Creating Virtual Peripheral Devices in a Digital Circuit Simulator
Using Tcl/Tk

Jeffery P. Hansen
Institute for Complex Engineered Systems
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

TkGate is a digital circuit editor and simulator built
as a hybrid C and Tcl/Tk application. It is used in cir-
cuit design courses at dozens of universities throughout
the world and has interface support for nine Furopean
and Asian languages. In this paper we primarily fo-
cus on a feature of TkGate called Virtual Peripheral
Devices (VPD). VPDs are simulated representations of
digitally controlled physical devices or systems. A VPD
has a graphical interface, implemented in Tecl/ Tk, rep-
resenting the device and a Verilog stub module repre-
senting the digital interface to the device. Users inter-
act with the simulated device through the GUI while
a Verilog description of the control circuit interacts
through the VPD stub module.

1 Introduction

TkGate [1] is a digital circuit editor and simulator
designed to be used in teaching digital circuit design
at the university level. It provides a wide range of
built-in features and is suitable for design up to and
including medium sized microprocessors. TkGate was
originally designed and built as a non-Tcl/Tk applica-
tion and later ported to use Tcl/Tk. Tcl/Tk proved to
be powerful and versatile enough to make this a sur-
prisingly painless port. TkGate has since continued to
use Tcl/Tk as an integral part of the application.

One interesting feature of TkGate, and the focus
of this paper, is the ability for users to define Virtual
Peripheral Devices (VPDs). VPDs are Tcl/Tk scripts
that simulate a peripheral device or other physical sys-
tem and include both user interaction and interaction

with a controlling circuit description. A typical use
for VPDs would be to create engaging and realistic
laboratory assignments for University level engineer-
ing courses. Two example VPDs are included with the
standard TkGate distribution: a TTY device, and a
drink vending machine. These will be further described
in Section 3.

TkGate handling of VPDs is designed to be user ex-
tensible. Users create a VPD by writing a Tcl script to
define the physical behavior of the device, and a Verilog
library file containing a stub module that interacts with
the Tcl script. Possible VPDs could include not only
traditional devices like terminals and printers, but also
any digitally controlled system such as a fly-by-wire
controller for an aircraft, a train controller, etc.

This paper is organized as follows. Section 2 will give
a brief introduction on the history and architecture of
TkGate. Section 3 will describe the two VPDs that are
included with the TkGate distribution. Section 4 will
describe the Tcl-side and Verilog-side API for writing
new VPDs. Section 5 will discuss the implementation
of VPD handling in the simulator. Finally, Section 6
will summarize the paper.

2 TkGate History and Architecture

Work on the predecessor to the TkGate digital cir-
cuit editor and simulator, Gate, was started in 1986.
It was designed for a window manager called “wm”
which was developed as part of the Andrew project
at Carnegie Mellon University. As X11 gained popu-
larity, it was then ported to run under X11 as an Xlib
application in about 1990. Finally, in the late 1990s,
TkGate was ported to run as a hybrid C and Tcl/Tk

F

File Edit Tool Simulate Module Gate hake Help

E

ITENERSE | S€1 %

cR I BERERER AL cwda2lal

I F,L %o&Ehit 1 - || S.f 28 gl | Technalogy: [defaul -

&l | [l | Modutes O Edit | {F Interface
& main W 7= TTY Control p------------------p-f-
{F EUNIT :
TF i
=-{F MEMORY

I Hit Simulate |

: 10
| [BB88REEE

. TTYSTATUS

g TV
'g Libraries

15 T
thy 11 I_u,_, 16

fram the CPL.

v :
| | TTYDATA g
T b o]
EH| EH|
: = : 5
onan v
Hets | Ports | ?.2{10 n =
Thiz iz the TT% Wirtual Peripheral Decice. L 7 ZJ} 0 :

Starting the simulation will cause the

window for the TTY to open. Memory mapped
control registers at the addresses TTYSTATUS
and TTYDATA are used to coantral the device

i il el il
S

=
=
o
I

[

|Fi|e: cpuy |Module: MEMORY

Figure 1. TkGate Interface

application.

The port to Tcl/Tk was performed by treating the
XLib-based main editor window in Gate as a Tcl/Tk
user-defined widget through the C interface, and con-
verting all of the other interface elements such as menus
and dialog boxes to use Tcl/Tk. Using this approach
it was surprisingly easy to port Gate from a pure XLib
application to a Tcl/Tk application and an initial run-
ning version was possible with only a few days of effort.
The first public release of the simulator was TkGate
0.9 in May 1999. The current publicly released ver-
sion is 1.8.6, and version 2.0, which contains support
for VPDs, has an expected public release by the end of
2005 (Developer snapshots are currently available on
the TkGate web site[1]).

2.1 Verilog Simulation

TkGate uses a simulator based on Verilog[2]. Verilog
is a highly popular Hardware Description Language
(HDL). Many commercial tools used for engineering

circuit design including design entry, simulation, syn-
thesis and verification are based on Verilog. A Ver-
ilog design is organized as a collection of “modules”. A
module can have one or more inputs, outputs, and bidi-
rectional ports. Verilog supports design of structural
(or netlist) modules, behavioral/dataflow modules, or
a combination of both. Structural/netlist modules are
defined as a set of module instances and wires that con-
nect their ports. Behavioral modules are defined using
programming constructs similar to those in C.

Unlike C, Verilog has an explicit concept of simula-
tion time. Simulation time is the time at which events
such as changes in a net or register value occur in the
design being simulated. It is usually measured as an
integer number of discrete time units. An event-based
simulator such as that used by TkGate, keeps track
of the time at which events occur in simulation time.
Most operations in Verilog have a way of specifying a
time delay in these time units.

Verilog is designed to support parallelism. A typi-
cal behavioral Verilog description is comprised of many

parallel threads. Most of the threads are small loops
which emulate some aspect of the hardware behavior.
Strictly speaking, on a uniprocessor machine, while the
threads execute in parallel with respect to the virtual
simulation time, the threads do not literally execute in
parallel, but execute sequentially in such a way as to
keep the simulation time among the threads in lock-
step.

2.2 TkGate Structure

TkGate is comprised of two main executables, a user
interface (TkGate itself) and an event-based Verilog
simulator called Verga. The interface (shown in Fig-
ure 1) is comprised of about 55,000 lines of C and
26,000 lines of Tcl/Tk. All direct user interaction is
through the interface which includes circuit editing and
control of the simulation. The simulator runs as a sep-
arate executable and includes extensions to support
VPDs.

TkGate has two main modes: an “edit” mode and a
“simulate” mode. While in “edit” mode, the user can
modify the circuit data through a graphical interface.
TkGate supports both graphical modules displayed as
components connected by wires, and Verilog text mod-
ules edited through a built-in text editor. When saving
circuit data, or transmitting it to the simulator, graph-
ical modules are saved in Verilog netlist format with
annotated comments to indicate the screen position of
devices and wires.

While in “simulate” mode, the user can set break-
points, invoke script files, set/remove probes and query
signal values. Communication between the TkGate in-
terface and the Verga simulator is through a pipe. The
simulator runs only while TkGate is in simulation mode
and is shut down when TkGate returns to “edit” mode.

3 Virtual Peripheral Device Examples

The TkGate distribution includes two VPDs as ex-
amples to both show what can be done with VPDs and
as an aid to designers of additional VPDs.

3.1 TTY

The VPD for the TTY device, shown in Figure 2,
is an xterm-like window that interacts with a simula-
tion of a small microprocessor circuit included as an

Think of an animal and I will try to guess what it is.
I currently know 1 animals.

Is the animal you are thinking of a aardvark? no

I could not guess your animal. What was your animal? zebu
Enter a question that would distinguish a =zebu from a aardvark
> Does it eat bugs

The correct answer for a zebu i1s7? no

Think of an animal and I will try to guess what it is.
I currently know 2 animals.

Does it eat bugs? no

Is the animal you are thinking of a zebu? no

I could not gquess your animal. What was your animal? penguin
Enter a question that would distinguish a penguin from a zebu
> does it liwe in &ntarcica

The correct answer for a penquin is? yes

Think of an animal and I will try to guess what it is.
I currently know 3 animals

Does it eat bugs? l

Figure 2. Window for TTY VPD

example circuit with TkGate. The microprocessor is
configured to run a small animal guessing game similar
to “20 Questions”. The VPD is implemented using the
Tcl/Tk “text” widget. The “bind” command is used
to intercept key presses and transmit the ascii code for
the corresponding character to the Verilog stub mod-
ule. The Verilog stub module in turn transmits char-
acter codes back to the VPD which displays characters
using the “insert” widget command.

The TkGate screenshot (Figure 1) shows the TTY
device as it is used in a part of the microprocessor ex-
ample (located near the bottom of the screenshot). The
symbol itself was created using a built-in bitmap editor
that allows TkGate users to define custom symbols for
new devices. The program stored in the simulated mi-
croprocessor accesses the TTY by reading and writing
the memory addresses “0x10” and “0Ox11” as set by the
TTYSTATUS and TTYDATA dip switches.

3.2 Drink Vending Machine

The drink vending machine VPD shown in Figure 3
is comprised of an external view (left side) and an in-
ternal view (right side). The external view includes
buttons that can be pressed to make a drink selection,
a coin slot, and a bill reader. Coins and bills are in-
serted by dragging and dropping from the set of coins
and bills (and fake bills to test the bill reader) at the
left hand side of the display. The internal view shows
the columns of drinks that are available in the machine,
the status of the bill scanner, the coins that have been
inserted (but not used for a purchase), the coins that
have been committed to a purchase, and coins that are
available to make change.

E [EH|
@xn
[OESE]
@0 -
| EREL
Bill Scanner
[bossd] < 20
Inserted
@
@2
@
Change
@xn
1 @ 0
@10
NCaollected
< 0
=3
@
@xo
Reset [I

Figure 3. Window for Drink Vending Ma-
chine VPD

6 6
76& DISP PRESS #
751 eLicHT empy [F4
~3] CHGQ INSQ [5—
—>| cHGD INSD [
~3| CHGN INSN [33"
~| NOCHG NUMQ 73‘
3 BILLIN NUMD #
R drinkmachine NUMN 7‘
o] BILLOUT (dm1) BILLSNS 5
~3] cHGCcom BILLOK [
~3|RETINS CNRET |5
g INSACK BILLACK [
75| cost CHGACK [5—
DISPACK [3

BILLNG [

RESET

T

Figure 4. Drink Vending Machine Interface

User actions made through the drink machine are
translated into signals on the interface of drink ma-
chine shown in Figure 4. For example, when the user
pushes a drink select button, the corresponding bit of
the “PRESS” output is asserted. Likewise input signals

from the user circuit are translated into actions shown
in the VPD window. For example, on the rising edge
of a bit in the “DISP” signal, a drink from the corre-
sponding drink column is dispensed.

4 Creating Virtual Peripheral Devices

Virtual Peripheral Devices are comprised of a
Tcl/Tk script file, and a Verilog stub module. The
script file implements the graphical interface for the
device and handles user interaction. The Verilog stub
module encapsulates the behavior of the device into
a module that can be included in user circuits. The
VPD script files are read both from a read-only direc-
tory that is part of the TkGate installation, and from
a user-defined list of directories specified in the user’s
TkGate preferences file. Currently these script files
are read at start-up time, but dynamic loading of VPD
scripts could be easily implemented.

Since a Verilog description can contain multiple in-
stances of a VPD, the Tcl script must be written in
such a way so as to allow multiple instances of a VPD
interface. This is done by giving each instance and in-
stance name. The VPD instance name is typically the
same as the Verilog instance name of the stub module
for the VPD. The fully instantiated Verilog instance
name is dot separated path such as “top.bus1.dml”.

4.1 Named Channels

Communication between the Tcl-side and Verilog-
side of the VPD implementation is performed through
a Verga extension to Verilog called a “named channel”.
A named channel is basically a queue that has a string
identifier. TkGate provides a Tcl-side and a Verilog-
side API to access the named channels allowing data
to be passed through the channel. Named channels
can be used both to send data from the Tcl side to the
Verilog side, and to send data from the Verilog side to
the Tcl side.

4.2 Direct Execution of Tcl Commands

It is also possible for the Verilog stub module to ex-
ecute Tcl commands directly using the tkgexec()
system task provided by Verga. However, use of the
tkgexec() is restricted due to the fact that allow-
ing arbitrary Tcl commands implies allowing arbitrary

shell commands. This means that untrusted circuit
files could result in damage to the user’s system when
simulated. For this reason, TkGate provides the capa-
bility of choosing a security policy to control the use
this system task. These policies are:

low Usage of tkgexec() is unrestricted.
Any Tcl command, including the Tcl
“exec” command is allowed.

medium Only registered Tcl commands may be exe-
cuted. Furthermore, the “[* and “]” charac-
ters are disallowed to prevent using them
to execute forbidden Tcl commands. Each
VPD script file will typically register any
commands it wishes to make available to

$tkgPexec().

high The tkgexec() task is disabled. Any
VPDs that depend on using tkgexec()
will not function when this security policy
is selected.

Because of the potential security issues and the fact
the a user could choose to use a “high” security policy,
it is generally recommended that VPD implementors
should avoid use of tkgexec() and use only named
channels when possible.

4.3 Tcl-Side Interface

The Tecl script for a VPD is responsible for creat-
ing a window for the device, responding to user input,
and communicating with the Verilog stub module. Tk-
Gate provides the following Tcl-side API for creating
VPDs:

VPD: :register name
Register a new VPD named name. Registering
a VPD allows it to be posted using the Verilog
tkgpost () task.

VPD: :allow names...
Register Tcl commands that can be executed
from the Verilog simulation when running Tk-
Gate with medium or lower security. The "*’

character can be used as a wildcard.

VPD: :disallow names...
Register Tcl commands for which execution
from the Verilog simulation is explicitly disal-
lowed when running TkGate with medium or

higher security. The "*’ character can be used
as a wildcard.

VPD: :isallowed name
Test a procedure name to see if it can be exe-
cuted from the Verilog simulation.

VPD: : shutdownnotify script
Register a script to be executed when Tk-
Gate exits simulation mode. The registration
is deleted after executing the script.

VPD: :newtoplevel options

Create a top-level window that can be used
for a VPD and return the name of the win-
dow. The window name is automatically gen-
erated. Top-level windows created with this
command are automatically destroyed when
TkGate exits simulation mode. A title for the
window can be specified using the -title op-
tion, and a command to be executed when the
simulator shuts down can be specified with the
-shutdowncommand option. The shut-down
command does any additional cleanup needed
by the VPD besides destroying the window.

VPD: :outsignal chan var

Cause any value assigned to var to be sent to
the simulator over the named channel chan.
The channel name is typically formed by using
the VPD instance name as a prefix and ap-
pending a local name with a dot separator. By
default, values assigned to var are interpreted
as a decimal integer, but Verilog format con-
stants can also be assigned as well. For exam-
ple, assigning a value of “8’h3f” would cause
the value to be interpreted as the 8-bit hex-
adecimal value ’3F’. The association between
the channel and the variable is automatically
deleted when TkGate exits simulation mode.

VPD: :insignal chan [options]
Register an action to be taken when data is
available on the named channel chan. Chan-
nel names are chosen in the same manner
as VPD::outsignal. One or more options
are usually given with this command. The
-command option takes a Tcl command to
be executed when data is received on chan.
The value received on the channel is ap-
pended to the command before execution. The

-variable option indicates a variable to be as-
signed. Additionally, the -format switch in-
dicates the format in which data should be
reported. The format is given as a Verilog
style format string such as “%d” for decimal
or “%h” for hexadecimal. The association be-
tween the channel and the variable is automat-
ically deleted when TkGate exits simulation
mode.

A typical VPD script will begin by executing the
VPD: :register command to register the name of the
VPD. It may then optionally use the VPD: :allow (and
VPD: :disallow) command(s) to register specific com-
mands that are allowed to be executed from the Verilog
side using the tkgexec() system task if that inter-
face method is used.

The remainder of the VPD script should be a set
of methods defined within a namespace using the VPD
identifier as the name. Any methods needed to support
the VPD should be defined in this namespace. At a
minimum, each VPD is required to provide a “post”
method. The “post” method should take an instance
name as its first argument, and may optionally define
one or more additional arguments. The “post” method
is generally responsible for taking the following actions:

o Create the top-level window for the VPD using the
VPD: :newtoplevel command. This window will
be automatically destroyed when TkGate exists
simulation mode. The -shutdowncommand switch
can be used to specify a script to execute when the
window is destroyed.

e Build the widgets for the VPD in the top-level
window and set up handers for user actions.

e Register input and output signals using the
VPD: :insignal and VPD: :outsignal commands.

Note that for some VPDs there may be exceptions to
these rules. It is also possible to use Tcl as glue to
interface the simulation to a real-world device without
using a GUI. For example, one could write a VPD to
give a Verilog description the ability to access to the In-
ternet. With such a VPD, the VPD: :shutdownnotify
command can be used to register a script to execute
when the simulation is terminated.

As was stated above, there can be multiple in-
stances of a VPD. When there are multiple instances,
the “post” method for a VPD implementation will be

called multiple times, each time with a different in-
stance name. It is important to keep state information
for each instance separate. This can be done by keeping
all such state information in Tcl arrays. For example,
instead of keeping state information in a flat variable
such as “$state”, the information should be kept in
a variable such as “$state($name)” where “$name” is
the name of the instance.

Figure 5 shows an excerpt from the Tcl script for the
VPD implementing the drink vending machine. At the
beginning of the script, the VPD name is registered at
Line (2). The remainder of the script is defined within
a namespace starting at Line (5). Variables for the
top-level window as well as any other variables are de-
clared at the top of this namespace block. The “post”
method is defined starting at Line (16). It is passed
a single argument, “name”, that will be set to the in-
stance name of the VPD. It begins by invoking the
VPM: :newtoplevel command to create the top-level
window for the vending machine. The -title switch
is used to set the name on the title bar of the window,
and the -shutdowncommand switch is used to register
a method to be called when TkGate exits simulation
mode.

After additional Tcl commands used to configure
the window, the VPD::outsignal command is used
at Line (28) to specify that when the Tcl variable
“DrinkMachine: :0sigPRESS ($name)” is set, the value
of that variable should be sent to the Verilog simula-
tion on the named channel “$name.PRESS”. The chan-
nel name is formed by appending a local name, “PRESS”,
onto the instance name of the VPD to ensure each in-
stance has its own channel. Additional output signals
can be defined in the same way.

Input signals are defined using the VPD::insignal
command as shown on Line (29). In this case,
the command indicates that when data is available
on the named channel “$name.NOCHG”, the Tcl vari-
able “DrinkMachine: :noChange ($name)” is set to that
value. The “-format %d” switch indicates the format
to use when assigning a value to the variable. For-
mat conversion is performed by the simulator, and the
format should be a specifier supported by the Ver-
ilog $display() task. It is also possible to use the
-command switch to specify a script to execute when
data is received. One or both of the -variable and
-command switches can be specified.

(1) # Register the name of this VPD
(2) VPD::register DrinkMachine

(3)

(4)

(6) namespace eval DrinkMachine {

(6) # Array (indexed by instance name) for the top-level window

P variable vm_w

(8)

(9) # Array (indexed by instance name) for the ‘‘no change’’ light.

(10) variable noChange

(1D

(12) # Array (indexed by instance name) with the state of the drink select buttons.
(13) variable osigPRESS

(14)

(15)

(16) proc post {name} {

7 # Namespace variables used by post method

(18) variable vm_w

(19) variable noChange

(20) variable osigPRESS

2D

(22) # Create top-level window for drink machine

(23) set vm_w($name) [VPD::newtoplevel -title "Vending Machine $name" \
(24) -shutdowncommand "DrinkMachine: :unpost $name"]

(256)

(26)

27 # Register named channel with button state variable

(28) VPD: :outsignal $name.PRESS DrinkMachine: :osigPRESS($name)

(29) VPD::insignal $name.NOCHG -variable DrinkMachine::noChange ($name) -format %d
(30) o

31 }

(32) 1%

Figure 5. Tcl-Side Interface to Vending Machine VPD

4.4 Verilog-Side Interface

The purpose of the Verilog stub module for a VPD
is to encapsulate the channel I/O operations between
the Tcl side and the Verilog side into a module that can
be included and used like as a regular Verilog module
within a user circuit. The stub module is usually de-
fined in a library that is included by user’s circuit. The
Verga Verilog simulator supports the following API sys-
tem tasks in support of VPDs:

tkgexec (format, pr,...,pn)
Constructs a string for a Tcl command and

sends an execution request from the simula-
tion to the main TkGate executable. The
string is constructed similar to the Verilog
$display () task (which is in turn similar to
the C printf () function). The Tcl command
is executed asynchronously with tkgexec()
not waiting for the command to complete. A
“%m” in the “format’ string will be substituted
with the name of the current instance. This
is typically used as the instance name of the
VPD.

¢D)
(2)
(3)
(4)
(5)
(8)
(7
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)

module drinkmachine(..., PRESS, NOCHG,
output [5:0] PRESS;

reg [5:0] PRESS;

input NOCHG;

//

)

// Execute the drink machine post command to start up the Tcl/Tk interface.

//

initial tkgpost("DrinkMachine","%m");

//

// Respond to changes in the Tcl/Tk osigPRESS variable.

//

always #10 PRESS = tkgrecv("%m.PRESS");

//

// Send updated value of NOCHG signal to Tcl/Tk side of VPD.

//

always @ (NOCHG) tkgsend("%m.NOCHG",NOCHG) ;

endmodule

Figure 6. Verilog-Side Interface to VPD

tkgpost (vpdname, instname, p1,...,pn)

of the VPD named
The effect is similar to execut-

Post an instance
“vpdname”.
ing “$tkgPexec("uvpdname: :post instname
pr--. pp™)” except that it is not subject
to the security restrictions of tkgexec()
as long as wvpdname is a registered VPD.
Any “[“ and “” characters are treated as
ordinary characters and each p; is passed as
a single parameter to the post method even
if it contains spaces. This task also executes
the Tcl command asynchronously and does
not wait for it to complete. A “%m” in any
parameter will be substituted with the name
of the current instance. In most cases, “%m”
should be passed as the instname.

tkgsend(name, data)

Send data on the named channel name. If be-
ing used to send data to the Tcl side of a VPD,
the channel name should correspond to a chan-
nel name specified in a VPD::insignal com-

mand. The transmitted data will cause either
a Tcl variable to be set or a Tcl procedure to
be invoked. A “%m” can be used in the channel
name will be substituted with the name of the
current instance. This can be used to create a
compound name such as “%m.NOCHG”.

tkgrecv(name)

Returns data received on the named channel
name. If being used to receive data from the
Tcl side of a VPD, the channel name should
correspond to a channel name specified in a
VPD: :outsignal command. When the vari-
able declared in the VPD::outsignal com-
mand is set, the value of that data, interpreted
as a decimal value, will be available to be read
by this task. The task will block if there is
no data in the channel. A “%m” can be used
in the channel name will be substituted with
the name of the current instance. This can
be used to create a compound name such as
“%m.PRESS”.

TkGate

(@)
[2)
o
o
@
[}

temp.v

libs.v

Figure 8. TkGate/VPD Architecture

module top;
wire [5:0] PRESS1, PRESS2;
wire NOCHG1, NOCHG2;

drinkmachine dmi(..., PRESS1, NOCHG1, ...);
drinkmachine dm2(..., PRESS2, NOCHG2, ...);

endmodule

Figure 7. Top-Level Circuit Using Two
Vending Machine Instances

A typical Verilog module for a VPD will invoke the
tkgpost () task in a Verilog “initial” block. In a
Verilog, an “initial” block is used to specify Verilog
code that should be executed once at the start of a
simulation. All of the “initial” threads are begun in
parallel with respect to simulation time, that is, the
time in the circuit that is being simulated. Placing

the call to tkgpost () here causes all instances of all
VPDs to create their windows as soon as the simulation
is started.

Figure 6 shows the Verilog stub for the drink vend-
ing example. Line (9) causes the tkgpost() com-
mand to be executed as soon as the simulation be-
gins. This task call will in turn cause the Tcl procedure
DrinkMachine: :post to be invoked.

Signals input from the Tcl side of the VPD can be
handled using a Verilog “always” block as shown on
Line (16). An “always” block is essentially an infinite
loop executed in its own thread. The “ #10” in this
example indicates a delay of 10 time units after which
the tkgrecv task will be executed to read data on
the named channel “%m.PRESS. The data is then placed
into the Verilog variable PRESS which is declared as a
register and is also an output of the module.

Signals to be output to the Tcl side of the VPD can
be handled using an “always” block as shown on Line
(21). The Verilog “@(NOCHG)” construct blocks until

the value of NOCHG changes. As soon as NOCHG is given
a new value within the simulation, the tkgsend ()
task is invoked to send the data to the Tcl side.
Implementation of the Verilog stub is not limited to
these two types of constructs. For example, a VPD im-
plementing a TTY device might have a transmit data
register TD which is sent to the Tcl interface when a ris-
ing edge occurs on a separate transmit signal TX. This
behavior might be encoded using the Verilog construct:

always @(posedge TX)
tkgsend ("%m.DATA" ,TD) ;

More complex protocols are also possible. For ex-
ample one may wish to allow transmission only when
a clear to send signal from the VPD device is asserted,
and require an acknowledge before transmitting an-
other character.

Once the stub module for a VPD has been written,
it can then be included in a client Verilog description.
For example, Figure 7 shows a top-level Verilog mod-
ule that uses two instances of the drink vending ma-
chine VPD. When this Verilog description is simulated,
two drink machine windows will be created with the ti-
tles “Vending Machine top.dm1” and “Vending Machine
top.dm2” (see Line (23) in Figure 5). The names of the
instances are “top.dm1” and “top.dm2”. Each instance
can be connected to a separate set of input and output
signals.

5 Implementation

A block diagram of TkGate is shown in Figure 8.
TkGate itself consists of a Tcl/ Tk portion and a C por-
tion. On startup, the core TkGate scripts as well as the
VPD script files are read. The user circuit is read by
the C-side of TkGate from one or more circuit files and
any required library files including library files contain-
ing VPD stub modules. When starting a simulation,
TkGate writes all of the currently defined modules to a
temporary Verilog file which is passed to Verga for sim-
ulation. As the simulation begins, the tkgpost () task
is called for each each instance of a VPD in the circuit.
This causes commands to be sent back to the TkGate
interface which cause the “post” method to be called
for each of these VPD instances. This in turn results
in TkGate creating a window for each active VPD.

The simulator is invoked from the interface using
the Tcl “open” command to create a bidirectional pipe.

10

The pipe is used to send commands between the inter-
face and the simulator. Both the simulator and the
interface have a private set of commands that they
recognize to control the simulation and report results.
Normally these commands are hidden from the user.
TkGate uses the Tcl “fileevent” command to regis-
ter a function to be called when commands are ready to
be read. This allows it to handle interactions with the
interface while handling commands from the simulator
as they arrive.

We will illustrate what happens internally through
an example. The following illustrates the steps that
are taken when starting a simulation with a VPD from
TkGate:

1. TkGate determines the modules that are required
by the simulator, writes a Verilog file in /tmp, and
invokes the simulator using “open” with a mode of
“r+77 .

2. TkGate sets the variable Simulator::isActive
to “1” to indicate that the simulator is active.

3. The Verilog stub module for the VPD executes
“$tkgPpost ("DrinkMachine","%m")” as the sim-
ulation begins.

4. The simulator sends the command
DrinkMachine top.dm1” to TkGate.

“post

5. TkGate uses Tcl_Exec0bjv() to execute the Tcl
command “DrinkMachine: :post top.dm1l”.

6. The DrinkMachine::post method calls
VPD: :newtoplevel to create a top-level win-

dow for the VPD.

7. VPD: :newtoplevel creates the win-
dow and wuses “trace add variable” on
Simulator::isActive to detect when the
simulation is terminated.

After building the interface widgets, the
DrinkMachine::post method may make calls
to VPD::outsignal to register output signals.
The VPD::outsignal wuses the Tcl “trace add

variable” command to set a trace on the reg-
istered variable so as to call the private method
VPD: :sendVariable whenever the variable changes.
For example,
Line (28) of Figure 5 would result in the Verga
“$write top.dml.PRESS 4”

the VPD::outsignal command on

control command

being sent to the simulator when the variable
“DrinkMachine: :0sigPRESS(top.dml.PRESS)” was
set to “4”. The VPD::outsignal command also sets
a trace on Simulator::isActive so as to delete the
signal registration when the simulation is terminated.

In addition, the DrinkMachine: :post method may
also make calls to VPD: :insignal to set a handler for
incoming data on a named channel. This is done by
sending a message to the simulator to watch a spe-
cific queue and by recording the actions to take place
when data is received on that queue. For example,
the VPD: :insignal command on Line (29) of Figure 5
would result in the Verga control command “$watch
$queue top.dml.NOCHG %d” being sent to the simula-
tor over the pipe between TkGate and Verga (the last
argument is the format to use). Verga will then send
a command such as “tell queue top.dml.NOCHG 1”
over this pipe when a thread in the Verilog descrip-
tion executes the tkgwrite() task on the channel
“top.dml.NOCHG”. In addition, any pending values on
the channel are sent immediately on receipt of the
“$watch $queue” control command.

When the user terminates the simulation, TkGate
sends the control command “$exit” to Verga. Verga
then replies with its own “exit” command to Tk-
Gate and calls “exit(0)” to terminate itself. When
TkGate receives the “exit” command from Verga, it
closes the pipe and sets the “Simulation::isActive”
flag to 0. This in turns causes VPD windows cre-
ated through VPD: :newtoplevel to be destroyed us-
ing the “destroy” command. It also causes any regis-
tered shutdown function to be executed and any vari-
able traces set by VPD: :outsignal to be deleted.

6 Conclusion

In this paper we have presented the Virtual Periph-
eral Devices (VPD) feature of TkGate. We showed
examples of two existing VPDs, showed how to create
VPDs on both the Tcl and Verilog side, and described
TkGate’s implementation of the VPD feature.

References

[1] Jeffery P. Hansen, “TkGate: A Schematic
Capture and Digital Circuit Simulation Tool”,
http://wuw.tkgate.org, March 2000

11

[2] Samir Palnitkar, “Verilog Hdl : A Guide to Dig-
ital Design and Synthesis (2nd ED)”, SunSoft
Press/Prentice Hall, 2003

