
Pure Tcl/Tk Train Traffic Supervision System

J.Lima, J.Rocha

September 15, 2005

Abstract

This paper describes an experimental subway train traffic supervision
software written using pure Tcl/Tk. Train traffic supervision software
interacts with traffic control PLCs (Programmable Logic Controller) to
retrieve information from the railroad and interact at the exploration level,
for instance, granting or deferring a train departure. This application
demonstrates the effectiveness of Tcl/Tk for use in industrial control and
supervision software. Emphasis will be put on coding techniques and
programming paradigms used and how they were implemented into the
Tcl/Tk model.

Contents

1 Introduction 1

2 Motivation 2

3 Application overview 3

4 Programming model 4
4.1 Reflection . 4
4.2 Everything is Tcl . 5

5 Implementation 5

6 Configuration 6

7 Conclusions 7

1 Introduction

A train traffic supervision application is used in train traffic control sys-
tems with two purposes: observation of the railway; operation of the
railway. At the operation level one may grant or defer a train departure,
define a new itinerary or manually conduct maneuvers in exceptional sit-
uations. Otherwise railway normal operation is conducted automatically

1

by a railway certified equipment, usually a dedicated PLC. Figure 1 shows
a simplified but realistic architecture for a train exploration system.

The operator workstation, which runs the supervision application com-
municates to the train operation PLC the intentions of the operator. The
PLC then verifies if and when the necessary safety conditions to perform
the requested operations are met and just then will conduct the proper
sequence of maneuvers. The PLC continuously informs the supervision
system about any change of state in the railway elements.

This means that passenger physical integrity or equipment safety doesn’t
depend on the traffic supervision application. The reliability and robust-
ness of the supervision application is rather a matter of availability and
not of safety of the railway system.

Figure 1: Train traffic control system

A supervision application must provide a railway synoptic which gives
the operator a feedback of what is going on. Typically, by means of
toolbars or context menus, the operator is able to act upon the railway
status as well. The LCCS provides exactly this kind of functionality. A
snapshot of the running LCCS is shown on Figure 2.

2 Motivation

LCCS, which stands for local control computer software, is an experimental
supervision application, and was initially developed as a concept demon-
strator in the context of a development project proposed to the ML (Lis-
bon Subway Train Company). The proposal was not accepted. The aim of
this project was to upgrade previous supervision software with in-house
developed software. The ML declined the offer and the demonstrator
remained property of the authors, which then decided to make it open-
source.

2

Figure 2: Snapshot of the LCCS main window

3 Application overview

The LCCS application supports one or more simultaneous windows, allow-
ing the operator to visualize a large portion or the entire railroad in one
window and some details in a magnified window. The windows allow ar-
bitrary zooming (implemented entirely in Tcl) and panning. Many other
visualization options are user configurable by means of pop-up menus.
Per window toolbars are provided for easy access to common functions.

The LCCS application is a build up from several modules performing
specialized tasks.

• A graphics engine built around a Tk canvas and a set of basic pro-
cedures for zooming, panning and drawing.

• A configuration client responsible for reading and parsing the rail-
way description files and instruct the graphics engine to draw the
synoptic.

• A communication tool, which will establish the communication pro-
tocol with the PLC and update the synoptic on the graphics engine.

• A user interface module, which will dispatch the operator events,
converting them into commands that will be sent to other modules.

The communication between modules is done through the Tk send
mechanism. Figure 3 depicts how modules interact with each other and
the environment (configuration files and input).

3

Figure 3: Application inter-process communication

4 Programming model

Tcl has a minimalistic syntax which doesn’t immediately reveal the pow-
erful coding techniques which one can use. As a consequence, it happens
frequently in Tcl that there is no obvious solution to a particular problem
and there are several non obvious solutions. This may give origin to code
which is difficult to understand. However, very concise solutions can be
attained for a broad class of problems.

The implementation of the application herein described relies heavily
on the use of slave interpreters and reflective programming. One must
explain what the authors mean by reflective programming.

4.1 Reflection

We used a “reflective” coding technique to reduce the code size. The em-
phasis on the word “reflective” was deliberated since it has two meanings:
on one hand, it is perfectly applicable in the ordinary sense of reflective
programming as defined by [5], and on the other hand, it expresses the fact
that the code so built, at run time, “reflects” the railway configuration.
While inspecting the reflective code portions one can infer about what is
being represented. That is to say, the code “reflects” reality.

Reflection comes into play when the Configurator process reads the
synoptic configuration data, where each railroad element will origin a set
of new procedures. These procedures will thereafter be used to change
the state of the synoptic.

One should remember that the reflection in Tcl is possible because
code and data share the same representation; and it was made practical
because the Tcl provides a safe control of its interpreters. However, one
should be careful because the reflective techniques tend to obscure the

4

code.
The reflective code is only accessible through the info proc command

because you cannot read it anywhere. That code is the result of the
“Cartesian product” of a code template by the configuration data.

One possible implementation for the code interacting with the synop-
tic is to provide for every possible interaction procedures which take as
arguments ids for the synoptic elements, perform all the necessary checks
to validate the id, and execute the requested operation.

By using reflection when the element is instantiated, all the necessary
procedures are created on the fly and are immediately bound (typically,
by invocation of the Tk bind command) to the particular synoptic element
they refer to. Also, when some synoptic element expires and is deleted,
all the associated procedures are cleaned up.

This process may be much more complex, since newly created proce-
dures can write more code.

If one browses through the LCCS code, one can’t find any code to
manipulate or interact with the synoptic elements. That’s because that
code is build when the synoptic elements are instantiated.

4.2 Everything is Tcl

The configuration files, the data stream from the PLC, the interprocess
communication and obviously the code itself are all forms of Tcl. The
idea is simple: if one has to exchange or process data, one should use
Tcl to represent that data. Doing so, one can rely on the available Tcl
interpreter to parse the data, or even better, to execute the data.

The send mechanism was used For inter-process communication, and
is actually sending Tcl code to be executed in the context of the target
application.

The configuration files are Tcl code executed within a tailored safe
interpreter.

The data stream coming from the PLC consists of address:value

pairs. Each pair represents the address of a certain variable followed by
its current value. Since the addresses are unique, one can take them
as variable names. This kind of data can be easily mapped into the Tcl
syntax simply by translating it conveniently into a ascii string in the form:
‘‘AXXX YY’’. For example,

A010 1

A011 0

The conversion may or may not be necessary at all, depending on the
protocol format for the communication between PLC and LCC.

So, whenever the application needs to parse data, it sets up an inter-
preter (preferably, a safe interpreter) loaded with the necessary procedure
set, and sources the data.

5 Implementation

The current application implementation was developed for Linux, but
should run without problems in any system running X-windows. Windows

5

family of operating systems are à-priori excluded because the Tcl/Tk port
for Windows lacks the “send” mechanism [3].

The synoptic itself is a Tcl/Tk engine build around the canvas widget.
The engine accepts commands through the Tk send mechanism. When the
application is first launched, the Configurator is spawned as a background
process. When the Configurator is done with its task, it terminates and
the Communicator process is spawned.

The Communicator starts to listen a specified socket or serial port,
depending how the PLC communicates with the LCC (local control com-
puter), and using the same ”send” mechanism updates the synoptic to
reflect the railway state.

The PLC used at ML was a MICROLOK r© from USS. Currently, the
LCCS implements the MICROLOK r© protocol only partially.

Railway state The way each particular system represents the rail-
way state may vary. In the present case, the state is represented by
address:value pairs. Each address maps directly into the PLC memory
and its value corresponds to the state of a particular railway element.
Since the address mapping is persistent, one may consider the addresses
variable Ids. The PLC issues an address:value pair whenever the value
changes. A burst with all available address:value pairs must be sent
periodically, or at least on startup.

Most variables used by the PLC to represent the railway state are
boolean variables, but some assume more than two different states. Boolean
variables adequately represent the state of a rail circuit, which can be ei-
ther vacant or occupied. Some of the traffic lights can also be represented
by boolean variables. However, some elements may only be represented by
state variables with three or more states. For example, railway switches
can be switched to right or left, but can also be in transit. This in tran-
sit state must be observed, since no train can be allowed to run into the
switch while in transit. Many traffic lights have also more than two states.

6 Configuration

To read the configuration files, the application issues the following com-
mands:

#

Load The Configuration

#

Config::Colors [file join $ETC Colors]

Config::Scales [file join $ETC Scales]

Config::LanguageStrings [file join $ETC Language]

#

Load Synoptic

Config::Synoptic $canvas [file join $ETC global Synoptic]

#

The configuration data plays an important role in LCCS. The config-
uration is split into two parts. The first part deals with user preferences,

6

like colors and language settings. The second part deals with building the
synoptic itself. It is in the second part that reflection comes into play.

Many new code lines will be built when loading the synoptic. Some of
that code may even be used during its own configuration.

An include directive is provided which allows large synoptic to be
loaded hierarchically, simplifying the configuration process. An example
of how a synoptic description looks like is given in list N

Railway synoptic

include global/Segments

include global/Scales

Rail circuits

id segments variable label

cdv C1-AM {seg1} A001 "C1"

cdv C3-AM {seg3} A003 "C3"

cdv C5-AM {seg5a seg5b} A005 "C5"

cdv C7-AM {seg7a seg7b} A007 "C7"

cdv C9-AM {seg9} A009 "C9"

cdv C11-AM {seg11a seg11b} A012 "C11"

cdv C13-AM {seg13} A013

Trafic lights

id coordinates anchor variable label

s2 M1-AM {3500 8700} {top left} A014

s2 M3-AM {9000 8700} {top right} A015

sb SB-AM {11400 8700} {top left} B016 ""

s4 S5-AM {11000 8700} {top left} A016 "S5"

cdv C1-OR {seg101} A024

cdv C3-OR {seg103a seg103b} A025 "C3"

It is immediately clear that this configuration file obeys the simple Tcl
grammar and punctuation rules. For example, the code line

cdv C1-AM {seg1} A001 "C1"

is actually a valid Tcl command, cdv is a Tcl procedure which will
process rail-circuit entries. This command not only will setup the canvas
widget to display properly a new rail-circuit, but also will write the code
necessary to deal with all issues related to the C1-AM rail-circuit.

The line include global/Segments in the configuration file refers to
another file which contains essentially the coordinates off all segments that
compose the synoptic. The content of this file was created with the help
of a vector graphics program, and then converted to the LCCS graphics
language.

7 Conclusions

These days were the computer science is dominated by the pos-Object ori-
ented jargon, it may sound inopportune to highlight the following Tcl/Tk
powerful features: code and data share the same representation; Tcl offers

7

a great deal of control over interpreters. These two features made possible
to implement, using the reflective coding techniques, the LCCS using a
surprisingly small number of lines of code.

In fact the total number of lines of code for all modules is

jlima@bonnie# cat TraficSuperv Communicator Addresses \

Configuration Graphics MathTools Menus Signalization1 \

Synoptic Toolbar ViaElements Windows | wc

2007 7680 54388

This is a fairly small number of lines of code for an application of this
complexity.

We shall now compare with the number of lines of the configuration
data. Keep in mind that the configuration data, mainly the synoptic
description, is describes an unrealistically small railway system with just
three stations.

jlima@bonnie# cat Colors Language Scales Strings.portuguese \

alameda/Segments alameda/Synoptic global/Segments \

global/Synoptic orient/Synoptic orient/Segments| wc

544 1983 13927

The configuration data is over 1/4 the total code size. This is an
impressive proportion if one considers that the 544 lines of configuration
data will generate around 2500 lines of new code.

References

[1] Regulamento de Sinalização, Metropolitano de Lisboa, E.P., 1994.

[2] MICROLOK r© — Vital Application Logic Programming. UNION
SWITCH & SIGNAL, October 1991.

[3] Brent B. Welch, Practical Programming in TclTk. Prentice Hall
PTR, 3rd Ed, 2000.

[4] N. Demers and J. Malenfant. Reflection in logic, functional and
object-oriented programming: a short comparative study. In Pro-
ceedings of the IJCAI’95 Workshop on Reflection and Metalevel Ar-
chitectures and their Applications in AI, pages 29-38, August 1995.

[5] Reflective programming languages: http://www2.parc.com/csl/
groups/sda/projects/reflection96/docs/malenfant/ref96/node2.html

8

