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Abstract--The NSCL is a national nuclear physics research 

facility.  Modern experiments in nuclear physics feature an 
increasing number and type of remotely controlled electronics 
including detector bias power supplies, discriminators, 
amplifiers and gas handling systems.  These devices in turn 
connect to the computers controlling them via a wide variety of 
interfaces including Ethernet, CAN, VME, and even the 
venerable CAMAC. 

 
   This paper will describe an open, extensible control system 

for these sorts of devices that uses a pair of Metakit databases in 
an attempt to impose some sort of order on this chaos.  The 
system described allows system integrators to rapidly add 
support for new devices and even new interface subsystems.  
Experimenters, using a simple GUI, can describe the devices in 
their experiment.  This description of the experiment drives the 
automated generation of a control panel for the devices they use. 

I. BACKGROUND AND GOALS 

The National Superconducting Cyclotron Laboratory 
(NSCL) is an NSF funded national laboratory dedicated to 
basic research in heavy ion nuclear physics.   The NSCL is 
the world’s premiere facility for studies of  nuclei far from 
stability, and a leading candidate for the location of the Rare 
Isotope Accelerator project.  Research at the NSCL spans a 
wide variety of topics including  nuclear structure, 
spectroscopy, nuclear statistical mechanics nuclear 
astrophysics, and even nanotechnology.  Additionally the 
Single Event Effect (SEE) beam line funded by the National 
Aeronautics and Space Administration (NASA) allows 
researches to expose prototypes of satellite instrumentation 
systems to radiation fields that can be expected in-flight.  
The NSCL serves a user community spread out across the 
U.S. and has also hosted experimenters from the European, 
Asian and other international collaborations. 
 
The preparation time-scale of typical NSCL experiments is 
short relative to that of the high energy physics experiments 
for which most software toolkits have been built.  Where an 
experiment such as ATLAS at the LHC has had over a 
decade to prepare the software and hardware packages prior 
to its first beam-time,  the turnaround from proposal to 
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experiment at the NSCL can be under a year.   While 
collaborations preparing large scale high energy physics 
experiments can take the time to integrate sets of loose 
software toolkits into finely tuned experimental support 
software, NSCL users must have access to software tools 
that require very little integration.  Preferably software 
components that approach the state and quality of a finished 
application. 
 
  In addition to the digitization hardware described in a 
paper presented at tcl2004[1], experimenters must have 
accurate and simple control over a variety of programmable 
electronics.  The settings for these programmable 
electronics are usually tuned prior to production running, 
and remain stable over the course of several runs within an 
experiment.  These settings comprise an important set of 
parameters that partially describe the conditions of a data 
taking  run.  Control systems for these sorts of electronics 
devices are traditionally called slow control systems to 
distinguish their relatively lax timing requirements from 
those of the main experimental data flow. 
 
This paper describes a development initiative to produce an 
open framework for slow control that approaches the 
readiness and quality of a finished program.  The goals of 
this initiative were to prototype a system that: 
 

1. Is open and extensible 
2. Allows experimenters to quickly define their 

electronics without detailed knowledge of how 
modules are controlled 

3. Supports the generation of a control panel for the 
entire slow controls system of an experiment from 
the experimenters description of the electronics 

4. Supports the ability to record and restore the 
settings of sections of or the entire control system. 

 
  
Subsequent sections of this paper describe the data model on 
which the software was built, and how it supports the 
necessary extensibility of the system.  We describe the roles a 
user may take when interacting with the system and the 
expectations for each role.  The software structure is described 
along with the applications that have been built to support 
each anticipated user role.  I will wrap up the paper with a 

Slow Controls for Experiments in Nuclear 
Physics 

R. Fox1 



 2

summary of the status of the software and an evaluation of the 
degree to which the effort has been successful. 

II. DATA MODEL 

The slow control system is driven by a pair of Metakit[2] 
databases.  The first of these describes the set of supported 
hardware, while the second describes the experiment itself.    
 
We call the first of these databases the “system” database, and 
the second one the “experiment” database.  The system 
database lives in a centralized location.  One instance of the 
system database exists so that changes to this database are 
picked up by all applications next time they are run.   The 
system database changes infrequently over the lifetime of 
several experiments. 
 
 The experiment database describes the set of modules used by 
the experiment, and contains saved settings created throughout 
the lifetime of the experiment.  An instance of the experiment 
database (usually located in the experiment’s account home 
directory tree) exists for each experiment. The configuration 
part of the experiment database may change several times 
during the planning and initial test runs of an experiment.  
The settings  part of the experimental database will be 
somewhat fluid during the initial runs, as the electronics are 
tuned to maximize the detector systems, but tends to be 
relatively stable once an experiment enters production mode. 
 
Subsection A will describe the system database. Subsection B 
will describe the experiment database.  Finally, Subsection C 
will show how a bus and a module type in that bus are 
represented as well as how that module type is represented as 
configured into an experiment. 
 

A. The system database 

Devices supported by the slow control system can connect to 
host computers in a wide variety of ways ranging from classic 
instrumentation busses to Ethernet or CAN[3] networks.  Each 
supported module must be described in a way that makes it 
possible to determine solely from the information in that 
database: 
�� The set of  supported instrumentation busses 
�� How addressing on each instrumentation bus works. 
�� For each supported module the instrumentation bus it 

lives in. 
�� For each supported module how the module is to be 

controlled both by the user and by the software. 
 
The data model for the system database is shown in Figure 1.  
The Module Types table contains one entry for each 
supported electronic module.  Each module is uniquely 
identified by an integer key, has a descriptive name, and an 

integer code that identifies the instrumentation bus in which 
the module lives.  The module descriptive name is used to 
generate the name of a Tcl package that knows how to control 
the module.  The bus type code is used to join module to a 
record in the Instrumentation Busses table. 
 
The Instrumentation Busses table defines the set of 
instrumentation busses that are known to the system. Each 
instrumentation bus is given a unique integer code and a 
meaningful name.  The code is used not only to join a 
supported module to the bus it supports, but also to join the 
bus record to records in the Bus Address Fields table that 
describe the addressing of each bus. 

cd System database

BusAddressFields

 «column» moduleBusT ype:  SM ALLINT
 «column» addressFieldNum ber:  INT EGER
 «column» addressFieldNam e:  VARCHAR(50)
 «column» lowLim it:  BIGINT
 «column» highLim it:  BIGINT

InstrumentationBusses

 «colum n» m oduleBusType:  SMALLINT
 «colum n» Busname:  VARCHAR(50)

+ «unique» UQ_Instrum entationBusses_m oduleBusType()

ModuleTypes

 «column» m oduleType:  SMALLINT
 «column» M odelNam e:  VARCHAR(50)
 «column» m oduleBusT ype:  SM ALLINT

+ «unique» UQ_ModuleTypes_m oduleType(SMALLINT )

moduleBusT ype

1..*

m oduleBusT ype

Nam e:
Package:
Version:
Author:

System  database
Data M odel
1.0
Ron Fox

 

Figure 1 Data model of the system database 

The Bus Address Fields table is used to describe how 
addressing on a bus works.    Each bus may have any number 
of address fields.   In a  CAMAC system, for example one will 
typically address a module by three fields, Branch, Crate, and 
slot.  On the VME bus, a single base address field, and an 
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associated address space (address modifier) code addresses a 
module, while a high voltage power supply with an Ethernet 
interface may be identified by the four octets of its IP address. 
Each record of the Bus Address Fields table describes a single 
bus address field and contains: 

1. The bus type code (moduleBusType) identifying 
which bus the record belongs to. 

2. The address field number, which provides field 
ordering. 

3. The name of the address field, which identifies the 
field to the human users of the system. 

4. Low and high limits on the values of the address field 
(for example a CAMAC crate in a parallel branch 
highway system may have a low limit of 1 and a high 
limit of 7). 

 
 

B. The Experiment Database 

The experiment database is a set of tables that describe the 
current experiment setup. The experiment database also stores 
saved settings created by the experiment control panel.  The 
data model for the experiment database is shown in Figure 2. 
 
The starting point for the experiment configuration is the 
Configuration table.  Each entry in this table represents a 
module is being used in the experiment.  The moduleType 
field is an integer code that joins this module to a module type 
in the  Module Types table in the system database.   The 
moduleId field is a unique identifier for that module within the 
experiment, and is used to join modules across the other tables 
in the experiment database.  The moduleName is a human 
readable name chosen by the experimenter to identify this 
module within the experiment. 
 
The moduleAddresses table contains actual addressing 
information for each module in the Configuration table.  The 
records in moduleAddresses contain the address values 
assigned the module for each ordered field in the bus in which 
the module lives.  These addresses are assigned to the module 
by the experimenter when configuring the system.  They are 
used by the module’s physical driver to establish a connection 
to the hardware.  
 
In the course of running an experiment, the user may decide 
the slow control system is in a state that  is worth saving for 
later re-use.  The bottom set of tables in Figure 2 are 
responsible for maintaining these settings.   
 
The main problem I had to solve for the settings database, was 
how to describe  the settings associated with modules in an 
extensible system.  The slow control system can control high 
voltage controllers, discriminators, amplifiers, and modules 

that I have not yet seen and know nothing about.  A fixed set 
of setting attributes would never be workable, or extensible. 
Instead, I chose to use property lists to store setting 
information.  A property list is a set of name/value pairs.  In 
Tcl,  a property list is easily represented by a list of 2 element 
sub lists.  For example: 
 
{{hv1 100} {hv2 205} {ilimit 200} ...} 
 
Is a property list that might describe a 2 channel ISEG 
VME[4] detector bias supply, that is set with channel 1 at 100 
volts, channel 2 at 205 volts, and with a global current limit 
trip point set at 200mA and “...” means that there are further 
properties not shown in this example. 
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cd Experiment configuration

SettingDirectory

 «column» settingId:  SMALLINT
 «column» settingNam e:  VARCHAR(50)
 «column» com ment:  VARCHAR(255)
 «column» tim eStamp:  DAT ET IME

+ «unique» UQ_Settings_settingId(SM ALLINT )
+ «unique» UQ_Settings_settingNam e(VARCHAR)

SettingsValues

 «colum n» settingId:  SM ALLINT
 «colum n» moduleId:  SM ALLINT
 «colum n» propertyNam e:  VARCHAR(50)
 «colum n» propertyValue:  VARCHAR(50)

moduleAddresses

 «colum n» m oduleId:  SM ALLINT
 «colum n» addressFieldNumber:  INT EGER
 «colum n» addressFieldValue:  BIGINT

Configuration

 «column» m oduleId:  SMALLINT
 «column» m oduleNam e:  VARCHAR(50)
 «column» m oduleType:  SMALLINT

+ «unique» UQ_Configuration_m oduleNam e()

settingId

m oduleId

m oduleId
1..*

Name:
Package:
Version:
Author:

Experiment configuration
Data Model
1.0
Ron Fox

 

Figure 2 The experiment database 

The user will want to be able to identify, and select the set of 
property lists that make up a useful set of saved settings .  This 
function is provided by the  SettingDirectory table.  This table 
contains, for each set of saved settings: 

1. A user supplied name for the setting. 
2. A user supplied optional comment. 
3. A system provided timestamp indicating when the 

`1setting was created. 

4. A system provided unique setting id used to join the 
SettingDirectory entry to associated property list 
elements in the SettingsValues table. 

 
The SettingsValues table contains the property list elements 
for all of the settings.   Each record in this table contains: 

1. A setting id that corresponds to a unique setting id in 
the SettingDirectory table identifying which setting 
this element belongs to. 

2. A moduleId that corresponds to a unique moduleId in 
the Configuration table, that identifies which 
module’s property list this element is a member of. 

3. The name of the property 
4. The value for the property. 

 

C. Database Examples 

 
This section provides the following examples of database 
content: 

1. The description of the CAMAC parallel branch 
highway subsystem as it might appear in the system 
database. 

2. The description of a CAEN C805[5] constant fraction 
discriminator as it could appear in the system 
database. 

3. The configuration of a CAEN C805 constant fraction 
discriminator as it could appear in the experiment 
database. 

 
 

1) Describing the CAMAC parallel branch highway 
system 

 
The CAMAC parallel branch highway system is an 
instrumentation bus and interconnection system that were 
designed for large CAMAC based setups.  The specification 
defines a CAMAC system as consisting of one or more 
branches.  Each branch has up to 7 instrumentation chassis 
called crates numbered 1-7.  Each crate has 23 usable slots 
and modules are geographically addressed within the crate.  
One CAMAC[6] interface used at the NSCL is the CES CBD 
8210[7]. The 8210 is a VME based branch highway controller 
that 
supports up to 8 branches per VME crate. The NSCL Data 
Acquisition system supports up to  8 VME crates per host.  
The branch highway driver base addresses are determined by 
the branch number set in each controllers configuration 
switches. 
 
  To summarize, addressing an NSCL CAMAC module 
requires the following address fields: 
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Field name Low limit High limit 
Vmecrate 0 7 
Branch 0 7 
Crate 1 7 
Slot 1 23 

Table 1 Address fields for a CAMAC branch highway 
system 

Suppose the branch highway system was allocated bus id 0.  
The Instrumentation Busses table entry for the CAMAC 
branch highway system might contain: 
 
Field Contents 
moduleBusType 0 
Busname CAMAC Branch highway 

Table 2 Instrumentation Busses record for CAMAC 
Branch highway 

There would be four records in the BusAddressFields table 
that describe this bus: 
   
bustype fieldno name lowlimit hilimit 
0 0 VmeCrate 0 7 
0 1 Branch 0 7 
0 2 CamacCrat

e 
1 7 

0 3 Slot 1 23 

Table 3 Fields of a parallel branch highway 

2) The CAEN C805 in the system database 
The CAEN C805 is a 16 channel constant fraction 
discriminator housed in a single width CAMAC module.  
Continuing the previous example.  If this module had been 
allocated module Id 12, it would have the following record in 
the ModuleTypes table of the system database: 
 
Field Name Contents 
moduleType 12 
ModelName CAENC805 
moduleBusType 0 (CAMAC Branch Highway) 

Table 4 CAEN C805 in the system database 

 
3) A C805 constant fraction in an experiment. 

 
Suppose an experimenter has decided to use a  CAEN C805 
described as in the previous two examples.  She decides to call 
the module detector hits and installs it in  slot 4 of CAMAC 
crate 1 in branch 0 of VME crate 0.  If the experiment 
database has allocated module id 1 to this module, the 
Configuration table record for this module will contain: 
 

Field Contents 
moduleId 1 
moduleName detector hits 
moduleType 12 (CAENC805 module type) 

Table 5 Configuration table entry for a CAEN C805 

The moduleAddresses table of the experiment database will 
contain four records for this module which will contain: 
 
moduleId addressFieldnumber addressFieldValu

e 
1 (detector hits) 0 (Vmecrate) 0 
1 1 (Branch) 0 
1 2 (CamacCrate) 1 
1 3 (Slot) 4 

Table 6 module Addresses of a CAEN C805 

III. USER ROLES 

The slow controls system software has been defined with three 
user roles in mind.   A user fulfilling each role has specific 
functions that he or she is expected to perform.    These roles, 
in order of decreasing sophistication are: 
�� System integrator 
�� Experiment designer 
�� Shift operator 

 

A. The system integrator 

 
The system integrator is the only role that requires 
programming knowledge.  The system integrator is 
responsible for ensuring that the required modules have 
drivers and that they and the busses they live in are correctly 
described in the system database.   To support a new module 
type, the system integrator must: 
�� Create a driver package for the module and install it 

where it will be found by Tcl automatic package loader. 
Typically this driver will be implemented as a pair of 
packages, a GUI package which is responsible for 
managing an instance of the user interface for the 
module in a frame, and a hardware interface package 
that is responsible for abstracting communication with 
hardware. 

�� If the bus in which the module lives is not yet in the 
system database, the system integrator must describe 
the bus, its address fields and the limits on each field. 

�� The system integrator must add an entry to the module 
types table of the system database. 
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The system integrator has a pair of applications that she can 
use to edit the system database.  These applications are bus 
and module editors.   
  
The bus editor allows the user to create a  new bus or to edit an 
existing bus.  The screen shot in Figure 3 , shows  how the 
description of the CAMAC Branch highway might look when 
being edited.  Clicking the New button creates a new address 
field which the user can fill in and Accept.  Clicking on a line 
of the field table loads its definition into the form allowing it 
to be modified.  Finally, the selected table line can be moved 
up or down in the field order using the arrow buttons to the 
right of the table.  Once the fields are defined as desired, the 
Ok button saves the bus definition in the database.  The 
Cancel  button exits the editor without making any database 
modifications. 
 
The module definition editor  is shown in Figure 4.  The table 
at the top of the GUI lists the set of currently supported 
module types.  This table grows scrollbars if needed.  Creating 
a new module is a matter of clicking the New button, typing 
the module type name in the Type entry, and selecting a bus 
from the Bus drop down list.   If a module has been described 
as living in the wrong  bus type, clicking its line in the table 
 

 

Figure 3 Editing a bus address definition 

loads its entry into the middle form where a new bus can be 
selected from the drop down list.   The OK button saves all 
database changes, while the Cancel button exits and leaves the 
database unmodified. 

B. The Experiment Designer 

The experiment designer is responsible for the electronics 
design of the experiment.  From the point of view of the slow 
controls system, this means that she must fill in the 
Configuration and moduleAddresses table for each module 
that will be under the control of the system. 

 

 

Figure 4 The module definition application 

 
 
To do this, the experiment designer will interact with an 
experiment editor.  The experiment editor allows the 
experiment designer to add, remove and edit modules that are 
in the experiment configuration.  The experiment editor is 
shown in action in Figure 5. 
 

 

Figure 5 The experiment editor 

 
The modules that are currently configured into the experiment 
are shown in the table at the top of the GUI.  If a line of this 
table is clicked, the addressing information for the module is 
loaded into the lower part of the GUI.  where it can be edited.  
Hitting the Delete key deletes the selected module. The New 
button allows the user to type a new module definition into the 
lower table.  The module type is selected from the set of 
supported modules through the drop down list, and the name 
is typed in the name field.  Once the module type is selected, 
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the appropriate address field names get loaded into the table, 
and the user can enter values for each field.    
 
The Accept button either adds the new module or accepts an 
edit to an existing module.  Accept also range checks each 
address field against the limits defined for that field in the 
system database, refusing to commit the change if  an address 
field is invalid.   Clicking on Ok writes the new experiment 
definition to the experiment database.  Clicking on Revert 
reloads the top table from the database, and clicking on 
Cancel dismisses the editor without making any changes to 
the database. 
 
 

C. Shift operators 

Shift operators are the people who actually run the experiment.  
They will be operating the controls for the experimental 
electronics defined by the experiment designer.    They interact 
with the electronics through a control panel application.  
 
.When the control panel starts, it reads the experiment 
database to determine the set of modules, their types and 
locations in the bus.  For each module, a page is created in  a 
BLT[8] tabbed notebook widget.  The page widget is  handed 
to the driver for the module along with the bus addressing 
information.  The driver is responsible for establishing 
communication with the specific device,  a drawing the GUI 
for that device in the page it was given, and responding 
appropriately to events in the GUI.  Existing pages are 
implemented as Snit[9] mega widgets. 
 
A sample control panel page for the CAEN C808 
discriminator is shown in Figure 6. 
 

 

Figure 6 The control panel in action 

 
The pages of the notebook are created with tear-off enabled in 
case the user wants to view  multiple pages simultaneously. 
 
The File menu  provides access to the saved settings part of 
the experiment database.  Figure 7 shows the dialog that pops 
up in response to the File->Restore... menu entry. 

 

Figure 7 The Settings restoration dialog 

The user selects a setting  line and clicks Ok to load that 
setting.  Note the timestamps and comment fields.  The table 
will grow scroll bars as needed.    The File->Save... menu 
entry brings up a similar dialog with the addition of a New 
Button that allows you to create a new setting, rather than 
overwriting an existing setting. 
 
When settings are saved, the control panel simply asks each 
page driver to return its property list.  These get tagged with 
the module and settings ids and written to the database.   
Similarly, when a setting is restored, the control panel 
application distributes the appropriate property list to each 
page driver and that driver interacts with the hardware so as to 
restore the settings described by the property list.  Periodically, 
the control panel  automatically saves settings in a “failsafe” 
setting allowing the user to return to a recent state in the event 
of system failure or power outage. 

IV. IMPLEMENTATION 

The system block diagram is shown in  Figure 8. 
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Heavy use was made of Snit types and Snit mega widgets.  
This is seen  most clearly in the interface between the control 
panel and the Page drivers.   Page drivers are Snit mega 
widgets, Page drivers must  implement  a constructor that 
recognizes an –address option that will contain the ordered 
address list, as well the widget path to the page in which they 
must draw their GUI.  They are also responsible for 
implementing two methods in order to support the settings 
save/restore subsystem:  
 
�� getProperties must return a property list that will 

restore the device to its current setting. 
�� setProperties must accept a property list and restore the 

device to the state described by that list. 
 
While figure 8 only shows a single concrete driver, additional 
drivers would be added by the system integrator to support 
other module types. 
 
The other salient feature of figure 8 is the database isolation 
modules.  All database accesses go through these modules 

insulating the system from changes in both database structure 
and database package choice. 
 
The entire system consists of  about 2800 lines of Tcl/Tk/Snit 
code including integration tests.  Unit tests, for non-graphical 
modules make up another 1200 lines of tcltest code. 
 

V. STATUS AND CONCLUSIONS 

An implementation of this system is in use.  Currently two 
discriminator modules are supported while the utility and 
usability of the software are being evaluated.    
 
While it was relatively simple to use Metakit to implement the 
database, I wonder if an implementation on top of an SQL 
based system such as SQLite[11] might have made the 
management of joins between tables much simpler to handle.   
If the system transitions from its current prototypical 
implementation to a production implementation, the insulation 
of the applications from  the database via the database adaptor 
modules should make such a switch relatively painless. 
 

System
database

Experiment
databaseSystemDatabase ExperimentDatabase

BusEditor ModuleEditor ExperimentEditor

ControlPanel PageDriver
+Constructor()
+getProperties()
+setProperties()

CAENC808
+Constructor()
+getProperties()
+setProperties()

For example

Modules *

 

Figure 8 System block diagram 
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There are several shortcomings in system design that I would 
remedy in a reimplementation of the system: 
 
�� It might be well to formally recognize the split between 

physical device driver and page driver.  This would 
allow system integrators to provide several alternative 
GUI’s for a single device. 

�� Regardless, the driver package names should be in the 
database rather than derived from the module name. 

�� Some thought should be given to how to handle 
multiple interface types to the same bus system.  For 
example, we have illustrated the use of CAMAC via a 
CES CBD 8210 VME branch highway system.  Also 
supported by the NSCL are the Wiener VC32/CC32 
VME[11] to CAMAC interface, and support has also 
been contributed for the Wiener PCDA-CC32[12] PCI 
to CAMAC interface.  It is likely that support will be 
contributed to for the Wiener  USB-CC USB[13] 
CAMAC interface as well. These all have slightly 
different addressing schemes, however sufficient 
insulation of the page driver from the underlying 
hardware driver should make it possible to re-use the 
control interface even if the underlying hardware driver 
for each of these is slightly different. 

�� The model of addressing via a set of numeric fields is 
somewhat simplistic.   For example, a device that 
contains an Ethernet interface should be addressable via 
its DNS name.  In this more open model of addressing, 
more complex validation is required, perhaps requiring 
a system integrator to either select validation scripts 
from a set of pre-written scripts or to supply a new 
script to support unforeseen validation needs. 

 
 
Things that work well: 

�� The choice of a property list representation of device 
settings has made it quite easy to build the save and 
restore subsystem on top of modules with unknown 
parameter sets. 

�� The automatic derivation of the user interface from 
the experiment configuration database is very 
friendly to the user. 

�� The use of Snit mega widgets to produce the user 
interfaces of both the page drivers and the GUI’s of 
the various configuration utilities simplified the user 
interface logic. 

�� While Metakit may not be the best choice of a 
database package, nonetheless, the limited set of 
queries required by the system meant that once these 
queries were written it nice to be able to rely on a 
debugged database package as a basis for 
implementing the data model of the system. 

 

 
All in all this was an  enjoyable project.  It has been 
contributed to a group at Oregon State University which uses it 
as is in the experiment design and shift operator roles, and 
have been favorably impressed with the system’s 
configurability and stability.   
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