Pulling Out All the Stops

Implementation of a High Performance
Tcl Extention in the Calibre IC Design
VerificationTtool.

by Phil Brooks - software engineer,
Mentor Graphics Corporation

12" Annual Tcl/Tk Conference
Portland, Oregon
October, 2005

ABSTRACT

The Calibre IC Design Verification environment
has used Tcl for a number of years in a traditional
scripted GUI architecture where Tcl drives
underlying high performance C++ application
code. An existing high performance limited
functionality built-in scripting language provides
users with custom calculation capabilities in some
performance critical areas. When users needed
greater flexibility and extensibility for some low
level scripted calculations, | turned to Tcl to
provide them. The catch was that these
calculations are at the heart of one of Calibre's
performance sensitive, multi-threaded C++
analysis modules. User provided Tcl procs will be
called millions of times from within threaded C++
application code in a performance critical area.
The existing build-in language will provide the
underlying application framework for Tcl user
procs. | examine the architecture of this system
that provides maximum user provided Tcl proc
call performance from inside a performance
sensitive C++ application.

The Calibre Application
The Calibre Verification tool does geometric

analysis on integrated circuit designs. The
geometric data manipulations are programmed by
the user in a specialized geometric manipulation
language called Standard Verification Rule
Format (SVRF). Using SVRF, users can perform
various functions that help them to discover
geometric properties of the design that can in turn
be used in verification analysis. This paper
concerns use of Calibre for analysis of devices
(i.e. transistors, resistors, etc) and calculation of
properties related to those devices. Here is an
example of a transistor layout with a GATE (RED)
polygon that is in contact with two PIN polygons
(GREEN) connected to metal leads (BLUE)

polygons that are attached by contacts (GREY)
polygons.

Figure 1 - Transistor Layout

Device Recognition
The device recognition facility in Calibre allows

the user to search a layout database for
intentional device structures (i.e. transistors,
resistors, etc.) and calculate various properties
concerning these structures for later use in
applications like Layout vs. Schematic
Comparison (LVS), and Circuit Simulation. This
is an architectural overview of the Device
Recognition portion of the application:

Calibre SVRF
A standard
geometric

Calibre Interactive
Tcl/Tk based application
management GUI

!

Calibre Circuit Extraction
C++ Mainline tool

Does intentional

Circuit and Device Extracti

ion
language.

'

Geometry| Device Extraction

Property Calculation

Data Collectian

b

User Script

Extraction

PROPERTY W
W = PERIMETER_COINCIDENT(GATE, SD)

Calibre Built-in Scripting Engine

Calibre’s simple user script functionality provides
user defined device calculations based on
geometric measurements made by Calibre.

These scripts are parsed and byte compiled
before the device recognizer runs. After parsing,
the user scripting module tailors the device
recognizer’s data collector to gather only the
information that will be needed during the script’s
run time.

This built-in scripting language is extremely fast,
but also has very limited capabilities (no looping
constructs, no user defined function calls, only
numeric and string data types, no dynamic
allocation, etc). As integrated circuit technology
advances, customers are requiring the ability to
measure and calculate more and more complex
device properties. Rather than making piecemeal
additions to the existing scripting engine, these
requirements could be handled by a general
purpose scripting language like Tcl.

The Builtin Language

The property statement declares properties that
are being calculated. Data collection functions
provide raw data collected by the device
recognizer. Conditions and arithmetic
expressions allow final calculations of desired
properties.

DEVICE MP PGATE PGATE(G) SD(S) SD(D) DIFF
[
property w, 1
w = 0.5 * (perim co(S, G
+ perim in(S,
+ perim co(D,
+ perim in(D,
1l =area(G) / w
if((bends(G) != 0))
{
if(w>1)
w=w—0.5 * bends(G) * 1
else 1 =1- 0.5 * bends(G) * w
}

)
G)
G)
G))

]
Code Example 1

One of the properties that makes the Calibre
scripting language perform so well is the fact that
it doesn't allow any dynamic allocation during the
individual device calculation. Rather, each device
is evaluated by a byte compiled program that has
all potential variables and results preallocated at
the device call time. Here is an example of a
device property calculation program using the
built-in language:

When Calibre runs, the script is parsed and the
functions (perim_co, perim_in, area, and bends)

are used to set up data collection for the device
recognizer. As shapes are scanned, and results
of these functions are stored in memory along
with space for the temporary variables, property
results, and the compiled byte code for the
program that is going to run. After data is
collected, the byte-code from the built-in script
runs using the pre-allocated variables in the
variable table. Conceptually, it looks like this:

Variable Name Value
w 0.0
| 0.0
temp1 0.0
temp2 0.0
temp3 0.0
perim_co(S,G) 4
perim_in(S,G) 6
perim_co(D,G) 4
perim_in(D,G) 6
area(G) 12
bends(G) 2
Byte Code

ADD temp3 perim_co(S,G) perim_in(S,G)

ADD temp2 temp3 perim_co(D,G)

ADD temp1 temp2 perim_in(D,G)

MUL w 0.5 temp1

DIV | area(G) w

NE_ bends(G) 0[31][70]

GT w 1[37][55]

MUL temp2 0.5 bends(G)

MUL temp1 temp2 |

SUB w w temp1

GOTO [70]

MUL temp2 0.5 bends(G)

MUL temp1 temp2 w

SUB I | temp1

Recently a new device property data collection
function was introduced called
ENCLOSURE_PERPENDICULAR (ENC_PER for
short). Unlike previously implemented functions
that each return a single measurement value,
ENC_PER returns an array of measurement
triplets. The array returned has a length that is
dependent upon actual shapes encountered by
the device recognizer. This function required new
fundamental capabilities in the built-in scripting
language since it didn’t have any looping or
indexing constructs. Project constraints at the
time would not allow for extensive additions to the
scripting language. We thought about adding a
more fully developed scripting language to the
device recognizer at that time, but didn’t have
time for that either. Instead, the project team

decided to add a new SUM() function to our built-
in scripting language. The SUM function created a
summation capability that would allow users to
describe operation expressions on the individual
array slices and sum the results of that
expression across the slices. Our previous
example might look like the following once the
customer adds use of the ENC_PER and SUM
functions:

DEVICE MP PGATE PGATE(G) SD(S) SD(D) DIFF
[
property W, L, SEFFA
W= 0.5 * (perim co(S,G) +
perim in(S,G) + perim co(D,G)
+ perim in(D,G))
L = area(G) / W
if((bends(G) != 0))
{
if(W>1L)
W=W- 0.5 * bends(G) * L
else L = L - 0.5 * bends(G) * W
}

S = ENC_PER (PGATE, DIFF, SD, 25)
SEFFA = W /
SUM(S::W / (S::A + 0.5*L)) - 0.5*L
1
Code Example 2

This program produces a byte code about twice
as long as the previous one.

The SUM function satisfied the immediate
requirements, but couldn’t do other things
customers later wanted, like calculate MIN, MAX,
or other arbitrary calculations on members of the
returned array. Later on, customers requested
even more complex measurements that were
implemented in another new data collection
function called ENCLOSURE_PERPENDICULAR_MULTI-
FINGER, (ENC_PER_MUL) that produced an array
of arrays of measurement triplets. This array of
arrays also has a length that is dependent upon
actual shapes encountered by the device
recognizer.

Given these new requirements, | considered the
alternatives of adding multi-dimensional looping,
allocation of temporary data, etc to our built-in
language and adding a general purpose scripting
language capability.

To use an external scripting language, | will need
the following:

* A simple way to describe the data
collection required before it is needed. In
the existing language, this is done by
simply parsing the script and looking for
calls to data retrieval functions. The
present system is very convenient for
customers since use of a data collection
function anywhere in the script is easily
identified by the parser before the data
collection routines have started. If |
replace the existing scripting language
with a language like Tcl, this will not be so
easy since Tcl code can not be readily
examined to find out what data collection
functions might be called.

* | was also hoping to leverage much of the
existing scripting engine. Customers
have invested heavily in SVRF files that
use the old scripting language. They
understand how it works and don’t want
to have to rewrite any of their scripts just
to use the new functionality presented by
another scripting language. Also, | don’t
want to rewrite all of the engine’s
functionality from within a new script
environment. 31 data collection routines
are currently available in the existing
scripting language. They all need to be
available in the new environment.

* | need a way to get data collected from
Calibre to the script.

* | need a way to get calculation results
from the script back into Calibre.

* Overall performance can’t slow things
down too much.

Why Tcl?
At this point, | should discuss the detailed

analysis of various scripting languages that |
undertook, along with philosophical musings and
the finer points of language grammar, ideology,
geometry, and theology as it pertains to available
scripting languages. All of this musing would, in
this ideal version of this paper, lead to the
inevitability of choosing Tcl as the one true
scripting language for this application (this is, after
all, a Tcl conference). In reality, | must admit that
| chose Tcl for one reason, and one reason alone.
It was already there. Tcl is available to Calibre
customers for several other purposes inside the
SVRF geometrical programming language.
Shoveling another unrelated scripting language

into our application for use inside SVRF would
have been confusing.

How Tcl?

Now the question is how to do this? | added a
new function in our built-in scripting language that
allows the user to call out to Tcl. This function is
called TVF_NUMERIC_FUNCTION (or
TVF_NUM_FUN) It looks like this:

DEVICE MP PGATE PGATE(G) SD(S) SD(D) DIFF
[
property W, L, SEFFA
W= 0.5 * (perim co(S,G) +
perim in(S,G) + perim co(D,G)
+ perim in(D,G))
L = area(G) / W
if((bends(G) != 0))
{
if(W>1L)
W=W- 0.5 * bends(G) * L
else L = L - 0.5 * bends(G) * W
}

S = ENC_PER (PGATE, DIFF, SD, 25)
SEFFA = TVF_NUM_FUN (
"calc_eff a",
"device func ", S, W, L
)
]
Code Example 3

The new function is designed to work just like the
other built-in language functions except that it
calls user specified Tcl code. The user’s Tcl code
is also stored in the SVRF rule file in a TVF
FUNCTION block (TVF is our special name for
Tcl inside of SVRF)

TVF FUNCTION device func [/*
proc calc_eff a { enc WL } {
. tcl code ...

}
*/]

Code Example 4

Lets see how this solution stacks up against our
requirements:

* describe the data collection required
before it is needed — Data collection
needed is still defined by the scripting
language — the Tcl code can’t obscure
any up front data collection requirements
since its only interface is through call
parameters.

* leverage much of the existing scripting
engine — The example above shows
clearly that existing customer code is not

impacted, a simple one line addition to
the existing script allows use of the Tcl
functionality without impacting other
calculations that the script performs.

* get data collected from Calibre to the
script — | do this by passing parameters in
to Tcl explicitly in the script.

* get calculation results from the script
back into Calibre. — this will be done with
the return value from the Tcl function.

* Overall performance can’t slow things
down too much — no way to tell this until |
write some code. One nice thing about
having the SUM function in the built-in
language is that it allows us to compare
runtimes for doing similar calculations in
the two environments with one another.

The remainder of the paper looks at the
implementations used to provide this feature and
at performance of the resulting system.

Performance Testcase

To test the performance of this interface, | created
two test circuits. The first contains 500,000
devices that have to be run through the device
property calculation script. | used a device
program that was extensive enough to be
representative of customer device calculation
scripts. The SVRF Example Code section in the
code appendix shows the performance test
scripts that were used. For each device
processed, 3 Tcl procs are called, each returns a
numeric result that can be stored as a property or
used in additional calculations. The 3 Tcl procs
call back into Calibre a total of 10 times for each
device to retrieve data from the argument objects
passed into the 3 functions. That gives us a total
of 1.5 million Tcl proc calls and 5 million callbacks
on each run of the testcase. In addition, the
testcase is set up so that it provides good thread
parallelization opportunities. During the run, the
devices are broken up into 18 partitions that can
run in parallel threads. The testcase has been
artificially constructed to make the actual C++
device recognition algorithm run very quickly and
therefore exaggerate the importance of the
scripting component. The testcase only takes a
few minutes to run, so evaluating performance
impacts of our change is fairly simple.

Efficiently Calling Tcl Code
The first step is getting from the high
performance, multi-threaded C++ code into the

Tcl interpreter efficiently. What is the difference in
performance for various Tcl interfaces? | have
choices betlen Tcl_Eval, Tcl_EvalEx,
Tcl_EvalObjEx, and Tcl_EvalObjv as alternate
calling mechanisms in our quest for ultimate call
performance to the user proc.

To start with, | will use the simplest interface,
Tcl_Eval. From reading the Tcl documentation, |
expect that this will not be a good choice since it
causes reinterpretation of the string to a byte
code on each invocation and doesn’t allow use of
the TCL_EVAL_GLOBAL flag. The example code
appendix provides excerpts of code from this
implementation entitled Tcl_Eval Example Code.

Tcl Eval Performance

Now we get to see our first performance numbers.
The test machine we have is an 8 way AMD
Athlon server, so | will try runs with 1-8 threads.
Let’s compare Tcl_Eval against the built-in
scripting language. Both implementations are
performing the same calculations. The built-in
language is using our SUM function and Tcl is
using a for loop to cycle through the array data.

Tcl_Eval vs. Builtin

50

40

Seconds

s

1 2 3 4 5 6 7 8
Threads

30 —+—Builtin
20 Tcl_Eval

Not bad for a first cut that we know isn’t an
optimal implementation — our overall system
performance with the Tcl script is consistently
running a little over 2x the runtime of the built-in
scripting language. It also scales similarly with
multi-threaded runs. Keep in mind that | have
artificially constructed our test case to make the
C++ device recognition part run very quickly and
easily. In real life, the device recognition code

would have to do a lot more work and the 2x
difference here would be much smaller.

For the first change to this baseline, | will simply
use Tcl_EvalEx with the TCL_EVAL_GLOBAL
flag. This will still re-evaluate the script with each
execution, but it adds TCL_EVAL_GLOBAL. This
is a pretty straight forward two line change to our
execution code that is also presented in the code
appendix.

Tcl EvalEx Performance
Here are the performance numbers with the new
call:

Add Tcl_EvalEx +
TCL_EVAL_GLOBAL

50 -
40
g 30 —e— Builtin
] Tcl_Eval
o 20
(77} Tcl_EvalEx
10 - —8 N
0 T T T T T T T 1

1234567 8
Threads

We see that the documentation’s advice for using
TCL_EVAL_GLOBAL really is worthwhile. It
shaves about 15% of from the Tcl_Eval runtimes
and brings us a bit closer to the built-in language.

Next | want to enable the byte compiler. Our
previous two experiments required string
evaluation on the calling string invocation for each
of our 1.5 million Tcl proc calls, now | will use
Tcl_EvalObjv to turn on Tcl's byte compiler in
hopes of cutting the difference between Tcl and
the built-in language even more. The code
changes a bit more this time, so | will repeat the
main parts again in another example in the code
appendix entitled Tel_EvalObjv Code Example.

Tcl EvalObjv Performance
Now, how did we do?

Add Tcl_EvalObjv

50 -
40 _
%) —e—Builtin
§ 30 Tcl_Eval
§ 20 Tcl_EvalEx
10 - o - Tcl_EvalObjy
O T T T T T T T |

Threads

This time, we see a 20% improvement in
performance! | did some additional experiments
that used pitted Tcl_EvalObjv against
Tcl_EvalObjEx, but found that they provide similar
performance.

Getting data to Tcl Efficiently
Successful use of Tcl in this environment required

efficient transfer of per-device call information to
the user's Tcl proc. One key to the performance
of this system is in the setup. | create as much of
the script calling environment as possible up front.
That way, when a device is recognized in the
compute intensive code, there isn’t much setup to
do. Careful avoidance of per device call setup
creation for arguments helps to achieve high
efficiency calls from C++ to Tcl. | chose a
solution in which each argument to the Tcl Proc is
represented as a Tcl object command. Each of
these object commands has a number of data
access commands available for use inside the Tcl
code. The argument structures are reused for
each device recognized by a particular thread so
that there is just a pointer to update before calling
Tcl_EvalObjv. This minimizes need for creation
argument objects or lists that need to be created
for each device specific call. It also allows us to
handle the multi-dimensional data that is available
from functions like ENC_PER. The code entitled
Tcl_CreateObjCommand example in the code
appendix shows how the command objects are
created up front and then how they are accessed
during the device specific property call.

Getting data back from C++ Efficiently

Getting data back from the C++ callback
efficiently for use inside the Tcl script is also an
important consideration in the overall
performance of this system. Our Tcl call interface
only provides functions that return a double right
now, so data is passed back to Tcl through a
Tcl_DoubleObj that is set to the value desired and
returned as a result object to the interpreter.

| looked at the creation of Tcl_Obj objects that are
used to return results from the callback to the Tcl
script. | was worried about quickly creating and
deleting Tcl_DoubleObj objects used to pass
results back. So | tried some experiments with
caching the result objects and reusing them (after
checking Is_Shared()) if they could be reused.

My experiments, however, proved this caching
was not useful. Tcl seems to do a good job of
avoiding object allocation thrashing when
repeatedly creating and destroying similar objects
in repeated callbacks.

Writing Efficient Tcl Code

One area | don’t have much control over is how
the users will write these extensions. For
example, simply removing the {} from the expr
commands in our Tcl script resulted in total
execution time growing by nearly 300%. | need to
make sure our documentation encourages users
to write their scripts efficiently.

One way | can encourage users to write efficient
code is to provide interfaces for our object that
encourage high performance idioms. | suspect
that users will generally work with these objects
with a for loop similar to the one presented below.
Profiler runs show that the code is spending a lot
of time in the Tcl interpreter simply running the
script. | decided to look at providing some sort of
internal iteration and indexing capability as a part
of our command object. In our first example, the
Tcl code used a for loop:

set slice count [$enc slice count]
for { set i 0 } { $i<$slice count } {
incr i } {
slice specific code here
uses index $i to access data
from the $enc command object
by passing it in as an argument

}

Our new object command will try to remove the
need for some of the loop bookkeeping and

passing around the index variable $i above. |
now use a while loop that looks like this:

set 1 [$enc first slice]

while { $i > 0 } {
slice specific code here
index is implicit $enc will
access data from the current
array slice.
set i [$enc next slice]

}

Trying this internal index approach provides some
promising results. | ran this test on the second
test data set that has more data slices in each
test device (thus requiring more indexing when
the script runs) and | get the following results:

Builtin iterator test

70
60

40 =
30 =
20 =

seconds

Builtin original for iterator
loop

script run

This very simple change gave us a respectable
6% gain in device recognition performance. It is
easy to imagine adding other capabilities to the
command object that might result in similar gains.
Perhaps we could improve performance even
more with some simple variables and expression
handling and ... Wait!, that sounds like another
interpreted compiler, exactly what we’re trying to
get out of doing in the first place!

Threading vs. Non-Threading build

The first implementation of this functionality used
a non-MT version of Tcl 8.3. As shown in the
following performance comparison, the non-MT
code runs faster, but limits concurrency. In this
non-MT implementation, our device recognizer
still runs multi-threaded, but access to the Tcl
interpreter is serialized.

MT vs. non MT Tcl builds

300 -
250 :
8.4 MT Build
w 200
2 8.3 non MT
g 10 build
® 100 Built-in
50
0 T T T 1

1.2 3 4 5 6 7 8

Threads

Conclusions

Tcl is often used as a top down scripting
environment interface. The Device Property
calculation engine for the Calibre design
verification tool shows that it can also successfully
be used to provide a high performance user
extension interfaces even in performance critical
applications where the Tcl procs will be called
millions of times in multi-threaded code. In these
situations, it is important to pull out all the stops to
gain maximum performance when calling the
script. This is done by:

* making use of TCL_EVAL_GLOBAL

* making use of the byte compiled
interfaces like Tcl_EvalObjv

* taking care of as much call setup as
possible before the performance critical
repeated calls are made

* providing command object interfaces that
allow your command object to carry out
data and compute intensive tasks.

* making sure that your Tcl script is written
to perform well (remember eval { ... }).

Running this device calculation on a real chip
design using 8 CPUs only resulted in no increase
in device recognition time.

Appendix

Test environments used for experiments -

AMD Athlon machine
jmachine info:
OS system:

Linux
OS release:

2.6.9-11.ELsmp
OS version:

#1 SMP Fri May 20 18:25:30 EDT 2005
CPU:

4300
CPU Speed:

2194 MHz Athlon
Number of CPUs: 8
Vendor Release Version:

RedHat Enterprise 4 Update 1

Memory: 63927 Mbytes
Tcl Version: 8.4 — MT build
Tcl Version: 8.3 — non MT build

