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Introduction.

In an attempt to develop certain outlines of a theory of
line-spectra based on a suitable application of the fundamen-
tal ideas introduced by Planck in his theory of temperature-
radiation to the theory of the nucleus atom of Sir Ernest
Rutherford, the writer has shown that it is possible in
this way to obtain a simple interpretation of some of the
main laws governing the line-spectra of the elements, and
especially to obtain a deduction of the well known Balmer
formula for the hydrogen spectrum1 The theory in the form
given allowed of a detailed discussion only in the case of
periodic systems, and obviously was not able to account in
detail for the characteristic difference between the hydro-
gen spectrum and the spectra of other elements, or for the
characteristic effects on the hydrogen spectrum of external
electric and magnetic fields. Recently, however, a way out
of this difficulty has been opened by Sommerfeld2 who,
by introducing a suitable generalisation of the theory to a
simple type of non-periodic motions and by taking the small
variation of the mass of the electron with its velocity into
account, obtained an explanation of the fine-structure of the
hydrogen lines which was found to be in brilliant confor-
mity with the measurements. Already in his first paper on

1N. Bohr, Phil. Mag., XXVI, pp. 1, 476, 857 (1913), XXVII, p. 506
(1914), XXIX. p. 332 (1915), XXX. p. 394 (1915).

2A. Sommerfeld, Ber. Akad. München, 1915, pp. 425, 459, 1916,
p. 131. 1917. p. 83. Ann. de Phys., LI. p. 1 (1916).
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this subject, Sommerfeld pointed out that his theory evi-
dently offered a clue to the interpretation of the more intri-
cate structure of the spectra of other elements. Briefly after-
wards Epstein1 and Schwarzschild,2 independent of each
other, by adapting Sommerfeld’s ideas to the treatment
of a more extended class of non-periodic systems obtained
a detailed explanation of the characteristic effect of an elec-
tric field on the hydrogen spectrum discovered by Stark.
Subsequently Sommerfeld3 himself and Debye4 have on
the same lines indicated an interpretation of the effect of a
magnetic field on the hydrogen spectrum which, although no
complete explanation of the observations was obtained, un-
doubtedly represents an important step towards a detailed
understanding of this phenomenon.

In spite of the great progress involved in these investiga-
tions many difficulties of fundamental nature remained un-
solved, not only as regards the limited applicability of the
methods used in calculating the frequencies of the spectrum
of a given system, but especially as regards the question of
the polarisation and intensity of the emitted spectral lines.
These difficulties are intimately connected with the radical
departure from the ordinary ideas of mechanics and electro-

1P. Epstein, Phys. Zeitschr. XVII, p. 148 (1916), Ann. d. Phys. L,
p. 489. LI. p. 168 (1916).

2K. Schwarzschild, Ber. Akad. Berlin, 1916, p. 548.
3A. Sommerfeld, Phys. Zeitschr. XVII, p. 491 (1916).
4P. Debye, Nachr. K. Ges. d. Wiss. Göttingen, 1916, Phys.

Zeitschr. XVII, p. 507 (1916).
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dynamics involved in the main principles of the quantum the-
ory, and with the fact that it has not been possible hitherto
to replace these ideas by others forming an equally consis-
tent and developed structure. Also in this respect, however,
great progress has recently been obtained by the work of
Einstein1 and Ehrenfest.2 On this state of the theory it
might therefore be of interest to make an attempt to discuss
the different applications from a uniform point of view, and
especially to consider the underlying assumptions in their re-
lations to ordinary mechanics and electrodynamics. Such an
attempt has been made in the present paper, and it will be
shown that it seems possible to throw some light on the out-
standing difficulties by trying to trace the analogy between
the quantum theory and the ordinary theory of radiation as
closely as possible.

The paper is divided into four parts.

Part I contains a brief discussion of the general principles of
the theory and deals with the application of the general
theory to periodic systems of one degree of freedom and
to the class of non-periodic systems referred to above.

Part II contains a detailed discussion of the theory of the
hydrogen spectrum in order to illustrate the general

1A. Einstein, Verh. d. D. phys. Ges. XVIII, p. 318 (1916), Phys.
Zeitschr. XVIII, p. 121 (1917).

2P. Ehrenfest, Proc. Acad. Amsterdam, XVI. p. 591 (1914),
Phys. Zeitschr. XV. p. 657 (1914), Ann. d. Phys. LI. p. 327 (1916),
Phil. Mag. XXXIII. p. 500 (1917).
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considerations.

Part III contains a discussion of the questions arising in
connection with the explanation of the spectra of other
elements.

Part IV contains a general discussion of the theory of the
constitution of atoms and molecules based on the ap-
plication of the quantum theory to the nucleus atom.

Copenhagen, November 1917.



Part I.

On the general theory.

§ 1. General principles.

The quantum theory of line-spectra rests upon the fol-
lowing fundamental assumptions:

I. That an atomic system can, and can only, exist per-
manently in a certain series of states corresponding to a dis-
continuous series of values for its energy, and that conse-
quently any change of the energy of the system, including
emission and absorption of electromagnetic radiation, must
take place by a complete transition between two such states.
These states will be denoted as the “stationary states” of the
system.

II. That the radiation absorbed or emitted during a tran-
sition between two stationary states is “unifrequentic” and
possesses a frequency ν, given by the relation

E ′ − E ′′ = hν, (1)

where h is Planck’s constant and where E ′ and E ′′ are the
values of the energy in the two states under consideration.

As pointed out by the writer in the papers referred to
in the introduction, these assumptions offer an immediate
interpretation of the fundamental principle of combination
of spectral lines deduced from the measurements of the fre-
quencies of the series spectra of the elements. According to
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the laws discovered by Balmer, Rydberg and Ritz, the
frequencies of the lines of the series spectrum of an element
can be expressed by a formula of the type:

ν = fτ ′′(n
′′)− fτ ′(n′), (2)

where n′ and n′′ are whole numbers and fτ (n) is one among
a set of functions of n, characteristic for the element under
consideration. On the above assumptions this formula may
obviously be interpretated by assuming that the stationary
states of an atom of an element form a set of series, and
that the energy in the nth state of the τ th series, omitting an
arbitrary constant, is given by

Eτ (n) = −hfτ (n). (3)

We thus see that the values for the energy in the sta-
tionary states of an atom may be obtained directly from the
measurements of the spectrum by means of relation (1). In
order, however, to obtain a theoretical connection between
these values and the experimental evidence about the consti-
tution of the atom obtained from other sources, it is neces-
sary to introduce further assumptions about the laws which
govern the stationary states of a given atomic system and
the transitions between these states.

Now on the basis of a vast amount of experimental evi-
dence, we are forced to assume that an atom or molecule con-
sists of a number of electrified particles in motion, and, since
the above fundamental assumptions imply that no emission
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of radiation takes place in the stationary states, we must con-
sequently assume that the ordinary laws of electrodynamics
cannot be applied to these states without radical alterations.
In many cases, however, the effect of that part of the elec-
trodynamical forces which is connected with the emission of
radiation will at any moment be very small in comparison
with the effect of the simple electrostatic attractions or repul-
sions of the charged particles corresponding to Coulomb’s
law. Even if the theory of radiation must be completely al-
tered, it is therefore a natural assumption that it is possible
in such cases to obtain a close approximation in the descrip-
tion of the motion in the stationary states, by retaining only
the latter forces. In the following we shall therefore, as in
all the papers mentioned in the introduction, for the present
calculate the motions of the particles in the stationary states
as the motions of mass-points according to ordinary mechan-
ics including the modifications claimed by the theory of rel-
ativity, and we shall later in the discussion of the special
applications come back to the question of the degree of ap-
proximation which may be obtained in this way.

If next we consider a transition between two stationary
states, it is obvious at once from the essential discontinuity,
involved in the assumptions I and II, that in general it is im-
possible even approximately to describe this phenomenon by
means of ordinary mechanics or to calculate the frequency of
the radiation absorbed or emitted by such a process by means
of ordinary electrodynamics. On the other hand, from the
fact that it has been possible by means of ordinary mechan-
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ics and electrodynamics to account for the phenomenon of
temperature-radiation in the limiting region of slow vibra-
tions, we may expect that any theory capable of describing
this phenomenon in accordance with observations will form
some sort of natural generalisation of the ordinary theory of
radiation. Now the theory of temperature-radiation in the
form originally given by Planck confessedly lacked internal
consistency, since, in the deduction of his radiation formula,
assumptions of similar character as I and II were used in
connection with assumptions which were in obvious contrast
to them. Quite recently, however, Einstein1 has succeeded,
on the basis of the assumptions I and II, to give a consistent
and instructive deduction of Planck’s formula by introduc-
ing certain supplementary assumptions about the probability
of transition of a system between two stationary states and
about the manner in which this probability depends on the
density of radiation of the corresponding frequency in the
surrounding space, suggested from analogy with the ordi-
nary theory of radiation. Einstein compares the emission
or absorption of radiation of frequency ν corresponding to a
transition between two stationary states with the emission
or absorption to be expected on ordinary electrodynamics
for a system consisting of a particle executing harmonic vi-
brations of this frequency. In analogy with the fact that on
the latter theory such a system will without external excita-
tion emit a radiation of frequency ν, Einstein assumes in

1A. Einstein, loc. cit.
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the first place that on the quantum theory there will be a
certain probability An

′

n′′ dt that the system in the stationary
state of greater energy, characterised by the letter n′, in the
time interval dt will start spontaneously to pass to the sta-
tionary state of smaller energy, characterised by the letter n′′.
Moreover, on ordinary electrodynamics the harmonic vibra-
tor will, in addition to the above mentioned independent
emission, in the presence of a radiation of frequency ν in the
surrounding space, and dependent on the accidental phase-
difference between this radiation and the vibrator, emit or
absorb radiation-energy. In analogy with this, Einstein as-
sumes secondly that in the presence of a radiation in the
surrounding space, the system will on the quantum theory,
in addition to the above mentioned probability of sponta-
neous transition from the state n′ to the state n′′, possess a
certain probability, depending on this radiation, of passing
in the time dt from the state n′ to the state n′′, as well as
from the state n′′ to the state n′. These latter probabilities
are assumed to be proportional to the intensity of the sur-
rounding radiation and are denoted by ρνB

n′

n′′ dt and ρνB
n′′

n′ dt
respectively, where ρν dν denotes the amount of radiation in
unit volume of the surrounding space distributed on frequen-
cies between ν and ν + dν, while Bn′

n′′ and Bn′′

n′ are constants
which, like An

′

n′′ , depend only on the stationary states under
consideration. Einstein does not introduce any detailed as-
sumption as to the values of these constants, no more than
to the conditions by which the different stationary states of
a given system are determined or to the “a-priori probabil-



10

ity” of these states on which their relative occurrence in a
distribution of statistical equilibrium depends. He shows,
however, how it is possible from the above general assump-
tions, by means of Boltzmann’s principle on the relation
between entropy and probability and Wien’s well known
displacement-law, to deduce a formula for the temperature
radiation which apart from an undetermined constant fac-
tor coincides with Planck’s, if we only assume that the
frequency corresponding to the transition between the two
states is determined by (1). It will therefore be seen that by
reversing the line of argument, Einstein’s theory may be
considered as a very direct support of the latter relation.

In the following discussion of the application of the quan-
tum theory to determine the line-spectrum of a given system,
it will, just as in the theory of temperature-radiation, not be
necessary to introduce detailed assumptions as to the mech-
anism of transition between two stationary states. We shall
show, however, that the conditions which will be used to
determine the values of the energy in the stationary states
are of such a type that the frequencies calculated by (1), in
the limit where the motions in successive stationary states
comparatively differ very little from each other, will tend to
coincide with the frequencies to be expected on the ordinary
theory of radiation from the motion of the system in the
stationary states. In order to obtain the necessary relation
to the ordinary theory of radiation in the limit of slow vi-
brations, we are therefore led directly to certain conclusions
about the probability of transition between two stationary
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states in this limit. This leads again to certain general con-
siderations about the connection between the probability of
a transition between any two stationary states and the mo-
tion of the system in these states, which will be shown to
throw light on the question of the polarisation and intensity
of the different lines of the spectrum of a given system.

In the above considerations we have by an atomic system
tacitly understood a number of electrified particles which
move in a field of force which, with the approximation men-
tioned, possesses a potential depending only on the position
of the particles. This may more accurately be denoted as
a system under constant external conditions, and the ques-
tion next arises about the variation in the stationary states
which may be expected to take place during a variation of
the external conditions, e. g. when exposing the atomic sys-
tem to some variable external field of force. Now, in general,
we must obviously assume that this variation cannot be cal-
culated by ordinary mechanics, no more than the transition
between two different stationary states corresponding to con-
stant external conditions. If, however, the variation of the
external conditions is very slow, we may from the necessary
stability of the stationary states expect that the motion of
the system at any given moment during the variation will
differ only very little from the motion in a stationary state
corresponding to the instantaneous external conditions. If
now, moreover, the variation is performed at a constant or
very slowly changing rate, the forces to which the particles
of the system will be exposed will not differ at any moment
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from those to which they would be exposed if we imagine
that the external forces arise from a number of slowly moving
additional particles which together with the original system
form a system in a stationary state. From this point of view
it seems therefore natural to assume that, with the approx-
imation mentioned, the motion of an atomic system in the
stationary states can be calculated by direct application of
ordinary mechanics, not only under constant external condi-
tions, but in general also during a slow and uniform variation
of these conditions. This assumption, which may be denoted
as the principle of the “mechanical transformability” of the
stationary states, has been introduced in the quantum the-
ory by Ehrenfest1 and is, as it will be seen in the following
sections, of great importance in the discussion of the con-
ditions to be used to fix the stationary states of an atomic
system among the continuous multitude of mechanically pos-
sible motions. In this connection it may be pointed out that
the principle of the mechanical transformability of the sta-
tionary states allows us to overcome a fundamental difficulty
which at first sight would seem to be involved in the defini-
tion of the energy difference between two stationary states

1P. Ehrenfest, loc. cit. In these papers the principle in ques-
tion is called the “adiabatic hypothesis” in accordance with the line
of argumentation followed by Ehrenfest in which considerations of
thermodynamical problems play an important part. From the point of
view taken in the present paper, however, the above notation might in
a more direct way indicate the content of the principle and the limits
of its applicability.
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which enters in relation (1). In fact we have assumed that
the direct transition between two such states cannot be de-
scribed by ordinary mechanics, while on the other hand we
possess no means of defining an energy difference between
two states if there exists no possibility for a continuous me-
chanical connection between them. It is clear, however, that
such a connection is just afforded by Ehrenfest’s princi-
ple which allows us to transform mechanically the stationary
states of a given system into those of another, because for
the latter system we may take one in which the forces which
act on the particles are very small and where we may assume
that the values of the energy in all the stationary states will
tend to coincide.

As regards the problem of the statistical distribution of
the different stationary states between a great number of
atomic systems of the same kind in temperature equilibrium,
the number of systems present in the different states may be
deduced in the well known way from Boltzmann’s funda-
mental relation between entropy and probability, if we know
the values of the energy in these states and the a-priori prob-
ability to be ascribed to each state in the calculation of the
probability of the whole distribution. In contrast to con-
siderations of ordinary statistical mechanics we possess on
the quantum theory no direct means of determining these
a-priori probabilities, because we have no detailed informa-
tion about the mechanism of transition between the differ-
ent stationary states. If the a-priori probabilities are known
for the states of a given atomic system, however, they may
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be deduced for any other system which can be formed from
this by a continuous transformation without passing through
one of the singular systems referred to below. In fact, in ex-
amining the necessary conditions for the explanation of the
second law of thermodynamics Ehrenfest1 has deduced
a certain general condition as regards the variation of the
a-priori probability corresponding to a small change of the
external conditions from which it follows, that the a-priori
probability of a given stationary state of an atomic system
must remain unaltered during a continuous transformation,
except in special cases in which the values of the energy in
some of the stationary states will tend to coincide during the
transformation. In this result we possess, as we shall see, a
rational basis for the determination of the a-priori probabil-
ity of the different stationary states of a given atomic system.

§ 2. Systems of one degree of freedom.

As the simplest illustration of the principles discussed in
the former section we shall begin by considering systems of
a single degree of freedom, in which case it has been possi-
ble to establish a general theory of stationary states. This
is due to the fact that the motion will be simply periodic,
provided the distance between the parts of the system will

1P. Ehrenfest, Phys. Zeitschr. XV p. 660 (1914). The above
interpretation of this relation is not stated explicitly by Ehrenfest,
but it presents itself directly if the quantum theory is taken in the form
corresponding to the fundamental assumption I.
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not increase infinitely with the time, a case which for obvi-
ous reasons cannot represent a stationary state in the sense
defined above. On account of this, the discussion of the
mechanical transformability of the stationary states can, as
pointed out by Ehrenfest,1 for systems of one degree of
freedom be based on a mechanical theorem about periodic
systems due to Boltzmann and originally applied by this
author in a discussion of the bearing of mechanics on the ex-
planation of the laws of thermodynamics. For the sake of the
considerations in the following sections it will be convenient
here to give the proof in a form which differs slightly from
that given by Ehrenfest, and which takes also regard to
the modifications in the ordinary laws of mechanics claimed
by the theory of relativity.

Consider for the sake of generality a conservative me-
chanical system of s degrees of freedom, the motion of which
is governed by Hamilton’s equations:

dpk
dt

= −∂E
∂qk

,
dqk
dt

=
∂E

∂pk
, (k = 1, . . . , s) (4)

where E is the total energy considered as a function of the
generalised positional coordinates q1, . . . , qs and the corre-
sponding canonically conjugated momenta p1, . . . , ps. If the
velocities are so small that the variation in the mass of the
particles due to their velocities can be neglected, the p’s are

1P. Ehrenfest, loc. cit. Proc. Acad. Amsterdam, XVI, p. 591
(1914).
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defined in the usual way by

pk =
∂T

∂qk
, (k = 1, . . . , s)

where T is the kinetic energy of the system considered as a

function of the generalised velocities q̇1, . . . , q̇s

(
q̇k =

dqk
dt

)
and of q1, . . . , qs. If the relativity modifications are taken
into account the p’s are defined by a similar set of expressions
in which the kinetic energy is replaced by

T ′ =
∑

m0c
2
(
1−

√
1− v2/c2

)
,

where the summation is to be extended over all the particles
of the system, and v is the velocity of one of the particles
and m0 its mass for zero velocity, while c is the velocity of
light.

Let us now assume that the system performs a periodic
motion with the period σ, and let us form the expression

I =

∫ σ

0

s∑
1

pkq̇k dt, (5)

which is easily seen to be independent of the special choice
of coordinates q1, . . . , qs used to describe the motion of the
system. In fact, if the variation of the mass with the velocity
is neglected we get

I = 2

∫ σ

0

T dt,
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and if the relativity modifications are included, we get a quite
analogous expression in which the kinetic energy is replaced
by T ′′ =

∑
1
2
m0v

2
√

1− v2/c2.
Consider next some new periodic motion of the system

formed by a small variation of the first motion, but which
may need the presence of external forces in order to be a
mechanically possible motion. For the variation in I we get
then

δI =

∫ σ

0

s∑
1

(q̇k δpk + pk δq̇k) dt+
s∑
1

pk q̇k δt
∣∣∣σ
0
,

where the last term refers to the variation of the limit of the
integral due to the variation in the period σ. By partial inte-
gration of the second term in the bracket under the integral
we get next

δI =

∫ σ

0

s∑
1

(q̇k δpk − ṗk δqk) dt+
s∑
1

pk(q̇k δt+ δqk)
∣∣∣σ
0
,

where the last term is seen to be zero, because the term in
the bracket as well as pk will be the same in both limits, since
the varied motion as well as the original motion is assumed
to be periodic. By means of equations (4) we get therefore

δI =

∫ σ

0

s∑
1

(
∂E

∂pk
δpk +

∂E

∂qk
δqk

)
dt =

∫ σ

0

δE dt. (6)

Let us now assume that the small variation of the motion
is produced by a small external field established at a uniform
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rate during a time interval ϑ, long compared with σ, so that
the comparative increase during a period is very small. In
this case δE is at any moment equal to the total work done
by the external forces on the particles of the system since the
beginning of the establishment of the field. Let this moment
be t = −ϑ and let the potential of the external field at t ≥ 0
be given by Ω, expressed as a function of the q’s. At any
given moment t > 0 we have then

δE = −
∫ 0

−ϑ

ϑ+ t

ϑ

s∑
1

∂Ω

∂qk
q̇k dt−

∫ t

0

s∑
1

∂Ω

∂qk
q̇k dt,

which gives by partial integration

δE =
1

ϑ

∫ 0

−ϑ
Ω dt− Ωt,

where the values for the q’s to be introduced in Ω in the
first term are those corresponding to the motion under the
influence of the increasing external field, and the values to be
introduced in the second term are those corresponding to the
configuration at the time t. Neglecting small quantities of
the same order as the square of the external force, however,
we may in this expression for δE instead of the values for the
q’s corresponding to the perturbed motion take those corre-
sponding to the original motion of the system. With this
approximation the first term is equal to the mean value of
the second taken over a period σ, and we have consequently∫ σ

0

δE dt = 0. (7)
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From (6) and (7) it follows that I will remain constant
during the slow establishment of the small external field, if
the motion corresponding to a constant value of the field is
periodic. If next the external field corresponding to Ω is con-
sidered as an inherent part of the system, it will be seen in the
same way that I will remain unaltered during the establish-
ment of a new small external field, and so on. Consequently
I will be invariant for any finite transformation of the system
which is sufficiently slowly performed, provided the motion
at any moment during the process is periodic and the effect
of the variation is calculated on ordinary mechanics.

Before we proceed to the applications of this result we
shall mention a simple consequence of (6) for systems for
which every orbit is periodic independent of the initial con-
ditions. In that case we may for the varied motion take an
undisturbed motion of the system corresponding to slightly
different initial conditions. This gives δE constant, and
from (6) we get therefore

δE = ω δI, (8)

where ω =
1

σ
is the frequency of the motion. This equation

forms a simple relation between the variations in E and I for
periodic systems, which will be often used in the following.

Returning now to systems of one degree of freedom, we
shall take our starting point from Planck’s original theory
of a linear harmonic vibrator. According to this theory the
stationary states of a system, consisting of a particle execut-
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ing linear harmonic vibrations with a constant frequency ω0

independent of the energy, are given by the well known rela-
tion

E = nhω0, (9)

where n is a positive entire number, h Planck’s constant,
and E the total energy which is supposed to be zero if the
particle is at rest.

From (8) it follows at once that (9) is equivalent to

I =

∫ σ

0

pq̇ dt =

∫
p dq = nh, (10)

where the latter integral is to be taken over a complete os-
cillation of q between its limits. On the principle of the
mechanical transformability of the stationary states we shall
therefore assume, following Ehrenfest, that (10) holds not
only for a Planck’s vibrator but for any periodic system
of one degree of freedom which can be formed in a contin-
uous manner from a linear harmonic vibrator by a gradual
variation of the field of force in which the particle moves.
This condition is immediately seen to be fulfilled by all such
systems in which the motion is of oscillating type i. e. where
the moving particle during a period passes twice through
any point of its orbit once in each direction. If, however,
we confine ourselves to systems of one degree of freedom, it
will be seen that systems in which the motion is of rotat-
ing type, i. e. where the particle during a period passes only
once through every point of its orbit, cannot be formed in a
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continuous manner from a linear harmonic vibrator without
passing through singular states in which the period becomes
infinite long and the result becomes ambiguous. We shall
not here enter more closely on this difficulty which has been
pointed out by Ehrenfest, because it disappears when we
consider systems of several degrees of freedom, where we
shall see that a simple generalisation of (10) holds for any
system for which every motion is periodic.

As regards the application of (9) to statistical problems
it was assumed in Planck’s theory that the different states
of the vibrator corresponding to different values of n are
a-priori equally probable, and this assumption was strongly
supported by the agreement obtained on this basis with the
measurements of the specific heat of solids at low tempera-
tures. Now it follows from the considerations of Ehrenfest,
mentioned in the former section, that the a-priori probability
of a given stationary state is not changed by a continuous
transformation, and we shall therefore expect that for any
system of one degree of freedom the different states corre-
sponding to different entire values of n in (10) are a-priori
equally probable.

As pointed out by Planck in connection with the ap-
plication of (9), it is simply seen that statistical considera-
tions, based on the assumption of equal probability for the
different states given by (10), will show the necessary re-
lation to considerations of ordinary statistical mechanics in
the limit where the latter theory has been found to give re-
sults in agreement with experiments. Let the configuration
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and motion of a mechanical system be characterised by s in-
dependent variables q1, . . . , qs and corresponding momenta
p1, . . . , ps and let the state of the system be represented
in a 2s-dimensional phase-space by a point with coordinates
q1, . . . , qs, p1, . . . , ps. Then, according to ordinary statisti-
cal mechanics, the probability for this point to lie within a
small element in the phase-space is independent of the po-
sition and shape of this element and simply proportional to
its volume, defined in the usual way by

δW =

∫
dq1 . . . dqs dp1 . . . dps. (11)

In the quantum theory, however, these considerations can-
not be directly applied, since the point representing the state
of a system cannot be displaced continuously in the 2s-
dimensional phase-space, but can lie only on certain sur-
faces of lower dimensions in this space. For systems of one
degree of freedom the phase-space is a two-dimensional sur-
face, and the points representing the states of some system
given by (10) will be situated on closed curves on this sur-
face. Now, in general, the motion will differ considerably
for any two states corresponding to successive entire values
of n in (10), and a simple general connection between the
quantum theory and ordinary statistical mechanics is there-
fore out of question. In the limit, however, where n is large,
the motions in successive states will only differ very little
from each other, and it would therefore make little difference
whether the points representing the systems are distributed
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continuously on the phase-surface or situated only on the
curves corresponding to (10), provided the number of sys-
tems which in the first case are situated between two such
curves is equal to the number which in the second case lies on
one of these curves. But it will be seen that this condition is
just fulfilled in consequence of the above hypothesis of equal
a-priori probability of the different stationary states, because
the element of phase-surface limited by two successive curves
corresponding to (10) is equal to

δW =

∫
dp dq =

[∫
p dq

]
n

−
[∫

p dq

]
n−1

= In − In−1 = h,

(12)

so that on ordinary statistical mechanics the probabilities for
the point to lie within any two such elements is the same. We
see consequently that the hypothesis of equal probability of
the different states given by (10) gives the same result as or-
dinary statistical mechanics in all such applications in which
the states of the great majority of the systems correspond
to large values of n. Considerations of this kind have led
Debye1 to point out that condition (10) might have a gen-
eral validity for systems of one degree of freedom, already
before Ehrenfest, on the basis of his theory of the me-
chanical transformability of the stationary states, had shown
that this condition forms the only rational generalisation of
Planck’s condition (9).

1P. Debye, Wolfskehl-Vortrag. Göttingen 1913.
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We shall now discuss the relation between the theory of
spectra of atomic systems of one degree of freedom, based on
(1) and (10), and the ordinary theory of radiation, and we
shall see that this relation in several respects shows a close
analogy to the relation, just considered, between the statisti-
cal applications of (10) and considerations based on ordinary
statistical mechanics. Since the values for the frequency ω
in two states corresponding to different values of n in (10)
in general are different, we see at once that we cannot ex-
pect a simple connection between the frequency calculated
by (1) of the radiation corresponding to a transition between
two stationary states and the motions of the system in these
states, except in the limit where n is very large, and where
the ratio between the frequencies of the motion in successive
stationary states differs very little from unity. Consider now
a transition between the state corresponding to n = n′ and
the state corresponding to n = n′′, and let us assume that
n′ and n′′ are large numbers and that n′ − n′′ is small com-
pared with n′ and n′′. In that case we may in (8) for δE put
E ′ − E ′′ and for δI put I ′ − I ′′, and we get therefore from
(1) and (10) for the frequency of the radiation emitted or
absorbed during the transition between the two states

ν =
1

h
(E ′ − E ′′) =

ω

h
(I ′ − I ′′) = (n′ − n′′)ω. (13)

Now in a stationary state of a periodic system the dis-
placement of the particles in any given direction may always
be expressed by means of a Fourier-series as a sum of har-
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monic vibrations:

ξ =
∑

Cτ cos 2π(τωt+ cτ ), (14)

where the C’s and c’s are constants and the summation is
to be extended over all positive entire values of τ . On the
ordinary theory of radiation we should therefore expect the
system to emit a spectrum consisting of a series of lines of
frequencies equal to τω, but, as it is seen, this is just equal
to the series of frequencies which we obtain from (13) by in-
troducing different values for n′ − n′′. As far as the frequen-
cies are concerned we see therefore that in the limit where
n is large there exists a close relation between the ordinary
theory of radiation and the theory of spectra based on (1)
and (10). It may be noticed, however, that, while on the first
theory radiations of the different frequencies τω correspond-
ing to different values of τ are emitted or absorbed at the
same time, these frequencies will on the present theory, based
on the fundamental assumption I and II, be connected with
entirely different processes of emission or absorption, corre-
sponding to the transition of the system from a given state
to different neighbouring stationary states.

In order to obtain the necessary connection, mentioned
in the former section, to the ordinary theory of radiation in
the limit of slow vibrations, we must further claim that a
relation, as that just proved for the frequencies, will, in the
limit of large n, hold also for the intensities of the different
lines in the spectrum. Since now on ordinary electrodynam-
ics the intensities of the radiations corresponding to different
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values of τ are directly determined from the coefficients C|tau
in (14), we must therefore expect that for large values of n
these coefficients will on the quantum theory determine the
probability of spontaneous transition from a given stationary
state for which n = n′ to a neighbouring state for which
n = n′′ = n′ − τ . Now this connection between the ampli-
tudes of the different harmonic vibrations into which the mo-
tion can be resolved, characterised by different values of τ ,
and the probabilities of transition from a given stationary
state to the different neighbouring stationary states, char-
acterised by different values of n′ − n′′, may clearly be ex-
pected to be of a general nature. Although, of course, we
cannot without a detailed theory of the mechanism of tran-
sition obtain an exact calculation of the latter probabilities,
unless n is large, we may expect that also for small values
of n the amplitude of the harmonic vibrations corresponding
to a given value of τ will in some way give a measure for
the probability of a transition between two states for which
n′ − n′′ is equal to τ . Thus in general there will be a certain
probability of an atomic system in a stationary state to pass
spontaneously to any other state of smaller energy, but if
for all motions of a given system the coefficients C in (14)
are zero for certain values of τ , we are led to expect that no
transition will be possible, for which n′ − n′′ is equal to one
of these values.

A simple illustration of these considerations is offered by
the linear harmonic vibrator mentioned above in connection
with Planck’s theory. Since in this case Cτ is equal to zero
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for any τ different from 1, we shall expect that for this sys-
tem only such transitions are possible in which n alters by
one unit. From (1) and (9) we obtain therefore the simple re-
sult that the frequency of any radiation emitted or absorbed
by a linear harmonic vibrator is equal to the constant fre-
quency ω0. This result seems to be supported by observa-
tions on the absorption-spectra of diatomic gases, showing
that certain strong absorption-lines, which according to gen-
eral evidence may be ascribed to vibrations of the two atoms
in the molecule relative to each other, are not accompanied
by lines of the same order of intensity and corresponding to
entire multipla of the frequency, such as it should be expected
from (1) if the system had any considerable tendency to pass
between non-successive states. In this connection it may be
noted that the fact, that in the absorption spectra of some
diatomic gases faint lines occur corresponding to the double
frequency of the main lines,1 obtains a natural explanation
by assuming that for finite amplitudes the vibrations are not
exactly harmonic and that therefore the molecules possess
a small probability of passing also between non-successive
states.

§ 3. Conditionally periodic systems.

If we consider systems of several degrees of freedom the
motion will be periodic only in singular cases and the gen-
eral conditions which determine the stationary states cannot

1See E. C. Kemble, Phys. Rev., VIII, p. 701, 1916.
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therefore be derived by means of the same simple kind of con-
siderations as in the former section. As mentioned in the in-
troduction, however, Sommerfeld and others have recently
succeeded, by means of a suitable generalisation of (10), to
obtain conditions for an important class of systems of sev-
eral degrees of freedom, which, in connection with (1), have
been found to give results in convincing agreement with ex-
perimental results about line-spectra. Subsequently these
conditions have been proved by Ehrenfest and especially
by Burgers1 to be invariant for slow mechanical transfor-
mations.

To the generalisation under consideration we are natu-
rally led, if we first consider such systems for which the mo-
tions corresponding to the different degrees of freedom are
dynamically independent of each other. This occurs if the ex-
pression for the total energy E in Hamilton’s equations (4)
for a system of s degrees of freedom can be written as a sum
E1 + · · ·+Es, where Ek contains qk and pk only. An illustra-
tion of a system of this kind is presented by a particle moving
in a field of force in which the force-components normal to
three mutually perpendicular fixed planes are functions of
the distances from these planes respectively. Since in such a
case the motion corresponding to each degree of freedom in
general will be periodic, just as for a system of one degree of

1J. M. Burgers, Versl. Akad. Amsterdam, XXV, pp. 849,
918, 1055. (1917), Ann. d. Phys. LII. p. 195 (1917), Phil. Mag. XXXIII,
p. 514 (1917).
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freedom, we may obviously expect that the condition (10) is
here replaced by a set of s conditions:

Ik =

∫
pk dqk = nkh, (k = 1, . . . , s) (15)

where the integrals are taken over a complete period of the
different q’s respectively, and where n1, . . . , ns are entire
numbers. It will be seen at once that these conditions are
invariant for any slow transformation of the system for which
the independency of the motions corresponding to the dif-
ferent coordinates is maintained.

A more general class of systems for which a similar anal-
ogy with systems of a single degree of freedom exists and
where conditions of the same type as (15) present themselves
is obtained in the case where, although the motions corre-
sponding to the different degrees of freedom are not indepen-
dent of each other, it is possible nevertheless by a suitable
choice of coordinates to express each of the momenta pk as a
function of qk only. A simple system of this kind consists of
a particle moving in a plane orbit in a central field of force.
Taking the length of the radius-vector from the centre of the
field to the particle as q1, and the angular distance of this
radius-vector from a fixed line in the plane of the orbit as q2,
we get at once from (4), since E does not contain q2, the
well known result that during the motion the angular mo-
mentum p2 is constant and that the radial motion, given by
the variations of p1 and q1 with the time, will be exactly the
same as for a system of one degree of freedom. In his funda-
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mental application of the quantum theory to the spectrum
of a non-periodic system Sommerfeld assumed therefore
that the stationary states of the above system are given by
two conditions of the form:

I1 =

∫
p1 dq1 = n1h, I2 =

∫
p2 dq2 = n2h. (16)

While the first integral obviously must be taken over a pe-
riod of the radial motion, there might at first sight seem to
be a difficulty in fixing the limits of integration of q2. This
disappears, however, if we notice that an integral of the type
under consideration will not be altered by a change of co-
ordinates in which q is replaced by some function of this
variable. In fact, if instead of the angular distance of the
radius-vector we take for q2 some continuous periodic func-
tion of this angle with period 2π, every point in the plane
of the orbit will correspond to one set of coordinates only
and the relation between p and q will be exactly of the same
type as for a periodic system of one degree of freedom for
which the motion is of oscillating type. It follows therefore
that the integration in the second of the conditions (16) has
to be taken over a complete revolution of the radius-vector,
and that consequently this condition is equivalent with the
simple condition that the angular momentum of the particle
round the centre of the field is equal to an entire multiplum

of
h

2π
. As pointed out by Ehrenfest, the conditions (16)

are invariant for such special transformations of the system
for which the central symmetry is maintained. This follows
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immediately from the fact that the angular momentum in
transformations of this type remains invariant, and that the
equations of motion for the radial coordinate as long as p2 re-
mains constant are the same as for a system of one degree of
freedom. On the basis of (16), Sommerfeld has, as men-
tioned in the introduction, obtained a brilliant explanation of
the fine structure of the lines in the hydrogen spectrum, due
to the change of the mass of the electron with its velocity.1

To this theory we shall come back in Part II.
As pointed out by Epstein2 and Schwarzschild3 the

1In this connection it may be remarked that conditions of the same
type as (16) were proposed independently by W. Wilson (Phil. Mag.
XXIX p. 795 (1915) and XXXI p. 156 (1916)), but by him applied
only to the simple Keplerian motion described by the electron in the
hydrogen atom if the relativity modifications are neglected. Due to the
singular position of periodic systems in the quantum theory of systems
of several degrees of freedom this application, however, involves, as it
will appear from the following discussion, an ambiguity which deprives
the result of an immediate physical interpretation. Conditions analo-
gous to (16) have also been established by Planck in his interesting
theory of the “physical structure of the phase space” of systems of sev-
eral degrees of freedom (Verh. d. D. Phys. Ges. XVII p. 407 and p. 438
(1915), Ann. d. Phys. L p. 385, (1916)). This theory, which has no
direct relation to the problem of line-spectra discussed in the present
paper, rests upon a profound analysis of the geometrical problem of
dividing the multiple-dimensional phase space corresponding to a sys-
tem of several degrees of freedom into “cells” in a way analogous to the
division of the phase surface of a system of one degree of freedom by
the curves given by (10).

2P. Epstein, loc. cit.
3K. Schwarzschild, loc. cit.
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central systems considered by Sommerfeld form a special
case of a more general class of systems for which conditions
of the same type as (15) may be applied. These are the
so called conditionally periodic systems, to which we are led
if the equations of motion are discussed by means of the
Hamilton-Jacobi partial differential equation.1 In the ex-
pression for the total energy E as a function of the q’s and
the p’s, let the latter quantities be replaced by the partial
differential coefficients of some function S with respect to
the corresponding q’s respectively, and consider the partial
differential equation:

E

(
q1, . . . , qs,

∂S

∂q1

, . . . ,
∂S

∂qs

)
= α1, (17)

obtained by putting this expression equal to an arbitrary
constant α1. If then

S = F (q1, . . . , qs, α1, . . . , αs) + C,

where α2, . . . , αs, and C are arbitrary constants like α1, is
a total integral of (17), we get, as shown by Hamilton and
Jacobi, the general solution of the equations of motion (4)
by putting

∂S

∂α1

= t+ β1,
∂S

∂αk
= βk, (k = 2, . . . , s) (18)

1See f. inst. C. V. L. Charlier, Die Mechanik des Himmels, Bd. I,
Abt. 2.



33

and
∂S

∂qk
= pk, (k = 1, . . . , s) (19)

where t is the time and β1, . . . , βs a new set of arbitrary
constants. By means of (18) the q’s are given as functions of
the time t and the 2s constants α1, . . . , αs, β1, . . . , βs which
may be determined for instance from the values of the q’s
and q̈’s at a given moment.

Now the class of systems, referred to, is that for which,
for a suitable choice of orthogonal coordinates, it is possible
to find a total integral of (17) of the form

S =
s∑
1

Sk(qk, α1, . . . , αs), (20)

where Sk is a function of the s constants α1, . . . , αs and of
qk only. In this case, in which the equation (17) allows of
what is called “separation of variables”, we get from (19) that
every p is a function of the α’s and of the corresponding q
only. If during the motion the coordinates do not become in-
finite in the course of time or converge to fixed limits, every q
will, just as for systems of one degree of freedom, oscillate
between two fixed values, different for the different q’s and
depending on the α’s. Like in the case of a system of one
degree of freedom, pk will become zero and change its sign
whenever qk passes through one of these limits. Apart from
special cases, the system will during the motion never pass
twice through a configuration corresponding to the same set
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of values for the q’s and p’s, but it will in the course of time
pass within any given, however small, distance from any con-
figuration corresponding to a given set of values q1, . . . , qs,
representing a point within a certain closed s-dimensional
extension limited by s pairs of (s − 1)-dimensional surfaces
corresponding to constant values of the q’s equal to the above
mentioned limits of oscillation. A motion of this kind is
called “conditionally periodic”. It will be seen that the char-
acter of the motion will depend only on the α’s and not on
the β’s, which latter constants serve only to fix the exact con-
figuration of the system at a given moment, when the α’s are
known. For special systems it may occur that the orbit will
not cover the above mentioned s-dimensional extension ev-
erywhere dense, but will, for all values of the α’s, be confined
to an extension of less dimensions. Such a case we will refer
to in the following as a case of “degeneration”.

Since for a conditionally periodic system which allows of
separation in the variables q1, . . . , qs the p’s are functions
of the corresponding q’s only, we may, just as in the case
of independent degrees of freedom or in the case of quasi-
periodic motion in a central field, form a set of expressions
of the type

Ik =

∫
pk(qk, α1, . . . , αs) dqk, (k = 1, . . . , s) (21)

where the integration is taken over a complete oscillation
of qk. As, in general, the orbit will cover everywhere dense
an s-dimensional extension limited in the characteristic way
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mentioned above, it follows that, except in cases of degen-
eration, a separation of variables will not be possible for
two different sets of coordinates q1, . . . , qs and q′1, . . . , q′s,
unless q1 = f1(q′1), . . . , qs = fs(q

′
s), and since a change of

coordinates of this type will not affect the values of the ex-
pressions (21), it will be seen that the values of the I’s are
completely determined for a given motion of the system. By
putting

Ik = nkh, (k = l, . . . , s) (22)

where n1, . . . , ns are positive entire numbers, we obtain
therefore a set of conditions which form a natural generali-
sation of condition (10) holding for a system of one degree
of freedom.

Since the I’s, as given by (21), depend on the constants
α1, . . . , αs only and not on the β’s, the α’s may, in general,
inversely be determined from the values of the I’s. The char-
acter of the motion will therefore, in general, be completely
determined by the conditions (22), and especially the value
for the total energy, which according to (17) is equal to α1,
will be fixed by them. In the cases of degeneration referred
to above, however, the conditions (22) involve an ambiguity,
since in general for such systems there will exist an infinite
number of different sets of coordinates which allow of a sep-
aration of variables, and which will lead to different motions
in the stationary states, when these conditions are applied.
As we shall see below, this ambiguity will not influence the
fixation of the total energy in the stationary states, which
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is the essential factor in the theory of spectra based on (1)
and in the applications of the quantum theory to statistical
problems.

A well known characteristic example of a conditionally
periodic system is afforded by a particle moving under the
influence of the attractions from two fixed centres varying as
the inverse squares of the distances apart, if the relativity
modifications are neglected. As shown by Jacobi this prob-
lem can be solved by a separation of variables if so called
elliptical coordinates are used, i. e. if for ql and q2 we take
two parameters characterising respectively an ellipsoid and a
hyperboloid of revolution with the centres as foci and pass-
ing through the instantaneous position of the moving parti-
cle, and for q3 we take the angle between the plane through
the particle and the centres and a fixed plane through the
latter points, or, in closer conformity with the above general
description, some continuous periodic function of this angle
with period 2π. A limiting case of this problem is afforded
by an electron rotating round a positive nucleus and subject
to the effect of an additional homogeneous electric field, be-
cause this field may be considered as arising from a second
nucleus at infinite distance apart from the first. The mo-
tion in this case will therefore be conditionally periodic and
allow a separation of variables in parabolic coordinates, if
the nucleus is taken as focus for both sets of paraboloids of
revolution, and their axes are taken parallel to the direction
of the electric force. By applying the conditions (22) to this
motion Epstein and Schwarzschild have, as mentioned
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in the introduction, independent of each other, obtained an
explanation of the effect of an external electric field on the
lines of the hydrogen spectrum, which was found to be in
convincing agreement with Stark’s measurements. To the
results of these calculations we shall return in Part II.

In the above way of representing the general theory we
have followed the same procedure as used by Epstein. By
introducing the so called “angle-variables” well known from
the astronomical theory of perturbations, Schwarzschild
has given the theory a very elegant form in which the analogy
with systems of one degree of freedom presents itself in a
somewhat different manner. The connection between this
treatment and that given above has been discussed in detail
by Epstein.1

As mentioned above the conditions (22), first estab-
lished from analogy with systems of one degree of freedom,
have subsequently been proved generally to be mechani-
cally invariant for any slow transformation for which the
system remains conditionally periodic. The proof of this
in variance has been given quite recently by Burgers2 by
means of an interesting application of the theory of contact-
transformations based on Schwarzschild’s introduction of
angle variables. We shall not enter here on these calculations
but shall only consider some points in connection with the

1P. Epstein, Ann. d. Phys. LI, p. 168 (1916). See also Note on
p. 53 of the present paper.

2J. M. Burgers, loc. cit. Versl. Akad. Amsterdam, XXV, p. 1055
(1917).
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problem of the mechanical transformability of the stationary
states which are of importance for the logical consistency
of the general theory and for the later applications. In § 2
we saw that in the proof of the mechanical invariance of
relation (10) for a periodic system of one degree of freedom,
it was essential that the comparative variation of the exter-
nal conditions during the time of one period could be made
small. This may be regarded as an immediate consequence
of the nature of the fixation of the stationary states in the
quantum theory. In fact the answer to the question, whether
a given state of a system is stationary, will not depend only
on the motion of the particles at a given moment or on the
field of force in the immediate neighbourhood of their instan-
taneous positions, but cannot be given before the particles
have passed through a complete cycle of states, and so to
speak have got to know the entire field of force of influence
on the motion. If thus, in the case of a periodic system of
one degree of freedom, the field of force is varied by a given
amount, and if its comparative variation within the time of
a single period was not small, the particle would obviously
have no means to get to know the nature of the variation
of the field and to adjust its stationary motion to it, before
the new field was already established. For exactly the same
reasons it is a necessary condition for the mechanical in-
variance of the stationary states of a conditionally periodic
system, that the alteration of the external conditions during
an interval in which the system has passed approximately
through all possible configurations within the above men-
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tioned s-dimensional extension in the coordinate-space can
be made as small as we like. This condition forms therefore
also an essential point in Burgers’ proof of the invariance
of the conditions (22) for mechanical transformations. Due
to this we meet with a characteristic difficulty when during
the transformation of the system we pass one of the cases of
degeneration mentioned above, where, for every set of values
for the α’s, the orbit will not cover the s-dimensional exten-
sion everywhere dense, but will be confined to an extension
of less dimensions. It is clear that, when by a slow trans-
formation of a conditionally periodic system we approach
a degenerate system of this kind, the time-interval which
the orbit takes to pass close to any possible configuration
will tend to be very long and will become infinite when
the degenerate system is reached. As a consequence of this
the conditions (22) will generally not remain mechanically
invariant when we pass a degenerate system, what has in-
timate connection with the above mentioned ambiguity in
the determination of the stationary states of such systems
by means of (22).

A typical case of a degenerate system, which may serve as
an illustration of this point, is formed by a system of several
degrees of freedom for which every motion is simply periodic,
independent of the initial conditions. In this case, which is of
great importance in the physical applications, we have from
(5) and (21), for any set of coordinates in which a separation
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of variables is possible,

I =

∫ σ

0

(p1q̇1 + · · ·+ psq̇s) dt = κ1I1 + · · ·+ κsIs, (23)

where the integration is extended over one period of the mo-
tion, and where κ1, . . . , κs are a set of positive entire numbers
without a common divisor. Now we shall expect that every
motion, for which it is possible to find a set of coordinates
in which it satisfies (22), will be stationary. For any such
motion we get from (23)

I = (κ1n1 + · · ·+ κsns)h = nh, (24)

where n is a whole number which may take all positive val-
ues if, as in the applications mentioned below, at least one
of the κ’s is equal to one. Inversely, if the system under
consideration allows of separation of variables in an infinite
continuous multitude of sets of coordinates, we must con-
clude that generally every motion which satisfies (24) will
be stationary, because in general it will be possible for any
such motion to find a set of coordinates in which it satisfies
also (22). It will thus be seen that, for a periodic system
of several degrees of freedom, condition (24) forms a simple
generalisation of condition (10). From relation (8), which
holds for two neighbouring motions of any periodic system,
it follows further that the energy of the system will be com-
pletely determined by the value of I, just as for systems of
one degree of freedom.
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Consider now a periodic system in some stationary state
satisfying (24), and let us assume that an external field is
slowly established at a continuous rate and that the motion
at any moment during this process allows of a separation of
variables in a certain set of coordinates. If we would assume
that the effect of the field on the motion of the system at any
moment could be calculated directly by means of ordinary
mechanics, we would find that the values of the I’s with re-
spect to the latter coordinates would remain constant during
the process, but this would involve that the values of the n’s
in (22) would in general not be entire numbers, but would
depend entirely on the accidental motion, satisfying (24),
originally possessed by the system. That mechanics, how-
ever, cannot generally be applied directly to determine the
motion of a periodic system under influence of an increasing
external field, is just what we should expect according to
the singular position of degenerate systems as regards me-
chanical transformations. In fact, in the presence of a small
external field, the motion of a periodic system will undergo
slow variations as regards the shape and position of the orbit,
and if the perturbed motion is conditionally periodic these
variations will be of a periodic nature. Formally, we may
therefore compare a periodic system exposed to an external
field with a simple mechanical system of one degree of free-
dom in which the particle performs a slow oscillating motion.
Now the frequency of a slow variation of the orbit will be seen
to be proportional to the intensity of the external field, and
it is therefore obviously impossible to establish the external
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field at a rate so slow that the comparative change of its in-
tensity during a period of this variation is small. The process
which takes place during the increase of the field will thus be
analogous to that which takes place if an oscillating particle
is subject to the effect of external forces which change consid-
erably during a period. Just as the latter process generally
will give rise to emission or absorption of radiation and can-
not be described by means of ordinary mechanics, we must
expect that the motion of a periodic system of several degrees
of freedom under the establishment of the external field can-
not be determined by ordinary mechanics, but that the field
will give rise to effects of the same kind as those which occur
during a transition between two stationary states accompa-
nied by emission or absorption of radiation. Consequently
we shall expect that, during the establishment of the field,
the system will in general adjust itself in some unmechanical
way until a stationary state is reached in which the frequency
(or frequencies) of the above mentioned slow variation of the
orbit has a relation to the additional energy of the system
due to the presence of the external field, which is of the same
kind as the relation, expressed by (8) and (10), between the
energy and frequency of a periodic system of one degree of
freedom. As it will be shown in Part II in connection with
the physical applications, this condition is just secured if the
stationary states in the presence of the field are determined
by the conditions (22), and it will be seen that these con-
siderations offer a means of fixing the stationary states of a
perturbed periodic system also in cases where no separation
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of variables can be obtained.
In consequence of the singular position of the degenerate

systems in the general theory of stationary states of condi-
tionally periodic systems, we obtain a means of connecting
mechanically two different stationary states of a given sys-
tem through a continuous series of stationary states without
passing through systems in which the forces are very small
and the energies in all the stationary states tend to coincide
(comp. p. 14). In fact, if we consider a given conditionally
periodic system which can be transformed in a continuous
way into a system for which every orbit is periodic and for
which every state satisfying (24) will also satisfy (22) for a
suitable choice of coordinates, it is clear in the first place that
it is possible to pass in a mechanical way through a continu-
ous series of stationary states from a state corresponding to
a given set of values of the n’s in (22) to any other such state
for which κ1n1+· · ·+κsns possesses the same value. If, more-
over, there exists a second periodic system of the same char-
acter to which the first periodic system can be transformed
continuously, but for which the set of κ’s is different, it will
be possible in general by a suitable cyclic transformation to
pass in a mechanical way between any two stationary states
of the given conditionally periodic system satisfying (22).

To obtain an example of such a cyclic transformation let us
take the system consisting of an electron which moves round a
fixed positive nucleus exerting an attraction varying as the in-
verse square of the distance. If we neglect the small relativity
corrections, every orbit will be periodic independent of the ini-
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tial conditions and the system will allow of separation of variables
in polar coordinates as well as in any set of elliptical coordinates,
of the kind mentioned on p. 36, if the nucleus is taken as one of
the foci. It is simply seen that any orbit which satisfies (24) for
a value of n > 1, will also satisfy (22) for a suitable choice of
elliptical coordinates. By imagining another nucleus of infinite
small charge placed at the other focus, the orbit may further be
transformed into another which satisfies (24) for the same value
of n, but which may have any given value for the eccentricity.
Consider now a state of the system satisfying (21), and let us as-
sume that by the above means the orbit is originally so adjusted
that in plane polar coordinates it will correspond to n1 = m and
n2 = n − m in (16). Let then the system undergo a slow con-
tinuous transformation during which the field of force acting on
the electron remains central, but by which the law of attraction
is slowly varied until the force is directly proportional to the dis-
tance apart. In the final state, as well as in the original state, the
orbit of the electron will be closed, but during the transforma-
tion the orbit will not be closed, and the ratio between the mean
period of revolution and the period of the radial motion, which in
the original motion was equal to one, will during the transforma-
tion increase continuously until in the final state it is equal to two.
This means that, using polar coordinates, the values of κ1 and κ2

in (22) which for the first state are equal to κ1 = κ2 = 1, will
be for the second state κ1 = 2 and κ2 = 1. Since during the
transformation n1 and n2 will keep their values, we get therefore
in the final state I = h

(
2m + (n − m)

)
= h(n + m). Now in

the latter state, the system allows a separation of variables not
only in polar coordinates but also in any system of rectangular
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Cartesian coordinates, and by suitable choice of the direction of
the axes, we can obtain that any orbit, satisfying (24) for a value
of n > l, will also satisfy (22). By an infinite small change of the
force components in the directions of the axes, in such a way that
the motions in these directions remain independent of each other
but possess slightly different periods, it will further be possible to
transform the elliptical orbit mechanically into one correspond-
ing to any given ratio between the axes. Let us now assume that
in this way the orbit of the electron is transformed into a circu-
lar one, so that, returning to plane polar coordinates, we have
n1 = 0 and n2 = n + m, and let then by a slow transformation
the law of attraction be varied until again it is that of the inverse
square. It will be seen that when this state is reached the motion
will again satisfy (24), but this time we will have I = h(n + m)
instead of I = nh as in the original state. By repeating a cyclic
process of this kind we may pass from any stationary state of the
system in question which satisfies (24) for a value of n > 1 to
any other such state without leaving at any moment the region
of stationary states.

The theory of the mechanical transformability of the sta-
tionary states gives us a means to discuss the question of the
a-priori probability of the different states of a conditionally
periodic system, characterised by different sets of values for
the n’s in (22). In fact from the considerations, mentioned
in § 1, it follows that, if the a-priori probability of the station-
ary states of a given system is known, it is possible at once
to deduce the probabilities for the stationary states of any
other system to which the first system can be transformed
continuously without passing through a system of degener-
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ation. Now from the analogy with systems of one degree of
freedom it seems necessary to assume that, for a system of
several degrees of freedom for which the motions correspond-
ing to the different coordinates are dynamically independent
of each other, the a-priori probability is the same for all the
states corresponding to different sets of n’s in (15). Accord-
ing to the above we shall therefore assume that the a-priori
probability is the same for all states, given by (22), of any
system which can be formed in a continuous way from a
system of this kind without passing through systems of de-
generation. It will be observed that on this assumption we
obtain exactly the same relation to the ordinary theory of
statistical mechanics in the limit of large n’s as obtained in
the case of systems of one degree of freedom. Thus, for a
conditionally periodic system, the volume given by (11) of
the element of phase-space, including all points q1, . . . , qs,
p1, . . . , ps which represent states for which the value of Ik
given by (21) lies between Ik and Ik + δIk, is seen at once to
be equal to1

δW = δI1 δI2 . . . δIs, (25)

if the coordinates are so chosen that the motion correspond-
ing to every degree of freedom is of oscillating type. The
volume of the phase-space limited by s pairs of surfaces,
corresponding to successive values for the n’s in the con-
ditions (22), will therefore be equal to hs and consequently
be the same for every combination of the n’s. In the limit

1Comp. A. Sommerfeld, Ber. Akad. München, 1917, p. 83.
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where the n’s are large numbers and the stationary states
corresponding to successive values for the n’s differ only very
little from each other, we thus obtain the same result on the
assumption of equal a-priori probability of all the stationary
states, corresponding to different sets of values of n1, . . . ,
ns in (22), as would be obtained by application of ordinary
statistical mechanics.

The fact that the last considerations hold for every non-
degenerate conditionally periodic system suggests the as-
sumption that in general the a-priori probability will be the
same for all the states determined by (22), even if it should
not be possible to transform the given system into a system
of independent degrees of freedom without passing through
degenerate systems. This assumption will be shown to be
supported by the consideration of the intensities of the dif-
ferent components of the Stark-effect of the hydrogen lines,
mentioned in the next Part. When we consider a degenerate
system, however, we cannot assume that the different sta-
tionary states are a-priori equally probable. In such a case
the stationary states will be characterised by a number of
conditions less than the number of degrees of freedom, and
the probability of a given state must be determined from the
number of different stationary states of some non-degenerate
system which will coincide in the given state, if the latter sys-
tem is continuously transformed into the degenerate system
under consideration.

In order to illustrate this, let us take the simple case of a
degenerate system formed by an electrified particle moving in
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a plane orbit in a central field, the stationary states of which
are given by the two conditions (16). In this case the plane of
the orbit is undetermined, and it follows already from a com-
parison with ordinary statistical mechanics, that the a-priori
probability of the states characterised by different combina-
tions of n1 and n2 in (16) cannot be the same. Thus the
volume of the phase-space, corresponding to states for which
I1 lies between I1 and I1 + δI1 and for which I2 lies between
I2 and I2+δI2, is found by a simple calculation1 to be equal to
δW = 2I1 δI1 δI2, if the motion is described by ordinary polar
coordinates. For large values of n1 and n2, we must therefore
expect that the a-priori probability of a stationary state cor-
responding to a given combination (n1, n2) is proportional
to n2. The question of the a-priori probability of states cor-
responding to small values of the n’s has been discussed by
Sommerfeld in connection with the problem of the inten-
sities of the different components in the fine structure of the
hydrogen lines (see Part II). From considerations about the
volume of the extensions in the phase-space, which might
be considered as associated with the states characterised by
different combinations (n1, n2), Sommerfeld proposes sev-
eral different expressions for the a-priori probability of such
states. Due to the necessary arbitrariness involved in the
choice of these extensions, however, we cannot in this way
obtain a rational determination of the a-priori probability of
states corresponding to small values of n1 and n2. On the

1See A. Sommerfeld, loc. cit.
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other hand, this probability may be deduced by regarding
the motion of the system under consideration as the degen-
eration of a motion characterised by three numbers n1, n2

and n3, as in the general applications of the conditions (22)
to a system of three degrees of freedom. Such a motion may
be obtained for instance by imagining the system placed in
a small homogeneous magnetic field. In certain respects this
case falls outside the general theory of conditionally peri-
odic systems discussed in this section, but, as we shall see
in Part II, it can be simply shown that the presence of the
magnetic field imposes the further condition on the motion
in the stationary states that the angular momentum round

the axis of the field is equal to n′
h

2π
, where n′ is a positive

entire number equal to or less than n2, and which for the sys-
tem considered in the spectral problems must be assumed to
be different from zero. When regard is taken to the two
opposite directions in which the particle may rotate round
the axis of the field, we see therefore that for this system a
state corresponding to a given combination of n1 and n2 in
the presence of the field can be established in 2n2 different
ways. The a-priori probability of the different states of the
system may consequently for all combinations of n1 and n2

be assumed to be proportional to n2.
The assumption just mentioned that the angular momen-

tum round the axis of the field cannot be equal to zero is
deduced from considerations of systems for which the mo-
tion corresponding to special combinations of the n’s in (22)
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would become physically impossible due to some singular-
ity in its character. In such cases we must assume that
no stationary states exist corresponding to the combinations
(n1, n2, . . . , ns) under consideration, and on the above prin-
ciple of the invariance of the a-priori probability for contin-
uous transformations we shall accordingly expect that the
a-priori probability of any other state, which can be trans-
formed continuously into one of these states without passing
through cases of degeneration, will also be equal to zero.

Let us now proceed to consider the spectrum of a con-
ditionally periodic system, calculated from the values of the
energy in the stationary states by means of relation (1). If
E(n1, . . . , ns) is the total energy of a stationary state de-
termined by (22) and if ν is the frequency of the line cor-
responding to the transition between two stationary states
characterised by nk = n′k and nk = n′′k respectively, we have

ν =
1

h

[
E(n′1, . . . , n

′
s)− E(n′′1, . . . , n

′′
s)
]
. (26)

In general, this spectrum will be entirely different from the
spectrum to be expected on the ordinary theory of electrody-
namics from the motion of the system. Just as for a system
of one degree of freedom we shall see, however, that in the
limit where the motions in neighbouring stationary states
differ very little from each other, there exists a close relation
between the spectrum calculated on the quantum theory and
that to be expected on ordinary electrodynamics. As in § 2
we shall further see, that this connection leads to certain
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general considerations about the probability of transition be-
tween any two stationary states and about the nature of the
accompanying radiation, which are found to be supported by
observations. In order to discuss this question we shall first
deduce a general expression for the energy difference between
two neighbouring states of a conditionally periodic system,
which can be simply obtained by a calculation analogous to
that used in § 2 in the deduction of the relation (8).

Consider some motion of a conditionally periodic system
which allows of separation of variables in a certain set of co-
ordinates q1, . . . , qs, and let us assume that at the time t = ϑ
the configuration of the system will to a close approximation
be the same as at the time t = 0. By taking ϑ large enough
we can make this approximation as close as we like. If next
we consider some conditionally periodic motion, obtained by
a small variation of the first motion, and which allows of sep-
aration of variables in a set of coordinates q′1, . . . , q′s which
may differ slightly from the set q1, . . . , qs, we get by means
of Hamilton’s equations (4), using the coordinates q′1, . . . ,
q′s, ∫ ϑ

0

δE dt =

∫ ϑ

0

s∑
1

(
∂E

∂p′k
δp′k +

∂E

∂q′k
δq′k

)
dt

=

∫ ϑ

0

s∑
1

(q̇′k δp
′
k − ṗ′k δq′k) dt.

By partial integration of the second term in the bracket this
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gives:∫ ϑ

0

δE dt =

∫ ϑ

0

s∑
1

δ(p′kq̇
′
k) dt−

∣∣∣∣∣
s∑
1

p′k δq
′
k

∣∣∣∣∣
t=ϑ

t=0

. (27)

Now we have for the unvaried motion∫ ϑ

0

s∑
1

p′kq̇
′
k dt =

∫ ϑ

0

s∑
1

pkq̇k dt =
s∑
1

NkIk,

where Ik is defined by (21) and where Nk is the number of
oscillations performed by qk in the time interval ϑ. For the
varied motion we have on the other hand:∫ ϑ

0

s∑
1

p′kq̇
′
k dt =

∫ t=ϑ

t=0

s∑
1

p′kdq
′
k =

s∑
1

NkI
′
k+

∣∣∣∣∣
s∑
1

p′k δq
′
k

∣∣∣∣∣
t=ϑ

t=0

,

where the I’s correspond to the conditionally periodic mo-
tion in the coordinates q′1, . . . , q′s, and the δq’s which en-
ter in the last term are the same as those in (27). Writing
I ′k − Ik = δIk, we get therefore from the latter equation∫ ϑ

0

δE dt =
s∑
1

Nk δIk. (28)

In the special case where the varied motion is an undis-
turbed motion belonging to the same system as the unvaried
motion we get, since δE will be constant,

δE =
s∑
1

ωk δIk, (29)
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where ωk =
Nk

ϑ
is the mean frequency of oscillation of qk be-

tween its limits, taken over a long time interval of the same
order of magnitude as ϑ. This equation forms a simple gener-
alisation of (8), and in the general case in which a separation
of variables will be possible only for one system of coordi-
nates leading to a complete definition of the I’s it might
have been deduced directly from the analytical theory of the
periodicity properties of the motion of a conditionally peri-
odic system, based on the introduction of angle-variables.1

From (29) it follows moreover that, if the system allows of
a separation of variables in an infinite continuous multitude

1See Charlier, Die Mechanik des Himmels, Bd. I Abt. 2, and
especially P. Epstein, Ann. d. Phys. LI p. 178 (1916). By means of
the well known theorem of Jacobi about the change of variables in the
canonical equations of Hamilton, the connection between the notion
of angle-variables and the quantities I, discussed by Epstein in the
latter paper, may be briefly exposed in the following elegant manner
which has been kindly pointed out to me by Mr. H. A. Kramers.
Consider the function S(q1, . . . , qs, I1, . . . , Is) obtained from (20) by
introducing for the α’s their expressions in terms of the I’s given by
the equations (21). This function will be a many valued function of
the q’s which increases by Ik if qk describes one oscillation between its
limits and comes back to its original value while the other q’s remain
constant. If we therefore introduce a new set of variables w1, . . . , ws
defined by

wk =
∂S

∂Ik
, (k = 1, . . . , s) (1∗)

it will be seen that wk increases by one unit while the other w’s will
come back to their original values if qk describes one oscillation between
its limits and the other q’s remain constant. Inversely it will therefore
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be seen that the q’s, and also the p’s which were given by

pk =
∂S

∂qk
, (k = i, . . . , s) (2∗)

when considered as functions of the I’s and w’s will be periodic func-
tions of every of the w’s with period 1. According to Fourier’s theo-
rem any of the q’s may therefore be represented by an s-double trigono-
metric series of the form

q =
∑

Aτ1,..., τs cos 2π(τ1w1 + . . .+ τsws + ατ1,..., τs), (3∗)

where the A’s and α’s are constants depending on the I’s and where
the summation is to be extended over all entire values of τ1, . . . , τs.
On account of this property of the w’s, the quantities 2πw1, . . . , 2πws
are denoted as “angle variables”. Now from (1∗) and (2∗) it follows
according to the above mentioned theorem of Jacobi (see for instance
Jacobi, Vorlesungen über Dynamik § 37) that the variations with the
time of the I’s and w’s will be given by

dIk
dt

= − ∂E

∂wk
,

dwk
dt

=
∂E

∂Ik
, (k = 1, . . . , s) (4∗)

where the energy E is considered as a function of the I’s and w’s.
Since E, however, is determined by the I’s only we get from (4∗),
besides the evident result that the I’s are constant during the motion,
that the w’s will vary linearly with the time and can be represented by

wk = ωkt+ δk, ωk =
∂E

∂Ik
, (k = 1, . . . , s) (5∗)

where δk is a constant, and where ωk is easily seen to be equal to the
mean frequency of oscillation of qk. From (5∗) equation (28) follows at
once, and it will further be seen that by introducing (5∗) in (3∗) we get
the result that every of the q’s, and consequently also any one-valued
function of the q’s, can be represented by an expression of the type (31).
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of sets of coordinates, the total energy will be the same for
all motions corresponding to the same values of the I’s, in-
dependent of the special set of coordinates used to calculate
these quantities. As mentioned above and as we have al-
ready shown in the case of purely periodic systems by means

In this connection it may be mentioned that the method of
Schwarzschild of fixing the stationary states of a conditionally peri-
odic system, mentioned on p. 36, consists in seeking for a given system
a set of canonically conjugated variables Q1, . . . , Qs, P1, . . . , Ps in such
a way that the positional coordinates of the system q1, . . . , qs, and their
conjugated momenta p1, . . . , ps, when considered as functions of the
Q’s and P ’s, are periodic in every of the Q’s with period 2π, while the
energy of the system depends only on the P ’s. In analogy with the con-
dition which fixes the angular momentum in Sommerfeld’s theory of
central systems Schwarzschild next puts every of the P ’s equal to an

entire multiplum of
h

2π
. In contrast to the theory of stationary states of

conditionally periodic systems based on the possibility of separation of
variables and the fixation of the I’s by (22), this method does not lead
to an absolute fixation of the stationary states, because, as pointed out
by Schwarzschild himself, the above definition of the P ’s leaves an
arbitrary constant undetermined in every of these quantities. In many
cases, however, these constants may be simply determined from con-
siderations of mechanical transformability of the stationary states, and
as pointed out by Burgers (loc. cit. Versl. Akad. Amsterdam XXV
p. 1055 (1917)). Schwarzschild’s method possesses on the other
hand the essential advantage of being applicable to certain classes of
systems in which the displacements of the particles may be represented
by trigonometric series of the type (31), but for which the equations
of motion cannot be solved by separation of variables in any fixed set
of coordinates. An interesting application of this to the spectrum of
rotating molecules, given by Burgers, will be mentioned in Part IV.
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of (8), the total energy is therefore also in cases of degener-
ation completely determined by the conditions (22).

Consider now a transition between two stationary states
determined by (22) by putting nk = n′k and nk = n′′k respec-
tively, and let us assume that n′1, . . . , n′s, n

′′
1, . . . , n′′s are large

numbers, and that the differences n′k−n′′k are small compared
with these numbers. Since the motions of the system in these
states will differ relatively very little from each other we may
calculate the difference of the energy by means of (29), and
we get therefore, by means of (1), for the frequency of the
radiation corresponding to the transition between the two
states

ν =
1

h
(E ′−E ′′) =

1

h

s∑
1

ωk(I
′
k−I ′′k ) =

s∑
1

ωk(n
′
k−n′′k), (30)

which is seen to be a direct generalisation of the expres-
sion (13) in § 2.

Now, in complete analogy to what is the case for periodic
systems of one degree of freedom, it is proved in the analyt-
ical theory of the motion of conditionally periodic systems
mentioned above that for the latter systems the coordinates
q1, . . . , qs, and consequently also the displacements of the
particles in any given direction, may be expressed as a func-
tion of the time by an s-double infinite Fourier series of
the form:

ξ =
∑

Cτ1,..., τs cos 2π
{

(τ1ω1 + . . .+τsωs)t+cτ1,..., τs
}
, (31)



57

where the summation is to be extended over all positive and
negative entire values of the τ ’s, and where the ω’s are the
above mentioned mean frequencies of oscillation for the dif-
ferent q’s. The constants Cτ1,..., τs depend only on the α’s in
the equations (18) or, what is the same, on the I’s, while the
constants cτ1,..., τs depend on the α’s as well as on the β’s. In
general the quantities τ1ω1 + . . . + τsωs will be different for
any two different sets of values for the τ ’s, and in the course
of time the orbit will cover everywhere dense a certain s-
dimensional extension. In a case of degeneration, however,
where the orbit will be confined to an extension of less di-
mensions, there will exist for all values of the α’s one or more
relations of the type m1ω1+. . .+msωs = 0 where the m’s are
entire numbers and by the introduction of which the expres-
sion (31) can be reduced to a Fourier series which is less
than s-double infinite. Thus in the special case of a system

of which every orbit is periodic we have
ω1

κ1

= · · · = ωs
κs

= ω,

where the κ’s are the numbers which enter in equation (23),
and the Fourier series for the displacements in the differ-
ent directions will in this case consist only of terms of the
simple form Cτ cos 2π{τωt+ cτ}, just as for a system of one
degree of freedom.

On the ordinary theory of radiation, we should expect
from (31) that the spectrum emitted by the system in a
given state would consist of an s-double infinite series of
lines of frequencies equal to τ1ω1 + · · · + τsωs. In general,
this spectrum would be completely different from that given
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by (26). This follows already from the fact that the ω’s will
depend on the values for the constants α1, . . . , αs and will
vary in a continuous way for the continuous multitude of me-
chanically possible states corresponding to different sets of
values for these constants. Thus in general the ω’s will be
quite different for two different stationary states correspond-
ing to different sets of n’s in (22), and we cannot expect any
close relation between the spectrum calculated on the quan-
tum theory and that to be expected on the ordinary theory
of mechanics and electrodynamics. In the limit, however,
where the n’s in (22) are large numbers, the ratio between
the ω’s for two stationary states, corresponding to nk = n′k
and nk = n′′k respectively, will tend to unity if the differ-
ences n′k − n′′k are small compared with the n’s, and as seen
from (30) the spectrum calculated by (1) and (22) will in this
limit just tend to coincide with that to be expected on the
ordinary theory of radiation from the motion of the system.

As far as the frequencies are concerned, we thus see that
for conditionally periodic systems there exists a connection
between the quantum theory and the ordinary theory of ra-
diation of exactly the same character as that shown in § 2 to
exist in the simple case of periodic systems of one degree of
freedom. Now on ordinary electrodynamics the coefficients
Cτ1,...,τs in the expression (31) for the displacements of the
particles in the different directions would in the well known
way determine the intensity and polarisation of the emitted
radiation of the corresponding frequency τ1ω1 + . . . + τsωs.
As for systems of one degree of freedom we must therefore
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conclude that, in the limit of large values for the n’s, the
probability of spontaneous transition between two stationary
states of a conditionally periodic system, as well as the po-
larisation of the accompanying radiation, can be determined
directly from the values of the coefficient Cτ1,..., τs in (31) cor-
responding to a set of τ ’s given by τk = n′k − n′′k, if n′1, . . . ,
n′s and n′′1, . . . , n′′s are the numbers which characterise the
two stationary states.

Without a detailed theory of the mechanism of transition
between the stationary states we cannot, of course, in general
obtain an exact determination of the probability of sponta-
neous transition between two such states, unless the n’s are
large numbers. Just as in the case of systems of one degree of
freedom, however, we are naturally led from the above con-
siderations to assume that, also for values of the n’s which
are not large, there must exist an intimate connection be-
tween the probability of a given transition and the values
of the corresponding Fourier coefficient in the expressions
for the displacements of the particles in the two stationary
states. This allows us at once to draw certain important
conclusions. Thus, from the fact that in general negative as
well as positive values for the τ ’s appear in (31), it follows
that we must expect that in general not only such transitions
will be possible in which all the n’s decrease, but that also
transitions will be possible for which some of the n’s increase
while others decrease. This conclusion, which is supported
by observations on the fine structure of the hydrogen lines
as well as on the Stark effect, is contrary to the suggestion,
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put forward by Sommerfeld with reference to the essen-
tial positive character of the I’s, that every of the n’s must
remain constant or decrease under a transition. Another di-
rect consequence of the above considerations is obtained if
we consider a system for which, for all values of the con-
stants α1, . . . , αs, the coefficient Cτ1,..., τs corresponding to a
certain set τ 0

1 , . . . , τ 0
s of values for the τ ’s is equal to zero in

the expressions for the displacements of the particles in ev-
ery direction. In this case we shall naturally expect that no
transition will be possible for which the relation n′k−n′′k = τ 0

k

is satisfied for every k. In the case where Cτ01 ,..., τ0s is equal
to zero in the expressions for the displacement in a certain
direction only, we shall expect that all transitions, for which
n′k−n′′k = τ 0

k for every k, will be accompanied by a radiation
which is polarised in a plane perpendicular to this direction.

A simple illustration of the last considerations is afforded
by the system mentioned in the beginning of this section, and
which consists of a particle executing motions in three per-
pendicular directions which are independent of each other.
In that case all the Fourier coefficients in the expressions
for the displacements in any direction will disappear if more
than one of the τ ’s are different from zero. Consequently
we must assume that only such transitions are possible for
which only one of the n’s varies at the same time, and that
the radiation corresponding to such a transition will be lin-
early polarised in the direction of the displacement of the
corresponding coordinate. In the special case where the mo-
tions in the three directions are simply harmonic, we shall
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moreover conclude that none of the n’s can vary by more
than a single unit, in analogy with the considerations in the
former section about a linear harmonic vibrator.

Another example which has more direct physical impor-
tance, since it includes all the special applications of the
quantum theory to spectral problems mentioned in the in-
troduction, is formed by a conditionally periodic system pos-
sessing an axis of symmetry. In all these applications a sep-
aration of variables is obtained in a set of three coordinates
q1, q2 and q3, of which the first two serve to fix the position of
the particle in a plane through the axis of the system, while
the last is equal to the angular distance between this plane
and a fixed plane through the same axis. Due to the sym-
metry, the expression for the total energy in Hamilton’s
equations will not contain the angular distance q3 but only
the angular momentum p3 round the axis. The latter quan-
tity will consequently remain constant during the motion,
and the variations of q1 and q2 will be exactly the same as
in a conditionally periodic system of two degrees of freedom
only. If the position of the particle is described in a set of
cylindrical coordinates z, ρ, ϑ, where z is the displacement in
the direction of the axis, ρ the distance of the particle from
this axis and ϑ is equal to the angular distance q3, we have
therefore

z =
∑

Cτ1,τ2 cos 2π
{

(τ1ω1 + τ2ω2)t+ cτ1,τ2
}

and ρ =
∑

C ′τ1,τ2 cos 2π
{

(τ1ω1 + τ2ω2)t+ c′τ1,τ2
}
,

(32)
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where the summation is to be extended over all positive and
negative entire values of τ1 and τ2, and where ω1 and ω2

are the mean frequencies of oscillation of the coordinates
q1 and q2. For the rate of variation of ϑ with the time we
have further

dϑ

dt
= q̇3 =

∂E

∂p3

= f(q1, q2, p1, p2, p3)

= ±
∑

C ′′τ1,τ2 cos 2π
{

(τ1ω1 + τ2ω2)t+ c′′τ1,τ2
}
,

where the two signs correspond to a rotation of the particle
in the direction of increasing and decreasing q3 respectively,
and are introduced to separate the two types of symmetrical
motions corresponding to these directions. This gives

±ϑ = 2πω3t+
∑

C ′′′τ1,τ2 cos 2π
{

(τ1ω1 +τ2ω2)t+c′′′τ1,τ2
}
, (33)

where the positive constant ω3 =
1

2π
C ′′0,0 is the mean fre-

quency of rotation round the axis of symmetry of the sys-
tem. Considering now the displacement of the particle in
rectangular coordinates x, y and z, and taking as above the
axis of symmetry as z-axis, we get from (32) and (33) after
a simple contraction of terms

x = ρ cosϑ

=
∑

Dτ1,τ2 cos 2π
{

(τ1ω1 + τ2ω2 + ω3)t+ dτ1,τ2
}

and y = ρ sinϑ

= ±
∑

Dτ1,τ2 sin 2π
{

(τ1ω1 + τ2ω2 + ω3)t+dτ1,τ2
}
,

(34)
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where the D’s and d’s are new constants, and the summation
is again to be extended over all positive and negative values
of τ1 and τ2.

From (32) and (34) we see that the motion in the present
case may be considered as composed of a number of linear
harmonic vibrations parallel to the axis of symmetry and
of frequencies equal to the absolute values of (τ1ω1 + τ2ω2),
together with a number of circular harmonic motions round
this axis of frequencies equal to the absolute values of (τ1ω1+
τ2ω2 + ω3), and possessing the same direction of rotation as
that of the moving particle or the opposite if the latter ex-
pression is positive or negative respectively. According to or-
dinary electrodynamics the radiation from the system would
therefore consist of a number of components of frequency
τ1ω1 + τ2ω2 polarised parallel to the axis of symmetry, and
a number of components of frequencies τ1ω1 + τ2ω2 +ω3 and
of circular polarisation round this axis (when viewed in the
direction of the axis). On the present theory we shall conse-
quently expect that in this case only two kinds of transitions
between the stationary states given by (22) will be possible.
In both of these n1 and n2 may vary by an arbitrary num-
ber of units, but in the first kind of transition, which will
give rise to a radiation polarised parallel to the axis of the
system, n3 will remain unchanged, while in the second kind
of transition n3 will decrease or increase by one unit and
the emitted radiation will be circularly polarised round the
axis in the same direction as or the opposite of that of the
rotation of the particle respectively.
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In the next Part we shall see that these conclusions are
supported in an instructive manner by the experiments on
the effects of electric and magnetic fields on the hydrogen
spectrum. In connection with the discussion of the general
theory, however, it may be of interest to show that the for-
mal analogy between the ordinary theory of radiation and
the theory based on (1) and (22), in case of systems possess-
ing an axis of symmetry, can be traced not only with respect
to frequency relations but also by considerations of conser-
vation of angular momentum. For a conditionally periodic
system possessing an axis of symmetry the angular momen-
tum round this axis is, with the above choice of coordinates,

according to (22) equal to
I3

2π
= n3

h

2π
. If therefore, as as-

sumed above for a transition corresponding to an emission of
linearly polarised light, n3 is unaltered, it means that the an-
gular momentum of the system remains unchanged, while if
n3 alters by one unit, as assumed for a transition correspond-
ing to an emission of circularly polarised light, the angular

momentum will be altered by
h

2π
. Now it is easily seen that

the ratio between this amount of angular momentum and the
amount of energy hν emitted during the transition is just
equal to the ratio between the amount of angular momen-
tum and energy possessed by the radiation which according
to ordinary electrodynamics would be emitted by an elec-
tron rotating in a circular orbit in a central field of force. In
fact, if a is the radius of the orbit, ν the frequency of revolu-
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tion and F the force of reaction due to the electromagnetic
field of the radiation, the amount of energy and of angu-
lar momentum round an axis through the centre of the field
perpendicular to the plane of the orbit, lost by the electron
in unit of time as a consequence of the radiation, would be
equal to 2πνaF and aF respectively. Due to the principles
of conservation of energy and of angular momentum holding
in ordinary electrodynamics, we should therefore expect that
the ratio between the energy and the angular momentum of
the emitted radiation would be 2πν,1 but this is seen to be
equal to the ratio between the energy hν and the angular

momentum
h

2π
lost by the system considered above during

a transition for which we have assumed that the radiation
is circularly polarised. This agreement would seem not only
to support the validity of the above considerations but also
to offer a direct support, independent of the equations (22),
of the assumption that, for an atomic system possessing an
axis of symmetry, the total angular momentum round this

axis is equal to an entire multiple of
h

2π
.

A further illustration of the above considerations of the
relation between the quantum theory and the ordinary the-
ory of radiation is obtained if we consider a conditionally
periodic system subject to the influence of a small perturb-
ing field of force. Let us assume that the original system
allows of separation of variables in a certain set of coordi-

1Comp. K. Schaposchnikow, Phys. Zeitschr. XV, p. 454 (1914).
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nates q1, . . . , qs, so that the stationary states are determined
by (22). From the necessary stability of the stationary states
we must conclude that the perturbed system will possess a
set of stationary states which only differ slightly from those
of the original system. In general, however, it will not be pos-
sible for the perturbed system to obtain a separation of vari-
ables in any set of coordinates, but if the perturbing force is
sufficiently small the perturbed motion will again be of con-
ditionally periodic type and may be regarded as a superposi-
tion of a number of harmonic vibrations just as the original
motion. The displacements of the particles in the stationary
states of the perturbed system will therefore be given by an
expression of the same type as (31) where the fundamental
frequencies ωk and the amplitudes Cτ1,..., τs may differ from
those corresponding to the stationary states of the original
system by small quantities proportional to the intensity of
the perturbing forces. If now for the original motion the co-
efficients Cτ1,..., τs corresponding to certain combinations of
the τ ’s are equal to zero for all values of the constants α1, . . . ,
αs, these coefficients will therefore for the perturbed motion,
in general, possess small values proportional to the perturb-
ing forces. From the above considerations we shall therefore
expect that, in addition to the main probabilities of such
transitions between stationary states which are possible for
the original system, there will for the perturbed system ex-
ist small probabilities of new transitions corresponding to
the above mentioned combinations of the τ ’s. Consequently
we shall expect that the effect of the perturbing field on the



67

spectrum of the system will consist partly in a small dis-
placement of the original lines, partly in the appearance of
new lines of small intensity.

A simple example of this is afforded by a system consist-
ing of a particle moving in a plane and executing harmonic
vibrations in two perpendicular directions with frequencies
ω1 and ω2. If the system is undisturbed all coefficients Cτ1,τ2
will be zero, except C1,0 and C0,1. When, however, the sys-
tem is perturbed, for instance by an arbitrary small central
force, there will in the Fourier expressions for the displace-
ments of the particle, in addition to the main terms corre-
sponding to the fundamental frequencies ω1 and ω2, appear
a number of small terms corresponding to frequencies given
by τ1ω1 + τ2ω2 where τ1 and τ2 are entire numbers which
may be positive as well as negative. On the present theory
we shall therefore expect that in the presence of the per-
turbing force there will appear small probabilities for new
transitions which will give rise to radiations analogous to
the so called harmonics and combination tones in acoustics,
just as it should be expected on the ordinary theory of radia-
tion where a direct connection between the emitted radiation
and the motion of the system is assumed. Another example
of more direct physical application is afforded by the effect
of an external homogeneous electric field in producing new
spectral lines. In this case the potential of the perturbing
force is a linear function of the coordinates of the particles
and, whatever is the nature of the original system, it fol-
lows directly from the general theory of perturbations that
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the frequency of any additional term in the expression for
the perturbed motion, which is of the same order of mag-
nitude as the external force, must correspond to the sum
or difference of two frequencies of the harmonic vibrations
into which the original motion can be resolved. With ap-
plications of these considerations we will meet in Part II in
connection with the discussion of Sommerfeld’s theory of
the fine structure of the hydrogen lines and in Part III in
connection with the problem of the appearance of new se-
ries in the spectra of other elements under the influence of
intense external electric fields.

As mentioned we cannot without a more detailed the-
ory of the mechanism of transition between stationary states
obtain quantitative information as regards the general ques-
tion of the intensities of the different lines of the spectrum
of a conditionally periodic system given by (26), except in
the limit where the n’s are large numbers, or in such special
cases where for all values of the constants α1, . . . , αs certain
coefficients Cτ1,..., τs in (31) are equal to zero. From consid-
erations of analogy, however, we must expect that it will be
possible also in the general case to obtain an estimate of the
intensities of the different lines in the spectrum by compar-
ing the intensity of a given line, corresponding to a transition
between two stationary states characterised by the numbers
n′1, . . . , n′s and n′′1, . . . , n′′s respectively, with the intensities of
the radiations of frequencies ω1(n′1−n′′1)+· · ·+ωs(n′s−n′′s) to
be expected on ordinary electrodynamics from the motions
in these states; although of course this estimate becomes
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more uncertain the smaller the values for the n’s are. As it
will be seen from the applications mentioned in the following
Parts this is supported in a general way by comparison with
the observations.

Færdig fra Trykkeriet d. 27, April 1918.
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