
Jeffery P. Hansen

Institute for Complex Engineered Systems
Carnegie Mellon University

October 26, 2005

Creating Virtual
Peripheral Devices
in a Digital Circuit

Simulator Using Tcl/Tk

Outline

• Overview of TkGate
• Overview of Verilog
• Virtual Peripheral Devices (VPDs)
• VPD Tcl-Side
• VPD Verilog-Side
• Implementation
• Conclusions

TkGate 2.0 Overview

• Interface Features
– Hybrid Tcl/Tk and Xlib/C based interface.

• Interface comprised of about 64K lines of C, 25K lines of Tcl/Tk.
• Separate simulator is about 31K lines of C.

– Multi-lingual interface with support for Catalan, English, French, German,
Japanese, Spanish, Czech and Welsh.

– Design entry of both graphical and text/Verilog modules.
– User-defined device symbols.
– Support tools include a microcode/macrocode compiler.

• Simulation Features
– Dynamically loadable Verilog scripts.
– Graphical display of simulation results.
– Breakpoints, single-step and clock-step simulator control.
– Interactive Virtual Peripheral Devices (VPD)

• Uses Tcl and Verilog to design interactive components.
• Tcl-Side and Verilog-side APIs facilitate communication.

History of TkGate

Gate
•Developed for Andrew
Window Manager.
•B/W Interface
•Graphical Editor
•Hierarchical Design
•Custom Save Format
•Used in Computer Arch.
courses at CMU.

XGate
•Ported to X11
•Used in digital
design and
computer Arch.
courses at CMU.

TkGate 0.1
•Ported to Tcl/Tk
•Verilog-like save
file format.
•“TTY” device.

TkGate 0.9
•First public release.

TkGate 1.8.6
•Current stable release

TkGate 2.0
•Next planned release
•Verilog-compliant save files.
•Text Verilog Modules
•Virtual Peripheral Devices
•TTY and Drink Machine VPDs.

TkGate 1.8.0
•Tcl/Tk 8.4 Compatibility
•Redesigned Interface

1985 1990 1995 2000 2005 2010

TkGate 1.1
•Color Interface

TkGate Main Window

Memory Address LineMemory Address Line

TTY Control
Register

TTY Control
Register

TTY Data
Register

TTY Data
Register

TTY DeviceTTY Device

TTY Data/Control
Register Address

TTY Data/Control
Register Address

Verilog

• What is Verilog?
– Hardware description language used to describe hardware designs.
– Widely used industry standard for EDA (Electronic Design Automation) tools.

• In what types of applications is Verilog used?
– Synthesis
– Simulation
– Formal verification

• What do Verilog designs look like?
– Modular hierarchical design
– High degree of parallelism
– Multiple levels of abstraction including

• Structural – Module described as collection of connected blocks.
• Behavioral – Module described using C-like statements.

Verilog Examples

module add(s,co,a,b,ci)
input a,b,ci;
output s,co;

 xor g1 (w1,a,b);
 xor g2 (s,w1,ci);
 and g3 (w2,w1,ci);
 and g4 (w3,a,b);
 or g5 (co,w2,w3);

endmodule

g3

g1 g2

g5g4

a
b

ci

s

co

w1

w2
w3

Structural Verilog Behavioral Verilog

module count(state,ck,clr);
output [3:0] state;
reg [3:0] state;
input ck,clr;

 initial
 state = 4’h0;

 always @(posedge ck)
 state = state + 4’h1;

 always @(clr)
 if (clr)
 state = 4’h0;

endmodule

Verilog Design Hierarchy

module top;
 foo f1;
 foo f2;
endmodule

module foo;
 bar b1;
 zonk z1;
endmodule

module bar;
endmodule

module zonk;
 bar bz;
endmodule

top

foo foo

bar zonk bar zonk

bar bar

top.f1 top.f2

top.f1.b1 top.f1.z1 top.f2.z1top.f2.b1

top.f1.z1.bz top.f2.z1.bz

top

TTY Virtual Peripheral Device

main.mem
ustore.mem

cpu.v

Memory
Controller

IUNIT

EUNIT

Micro-
StoreMain

Memory

TTY

tty.v

tty.tcl

VPD

Drink Machine VPD

• VPD Implementer
– Writes Tcl script implementing

behavior.
– Writes Verilog stub-module

encapsulating interface.
• VPD Client

– Loads library with desired VPD.
– Creates one or more instances.
– Creates control logic.

User Circuit

Drink Machine
Verilog Interface

Verilog-Side
API

Simulator

TkGate Tcl
Code

Drink Machine
Tcl/Tk Interface

Tcl-Side API

User Interface

P
ip

e/
so

ck
et

Drink Machine Window

Drag and drop
coins/bills to
insert into
machine.

Drag and drop
coins/bills to
insert into
machine.

Push buttons
to make drink
selections.

Push buttons
to make drink
selections.

User circuit can
activate “empty”
and “no change”
lights.

User circuit can
activate “empty”
and “no change”
lights.

Internal view
shows inserted
coins/bills and
drink columns

Internal view
shows inserted
coins/bills and
drink columns

Including a VPD in the User’s Design

• Users interact with VPD as a normal module.
– Create one or more instances in user module.
– Interact though ports on VPD module.

• Users can create multiple instances of a
VPD.
– Each VPD is assigned a unique instance

name from the Verilog hierarchy.
– Verilog instance name is used as VPD

instance identifier in the Tcl script.

module top;
 wire [5:0] PRESS1, PRESS2;
 wire NOCHG1, NOCHG2;
 ...
 drinkmachine dm1(..., PRESS1, NOCHG1, ...);
 drinkmachine dm2(..., PRESS2, NOCHG2, ...);
 ...
endmodule

top.dm1top.dm1

top.dm2top.dm2

Example Interaction

CHGQ

CHGACK
25

18

109

19

Wait for CHGACK to go
low indicating it is OK
to dispense change.

Wait for CHGACK to go
low indicating it is OK
to dispense change.

Assert CHGQ to tell
drink machine to give a
quarter in change.

Assert CHGQ to tell
drink machine to give a
quarter in change.

Wait for CHGACK to go
high indicating change
operation has completed.

Wait for CHGACK to go
high indicating change
operation has completed.

Clear CHGQ to
complete transaction.

Clear CHGQ to
complete transaction.

CHGACK goes low to
acknowledge
transaction completion.

CHGACK goes low to
acknowledge
transaction completion.

Command sent
to Tcl-side of
VPD to update
display

Command sent
to Tcl-side of
VPD to update
display

Named Channels

• Created dynamically as needed.
• Implemented as queue that can be accessed from both Tcl and

Verilog.
• Objects on queue are arbitrary bit-sized values.
• One named channel used for each signal passing between Tcl-Side

and Verilog-Side of implementation.

tkgsend VPD::insignal“top.dm1.CHGACK”

VPD::outsignaltkgrecv “top.dm1.CHGQ”

Verilog-Side Tcl-Side

Tcl-Side API Highlights

VPD::register name

VPD::newtoplevel –title title –shutdowncommand command

VPD::outsignal chan variable

VPD::insignal chan [-variable variable][-command command]

Register name as a virtual peripheral device. Registered VPDs can be
posted using the tkgpost() task from Verilog.

Create a new top-level window for use as a VPD. Top-level windows
created with this command will be given the specified title. When
simulation mode is terminated, the window will be destroyed and the
specified shut-down command will be invoked.

Associate an input channel with a Tcl variable and/or command. When
data from the simulator is sent on the named channel, the registered Tcl
variable will be set and/or the registered command will be called.

Associate an output channel with a Tcl variable. When a value is
assigned to the registered variable, data will be sent

Verilog-Side API Highlights

tkgexec(format, p1, ..., pn)

tkgpost(vpdname, instname, p1, ..., pn)

tkgsend(name, data)

tkgrecv(name)

Construct a Tcl command and execute it. Executed commands are subject
to the current security policy.

Call the “post” procedure for a registered VPD passing the specified
argument list. The instance name and one or more optional parameters
are passed as arguments to the “vpdname::post” command.

Send data on a named channel.

Receive data on a named channel. Blocks if no data is available
in the queue.

Drink Machine VPD Overview

VPD::register DrinkMachine

namespace eval DrinkMachine {

 variable dm_w
 variable CHGACK
 ...

 proc post {name} {
 ...
 }
}

Name of VPD. The VPD should
be registered with tkgate, and Tcl
code for the VPD should be
defined within a namespace.

Name of VPD. The VPD should
be registered with tkgate, and Tcl
code for the VPD should be
defined within a namespace.

Array of top-level windows
indexed by instance name.

Array of top-level windows
indexed by instance name.

Instance name of VPD
passed as parameter.

Instance name of VPD
passed as parameter.

Array with current state of the
“change acknowledge” signal
for each VPD instance.

Array with current state of the
“change acknowledge” signal
for each VPD instance.

Tcl procedure to create an
instance of the drink machine VPD.

Tcl procedure to create an
instance of the drink machine VPD.

“post” Proceedure (Creating Window)

set dm_w($name) [VPD::newtoplevel \
 -title "Vending Machine $name" \
 -shutdowncommand "DrinkMachine::unpost $name"]

Variable to store name of
window for VPD instance

Variable to store name of
window for VPD instance

VPD instance name
(e.g., “top.dm1”)

VPD instance name
(e.g., “top.dm1”)

Window for VPD will be labeled
“Vending Machine top.dm1”

Window for VPD will be labeled
“Vending Machine top.dm1”

The “unpost” procedure for this
VPD will be invoked when the
simulation is terminated.

The “unpost” procedure for this
VPD will be invoked when the
simulation is terminated.

“post” Procedure (Registering Output Signals)

VPD::outsignal $name.CHGACK DrinkMachine::CHGACK($name)

set CHGACK($name) 0

Register a signal
from the Tcl-side to
the Verilog-side.

Register a signal
from the Tcl-side to
the Verilog-side.

Named channel to use
(e.g. “top.dm1.CHGACK”)

Named channel to use
(e.g. “top.dm1.CHGACK”)

Tcl variable to attach to
the named channel.

Tcl variable to attach to
the named channel.

Send a “0” to the Verilog-side of
the implementation.

Send a “0” to the Verilog-side of
the implementation.

“post” Procedure (Registering Input Signals)

VPD::insignal $name.CHGQ \
 -command DrinkMachine::dispenseQuarter \
 -variable DrinkMachine::CHGQ($name)
 -format %d

Register a signal
from the Verilog-side
to the Tcl-side.

Register a signal
from the Verilog-side
to the Tcl-side.

Named channel to use
(e.g. “top.dm1.CHGQ”)

Named channel to use
(e.g. “top.dm1.CHGQ”)

Tcl procedure to call
when data is received on
this channel.

Tcl procedure to call
when data is received on
this channel.

Format in which
Verilog should data
should be passed to
procedure or variable.

Format in which
Verilog should data
should be passed to
procedure or variable.

Variable to assign when
data is received on this
channel.

Variable to assign when
data is received on this
channel.

Verilog-Side VPD Definition

module drinkmachine(..., CHGQ, CHGACK, ...);
output CHGACK;
reg CHGACK;
input CHGQ;

 initial
 tkgpost("DrinkMachine","%m");

 always #10
 CHGACK = tkgrecv("%m.CHGACK");

 always @ (CHGQ)
 tkgsend("%m.CHGQ",CHGQ);

 ...
endmodule

Module port declarationsModule port declarations

Port type
declarations

Port type
declarations

Create VPD
window

Create VPD
window

Receive data
from Tcl-side

Receive data
from Tcl-side

Send data
to Tcl-side

Send data
to Tcl-side

Initialization

initial
 tkgpost("DrinkMachine","%m");

Verilog “execute
once”
statement.

Verilog “execute
once”
statement.

Type name of
VPD to post.

Type name of
VPD to post.

Name of VPD instance.
“%m” replace with
instance name (e.g.,
“top.dm1”).

Name of VPD instance.
“%m” replace with
instance name (e.g.,
“top.dm1”).

Simulator Interface

“go (start simulation)”

“post DrinkMachine top.dm1”

VPD::newtoplevel

Tcl->Verilog Dataflow

always #10
 CHGACK = tkgrecv("%m.CHGACK");

Simulator Interface
“$send top.dm1.CHGACK 1”

Verilog “infinite
loop”
statement.

Verilog “infinite
loop”
statement.

DelayDelay Named channel
to read.

Named channel
to read.

CHGACK

Verilog signal
to update.

Verilog signal
to update.

10

set CHGACK(top.dm1) 1

Verilog->Tcl Dataflow

always @(CHGQ)
 tkgsend("%m.CHGQ",CHGQ);

Named
channel
to use

Named
channel
to use

Verilog
signal
to send

Verilog
signal
to send

Simulator Interface

Verilog “infinite
loop”
statement.

Verilog “infinite
loop”
statement.

Block until
signal
changes.

Block until
signal
changes.

CHGQ

“send top.dm1.CHGQ 1”

25

DrinkMachine::dispenseQuarter top.dm1

Simulator

TX

CTS

RD 41

Alternate Dataflow Styles

always @(posedge TX)
 if (CTS)
 tkgsend("%m.DATA",TD);

On a positive
edge of TX…

On a positive
edge of TX…

… if the CTS
signal is
asserted …

… if the CTS
signal is
asserted …

… send
the data
in TD.

… send
the data
in TD.

Interface

“send top.tty.DATA 8’h42”

42

BA

$tty_w($name).text insert insert “B”

U
se

r T
cl

 C
om

m
an

ds

Tk_Main

TkGate Architecture

Named
Channels

Circuit
State

Byte-
code

Thread
Execution

Simulator

pipeSimulator
Interface

Edit
Window
Handler

Command
Processing

Design
Data

user.v

Verilog
Compiler

Event
Handler

Input/
Output

Interface

temp.v

libs.
v

libs.
vlibs.v

libs.
v

libs.
vvpd.v

fileevent

Core TkGate
Tcl Files

System and
User-Defined
VPD Files

User Design Data

System and User
Library Data

System and User
VPD Stub Modules

C

Tcl/Tk

GUI
Handler VPDs

bindbind

Verilog
Parser/

Generator

Tcl_Eval

libs.vlibs.vtkgate.tcllibs.vlibs.vvpd.tcl

Conclusion

• Virtual Peripheral Devices
– Mechanism to create interactive devices.
– Devices appear as ordinary module to user

design.
– Signals on Verilog module translated into Tcl

commands in interface.
– Named channels used to communicate

between Tcl and Verilog side.
• Implementation

– Tcl/Tk Graphical Interface
• Defined in unique namespace.
• Provide “post” method to create window.
• Bind Tcl variables and commands to

named channels.
– Verilog Stub Module

• Use Verilog “initial” to invoked the
VPD “post” command.

• Use Verilog “always” to link Verilog
variables to Tcl variables.

• More complex multi-variable interactions
can also be implemented.

http://www.tkgate.org

TkGate Architecture

libs.vlibs.vlibs.vtemp.v

C code

C-side

Tck/Tk-side

libs.vlibs.vuser.v

libs.vlibs.v
core
script
files

libs.vlibs.v
VPD
script
files

Drink Machine VPD

• VPD Implementer
– Writes Tcl script

implementing behavior.
– Writes Verilog stub-module

encapsulating interface.
• VPD Client

– Loads library with desired
VPD.

– Creates one or more
instances.

– Creates control logic.

User Circuit

Drink Machine
Verilog Interface

Verilog-Side
API

Simulator

TkGate Tcl
Code

Drink Machine
Tcl/Tk Interface

Tcl-Side API

User Interface

P
ip

e/
so

ck
et

TTY Virtual Peripheral Device

main.mem
ustore.mem

cpu.v

Memory
Controller

IUNIT

EUNIT

Micro-
StoreMain

Memory

TTY

tty.v

tty.tcl

VPD

TkGate Architecture

Event Handler

Verilog
Compiler

Named
Channels

Circuit
State

Verilog
Byte-
code

Thread
Execution

Simulator

Interface

Input/
Output

pipeSimulator
Command
Processing

Main
Window
Handler

TK_Main

Command
Processing

libs.vlibs.vvpd.tcllibs.vlibs.vtkgate.tcl

Design Data

User Commands

Interface
Handler

libs
.v
libs
.vlibs.v

libs
.v
libs
.vvpd.vuser.v

temp.v

Verilog
Parser/

Generator

