versa). The
Panemanager maintains a placeholder for the absent window so
when the window is later docked, it will return to its original
location. The placeholder is not visible, but holds the location and
attributes in the list of managed panes.

9. The Paneframe widget
The Paneframe widget works in conjunction with the
Panemanager to handle various operations. It consists of a title
bar and a childsite frame for locating window contents. The title
bar contains, optionally, a title string, a drag handle, and up to
three action buttons: close, maximize, and undock. The close
button is used to hide or close the window depending on how the
application chooses to use it. The maximize button performs the
maximize operation to fill the window frame with the pane, and
the undock button performs the undocking operation, removing
the pane from the window and making it a separate toplevel. The
drag handle is a small area in the center of the title bar used to
drag the pane to a new location either inside the main window, or
outside to undock the window. The drag handle was added later
when it was discovered that using the entire title bar for dragging
resulted in many unwanted or unexpected window relocations.

Another duty of the Paneframe, with its title bar, is to identify the
active window. Like the highlight ring in the Tk widgets, the title
bar will change color when the window pane has focus, thus
indicating the active window in a fashion similar to desktop
window managers. The Paneframe widget also supports focus
redirection. When a window pane is made active by clicking on
the title bar, the B1 event will redirect focus to an inner widget
identified by the application. This is similar to what Tk does
when focus moves from one toplevel window to another; Tk
remembers which internal widget had focus last and will return
focus to that inner window when the toplevel window gains focus.

10. Persistence
What good are all this fancy wiz-bang layout features if the
application can’t restore the layout the next time it’s run? The
Panemanager provides a way to serialize the layout into a list that
can be saved by the application and used later to recreate the
layout. The restore operation requires that all the window panes
exist beforehand. It does not provide any mechanism for
recreating the individual window contents. This task is left up to
the application. However, the ability to serialize a layout means
an application can provide multiple pre-defined layouts that can be
applied at the click of a button or menu pick.

The serialized form is a nested list where each entry is either a
window with attributes, or another list. The nested list is itself a
list of windows or another list. Each nesting represents a nested
Panedwindow with a rotated orientation. The initial element of
the serialized layout defines the initial orientation. The window
attributes include the docked window size, undocked geometry,
and Panedwindow configure options, including the -hide option.

The size value defines the sash location for the window.
Percentages are also accepted. This is useful for defining an initial
default layout for an application that is not dependent on a given
screen size. The serialize process, however, does not generate
percentage based sizes. An example serialized layout is shown in
Figure 6. This layout represents the display shown in Figure 4(c).

5

horizontal {
 {
 .mp.f2 {-minsize 40 -stretch never} 157 na
 {
 .mp.f3 {-minsize 40} 292 na
 .mp.f4 {-minsize 40} 444 na
 } {-minsize 40 -stretch always} 345 na
 } {-minsize 40 -stretch always} 446 na
 .mp.f1 {-minsize 40 -stretch always} 582 na
}

Figure 6. Example serialized layout.

11. Problems and limitations
There are a few remaining problems with this megawidget. One
issue is performance. Loading a layout currently requires multiple
redraws as windows and sash locations settle out. The forced
redraws have been the only way to get the sash locations to restore
properly. Tk is designed to work best if geometry is determined
from the bottom up. The Panedwindow widget assumes that
initial sash placement is solely based on requested slave window
geometry. The Panemanager is designed to manage pane sizes in
a top down fashion. We are still looking for the right solution to
this problem.

When rearranging windows, they sometimes end up with
unexpected sizes. The complexity of both removing a window
from one location and placing it in a different location resulted in
several windows changing size all at once.

Ideally, the undocking feature would work in conjunction with the
window manager so that the docked and undocked window title
bars were the same or similar. Also, a window move using the
window managers title bar would recognize a drop over the main
window causing a dock to occur. However, there is currently no
support for this. Consequently, the undocked windows end up
with a double title bar, which does not look very professional.
This feature would be more difficult to implement than just
handling each platform because of the plethora of window
managers. The good news is that an application does not have to

use the Paneframe class for the docked windows. The
Panemanager can manage any widget, so an application can use a
different paradigm for the docking/undocking maneuver.

12. Future work
Most recently, we have been contemplating overlaying panes and
introducing tabs, in other words, making it a tabbed notebook. A
tabbed notebook would be created when one pane is dropped onto
the center of another. When a pane is dragged away, its tab is
removed and when only one pane is left, the tabs disappear as
well.

The performance and layout problems could be easily addressed
by writing the widget in C, using the Panedwindow widget as a
starting point. This would eliminate the need to manage the
Panedwindow widgets, as the window pane management would be
handled directly.

References
[1] Ulferts, Mark L. [incr Widgets] - panedwindow manpage

<http://incrtcl.sourceforge.net/iwidgets/manpages/iwidgets3.
0/panedwindow.n.html>. 10 September 2005.

[2] Melski, Eric. Paned Window Tk Widget. 04 July 2001.
<http://www.tcl.tk/cgi-bin/tct/top/41.html>. 10 September
2005.

[3] Griffin, Brian S. Add -hide Option to panedwindow Widget.
22 March 2004 <http://www.tcl.tk/cgi-bin/tct/tip/179.html>.
10 September 2005.

[4] Griffin, Brian S. Add -stretch Option to panedwindow
Widget. 17 March 2004 <http://www.tcl.tk/cgi-
bin/tct/tip/177.html>. 10 September 2005.

[5] Griffin, Brian S. Converting between Frame and Toplevel
Windows. 20 January 2003 <http://www.tcl.tk/cgi-
bin/tct/tip/125.html>. 10 September 2005.

