
New dialogs interface in AlphaTcl

Vince Darley and Lars Hellström

November 11, 2001

Abstract

This document describes the programmer’s interface to the generic dialog proce-
dures available in AlphaTcl. This is quite independent of the numerous, but rather
special,Alpha preference dialogs, which are instead based entirely on information
given in the preference declarations.

Besides describing the interface, this document also contains the (highly docu-
mented) master source for the implementation of this interface.

Contents

1 Usage 2
1.1 Dialog item types. 4
1.2 Dialog command options. 7
1.3 Button scripts. 8
1.4 Preferences and dialogs. 9
1.5 The width of dialog text. 10

2 Implementation 11
2.1 Thedialog command . 11

2.1.1 Basicdialog options . 12
2.1.2 Newdialog options . 15
2.1.3 The drag-and-drop muddle. 16

2.2 Measuring text . 19
2.3 Storing and updating values in dialogs. 24
2.4 Building and handling dialog material. 26

2.4.1 Construction and post-processing scripts. 33
2.4.2 TextEdit item types. 35
2.4.3 Uneditable item types. 37
2.4.4 Elementary control item types. 39
2.4.5 Menu item types. 40
2.4.6 specialSet item types . 41
2.4.7 Listpick item types. 46
2.4.8 Miscellanea. 47

2.5 Main dialogs interface . 48

1

2.6 Dialog items and preferences. 57
2.7 To do .58

3 Examples 58
3.1 An elementary example. 59
3.2 A smorgasbord of types. 59
3.3 Button manœuvres. 61
3.4 Editing named configurations. 62

Conventions used in this paper

In syntax descriptions, atypewriter font is used for explicit text. A named syntactic
unit is written as〈unit〉. In the special but very common case that the syntactic unit is
precisely a word for Tcl, it is instead written as{word}, i.e., with braces instead of angle
brackets. Optional and repeated elements in syntax descriptions are denoted as in regular
expressions, using question marks, asterisks, and plus signs, e.g.

set {var-name} {value}?
list {item}∗
append {var-name} {string}+

Parentheses can be used to group syntax elements, e.g.

return
(
-code {code}

)? {string}

The same conventions are used for specifying the structure of lists.

1 Usage

The generic dialogs interface provides the two general purpose dialog creatorsdialog::makedialog::make (proc)
anddialog::make_paged. The basic syntax of the former procedure is

dialog::make 〈option〉∗ {page}+

where each{page} is a list with the structure

{page name} {item}∗

and each{item} in turn is a list with the structure

{type} {name} {value} {help}?

Each{item} gives a logical description (type, name, and initial value, but no metric infor-
mation) of an item in a dialog.dialog::make generates from these the corresponding
dialog material(argument sequence for thedialog command), callsdialog with those
data, and interprets the result. Thendialog::make returns the list of the final edited
values of the dialog items (just a flat list), or returns an error if the dialog was cancelled.

An example should serve to clarify this. The command

dialog::make\

{First {var Hey 1} {flag blah 0} {folder hey ""}}\

{Second {var Hey 2}}

2

will create a dialog with two pages, namedFirst andSecond. The first page contains
three dialog items: a variable (editable text box), a flag (checkbox), and a folder item.
These are namedHey, blah, andhey respectively, and have current values1, 0 (not
checked), and"" (empty string, i.e., not set) respectively. The second page contains a
single variable also namedHey which has the current value2. Immediately clickingOK
(the dialog has oneOK and oneCancel button) will return the list

1 0 {} 2

but if you first type e.g.Hay in the firstHey box, typeshey hey hey in the second, and
checks theblah checkbox before you clickOK then the returned list will instead be

Hay 1 {} {hey hey hey}

Thedialog::make_paged procedure is similar, but the argument structure is slightlydialog::make_paged (proc)
different. The basic syntax is similarly

dialog::make_paged 〈option〉∗ {page}+

but here each{page} is a list with the structure

{page name} {keyval list} {item list}
and the return value is a list with the structure(

{page name} {keyval list}
)∗

The idea here is that the data structure that the values are stored in is the same in both input
and output, so that the caller can almost completely avoid reconstructing large structures.
This is of course given that the item values are normally stored as{keyval list}s, but that
is a very convenient format in Tcl, thanks to thearray get andarray set commands.

In general, a{keyval list} is a list with the structure(
{key} {value}

)∗
i.e., with alternating{key} and{value} elements. The relative order of these pairs is
irrelevant, the only thing that matters is which{key} goes with which{value}. When
such a list is given toarray set it will use the{key}s as indices into an array and set
those entries to the corresponding{value}s. This makes it fairly simple to get the value
corresponding to a given key: afterarray set local {keyval list}, you can access the
value with key$key as$local($key). It is also simple to make modifications when
the data is stored in that format: afterset local($key) $newval, an array get\
local will return a modified{keyval list} (note however that this may return the pairs
in a different order than before). Usingarray get andarray set in this way is not
significantly slower thanlreplace on a list of only the values (it might even be faster
in some cases) but it is much easier to program. The keyval list also has the important
advantage of being a much more flexible data structure, since each item (key–value pair)
is independent of the others (whereas in a list the index of an item depends on how many
other items there are before it), hence items can be added or removed without requiring
much changes to existing code.

Returning to the subject ofdialog::make_paged, the structure of the{item list}
still remains to be explained. Each item in this list corresponds to one dialog item of the
page in question. The items are themselves lists with the structure

3

{key} {type} {name} {help}?

where the{key} identifies the value in the{keyval list} that should be used for this item.
The same{key} can be used for any number of items as long as they are on different
pages. Thus ifmake_paged is used instead in the above example, the command could be

dialog::make_paged\

{First {a 1 b 0 c ""} {{a var Hey} {b flag blah} {c folder hey}}}\

{Second {c 2} {{c var Hey}}}

and the return value if no item is edited would be

First {a 1 b 0 c {}} Second {c 2}

whereas the same editing as before would produce

First {a Hay b 1 c {}} Second {c {hey hey hey}}

An obvious question now is of course which of thedialog::make anddialog:
:make_paged procedures one should choose for each specific task. The answer is that
this depends mainly on how items on different pages are related to each other. If each
page is a unit of its own thenmake_paged is preferable, but if items on different pages
are no less related than items on the same page thenmake should work just as well. The
editGroup procedure, whose implementation can be found in Subsection3.4, gives thedialog::editGroup (proc)
canonical example of the former situation. For single page dialogs, where the above rule
gives no guidance, one should rather look at what happens to the item values immediately
before and after the call. If they are simply fetched from some variable and then stored
back into it thenmake_paged is probably a more convenient choice, but if you need to
pre- or postprocess the item values thenmake probably has less overhead. Dialogs with
many uneditable items (such as those produced by theGet Info commands in the Mac
Menu) or with only a few values altogether are probably easier to create usingmake.

1.1 Dialog item types

Most {type}s consist simply of a single word; these are calledsimpletypes. All types in
the above example are simple. The currently defined simple types are

appspec An application specifier, for use with e.g.exec, launch, or AppleEvent com-
mands (depending on platform). The value is viewed as the file path of the appli-
cation executable, but that is only one of the two forms that the value can take. If
the value is six characters long and the first and last character both are apostrophes,
then the four characters between them are interpreted as the Mac OS ‘sig’ (creator
code) of the application. This latter format is preferred when it can be used. It could
also be that more formats will have to be added if support for the Tk commands
send and/ordde (both of which are very non-Mac OS) is needed.

At the time of writing, there is no direct support for application specifiers in
other parts of AlphaTcl, but the API stuff [2] by Fréd́eric Boulanger will provide
this support. If you do not use that, will have to do some converting before you can
use the value of anappspec.

4

binding A key binding. It is viewed as plain text, e.g. ‘Cmd-Opt-L’, but the format is
the one used to put key bindings in menus. Usekeys::toBind to turn the value
into something suitable for theBind command.

colour A popup menu from which you can choose amongst the named colours that are
defined (blue, green, etc.).

date A date and time of day. This is viewed and entered in a human-readable ‘short date
format’, but the value of the item is in seconds relative to an “epoch” that depends
on what version ofAlphaor Alphatkyou are using, just as is the case with the value
returned by e.g. thenow command.

It has been suggested that these values should instead be in ISO 8601 format, i.e.,

〈yyyy〉〈mm〉〈dd〉T〈HH〉〈MM〉〈SS〉
where

〈yyyy〉 is the year AD (four digits),
〈mm〉 is the month (01–12),
〈dd〉 is the day of month (01–31),
〈HH〉 is the hour (00–23),
〈MM〉 is the minute (00–59), and
〈SS〉 is the second (00–59).

This has the important advantage of being decipherable without the assistance of
Tcl. It is also independent of which the current epoch is, which could help avoiding
some Y2K-type errors.

file The file path of an existing file.

flag Simple checkbox. Can assume the values0 (not checked) and1 (checked).

folder The path to an existing folder.

mode A popup menu from which you can choose amongst the installed modes, with
names given as in the mode menu on the status bar. There is also a<none> item in
the menu.

modeset A list (or set) of modes, with the same name format as for themode type (except
that there isn’t a<none> mode). The value is viewed as a list and edited in a multi-
choice listpick dialog.

password An editable text string, but shown in a box that is too small for anyone to see
what is typed. Meant for passwords and similar material that shouldn’t be shown
on the screen.

Note: As a precaution, the text that is in this box when the dialog is opened is
not the actual value. Thus you cannot edit this value, you can only retype it.

searchpath A list of folders, each of which can be added, removed, or changed inde-
pendently of the others.

5

static The value is simply shown, but cannot be edited. Useful for informative pur-
poses. There is no result from this kind of item.

text The name is shown, but the value is ignored. Could be used as a subheading in a
dialog page. There is no result from this kind of item.

thepage An item of this type is not shown in the dialog and its initial value is ignored,
but it returns the name of the page that was current when the dialog was closed.
(That is significant in e.g. the standard installation dialog.)

url An universal resource locator (URL). You can type it in explicitly, pick a local file,
or use the frontmost page in your browser.

var Editable text string.

var2 Editable text string, whose box is two lines tall.

In general, a{type} is a list whose first element serves as type identifier (selecting
which code should make the item) whereas the other elements contain additional data
needed to completely specify the type. In addition to the above simple types, there are
also a couple of complex types, as listed below.

menu A popup menu. The format of this{type} is

menu {item list}
where the{item list} is the list of items to put in the menu. The value will be one
of the elements in the{item list}.

menuindex A popup menu. The format of this{type} is

menuindex {item list}
where the{item list} is the list of items to put in the menu. The value will be an
indexinto the{item list}.

multiflag A group of checkboxes. The format of this{type} is

multiflag {checkbox title list}
where the{checkbox title list} gives the titles given to the individual checkboxes.
The value of this item is alist, with the same number of items as the{checkbox title
list}, and in which each element is either a0 or a1. The name of themultiflag
item is put as a heading above the group of checkboxes, which are placed in two
columns.

subset A subset of a given set, which is chosen in a multichoice listpick dialog. The
format of this{type} is

subset {item list}
where the{item list} is the list of items to show in the listpick dialog. The value
will be a sublist (which can be empty) of the{item list}.

There are also two other complex typesglobal andhidden defined, but those are kind
of special and to not contribute anything to what the user can see.

Some effort has been put into ensuring that additional types can be defined without
procedure redefinitions. See Subsection2.4for details and examples.

6

1.2 Dialog command options

What remains to be explained about themake and make_paged procedures is their
〈option〉s. The-defaultpage option has the syntax-defaultpage option

-defaultpage {page name}

It specifies on which page the dialog should open. If the option is omitted then the dialog
opens on the first page. The-title option sets the title of the dialog window; it has the-title option
syntax

-title {dialog title}

This option has no effect inAlpha 7, where the dialog window has no title.1

The -width option sets the width of the dialog window (the height is determined-width option
automatically and depends on the height of the dialog items). The syntax is

-width {dialog width}

where{dialog width} is in screen pixels. The default value is400. The-ok and-cancel-ok option
-cancel option options can be used to set the names on theOK andCancel buttons. The syntaxes are

-ok {name of ok button}
-cancel {name of cancel button}

The most complex option is the-addbuttons option, which adds buttons other than-addbuttons option
the defaultOK andCancel buttons to the dialog. The value for this option is a “button
list”, which has the structure(

{name} {help} {script}
)+

where each triple{name} {help} {script} describes one additional button.{name} is the
button name, i.e., the text that will be shown on the button. The button will be made wide
enough to contain the whole{name}. {help} is the help text for the button.{script} is
a script that is evaluated when the button is clicked. See below for the basic details on
the context in which button scripts are evaluated. If some button script does not work as
expected then it might help use the-debug option. This has the syntax-debug option

-debug {debug level}

where{debug level} is an integer. The default is to use debug level0. Currently the only
other debug level is1: this causes the actual script, the error, and the$errorInfo to be
printed usingtclLog when a script terminates with an error.

Among the things button scripts can do is adding or removing pages from the dialog
(as it is shown to the user). Inmake the effect is simply that some pages are hidden. Since
this is most often useful if the dialog opens in a state where some pages are hidden, there
is an option-hidepages that hides one or several pages. The syntax is-hidepages option

-hidepages {page list}
1It might be observed that it is often possible to use the page name as a “title” for a dialog; hence the loss is

probably not that significant.

7

where the{page list} is a list of names of pages. It makes no difference to the caller
whether a page is hidden or not, since the code that compiles the return value only looks
at the{page} arguments tomake. The situation is different inmake_paged, since that
has a more “what you see is what you get” approach to pages: a hidden page would not
be included in the return value and thus it effectively would not exist.

The-changedpages and-changeditems options ofmake_paged can be used by-changedpages option
-changeditems option the caller to request information about on which pages some value was changed and which

items had their values changed, respectively. The syntaxes are

-changedpages {var-name}
-changeditems {var-name}

With -changedpages, the{var-name} variable is set to a list of the names of pages on
which some item value was changed. With-changeditems, the{var-name} variable is
set to a list with the structure(

{page name} {key list}
)?

Here, for each page where the value of some item has been changed, the keys for those
items are listed in the{key list}.

1.3 Button scripts

Button scripts are evaluated in the local context of themake or make_paged procedure
(depending on which you called). They do a lot of their work by modifying local variables
in these procedures and hence you should familiarize yourself with the actual implemen-
tations in Subsection2.5if you are going to write anything but the simplest button scripts.
Some of the basic principles can however be outlined.

First of all, the button scripts are not evaluated while the actual dialog window is open.
Instead the dialog window is closed when the button is clicked, the item values are then
stored in an array, the button script is evaluated, and finally the dialog is rebuilt and the
dialog window is reopened, waiting for the user to do something else. This means that
you will not have to worry about any lower level descriptions of the dialog than that used
in the call tomake or make_paged, since there is no such thing at the time a button script
is evaluated. A button script that needs tologically close the dialog, i.e., causemake or
make_paged to return, should do this by setting theretCode variable (this is in fact howretCode (var.)
the OK andCancel buttons are implemented). The value ofretCode will become the
-code argument ofreturn, so0 means normal return and1 means an error. For normal
returns, the return value is constructed as usual, but for other types of returns it is the
responsibility of the button script to construct a return value and store it in theretValretVal (var.)
variable. As an example, theCancel button is handled by a button script that simply does

set retCode 1
set retVal "cancel"

Themake andmake_paged procedures keep most of their data in arrays and most of
these have one entry per item. The indices into these arrays have the form

〈page name〉,〈item name〉

8

(you should be aware that these indices often contain spaces). Of particular interest is
the array that contains the item values. For technical reasons that is a global array which
should only be accessed using special procedures. To get the value of an item you should
use thevalGet procedure and to change it you should use thevalChanged procedure.dialog::valGet (proc)

dialog::valChanged (proc) The syntaxes of these are

dialog::valGet {dialog ref.} {index}
dialog::valChanged {dialog ref.} {index} {value}

The{dialog ref.} is a reference to the current dialog; themake andmake_paged proce-
dures keep their value for this in thedial variable. The{index} is 〈page name〉,〈itemdial (var.)
name〉 as described above. The{value} is the new value for the item andvalGet returns
the current value.

Another thing that button scripts can do is hide or show individual items. Technically
that is done by changing their type to and from the following complex type

hidden An item which isn’t shown and whose value does not change, but which still
returns a value. The format of this{type} is

hidden {anything}+

where the{anything} is completely ignored.

The idea here is that any type of item can be hidden by prepending ahidden to the{type}
of that item, and that removing thehidden will return it to the original type. There are
two procedureshide_item andshow_itemwhich do precisely that. Their basic syntaxesdialog::hide_item (proc)

dialog::show_item (proc) are

dialog::hide_item {page} {name}
dialog::show_item {page} {name}

(They do take an extra optional argument which might be needed if they are not called
from the local context of themake or make_paged procedures.)

Examples of button scripts and how they can be used can be found in Subsection3.3.

1.4 Preferences and dialogs

Historically there is a strong connection between dialogs for editing values and prefer-
ences in AlphaTcl, and most values one might want to edit this way are still preferences.
Hence it is convenient to have a procedure which determines the dialog item type that
corresponds to a preference. This is what thedialog::prefItemType procedure is for.dialog::prefItemType

(proc) It has the call syntax

dialog::prefItemType {preference name}

and returns a valid{type} for the preference.
Note:prefItemType does not yet handle all preference types. Contributions of code

that lets it handle additional types are appreciated.

9

1.5 The width of dialog text

The built-in dialog commands ofAlpha are different from most other commands in
that they require you to know thewidth in screen pixels of most text strings you use.
dialog::make handles most of that internally, but there are some restrictions you should
keep in mind:

• Item names should fit on a single line in the dialog. The names oftext and
multiflag items are exceptions from this, as they will be broken on several lines
if necessary. The names of items that haveSet... buttons should be short enough
to leave adequate room for this button.

• Page names should preferably fit on a half dialog line.

• Button names should fit on a single line, but will probably look ridiculous already
if their width is half that of a dialog line.

You don’t generally need to be concerned about the width of values however, as the
displayed forms of most values are automatically abbreviated to fit on one line. (This
happens especially often to file names.)

Thedialog::text_width procedure is whatdialog::make uses to actually deter-dialog::text_width (proc)
mine the width of a string. It has the syntax

dialog::text_width {string}

and returns (an upper bound on) the width of the{string}. In Alphatk this procedure is
implemented usingfont measure and returns the exact width. InAlpha the procedure
computes the width based on the width table for characters in the Chicago font at 12 pt;
this gives a valid upper bound also if Charcoal is used as system font. No notice is taken
of kerning, but there doesn’t seem to be any in these fonts. Only the width of characters in
the MacRoman encoding is known to theAlphadialog::text_width procedure; this
might become a problem inAlpha 8, but the table of character widths is easily extended.

For pieces of text that can be expected to be more than one line long, there is the
width_linebreak procedure. It takes a string and a width (in pixels) limit as arguments,dialog::width_linebreak

(proc) breaks the string into lines in such a way that no line is wider than the specified limit, and
returns the list of lines that the string was broken into. The syntax is

dialog::width_linebreak {string} {width}

The linefeed (\n) and carriage return (\r) characters are given special treatment: a line-
feed forces a linebreak at that position, whereas a carriage return separates two para-
graphs. A paragraph separator is marked in the return value by a line only containing a
carriage return. Spaces and tabs are discarded around linebreaks.

There is also adialog::width_abbrev procedure which, if necessary, replaces partdialog::width_abbrev

(proc) of a string by an ellipsis character ‘...’ so that the width of the resulting string does not
exceed a given bound. The syntax is

dialog::width_abbrev {string} {width} {ratio}?

10

and the returned value is the abbreviated string.{string} is the string to abbreviate,
{width} is the maximal width that the result may have, and{ratio} is a real number
in the interval[0,1] which controls where in the string the abbreviation will take place.

Finally, the actual string used for an ellipsis character by the procedures in this file
is stored in thedialog::ellipsis variable. The initialization of this variable shoulddialog::ellipsis (var.)
be correct both forAlphatkandAlphawith a MacRoman character set, but it might need
to be modified if some other character set is used. This can then be done in theAlpha
prefs.tcl file.

2 Implementation

The code below lives in thedialog namespace.

1 〈∗core〉
2namespace eval dialog {}

There are a fewdocstrip guards2 that distinguishes certain parts of the code below.
Their meanings are as follows:

core Main guard around code for the AlphaTcl core.

notinstalled This guards things that is useful when testing the code, but shouldn’t be
included in a version that is installed as part of AlphaTcl. Typical contents are
auto_load commands to ensure that definitions here are not overwritten by some
file thatAlphasources automatically, and hacks of procedures defined elsewhere.

log1 This guards some code that logs what is happening using theterminal package.
Mainly useful while debugging.3

examples Surrounds some code examples.

The sooner theauto_load is done the better, so here it is.

3 〈notinstalled〉auto_load dialog::make

2.1 Thedialog command

Thedialog command is probably one of the most complicatedAlphacommands theredialog (command)
are (and features are still being added to it!). The basic syntax is a simple

dialog 〈option〉+

but the number of options is quite large and their natures are rather diverse. Most option
forms add a control (push-button, checkbox, radio button, popup menu, or editable text
box) to the dialog. Some options add some graphic material that is not a control, such as
for example a piece of static text. The graphic elements in a dialog are calledatomsin
this paper.

2See [4] or [5] for an explanation of this concept.
3One advantage of thedocstrip format is that you never really have to remove such code from the sources.

If it’s just in a suitable module thendocstrip won’t include it.

11

Thedialog command returns the list of values that the controls had when the dialog
was closed. The values appear in this list in the same order as the corresponding options
did in the argument list ofdialog. Warning: InAlpha 7, there is a bug in howdialog
quotes items. If some value contains an unmatched left or right brace, or ends with a
backslash, then the result ofdialog is probably not a valid Tcl list.

All the atom-generating〈option〉s fordialog end with four arguments{left}, {top},
{right}, and{bottom}: these specify therectangleassociated with the atom. If nothing
further is said then this rectangle can be understood to be the bounding rectangle of the
atom. The coordinates are all integers, the unit is screen pixels,x-coordinates ({left}
and{right}) increase while going to the right, andy-coordinates ({top} and{bottom})
increase while goingdown. The background rectangle of the dialog window has its upper
left corner at the point(−3,−3), but the negative coordinate pixels are technically part of
the window frame anddialog does not draw anything there.

Inside Macintosh[3, p. 6:34] prescribes that atoms in a dialog should be separated
by either 13 or 23 pixels of white space. Examples there suggest using 13 pixels for
separation between atoms, as well as for the top, right, and bottom margins. The left
margin is however 23 pixels. Bold frames (such as that around the default button) should
not be included in these measurements. On the other hand, the 3 pixels wide white boarder
that the dialog manager itself adds on each side of a modal dialog (which is what the
dialog command creates) and should be counted as part of the margin. The dialogs
constructed in Subsection2.4 below actually have vertical separation of only 7 pixels
between the editable items in a dialog, as the 13 pixels prescribed by Inside Macintosh
seems a bit much for the short pieces of text that they constitute. There’s no particular
reason for using exactly 7 pixels, though; it was picked pretty much at random. Full-size
buttons do however get a separation of 13 pixels.

In AlphatkandAlpha 8, some atom-generating options take suboptions which can be
used to further specify the behaviour of the atom. These are then placed immediately
before the{left} argument of the atom.Alpha 7does not understand these, and hence one
should only include them if one has checked what program AlphaTcl is being run on.

2.1.1 Basicdialog options

The-w and-h options set the width and height respectively of the dialog window. Their-w option
-h option syntaxes are

-w {width}
-h {height}

where{width} and{height} are in screen pixels. The Toolbox automatically adds a three
pixels wide white border on all sides around the{width} by {height} rectangle specified
using these options, but that area cannot be drawn in.

The-b option creates a push-button (usually simply called button). It has the syntax-b option

-b {title}
(
-set {callback}

)? {left} {top} {right} {bottom}

but the-set suboption is not implemented inAlpha 7. Without the-set suboption, the
button has one value which is either0 (button was not clicked) or1 (button was clicked).

12

As clicking a button closes the dialog, there can be at most one button in the dialog which
has value1. Conversely, every dialog must contain at least one button, as the only way
to close the dialog is to click a button. The first button to be defined will be thedefault
button: it has a double frame and pressing the Return or Enter key will be equivalent to
clicking this button. If there is a button named ‘Cancel’ then pressing the Escape key
will be equivalent to clicking that button.

The -set suboption is not supported inAlpha 7. Clicking a button with a such a
suboption does not close the dialog, but tellsAlpha to evaluate a script that is part of the
{callback} (more on this below). The button still contributes a value (always0) to the
result ofdialog however.

Inside Macintosh[3] recommends the height 20 pixels for buttons. In AlphaTcl, there
is a tradition of giving “minor” buttons a height of 15 pixels.

The-c option creates a checkbox control. It has the syntax-c option

-c {title} {value}
(
-font {font}

)? {left} {top} {right} {bottom}

The value of the checkbox is either0 (not checked) or1 (checked). The bounding rectan-
gle encloses both the checkbox and its title. If several checkboxes are placed in a column
then not only the{left}, but also the{right}, coordinates of all these buttons should co-
incide. This is due to localization issues.

The-font suboption is not supported inAlpha 7. The syntax for a{font} is unclear,
current examples always use2 for this.

The-t option creates a static text atom in the dialog. This option has the syntax-t option

-t {text}
(
-dnd {dial} {varinfo}

)? {left} {top} {right} {bottom}

The-dnd suboption (see below) gives drag-and-drop functionality to the text atom, but is
not supported byAlpha 7. There is no control result from a-t atom.

If the measured width of the{text} is right− left pixels or more then it is broken on
several lines (note that it needsnot be strictly wider than the rectangle for this to happen)
and set flush left. The height of one line of text is (with standard fonts) 15 pixels, of
which 12 are above the baseline and 3 below. There is a 1 pixel space between two lines.
The top of the first first line coincides with the top of the rectangle. InAlpha, the{text}
may be at most 255 characters (this restriction exists for most options, but it is easiest
encountered for-t items).

The-e option creates an editable text atom (TextEdit box) in the dialog. This option-e option
has the syntax

-e {text} {left} {top} {right} {bottom}

where{text} is the default text to put in the box. The value of this control is the text that
is in the box when the dialog closes.

The bounding rectangle of the box extends 3 pixels further in all directions than the
item rectangle specifies, due to the frame around the box. The item rectangle corresponds
instead to the text in the box—changing-e to -t will loose the editability and the frame,
but leave the text in exactly the same position as long as it is not being edited. When the
cursor is positioned in an-e atom box, the text is instead aligned with thebottomof the
rectangle.

The-r option creates a radio button atom. It has the syntax-r option

13

-r {title} {value} {left} {top} {right} {bottom}

all of which work just as for checkboxes. The difference is that clicking one radio button
sets its value to1 and the values of all other radio buttonsin the entire dialogto 0. Hence
it is impossible to have more than one group of radio buttons in a dialog, and they aren’t
used in any of the standard dialogs.

The-p option has the syntax-p option

-p {left} {top} {right} {bottom}

It used to create a “grey outline” (visual element which does not return any control value),
but current versions ofAlphaandAlphatkseems to ignore it.

The-m option creates a popup menu atom in the dialog. The syntax is-m option

-m {menu items} {left} {top} {right} {bottom}

where{menu items} is a list with the format

{default item} {menu item}+

The{menu item}s are the items shown in the menu. The{default item} is the item that
will be the initial choice, provided that it equals one of the{menu item}s—otherwise the
first {menu item} will be the initial choice. The control value returned is the chosen menu
item. See the-n option for information about the relation between the dialog pages and
popup menus.

The bounding rectangle for the popup menu atom extends one pixel to the left of
{left}, one pixel above{top}, two pixels to the right of{right}, and 18 pixels below
{top}, whereas{bottom} is ignored. Furthermore the bounding rectangle will not extend
all the way to{right} unless there is some menu item which is that wide. Hence it is not
feasible to line up the right edge of a menu with something, one can only prevent that it
extends too far.

The-n option starts a new dialog page, so that all atoms after it (and before the next-n option
-n option, if there is another) will be put on a specific dialog page. The syntax is

-n {page name}

where the{page name} is primarily an internal identifier for the page. The-n option
does not produce any control value. Options that appear before the first-n option will
produce atoms which are visible on all pages of the dialog.

When there is an-n option, the popup menu from the first-m option will work as a
page selector, so that the page for which atoms are currently shown is the one with the
same name as the currently selected item in the first popup menu. Items in this menu that
are not names of pages defined using-n will be treated as if they had been defined but
don’t contain any items. The dialog created by thedialog::getAKey procedure (defined
in dialogs.tcl) makes a rather ingenious use of this fact.

14

2.1.2 Newdialog options

Below are described some newdialog options that were first implemented onAlphatk
and whichAlpha 7neither supports nor understands.Alpha 8implements some of these,
and should eventually support them all. The next two options are available both inAlphatk
andAlpha 8.

The-T option sets a title for the dialog window. The syntax is-T option

-T {title}

The-help option can be used to provide help texts for items in the dialog. The syntax-help option
is

-help {help text list}

where the{help text list} is a list of help texts.
There are also a couple of options which are currently only supported byAlphatk,

although anAlpha 8implementation is probably not too far away. Only a few of them are
used anywhere in AlphaTcl and many are “not yet officially supported”.

The-l option creates a listpick atom in the dialog. The syntax is-l option

-l {value} {height}
(
-dnd {dial} {varinfo}

)? {left} {top} {right} {bottom}

where{value} is the list of strings to show in the listpick.{height} is probably the height
of the item, in rows. The-dnd suboption gives drag-and-drop functionality to the atom.

The -i option creates an image atom in the dialog, similarly to e.g. the icons in-i option
standard Mac OS alerts. The syntax is

-i {image} {left} {top} {right} {bottom}

where{image} is the name of a Tk image object to show in the dialog.
The-mt option creates a popup menu with its own title in the dialog. The syntax is-mt option

-mt {title} {menu items} {left} {top} {right} {bottom}

where{value} is the title of the popup menu and the remaining arguments are handled
identically to the-m option.

The-copyto option arranges for the value of the preceding dialog item to be copied-copyto option
and displayed in another, whenever the first changes. The dialog handled by theprompt
command inAlpha 7hardcodes what can be achieved with this option. The syntax is

-copyto {atom number}

where{atom number} is a string containing either the number of the atom in the dialog
(counting from zero) into which the value should be copied, or if{atom number} begins
with a+ or - then it is relative to the previous atom in the dialog (so either+0 or -0 would
copy the value onto itself).

15

2.1.3 The drag-and-drop muddle

The-dnd suboption activates drag and drop functionality for a dialog atom. The general-dnd option
format for this suboption is:

-dnd {dial} {varinfo}

where{varinfo} in turn is a list with the format

{varname} {type}

When such an option is present, it has the effect that the atom we’re currently creating
(usually a-t atom) will accept drops. It would be reasonable to make it so that it could
initiate drags as well, but that hasn’t been examined yet.

The{dial} is simply a unique identifier for this dialog (so that all dialogs code is re-
entrant). It just needs to be passed along to appropriate routines later so you don’t need
to worry about it. The{varname} is the identifier for a specific item that e.g. thevalGet
andvalChanged procedures take as argument along with{dial}. The {type}, finally,
is the type of the entry (folder, searchpath, file, etc.). This is what decides which
piece of code will control how the atom behaves with respect to dropping.

As for dialog controls in general, most of the details in dragging and dropping lies well
outside the scope of what an AlphaTcl programmer needs to be concerned about. There
are however two points of every drag-and-drop at which the mechanisms in thedialog
command needs help from AlphaTcl, and for these must be provided two callbacks. The
most obvious point is that of the actual drop—dialog has received a value from the
GUI, but (in the case of a-t atom) has nothing to return it in—and therefore it instead
immediately passes the value on to a callback. This way it is up to AlphaTcl to take care
of the value and it usually does this by storing it in a suitable variable.

A less obvious, but no less important, point of interaction occurs when dragging. In
general the user may be dragging around all sorts of things, but only a few may be suitable
for dropping onto any given item. A piece of data is said to beacceptablefor an item if it
makes sense to drop it onto that item. It is part of the rules for drag-and-drop that the GUI
must signal to the user when a drag passes over an item for which it would be acceptable,
but thedialog command cannot test for acceptability without help. Therefore it relies
on AlphaTcl to provide it with a callback that implements the relevant test.

One might expect4 at this point thatdialog should simply take these callbacks as
arguments to the-dnd suboption and be done with it, but the mechanism actually imple-
mented calls upon a number of AlphaTcl procedures with fixed names toconstructthe
real callbacks! The drop callback is constructed as

dialog::itemSet {update} {〈base〉 {dial} {varinfo}} {data}∗

whereas the acceptability callback is constructed as

dialog::itemAcceptable {varinfo} {{data}∗}

Here{update} is some information the program uses to identify what atom should be up-
dated (this is simply passed as an argument todialog::setControlValue). The〈base〉

16

is whatdialog::valGetDropAction returns when called with{varinfo} as argument;dialog::valGetDropAction

(proc) it can be more than one word.{dial} and{varinfo} are taken from the arguments to-dnd,
whereas the{data}s are the values that were dropped or are being dragged respectively.

TheitemAcceptable procedure is fairly simple. The syntax is as shown above. Thedialog::itemAcceptable

(proc) return value is an empty string if the thing being dragged is acceptable, or else a string
that explains what is wrong with it (Alphatkshows these strings on the status bar). The
current implementation performs tests if the{type} is searchpath, file, or folder,
and accepts anything for all other types.

The itemSet procedure is much more obscure, but primarily it evaluates the com-
mand

〈base〉 {dial} {varinfo} {data}∗

which (with the currentdialog::valGetDropAction) is

dialog::modifiedAdd {dial} {varinfo} {data}∗

when the{type} is searchpath and

dialog::modifiedAdjust {dial} {varinfo} {data}∗

otherwise. With the exception for an extra round of checking the{data} using
itemAcceptable and some messages, bothmodifiedAdjust andmodifiedAdd boildialog::modifiedAdjust

(proc)
dialog::modifiedAdd

(proc)

down to

dialog::modified {dial} {varname} {newval} {type}

where{newval} is the{data} in the case ofmodifiedAdjust and the concatenation of
the old value with the{data} in the case ofmodifiedAdd. This simply means “update the
variable in which the value of this dialog item is stored” and thus we’ve finally managed to
accomplish one of the things that the drop should do. What remains is to change the text
that is actually shown in the dialog, so that the user will see that the value has changed.

That too is done in the call tomodified, but only because the interpreter took the
route viaitemSet to get there! Each timeitemSet is called, it first registers a hookdialog::itemSet (proc)
under the namedialog, which thedialog::modified procedure tries to call whenever
the{type} string is nonempty, and as its last actionitemSet deregisters the hook. The
combined effect is that the command

dialog::setControlValue {update} {varname} {newval} {type}

gets evaluated once for each drop. This command updates the value that is shown in the
dialog, but not always correctly. This is mainly due to the distinction between item values
as returned by e.g.dialog::make and item values as shown in a dialog window (this
distinction is most obvious forappspec, binding, andmenuindex items, but currently
none of these have drag and drop functionality). SincesetControlValue is called as a
side-effect of storing the value that will be returned rather than as a conscious act by a
callback selected for the particular type of item that is being updated, it only receives the
former kind of value. The two kinds of values happen to be equal for those{type}s which
currently have drag-and-drop, but not for any of the others.

17

For the record, it should be remarked that the original idea with thesetControlValuedialog::setControlValue

(command) command was that it should change the value shown in an atom (which in the case of a
-t atom means the text) so that the dialog should become as it would have been if that
value had been used instead in the original call todialog. To do that, it would only need
the{update} and{newval} arguments, and in fact the other arguments are currently not
used!

Related to this is the matter of adapting the value-as-shown to various physical re-
strictions imposed by the dialog itself. In particular file names and URLs are frequently
wider than the dialog window and thus should somehow be compressed so that they will
fit in the designated dialog atom. Since most of these restrictions are due to graphical
properties of text that AlphaTcl only has vague concepts of, the ideal would be that the
dialog command handled this on its own.5 For Alpha 7 one would of course instead
have to explicitly abbreviate the value before it is given todialog, and that is currently
done in the generic dialogs by thedialog::makeStaticValue procedure, but right now
that is done forAlphatkandAlpha 8as well. Automatic adaptation of a value-as-shown
currently only happens inAlphatkto those that are set usingsetControlValue, and this
uses yet another fixed callback (to thedialog::abbreviate procedure).

Is that all? No, but we’re nearly there. It turns out that most GUIs insist on that all
items that are dragged also have a type and that drop targets similarly must have a type.
To determine the drag-and-drop type for an item,Alphatkcalls the AlphaTcl procedure
valGetMimeType, which has the syntaxdialog::valGetMimeType

(proc)
dialog::valGetMimeType {varinfo}

and returns the wanted type. The currentvalGetMimeType returnstext/uri-list
when the{type} part of the{varinfo} is file, folder, url, or searchpath and an
empty string in all other cases. As it happens, the empty string is not a valid type and
thereforeAlphatkignores the-dnd suboption unless the{type} is one of these four.

Having sorted drag-and-drop out, one might as well do the-set suboption to-b as-set option
well, since that is quite similar. The syntax is

-set {callback}

where the{callback} is a two-element list with the structure

{script} {atom number}

The{script} is a script that is evaluated when the button is clicked. The{atom number}
is as for the-copyto option, and specifies an atom whose value the{script} should be
allowed to change.Alphatkdoes not provide for the{script} to change more than one
atom, and it uses the same indirect method here as for drag-and-drop. The real callback
is

dialog::itemSet {update} {script}
4I certainly would, but apparently Vince had other plans. /LH
5For really tough cases, such as a long URL or file name, it might be necessary to omit parts of the value.

This is then best handled by a callback since what part is best to omit depends on the type of the value. Many
such callbacks could probably bedialog::width abbrev straight off.

18

(where{update} is computed from the{atom number}) and the{script} is supposed to
call dialog::modified to update the item value both in memory and as shown in the
dialog window.

2.2 Measuring text

dialog::text_width (proc)
charwidth(character)

Thedialog::text_width procedure computes the width in screen pixels of the string
it gets as argument.

4if {${alpha::platform}=="alpha"} then {

In Alpha, the procedure uses the character widths stored in thecharwidth array:
$charwidth(z) is the width of the characterz. The initial values in this array are for 12
point Chicago. The corresponding table for Charcoal is mostly the same, although some
widths there would be smaller. No character is wider in Charcoal than in Chicago.

5 set code 0

6 foreach w {0 6 12 12 6 14 11 14 0 4 16 14 14 0 6 6 9 11 11 9 11 6 6\
16 12 9 12 11 13 6 6 6 4 6 7 10 7 11 10 3 5 5 7 7 4 7 4 7 8 8 8 8\
8 8 8 8 8 8 4 4 6 8 6 8 11 8 8 8 8 7 7 8 8 6 7 9 7 12 9 8 8 8 8 7\
6 8 8 12 8 8 8 5 7 5 8 8 6 8 8 7 8 8 6 8 8 4 6 8 4 12 8 8 8 8 6 7\
6 8 8 12 8 8 8 5 5 5 8 6 8 8 8 7 9 8 8 8 8 8 8 8 8 7 8 8 8 8 4 4 4\
4 8 8 8 8 8 8 8 8 8 8 5 6 7 9 7 7 9 8 10 10 11 6 6 9 11 8 14 7 6 6\
8 10 8 9 10 11 6 7 7 10 12 8 8 6 7 12 6 8 9 9 9 14 8 8 8 8 11 12 6\
10 7 7 4 4 7 9 8 8 3 8 6 6 10 10 5 4 4 7 15 8 7 8 7 7 6 6 6 6 8 8\

11 8 8 8 8 4 6 8 6 6 6 6 6 6 6 6} {

15 if {[info tclversion] < 8.1} then {

16 set charwidth([format %c $code]) $w

17 } else {

18 set charwidth([encoding convertfrom [format %c $code]]) $w

19 }

20 incr code

21 }

22 proc dialog::text_width {str} {

23 global charwidth

24 set w 0

25 foreach ch [split $str ""] {incr w $charwidth($ch)}

26 set w

27 }

28} else {

In Alphatk, the procedure is instead implemented using the Tk commandfont\
measure. I’m not suresystem is the right font in this case, though.

29 proc dialog::text_width {str} {font measure system $str}

30}

dialog::width_abbrev

(proc)
Thedialog::width_abbrev abbreviates a string (such as for example a file name) until
it fits within a specified width. The syntax is

dialog::width_abbrev {string} {width} {ratio}?

19

and the result is the abbreviated string.{string} is the string to abbreviate,{width} is the
maximal width of the result, and{ratio} controls how much of the result should be from
before or after the point of abbreviation. The default is0.33, which means twice as much
is kept after the point of abbreviation as after it.

31if {${alpha::platform} == "alpha"} then {

The implementation forAlphauses thecharwidth array.

32 proc dialog::width_abbrev {str width {ratio 0.33}} {

33 global charwidth dialog::ellipsis

34 set w 0

35 set tw [expr {$width - [dialog::text_width ${dialog::ellipsis}]}]

36 set abbr ""

37 set t [expr {$ratio * $tw}]

38 foreach ch [split $str ""] {

39 incr w $charwidth($ch)

40 if {$w < $t} then {append abbr $ch}

41 }

42 if {$w <= $width} then {return $str}

43 append abbr ${dialog::ellipsis}

44 set t [expr {(1-$ratio) * $tw}]

45 foreach ch [split $str ""] {

46 if {$w < $t} then {append abbr $ch}

47 incr w -$charwidth($ch)

48 }

49 set abbr

50 }

51} else {

The implementation forAlphatk uses instead thefont measure command and a
binary search.

52 proc dialog::width_abbrev {str width {ratio 0.33}} {

53 global dialog::ellipsis

54 if {[font measure system $str] <= $width} then {return $str}

55 set tw [expr {$width - [font measure system ${dialog::ellipsis}]}]

56 set lower -1

57 set upper [expr {[string length $str] - 1}]

58 set t [expr {$ratio * $tw}]

59 while {$upper - $lower > 1} {

60 set middle [expr {($upper + $lower) / 2}]

61 if {[font measure system [string range $str 0 $middle]] > $t}\
then {set upper $middle} else {set lower $middle}

63 }

64 set abbr [string range $str 0 $lower]

65 append abbr ${dialog::ellipsis}

66 set upper [string length $str]

67 set t [expr {(1 - $ratio) * $tw}]

68 while {$upper - $lower > 1} {

69 set middle [expr {($upper + $lower) / 2}]

70 if\
{[font measure system [string range $str $middle end]] > $t}\

20

then {set lower $middle} else {set upper $middle}

72 }

73 append abbr [string range $str $upper end]

74 }

75}

dialog::ellipsis (var.) This variable stores the ellipsis (“three dots”) character used for showing that “this leads
to another dialog”. Hopefully this might get around some platform-related problems. If
you don’t like the automatic guess, you can set it in your prefs file.
76if {![info exists dialog::ellipsis]} then {

77 if {[info tclversion] >= 8.1} then {

78 set dialog::ellipsis \u2026

79 } else {

80 set dialog::ellipsis \xc9

81 }

82}

dialog::width_linebreak

(proc)
Thewidth_linebreak procedure takes a string and breaks it into lines in such a way
that no line is wider than a specified limit (unless there is a character that is wider than
this limit). Then it returns the list of lines in the broken string. The syntax is

dialog::width_linebreak {string} {width}

where{string} is the string to break and{width} is the width limit for a line (no line may
be that wide or wider).

It is possible that more arguments should be added to allow customisation of what
is considered a permissible breakpoint. Currently a linefeed is interpreted as a forced
breakpoint, a carriage return is interpreted as a paragraph separator, and spaces and tab
characters are considered permissible breakpoints. Whitespace is discarded before and
after a linebreak. A paragraph separator becomes a line consisting of one carriage return
character.

83proc dialog::width_linebreak {str w} {

84 if {![string length $str]} then {return {}}

85 set res [list]

86 foreach s [split $str \r] {

87 lappend res \r

88 foreach s2 [split $s \n] {

89 eval [list lappend res]\
[dialog::width_linebreak2 [string trim $s2] $w]

91 }

92 }

93 lrange $res 1 end

94}

dialog::width_linebreak2

(proc)
Thewidth_linebreak2 procedure is what does most of the work forwidth_linebreak.
It has the same syntax as that procedure, but linefeeds and carriage returns aren’t allowed
in the input string.
95if {${alpha::platform} == "alpha"} then {

96 proc dialog::width_linebreak2 {str w} {

21

line more︷ ︸︸ ︷︷ ︸︸ ︷
. . .

∣∣
↑
0

↑
x0

↑
x

↑
w

Figure 1: Variables indialog::width linebreak2

With Alpha, even determining the width of a string requires a loop over the characters
of that string. Hence the most efficient implementation is to break the string into lines
during such a loop, but then of course one must keep track of much more than the just the
total width so far. Most of these are explained in Figure1. Apart from these substrings
of the argument stringstr and horizontal positions, the result is collected inres and the
was variable kind of keeps track of the state: it is1 if the last character was a whitespace
character and0 otherwise.

97 global charwidth

98 set res [list]

99 set line ""

100 set more ""

101 set x 0

102 set was 1

103 foreach ch [split $str ""] {

104 set is [expr {$ch==" " || $ch=="\t"}]

105 if {!$is && $was} then {

A new word has begun.

106 if {![string length $line]} then {

107 set more ""

108 set x 0

109 }

110 set x0 $x

111 } elseif {$is && !$was} then {

A word just ended.

112 append line $more

113 set more ""

114 }

115 set was $is

116 incr x $charwidth($ch)

117 if {$x>=$w} then {

Need to break the line before the current character.

118 if {[string length $line]} then {

Normal case: breaking at whitespace.

119 lappend res $line

120 set line ""

121 set more [string trimleft $more]

122 set x [expr {$x-$x0}]

22

The last set gives rise to a nice exercise: to prove thatx0 must have been set if the program
enters this branch of theif.

123 } else {

Abnormal case: the current word is longer than a line. The break is put before the current
character.

124 lappend res $more

125 set more ""

126 set x $charwidth($ch)

127 }

128 set x0 0

129 }

130 append more $ch

131 }

End offoreach loop. Now it only remains to include the last line (if there is one) in the
result.

132 set line [string trim "$line$more"]

133 if {[string length $line]} then {lappend res $line}

134 return $res

135 }

136} else {

TheAlphatkimplementation is instead based on incrementally testing the possible break-
points. It uses some Tcl 8 regexp features.

137 proc dialog::width_linebreak2 {str w} {

138 set res [list]

139 set idx -1

140 while\
{[regexp -indices -start [expr {$idx+1}] -- {\S($|\s)} $str t]}\

{

This loop steps through the ends of words, one by one.

141 if {$w >\
[dialog::text_width [string range $str 0 [lindex $t 0]]]}\

then {

143 set idx [lindex $t 0]

144 } elseif {$idx>=0} then {

When an end of a word position which is too far away to fit on the current line, a break is
taken at the previous end of a word.

145 lappend res [string range $str 0 $idx]

146 set str\
[string trim [string range $str [expr {$idx+1}] end]]

147 set idx -1

148 } else {

Except for the case when a single word is wider than a line. In this case, the maximal
breakpoint is found using an interval search.

149 set upper [lindex $t 0]

150 set lower 0

23

151 while {$upper-$lower>1} {

152 set middle [expr {($upper+$lower)/2}]

153 if {$w >\
[dialog::text_width [string range $str 0 $middle]]}\

then {set lower $middle} else {set upper $middle}

156 }

157 lappend res [string range $str 0 $lower]

158 set str\
[string trim [string range $str [expr {$lower+1}] end]]

159 set idx -1

160 }

161 }

End of loop over the words.

162 if {$idx>=0} then {lappend res [string range $str 0 $idx]}

163 return $res

164 }

165}

2.3 Storing and updating values in dialogs

The procedures in this subsection used to be indialogUtils.tcl, so we need to make
sure that that is sourced before the new definitions are given.

166〈notinstalled〉auto_load dialog::flag

The dialog procedures keep the values of items in a global array, so that they can be
accessed by callback scripts that are evaluated in the global context. (This happens for
example for thebind scripts thatAlphatkuses.) Each dialog managing procedure must
allocate one of these arrays before doing any interaction with the user, and then deallocate
it when it’s done. The reason for this set-up is that (i) the dialog procedures should be
reentrant and (ii) the values would be impossible to access for some pieces of code if they
weren’t kept in the global scope.

dialog::tcldial〈num〉
(array)

dialog:

:changed_tcldial〈num〉
(var.)

dialog::globalCount (var.)

Global arrays nameddialog::tcldial〈num〉, where 〈num〉 is an integer, are allo-
cated for dialogs to store values in. Each such array is accompanied by a list named
dialog::changed_tcldial〈num〉 in which is stored the names of all elements in the
array which have been explicitly changed. Thedialog::globalCount variable stores
the number of the most recently allocateddialog::tcldial〈num〉 array.

167ensureset dialog::globalCount 0

dialog::create (proc)
dialog::cleanup (proc)

Thecreate procedure allocates a new array to store dialog values in. It takes no argu-
ments and return a reference string that should be used to access the array. Thecleanup
procedure takes a reference string as argument and deallocates the corresponding array.

168proc dialog::create {} {

169 global dialog::globalCount

170 incr dialog::globalCount

171 upvar #0 "dialog::changed_tcldial${dialog::globalCount}" chvar

172 set chvar [list]

173 return "tcldial${dialog::globalCount}"

24

174}

175proc dialog::cleanup {mod} {

176 global dialog::${mod} dialog::changed_${mod}

177 if {[info exists dialog::${mod}]} {

178 unset dialog::${mod}

179 }

180 if {[info exists dialog::changed_${mod}]} {

181 unset dialog::changed_${mod}

182 }

183}

The identifier returned bycreate will have to be communicated to all procedures
that access item values.

dialog::valGet (proc)
dialog::valSet (proc)

dialog::valExists (proc)

Basic access to the arrays for storing dialog values should be via thevalGet, valSet,
andvalExists procedures. Their respective syntaxes are

dialog::valGet {dialog} {name}
dialog::valSet {dialog} {name} {value}
dialog::valExists {dialog} {name}

where{dialog} is a reference string returned by thecreate procedure and{name} speci-
fies the item.valGet returns the value of the item.valSet sets the item value to{value}
without marking the item as changed and doesn’t return anything particular.valExists
returns1 if the item has been set and0 otherwise.
184proc dialog::valGet {mod name} {

185 uplevel #0 [list set dialog::${mod}($name)]

186}

187proc dialog::valSet {mod name val} {

188 uplevel #0 [list set dialog::${mod}($name) $val]

189}

190proc dialog::valExists {mod name} {

191 uplevel #0 [list info exists dialog::${mod}($name)]

192}

The{name} is usually formed as〈page〉,〈item title〉 so that items on different pages
can share the same title; there are cases in which each item title is reused on every page
of a dialog.

dialog::valChanged (proc) ThevalChanged procedure has the same syntax asvalSet, but if the new value is dif-
ferent from the old then it additionally includes the item in the list of items whose names
have been changed.
193proc dialog::valChanged {mod name val} {

194 global dialog::${mod} dialog::changed_${mod}

195 if {$val != [set dialog::${mod}($name)]} then {

196 set dialog::${mod}($name) $val

197 lunion dialog::changed_${mod} $name

198 }

199}

25

dialog::modified (proc) Themodified procedure is likevalChanged, but it can also call a hook to make sure var-
ious GUI details are updated accordingly. This is mainly used by thedialog::specialSet::〈type〉
procedures.

200〈∗notinstalled〉
201proc dialog::modified {mod name val {type ""}} {

202 dialog::valChanged $mod $name $val

203 if {[string length $type]} {

We have some code registered which would like to know what changed.Alphatkuses
such hooks to update dialog items fromSet... buttons automatically, but it would be
better if the code that calleddialog::modified could do that explicitly.

204 hook::callAll dialog modified $name $val $type

205 }

206}

207〈/notinstalled〉

dialog::changed_items

(proc)
Thechanged_items procedure returns the current list of items whose values have been
changed. The syntax is

dialog::changed_items {dialog}

where{dialog} is a reference string returned bycreate.

208proc dialog::changed_items {mod} {

209 uplevel #0 [list set dialog::changed_${mod}]

210}

2.4 Building and handling dialog material

dialog::handle (proc) The handle procedure provides the glue between the built-indialog command and
the item-oriented interface to the dialog procedures. Its basic job is to open a new sin-
gle/multipage dialog with specified items, handle user modifications of those items, and
then return when the user presses a non-item button. Item definitions are taken from ar-
rays in the caller’s local context. Item values are taken from and then stored in a global
array accessed usingvalGet andvalChanged.

The syntax is

dialog::handle {pages} {type-var} {dialog id} {help-var} {current-page-var}
{option list} {button group}+

and the returned value is a string that depends on which button was pressed to end the
dialog. The{pages} argument is a list with the structure(

{page name} {item name list}
)+

which selects what items to show in the dialog. Each{page name} creates a new page
with that name. The{item name list} contains the names of the items which will be
shown on that page. Note that the page may contain more items than those specified in
this list; those will then be ignored. This is useful in cases where some higher level setting
has rendered some of the items irrelevant.

26

The{type-var} and{help-var} arguments are the names of arrays in the caller’s local
context, which are expected to contain the types and help texts (if there are any) re-
spectively for the items in the dialog. These indices into these arrays have the form〈page
name〉,〈item name〉. The{dialog id} is an identifier to use withvalGet andvalChanged
to access the values of items. The{current-page-var} argument is the name of a variable
in the caller’s local context. If, upon entry, this variable is set to the name of a page in the
dialog then that will be the default page of the dialog. Upon return, this variable is set to
the name of the current page.

The{option list} is a key–value list of extra options for thedialog::handle proce-
dure. Unknown options are ignored and no option is mandatory. Currently the following
options are recognized:

-title Title for the dialog window; by default an empty string. This is ignored in
Alpha 7.

-width Width of the dialog window, in pixels; this defaults to 400.

A {button group}, finally, is a list with the structure

{button list} {option}∗

and the{button list}, in turn, has the structure(
{title} {help} {return}

)+

Each triple in the{button list} describes one button. The{title} is the button title, the
{help} is the button help text, and the{return} is the value thatdialog::handle will
return when this button is pressed. An{option} can be anything; currently the following
are understood:

right Put buttons in this group flush right (default is flush left).

first Put the buttons in this group first in the dialog material. This makes one of them
the default button.

The procedure starts by making various global variables available and parsing some
easy arguments.
211proc dialog::handle {pages typevar dial helpvar pagevar optionL args} {

212 global dialog::indentsame dialog::indentnext dialog::simple_type\
dialog::complex_type alpha::platform

214 upvar 1 $typevar typeA $helpvar helpA $pagevar currentpage

215 if {![info exists currentpage]} then {

216 set currentpage [lindex $pages 0]

217 }

218 set opts(-title) ""

219 set opts(-width) 400

220 array set opts $optionL

Next comes a loop which is needed sinceAlpha 7uses post-processing scripts to process
item buttons. The loop will eventually be removed.
221 while {1} {

27

Now the dialog material can be constructed. This makes up most ofdialog::handle.
The dialog material is collected in theres variable, which will be a partial list of argu-
ments to pass to thedialog command. Material is generally collected top to bottom, so
that it is sufficient to know the bottommost position of an item to avoid putting two items
on top of one another. They variable generally says where the next item may be put. The
ymax variable stores the maximaly value reached on any page processed so far. Theleft
andright variables store thex-coordinates for the left and right respectively margin for
dialog material.

222 set res [list]

223 set ymax 4

224 set left 20

225 set right [expr {$opts(-width) - 10}]

multipage is a flag which is1 if a multipage dialog is being built and0 otherwise.
pagemenu is a list that will be used for the page menu in a multipage dialog.helpL is
a list of help messages for the dialog items andpostprocL is a list of post-processing
scripts for the dialog items. More on that below.

226 set multipage [expr {[llength $pages] > 2}]

227 set pagemenu [list $currentpage]

228 set helpL [list]

229 set postprocL [list]

The outermost loop when constructing dialog material is over the pages. In multipage
dialogs, an-n {page name} atom appears in the material to start each new page. Another
difference is that there is a popup menu (19 pixels tall) at the top if a multipage dialog,
but only a static text (15 pixels tall) at the top of a single page dialog. Hencey starts at
different values.

230 newforeach {page items} $pages {

231〈log1〉 terminal::print_word emptyline "Page: $page" newline

232 if {$multipage} then {

233 lappend res -n $page

234 lappend pagemenu $page

235 set y 42

236 } else {

237 set y 38

238 }

The inner loop in material construction is over the items. Since material construction
is a very diverse activity, and since it should be easy to add definitions of new types,
the actual construction is handled by a legion ofconstruction scriptsthat are selected
according to the type of the item. These scripts access a number ofdialog::handle
variables, which are described in Subsubsection2.4.1below.

239 foreach name $items {

240〈log1〉 terminal::print_word newline " Item: $name" newline

241 set type $typeA($page,$name)

242〈log1〉 terminal::print_word newline " Type: $type" newline

243 set val [dialog::valGet $dial $page,$name]

244〈log1〉 terminal::print_word newline " Value: $val" newline

245 set help {}

28

246 catch {set help $helpA($page,$name)}

247〈log1〉 terminal::print_word newline " Help: $help" newline

248 set script [list dialog::valChanged $dial $page,$name]

249 append script { [lindex $res $count]}

250 set visible 1

The followingwhile loop exists to allow construction scripts to restart the construction
of an item using the construction script for another type. Currently only theglobal type
makes use of this. Normally thebreak is evaluated on the first iteration of the loop.

251 while {1} {

252 if {[llength $type] == 1} then {

253 if {![info exists dialog::simple_type($type)]} then\
{set type var}

255 eval [set dialog::simple_type($type)]

256 } elseif\
{[info exists dialog::complex_type([lindex $type 0])]}\

then {

258 eval [set dialog::complex_type([lindex $type 0])]

259 } else {

260 dialog::cleanup $dial

261 error "Unsupported item type ’$type’"

262 }

263 break

264 }

The bulk of work done by the construction script is to append material tores and incre-
menty by the height of that, but they may also set thescript andhelp variables.

265 if {$visible} then {

266 incr y 7

267 lappend helpL $help

268 }

269〈log1〉 terminal::print_word newline " Script: $script" newline

270 lappend postprocL $script

271 }

272 if {$y > $ymax} {set ymax $y}

273 }

274 incr ymax 6

This ends the loops over items and pages, respectively, and now all item-related material
is in res! The ymax variable incremented to get full separation before the buttons (the
construction of which comes next on the agenda).

Since the buttons should appear on every page of the dialog, their atoms must appear
before all the material currently inres. Therefore dialog material for buttons is collected
in a separate variablebutton which will then be concatenated withres. The button-
building routines also make use of thebutton_help andbutton_press variables, in
which the help texts and return values (when the button has been pressed) respectively
are stored. Thel andr variables contain the minimal and maximalx-coordinate that is
available for button placement without increasingymax; these are managed completely
by dialog::makeSomeButtons.

275 set buttons [list]

29

276 set button_help [list]

277 set button_press [list]

278 set l $left

279 set r $right

280 foreach group $args {

281 set b_names [list]

282 set b_help [list]

283 set b_press [list]

284 newforeach {name help val} [lindex $group 0] {

285 lappend b_names $name

286 lappend b_help $help

287 lappend b_press $val

288 }

289〈∗log1〉
290 terminal::print_word emptyline "Buttons:" newline

291 terminal::print_word newline " Names: $b_names" newline

292 terminal::print_word newline " Helps: $b_help" newline

293 terminal::print_word newline " Values: $b_press" newline

294〈/log1〉
295 set group [lrange $group 1 end]

296 set b_names [dialog::makeSomeButtons $b_names\
[expr {[lsearch -exact $group "right"] >= 0}] $left l r\

$right ymax]

299 if {[lsearch -exact $group "first"] < 0} then {

300 eval [list lappend buttons] $b_names

301 eval [list lappend button_help] $b_help

302 eval [list lappend button_press] $b_press

303 } else {

304 set buttons [concat $b_names $buttons]

305 set button_help [concat $b_help $button_help]

306 set button_press [concat $b_press $button_press]

307 }

308 }

309 if {![llength $button_press]} then {

310 dialog::cleanup $dial

311 error "No buttons in dialog."

312 }

313 incr ymax 33

If no buttons had been specified then the user would be unable to close the dialog, so that
is an error. ymax is incremented from the top of the bottommost row of buttons to 13
pixels below the bottom of that row of buttons.

The final atom to make for the dialog material is the page title, which is static text in
a single page dialog but a popup menu in a multipage ditto. As a title should, the title will
not only appear topmost but also first in the dialog material.

314 if {$multipage} then {

315 set res\
[concat [list -m $pagemenu 100 10 300 29] $buttons $res]

316 set helpL [concat {Use this popup menu or the cursor keys to\
go to a different page of the dialog.} $button_help $helpL]

30

320 } else {

321 set currentpage [lindex $pages 0]

322 set res\
[concat [list -t $currentpage 100 10 300 25] $buttons $res]

324 set helpL [concat $button_help $helpL]

325 }

Then it is time for the climax of this procedure: the call todialog!

326 if {[info tclversion] >= 8.0} then {

327 set res [eval [list dialog -w $opts(-width) -h $ymax -T\
$opts(-title) -help $helpL] $res]

329 } else {

330 if {[catch\
[concat [list dialog -w $opts(-width) -h $ymax] $res] res]}\

then {

Unlike some of the built-in dialog commands inAlpha, dialog doesn’t raise an error
when e.g.Cancel is pressed, but theAlpha 7dialog command does raise an error if it is
overstrained. That it can be overstrained is a bug.

333 dialog::cleanup $dial

334 alertnote "Sorry, you encountered a bug in Alpha 7’s\
’dialog’ command, which cannot handle very complex\

dialogs. If you are trying to edit many items at once,\
try to edit them just one at a time."

338 error "Internal bug in ’dialog’."

339 }

340 }

Now the result ofdialog must be parsed. In a multipage dialog the first item is the
name of the current page, but in a single page dialog that item is missing. The following
updatescurrentpage if necessary and ensures thatres has the multipage structure.

341 if {$multipage} then {

342 set currentpage [lindex $res 0]

343 } else {

344 set res [linsert $res 0 $currentpage]

345 }

346〈log1〉 terminal::print_word emptyline "Result: $res" newline

The next[llength $button_press] elements inres are the control values of the
buttons, but those are parsed last. Remaining results come from the various dialog items;
these are parsed by the post-processing scripts found in thepostprocL variable. During
that, thecount variable is the index of the first unparsed value inres. It is normally
incremented by1 after each item, but e.g. items which don’t have a control value can
issue acontinue command in their post-processing scripts to skip that.

347 set count [expr {[llength $button_press] + 1}]

348 foreach script $postprocL {

349 eval $script

350 incr count

351 }

31

Finally the button results are parsed. This employs the fact that at most one of them can
be1 (and all others must be0).

352 set count\
[lsearch -exact [lrange $res 1 [llength $button_press]] 1]

354 if {$count>=0} then {return [lindex $button_press $count]}

355 }

356}

End ofwhile {1} loop, and end of procedure.

dialog::makeSomeButtons

(proc)
Thedialog::makeSomeButtons procedure builds dialog material for a list of full-size
buttons, while trying to keep them on the same line. The dialog material is returned and
some variables are updated. The syntax is

dialog::makeSomeButtons {title list} {justification} {xmin} {left-var}
{right-var} {xmax} {y-var} {minwidth}?

where the ‘-var’ arguments are names of variables in the caller’s local context, whereas
the other arguments are direct data.{justification} is 0 if the buttons should be put flush
left and1 if they should be put flush right.{title list} is the list of button titles.

The procedure tries to put (the top of) the buttons at they-coordinate given by{y-var}
and thex-coordinates between those given by{left-var} and{right-var}. If that doesn’t
work then it increases the{y-var} to the next line and resets the{left-var} and{right-var}
to {xmin} and{xmax} respectively. Depending on{justification}, either the{left-var} or
the{right-var} is incremented after a button has been added.

Buttons are made 20 pixels high and at least 17 pixels wider than the title.{minwidth}
is the minimal width of a button; it defaults to 58. Buttons are put 13 pixels from each
other.

357proc dialog::makeSomeButtons\
{titleL justification xmin leftvar rightvar xmax yvar {minwidth 58}} {

359 upvar 1 $leftvar left $rightvar right $yvar y

360 set widthL [list]

361 foreach title $titleL {

362 set w [expr {[dialog::text_width $title] + 17}]

363 if {$w < $minwidth} then {set w $minwidth}

364 lappend widthL $w

365 }

366 if {[expr [join $widthL "+13+"]] > $right - $left && ($xmin<$left ||\
$right<$xmax)} then {

368 incr y 33

369 set left $xmin

370 set right $xmax

371 }

372 set n 0

373 foreach title $titleL {

374 set w [lindex $widthL $n]

375 if {$w > $right - $left && ($xmin<$left || $right<$xmax)} then {

376 incr y 33

377 set left $xmin

32

378 set right $xmax

379 }

380 lappend res -b $title

381 if {$justification} then {

382 lappend res [expr {$right-$w}] $y $right [expr {$y+20}]

383 set right [expr {$right - $w - 13}]

384 } else {

385 lappend res $left $y [incr left $w] [expr {$y+20}]

386 incr left 13

387 }

388 }

389 set res

390}

2.4.1 Construction and post-processing scripts

dialog::simple_type

(array)
dialog::complex_type

(array)

The dialog::simple_type anddialog::complex_type arrays are where the code
defining the various item types is stored. The indices into these arrays are the type names
(first item in the actual type, when seen as a list) and each entry contains theconstruction
script for that item type; this script is responsible for inserting an item of the type in
question into the dialog.

The following local variables are available when the scripts are evaluated:

res The list to which the dialog material for the item should be
appended.

dial The identifier for accessing values in the current dialog.
type The item type.
page The item page.
name The item name.
help The user-supplied help text for the item, or an empty string if

there was none.
script The post-processing scriptfor the item. This is initialised to

code which makes the next control value the new value of this
item, but items withSet... buttons will have to redefine it.

val The default value for the item.
left Thex-coordinate of the left margin for the items: this is where

the left edge of the item name should be put.
right Thex-coordinate of the right margin for the items. The dialog

material that is generated should be between thex-coordinates
$left and$right.

y The y-coordinate of the top side of the item. After insert-
ing the item, this variable should be incremented to equal the
y-coordinate of the bottom of the bounding rectangle of the
item’s material.

33

visible A boolean for whether this item produces any visible material.
It defaults to1, but if it is set to0 then they variable will not
be incremented after the item and the help text will be ignored.
The item can still have a post-processing script, but that should
end withcontinue since there isn’t a control value result for
the item.

In addition, the following local variables must be left alone:items, pages, typeA,
helpA, currentpage, opts, ymax, multipage, pagemenu, helpL, andpostprocL.
This list may change in the future, but variable names at most three characters long should
be safe.

The following global variables have been made accessible via theglobal command:

dialog::indentsame The recommended minimal indentation (fromx-
coordinate$left) for item values that are printed on
the same “line” as their names.

dialog::indentnext The recommended minimal indentation (fromx-
coordinate$left) for item values that are not printed
on the same “line” as their names.

dialog::simple_type Obvious?
dialog::complex_type Obvious?
alpha::platform The platform that AlphaTcl is being run on, either

alpha or tk.

Other global or local variables may be used in any way the script pleases, but don’t expect
local variables to be the same as the last time the script was evaluated.

The advantage with keeping contruction scripts in arrays like this in comparison with
having a procedure with a largeswitch command is that it is much easier to add defini-
tions of new types. The advantage in comparision with keeping several procedures in a
designated namespace is that you don’t have to spend a lot of code on passing information
between the caller and the callee.

Post-processing scripts, on the other hand, are usually built on the fly by the construc-
tion scripts. In some cases they are the same for all items of the same type, but it is often
necessary to embed the page and item names into the script. This is fairly straightforward
if the script simply is a single procedure call, since the script can then be built as the list
of words in that command. This might look like

set script [list myPostprocProc $dial $page $name]

which puts inscript a command with the structure

myPostprocProc {dial} {page} {name}

where{dial}, {page}, and{name} are the values these variables had when the script
was built—thelist command even takes care of quoting the arguments when necessary.
The default post-processing script and theAlpha 7post-processing scripts for items with
Set... buttons are both constructed in this way (with a slight extra twist).

For more complex post-processing scripts this might be unfeasible. In that case, the
following construction is useful:

34

set script [list set T $page,$name]
append script {
〈bulk of the script〉

}

The script will then begin with aset command into which the〈page〉,〈name〉 construc-
tion has been embedded, and thus the〈bulk of the script〉, which is a fixed string, may
refer to this string as$T. Note however that the newline before the〈bulk of the script〉 is
necessary: it separates theset command returned bylist from the first command in the
〈bulk of the script〉.

There are however a couple of variables which a post-processing script do, and usually
need to, have access to. These are:

res The list of control values returned bydialog.

count The index intores of the first value not yet parsed. Unless a post-processing
script does acontinue, this variable will be incremented by1 after the script has
been evaluated. An item for which there are several control values returned by
dialog must itself modifycount accordingly.

dial The identifier of the current dialog, for value access.

The variables that construction scripts should avoid should also be avoided by post-
processing scripts.

dialog::indentsame (var.)
dialog::indentnext (var.)

Thedialog::indentsame anddialog::indentnext variables are lower bounds for
how much the value of a dialog item is indented relative to the name.indentsame is
used for values on the same line as the item name, whereasindentnext is used for
values whose names are on the next line. The unit is screen pixels.

391set dialog::indentsame 80

392set dialog::indentnext 40

2.4.2 TextEdit item types

dialog::makeEditItem

(proc)
Thedialog::makeEditItem procedure generates the dialog material for an item whose
value is edited as explicit text, in a box. The syntax is

dialog::makeEditItem {mat-var} {script-var} {left} {right} {y-var}
{name} {value} {lines}? {minwidth}? {maxwidth}?

where{mat-var}, {script-var}, and{y-var} are names of variables in the caller’s local
context, whereas the other arguments are direct data.{mat-var} collects the dialog mate-
rial and{script-var} the post-processing commands that should be applied for this item.6

{left}, {right}, and{y-var} is the coordinates of the left, right, and top sides of a rect-
angle by which the material of the item should be bounded.{y-var} is incremented to
equal the bottom of this rectangle.{name} and{value} are the name and the initial value

6Currently this variable is neither changed nor inspected. I’m not sure why I addded the argument in the first
place. /LH

35

of the item, respectively.{lines} is the height of the edit box in lines and defaults to1.
{minwidth} is the minimal width in pixels of the box and defaults to110. {maxwidth} is
the maximal width of the box in pixels and defaults to$right-$left.

The 19 below are 13 for the standard item separation and 3+ 3 for the frame around
a TextEdit item. The defaultminwidth is arbitrarily chosen.
393proc dialog::makeEditItem {mvar svar left right yvar name val {lines 1}\

{minwidth 110} {maxwidth {}}} {

395 upvar 1 $mvar M $yvar y

396 global dialog::indentsame dialog::indentnext

397 if {$maxwidth==""} then {set maxwidth [expr {$right-$left}]}

398 set nw [expr {[dialog::text_width $name] + 1}]

399 if {$nw<${dialog::indentsame}-13} then {

400 set nw [expr {${dialog::indentsame}-13}]

401 }

402 if {$lines == 1 && $nw+19+$minwidth < $right-$left ||\
$nw+19+$maxwidth <= $right-$left} then {

404 incr y 3

405 lappend M -t $name $left $y [expr {$left+$nw}] [expr {$y+15}]

406 set ew [expr {$right - $left - $nw - 19}]

407 if {$ew>$maxwidth} then {set $ew $maxwidth}

408 lappend M -e $val [expr {$left+$nw+16}] $y\
[expr {$left+$nw+$ew+16}] [expr {$y + 16*$lines - 1}]

410 } else {

411 lappend M -t $name $left $y [expr {$left+$nw}] [expr {$y+15}]

412 incr y 19

413 set ew [expr {$right - $left - ${dialog::indentnext} - 6}]

414 if {$ew>$maxwidth} then {set $ew $maxwidth}

415 lappend M -e $val [expr {$right - 3 - $ew}] $y\
[expr {$right - 3}] [expr {$y + 16*$lines - 1}]

417 }

418 set y [expr {$y + 16*$lines + 2}]

419}

dialog::simple_type(var)

dialog:

:simple_type(var2)

The var item type provides a box in which the item value can be edited as a string; it
could be removed as this is also the default for undefined simple types. Thevar2 type is
similar, but the text box is two lines high, instead of one as for thevar type.
420array set dialog::simple_type\

{var {dialog::makeEditItem res script $left $right y $name $val}}

422array set dialog::simple_type\
{var2 {dialog::makeEditItem res script $left $right y $name $val 2}}

dialog::simple_type

(password)

Thepassword item type is almost the same asvar; the only difference is that the editable
text box is deliberately so small that the text written in it cannot be read.

At least in some cases, the Mac OS Toolbox routines for TextEdit boxes draw the ini-
tial text in them, even when the that means drawing outside the corresponding rectangle.
This can result in passwords being clearly written on the screen. To avoid this, the initial
text in the TextEdit atom of apassword item consists entirely of spaces. Passwords that
are not edited not changed by the post-processing script.

424array set dialog::simple_type {password {

36

425 set nw [expr {[dialog::text_width $name] + 1}]

426 lappend res -t $name $left $y [expr {$left + $nw}] [expr {$y + 15}]

427 incr nw 13

428 if {$nw<${dialog::indentsame}} then {set nw ${dialog::indentsame}}

429 regsub -all {.} $val { } vv

430 lappend res -e $vv [expr {$left + $nw + 3}] [expr {$y + 6}]\
[expr {$right - 3}] [expr {$y + 7}]

432 incr y 15

433 set script [list set T $page,$name]

434 append script {

435 regsub -all {.} [dialog::valGet $dial $T] { } vv

436 if {[lindex $res $count] != $vv} then {

437 dialog::valChanged $dial $T [lindex $res $count]

438 }

439 }

440}}

2.4.3 Uneditable item types

dialog::lines_to_text

(proc)
Thelines_to_text procedure takes a list of lines, as returned by e.g. thewidth_linebreak
procedure, and returns dialog material for showing those lines as static text. The two im-
portant non-trivialities there is are that (i) there is a limit on how long a string in a dialog
atom can be and (ii) there is more vertical space between two paragraphs than between
two lines in the same paragraph.

The syntax is

dialog::lines_to_text {line list} {left} {right} {y-var}

{line list} is the list of lines.{left} and{right} are thex-coordinates of the respective left
and right edges of the text items that are created. It is assumed that each line of text fits
between those two positions. The{y-var} is the name of a variable in the caller’s local
context giving the top edge of the first text line. The procedure increments it to give the
bottom edge of the last line in the paragraph.

441proc dialog::lines_to_text {lineL left right yvar} {

442 upvar 1 $yvar y

443 global dialog::strlength

444 set res [list]

445 set item_lines [list]

446 set item_length -1

447 foreach line $lineL {

448 if {$line!="\r"} then {

449 incr item_length [expr {1 + [string length $line]}]

450 if {${dialog::strlength}<$item_length} then {

451 lappend res -t [join $item_lines \r] $left $y $right\
[incr y [expr {[llength $item_lines] * 16}]]

453 set item_lines [list $line]

454 set item_length [string length $line]

455 } else {

456 lappend item_lines $line

37

457 }

458 } else {

459 if {[llength $item_lines]} then {

460 lappend res -t [join $item_lines \r] $left $y $right\
[incr y [expr {[llength $item_lines] * 16}]]

462 }

463 incr y 6

464 set item_lines [list]

465 set item_length -1

466 }

467 }

468 if {[llength $item_lines]} then {

469 lappend res -t [join $item_lines \r] $left $y $right\
[incr y [expr {[llength $item_lines] * 16}]]

471 }

472 if {[llength $res]} then {incr y -1}

473 return $res

474}

dialog:

:simple_type(text)

A text item has no value; it merely prints the{name} in the dialog as a static text item.
This might for example be used to make subheadings in a dialog.

475array set dialog::simple_type {text {

476 eval [list lappend res] [dialog::lines_to_text\
[dialog::width_linebreak $name [expr {$right-$left}]] $left\

$right y]

479 set script {continue}

480}}

dialog::simple_type

(static)

A static item looks like avar item where the value for some reason cannot be edited.
It is mainly used for showing information in a dialog.

481array set dialog::simple_type {static {

482 set nw [expr {[dialog::text_width $name] + 1}]

483 if {$nw<${dialog::indentsame}-13} then {

484 set nw [expr {${dialog::indentsame}-13}]

485 }

486 lappend res -t $name $left $y [expr {$left+$nw}] [expr {$y+15}]

487 set vw [expr {[dialog::text_width $val] + 1}]

488 lappend res -t $val

489 if {$nw + 13 + $vw < $right - $left} then {

490 lappend res [expr {$left + $nw + 13}] $y

491 } else {

492 incr y 16

493 lappend res [expr {$left + ${dialog::indentnext}}] $y

494 }

495 lappend res $right [incr y 15]

496 set script {continue}

497}}

dialog::mute_types (var.) Thedialog::mute_types variable is a list of “mute” item types, i.e., they don’t return

38

any value.

498set dialog::mute_types [list text static]

2.4.4 Elementary control item types

dialog:

:simple_type(flag)

flag items are simple checkboxes. They could be implemented usingdialog::checkbox,
but that wouldn’t take notice of the margins that are used.

499array set dialog::simple_type {flag {

500 lappend res -c $name $val

501 if {[info tclversion]>=8.0} then {lappend res -font 2}

502 lappend res $left $y $right [incr y 15]

503}}

dialog::complex_type

(multiflag)

multiflag items are a group of checkboxes, set in two columns and with the overall
item name as a heading. The format is

multiflag {subitems list}

where each element in the{subitems list} is the text to put next to one of the checkboxes.
The value of the item is the list of values of the individual checkboxes, so it is a list of
zeros and ones.

Verical separation between atoms in themultiflag item is 3 pixels, whereas hor-
izontal separation is 10 pixels. Both these distances are as in the package installation
dialog.

504array set dialog::complex_type {multiflag {

505 eval [list lappend res] [dialog::lines_to_text\
[dialog::width_linebreak $name [expr {$right-$left}]] $left $right\

y]

508 set flag_list [lindex $type 1]

509 set y2 $y

510 set r [expr {($left+$right)/2 - 5}]

511 set l [expr {($left+$right)/2 + 5}]

512 for {set n 0} "\$n < ([llength $flag_list]+1)/2" {incr n} {

513 lappend res -c [lindex $flag_list $n] [lindex $val $n]

514 if {[info tclversion]>=8.0} then {lappend res -font 2}

515 lappend res $left [incr y 3] $r [incr y 15]

516 }

517 for {} "\$n < [llength $flag_list]" {incr n} {

518 lappend res -c [lindex $flag_list $n] [lindex $val $n]

519 if {[info tclversion]>=8.0} then {lappend res -font 2}

520 lappend res $l [incr y2 3] $right [incr y2 15]

521 }

522 set script [list dialog::modified $dial $page,$name]

523 append script { [lrange $res $count [incr count }

524 append script [expr {[llength $flag_list] - 1}] {]]}

525}}

This is also where a type for radio buttons should be defined, if there was one.

39

2.4.5 Menu item types

dialog::makeMenuItem

(proc)
The dialog::makeMenuItem procedure builds the dialog material corresponding to a
menu item. It has the syntax

dialog::makeMenuItem {mat-var} {script-var} {left} {right} {y-var}
{name} {item list} {value}

where the ‘-var’ arguments are names of variables in the caller’s local context and the
other arguments provide direct data. In the{mat-var} variable the dialog material for
the item is collected. The{script-var} variable stores the post-processing script for the
item, but currently this argument is not used (and it is unclear why it was added in the
first place). {left}, {right}, and the{y-var} variable give three sides of the bounding
rectangle for the item.{name} is the item name,{item list} the list of items for the menu,
and{value} the default value.

If the item name leaves less than 50 pixels for the menu then the menu is put on the
line below the item name. This value was chosen quite arbitrarily.
526proc dialog::makeMenuItem {mvar svar left right yvar name itemL value} {

527 upvar 1 $mvar M $yvar y

528 global dialog::indentsame dialog::indentnext

529 set nw [expr {[dialog::text_width $name]+1}]

530 set itemL [linsert $itemL 0 $value]

531 if {$nw<${dialog::indentsame}} then {set nw ${dialog::indentsame}}

532 if {$right - $left - $nw < 50} then {

533 lappend M -t $name $left $y [expr {$left+$nw}] [incr y 15]

534 incr y 5

535 lappend M -m $itemL [expr {$left+${dialog::indentnext}+1}]

536 } else {

537 incr y

538 lappend M -t $name $left $y [expr {$left+$nw}] [expr {$y+15}]

539 lappend M -m $itemL [expr {$left+$nw+14}]

540 }

541 lappend M $y [expr {$right-2}] [incr y 18]

542}

dialog:

:complex_type(menu)

Themenu types provide a popup menu of items to choose from. In this case the{type}
has the form

menu {item list}

where{item list} is the list of items in the menu.
543array set dialog::complex_type {menu {dialog::makeMenuItem res script\

$left $right y $name [lindex $type 1] $val}}

dialog::simple_type

(colour)

dialog:

:simple_type(mode)

Thecolour andmode simple types are variations on themenu type in which the item lists
areAlpha’s lists of colours and modes respectively.
546array set dialog::simple_type {colour {

547 global alpha::colors

548 dialog::makeMenuItem res script $left $right y $name\
${alpha::colors} $val

40

550} mode {

551 dialog::makeMenuItem res script $left $right y $name\
[linsert [mode::listAll] 0 "<none>"] $val

553}}

dialog::complex_type

(menuindex)

Themenuindex types are visually the same as themenu types, but the value is the index
into the list of the chosen item rather than the actual item. The{type} has the form

menuindex {item list}

Note how the post-processing script is used to convert the control value returned by
dialog to an index.
554array set dialog::complex_type {menuindex {

555 set script [list dialog::valChanged $dial $page,$name]

556 append script { [} [list lsearch -exact [lindex $type 1]]

557 append script { [lindex $res $count]]}

558 catch {lindex [lindex $type 1] $val} val

559 dialog::makeMenuItem res script $left $right y $name\
[lindex $type 1] $val

561}}

2.4.6 specialSet item types

For many preference types, thedialog command provides no convenient method of edit-
ing in the dialog, so in order to edit those values, the user is instead taken to an auxiliary
dialog which provide a more convenient presentation of the item value. Everything that
appears in the main dialog is the item name, a pretty-printed representation of the item
value (static text), and a button labelledSet.... The pretty-printed representation is gener-
ated by the proceduredialog::specialView::〈type〉. Clicking theSet... button calls
a procedure nameddialog::specialSet::〈type〉, which puts up a dialog in which the
user can edit the item value. ThesespecialSet procedures retrieve the values to edit
usingdialog::getFlag and store them after editing usingdialog::modified, both
of which are designed specifically to work with preferences.

That is the way things are in the old preferences dialogs. In the new dialogs, things are
handled differently—in particular there is no reason to assume that the values being edited
are preferences in the traditional sense—but as much work has been put into designing
the auxiliary editing dialogs it is desirable to reuse thespecialSet procedures as far
as possible. For that reason, the new dialogs code stores all values being edited in such
a way thatdialog::modified anddialog::getFlag will access them, even though
they are not preferences. This way, thespecialSet procedures will do the right thing
for the new dialogs even though they haven’t been designed for this.

dialog::makeSetItem

(proc)
Thedialog::makeSetItem procedure builds dialog material for an item with aSet...
button; more precisely the material for the item name and button. It does not make any-
thing for the actual item value, but returns the rectangle between the name and button so
that the caller may decide on whether the value should be put there. The syntax is

dialog::makeSetItem {mat-var} {script-var} {left} {right} {y-var} {name}
{button script}

41

where the ‘-var’ arguments are names of variables in the caller’s local context and the
other arguments provide direct data. In the{mat-var} and {script-var} variables the
dialog material and post-processing script respectively for the item are collected.{left},
{right}, and the{y-var} variable give three sides of the bounding rectangle for the item.
{name} is the item name.{button script} is a script that will be evaluated when theSet...
button is pressed.

A tricky matter is that you have to embed the values ofdial, page, andname in the
{button script}. This not so hard if you build each command as a list; see the definition of
dialog::simple_type(binding) below for an example. See also [1] for a collection
of notes on how to build scripts on-the-fly like this.

The implementation assumes that{name} and the button fits on one a single line. The
extra 17 pixels in the width$bw of the button is to get the same width as used in traditional
dialogs. The rounded corners in the button use 5 of these pixels on each side.

562proc dialog::makeSetItem {Mvar Svar left right yvar name bscript} {

563 upvar 1 $Mvar M $Svar S $yvar y

564 global dialog::ellipsis dialog::indentsame

565 set nw [expr {[dialog::text_width $name]+1}]

566 set bw [expr {[dialog::text_width "Set${dialog::ellipsis}"] + 17}]

567 lappend M -t $name $left $y [expr {$left + $nw}] [expr {$y + 15}]

568 lappend M -b "Set${dialog::ellipsis}"

569 if {[info tclversion]>=8.0} then {

570 lappend M -set [list $bscript +1]

571 set S {}

572 } else {

573 set S [list if {[lindex $res $count] == 1} then $bscript]

574 }

575 lappend M [expr {$right - $bw}] $y $right [expr {$y + 15}]

576 set nw [expr {$nw+13}]

577 if {$nw<${dialog::indentsame}} then {set nw ${dialog::indentsame}}

578 list [expr {$left + $nw}] $y [expr {$right - $bw - 13}] [incr y 15]

579}

dialog::makeStaticValue

(proc)
Thedialog::makeStaticValue procedure builds the dialog material for a static value.
The syntax is

dialog::makeStaticValue {left} {right} {y-var} {value} {suboptions}
{abbr-ratio}? {rect}?

and the returned value is the dialog material.{value} is the text to show.{rect} is, if it
is provided, a rectangle (assumed to be one line tall) in which the procedure tries to fit
the{value}. If this doesn’t work then the value is instead put below all previous dialog
material.{left} and{right} are taken as the left and right sides of the bounding rectangle
in which dialog material may be put. The{y-var} variable in the caller’s local context is
assumed to be thebottomof the bounding rectangle of all previous dialog material, and it
is incremented to accomodate for the returned-t item.

The{abbr-ratio} argument controls how a{value} that is to wide to fit on one line
should be abbreviated. The value is a real number that gives the fraction of the abbreviated
text that should be before the point of abbreviation.0 means remove text at the beginning,

42

1 means remove at the end, and the default0.33 leaves twice as much after the point of
abbreviation as before it.

The {suboptions} argument, finally, is used for supplying extra suboptions (most
likely -dnd) to the-t option. These are currently only inserted forAlphatk.

580proc dialog::makeStaticValue\
{left right yvar value subopt {ratio 0.33} {rect {0 0 0 0}}} {

582 global dialog::indentnext alpha::platform

583 upvar 1 $yvar y

584 set vw [expr {[dialog::text_width $value] + 1}]

585 if {[lindex $rect 2] - [lindex $rect 0] >= $vw} then {

586 set res [list -t $value]

587 if {${alpha::platform} != "alpha"} then {

588 set res [concat $res $subopt]

589 }

590 if {[lindex $rect 3] > $y} then {set y [lindex $rect 3]}

591 concat $res $rect

592 } else {

593 set res [list -t]

594 lappend res [dialog::width_abbrev $value\
[expr {$right - $left - ${dialog::indentnext} - 1}] $ratio]

596 if {${alpha::platform} != "alpha"} then {

597 set res [concat $res $subopt]

598 }

599 incr y

600 lappend res [expr {$left + ${dialog::indentnext}}] $y $right\
[incr y 15]

602 }

603}

dialog::simple_type

(binding)

binding items constitute a straightforward application of thedialog::makeSetItem
anddialog::makeStaticValue procedures.

604array set dialog::simple_type {binding {

605 set R [dialog::makeSetItem res script $left $right y $name\
[list dialog::specialSet::binding $dial "$page,$name"]]

607 set vv [dialog::specialView::binding $val]

608 eval [list lappend res]\
[dialog::makeStaticValue $left $right y $vv {} 0.33 $R]

610}}

dialog:

:simple_type(file)

dialog::simple_type

(folder)

dialog::simple_type(url)

Thefile, folder, andurl item types allow the specification of existing files, folders,
and URLs.

611array set dialog::simple_type {file {

612 set R [dialog::makeSetItem res script $left $right y $name\
[list dialog::specialSet::file $dial "$page,$name"]]

614 eval lappend res [dialog::makeStaticValue $left $right y $val\
[list "-dnd" $dial [list "$page,$name" $type]] 0.33 $R]

617} folder {

618 set R [dialog::makeSetItem res script $left $right y $name\
[list dialog::specialSet::folder $dial "$page,$name"]]

43

620 eval lappend res [dialog::makeStaticValue $left $right y $val\
[list "-dnd" $dial [list "$page,$name" folder]] 0.33 $R]

623} url {

624 set R [dialog::makeSetItem res script $left $right y $name\
[list dialog::specialSet::url $dial "$page,$name"]]

626 eval lappend res [dialog::makeStaticValue $left $right y $val\
[list "-dnd" $dial [list "$page,$name" $type]] 0.33 $R]

629}\

[If this had been a.tcl file then I wouldn’t have been able to put a comment here,
since this is technically inside a list. The.dtx format allows you to put a comment
between any two rows of the program, though.]

dialog:

:simple_type(date)

Thedate item type specifies a time (date and time of day). The format is as returned by
clock scan.
630 date {

631 set R [dialog::makeSetItem res script $left $right y $name\
[list dialog::specialSet::date $dial "$page,$name"]]

633 eval lappend res [dialog::makeStaticValue $left $right y\
[clock format $val] {} 1 $R]

636}}

dialog::simple_type

(appspec)

Theappspec item type stores references to applications, in a manner similar to that used
for preferences whose names end in ‘Sig’. The main difference between appspecs and
sigs is that the former may be file names of applications, so that also applications which
do not have unique sigs can be specified.
637array set dialog::simple_type {appspec {

638 if {${alpha::platform} == "alpha" &&\
[regexp {^’(....)’$} $val "" sig]} then {

640 if {[catch {nameFromAppl $sig} vv]} then {

641 set vv "Unknown application with sig ’$sig’"

642 }

643 } else {

644 set vv $val

645 }

646 set R [dialog::makeSetItem res script $left $right y $name\
[list dialog::set_appspec $dial $page $name "Select $name"]]

648 eval lappend res\
[dialog::makeStaticValue $left $right y $vv {} 0.33 $R]

650}}

dialog::set_appspec

(proc)
Thedialog::set_appspec procedure is a modernised version ofdialog::specialSet:
:Sig (or perhaps it is ratherdialog::_findApp, as that does everything that the user
sees). The syntax is

dialog::set_appspec {page} {name} {prompt}

where{page} is the page of the dialog item,{name} is the item name, and{prompt} the
prompt for the dialog. The procedure reads the old value from thevalueA array in the
caller’s local context and stores the new value there as well.

44

The main improvement indialog::set_appspec as compared todialog::_findApp
is that the former doesn’t panic when the desktop database wouldn’t select the same file
as the user did, but instead calmly asks whether it should return the sig or the path.

651proc dialog::set_appspec {dial page name prompt} {

652 global alpha::platform

653 set val [dialog::valGet $dial $page,$name]

654 if {${alpha::platform} == "alpha" &&\
[regexp {^’(....)’$} $val "" sig]} then {

656 catch {nameFromAppl $sig} val

657 }

658 if {[catch {getfile $prompt $val} val]} then {return ""}

659 if {${alpha::platform} == "alpha"} then {

660 set sig [getFileSig $val]

661 set app [nameFromAppl $sig]

662 if {$app != $val} then {

663 catch {

664 if {[dialog::yesno -y "Path" -n "Sig" -c "Application sig\
’$sig’ is mapped to ’$app’, not ’$val’. Which should I\

use?"]}\
667 then {dialog::valChanged $dial $page,$name $val}\
668 else {dialog::valChanged $dial $page,$name ’$sig’}

669 }

670 } else {

671 dialog::valChanged $dial $page,$name ’$sig’

672 }

673 } else {

674 dialog::valChanged $dial $page,$name $val

675 }

676}

dialog::simple_type

(searchpath)

Thesearchpath type is a list of folders. TheAlpha implementation is as for most other
types withSet... buttons, butAlphatkreplaces that with an in-dialog listpick list to stop
it from growing.

677if {${alpha::platform} == "alpha"} then {

678 array set dialog::simple_type {searchpath {

679 set R [dialog::makeSetItem res script $left $right y $name\
[list dialog::specialSet::searchpath $dial "$page,$name"]]

681 if {![llength $val]} then {

682 eval [list lappend res] [dialog::makeStaticValue $left $right\
y "No search paths currently set." {} 1 $R]

685 } else {

686 foreach path $val {

687 eval [list lappend res]\
[dialog::makeStaticValue $left $right y $path {}]

689 }

690 }

691 }}

692} else {

693 array set dialog::simple_type {searchpath {

45

694 dialog::makeSetItem res script $left $right y $name\
[list dialog::specialSet::searchpath $dial "$page,$name"]

696 lappend res "-l" $val 3

697 lappend res "-dnd" $dial [list "$page,$name" searchpath]

698 lappend res [expr {$left + ${dialog::indentnext}}] [incr y]\
$right [incr y 51]

700 }}

701}

2.4.7 Listpick item types

dialog::edit_subset

(proc)
Thedialog::edit_subset procedure is mainly a wrapper around thelistpick com-
mand that is somewhat simpler to use in post-processing and button action scripts. The
syntax is

dialog::edit_subset {full set} {page} {name} {prompt}

where{full set} is the list to build the listpick from,{page} is the page of the dialog item,
{name} is the item name, and{prompt} the prompt. The procedure reads the old value
from thevalueA array in the caller’s local context and stores the new value there as well.

702proc dialog::edit_subset {setL dial page name prompt} {

703 if {![catch {

704 listpick -p $prompt -l -L [dialog::valGet $dial $page,$name] $setL

705 } res]} then {

706 set val [list]

707 catch {

708 foreach item $res {lappend val $item}

709 dialog::valChanged $dial $page,$name $val

710 }

711 }

712}

The reason for the somewhat odd way of storing the selected subset is thatlistpick
doesn’t quote its result properly: if some item contains a mismatched brace or backslash
thenres needs not be a proper list. It is furthermore a rather ugly list (with braces around
every item) and hence it is reconstructed to look more like a sequence of words.

dialog::complex_type

(subset)

Thesubset types provide the ability to select a subset of a given set (or technically rather
a sublist of a given list, which is slightly more general) using alistpick dialog. The
type format is

subset {set}

where{set} is the list of items in the set. The value is the list of items in the selected
subset.

713array set dialog::complex_type {subset {

714 dialog::makeSetItem res script $left $right y $name\
[list dialog::edit_subset [lindex $type 1] $dial $page $name\

"Edit subset"]

46

717 eval [list lappend res]\
[dialog::makeStaticValue $left $right y $val {} 1]

719}}

dialog::simple_type

(modeset)

Themodeset item type is a special case of thesubset types where the universe is the
list of modes.

720array set dialog::simple_type {modeset {

721 dialog::makeSetItem res script $left $right y $name\
[list dialog::edit_subset [mode::listAll] $dial $page $name\

"Select modes"]

724 eval [list lappend res]\
[dialog::makeStaticValue $left $right y $val {} 1]

726}}

2.4.8 Miscellanea

dialog::complex_type

(global)

A global type has the structure

global {preference name}

This essentially causes the item to have the same type as the{preference name} prefer-
ence.

727array set dialog::complex_type {prefItemType {

728 set type [dialog::prefItemType [lindex $type 1]]

729 continue

730}}

dialog::simple_type

(thepage)

An thepage item simply reports back the name of the current page. The item is invisible
and the initial value is ignored.

731array set dialog::simple_type {thepage {

732 set script [list dialog::valChanged $dial $page,$name]

733 append script { $currentpage

734 continue

735 }

736 set visible 0

737}}

dialog::hide_item (proc)
dialog::show_item (proc)

dialog::complex_type

(hidden)

Sometimes you might not want to show all the items in a dialog, but only show them if
the user clicks an “Advanced settings” (or something) button. This can be accomplished
using thehide_item andshow_item procedures, which have the syntaxes

dialog::hide_item {page} {name} {type-arr}?
dialog::show_item {page} {name} {type-arr}?

{page} is the name of the page on which the item can be found and{name} is the name
on that page of the item. The procedures work by modifying the entry〈page〉,〈name〉 of
a variable in the caller’s local context; this entry is assumed to be where the type of the
item is stored. The{type-arr} argument is the name of this array: it defaults totypeA

47

which is correct whenhide_item andshow_item are called from within themake and
make_paged procedures.
738proc dialog::hide_item {page item {typevar typeA}} {

739 upvar 1 $typevar typeA

740 set typeA($page,$item) [linsert $typeA($page,$item) 0 hidden]

741}

742proc dialog::show_item {page item {typevar typeA}} {

743 upvar 1 $typevar typeA

744 if {[lindex $typeA($page,$item) 0]=="hidden"} then {

745 set typeA($page,$item) [lreplace $typeA($page,$item) 0 0]

746 }

747}

To make an item hidden by default, you simply prepend ahidden to the actual type when
you create it. This above works because of how thehidden item type is defined. Items
of this type are essentially ignored when the dialog contents for the user: there is nothing
shown and nothing the user does will change the item value. Furthermore the format of
this type is

hidden 〈type when visible〉
e.g.hidden menu {good better best}. Thus if you remove thehidden, which is
whatshow_item does, the item type will become the〈type when visible〉 and that can be
just about anything.
748array set dialog::complex_type {hidden {

749 set script {continue}

750 set visible 0

751}}

2.5 Main dialogs interface

dialog::make (proc) The most basic procedure for making a generic dialog has the syntax

dialog::make 〈option〉∗ {page}+

where each{page} is a list with the structure

{page name} {item}∗

and each{item} in turn is a list with the structure

{type} {name} {value} {help}?

An 〈option〉 is one of

-ok {OK button title}
-cancel {cancel button title}
-title {dialog window title}
-defaultpage {name of default page}
-hidepages {list of pages to hide}
-addbuttons {button list}
-width {dialog window width}
-debug {debug level}

48

where the{button list} has the structure(
{name} {help} {script}

)+

Here each tripple{name} {help} {script} describes one additional button.{name} is the
button name, i.e., the text that will be shown on the button. The button will be made wide
enough to contain the whole{name}. {help} is the help text for the button.{script} is a
script that is evaluated when the button is clicked.

752proc dialog::make {args} {

There are a number of local variables inmake that must be explained, since the button
scripts passed by the caller may need to access these variables. First there are a couple of
arrays in which the page descriptions are stored.

pageA The index into this array is the name of a page. An entry contains the list of names
of items on that page.

typeA The index into this array has the form〈page〉,〈item〉, where〈page〉 is the name
of a page and〈item〉 is the name of an item on that page. An entry contains the type
of that item.

helpA The index has the same form as in thetypeA array. An entry contains the help
text for that entry, but an item needs not have an entry in this array (it can be left
unset).

There are a couple of additional scalar variables that are of interest.

retCode, retVal When theretCode variable is set, the dialog is logically closed and
the procedure returns. If the variable is set to0 thenmake executes a normal return
and the returned value will be the list of item values. If the variable is set to anything
else then that will used for the-code option ofreturn and the returned value will
be taken from theretVal variable, which must then be initalised.

dial This contains the reference string to use withvalGet, valSet, and friends when
accessing the values of items in the dialog.

currentpage This contains the name of the current page in the dialog.

pages This is a list of pages and items to show in the dialog. It is similar to the result
of array get pageA, but the order of pages is as specified in the call and hidden
pages are not included.

opts(-addbuttons) This is {button list} specified by the caller. Button scripts can
modify this list to change the text on their button.

state This is initialized to0 before the first time the dialog is shown and then the pro-
cedure leaves it alone. Button scripts may change it to keep track of what “state”
(mostly: which items/pages are currently hidden) the dialog is in.

optionL The list of additional options to pass todialog::handle.

49

The first part of the procedure is all about interpreting the arguments.

753 set opts(-ok) OK

754 set opts(-cancel) Cancel

755 set opts(-title) ""

756 set opts(-width) 400

757 set opts(-debug) 0

758 set opts(-hidepages) [list]

759 getOpts {-title -defaultpage -ok -cancel -addbuttons -width -debug\
-hidepages}

761 set dial [dialog::create]

762 set pages [list]

763 foreach pagearg $args {

764 set page [lindex $pagearg 0]

765 set pageA($page) [list]

766 foreach item [lrange $pagearg 1 end] {

767 set name [lindex $item 1]

768 set typeA($page,$name) [lindex $item 0]

769 dialog::valSet $dial $page,$name [lindex $item 2]

770 if {[llength $item]>3} then {

771 set helpA($page,$name) [lindex $item 3]

772 }

773 lappend pageA($page) $name

774 }

775 if {[lsearch -exact $opts(-hidepages) $page]<0} then {

776 lappend pages $page $pageA($page)

777 }

778 }

779 if {[info exists opts(-defaultpage)]} then {

780 set currentpage $opts(-defaultpage)

781 } else {

782 set currentpage [lindex $pages 0]

783 }

784 set optionL [list -width $opts(-width) -title $opts(-title)]

785 set main_buttons [list\
786 [list $opts(-ok) "Click here to use the current settings."\

{set retCode 0}\
788 $opts(-cancel) "Click here to discard any changes you’ve made to\

the settings." {set retCode 1; set retVal "cancel"}]\
791 first right]

The second part is the loop which lets the user edit the settings.

792 set state 0

793 while {![info exists retCode]} {

794 if {[info exists opts(-addbuttons)]} then {

795 set script [dialog::handle $pages typeA $dial helpA\
currentpage $optionL [list $opts(-addbuttons)] $main_buttons]

798 } else {

799 set script [dialog::handle $pages typeA $dial helpA\
currentpage $optionL $main_buttons]

801 }

50

802 if {[catch $script err]} then {

The rest of this loop is simply for gracefully handling errors that occur when button scripts
are evaluated.

803 global errorInfo

804 set errinfo $errorInfo

805 if {$opts(-debug)} then {

806 tclLog "Error in button script ’$script’"

807 tclLog $err

808〈∗log1〉
809 terminal::print_word emptyline "Error in button script\

$script" newline

811 terminal::print_word newline "Error: $err" newline

812 terminal::print_word newline "Error info: $errorInfo"\
newline

813〈/log1〉
814 }

815 dialog::cleanup $dial

816 return -code 1 -errorinfo $errinfo "Error ’$err’ when\
evaluating button script."

818 }

819 }

The third part constructs the result to return (at normal returns). It should be observed
that it usesargs (rather than the contents of e.g.pages) to get the values in the original
order. This ensures that the caller can interpret the flat list returned.

820 if {$retCode==0} then {

821 set retVal [list]

822 global dialog::mute_types

823 foreach pagearg $args {

824 set page [lindex $pagearg 0]

825 foreach item [lrange $pagearg 1 end] {

826 if {[lsearch -exact ${dialog::mute_types}\
[lindex [lindex $item 0] 0]] < 0} then {lappend retVal\

[dialog::valGet $dial "$page,[lindex $item 1]"]}

830 }

831 }

832 }

833 dialog::cleanup $dial

834 return -code $retCode $retVal

835}

dialog::make_paged (proc) Themake_paged procedure is similar to themake procedure, but its argument argument
structure is slightly different, its return value is very different, and it does have a couple of
features thatmake doesn’t (such as adding or removing pages or items in a dialog). The
basic syntax is the same

dialog::make_paged 〈option〉∗ {page}+

but here each{page} is a list with the structure

51

{page name} {key–value list} {item list}

and each{item list} in turn is a list of items, each of with are themselves lists and have
the structure

{key} {type} {name} {help}?

The return value is a list with the structure(
{page name} {key–value list}

)+

and in both cases the{key–value list} has the format of a list returned byarray get,
i.e., (

{key} {value}
)∗

Rather than (as withmake) including the value of an item in its{item} list, that list
contains a{key} which references a value stored in the{key–value list} of that page. The
idea with this is that the input and output formats for values should be the same, so that the
caller has little overhead in converting from one data format to another. The{key–value
list} format is furthermore flexible in that is completely insensitive to changes that add,
remove, or rearrange items within a page. Extra key–value pairs in the input are ignored
and an empty string is substituted as value for pairs that are missing.

The〈option〉s understood bymake_paged are

-ok {OK button title}
-cancel {cancel button title}
-title {dialog window title}
-defaultpage {name of default page}
-addbuttons {button list}
-width {dialog window width}
-debug {debug level}
-changedpages {var-name}
-changeditems {var-name}

Those that are common withmake work exactly the same. The-changedpages option
specifies that the caller wants to know on which pages something was changed. The
{var-name} is the name of a variable in the caller’s local context which will be set to
the list of (names of) pages where some item value was changed. The-changeditems
option is similar, but here the variable will be set to a list with the structure(

{page name} {key list}
)∗

where the{key list}s are lists of thekeysof items on that page whose values were changed.

836proc dialog::make_paged {args} {

make_paged largely has the same local variables asmake, but there are some addi-
tions. The major arrays are

pageA The index into this array is the name of a page. An entry contains the list of names
of items on that page.

52

typeA The index into this array has the form〈page〉,〈item〉, where〈page〉 is the name
of a page and〈item〉 is the name of an item on that page. An entry contains the type
of that item.

keyA The index has the same form as in thetypeA array. An entry contains the{key}
for that item.

helpA The index has the same form as in thetypeA array. An entry contains the help
text for that entry, but an item needs not have an entry in this array (it can be left
unset).

There are a couple of additional scalar variables that are of interest.

retCode, retVal When theretCode variable is set, the dialog is logically closed and
the procedure returns. If the variable is set to0 thenmake executes a normal return
and the returned value will be the list of item values. If the variable is set to anything
else then that will used for the-code option ofreturn and the returned value will
be taken from theretVal variable, which must then be initalised.

dial This contains the reference string to use withvalGet, valSet, and friends when
accessing the values of items in the dialog.

currentpage This contains the name of the current page in the dialog.

delta pages This is the list of all pages which have been added to or deleted from
the dialog since it was called. Theadd_page anddelete_page procedures both
directly access this list. It is needed to get the information for the-changedpages
and-changeditems correct.

pages This is a list of pages and items to show in the dialog. It is similar to the result
of array get pageA, but the order of pages is as specified in the call and hidden
pages are not included.

opts(-addbuttons) This is {button list} specified by the caller. Button scripts can
modify this list to change the text on their button.

state This is initialized to0 before the first time the dialog is shown and then the pro-
cedure leaves it alone. Button scripts may change it to keep track of what “state”
(mostly: which items/pages are currently hidden) the dialog is in.

optionL The list of additional options to pass todialog::handle.

The first part ofdialog::make_paged processes the arguments.
837 set opts(-ok) OK

838 set opts(-cancel) Cancel

839 set opts(-title) ""

840 set opts(-width) 400

841 set opts(-debug) 0

842 getOpts {-title -defaultpage -ok -cancel -addbuttons -width -debug\
-changedpages -changeditems}

844 set dial [dialog::create]

53

The page arguments are interpreted by theadd_page procedure. Since these pages aren’t
new in the sense that is relevant for thedelta_pages list, that variable is reset afterwards.

845 set pages [list]

846 set delta_pages [list]

847 foreach pagearg $args {

848 eval [list dialog::add_page] $pagearg

849 }

850 set delta_pages [list]

851 if {[info exists opts(-defaultpage)]} then {

852 set currentpage $opts(-defaultpage)

853 } else {

854 set currentpage [lindex $pages 0]

855 }

856 set optionL [list -width $opts(-width) -title $opts(-title)]

857 set main_buttons [list\
858 [list $opts(-ok) "Click here to use the current settings."\

{set retCode 0}\
860 $opts(-cancel) "Click here to discard any changes you’ve made to\

the settings." {set retCode 1; set retVal "cancel"}]\
863 first right]

The second part is the loop which lets the user edit the settings.

864 set state 0

865 while {![info exists retCode]} {

866 if {[info exists opts(-addbuttons)]} then {

867 set script [dialog::handle $pages typeA $dial helpA\
currentpage $optionL [list $opts(-addbuttons)] $main_buttons]

870 } else {

871 set script [dialog::handle $pages typeA $dial helpA\
currentpage $optionL $main_buttons]

873 }

874 if {[catch $script err]} then {

The rest of this loop is simply for gracefully handling errors that occur when button scripts
are evaluated.

875 global errorInfo

876 set errinfo $errorInfo

877 if {$opts(-debug)} then {

878 tclLog "Error in button script ’$script’"

879 tclLog $err

880〈∗log1〉
881 terminal::print_word emptyline "Error in button script\

$script" newline

883 terminal::print_word newline "Error: $err" newline

884 terminal::print_word newline "Error info: $errorInfo"\
newline

885〈/log1〉
886 }

887 dialog::cleanup $dial

54

888 return -code 1 -errorinfo $errinfo "Error ’$err’ when\
evaluating button script."

890 }

891 }

The third part is as inmake responsible for constructing the result to return (at normal
returns). Unlike the case withmake, the return value covers only the items currently in
pages. This part is also responsible for constructing the lists of changed pages and items.
Two important variables in this arecS andcA. cS is an array which is used to test whether
a certain item has been changed (viavalChanged), but the only thing that matters is
whether an entry has been set or not.cA is an array indexed by page name, whereas the
entries are lists of keys of items on that page which have been changed.
892 if {$retCode==0} then {

893 set retVal [list]

894 global dialog::mute_types

895 foreach page $delta_pages {

896 foreach name $pageA($page) {

897 lappend cA($page) $keyA($page,$name)

898 }

899 }

900 foreach item [dialog::changed_items $dial] {set cS($item) ""}

901 newforeach {page items} $pages {

902 set res [list]

903 foreach name $items {

904 set T "$page,$name"

905 if {[lsearch -exact ${dialog::mute_types}\
[lindex $typeA($T) 0]] < 0} then {

907 lappend res $keyA($T) [dialog::valGet $dial $T]

908 if {[info exists cS($T)]} then {

909 lunion cA($page) $keyA($T)

910 }

911 }

912 }

913 lappend retVal $page $res

914 }

915 if {[info exists opts(-changedpages)]} then {

916 upvar 1 $opts(-changedpages) cp

917 set cp [array names cA]

918 }

919 if {[info exists opts(-changeditems)]} then {

920 upvar 1 $opts(-changeditems) ci

921 set ci [array get cA]

922 }

923 }

924 dialog::cleanup $dial

925 return -code $retCode $retVal

926}

dialog::add_page (proc) Theadd_page procedure can be called from within themake_paged procedure to add a
new page to the dialog. The syntax is

55

dialog::add_page {page name} {key–value list} {item list} {position}?

Here the{page name}, {key–value list}, and{item list} coincide with those parts of a
{page} argument ofmake_paged.

add_page works by modifying the arraystypeA, keyA, helpA, andpageA, and the
lists pages anddelta_pages in the caller’s local context. It also uses the value in the
dial variable there as an argument tovalSet. All of these variables are assumed to
function as they do in themake_paged procedure.

The{position} argument can be used to specify where in thepages list that the new
page should be inserted. It defaults toend, which puts the new page last. Otherwise the
argument should be numeric:0 means put first,1 means put second,2 means put third,
etc.

927proc dialog::add_page {page keyvalL itemsL {pos end}} {

928 upvar pageA pageA typeA typeA helpA helpA keyA keyA dial dial pages\
pages delta_pages delta_pages

930 array set local $keyvalL

931 set pageA($page) [list]

932 lunion delta_pages $page

933 foreach item $itemsL {

934 set key [lindex $item 0]

935 set name [lindex $item 2]

936 set keyA($page,$name) $key

937 if {[info exists local($key)]} then {

938 dialog::valSet $dial $page,$name $local($key)

939 } else {

940 dialog::valSet $dial $page,$name ""

941 }

942 set typeA($page,$name) [lindex $item 1]

943 if {[llength $item]>3} then {

944 set helpA($page,$name) [lindex $item 3]

945 }

946 lappend pageA($page) $name

947 }

948 if {$pos!="end"} then {

949 set pages [linsert $pages [expr {2*$pos}] $page $pageA($page)]

950 } else {

951 lappend pages $page $pageA($page)

952 }

953}

dialog::delete_pages

(proc)
In one sense, this procedure does the opposite ofadd_page, but it can be used to achieve
different effects as well. Basically it takes a list of page names and items, in the format
for the first argument ofhandle, and returns the same list with some pages removed. The
syntax is

dialog::delete_pages {pages} {delete-list} {deleted-var}?

where the{delete-list} is the list of names of pages to remove.{deleted-var} is, if it
is given, the name of a variable in the caller’s local context containing a list of page

56

names. The deleted pages are then unioned with this list. The most common value for
{deleted-var} is delta_pages.

954proc dialog::delete_pages {pages deleteL {deletedvar {}}} {

955 set res [list]

956 if {$deletedvar!=""} then {upvar 1 $deletedvar diffL}

957 newforeach {page items} $pages {

958 if {[lsearch -exact $deleteL $page] == -1} then {

959 lappend res $page $items

960 } else {

961 lunion diffL $page

962 }

963 }

964 return $res

965}

2.6 Dialog items and preferences

In the classical preferences dialogs, all items were preferences and it was the preference
data structures that determined the type of the items. As this is not the case with the new
dialogs, there is a need for constructing a dialog item corresponding to a preference.

dialog::prefItemType

(proc)
Thedialog::prefItemType preference returns the dialog item type that corresponds
to the type of a specified preference. The syntax is

dialog::prefItemType {pref. name}

This procedure needs to be improved, as it currently only recognises a few preference
types.

966proc dialog::prefItemType {prefname} {

967 global flag::list

968 if {[info exists flag::list($prefname)]} {

969 set l [set flag::list($prefname)]

970 if {[regexp "index" [lindex $l 0]]} {

971 set res [list menuindex]

972 } else {

973 set res [list menu]

974 }

975 lappend res [flag::options $prefname]

976 } elseif {[regexp "Colou?r$" $prefname]} {

977 return "colour"

978 } elseif {[regexp "Mode$" $prefname]} {

979 return "mode"

980 } else {

981 return "var"

982 }

983}

984〈/core〉

57

2.7 To do

The generic dialogs code has now seems to have reached a rather mature state. Cer-
tainly the details can be polished, new types can be added, and some procedures (such as
dialog::prefItemType) should be improved, but on the whole they can do everything
that we seem to need.

What needs to be improved is instead theAlphatkinterface for setting up and manag-
ing dialogs. Right now it is both complicated (involving a large number of callbacks) and
highly specialized (making assumptions that are only valid for a few types), which is most
unfortunate. Obviously the interface should rather be simple and general (and how it ever
go to be anything else is a source of quite some amazement for me), but achieving that
requires that the whole thing is thoroughly thought through rather than pieced together.

3 Examples

This section contiains a couple of examples of how the generic dialogs procedures can be
used. All code in theexamples module can be found in the fileDialogs-Examples.tcl.

test_make (proc) Thetest_make procedure is used in the examples below to facilitate presentation of the
results. The syntax is

test_make {paged} {script}
where{script} is a script that the procedure evaluates and presents the result (or error) of
in a new window with the title ‘dialog make result’. If {paged} is 0 then the result
of the script interpreted as a list and each item is put on a line of its own; this is suitable
when the last command in the script was adialog::make. If {paged} is 1 then the result
is instead formatted so that it looks good if it was generated bydialog::make_paged.
985〈∗examples〉
986proc test_make {format script} {

987 set code [catch $script res]

988 new -n "dialog make result" -info [if {$code} then {

989 set t "Error: $res"

990 global errorInfo

991 append t \n "errorInfo:\n" $errorInfo

992 } elseif {$format} then {

993 set L [list]

994 newforeach {page keyvals} $res {

995 set t \n

996 newforeach {key value} $keyvals {

997 append t " [list $key $value]\n"

998 }

999 lappend L $page $t

1000 }

1001 set L

1002 } else {

1003 join $res \n

1004 }]

1005}

58

3.1 An elementary example

This example creates a single-page dialog with a selection of TextEdit item types on,
usingdialog::make. The title ‘Example dialog 1’ is only visible inAlphatk.

1006test_make 0 {

1007 dialog::make -title "Example dialog 1" [list "TextEdit types"\
1009 [list var "A ’var’" "Some text"]\
1010 [list var "A ’var’ with a long name" "Again some text"]\
1011 [list var "A ’var’ with a very very very long name" short]\
1012 [list var2 "A ’var2’" "This piece of editable text is rather\

long, two lines come in handy."]\
1014 [list static "A ’static’" "This text cannot be edited."]\
1015 [list password "A ’password’" Swordfish]\
1016 [list password "A ’password’ with a very long title" Swordfish]\
1017]

1018}

Thestatic item is formatted like avar item, but the value is put in a static text atom,
not a TextEdit atom. Neither is it returned by the procedure.

The same example dialog usingdialog::make_paged looks instead as follows.
Note that the order of items in the{key–value list} needs not be the same as that in
the{item list}.

1019test_make 1 {

1020 dialog::make_paged -title "Example dialog 1" [list "TextEdit types"\
1022 [list a "Some text" b "Again some text" c short d "This piece of\

editable text is rather long, two lines come in handy." e\
Swordfish f Swordfish g "This text cannot be edited."]\

1026 [list\
1027 [list a var "A ’var’"]\
1028 [list b var "A ’var’ with a long name"]\
1029 [list c var "A ’var’ with a very very very long name"]\
1030 [list d var2 "A ’var2’"]\
1031 [list g static "A ’static’"]\
1032 [list e password "A ’password’"]\
1033 [list f password "A ’password’ with a very long title"]\
1034]\
1035]

1036}

Clearlydialog::make is more suitable for such a small dialog.dialog::make_paged
is most convenient when the{item list} has already been constructed. This is for example
the case in thedialog::editGroup procedure (see below).

3.2 A smorgasbord of types

The generic dialog procedures provide a large variety of item types. The following di-
alog demonstrates all the visible item types currently defined. Note that packages can
define their own types simply by adding elements to thedialog::simple_type or
dialog::complex_type arrays.

1037test_make 0 {

59

1038 set page1 [list "Text types"]

1039 lappend page1 [list var "A ’var’" "Some text"]

1040 lappend page1 [list var2 "A ’var2’" "This piece of editable text is\
rather long, two lines come in handy."]

1042 lappend page1 [list text "This is a ’text’ item. It can be used for\
including a paragraph or two of text inside the dialog." "This\

value is ignored!"]

1045 lappend page1 [list password "A ’password’" No]

1046 lappend page1 [list static "A ’static’" "This is static text"]

1047 set page2 [list "Files and the like"]

1048 global HOME

1049 lappend page2\
[list file "A ’file’" [file join $HOME Help "Alpha Manual"]]

1051 lappend page2 [list folder "A ’folder’" $HOME]

1052 lappend page2\
[list url "An ’url’" "http://alphatcl.sourceforge.net/"]

appspecs are a bit tricky to give examples of since they are quite platform-dependent.
1054 global alpha::platform

1055 if {${alpha::platform}=="alpha"} then {

1056 lappend page2 [list appspec "An ’appspec’" ’ALFA’]

1057 set s ’WIsH’

1058 if {[catch {nameFromAppl $s} t]} then {

1059 set t $s

1060 } elseif {[regexp -nocase wish $t]} then {

1061 set t $s

1062 } else {

1063 set t [glob -nocomplain -dir [file dirname $t] *Wish*]

1064 if {[llength $t]} then {set t [lindex $t 0]} else {set t $s}

1065 }

1066 lappend page2 [list appspec "Another ’appspec’" $t]

1067 } else {

1068 global texSig

1069 lappend page2 [list appspec "An ’appspec’" $texSig]

1070 }

1071 lappend page2 [list searchpath "A ’searchpath’"\
[glob -nocomplain -types d -join $HOME {[E-H]*}]]

1073 set page3 [list "Menus and the like"]

1074 lappend page3 [list {menu {One two three}} "A ’menu’" two]

1075 lappend page3 [list {menuindex {nul odin dva tri tjetyre pat sjest}}\
{A ’menuindex’} 2]

1078 lappend page3 [list colour "A ’colour’" green]

1079 lappend page3 [list mode "A ’mode’" TeX]

1080 lappend page3 [list [list subset\
[list "Charlie Chaplin" Saturn toothbrush {"yeah, yeah"} 19]]\

{A ’subset’} [list toothbrush 19]]

1083 lappend page3 [list modeset "A ’modeset’" [list TeX Bib Mf]]

1084 set page4 [list "Miscellaneous types"]

1085 lappend page4 [list flag "A ’flag’" 1]

60

1086 lappend page4 [list [list multiflag\
[list AlphaPrefs Developer Examples Help Tcl Tools]]\

{This is a ’multiflag’} [list 0 1 1 0 1 0]]

1090 lappend page4 [list binding "A ’binding’" /Q<O]

1091 lappend page4 [list date "A ’date’" [now]]

1092 lappend page4\
[list thepage "This item is invisible" "This value is ignored"]

1094 dialog::make $page1 $page2 $page3 $page4

1095}

3.3 Button manœuvres

Another nice feature with the generic dialog interface is the ability to change the name
of theOK andCancel buttons, or to add extra buttons with new functionality. The next
example demonstrates this; it is intended as a login dialog for some fancy protocol where
the password depends on the time as well as on the user name.

1096test_make 0 {

1097 set page [list "Login parameters"]

1098 lappend page [list static "Curent time" [join [mtime [now] long]]]

1099 lappend page [list var "User name" ""]

1100 lappend page [list password "Password" ""]

1101 dialog::make -ok Login\
1102 -addbuttons [list "Update time"\

{This button updates the current time shown in the dialog.}\
{dialog::valSet $dial "Login parameters,Curent time"\

[join [mtime [now] long]]}]\
1106 $page

1107}

ThevalSet procedure updates the value of thestatic item.
The next example shows how one can use a button to toggle between a “basic settings”

and “complete settings” state of a dialog. All values are always reported back, but they
are not necessarily shown.

1108test_make 0 {

1109 set page [list "Email settings"]

1110 lappend page [list var "Name" "Jane Doe"]

1111 lappend page [list var "Address" "Jane.Doe@nowhere.edu"]

1112 lappend page [list var "Organisation" "University of Nowhere"]

1113 lappend page [list [list hidden var] "POP server" mail.nowhere.edu]

1114 lappend page [list [list hidden var] "SMTP server" smtp.nowhere.edu]

1115 dialog::make -addbuttons\
[list "Full settings" {Toggles between basic and full settings.} {

1117 if {!$state} then {

1118 dialog::show_item "Email settings" "POP server"

1119 dialog::show_item "Email settings" "SMTP server"

1120 set opts(-addbuttons)\
[lreplace $opts(-addbuttons) 0 0 "Basic settings"]

1122 set state 1

1123 } else {

61

1124 dialog::hide_item "Email settings" "POP server"

1125 dialog::hide_item "Email settings" "SMTP server"

1126 set opts(-addbuttons)\
[lreplace $opts(-addbuttons) 0 0 "Full settings"]

1128 set state 0

1129 }

1130 }] $page

1132}

Another way of hiding items from the user is to hide the entire page on which they reside.

1133test_make 0 {

1134 set page1 [list "Basic email settings"]

1135 lappend page1 [list var "Name" "Jane Doe"]

1136 lappend page1 [list var "Address" "Jane.Doe@nowhere.edu"]

1137 lappend page1 [list var "Organisation" "University of Nowhere"]

1138 set page2 [list "Advanced email settings"]

1139 lappend page2 [list var "POP server" mail.nowhere.edu]

1140 lappend page2 [list var "SMTP server" smtp.nowhere.edu]

1141 dialog::make -addbuttons\
[list "Full settings" {Toggles between basic and full settings.} {

1143 if {!$state} then {

1144 set currentpage "Advanced email settings"

1145 lappend pages $currentpage $pageA($currentpage)

1146 set opts(-addbuttons)\
[lreplace $opts(-addbuttons) 0 0 "Basic settings"]

1148 set state 1

1149 } else {

1150 set currentpage "Basic email settings"

1151 set pages [list $currentpage $pageA($currentpage)]

1152 set opts(-addbuttons)\
[lreplace $opts(-addbuttons) 0 0 "Full settings"]

1154 set state 0

1155 }

1156 }] -hidepages [list "Advanced email settings"] $page1 $page2

1158}

1159〈/examples〉

3.4 Editing named configurations

It is not uncommon that the settings for something can be collected in a “configuration”
and that the user can have several such configurations stored simultaneously (even though
only one is used for each operation); the filesets and (more recently) the SourceForge
menu projects are both examples of this. Orinially for use for the latter of these, Vince
wrote a generic proceduredialog::editGroup which presents a list of configurations
as a multipage dialog (one page per configuration) in which all pages have the same set
of items, but usually different values. Furthermore the dialog contains two extra buttons:
one for adding a new configuration and one for deleting a configuration.

The original definition used a (sort of) hackeddialog::make, but the new im-
plementation below usesdialog::make_paged instead. Indeed, that there should be

62

an easy implementation ofeditGroup using the latter was the main design goals for
make_paged.

dialog::editGroup (proc) TheeditGroup procedure lets the user edit configurations stored in an array in the local
context of the caller and returns the list of configurations that were changed. The syntax
is

dialog::editGroup 〈option〉+{item}+

The{item}s aremake_paged style item descriptions, i.e., lists with the format

{key} {type} {name} {help}?

The currently supported〈option〉s are

-array {array name}
-current {current configuration name}
-delete {ask first?}
-new {new conf.-cmd}
-title {title}

The-array option specifies the name of the array in which the configurations are stored.
Indices into this array are configuration names and the entries contain key–value lists
that give the entries of the array.Note that the-array option isn’t optional at all, but
mandatory.

The-current option can be used to specify at which configuration the dialog should
be opened. The-delete option specifies that the dialog should have aDelete button. If
the{ask first?} is anything butdontask then the user is asked for confirmation before the
current configuration is actually deleted. The-new option specifies that the dialog should
have aNew button. The{new conf.-cmd} is a script that is executed when the user clicks
theNew button. It should return either a list with the structure

{new config. name} {key–value list}

or, if the user decides not to create a new configuration, an empty string. The-title
option specifies a title for the dialog; this defaults toEdit.

1160〈∗core〉
1161〈notinstalled〉auto_load dialog::getAKey

1162proc dialog::editGroup {args} {

1163 global dialog::ellipsis

1164 set opts(-current) ""

1165 set opts(-title) "Edit"

1166 getOpts {-array -title -current -new -delete}

1167 upvar $opts(-array) local

After processing arguments, the first task is to construct the{page} arguments to
make_paged.

1168 set dialog [list]

1169 foreach item [lsort -ignore [array names local]] {

1170 lappend dialog [list $item $local($item) $args]

1171 }

63

The the-addbuttons option, if any, tomake_paged are constructed.

1172 set buttons [list]

1173 if {[info exists opts(-delete)]} {

1174 if {$opts(-delete)=="dontask"} then {

1175 lappend buttons "Delete" "Click here to delete this page"\
As there is no need to embed variable data into the script for theDelete button, it is
easiest to give it explicitly.

1176 {set pages [dialog::delete_pages $pages\
[list $currentpage] delta_pages]}

1178 } else {

1179 lappend buttons "Delete${dialog::ellipsis}" "Click here to\
delete this page" {

1181 if {[dialog::yesno "Are you sure you want to delete\
’$currentpage’?"]} {

1183 set pages [dialog::delete_pages $pages\
[list $currentpage] delta_pages]

1185 }

1186 }

1187 }

1188 }

1189 if {[info exists opts(-new)]} {

1190 lappend buttons "New${dialog::ellipsis}" "Click here to add a\
new page" [list dialog::editGroupNewPage $args $opts(-new)]

With the script for theNew button, things are different: both the layout of a page and the
script which generates the contents for new pages have to be embedded into the button
script. It is then easiest to put all processing in a helper procedure and restrict the button
script to call that helper.

1193 }

1194 if {[llength $buttons]} {

1195 set buttons [list -addbuttons $buttons]

1196 }

1197 set res [eval [list dialog::make_paged -title $opts(-title)\
-defaultpage $opts(-current) -changedpages mods] $buttons $dialog]

If the user did notCancel the dialog, the array specified by the-array option is cleared
and the new data returned bymake_paged are stored into it instead. It is necessary to
clear the array if some page has been deleted.

1199 unset local

1200 array set local $res

1201 return $mods

1202}

dialog::editGroupNewPage

(proc)
TheeditGroupNewPage procedure is a helper foreditGroup.

1203proc dialog::editGroupNewPage {layout cmd} {

1204 set T [eval $cmd]

1205 if {![llength $T]} then {return}

1206 newforeach {page items} [uplevel 1 {set pages}] {

1207 if {$page==[lindex $T 0]} then {

64

1208 alternote "That name is already in use!"

1209 return

1210 }

1211 }

1212 uplevel 1 [concat dialog::add_page $T [list $layout]]

1213 uplevel 1 [list set currentpage [lindex $T 0]]

1214}

1215〈/core〉

References

[1] Jesper Blommaskog:Is white space significant in Tcl, The Tcl’ers Wiki page981;
http://mini.net/tcl/981.html.

[2] Fréd́eric Boulangeret al.: Driving external applications from Alpha, discussion
thread on the AlphaTcl developers mailing list, October 2001.

[3] Sharon Everson et al.: Inside Macintosh – Macintosh Toolbox Es-
sentials, Addison–Wesley, 1992; ISBN 0-201-63243-8. Also available
as PDF at http://www.devworld.apple.com/techpubs/mac/pdf/
MacintoshToolboxEssentials.pdf and in HTML athttp://www.devworld.
apple.com/techpubs/mac/Toolbox/Toolbox-2.html.

[4] Lars Hellstr̈om: The tclldoc package and class; CTAN: macros/latex/contrib/
supported/tclldoc/tclldoc.dtx. Note: That is the proper home fortclldoc, but
I’ve been so busy with other things that I haven’t gotten around to uploading it to
CTAN yet. A recent version can alternatively be found inDeveloper/texmf of a
complete AlphaTcl tree.

[5] Frank Mittelbach, Denys Duchier, Johannes Braams, Marcin Woliński, and Mark
Wooding:TheDocStrip program, The LATEX3 Project;CTAN: macros/latex/base/
docstrip.dtx.

Index

Numbers written in italic refer to the page where the corresponding entry is described;
numbers underlined refer to the code line of the definition. By tradition there should
also be a lot of numbers in roman that refer to the code lines where the entry is used, but
unfortunately I don’t have a convenient way of cross-referencing Tcl code to generate that
information.

A
add_page (proc),dialog NS 927

C
changed_items (proc),dialog NS 208
changed_tcldial〈num〉 (var.), dialog

NS . 167
charwidth (array), globalNS

characterentries 4
cleanup (proc),dialog NS 168
complex_type (array),dialog NS 391

global 727

65

http://mini.net/tcl/981.html
http://www.devworld.apple.com/techpubs/mac/pdf/MacintoshToolboxEssentials.pdf
http://www.devworld.apple.com/techpubs/mac/pdf/MacintoshToolboxEssentials.pdf
http://www.devworld.apple.com/techpubs/mac/Toolbox/Toolbox-2.html
http://www.devworld.apple.com/techpubs/mac/Toolbox/Toolbox-2.html
ftp://ftp.tex.ac.uk/pub/tex/macros/latex/base/docstrip.dtx
ftp://ftp.tex.ac.uk/pub/tex/macros/latex/base/docstrip.dtx

hidden 9, 738
menu 6, 543
menuindex 6, 554
multiflag 6, 504
subset 6, 713

create (proc),dialog NS 168

D
delete_pages (proc),dialog NS 954
dial (var.) .9
dialog (command), globalNS 11

-T option 15
-b option 12
-c option 13
-copyto option 15
-dnd option 16
-e option 13
-h option 12
-help option 15
-i option 15
-l option 15
-m option 14
-mt option 15
-n option 14
-p option 14
-r option 13
-set option 18
-t option 13
-w option 12

E
edit_subset (proc),dialog NS 702
editGroup (proc),dialog NS 4, 1160
editGroupNewPage (proc),dialog NS 1203
ellipsis (var.),dialog NS 11, 76

G
globalCount (var.),dialog NS 167

H
handle (proc),dialog NS 211
hide_item (proc),dialog NS 9, 738

I
indentnext (var.),dialog NS 391
indentsame (var.),dialog NS 391
itemAcceptable (proc),dialog NS . . . 17
itemSet (proc),dialog NS 17

L
lines_to_text (proc),dialog NS 441

M
make (proc),dialog NS 2, 752

-addbuttons option 7
-cancel option 7
-debug option 7
-defaultpage option 7
-hidepages option 7
-ok option 7
-title option 7
-width option 7

make_paged (proc),dialog NS 3, 836
-addbuttons option 7
-cancel option 7
-changeditems option 8
-changedpages option 8
-debug option 7
-defaultpage option 7
-ok option 7
-title option 7
-width option 7

makeEditItem (proc),dialog NS 393
makeMenuItem (proc),dialog NS 526
makeSetItem (proc),dialog NS 562
makeSomeButtons (proc),dialog NS . . 357
makeStaticValue (proc),dialog NS . . 580
modified (proc),dialog NS 200
modifiedAdd (proc),dialog NS 17
modifiedAdjust (proc),dialog NS . . . 17
mute_types (var.),dialog NS 498

P
prefItemType (proc),dialog NS . . . 9, 966

R
retCode (var.) 8
retVal (var.) . 8

S
set_appspec (proc),dialog NS 651
setControlValue (command), dialog

NS . 18
show_item (proc),dialog NS 9, 738
simple_type (array),dialog NS 391

appspec 4, 637
binding 5, 604
colour 5, 546
date 5, 630
file 5, 611
flag 5, 499

66

folder 5, 611
mode 5, 546
modeset 5, 720
password 5, 424
searchpath 5, 677
static 6, 481
text 6, 475
thepage 6, 731
url6, 611
var6, 420
var2 6, 420

T
tcldial〈num〉 (array),dialog NS 167
test_make (proc), globalNS 985

text_width (proc),dialog NS 4, 10

V
valChanged (proc),dialog NS 9, 193
valExists (proc),dialog NS 184
valGet (proc),dialog NS 9, 184
valGetDropAction (proc),dialog NS . 17
valGetMimeType (proc),dialog NS . . . 18
valSet (proc),dialog NS 184

W
width_abbrev (proc),dialog NS . . . 10, 31
width_linebreak (proc),dialog NS 10, 83
width_linebreak2 (proc),dialog NS . 95

67

	Usage
	Dialog item types
	Dialog command options
	Button scripts
	Preferences and dialogs
	The width of dialog text

	Implementation
	The dialog command
	Basic dialog options
	New dialog options
	The drag-and-drop muddle

	Measuring text
	Storing and updating values in dialogs
	Building and handling dialog material
	Construction and post-processing scripts
	TextEdit item types
	Uneditable item types
	Elementary control item types
	Menu item types
	specialSet item types
	Listpick item types
	Miscellanea

	Main dialogs interface
	Dialog items and preferences
	To do

	Examples
	An elementary example
	A smorgasbord of types
	Button manœuvres
	Editing named configurations

