(1) DYSTEMS, INC. ENGINEERING PRODUCT HANDBOOK

A/D CONVERTERS

D/A CONVERTERS

ANALOG MULTIPLEXERS

SAMPLE-HOLD AMPLIFIERS

OPERATIONAL AMPLIFIERS

DC POWER SUPPLIES

DIGITAL PANEL METERS

DIGITAL PANEL PRINTERS

DIGITAL PANEL INSTRUMENTS

DATA LOGGERS

DATA ACQUISITION SYSTEMS

DIGITAL CASSETTE RECORDERS

Contents

PAGE
INTRODUCTION 1
DATA CONVERSION DEVICES 5
Principles of Data Acquisition and Conversion. 6
A/D Converters 19
D/A Converters 69
DATA CONVERSION ACCESSORY CIRCUITS. 105
Analog Multiplexers. 106
Sample-Hold Circuits 114
Operational Amplifiers 126
Active Filters 144
V/F and F/V Converters 147
MODULAR DATA ACQUISITION SYSTEMS 153
DC POWER SUPPLIES. 163
Modular DC Power Supplies 164
High Power Open Frame Supplies 172
DC to DC Converters 176
DIGITAL PANEL METERS 182
DIGITAL COUNTER/TOTALIZER 205
DIGITAL TIMER/STOP CLOCK. 211
DIGITAL TIME CLOCK 217
DIGITAL COMPARATORS 221
DIGITAL VOLTAGE CALIBRATOR 227
DIGITAL PANEL PRINTER 228
DATA LOGGERS 235
COMPUTER COMPATIBLE DATA ACQUISITION SYSTEMS 256
DIGITAL CASSETTE RECORDERS AND SYSTEMS. 270
OTHER AVAILABLE LITERATURE FROM DATEL 283 EXTENDED PERFORMANCE CIRCUITS AND MODULES284

Introduction

Datel Systems Inc. was founded in February, 1970, and began production of a basic line of A / D converters, D / A converters, miniature power supply modules, and other circuit modules. Since then these basic lines have expanded considerably and many new product lines have been developed. Now in its seventh operating year, Datel Systems holds a leadership position in the areas of data converters, data acquisition systems, digital panel meters, digital panel printers, data logging systems, and power supplies. Although still a young company compared with others in these product areas, Datel has grown rapidly and achieved significant diversification of its product lines. This diversification is significant in assuring the future growth of the company.

A recently added hybrid microelectronics division is dedicated to the production of new lines of high performance hybrid data converters. Datel Systems' modern plant of 75,000 square feet is located on Route 138 in Canton, Massachusetts, just 15 miles southwest of Boston. It is easily accessible from Logan International Airport.

DATEL SYSTEMS' PRODUCTS

Datel Systems' product lines now include the following:

- A/D Converters
- D/A Converters
- Sample Holds
- Analog Multiplexers
- Operational Amplifiers
- Instrumentation Amplifiers
- Active Filters
- Computer Analog Peripheral Systems
- Digital Panel Meters
- Data Acquisition Systems
- Data Logging Systems
- Power Supplies
- V/F Converters
- Digital Control Instruments
- Digital Panel Printers
- Digital Cassette Transports and Systems

Datel Systems' reputation in these product areas has been established by the tens of thousands of products presently in use throughout the world. These products are used in a wide variety of applications from military and government systems to industrial, scientific, medical, environmental, and oceanographic systems.
Product reliability is an important part of any company's reputation. Reliability at Datel Systems begins with conservative engineering design, use of quality pre-tested components, manufacturing methods with built-in checking procedures, and sufficient product electrical tests at the proper stages of the manufacturing cycle. These procedures in conjunction with a fully implemented Quality Assurance Program have resulted in an extremely low return rate for delivered products.

NEW PRODUCTS

Over the past year Datel Systems has introduced a significant number of new products. Some of these products are:

- A line of high performance hybrid 12 bit A / D and D / A converters (DAC-HZ, ADC-HZ, and ADC-HX series)
- A new portable data logging instrument for field use (DL-2)
- Industry's fastest 12 bit A/D converter with a $2 \mu \mathrm{sec}$. conversion time (ADC-EH12B3)
- A new low cost $3-1 / 2$ digit DPM selling for $\$ 59.00$ in quantities of 100 (DM-350)
- A new ultra low-power incremental digital cassette transport (ICT Series)
- A new line of digital control instruments for industrial timing and control applications (8000 Series)
- A new high resolution, isolated, ratiometric dual slope converter series (ADC-EP Series)
- A low-cost modular data acquisition system featuring 16 channels, 12 bit resolution and 50 kHz throughput rate.
Watch for future new products from Datel Systems announced and advertised in the electronics trade journals. New products are also discussed in detail in the periodical, "Datel Digest".

About this Product Handbook

ABOUT THIS PRODUCT HANDBOOK

This new edition of Datel's Engineering Product Handbook is written primarily for the systems and circuit design engineer who requires a substantial amount of technical information about products in order to select and apply the right product in his specific requirement. The goal of this product handbook, therefore, has been to present detailed technical data in an easily readable form in order to simplify the product evaluation and selection process.

This edition, however, is a departure in format from previous editions. We have here, for the first time, combined product data in tabular form with product data sheets. Not all Datel Systems' product data sheets are included here, but our most significant products are included. Other data sheets may be obtained by contacting the factory or Datel's nearest sales office.

The product evaluation and selection process in most cases can be shortened by referring first to the specification tables in order to compare performance and pricing, and then going to the appropriate data sheet section of the catalog. In all cases the data sheets of a particular product category immediately follow the specification tables.

Also included in this product handbook is a 13 page section entitled "Principles of Data Acquisition and Conversion" which is basic background material about the operation and application of the products described in this catalog. This material will serve as both a quick review of basics for those already experienced in the application of data converters and as tutorial material for those who are not familiar with data conversion systems.

ORGANIZATION OF THIS PRODUCT HANDBOOK

This product handbook is divided into the following major sections: Data Conversion Devices, Converter Accessory Circuits, Modular Data Acquisition Systems, Power Supplies, Digital Panel Instruments, Data Loggers, and Digital Cassette Recording Systems. Most of these sections include product specification tables in addition to product data sheets.

Also included in this catalog are sections on extended performance modules, accessory products (sockets, trimming potentiometers, etc.) and an ordering guide.

PRODUCT SUPPORT

All Datel Systems' products are backed up by a detailed technical data sheet. In many cases there is also an instruction manual available. The appropriate literature may be obtained by contacting the factory. In all cases the appropriate technical data is shipped with each product ordered. There is also a number of technical application notes available from the factory.

While the available literature gives all the information normally required to use any of our products, we also maintain an applications engineering department to answer any additional questions you may have regarding the application of these products.

Our qualified team of field sales engineers is available to service our customers throughout the United States, Canada, Western Europe, and the Far East. Datel Systems has direct sales offices in Santa Ana, California; Sunnyvale, California; and Gaithersburg, Maryland. There are Datel sales subsidiaries in London, England; Paris, France; Munich, West Germany; Tokyo, Japan; and Osaka, Japan.

QUALITY ASSURANCE

Datel Systems has a fully implemented Quality Assurance Program in conformance with MIL-STD-9858A. This program is under a full-time Quality Assurance Manager who reports directly to the President of Datel Systems, Inc. The quality assurance responsibility is superimposed over procurement, material control, manufacturing, and shipping activities. The Quality Assurance Manager is responsible for the following areas: quality assurance engineering, systems test, in-process inspection, purchased material inspection, and calibration. The quality assurance program encompasses receiving inspection of all components, in-process inspection of all assemblies, burn-in or shock testing where required, calibration of all instruments and maintenance of calibration records, component vendor records and vendor rating systems, and implementation and control of a material review board. The Q.A. Manager also submits monthly, to management, in-house quality performance reports on all departments.

GSA CONTRACTS

Most of Datel Systems products are covered under appropriate GSA contracts which permit a discount on purchases by U.S. Government.
 Product Marketing Manager

PRODUCTION MODULAR PRODUCTS

1020G Turnpike Street, Building S
Canton, Massachusetts 02021 U.S.A.
TEL: (617) 828-8000
TWX: 710-348-0135 TELEX: 924461

AID and DIA Converters

Principles of Data Acquistion and Conversion

Data acquisition and conversion systems are used to process analog signals and convert them into digital form for subsequent processing or analysis by computer or for data transmission. In general a transducer takes a physical parameter such as pressure, temperature, strain, or position and converts it into an electrical voltage or current. Once in electrical form all further processing of the signal is done by electronic circuits. After the analog processing is complete the signal is converted into digital form by an analog to digital converter and then fed to a variety of possible digital systems such as a computer, digital controller, digital data transmitter, or digital data logger.

FIGURE 1. Complete Data Acquisition and Conversion System.

A complete representative data acquisition and conversion system is illustrated in Figure 1. This diagram shows the various components required for an interconnected system. The input to the system, the physical parameter to be measured, is converted to electrical form by the transducer and then fed to an amplifier. The function of the amplifier is to convert the signal to a high level (1 to 10 volt) signal which is necessary for further processing. The signal from the transducer may be a millivolt level signal, a high source impedance signal, a differential signal with common mode noise, or a current signal. In any of these cases the amplifier is used to convert the signal to a high level voltage which can be used to drive the next analog circuit. An operational amplifier or instrumentation amplifier is used to accomplish this. The amplifier is followed by a low pass active filter which is used to eliminate high frequency components or noise from the signal. There may also be a need to perform some nonlinear operation on the signal such as squaring, linearizing, or multiplication by another function. Such operations, which may be performed by an analog multiplier or other nonlinear circuit, also require high level signals to maintain good accuracy and may be performed either before or after the active filter.

The signal then goes to an analog multiplexer which performs a time division multiplexing operation between a number of
different signal inputs. Each input channel is sequentially connected to the output of the multiplexer for some specified period of time. The circuits which follow the multiplexer are thus time shared between a number of analog signals. The output of the analog multiplexer goes to a sample and hold circuit which samples the output of the multiplexer at a specified time and then holds the voltage level at its output until the analog to digital converter performs its conversion operation. The timing and control of this system is accomplished by a programmer-sequencer circuit which controls the multiplexer, sample and hold, and A / D converter. The programmer-sequencer in turn is controlled by digital control inputs from a data processor.

QUANTIZING THEORY

The operation of quantizing a signal is illustrated by the quantizer transfer function shown in Figure 2. Quantization is the process of converting a continuous analog input into a set of discrete output levels. The analog input is shown on the horizontal axis and the discrete output leveis on the vertical axis. The discrete output levels can be identified by a set of numbers such as a binary code. The two processes of quantization and coding represent the basic operation of analog to digital conversion.

FIGURE 2. Transfer Function for Quantizer.
The quantizer transfer function has a number of important characteristics. The function shown is ideal with analog decision levels at values of $0.5,1.5,2.5$, etc. The decision levels are set at values which bracket the true levels. In other words, an analog input value of 1 should correspond with a binary output level of 001. The analog 1 value is halfway between the decision levels 0.5 and 1.5 . Thus an analog value of 1 ± 0.5 is read out as a digital 001. The distance between decision levels is Q, the quantization size or bit size. A
quantizer with a binary output code has 2^{n} discrete output levels with 2^{n-1} analog decision levels. The decision levels in an actual quantizer would not be precise but would have a finite uncertainty band around them. For an analog value within this uncertainty band the output could be at either of two discrete output levels. In addition, in an actual quantizer the decision levels would not necessarily be at precisely the correct analog values, but would miss these values due to nonlinearity, offset, and gain errors.

If the input to the quantizer is moved through its full range of values and subtracted from the discrete output levels an error signal will result. This error is called "quantizing error" and is an irreducible error due to the quantizing process and dependent on the number of quantization levels, or resolution, of the quantizer. When the quantizing error is plotted, as shown in the illustration, it has the form of a sawtooth waveform with a peak to peak value of Q . The output of the quantizer can be thought of as the input analog signal with quantization noise added to it. Thus the output, which is restricted to a finite number of discrete values, jumps from one value to the next as the input moves through its full range. The quantization error is zero only midway between the decision levels. The peak value of quantization noise is $\mathrm{Q} / 2$ and the RMS value can be computed from the triangular shape and found to be $\mathrm{Q} / 2 \sqrt{3}$. Although the quantization noise can be reduced by increasing the resolution of the quantizer, there always remains a quantization uncertainty of at least $\pm \mathrm{Q} / 2$ for any quantizer.

An A/D converter performs the operations of quantizing and coding a signal in some finite amount of time. The time required to do this depends both on the resolution of the converter and the particular conversion method used. The speed of conversion required in a particular situation depends on the time variation of the signal to be converted and the amount of resolution required. The time required to make a measurement or conversion is generally called the "aperture time."

$$
\begin{gathered}
\Delta V=\frac{d V(t)}{d t} \times t a \\
t a=\text { APERTURE TIME } \\
\Delta V=\text { AMPLITUDE UNCERTAINTY }
\end{gathered}
$$

FIGURE 3. Aperture Time and Amplitude Uncertainty.
Aperture time can be considered to be a time uncertainty or amplitude uncertainty. As shown in Figure 3 the aperture
time and amplitude uncertainty are related by the time rate of change of the signal. For the particular case of a sinusoidal signal to be converted, the maximum rate of change occurs at the zero crossing of the waveform and the amplitude change is:
giving

$$
\begin{gathered}
\Delta V=\frac{d}{d t}(V \sin \omega t)_{t=0} \times t_{a}=V \omega t_{a} \\
\frac{\Delta V}{V}=\omega t_{a}=2 \pi f t_{a}
\end{gathered}
$$

From the result we can determine, for example, the aperture time (or conversion time) required to digitize a 1 kilohertz signal to 10 bits resolution. This is a resolution of 1 part in 2^{10} or 0.1%, and using the above equation:

$$
\mathrm{t}_{\mathrm{a}}=\frac{\Delta \mathrm{V}}{\mathrm{~V}} \times \frac{1}{2 \pi \mathrm{f}}=\frac{.001}{6.28 \times 10^{3}}=160 \times 10^{-9}
$$

The result is a required aperture time of only 160 nanoseconds to remain within 1 bit (0.1%) of resolution due to the rate of change of the signal. It can be seen from this result that to convert even a slowly varying signal to moderate resolution levels requires an extremely fast and, therefore, expensive analog to digital converter. Fortunately there is a simple and inexpensive way around this problem by the use of the sample and hold circuit which can reduce the aperture time considerably by taking a rapid sample of the signal and then holding its value for the required conversion time. The aperture time required for sinusoids of other frequencies and different resolutions is summarized by the graph shown in Figure 4.

SAMPLING THEORY

The operation of sampling is illustrated in Figure 5 which shows an analog signal and a train of periodic sampling pulses. The pulses represent a fast acting switch which connects to the analog signal for a very short time and then opens for the remainder of the period. Sampling pulses thus have a very short ON time compared to the total period. The result of the sampling process is identical with multiplying the analog signal with a train of pulses of unity amplitude. The resultant modulated signal is shown in Figure 5 (c) where the amplitude of the analog signal is preserved in the modulation envelope of the pulses. If the switch-type sampler is replaced by a switch and a capacitor, then the analog signal is sampled and stored until the next sample pulse with the result shown in Figure 5 (d). This type of sampler is called a sample and hold.

FIGURE 4. Aperture Time Required for a Given Frequency and Resolution.

FIGURE 5. Signal Sampling Process.

The purpose of signal sampling is the efficient use of data processing equipment or data transmission facilities. A single data transmission link can be used to transmit many channels of information by simply sampling each channel periodically. Likewise, for the efficient use of data processing equipment to monitor and control a process, for example, it may only be
necessary to sample the state of a process once every 5 minutes, perform a computation and correction, and then free the computer the remaining time for other tasks. Continuous monitoring of a single information channel by a computer would be very expensive indeed. In data conversion systems it is also more economical to use a single A/D converter, which may be the most expensive component in the system, for a number of information channels by using sampling.

An important and fundamental question to ask about sampleddata channels is "how often must I sample a given signal in order not to loose information from the signal?" It seems obvious that all useful information can be extracted by sampling a slowly changing signal at a much faster rate than any change which occurs, and likewise that if a signal is significantly changing value between samples, information is being lost. The answer is contained in the well known Sampling Theorem which can be stated as follows: If a continuous bandwidth limited signal contains no frequency components higher than f_{c} then the original signal can be completely recovered without distortion if it is sampled at the rate of at least $2 f_{\mathrm{c}}$ samples per second.

FIGURE 6. Spectra Showing Frequency Folding.

The sampling theorem can be illustrated by the frequency spectra shown in Figure 6. Figure 6 (a) shows the spectrum of a continuous signal with frequency components limited to a frequency f_{c}. When this signal is sampled at a rate f_{s} the modulation process results in the signal spectrum shown in Figure 6 (b). Here, because the sampling rate is not sufficient, some of the high frequency components of the signal are folded back into the signal spectrum. This effect is called "frequency folding." In the process of recovering the original signal, the folded frequency components cause distortion and cannot be separated or distinguished from the original signal. It can be seen from the figure that by changing the sampling rate such that $f_{s}-f_{c}>f_{c}$, we obtain the result that $f_{s}>2 f_{c}$ which demonstrates the sampling theorem. Frequency folding is eliminated by either using a high enough sampling frequency or filtering the original signal to eliminate any frequency
components above one half the sampling rate. It should be noted, however, that in practice there is always some frequency folding due to wideband noise and non-ideal filters and that one must attempt to reduce the effect to negligible proportions.

Another effect which is the result of frequency folding is known as an "alias." Figure 7 illustrates this by showing a periodic signal which is sampled at a rate less than twice per cycle. The sample amplitudes are shown connected by a dotted line which obviously has a period quite different from the original signal and is an alias. From this figure it can be readily seen that if the waveform is sampled at least twice per period as required by the sampling theorem, its original frequency is preserved.

FIGURE 7. Alias Frequency Caused by Inadequate Sampling Rate.

The sample and hold device, which is so commonly used in data conversion systems and also analog multiplexed data systems, has some important characteristics which should be briefly discussed. An ideal sample and hold, or zero order hold as it is also known, takes a sample in zero time and then holds the value of the sample indefinitely with perfect accuracy. In practical units, a sample is taken in a time period which is short compared to the holding time. During the holding time there is some change in the output which is small compared to the system accuracy. The effect of this process on a continuous analog input signal can be determined by finding the transfer function of a sample and hold. By use of the impulse response of this device and using the Laplace transform the transfer function is found to be:

$$
G(j \omega)=\frac{1-e^{-j \omega T}}{j \omega}=\frac{2 \pi}{\omega_{\mathrm{s}}} \frac{\sin \pi \omega / \omega_{\mathrm{s}}}{\pi \omega / \omega_{\mathrm{s}}} \mathrm{e}^{-j \pi\left(\frac{\omega}{\omega_{\mathrm{s}}}\right)}
$$

where T is the sampling period and ω_{s} is the sampling radian frequency. The magnitude and phase of this function are plotted in Figure 8 which shows that a sample and hold device acts like a low pass filter with a cutoff frequency of approximately $f_{s} / 2$ and a phase delay of $T / 2$, or one half the sampling period. Circuit characteristics of the sample and hold will be discussed in a following section.

FIGURE 8. Sample and Hold Transfer Function.

AMPLIFIERS AND FILTERS

The first part of a data acquisition and conversion system is concerned with extracting the signal which is to be measured. The initial processing of the signal is done with an amplifier, filter, and possibly a nonlinear operator. The purpose of the amplifier is to perform one or more of the following functions: boost the amplitude of the signal, buffer the signal, convert a signal current into a voltage, or separate a differential signal from common mode noise. For most data conversion systems the desired voltage level out of the amplifier is 5 or 10 volts full scale. This is the level accepted by most analog multiplexers, sample and holds, and A/D converters to give the best accuracy.

CURRENT TO VOLTAGE CONVERSION

INVERTING VOLTAGE GAIN

NON-INVERTING VOLTAGE GAIN

UNITY GAIN BUFFER

FIGURE 9. Operational Amplifier Configurations.

Operational or instrumentation amplifiers are used to perform the above listed signal translations. Some of the operational amplifier configurations used are shown in Figure 9 with their

PRINCIPLES OF DATA ACQUISITION AND CONVERSION

output relationships given. In general an operational amplifier is a good choice for single ended signal inputs. Although it can be used in some cases for differential signal inputs, the input impedance and common mode rejection adjustments limit its effectiveness. In such cases the instrumentation amplifier, or data amplifier, is the best choice. This type of amplifier is a closed loop configuration shown in Figure 10. It has the following important characteristics.

1. high impedance differential inputs
2. wide range of gains set by a single external resistor
3. high common mode rejection ratio

Because of the closed loop configuration of the instrumentation amplifier, it does not use gain setting resistors or other components connected to the input terminals thereby degrading the input impedance. Thus the high impedance inputs maintain the high common mode rejection characteristic even with moderate source impedances.

FIGURE 10. Instrumentation Amplifier Configuration.

The "common mode rejection ratio" is an important parameter of differential amplifiers. An ideal differential input amplifier would respond only to voltage differences between its input terminals without regard to the voltage level common to both inputs. In practice, however, there is a variation in the balance of the differential amplifier due to common mode voltage which results in an output even when the differential input is zero. The common mode error voltage is a nonlinear function of the input common mode voltage.

Definition: Common mode rejection ratio is the ratio of the common mode voltage to the common mode error referred to the input and is generally expressed in dB .

$$
\mathrm{CMRR}=20 \log _{10}\left[\frac{\mathrm{~V}_{\mathrm{cm}}}{\mathrm{e}_{\mathrm{cm}}}\right]
$$

where V_{cm} is the common mode voltage and e_{cm} is the common mode error referred to the input. CMRR is a function
of both common mode voltage and frequency. At even moderate frequencies a high CMRR can be significantly degraded by small unbalances in source impedance and input capacitances.

Following the amplifier in our system, it may be necessary to use a low pass filter. Filtering is used in a data acquisition system for two reasons: to limit the bandwidth of the processed signal to less than half the sampling frequency in order to eliminate frequency folding, and to reduce either man-made or electrically generated noise in the system. Man-made noise usually has some identifiable characteristic such as periodicity and regular shape and can be eliminated by some specific technique such as a notch filter. Thermal, or Johnson noise, on the other hand is random noise with a noise power proportional to bandwidth. It is minimized by restricting the bandwidth of a system to the minimum required to pass the necessary signal components.

No filter does a perfect job of eliminating noise or undesirable frequency components and, therefore, the choice of a filter is always a compromise. Ideal filters with flat response, infinite cutoff attenuation, and linear phase response are simply mathematical filters and not physically realizable. In practice the engineer has the choice of a cutoff frequency, and an attenuation rate and phase response based on the number of poles and filter characteristic chosen. The effect of overshoot and non-uniform phase delay must also be considered.

Active filters are very popular due to a number of excellent features they have over older RLC type passive filters. They eliminate inductors and associated saturation and temperature stability problems. The response of an active filter can be accurately set by temperature stable capacitors and resistors. In addition, they overcome the problems of insertion loss and loading effects by their use of operational amplifiers.

SETTLING TIME

A parameter that occurs very often in data acquisition and conversion systems is "settling time." Settling time is defined as the time elapsed from the application of a full scale step input to an amplifier to when the output has entered and remained within a specified error band around its final value. Although this definition is stated in the terms of an amplifier response, settling time is also used in the specification of other components such as D/A converters, analog multiplexers, and sample holds. It has essentially the same meaning in these other cases although in some of them the input step is actually applied by turning on a switch and, therefore, a switching time is included in the settling time. In the case of sample and holds, the equivalent of settling time is the acquisition time and includes both the turn-on time of the sampling switch and the charging time of the holding capacitor to its final value.

FIGURE 11. Amplifier Settling Time.

The settling time of a fast amplifier is illustrated in Figure 11. After the application of the input step, there is a small delay time after which the amplifier begins to slew or change its output at the maximum possible rate. During this time the amplifier is in a non-linear or saturated state. The output then overshoots its final value, recovers from saturation, and then settlés into its specified error band after a small amount of ringing. The definition distinguishes that the amplifier must enter and remain in the error band rather than just enter it the first time.

Settling time, unfortunately, is not readily predictable from other amplifier parameters such as bandwidth, slew rate, or overload recovery time although it depends on all of these. It is also dependent on the amplifier open loop response characteristic, dielectric absorption by internal capacitors, output load capacitance, and input capacitance. An amplifier must be designed and optimized for settling time, and settling time is a parameter which must be evaluated by testing.

One of the important requirements of a fast settling amplifier in addition to wide bandwidth, fast slew rate, and fast overload recovery is that it have a true single pole open loop response characteristic. This means a smooth 6 dB per octave frequency roll-off characteristic. Such an amplifier can never settle to its final value in less time than that derived from the number of time constants required to reach this accuracy. Figure 12 shows a plot of the output error as a function of the number of time constants. The settling time may actually be quite a bit larger due to slew rate limitation and other problems. An amplifier with a closed loop bandwidth of 1 MHz has a time constant of 160 nanoseconds and to settle within $.01 \%$ of final value requires at least 9 time constants or 1.44 micraseconds.

If an amplifier does not have a single pole response and, therefore, an uneven gain roll-off characteristic, its output response may get to the vicinity of the error band quickly but then require a very long time to actually enter it. Likewise, it may overshoot the error band and take a long time to enter it a remain inside it. This is the case for amplifiers with pole-zero mismatches in their response characteristic.

Modern fast settling amplifiers are generally specified to 0.1% or $.01 \%$ settling for small closed loop gains and have settling times of less than $1 \mu \mathrm{sec}$. In data acquisition systems these

FIGURE 12. Error as a Function of the Number of Time Constants for a Single Pole Response.
amplifiers are useful in the design of sample and hold circuits, buffer amplifiers for analog multiplexers or A/D converters, and output amplifiers for fast D/A converters. In many cases fast settling amplifiers are required even though slowly changing signals are being processed. This is because of the high data switching rate through the analog multiplexer.

DIGITAL CODING

A / D and D / A converters relate analog and digital values by means of an appropriate digital code. The codes used are various binary related codes, the most common of which is natural binary. A binary number is represented as

$$
N=a_{n} 2^{n}+a_{n-1} 2^{n-1}+\ldots+a_{2} 2^{2}+a_{1} 2^{1}+a_{0} 2^{0}
$$

where the coefficients a_{n} assume the values of " 0 " or " 1 ". Table 1 shows the decimal equivalents of 2^{n} and 2^{-n} for values of n up to 16 .

In an A / D or D / A converter the first bit is called the most significant bit or MSB and has a weight of $1 / 2$ of full scale of the converter; the second bit has a weight of $1 / 4 \mathrm{FS}$ and so on down to the last bit which is called the least significant bit or LSB and has a weight of $1 / 2^{n} \mathrm{FS}$. The resolution of the converter is determined by the number of bits, and the size of the LSB is $F S / 2^{n}$. It should be noted that the digital code used in general does not correspond to its decimal equivalent in analog voltage. The coding used is the set of coefficients of 2^{-n} representing a fractional part of full scale. The MSB is always positioned on the left and the LSB on the right of the digital code. The binary code 10110 thus represents $(1 \times 1 / 2)+$ $(0 \times 1 / 4)+(1 \times 1 / 8)+(1 \times 1 / 16)+(0 \times 1 / 32)$ or $11 / 16$ of full scale of the converter. The full scale analog value for a

\mathbf{n}	$\mathbf{2}^{\mathbf{n}}$	$\mathbf{2}^{-\mathbf{n}}$	$\mathbf{d B}$
0	1	1	0
1	2	.5	-6
2	4	.25	-12
3	8	.125	-18.1
4	16	.0625	-24.1
5	32	.03125	-30.1
6	64	.015625	-36.1
7	128	.0078125	-42.1
8	256	.00390625	-48.2
9	512	.001953125	-54.2
10	1024	.0009765625	-60.2
11	2048	.00048828125	-66.2
12	4096	.000244140625	-72.2
13	8192	.0001220703125	-78.3
14	16384	.00006103515625	-84.3
15	32768	.000030517578125	-90.3
16	65536	.0000152587890625	-96.3

TABLE 1. Decimal Equivalents of 2^{n} and 2^{-n}
converter can be any convenient voltage, but voltages such as 0 to $+5,0$ to $+10, \pm 2.5, \pm 5$, and ± 10 are most commonly used. A 12 bit converter, for example, has a resolution of 1 part in 4096. If the full scale analog voltage is 10 volts then the LSB size is $10 \mathrm{~V} / 4096$ or 2.44 millivolts. The resolution of a converter can be conveniently related to dynamic range in dB since a factor of 2 corresponds to 6.02 dB . Therefore, the number of bits $\times 6.02$ gives the dynamic range in dB. A 12 bit converter has a dynamic range of 72.2 dB .

Scale	+10V FS	Straight Binary	Complementary Binary
+FS - 1 LSB	+9.96	$\begin{array}{lll} \text { MSB } & & \text { LSB } \\ 1111 & 1111 \end{array}$	$\begin{array}{lr} \text { MSB } & \text { LSB } \\ 0000 & 00000 \end{array}$
$+3 / 4 \mathrm{FS}$	+7.50	11000000	00111111
+1/2FS	+5.00	10000000	01111111
$+1 / 4 \mathrm{FS}$	+2.50	01000000	10111111
+1/8FS	+1.25	00100000	11011111
+1 LSB	+0.04	00000001	11111110
0	0.00	00000000	11111111

TABLE 2. Binary Coding for 8 Bit Unipolar Converters.

Converters have both unipolar and bipolar analog values and use a number of different binary related codes. Table 2 shows binary coding for a unipolar 8 bit converter with a 10 volt full scale. Notice 'that all one's in the digital code does not correspond to full scale but $\left(1-2^{n}\right)$ FS. In some converters it is convenient to use reverse sense binary coding, or complementary binary, where the most negative analog value corresponds to full scale digital value. This code is just the binary code with all 1's made 0's and vice versa. For bipolar analog values the most common codes are offset binary and 2's complement which are shown for an 8 bit converter in Table 3.

Scale	\pm 5VFS	Offset Binary		2's Complement	
		MSB	LSB	$\overline{\mathrm{MSB}}$	LSB
+FS - 1 LSB	+4.96	1111	1111	0111	1111
+3/4FS	+3.75	1110	0000	0110	0000
+1/2FS	$+2.50$	1100	0000	0100	0000
0	0.00	1000	0000	0000	0000
-1/2FS	-2.50	0100	0000	1100	0000
-3/4FS	-3.75	0010	0000	1010	0000
$-F S+1 L S B$	-4.96	0000	0001	1000	0001
-FS	-5.00	0000	0000	1000	0000

TABLE 3. Binary Coding for 8 Bit Bipolar Converters.
Offset binary is simply a shifted binary code where $1 / 2 \mathrm{FS}$ binary corresponds to analog zero. 2's complement coding is the same as offset binary except that the MSB is complemented, resulting in a digital code of all 0's corresponding to, analog zero. Binary coded decimal or BCD coding is also commonly used in converters and is illustrated by the 8 bit coding shown in Table 4. In BCD, 4 binary digits are used to code each decimal digit. This code can also be used for bipolar analog values if a separate sign bit is used. Other codes such as gray code, sign-magnitude binary, and 1 's complement are sometimes used but are not as common as the codes just described.

Scale	+10VFS	BCD
		MSD LSD
+FS - 1 LSD	+9.9	10011001
$+3 / 4 \mathrm{FS}$	$+7.5$	01110101
+1/2FS	+5.0	01010000
+1/4FS	+2.5	00100101
+1 LSD	+0.1	00000001
0	0.0	00000000

TABLE 4. BCD Coding for 2 Digit Unipolar Converter.

D/A CONVERTERS

In addition to being used as a basis for a large fraction of all A / D converters that are manufactured, D / A converters have a large number of important uses in their own right. Among these uses are computer driven CRT displays, digitally controlled power supplies for automatic test equipment, digital generation of analog waveforms, and digital control of automatic process control systems.

FIGURE 13. Diagram of a D/A Converter.

1020G Turnpike Street, Building S Canton, Massachusetts 02021 U.S.A TEL: (617) 828-8000
TWX: 710-348-0135 TELEX: 924461

Although there exists a large array of techniques for accomplishing digital to analog conversion, the methods discussed here will be limited to the most commonly used parallel conversion methods. The basic configuration of a D/A converter, or DAC, is shown in Figure 13. A digital interfacing circuit converts the logic inputs to the control levels of a set of switches. These operate in conjunction with a precision resistor ladder network to give binary weighted currents or voltages; the ladder network is referenced to a stable precision voltage source. The output of the ladder network is the sum of all the binary weights in the form of a voltage or current. In the figure a current output ladder is shown. The two types of D/A converters are current output DAC's and voltage output DAC's. For current output types, the current output of the ladder is brought out as the output of the converter; for voltage output types the current goes to an operational amplifier current-to-voltage converter circuit. In most high speed applications a current output DAC is used since there is always some loss of speed due to current-to-voltage conversion.

A frequently used method of achieving a binary weighted set of currents is the circuit shown in Figure 14. A series of transistor current sources has its collector currents set by emitter resistors with values of R, 2R, 4R, 8R, etc. A stable reference voltage, compensated for the base to emitter voltage variation with temperature, is used to bias the bases of all of the transistors and thus set up constant emitter currents. The current source transistors are switched on or off by logic inputs connected through diodes to the emitters. Depending

FIGURE 14. Weighted Current Source D/A Converter.
on the logic level at each diode input, the current will flow either through the diode or through the transistor. The weighted currents are summed at the collectors of all the transistors and become either the current output of the converter or the current input to an operational amplifier as shown in the diagram. Alternatively, to preserve the high speed of the current output, a resistor can be connected to this output to convert the current directly to a voltage. This is an excellent way of maintaining the speed of the converter but is restricted to relatively small full scale voltages of a volt or so, due to the limited positive voltage swing of the transistor collectors.

The weighted current source method has the advantage of simplicity and high speed. Current output DAC's of this type can also be used in configurations where one or more units are used to sum their output currents together directly. The disadvantage of this method is the wide range of resistance values required for a high resolution converter and the resultant effect on both temperature tracking and speed. Nevertheless, high resolution converters with high speed can be made by using several groups, with 4 or 5 current sources each, and dividing down the current output of each group. This is illustrated in Figure 15 which shows 3 groups of current sources with resistive current dividers following groups 2 and 3. If each group has 4 binary current sources, then the dividers would have to reduce the current outputs of groups 2 and 3 to $1 / 16$ of their original value.

FIGURE 15. Groups of Identical Binary Weighted Current Sources to Achieve High Resolution.

Figure 15 also shows the method of achieving a bipolar output for a D/A converter. A current source with a current equal to the MSB weight is connected to the output of all the other weighted sources. This offsets the output of the converter by one half the full scale value, thus setting analog zero at one half digital full scale. This gives offset binary coding as discussed previously.
A second popular method for D/A conversion is the R-2R ladder technique. As shown in Figure 16 this consists of a network of series values of R and shunt values of $2 R$. The bottoms of the shunt resistors are switched between a voltage reference source and common. The operation of the ladder

FIGURE 16. R-2R Network D/A Converter.
network is based on the binary division of a current as it flows down the ladder. This can be seen by examination of the
points X and X^{\prime} in the network. The following conclusions are valid: from point X looking to the right a resistance R is seen and looking to the left a resistance of $2 R$ is seen; from point X^{\prime} looking to the right a resistance of $2 R$ is seen and looking to the left a resistance of R is seen. These properties hold for any of the junctions along the ladder. If a $2 R$ resistor is switched to the voltage reference source, the source sees a resistance of $2 R$ plus $2 R$ in paralle! with $2 R$, or $3 R$ total, and a current of $\mathrm{V}_{\text {REF }} / 3 \mathrm{R}$ flows into the junction. At the junction this current divides equally, with half flowing to the left and half to the right. The right-hand current flows to the next junction where it is again divided in half, and so on to the right end of the ladder where it becomes part of the total output current. The total output current is the sum of all the currents from the shunt resistors which are weighted binarily with the LSB at the leftmost switch and MSB at the rightmost switch. The output of the ladder can be a current, as shown going into the operational amplifier input, or it can be a voltage appearing at terminal E .

An alternate way of driving the ladder is by means of equal value switched current sources feeding each junction. The bottom of the $2 R$ resistors would then be connected to common. The result is exactly the same as with the voltage source, with each current being divided in half at each junction. The advantages of the R-2R method are the following:

1. All resistors are values of either R or $2 R$ resulting in easy matching and temperature tracking.
2. Resistor values can be kept low to insure high speed.
3. The output amplifier always sees a constant resistance value at its input terminal.
Compared to the weighted current source method the R-2R ladder requires two resistors per bit whereas the former requires one resistor per bit.

A/D CONVERTERS

In analog to digital conversion there is an even larger number of methods commonly used than in D/A conversion. This is so because A / D conversion, except in the very fastest requirements, lends itself to many serial methods and indirect methods. The discussion here will be limited to 4 widely used types of A/D converters which are available in low cost modules. These types are:

1. Counter or Servo Type
2. Dual Slope Integrating Type
3. Successive Approximation Type
4. Parallel Type

Counter or Servo Type: This type of A/D converter is one of the simplest and least expensive to implement. The converter is illustrated in simplified form in Figure 17. At the start of conversion the clock is gated on, and the digital counter begins to count clock pulses. As it counts it changes the output of the D/A converter which is compared to the analog input voltage.

When the DAC output is equal to the input, the comparator changes state and inhibits the clock pulses. At this time conversion is complete and the output digital number is contained in the output register of the counter.

FIGURE 17. Counter or Servo Type A/D Converter.
This converter features simplicity, low cost, and good accuracy but has the disadvantage of slow speed. Conversion time is proportional to input voltage and is longest for a full scale input. In some applications the speed is improved if an up-down counter is used, and the converter counts either up or down from its previous value rather than resetting to zero. In this way the counting converter can follow slowly varying inputs. This converter is also called a servo type because of the feedback method of controlling the counter.

Dual Slope Integrating Type: Integrating A/D converters operate by the indirect method of converting a voltage to a time period which is then measured by a counter. There are several different types of converters using the integrating, or ramp principle including single ramp, dual ramp, and triple ramp which are all variations on the basic principle. The most popular and widely used at present is the dual ramp, or dual slope type, which is used in most digital voltmeters and digital panel meters. The advantages of this method are relatively low cost, simplicity, high accuracy and linearity, and excellent noise rejection characteristics.

Conversion starts with the unknown input voltage switched to the integrator input. When the output ramp crosses the comparator threshold the clock is gated to the counter which

FIGURE 18. Dual Slope Type A/D Converter.
counts up to a predetermined number. At this time the input of the integrator is switched to the reference and the counter is reset to zero. The integrator then integrates the reference back down to the comparator threshold at which time the count is stopped. The input voltage is then the ratio of T_{2} counts to T_{1} counts times the reference voltage, and can be read directly from the counter register.

The dual slope method has a number of important features. Conversion accuracy is independent of the clock frequency and integrating capacitor value as long as they are stable within a conversion period, and depends only on the accuracy and stability of the reference. Resolution is basically only limited by the analog resolution of the converter. In addition, this converter gives excellent noise rejection because of the integration operation; in particular, normal mode noise rejection is infinite for T_{1} equal to a multiple of the period of the interfering noise. The main drawback of this method is the relatively long conversion time.

Successive Approximation Type: This conversion method is the most widely used in general practice due to its combination of high resolution and high speed. The successive approximation converter operates with a fixed conversion time per bit, independent of the value of the analog input. The method is illustrated in Figure 19 and operates by comparing the input voltage with the D/A converter output, one bit at a time.

FIGURE 19. Successive Approximation Type A/D Converter.
At the start of the conversion cycle, the D/A converter's MSB output, which is $1 / 2$ full scale, is compared with the input. If it is smaller than the input, the MSB is left on and the next bit is tried. If the MSB is larger than the input, it is turned off when the next bit is turned on. This process of comparison is continued down to the LSB after which the output register contains the complete output digital number. Both serial and parallel output data can be brought out of this converter and, in addition, the conversion can be synchronized to an external clock on some units. Speeds as high as 100 nanoseconds per bit can be achieved by this method. Successive approximation converters can also be quite accurate, but the accuracy depends on the stability of the reference, the switches, the ladder network, and the comparator. In the figure it is also shown how bipolar operation is accomplished using a precision resistor connected from the reference source to the compar-
ator input, thus subtracting a $1 / 2$ full scale current from the input. Many converters have this resistor built in so that bipolar operation can be achieved by external pin connection.
Parallel Type: While the successive approximation converter is capable of speeds as high as 100 nsec . per bit, giving conversion rates of 1 MHz for 10 bits, significantly faster conversion must be achieved using the parallel technique. This method is sometimes referred to as the simultaneous, or flash technique, and is capable of 25 MHz conversion rates for 4 bits. As shown in Figure 20, the method employs an input quantizer comprised of $2^{\text {n }}-1$ comparators biased 1 LSB apart by a reference voltage. For a given analog input voltage to the comparators, all comparators below the input level turn on while all comparators above it are off. The quantization process is accomplished in the switching time of a single comparator.

FIGURE 20. Parallel Type A/D Converter.
The comparator outputs, however, are not in the binary code and must, therefore, go through a decoder. The parallel method has the advantage of the fastest speed but is limited to a relatively few bits, usually about 4 , due to the large number of comparators required. To convert a large number of bits it is necessary to employ a hybrid technique whereby a parallel conversion stage is followed by a fast D/A converter, the output of which is subtracted from the input voltage, the difference amplified and then converted using another parallel stage. This results in a speed compromise but higher resolution.

There are a number of important parameters used to characterize the accuracy of A / D and D / A converters. Since they have specific meanings as applied to converters, these parameters are defined here.

Resolution: The smallest analog change that can be distinguished by an A / D converter or produced by a D / A converter. Resolution is the analog value of the LSB, which is $\mathrm{FS} / 2^{\mathrm{n}}$ for an n bit binary converter and $F S / 10^{d}$ for a d digit $B C D$ converter. Resolution is often specified in percentage of full scale, as in a 10 bit converter which has a resolution of 0.1%.

PRINCIPLES OF DATA

 ACQUISITION AND CONVERSIONIn many cases the useful resolution of a converter may be less than its specified resolution.

FIGURE 21. Gain, Offset, \& Linearity Errors.

Linearity: The maximum deviation from a straight line drawn between the end points of the converter transfer function. Linearity may be expressed as a percentage of full scale or as a fraction of LSB size. The linearity of a good converter is $\pm 1 / 2$ LSB. See Figure 21.
Differential Linearity: The maximum deviation of an actual bit size from its theoretical value for any bit over the full range of the converter. A differential linearity of $\pm 1 / 2$ LSB means that the size of each bit over the range of the converter is $1 \mathrm{LSB} \pm$ $1 / 2$ LSB. See Figure 22.

Monotonicity: Having a continuously increasing output for a continuously increasing input over the full range of the converter. Monotonicity requires that the differential linearity be less than 1 LSB. See Figure 22.

Missing Code: In an A/D converter this occurs when the output code skips a digit. This happens when the differential linearity is greater than 1 LSB for some bit.

Quantizing Error: The basic uncertainty associated with digitizing an analog signal due to the finite resolution of an A/D converter. An ideal converter has a maximum quantizing error of $1 / 2$ LSB. See Figure 2.

Relative Accuracy: The input to output error as a fraction of full scale, with gain and offset errors adjusted to zero. Relative accuracy is a function of linearity.
Absolute Accuracy: The full scale analog error referenced to the NBS standard volt:

Offset Error: The error by which the transfer function fails to pass through the origin, referred tc the analog axis. This is adjustable to zero in available converters. See Figure 21.

Gain Error or Scale Factor Error: The difference in slope between the actual transfer function and the ideal function in percent. This error is also adjustable to zero in available converters. See Figure 21.

FIGURE 22. Monotonicity and Differential Linearity.

ANALOG MULTIPLEXERS

Analog multiplexer circuits are used for time sharing of analog to digital converters between a number of different analog information channels. An analog multiplexer consists of a group of analog switches arranged with inputs connected to the individual analog channels and outputs connected in common, as shown in Figure 23. The switchies can be addressed by a digital input code. MOSFET switches are generally used and may be connected directly to an output load if it is a high enough impedance, or to an output buffer amplifier which provides a very high impedance to the switches. Using a fast bipolar transistor follower amplifier as a buffer, an input impedance of 10^{9} ohms is achieved resulting in a negligible transfer error due to the switch resistance of typically 2K ohms.

FIGURE 23. Analog Multiplexer Circuit.

Figure 23 shows the equivalent circuit of one of the MOSFET switches which is characterized by series and shunt resistance, shunt capacitance and a leakage current. Differential analog multiplexing can also be accomplished by using two MOSFET switches for each input channel.

There are several important parameters used to characterize analog multiplexers which are defined below.

Transfer Accuracy: The input to output error as a percentage of the input. Transfer accuracy depends on the source impedance, switch resistance, load impedance if the multiplexer is not buffered, and the signal frequency.

Settling Time: Same definition as discussed earlier. Here it includes the switching time of the switches.

Throughput Rate: The highest rate at which the multiplexer can switch from channel to channel at its specified accuracy. This rate is determined by the settling time.
Crosstalk: The amount of signal coupled to the output as a percentage of input signal applied to all OFF channels together. The inverse of the above is expressed as an attenuation in dB .

Input Leakage Current: The highest current that flows into or out of an OFF channel input terminal due to switch leakage.

SAMPLE AND HOLD CIRCUITS

Some of the properties of sample and hold circuits were discussed in the section on sampling theory. Here the circuit configurations and operating parameters will be discussed. Sample and hold circuits are used in conjunction with both A / D converters and D / A converters. With A/D converters they are used to shorten the aperture time for the converter by rapidly sampling the input signal and then holding its value until the conversion is completed. In the case of D/A converters they are used in display applications to remove "glitches" which appear at the output of all DAC's as they change from one analog level to another.

As described before, a sample and hold in its basic form consists of a switch and a capacitor. When the switch is closed the unit is in the sampling or tracking mode and will follow a changing input signal. When the switch is opened the unit is in the hold mode and retains a voltage on the capacitor for some period of time depending on capacitor and switch leakage.

FIGURE 24. Sample and Hold Circuit Configurations.
Practical sample and hold circuits also use input and output buffer amplifiers and sophisticated switching techniques. The output buffer amplifier must be a low input current FET amplifier in order to have as small an effect as possible on the leakage of the capacitor. Likewise, the electronic switch used must be a low leakage type such as an FET switch. Figure 24 illustrates two sample and hold circuit configurations which
are commonly used. Circuit (a) is used for fast sample and holds and is an open loop configuration using fast voltage follower amplifiers. For very fast circuits a diode bridge type sampling switch is used. Circuit (b) is a closed loop configuration with an operational integrator in the feedback path of the input buffer amplifier. This circuit results in extremely good accuracy and linearity.

Sample and holds are characterized by a number of important parameters, each with a specific meaning for these circuits. These are defined below.

Acquisition Time: The time from when the sample command is given to the point when the output enters and remains within a specified error bana around the input value. At the end of the acquisition time the output is tracking the input. Note similarity to definition of settling time.

Aperture Time: The time elapsed between the hold command and the point at which the sampling switch is completely open. Aperture time is also referred to as turn-off time.

Aperture Uncertainty Time: The variation in aperture time for a sample and hold. The difference between maximum and minimum aperture time.

Decay Rate: The maximum change in output voltage with time in the hold mode.
Feedthrough: The amount of input signal appearing at the output when the unit is in the hold mode. Feedthrough varies with signal frequency and may be expressed as an attenuation in dB .

A/D AND D/A CONVERTER ADJUSTMENTS

A timing diagram for a typical successive approximation A / D converter is shown in Figure 25. The start of conversion is initiated by a start convert pulse of 30 nsec. minimum duration. The EOC (end of conversion) or status output then goes high indicating that conversion is in process. The MSB output of the D/A converter is turned on to be compared with the input voltage, registering a logic " 1 " at the Bit 1 parallel data output. If the MSB is smaller than the input voltage it stays on and the logic " 1 " remains on the Bit 1 output. If it is larger than the input, it turns off after the first clock pulse and the Bit 1 output goes to logic " 0 ". After the first clock pulse the serial output for Bit 1 appears on the serial output pin. After the first clock pulse, Bit 2 is compared with the input remainder, after the second clock pulse Bit 3 is compared, and so on down to Bit 10 in this case. Thus each succeeding bit is compared to the remaining input during one clock interval, and the true output for that bit appears at the next clock interval. At the end of the 10th clock pulse, all parallel bit outputs are true and the serial LSB output appears. Also, the EOC output returns to logic " 0 " indicating that conversion is complete. The EOC or status output may be used to control the sample and hold preceding the A / D converter, since when

PRINCIPLES OF DATA

 ACQUISITION AND CONVERSION

FIGURE 25. Timing Diagram for 10 Bit A/D Converter.
it is low the sample and hold is put in the tracking mode, and when it is high, during conversion, the sample and hold is put in the hold mode.

Most Datel A/D and D/A converters are capable of both unipolar and bipolar operation with several analog ranges selected by external pin connection. The commonly used ranges are 0 to $+5 \mathrm{~V}, 0$ to $+10 \mathrm{~V}, \pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}$, and $\pm 10 \mathrm{~V}$. The digital coding used is binary or BCD for unipolar operation and offset binary or two's complement for bipolar operation. All Datel A/D and D/A converters have provision for user adjustment of full scale and offset in order to obtain optimum accuracy in a given application. Figure 26 shows the circuit connection necessary to perform the calibration adjustments on an A/D converter. Calibration is accomplished as follows for a unipolar A/D converter :

1. Connect a precision pulse generator to the "Start Convert" input terminal. The generator should be set to give a pulse width and amplitude as specified in the converter data sheet. The repetition rate should be set for the conversion time of the converter.

FIGURE 26. Connections for Calibration of A/D Converter.
2. Connect a precision voltage reference source to the analog input terminal.
3. Adjust the output of the voltage reference source to zero plus $1 / 2$ LSB. This voltage is found by multiplying the converter full scale voltage range by one half the value of 2^{-n} for an n bit converter. Adjust the zero offset trimming potentiometer until the LSB output flickers between logic " 0 " and logic " 1 ".
4. Adjust the output from the voltage reference source to full scale minus $1 \frac{1}{2}$ LSB. Adjust the gain trimming potentiometer until the LSB output flickers between logic " 0 " and logic " 1 ".

In the case of a bipolar A/D converter the calibration is identical except that the first part of step three is modified as follows:
3. Adjust the output from the voltage reference source to minus full scale plus $1 / 2$ LSB.

The calibration of D/A converters is similar but even simpler. Zero digital input is applied to the converter and the offset trimming potentiometer is adjusted to give zero analog output. The full scale digital input is applied and the gain trimming potentiometer adjusted to give analog full scale output minus 1 LSB.

AID Converter Rapid Selection Guide

The Rapid Selection Guide presented below is a capsule summary of all of Datel Systems' A/D converter lines. Because we manufacture the broadest line of A / D converters in the industry, this table is a useful guide for quickly locating the converters, by price range and performance, that are best suited for your particular application.

After locating the desired converter series, turn to the following pages which present more detailed specifications of the various models in tabular form.

Converter Type	Series	Resolution	Conversion Method	Conversion Time	Tempco	Price Range	See Page
Low Cost General Purpose	ADC-Econo	6 Bits	Count Up	$50 \mu \mathrm{sec}$.	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	\$29.95	20
	ADC-89A	8 Bits	Count Up	100-200 $\mu \mathrm{sec}$.	$50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	\$69.00	20
	ADC-D, K	8, 10, 12 Bits	Succ.Approx.	$50 \mu \mathrm{sec}$.	$30-50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	\$ 79 - \$139	20
	ADC-MA	10, 12 Bits	Succ. Approx.	20-40 $\mu \mathrm{sec}$.	$30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	\$ 95- \$145	20
High Performance	ADC-149	14 Bits	Succ. Approx.	$50 \mu \mathrm{sec}$.	$15 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	\$239.00	22
	ADC-CM	8, 10, 12 Bits	Succ. Approx.	250-350 μ sec.	$30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	\$149-\$169	22
	ADC-L, M	8,10,12 Bits	Succ. Approx.	4-20 $\mu \mathrm{sec}$.	$10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	\$135-\$349	22
Dual Slope	ADC-E	8,10,12 Bits	Dual Slope	$312 \mu \mathrm{sec}$. 5 msec.	$50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	\$ 79-\$ 99	24
	ADC-ER	8,10,12 Bits	Dual Slope	43.3-76.7 msec.	$35 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	\$ 79-\$ 99	24
	ADC-EP	14 Bits	Dual Slope	230 msec .	$13 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	\$179.00	24
Fast	ADC-EH	8,10,12 Bits	Succ.Approx.	2.0-8.0 $\mu \mathrm{sec}$.	$30.50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	\$ 85-\$209	26
	ADC-N, P	8,10,12 Bits	Succ.Approx.	2.0-4.0 $\mu \mathrm{sec}$.	$20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	\$275-\$325	26
	ADC-SH4B	4 Bits	Succ. Approx.	500 nsec .	$200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	\$ 79.00	26
Ultra-Fast	ADC-EH12B3	12 Bits	Succ. Approx.	$2.0 \mu \mathrm{sec}$.	$30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	\$249.00	28
	ADC-G, H	4,6,8,10 Bits	Succ. Approx.	$400 \mathrm{nsec} .1 .0 \mu \mathrm{sec}$.	$20-50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	\$239-\$349	28
	ADC-UH, VH	4,6,8 Bits	Parallel (Flash)	40-200 nsec.	$50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	\$695-\$895	28
	ADC-TV	8 Bits	Parallel (Flash)	60 nsec .	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	*	28
Monolithic	ADC-EK	8, 10, 12 Bits	Volt. to Freq.	1.25-20 msec.	$40 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	\$ 13.50-\$36	30
Hybrid	ADC-HX	12 Bits	Succ. Approx.	$20 \mu \mathrm{sec}$.	$20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	\$ 85-\$155	30
	ADC-HZ, HS	12 Bits	Succ. Approx.	$8 \mu \mathrm{sec}$.	$20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	\$119-\$195	30
	ADC-HC	12 Bits	Succ. Approx.	$300 \mu \mathrm{sec}$.	$20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	*	30
	ADC-HF	12 Bits	Succ. Approx.	$2 \mu \mathrm{sec}$.	$20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	*	30
	ADC-HU	3 Bits	Parallel	20 nsec .	$5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	*	30

*To be announced

Low Cost, General Purpose AID Converters

	Model	Resolution	Accuracy (\% FS)	Conversion Time	Output Coding (2)	Input Ranges
Lowest Cost	ADC-Econo.	6 Bits	0.8\%	$50 \mu \mathrm{sec}$.	Bin	$+5,+10, \pm 2.5, \pm 5 \mathrm{~V}$
	ADC-89A8B	8 Bits	0.2\%	$200 \mu \mathrm{sec}$.	Bin	0 to $+10 \mathrm{~V}, \pm 5 \mathrm{~V}$
	ADC-89A8D	2 Digits	0.5\%	$100 \mu \mathrm{sec}$.	BCD	0 to +10 V
Low Cost Successive Approximation	ADC-D8B	8 Bits	0.2\%	$50 \mu \mathrm{sec}$.	Bin, 2 C	0 to $+10 \mathrm{~V}, \pm 5 \mathrm{~V}$
	ADC-D10B	10 Bits	.05\%			
	ADC-D12B	12 Bits	.01\%			
Low Cost Successive Approximation	ADC-K8B	8 Bits	0.2\%	$50 \mu \mathrm{sec}$.	Bin, 2C	0 to $+10 \mathrm{~V}, \pm 5 \mathrm{~V}$
	ADC-K10B	10 Bits	.05\%			
	ADC-K 12B	12 Bits	.01\%			
ADC-120Z Equivalent	ADC-MA10B2A	10 Bits	.05\%	$40 \mu \mathrm{sec}$.	Bin, 2C	$\begin{aligned} & 0 \text { to }+5,+10 \mathrm{~V} \\ & \pm 2.5, \pm 5, \pm 10 \mathrm{~V} \end{aligned}$
	ADC-MA10B2B	10 Bits	.05\%	$20 \mu \mathrm{sec}$.		
	ADC-MA12B2A	12 Bits	.01\%	$40 \mu \mathrm{sec}$.		
	ADC-MA12B2B	12 Bits	.01\%	$20 \mu \mathrm{sec}$.		

NOTES: 1. An optional high impedance buffer amplifier is available on special order to give 1000 megohms input impedance. Add $\$ 20.00$ to price.
2. Coding: Bin = Straight binary or offset binary
$B C D=$ Binary coded decimal
2C = Two's complement

ADC-ECONOVERTER: This lowest cost model is a counting type converter with 6 bit resolution and $50 \mu \mathrm{sec}$. conversion time for a full scale conversion.

ADC-89A SERIES: These low cost models are 8 bit binary or 2 digit BCD counting type converters with 200 and 100μ sec. conversion times respectively.

ADC-D SERIES: This series uses successive approximation for 8,10 , and 12 bit resolutions with conversion time of $50 \mu \mathrm{sec}$.

ADC-K SERIES: These models are also low cost successive approximation types with 8,10 , and 12 bit resolutions and $30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ tempco.

ADC-MA SERIES: These versatile 10 and 12 bit models feature pin programmable operating features with conversion times of 40 and $20 \mu \mathrm{sec}$. The ADC-MA12B2A is a pin and performance equivalent of the popular ADC-12QZ model.

ALL MODELS: have operating temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$; have DTL/TTL compatible outputs; use DILS-1 or DILS-2 dual-in-line strips for sockets.

See pages 283 and 284 for information on Extended Perform. ance versions.

Linearity	Input Impedance	Gain Tempco	Power Requirement	Case Size (inches)	Price (1-9)	See Page
1/2 LSB	4.2 K	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{~V},+5 \mathrm{~V}$	$2 \times 2 \times 0.375$	\$29.95	*
1/2 LSB	5 K	$50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{~V},+5 \mathrm{~V}$	$3 \times 2 \times 0.375$	\$69.00	
					\$69.00	
1/2 LSB	10 K	$50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{~V},+5 \mathrm{~V}$	$4 \times 2 \times 0.4$	\$ 79.00	*
					\$105.00	
					\$129.00	
1/2 LSB	10 K	$30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{~V},+5 \mathrm{~V}$	$4 \times 2 \times 0.4$	\$109.00	*
					\$129.00	
					\$139.00	
1/2 LSB	$2.5,5,10 \mathrm{~K}$ (1)	$30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{~V},+5 \mathrm{~V}$	$4 \times 2 \times 0.4$	\$95.00	51
					\$125.00	
					\$125.00	
					\$145.00	

THESE CONVERTERS ARE COVERED BY GSA CONTRACT

* Contact nearest Datel sales office for data sheet.

High Performance AID Converters

| | Model | Resolution | Accuracy
 (\% FS) | Conversion
 Time | Output
 Coding (2) | Input Ranges |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |

NOTES: 1. An optional high impedance buffer amplifier is available on special order to give 10 megohms input impedance. Add $\$ 20.00$ to price.
2. Coding: Bin = Straight binary on offset binary

$$
\begin{aligned}
& \mathrm{BCD}=\text { Binary coded decimal } \\
& 2 \mathrm{C}=\text { Two's complement }
\end{aligned}
$$

ADC-149-14B: This low cost, high resolution converter uses the successive approximation method to achieve 14 bit resolution with a $15 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ tempco. Conversion time is $50 \mu \mathrm{sec}$.

ADC-CM SERIES: These 8,10 , and 12 bit converters use CMOS circuitry to achieve a low power consumption of 140 mW for portable and remote instrumentation applications. These units can operate from either a single +12 to +15 V supply or from dual ± 12 to $\pm 15 \mathrm{~V}$ supplies.

ADC-L SERIES: These high performance successive approximation converters feature 8, 10, and 12 bit conversions in less than $20 \mu \mathrm{sec}$. and a low tempco of $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. Specific input voltage ranges must be ordered by model number.

ADC-M SERIES: These models are also fast, high performance successive approximation converters with less than 13 $\mu \mathrm{sec}$. conversion time. Tempco is $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ and input voltage ranges must be ordered by model number.

ALL MODELS: have operating temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$; have DTL/TTL or CMOS compatible outputs; use DILS-1 or DILS-2 dual-in-line strips for sockets.

See pages 284 and 285 for information on Extended Performance versions.

Linearity	Input Impedance	Gain Tempco	Power Requirement	Case Size (inches)	Price (1-9)	See Page
1 LSB	$5,10 \mathrm{~K}$	$15 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{~V},+5 \mathrm{~V}$	$4 \times 2 \times 0.8$	\$239.00	55
1/2 LSB	25,50100 K	$30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	+12 to +15 V	$3 \times 2 \times 0.8$	\$149.00	57
					\$159.00	
					\$169.00	
1/2 LSB	$10 \mathrm{~K}(1)$	$10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{~V},+5 \mathrm{~V}$	$3 \times 2 \times 0.375$	\$135.00	*
				$4 \times 2 \times 0.4$	\$155.00	
					\$175.00	
					\$135.00	
					\$175.00	
1/2 LSB	$10 \mathrm{~K}(1)$	$10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{~V},+5 \mathrm{~V}$	$3 \times 2 \times 0.375$	\$229.00	*
				$4 \times 2 \times 0.4$	\$295.00	
					\$349.00	
					\$229.00	
					\$349.00	

THESE CONVERTERS ARE COVERED BY GSA CONTRACT

* Contact nearest Datel sales office for data sheet.

Dual Slope Integrating AID Converters

	Model	Resolution	Accuracy (\% FS)	Conversion Time	Output Coding (2)	Input Ranges
Low Cost Fast Integrating	ADC-E8B	8 Bits	0.2\%	$312 \mu \mathrm{sec}$.	S.M. Bin	$\pm 1, \pm 5, \pm 10 \mathrm{~V}$
	ADC-E10B	10 Bits	.05\%	1.25 msec.		
	ADC-E12B	12 Bits	.01\%	5.0 msec.		
	ADC-E8D	2 Digits	0.5\%	$500 \mu \mathrm{sec}$.	S.M. BCD	$\pm 2, \pm 5, \pm 10 \mathrm{~V}$
	ADC-E12D	3 Digits	.05\%	5.0 msec.		
High Resolution	ADC-EP14B	14 Bits	.01\%	230 msec.	S.M. Bin	$\pm 2 \mathrm{~V}$ (1)
	ADC-EP16D	4 Digits	.01\%	230 msec.	S.M. BCD	$\pm 2 \mathrm{~V}$ (1)
4 Wire Ratiometric	ADC-ER8B	8 Bits	0.2\%	43.3 msec .	S.M. Bin	$\pm 1 \mathrm{~V}$ (1)
	ADC-ER10B	10 Bits	.05\%	43.3 msec .		
	ADC-ER12B	12 Bits	.01\%	43.3 msec .		
	ADC-ER8D	2 Digits	0.5\%	76.7 msec .	S.M. BCD	$\pm 2 \mathrm{~V} \quad \text { (1) }$
	ADC-ER12D	3 Digits	.05\%	76.7 msec .		

NOTES: 1. Has four wire ratiometric inputs
2. Coding: S.M. Bin $=$ Sign-magnitude binary
S.M. $B C D=$ Sign-magnitude $B C D$

ADC-E SERIES: These models feature 8,10 , and 12 bit resolution with both binary and BCD coding. Conversion time is from $312 \mu \mathrm{sec}$. to 5 msec . depending on the resolution. Coding is sign-magnitude binary or sign-magnitude BCD.

ADC-EP SERIES: These high resolution models feature 14 binary bits or 4 BCD digits with a conversion time of 230 msec. Temperature coefficient is $13 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. The analog front end of this converter is electrically floated from digital ground to give $\pm 300 \mathrm{~V}$ common mode input range with greater than 100 dB CMR. The input is 4 wire ratiometric with a flying capacitor reference input. An auto zeroing circuit stabilizes zero drift to less than $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. A crystal controlled clock results in better than 60 dB normal mode rejection to input frequency noise.

ADC-ER SERIES: This series also features 4 wire ratiometric input along with operation from a single +5 V supply. The analog input is differential with 70 dB of common mode rejection. The internal clock can be adjusted for synchronism with the power line frequency to give 40 dB of normal mode
 rejection to this noise. Resolution is 8,10 , and 12 bits with both binary and BCD models.

ALL MODELS: have operating temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$: have DTL/TTL compatible outputs; use DILS-1 or DILS-2 dual-in-line strips for sockets.

See pages 284 and 285 for information on Extended Performance versions.

Linearity	Input Impedance	Gain Tempco	Power Requirement	Case Size (inches)	$\begin{aligned} & \text { Price } \\ & (1-9) \\ & \hline \end{aligned}$	See Page
					\$ 79.00	
					\$ 89.00	
.01\%	$100 \mathrm{Meg}, 10 \mathrm{~K}$	$50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{~V}, 5 \mathrm{~V}$	$4 \times 2 \times 0.4$	\$ 99.00	*
					\$ 79.00	
					\$ 99.00	
.01\%	100 Meg .	$13 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{~V},+5 \mathrm{~V}$	$4 \times 2 \times 0.8$	\$179.00	65
					\$179.00	
					\$ 79.00	
					\$ 89.00	
.05\%	100 Meg .	$35 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$+5 \mathrm{~V}$	$4 \times 2 \times 0.4$	\$ 99.00	61
					\$ 79.00	
					\$ 99.00	

*Contact nearest Datel sales office for data sheet.

Fast AID Converters

	Model	Resolution	Accuracy	Conversion Time	Output Coding (1)	Input Ranges
Fast 8 Bit	ADC-EH8B1	8 Bits	0.2\%	$4.0 \mu \mathrm{sec}$.	Bin, 2C	0 to $+10 \mathrm{~V}, \pm 5 \mathrm{~V}$
	ADC-EH8B2	8 Bits	0.2\%	$2.0 \mu \mathrm{sec}$.		
Fast 10 Bit	ADC-EH10B1	10 Bits	.05\%	$4.0 \mu \mathrm{sec}$.	Bin, 2C	0 to $+10 \mathrm{~V}, \pm 5 \mathrm{~V}$
	ADC-EH10B2	10 Bits	.05\%	$2.0 \mu \mathrm{sec}$.		
	ADC-EH12B1	12 Bits	.01\%	$8.0 \mu \mathrm{sec}$.	Bin, 2C	0 to $+10 \mathrm{~V}, \pm 5 \mathrm{~V}$
	ADC-EH12B2	12 Bits	.01\%	$4.0 \mu \mathrm{sec}$.		
Fast	ADC-N10B	10 Bits	.05\%	$4.0 \mu \mathrm{sec}$.	Bin	$\begin{aligned} & 0 \text { to }-5,-10 \mathrm{~V} \\ & \pm 5, \pm 10 \mathrm{~V} \end{aligned}$
10 \& 12 Bit	ADC-N12B	12 Bits	.01\%	$4.0 \mu \mathrm{sec}$.		
Fast	ADC-P8B	8 Bits	0.2\%	$2.0 \mu \mathrm{sec}$.	Bin	$\begin{aligned} & \hline 0 \text { to }-5,-10 \mathrm{~V} \\ & \pm 5, \pm 10 \mathrm{~V} \\ & \hline \end{aligned}$
8 \& 10 Bit	ADC-P10B	10 Bits	.05\%	$2.0 \mu \mathrm{sec}$.		
4 Bit w. S/H	ADC-SH4B	4 Bits	3.0\%	500 nsec.	Bin	0 to +1 V

$$
\text { OTES: 1. Coding: } \begin{aligned}
\text { Bin } & =\text { Straight binary or offset binary } \\
2 C & =\text { Two's complement }
\end{aligned}
$$

ADC-EH8B SERIES: These 8 bit successive approximation converters feature 4 and $2 \mu \mathrm{sec}$. conversion times at low cost. Temperature coefficient is $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
ADC-EH10B SERIES: This series of 10 bit converters uses the successive approximation method with 4 and $2 \mu \mathrm{sec}$. conversion times and $30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ tempco.

ADC-EH12B SERIES: These 12 bit models are also successive approximation types with 8 and $4 \mu \mathrm{sec}$. conversion times. Tempco is $30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
ADC-N SERIES: This series features 10 and 12 bit models both with $4 \mu \mathrm{sec}$. conversion times and $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ tempco. Successive approximation is used.

ADC-P SERIES: These 8 and 10 bit models are successive approximation converters both with $2 \mu \mathrm{sec}$. conversion time and $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ tempco.
ADC-SH4B: This model is a 4 bit A/D converter with a selfcontained sample-hold circuit. Time for both acquisition and conversion is 500 nsec. This device is designed for optical scanning and fast pulse code modulation applications.

ALL MODELS: have operating temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$; have DTL/TTL compatible outputs; use DILS1 or DILS-2 dual-in-line strips for sockets.
See pages 284 and 285 for information on Extended Performance versions.

Ultra-Fast AID Converters

	Model	Resolution	Accuracy	Conversion Time	Output Coding	Input Ranges
$12 \mathrm{Bit}, 2 \mu \mathrm{sec}$.	ADC-EH12B3	12 Bits	.01\%	$2.0 \mu \mathrm{sec}$ 。	Bin, 2C	0 to $+10 \mathrm{~V}, \pm 5 \mathrm{~V}$
100 nsec./Bit	ADC-G8B	8 Bits	0.2\%	800 nsec.	Bin, 2C	$-5,-10, \pm 5, \pm 10 \mathrm{~V}$
	ADC-G10B	10 Bits	.05\%	$1.0 \mu \mathrm{sec}$,		
100 nsec./Bit	ADC-H4B	4 Bits	3.0\%	400 nsec.	Bin, 2C	$\begin{aligned} & 0 \text { to }-5,-10 \mathrm{~V} \\ & \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V} \end{aligned}$
	ADC-H6B	6 Bits	0.8\%	600 nsec.		
	ADC-H8B	8 Bits	0.2\%	800 nsec.		
	ADC-H10B	10 Bits	.05\%	$1.0 \mu \mathrm{sec}$.		
Parallel Type	ADC-VH4B	4 Bits	3.0\%	100 nsec .	Bin	0 to -2.56 (1)
	ADC-VH6B	6 Bits	0.8\%	200 nsec.		
	ADC-VH8B	8 Bits	0.4\%	200 nsec.		
Parallel Type	ADC-UH4B	4 Bits	3.0\%	40 nsec .	Bin	0 to -2.56 (1)
	ADC-UH6B	6 Bits	0.8\%	100 nsec 。		
	ADC-UH8B	8 Bits	0.4\%	100 nsec.		
8 Bit Video	ADC-TV8B	8 Bits	0.2\%	50 nsec .	Bin	± 0.25 to $\pm 10 \mathrm{~V}$ (2)

NOTES: 1. Bipolar versions are also available with $\pm 1.28 \mathrm{~V}$ input. Add $\$ 50.00$ to price.
2. Input can be configured for unipolar operation by user. Input impedance is 50 ohms for $\pm 0.25 \mathrm{~V}$ input.
3. Coding: Bin=Straight binary or offset binary

2C = Two's complement

ADC-EH12B3: This 12 bit converter with $2 \mu \mathrm{sec}$. conversion time is the fastest 12 bit modular converter in the industry. Unipolar or bipolar operation is achieved by pin connection.

ADC-G SERIES: These converters feature conversions of 100 nsec. per bit for 8 and 10 bit conversions with a tempco of $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

ADC-H SERIES: This series also features 100 nsec. per bit for 4 through 10 bit conversions. Tempco is $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

ADC-VH SERIES: These models use the parallel (or flash) conversion technique to realize a 4 bit conversion in 100 nsec. and 6 or 8 bit conversions in 200 nsec.

ADC-UH SERIES: This series is identical with the VH series except for faster conversion speed of 40 nsec. for 4 bits and 100 nsec. for 6 or 8 bits.

ADC-TV8B: This soon to be available model is a small circuit card made up of hybrid and monolithic components. It performs 8 bit conversions at better than 15 MHz rate.

ALL MODELS: Have operating temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$; have DTL/TTL compatible outputs (ADC-TV8B has ECL compatible outputs); use DILS-1 or DILS-2 dual-in-line strips for sockets (ADC-TV8B uses a standard edge connector).

See pages 284 and 285 for information on Extended Performance versions.

Linearity	Input Impedance	Gain Tempco	Power Requirement	Case Size (inches)	Price (1-9)	See Page
1/2 LSB	1.15 K	$30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{~V},+5 \mathrm{~V}$	$4 \times 2 \times 0.4$	\$249.00	43
1/2 LSB	500, 1K, 2K	$50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{~V},+5 \mathrm{~V}$	$4 \times 2 \times 0.4$	\$239.00	
				$4 \times 2 \times 0.8$	\$279.00	45
1/2 LSB	500, 1K, 2K	$20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{~V},+5 \mathrm{~V}$	$4 \times 2 \times 0.4$	\$279.00	**
				$4 \times 2 \times 0.4$	\$299.00	
				$4 \times 2 \times 0.4$	\$319.00	
				$4 \times 2 \times 0.8$	\$349.00	
1/2 LSB	100 ohms	$50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{~V}, \pm 5 \mathrm{~V}$	$5 \times 3 \times 1.15$	\$695.00	**
1/2 LSB					\$745.00	
1 LSB					\$795.00	
1/2 LSB	100 ohms	$50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{~V}, \pm 5 \mathrm{~V}$	$5 \times 3 \times 1.15$	\$795.00	47
1/2 LSB					\$845.00	
1 LSB					\$895.00	
1/2 LSB	50 ohms (2)	$60 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{~V}, \pm 5 \mathrm{~V}$	$7.5 \times 4.25 \times 0.875$	*	**

THESE CONVERTERS ARE COVERED BY GSA CONTRACT

[^0]
Hybrid and Monolithic AID Converters

ADC-EK SERIES: This series of monolithic converters are integrating devices using the voltage to frequency conversion principle. Resolutions of 8,10 , and 12 binary bits and $3 B C D$ digits are offered. An external reference is required.

ADC-HX SERIES: This series of hybrid models offer 12 bit conversion in $20 \mu \mathrm{sec}$. The units have pin-programmable input ranges and short cycling capability. Three temperature range versions are available.

ADC-HZ SERIES: These hybrid converters give 12 bit resolution in only $8 \mu \mathrm{sec}$. conversion time. Pin-programmable input ranges and short cycle capability are featured. Short cycling results in 10 bit conversion in $6 \mu \mathrm{sec}$. and 8 bit conversion in $4 \mu \mathrm{sec}$. Three temperature range versions are available.

	Model	Resolution	Accuracy	Conversion Time	Output Coding	Input Ranges
New! Monolithic Series	ADC-EK8B	8 Bits	0.2\%	1.25 msec .	Bin	0 to $+10, \pm 5 \mathrm{~V}$
	ADC-EK10B	10 Bits	.05\%	5 msec .	Bin	
	ADC-EK12B	12 Bits	.01\%	20 msec .	Bin	
	ADC-EK12D	3 Digits	.05\%	10 msec .	BCD	
New! Hybrid 12 Bit, $20 \mu \mathrm{sec}$.	ADC-HX12BGC	12 Bits	.01\%	$20 \mu \mathrm{sec}$.	C Bin, C 2C	$\begin{aligned} & 0 \text { to }+5,+10 \mathrm{~V} \\ & \pm 2.5, \pm 5, \pm 10 \mathrm{~V} \end{aligned}$
	ADC-HX12BMR					
	ADC-HX12BMM					
New! Hybrid 12 Bit, $8 \mu \mathrm{sec}$.	ADC-HZ12BGC	12 Bits	.01\%	$8 \mu \mathrm{sec}$.	C Bin, C 2C	$\begin{aligned} & 0 \text { to }+5,+10 \mathrm{~V} \\ & \pm 2.5, \pm 5, \pm 10 \mathrm{~V} \end{aligned}$
	ADC-HZ12BMR					
	ADC-HZ12BMM					
Coming! Hybrid	ADC-HS12B (1)	12 Bits	.01\%	$8 \mu \mathrm{sec}$.	C Bin, C 2C	$+5,+10, \pm 2.5, \pm 5, \pm 10 \mathrm{~V}$
Coming! 12 Bit	ADC-HC12B	12 Bits	.01\%	$300 \mu \mathrm{sec}$.	Bin, 2C	$+5,+10, \pm 2.5, \pm 5, \pm 10 \mathrm{~V}$
Hybird CMOS	ADC-HC12D	3 Digits	.05\%	$300 \mu \mathrm{sec}$.	BCD	0 to $+5,+10 \mathrm{~V}$
Coming! Hybrid	ADC-HF12B	12 Bits	.01\%	$2 \mu \mathrm{sec}$.	Bin, 2C	$+5,+10, \pm 2.5, \pm 5, \pm 10 \mathrm{~V}$
Coming! Hybrid	ADC-HU3B	3 Bits	6\%	20 nsec .	Bin	$\pm 2.5 \mathrm{~V}$

NOTES: 1. The ADC-HS12B has an internal sample hold circuit ahead of the A / D converter.
2. Coding: Bin = Straight binary or offset binary

2C = Two's complement
$B C D=$ Binary coded decimal
C Bin = Complementary binary or comp. offset Bin
C 2C = Complementary two's complement

ADC-HS12B: This model combines a 12 bit $8 \mu \mathrm{sec}$. converter and a sample-hold circuit into a single hybrid package. Coming soon.

ADC-HC SERIES: These models are 12 bit hybrid CMOS devices for low power applications. Coming soon.

ADC-HF12B: This ultra speed hybrid converter provides 12 bit conversion in just $2 \mu \mathrm{sec}$. Coming soon.

ADC-HU3B: This hybrid model is a 3 bit parallel (flash) type. A 3 bit conversion is performed in 20 nsec . Several units may be used together to make an ultra fast 8 bit A/D converter. Coming soon.

ALL MODELS: Have operating temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ except for those models specified otherwise; have DTL/TTL compatible outputs except for ADC-HC which has CMOS compatible outputs; use DILS-1 or DILS-2 dual-in-line strips for sockets except for ADC-IC and ADC-EK.

Linearity	Temp. Range	Gain Tempco.	Power Requirement	Case Size (inches)	Price (1-9)	See Page
1/2 LSB	0 to 70C	$40 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 5 \mathrm{~V}$	24 Pin DIP	\$13.50	**
					\$26.00	
					\$36.00	
					\$29.00	
1/2 LSB	0 to 70C	$20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{~V},+5 \mathrm{~V}$	32 Pin DIP	\$ 85.00	33
	-25 to +85C				\$125.00	
	-55 to +100C				\$155.00	
1/2 LSB	0 to 70C	$20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{~V},+5 \mathrm{~V}$	32 Pin DIP	\$119.00	33
	-25 to +85C				\$169.00	
	-55 to +100 C				\$195.00	
1/2 LSB	0 to 70c	$20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{~V},+5 \mathrm{~V}$	32 Pin DIP	*	**
1/2 LSB	0 to 70C	$20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{~V},+5 \mathrm{~V}$	32 Pin DIP	*	**
1/2 LSB					*	
1/2 LSB	0 to 70C	$20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{~V},+5 \mathrm{~V}$	32 Pin DIP	*	
0.2\%	0 to 70C	$5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 5 \mathrm{~V}$	32 Pin DIP	*	**

THESE CONVERTERS ARE COVERED BY GSA CONTRACT

[^1]
FEATURES

LOW POWER 16 CHANNEL DATA ACQUISITION SYSTEM CONTROL LOGIC

- Random/Sequential Channel Selection

- Gated Inputs for Computer Bus or Party Line Operation
- 16 Channel Capacity-Expandable
- Compatibility with Other Datel Modules

GENERAL DESCRIPTION

The SCL-1 provides all of the necessary control logic that is needed to integrate Datel's multiplexer, sample and hold, and A / D converters into a working 16 channel data acquisition system, all at substantial cost savings over prepackaged systems and with the additional choice of speed and performance specs of the components.
The SCL-1 reduces the basic external control functions to a simple ready/ busy - strobe technique while providing both random or sequential channel selection modes. Other features include all the necessary controls for easy computer interfacing such as device select and strobe inputs for party line operations. All significant inputs are carried through the SCL-1 for system variations.
The SCL-1 also has provisions for short cycle (less than 16 channel operation) and provides a frame sync output at channel 1 for system expansion.
A single SCL-1 is capable of handling one Model MM-16 analog multiplexer for a 16 channel single ended system or an MMD-8 analog multiplexer for an 8 channel differential system. Channel capacity can be expanded, in the increments mentioned above, by simply adding MM-16's and SCL-1's. By employing the AM-201 instrumentation amplifier, a low level differential system can be configured for transducer monitoring and digital processing. With the exception of the SHM-2, all of Datel Systems' sample and hold circuits can be connected directly to the SCL-1. Datel's selection of A/D converters will allow for high conversion speeds with 8 bit to 14 bit resolution.

Price (1-9) \$69.00

NOTE:

For low power applications contact Datel for information on Model SCL-CM

LOW COST， 12 BIT HYBRID ANALOG TO DIGITAL CONVERTERS

ADC－HX，ADC－HZ SERIES

FEATURES

－ 12 Bit Resolution
－ 8 or $20 \mu \mathrm{Sec}$ ．Conversion
－Programmable Ranges
－Internal Buffer Amp．
－Short Cycle Capability
－Glass or Metal Package

GENERAL DESCRIPTION

The ADC－HX12B and ADC－HZ12B are self－ contained，high performance， 12 bit A / D converters manufactured with thin－film hy－ brid technology．They use the successive ap－ proximation conversion technique to achieve a 12 bit conversion in 20 and 8 microseconds respectively．Five input volt－ age ranges are programmable by external pin connection： 0 to $+5 \mathrm{~V}, 0$ to +10 V ， $\pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}$ ，and $\pm 10 \mathrm{~V}$ ．An internal buffer amplifier is also provided for applications where 100 megohm input impedance is re－ quired．
These converters utilize a fast 12 bit DAC consisting of tightly matched monolithic quad current switches，a stable nichrome thin－film resistor network，and a precision zener reference source．The circuit also con－ tains a fast monolithic comparator，a mono－ lithic 12 bit successive approximation regis－ ter，a clock，and a monolithic buffer amplifi－ er．The thin－film resistor network is func－ tionally trimmed by a laser to precisely set the 8－4－2－1 current weighting in the quad current switches．The close tracking of the thin－film resistor and quad current switches result in a differential nonlinearity tempco of only $\pm 2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ ．Gain tempco is $\pm 20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ maximum．
Both models have identical operation except for conversion speed．They can be short－ cycled to give faster conversion in lower res－ olution applications．Use of the internal buffer amplifier increases conversion time by $3 \mu \mathrm{sec}$ ．，the settling time of the amplifier． Output coding is complementary binary， complementary offset binary，or comple－ mentary 2 ＇s complement．Serial data is also brought out．The package is a 32 pin her－ metically sealed glass or metal case．Six dif－ ferent models are offered covering the oper－ ating temperature ranges of 0 to $70^{\circ} \mathrm{C},-25$ to $+85^{\circ} \mathrm{C}$ ，and -55 to $+100^{\circ} \mathrm{C}$ ．

（ACTUAL SIZE）

INPUTS Analog Input Ranges, unipolar Analog Input Ranges, bipolar Input Impedance	ADC-HX12B	ADC-HZ12B
	0 to $+5 \mathrm{~V}, 0$ to +10 V FS	
	$\pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}$ FS	
	2.5 K (0 to $+5 \mathrm{~V}, \pm 2.5 \mathrm{~V}$)	
	5 K (0 to $+10 \mathrm{~V}, \pm 5 \mathrm{~V}$)	
	$10 \mathrm{~K}(\pm 10 \mathrm{~V})$	
Input Impedance with Buffer	100 Megohms	
Input Bias Current of Buffer	125nA typ., 250nA max.	
Input Overvoltage	$\pm 15 \mathrm{~V}$	
Start Conversion	$2 \mathrm{~V} \min$. to 5.5 V max. positive pulse with duration of 100 nsec . min. Rise and fall	
	times < 30 nsec.	
	Logic "1" resets converter	
	Logic " 0 " initiates conversion.	
	Loading: 1 TTL load	

TIMING AND CONNECTION DIAGRAMS

TIMING DIAGRAM FOR ADC-HX12B, ADC-HZ12B OUTPUT: 101010101010

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	BIT 12 OUT (LSB)	17	CLOCK RATE
2	BIT 11 OUT	18	REF. OUT
3	BIT 10 OUT	19	CLOCK OUT
4	BIT 9 OUT	20	E.O.C. (STATUS)
5	BIT 8 OUT	21	START CONVERT
6	BIT 7 OUT	22	COMPAR. INPUT
7	BIT 6 out	23	BIPOLAR OFFSET
8	BIT 5 OUT	24	10V INPUT
9	BIT 4 OUT	25	20V INPUT
10	BIT 3 OUT	26	ANALOG COM.
11	BIT 2 OUT	27	GAIN ADJUST
12	BIT 1 OUT (MSB)	28	+15V POWER
13	BIT 1 OUT (MSB)	29	BUFFER OUTPUT
14	SHORT CYCLE	30	BUFFER INPUT
15	DIGITAL COM.	31	-15V POWER
16	+5V POWER	32	SERIAL OUTPUT

	ADC-HX12B	ADC-HZ12B
T_{1}	$20 \mu \mathrm{sec}$.	$8.0 \mu \mathrm{sec}$.
T_{2}	$1.56 \mu \mathrm{sec}$.	$0.56 \mu \mathrm{sec}$.

UNIPOLAR OPERATION, 0 TO +10 V

BIPOLAR OPERATION, $-5 V$ TO $+5 V$

CODING TABLES

UNIPOLAR OPERATION

INPUT RANGE		COMP.		
0 TO +10 V	0 TO +5 V	MSB		LSB
+9.9976 V	+4.9988 V	0000	0000	0000
+8.7500	+4.3750	0001	1111	1111
+7.5000	+3.7500	0011	1111	1111
+5.0000	+2.5000	0111	1111	1111
+2.5000	+1.2500	1011	1111	1111
+1.2500	+0.6250	1101	1111	1111
+0.0024	+0.0012	1111	1111	1110
0.0000	0.0000	1111	1111	1111

BIPOLAR OPERATION

INPUT VOLTAGE RANGE			COMP. OFFSET BINARY			COMP. TWO'S COMPLEMENT		
$\pm 10 \mathrm{~V}$	$\pm 5 \mathrm{~V}$	$\pm 2.5 \mathrm{~V}$	MSB		LSB	MSB		LSB
+9.9951 V	+4.9976V	+2.4988V	0000	0000	0000	1000	0000	0000
+7.5000	+3.7500	+1.8750	0001	1111	1111	1001	1111	1111
+5.0000	+2.5000	+1.2500	0011	1111	1111	1011	1111	1111
0.0000	0.0000	0.0000	0111	1111	1111	1111	1111	1111
-5.0000	-2.5000	-1.2500	1011	1111	1111	0011	1111	1111
-7.5000	-3.7500	-1.8750	1101	1111	1111	0101	1111	1111
-9.9951	-4.9976	-2.4988	1111	1111	1110	0111	1111	1110
-10.0000	-5.0000	-2.5000	1111	1111	1111	0111	1111	1111

INPUT VOLT.	WITHOUT BUFFER			WITH BUFFER			
	INPUT	CONNECT THESE		INPUT	CONNECT THESE		
PIN	PINS TOGETHER	PIN	PINS TOGETHER				
0 TO +5V	24	$22 \& 25$	$23 \& 26$	30	$22 \& 25$	$23 \& 26$	$29 \& 24$
0 TO +10 V	24	-	$23 \& 26$	30	-	$23 \& 26$	$29 \& 24$
$\pm 2.5 \mathrm{~V}$	24	$22 \& 25$	$23 \& 22$	30	$22 \& 25$	$23 \& 22$	$29 \& 24$
$\pm 5 \mathrm{~V}$	24	-	$23 \& 22$	30	-	$23 \& 22$	$29 \& 24$
$\pm 10 \mathrm{~V}$	25	-	$23 \& 22$	30	-	$23 \& 22$	$29 \& 25$

SHORT CYCLE OPERATION

CONNECTIONS

8, 10, \& 12 BIT CONVERSION

RESOLUTION	12 BITS	10 BITS	8 BITS
ADC-HX12B CONV. TIME	$20 \mu \mathrm{sec}$.	$15 \mu \mathrm{sec}$.	$10 \mu \mathrm{sec}$.
ADC-HZ12B CONV. TIME	$8 \mu \mathrm{sec}$.	$6 \mu \mathrm{sec}$.	$4 \mu \mathrm{sec}$.
CONNECT THESE	$17 \& 15$	$17 \& 16$	$17 \& 28$
PINS TOGETHER	$14 \& 16$	$14 \& 2$	$14 \& 4$

PIN 14 CONNECTION

CLOCK RATE VS. VOLTAGE

PIN 17 VOLTAGE	CLOCK RATE	
	ADC-HX12B	ADC-HZ12B
0 V	600 kHz	1.5 MHz
+5 V	720 kHz	1.8 MHz
+15 V	880 kHz	2.2 MHz

RES. (BITS)	PIN 14 TO
1	PIN 11
2	PIN 10
3	PIN 9
4	PIN 8
5	PIN 7
6	PIN 6

RES. (BITS)	PIN 14 TO
7	PIN 5
8	PIN 4
9	PIN 3
10	PIN 2
11	PIN 1
12	PIN 16

CALIBRATION PROCEDURE

1. Connect converter as shown in the Standard Connection diagrams. Use the Input Connection Table for the desired input voltage range and input impedance. Apply Start Convert pulses of 100 nsec . minimum duration to pin 21. The spacing of the pulses should be no less than the maximum conversion time.
2. Zero and Offset Adjustments

Apply a precision voltage reference source between the selected analog input and ground. Adjust the output of the reference source to the value shown in the Calibration Table for the unipolar zero adjustment (zero $+1 / 2$ LSB) or the bipolar offset adjustment ($-\mathrm{FS}+1 / 2$ LSB) . Adjust the trimming potentiometer so that the output code flickers equally between 111111111111 and 11111111 1110.
3. Full Scale Adjustment

Change the output of the precision voltage reference source to the value shown in the Calibration Table for the unipolar or bipolar gain adjustment

UNIPOLAR RANGE	ADJUST.	INPUT VOLTAGE
0 TO $+5 \mathrm{~V}$	ZERO	+0.6 mV
	GAIN	+4.9982 V
0 TO $+10 \mathrm{~V}$	ZERO	+1.2 mV
	GAIN	+9.9963 V
BIPOLAR RANGE		
$\pm 2.5 \mathrm{~V}$	OFFSET	-2.4994 V
	GAIN	+2.4982 V
$\pm 5 \mathrm{~V}$	OFFSET	-4.9988 V
	GAIN	+4.9963 V
$\pm 10 \mathrm{~V}$	OFFSET	-9.9976 V
	GAIN	+9.9927 V

EXTERNAL CLOCK RATE ADJUSTMENT

FAST, 8 BIT ANALOG TO DIGITAL CONVERTER

MODEL ADC-EHBB

FEATURES

- 8 Bit Resolution
- 4.0 \& $2.0 \mu \mathrm{\mu}$ sec. Conversion Time
- Unipolar or Bipolar Operation
- Parallel \& Serial Outputs
- Low Cost

GENERAL DESCRIPTION

The model ADC-EH8B is a fast, 8 bit successive approximation type analog to digital converter in a compact $2 \times 2 \times .375$ inch module. These converters are low cost devices with application in pulse code modulation systems and instrumentation and control systems requiring fast data conversion rates up to 400,000 per second. There are two models to choose from based on conversion speed: ADC-EH8B1 with a conversion time of $4.0 \mu \mathrm{sec}$. $(250 \mathrm{kHz}$ rate), and ADC-EH8B2 with a conversion time of $2.0 \mu \mathrm{sec}$. (416 kHz rate). The high speed in a small size is made possible by the use of an MSI integrated circuit which provides all the necessary successive approximation logic, along with other new integrated circuit components. The analog input range is either unipolar 0 to +10 V or bipolar -5 V to +5 V , determined by external pin connection. For unipolar operation no external adjustments are necessary; for bipolar operation only a bipolar offset adjustment must be made externally. Parallel output coding is straight binary for unipolar operation and offset binary or two's complement for bipolar operation. A serial output gives successive decision pulses in NRZ format with straight or offset binary coding. Other outputs are clock output for synchronization with serial data, and $\overline{M S B}$ output for two's complement coding.
Other specifications include full scale temperature coefficient of $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max., long term stability of $.05 \% /$ year, and linearity of $\pm 1 / 2$ LSB. Power requirement is $\pm 15 \mathrm{VDC}$ and +5 VDC .
The ADC-EH8B1 \& 2 are improved versions of Datel's former models ADCEH1 \& 2, and are identical in all specifications and pin positions except for a small change in input impedance and three added output pins for Clock Out, $\overline{M S B}$ Out, and Serial Data Out.

$+5 V D C+15 V D C-15 V D C$ PWR GROUND (17) (18) (20)

parallel data out

MECHANICAL DIMENSIONS INCHES (MM)

NOTES

1. Open dots designate omitted pins.

INPUT/OUTPUT CONNECTIONS

2. 0.100 inch $=2.5 \mathrm{~mm}, 0.150$ inch $=3.8 \mathrm{~mm}$.

SPECIFICATIONS, ADC-EH8B

(Typical at $25^{\circ} \mathrm{C}, \pm 15 \mathrm{~V} \&+5 \mathrm{~V}$ Supplies, unless otherwise indicated)

INPUTS

Analog Input Range	OV to +10 V FS or $\pm 5 \mathrm{~V}$ FS
Input Impedance...................	4.45 K ohms ± 50 ohms
Input Overvoltage..................	$\pm 20 \mathrm{~V}$ (no damage)
Start Conversion....................	2 V min. to 5.5 V max. positive pulse with duration of $100 \mathrm{nsec} . \mathrm{min}$. Rise and fall times $<50 \mathrm{nsec}$.
	Logic " 1 " resets converter
	Logic " 0 " initiates conversion
	Loading: 1 TTL load

OUTPUTS
Parallel Output Data.................
Coding, Unipolar Operation.....
Bipolar Operation.....
8 parallel lines of data held until next conversion command.
V out (" ${ }^{\prime \prime}$ ") $\leqslant+0.4 \mathrm{~V}$
V out (" 1 ") $\geqslant+2.4 \mathrm{~V}$
Each output capable of driving up to 4 TTL
loads.
Straight Binary, positive true
Offset Binary, positive true.
Two's Complement, positive true.

Serial Output Data	NRZ successive decision pulse output generated during conversion, with MSB first. Straight binary or offset binary coding. Loading: 4 TTL loads
End of Conversion (EOC)........	Conversion Status Signal. V out (" 0 ") $\leqslant+0.4 \mathrm{~V}$ indicates conversion time completed. V out (" 1 ") $\geqslant+2.4 \mathrm{~V}$ during reset and conversion periods. Loading: 4 TTL loads.
Clock Output	Internal clock pulse train of negative going pulses from +5 V to 0 V gated on during conversion time. Loading: 6 TTL loads

PERFORMANCE	
Resolution	8 Bits (1 part in 256)
Accuracy at $25^{\circ} \mathrm{C}$..................	$\pm 0.2 \%$ of FS $\pm 1 / 2 \mathrm{LSB}$
Linearity	$\pm 1 / 2 \mathrm{LSB}$
Differential Nonlinearity Temp. Coeff. of Gain \qquad	$\pm 1 / 2$ LSB max. $\pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max.
Temp. Coeff. of Zero, Unipolar	$\pm 100 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max.
Temp. Coeff. of Offset, Bipolar	$\pm \mathbf{3 5 p m}$ of $\mathrm{FS} /{ }^{\circ} \mathrm{C}$ max.
Long Term Stability	$\pm .05 \% / \mathrm{year}$
Power Supply Rejection	$\pm .02 \%$ of $\mathrm{FS} / \%$ supply, max.
Conversion Time	$4.0 \mu \mathrm{sec}$. max., ADC-EH8B1
	$2.0 \mu \mathrm{sec}$. max., ADC-EH8B2
POWER REQUIREMENT	$\pm 15 \mathrm{VDC} \pm 0.5 \mathrm{~V}$ @ 25 mA max. $+5 \mathrm{VDC} \pm 0.25 \mathrm{~V} @ 125 \mathrm{~mA}$ max.

PHYSICAL-ENVIRONMENTAL
Operating Temp. Range............ $\quad 0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temp. Range $\quad-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Relative Humidity. \qquad
Case Size ...
Case Material
Pins.
$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Up to 100% non-condensin
$2 \times 2 \times 0.375$ inches $(50,8 \times 50,8 \times 9,5 \mathrm{~mm})$
Black diallyl phthalate per MIL-M-14 $.020^{\prime \prime}$ round, gold plated, $.250^{\prime \prime}$ ig. min. 2 oz. max. (57 g .)

TIMING DIAGRAM FOR ADC-EH8B
Output: 10101010

OUTPUT CODING
UNIPOLAR (0 TO +10 V)

SCALE	INPUT VOLTAGE	STRAIGHT BINARY
+ FS- 1 LSB	+9.96 V	11111111
$+7 / 8 \mathrm{FS}$	+8.75 V	11100000
$+3 / 4 \mathrm{FS}$	+7.50 V	11000000
$+1 / 2 \mathrm{FS}$	+5.00 V	10000000
$+1 / 4 \mathrm{FS}$	+2.50 V	0100000
+1 LSB	+0.04 V	00000001
0	0.00 V	00000000

BIPOLAR (-5 V TO +5 V)

SCALE	INPUT VOLTAGE	OFFSET BIN	2'S COMPLEMENT
+FS-1 LSB	+4.96 V	11111111	01111111
$+3 / 4 \mathrm{FS}$	+3.75 V	11100000	01100000
$+1 / 2 \mathrm{FS}$	+2.50 V	11000000	01000000
0	0.00 V	10000000	00000000
$-1 / 2 \mathrm{FS}$	-2.5 V	0100000	1100000
$-3 / 4 \mathrm{FS}$	-3.75 V	00100000	10100000
-FS+1 LSB	-4.96 V	00000001	10000001
- FS	-5.00 V	0000000	10000000

ADC-EH8B CALIBRATION

1. UNIPOLAR - No adjustments are necessary and 100Ω trimming pot is not used. Full scale and zero are internally set to better than $1 / 2$ LSB. Pin 21 is left open.
2. BIPOLAR - Connect pin $18(+15 \mathrm{VDC})$ to pin 21 through a 100Ω trimming potentiometer as shown. Connect a precision voltage source to pin 32 and set the input voltage to $+1 / 2$ LSB or +0.020 V . Adjust the trimming potentiometer so that the output code flickers equally between 10000000 and 10000001 :

ORDERING INFORMATION

ADC-EH8B
CONVERSION TIME $1=4.0 \mu$ SEC. $2=2.4 \mu$ SEC.

PRICES (1-9)
ADC-EH8B1 \$ 85.00
ADC-EH8B2 \$129.00
MATING SOCKETS:
DILS-2 (2/MODULE) $\quad \$ 5.00 /$ PAIR TP100 TRIMMING POT. $\$ 3.00$ EA.

For extended temperature range operation, the following suffixes are added to the model number. Consult factory for pricing.
$-E X \quad-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operation
EXX-HS $\quad-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operation with hermetically sealed semiconductor components.
NOTE: ADC-EH8B1 \& 2 replace former models ADC-EH1 \& 2 and are improved models of these units respectively. The only difference from the previous models is the 3 additional output pins for serial output, clock output, and $\overline{M S B}$ output, and a change in input impedance from 5 K ohms to 4.45 K ohms. If the newly used pins (nos. 2, 4, and 13) cause a problem in an existing application, they should be clipped off.

1020G Turnpike Street, Building S Canton, Massachusetts 02021 U.S.A
TEL: (617) 828.8000
TWX: 710-348-0135 TELEX: 924461

FEATURES

- $2.0 \mu \mathrm{sec}$. Conversion - \$189.
- $4.0 \mu \mathrm{sec}$. Conversion - $\$ 149$.
- 10 Bit Resolution
- Compact $3^{\prime \prime} \times 2^{\prime \prime} \times .375^{\prime \prime}$ Module
- $\pm 30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max. Tempco

GENERAL DESCRIPTION

Model ADC-EH10B is a very fast 10 bit successive approximation type A/D converter in a compact low profile package. Low pricing makes this converter an ideal choice for many applications including fast scanning data acquisition systems, PCM systerns, and fast pulse analysis. This converter is available in two versions based on conversion speed: ADC-EH10B1 with 4.0 $\mu \mathrm{sec}$. 250 kHz rate) and ADC-EH10B2 with $2.0 \mu \mathrm{sec}$. (500 kHz rate).
High speed and moderate power consumption (1.7 watts) in a compact size $\left(3^{\prime \prime} \times 2^{\prime \prime} \times .375^{\prime \prime}\right)$ are made possible by use of an MSI integrated circuit successive approximation programmer/register used with 10 fast switching current sources driving a low impedance R-2R ladder network. A fast precision comparator and precision voltage reference circuit are also used.
Operating features include unipolar (0 to +10 V) or bipolar ($\pm 5 \mathrm{~V}$) operation by external pin connection. The converter has a maximum full scale temperature coefficient of $\pm 30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ and is monotonic over the full operating temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. External offset and gain adjustments are provided for precise calibration of zero and full scale. Parallel output coding is straight binary for unipolar operation and offset binary or two's complement for bipolar operation. A serial output gives successive decision pulses in NRZ format with straight binary or offset binary coding. Other outputs include clock output for synchronizing serial data, MSB output for two's complement coding, and end of conversion (status) signal. All outputs are DTL/ TTL compatible. Power requirement is $\pm 15 \mathrm{VDC}$ and +5 VDC . The ADCEH10B is also available in extended temperature range versions.
The ADC-EH10B1 is an improved version of Datel's former ADC-EH10B converter. The ADC-EH10B1 is identical in all specifications and pin positions with the former model except for a change in input impedance and reduction in +5 V supply current.

10 BIT, 2.0 AND 4.0μ SEC. ANALOG TO DIGITAL CONVERTERS

MODEL ADC-EHIOB

MECHANICAL DIMENSIONS INCHES (MM)

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION
1	E, O.C. (STATUS)
2	NO CONNECTION
3	START CONVERT
4	BIT 1 OUT (MSB)
5	BIT 1 OUT (MSB)
6	BIT 2 OUT
7	BIT 3 OUT
8	BIT 4 OUT
9	BIT 5 OUT
10	BIT 6 OUT
11	BIT 7 OUT
12	BIT 8 OUT
13	BIT 9 OUT
14	BIT 10 OUT (LSB)
15	SERIAL DATA OUT
16	CLOCK OUT
17	+5VDC POWER IN
18	+15VDC POWER IN
19	-15VDC POWER IN
20	POWER GROUND
21	UNIPOLAR ZERO
22	BIPOLAR OFFSET.
23	GAIN ADJUST.
31	ANALOG GROUND
32	ANALOG IN

SPECIFICATIONS, ADC-EH10B
(Typical at $25^{\circ} \mathrm{C}, \pm 15 \mathrm{~V}$ \& +5 V Supplies, unless otherwise indicated)

INPUTS

Analog Input Range . Input Impedance Input Overvoltage Start Conversion.	$\begin{aligned} & 0 \mathrm{~V} \text { to }+10 \mathrm{~V} \text { FS or } \pm 5 \mathrm{~V} \text { FS } \\ & 2.3 \mathrm{~K} \pm 0.1 \% \\ & \pm 20 \mathrm{~V} \text {, no damage } \\ & 2 \mathrm{~V} \text { min. to } 5.5 \mathrm{~V} \text { max. positive pulse } \\ & \text { with duration of } 100 \text { nsec. min. Rise } \\ & \text { and fall times }<500 \text { nsec. } \\ & \text { Logic ' '1' resets converter } \\ & \text { Logic ' } 0 \text { ' initiates conversion } \\ & \text { Loading: } 1 \mathrm{TT} \text { T load } \end{aligned}$
OUTPUTS	
Parallel Output Data	10 parallel lines of data held until next conversion command. V out ("0") $\leqslant+0.4 \mathrm{~V}$ \vee out (" 1 ") $\geqslant+2.4 \mathrm{~V}$ Each output capable of driving up to 4 TTL loads.
Coding, Unipolar operation Bipolar operation	Straight Binary, positive true Offset Binary, positive true Two's complement, positive true
Serial Output Data	NRZ successive decision pulse output generated during conversion with MSB first. Straight binary or offset binary. positive true coding. Loading: 4 TTL loads
End of Conversion (EOC)	Conversion Status Signal. V out (" $0^{\prime \prime}$) $\leqslant+0.4 \mathrm{~V}$ indicates con- version completed. V out $($ " 1 ") $\geqslant+2.4 \mathrm{~V}$ during reset and conversion. Loading: 4 TTL loads
Clock Output	Internal clock pulse train of negative going pulses from +5 V to 0 V gated on during conversion time. Loading: 6 TTL loads

PERFORMANCE

Resolution	10 Bits (1 part in 1024)
Accuracy at $25^{\circ} \mathrm{C}$	$\pm .05 \%$ of $\mathrm{FS} \pm 1 / 2 \mathrm{LSB}$.
Nonlinearity	$\pm 1 / 2$ LSB max .
Differential Nonlinearity	$\pm 1 / 2$ LSB max.
Differential Nonlinearity T.C.	$\pm 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max .
Temp. Coeff. of Gain	$\pm 30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max .
Temp. Coeff. of Zero, unipolar	$\pm 100 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max.
Temp. Coeff. of Offset, bipolar	$\pm 20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max.
Power Supply Rejection	. $01 \% \mathrm{FS} / \%$ supply, max.
Conversion Time	$4.0 \mu \mathrm{sec}$. max., ADC-EH10B1
	$2.0 \mu \mathrm{sec}$. max., ADC-EH10B2
POWER REQUIREMENT	$+15 \mathrm{VDC} \pm 0.5 \mathrm{VDC}$ @ 45 mA max $-15 V D C \pm 0.5 V D C @ 20 \mathrm{~mA}$ max. $+5 \mathrm{VDC} \pm 0.25 \mathrm{VDC} @ 150 \mathrm{~mA}$ max.
PHYSICAL-ENVIRONMEN	
Operating Temp. Range	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temp. Range	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Relative Humidity	Up to 100% non-condensing
Case Size	$\begin{aligned} & 3 \times 2 \times .375 \text { inches } \\ & (76,2 \times 30,8 \times 9,5 \mathrm{~mm}) \end{aligned}$
Case Material	Black Diallyl Phthalate per MIL-M. 14
Pins	020" round, gold plated, 250" long min.
Weight	3 oz . max. (85g.)

TIMING DIAGRAM FOR ADC-EH10B Output: 1010101010

OUTPUT CODING

UNIPOLAR (OV TO +10V)

SCALE	INPUT VOLTAGE	STRAIGHT BINARY
+ FS -1 LSB	+9.9902 V	1111111111
$+7 / 8 \mathrm{FS}$	+8.7500 V	1110000000
$+3 / 4 \mathrm{FS}$	+7.5000 V	1100000000
$+1 / 2 \mathrm{FS}$	+5.0000 V	1000000000
$+1 / 4 \mathrm{FS}$	+2.5000 V	0100000000
+1 LSB	+0.0098 V	0000000001
0	0.0000 V	0000000000

BIPOLAR (-5 V TO +5 V)

SCALE	INPUT VOLTAGE	OFFSET BINARY	TWO'S COMPLEMENT
+ FS -1 LSB	+4.9902 V	1111111111	0111111111
$+3 / 4 \mathrm{FS}$	+3.7500 V	1110000000	0110000000
$+1 / 2 \mathrm{FS}$	+2.5000 V	1100000000	0100000000
0	0.0000 V	1000000000	0000000000
$-1 / 2 \mathrm{FS}$	-2.5000 V	0100000000	1100000000
$-3 / 4 \mathrm{FS}$	-3.7500 V	0010000000	1010000000
- FS +1 LSB	-4.9902 V	0000000001	1000000001
- FS	-5.0000 V	0000000000	1000000000

- Using MSB output for Bit 1

GAIN \& OFFSET ADJUSTMENTS

UNIPOLAR OPERATION
Apply START CONVERT pulses to pin 3 (see specifications and timing diagram).
Apply a precision reference voltage source to ANALOG IN (pin 32) and ANALOG GROUND (pin 31). Adjust the output of the voltage reference to Zero $+1 / 2$ LSB $(+4.9 \mathrm{mV}$). Adjust the zero trimming potentiometer so that the output
code flickers equally between 0000000000 and 0000000001
3. Adjust the output of the voltage reference to + FS $-11 / 2$ LSB (+9.9854 V). Adjust the GAIN trimming potentiometer so that the output code flickers equally between 1111111110 and

BIPOLAR OPERATION

1. Apply START CONVERT pulses to pin 3 (see specifications and timing diagram)
Apply a precision reference voltage source to ANALOG IN (pin 32) and ANALOG GROUND (pin 31). Adjust the output of the voltage referiffset trimming potentiometer so that the the code flickers equally between 0000000000 and 0000000001.
2. Adjust the output of the voltage reference to + FS $-11 / 2$ LSB $(+4.9854 \mathrm{~V})$. Adjust the GAIN trimming potentiometer so that the output code lickers equally between 1111111110 and

ORDERING INFORMATION

ADC-EH1OB

CONVERSION TIME
$1=4.0 \mu \mathrm{sec}$.
$2=2.0 \mu \mathrm{sec}$.

PRICES (1-9)
ADC-EH10B1 ADC-EH10B2
\$149.00

MATING SOCKETS:
DILS-2 (2/MODULE) \$5.00/PAIR TRIMMING POTENTIOMETERS: TP20, TP200, TP20K \$3.00 EACH

For extended temperature range operation, the following suffixes are added to the model number. Consult factory for pricing.

- EX $\quad-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operation
$-\mathrm{EXX}-\mathrm{HS} \quad-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operation with hermetically sealed semiconductor components

NOTE: ADC-EH10B1 replaces former Datel model ADC-EH10B and is an improved version of the model. The only differences from the previous model is the change in input impedance from 10 K ohms to 2.3 K ohms, and the reduction in 5 V supply current from 280 mA to 150 mA .
THE ADC-EH1OB CONVERTERS ARE COVERED BY GSA CONTRACT

12 BIT, 4.0 AND $8.0 \mu \mathrm{SEC}$. ANALOG TO DIGITAL CONVERTERS

MODEL ADC-EH12B1, ADC-EH12B2

FEATURES

- 4.0 usec. Conversion - \$209.
- $8.0 \mu \mathrm{sec}$. Conversion - \$169.
- 12 Bit Resolution
- 30PPM $/{ }^{\circ} \mathrm{C}$ Tempco
- Low Profile - 0.4" High

GENERAL DESCRIPTION

Model ADC-EH12B is a 4 microsecond, 12 bit successive approximation type A/D converter in a low profile 4 $\times 2 \times 0.4$ inch module. This high performance converter is priced at about half that of other competing models; in addition, it consumes only 2.0 watts of power, much less than competing devices. It is ideal for application in PCM systems, data acquisition systems, and other instrumentation and control systems requiring very fast data conversion rates up to 250,000 per second. The ADC-EH12B is also available in an even lower cost 8.0 $\mu \mathrm{sec}$. version.

The ADC-EH12B design utilizes an MSI integrated circuit successive approximation programmer/register, 12 fast switching current sources, a low impedance R-2R resistor network, a precision voltage reference circuit, and a fast precision comparator to achieve its very fast conversion rate.

Operating features include unipolar (0 to +10 V) or bipolar ($\pm 5 \mathrm{~V}$) operation by external pin connection. Full scale temperature coefficient is $30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ maximum and the converter is monotonic over its full operating temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. External offset and gain adjustments are provided for precise calibration of zero and full scale. Parallel output coding is straight binary for unipolar operation and offset binary or two's complement for bipolar operation. A serial output gives successive decision pulses in NRZ format with straight binary or offset binary coding. Other outputs include clock output for synchronization with serial data, MSB output for use in two's complement coding, and end of conversion (status) signal. All outputs are DTL/TTL compatible.

Power requirement is $\pm 15 \mathrm{VDC}$ and +5 VDC. Extended temperature range versions are also available.

SPECIFICATIONS, ADC-EH12B
(Typical at $25^{\circ} \mathrm{C}, \pm \mathbf{1 5 V}$ \& +5 V Supplies, unless otherwise indicated)
INPUTS

Analog Input Range Input Impedance Input Overvoltage Start Conversion.

OV to +10 V FS or $\pm 5 \mathrm{~V}$ FS
2.3 K ohms $\pm 0.1 \%$
$\pm 20 \mathrm{~V}$, no damage
2 V min. to 5.5 V max. positive pulse with duration of $100 \mathrm{nsec} . \mathrm{min}$. Rise and fall times $<500 \mathrm{nsec}$.
Logic " 1 " resets converter
Logic " 0 " initiates conversion
Loading: 1 TTL load

OUTPUTS

Parallel Output Data

Coding, Unipolar operation Bipolar operation

Serial Output Data

End of Conversion (EOC)

Clock Output $\ldots \ldots . .$| conversion. |
| :--- |
| Loading: 4 TTL loads |
| Internal clock pulse train of negative |
| going pulses from +5 V to 0 V gated on |
| during conversion time. |
| Loading: 6 TTL loads |

PERFORMANCE

Resolution	12 Bits (1 part in 4096)
Accuracy at $25^{\circ} \mathrm{C}$	$\pm .012 \%$ of FS $\pm 1 / 2 \mathrm{LSB}$.
Nonlinearity .	$\pm 1 / 2$ LSB max.
Differential Nonlinearity	$\pm 1 / 2$ LSB max.
Differential Nonlinearity T.C.	$\pm 3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max.
Temp. Coeff. of Gain	$\pm 30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max.
Temp. Coeff. of Zero, unipolar	$\pm 100 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max.
Temp. Coeff. of Offset, bipolar	$\pm 15 \mathrm{ppm}$ of F.S. ${ }^{\circ} \mathrm{C}$ max.
Power Supply Rejection	. $01 \% \mathrm{FS} / \%$ supply, max.
Conversion Time	$8.0 \mu \mathrm{sec}$. max., ADC-EH12B1
	$4.0 \mu \mathrm{sec}$. max., ADC-EH12B2
POWER REQUIREMENT	$\pm 15 \mathrm{VDC} \pm 0.5 \mathrm{VDC} @ 40 \mathrm{~mA}$ max. $+5 \mathrm{VDC}: 0.25 \mathrm{VDC} @ 150 \mathrm{~mA}$ max.
PHYSICAL-ENVIRONMEN	
Operating Temp. Range	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temp. Range	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Relative Humidity	Up to 100% non-condensing
Case Size	$\begin{aligned} & 4 \times 2 \times 0.4 \text { inches } \\ & (101,6 \times 50,8 \times 10,2 \mathrm{~mm}) \end{aligned}$
Case Material	Black Diallyl Phthalate per MIL-M-14
Pins	.020" round, gold plated, 200'" long min
Weight	4 oz . max. (114 g.)

12 parallel lines of data held until next conversion command. \checkmark out (" 0 ") $\leqslant+0.4 \mathrm{~V}$ \vee out ($" 1$ ") $\geqslant+2.4 \mathrm{~V}$ Each output capable of driving up to 4 TTL loads.
Straight Binary, positive true Offset Binary, positive true Two's complement, positive true NRZ successive decision pulse output generated during conversion with MSB first.
Straight binary or offset binary. positive true coding. Loading: 4 TTL loads
Conversion Status Signal.
\checkmark out (" 0 ") $\leqslant+0.4 \mathrm{~V}$ indicates conversion completed.
V out (" 1 ") $\geqslant+2.4 \mathrm{~V}$ during reset and conversion
Loading: 4 TTL loads
going pulses from +5 V to OV gated on during conversion time
Loading: 6 TTL loads

12 Bits (1 part in 4096)
$\pm .012 \%$ of $F S \pm 1 / 2 \mathrm{LSB}$.

- $1 / 2$ LSB max.

1/2 LSB max
$\pm 3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max
$\pm 30 \mathrm{ppm} / \mathrm{C}$ max.
$\pm 100 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max.
$\pm 15 \mathrm{ppm}$ of F.S. $/{ }^{\circ} \mathrm{C}$ max.
01\% FS/\% supply, max.
8.0 нse. max. ADC.EH12B
$+15 \mathrm{VDC} \pm 0.5 \mathrm{VDC} @ 40 \mathrm{~mA}$ max $+5 V D C=0.25 V D C @ 150 m A$ max

$70^{\circ} \mathrm{C}$

$25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$4 \times 2 \times 0.4$ inches
$(101,6 \times 50,8 \times 10,2 \mathrm{~mm})$

4 oz . max. (114 g.)

TIMING DIAGRAM FOR ADC-EH12B Output: 101010101010

OUTPUT CODING

UNIPOLAR (OV TO +10 V)

SCALE	INPUT VOLTAGE	STRAIGHT BINARY
$+\mathrm{FS}-1$ LSB	+9.9976 V	111111111111
$+7 / 8 \mathrm{FS}$	+8.7500 V	111000000000
$+3 / 4 \mathrm{FS}$	+7.5000 V	110000000000
$+1 / 2 \mathrm{FS}$	+5.0000 V	100000000000
$+1 / 4$	+2.5000 V	010000000000
+1 LSB	+0.0024 V	000000000001
0	0.0000 V	000000000000

BIPOLAR (-5 V TO +5 V)

SCALE	INPUT VOLTAGE	OFFSET BINARY	TWO'S COMPLEMENT
+ FS -1 LSB	+4.9976 V	111111111111	011111111111
$+3 / 4 \mathrm{FS}$	+3.7500 V	11100000000	011000000000
$+1 / 2 \mathrm{FS}$	+2.5000 V	110000000000	010000000000
0	0.0000 V	100000000000	000000000000
$-1 / 2 \mathrm{FS}$	-2.5000 V	000000000000	110000000000
$-3 / 4 \mathrm{FS}$	-3.7500 V	001000000000	101000000000
-FS +1 LSB	-4.9976 V	000000000001	100000000000
- FS	-5.0000 V	000000000000	100000000000

*Using MSB output for Bit 1

GAIN \& OFFSET ADJUSTMENTS

UNIPOLAR OPERATION
Apply START CONVERT pulses to pin 24 (see specifications and timing diagram).
2. Apply a precision reference voltage source to ANALOG IN (pin 32) and ANALOG GROUND (pin 311. Adjust the output of the voltage refer ence to Zero $+1 / 2$ LSB $(+1.2 \mathrm{mV})$. Adjust the zero trimming potentiometer so that the output code flickers equally between 000000000000 and 000000000001
3. Adjust the output of the voltage reference to + FS $-11 / 2$ LSB $(+9.9963 \mathrm{~V})$. Adjust the GAIN trimming potentiometer so that the output code flickers equally between 111111111110 and 111111111111.

BIPOLAR OPERATION
Apply START CONVERT pulses to pin 24 (see specifications and timing diagram).
Apply a precision reference voltage source to ANALOG IN (pin 32) and ANALOG GROUND (pin 311. Adjust the output of the voltage referance to $-\mathrm{FS}+1 / 2$ LSB $(-4.9988 \mathrm{~V})$. Adjust the offset trimming potentiometer so that the outpu code flickers equally between 000000000000 and 00000000000

+ FS $-11 / 2$ LSB +4 the voltage reference to trimming potentiometer so V). Adjust the GAIN flickers equally between so that the output code 111111111111.

For extended temperature range operation, the following suffixes are added to the model number. Consult factory for pricing.

$$
\begin{array}{ll}
-\mathrm{EX} & -25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \text { operation } \\
-\mathrm{EXX}-\mathrm{HS} & -55^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \text { operation with hermetically sealed } \\
& \text { semiconductor components }
\end{array}
$$

THE ADC-EH12B CONVERTERS ARE COVERED BY GSA CONTRACT,

FEATURES

- $2.0 \mu \mathrm{sec}$. Conversion Time
- 12 Bit Resolution
- Low Power Consumption - 2.25W
- Low Profile Case - 0.4" High
- Economy Price - \$249.00

GENERAL DESCRIPTION

Model ADC-EH12B3 is a new, ultra fast, 12 bit successive approximation A/D converter with a 2.0 microsecond maximum conversion time. This converter utilizes 12 very fast switched current sources with a low impedance R-2R ladder network, a fast precision comparator, a precision zener reference source, and an MSI integrated circuit successive approximation register to achieve its state of the art performance. It is encapsulated in a low profile $2 \times 4 \times 0.4$ inch module and consumes only 2.25 watts of power. The ADC-EH12B3 opens up a broad range of fast data conversion applications where conversion rates up to 500,000 per second are required.

Input voltage ranges are 0 to +10 V unipolar or $\pm 5 \mathrm{~V}$ bipolar by external pin connection; input impedance is 1.15 K ohms. The parallel output is in straight binary, offset binary, or two's complement coding. Serial output data is also brought out in the form of an NRZ format MSB first pulse train. Full scale temperature coefficient is $\pm 30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ maximum and zero temperature coefficient is $\pm 100 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ maximum. Due to its low differential linearity temperature coefficient there are no missing codes over the $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ operating temperature range. Provision is made for precise alignment in a given application.

Other DTL/TTL compatible outputs include clock, $\overline{M S B}$ output (for two's complement coding), and end of conversion (status) output. Power supply requirement is ± 15 VDC and +5 VDC.

ULTRA FAST 12 BIT ANALOG TO DIGITAL CONVERTER

MODEL ADC-EH12B3

A/D CONVERTER

SPECIFICATIONS, ADC-EH12B3
(Typical at $25^{\circ} \mathrm{C}, \pm \mathbf{1 5 V} 8+5 \mathrm{~V}$ Supplies, unless otherwise indicated)

Analog Input Range.
 Input Impedance
 input Overvoltage

Start Conversion

Parallel Output Data

Coding, Unipolar operation Bipolar operation

Serial Output Data

End of Conversion (EOC)

Clock Output

Resolution

Accuracy at 25 C
Nonlinearity
Differential Nonlinearity
Differential Nonlinearity T.C.
Temp. Coeff. of Gain
Temp. Coeff. of Zero, unipolar
Temp. Coeff. of Offset, bipolar
Power Supply Rejection
Conversion Time
OV to +10 V FS or $\pm 5 \mathrm{~V}$ FS
1.15 K ohms $\pm 01 \%$
$\pm 20 \mathrm{~V}$, no damage
2 V min to 5.5 V max positive pulse with duration of $100 \mathrm{nsec} . \mathrm{min}$. Rise and fall times $<500 \mathrm{nsec}$.
Logic " 1 " resets converter
Logic " 0 " initiates conversion
Loading: 1 TTL load

12 parallel lines of data held until next conversion command.
V out (" 0 ") $\leqslant+0.4 \mathrm{~V}$
\vee out $(" 1$ ") $\geqslant+2.4 \mathrm{~V}$
Each output capable of driving up to 4 TTL loads.
Straight Binary, positive true Offset Binary, positive true Two's complement, positive true NRZ successive decision pulse output generated during conversion with MSB first
Straight binary or offset binary. positive true coding. Loading 4 TTL loads
Conversion Status Signal \checkmark out $(" 0 ") \leqslant+0.4 \mathrm{~V}$ indicates con. version completed.
V out (" i " 1) +2.4 V during reset and conversion
Loading: 4 TTL loads
Internal clock pulse train of negative going pulses from +5 V to OV gated on during conversion time.
Loading 6 TTL loads

12 Bits (1 part in 4096)
$\pm .012 \%$ of $\mathrm{FS} \pm 1 / 2$ LSB.
$\pm 1 / 2$ LSB max.
$+1 / 2$ LSB max
$\pm 3 \mathrm{ppm} / \mathrm{C}$ max .
$+30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max
$\pm 100 \mu \mathrm{~V} / \mathrm{C}$ max
$\cdot 15 \mathrm{ppm}$ of F.S. ${ }^{\circ}$ C max. 01% FS/\% supply, max. $2.0 \mu \mathrm{sec}$. maximum
$+15 \mathrm{VDC} \pm 0.5 \mathrm{~V} @ 80 \mathrm{~mA}$ max.
$-15 \mathrm{VDC} \pm 0.5 \mathrm{~V}$ @ 20 mA max. $+5 \mathrm{VDC} \pm 0.25 \mathrm{~V}$ @ 150 mA max.

Operating Temp. Range
Storage Temp. Range
Relative Humidity
Case Size
Case Material
Pins

Weight

0 C to 70 C
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Up to 100% non-condensing
$4 \times 2 \times 0.4$ inches
$(101,6 \times 50,8 \times 10,2 \mathrm{~mm})$
Black Diallyl Phthalate per MIL-M-14
.020" round, gold plated,
200" long min.
4 oz . max. (114 g.)

TIMING DIAGRAM FOR ADC-EH12B3 Output 101010101010

OUTPUT CODING

UNIPOLAR (OV TO +10V)

SCALE	INPUT VOLTAGE	STRAIGHT BINARY
+ FS -1 LSB	+9.9976 V	111111111111
$+7 / 8 \mathrm{FS}$	+8.7500 V	111000000000
$+3 / 4 \mathrm{FS}$	+7.5000 V	110000000000
$+1 / 2 \mathrm{FS}$	+5.0000 V	100000000000
$+1 / 4$	+25000 V	010000000000
+1 LSB	+0.0024 V	000000000001
0	0.0000 V	000000000000

BIPOLAR (-5 V TO +5 V)

SCALE	INPUT VOLTAGE	OFFSET BINARY	TWO'S COMPLEMENT
+ FS -1 LSB	+4.9976 V	111111111111	011111111111
$+3 / 4 \mathrm{FS}$	+3.7500 V	111000000000	011000000000
$+1 / 2 \mathrm{FS}$	+2.5000 V	110000000000	010000000000
0	0.0000 V	100000000000	000000000000
$-1 / 2 \mathrm{FS}$	-2.5000 V	010000000000	110000000000
$-3 / 4$ FS	-3.7500 V	001000000000	101000000000
- FS +1 LSB	-4.9976 V	000000000001	100000000001
- FS	-5.0000 V	000000000000	100000000000

- Using MSB output for Bit 1

GAIN \& OFFSET ADJUSTMENTS

UNIPOLAR OPERATION

Apply START CONVERT pulses to pin 24 isee specitications and timing diagram
Apply a precision reference voltage source to ANALOG IN (pin 32) and ANALOG GROUND (pin 31). Adjust the output of the voltage refe ere to Zero $+1 / 2$ LsB +1.2 mv Adjust the code flickers equally between 000000000000 and 000000000001
3. Adjust the output of the voltage reference to + FS $-11 / 2$ LSB $(+9.9963 \mathrm{~V})$. Adjust the GAIN trimming potentiometer so that the output code flickers equally between 11111111110 and

BIPOLAR OPERATION
Apply START CONVERT pulses to pin 24 (see specifications and timing diagram). Apply a precision reference voltage source to ANALOG IN (pin 32) and ANALOG GROUND (pin 31). Adjust the output of the voltage referoffset trimming potentiometer so that the outpu code flickers equally between 000000000000 and 000000000001.
Adjust the output of the voltage reference to + FS $-11 / 2$ LSB $(+4.9854 \mathrm{~V})$. Adjust the GAIN trimming potentiometer so that the output code 11111111 1111 between 111111111110 and

ORDERING INFORMATION

PRICES (1-9)

ADC-EH12B3 $\$ 249.00$
MATING SOCKETS:
DILS-2 (2/MODULE) \$5.00/PAIR
TRIMMING POTENTIOMETERS:
TP20, TP200, TP20K $\$ 3.00$ EACH

For extended temperature range operation, the following suffixes are added to the model number. Consult factory for pricing

$$
\begin{array}{ll}
\text {-EX } & -25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \text { operation } \\
\text {-EXX-HS } & -55^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \text { operation with hermetically sealed }
\end{array}
$$ semiconductor components

THE ADC-EH12B3 CONVERTER IS COVERED UNDER GSA CONTRACT.

FEATURES

- 8 and 10 Binary Bit Versions
- 100 nsec/bit Conversion Time
- $\pm 1 / 2$ LSB Linearity
- Four Input Ranges To Choose From

GENERAL DESCRIPTION

The ADC-G Series are 8 or 10 binary bit, analog to digital converters offering another price breakthrough by Datel Systems. The ADC-G Series provide the user with a combination of high speed, moderate high resolution, and compact size, all for a cost well below competing units. All this is made possible by the use of a proprietary modified successive approximation conversion technique, unique packaging methods and volume production.

Both models use the inherently accurate successive approximation conversion method to compare an unknown analog input signal against the output of a precision digital-to-analog converter in a high gain feedback loop. This method guarantees a full monotonic conversion and excellent linearity over the full scale input range.

The ADC-G Series is completely self contained, consisting of an operational temperature compensated voltage reference source, successive approximation logic circuitry, output storage register/ programmer, an ultra-high speed low noise voltage comparator and a precision digital-to-analog converter. All units provide adjustment free operation over a temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, requiring only D.C. power and a start convert command, which will interface with DTL or TTL logic levels.

Numerous other modules are available at little cost; these include a narrow aperture sample and hold, an eight channel multiplexer, ultra-miniature D.C. power supplies and system programmer. These modules are all compatible and can be easily integrated into a complete multi-channel data acquisition system.

INPUT/OUTPUT CONNECTIONS

SPECIFICATIONS (typical @ $25^{\circ} \mathrm{C}$ unless otherwise noted)

	ADC-G SERIES				ADC-G SERIES	
INPUTS				SERIAL OUTPUT	NRZ successive decision pulse output generated during conversion, with MSB first V out (" 0 ") $\leqslant+0.4 \mathrm{~V}$ V out ("1") $\leqslant+2.4 \mathrm{~V}$ Loading up to 5 TTL loads	
INPUT VOLTAGE RANGE AND INPUT IMPEDANCE	$\begin{aligned} & \text { OV to }-5 \mathrm{~V} \text { FS } \\ & \text { OV to -10V FS } \\ & \pm 5 \mathrm{~V} \text { FS } \\ & \pm 10 \mathrm{VFS} \end{aligned}$	Range 1 Range 2 Range 3 Range 4	$\begin{aligned} & 500 \Omega \\ & 1 \mathrm{~K} \Omega \\ & 1 \mathrm{~K} \Omega \\ & 2 \mathrm{~K} \Omega \end{aligned}$			
INPUT OVERVOLTAGE	$\pm 15 \mathrm{VDC}$					
INPUT IMPEDANCE	2K Ohms typical			PERFORMANCE		
SOURCE CURRENT	5 ma Max.			RESOLUTION	One part in 2^{n} (max. resolution 10 bits) $\mathrm{n}=$ number of binary bits	
START CONVERSION (Trigger Command)	2 V min. to 7 V max. positive pulse 30 nanoseconds min. width Loading. 3 TTL Loads 500 nSec " 1 " Resets max. rise " 0 " Starts Conversion time.					
				ACCURACY (@ $\mathbf{2 5}^{\circ} \mathrm{C}$)	Adj. to $\pm 0.1 \% \pm 1 / 2$ LSB - all models	
				LINEARITY	$\pm 1 / 2 \mathrm{LSB}$	
				LONG TERM STABILITY	$\pm 0.1 \% / 6$ month period	
				TEMPERATURE COEFFICIENT	$\pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	
DIGITAL OUTPUTS				ENCODING TIME.	$100 \mathrm{nsec} /$ bit for all models	
PARALLEL OUTPUT DATA	8 or 10 parallel lines qf data, held until next conversion command V out (" 0 ") $\leqslant+0.4 \mathrm{~V}$ V out $(" 1$ ") $\geqslant+2.4 \mathrm{~V}$ Each output capable of driving up to 6 TTL loads			WORD RATE	$1.25 \mathrm{MHz}-8$ binary bits 1.0 MHz - 10 binary bits	
				INPUT POWER REQUIREMENTS	$\begin{aligned} & +5 \text { VDC, } \pm 0.25 \text { VDC @ } 380 \text { ma max. } \\ & +15 \text { VDC, } \pm 0.5 \text { VDC @ } 50 \text { ma max. } \\ & -15 \text { VDC, } \pm 0.5 \text { VDC @ } 30 \text { ma max. } \end{aligned}$	
OUTPUT DIGITAL CODING INVERTED OUTPUTS (2)	Straight Binary (Unipolar Input) Offset Binary (Bipolar Input) Two's Complement (Bipolar Input)			PHYSICAL ENVIRONMENTAL		
				OPERATING TEMPERATURE RANGE	$0^{\circ} \text { to }+70^{\circ} \mathrm{C}$	
END OF CONVERSION OUTPUT	Conversion Status Signal Conversion Complete -V out (" 0 ") $\leqslant+0.4 \mathrm{~V}$ Reset \& Conversion Period - V out (" 1 ") $\geqslant+2.4 \mathrm{~V}$ Loading up to 5 TTL loads				$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
				Up to 100\% non-condensing		
				RELATIVE HUMIDITY	Black Diallyl Phthalate, per MIL-M-14	
CLOCK OUTPUT	Internal clock output Negative going pulse from +5 V max. Pulse width 30 nsec Loading up to 6 TTL loads				PINS	$0.020^{\prime \prime}$ round gold plated $0.250^{\prime \prime}$ long min.
				SIZE	$\begin{aligned} & 2^{\prime \prime} \mathrm{W} \times 4^{\prime \prime} \mathrm{L} \times 0.4^{\prime \prime} \mathrm{H}(8 \text { bits }) \\ & 2^{\prime \prime} \mathrm{W} \times 4^{\prime \prime} \mathrm{L} \times 0.8^{\prime \prime} \mathrm{H}(10 \text { bits }) \\ & \hline 8 \text { oz. max. } \\ & \text { Note (1): Converters are fully repairable } \end{aligned}$	
				WEIGHT		

CODING FOR ADC-G10B SERIES CONVERTERS

ANALOG INPUT RANGE 1 0 TO-5V. FS	ANALOG INPUT RANGE 2 0 TO-10V, FS	ANALOG INPUT RANGE 3 $\pm 5 \mathrm{~V}$. Fs	ANALOG INPUT RANGE 4 $\pm 10 \mathrm{~V}$. FS	DIGITAL OUTPUTS NOTE (Z) OFFSET BINARY FOR RANGES 3 AND 4 Straight binary for aANGES 1 AND 2	$\begin{aligned} & \text { DIGITAL OUTPUTS } \\ & \text { NOTE (2) } \\ & \text { 2S COMPLEMENT FOR } \\ & \text { RANGES } 3 \text { ANO } 4 \end{aligned}$
ov	ov	$+5 \mathrm{~V}$	+10V	000000000000	100000000000
-0.625V	-1.25V	$+3.75 \mathrm{~V}$	+7.5v	001000000000	101000000000
$-1.25 \mathrm{~V}$	$-2.5 \mathrm{~V}$	+2.5V	+5.0V	010000000000	110000000000
$-1.875 \mathrm{~V}$	-3.75V	$+1.25 \mathrm{~V}$	+2.5V	011000000000	111000000000
$-2.5 \mathrm{v}+1 \mathrm{LSB}$	-5v+1 L58	O $\mathrm{v}+1 \mathrm{LSB}$	OV+1 LSB	011111111111	111111111111
$-2.5 \mathrm{~V}$	-5V	OV	ov	100000000000	000000000000
-2.5V-1 LSB	-5V-1 LSB	OV-1 LSB	ov-1 LSB	100000000001	000000000001
$-3.125 \mathrm{~V}$	-6.25V	$-1.25 \mathrm{~V}$	$-2.5 \mathrm{~V}$	101000000000	001000000000
-3.75V	-7.5V	$-2.5 \mathrm{~V}$	-5.0V	110000000000	010000000000
-4.375V	-8.75V	-3.75V	-7.5 V	111000000000	011000000000
$-5 \mathrm{~V}+1$ LS8	$-10 \mathrm{y}+1$ LS8	$-5 \mathrm{~V}+1$ LSB	$-10 \mathrm{~V}+1$ LSB	111111111111	011111111111

Note 2: Reverse coding sense: Note that the most negative analog input corresponds to full scale digital output (11-1 binary). Normal coding sense can be obtained by using an external inverting input amplifier.

GAIN \& OFFSET
EXTERNAL ADJUSTMENT CONNECTIONS FOR ADC-G SERIES

ALL TRIM POTS ARE $\leqslant 100 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$
Connections shown here must be made to insure proper operation of converter.
Adjustment Ranges:
Offset: $\pm 0.5 \%$ of FS
Gain: $\pm 2 \%$ of FS

8 BINARY BITS-10 MILLION CONV'S/SEC ANALOG TO DIGITAL CONVERTER

ADC-UH SERIES

FEATURES

- Smallest Size . . $3^{\prime \prime} \mathrm{W} \times 5^{\prime \prime} \mathrm{L} \times 1.150^{\prime \prime} \mathrm{H}$
- Fast Encoding Time to 40 nsec
- Excellent Temperature
- Coefficient
$\pm 0.005 \% /{ }^{\circ} \mathrm{C}$

GENERAL DESCRIPTION

The ADC-UH series are state-of-the-art ultra high speed analog to digital converters consisting of three models; six and eight binary bits operating at word repetition rates of up to 10 MHz and a four bit version capable of making a conversion every forty nanoseconds.

In addition to the cost and performance advantages of all three models, close attention to circuit detail has resulted in a highly reliable converter with relatively low power consumption.

The entire converter is packaged in a black anodized aluminum module to provide electrostatic shielding. Overall physical size is $3^{\prime \prime} \mathrm{W} \times 5^{\prime \prime} L \times 1.150^{\prime \prime} \mathrm{H}$, or one fifth the size of the nearest rival. Power drain has been reduced to eight watts, which is a fraction of competing units and a good measure of the ADC-UH series reliability.
Other features relating to the integrity of the circuit design, are its low temperature coefficient of $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ and long term stability of $\pm .25 \% /$ year.
Input power requirements are $\pm 15 \mathrm{VDC}$ and $\pm 5 \mathrm{VDC}$.
Output digital coding is straight binary for a unipolar input and inverted offset binary for the optional bipolar input.

MECHANICAL DIMENSIONS (INCHES)

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION
1	BIT 4 (LSB) MODEL ADC-UH4B
2	BIT 3
3	BIT 2
4	BIT 1 (MSB)
5	START CONVERT
6	E.O.C. (STATUS)
7	$\pm 15 \mathrm{~V}$ RETURN (1)
8	-15VDC
9	+15VDC
10	$\pm 5 \mathrm{~V}$ RETURN (1)
11	-5VDC
12	+5VDC
13	BIT 5
14	BIT 6 (LSB) MODEL ADC-UH6B
15	BIT 7
16	BIT 8 (LSB) MODEL ADC-UH8B
17	ANALOG INPUT
18	ANALOG GROUND (1)

NOTES 1. PINS \#7. 10 AND 18 INTERNALLY CONNECTED
2. CASE ALUMINUM, BLACK ANODIZED

THEORY OF OPERATION

DATEL

MODEL ADC-UH8B BLOCK DIAGRAM

MODEL ADC - UH4B BLOCK DIAGRAM

TECHNICAL DESCRIPTION

The model ADC-UH8B analog to digital converter employs a two step conversion technique as shown in the block diagram. The analog input signal is fed to a 15 line, 4 bit comparator array (4 bit A/D converter) where the four most significant bits are determined. This four bit word is then stored in an output register which also controls a 4 bit subtracting digital-to-analog converter where the analog value of the first four most significant bits is subtracted from the analog input. The voltage difference is then fed to a second 15 line, 4 bit comparator array (4 bit A/D converter) to determine the remaining four least significant bits. This 4 bit word is then stored in an output register with the four most significant bits to complete the conversion cycle.

As shown in the timing diagram the leading edge of the start convert pulse initiates a conversion cycle by activating the first stage A / D converter. One hundred and
thirty nanoseconds later the End of Conversion pulse will go negative indicating the conversion is complete and the data is ready at the output. Although the throughput delay is 130 nanoseconds a new start convert input pulse can be issued at a minimum interval of 100 nanoseconds resulting in a maximum word rate of 10 MHz .
The 10 MHz word rate is made possible by the two stage conversion technique which allows a new conversion cycle to be started before the prior cycle is completed.
In transferring an output word, it should be noted that a minimum of 15 nanoseconds is allowed for transfer set-up while no time is allowed for holding the word after transfer. Transfer can be implemented by using a zero hold time register such as a SN 74 H 106.
The model ADC-UH4B block diagram shows that the 4 -bit converter employs a single step conversion method and does not use the analog difference summing junction.

SPECIFICATIONS (typical @ $25^{\circ} \mathrm{C}, 5$ minute warm-up, unless otherwise noted)

MODEL	ADC-UH4B	ADC-UH6B	ADC-UH8B
INPUTS:			
Analog Input Range	OV to -2.560V FS (1)		
Input Overvoltage	$\pm 5 \mathrm{VDC}$		
Input Impedance	100 Ohms		
Source Current	25.6 mA		
Start Conversion (Trigger Command)	2 V min. to 5 V max. positive pulse, 40 nsec min. width positive excursion initiates a conversion LOADING: 1 TTL LOAD MAXIMUM REPETITION RATE -10 MHz (2)		
DIGITAL OUTPUTS:			
Parallel Output Data (See coding chart)	4 parallel lines (4 Binary Bits) V out (" 0 ") $\leqslant+0.4 \mathrm{~V}$ V out (" 1 ") $\geqslant+2.4 \mathrm{~V}$ LOADING: 4 TTL LOADS	6 parallel lines (6 Binary Bits) V out (" 0 ") $\leqslant+0.4 \mathrm{~V}$ V out ("1") $\geqslant+2.4 \mathrm{~V}$ LOADING: 4 TTL LOADS	8 parallel lines (8 Binary Bits) V out ("0") $\leqslant+0.4 \mathrm{~V}$ V out (" 1 ") $\geqslant+2.4 \mathrm{~V}$ LOADING: 4 TTLLOADS
End of Conversion	Positive Pulse, Trailing edge (negative transition) indicates conversion complete LOADING: 12 TTL LOADS		
PERFORMANCE:			
Accuracy @ $25^{\circ} \mathrm{C}$	$\pm 3 \%$ of FS	$\pm 0.8 \%$ of FS	$\pm 0.4 \%$ of FS
Long Term Stability	$\pm 0.25 \% /$ ear		
Resolution	1 LSB (160 mV)	$1 \mathrm{LSB}(40 \mathrm{mV})$	$1 \mathrm{LSB}(10 \mathrm{mV})$
Linearity	$\pm 1 / 2 \mathrm{LSB}$	$\pm 1 / 2 \mathrm{LSB}$	$\pm 1 \mathrm{LSB}$
Temperature Coefficient	$\pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$		
Encoding Time	40 nsec	$100 \mathrm{nsec}(2)$	$100 \mathrm{nsec}(2)$
Word Repetition Rate (MAX.)	25 MHz	$10 \mathrm{MHz} \mathrm{(2)}$	$10 \mathrm{MHz} \mathrm{(2)}$
Input Power Requirements (See Datel Systems Ultraminiature DC Power Supplies - Bulletin PSC-3-73-1)	$\begin{aligned} & \text { +15VDC, } \pm 0.2 \mathrm{VDC} @ 80 \mathrm{~mA} \\ & \text {-15VDC, } \pm 0.2 \mathrm{VDC} @ 9 \mathrm{~mA} \\ & \text { +5VDC, } \pm 0.1 \mathrm{VDC} @ 650 \mathrm{~mA} \\ & \text {-5VDC, } \pm 0.1 \mathrm{VDC} @ 150 \mathrm{~mA} \end{aligned}$	$\begin{array}{r} +15 \mathrm{VDC}, \pm 0.2 \mathrm{VDC} @ 80 \mathrm{~mA} \\ -15 \mathrm{VDC}, \pm 0.2 \mathrm{VDC} @ 9 \mathrm{~mA} \\ +5 \mathrm{VDC}, \pm 0.1 \mathrm{VDC} @ 780 \mathrm{~mA} \\ -5 \mathrm{VDC}, \pm 0.1 \mathrm{VDC} @ 170 \mathrm{~mA} \end{array}$	$\begin{aligned} & \text { +15VDC, } \pm 0.2 \mathrm{VDC} @ \\ & \text {-15VDC, } \pm 0.2 \mathrm{VDC} @ 9 \mathrm{~mA} \\ & \text { +5VDC, } \pm 0.1 \mathrm{mDC} @ 1300 \mathrm{~mA} \\ & \text {-5VDC, } \pm 0.1 \mathrm{VDC} @ 250 \mathrm{~mA} \end{aligned}$

PHYSICAL-ENVIRONMENTAL:

Operating Temperature Range	
Storage Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Relative Humidity	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Case Pins	$0.020^{\prime \prime}$ $0.250^{\prime \prime}$ round gold plated minimum
Size	
Weight	PC Board is covered with an aluminum electrostatic shield and encapsulated. All converters are fully repairable.

NOTES: (1) A Bipolar input ($\pm 1.280 \mathrm{~V}$) is also available. Output data coding will be "reverse coding sense" (See below). When ordering a Bipolar input add the number 2 to the model number.
(2) Models ADC-UH6B and ADC-UH8B have a throughput delay of 130 nsec. because of the two stage conversion technique employed. Although the throughput delay is 130 nsec both models can start a new conversion every 100 nsec , for a word rate of 10 MHz . See timing diagram for more details.

OUTPUT DATA CODING

ADC-UH8B (8-Bit Shown	ffset Binary (1) \& 6-Bit available)	Reverse coding sense: Note that the most negative analog input corresponds to full scale output (11 --. 1, binary)	ADC-UH4B Straight Binary		ADC-UH6B Straight Binary		ADC.UH8B Straight Binary	
Analog Input	Digital Output		Analog Input	Digital Output	Analog Input	Digital Output	Analog Input	Digital Output
-1.270V	11111111		-2.400V	1111	-2.520V	111111	-2.550V	11111111
-0.640V	11000000		-1.920V	1100	$-1.920 \mathrm{~V}$	110000	-1.920V	11000000
0.000 V	10000000		-1.280V	1000	$-1.280 \mathrm{~V}$	100000	-1.280V	10000000
+1.270V	00000001		-0.160V	0001	-0.040 V	000001	-0.010V	00000001
+1.280V	00000000		0.000 V	0000	0.000 V	000000	0.000 V	00000000

DATEL

TYPICAL 8-BIT SYSTEM CONFIGURATION FOR OBTAINING A TOTAL SYSTEM APERTURE TIME OF 200psec. FOR MODEL ADC-UH8B ONLY
BLOCK DIAGRAM

6 OR 8-BIT SYSTEM TIMING DIAGRAM

ADC-UH8B AND SHM-UH INTERCONNECTIONS

ORDERING INFORMATION

For -2 Version (Bipolar) Add \$50, to Price

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE 1020 TURNPIKE STREET, CANTON, MASS. 02021 TEL. (617) 828-8000 TWX: 710-348-0135 TELEX: 924461 COPYRIGHT © 1973, DATEL SYSTEMS INC.

Bulletin AUHCT15312

1020G Turnpike Street，Building S Canton，Massachusetts 02021 U．S．A． TEL：（ 617 ） $828-8000$
TWX：710－348－0135 TELEX： 924461

FEATURES

－ 10 \＆ 12 Bit Resolution
－Selectable Input Ranges
－ 20 \＆ $40 \mu \mathrm{sec}$ ．Conversion Times
－Unipolar or Bipolar Operation
－Input Buffer Option
－Parallel \＆Serial Outputs
－ADC－MA12B1A \＆ADC－MA12B2A Are Equivalents to ADC－120Z

GENERAL DESCRIPTION

The ADC－MA series A／D converters consist of 10 and 12 bit resolution models with 20 or 40 microsecond conversion times．These units feature high performance and versa－ tility at a low price．

The exceptional versatility of the ADC－MA series is seen in the following features． Single－ended input voltage ranges of 0 to $+5 \mathrm{~V}, 0$ to $+10 \mathrm{~V}, \pm 5 \mathrm{~V}$ ，and $\pm 10 \mathrm{~V}$ are pin se－ lectable by the user．In addition，an internal high input impedance buffer amplifier is available as an option．This amplifier gives an input impedance of 1000 megohms on all voltage ranges．Without the amplifier the in－ put impedances are $2.5 \mathrm{~K}, 5 \mathrm{~K}$ ，and 10 K ohms on $5 \mathrm{~V}, 10 \mathrm{~V}$ ，and 20 V full scale ranges respec－ tively．Digital output data is available in either parallel form or serial NRZ format with synchronizing strobe pulses．Serial data is straight binary for unipolar operation and offset binary for bipolar operation．Parallel data is straight binary for unipolar operation and offset binary or two＇s complement for bipolar operation．The ADC－MA units can operate either internally or externally clocked．In addition，the internal clock rate can be decreased by use of ah external capacitor．
The ADC－MA series uses the successive approximation technique to achieve excel－ lent linearity，speed，and stability．Tempera－ ture coefficient is held to $\pm 30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ for gain and $\pm 5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ for offset in unipolar operation．Tight temperature tracking of the weighted current sources results in mono－ tonic operation with no missing codes over the $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature operating range．
These converters are encapsulated in a 4×2 $X 0.4$ inch module with DIP compatible $.100^{\prime \prime}$ pin spacing．Input power require－ ments are $\pm 15 \mathrm{VDC}$ and +5 VDC and are available from Datel＇s line of modular power supplies．All digital inputs and outputs are DTL／TTL compatible．

ADC－MA SERIES
GENERAL PURPOSE， ANALOG－TO－DIGITAL CONVERTERS

NOTE：Pins $3 \& 23$ are connected internally．Pin 30 must be externally connected to either pin 3 or 23.

SPECIFICATIONS (typical @ $25^{\circ} \mathrm{C}$ unless otherwise noted)

	ADC-MA10B	ADC-MA 12B
INPUTS	$\begin{gathered} 0 \text { to }+5 \mathrm{~V} \mathrm{FS}, 0 \text { to }+10 \mathrm{~V} \text { FS, } \\ \pm 5 \mathrm{~V} \text { FS, } \pm 10 \mathrm{~V} \text { FS } \end{gathered}$ $\pm 15 \mathrm{~V}$ without damage to unit	
Analog Input Range		
Input Overvoltage		
Input Impedance		
0 to +5 V FS Range		
$\pm 5 \mathrm{~V}$ and 0 to +10 V FS Range		
$\pm 10 \mathrm{~V}$ FS Range		
With Optional Input Buffer		

+2 V min. to +5.5 V max. positive pulse, $D C$ coupled, with duration of $100 \mathrm{nsec} . \mathrm{min}$. Rise and fall times 500 nsec . max. Three TTL loads. Logic " 1 " resets converter. Transition to logic " 0 " initiates conversion.

Clock Input

Clock Rate

$\begin{array}{c}\text { OUTPUTS } \\ \text { Parallel }\end{array}$
Coding

Unipolar Operation
Bipolar Operation
Serial Output Data

Strobe Output

EOC (End of Conversion)
$\overline{\mathrm{E}} \overline{\mathrm{C}}$

Clock Output

Signal Output
PERFORMANCE
Resolution
Accuracy
Linearity
Temp. Coefficient of Gain
Temp. Coefficient of Zero

Unipolar

Bipolar
Conversion Time, max.
Power Supply Sensitivity
(tracking $\pm 15 \mathrm{~V}$ supplies)

Gain

Zero
POWER REQUIREMENT
(with input buffer amplifier)

PHYSICAL-ENVIRONMENTAL
Operating Temperature Range
Storage Temperature Range
Relative Humidity
Case Size
Case Material
Pins

Weight

Mating Sockets (optional)
Must be connected to Clock Output to use internal clock. Clock Input can also be used with an external clock.

Rate is internally set to give maximum conversion rate of 20 or $40 \mu \mathrm{sec}$. per conversion. This time may be increased with an external capacitor connected between pin 31 (Clock Rate) and pin 36 (Clock Out). See conversion time formulas.

| 10 Lines of data |
| :---: | :---: |
| Data is held until next conversion command. Each ou |

Data is held until next conversion command. Each output is capable of driving 5 TTL loads.

$$
\begin{aligned}
& V \text { out }\left(\text { Logic " } 0^{\prime \prime} \text {) } \leqslant+0.4 \mathrm{~V}\right. \\
& V \text { out }(\text { Logic " } 1 \text { ") } \geqslant+2.4 \mathrm{~V}
\end{aligned}
$$

Straight Binary, positive true.
Offset Binary or Two's Complement, positive true.
NRZ (nonreturn to zero) successive decision pulse output generated during conversion with MSB first. Serial data is straight binary for unipolar operation and offset binary for bipolar operation. Output will drive 10 TTL loads. Two's complement is not available with serial output.
Available for serial data synchronization. Serial output is usable on strobe pulse leading edges. Will drive 9 TTL loads.
Conversion status output. Logic " 0 " for conversion complete, Logic " 1 " during reset and conversion period. Will drive 10 TTL loads.
Complement of End of Conversion output. Logic " 1 " for conversion complete and Logic " 0 " during reset and conversion period. Will drive 7 TTL loads.
Internal clock pulse train output gated on during conversion time.
Output of optional internal buffer amplifier.

10 Bits (one part in 1024)
$\pm .05 \%$ FS $\pm 1 / 2$ LSB
$\pm 1 / 2 L S B$
$\pm 30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max. of Reading
$\pm 5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max. of Range
$\pm 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max. of Range
20 or $40 \mu \mathrm{sec}$.
(depending on model)
$\pm 20 \mathrm{ppm} / \%$
$\pm 10 \mathrm{ppm} / \%$
$+15 \mathrm{VDC} \pm 0.5 \mathrm{~V} @ 40 \mathrm{~mA}$, max .
$-15 \mathrm{VDC} \pm 0.5 \mathrm{~V} @ 45 \mathrm{~mA}$, max.
$+5 V D C \pm 0.25 \mathrm{~V} @ 200 \mathrm{~mA}$, max.
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Up to 100% non-condensing
$4^{\prime \prime} \times 2^{\prime \prime} \times 0.4^{\prime \prime}$
Black DiallyI Phthalate per MIL-M-14, epoxy encapsulated.
$.020^{\prime \prime}$ round, gold plated, $.250^{\prime \prime}$ long min.
8 oz . (227 grams)
DILS-2, 4 required.

12 Bits (one part in 4096) $\pm .012 \%$ FS $\pm 1 / 2 \mathrm{LSB}$
$\pm 1 / 2$ LSB
$\pm 30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max. of Reading
$\pm 5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max. of Range $\pm 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max. of Range 20 or $40 \mu \mathrm{sec}$.
(depending on model)
$\pm 20 \mathrm{ppm} / \%$
$\pm 10 \mathrm{ppm} / \%$

T.ECHNICAL NOTES

The ADC-MA series contains an internal clock which is set to the maximum conversion rate. This rate may be decreased by connecting an external capacitor between pins 31 and 36 . The approximate capacitor value to achieve the desired conversion time is shown in the table at the bottom of the next page. The longer conversion time obtained in this manner does not improve accuracy but it does permit compatibility or synchronization with interfacing equipment for many applications. To use the internal clock a jumper must be connected between pins 35 and 36 . For external clocking, which may be desirable in some applications, the jumper is removed and the external clock applied to pin 35. Use a symmetrical 0 to +5 V square wave with a minimum 3.0 $\mu \mathrm{sec}$. period for the $40 \mu \mathrm{sec}$. converters and a minimum $1.6 \mu \mathrm{sec}$. period for the $20 \mu \mathrm{sec}$. converters. The Start Convert pulse should have a minimum 100 nsec . width and should not be made too long since clocking begins on the falling edge of this pulse and, therefore, its width is part of the total conversion time.

Analog inputs are connected to pin 6 for 10 V ranges and pin 5 for the 20 V range when the input buffer amplifier is not used. The input impedances in these cases are 5 K ohms and 10 K ohms respectively. For the 0 to 5 V range, pin 5 is connected to pin 20, thus paralleling the two internal 5 K resistors to give a 2.5 K ohm input impedance at pin 6.

The end of conversion or status pulse is available at pin 33 and its complement $\overline{E O C}$ is available at pin 43. Normally the EOC output is used to control the mode of the input sample and hold. Serial output data is available at pin 32 in straight binary code for unipolar operation or offset binary for bipolar operation. Nonreturn to zero (NRZ) format is used and the data is valid at the leading edge of the strobe pulse. Parallel data output is straight binary for unipolar operation and offset binary or two's complement for bipolar operation. Two's complement is obtained by using the complemented MSB output at pin 70.

OUTPUT DIGITAL CODING, ADC-MA SERIES
ADC-MA 12B (12 BITS)

UNIPOLAR INPUT RANGE		$\begin{aligned} & \text { STRAIGHT } \\ & \text { BINARY } \\ & \text { MSB LSB } \end{aligned}$	BIPOLAR INPUT RANGE		OFFSET BINARY	TWO'S COMPLEMENT
0 TO +10V FS	0 TO +5 V FS		$\pm 10 \mathrm{~V}$ FS	$\pm 5 \mathrm{~V}$ FS	MSB LSB	$\overline{M S B} \quad$ LSB
+9.9976	+4.9988	111111111111	+9.9951	+4.9976	111111111111	011111111111
+8.7500	+4.3750	111000000000	+7.5000	+3.7500	111000000000	011000000000
+7.5000	+3.7500	110000000000	+5.0000	+2.5000	110000000000	010000000000
+5.0000	+2.5000	100000000000	0.0000	0.0000	100000000000	000000000000
+2.5000	+1.2500	010000000000	-5.0000	-2.5000	010000000000	110000000000
+1.2500	+0.6250	001000000000	-7.5000	-3.7500	001000000000	101000000000
+0.0024	+0.0012	000000000001	-9.9951	-4.9976	000000000001	100000000001
0.0000	0.0000	000000000000	-10.0000	-5.0000	000000000000	100000000000

ADC-MA 10B (10 BITS)

+9.9902	+4.9951	1111111111	+9.9805	+4.9902	1111111111	0111111111
+8.7500	+4.3750	1110000000	+7.5000	+3.7500	1110000000	0110000000
+7.5000	+3.7500	1100000000	+5.0000	+2.5000	110000000	0100000000
+5.0000	+2.5000	1000000000	0.0000	0.0000	100000000	0000000000
+2.5000	+1.2500	0100000000	-5.0000	-2.5000	010000000	1100000000
+1.2500	+0.6250	0001000000	-7.5000	-3.7500	0010000000	1010000000
+0.0098	+0.0049	$0 g 00000001$	-9.9805	-4.9902	00000000001	1000000001
0.0000	0.0000	0000000000	-10.0000	-5.0000	0000000000	1000000000

EXTERNAL PIN CONNECTIONS

INPUT RANGE (FS)	BUFFER OPTION	INPUT TO PIN	JUMPER PIN 4 TO	JUMPER PIN 20 TO	JUMPER PIN 19 TO
OTO +10V	WITHOUT	6	-	-	23
	WITH	2	6	-	23
$\pm 5 \mathrm{~V}$	WITHOUT	6	-	-	20
	WITH	2	6	-	20
$\pm 10 \mathrm{~V}$	WITHOUT	5	-	-	20
	WITH	2	5	-	20
0 TO $+5 \mathrm{~V}$	WITHOUT	6	-	5	23
	WITH	2	6	5	23

CONVERSION TIME

 USING EXTERNAL CAPACITORThe external capacitor is connected between pins 31 and 36 . Conversion time in the table is in microseconds and capacitor value is in picofarads.

Conversion Time Formula (approx.)		
Conv. Time*	ADC-MA10B	ADC-MA12B
$20 \mu \mathrm{sec}$.	$\mathrm{C}=60(\mathrm{~T}-20 \mu \mathrm{sec})$.	$\mathrm{C}=50(\mathrm{~T}-20 \mu \mathrm{sec})$.
$40 \mu \mathrm{sec}$.	$\mathrm{C}=65(\mathrm{~T}-40 \mu \mathrm{sec})$.	$\mathrm{C}=55(\mathrm{~T}-40 \mu \mathrm{sec})$.

- Maximum internal conversion rate when no external capacitor is used.

CALIBRATION CONNECTIONS

CALIBRATION PROCEDURE

Gain and offset adjustments are accomplished as shown in the above diagram using the Calibration Table. The trimming potentiometers used should be 15 turn 100ppm/ ${ }^{\circ}$ C temperature coefficient cermet type units and are available from Datel Systems at $\$ 3.00$ each. A pulse generator should be adjusted to give +5 volt pulses with 100 nsec. minimum duration and a spacing equal to or larger than the specified maximum conversion time (20 or 40 usec .). This generator should be connected to the "Start Convert" input. A precision voltage reference source should be connected to the selected analog input terminal.
Offset Adjustment: For unipolar operation set the output of the voltage reference source to zero plus $1 / 2$ LSB. The value is shown in the Calibration Table. Adjust the offset trimming potentiometer until the LSB output flickers equally between logic " 0 " and logic " 1 ". (Output between $000 \ldots 000$ and $000.001)$. For bipolar operation set the voltage reference source to minus full scale plus $1 / 2$ LSB and make the same adjustment.
Gain Adjustment: Adjust the output of the voltage reference source to full scale minus $11 / 2$ LSB. This value is also shown in the Calibration Table. Adjust gain trimming potentiometer until LSB output flickers equally between logic " 0 " and logic " 1 ". (Output between $111 \ldots 110$ and $111 \ldots$ 111)

ORDERING INFORMATION

CALIBRATION TABLE ADC-MA SERIES

INPUT RANGE		ADJUST MENT	INPUT VOLTAGE		
		10 BIT	12 BIT		
$\begin{aligned} & \infty \\ & \frac{a}{1} \\ & 0 \\ & \frac{2}{2} \\ & j \end{aligned}$	0 TO +5V		OFFSET	2.4 mV	0.61 mV
		GAIN	$+4.9927 \mathrm{~V}$	+4.9982V	
	0 TO +10V	OFFSET	4.9 mV	1.2 mV	
		GAIN	+9.9854V	+9.9963V	
$\begin{aligned} & \stackrel{\sim}{ভ} \\ & 0 \\ & \frac{0}{\infty} \\ & \frac{2}{\infty} \end{aligned}$	$\pm 5 \mathrm{~V}$	OFFSET	-4.9951V	-4.9988V	
		GAIN	+4.9854V	+4.9963V	
	$\pm 10 \mathrm{~V}$	OFFSET	$-9.9902 \mathrm{~V}$	-9.9976V	
		GAIN	+9.9707V	+9.9927V	

PRICES (1-9)		
ADC-MA10B2A . . \$ 95.00	ADC-MA12B2A	\$125.00
ADC-MA10B2B .. \$125.00	ADC-MA12B2B	\$145.00
For optional internal high impedance buffer amplifier add $\$ 20.00$ to price.		
Mating Socket: DILS-2, 4 required @ \$5.00 per pair		
Trimming Potentiometers: TP20K	\$3.00 each (1-9)	

1020G Turnpike Street, Building S Canton, Massachusetts 02021 U.S.A.
Canton, Massachusetts
TEL: (617) 828-8000
TWX: 710-348-0135 TELEX: 924461

HIGH RESOLUTION ANALOG-TO-DIGITAL CONVERTER

 MODEL ADC-49
FEATURES

- 14 Bit Resolution

- 50μ sec. Conversion Time
- Low Price-\$279
- Unipolar or Bipolar Inputs
- 15ppm/ ${ }^{\circ} \mathrm{C}$ Gain Temp. Coeff.

GENERAL DESCRIPTION

The ADC-149 is a 14 bit successive approximation type analog to digital converter for OEM use. It was specifically designed to give high resolution and accuracy at moderate cost for incorporation into precision instruments for process control systems and test and measurement systems.

This converter accepts either unipolar or bipolar input voltages of 0 to $-10 \mathrm{~V}, 0$ to -20 V , $\pm 5 \mathrm{~V}$, or $\pm 10 \mathrm{~V}$ full scale by external pin connection and performs a 14 bit conversion in $50 \mu \mathrm{sec}$. Several output codes are available including straight binary for unipolar inputs and either offset binary or two's complement for bipolar inputs. Two's complement is obtained by using the $\overline{\mathrm{MSB}}$ output pin. Reverse coding sense is used with the most negative analog input corresponding to full scale digital output. A serial data output is also provided and has a nonreturn-to-zero (NRZ) format. Logic outputs ate DTL/TTL compatible and will drive 6 standard TTL loads.

The ADC-149 can resolve 1 part in 16,384 giving an operating dynamic range of 84.3 dB . On the 10 volt full scale range it can detect an input change of less than 1 millivolt. Accuracy is adjustable to $\pm .005 \%$ of full scale $\pm 1 / 2$ LSB. The temperature coefficient is held to a low $\pm 15 \mathrm{ppm} / /^{\circ} \mathrm{C}$ over the 0° to $70^{\circ} \mathrm{C}$ operating temperature range.
This converter is encapsulated in a compact $2 \times 4 \times 0.8$ inch module with DIP compatible pin spacing for PC board mounting. It can be stored from $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Power supplies required are standard $\pm 15 \mathrm{VDC}$ and +5 VDC . (Available from Datel's line of modular power supplies.)

The high resolution and accuracy of the ADC-149 make it particularly valuable in applications such as moderate speed data reduction, and computer arithmetic processing of analog inputs. Digitizing inputs from sensors and transducers allows data transmission or storage with drastically reduced degradation of accuracy compared to analog methods. This is also vital for automatic process and alarm limit computer control, and digital linearization of logarithmic or special function analog inputs. The ADC-149 offers at least a $\$ 100$. price advantage over competitive converters in these applications.

MECHANICAL DIMENSIONS INCHES (MM)

NOTES:

1. OPEN HOLES DESIGNATE WHERE PINS ARE OMITTED

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION
1	BIT 1 (MSB)
2	BIT 2
3	BIT
4	BIT

SPECIFICATIONS (Typical @ $+25^{\circ} \mathrm{C}$ unless noted)

INPUTS

Analog Input Range . . . (single-ended input referenced to ground)	$\begin{aligned} & \pm 5 \mathrm{~V} \text { FS, } \pm 10 \mathrm{~V} \text { FS } \\ & 0 \text { to }-10 \mathrm{~V} \text { FS, } 0 \text { to }-20 \mathrm{~V} \text { FS } \end{aligned}$
Input Overvoltage.	$\pm 15 \mathrm{VDC}$ without damage to unit.
Input Impedance	5 K Ohms $(\pm 5 \mathrm{~V}$ and 0 to -10 V FS range) $10 \mathrm{~K} O h m s ~(\pm 10 \mathrm{~V}$ and 0 to -20 V FS range)
Start of Conversion	+2.5 V min. to +5.5 V max. positive pulse with 150 nsec. min. duration. Loading: 1 mA Logic " 1 " resets converter Logic " 0 " initiates conversion

OUTPUTS

Parallel Output Data	14 parallel lines of data held until the next conversion command. Vout (Logic " 0 ") $\leqslant+0.4 \mathrm{~V}$ Vout (Logic " 1 ") $\geqslant+2.4 \mathrm{~V}$ Each output capable of driving up to 6 TTL loads.
Coding	Straight Binary (Unipolar Input) Offset Binary (Bipolar Input) Two's Complement (Bipolar Input) Pin 15 provides MSB output for this coding. (Reverse coding sense used).
Serial Output	NRZ successive decision pulse output generated during conversion with MSB first. LO = " 1 ", HI = " 0 " Straight binary or offset binary coding
End of Conversion	Conversion Status Signal Vout (Logic " 0 ") $\leqslant+0.4 \mathrm{~V}$ conver- sion complete Vout (Logic " 1 ") $\geqslant+2.4 \mathrm{~V}$ during reset and conversion period.
Clock	Internal clock output, positive going 3 microsecond pulse. Loading up to 6 TTL loads.

PERFORMANCE

Resolution	One part in 16,384 (max. resolution 14 binary bits)
Accuracy ($25^{\circ} \mathrm{C}$)	Adjustable to $\pm .005 \%$ of $\mathrm{FS} \pm 1 / 2 \mathrm{LSB}$.
Linearity	$\pm 1 / 2$ LSB
Temperature Coefficient of Full Scale	$\pm 15 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Temperature Coefficient of Zero, Unipolar . Bipolar	$\begin{aligned} & \pm 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \pm 10 \mathrm{ppm} / /^{\circ} \mathrm{C} \end{aligned}$
Conversion Time	$50 \mu \mathrm{sec}$.
Throughput Rate	20 kHz
Power Requirements	$\pm 15 \mathrm{VDC} \pm 0.5 \mathrm{VDC}$ @ 80 mA max. $+5 \mathrm{VDC} \pm 0.25 \mathrm{VDC}$ @ 200 mA max.

PHYSICAL-ENVIRONMENTAL

Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Relative Humidity	Up to 100\% non-condensing
Size	$2^{\prime \prime} \mathrm{W} \times 4^{\prime \prime} \mathrm{L} \times 0.8^{\prime \prime} \mathrm{H}$
Pins	$.020^{\prime \prime}$ round, gold plated, $0.250^{\prime \prime}$ long min.
Case Material	Black Diallyl Phthalate per MIL-M-14
Weight	
Mating Sockets	DILS-2, 2 required @ \$5/pair.

Mating Socket DILS-2 (2 per module, $\$ 5 . /$ pair)

TIMING FOR ADC-149-14B

OUTPUT DIGITAL CODING

GAIN \& OFFSET ADJUSTMENTS

Adjustment Procedure - Unipolar Input
A Connect a precision pulse generator to the "Sta Convert input terminal See specifications for pulse width and amplitude
B. Connect a precision voltage reference source to
the appropriate analog input terminals See Connections.
Zero Offset Control
Adjust the voltage output from the reference to
Adjust the valtage output trom the reterence to
minus $\%$ LSB. Rotate the zero oftset control unt the LSB output (Least Signiticant Bit) flickers between logic "zero" and logic "one'
Full Scale Gain Control
Adiust the output from the reference source to full
scale minus 1% LSB Rotate the gain scale minus 1% LSB Rotate the gain control unt
the LSB output (Least Significant Bit) flickers between logic "zero" and logic "one"

Adjustment Procedure - Bipolar Inpur A Connect a preciston puise generator to the "Start Convert input terminals See specitications for B. Pulse width and amplitude 8. Connect a precision voltage reference source to the appropriate analog input terminals See $1 / 0$
Zero Offset Contro
Zero Offset Control
to plus full scale minus $\%$ LSB
LS
Rolate the offset control LSB Signiticant Bit) thickers intil the LSB output (Least logic one"
Gain Coritrol
Adjust the outpur from the reterence source to
minus full scale minus 11 L LSB
Signiticant Bit) llickers between logic "zero" and logic "one

TRIMMING OF 3 MOST SIGNIFICANT BITS (INTERNAL)
The three trimming potentiometers on the side of the module are for periodic adjustment of the three most
significant bits. Normally no adjustment of these trims is necessary since they are calibrated at the factory at $25^{\circ} \mathrm{C}$. Should readiustment be required for optimum accuracy ary periodicelly for long term drift, the following procedure should be carefully followed: 1. Adjust external offset and gain as sbove.
2. Reedjust external gain trim end then bits 3, 2, and 1 in accordence with the tabie below. Adjust so that the output flickers equally between the two codes shown
3. Readjust external zero or offset and gain
4. Repest steps 2 and 3 as necessary

Input Voltage		Output Code	Adjustment
Unipolar (0 to-10V)	Bipolar ($\pm 5 \mathrm{~V}$)		
$\begin{aligned} & -0.625 \mathrm{~V}-1 / 2 \mathrm{LSB} \\ & (-0.62531 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & +4.375 \mathrm{~V}-1 / 2 \text { LSB } \\ & (+4.37469 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & 00010 \ldots 01 \\ & 00010 \ldots .00 \end{aligned}$	Gain Trim
$\begin{aligned} & -1.25 \mathrm{~V}-1 / 2 \mathrm{LSB} \\ & (-1.25031 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & +3.75 \mathrm{~V}-1 / 2 \text { LSB } \\ & (+3.74969 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & 00100 \ldots 01 \\ & 00100 \ldots . \end{aligned}$	$\begin{aligned} & \text { Trim \#3 } \\ & \text { (Bit 3) } \end{aligned}$
$\begin{aligned} & -2.5 \mathrm{~V}-1 / 2 \mathrm{LSB} \\ & (-2.50031 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & +2.50 \mathrm{~V}-1 / 2 \text { LSB } \\ & (+2.49969 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & 01000 \ldots . \\ & 01000 \ldots 00 \end{aligned}$	Trim \#2 (Bit 2)
$\begin{aligned} & -5.0 \mathrm{~V}-1 / 2 \text { LSB } \\ & (-5.00031 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & \text { OV }-1 / 2 \text { LSB } \\ & (-0.00031 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & 10000 \ldots 01 \\ & 10000 \ldots .00 \end{aligned}$	Trim \#1 (Bit 1)

ADC-CM SERIES

FEATURES

- AUTOMATIC SHUTDOWN BETWEEN CONVERSIONS
- CHOICE OF C/MOS OR TTL OUTPUTS
- UPTO 3000 CONVERSIONS PER SECOND
- $\pm 0.025 \%$ ACCURACY
- FOUR INPUT RANGES

GENERAL DESCRIPTION

The most unique feature of the ADC-CM series analog-to-digital converters is their low power consumption, approximately two orders of magnitude lower than those attainable with conventional A/D converters. ADC-CM series are well adapted for applications in remote areas with limited power. Ideally suited for operation from battery power, they will find wide use in oceanography, pollution monitoring, meterology and seismology. They are also ideal for other scientific uses both in the laboratory and in the field.
Power consumption is a function of the conversion rate. For 100,500 and 1000 conversions per second, the average power drain is approximately 5, 25, and 50 milliwatts, respectively
Model ADC-CM converters have the capability of operating from either a single +12VDC to +15VDC power source linterrupt power mode) or from a 12 VDC to +15 VDC power supply (continuous power mode) at a maximum conversion rate of 3 KHz .

Another key feature of the ADC CM series when operating in the interrupt power mode is its ability to normally reset in a standby state (power turned off to the analog section) and upon receipt of a convert command signal the converter will turn on, stabilize in 50 microseconds, make a complete conversion and automatically return to standby status.
All input/output control signals and output data are C/MOS compatible plus a separate logic power supply connection (+VDC-Pin 17) is provided to allow the user the convenience of TTL compatibility when required.
The ADC-CM series converters utilize C/MOS logic throughput and employ the inherently accurate successive approximation conversion method to compare an unknown analog input signal against the output of a precision digital-to-analog converter in a high gain feedback loop. This method insures a full monotonic conversion and excellent linearity over the full scale input voltage range.
Full scale input can be unipolar $(0$ to -5 V or 0 to $-10 \mathrm{~V})$ or bipolar $(\pm 5 \mathrm{~V}$ or $\pm 10 \mathrm{~V})$ by simply making the appropriate pin connections.
The entire converter is contained in a $2^{\prime \prime} \mathrm{W} \times$ $3^{\prime \prime} \mathrm{L} \times 0.8^{\prime \prime} \mathrm{H}$ plastic encapsulated module, yet fully repairable - a very significant consideration. Full scale accuracy is specified at $\pm 0.025 \%$ with a temperature coefficient of ± 30 ppm $/{ }^{\circ} \mathrm{C}$.

SEE POWER SUPPLY CONNECTIONS

DAIEL

SPECIFICATIONS (Typical @ $25^{\circ} \mathrm{C}$ unless noted)

ELECTRICAL

Inputs:

	PIN 17			
COMPATIBILITY	POWER SUPPLY	LOGIC "O"	LOGIC"1"	
TTL	+5VDC	$\leqslant+0.4 \mathrm{~V}$	$\geqslant+2.4 \mathrm{~V}$	1 TTL Load. Terminate Pin 3 to Pin 17 with 4.7K
C/MOS	+12VDC to +15VDC	0 V	VDD	Input Impedance 20K to Ground

Outputs:
Parallel Output Data. Up to 12 parallel lines of data held until next conversion command.
Output logic levels determined by power supply used, as per Table ' A '.

COMPATIBILITY	POWER SUPPLY	LOGIC " 0 "	LOGIC "1"	FAN OUT
TTL	+5VDC	$\leqslant+0.4 \mathrm{~V}$	$\geqslant+2.4 \mathrm{~V}$	2 TTL Loads
C/MOS	+12 VDC			
to				
+15VDC				

Coding
Straight Binary (Unipolar Input) Offset Binary (Bipolar Input 2's Complement (Bipolar Input)
End of Conversion Conversion status signal high during conversion. Output logic levels - See Table 'A'
Clock . Internal clock out. Positive pulse train. Pulse width: $20 \mu \mathrm{sec}$
Pulse Amplitude - See Table ' A '
PERFORMANCE:
Resolution One part in $2^{\text {n }}$ (max. resolution 12 binary bits)
($\mathrm{n}=$ Number of Binary Bits)
Accuracy
$\pm 0.025 \%$ of $\mathrm{FS} \pm 1 / 2$ LSB (Externally adjustable)
$+1 / 2$ LSB
Linearity
$\pm 30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ of $\mathrm{F} . \mathrm{S}$.
Temperature Coefficient
Encoding Time
25μ sec.. per bit
Input Settling Time
$10 \mu \mathrm{sec}$ for a full scale step at the input.
$310 \mu \mathrm{sec}$ - continuous power mode
350μ sec - interrupt power mode
Word Rate Up to 3.2 KHz - continuous power mode (12-bit)
Input Power Requirements
Up to 2.8 KHz - interrupt power mode (12-bit)
Continuous power mode:
+12 VDC to +15 VDC - See power curves next page
12VDC to -15VDC
+5 VDC for TTL Compatibility
Interrupt power mode:
+12 VDC to +15 VDC - See power curves next page
See Input Power Connections

PHYSICAL-ENVIRONMENTAL

Operating Temperature Range
Storage Temperature Range
Relative Humidity
Size
Cos 0
Case Material
Weight
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-25^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$ - add Suffix "EX" to Part Number) $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Up to 100% non-condensing
$2^{\prime \prime} \mathrm{W} \times 3^{\prime \prime} \mathrm{L} \times 0.8^{\prime \prime} \mathrm{H}$
$0.020^{\prime \prime}$ round gold plated, $0.250^{\prime \prime}$ long min.
Black Diallyl Phthalate per MIL-M-14
8 oz . Max.

TIMING - INTERRUPT POWER MODE
OUTPUT:000000000000 - 12 BINARY BITS
POWER INPUT +12VDC TO +15VDC

NOTE (1) Start Convert Input must have a minimum width of $50 \mu \mathrm{Sec}$. This time is required to internally generate $\pm 12 \mathrm{VDC}$ for the linear circuits.

> TIMING - CONTINUOUS POWER MODE
> OUTPUT: $000000000000-12$ BINARY BITS POWER INPUT $\pm 12 \mathrm{VDC}$ TO $\pm 15 \mathrm{VDC}$

SUGGESTED LOW POWER EXTERNAL INPUT AMPLIFIER FOR NON-INVERTED CODING (See coding pg. 4)

2) The inverting amplifier does not affect the connections for the ZERO, GAIN \& OFFSET Adjustments.
3) The inverting amplifier requires a maximum of 5.5 mw of extra power for the continuous mode of operation.
4) The inverting amplifier will cause a zero drift of 1.4 mv for a $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature change For a 0 to $+10 \mathrm{~V}, 12$ bit ADC-CM this is about $1 / 2$ LSB.

OUTPUT DIGITAL CODING *

Analog Input 0 V to -5 VFS	Analog Input 0 V to -10 VFS	Straight Binary	Analog Input $\pm 5 \mathrm{VFS}$	Analog Input $\pm 10 \mathrm{~V}$	Offset Binary
0.000	0.000	000000000000	15.000	$+10.000$	000000000000
0.625	-1.250	001000000000	13.750	+7.500	001000000000
1.250	-2.500	010000000000	12.500	5.000	010000000000
1.875	-3.750	011000000000	11.250	+ 2.500	011000000000
$2.500+1 \mathrm{LSB}$	$-5.000+1$ LSB	011111111111	$0.000+1$ LSE	0.000 1LSB	0111111111111
-2.500	-5.000	100000000000	0000	0.000	100000000000
$2.500-1 \mathrm{LSB}$	-5.000 1LSB	100000000001	0.000 1LSB	$0.000-1$ LSB	100000000001
3.125	-6.250	101000000000	1.250	2.500	101000000000
3.750	-7.500	110000000000	2.500	5.000	110000000000
4.375	-8.750	111000000000	3.750	7500	111000000000
$5.000+1 \mathrm{LSB}$	10.000 : 1LSB	111111111111	$5.000 \cdot 1 \mathrm{LSB}$	$10.000+1 \mathrm{LSB}$	111111111111

* Reverse coding sense: Note that the most negative analog input corresponds to full scale digital output (11-1 binary). Normal coding sense can be obtained by using an external inverting input amplifier. See page 3 for a suggested circuit.

PRICE LIST (Single Quantity)

	NOTE
ADC-CM8B	ADC-CM Series feature dual in-line pinning
ADC-CM10B	compatibility, 100" grid pin spacing
ADC-CM12B	
MATING SOCKET	

RATIOMETRIC DUAL SLOPE ANALOG TO DIGITAL CONVERTERS

FEATURES

- 4 Wire Ratiometric Operation
- Single +5 V Power Requirement
- Differential Inputs
- 40 dB Normal Mode Noise Rejection
- 70 dB Common Mode Rejection
- Binary or BCD Coding

GENERAL DESCRIPTION

The ADC-ER series dual slope A / D converters feature ratiometric operation powered by a single +5 volt logic supply. Fourwire differential inputs give high common mode rejection with the useful capability of operating with input signal and external reference at different common mode levels; the external reference voltage can be varied over $\pm 50 \%$ of nominal reference value. In addition, the conversion time can be externally adjusted to a 50 or 60 Hz period to give 40 dB minimum normal mode rejection of $A C$ power line noise.
This series is available in 5 different models with resolutions of 8,10 , or 12 binary bits and sign and $2-1 / 2$ or $3-1 / 2$ BCD digits and sign. Important applications for these converters include test and instrumentation systems and signal conversion at transducer locations. Other operating features include: a gated clock output with a counter reset pulse for transmitting data to an external counter; an internal start pulse generator with externally adjustable rate; and a -5 VDC power output supplying up to 5 mA for externally powering a transducer bridge or auxiliary amplifier.
This combination of features makes the ADC-ER an extremely versatile A / D converter for systems applications. It contains an internal precision reference of 1 V for binary models and 2 V for BCD models which is used for normal, non-ratiometric operation. In ratiometric operation the input switches between input signal and external reference during the conversion cycle. Full scale input signal is $\pm 1 \mathrm{~V}$ for binary and $\pm 2 \mathrm{~V}$ for BCD ; the input common mode vol tage range is $\pm 3 \mathrm{~V}$.
The external reference voltage range is 0.5 to 1.5 V for binary models and 1 to 3 V for $B C D$ models. Common mode rejection for both signal and reference inputs is 70 dB minimum. Optimum normal mode AC line noise rejection is achieved by external adjustment of the clock frequency to synchronize the signal integration time to either 50 Hz or 60 Hz line period. Sign-magnitude coding is used in all models.
Input power requirement is +5 VDC at 250 mA maximum and the module size is a low profile $4 \times 2 \times 0.4$ inches.

MECHANICAL DIMENSIONS INCHES (MM)

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	DIGITAL OUTPUTS				
1	ANALOG GROUND		BINARY BIT			BCDDIGIT	
3	ANALOG IN, LO		88	108	128	80	12D
5	ANALOG IN, HI	57	\times	x	\times	\times	1
7	+ REFERENCE IN	58	X	x	12	x	2
9	-REFERENCE IN	59	X	X	11	X	4
17	ZERO ADJUST	60	X	10	10	x	8
26	-REFERENCE OUT	61	X	9	9	1	10
28	+REFERENCE OUT	62	8	8	8	2	20
30	GAIN ADJ.	63	7	7	7	4	40
32	-5VDC OUT	64	6	6	6	8	80
34	POWER GROUND	65	5	5	5	10	100
36	+5V POWER IN	66	4	4	4	20	200
37	CLOCK ADJUST	67	3	3	3	40	400
39	START RATE ADJ.	68	2	2	2	80	800
41	START OUT	69	1	1	1	100	1000
43	GATED CLOCK OUT	\times INDICATES NO PIN					
45	E.O.C. (STATUS)						
46	CLOCK OUT						
48	START CONVERT						
49	COUNTER RESET						
70	LOGIC GROUND						
71	OVERLOAD						
72	SIGN						

Notes: 1. Open dots designate omitted pins

2. 0.100 inch $=2.5 \mathrm{~mm}$
3. Pin position tolerance is $\pm 0.005^{\prime \prime}$ from datum, non-accumulative
4. Analog Ground, Power Ground, and Logic Ground are all connected together internally.

5. Both analog input signal and external reference look into identical differential inputs with an electronic switch switching between the two during the conversion cycle. A bias current of typically 45 nA flows out of the input terminals and must be returned to ground. For single-ended operation Analog LO and either reference input should be connected to Analog Ground. Only one reference is required for either polarity of analog input.
6. Zero adjustment is required for either ratiometric or normal operation, but the gain adjustment is required only for normal operation (using internal reference) or applications where the internally trimmed accuracy of 0.1% is insufficient.
7. Optimum normal mode noise rejection for AC line frequencies is obtained by externally adjusting the clock frequency to give a signal integration time equal to the line frequency period of 50 or 60 Hz . This is most easily done by using a digital counter connected to the Clock Output (pin 46). If normal mode noise is negligible or of high frequency, the adjustment is not necessary. For short term measurements an adjustment to within 0.1% of line period can be achieved, resulting in 60 dB of rejection. For longer term measurements, both line frequency and clock frequency drift slightly and a more reasonable match to within 1% results in 40 dB rejection.
8. The start rate adjustment allows operating at an internally set rate of 2 conversions $/ \mathrm{sec}$. or at faster rates up to $23 / \mathrm{sec}$.

ORDERING INFORMATION

ADC-ER $/$
NO. OF BITS \& CODING
$8 B=8$ Binary Bits
$10 B=10$ Binary Bits
$12 B=12$ Binary Bits
$8 D=21 / 2$ BCD Digits
$12 D=31 / 2$ BCD Digits

PRICES (1-9)

ADC-ER8B $\$ 79.00$
ADCER10B $\$ 899.00$
ADC-ER12B $\$ 999.00$
ADC-ER8D $\$ 79.00$
ADC-ER12D $\$ 99.00$

Mating Sockets: DILS-2 (4/module) \$5.00/pair Trimming Potentiometers:

TP100K, TP10K at $\$ 3.00$ each
For extended temperature range operation, the following suffixes are added to the model number. Consult factory for pricing and delivery.
-EX $\quad-25^{\circ}$ to $+85^{\circ} \mathrm{C}$ operation
-EXX-HS $\quad-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operation with hermetically sealed semiconductor components.
The ADC-ER Series Converters are covered by GSA Contract
(BCD) or $13 /$ sec. (Binary) by external adjustment. To operate with the internal start convert, pin 41 must be connected to pin 48. The converter may also be started externally by means of a 100 nsec . min. start convert pulse applied directly to pin 48.
5. The -5 V power output from the converter may be used to power a transducer bridge or an auxiliary input amplifier such as $\mu \mathrm{A} 776$, LM308, or 4250 in conjunction with the +5 V input power. The 5 mA maximum output should not be exceeded or it will affect the operation of the converter. This output is short circuit protected to ground but should not under any circumstance be connected to +5 V or any other power supply output voltage since damage to the converter will result. The -5 V output is regulated to give a constant 10 V difference with respect to the +5 V power input with a typical tempco of $\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
6. Analog inputs exceeding the $\pm 5 \mathrm{~V}$ supply voltage, although they will not cause any damage up to $\pm 20 \mathrm{~V}$, will cause the input switch to malfunction. This will cause the overload output to remain high and the sign output may be invalid. If inputs exceeding $\pm 5 \mathrm{~V}$ are to be encountered in an application, it is recommended that clamping diodes be used from the inputs to $\pm 5 \mathrm{~V}$. Overload recovery time, $T_{O L}$, after a $\pm 5 \mathrm{~V}$ input overload is 30 msec . for all BCD models and 50 msec . for all binary models. See timing diagram.

$\begin{aligned} \text { NO. PULSES } & =2000+N(B C D \\ & =4096+N(\text { Bina })\end{aligned}$

*When synchronized to 60 Hz period. For 50 Hz period: $\mathrm{T}=40.0 \mathrm{msec}$. (BCD) $\mathrm{T}=80.0 \mathrm{msec}$. (Bin)

CODING TABLES

BCD CODING

SCALE	$21 / 2$ DIGIT		$31 / 2$ DIGIT	
	INPUT ($\pm)$	OUTPUTCODE	INPUT ($\pm)$	OUTPUT CODE
FS-1 LSD	1.99 V	110011001	1.999 V	1100110011001
$3 / 4 \mathrm{FS}$	1.50 V	101010000	1.500 V	1010100000000
$1 / 2 \mathrm{FS}$	1.00 V	100000000	1.000 V	1000000000000
$1 / 2 \mathrm{FS}-1 \mathrm{LSD}$	0.99 V	010011001	0.999 V	0100110011001
$1 / 4 \mathrm{FS}$	0.50 V	001010000	0.500 V	0010100000000
1 LSD	0.01 V	000000001	0.001 V	0000000000001
0	0.00 V	000000000	0.000 V	0000000000000

BINARY CODING

SCALE	8 BIT		10 BIT		12 BIT	
	INPUT ($\pm)$	CODE	INPUT ($\pm)$	CODE	INPUT (\pm)	CODE
FS-1 LSB	.996 V	11111111	.9990 V	1111111111	.99976 V	111111111111
$7 / 8 \mathrm{FS}$.875 V	11100000	.8750 V	1110000000	.87500 V	111000000000
$3 / 4 \mathrm{FS}$.750 V	11000000	.7500 V	1100000000	.75000 V	110000000000
$1 / 2 \mathrm{FS}$.500 V	10000000	.5000 V	1000000000	.50000 V	100000000000
$1 / 4 \mathrm{FS}$.250 V	01000000	.2500 V	0100000000	.25000 V	010000000000
$1 / 8 \mathrm{FS}$.125 V	00100000	.1250 V	0010000000	.12500 V	001000000000
1 LSB	.004 V	00000001	.0010 V	0000000001	.00024 V	000000000001
0	.000 V	00000000	.0000 V	0000000000	.00000 V	000000000000

STANDARD CONNECTIONS AND CALIBRATION

CALIBRATION

1. Connect the converter as shown in the diagram. Allow a 5 minute warm-up before making final adjustments.
2. Zero Adjustment. Short together Analog In HI (pin 5), Analog In LO (pin 3), and Analog Ground (pin 1). Adjust zero trimming potentiometer to obtain a flickering Sign (pin 72) and logic zero on all parallel data output lines.
3. Gain Adjustment. Apply a precision reference input voltage between Analog $\ln \mathrm{HI}$ (pin 5) and Analog In LO (pin 3) with the latter connected to Analog Ground (pin 1). Set the precision reference to a voltage near full scale (see coding tables) and adjust the gain trimming potentiometer to give the correct digital output code.
NOTE: The gain adjustment is internally trimmed to within $\pm 0.1 \%$ accuracy. If this accuracy is sufficient, then pin 30 should be left open. The gain adjustment is not necessary for ratiometric operation.
ADJUSTMENT OF CLOCK FREQUENCY AND START RATE
4. To obtain optimum normal mode noise rejection at either 50 or 60 Hz , the Clock Frequency Adjust potentiometer should be adjusted to give the appropriate clock frequency shown in the table. This is most easily done using a frequency counter connected to the Clock Out (pin 46). Although a 200 K adjustment potentiometer gives a full range of adjustment, most accurate adjustment is achieved by a 10 K trimming potentiometer in series with an appropriate fixed resistor value.
5. The internal start pulse generator operates at a nominal rate of 2 pulses/second with no connection to pin 39. To increase the conversion rate a resistor may be connected as shown from pin 39 to +5 V as illustrated in the calibration diagram.

PRECISION RATIOMETRIC DUAL SLOPE ANALOG TO DIGITAL CONVERTERS

FEATURES

- $41 / 2$ Digit BCD or 14 Bit Binary
- 4 Wire Ratiometric Operation
- Auto-Zero Drift Correction
- Quartz Crystal Controlled Clock
- Floated Input, $\pm 300 \mathrm{~V}$ Range
- 60 dB AC Line Noise Rejection

GENERAL DESCRIPTION

The ADC-EP series are high resolution, ratiometric A / D converters using the dual slope conversion principle. The analog input is electrically floated from digital ground by means of optical and magnetic coupling of digital signals, to permit a $\pm 300 \mathrm{~V}$ common mode input voltage range with greater than 100 dB common mode rejection. A four-wire ratiometric input permits separate connection to input signal and reference; the reference input is a flying capacitor circuit which allows the reference to operate at a different common mode level from the input signal, with greater than 70 dB common mode rejection. The external reference may vary $\pm 50 \%$ from the nominal value of 1.0 volt for ratiometric measurements; a stable internal reference of $1.00 \mathrm{~V} \pm 0.1 \%$ is also provided for fixed reference operation.
These converters are available in two basic models: a binary coded version with 14 bit resolution, and a BCD coded version with $41 / 2$ digit resolution. Both models use signmagnitude coding. An internal quartz crystal controlled clock sets the signal integration time to a precise multiple of the AC line frequency to achieve greater than 60 dB noise rejection of $A C$ line noise. The converters can be ordered with clock frequency synchronized to either 50 or 60 Hz . An auto-zeroing circuit stabilizes the zero drift of the converters to less than $\pm 1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. The conversion time, which includes an 80 msec . period for auto-zeroing, is 230 msec . for a 60 Hz synchronized model and 260 msec . for a 50 Hz synchronized model. Conversion can be initiated by either an external start pulse or by an internally generated pulse. Accuracy of both converters is $.01 \%$ of reading ± 1 count.
All digital outputs are from a CD4050 buffer, which will drive 1 TTL load or numerous CMOS loads. Other digital outputs include overrange on the BCD model, overload, sign, clock out, start out, and end of conversion (status). Two additional outputs, a gated clock and counter reset, permit serial transmission of output data to an external counter.
The unique features of these converters make them useful in a wide range of instrumentation and measurement applications. Power requirements are $\pm 15 \mathrm{VDC}$ and +5 V to +15 VDC. Package size is $4 \times 2 \times 0.8$ inches and operating temperature range is $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

MECHANICAL DIMENSIONS INCHES (MM)

INPUT/OUTPUT CONNECTIONS

	ADC-EP14B (Binary)	ADC-EP16D (BCD)
INPUTS		
Analog Input Range	$\pm 2 \mathrm{~V}$	
Reference Input Range	0.5 to 2.0 V	
Input Overvoltage, no damage ${ }^{1}$	$\pm 25 \mathrm{~V}$	
Input Impedance ${ }^{1}$	100 Meg. min.	
Input Bias Current ${ }^{1}$	100pA max.	*
Common Mode Voltage Range ${ }^{2}$	$\pm 300 \mathrm{~V}$ max.	*
Common Mode Rej., DC-60Hz, 1 K unbal. ${ }^{2}$.	100 dB min.	*
Common Mode Range, ref. to analog com. . .	$\pm 5 \mathrm{~V}$	
Common Mode Rej. of Reference, DC-60Hz.	$70 \mathrm{~dB} \mathrm{~min} .$	
Start Conversion	CMOS input, positive 0 to + Vcc pulse with $1 \mu \mathrm{sec} \mathrm{min}$. duration. 100K input impedance. Logic " 1 " resets converter. Logic " 0 " initiates conversion. CMOS input, positive 0 to +Vcc pulse with approx. 50\% duty cycle.	
Start Conversion Clock In . . .		
OUTPUTS ${ }^{3}$		
Parallel Output Data	14 parallel lines	16 parallel lines and overrange

1. In order to make use of the floated analog input capability of the ADC-EP series, the ± 15 VDC analog power supply must be floated with respect to the digital logic supply (Vcc). If floated analog input is not required, then analog and digital grounds may be connected together. The analog input is single-ended with 100 megohm input impedance. The input bias current between ANALOG IN and ANALOG COMMON is 100 pA max. and this value doubles every $10^{\circ} \mathrm{C}$.
2. The reference input is a flying capacitor circuit which permits the external reference to operate at a $\pm 5 \mathrm{~V}$ common mode voltage with respect to analog common with greater than 70 dB CMR. The $1 \mu \mathrm{~F}$ flying capacitor is charged from two 10 K resistors which give a time constant of 20 msec. (not counting reference source impedance). This means that if the external reference changes value, 9 time constants or 180 msec . should be allowed before a correct conversion can be initiated. Or, more simply, after the reference changes to a new value approximately one full conversion period should be allowed before the next correct conversion. It should be noted that only one reference is required

ORDERING INFORMATION

PRICES (1-9)
ADC-EP16D-5
ADC-EP16D-6 $\$ 179.00$

Mating Sockets: DILS-2 (4/module) \$5.00/pair Trimming Potentiometers:

TP200, TP100K at $\$ 3.00$ each

For extended temperature range operation, the following suffixes are added to the model number. Consult factory for pricing and delivery.
-EX $\quad-25^{\circ}$ to $+85^{\circ} \mathrm{C}$ operation
-EXX-HS $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operation with hermetically seaied semiconductor components.

The ADC-EP Series Converters are covered by GSA Contract
for either polarity of analog input. The polarity of the analog input is automatically sensed by the converter.
3. Both ADC-EP models are internally calibrated to within ± 2 LSB's at zero and $\pm 0.1 \%$ at full scale. If this accuracy is sufficient in an application, no external adjustments are required. The internal 1.0 volt reference may also be used as a reference for other A/D converters or other circuits provided that its output is buffered with a voltage follower op amp of sufficient stability. Temperature coefficient of this reference is only $\pm 8 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ and output impedance is 1.3 K ohms.
4. For both models 80 milliseconds of the total conversion time is devoted to drift correction (auto-zeroing) before the next conversion cycle begins. A full scale input will be converted with parallel data ready in either 150 msec . (60 Hz synchr.) or 180 msec. (50 Hz synchr.). The E.O.C. (status) output changes state at this time, indicating that data is ready. The next conversion, however, should not be initiated until the 80 msec . auto-zero is completed. For inputs less than full scale, the output data is ready even sooner than 150 or 180 msec .
5. The converters can be operated with the internal start generator at 2 conversions/ second or they can be started with an external start pulse at 3.8 conversions $/ \mathrm{sec}$. (50 Hz models) or 4.3 conversions $/ \mathrm{sec}$. (60 Hz models). The internal start pulse generator can also be slowed to less than 2 pulses $/ \mathrm{sec}$. by means of an external capacitor as shown in the application diagram.
6. The GATED CLOCK OUT and COUNTER RESET are convenient outputs for use with an external or remote counter in applications where serial data transmission is required.
7. An external clock may also be used with the ADC-EP converters by providing an input pulse train from $O V$ to $+V$ ec at approximately 50% duty cycle. For proper operation, the external clock frequency should be within $\pm 10 \%$ of the internal crystal clock frequencies which are given here:

	50 Hz Sync.	60 Hz Sync.
BCD	166.66 kHz	200.00 kHz
Bin	136.53 kHz	163.84 kHz

8. The excellent normal mode rejection of AC power line frequency noise of the converters is due to the accurate and stable synchronization of the signal integration part of the conversion cycle with the line frequency. This synchronization is held to within 0.1% by the quartz crystal controlled clock. The correct model should be specified for operation with the appropriate AC line frequency.

TIMING DIAGRAM

CODING TABLES

BCD CODING

SCALE	4122 DIGIT					
	INPUT (\pm)		OUTPUT CODE			
FS-1LSB	1.9999 V	1	1001	1001	1001	1001
3/4 FS	1.5000 V	1	0101	0000	0000	0000
1/2 FS	1.0000 V	1	0000	0000	0000	0000
1/2 FS-1 LSB	0.9999 V	0	1001	1001	1001	1001
1/4 FS	0.5000 V		0101	0000	0000	0000
1 LSB	0.0001 V	0	0000	0000	0000	0001
0	0.0000 V	0	0000	0000	0000	0000

BINARY CODING

SCALE	14 BIT				
	INPUT (\pm OUTPUT CODE				
FS-1 LSB	1.99988 V	1111	1111	1111	11
7/8 FS	1.75000 V	1110	0000	0000	00
$3 / 4 \mathrm{FS}$	1.50000 V	1100	0000	0000	00
$1 / 2 \mathrm{FS}$	1.00000 V	1000	0000	0000	00
$1 / 4 \mathrm{FS}$	0.50000 V	0100	0000	0000	00
$1 / 8 \mathrm{FS}$	0.25000 V	0010	0000	0000	00
1 LSB	0.00012 V	0000	0000	0000	01
0	0.00000 V	0000	0000	0000	00

STANDARD CONNECTIONS \& CALIBRATION

CALIBRATION INSTRUCTIONS

1. Connect the converter as shown in the diagram. Allow a 15 minute warm-up time before making final adjustments.
2. Zero Adjustments. Short together ANALOG IN (pin 5) and ANALOG COM (pin 1). Adjust the ZERO ADJ. potentiometer to obtain a flickering SIGN bit output (pin 72) along with logic zeros on all parallel data output lines. NOTE: The autozeroed initial offset is factory calibrated to within ± 2 LSB's of zero (for either binary or BCD versions). If this is accurate enough for the required application, then no zeroing adjustment is required and pin 17 should be left open.
3. Gain Adjustment. Apply an external precision reference voltage between ANALOG IN (pin 5) and ANALOG COM (pin 1). Set the precision reference voltage to a voltage near full scale, say FS-1 LSB (see coding tables), and adjust the GAIN ADJ. potentiometer to give the correct digital output code.
NOTE: The gain (set by internal reference) is factory calibrated to within $\pm 0.1 \%$. If this is accurate enough for the required application, then no gain adjustment is required and the GAIN ADJ. potentiometer should be omitted. For ratiometric operation, a gain adjustment is not required.

RATIOMETRIC OPERATION

TWO WAYS TO ALTER CONVERSION RATE

CONTROLLING CONVERSION

The internal start pulse generator operates at a nominal rate of 2 pulses/second. This rate may be decreased, however, by means of an external capacitor between START OUT (pin 43) and START ADJ. (pin 45). A tantalum capacitor may be used to give a conversion time as shown in the formula. Since the conversion time of the ADC-EP is either 230 or 260 msec ., depending on the model, a conversion rate as fast as 4.3 conversions per second may te achieved using an external start convert pulse as shown in the second diagram. If the pulse is from a TTL logic source, a 1 K pull-up resistor must be used along with VCc voltage of $+5 V D C$ for the converter. The external start pulse may also be derived from CMOS logic in which case the same supply voltage must be used for the external logic and Vcc of the converter.

MEASUREMENT OF LOAD CELL OUTPUT OVER LONG WIRES \& HIGH COMMON MODE VOLTAGE

```
1. This circuit withstands a common mode voltage, Ecm, of \(\pm 300 \mathrm{~V}\) Max.
2. Common mode rejection of Ecm is 100 dB, D.C. to 60 HZ .
3. Normal mode rejection of line frequency noise is 60 dB .
```


DIA Converters Rapid Selection Guide

The Rapid Selection Guide presented below is a capsule summary of all of Datel Systems' D/A converter series. Because we manufacture the broadest line of DAC's in the industry, this table is a useful guide for quickly locating the converters, by price range and performance, that are most suitable for your application.

After locating the desired converter series, turn to the following pages which present more detailed specifications of the various models in tabular form.

Converter Type	Series	Resolution	Output	Settling Time	Tempco	Price Range	See Page
Low Cost General Purpose	DAC-9, 19, 29	8 Bits	Current, Voltage	$\begin{aligned} & 300-500 \mathrm{nsec}, \\ & 5-20 \mu \mathrm{sec} \text {. } \end{aligned}$	$50-100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	\$14.95-\$39	70
	DAC-49	10 Bits	Current, Voltage	$300 \text { nsec, }$ $5 \mu \mathrm{sec} .$	$50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	\$49.00	70
	DAC-69	12 Bits	Current, Voltage	$\begin{aligned} & 300 \mathrm{nsec}, \\ & 20 \mu \mathrm{sec} . \\ & \hline \end{aligned}$	$50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	\$59.00	70
High Performance Moderate Cost	DAC-HB	8,10,12 Bits	Voltage	$5 \mu \mathrm{sec}$.	$30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	\$65-\$89	72
	DAC-I	8,10,12 Bits	Current	150 nsec.	$15 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	\$69-\$89	72
	DAC-R	8, 10, 12 Bits	Voltage	$5 \mu \mathrm{sec}$.	$30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	\$69-\$79	72
	DAC-V	8,10,12 Bits	Voltage	$2 \mu \mathrm{sec}$.	$20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	\$79-\$119	72
High Speed	DAC-FI-GI, HI	8,10,12 Bits	Current	25-100 nsec.	$15.30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	\$79-\$129	74
	DAC-HV-100	6,8,10 Bits	Voltage	50-100 nsec.	$60 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	\$169-\$189	74
Low Drift and High Resolution	DAC-169	16 Bits	Current, Voltage	$\begin{gathered} 750 \mathrm{nsec}, \\ 30 \mu \mathrm{sec} . \end{gathered}$	$10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	\$109.00	76
	DAC-HR	$\begin{aligned} & 13,14,15, \\ & 16 \text { Bits } \end{aligned}$	Current	$1 \mu \mathrm{sec}$.	$1.5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	\$249-\$299	76
	DAC-TR	8, 10, 12 Bits	Voltage	$5 \mu \mathrm{sec}$.	$7 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	\$129-\$179	76
Special Purpose	DAC-CM	8, 10, 12 Bits	Voltage	$25 \mu \mathrm{sec}$.	$30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	\$119-\$139	78
	DAC-DG	12 Bits	Voltage	600 nsec.	$35 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	\$249.00	78
	DAC-MI, MV	8, 10, 12 Bits	Current, Voltage	$\begin{aligned} & 150 \mathrm{nsec}, \\ & 4 \mu \mathrm{sec} . \end{aligned}$	$30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	\$119-\$159	78
	DAC-VR	8,10,12 Bits	Voltage	$2 \mu \mathrm{sec}$.	$20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	\$ 89-\$129	78
Hybrid and Monolithic	DAC-IG	8, 10 Bits	Current	250-300 nsec.	$20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	\$8.95	80
	DAC-HZ, HK	12 Bits	Voltage	$3 \mu \mathrm{sec}$.	$10-20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	\$ 39-\$139	80
	DAC-HF	8,10,12 Bits	Current	50 nsec .	$30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	*	80
	DAC-HA	12 Bits	Current	500 nsec.	$3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	*	80
	DAC-HC	12 Bits	Voltage	$10 \mu \mathrm{sec}$.	$20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	*	80
	DAC-HU	4 Bits	Current	20 nsec .	$40 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	*	80

*To be announced.

Low Cost, General Purpose DIA Converters

	Model	Resolution	Accuracy (\% FS)	Output	Settling Time	Linearity
Lowest Cost Current Output	DAC-98BI (1)	8 Bits	0.2\%	Current	500 nsec.	1/2 LSB
	DAC-98DI (1)	2 Digits	0.5\%			
	DAC-98BIR	8 Bits	0.2\%			
	DAC-98DIR	2 Digits	0.5\%			
8 Bit Voltage \& Current Output	DAC-198B	8 Bits	0.2\%	Voltage	$20 \mu \mathrm{sec}$.	1/2 LSB
	DAC-198D	2 Digits	0.5\%	Voltage	$20 \mu \mathrm{sec}$.	
	DAC-198BI	8 Bits	0.2\%	Current	300 nsec .	
	DAC-198DI	2 Digits	0.5\%	Current	300 nsec .	
$5 \mu \mathrm{sec}$. Settling Time	DAC-298B	8 Bits	0.2\%	Voltage	$5 \mu \mathrm{sec}$.	1/2 LSB
	DAC-298D	2 Digits	0.5\%			
10 Bit Voltage \& Current Output	DAC-4910B	10 Bits	.05\%	Voltage	$5 \mu \mathrm{sec}$.	1/2 LSB
	DAC-4910BI	10 Bits	.05\%	Current	300 nsec.	
	DAC4912D	3 Digits	.05\%	Voltage	$5 \mu \mathrm{sec}$.	
	DAC-4912DI	3 Digits	.05\%	Current	300 nsec.	
12 Bit Voltage \& Current Output	DAC-6912B	12 Bits	.01\%	Voltage	$20 \mu \mathrm{sec}$.	1/2 LSB
	DAC-6912BI	12 Bits	.01\%	Current	300 nsec.	

NOTES: 1. These models derive their reference from the +15 V supply.
2. Coding: Bin = Straight binary or offset binary
$B C D=$ Binary coded decimal
$2 \mathrm{C}=$ Two's complement

DAC-9 SERIES: These low cost modular DAC's feature an excellent choice of both current and voltage output models with 8 to 12 bit resolutions. All units have internal voltage references except for DAC-98BI and DAC-98DI which derive their reference voltage from the +15 volt supply. Output settling times vary from 300 to 500 nsec . for current outputs and from $5 \mu \mathrm{sec}$. to $20 \mu \mathrm{sec}$. for voltage outputs.
ALL MODELS: have operating temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$; have DTL/TTL compatible inputs; use DIL- 1 or DILS- 2 dual-in-line strips for sockets.
See pages 284 and 285 for information on Extended Performance versions.

$\begin{gathered} \text { Input } \\ \text { Coding (2) } \end{gathered}$	Output Ranges	Gain Tempco	Power Requirement	Case Size (inches)	$\begin{aligned} & \text { Price } \\ & \text { (1-9) } \end{aligned}$	See Page
Bin	0 to +2.6 mA	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	+15V	$2 \times 1 \times 0.375$	\$14.95	*
BCD	0 to +1.6 mA				\$14.95	
Bin	0 to +2.6 mA				\$16.95	
BCD	0 to +1.6 mA				\$16.95	
Bin, 2C	0 to $+10 \mathrm{~V}, \pm 5 \mathrm{~V}$	$50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{~V}$	$2 \times 2 \times 0.375$	\$29.00	*
BCD	0 to +10 V				\$29.00	
Bin	0 to +2.5 mA				\$29.00	
BCD	0 to +1.54 mA				\$29.00	
Bin, 2C	0 to $+10 \mathrm{~V}, \pm 5 \mathrm{~V}$	$50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{~V}$	$2 \times 2 \times 0.375$	\$39.00	*
BCD	0 to +10 V				\$39.00	
Bin, 2C	0 to $+10 \mathrm{~V}, \pm 5 \mathrm{~V}$	$50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{~V}$	$2 \times 2 \times 0.375$	\$49.00	*
Bin	0 to +2.5 mA			$2 \times 2 \times 0.375$	\$49.00	
BCD	0 to +10 V			$2 \times 2 \times 0.375$	\$49.00	
BCD	0 to +1.54 mA				\$49.00	
Bin, 2C	0 to $+10 \mathrm{~V}, \pm 5 \mathrm{~V}$	$50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{~V}$	$2 \times 2 \times 0.375$	\$59.00	*
Bin	0 to +2.5 mA				\$59.00	

THESE CONVERTERS ARE COVERED BY GSA CONTRACT

* Contact nearest Datel sales office for data sheet.

High Performance, Moderate Cost DIA Converters

	Model	Resolution	Accuracy (\% FS)	Output	Settling Time	Linearity
Voltage Output, $5 \mu \mathrm{sec}$. Settling	DAC-HB8B	8 Bits	0.2\%	Voltage	$5 \mu \mathrm{sec}$	1/2 LSB
	DAC-HB10B	10 Bits	.05\%			
	DAC-HB12B	12 Bits	.01\%			
	DAC-HB12D	3 Digits	.05\%			
Current Output, 150 nsec. Settling	DAC-18B	8 Bits	0.2\%	Current	150 nsec.	1/2 LSB
	DAC-I10B	10 Bits	.05\%			
	DAC-I12B	12 Bits	.01\%			
	DAC-18D	2 Digits	0.5\%			
	DAC-112D	3 Digits	.05\%			
DAC-120Z Equivalent	DAC-R8B	8 Bits	0.2\%	Voltage	$5 \mu \mathrm{sec}$.	1/2 LSB
	DAC-R10B	10 Bits	.05\%			
	DAC-R12B	12 Bits	.01\%			
	DAC-R8D	2 Digits	0.5\%			
	DAC-R12D	3 Digits	.05\%			
Fast, Voltage Output $2 \mu \mathrm{sec}$. Settling	DAC-V8B	8 Bits	0.2\%	Voltage	$2 \mu \mathrm{sec}$.	1/2 LSB
	DAC-V10B	10 Bits	.05\%			
	DAC-V12B	12 Bits	.01\%			
	DAC-V8D	2 Digits	0.5\%			
	DAC-V12D	3 Digits	.05\%			
$\text { NOTE: 1. Coding: } \begin{aligned} \operatorname{Bin} & =\text { Straight binary or offset binary } \\ B C D & =\text { Binary coded decimal } \\ C B i n & =\text { Complementary binary } \\ C B C D & =\text { Complementary } B C D \end{aligned}$						

DAC-HB SERIES: These models feature voltage outputs with settling time of $5 \mu \mathrm{sec}$. Resolution is $8-12$ bits with a 3 digit BCD model. Unipolar or bipolar operation is obtained by pin connection.

DAC-I SERIES: This series features low drift ($15 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$) current outputs with 150 nsec. settling time. Resolution is 8 through 12 bits with 2 BCD models.

DAC-R SERIES: This general purpose series features 8 through 12 bit performance with complementary input coding. Voltage output settling time is $5 \mu \mathrm{sec}$. The DAC-R12B is a pin and performance equivalent of the popular DAC-120Z converter.

DAC-V SERIES: These models are fast settling ($2 \mu \mathrm{sec}$.) voltage output devices with 8,10 , and 12 bit resolutions.

ALL MODELS: have operating temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$; have DTL/TTL compatible inputs; use DILS-1 or DILS-2 dual-in-line strips for sockets.

See pages 284 and 285 for information on Extended Performance versions.

Input Coding (1)	Output Ranges	Gain Tempco	Power Requirement	Case Size (inches)	Price (1-9)	See Page
Bin	0 to $+10 \mathrm{~V}, \pm 5 \mathrm{~V}$	$30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{~V}$	$2 \times 1.5 \times 0.375$	\$ 65.00	*
					\$ 79.00	
					\$ 89.00	
BCD	0 to +10 V				\$ 89.00	
Bin	0 to $+2, \pm 1 \mathrm{~mA}$	$15 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{~V}$	$2 \times 1 \times 0.375$	\$ 69.00	
					\$ 79.00	
					\$ 89.00	*
BCD	0 to +1.25 mA				\$ 69.00	
					\$ 89.00	
C Bin	$\begin{aligned} & \pm 2.5, \pm 5, \pm 10 \mathrm{~V} \\ & 0 \text { to }+5,+10 \mathrm{~V} \end{aligned}$	$30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{~V},+5 \mathrm{~V}$	$2 \times 2 \times 0.375$	\$ 69.00	
					\$ 75.00	
					\$ 79.00	99
C BCD	0 to $+5,+10 \mathrm{~V}$				\$ 69.00	
					\$ 79.00	
Bin	$\begin{aligned} & \pm 5, \pm 10 \mathrm{~V} \\ & 0 \text { to }+5,+10 \mathrm{~V} \end{aligned}$	$20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{~V}$		\$ 79.00	
					\$ 99.00	
				$2 \times 2 \times 0.375$	\$119.00	*
BCD	0 to $+5,+10 \mathrm{~V}$				\$ 79.00	
					\$119.00	

THESE CONVERTERS ARE COVERED BY GSA CONTRACT

* Contact nearest Datel sales office for data sheet.

High Speed D|A Converters

DAC-FI, GI, HI SERIES: These fast current output models feature settling times from 100 nsec . down to 25 nsec . Resolution is from 8 bits to 12 bits with temperature coefficients from $30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ down to $15 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. This series is designed to drive a small value load resistor directly or the summing junction of a fast operational amplifier.

DAC-HV-100 SERIES: These ultra fast voltage output models have settling times from 100 nsec , to 50 nsec . with an output drive capability up to 100 mA . These devices are ideal for fast applications where it is necessary to drive a 50 ohm cable directly.

ALL MODELS: have operating temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$; have DTL/TTL compatible inputs; use DILS-1 or DILS-2 dual-in-line strips for sockets.

See pages 284 and 285 for information on Extended Performance versions.

	Model	Resolution	Accuracy (\% FS)	Output	Settling Time	Linearity
100 nsec. Current Out	DAC-FI8B	8 Bits	0.2\%	Current	100 nsec .	1/2 LSB
	DAC-FI10B	10 Bits	.05\%			
50 nsec. Current Out	DAC-GI8B	8 Bits	0.2\%	Current	50 nsec .	1/2 LSB
	DAC-GI10B	10 Bits	.05\%			
$25 \& 50$ nsec. Current Out	DAC-HI8B	8 Bits	0.2\%	Current	25 nsec.	1/2 LSB
	DAC-H!10B	10 Bits	.05\%		25 nsec.	
	DAC-HI12B	12 Bits	.01\%		50 nsec.	
$50 \& 100$ nsec. Voltage Out	DAC-HV6B-100	6 Bits	0.8\%	Voltage (1)	50 nsec.	1/2 LSB
	DAC-HV8B-100	8 Bits	0.2\%		50 nsec .	
	DAC-HV10B-100	10 Bits	.05\%		100 nsec .	

NOTES: 1. Has 100 mA output current drive capability.
2. Coding: Bin = Straight binary or offset binary

Input Coding (2)	Output Ranges	Gain Tempco	Power Requirement	Case Size (inches)	Price $(1-9)$	See Page
Bin	$\pm 2.5,+5 \mathrm{~mA}$	$30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{~V}$	$2 \times 2 \times 0.375$	\$ 79.00	91
					\$ 99.00	
Bin	$\pm 2.5,+5 \mathrm{~mA}$	$30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{~V}$	$2 \times 2 \times 0.375$	\$ 89.00	91
					\$109.00	
Bin	$\pm 2.5,+5 \mathrm{~mA}$	15ppm/ ${ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{~V}$	$2 \times 2 \times 0.375$	\$ 99.00	91
		$15 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$			\$119.00	
		$20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$			\$129.00	95
Bin	0 to +5 V	$60 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{~V}$	$3 \times 2 \times 0.375$	\$169.00	97
					\$179.00	
					\$189.00	

THESE CONVERTERS ARE COVERED BY GSA CONTRACT

Low Drift and High Resolution D|A Converters

	Model	Resolution	Accuracy (\% FS)	Output	Setting Time	Linearity
Low Cost 16 Bits	DAC-169-16B	16 Bits	.005\%	Voltage (1)	$30 \mu \mathrm{sec}$.	4 LSB
	DAC-169-16D	4 Digits				1/2 LSB
Ultra Low Drift, $1.5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	DAC-HR13B	13 Bits	.006\%	Current	$1 \mu \mathrm{sec}$.	1/2 LSB
	DAC-HR14B	14 Bits	.003\%			1/2 LSB
	DAC-HR15B	15 Bits	.0015\%			1/2 LSB
	DAC-HR16B	16 Bits	.0015\%			1 LSB
Low Drift, $7 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	DAC-TR8B	8 Bits	0.2\%	Voltage	$5 \mu \mathrm{sec}$.	
	DAC-TR10B	10 Bits	.05\%			
	DAC-TR-12B	12 Bits	.01\%			1/2 LSB
	DAC-TR-8D	2 Digits	0.5\%			
	DAC-TR-12D	3 Digits	.05\%			

NOTES: 1. Can also be connected for current output. Current output is 0 to +2 mA or $\pm 1 \mathrm{~mA}$ for binary version and 0 to +1.25 mA for BCD version.
2. Coding: Bin =Straight binary or offset binary

BCD = Binary coded decimal
C Bin = Complementary binary
C BCD $=$ Complementary BCD

DAC-169 SERIES: These low cost, high resolution DAC's feature 16 bit or 4 BCD digit resolution with $.005 \%$ linearity and $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ temperature coefficient. By pin connection the output can be configured for either voltage or current output.

DAC-HR SERIES: This series features 13 through 16 bit resolutions with an ultra-low tempco of only $1.5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. This is achieved by a low T.C. resistor network and an oven controlled zener reference. Linearity is $.0015 \%$ and these models have current outputs.

DAC-TR SERIES: These models feature low tempco ($7 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$) voltage outputs with $5 \mu \mathrm{sec}$. settling time. Input coding is complementary binary or complementary $B C D$.

ALL MODELS: have operating temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$; have DTL/TTL compatible inputs; use DILS-1 or DILS-2 dual-in-line strips for sockets.

See pages 284 and 285 for information on Extended Performance versions.

Input Coding (2)	Output Ranges	Gain Tempco	Power Requirement	Case Size (inches)	Price $(1-9)$	See Page
Bin	$+10 \mathrm{~V},-10 \mathrm{~V}, \pm 5 \mathrm{~V}$	$10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{~V}$	$2 \times 2 \times 0.375$	\$109.00	101
BCD	$+10 \mathrm{~V},-10 \mathrm{~V}$				\$109.00	
C Bin	0 to $+2 \mathrm{~mA}, \pm 1 \mathrm{~mA}$	$1.5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{~V}$	$4 \times 2 \times 0.4$	\$249.00	103
					\$263.00	
					\$276.00	
					\$299.00	
C Bin	$\begin{aligned} & \pm 2.5, \pm 5, \pm 10 \mathrm{~V} \\ & 0 \text { to }+5,+10 \mathrm{~V} \end{aligned}$	$7 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{~V},+5 \mathrm{~V}$	$2 \times 2 \times 0.375$	\$129.00	
					\$159.00	
					\$179.00	99
C BCD	0 to $+5,+10 \mathrm{~V}$				\$129.00	
					\$179.00	

THESE CONVERTERS ARE COVERED BY GSA CONTRACT

Special Purpose DIA Converters

	Model	Resolution	Accuracy (\% FS)	Output	Settling Time	Linearity
Low Power CMOS	DAC-CM8B	8 Bits	0.2\%	Voltage	$25 \mu \mathrm{sec}$.	1/2 LSB
	DAC-CM10B	10 Bits	.05\%			
	DAC-CM12B	12 Bits	.01\%			
DeglitchedDAC	DAC-DG12B1	12 Bits	.01\%	Voltage (1)	600 nsec.	1/2 LSB
	DAC-DG12B2	12 Bits	.01\%			
Multiplying DAC, Two Quadrant	DAC-M18B	8 Bits	0.2\%	Current	150 nsec .	1/2 LSB
	DAC-MI10B	10 Bits	.05\%			
	DAC-MI 12B	12 Bits	.01\%			
	DAC-MI8D	2 Digits	0.5\%			
	DAC-MI12D	3 Digits	.05\%			
Multiplying DAC, Four Quadrant	DAC-MV8B	8 Bits	0.2\%	Voltage	$4 \mu \mathrm{sec}$.	1/2 LSB
	DAC-MV10B	10 Bits	.05\%			
	DAC-MV12B	12 Bits	.01\%			
	DAC-MV8D	2 Digits	0.5\%			
	DAC-MV12D	3 Digits	.05\%			
Digital Input Register	DAC-VR8B	8 Bits	0.2\%	Voltage	$2 \mu \mathrm{sec}$.	1/2 LSB
	DAC-VR10B	10 Bits	.05\%			
	DAC-VR12B	12 Bits	.01\%			
	DAC-VR8D	2 Digits	0.5\%			
	DAC-VR12D	3 Digits	.05\%			

NOTES: 1 . Glitch amplitude is ± 2 LSB's maximum.
2. Coding: Bin $=$ Straight binary or offset binary $B C D=$ Binary coded decimal 2C = Two's complement

DAC-CM SERIES: These 8, 10, and 12 bit models are low power CMOS devices consuming only 40 milliwatts of power. They are ideal for portable and remote instrumentation systems.

DAC-DG SERIES: These devices are 12 bit self-contained deglitched DAC's in a compact $4 \times 2 \times 0.4$ inch module. Output settling is a fast 600 nsec . and glitch amplitude is less than 2 LSB's.

DAV-MI, MV SERIES: These 8,10 , and 12 bit DAC's feature 2 and 4 quadrant multiplying capability with voltage or current outputs and excellent bandwidth.

DAC-VR SERIES: These 8,10 , and 12 bit models have a fast ($2 \mu \mathrm{sec}$.) voltage output with a $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ tempco. They feature a digital input storage register for maximum flexibility in transferring input data.
ALL MODELS: Have operating temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$; have DTL/TTL compatible inputs, except for DAC-CM, which is CMOS; use DILS-1 or DILS-2 dual-in-line strips for sockets.

See pages 284 and 285 for information on Extended Performance versions.

Input Coding (2)	Output Ranges	Gain Tempco	Power Requirement	Case Size (inches)	$\begin{aligned} & \text { Price } \\ & \text { (1-9) } \end{aligned}$	See Page
Bin		$30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{~V}$	$2 \times 2 \times 0.375$	\$119.00	*
					\$129.00	
					\$139.00	
Bin	$-10 \mathrm{~V} ; \pm 5, \pm 10 \mathrm{~V}$	$35 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{~V},+5 \mathrm{~V}$	$4 \times 2 \times 0.4$	\$249.00	*
2 C	$\pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}$				\$249.00	
Bin	$\pm 1 \mathrm{~mA}$	$30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{~V}$	$3 \times 2 \times 0.375$	\$119.00	*
					\$129.00	
					\$159.00	
BCD	0 to -1.25 mA				\$119.00	
					\$159.00	
Bin	$\pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}$	$30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{~V}$	$3 \times 2 \times 0.375$	\$119.00	*
					\$129.00	
					\$159.00	
BCD	0 to $+5,+10 \mathrm{~V}$				\$119.00	
					\$159.00	
Bin	$\begin{aligned} & \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V} \\ & 0 \text { to }+5,+10 \mathrm{~V} \end{aligned}$	$20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{~V},+5 \mathrm{~V}$	$2 \times 2 \times 0.375$	\$ 89.00	*
					\$109.00	
					\$129.00	
					\$ 89.00	
BCD	0 to $+5,+10 \mathrm{~V}$				\$129.00	

THESE CONVERTERS ARE COVERED BY GSA CONTRACT

Hybrid and Monolithic DIA Converters

DAC-IC SERIES: These 8 and 10 bit DAC's are low cost current output models. They are monolithic devices in 16 pin DIP packages. The 10 bit models are coming soon.

DAC-HA SERIES: These models are new 12 bit multiplying CMOS DAC's with current output. Coming soon.

DAC-HC SERIES: These new models are high performance, low power CMOS units with internal reference and output amplifier Unipolar or bipolar operation is achieved by external pin connection. Coming soon.

DAC-HP SERIES: This series consists of a 16 bit binary and a 4 digit BCD model. The two models have voltage outputs and are housed in a metal case. Coming soon

DAC-HZ SERIES: These high performance 12 bit DAC's have pin-programmable outputs and a $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ tempco Models are available with either complementary binary or complementary BCD coding. A low drift version has a $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max tempco. The different models in this series operate over 3 different temperature ranges and are in glass or metal cases.

	Model	Resolution	Accuracy (\% FS)	Output	Settling Time	Linearity
8 Bit Monolithic	DAC-IC8BC	8 Bits	0.2\%	Current	300 nsec.	1/2 LSB
	DAC-IC8BM	8 Bits	0.2\%			
Coming! 10 Bit Monolithic	DAC-IC10BC	10 Bits	.05\%	Current	250 nsec.	1/2 LSB
	DAC-IC10BM	10 Bits	.05\%			
Coming! 12 Bit Hybrid CMOS	DAC-HA12B	12 Bits	.01\%	Current	500 nsec.	1/2 LSB
	DAC-HA12D	3 Digits	.05\%			
Coming! 12 Bit Hybrid CMOS	DAC-HC12B	12 Bits	.01\%	Voltage	$5 \mu \mathrm{sec}$.	1/2 LSB
	DAC-HC12D	3 Digits	.01\%			
Coming! 16 Bit Hybrid	DAC-HP16BM	16 Bits	.005\%	Voltage	$10 \mu \mathrm{sec}$.	4 LSB
	DAC-HP16DM	4 Digits	.005\%			1/2 LSB
High Performance 12 Bit Hybrids	DAC-HZ12BGC	12 Bits	.01\%	Voltage	$3 \mu \mathrm{sec}$.	1/2 LSB
	DAC-HZ12BGR	12 Bits	.01\%			
	DAC-HZ12BMC	12 Bits	.01\%			
	DAC-HZ12BMR	12 Bits	.01\%			
	DAC-HZ12BMR-1	12 Bits	.01\%			
	DAC-HZ12BMM	12 Bits	.01\%			
Coming! Hybrid w. Input Register	DAC-HK12B	12 Bits	.01\%	Voltage	$3 \mu \mathrm{sec}$.	1/2 LSB
	DAC-HK12D	3 Digits	.05\%			
Coming! Fast, Current Output Hybrids	DAC-HF8B	8 Bits	0.2\%	Current	50 nsec.	1/2 LSB
	DAC-HF10B	10 Bits	.05\%			
	DAC-HF12B	12 Bits	.01\%			
Coming! Ultra-Fast	DAC-HU4B	4 Bits	3.0\%	Current	20 nsec.	1/4 LSB

NOTES: 1. All models in this series are also available with 3 digit $B C D$ coding. Prices are same as binary. For correct model designation, change " B " to " D " in model number.
2. Coding: Bin $=$ Straight binary or offset binary

BCD = Binary coded decimal
C Bin = Complementary binary or comp. offset Bin C BCD $=$ Complementary binary coded decimal 15 line $=8$ bit input, no coding

DAC-HK SERIES: These models are identical in performance with the DAC-HZ series except that they have an input digital register. Coming soon

DAC-HF SERIES: This series of 8,10 , and 12 bit current output models feature a 10 mA full scale output current which settles in 50 nsec. for high speed applications. Coming soon.

DAC-HU4B: This model is a 4 bit, 15 line ECL input DAC for very fast applications The 15 mA full scale output current settles in 20 nsec. Coming soon.

ALL MODELS: Have operating temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ except for those models specified otherwise; have DTL/TTL compatible inputs except for DAC-HU4B which is ECL compatible; use DILS-3 24 pin socket except for DAC-IC series, DAC-HA series and DAC-HU4B.

d/A CONVERTER
DAリEL
D/A CONVERTER DAC-HZ12BMR

Input Coding	Output Ranges	Gain Tempco	Temp. Range	Power Requirement	Case	Price (1.9)	$\begin{aligned} & \text { See } \\ & \text { Page } \end{aligned}$
Bin	0 to -2 mA	$20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	0 to 70C	$+5 \mathrm{~V},-15 \mathrm{~V}$	16 Pin DIP	\$8.95	83
			-55 to +125C			\$12.45	
Bin	0 to -4 mA	$20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	0 to 70C	$+5 \mathrm{~V},-15 \mathrm{~V}$	16 Pin DIP	\$14.90	**
			-55 to +125 C			*	
Bin	$\pm 1 \mathrm{~mA}$	$3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	0 to 70C	$+5 \mathrm{~V}$	18 Pin DIP		**
BCD						*	
Bin	$+5,+10, \pm 2.5, \pm 5, \pm 10 \mathrm{~V}$	$20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	0 to 70C	$\pm 15 \mathrm{~V}$	24 Pin DIP	*	**
BCD	0 to $+5,+10 \mathrm{~V}$					*	
C Bin	0 to $+10, \pm 5 \mathrm{~V}$	$20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	0 to 70C	$\pm 15 \mathrm{~V}$	24 Pin DIP (Metal)	*	**
C BCD	0 to +10 V					*	
$C \operatorname{Bin}(1)$	$\begin{aligned} & \pm 2.5, \pm 5, \pm 10 \mathrm{~V} \\ & 0 \text { to }+5,+10 \mathrm{~V} \end{aligned}$	$20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	0 to 70C	$\pm 15 \mathrm{~V}$	24 Pin DIP	\$39.00	87
		$20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	-25 to +85 C			\$55.00	
		$20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	0 to 70C		24 Pin DIP (Metal)	\$49.00	
		$20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	-25 to +85 C			\$69.00	
		$10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	-25 to +85 C			\$139.00	
		$20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	-55 to +125 C			\$119.00	
Binary	0 to $+10, \pm 5, \pm 10 \mathrm{~V}$	$20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	0 to 70C	$\pm 15 \mathrm{~V},+5 \mathrm{~V}$	24 Pin DIP	*	**
BCD	0 to $+5,+10 \mathrm{~V}$					*	
Bin	0 to +10 mA	$20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	0 to 70C	$\pm 15 \mathrm{~V}$	24 Pin DIP (Metal)	*	**
						*	
						*	
						*	
15 Line	0 to -15 mA	$40 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	0 to 70C	-4.4V	32 Pin DIP	*	**

THESE CONVERTERS ARE COVERED BY GSA CONTRACT
*To be announced
** Contact nearest Datel sales office for data sheet and availability.

From radar to computer...

LOW COST, 8 BIT MONOLITHIC DIGITAL TO ANALOG CONVERTERS

FEATURES

Low Cost-\$5.95 in 100's

- 8 Bit Resolution
- Fast Settling-300 nsec.
- 1 or 2 Quadrant Multiplication
- $\pm 1 / 2$ LSB Linearity
- DTL/TTL Compatible Inputs

The DAC-IC8BC and DAC-IC8BM are 8 bit monolithic DAC's with fast settling current outputs. The units are housed in a 16 pin ceramic DIP and require only an external reference and output amplifier for fast voltage output operation. A full scale output change settles in only 300 nanoseconds for current output operation and 600 nanoseconds for voltage output operation using a fast monolithic output amplifier (Datel Systems AM-452). Digital input coding is straight binary for unipolar operation and offset binary for bipolar operation and is compatible with standard DTL/TTL logic. The DAC-IC8B converters consist of 8 fastswitching current sources, a diffused R-2R resistor ladder network, a bias circuit, and a reference control amplifier. The diffused resistor ladder gives excellent temperature tracking resulting in a gain temperature coefficient of $-20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. The monolithic fabrication results in excellent linearity and tempco, fast output settling, and low cost. Linearity is $\pm 1 / 2$ LSB.
An external reference current of 2 mA nominal programs the scale factor for the DAC; this is done by means of an external voltage reference source (such as a Zener diode) and a resistor. This reference current can also be varied, resulting in one or two quadrant multiplying operation. The output voltage can be unipolar or bipolar depending on whether an external offsetting current (derived from the reference) is used. Output voltage compliance of the DAC is -0.6 V to +0.5 V ; this can be made as large as -5 V to +0.5 V by external pin connection for cases where direct voltage output from a load resistor is desired.

Power supply requirement is +5 VDC and -5 V to -15 VDC . Model DAC-IC8BC has an operating temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ while DAC-IC8BM operates over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. The two models are pin compatible with Motorola devices MC1408L-8 and MC1508L-8 respectively.

$\$ 5.95$ IN 100's

MECHANICAL DIMENSIONS
INPUT/OUTPUT CONNECTIONS INCHES (MM)

SPECIFICATIONS, DAC-ICBBC \& DAC-IC8BM (Typical at $25^{\circ} \mathrm{C}$, $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}$, and $\mathrm{I}_{\mathrm{REF}}=2 \mathrm{~mA}$ unless otherwise specified)

INPUTS

Resolution
Coding, unipolar output
Coding, bipolar output
Input Logic Level, bit ON ("1")
Input Logic Level, bit OFF ("0")
Logic Loading
Nominal Reference Current (+ Ref.)
Reference Current Range (+ Ref.)
Reference Bias Current (Ref.)

OUTPUTS
Output Current, $I_{\text {REF }}=2.0 \mathrm{~mA}$
Output Current Range, $\mathrm{V}_{\mathrm{EE}}=5 \mathrm{~V}$
Output Current Range, $\mathrm{V}_{\mathrm{EE}}=-6$ to -15 V .
Output Current, all bits OFF
Output Voltage Compliance, pin 1 gnded
Output Voltage Comp., pin 1 open, V_{EE}
$-10 \mathrm{~V}$
PERFORMANCE

Relative Accuracy
Nonlinearity .
Differential Nonlinearity
Temp. Coefficient of Gain
Power Supply Rejection (V_{EE})
Settling Time, 2 mA to $1 / 2$ LSB
Update Rate
Reference Current Slew Rate

POWER REQUIREMENT
$V_{\text {CC }}$ Voltage
$V_{\text {CC }}$ Current
$V_{E E}$ Voltage
$V_{E E}$ Current
$V_{E E}$ Current

PHYSICAL-ENVIRONMENTAL
Operating Temp. Range, DAC-IC8BC
Operating Temp. Range, DAC-IC8BM
Storage Temp. Range, either model
Package

8 bits
Straight Binary
Offset Binary
+2.0 V to $+5.5 \mathrm{~V} @ 40 \mu \mathrm{~A}$
0 V to $+0.8 \mathrm{~V} @-0.8 \mathrm{~mA}$
1 TTL load
2.0 mA

0 to 4.2 mA
$-3 \mu \mathrm{~A}$ max.
$2.0 \mathrm{~mA} \pm 0.1 \mathrm{~mA}$
0 to 2.1 mA
0 to 4.2 mA
$4 \mu \mathrm{~A}$ maximum
-0.6 to +0.5 V
5.0 V to +0.5 V
$\pm 1 / 2$ LSB ($\pm 0.19 \%$) maximum $\pm 1 / 2$ LSB ($\pm 0.19 \%$) maximum
$\pm 1 / 2$ LSB $(\pm 0.19 \%)$
$-20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
$2.7 \mu \mathrm{~A} / \mathrm{V}$ max.
300 nsec.
3.3 MHz
$4.0 \mathrm{~mA} / \mu \mathrm{sec}$
' With zero and full scale adjustments made.

ORDERING INFORMATION

DAC-IC8B - I

| OPER. TEMP. RANGE |
| :--- | ---: |
| $\mathrm{C}=0^{\circ} \mathrm{C}$ TO $70^{\circ} \mathrm{C}$ |
| $\mathrm{M}=-55^{\circ} \mathrm{C}$ TO $+125^{\circ} \mathrm{C}$ |

PRICES
DAC-IC8BC
DAC-IC8BM

Trimming Potentiometers: TP500, TP1K, and TP20K are available from Datel Systems at $\$ 3.00$ each.

The DAC-IC8BC and DAC-IC8BM converters are covered under GSA contract.

1. The General Connection Diagram shows the basic connections for the DAC-IC8B converter. The scale factor is set by a reference current injected into pin 14. Pins 14 and 15 are the input terminals to the reference control amplifier. When connected as shown, pin 15 is grounded through R15 and pin 14 is at virtual ground. Therefore, the reference current is determined by the external voltage reference and R_{14} : $I_{\text {REF }}=V_{\text {REF }} / R_{14} . R_{14}$ should be a stable metal film resistor. \mathbf{R}_{15} is used only to compensate for the input bias current into pin $15(1 \mu \mathrm{~A}$ typical) and can be shorted out with negligible effect. R_{15}, if used, should be equal to R_{14} and may be a carbon composition type. An IREF of 2.0 mA is recommended for most applications.
2. There is a second method of connecting the reference shown in Two Ways to Connect Reference. A negative reference can be applied to pin 15 . In this case only the bias current must be supplied from the reference since pin 15 is a high impedance input. Pin 14 is at the negative voltage and IREF still flows into pin 14. Again, R15 is used only to compensate for bias current and may be omitted. There is an important requirement for this connection: the negative reference voltage must always be 3 volts above $V_{E E}$.
3. The reference amplifier must be externally compensated, and this is done by capacitor C_{C}, connected from pin 16 to pin $3\left(V_{E E}\right) . C_{c}$ may also be connected from pin 16 to ground, but connection to pin 3 improves the negative supply rejection. The value of C_{C} depends on R_{14}, and typical values are given in the compensation table. Compensation is particularly important when the DAC-IC8B is used as a multiplying D/A converter. Proper compensation assures that output peaking does not occur when the reference voltage steps to a new value. If pin 14 is driven from a high impedance current source such as a transistor collector, then much larger values of C_{C} must be used and the bandwidth of the reference amplifier is significantly reduced.
4. The Alternative Compensation Diagram shows another way of achieving the desired compensation. Here a 1.0 K resistor is always used at pin 14, but it is in series with another R to the reference voltage. The junction of the two resistors is bypassed to ground by a $0.1 \mu \mathrm{~F}$ capacitor. For high frequencies pin 14 always "sees" a 1 K resistance, thus allowing a $15 p F$ capacitor for $C_{c} . R_{15}$, if used, should be the sum of 1.0 K and R. This compensation scheme is useful with voltage references such as 6.2 or 6.4 volt Zener diodes.
5. It is recommended that pin $13\left(\mathrm{~V}_{\mathrm{CC}}\right)$ and pin $3\left(\mathrm{~V}_{E E}\right)$ always be bypassed to ground with at least $0.1 \mu \mathrm{~F}$ capacitors located close to the pins.
6. As shown in the General Connection Diagram, pin 1 may be either connected to ground or left open. This connection determines the voltage compliance at pin 4 (IOUT). For pin 1 grounded, the output compliance is -0.6 to +0.5 volt. This is satisfactory when pin 4 is used to drive a current to voltage converter and pin 4 is held at virtual ground. It is also satisfactory for low values of R_{L} connected to pin 4 to directly convert the output current to a voltage. The voltage compliance may be extended to -5.0 volts by leaving pin 1 open and using a VEE more negative than -10 volts. In this way a 2.5 K load resistor may be used at pin 14 to give an output voltage range of 0 to -5 volts (with reference current of 2 mA). As shown in the table of Settling Time vs R_{L}, the output settling time is constant (300 nsec .) for R_{L} values from 0 to 500 ohms; thereafter it increases to $1.2 \mu \mathrm{sec}$ for $R_{L}=2.5 \mathrm{~K}$.
7. The accuracy of the DAC-IC8B is specified for a reference current of 2.0 mA ; the accuracy, however, is essentially constant for reference currents from 1.5 mA to 2.5 mA . Typically, this device is monotonic for all values of reference current above 0.5 mA . Reference currents up to 4.2 mA may be used. When using a 4 mA reference current, $V_{E E}$ must be more negative than -6 volts.

TECHNICAL NOTES (Cont'd)

CONNECTION DIAGRAMS

8. For fastest voltage output settling times in either unipolar or bipolar modes, two circuits using Datel Systems AM-452 monolithic operational amplifiers are recommended. These circuits, with the compensation shown, result in output settling times of typically 600 nsec , for a 10 volt change to 1 LSB. This is the worst case settling time which occurs when all bits are turned on. For current output and R_{L} less than 500 ohms, this time is 300 nsec .; when all bits are turned off the time is shorter, typically 100 nsec . The two circuits shown also illustrate a simple method of deriving both reference current and offset current from a precision 6.4 volt Zener reference diode.
9. Both one and two quadrant multiplication are also possible with the DAC-IC8B as shown in the two diagrams. $V_{\text {IN }}$ is shown operating into pin 14; this results in an input impedance of $2,5 \mathrm{~K}$. Alternatively, VIN can be applied to pin 15 for a high impedance input as explained previously. The range of $V_{I N}$ is then 0 to -10 V . For two quadrant multiplication $V_{I N}$ is unipolar and the digital input is bipolar with offset binary coding. VOUT then varies over the bipolar range of ± 5 volts. In multiplication applications, it is recommended that full scale I REF be set to 4.0 mA ; the output is then monotonic as the reference current varies over 0.5 mA to 4.0 mA .

APPLICATION DIAGRAMS

CALIBRATION AND CODING TABLES

1. Select the desired output range by means of the feedback resistor of the external operational amplifier and the externally programmed reference current.
2. Zero and Offset Adjustments

For unipolar operation, set all digital inputs to " 0 " (0 V to +0.8 V) and adjust the output amplifier ZERO ADJUSTMENT for zero output voltage. For bipolar operation, set all digital inputs to " 0 " $(0$ to $+0.8 \mathrm{~V})$ and adjust the OFFSET ADJUSTMENT for the negative full scale voltage shown in the Coding Table.
3. Gain Adjustment

For either unipolar or bipolar operation, set all digital inputs to " 1 " $(+2.0$ to $+5.5 \mathrm{~V})$ and adjust the GAIN ADJUSTMENT for the positive full scale voltage shown in the Coding Table.

1020G Turnpike Street，Building S Canton，Massachusetts 02021 U．S．A． TEL：（617） $828-8000$
TWX：710－348－0135 TELEX： 924461

LOW COST， 12 BIT HYBRID DIGITAL TO ANALOG CONVERTERS

DAC－HZ SERIES

FEATURES

－ 12 Bit Binary or 3 Digit BCD
－Pin－Programmable Outputs
－Internal Reference \＆Output Amp．
－Glass or Metal Package
－± 15 VDC Supply Only
－Fast Settling Time
－ 12 Different Models

GENERAL DESCRIPTION

The DAC－HZ series are high perfor－ mance，hybrid 12 bit binary and 3 digit BCD digital－to－analog converters．These converters are manufactured in volume in Datel Systems＇modern in－house thin film hybrid facility．They are complete and self－contained with a precision in－ ternal reference and fast output opera－ tional amplifier．Pin programmable out－ put voltage ranges are provided for a high degree of application flexibility； the output voltage ranges are 0 to +5 V ， 0 to $+10 \mathrm{~V}, \pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}$ ，and $\pm 10 \mathrm{~V}$ with only unipolar ranges available on the BCD models．Current output is also provided．

The internal design utilizes three quad current switches，two thin film resistor networks，a precision zener reference circuit，reference control circuit and output amplifier．The thin film resistor networks are functionally trimmed with a laser to precisely set the binary weights of the current switches．The ex－ cellent tracking of the thin film resistors in conjunction with the tightly matched current switches results in a differential nonlinearity tempco of only $2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ ． Temperature coefficient of gain is $\pm 20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max．and tempco of zero is $\pm 5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ of FS max．There are also two low drift models in the series with maximum gain tempco of $\pm 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ ．

The DAC－HZ series consists of 12 differ－ ent models covering the operating tem－ perature ranges of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C},-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ ，and $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ ．The models are available in miniature glass or metal hermetically sealed cases．Pow－ er requirement is $\pm 15 \mathrm{VDC}$ at 35 mA with no 5 V logic supply required．Input coding is complementary binary or com－ plementary BCD．Voltage output set－ tling time is $3 \mu \mathrm{sec}$ ．to $1 / 2$ LSB．

－For BCD model these resistors are $4 \mathrm{~K} \Omega$ ．
＊For BCD model this resistor is open circuit．

SPECIFICATIONS, DAC-HZ SERIES
(Typical at $25^{\circ} \mathrm{C}$ and $\pm 15 \mathrm{~V}$ supplies unless otherwise noted)

*Specifications same as first column

1. FSR is full scale range and is 10 V for 0 to +10 V or -5 V to +5 V output; 20 V for $\pm 10 \mathrm{~V}$ output, etc.
2. For models DAC-HZ12BMR-1 and DAC-HZ12DMR-1 the temperature coefficients are: Gain, $\pm 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max.; Bipolar Offset, $\pm 5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max.
3. Current output mode.
4. For 2.5 K or 5 K feedback (2 K or $4 \mathrm{~K}, \mathrm{BCD}$). For 10 K feedback $(8 \mathrm{~K}, \mathrm{BCD}$) the settling time is $4 \mu \mathrm{sec}$.

TECHNICAL NOTES

1. The DAC-HZ12 series converters are designed and factory calibrated to give $\pm 1 / 2$ LSB linearity (binary version) and $\pm 1 / 4 L S B$ linearity (BCD version) with respect to a straight line between end points. This means that if zero and full scale are exactly adjusted externally, the relative accuracy will be $\pm 1 / 2$ LSB ($\pm 1 / 4$ LSB, BCD) everywhere over the full output range without any additional adjustments to achieve a best straight line fit. The linearity specification is therefore a conservative one since the user does not have to make more complicated adjustments for a best straight line fit.
2. The external zero or offset adjustment for the converters has a range of $\pm 0.2 \%$ of full scale and the external gain adjustment has a range of $\pm 0.3 \%$ of full scale.
3. These converters must be operated with local supply by-pass capacitors from +15 V to ground and -15 V to ground. Tantalum type capacitors of $1 \mu \mathrm{~F}$ are recommended and should be mounted as close as possible to the converter. If the converters are used in a high frequency noise environment a $.01 \mu \mathrm{~F}$ ceramic capacitor should be used across each tantalum capacitor.
4. When operating in the current output mode the equivalent internal current source of 2 mA ($1.25 \mathrm{~mA}, \mathrm{BCD})$ must drive both the internal source resistances and the external load resistor. A 300 nsec. output settling time is achieved for the voltage across a 100 ohm load resistor; for higher value resistors the settling time becomes longer due to the output capacitance of the converter. For fastest possible voltage output for a large transition, an external fast settling amplifier such as Datel Systems AM-100 should be used in the inverting mode. Settling time of less than $1 \mu \mathrm{sec}$. can be achieved. See application diagram.

ORDERING INFORMATION

Model	Temp. Range	Case	Price (1-9)
DAC-HZ12BGC	0 to 70 C	Glass	$\$ 39.00$
DAC-HZ12BMC	0 to 70 C	Metal	$\$ 49.00$
DAC-HZ12BGR	-25 to +85 C	Glass	$\$ 55.00$
DAC-HZ12BMR	-25 to +85 C	Metal	$\$ 69.00$
*DAC-HZ12BMR-1	-25 to +85 C	Metal	$\$ 139.00$
DAC-HZ12BMM	-55 to +125 C	Metal	$\$ 119.00$
DAC-HZ12DGC	0 to 70C	Glass	$\$ 39.00$
DAC-HZ12DMC	0 to 70C	Metal	$\$ 49.00$
DAC-HZ12DGR	-25 to $+85 C$	Glass	$\$ 55.00$
DAC-HZ12DMR	-25 to $+85 C$	Metal	$\$ 69.00$
DAC-HZ12DMR-1	-25 to $+85 C$	Metal	$\$ 139.00$
DAC-HZ12DMM	-55 to $+125 C$	Metal	$\$ 119.00$

*NOTE: Models DAC-HZ12BMR-1 and DAC-HZ12DMR-1 are low drift models with gain tempco's of $\pm 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max.

Mating Socket: DILS-3 (24 pin socket) \$1.95 ea.
Trimming Potentiometers:
TP10K OR TP100K at $\$ 3.00$ each.
THE DAC-HZ12 SERIES CONVERTERS ARE COV. ERED BY GSA CONTRACT.

INTERCONNECTIONS AND CALIBRATION

CALIBRATION PROCEDURE

1. Select the desired output range and connect the converter up as shown in the Output Range Selection table and the Standard Connection diagrams below.
2. To calibrate refer to the Coding Tables below. Note that complementary coding is used.
3. Zero and Offset Adjustments

For unipolar operation set all digital inputs to " 1 " $(+2.0$ to $+5.5 \mathrm{~V})$ and adjust the ZERO ADJ. potentiometer for zero output voltage or current. For bipolar operation (binary model only) set all digital inputs to " 1 " and adjust the OFFSET ADJ. potentiometer for the negative full scale (for voltage out) or positive full scale (for current out) output value shown in the Coding Table
4. Gain Adjustment

For the binary model set all digital inputs to " 0 " (0 V to +0.8 V) and adjust the GAIN ADJ. potentiometer for the positive full scale (for voltage out) or negative full scale (for current out) output value shown in the Coding Table.
For the BCD model (unipolar only) set each BCD digit to 0110 and adjust the GAIN ADJ. potentiometer for the positive full scale (for voltage out) or negative full scale (for current out) output value shown in the Coding Table.

OUTPUT RANGE SELECTION

BIN.RANGE	CONNECT THESE PINS TOGETHER			
$\pm 10 \mathrm{~V}$	15 \& 19	17 \& 20		16 \& 24
$\pm 5 \mathrm{~V}$	15 \& 18	17 \& 20		16 \& 24
$\pm 2.5 \mathrm{~V}$	15 \& 18	17 \& 20	19 \& 20	16 \& 24
+10V	15 \& 18	17 \& 21		16 \& 24
+5V	15 \& 18	17 \& 21	19 \& 20	16 \& 24
$\pm 1 \mathrm{~mA}$		17 \& 20		16 \& 24
$-2 m A$		17 \& 21		16 \& 24
BCD RANGE	CONNECT THESE PINS TOGETHER			
$+10 \mathrm{~V}$	15 \& 19			16 \& 24
$+5 \mathrm{~V}$	15 \& 18			16 \& 24
+2.5V	15 \& 18		19 \& 20	16 \& 24
-1.25MA				16 \& 24

VOLTAGE OUTPUT IS ATPIN 15. CURRENT OUTPUT IS AT PIN 20.

STANDARD CONNECTIONS

VOLTAGE OUTPUT CONNECTIONS
(FOR DIFFERENT OUTPUT SCALING REFER TO OUTPUT RANGE SELECTION TABLE)

UNIPOLAR

CODING TABLES
UNIPOLAR OUTPUT - COMPLEMENTARY BINARY

BINARY INPUT CODE		UNIPOLAR OUTPUT RANGES		
MSB	LSB	0 TO +10V	0 TO +5V	0 TO -2MA
0000	00000000	$+9.9976 \mathrm{~V}$	$+4.9988 \mathrm{~V}$	-1.9995MA
0011	11111111	+7.5000	+3.7500	-1.5000
0111	11111111	+5.0000	+2.5000	-1.0000
1011	11111111	+2.5000	+1.2500	-0.5000
1111	11111110	+0.0024	+0.0012	-0.0005
1111	11111111	0.0000	0.0000	0.0000

UNIPOLAR OUTPUT - COMPLEMENTARY BCD

BCD INPUT CODE			UNIPOLAR OUTPUT RANGES			
MSD		LSD	0 TO +10V	0 TO +5V	0 TO +2.5V	0 TO -1.25MA
0110	0110	0110	+9.990V	$+4.995 \mathrm{~V}$	$+2.498 \mathrm{~V}$	$-1.2488 \mathrm{MA}$
0111	1010	1111	+7.500	+3.750	+1.875	-0.9375
1010	1111	1111	+5.000	+2.500	+1.250	-0.6250
1101	1010	1111	+2.5000	+1.250	+0.625	-0.3125
1111	1111	1110	+0.0100	+0.005	+0.003	-0.0013
1111	1111	1111	0.0000	0.000	0.000	0.0000

BIPOLAR OUTPUT - COMPLEMENTARY OFFSET BINARY

INPUT CODE		BIPOLAR OUTPUT RANGES				
MSB	LSB		$\pm \mathbf{1 0 V}$	$\pm 5 \mathrm{~V}$	$\pm \mathbf{2 . 5 V}$	$\pm \mathbf{1 M A}$
0000	$\mathbf{0 0 0 0}$	$\mathbf{0 0 0 0}$	+9.9951 V	+4.9976 V	+2.4988 V	-0.9995 MA
0011	1111	1111	$+5,0000$	+2.5000	+1.2500	-0.5000
0111	1111	1111	0.0000	0.0000	0.0000	0.0000
1011	1111	1111	-5.0000	-2.5000	-1.2500	+0.5000
1111	1111	1110	-9.9951	-4.9976	-2.4988	+0.9995
1111	1111	1111	-10.0000	-5.0000	-2.5000	+1.0000

EQUIVALENT CIRCUITS \& APPLICATIONS

EQUIVALENT CURRENT MODE OUTPUT CIRCUIT

USE OF HIGH SPEED EXTERNAL OP AMP FOR FASTER SETTLING

USE OF A SINGLE BUFFERED REFERENCE IN A MULTI-DAC SYSTEM FOR IMPROVED TEMPERATURE TRACKING

PRECISION, LOW COST BASE LINE RAMP GENERATOR

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	BIT 1 IN	13	NO CONN.
2	BIT 2 IN	14	-15 VDC
3	BIT 3 IN	15	VOLT. OUT
4	BIT 4 IN	16	REF. IN
5	BIT 5 IN	17	BIPOLAR OFF
6	BIT 6 IN	18	10V RANGE
7	BIT 7 IN	19	20V RANGE
8	BIT 8 IN	20	CURRENT OUT
9	BIT 9 IN	21	GROUND
10	BIT 10 IN	22	+15VDC
11	BIT 11 IN	23	GAIN ADJ.
12	BIT 12 IN	24	REF. OUT

FOR ULTRA-HIGH SPEED APPLICATIONS 25 NANOSEC. OUTPUT SETTLING TIME DIGITAL TO ANALOG CONVERTERS

 DAC-FI-GI-HI SERIES
FEATURES

- Fastest settling time available
- High Resolution
- Small Size
- Low Temperature coefficient
- Ultra linear
- Adjustment-Free operation

GENERAL DESCRIPTION

This series of D / A converters are miniature ultra high speed devices offering the user state-of-the-art output settling time. Twenty-five nanoseconds for DAC-HI, fifty nanoseconds for DACGI and one hundred nanoseconds for DAC-FI series. Standard versions are available with either eight bit or ten bit resolution. Accuracy specifications include $\pm 1 / 2$ LSB linearity, $\pm 15 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ temperature coefficient, and $\pm 0.05 \%$ full scale accuracy.

Bipolar operation is achieved by externally connecting the built-in offsetting reference. Input coding can be straight binary for unipolar output or a choice of offset binary or two's complement for bipolar output.

Each D/A is completely self-contained requiring only ± 15 volts D.C. power. Packaged in $2^{\prime \prime} \times 2^{\prime \prime} \times 0.375^{\prime \prime}$, low profile modules, they are readily soldered or plugged directly into P.C. cards or other mother board hardware. Included in each module is digital interface logic, a precision resisior ladder network, high speed electronic switches, and a temperature compensated precision voltage reference source.

One of the many prime features is the output flexibility - 5 ma current output can be fed directly into an external resistor to develop a 1.2 V maximum output or by external pin strapping a bipolar output of $\pm 1.2 \mathrm{~V}$ maximum can be generated across the output load resistor. The output current can also be fed into an operational amplifier for those who require sign inversion, scaling, etc. This amplifier can be selected to suit a particular application.

SPECIFICATIONS (TYPICAL @ $25^{\circ} \mathrm{C}$ UNLESS OTHERWISE NOTED)		
PARAMETERS	DAC-FI SERIES (100nsec settling)	DAC-GI SERIES (50nsec settling)
DIGITAL INPUTS		
RESOLUTION	Optional 8 or 10 Binary Bits	Optional 8 or 10 Binary Bits
CODING (Parallel Data in the following Formats)	Straight Binary (Unipolar Output) Offset Binary (Bipolar Output) Two's Complement (Bipolar Output) with MSB (1)	Straight Binary (Unipolar Output) Offset Binary (Bipolar Output) Two's Complement (Bipolar Output) with MSB (1)
DATA INPUTS	DTL or TTL Compatible Positive Logic Loading: 2 standard TTL loads	DTL or TTL Compatible Positive Logic Loading: 2 standard TTL loads
ANALOG OUTPUT (@ $25^{\circ} \mathrm{C}$)		
ACCURACY	Adj. to $\pm 0.05 \%$	Adj. to $\pm 0.05 \%$
TYPE OF OUTPUT	Current	Current
FULL SCALE OUTPUT	5 ma @ +1.2V max. (Unipolar) $\pm 2.5 \mathrm{ma} @ \pm 1.2 \mathrm{~V}$ max. (Bipolar)(1)	5 ma @ +1.2 V max. (Unipolar) ± 2.5 ma @ $\pm 1.2 \mathrm{~V}$ max. (Bipolar) (1)
OUTPUT IMPEDANCE	600 Ohms $\pm 1 \%$	600 Ohms $\pm 1 \%$
OUTPUT ZERO OFFSET	15 na	15 na
OUTPUT LOADING	300 ohms for 0 to +1 V Output 2.325 K for $\pm 1.0 \mathrm{~V}$ Output	300 ohms for 0 to +1 V Output 2.325 K for $\pm 1.0 \mathrm{~V}$ Output
OUTPUT SETTLING TIME	100 nsec to $\pm 0.1 \%$ of FS	50 nsec to $\pm 0.1 \%$ of FS
OUTPUT RESOLUTION	$\pm 1 \mathrm{LSB}(5 \mu$ a for 10 Binary Bits)	$\pm 1 \mathrm{LSB}(5 \mu$ a for 10 Binary Bits)
LINEARITY	$\pm 1 / 2 \mathrm{LSB}(\pm 2.5 \mu$ a for 10 Binary Bits)	$\pm 1 / 2 \mathrm{LSB}(\pm 2.5 \mu$ a for 10 Binary Bits)
TEMPERATURE COEFFICIENT	$\pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ of FS	$\pm 30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ of FS
LONG TERM STABILITY	$\pm 0.5 \% / \mathrm{Yr}$.	$\pm 0.5 \% / \mathrm{Yr}$.
REFERENCE SOURCE	Internal	Internal
INPUT POWER REQUIREMENTS	$\begin{aligned} & +15 \mathrm{VDC}, \pm 0.5 \mathrm{~V} @ 75 \mathrm{~mA} \max \\ & -15 \mathrm{VDC}, \pm 0.5 \mathrm{~V} @ 20 \mathrm{~mA} \max \end{aligned}$	$\begin{aligned} & +15 \mathrm{VDC}, \pm 0.5 \mathrm{~V} @ 75 \mathrm{~mA} \text { max } \\ & -15 \mathrm{VDC}, \pm 0.5 \mathrm{~V} @ 20 \mathrm{~mA} \text { max } \end{aligned}$
POWER SUPPLY REJECTION RATIO	0.05\%/V	0.05\%/V
PHYSICAL - ENVIRONMENTAL		
OPERATING TEMPERATURE RANGE	0° to $+70^{\circ} \mathrm{C}$	0° to $+70^{\circ} \mathrm{C}$
STORAGE TEMPERATURE RANGE	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
RELATIVE HUMIDITY	Up to 100\% Non-Condensing	Up to 100% Non-Condensing
SIZE	$\begin{aligned} & 2^{\prime \prime} \mathrm{L} \times 2^{\prime \prime} \mathrm{W} \times 0.375^{\prime \prime} \mathrm{H} \\ & \text { Plug-in Module } \\ & \hline \end{aligned}$	$\begin{aligned} & 2^{\prime \prime} \mathrm{L} \times 2^{\prime \prime} \mathrm{W} \times 0.375^{\prime \prime} \mathrm{H} \\ & \text { Plug-in Module } \\ & \hline \end{aligned}$
PINS	$0.020^{\prime \prime}$ Round Gold Plated $0.250^{\prime \prime}$ Long Min.	$0.020^{\prime \prime}$ Round Gold Plated $0.250^{\prime \prime}$ Long Min.
MATING SOCKET	DILS-2, 2 per module req'd, \$5/pr.	DILS-2, 2 per module req'd, \$5/pr.
CASE MATERIAL (2)	Black Diallyl Phthalate Per MIL-M-14	Black Diallyl Phthalate Per MIL-M-14
WEIGHT	2 oz .	202.
ORDERING INFORMATION		DAC-GI T PRICE (1-9) Number of Bits 8 $\$ 89$. $8 \mathrm{~B}=8$ Binary Bits $10 \mathrm{~B}=10$ Binary Bits $\$ 109$.
NOTE 1: The converter does not directiy accept 2's complement coding without first externally complementing the $2^{\prime \prime}$ scomp MSB by using an external inverter or $\mathrm{FF} \overline{\mathrm{C}}$ output. After this bit is complemented the coce sppears as normal offset bhary wnicn the converter can process.	2: All converters are fully repairable.	

$\square \sqrt{4} \square$
DAC-HISERIES (25nsec settling)
Optional 8 or 10 Binary Bits
Straight Binary (Unipolar Output) Offset Binary (Bipolar Output) Two's Complement (Bipolar Output) with MSB (1)
DTL or TTL Compatible Positive Logic Loading: 2 standard TTL loads
Adj. to $\pm 0.05 \%$
Current
$5 \mathrm{ma} @+1.2 \mathrm{~V}$ max. (Unipolar) $\pm 2.5 \mathrm{ma} @ \pm 1.2 \mathrm{~V}$ max. (Bipolar)(1)
600 Ohms $\pm 1 \%$
15 na
300 ohms for 0 to +1 V Output 2.325 K for $\pm 1.0 \mathrm{~V}$ Output
25 nsec to $\pm 0.1 \%$ of FS
$\pm 1 \mathrm{LSB}(5 \mu \mathrm{a}$ for 10 Binary Bits)
$\pm 1 / 2 \mathrm{LSB}(\pm 2.5 \mu$ a for 10 Binary Bits)
$\pm 15 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ of FS
$\pm 0.5 \% / \mathrm{Yr}$.
Internal
$\begin{aligned} & +15 \mathrm{VDC}, \pm 0.5 \mathrm{~V} @ 75 \mathrm{~mA} \text { max } \\ & -15 \mathrm{VDC}, \pm 0.5 \mathrm{~V} @ 20 \mathrm{~mA} \text { max } \\ & \hline \end{aligned}$
0.05\%/V
0° to $+70^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Up to 100\% Non-Condensing
$\begin{aligned} & 2^{\prime \prime} L \times 2^{\prime \prime} \mathrm{W} \times 0.375^{\prime \prime} \mathrm{H} \\ & \text { Plug-in Module } \\ & \hline \end{aligned}$
$0.020^{\prime \prime}$ Round Gold Plated $0.250^{\prime \prime}$ Long Min.
DILS-2, 2 per module req'd, \$5/pr.
Black Diallyl Phthalate Per MIL-M-14
2 oz.
DAC-HI T Number of Bits $8 \mathrm{~B}=8$ Binary Bits $10 \mathrm{~B}=10$ Binary Bits PRICE (1-9) \$ 99 \$119

Input Coding for DAC-FI, DAC-GI and DAC-HI Series (10 Bits shown)

Analog Output Range $(\pm 2.5$ ma FS $)$	Offset Binary	2's Complement (See Note)	Analog Output Range (0 to +5ma FS)	Straight Binary
+2.495	1111111111	0111111111	+4.995	111111111
+2.187	1111000000	0111000000	+4.375	1110000000
+1.875	1110000000	0110000000	+3.750	1100000000
+.250	1100000000	0100000000	+2.500	1000000000
0.000	1000000000	0000000000	+1.250	0100000000
-1.250	0100000000	1100000000	+0.625	0010000000
-1.875	0010000000	1010000000	0.000	0000000000
-2.187	0001000000	1001000000		
-2.495	0000000001	1000000001		
-2.500	0000000000	1000000000		

Note 1: The converter does not directly accept 2 's complement coding without first externally complementing the 2 's comp MSB by using an external inverter or

FF \bar{Q} output. After this bit is comple-
mented, the code appears as normal offset binary which the converter can process.

MEASURING OUTPUT SETTLING TIME

Because of the phenomenal output settling time of these devices, great care must be taken when measuring the output performance. Model 454 Tektronix Oscilloscope with low capacitance probe and probe ground lead is recommended for measuring output settling time. Input/Output connections should be made as close as possible to the "DAC" pins. Best results occur when the digital input source has a time skew of less than 5 nanoseconds.

Output settling time for these devices can be defined as that time between application of an input digital word and the analog output settling to $\pm 0.1 \%$ of full scale, it includes switch delay, slewing time and final exponential decay time.

Typical Test Set Up For Measuring Output Settling Time.

12 BINARY BIT RESOLUTION
 25 NSEC OUTPUT SETTLING TIME DIGITAL TO ANALOG CONVERTER MODEL DAC-HI 12B

FEATURES

- ULTRA FAST SETTLING
- HIGH RESOLUTION
- SMALL SIZE

GENERAL DESCRIPTION

The DAC-HI12B is a 12 bit Digital to Analog converter featuring a state-of-the-art output settling time of 25 nanoseconds combined with a $\pm 1 / 2$ LSB linearity and a temperature coefficient of $\pm 20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

Bipolar operation is achieved by externally pin strapping a built-in offsetting reference. Input coding can be straight binary for unipolar output, or a choice of offset binary or two's complement for bipolar output.

The DAC-HI12B is completely self. contained, requiring only ± 15 volts D.C. power. Packaged in a $2^{\prime \prime} \times 2^{\prime \prime} \times 0.375^{\prime \prime}$, low profile module, it is readily soldered or plugged directly into P.C. cards or other mother board hardware. Included in each module is digital interface logic, a precision resistor ladder network, high speed electronic switches, and a temperature compensated precision voltage reference source.

One of the prime features is the unit's output flexibility with a 5 ma current output which can be fed directly into an external resistor to develop a 1.2 V maximum output or, by external pin strapping, a bipolar output of $\pm 1.2 \mathrm{~V}$ maximum can be generated across the output load resistor. The output current can also be fed into an operational amplifier for those who require sign inversion, scaling etc. This amplifier can be selected to suit a particular application.

MECHANICAL DIMENSIONS-INCHES (MM)

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION
1	BIT 1 INPUT (MSB)
2	BIT 2 INPUT
3	BIT 3 INPUT
4	BIT 4 INPUT
5	BIT 5 INPUT
6	BIT 6 INPUT
7	BIT 7 INPUT
8	BIT 8 INPUT
9	BIT 9 INPUT
10	BIT 10 INPUT
11	BIT 11 INPUT
12	BIT 12 INPUT (LSB)
13	+15V ISOWER INPUT
14	-15V POWER INPUT
15	COMMON GROUND
16	OFFSET
17	ANALOG OUTPUT
18	REFERENCE OUTPUT
19	REFERENCE INPUT

SPECIFICATIONS (typical @ $25^{\circ} \mathrm{C}$ unless otherwise noted)				
MODEL NUMBER				DAC-HI 12B
DIGITAL INPUTS				
RESOLUTION				12 Binary Bits
CODING (Parallel Data in the following Formats)				Straight Binary (Unipolar Output) Offset Binary (Bipolar Output) Two's Complement (Note 1) (Bipolar Output)
DATA INPUTS				
$\begin{array}{\|l\|} \hline \text { INPUT } \\ \hline \text { CODE } \\ \hline \end{array}$	Vinput		BIT	DTL or TTL Compatible Positive Logic Loading: 2 standard TTL loads
	MIN.	MAX.	STATUS	
" ${ }^{\text {" } 1 \text { "' }}$	$c0V+20V$	+0.8 V +5.5 V	$\begin{aligned} & \hline \text { OFF } \\ & \text { ON } \\ & \hline \end{aligned}$	
ANALOG OUTPUT (@25 ${ }^{\circ} \mathrm{C}$)				
ACCURACY				Adj. to $\pm 0.01 \%$
TYPE OF OUTPUT				Current
FULL SCALE OUTPUT				```5 ma@+1.2V max (Unipolar) \pm2.5 ma @ \pm1.2V max. (Bipolar)```
OUTPUT IMPEDANCE				600 Ohms $\pm 1 \%$
OUTPUT ZERO OFFSET				15 na
OUTPUT LOADING				300 ohms for 0 to +1 V Output 2.325 K for $\pm 1.0 \mathrm{~V}$ Output
OUTPUT SETTLING TIME				50 nsec to $\pm 0.025 \%$ of FS
OUTPUT RESOLUTION				1 LSB (1.25μ a for 12 Binary Bits)
LINEARITY				$\pm .625 \mu \mathrm{~A}(1 / 2 \mathrm{LSB})$
TEMPERATURE COEFFICIENT				$\pm 20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ of FS
LONG TERM STABILITY				$\pm 0.5 \% / \mathrm{Yr}$.
				Internal
INPUT POWER REQUIREMENTS				$+15 \mathrm{VDC}, \pm 0.5 \mathrm{~V}$ @ 40 ma $-15 \mathrm{VDC}, \pm 0.5 \mathrm{~V}$ @ 20 ma
POWER SUPPLY REJECTION RATIO				.0085\%/V
PHYSICAL - ENVIRONMENTAL				
OPERATING TEMPERATURE RANGE				0° to $+70^{\circ} \mathrm{C}$
STORA	AGE TE	MPERA	TURE RANGE	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
RELATIVE HUMIDITY				Up to 100\% Non-Condensing
SIZE				$\begin{aligned} & 2^{\prime \prime} \mathrm{L} \times 2^{\prime \prime} \mathrm{W} \times 0.375^{\prime \prime} \mathrm{H} \\ & \text { Plug-in Module, fully repairable } \end{aligned}$
PINS				$0.020^{\prime \prime}$ Round Gold Plated $0.250^{\prime \prime}$ Long Min.
CASE MATERIAL				Black Diallyl Phthalate
MATING CONNECTOR				2 oz.
				DILS-2 2 per module required $\$ 5.00$ per pair
PRICE (1-9)				\$129 ea.

INPUT CODING

ANALOG OUTPUT $(\pm 2.5 \mathrm{~mA} \mathrm{FS})$	OFFSET BINARY	2'S COMPLEMENT (1)
$+2.49875 \mathrm{~mA}$	111111111111	011111111111
$+1.25000 \mathrm{~mA}$	110000000000	010000000000
0 mA	100000000000	000000000000
- 1.25000 mA	010000000000	110000000000
$-2.50000 \mathrm{~mA}$	000000000000	100000000000

ANALOG OUTPUT (0 to +5 mA FS)	STRAIGHT BINARY
$+4.99875 \mathrm{~mA}$	111111111111
$+3.75000 \mathrm{~mA}$	110000000000
$+2.50000 \mathrm{~mA}$	100000000000
$+1.25000 \mathrm{~mA}$	010000000000
000000 mA	000000000000

DAC-HV-100 SERIES

FEATURES

- Ultra High Speed
- High Output Current
- High Resolution
- Excellent Linearity
- Adjustment Free Operation

DESCRIPTION

The Model DAC-HV-100 Series Digital to Analog Converters are ultra high speed devices with a settling time of 50 nanoseconds. Standard versions are available with six, eight or ten binary bit input resolution. The output swings from 0 to +5 volts and is capable of driving a 50 ohm transmission line.
The superior transfer characteristic of the DAC-HV-100 Series include an accuracy of 0.1% of full scale, a linearity of $\pm 1 / 2$ LSB and a temperature coefficient of $\pm 100 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$. Long term stability of these converters is $\pm 0.5 \%$ per year.
Each D/A is completely self contained requiring only ± 15 VDC power. Packaged in a $2^{\prime \prime} \mathrm{W} \times 3^{\prime \prime} \mathrm{L} \times .375^{\prime \prime} \mathrm{H}$ low profile module, they are readily soldered or plugged into PC boards which can then be mounted on $1 / 2$ inch centers. The module includes digital interface logic and precision resistor ladder networks, high speed electronic switches, a temperature compensated precision voltage reference source and featuring an ultra high speed amplifier capable of settling to within 0.4% accuracy in 50 nanoseconds after a full scale output excursion.

HIGH SPEED 50Ω LINE DRIVER DIGITAL TO ANALOG CONVERTERS

MECHANICAL DIMENSIONS (INCHES)

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	BIT 1 (MSB)	9	BIT 9
2	BIT 2.	10	BIT 10
3	BIT 3	11	$+15 V$ POWER INPUT
4	BIT 4	12	$-15 V$ POWER INPUT
5	BIT 5	13	GROUND
6	BIT 6	14	ANALOG OUTPUT
7	BIT 7	15	NO CONNECTION
8	BIT 8		

ELECTRICAL SPECIFICATIONS (typical @ $\mathbf{2 5}{ }^{\circ} \mathrm{C}, \pm \mathbf{1 5}$ VDC unless otherwise specified)

DIGITAL INPUTS:

Resolution
Coding
Data Inputs

Input Code	Voltage Output
0000000000	OV
1111111111	$+5 \mathrm{~V}-1$ LSB

ANALOG OUTPUT (@25 ${ }^{\circ}$ C)
Accuracy.

Output Voltage Range
Full Scale Output
Output Load
Output Settling Time

Linearity
Temperature Coefficient of FS
Temperature Coefficient of Zero

Optional 6, 8, or 10 Binary Bits Parallel data in Straight Binary input format
Binary " 0 " $\leqslant+0.8 \mathrm{~V}$ (Switch off) Binary " 1 " $\geqslant+2.0 \mathrm{~V}$ (Switch on) DTL or TTL compatible, positive logic

Loading; 2 standard TTL loads (See coding chart below)
$\pm .2 \%$ of FS($6 \& 8$ Bits) $; \pm .1 \%$ of FS (10 Bits)
0 V to +5 V
$+5 \mathrm{~V} @ 100 \mathrm{~mA}$
50 Ohm (min)
50 typ., 75 max. nanoseconds to .4\% of F.S. (6 \& 8 Bits); 100 typ, 250 max. nanoseconds to $.1 \%$ of FS (10 Bit)
$\pm 1 / 2$ LSB
$\pm 60 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
$\pm 40 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$

INPUT POWER REQUIREMENTS
$+15 \mathrm{VDC}, \pm 0.5 \mathrm{VDC} @ 70 \mathrm{~mA}$ max.
$-15 \mathrm{VDC}, \pm 0.5 \mathrm{VDC}$ @ 50 mA max.
Power Supply Rejection
Ratio.
0.1% per Volt

PHYSICAL - ENVIRONMENTAL
Operating Temperature

Range .

Storage Temperature Range
Relative Humidity
Size

Pins
Case Material .
Weight
Mating Socket
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (extended operating temperature ranges optionally available)
$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Up to 100% Non-Condensing
2'W X 3"L X 0.375"H
Plug-in Module
0.020" Round Gold Plated
$0.250^{\prime \prime}$ Long, min.
Black DiallyI Phthaiate Per MIL-M-14
4 oz.
Model DILS-2 2 Req'd per module, \$4 per pair

INPUT CODING FOR DAC-HV-100 SERIES

STRAIGHT
ANALOG OUTPUT
($+5 \mathrm{~V}, \mathrm{FS}$)
BINARY INPUT

$\begin{gathered} \text { 6 BIT } \\ \text { DAC-HV6B-100 } \end{gathered}$	$\begin{gathered} \text { 8 BIT } \\ \text { DAC-HV8B-100 } \end{gathered}$	10 BIT DAC-HV10B-100
+4.9219V	+4.9805V	+4.9951V
+3.7500 V	+3.7500V	+3.7500 V
+2.5000 V	$+2.5000 \mathrm{~V}$	+2.5000 V
+1.2500 V	+1.2500 V	+1.2500 V
0.0000 V	0.0000 V	0.0000 V

ORDERING INFORMATION

MODEL
DAC-HV6B-100
DAC-HV8B-100
DAC-HV10B-100

NUMBER OF BITS
6 BINARY BITS
8 BINARY BITS
10 BINARY BITS

PRICE (1-9)
$\$ 169$.
$\$ 179$.
$\$ 189$.

OPTIONS*
-EX $\left(-25^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
$-\operatorname{EXX}\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
*(Extended operating temperature ranges)

1020G Turnpike Street，Building S
Canton，Massachusetts 02021 U．S．A
TEL：（617）828－8000
TWX：710－348－0135 TELEX： 924461

FEATURES

－8，10， 12 Bit Resolutions
－ $5 \mu \mathrm{sec}$ Settling Time
－ 5 Voltage Output Ranges
－Temp．Coeff．to 7ppm／${ }^{\circ} \mathrm{C}$
－ $2 \times 2 \times .375$ Inch Module

GENERAL DESCRIPTION

The DAC－R and DAC－TR series digital to analog converters feature high per－ formance voltage outputs for 8，10， and 12 bit resolutions．There are 5 different output voltage ranges which can be selected by external pin con－ nection： 0 to $+5 \mathrm{~V}, 0$ to $+10 \mathrm{~V},-2.5 \mathrm{~V}$ to $+2.5 \mathrm{~V},-5 \mathrm{~V}$ to +5 V ，and -10 V to +10 V ．Internally these models contain input buffer logic and an electronic switch array，a precision resistor net－ work，a precision stable zener voltage reference，and an output amplifier．

The output voltage settling time is 5 $\mu \mathrm{sec}$ ．to specified accuracy，result－ ing in an update rate of 200 kHz ． The output can drive a load up to 5 mA on the 0 to +10 V and -10 to +10 V ranges and up to 10 mA on the other ranges．Input coding is com－ plementary binary or complementary BCD for unipolar operation and com－ plementary offset binary for bipolar operation．The logic inputs are DTL／ TTL compatible．External offset and gain adjustments are made using two 100 K ohm trimming pots．，resulting in an accuracy of ． $01 \% \mathrm{FS} \pm 1 / 2$ LSB．The DAC－R models have a gain temperature coefficient of $30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ while the DAC－TR models feature an exception－ ally low coefficient of $7 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ ．

These converters are encapsulated in compact $2 \times 2 \times .375$ inch modules with DIP compatible ．100＂pin spac－ ing．Pins are $.020^{\prime \prime}$ diameter gold plated．Input power requirements are +5 VDC and $\pm 15 \mathrm{VDC}$ and are available from Datel Systems＇broad line of modular power supplies．Extended temperature range versions are also available by consulting the factory．

MECHANICAL DIMENSIONS INCHES（MM）

NOTE：Open dots indicate omitted pins． Pins 17 and 18 are omitted on 10 bit models． Pins 15，16，17，and 18 are omitted on 8 bit models．Pin position tolerance is $\pm 0.005^{\prime \prime}$ From datum，non－accumulative．

INPUT／OUTPUT CONNECTIONS

PIN	FUNCTION
K	KEY
1	－15 Volt Power Input
2	＋15 Volt Power Input
3	+5 Volt Power Input
4	No Connection（pin is amitted）
5	Power and Signal Ground
6	No Connection（pin is omitted）
7	Bit 1 （MSB）
8	Bit 2
9	Bit 3
10	Bit 4
11	Bit 5
12	Bit 6
13	Bit 7
14	Bit 8
15	Bit $9 *$
16	Bit $10{ }^{\circ}$
17	Bit 11^{*} ．
18	Bit 12＊＊
19	No Connection（pin is omitted）
20	No Connection（pin is omitted）
21	Bipolar Offset
22	Full Scale Gain Adjust
23	$\pm 10 \mathrm{~V}$ Feedback
24	0 to $+10 \mathrm{~V}, \pm 5 \mathrm{~V}$ Feedback
25	Reference Output
26	Amplifier Output
27	Summing Junction
28	Zero Adjust

CALIBRATION PROCEDURE

1. Refer to the unipolar and bipolar adjustment diagrams and the coding tables. Note that complementary binary coding is used.
2. OFFSET OR ZERO ADJUSTMENT: Set all
digital inputs high $(+2.0 \mathrm{~V}$ to $+5.5 \mathrm{~V})$. For uni polar output adjust the zero trimming poten tiometer for zero output voltage. For bipolar operation adjust the offset trimming potentiometer to give -FS output voltage as shown

CODING TABLES

UNIPOLAR OUTPUT - Complementary Binary \& Complementary BCD

	OFFSET ADJ.	OUTPUT	GAIN ADJ.		OUTPUT VOLTAGE RANGE	
NO. BITS	DIGITAL INPUT	VOLTAGE	DIGITAL INPUT	0 TO +10 V	0 TO +5 V	
8 Bin	11111111	0 V	00000000	+9.9609 V	+4.9805 V	
10 Bin	1111111111	0 V	0000000000	+9.9902 V	+4.9951 V	
12 Bin	111111111111	0 V	00000000000	+9.9976 V	+4.9988 V	
8 BCD	11111111	0 V	01100110	+9.9000 V	+4.9500 V	
12 BCD	111111111111	0 V	011001100110	+9.9900 V	+4.9950 V	

BIPOLAR OUTPUT - Complementary Offset Binary

NO. BITS	OUTPUT VOLTAGE RANGE	OFFSET ADJ. DIGITAL INPUT	OUTPUT voltage	GAIN ADJ. DIGITAL INPUT	OUTPUT voltage
$\begin{array}{r} 8 \\ 10 \\ 12 \end{array}$	$\pm 2.5 \mathrm{~V}$	1111 1111 1111 1111 11 1111 1111 1111	$\begin{aligned} & -2.5000 \mathrm{~V} \\ & -2.5000 \mathrm{~V} \\ & -2.5000 \mathrm{~V} \end{aligned}$	0000 0000 0000 0000 00 0000 0000 0000	$\begin{aligned} & +2.4805 \mathrm{~V} \\ & +2.4951 \mathrm{~V} \\ & +2.4988 \mathrm{~V} \\ & \hline \end{aligned}$
$\begin{array}{r} 8 \\ 10 \\ 12 \end{array}$	$\pm 5 \mathrm{~V}$	$\begin{array}{lll} 1111 & 1111 & \\ 1111 & 1111 & 11 \\ 1111 & 1111 & 1111 \end{array}$	$\begin{aligned} & -5.0000 \mathrm{~V} \\ & -5.0000 \mathrm{~V} \\ & -5.0000 \mathrm{~V} \end{aligned}$	00000000 0000000000 000000000000	$\begin{aligned} & +4.9609 \mathrm{~V} \\ & +4.9902 \mathrm{~V} \\ & +4.9976 \mathrm{~V} \end{aligned}$
$\begin{array}{r} 8 \\ 10 \\ 12 \end{array}$	$\pm 10 \mathrm{~V}$	$\begin{array}{lll} 1111 & 1111 & \\ 1111 & 1111 & 11 \\ 1111 & 1111 & 1111 \end{array}$	$\begin{aligned} & -10.0000 \mathrm{~V} \\ & -10.0000 \mathrm{~V} \\ & -10,0000 \mathrm{~V} \end{aligned}$	00000000 0000000000 000000000000	$\begin{aligned} & +9.9219 \mathrm{~V} \\ & +9.9805 \mathrm{~V} \\ & +9.9951 \mathrm{~V} \end{aligned}$

UNIPOLAR ZERO AND GAIN ADJUST

OUTPUT VOLTAGE RANGE EXTERNAL PIN-STRAPPING
$\left.\begin{array}{|l|l|l|l|}\hline \begin{array}{c}\text { FULL SCALE }\end{array} \\ \text { OUTPUT RANGE }\end{array} \quad \begin{array}{|c|c|c|}\text { CONNECT THE FOLLOWING } \\ \text { PINS TOGETHER }\end{array}\right]$
in the coding table.
3. GAIN ADJUSTMENT: Set all digital inputs low (0 V to +0.8 V) and adjust the gain trimming potentiometer to give +FS output voltage as shown in the coding table.

ORDERING INFORMATION

DAC-R
DAC-TR

NUMBER OF BITS AND CODING
$8 B=8$ BIT COMPLEMENTARY BINARY
$10 B=10$ BIT COMPLEMENTARY BINARY
$12 B=12$ BIT COMPLEMENTARY BINARY
$8 D=2$ DIGIT COMPLEMENTARY BCD
$12 D=3$ DIGIT COMPLEMENTARY BCD

PRICES (1-9)
DAC-R8B $\$ 69.00$
DAC-R10B \$75.00
DAC-R12B $\$ 79.00$
DAC-R8D $\$ 69.00$
DAC-R12D \$79.00
DAC-TR8B $\$ 129.00$ DAC-TR10B $\$ 159.00$ DAC-TR12B \$179.00 DAC-TR8D \$129.00 DAC-TR12D \$179.00

MATING SOCKET DILS-2 (2 per module
@ \$5/pair)

1020G Turnpike Street, Building S TEL: (617) $828-8000$
TWX: 710-348-0135 TELEX: 924461

16 BINARY BIT
 D/A CONVERTER-\$ 109. SINGLE QUANTITY DIGITAL TO ANALOG CONVERTERS

DAC-169 SERIES

FEATURES

- High Resolution - One Part In 65,535
- 4 Digit $B C D$ Version
- 3 Selectable Voltage Outputs
- 2 Selectable Current Outputs

GENERAL DESCRIPTION

The DAC-169 series Digital-to-Analog Converters are low cost, moderate performance 16 binary bit or 4 digit BCD units contained in compact modular form, $2^{\prime \prime} L \times 2^{\prime \prime} \mathrm{W} \times 0.375^{\prime \prime} \mathrm{H}$ case, ideal for 0.5 inch card spacing.
Both models offer selectable current and voltage outputs. The user selects the desired output by externally jumping selector pins on the unit. There are five available output ranges for the 16 binary bit unit and three output ranges for the 4 digit BCD model.
Input digital coding is straight binary or binary coded decimal for unipolar operation and offset binary for bipolar applications. DAC-169 series were specifically designed for incorporation in systems and equipment demanding a wide dynamic range. For example, with a full scale output of ten volts, DAC-169 can resolve down to 150 microvolts, a 96.3 db change.
Output settling time is specified at 750 nanoseconds and 30 microseconds for current and voltage outputs respectively. Output settling time is defined as that time between the application of an input digital word and the output settling to $\pm 0.005 \%$ of full scale, and it includes switch delay, nonlinear slewing time and final exponential decay time.
Full scale output ranges for the binary version are 0 to $+10 \mathrm{~V}, 0$ to -10 V , or $+5 \mathrm{~V} @ \pm 5 \mathrm{ma}$. The current output can be selected for 0 to +2 ma or $\pm 1 \mathrm{ma}$. The BCD model can have a full scale voltage output of 0 to +10 V or 0 to $-10 \mathrm{~V} @ 5 \mathrm{ma}$. The current output can be pin strapped for 0 to +1.25 ma full scale.

BLOCK DIAGRAM MODELS DAC-169-16B, DAC-169-16D

MECHANICAL DIMENSIONS (INCHES)
INPUT/OUTPUT CONNECTIONS

$\begin{array}{\|c\|} \text { MODEL } \\ \text { PIN } \end{array}$	$\begin{aligned} & \text { DAC- } 169-168 \\ & \text { FUNCTION } \end{aligned}$	DAC-169-160 FUNCTION	$\begin{array}{\|c\|} \text { MODEL } \\ \text { PIN } \end{array}$	$\begin{aligned} & \text { DAC-169-16B } \\ & \text { FUNCTION } \end{aligned}$	DAC-169-160 FUNCTION
1	BIT 1 (MSB)	BIT 8000 (MSB)	15	BIT 15	BIT 2
2	BIT 2	BIT 4000	16	BIT 16 (LSB)	BIT 1 (LSB)
3	BIT 3	BIT 2000	17	+15 VDC POWER INPUT	+15 VDC POWER INPUT
4	BIT 4	BIT 1000	18	-15 VDC POWER INPUT	-15 VDC POWER INPUT
5	BIT 5	BIT 800	19	COMMON GROUND	COMMON GROUND
6	BIT 6	BIT 400	20	VOLTAGE OUTPUT	VOLTAGE OUTPUT
7	BIT 7	BIT 200	21	-INPUT	-INPUT
8	BIT 8	BIT 100	22	+INPUT	+INPUT
9	BIT 9	BIT 80	23	RANGE SELECT	RANGE SELECT
10	BIT 10	BIT 40	24	CURRENT OUTPUT	CURRENT OUTPUT
11	BIT 11	BIT 20	25	OFFSET (BINARY MODELS ONLY)	N/A
12	BIT 12	BIT 10	26	REFERENCE OUT	REFERENCE OUT
13	BIT 13	BIT 8	27	REFERENCE IN	REFERENCE IN
14	BIT 14	BIT 4			

SPECIFICATIONS (typical @ $25^{\circ} \mathrm{C}$, unless otherwise noted)

PARAMETERS			MODEL DAC-169-16B	MODEL DAC-169-16D	
DIGITAL INPUTS RESOLUTION			16 Binary Bits		
RESOLUTION CODING			Straight BingeryOffset Binary(Unipolar Output) (Bipolar Output)	BCD (8-42-1) (Unipolar Output)	
DATA INPUTS			DTL or TTL compatible positive TRUE logic LOADING: One Standard TTL Load	DTL or TTL compatible positive TRUE logic LOADING: One Stenderd TTL Load	
$\begin{array}{\|l} \hline \text { Inpur } \\ \text { Code } \end{array}$		$\begin{gathered} \text { Bit } \\ \text { Status } \end{gathered}$			
	$\begin{array}{c\|c} \hline \text { Min. } & \text { Max. } \\ 0 \mathrm{OV} & +0.8 \mathrm{~V} \\ +2.0 \mathrm{~V} & +5.5 \mathrm{~V} \end{array}$	$\begin{array}{\|c\|} \text { Status } \\ \hline \text { OFF } \\ \hline \text { ON } \end{array}$			
UPDATE RATE Voltage output limited by output amplifier settling time			5 MHz typical		
			5 MHz typical		
ANALOG OUTPUT (@25 ${ }^{\circ}$)				Adj. to 0.005\% of F.S.	
			Adi. to 0.005\% of F.S.		
AINEARITY			$\pm 0.005 \%$ of F.S. (4)	$\pm 0.005 \%$ of F.S. (4)	
LINEARITY TEMPERATURE COEFFICIENT			$\pm 0.0005 \% / \mathrm{C}$	+0.0005\%/ C	
TEMPERATURE COEFFICIENT (GAIN)			$\pm 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}(1), \pm 15 \mathrm{ppm} /{ }^{\circ} \mathrm{C}(5)$	$\pm 10 \mathrm{pppm} /{ }^{\circ} \mathrm{C}(1), \pm 15 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (5)	
TEMPERATURE COEFFICIENT (OFFSET)			$\pm 50 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ tvp $(+10 \mathrm{~V}), \pm 10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}(-10 \mathrm{~V}, ~ \pm 5 \mathrm{~V})$:50 $5 \mathrm{~V} /{ }^{\circ} \mathrm{C}$ typ (+10 V), $: 10 \mu \mathrm{~V} / \mathrm{C}(-10 \mathrm{~V},: 5 \mathrm{~V})$	
TYPE OF OUTPUT			Current or Voitage	Current or Voitage	
OUTPUT Current output configuration			$\begin{aligned} & \text { Externally selectable } \\ & 0 \text { to }+2.0 \mathrm{~mA} \text { or } \pm 1 \mathrm{~mA} \end{aligned}$	0 to +1.25 mA	
Voltage out contiguration			$\begin{aligned} & \text { Externaly selectable or } \\ & 0 \text { to }+10 \mathrm{~V}, 0 \text { to }-10 \mathrm{~V} \text {, or } \pm 5 \mathrm{~V} \end{aligned}$	Externaily selectable 0 to +10 V or 0 to -10 V	
OUTPUT LOADING Current output configuration			555 Ohms for +1.0 V output 1.57 K Ohms for $\pm 1.0 \mathrm{~V}$ output	952 Ohms for +1.0 O output	
Votroge output contiguration			2 K Ohms for 0 to +10 V or 0 to -10 V output 1 K Ohms for $\pm 5 \mathrm{~V}$ output	$\overline{2 K}$ Onms for 0 to +10 V or $\overline{0}$ to-10V output	
OUTPUT SETTLING TIME Current output configuration			750 nsec to $\pm 0.005 \%$ of F.S.	750 nsec to $\mathbf{~} 0.005 \%$ of F.S.	
Voltage output configuratio OUTPUT RESOLUTION			$30 \mu \mathrm{sec}$ to $\pm 0.005 \%$ of F S.	30 +rec to $\ddagger 0.005 \%$ of F.s.	
				200 nA (1LSD)	
Voltage output configuration			$150 \mu \mathrm{~V}$ (11 LSB)	1 mv (1LSD)	
LONG TERM STABILITY			20.005\%/yr.	:0.005\%/v.	
REFERENCE SOURCE INPUT POWER REQUIREMENTS			Internal: $\mathrm{TC}= \pm 0.0005 \% /{ }^{\circ} \mathrm{C}$ (2)	Internal: $T C= \pm 0.0005 \% \%^{\circ} \mathrm{C}$ (2)	
			$+15 \mathrm{VDC} \pm .5 \mathrm{VDCC} @ 25 \mathrm{~mA}$ $-15 \mathrm{VDC} \pm .5 \mathrm{VDC} @ 25 \mathrm{~mA}$ (excluding output current)	$+15 \mathrm{VDC} \pm .5 \mathrm{VOC} @ 25 \mathrm{~mA}$ $-15 \mathrm{VDC} \pm .5 \mathrm{VDC} @ 25 \mathrm{~mA}$	
PHYSICAL ENVIRONMENTAL			$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		
OPERATING TEMPERATURE RANGE			$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to + $70^{\circ} \mathrm{C}$	
RELATIVE HUMIDITY	STORAGE TEMPERATURE RANGE		UP to 100\% non-condensing	UP to 100\% non condensing	
SIZE			$2^{\prime \prime \prime}-\times 2^{\prime \prime} \mathrm{W} \times 0.375^{\prime \prime} \mathrm{H}$ plug-in module	$2^{\prime \prime} L \times 2^{\prime \prime} W \times 0.375^{\prime \prime} \mathrm{H}$ plug. in module	
PINS			$0.020^{\prime \prime}$ round gold plated $0.250^{\prime \prime}$ tong minimum $0.250^{\prime \prime}$ long minimum	$0.020^{\prime \prime}$, round gold plated $0.250^{\prime \prime}$ long minimum	
CASE MATERIAL			0.250" long minimum	Black Dially Phthalate (3)	
WEIGHT			2 oz .	202.	
PRICE (1.9)			\$109.00 Each	\$109.00 Each	
MATING SOCKET			DILS-2 (2 per module) $\$ 5.00$ per pair	DILS. 2 (2 per moduls) $\$ 500$ per pair	
NOTES:(1) Current Output (2) Power Supply rejection $0.005 \% / \%$ (3) Converters are fully repairable (3) Converters are fully repairable			(4) Linearity $\pm 0.012 \%$ of F.S. for Unipolar positive outputs. (5) Voltage output		

INPUT DIGITAL CODING TABLE FOR DAC-169 SERIES

ADJUST. MENT	BINARY INPUT WORD (16 BINARY BITS)	ANALOG OUTPUTS				
	MSB LSB	0 to +2 mA	$\pm 1 \mathrm{~mA}$	0 to +10 V	0 to -10V	+5V
GAIN	1111111111111111	+1.99997mA	+. 999977 mA	+9.99985v	$-9.99985 \mathrm{~V}$	-4.99985V
N/A	1000000000000000	1 mA	OA	+5V	-5V	ov
OFFSET	0000000000000000	OmA	-1mA	ov	OV	$+5 \mathrm{~V}$

ADJUST MENT	4 DIGIT BCD (8-4.2-1) INPUT WORD		ANALOG OUTPUTS		
	MSB	LSE	0 to +1.25mA	0 to +10 V	
GAIN	$1001-1001-1001-1001$	+1.2499 mA	+9.999 V	-9.999 V	
OFFSET	$0000-0000-0000-0000$	0 mA	0 V	0 V	

OUTPUT RANGE SETTING TABLE

CALIBRATION PROCEDURE

(1) Make the appropriate connections as shown in the output range setting table.
(2) OFFSET ADJUSTMENT

Refer to the Input Digital Coding Table and connect the ap propriate digital input
Adjust the offset potentiometer in order to bring the analog out put to the corresponding value as shown in table.
(3) GAIN ADJUSTMENT

Refer to the Input Digital Coding Table and connect the ap propriate digital input
Adjust the gain potentiometer in order to bring the analog out put to the corresponding value as shown in table.

16 BINARY BIT RESOLUTION DIGITAL TO ANALOG CONVERTERS

FEATURES

- Output Dynamic Range of 96db
- 1.5ppm/ ${ }^{\circ} \mathrm{C}$ Temperature Coefficient
- $\pm 0.0015 \%$ Accuracy
- $1 \mu \mathrm{sec}$ Output Settling Time (.0015\%FS)
- $\pm 1 / 2$ LSB Linearity
- $2^{\prime \prime} \mathrm{W} \times 4^{\prime \prime} \mathrm{Lx} 0.4^{\prime \prime} \mathrm{H}$

GENERAL DESCRIPTION

The DAC-HR series Digital-to-Analog converters are characterized by a resolution of up to one part in 65,535 , with a linearity error of $\pm 0.0015 \%$ and the lowest temperature coefficient of any commercially available D/A converter of $1.5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
DAC-HR's excellence in both linearity and stability has been achieved by utilizing a precision thin film resistor ladder network which tracks to within $1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$; an oven controlled zener reference which exhibits a temperature coefficient of $0.25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ and is current controlled within a high gain servo loop; plus the use of four individual monolithic quad switches. These switches all being in close proximity on the same monolithic chip, have beta's which tend to track, both initially and with temperature. Also, the superior uniformity of these monolithic transistor switches leads to inherently high accuracy of matching thus requiring minor trimming.
The DAC-HR series are completely self contained in a $2^{\prime \prime} \mathrm{W} \times 4^{\prime \prime} \mathrm{Lx} 0.4^{\prime \prime} \mathrm{H}$ plastic encapsulated module, yet fully repairable - a very significant consideration.
DAC-HR series were specifically designed for incorporation in systems and equipment demanding a wide dynamic range. For example, with a full scale output of one volt, DAC-HR can resolve down to 15 microvolts, a 96.3 db change
The output settling time is specified at 200 nanoseconds to 0.025% of full scale, and a maximum of 2 microseconds to 0.0015% of full scale. Output settling time is defined as that time between the application of an input digital word and the output settling to 0.0015% of full scale, it includes switch delay, nonlinear slewing time and final exponential decay time.
DAC-HR series may be used for either unipolar or bipolar applications. For unipolar operation full scale output is 0 to -2 ma and $\pm 1 \mathrm{ma}$ for bipolar output. Maximum voltage compliance is $\pm 1 \mathrm{~V}$. Provisions have been provided for the user to connect an external operational amplifier for scaling, sign inversion, impedance transformation, etc. Feedback and offset resistors are included internally. These resistors have temperature coefficients matched to the ladder network. The values of the internal feedback and offset resistors are set to produce a unipolar (0 V to +10 V) or bipolar ($\pm 5 \mathrm{~V}$ or $\pm 10 \mathrm{~V}$) output from an external amplifier. The amplifier should be selected to suit particular applications.

SPECIFICATIONS (typical @ $25^{\circ} \mathrm{C}$, unless otherwise noted) ELECTRICAL DIGITAL INPUTS:

Resolution

 Coding Up to 16 Binary Bits Parallel data in the following format:
Straight Binary (Unipolar Output) Offset Binary (Bipolar Output) NOTE: Two's complement bipolar output can be achieved when an externally complemented MSB is provided.
Logic Levels

ANALOG OUTPUT (@25 C)
Accuracy
Resolution
Zero Offset
inearity
Temperature Coefficient

Full Scale Output Current-2ma - Unipolar Output $\pm 1 \mathrm{ma}$ - Bipolar Output -1V - Unipolar Output $\pm 1 \mathrm{~V}$ - Bipolar Output
Output Voltage Compliance $5 \mathrm{~K} \Omega$
Output Impedance . . 200 nanosec. to $\pm 0.025 \%$ of FS 2 microsec. to $\pm 0.0015 \%$ of FS Internal - Oven Controlled D/A +15VDC, $\pm 0.5 \mathrm{VDC} @ 30 \mathrm{ma}$ - ONLY $\}-15 \mathrm{VDC}, \pm 0.5 \mathrm{VDC} @ 35 \mathrm{ma}$

REF. $\}^{+15 V D C, ~} \pm 0.5 \mathrm{VDC} @ 41 \mathrm{ma}$ OVEN $-15 V D C, \pm 0.5 V D C @ 41 \mathrm{ma}$
PHYSICAL ENVIRONMENTAL
Operating Temperature Range . . . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Relative Humidity Up to 100% NON
Size . $2^{\prime \prime} W \times 4^{\prime \prime} L \times 0.4^{\prime \prime} \mathrm{H}$
Pins 0.020' round gold plated
$0.250^{\prime \prime}$ long minimum
Case Material Black DiallyI Phthalate, per MIL-M-14
Modules are fully repairable
Weight
4 oz .
NOTE: An operating temperature range from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ is available at additional cost. Add suffix "EX" to part number.
${ }^{\text {(1) }}$ Differential linearity is ± 1 LSB for 16 Binary Bits (i.e., remains monotonic)

CODING FOR DAC-HR SERIES

ANALOG Output Range $1+1$ ma, FS)	OFFSET BINARY	ANALOG Output Range 10 to -2 ma, FS)	STRAIGHT BINARY
-0.99997	1111111111111111	-1.99997	1111111111111111
-0.75000	1110000000000000	-1.75000	1110000000000000
-0.62500	110100000000000	-1.50000	1100000000000000
-0.50000	110000000000000	-1.00000	1000000000000000
0.00000	100000000000000	-0.50000	0100000000000000
+0.50000	01000000000000	-0.25000	0010000000000000
+0.62500	001100000000000	0.00000	0000000000000000
+0.75000	0010000000000000		
+1.00000	0000000000000000		

Note that 2's complement bipolar output is available when an ex ternally complemented MSB is provided.

APPLICATION NOTES - WHEN USING AN EXTERNAL OUTPUT AMPLIFIER
(Use a high accuracy, low drift output amplifier to avoid degrading system performance)
dAC-HR SERIES WITH EXTERNAL AMPLIFIER (INVERTING) DAC-HR SERIES WITH EXTERNAL AMPLIFIER (INVERTING) DAC-HR SERIES WITH EXTERNAL AMPLIFIER (INVERTING) UNIPOLAR OUTPUT OV TO +10VFS

BIPOLAR OUTPUT $\pm 5 \mathrm{VFS}$
BIPOLAR OUTPUT ± 10 VFS

Note: Use external trim pots and resistors with 100 PPM $/{ }^{\circ} \mathrm{C}$ max tempco (available from Datel)

ORDERING INFORMATION
DAC-HR

$13 B=13$ BINARY BITS
$14 B=14$ BINARY BITS
$15 B=15$ BINARY BITS
$16 B=16$ BINARY BITS

LIST PRICE (single quantity)

DAC-HR 13B . . . \$249.
DAC-HR 14B ... \$263.
DAC-HR 15B . . . \$276.
MATING SOCKET DILS-2; 2 req'd per module
$\$ 5.00$ per pair

Data Conversion Accessory Circuits

Analog Multiplexers

	Modular	Modular	Modular
	MM-8	MMD-8	MM-16
Number of Channels	8	8	16
Type Input	Sing. End.	Differ.	Sing. End.
Input Voltage Range	$\pm 10 \mathrm{~V}$	$\pm 10 \mathrm{~V}$	$\pm 10 \mathrm{~V}$
Input Overvoltage, max.	$\pm 15 \mathrm{~V}$	$\pm 35 \mathrm{~V}$	$\pm 35 \mathrm{~V}$
Channel ON Resistance	300 ohms	2K	2K
Channel OFF Resistance	100 Meg .	200 Meg .	200 Meg .
Channel OFF Leakage	30 pA	30 pA	30 pA
Channel Addressing	3 bit code	3 bit code	4 bit code
Address Logic Compatibility	DTL/TTL	DTL/TTL/CMOS	DTL/TTL/CMOS
Internal Buffer Amplifier	No	Yes	Yes
Output Current Drive, max.	-	$\pm 10 \mathrm{~mA}$	$\pm 5 \mathrm{~mA}$
Output Settling Time	-	$4 \mu \mathrm{sec}$. (1)	$3 \mu \mathrm{sec}$. (1)
Output Slew Rate	-	100V/ $\mu \mathrm{sec}$.	$120 \mathrm{~V} / \mu \mathrm{sec}$.
Output Offset Drift	-	$\pm 60 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$\pm 30 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
Transfer Accuracy	.01\%	.01\%	.01\%
Crosstalk	-80 dB	-80 dB	-80 dB
Common Mode Rejection	-	110 dB	-
Turn ON Time	300 nsec.	500 nsec.	500 nsec.
Turn OFF Time	$1 \mu \mathrm{sec}$.	500 nsec.	500 nsec.
Power Requirement	+15V, -20V	$\pm 15 \mathrm{~V}$	$\pm 15 \mathrm{~V}$
Package Size, inches	$1 \times 2 \times 0.375$	$2 \times 2 \times 0.375$	$1.5 \times 2 \times 0.375$
Operating Temp. Range	0 to $70{ }^{\circ} \mathrm{C}$	0 to $70{ }^{\circ} \mathrm{C}$	0 to $70^{\circ} \mathrm{C}$
Price (1-9)	\$69.00	\$169.00	\$129.00

NOTES: 1. For 20 V step to $.01 \%$

This complete line of analog multiplexers offers a choice of operating features and prices for data acquisition system applications. The four modular models offer 8 and 16 channel capability. The MMD-8 is an 8 channel model with differential inputs and output and an internal differential buffer amplifier. The MM-16 features single-ended 16 channel operation and also includes an internal buffer amplifier.

The four monolithic models use dielectrically isolated CMOS circuitry. The analog and digital inputs are protected from both the loss of power and from overvoltages that exceed the power supplies. The CMOS FET analog channel switches have fast settling time, low capacitance, low leakage current, and high OFF resistance. These monolithic devices offer 4, 8, and 16 channel single-ended operation and 8 channel differential operation at economical prices. Channel addressing is done by a 2,3 , or 4 bit binary code, depending on the particular model. There is also an inhibit input which enables or disables the multiplexer.

Modular	Monolithic	Monolithic	Monolithic	Monolithic
MM-16-1	MXD-409	MX-808	MXD-807	MX-1606
16	4	8	8	16
Sing. End.	Differ.	Sing. End.	Differ.	Sing. End.
$\pm 10 \mathrm{~V}$	$\pm 15 \mathrm{~V}$	$\pm 15 \mathrm{~V}$	$\pm 15 \mathrm{~V}$	$\pm 15 \mathrm{~V}$
$\pm 35 \mathrm{~V}$				
2K	1.5K	15 K	1.5 K	1.5 K
200 Meg.	200 Meg .	200 Meg .	200 Meg .	200 Meg .
30 pA				
4 bit code	2 bit code	3 bit code	3 bit code	4 bit code
DTL/TTL/CMOS	DTL/TTL/CMOS	DTL/TTL/CMOS	DTL/TTL/CMOS	DTL/TTL/CMOS
No	No	No	No	No
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
.01\%	.01\%	.01\%	. 01%	.01\%
-80 dB	-86dB	$-86 \mathrm{~dB}$	$-86 \mathrm{~dB}$	$-86 \mathrm{~dB}$
-	120 dB	-	120 dB	-
500 nsec .	500 nsec .	500 nsec.	500 nsec.	500 nsec.
500 nsec.	300 nsec.	300 nsec.	300 nsec.	300 nsec.
$\pm 15 \mathrm{~V}$				
$1.5 \times 2 \times 0.375$	16 Pin DIP	16 Pin DIP	28 Pin DIP	28 Pin DIP
0 to $70^{\circ} \mathrm{C}$				
\$119.00	\$14.00	\$14.00	\$34.00	\$34.00

1020G Turnpike Street, Building S Canton, Massachusetts 02021 U.S.A Canton, Massachusett
TEL: (617) 828-8000 TWX: 710-348-0135 TELEX: 924461

4,8, AND 16 CHANNEL CMOS MULTIPLEXERS

MX SERIES

FEATURES

- Dielectrically Isolated CMOS
- Break-Before-Make Switching
- Single-Ended and Differential
- Overvoltage Protection
- DTL/TTL/CMOS Compatible
- 7.5 mW Standby Power

GENERAL DESCRIPTION

The MX series analog multiplexers are 4,8 , and 16 channel monolithic devices manufactured with a dielectrically isolated complementary MOS process. The circuits incorporate analog and digital input protection which protects the units from both overvoltage and loss of power. The digital inputs are DTL/TTL/ CMOS compatible and address the proper channel by means of a 2,3 , or 4 bit binary code. An inhibit input enables or disables the entire device and thus permits expansion of the number of channels by using several devices together. Another important feature of these multiplexers is the use of break-beforemake switching to insure that no two channels are ever momentarily shorted together.
Transfer accuracies of . 01% can be achieved at channel sampling rates up to 200 kHz and over $\pm 10 \mathrm{~V}$ signal ranges. These multiplexers are ideal for multi-channel data acquisition systems where the multiplexer operates into a high impedance load such as a sample-hold, buffer amplifier, or instrumentation amplifier. Channel ON resistance is typically 1.5 K at $25^{\circ} \mathrm{C}$ and is less than 2 K over the operating temperature range.
Power consumption is only 7.5 mW at standby and 15 mW at 100 kHz switching rate. Power supply range is $\pm 5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$. The devices are packaged in 16 pin or 28 pin DIP's and operate over the $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature range.

SPECIFICATIONS, Typical at $25^{\circ} \mathrm{C}, \pm 15 \mathrm{~V}$ supplies, R source $<1 \mathrm{~K}$, unless otherwise noted.				
	MX-808	MX-1606	MXD-409	MXD-807
ANALOG INPUTS Number of Channels Type Inputs Input Voltage Range Input Overvoltage, max. Channel ON Resistance Channel ON Resistance, max., 0 to $70^{\circ} \mathrm{C}$ Channel OFF Input Leakage Channel OFF Output Leakage Channel ON Leakage Channel OFF Input Capacitance Channel OFF Output Capacitance	8 Single Ended $\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm\|\mathrm{Vs}+20 \mathrm{~V}\| \\ & 1.5 \mathrm{~K} \\ & 2.0 \mathrm{~K} \\ & 30 \mathrm{pA} \\ & 1.0 \mathrm{nA} \\ & 100 \mathrm{pA} \\ & 5 \mathrm{pF} \\ & 25 \mathrm{pF} \\ & \hline \end{aligned}$	16 Single Ended $\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm\|\mathrm{Vs}+20 \mathrm{~V}\| \\ & 1.5 \mathrm{~K} \\ & 2.0 \mathrm{~K} \\ & 30 \mathrm{pA} \\ & 1.0 \mathrm{nA} \\ & 100 \mathrm{pA} \\ & 5 \mathrm{pF} \\ & 50 \mathrm{pF} \\ & \hline \end{aligned}$	4 Differential $\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm\|\mathrm{Vs}+20 \mathrm{~V}\| \\ & 1.5 \mathrm{~K} \\ & 2.0 \mathrm{~K} \\ & 30 \mathrm{pA} \\ & 1.0 \mathrm{nA} \\ & 100 \mathrm{pA} \\ & 5 \mathrm{pF} \\ & 12 \mathrm{pF} \\ & \hline \end{aligned}$	8 Differential $\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm\|\mathrm{Vs}+20 \mathrm{~V}\| \\ & 1.5 \mathrm{~K} \\ & 2.0 \mathrm{~K} \\ & 30 \mathrm{pA} \\ & 1.0 \mathrm{nA} \\ & 100 \mathrm{pA} \\ & 5 \mathrm{pF} \\ & 25 \mathrm{pF} \end{aligned}$
DIGITAL INPUTS ${ }^{1}$ Logic " 0 " Threshold, max. Logic " 1 " Threshold, min. (TTL) ${ }^{2}$ Logic " 1 " Threshold, min. (CMOS) ${ }^{3}$ Input Current, max., high or low Channel Address Coding Channel Inhibit, all channels OFF	$\begin{aligned} & +0.8 \mathrm{~V} \\ & +4.0 \mathrm{~V} \\ & +6.0 \mathrm{~V} \\ & 5 \mu \mathrm{~A} \\ & 3 \text { Bits } \\ & \text { Logic ' } 0 \text { '" } \end{aligned}$	$\begin{aligned} & +0.8 \mathrm{~V} \\ & +4.0 \mathrm{~V} \\ & +6.0 \mathrm{~V} \\ & 5 \mu \mathrm{~A} \\ & 4 \text { Bits } \\ & \text { Logic " } 0 \text { "' } \end{aligned}$	$\begin{aligned} & +0.8 \mathrm{~V} \\ & +4.0 \mathrm{~V} \\ & - \\ & 5 \mu \mathrm{~A} \\ & 2 \text { Bits } \\ & \text { Logic " } 0 \text { "' } \end{aligned}$	$\begin{aligned} & +0.8 \mathrm{~V} \\ & +4.0 \mathrm{~V} \\ & - \\ & 5 \mu \mathrm{~A} \\ & 3 \text { Bits } \\ & \text { Logic " } 0 \text { "' } \end{aligned}$
PERFORMANCE Transfer Error, max. ${ }^{4}$ Crosstalk, 10 kHz Common Mode Rejection Settling Time, 20V step to 0.1\% Settling Time, 20V step to $.01 \%$ Turn ON Time Turn OFF Time Break Before Make Delay Inhibit/Enable Delay	.01\% $-86 \mathrm{~dB}$ $2 \mu \mathrm{sec}$. $5 \mu \mathrm{sec}$. 500 nsec. 300 nsec. 80 nsec. 300 nsec	.01\% $-86 d B$ $2 \mu \mathrm{sec}$. $5 \mu \mathrm{sec}$. 500 nsec. 300 nsec. 80 nsec. 300 nsec.	.01\% $-86 \mathrm{~dB}$ 120 dB $2 \mu \mathrm{sec}$. $5 \mu \mathrm{sec}$. 500 nsec . 300 nsec. 80 nsec . 300 nsec.	.01\% $-86 \mathrm{~dB}$ 120 dB $2 \mu \mathrm{sec}$. $5 \mu \mathrm{sec}$. 500 nsec. 300 nsec. 80 nsec. 300 nsec.
POWER REQUIREMENT Rated Power Supply Voltage Power Supply Voltage Range Quiescent Current, max. Power Consumption, 10 kHz sampling	$\begin{aligned} & \pm 15 \mathrm{VDC} \\ & \pm 5 \text { to } \pm 20 \mathrm{~V} \\ & +5,-2 \mathrm{~mA} \\ & 7.5 \mathrm{~mW} \end{aligned}$	$\begin{aligned} & \pm 15 \mathrm{VDC} \\ & \pm 5 \text { to } \pm 20 \mathrm{~V} \\ & +5,-2 \mathrm{~mA} \\ & 7.5 \mathrm{~mW} \end{aligned}$	$\begin{aligned} & \pm 15 \mathrm{VDC} \\ & \pm 5 \text { to } \pm 20 \mathrm{~V} \\ & +5,-2 \mathrm{~mA} \\ & 7.5 \mathrm{~mW} \end{aligned}$	$\begin{aligned} & \pm 15 \mathrm{VDC} \\ & \pm 5 \text { to } \pm 20 \mathrm{~V} \\ & +5,-2 \mathrm{~mA} \\ & 7.5 \mathrm{~mW} \end{aligned}$
PHYSICAL-ENVIRONMENTAL Operating Temperature Range Storage Temperature Range Package Package Dissipation, max. PRICE (1-9)	$\begin{aligned} & 0 \text { to } 70^{\circ} \mathrm{C} \\ & -65 \text { to }+150^{\circ} \mathrm{C} \\ & 16 \text { Pin DIP } \\ & 725 \mathrm{~mW} \\ & \$ 14.00 \end{aligned}$	$\begin{aligned} & 0 \text { to } 70^{\circ} \mathrm{C} \\ & -65 \text { to }+150^{\circ} \mathrm{C} \\ & 28 \text { Pin DIP } \\ & 1200 \mathrm{~mW} \\ & \$ 34.00 \end{aligned}$	$\begin{aligned} & 0 \text { to } 70^{\circ} \mathrm{C} \\ & -65 \text { to }+150^{\circ} \mathrm{C} \\ & 16 \text { Pin DIP } \\ & 725 \mathrm{~mW} \\ & \$ 14.00 \end{aligned}$	$\begin{aligned} & 0 \text { to } 70^{\circ} \mathrm{C} \\ & -65 \text { to }+150^{\circ} \mathrm{C} \\ & 28 \mathrm{Pin} \text { DIP } \\ & 1200 \mathrm{~mW} \\ & \$ 34.00 \end{aligned}$

NOTES: 1. The digital inputs are the channel address inputs and the inhibit input.
2. To drive from DTL/TTL circuits 1 K pull-up resistors to +5 V are recommended.

With models MX-1606 and MXD-807 pin 13 should be left open.
3. For $\mathrm{a}+6.0 \mathrm{~V}$ threshold with models MX-1606 and MXD-807 pin 13 is connected to +10 V .
4. For output load >20 megohms.

THESE MULTIPLEXERS ARE COVERED BY GSA CONTRACT.

BREAK-BEFORE-MAKE DELAY (t OPEN)

CROSSTALK VS. FREQUENCY OF INPUT SIGNAL

SETTLING TIME VS. SOURCE RESISTANCE (20V STEP)

LEAKAGE CURRENT VS. TEMP.

NORMALIZED ON RESISTANCE
VS. SUPPLY VOLTAGE

SUPPLY CURRENT VS. SAMPLING FREQUENCY

8 CHANNEL DIFFERENTIAL-ANALOG TIME SHARING, WITH THREE OUTPUT AMPLIFIERS

FEATURES

- Differential Output Amplifier
- High Transfer Accuracy
- Fast Settling Time
- Break-Before-Make Switching

DESCRIPTION

The Datel Systems Model MMD-8 is a complete analog multiplexer with buffer amplifiers and a differential output amplifier for selectively switching one of eight differential input channels.
The MMD-8 exhibits excellent transfer characteristics with high speed break-before-make switching. A channel select inhibit (all channels off) is provided so that two MMD-8 multiplexers can be stacked to provide 16 differential input channel multiplexing with a four bit binary address.
The 1.6 cubic inch module contains an electronic switch array with an associated decoder and digital input buffers, two analog buffer amplifiers and a differential output amplifier. The common differential pair from the switch is brought out through an I/O pin along with the inputs and outputs of the two buffer amplifiers and the differential amplifier.
The MMD-8 can accept differential analog inputs of up to ± 10 volts with a transfer accuracy of 0.01%. Without the amplifiers, the switching time is typically 500 nanoseconds. With the amplifier, the settling time is only 4 microseconds to 0.01% of full scale.
The differential output amplifiers will deliver ± 10 milliamps at ± 10 volts full scale. Linearity of this amplifier is 0.01% with an offset adjustable to less than 1 millivolt and an offset vs. temperature of 60 microvolts per degree centigrade. The amplifiers can be slewed at a rate of 100 volts per microsecond.
The entire 8 -channel differential multiplexer is completely encapsulated in a $2^{\prime \prime} \times 2^{\prime \prime} \times .375^{\prime \prime}$ module with dual in-line pinning ($0.1^{\prime \prime}$ grid) and requires only ± 15 volts at $\pm 20 \mathrm{~mA}$ max for power

MECHANICAL DIMENSIONS - INCHES (MM)

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	CHANNEL 1 HI INPUT	17	DIFF. AMP. POS. IN
2	CHANNEL 1 LO INPUT	18	+15V POWER
3	CHANNEL 2 HI INPUT	19	$-15 V$ POWER
4	CHANNEL 2 LO INPUT	20	PWR \& SIG. GND
5	CHANNEL 3 HI INPUT	21	ADDRESS INPUT 1
6	CHANNEL 3 LO INPUT	22	ADDRESS INPUT 2
7	CHANNEL 4 HI INPUT	23	ADDRESS INPUT 4
8	CHANNEL 4 LO INPUT	24	BUFFER 1 INPUT
9	CHANNEL 5 HI INPUT	25	ADDRESS INHIBIT
10	CHANNEL 5 LO INPUT	26	DIFF. AMP. OUTPUT
11	CHANNEL 6 HI INPUT	27	BUFFER 1 OUTPUT
12	CHANNEL 6 LO INPUT	28	MUX. HI OUTPUT
13	CHANNEL 7 HI INPUT	29	BUFFER 2 INPUT
14	CHANNEL 7 LO INPUT	30	DIFF. AMP. NEG. IN
15	CHANNEL 8 HI INPUT	31	BUFFER 2 OUTPUT
16	CHANNEL 8 LO INPUT	32	MUX. LO OUTPUT

SPECIFICATIONS (Typical @ $25^{\circ} \mathrm{C}$)						
ANALOG INPUT				Enable/Inhibit Delay	$300 \mathrm{~ns} \mathrm{Typ}$.	
No.\# of Inputs	8 channel differential			Break Time (Break before make)		
Input Voltage Range	$\pm 10 \mathrm{~V}$				80 ns Typ. to 50\% points	
Input Overvoltage	$\pm 35 \mathrm{~V}$ max.			Common mode Voltage Common mode rejection ratio, At 0 to 100 Hz	Ein Diff + CMV = $\pm 10 \mathrm{Vpk}$	
Input Impedance	2k Ohm switch Res. with 50 pf to Gnd. (High \& Low inputs)				Adjustable for both Adjustable	
Without Buffer or Differential amplifier				$A C$ \& $D C$ to: 110 dB with $1 \mathrm{~K} \Omega$ unbalance		
With Buffer Amplifier	100 meg Ohms (Channel on) 200 meg Ohms (Channel off)				OUTPUT AMPLIFIER CHARACTERISTICS	
				Output Voltage	$\pm 10 \mathrm{~V}$ max.	
Leakage	.03 nA typ. from off channels into source ($\pm 20 \mathrm{~V}$ differential)			Output Current	$\pm 10 \mathrm{~mA}$ max.	
				Output Loading	$1 \mathrm{k} \Omega$ in parallel with 1000 pf max.	
Channel Select	3 lines straight binary code (1 through 8 channel select)			Gain	1.000 adjustable	
				Linearity	0.01\% of Full Scale	
Inhibit (All channels off)	Logical " 0 "			Offset (Vout-Vin)	Adjustable to $< \pm 1 \mathrm{mV}$	
Input Logic Levels DTL/TTL/CMOS compatible (For TTL compatability use an open collector device with resistor pull up to +5 V).	INPUT CODE			Offset - vs - Temperature	$\pm 60 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	
				Slew rate	$100 \mathrm{~V} / \mu \mathrm{s}$	
		MIN.	MAX.	Settling Time (20 V step in)	4μ s to 0.01\% of Full Scale	
	"0"	OV	+0.8V	Input Power Requirements	$\pm 15 \mathrm{~V} @ \pm 20 \mathrm{~mA}$ max.	
	"1"	+4V	$+15 \mathrm{~V}$	PHYSICAL ENVIRONMENTAL		
SWITCHING CHARACTERISTICS (Independent of Amplifier)				Operating Temperature Storage Temperature	$\begin{aligned} & 0^{\circ} \text { to }+70^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	
Switching Time	500 ns typ., 1μ Sec max.			Relative humidity Size	Up to $10 \mathrm{C} \%$ non-condensing$2^{\prime \prime} \mathrm{L} \times 2^{\prime \prime} \mathrm{W} \times .375^{\prime \prime} \mathrm{H}$	
Sequence Rate	500 kHz					
Crosstalk	$\begin{aligned} & @ 10 \mathrm{kHz} \\ & @ 100 \mathrm{kHz} \\ & @ 1 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 1 \mathrm{mvp} \mathrm{p} \mathrm{p} \\ & 4 \mathrm{mvp} \mathrm{p} \\ & 40 \mathrm{mvp} \mathrm{p} \end{aligned}$		Price (1-9)	\$169.00	
				Mating Socket	DILS-2, 2 req'd per module, \$5/pr.	

TYPICAL SYSTEM APPLICATION -

An 8 Channel, Differential, Noninverting Data Acquisition System, using the MMD-8 along with other off-the-shelf Modules from Datel Systems.

DATEL

DIFFERENTIAL AMPLIFIER

CALIBRATION PROCEDURE

1. Ground both the differential amplifier inverting and non-inverting inputs. Adjust the output to zero volts using the ZERO trim as seen on a DC-coupled scope.
2. Connect both the inverting and non-inverting inputs to a $100 \mathrm{~Hz}, 20 \mathrm{~V}$ pk-pk squarewave source referenced to ground. Adjust the DC CMR trim for minimum output on a DC scope.
3. Repeat step 2 but use a 1 kHz sinewave source and adjust the AC CMR for minimum output.
4. Ground the inverting input. Connect the noninverting input to a 20 V pk-pk, 100 Hz sinewave source. Connect the differential inputs of a calibrated scope between the amplifier's non-inverting input and the amplifier output. Adjust the GAIN trim for minimum output on the scope. Note that the CMR trim is essentially independent of GAIN adjustments but the GAIN is affected by CMR adjustments.

Sample-Holds

	Model	Accuracy	Acquisition Time	Aperture Delay	Voltage Range	Gain	Band-Width
Modular	SHM-1	.025\%	$5 \mu \mathrm{sec}$.	50 nsec.	$\pm 10 \mathrm{~V}$	+ 1.00	650 kHz
	SHM-2	0.1\%	100 nsec.	10 nsec .	$\pm 10 \mathrm{~V}$	+ 1.00	10 MHz
	SHM-2E	0.1\%	100 nsec.	10 nsec.	$\pm 10 \mathrm{~V}$	+ 1.00	10 MHz
	SHM-3	.005\%	50μ sec.	40 nsec .	$\pm 10 \mathrm{~V}$	+ 1.00	100 kHz
	SHM-4	.005\%	$7 \mu \mathrm{sec}$.	40 nsec .	$\pm 10 \mathrm{~V}$	+ 1.00	1 MHz
NEW	SHM-5	.01\%	350 nsec.	20 nsec.	$\pm 10 \mathrm{~V}$	-1.00	5 MHz
	SHM-CM	.01\%	$100 \mu \mathrm{sec}$.	20 nsec.	$\pm 12 \mathrm{~V}$	+ 1.00	40 kHz
	SHM-CMI	01\%	$150 \mu \mathrm{sec}$.	20 nsec .	$\pm 12 \mathrm{~V}$	-1.00	40 kHz
	SHM-UH	0.25\%	50 nsec.	10 nsec .	$\pm 5 \mathrm{~V}$	+ 0.95	45 MHz
Monolithic NEW	SHM-IC-1	.01\%	$5 \mu \mathrm{sec}$.	50 nsec.	$\pm 10 \mathrm{~V}$	± 1.00 (1)	2 MHz
	SHM-LM-2	0.1\%	$5 \mu \mathrm{sec}$.	100 nsec.	$\pm 10 \mathrm{~V}$	+ 1.00	1 MHz
Hybrid COMING!	SHM-HU	0.1\%	25 nsec.	6 nsec.	$\pm 2.5 \mathrm{~V}$	+ 0.975	20 MHz
	SHM-6	.01\%	$1 \mu \mathrm{sec}$.	20 nsec.	$\pm 10 \mathrm{~V}$	± 1.00 (1)	5 MHz

NOTES: 1. Can also be configured for gains greater than ± 1.

This line of sample-hold devices includes modular, hybrid, and monolithic models and is the most comprehensive line in the industry. The models listed here cover a broad range of applications from ultra-fast and high accuracy down to low cost, moderate performance units.
SHM-1: General purpose, high accuracy model with 5μ sec. acquisition time.
SHM-2, SHM-2E: Very high speed units with open loop circuit to achieve acquisition times as fast as 100 nsec .

SHM-3: A low cost, .005\% accuracy model with $50 \mu \mathrm{sec}$. acquisition time.
SHM-4: A low cost, . 005% sample hold with a faster $7 \mu \mathrm{sec}$. acquisition time.
SHM-5: A new ultra-fast sample hold designed for use with fast 10 and 12 bit A/D converters. Acquisition time is 350 nsec. to $.01 \%$ and 200 nsec. to 0.1%. The SHM-5 also features high input impedance.
SHM-CM, SHM-CMI: These two CMOS models are designed for low power applications such as portable data acquisition systems. They offer inverting or noninverting performance and can operate from a single polarity power supply.
SHM-UH: This ultra-fast model features acquisition time of 50 nsec. and is ideal for use with ultra-fast 8 bit A/D converters such as ADC-UH8B.

SHM-IC-1: This monolithic sample-hold offers excellent performance characteristics for . 01% accuracy at a low cost.

SHM-LM-2: This "coming soon" monolithic unit also gives excellent performance at even lower cost.

SHM-HU: This "coming soon" hybrid model is specifically designed for ultra-fast video data conversion applications.

SHM-6: This "coming soon" hybrid unit features $.01 \%$ accuracy with $1 \mu \mathrm{sec}$. acquisition time.
$\left.\left.\begin{array}{cccccc}\begin{array}{c}\text { Hold-Mode } \\ \text { Droop }\end{array} & \text { Tempco }\end{array} \quad \begin{array}{c}\text { Power } \\ \text { Requirement }\end{array}\right) ~ \begin{array}{c}\text { Case Size } \\ \text { (inches) }\end{array}\right)$

MODEL SHM-C-1

FEATURES

- $5 \mu \mathrm{sec}$. Acquisition to $.01 \%$
- 50 nsec. Aperture
- Inverting or Noninverting
- 2 MHz Bandwidth
- $.01 \%$ Feedthrough
- 14 Pin DIP Package

GENERAL DESCRIPTION

The SHM-IC-1 is a new monolithic integrated circuit sample and hold with excellent performance features. It is a self-contained device requiring only an external holding capacitor, the value of which can be chosen by the user to achieve his desired speed and accuracy requirement. The unit consists of a high gain differential input amplifier, a digitally controlled electronic switch, and a high input impedance buffer amplifier. The SHM-IC-1 operates in a closed loop configuration, either inverting or noninverting, with accuracy and speed determined by the input amplifier characteristics and the value of the holding capacitor. The electronic switch is controlled by a DTL/TTL compatible logic input.
The most common configuration for the SHM-IC-1 is a unity gain, noninverting sample and hold. In this configuration the device has a $\pm 10 \mathrm{~V}$ input and output range with 10^{8} ohms input impedance. Specifications are given for this unit with two different values of holding capacitor, $.001 \mu \mathrm{~F}$ and $.01 \mu \mathrm{~F}$. The $.001 \mu \mathrm{~F}$ capacitor gives a $4 \mu \mathrm{sec}$. acquisition time to 0.1% for a 10 V change, a 2 MHz tracking bandwidth and $50 \mathrm{mV} / \mathrm{sec}$. maximum hold mode droop. The $.01 \mu \mathrm{~F}$ capacitor gives a 10 μ sec. acquisition time, 1 MHz tracking bandwidth, and $5 \mathrm{mV} / \mathrm{sec}$. maximum droop. Characteristics for other values of holding capacitor can be determined from graphs which are shown. The SHM-IC- 1 can also be configured as either an inverting or noninverting sample and hold with gain by the use of two external resistors.
This device is housed in a 14 -pin hermetically sealed dual-in-line package. Operating temperature range is $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.

INPUT AMPLIFIER SPECIFICATIONS DC Gain, volts/volt Bias Current Offset Current Offset Voltage (adjust, to zero) Offset Voltage Drift. Common Mode Voltage Range Common Mode Rejection Ratio Power Supply Rejection Gain Bandwidth Product	$50 \mathrm{~K}, 25 \mathrm{~K} \mathrm{~min}$. $50 \mathrm{nA}, 200 \mathrm{nA}$ max. $10 \mathrm{nA}, 50 \mathrm{nA}$ max. $3 \mathrm{mV}, 6 \mathrm{mV}$ max. $20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ $\pm 10 \mathrm{~V}$ min. 74 dB min. $\pm 30 \mu \mathrm{~V} / \%$ max. 2 MHz
GENERAL SPECIFICATIONS, SAMPLE \& HOLD, G = +1 Input Voltage Range Input Impedance Output Voltage Range Output Current, S.C. protected Output Impedance Aperture Delay Aperture Uncertainty . Gain Error, sampling mode Hold Mode Noise Digital Input, Sample Mode, DTL/TTL Hold Mode, DTL/TTL	$\begin{aligned} & \pm 10 \mathrm{~V} \text { min. } \\ & 10^{8} \text { ohms } \\ & \pm 10 \mathrm{~V} \text { min. } \\ & \pm 10 \mathrm{~mA} \text { min. } \\ & 0.2 \mathrm{ohm} \\ & 50 \text { nsec. } \\ & 5 \text { nsec. } \\ & .01 \% \text { max. } \\ & 350 \mu \mathrm{~V} \text { RMS } \\ & 0 \text { to }+0.8 \mathrm{~V} @-0.8 \mathrm{~mA} \\ & +2.0 \text { to }+5.5 \mathrm{~V} @+20 \mu \mathrm{~A} \end{aligned}$
SAMPLE \& HOLD, $\mathrm{G}=+1, \mathrm{C}_{\mathrm{H}}=.001 \mu \mathrm{~F}$ Acquisition Time, 10 V to 0.1% Acquisition Time, 10V to .01\% Bandwidth, small signal, sampling . Slew Rate Hold Mode Voltage Droop Hold Mode Feedthrough Sample-to-Hold Offset Error, $\mathrm{V}_{\text {IN }}=0$ Sample-to-Hold Gain Error, $\mathrm{V}_{1 \mathrm{~N}}= \pm 10 \mathrm{~V}$ Sample-to-Hold Nonlinearity Error	4μ sec. $5 \mu \mathrm{sec}$. 2.0 MHz $5 \mathrm{~V} / \mathrm{H}_{\mathrm{sec}}$. $50 \mathrm{mV} / \mathrm{sec}$. max. .01\% max. 20 mV max. .05\% max. of output . 01% max. of output
SAMPLE \& HOLD, $\mathrm{G}=+1, \mathrm{C}_{\mathrm{H}}=.01 \mu \mathrm{~F}$ Acquisition Time, 10 V to 0.1% Acquisition Time, 10 V to $.01 \%$ Bandwidth, small signal, sampling Slew Rate Hold Mode Voltage Droop Hold Mode Feedthrough . Sample-to-Hold Offset Error, $\mathrm{V}_{1 \mathrm{~N}}=0$ Sample-to-Hold Gain Error, $V_{1 N}= \pm 10 \mathrm{~V}$. Sample-to-Hold Nonlinearity Error	$10 \mu \mathrm{sec}$. $12 \mu \mathrm{sec}$. 1.0MHz $3 \mathrm{~V} / \mu \mathrm{sec}$. $5 \mathrm{mV} / \mathrm{sec}$. max. .002\% max. 2 mV max. 005\% max. .001\% max.
POWER REQUIREMENT	$\pm 15 \mathrm{VDC} @ 5 \mathrm{~mA}$ max.
PHYSICAL-ENVIRONMENTAL Operating Temperature Range. Storage Temperature Range Package, hermetically sealed ceramic DIP	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ & -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\ & \text { TO- } 116 \end{aligned}$
Price (1-9) .	\$19.00

The most commonly used sample and hold configuration for the SHM-IC is the noninverting unity gain circuit. This gives a high input impedance of 10^{8} ohms, and the output voltage in the sample mode follows the input. Specifications are given for this configuration for two values of $\mathrm{C}_{\mathrm{H}}, .001 \mu \mathrm{~F}$ and $.01 \mu \mathrm{~F}$. The $.001 \mu \mathrm{~F}$ capacitor gives excellent speed ($4 \mu \mathrm{sec}$. acquisition) with good hold mode voltage droop (only $50 \mathrm{mV} / \mathrm{sec}$. max). For even better speed, a 100 pF capacitor may be used to give an acquisition time of only $2 \mu \mathrm{sec}$. The hold mode droop, however, increases by an order of magnitude to $500 \mathrm{mV} / \mathrm{sec}$., and the sample-to-hold errors also increase. For excellent accuracy a $.01 \mu \mathrm{~F}$ capacitor should be used, giving an acquisition time of $10 \mu \mathrm{sec}$., and a hold mode droop of only $5 \mathrm{mV} / \mathrm{sec}$. max. Even larger values of holding capacitor can be used with proportionate increases in accuracy but slower speed. The application graphs show the results for the different values.
For best results, C_{H} should be a good quality capacitor with very high insulation resistance and low dielectric absorption. For temperatures up to $+85^{\circ} \mathrm{C}$ polystyrene type capacitors are recommended. It is also recommended for lowest hold mode droop that a guard ring be used around the C_{H} terminal (pin 11) in the circuit board layout as shown on the last page. This is done to present leakage to other conductors on the circuit board due to board leakage and contamination. If a large value polystyrene capacitor is used, such as $1 \mu \mathrm{~F}$, hold mode droop as low as $20 \mu \mathrm{~V} / \mathrm{sec}$. (typical) can be achieved with an acquisition time of about 3 milliseconds.

Three error contributions are specified for sample-to-hold errors: offset error, gain error, and nonlinearity error. These sampling errors are caused by a small amount of charge being dumped to or from the holding capacitor by the sampling switch and are reduced by a larger value of C_{H}. It is possible to compensate for these errors by changing the gain and offset elsewhere in the external circuitry for the noninverting unity gain case. For the inverting case, the gain can be accomplished by adjusting the external resistor values and an offset can be applied to pin 2 of the input amplifier. When this external compensation is used, the output will be in error during sampling, but will be accurate in the hold mode. Only the nonlinearity error will remain of the sample-to-hold errors. The offset adjustment of the input amplifiers should be used only to zero the device in the sample mode.
In the inverting gain of one operating mode, the feedback and input resistors should be carefully matched or trimmed to give the desired gain of one. In general, the operating parameters are the same as in the noninverting unity gain configuration except that the sampling bandwidth is reduced by a factor of two. Likewise, for higher gain configurations the sampling bandwidth is proportionately reduced.

SAMPLE \& HOLD, UNITY GAIN, NONINVERTING

$$
\text { GAIN }=+1
$$

The 100 K ohm offset trimming potentiometer should be a $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ cermet 15 turn type. These are available from Datel Systems at $\$ 3.00$ each. To zero, ground input (pin 2) and digital control (pin 14) and adjust 100 K offset trim for zero output (pin 7).

SAMPLE \& HOLD, NONINVERTING WITH GAIN

$$
\mathrm{GAIN}=1+\frac{R_{2}}{R_{1}}
$$

Bandwidth decreases proportionately with gain. R_{3} is equal to the parallel combination of R_{1} and R_{2} and is used to compensate for voltage offset caused by input bias current. R_{1} and R_{2} should be $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ metal film type resistors.

SAMPLE \& HOLD, INVERTING

$$
\text { GAIN }=-\frac{R_{2}}{R_{1}}
$$

For a gain of -1 the bandwidth is one half of that given for the noninverting mode. R_{3} is equal to the parallel combination of R_{1} and R_{2} and is used to compensate for voltage offset caused by input bias current. R_{1} and R_{2} should be matched $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ metal film type resistors for a gain of $\mathbf{- 1}$. For higher gains the ratio should be matched closely or trimmed with a small value carbon composition type resistor.

PERFORMANCE PARAMETERS

OPEN LOOP FREQUENCY RESPONSE
Typical at $25^{\circ} \mathrm{C}, \pm 15 \mathrm{~V}$ Supplies

SPEED CHARACTERISTICS VS. C_{H}
Typical at $25^{\circ} \mathrm{C}, \pm 15 \mathrm{~V}$ Supplies

RECOMMENDED CIRCUIT BOARD LAYOUT USING GUARD RING

ACCURACY CHARACTERISTICS VS. C_{H}
Typical at $25^{\circ} \mathrm{C}, \pm 15 \mathrm{~V}$ Supplies

HOLD MODE VOLTAGE DROOP VS. TEMPERATURE Typical, $\pm 15 \mathrm{~V}$ Supplies

ORDERING INFORMATION

PRICE (1-9)

Model SHM-IC-1
Trimming Potentiometer TP100K (100K Ω)

Contact Factory for Quantity Pricing

The SHM-IC-1 is covered under GSA Contract

1020G Turnpike Street, Building S Canton, Massachusetts 02021 U.S.A TEL: (617) 828-8000
TWX: 710-348-0135 TELEX: 924461

ULTRA FAST / ACCURATE ANALOG STORAGE SAMPLE \& HOLD

MODEL SHM-2

FEATURES

- Ultra Fast Acquisition Time
- Short Aperture Time
- Wide Frequency Response
- Fast Output Settling
- Low Temperature Coefficient

DESCRIPTION

Model SHM-2 Sample and Hold is the ultimate in speed. Designed to operate in conjunction with Datel's analog to digital converters; Series H, P, N, M and L. SHM-2 can track a full scale analog input in less than 100 nsec 's to within $\pm 0.1 \%$ of full scale accuracy. Additional features include wide frequency response (D.C. to 500 KHz), an aperture uncertainty of less than 10 nsec's and an output settling time of one $\mu \mathrm{sec}$ to within $\pm 0.1 \%$.
SHM-2 is usually connected between a signal source to be quantized and analog to digital converter, providing an excellent throughput rate for an overall data system.

APPLICATION

When digitizing an analog signal which varies with time and having a frequency spectrum, it is difficult to determine what point of this signal is exactly represented by the resultant digital output. Since the maximum time "uncertainty" of the conversion is the total conversion time of the converter which may be called "aperture time or ambiguity time"; therefore, the maximum error due to this uncertainty is the difference of two points of the analog signal under measurement from T_{0} to time, T_{1} representing the time required to convert the changing analog signal.
A faster converter will obviously shorten the aperture and the error will be reduced proportionately, but a device such as the SHM-2 with very narrow aperture characteristics, controlled by command, is far more useful in trying to determine the exact point of the changing analog signal when converting. The purpose of SHM-2 is to "hold" upon command at the beginning of the conversion (T_{0} time) the analog voltage applied at its input. The "held" value will remain constant during the conversion process. Relationships of error due to time uncertainty versus input frequency is plotted on the reverse side of this sheet.

MECHANICAL DIMENSIONS (INCHES)
INPUT/OUTPUT CONNECTIONS

NOTE 1. ADJUST FOR HOLD OFFSET AT VIN - O VOLTS or grounded analog input.

USE POLYSTYRENE TYPE CAPACITOR

SPECIFICATIONS (Typical @ $25^{\circ} \mathrm{C}$ unless noted)

ELECTRICAL

Analog Input:
Analog input voltage range . . . Up to ± 10 VFS
Input overvoltage
$\pm 15 \mathrm{~V}$ (max.) with a recovery time of 500 nsec
Input source current $\pm 12 \mathrm{~mA}$ max drive during transition $\pm 2 \mathrm{~mA}$ bias during steady state. (Switching circuit is a diode bridge driven by 2 current sources.)

Mode control input

| Status | Input
 Code | Vinput | |
| :--- | :---: | :---: | :---: | :---: |
| | Min. | Max. | |
| Sample | $" 0 "$ | 0 V | +0.8 V |
| Hold | $" 1 "$ | +2.0 V | +5.5 V |

Rise and Fall time $\leqslant 10 \mathrm{nsec}$ to maintain aperture time spec s.

Analog Output

Output curren
Up to $\pm 10 \mathrm{VFS}$

Dynamic Characteristics:
Bandwidth
$\pm 5 \mathrm{~mA}$

DC to 500 KHz (max.) full power @ 3 db point
Acquisition time 100 nsec (max.) to $\pm 0.1 \%$ of FS of input signal (5 V step)
Aperture time
Feedthrough @ any input
frequency

Settling time

Hold decay rate
. $50 \mu \mathrm{~V}$ in $1 \mu \mathrm{sec}$

Performance:
Gain \ldots ($25^{\circ} \mathrm{C}$)
+1.00 Max. to +0.999 Min

Linearity
$\pm 0.1 \%$ of FS
arature coefficient
Long term stability
$\pm 30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ of FS

Input power requirements +15 $\pm .5 \mathrm{VDC} @ 35 \mathrm{ma}$
$-15 \pm .5 \mathrm{VDC} @ 35 \mathrm{ma}$
PHYSICAL-ENVIRONMENTAL

Operating temperature range	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Storage temperature range	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Relative humidity	Up to 100\% non-condensing
Size	$2^{\prime \prime} \mathrm{L} \times 1^{\prime \prime} \mathrm{W} \times 0.375^{\prime \prime} \mathrm{H}$ plug-in module
Pins	$0.020^{\prime \prime}$ round gold plated $0.250^{\prime \prime}$ long minimum
Case material	Black diallyl phthalate, per MIL-M-14. Fully repairable
Weight	
Mating Socket	DILS-2, 2 Req'd.,
Price (1-9)	Model SHM-2

Model SHM-2 sample and hold module is fully encapsulated and features dual in-line pinning compatibility (i.e., $0.100^{\prime \prime}$ grid pin spacing and $0.800^{\prime \prime}$ between rows of pins).

TYPICAL SYSTEM CONFIGURATION

ANALOG

ERROR DUE TO TIME UNCERTAINTY (APERTURE TIME) AS A FUNCTION OF INPUT SIGNAL FREQUENCY

INPUT SIGNAL FREQUENCY TO BE DIGITIZED

TYPICAL EXAMPLE
ANALOG DIGITAL CONV W WO SAMPLE \& HOLD

Full scale	WITH S \& H (10 NANOSEC APERTURE)	WITHOUT S \& H $(20 \mu$ sec CONVERSION TIME)
.06\%	10 KHz (MAX. INPUT FREQUENCY)	400 Hz (MAX INPUT FREQUENCY)
.01\%	2000 Hz (MAX INPUT FREQUENCY)	$\leqslant 1 \mathrm{~Hz}$ (MAX. INPUT FREQUENCY)

DATEL

FEATURES

- Fast Acquisition Time
- Low Droop
- Adjustable Aperture Delay
- Low Gain Error
- High Input Impedance

DESCRIPTION

The SHM-4 is ideally suited to simultaneous sample and hold applications, where the gain and aperture delay between units must be matched, and where the output droop of the sampled signal is minimized for time shared A/D conversion.
A double inversion circuit in the SHM-4 places the FET sampling switch near ground, which means that all variations of hold step and of aperture delay with input voltage are eliminated.
A unique closed loop design gives high accuracy and allows the rate error ${ }^{1}$ to be factory nulled. Rate error is the delay by which the output lags an input ramp and may be expressed in nsec or in $\mathrm{mV} / \mathrm{V} / \mu \mathrm{sec}$. For conventional sample and hold applications rate error is not serious because it merely causes an advance in the effective time of hold and tends to cancel out part of the aperture delay. However, for simultaneous applications the aperture delay minus the rate error must be matched between units so that the effective time of hold is the same for all. The SHM-4 accomplishes this by nulling the rate error to less than 1 nanosecond and for critical applications, by providing an external 5 nanosecond adjustment of aperture delay. Also, the high accuracy and low droop of the SHM-4 make it useful in conventional sample and hold applications.
Careful attention to circuit detail in eliminating leakage currents has decreased the output droop to less than 20 microvolts per millisecond allowing several SHM-4 modules to be time shared between one A/D converter.

MECHANICAL DIMENSIONS (Inches) | PIN | FUNCTION |
| :---: | :---: |
| 1 | EXT APERTURE DE |

EXT. APERTURE DELAY
APERTURE TEST POINT
ANALOG GROUND
ANALOG OUT
$+15 \mathrm{VDC}$
15 VDC
POWER GROUND
THRESHOLD
HOLD COMMAND INPUT
OFFSET
ANALOG GROUND
ANALOG IN

Note: Adjust hold offset for minimum output with analog input at ground while with analog input at ground while erate speed 0 to +2.4 V . squarewave.

SPECIFICATIONS (typical @ $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ unless

 ELECTRICAL otherwise noted)Analog Input
Input Voltage Range $\pm 10 \mathrm{~V}$
Max. Safe Input $\pm 15 \mathrm{~V}$
Impedance

Digital Inputs
(TTL, DTL, C/MOS Compatible)
Sample 10^{8} ohms in parallel with: 1) 400 nA current source and
2) 33 K ohm in series with 20 pF

Nominal Limits
Hold $4 \mathrm{~V}+2$ to $+15 \mathrm{~V} @+0.1 \mathrm{~mA}$
(For 15 V C/MOS threshold may be raised to 6.5 V with a
5.6 V zener from pin 8 to ground) Sample
Offset V, (Vout -Vin) @ Vin=0 . Ext. Adj. to 0
Offset V over temp. range (1) . . . $\pm 30 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
Offset V vs Supply Voltage . . . $\pm 100 \mu \mathrm{~V} / \mathrm{V}$
Gain Error (offset V vs Vin)
$\pm .005 \%$
Gain Error over temp. range . . . $\pm .001 \% / 70^{\circ} \mathrm{C}$
Rate Error (offset V vs dVin/dt) (1) . 1 nsec
Bandwidth, 3db, 20 V .p-p (1) . . . 200 KHz
Bandwidth, 3db, 1 V .p-p (1) . . 1.0 MHz
Slew Rate (1) $5 \mathrm{~V} / \mu \mathrm{sec}$
Settling Time, 20 V step, to $\pm .05 \%$ (1) 6μ sec
to $\pm .005 \%$ (1) $7 \mu \mathrm{sec}$
Noise, wideband $300 \mu \mathrm{~V}$ rms
Sample to Hold
Hold Step (2). Int. Adj. to 0
Peak Transient 400 mV
Aperture Delay (3) Ext. Adj. $40-45 \mathrm{nsec}$
Aperture Jitter (One Unit) 1 nsec
Hold
Droop
Droop vs Temp. $x 2 / 10^{\circ} \mathrm{C}$
Feedthrough $+.01 \%$

Hold to Sample
Acquisition Time (1)

Output

Max. Current .
Impedance
Short Circuit Protection
Input Power

20 V step, to $\pm .05 \% 6 \mu \mathrm{sec}$ to $\pm .005 \% 7 \mu \mathrm{sec}$

$\pm 5 \mathrm{~mA}$

50 milliohms
Output to GND indefinitely
+15VDC @ 14 mA max
-15VDC @ 12 mA max
PHYSICAL - ENVIRONMENTAL

Model SHM-4 sample and hold module is fully encapsulated and features dual in-line pinning compatibility
NOTES: (1)Source resistance of 5 K ohm or less
(2)Adjust for hold offset at $\mathrm{Vin}=0$ Volts or with analog input at ground.
(3) Aperture delay is nominally 40 nsec independent of Vin . This delay may be increased by up to 5 nsec by connecting a 1 K ohm pot from pin 1 to ground and viewing the delay at pin 2 when the test point voltage crosses -5 V .

TYPICAL SYSTEM CONFIGURATION

Note: The (8) Channel Select Input of the Mux 8 should go to the Inhibit Level (1 State) for 200 nsec beginning with an address change to protect the outputs of the SHM-4's.

FEATURES

- 100 MEG OHM Input Impedance
- 35 Nanosec Acquisition Time
- $500 \mathrm{~V} / \mu \mathrm{sec}$. Output Slew Rate
- 10 MHz Sample Rate
- $\pm 30 \mathrm{ma}$ Output Current
- $2^{\prime \prime} \mathrm{W} \times 2$ "'Lx. 375 "H

GENERAL DESCRIPTION

Model SHM-UH is characterized primarily by very high speed. Its tracking capability of 35 nanoseconds with an aperture uncertainty time of less than 200 picoseconds is the most unique feature of the device.

A 200 picosecond aperture time (uncertainty) enables tracking and holding of high bandwidth Video, Radar, or Television signals as well as wide band data for communication systems. The SHM-UH ingredients consist of a high impedance FET input buffer amplifier, a floating high speed electronic switch, holding capacitor, and a high power FET output amplifier.
Model SHM-UH was primarily designed to "freeze" fast moving video signals during A/D conversion or to store multiplexed outputs while the signal is being digitized and the multiplexer is seeking the next signal to be converted. In wideband datareduction, SHM-UH may be used to determine peaks or valleys, or measure fast single shot pulses of arbitrary width.
Model SHM-UH can track a full scale input ($\pm 5 \mathrm{~V}$) in 35 nanoseconds. Input impedance is 100 megohms shunted by 20 pf . An aperture time of 200 picoseconds has been obtained by utilizing a proprietary ultra high speed electronic switch.
Output characteristics include a slewing rate of $500 \mathrm{~V} / \mu \mathrm{sec}$, settling time (includes input acquisition time) of 50 nsec , output voltage range of $\pm 5 \mathrm{VFS} @ \pm 30 \mathrm{ma}$ and an output impedance of less than 10 Ohms. Other specifications include a Hold Decay Rate of $50 \mu \mathrm{volts} / \mu \mathrm{sec}$, a feedthrough attenuation of -60db @ 10 MHz (Sine Wave input) and -46 db for a step input.
The Sample Command input is transformer coupled to the electronic switch and has an input impedance of 50 Ohms and requires a 35 nanosecond positive going pulse. The maximum sample rate is 10 MHz . Input power requirements are $\pm 15 \mathrm{VDC} @ \pm 50 \mathrm{ma}$ and +5VDC @ 100 ma .

INPUT/OUTPUT

 CONNECTIONS

PERFORMANCE:

ZORO OFFSET ADJUSTMENT PROCEDURE

1) Connect the Analog Inputs together - Pin 11 to Pin 10.
2) Connect a precision pulse generator via a coaxial cable to the "Sample Command input" terminals. Pin 1 (High) and Pin 2 (Low).
Adjust its output to display the following:

> Pulse Repetition Rate 10 KHz Pulse Width $35 \mathrm{nsec}, \pm 10 \mathrm{nsec}$ Pulse Amplitude +5 V

NOTE: Sample Command Input Impedance is 50 Ohms
3) Connect a precision D.C. digital voltmeter to the Analog Output terminals. Pin 4 (High) and Pin 3 (Low).
4) Adjust the offset control until the analog output is CV.

ORDERING INFORMATION

```
MODEL-SHM-UH
PRICE (1-9) . . . .$229.00
```

MATING SOCKET
MODEL DILS-2
2 req'd/module, \$5/pr.

Monolithic and Hybrid I.C. Operational Amplifiers

	MONOLITHIC	MONOLITHIC	MONOLITHIC	MONOLITHIC	
SPECIFICATIONS (Typical at $25^{\circ} \mathrm{C}$, $\pm 15 \mathrm{~V}$ supplies unless otherwise noted)	MOD.SLEW RATE AM-450-2	FAST SETTLING AM-452-2	LOW COST AM-460-2	WIDEBAND AM-462-1/2	
DC Open Loop Gain Gain Bandwidth Product Slew Rate Settling Time, 10 V to $\mathbf{0 . 1 \%}$	$\begin{gathered} 25 \mathrm{~K} \\ 12 \mathrm{MHz} \\ 30 \mathrm{~V} / \mu \mathrm{sec} . \\ 330 \mathrm{nsec} . \end{gathered}$	$\begin{gathered} 15 \mathrm{~K} \\ 20 \mathrm{MHz} \\ 120 \mathrm{~V} / \mu \mathrm{sec} . \\ 200 \mathrm{nsec} . \end{gathered}$	$\begin{gathered} 150 \mathrm{~K} \\ 12 \mathrm{MHz} \\ 7 \mathrm{~V} / \mu \mathrm{sec} . \\ 1.5 \mu \mathrm{sec} . \end{gathered}$	$\begin{gathered} 150 \mathrm{~K} \\ 100 \mathrm{MHz} \\ 35 \mathrm{~V} / \mu \mathrm{sec} . \\ 1.0 \mu \mathrm{sec} . \end{gathered}$	
Output, min. Common Mode Range, min. Common Mode Rejection Input Impedance Input Bias Current, max. Input Offset Current, max. Input Offset Voltage, max., adj. to 0 Input Offset Voltage Drift	$\begin{gathered} \pm 10 \mathrm{~V} @ 10 \mathrm{~mA} \\ \pm 10 \mathrm{~V} \\ 90 \mathrm{~dB} \\ 50 \mathrm{Meg} . \\ 250 \mathrm{nA} \\ 50 \mathrm{nA} \\ \pm 8 \mathrm{mV} \\ 20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \pm 10 \mathrm{~V} @ 10 \mathrm{~mA} \\ \pm 10 \mathrm{~V} \\ 90 \mathrm{~dB} \\ 100 \mathrm{Meg} . \\ 250 \mathrm{nA} \\ 50 \mathrm{nA} \\ \pm 10 \mathrm{mV} \\ 30 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \pm 10 \mathrm{~V} @ 10 \mathrm{~mA} \\ \pm 11 \mathrm{~V} \\ 100 \mathrm{~dB} \\ 300 \mathrm{Meg} . \\ 25 \mathrm{nA} \\ 25 \mathrm{nA} \\ \pm 5 \mathrm{mV} \\ 10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \pm 10 \mathrm{~V} @ 10 \mathrm{~mA} \\ \pm 11 \mathrm{~V} \\ 100 \mathrm{~dB} \\ 300 \mathrm{Meg} . \\ 25 \mathrm{nA} \\ 25 \mathrm{nA} \\ \pm 5 \mathrm{mV} \\ 15 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \end{gathered}$	
Power Requirement Temperature Range Package	$\begin{gathered} \pm 15 \mathrm{~V} @ 4 \mathrm{~mA} \\ 0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ \text { TO. } 99 \end{gathered}$	$\begin{gathered} \pm 15 \mathrm{~V} @ 4 \mathrm{~mA} \\ 0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ \text { TO-99 } \end{gathered}$	$\begin{gathered} \pm 15 \mathrm{~V} @ 3 \mathrm{~mA} \\ 0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ \text { TO. } 99 \end{gathered}$	$\begin{aligned} & \pm 15 \mathrm{~V} @ 3 \mathrm{~mA} \\ & 0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \text { TO-116/TO-99 } \end{aligned}$	
Price (1-9)	\$7.50	\$10.50	\$6.50	\$9.00	
	See page 136				

THESE AMPLIFIERS ARE COVERED BY GSA CONTRACT

This broad line of monolithic and hybrid operational amplifiers is designed for data acquisition and conversion applications where high speed and small size are required. The devices shown in this table are wide bandwidth, high slew rate, fast settling amplifiers. In addition to high speed, they also have excellent DC characteristics making them good choices for high accuracy applications. Four basic models of bipolar input amplifiers are offered along with two FET input models. The AM-464-2 is a new high voltage, fast settling amplifier with $\pm 35 \mathrm{~V}$ output swing. The AM-500 is a new hybrid, ultra-fast amplifier for inverting-only applications. It features $1000 \mathrm{~V} / \mu$ sec. slew rate, 100 MHz gain bandwidth product, and 200 nsec settling time to $.01 \%$ for a 10 V step input. The AM-490-2 series are monolithic, chopper stabilized operational amplifiers with open loop gain of 5×10^{8} and input offset drifts of $1.0,0.3$, and $0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ maximum.

AM-490 Series: Monolithic Chopper Amplifiers

Notes:

(1.) Max. settling time for 10 V to $.01 \%$ is 200 nsec max.
(2.) $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ maximum.

Modular Operational Amplifiers and
 Instrumentation Amplifiers

Fast Settling FET Operational Amplifiers

SPECIFICATIONS (Typical at $25^{\circ} \mathrm{C}$, +15 V supplies unless otherwise noted)	FAST SETTLING AM-100			CAPACITIVE LOADS AM-101		FAST FOLLOWER AM-102		FAST SLEWING AM-103	
	A	B	C	A	B	A	B	A	B
DC Open Loop Gain Gain Bandwidth Product Slew Rate Settling Time, 10V to .01\%	300K 13.5 MHz $45 \mathrm{~V} / \mu \mathrm{sec}$. 550 nsec. (1)			$\begin{gathered} 300 \mathrm{~K} \\ 5.5 \mathrm{MHz} \\ 45 \mathrm{~V} / \mu \mathrm{sec} . \\ 1.0 \mu \mathrm{sec} .(1) \end{gathered}$		$\begin{gathered} 130 \mathrm{~K} \\ 32 \mathrm{MHz} \\ 140 \mathrm{~V} / \mu \mathrm{sec} . \\ 550 \mathrm{nsec} . \end{gathered}$		130K 32 MHz $400 \mathrm{~V} / \mathrm{\mu sec}$. 350 nsec. (1)	
Output, min. Common Mode Range, min. Common Mode Rejection Input Impedance	$\begin{gathered} \pm 10 \mathrm{~V} @ 20 \mathrm{~mA} \\ \pm 10 \mathrm{~V} \\ 3,000 \\ 10^{12} \text { ohms } \\ \hline \end{gathered}$			$\begin{gathered} \pm 10 \mathrm{~V} @ 20 \mathrm{~mA} \\ \pm 10 \mathrm{~V} \\ 45,000 \\ 10^{12} \text { ohms } \\ \hline \end{gathered}$		$\begin{gathered} \pm 10 \mathrm{~V} @ 20 \mathrm{~mA} \\ \pm 10 \mathrm{~V} \\ 45,000 \\ 10^{12} \text { ohms } \\ \hline \end{gathered}$		$\begin{gathered} \pm 10 \mathrm{~V} @ 20 \mathrm{~mA} \\ \pm 10 \mathrm{~V} \\ 3,000 \\ 10^{12} \text { ohms } \\ \hline \end{gathered}$	
Input Bias Current, pA max.	100	50	20	50	20	50		50	
Input Offset Current, max. Input Offset Voltage	$\begin{gathered} 10 \mathrm{pA} \\ \text { Adj. to } 0 \end{gathered}$			$\begin{gathered} 10 \mathrm{pA} \\ \text { Adj. to } 0 \end{gathered}$		$\begin{gathered} 10 \mathrm{pA} \\ \text { Adj. to } 0 \end{gathered}$		$\begin{gathered} 10 \mathrm{pA} \\ \text { Adj. to } 0 \end{gathered}$	
Input Off. Voltage Drift, $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ max.	50	25	10	40	20	40	20	40	20
Power Requirement Temperature Range Package Socket	$\begin{gathered} \pm 15 \mathrm{~V} @ 13 \mathrm{~mA} \\ 0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ 1.12 \times 1.12 \times 0.4^{\prime \prime} \\ \mathrm{MS}-6 \end{gathered}$			$\begin{gathered} \pm 15 \mathrm{~V} @ 13 \mathrm{~mA} \\ 0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ 1.12 \times 1.12 \times 0.4^{\prime \prime} \\ \mathrm{MS}-6 \end{gathered}$		$\begin{gathered} \pm 15 \mathrm{~V} @ 18 \mathrm{~mA} \\ 0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ 1.12 \times 1.12 \times 0.4^{\prime \prime} \\ \mathrm{MS}-6 \end{gathered}$		$\begin{gathered} \pm 15 \mathrm{~V} @ 18 \mathrm{~mA} \\ 0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ 1.12 \times 1.12 \times 0.4^{\prime \prime} \\ \mathrm{MS}-6 \end{gathered}$	
Price (1-9)	\$40	\$45	\$52	\$46	\$52	\$49	\$55	\$49	\$55

See page 134
Notes:
(1) Unity gain inverting
(2) Unity gain follower

DESCRIPTION

The AM-100 series of fast settling, FET input amplifiers, is designed for data conversion applications where optimum settling time is desired for up to 12 bit accuracy. While featuring exceptionally fast slew rates, wide bandwidths, and settling times faster than one microsecond, these amplifiers also have low drift and exceptionally low input bias currents. Output currents are rated at 20 mA for good load driving capability.

Datel Systems' new AM-201 amplifiers are high performance instrumentation amplifiers designed for critical data acquisition applications where programmable gain at very low drifts is required. Input offset voltage drifts are 1.0, 0.5 , and $0.25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ maximum for these models. In addition, these units have a bandwidth of 45 kHz at a gain of 1000 .

AM-201 Series: High Performance, Instrumentation Amplifiers Feature Low Cost

NEW

$\begin{gathered} \pm 140 \mathrm{~V} \text { FET } \\ \text { AM } 303 \end{gathered}$	
A	B
$\begin{gathered} 10^{6} \\ 10 \mathrm{MHz} \\ 100 \mathrm{~V} / \mu \mathrm{sec} . \\ 2.5 \mu \mathrm{sec} . \end{gathered}$	
$\begin{gathered} \pm 140 \mathrm{~V} @ 20 \mathrm{~mA} \\ \pm 140 \mathrm{~V} \\ 100,000 \\ 10^{12} \text { ohms } \end{gathered}$	
100 pA	
$\begin{aligned} & 30 \mathrm{pA} \\ & \pm 1 \mathrm{mV} \end{aligned}$	
50	20
$\begin{gathered} \pm 15 \mathrm{~V} \text { to } \pm 150 \mathrm{~V} @ 12 \mathrm{~mA} \\ 0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ 1.8 \times 2.4 \times .61^{\prime \prime} \\ \mathrm{MS}-11 \end{gathered}$	
\$90	\$120

Instrumentation Amplifiers

SPECIFICATIONS (Typical at 25 C . 15 V supplies unless otherwise noted)	HIGH PERFORMANCE AM 201		
	A	B	C
Gain Range	1 to 1000		
Gain Nonlinearity, max.	.01\%		
Gain Equation Bandwidth, G=1000 Slew Rate	$200 \mathrm{~K} / \mathrm{R}_{\mathrm{G}}$ 45 kHz $1 \mathrm{~V} / \mu \mathrm{sec}$.		
Output, min., S.C. protected Common Mode Range, min., $\pm 15 \mathrm{~V}$ Supply	$\begin{gathered} \pm 10 \mathrm{~V} @ 5 \mathrm{~mA} \\ \pm 10 \mathrm{~V} \end{gathered}$		
Common Mode Rejection, min. G=1000	100 dB	106 dB	114 dB
Input Impedance, differential	10^{9} ohms		
Input Bias Current, max.	50 nA	25 nA	25nA
Input Offset Current	2.5 nA	1 nA	1 nA
Input Offset Current Drift, nA/ ${ }^{\circ} \mathrm{C}$. 02		
Input Offset Voltage	Adj. to zero		
Input Off. V. Drift, $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ max., $\mathrm{G}=1000$	± 1.0	± 0.5	± 0.25
Output Offset Voltage Drift, G=1	$\pm 100 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$		
Power Requirement Quiescent Current Temperature Range Package Socket	$\begin{gathered} \pm 12 \mathrm{~V} \text { to } \pm 18 \mathrm{VDC} \\ 5 \mathrm{~mA} \\ 0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ 1.5 \times 1.5 \times .375^{\prime \prime} \\ \mathrm{MS}-9 \end{gathered}$		
Price (1-9)	\$69	\$79	\$89

AM-201 SERIES

- Gain Range 1 to 1000
- Input Drift to $.25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- CMRR to 114 dB
- Gain Nonlinearity $.01 \%$ Max.
- 180 kHz Bandwidth at $\mathrm{G}=100$
- Small Size $-1.5^{\prime \prime} \times 1.5^{\prime \prime} \times .375^{\prime \prime}$

The AM-201 series instrumentation amplifiers offer the highest available performance in a compact, low cost module. These amplifiers are specifically designed for critical applications where the lowest input drifts and noise are required together with the highest possible common mode rejection; at the same time wide bandwidth and excellent settling time are achieved. This series rivals the performance of expensive rack-mounted instrumentation amplifiers and yet is packaged in a small $1.5 \times 1.5 \times$.375 inch module.
The key to the performance of the AM-201 series is a unique very high transconductance ($\mathrm{gm}=50$ mhos) input stage which gives optimum results for high gains of 100 to 1000 . The amplifiers are programmed by a single external resistor for gains of 1 to 1000 and give guaranteed total voltage offset drifts referred to the input of 1.0 , 0.5 , and $0.25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ at a gain of 1000 for the three models AM-201 A, AM-201B, and AM-201C respectively. At a gain of 1000 the common mode rejection ratio is 100 , 106, and 114 dB minimum for the three models, with a source unbalance of 1 kilohm. The input stage gives very low bias currents and an input offset current drift of only $20 \mathrm{pA} /{ }^{\circ} \mathrm{C}$, allowing use of up to 50 kilohm balanced input source impedances. These performance characteristics are achieved without sacrificing good bandwidth: 3 dB bandwidth is 45 kHz at $\mathrm{G}=1000$ and 180 kHz at $\mathrm{G}=100$. Output settling time is $20 \mu \mathrm{sec}$. for a 10 V step to $.01 \%$.
The gain equation for these models is: $\mathrm{G}=200 \mathrm{~K} / \mathrm{R}_{\mathrm{G}}$. Gain equation accuracy is $\pm 0.5 \%$ with a gain nonlinearity of $.01 \%$ maximum and gain temperature coefficient of $20 \mathrm{ppm} /{ }^{\rho} \mathrm{C}$ maximum. Other input specifications include input voltage noise of $1 \mu \mathrm{~V}$ peak to peak from 0.1 to 10 Hz and $1 \mu \mathrm{~V}$ RMS from 10 Hz to 10 kHz . The input offset voltage is adjustable to zero by means of an external trimming potentiometer. These amplifiers also have sense and reference terminals for load sensing and externally offsetting the output voltage. Output capability is $\pm 10 \mathrm{~V}$ at 5 mA , with output short circuit protection.

where［ \triangle Eos］ 1000 is the drift spec．at $\mathrm{G}=1000$ and G is the programmed gain．
5．The sense terminal is normally connected to the output terminals，and the reference terminal is normally connected to ground． For remote loads or for load current sensing，the sense terminal is run sep－ arately to the load or to the current sensing resistor．The reference terminal may be connected to a voltage source in the range $\pm 10 \mathrm{~V}$ in order to directly offset the output of the amplifier by the same amount．Both sense and reference ter－ minals should be connected only to low impedance sources（less than 10 ohms），as any impedance seen by these terminals will degrade the power supply rejection of the amplifier in proportion to the source impedance．A unity gain buffer amplifier can be used to isolate the reference ter－ minal from high impedance sources．See application diagram．

6．The AM－201 series amplifiers have a dis－ tinct advantage over many other instru－ mentation amplifiers in gain－switched applications．Because the gain formula is $200 \mathrm{~K} / \mathrm{R}_{G}$ the switched gain varies pre－ cisely inversely with R_{G} ．If R_{G} is halved， for example，the gain is exactly doubled． Therefore，unlike instrumentation ampli－ fiers with a constant term of 1 in the gain formula，the selection of gain setting resistors is greatly simplified．In switched gain applications the AM－201 amplifiers should be zeroed at the highest gain．The input offset voltage then will not change with gain．

SMALL SIGNAL BANDWIDTH AT SELECTED GAINS

ANALYSIS OF SIGNIFICANT ERROR SOURCES

Power supply drift（assuming． $02 \% /{ }^{\circ} \mathrm{C}$ ）contributes a negligible amount to the error and there－ fore the computation is omitted．The total output errors for a $10^{\circ} \mathrm{C}$ temperature change are less than 0.1% ．

COMMON MODE REJECTION
 RATIO VS．GAIN

ロムフEL

TOTAL VOLTAGE OFFSET DRIFT（REFERRED TO INPUT） VS．GAIN

STANDARD CONNECTION

INPUT OFFSET TRIMMING: Short input terminals together and connect to ground or to common mode voltage at which input will be used. Adjust 50 K trimming pot for zero output voltage. For critical applications R_{G} should be a Vishay type S 102 and the trimming pot should be a Vishay type 1203. See technical notes.

USING AN OUTPUT CURRENT BOOSTER

OFFSETTING THE OUTPUT BY USE OF THE REFERENCE TERMINAL

DRIVING A GROUNDED LOAD USING CURRENT SENSING

GAIN SWITCHING WITH THE AM-201

Gain is inversely proportional to R_{G}. Thus if R_{G} is halved the gain is exactly doubled. Input offset voltage does not change with R_{G}.

1020G Turnpike Street, Building S
Canton, Massachusetts 02021 U.S.A.
TEL: (617) 828-8000
TWX: 710-348-0135 TELEX: 924461

WIDE BAND FAST SETTUNG FET INPUT OPERATIONAL AMPLIFIERS

AM-TOO-SERIES

DESIGNED SPECIFICALLY FOR HIGH SPEED APPLICATIONS

Abstract

MODEL AM-100 A/B/C DESCRIPTION: Designed specifically to drive C.R.T. displays, the DATEL Models AM-100 A/B/C permit settling (to 0.01%) of a 0.5 V step within $0.15 \mu \mathrm{sec}$. Clean, crisp alpha/numeric characters, together with sharp, linear vectors are the result on the screen face when these amplifiers with their fast settling, true 6 dB /octave response and minimum overshoot and undershoot characteristics are used. These devices are also excellent choices for use in high speed applications such as D/A output drivers, integrators, comparators, buffers and many other analog sampling circuits.

FEATURES:

- 60 Voits/ μ sec. Slew Rate
- Settles to 0.01% Within $0.15 \mu \mathrm{sec}$. (Small Step)
- Recovery From Overload in $0.5 \mu \mathrm{sec}$.
- Gain of 500,000
- $10^{12} \Omega$ Differential Input Resistance
- True $6 \mathrm{~dB} /$ Octave Response

MODEL AM-101 A/B
DESCRIPTION:
Models AM-101 A/B are FET-input differential operational amplifiers designed specifically for applications requiring a combination of high accuracy, high gain and fast settling with the ability to drive substantial capacitive loads. They have a gain bandwidth product of 5 MHz and will settle to 0.01% within $1.5 \mu \mathrm{sec}$., min. in a unity gain inverting mode while driving a capacitive load of 300 picofarads. These amplifiers will settle to 0.01% within 1 $\mu \mathrm{sec} ., \mathrm{min}$., in the same mode driving a 1000 picofarad load and are stable driving a load of 2000 picofarads, minimum. Typically they are stable up to 5,000 picofarads. In addition, low drift. low noise and excellent overload recovery characteristics together with a reasonable price make these amplifiers a must to consider wherever analog voltage sampling is required.
Model AM-101 A/B has a CMRR of 40,000 typical and 20,000 minimum and should be considered wherever a non-inverting amplifier is necessary such as in buffer or multiplexer applications. Since settling time to 0.01% is approximately the same in the non-inverting mode, excellent gain and linearity characteristics are achieved with the high CMRR of the AM. 101 Series.

FEATURES:

- Will drive high capacitive load 2000 pF
- Gain Bandwidth Product 7 min
- D.C. Gain at Rated Load 500,000
- Differential Input Resistance . . . $10^{12} \Omega \mathrm{~min}$.
- Output $\pm 10 \mathrm{~V} @ \pm 20 \mathrm{~mA}, \mathrm{~min}$.
- cmrr 40,000
- Fast Overload Recovery Time . . . $1 \mu \mathrm{sec}$.
- Low Profile Case

MODEL AM-102 A/B

DESCRIPTION:
The Model AM-102 A/B is a differential FET input fast settling operational amplifier designed primarily for use in circuits where polarity reversal is not desired. All the ingredients of a good, fast and accurate FET Follower can be faund in the AM-102 A/B. High CMRR, very high common mode resistance, high gain, wide bandwidth and fast settling along with high input impedance, excellent drift and noise characteristics all combine to make the AM-102 A/B one of the best all around Follower Amplifiers available.

FEATURES:

- 140 Volts $/ \mu \mathrm{sec}$. Slew Rate
- $0.4 \mu \mathrm{sec}$, Settling Time to 0.01% as Follower
- $0.5 \mu \mathrm{sec}$. Overload Recovery Time
-400,000 Gain at Rated Load
- 45 MHz Gain Bandwidth Product

MODEL AM-103 A/B

description

The fastest yet of the DATEL Systems operational amplifiers, the AM-103 A/B features a 250 Volt per microsecond slew rate, a guaranteed 400 nanosecond settling time (to 0.01%), an overload recovery time of 1 microsecond, max, together with a minimum gain of 100,000 . Designed especially for use in high speed comparators, integrator, A / D and D / A converter circuits, the $\mathrm{AM} \cdot 103 \mathrm{~A} / \mathrm{B}$ is an excellent choice for consideration whenever analog sampling is necessary.

FEATURES:

- 400 Volts $/ \mu \mathrm{sec}$. Slew Rate
- Settles to 0.01% Within $0.3 \mu \mathrm{sec}$.
- Recovery From Overload in 0.5μ sec.
- Gain of 400,000
- 10^{12} Differential Input Resistance
- Stable Unity Gain Frequency 37 MHz

SETTLING TIME

Settling time is one of the most important requirements an amplifier should meet for high speed applications. It is defined as the time that is required, after a full scale input step is applied, for the output voltage to reach a predetermined percentage of its final value. Settling time contributes a dynamic error. It characterizes the transient behavior of the amplifier, encompassing slew rate and other important effects. For high speed data system applications, the output signal should be within a specified error band before it is ready to be further processed. In all applications involving abrupt changes in gradient, the settling characteristics of an amplifier determine how long the output signal deviates from the true value and should be a prime consideration for its selection.
Settling time is a complex function of the open loop response and slewing rate under operating conditions. For optimum settling characteristics, the DATEL amplifiers have true 6 dB /octave stabilization determined by a single component instead of the usual multielement response shaping which introduces irregularities in the response curve.
Test circuits for measuring a settling time in both the inverting and non-inverting modes are shown. The test circuits are self explanatory but it is wise to keep the leads short, stray capacitance to a minimum and wse a signal source that is a good clean squarewave with minimum aberrations. The oscilloscope and plug-in recommended in the test circuit will, in general, give good results on amplifiers with settling times of 1 microsecond or less. Many oscilloscopes of other types will introduce errors far in excess of the amplifier errors due to the overload condition to which they are subjected by this method of measurement.
settling time test
CIRCUIT FOR INVERTING AMPLIFIERS

settling time test CIRCUIT FOR NON-INVERTING AMPLIFIERS

FEATURES

- 120 V/ μ Sec Slew Rate
- 2 MHz Full Power Bandwidth
- 200n Sec Settling to 0.1 \% of FS
- $10^{12} \Omega$ Input Impedance
- FET or Bipolar Differential Input

GENERAL DESCRIPTION

Datel's AM-400 Series operational amplifiers are designed specifically for fast acquisition of wide bandwidth signals. They feature high input impedance (10^{12} Ohms, AM-405 and AM-406) and high full power bandwidth $(2 \mathrm{MHz}, ~ A M-405)$. Models AM-405 and AM-406 feature FET differential inputs and the remaining models employ bipolar differential inputs. Settling time less than 200 nsec (within 0.1\% of FS, AM-452) and slew rates up to $120 \mathrm{~V} / \mu \mathrm{sec}$ (AM-452) are available and all models may be operated in non-inverting as well as inverting configurations. Because of their superior high speed, high input impedance characteristics, these devices are ideal for applications such as fast acquisition sample and hold amplifiers, D / A and A / D converter amplifiers.

BLOCK DIAGRAM AND INPUT/OUTPUT CONNECTIONS

SPECIFICATIONS	$\begin{aligned} & \text { MODEL } \\ & \text { AM-405-2 } \end{aligned}$	MODEL AM-406-2	MODEL AM-452-2	MODEL AM-462-1, AM-462-2		
Typical @ $25^{\circ} \mathrm{C}$ $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{VDC}$ $\mathbf{R}_{\mathrm{L}}=\mathbf{2 K}$ Ohms unless otherwise noted	Differential FET input, 2 MHz Full Power Bandwidth	Differential FET input 150 K DC Gain $100 \mathrm{MHz} \mathrm{f}{ }_{t}$	Differential Bipolar input 200 nsec settling Slew $120 \mathrm{~V} / \mu \mathrm{sec}$	Differential olar Bipolar input 150 K DC Gain 100 MHz f t		
Input Characteristics						
Differential Voltage	$\pm 15 \mathrm{~V}$ max.	$\pm 12 \mathrm{~V}$ max.	$\pm 15 \mathrm{~V}$ max.	$\pm 12 \mathrm{~V}$ max.		
Common Mode Voltage Operating Range	$\pm 10 \mathrm{~V} \mathrm{~min}$.	$\pm 10 \mathrm{~V} \mathrm{~min}$.	$\pm 10 \mathrm{~V}$ min.	$\pm 11 \mathrm{~V}$ min.		
Common Mode Rejection Ratio ($\mathrm{V}_{\mathrm{CM}}= \pm 5 \mathrm{VDC}$)	90 db typ. 70 db min .	90 db typ. 70 db min .	90 db typ. 74 db min.	100 db typ. 74 db min.		
Input Impedance (Differential)	10^{12} Ohms \|	5pF	10^{12} Ohms \|	5 pF	100 MegOhms typ. 40 MegOhms min.	300 MegOhms typ. 40 MegOhms min.
Voltage Offset Initial (without external trim. Adjustable to zero with trim)	30 mV typ. @ $25^{\circ} \mathrm{C}$ 60 mV max. @ $25^{\circ} \mathrm{C}$ 65 mV max, 0 to $75^{\circ} \mathrm{C}$	15 mV typ. @ $25^{\circ} \mathrm{C}$ 60 mV max. @ $25^{\circ} \mathrm{C}$ 65 mV max, 0 to $75^{\circ} \mathrm{C}$	$\begin{aligned} & 5 \mathrm{mV} \text { typ. @ } 25^{\circ} \mathrm{C} \\ & 10 \mathrm{mV} \text { max. } 25^{\circ} \mathrm{C} \\ & 14 \mathrm{mV} \text { max. } 0 \text { to } 75^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 3 \mathrm{mV} \text { typ. @ } 25^{\circ} \mathrm{C} \\ & 5 \mathrm{mV} \max . @ 25^{\circ} \mathrm{C} \\ & 7 \mathrm{mV} \text { max, } 0 \text { to } 75^{\circ} \mathrm{C} \end{aligned}$		
Voltage Offset vs. Temp	-	-	$30 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}, 0$ to $75^{\circ} \mathrm{C}$	$15 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}, 0$ to $75^{\circ} \mathrm{C}$		
Zero Adjust (optional)	100K Ohms trimpot	100K Ohms trimpot	20K Ohms trimpot	100 K Ohms trimpot		
Bias Current $=\left\|\frac{1^{+}+1^{-}}{2}\right\|$	1pA typ. 20pA max 20pA typ 1nA ma	$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & 025^{\circ} \mathrm{C} \\ & \text { to } 75^{\circ} \mathrm{C} \\ & \text { to } 75^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 125nA typ. @ } 25^{\circ} \mathrm{C} \\ & 250 \mathrm{nA} \text { max. @ } 25^{\circ} \mathrm{C} \\ & 500 \mathrm{nA} \text { max, } 0 \text { to } 75^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { 5nA typ. @ } 25^{\circ} \mathrm{C} \\ & 25 n \mathrm{~m} \text { max. @ } 25^{\circ} \mathrm{C} \\ & 40 n \mathrm{~m} \text { max, } 0 \text { to } 75^{\circ} \mathrm{C} \end{aligned}$		
Offset Current $=\left\|1^{+}-1-\right\|$	$0.5 p$ A typ 20pA ma 5pA typ 500pA max	$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & 025^{\circ} \mathrm{C} \\ & \text { to } 75^{\circ} \mathrm{C} \\ & \text { to } 75^{\circ} \mathrm{C} \end{aligned}$	20nA typ. @ $25^{\circ} \mathrm{C}$ $50 n A$ max. @ $25^{\circ} \mathrm{C}$ 100 nA max, 0 to $75^{\circ} \mathrm{C}$	5nA typ. @ $25^{\circ} \mathrm{C}$ $25 n A$ max. @ $25^{\circ} \mathrm{C}$ 40 nA max, 0 to $75^{\circ} \mathrm{C}$		
Equivalent Input Noise $(10 \mathrm{~Hz}$ to 10 KHz , zero source impedance)		V rms		rms		
Output Characteristics						
Voltage (Full Temperature Range)	$\pm 10 \mathrm{~V} \mathrm{~min}$.					
Current, Continuous ($\mathrm{VOUT}_{\text {OU }}= \pm 10 \mathrm{~V}$)	$\pm 10 \mathrm{~mA}$ min.					
Current, Peak	50mA max.	Short circuit protected (output to common) current limited	50mA max.	Short circuit protected (output to common) current limited		
Gain and Frequency Response						
Open loop gain, DC $V_{\text {OUT }}= \pm 10 \mathrm{~V}$	15 K V/V typ. 7.5K V/V min.	150K V/V typ. 80 K V/V min.	15 K V/V typ. 7.5 K V/V min.	150K V/V typ. $80 \mathrm{~K} \mathrm{~V} / \mathrm{V}$ min.		
Full Power Bandwidth	$\underset{-}{2 \mathrm{MHz} \text { typ. }}$	$\begin{gathered} 600 \mathrm{KHz} \text { typ. } \\ \hline \end{gathered}$	1.6 MHz typ. 1.2 MHz min.	600 KHz typ. 320 KHz min.		
Slew Rate ($\mathrm{V}_{\text {OUT }}= \pm 10$ Volt step transition, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$)	120V/ μ sec typ.	$35 \mathrm{~V} / \mu$ sec typ.	$120 \mathrm{~V} / \mu \mathrm{sec}$ typ. $80 \mathrm{~V} / \mu \mathrm{sec} \mathrm{min}$.	$35 \mathrm{~V} / \mu \mathrm{sec}$ typ. $20 \mathrm{~V} / \mu \mathrm{sec} \mathrm{min}$.		
Unity Gain, small signal	20 MHz (closed loop gain > 10	100 MHz (closed loop gain >10)	20 MHz (closed loop gain > 10)	$\begin{aligned} & 100 \mathrm{MHz} \text { (closed loop } \\ & \text { gain }=100, C_{L}=50 \mathrm{pF} \text {) } \end{aligned}$		
Stability	Ext. comp. required at closed loop gain <3	Ext. comp. required at closed loop gain <5	Ext. comp. required at closed loop gain <3	Ext. comp. required at closed loop gain <5		
Settling time to within 0.1% (VOU $= \pm 10 \mathrm{~V}$ step, $C_{L}=50 p F, A_{v}=+3$)	400 nsec	-	200 nsec			
Power Supply						
Operating Voltage	$\pm 15 \mathrm{VDC}$, rated specifications					
Max. Voltage Difference between $\mathbf{V}_{\mathbf{S}^{+}}$and $\mathbf{V}_{\mathbf{S}}$ - Terminals	35 V max		40 V max	45 V max		
Absolute Max. Internal Power Dissipation	300 mW					
Quiescent Current	6 mA typ. 8mA max.	4mA typ. 6mA max.	4mA typ. 6 mA max.	3mA typ. 4mA max.		
Temperature Range						
Operating, rated specs.	$0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$					
Storage	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$					
Package	TO-99	TO-99	TO-99	AM-462-1 TO-116 AM-462-2 TO-99		
Price (1-9) Contact factory for quantity pricing	\$16.00	\$13.75	\$10.50	\$ 9.00		

Open Loop Frequency Response and External Bandwidth Compensation $\left(25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{~K} \Omega, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}\right.$, small signal)
(Values of capacitance shown are to be connected between the bandwidth terminal and ground.)

Models AM-405-2 and AM-452-2

Model AM-406-2

TYPICAL OPEN LOOP FREQUENCY AND PHASE RESPONSE
$\left(25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{VDC}\right.$, Small Signal, Rated Load)

Model AM-405-2
Model AM-452-2

Model AM-406-2

Model AM-462-1, 2

EXTERNAL OFFSET ADJUSTMENT AND BANDWIDTH COMPENSATION (All Models)

MODEL AM-490-2

FEATURES

- Differential Inputs
- 120 dB CMR
- Drift to $0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max.
- 5×10^{8} Open Loop Gain
- $20 \mu \mathrm{~V}$ Input Offset Voltage
- 200 msec . Warm-Up

GENERAL DESCRIPTION

Model AM-490-2 is a monolithic, chopper stabilized operational amplifier with differential inputs; it is specifically designed for applications requiring ultra-stable DC characteristics together with good bandwidth. This device is available in three different grades of maximum input offset voltage drift: $1.0,0.3$, and $0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. The extremely low input offset voltage drift and initial input offset voltage of only $20 \mu \mathrm{~V}$ eliminate the requirement for zero adjustment in most applications. Other important input characteristics include an input impedance of 100 megohms, input bias current of 150 pA , and input offset current drift of $1 \mathrm{pA} /{ }^{\circ} \mathrm{C}$. This permits the AM-490-2 to operate accurately with source impedances over 100 kilohms. A common mode rejection of 120 dB minimum and open loop gain of 5×10^{8} result in extremely low output errors. Long term stability is typically $5 \mu \vee$ per year.
The circuit of the AM-490-2 utilizes a complex monolithic chip 93×123 mils with 256 active devices. Both bipolar and N channel MOS FET's are used to implement the linear and switching portions of the circuitry. The chopper circuitry utilizes two DC coupled sample-hold circuits driven by a multivibrator circuit. The DC coupling, contrasted with AC coupling commonly used in chopper amplifiers, results in fast overload recovery. Three external capacitors are required for the sample-hold circuits and the multivibrator which generates a 750 Hz chopping square wave.
Other specifications of the AM-490-2 include $\pm 10 \mathrm{~V}$ input common mode range and $\pm 10 \mathrm{~V}$ output at 7 mA which is short circuit protected. The operating power supply range is $\pm 12 \mathrm{~V}$ to $\pm 20 \mathrm{VDC}$ with a constant quiescent current drain of 3.5 mA typical over this range. Power supply rejection is 120 dB . The low power drain and fast warm-up time of 200 msec . make this device ideal for use in battery operated, interrupted service circuits. Other applications include inverting, noninverting, and balanced gain amplifier configurațions in addition to very accurate integrators and sample-holds. The AM-490-2 is packaged in a hermetically sealed, 8 pin TO-99 case.
CAUTION: The AM-490-2 has MOS FET input devices and should be handled carefully to prevent static charge pick-up which might damage the devices. The amplifiers should be kept in the shipping carriers until ready for installation.

impedance to ground seen by each input terminal should be equal. Matched impedance (resistance and capacitance) as shown in the application diagrams result in minimum output offset drift due to bias currents and also minimum output chopper noise. Chopper noise appears as a common mode input current signal, and under balanced conditions of both resistance and capacitance this noise can be minimized to less than random noise at the output.
6. The AM-490-2 is dynamically stable with 100% feedback (unity gain follower) and 1000 pF capacitive load. In very high closed loop gain configurations ($>70 \mathrm{~dB}$), it may become desirable to put a capacitor in parallel with the feedback resistor for better stability. This should be done to yield a gain-bandwidth product of 2 MHz ($\mathrm{RC}=80 \mu \mathrm{sec}$.) to insure absolute stability. In general, the closed loop bandwidth should be limited to that necessary to pass the required signal frequency components only; this results in minimum output noise. Minimum bandwidth should also be used to eliminate small modulation effects of input signal frequencies near the chopper frequency (750 Hz).
7. Other features of these amplifiers include an exceptionally high open loop gain of 5 $x 10^{8}$. For an output voltage swing of $\pm 10 \mathrm{~V}$, this reduces the input error due to gain to only ± 20 nanovolts. Common mode rejection is very high (120 dB minimum) at DC, but falls off rapidly with frequency as shown in the graph under Performance Parameters. CMR is typically greater than 100 dB at 10 Hz . For best common mode rejection, therefore, the signal frequency should be limited to about 10 Hz . The noise performance of the amplifier can be readily computed from the two noise graphs shown under Performance Parameters.
8. The AM-490-2 amplifiers draw a quiescent current of only 3.5 mA typical and 5 mA maximum; the current is virtually constant over the operating power supply range of $\pm 12 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$. Bandwidth and slew rate change only slightly over this range as shown in the graph "Normalized AC Parameters vs. Power Supply". For the $\pm 12 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$ supply range input common mode voltage range and output voltage range become $\pm 7 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$. The wide supply range together with the fast warm-up time of only 200 msec . make the AM-490-2 an excellent amplifier for precision, low power, interrupted supply operation in portable and remote instrumentation systems.

DATEL

BATTERY POWERED LOAD CELL AMPLIFIER FOR DISCONTINUOUS SERVICE

For power interrupt applications the amplifier has a warm-up time of only 200 msec .
INPUT OFFSET CURRENT AND CHOPPER NOISE CONSIDERATIONS

Errors due to bias current and chopper spike current are minimized by making both amplifier inputs look back into equal impedances to ground.

PRECISION INTEGRATOR

DIFFERENTIAL AMPLIFIER CONNECTION

Capacitors C are used only to reduce bandwidth and hence output noise.

OPEN LOOP FREQUENCY RESPONSE

NORMALIZED AC PARAMETERS VS. POWER SUPPLY

input voltage noise

COMMON MODE REJECTION VS. FREQUENCY (TYPICAL)

TYPICAL INPUT DRIFT CHARACTERISTICS VS. TEMPERATURE

QUIVALENT INPUT NOISE VS. CLOSED LOOP BANDWIDTH

Active Filters: Resistor Tuned

GSA Special Item Nos. 66-31a and 66-31b

	MODEL	FREQUENCY (1)	TYPE	Q	$\begin{aligned} & \text { GAIN } \\ & \text { ACCURACY (2) } \end{aligned}$
	FLT-BP4B50Q5 FLT-BP4B50Q10 FLT-BP4B50005 FLT-BP4B500010 FLT-BP4B20KQ5 FLT-BP4B20KQ10	$.05-50 \mathrm{~Hz}$ $.05-50 \mathrm{~Hz}$ $0.5-500 \mathrm{~Hz}$ $0.5-500 \mathrm{~Hz}$ $20-20 \mathrm{kHz}$ $20-20 \mathrm{kHz}$	Butterworth	$\begin{array}{r} 5 \\ 10 \\ 5 \\ 10 \\ 5 \\ 10 \end{array}$	$\pm 0.3 \mathrm{~dB}$
	$\begin{aligned} & \text { FLT-LP4B50 } \\ & \text { FLT-LP4B500 } \\ & \text { FLT-LP4B5K } \\ & \text { FLT-LP4B50K } \end{aligned}$	$\begin{aligned} & 1-50 \mathrm{~Hz} \\ & 10-500 \mathrm{~Hz} \\ & 100-5 \mathrm{kHz} \\ & 1 \mathrm{k}-50 \mathrm{kHz} \end{aligned}$	Butterworth	-	$\pm .02 \mathrm{~dB}$
	$\begin{aligned} & \text { FLT-LP4L50 } \\ & \text { FLT-LP4L500 } \\ & \text { FLT-LP4L5K } \\ & \text { FLT-LP4L50K } \end{aligned}$	$\begin{aligned} & 1-50 \mathrm{~Hz} \\ & 10-500 \mathrm{~Hz} \\ & 100-5 \mathrm{kHz} \\ & 1 \mathrm{k}-50 \mathrm{kHz} \end{aligned}$	Bessel	- - - -	$\pm .02 \mathrm{~dB}$
$\begin{aligned} & \text { w } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { FLT-LP6B50 } \\ & \text { FLT-LP5B500 } \\ & \text { FLT-LP6B5K } \\ & \text { FLT-LP6B50K } \end{aligned}$	$\begin{aligned} & 1-50 \mathrm{~Hz} \\ & 10-500 \mathrm{~Hz} \\ & 100-5 \mathrm{kHz} \\ & 1 \mathrm{k}-50 \mathrm{kHz} \end{aligned}$	Butterworth	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\pm .02 \mathrm{~dB}$
	$\begin{aligned} & \text { FLT-LP6L50 } \\ & \text { FLT-LP6L500 } \\ & \text { FLT-LP6L5K } \\ & \text { FLT-LP6L50K } \end{aligned}$	$\begin{aligned} & 1-50 \mathrm{~Hz} \\ & 10-500 \mathrm{~Hz} \\ & 100-5 \mathrm{kHz} \\ & 1 \mathrm{k}-50 \mathrm{kHz} \end{aligned}$	Bessel	-	$\pm .02 \mathrm{~dB}$

NOTES:
(1) For Low Pass models the frequency range can be extended
(2) For a gain of +1 , using no external gain setting resistors. another decade on the low frequency side with an increase by a factor of 10 of voltage offset and drift.

1020G Turnpike Street, Building S
1020G Turnpike Street, Building S
Canton, Massachusetts 02021 U.S.A
TWX: 710-348-0135 TELEX: 924461

GENERAL SPECIFICATIONS FOR ALL FILTERS:

Accuracy of Center or Cutoff

Frequency $\pm 3 \%$ (using 1% tuning resistors)
Input Voltage Range $\pm 10 \mathrm{~V}$
Offset Voltage (adj. to zero) $\ldots \pm 2 \mathrm{mV}$
Output Voltage Range $\ldots \ldots . \pm 10 \mathrm{~V}$
Output Current
(S.C. prot. to ground) $\ldots \ldots \pm 2 \mathrm{~mA}$
Output Impedance 1 ohm
Temperature Range, Operating $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Socket $\mathrm{MS}-12 \quad(\$ 5.00$ each)

TUNING RESISTOR FORMULA:

$$
R=2\left[\frac{f_{0}(\text { max. })}{f_{0}}-1\right]
$$

R is in kilohms
f_{0} is center frequency for Band Pass models or cutoff frequency for Low Pass models.
f_{0} (max.) is the maximum specified frequency for the model chosen.

INPUT IMPEDANCE	FREQUENCY DRIFT	OFFSET DRIFT	POWER REQUIREMENT	CASE SIZE	PRICE (1-9)
100K ohms	$\pm .03 \% /{ }^{\circ} \mathrm{C}$	$\pm 20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{VDC}$ @ 16mA	$2.00^{\prime \prime} \times 3.0{ }^{\prime \prime} \times 0.99^{\prime \prime}$	$\begin{aligned} & \$ 109.00 \\ & \$ 109.00 \end{aligned}$
				$2.0{ }^{\prime \prime} \times 3.01 \times .605^{\prime \prime}$	$\$ 99.00$ $\$ 99.00$ $\$ 109.00$ $\$ 109.00$
100K ohms	t. 05% / ${ }^{\text {c }}$ C	$\pm 50 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{VDC}$ @ 22mA	1.37 "×2.87"×0.99"	$\$ 79.00$ $\$ 79.00$ $\$ 79.00$ $\$ 79.00$
100K ohms	t.05\% ${ }^{\circ} \mathrm{C}$	$\pm 50 \mu \mathrm{~V} / \mathrm{C}$	$\pm 15 \mathrm{VDC}$ @ 22 mA	1.37 " $\times 2.87$ " $\times 0.99$ "	$\$ 79.00$ $\$ 79.00$ $\$ 79.00$ $\$ 79.00$
10^{9} ohms	t.05\% ${ }^{\circ} \mathrm{C}$	$\pm 75 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{VDC}$ @ 28mA	$\begin{aligned} & 2.0^{\prime \prime} \times 3.0^{\prime \prime} \times 0.99^{\prime \prime} \\ & 1.37^{\prime \prime} \times 2.87^{\prime \prime} \times 0.99^{\prime \prime} \\ & 1.37^{\prime \prime} \times 2.87^{\prime \prime} \times 0.99^{\prime \prime} \\ & 1.37^{\prime \prime} \times 2.87^{\prime \prime} \times 0 . \end{aligned}$	$\$ 109.00$ $\$ 109.00$ $\$ 109.00$ $\$ 109.00$
10^{9} ohms	$\pm .05 \% /{ }^{\circ} \mathrm{C}$	$\pm 75 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{VDC}$ @ 28mA	$\begin{aligned} & 2.0^{\prime \prime} \times 3.0^{\prime \prime} \times 0.99^{\prime \prime} \\ & 1.37^{\prime \prime} \times 2.87^{\prime \prime} \times 0.99^{\prime \prime} \\ & 1.37^{\prime \prime} \times 2.87^{\prime \prime} \times 0.99^{\prime \prime} \\ & 1.37^{\prime \prime} \times 2.87^{\prime \prime} \times 0.99^{\prime \prime} \end{aligned}$	$\$ 109.00$ $\$ 109.00$ $\$ 109.00$ $\$ 109.00$

THESE FILTERS ARE COVERED BY GSA CONTRACT

1020G Turnpike Street, Building S
TEL: (617) 828-8000
TWX: 710-348-0135 TELEX: 924461

Universal Active Filter

DESCRIPTION

Datel Systems' model FLT-U2 is a universal-type active filter manufactured with hybrid technology. It uses the state variable active filter principle implemented with three committed op amps, resistors and capacitors, and a fourth uncommitted op amp which can be used to provide summing, buffering, gain, or an additional pole. The filter provides 2 pole lowpass, highpass, and bandpass functions simultaneously in addition to use in phase correction and notch circuits. The filter is tuned by 4 external resistors which set the gain, center frequency and Q of the circuit.

The Q range is up to 1000 and resonant frequency range is up to 200 kHz . Resonant frequency accuracy is typically $\pm 5 \%$ and frequency stability is $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. The units are packaged in a 16 pin double spaced ceramic DIP.

SPECIFICATIONS (Typical at $25^{\circ} \mathrm{C}, \pm 15 \mathrm{~V}$ supplies)
Frequency Range. 001 to 200 kHz
Q Range . 0.1 to 1000
f_{o} Accuracy . $\pm 5 \%$
f_{o} Tempco . $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Voltage Gain. 0.1 to 1000
Output Voltage Range $\pm 10 \mathrm{~V}$
Output Voltage . $\pm 10 \mathrm{~mA}$
Amplifier Gain Bandwidth Prod. 3 MHz
Input Offset Voltage $\pm 6 \mathrm{mV}$ max.
Amp. Voltage Gain 300,000
Input Offset Current. 200 nA max.
Input Bias Current 500 nA max.
Output Slew Rate $1 \mathrm{~V} / \mu \mathrm{sec}$.
Power Supply, rated. ± 15 VDC
Power Supply Range ± 5 to ± 18 VDC
Quiescent Current . 9 mA
Operating Temperature Range $\ldots \ldots \ldots$. $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Package . 16 pin double DIP
Price (1-9) . \$16.00

UNIVERSAL VOLTAGE TO FREOUENCY AND FREQUENCY TO VOLTAGE CONVERTER

FEATURES

- Linearity to .005\%
- Vor I Input
- V/F or F/V Conversion
- 10 kHz or 100 kHz FS
- DTL/TTL or CMOS Output

GENERAL DESCRIPTION

The VFV series voltage to frequency converters, with universal operating characteristics, offers significant advantages over other available units. These converters can be operated as either voltage to frequency or frequency to voltage converters by external pin connection. In addition, voltage inputs of 0 to +10 V or 0 to -10 V and current inputs of 0 to +1 mA or 0 to -1 mA can be chosen by pin connection. As an F / V converter either 0 to +10 V or 0 to -10 V outputs can be chosen by pin connection. Output pulses can be selected to be positive or negative going, with DTL/TTL, CMOS, or high level logic interfacing. The output is short circuit proof to common or either supply voltage. The result of these universal pin connectable operating characteristics is wide flexibility in applications.
There are two basic models in this series, the VFV-10K and VFV-100K, with 10 kHz and 100 kHz full scale output frequencies respectively. Both models have a linear minimum overrange capability of 10%. The linearity holds down to zero input, resulting in an extremely wide dynamic range of operation. The output pulses are constant width pulses of $70 \mu \mathrm{sec}$. for the VFV-10K and $7 \mu \mathrm{sec}$. for the VFV. 100 K . Both models are internally trimmed to 1% accuracy with external offset and gain adjustments for precise calibration in a specific application. When used as an F/V converter, an external capacitor can be used to reduce output ripple to a specified level.
The modules are epoxy encapsulated in a compact $2 \times 2 \times .375$ inch case with DIP compatible 0.100 inch pin spacing.

MECHANICAL DIMENSIONS INCHES (MM)

NOTE: OPEN DOTS INDICATE OMITTED PINS, PIN POSITION TOLERANCE IS $\pm 0.005^{\prime \prime}$ FROM DATUM, NON ACCUMULATIVE WEIGHT: 1.8 OZ. (51 G)

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTİN
1	VOLTAGE OUT
2	PULSE IN
3	OMITTED
4	"
5	"
6	"
7	"
8	"
9	POWER \& LOGIC GND
10	PULSE OUT
11	OMITED
12	LOGIC SELECT
13	OMITTED
14	PULSE POLARITY
15	+15 VDC POWER
16	15 VDC POWER
17	OMITTED
18	"
19	GAIN POTENTIOMETER
20	OMITTED
21	GAIN ADJUST
22	OMITTEO
23	GAIN POTENTIOMETER
24	OMITTED
25	\%
26	+VOLTAGE IN
27	INVERTED OUT
28	VOLTAGE IN
29	SIGNAL COMMON
30	CURRENT IN
31	+CURRENT IN
32	ZERO ADJUST

Typical at $25^{\circ} \mathrm{C}, \pm 15 \mathrm{~V}$ Supplies unless otherwise noted				VFV-10K	VFV-100K	VIF CONVERTER OPERATION The V/F converter can be thought of as an A/D
V/F CONVERTER INPUT Input Voltage Range Input Current Range Input Overrange, min. Input Impedance, voltage in				0 to +10 V 0 to -10 V 0 to +1 mA 0 to -1 mA 10\% 10K ohms		be counted. The first applications diagram shows the V/F converter used as A/D converter by connecting the output to a digital counter and register The digital counter is shown with a one second counting time base and an output register to store the output data while the V/F. converter is making a conversion. The VFV-10K has a resolution of 1 part in 10,000
V/F CONVERTER OUTPUT Frequency Range Frequency Overrange, min. Pulse Width \qquad Rise and Fall Time, max Pulse Polarity. Settling Time to $.01 \%$. Overload Recovery. Capacitive Loading, max. Output Logic Output Loading, S.C. protected				0 to 10 kHz 10\% $70 \mu \mathrm{sec}$ 200 nsec. Pos. or Neg. 1 pulse of new freq. 1 pulse of new freq. 1000pF DTL/TTL or CMOS 12 TTL loads	0 to 100 kHz $7 \mu \mathrm{sec}$ * * 100pF	better than 13 bits binary resolution (1 part in $8,192)$. The nonlinearity of this model is 50 ppm maximum which is equivalent (50 ppm $=$ $1 / 2$ LSB) to a better than 13 bit binary converter. With a gain temperature stability of $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ worst case, the VFV-10K is equivalent to a very high quality A / D converter in its performance. The VFV. 100 K has a resolution of 1 part in 100,000 using a 1 second time base. This is equivalent to better than 16 bits binary resolution (1 part in 65,536). The VFV-100K can be used to give equivalent resolution to the VFV-10K with only one tenth the time base, or 0.1 second for a resolution of 1 part in 10,000.
ACCURACY Full Scale Error, pretrimmed, max. (adj. to zero) Nonlinearity, max. Offset Voltage, max. (adj. to zero). Temp. Coefficient of Gain max. Gain vs. time . Temp. Coefficient of Zero, max. . Zero Drift vs. Time Power Supply Sensitivity, max. Warm Up Time to Rated Accuracy				$\begin{aligned} & \pm 1 \% \\ & \pm .005 \% \\ & \pm 10 \mathrm{mV} \\ & \pm 20 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \pm 100 \mathrm{ppm} / \text { day } \\ & \pm 30 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & \pm 10 \mu \mathrm{~V} / \text { day } \\ & .002 \% / \% \\ & 1 \text { minute } \end{aligned}$	$\begin{gathered} \pm .05 \% \\ * \\ \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ * \\ * \\ * \\ .02 \% / \% \\ 5 \text { minutes } \end{gathered}$	An important characteristic of both the VFV.10K and VFV.100K is that their linearity does not fall off near zero as with some other converters. They are both linear right to zero, and this results in a wide dynamic operating range. In practice the lower limit of operation is about 1 millivalt input due to adjustment accuracy, long term stability, temperature drift, etc. This results in a dynamic range of 10,000 to 1 of 80 dB for both models. As a V/F converter positive inputs are achieved using inputs directly into the integrator (pins 26 or 31). For negative inputs the internal
F/V CONVERT Input Pulses	SPECIF Input Code 1 0	(1OTIO Min. 0 V +2.0 V	NS Max. $\begin{array}{l}+0.8 \mathrm{~V} \\ +15 \mathrm{~V}\end{array}$	Negative Going <1TTL Load	*	inverting amplifier is connected ahead of the integrator and the input is applied to pin 28 or 30. Using both the inverting amplifier inputs and the integrator inputs it is possible to algebraically add and subtract inputs for V/F converter operation.
Input Imped Input Pulse Filter Time Output Volta Output Impe Output Curre	e, \min. h. stant ce S.C. pro	tected		30K ohms $10-60 \mu \mathrm{sec}$. 0.5 msec. 0 to +10 V 0 to -10 V 0.1 ohm $\pm 5 \mathrm{~mA}$	4K ohms $1-6 \mu \mathrm{sec}$. .025 msec .	The output logic level can be set from 0 to +15 V by use of an external resistor connected to pin 10 while pin 12 is left open. The output voltage is determined by the resistor ratio with the internal 10 K ohm resistor as shown in the Output Logic Connections diagram. F/V CONVERTER OPERATION
POWER REQUI	MENT			$\begin{gathered} \pm 15 \mathrm{VDC} @ 25 \mathrm{~mA} \\ \text { quiescent } \end{gathered}$	*	For operation as an F/V converter negative going input pulses must be used. The pulses must go from a HI logic level of +2.0 V to +15 V
PHYSICAL-ENVIRONMENTAL Operating Temperature Range . Storage Temperature Range Relative Humidity. Case Size Case Material Pins Weight Mating Sockets				$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ $-55^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$ Up to 100% non. cond. $2^{\prime \prime} \times 2^{\prime \prime} \times .375^{\prime \prime}$ Black Diallyl Phthalate, Epoxy Encapsulated 0.020" dia. round, gold plated, $250^{\prime \prime} \mathrm{min}$. $1.8 \mathrm{oz} .(51 \mathrm{~g} .)$ $\text { DILS-2, } 2 \text { ea. }$		widths must be between 10 and $60 \mu \mathrm{sec}$ for the VFV-10K and 1 and $6 \mu \mathrm{sec}$ for the VFV-100K. If these pulse widths are not available, then input conditioning circuits must be used as shown in the diagrams of Input Conditioning for F/V Converter. Output ripple of the F/V converter can be made arbitrarily low by using an external filtering capacitor. This also slows down the output response time. As an F/V converter, a positive output is taken directly from the integrator output (pin1). For a negative output
*Specifications same as VFV-10K						after the integrator and the output is taken at pin 27.

AS V/F CONVERTER

AS F/V CONVERTER

Trimming potentiometers are $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}, 15$ turn type, available from Datel Systems at $\$ 3.00$ each.

V/F CONVERTER

1. Connect the unit as a V/F converter as shown above with zero and gain trimming potentiometers.
2. Connect a precision dial-up voltage source to +V in (p in 26) and a digital counter and display set to a 1 second time base to PULSE OUT ($\operatorname{pin} 10$) as shown.
3. Set the precision voltage source to +.010 volt and adjust the zero trimming potentiometer to give an output count of 10 for the VFV-10K or 100 for the VFV-100K.
4. Set the precision voltage source to +10.000 volts and adjust the gain trimming potentiometer to give an output count of 10,000 for the VFV.-10K or 100,000 for the VFV-100K.

The above procedure applies for a positive input voltage V/F converter. For a negative input voltage, connect pin 27 to pin 26 and use pin 28 as the input.

F/V CONVERTER

1. Connect the unit as an F/V converter as shown with desired external filter capacitor and zero and gain trimming potentiometers.
2. Connect a $4-1 / 2$ digit DVM to the Vout terminal (pin 1). Connect the PULSE IN terminal (pin 2) to +15 volt supply, and adjust the zero trimming potentiometer for 0.000 volts output.
3. Connect a pulse generator to PULSE IN (pin 2) and set the generator to give +5 volt negative going pulses 50μ sec wide for the VFV-10K or 5μ sec wide for the VFV-100K. Connect a digital counter to the pulse generator output and set the pulse rate to exactly 10 kHz for the VFV-10K or 100 kHz for the VFV-100K.
4. Adjust the gain trimming potentiometer to give +10.000 volts output.

The above procedure applies for a positive output voltage F / V converter. If negative output voltage is desired, connect pin 1 to pin 28 and measure the output at pin 27.

OUTPUT PULSE PROGRAMMING			
PULSE TYPE	PULSE OUTPUT	LOGIC (PIN 12)	PULSE POLARITY (PIN 14)
POSITIVE GOING 5 V PULSES	${ }_{0}^{+5} \square \square \square$	GND	$+15 \mathrm{~V}$
NEGATIVE GOING 5V PULSES	+5 0\square	GND	OPEN
POSITIVE GOING 15V PULSES	${ }_{0}^{+15} \square \square \square$	OPEN	+15V
NEGATIVE GOING 15V PULSES	+15 0$\square \square$	OPEN	OPEN

VFV OPERATING MODES

DAEL

V/F CONVERTER, - V OR - I INPUT

F/V CONVERTER, +V OUT

F/V CONVERTER, - V OUT

OUTPUT RIPPLE FOR F/V CONVERTER

VFV-100K

INPUT CONDITIONING FOR F/V CONVERTER
NOTE: FOR VFV-10K $\mathrm{C}=.02 \mu \mathrm{~F}$
FOR VFV $100 \mathrm{~K} \mathrm{C}=.002 \mu \mathrm{~F}$
ALL RESISTORS SHOWN ARE FOR VFV. 10 K .
FOR VFV-100K DIVIDE ALL VALUES BY 10.

INPUT CONDITIONING CIRCUIT FOR WIDE PULSE OR SOUARE WAVE

INPUT CONDITIONING CIRCUIT FOR SINE WAVE, TRIANGULAR WAVE,
AND OTHER ZERO CROSSING WAVEFORMS

LINEARITY NEAR ZERO INPUT, VFV-10K and VFV-100K

NORMALIZED STEP RESPONSE, F/V CONVERTER

APPLICATIONS

A/D CONVERTER USING V/F CONVERTER

SYSTEMS, INC.
1020G Turnpike Street, Building S Canton, Massachusetts 02021 U.S.A.
TEL: (617) 828-8000
TWX: 710-348-0135 TELEX: 924461

Modular Data Acquisition Systems

Modular Data Acquisition Systems

	MDAS-16	MDAS-8D
	Low Cost	Low Cost
No. Channels	16	8
Input Type	Single Ended	Differential
Input Voltage Ranges, Unipolar	0 to $+5,+10 \mathrm{~V}$	0 to $+5,+10 \mathrm{~V}$
Input Voltage Ranges, Bipolar	$\pm 2.5, \pm 5, \pm 10 \mathrm{~V}$	$\pm 2.5, \pm 5, \pm 10 \mathrm{~V}$
Input Impedance	100 Meg .	100 Meg .
Channel Addressing	4 Bit Code	3 Bit Code
Address Logic Compatibility	DTL/TTL	DTL/TTL
Resolution	12 Bits	12 Bits
Nonlinearity, max.	1/2 LSB	1/2 LSB
Differential Nonlinearity, max.	1/2 LSB	1/2 LSB
Max. Error at maximum throughput	.025\%	.025\%
Temp. Coefficient, max.	$30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
No Missing Codes	0 to $70^{\circ} \mathrm{C}$	0 to $70^{\circ} \mathrm{C}$
Throughput Rate, max.	50 kHz	50 kHz
Acquisition Time	$12 \mu \mathrm{sec}$.	$12 \mu \mathrm{sec}$.
Conversion Time	$8 \mu \mathrm{sec}$.	$8 \mu \mathrm{sec}$.
Aperture Time	50 nsec .	50 nsec.
Output Coding	Bin, 2C	Bin, 2C
Power Requirement	$\pm 15 \mathrm{~V},+5 \mathrm{~V}$	$\pm 15 \mathrm{~V},+5 \mathrm{~V}$
Package Size, inches	$4.6 \times 2.5 \times 0.375$	$4.6 \times 2.5 \times 0.375$
Operating Temp. Range	0 to $70{ }^{\circ} \mathrm{C}$	0 to $70^{\circ} \mathrm{C}$
Price (1-9)	\$295.00	\$295.00

DESCRIPTION

This comprehensive line of modular data acquisition systems gives the user a range of choices from a miniature low cost 8 or 16 channel system, a 16 channel high speed system, to an 8 or 16 channel low power CMOS system.

MDAS-16, MDAS-8D: These new models are only $4.6 \times 2.5 \times$ 0.375 inches in size and cost $\$ 295$. Features are 5 programmed input ranges, 16 single-ended or 8 differential channels, 12 bit resolution, and 50 kHz throughput rate. These models represent the best price-performance combination available.

DAS-250: This model, soon to be available, offers 16 channel capability at 250 kHz throughput rate. Resolution is 12 bits and the unit offers 0 to +10 V or $\pm 5 \mathrm{~V}$ single-ended input ranges. Package size is $5.0 \times 4.5 \times 1.5$ inches.

DAS-16-LP12B, DAS-8D-LP12B: These two CMOS systems are low power units specifically for battery operated portable and remote data acquisition requirements. Both units operate from a single +12 V to +15 V power supply. The package is a 6.5×4.5 inch circuit card.

DAS-250	DAS-16-LP12B	DAS-8D-LP12B
High Speed	Low Power CMOS	Low Power CMOS
16	16	8
Single Ended	Single Ended	Differential
0 to +10V	0 to $+5,+10 \mathrm{~V}$	0 to $+5,+10 \mathrm{~V}$
$\pm 5 \mathrm{~V}$	$\pm 5, \pm 10 \mathrm{~V}$	$\pm 5, \pm 10 \mathrm{~V}$
100 Meg .	1000 Meg .	1000 Meg.
4 Bit Code	4 Bit Code	3 Bit Code
DTL/TTL	CMOS	CMOS
12 Bits	12 Bits	12 Bits
1/2 LSB	1/2 LSB	1/2 LSB
1/2 LSB	1/2 LSB	1/2 LSB
.025\%	. 05%	.05\%
$40 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
0 to $70^{\circ} \mathrm{C}$	0 to $70^{\circ} \mathrm{C}$	0 to $70{ }^{\circ} \mathrm{C}$
250 kHz	2.2 kHz	2.2 kHz
$2 \mu \mathrm{sec}$.	$150 \mu \mathrm{sec}$.	$150 \mu \mathrm{sec}$.
$2 \mu \mathrm{sec}$.	$310 \mu \mathrm{sec}$.	$310 \mu \mathrm{sec}$.
20 nsec .	100 nsec .	100 nsec.
Bin, 2C	Bin, 2C	Bin, 2C
$\pm 15 \mathrm{~V},+5 \mathrm{~V}$	+12 to +15V	+12 to +15 V
$5.0 \times 4.5 \times 1.5$	$6.5 \times 4.5 \times 1.0$	$6.5 \times 4.5 \times 1.0$
0 to $70^{\circ} \mathrm{C}$	0 to $70^{\circ} \mathrm{C}$	0 to $70^{\circ} \mathrm{C}$
\$595.00	\$495.00	\$545.00

1020G Turnpike Street, Building S
Canton, Massachusetts 02021 U.S.A.
TEL: (617) 828-8000
TWX: 710-348-0135 TELEX: 924461

LOW POWER 16 CHANNEL DATA ACOUISITIN SYSTEM

MODEL DAS-16-LP

FEATURES

LESS THAN 120 MICROWATTS STANDBY POWER LESS THAN 200 MILLIWATTS OPERATING POWER

- 16 Analog Input Channels
(8 Channel Differential Optional)
- 12 Bit Output Resolution
- Transfer Accuracy of $\pm 0.05 \%$ of $F S$
- 100 Nanosecond Aperture Time
- 2.2 KHz System Throughput Word Rate

GENERAL DESCRIPTION

The DAS-16-LP is a low power 16 -channel (or 8 channel differential) data acquisition system complete with an analog multiplexer, a high performance sample and hold amplifier, a high accuracy 12 bit analog-to-digital converter, plus all the necessary control logic for both random and sequential channel selection - all mounted on a $41 / 2$ by $61 / 2$ inch PC board.
The remarkable feature of the DAS-16-LP however is its low power consumption of less than 200 milliwatts while operating, and only 120 microwatts in stand-by. A unique power supply operating from +12 to +15 volts generates bipolar power to the analog section only when a conversion is in process, thus providing power savings during standby. In addition, the system can be operated continuously from a bipolar power source.
Since the DAS-16-LP can be powered from a 12 volt battery for long periods of time, it easily lends itself to remote applications. As such, the DAS-16-LP is an ideal acquisition system for gathering oceanographic, meteorological, seismological, pollution or general environmental data. The system's computer compatible interface also makes it ideal for laboratory or industrial control use.
The 16 single-ended input channels (or 8 channel differential) can accept either 0 to +5 volt or ± 5 volt full scale signals with 12 volt power and when 15 volt power is provided, either 0 to +10 volt or ± 10 volt full scale signals can be accepted in addition. System transfer accuracy is 0.05% of full scale, $\pm 1 / 2$ LSB, with a linearity of $\pm 1 / 2$ LSB and a temperature coefficient of $150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. Dynamically, the input data acquisition time is 150 microseconds and the aperture time of the sample and hold amplifier is less than 100 nanoseconds. Data conversion is completed in less than 460 microseconds therefore the system throughput rate is 2.2 KHz .
The control logic included with the DAS16 -LP provides for input command storage using the device select and strobe inputs to enable the other input commands. As such the input commands are only required to be true during the strobe period thus allowing for party line or computer bus operation. Besides providing random access to the input channels, an internal counter allows sequential addressing and a frame sync output indicates when the counter is at channel one. Short cycle inputs and outputs are also provided so the counter can be preset to jump back to channel one from any channel.

ORDERING INFORMATION

MODEL NUMBER DAS - \qquad

PRICE (SINGLE QUANTITY)

16 CHANNELS
 $\$ 495.00$

8 DIFF. CHANNELS
LS \$545.00
CONNECTOR ($3 \mathrm{~V} H 36 / 1 \mathrm{JN}-5$). \$ 3.95

MODELS MDAS-16, MDAS-8D

FEATURES

- 16 Channels Single Ended or 8 Channels Differential
- 12 Bits Resolution
- 50 kHz Throughput Rate
- Tri-State Outputs
- Low Cost -
- Miniature Size

DESCRIPTION

The MDAS-16 and MDAS-8D data acquisition modules are complete, selfcontained systems featuring 16 channel single ended or 8 channel differential operation respectively. Resolution is 12 bits and throughput rate is 50 kHz . Output data is buffered tri-state for interfacing to mini or micro-computer data buses. Output data can be transferred in three 4 bit bytes. Output coding is straight binary for unipolar operation and offset binary or two's complement for bipolar operation.

The $4.6 \times 2.5 \times 0.375$ inch size of these modules is $1 / 2$ inch narrower than other competitive models. The small size and low cost are made possible by extensive use of hybrid and monolithic circuits to reduce parts count and increase reliability. Both models use Datel Systems' new ADC-HZ12BGC 12 bit hybrid A/D converter along with a monolithic samplehold and analog multiplexer.

The MDAS-16 and MDAS-8D feature a high degree of user flexibility with pinprogrammable input ranges of 0 to +5 V , 0 to $+10 \mathrm{~V}, \pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}$, and $\pm 10 \mathrm{~V}$. The systems may be operated in either random or sequential channel addressing modes. For applications where lower than 12 bit resolution can be used, the A/D converter can be short-cycled to achieve a faster conversion rate. Output data is also available in serial form with a gated clock output.

The modules are housed in a shielded steel case. Input-output connections are made by means of a 72 -pin connector. The number of channels may be expanded by 32 for the MDAS -16 or by 16 for the MDAS-8D by use of the multiplexer expander modules MDXP-32, and MDXP-32-1.

MECHANICAL DIMENSIONS - INCHES (MM)

SPECIFICATIONS, MDAS-16 \& MDAS-8D
(Typical at $25^{\circ} \mathrm{C}, \pm 15 \mathrm{~V}$ and +5 V supplies unless otherwise indicated)

ANALOG INPUTS	
Number of Channels	16 Single Ended (M
Input Voltage Ranges	
unipolar	0 to +5 V 0 to +10 V
bipolar	$\pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}$
Common Mode Range, min.	$\pm 10 \mathrm{~V}$
Max. Input Voltage. no damage	$\pm 15 \mathrm{~V}$
Input Impedance	100 megohms
Input Bias Current	$3 \mathrm{nA}, 10 \mathrm{nA}$ max. 0
Input Capacitance OFF channel ON channel	$\begin{aligned} & 10 \mathrm{pF} \\ & 100 \mathrm{pF} \end{aligned}$
ACCURACY	
Resolution	12 Bits
Error, max. 50 kHz sampling	$\pm .025 \%$ of FSR
Nonlinearity, max.	$\pm 1 / 2$ LSB
Diff. Nonlinearity, max.	$\pm 1 / 2$ LSB
Gain Error	Adj. to zero
Offset Error	Adj. to zero
Temp. Coeff. of Gain, max.	$\pm 30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Temp. Coeff. of Offset, max.	$\pm 7 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ of FS
Diff. Linearity Tempco, max.	$\pm 3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ of FS
Common Mode Rejec., min.	70 dB at 1 kHz
Monotonicity	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Power Supply Rejection	01\%/\% Supply

DYNAMIC CHARACTERISTICS

Throughput Rate, max. 50 kHz
Acquisition Time $12 \mu \mathrm{sec}$.
Conversion Time $8 \mu \mathrm{sec}$.
Aperture Time, max. 50 nsec.
Sample-Hold Droop, max. . . $50 \mu \mathrm{~V} / \mathrm{msec}$.
Feedthrough, max.. 01%
Channel Crosstalk (Mux.). . . -80 dB at 1 kHz

DIGITAL OUTPUTS

Parallel Data Out

Coding
Serial Out

Mux Address Out

Delay Out
Clock Out
EOC (Status)
MSB Out
MSB Out

12 parallel lines of buffered tristate output data.
Drives 12 TL loads
Straight binary, offset binary, and two's complement
Output data in MSB first, NRZ format. Straight binary and offset binary coding. Drives 5 TL loads Buffered output of address register
Drives 20 TTL loads
Drives 5 TL loads
Drives 5 TL loads
Drives 4 TL loads
Drives 5 TL loads
Drives 5 TL loads

DIGITAL INPUTS
Enable Three separate inputs which enable tri-state outputs in 4 bit bytes
1 TTL load
Mux Address In

Strobe
A/D Trigger
A/D Trigger
Mux Enable
Count Enable
Load Enable
Clear Enable
MSB In
Short Cycle

3 bit (MDAS -8D) or 4 bit (MDAS-16) binary address 1 LS TTL load
1 LS TTL load with 10K pull-up resistor
1 LS TTL load with 10 K pull-up resistor
1 LS TTL Load
1 TLL load with 10 K pull-up resistor
1 LS TTL load with 10K pull-up resistor
1 LS TTL load with 10K pull-up resistor
1 LS TTL load with 10K pull-up resistor
1 TL load
1 TL load with 10K pull-up resistor

POWER REQUIREMENT
$+15 \mathrm{VDC} \pm 0.5 \mathrm{~V} @ 65 \mathrm{~mA}$
-15VDC $\pm 0.5 \mathrm{~V} @ 60 \mathrm{~mA}$
$+5 \mathrm{VDC} \pm 0.25 \mathrm{~V} @ 200 \mathrm{~mA}$

PHYSICAL ENVIRONMENTAL

Operating Temp. Range	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature Range	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Package Size	$4.6 \times 2.5 \times 0.375$ inches $(116.8 \times 63.5 \times 9.5 \mathrm{~mm})$
Package Type	Steel, shielded on 5 sides
Weight	6 oz (170 g)

NOTES: 1. All outputs are Vout ("O") $\geqslant+0.4 \mathrm{~V}$, $\operatorname{Vout}(" 1$ ") $)=+2.4 \mathrm{~V}$
2. All inputs are Vin ("O") $\quad+0.8 \mathrm{~V}$, Vin ("1") $2+2.0 \mathrm{~V}$

ORDERING INFORMATION

Price (1-9)

MDAS - 16 \$295.00
MDAS -8D $\$ 295.00$
Included with each module is a mating right-angle 72 pin connector.
Trimming Potentiometers: TP 20K \$3.00 each.
Multiplexer expander modules are also available. The MDXP-32 adds 32 single ended or 16 differential channels with control logic. Price is $\$ 199.00$. The MDXP-32-1 is identical but without control logic. Price is $\$ 179.00$. Consult factory for delivery.

DATEL

BLOCK DIAGRAM MDAS-16, MDAS-8D

PIN CONNECTIONS for MDAS-16

	Top	Bottom	
+15VDC	1T	1B	-15VDC
Analog Gnd.	2T	2B	Analog Gnd.
Ch. 0 ln	3T	3B	Ch. 8 ln
Ch. 1 In	4 T	4B	Ch. 9 ln
Ch. 2 ln	5T	5B	Ch. 10 ln
Ch. 3 ln	6 T	6B	Ch. 11 ln
Ch. 4 ln	$7 T$	7B	Ch. 12 In
Ch. 5 ln	8T	8B	Ch. 13 ln
Ch. 6 ln	9 T	9B	Ch. 14 ln
Ch. 7 In	10 T	10B	Ch. 15 ln
Amplifier In Hi	11 T	11B	Amplifier In Lo
Range 1 Select	12 T	12B	Range 2 Select
Sample Hold Out	13 T	13 B	Amplifier Out
Enable (Bits 1-4 Out)	14 T	14B	Sum. Junc. (Bipolar Off.)
Bipolar Offset	15T	15B	Enable (Bits 5-8 Out)
Ext. Offset Adjust	16 T	16 B	Ext. Gain Adjust
Enable (Bits 9-12)	17 T	17B	Mux Enable
Serial Out	18 T	18 B	Count Enable
8 Out Mux	19 T	19B	$8 \ln$ Mux
4 Out Address	201	20B	4 In $>$ Address
$2 \text { Out Lines }$	$21 T$	21 B	2 In Lines
1 Out	22T	22B	1 In]
Delay Out	23T	23B	MSB Out (TTL)
MSB In (TTL)	$24 T$	24B	Load Enable
Strobe	$25 T$	25B	Clear Enable
A/D Trigger	26T	26B	Clock Out
A/D Trigger	271	$27 B$	EOC (status)
Short Cycle	$28 T$	28 B	MSB Out (TTL)
Bit 1 Out* (MSB)	29T	29B	Bit 2 Out*
Bit 3 Out*	30T	30 B	Bit 4 Out*
Bit 5 Out*	317	318	Bit 6 Out*
Bit 7 Out*	32T	32 B	Bit 8 Out*
Bit 9 Out*	33T	33B	Bit 10 Out*
Bit 11 Out*	$34 T$	34 B	Bit 12 Out* (LSB)
Digital Gnd.	35 T	35B	Digital Gnd.
+5VDC	36 T	36B	+5VDC
*Tri-State Outputs			

PIN CONNECTIONS for MDAS-8D

	Top	Bottom	
+15VDC	1 T	1 B	-15VDC
Analog Gnd.	2 T	2B	Analog Gnd.
Ch. OHi ln	$3 T$	3B	Ch. OLo In
Ch. 1 Hi In	4 T	4B	Ch. 1 Lo In
Ch. 2 Hi In	5 T	5B	Ch. 2 Lo In
Ch. 3 Hi In	$6 T$	6B	Ch. 3 Lo In
Ch. 4 Hi ln	$7 T$	7B	Ch. 4 Lo In
Ch. 5 Hi In	$8 \mathrm{8T}$	8B	Ch. 5 Lo In
Ch. 6 Hi In	9 T	9B	Ch. 6 Lo In
Ch. 7 Hi In	10 T	10B	Ch. 7 Lo In
Amplifier In Hi	11 T	11 B	Amplifier In Lo
Range 1 Select	12 T	12 B	Range 2 Select
Sample Hold Out	13 T	13 B	Amplifier Out
Enable (Bits 1-4 Out)	14 T	14B	Sum.Junc.(Bipolar Offi)
Bipolar Offset	15 T	15 B	Enable (Bits 5-8 Out)
Ext. Offset Adjust	16 T	16B	Ext. Gain Adjust
Enable (Bits 9-12 Out)	171	17B	Mux Enable
Serial Out	18 T	18B	Count Enable
8 Out Mux	19 T	19B	
4 Out Address	20 T	20B	4 In ${ }^{\text {ln }}$ Address
	21T	21 B	2 In Lines
Delay Out	231	23B	MSB Out (TTL)
MSB In (TTL)	24 T	24B	Load Enable
Strobe	$25 T$	25B	Clear Enable
A/D Trigger	$26 T$	26 B	Clock Out
A/D Trigger	271	27B	EOC (status)
Short Cycle	28 T	28B	MSB Out (TTL)
Bit 1 Out* (MSB)	29 T	29B	Bit 2 Out*
Bit 3 Out* ${ }^{\text {* }}$	30T	30B	Bit 4 Out*
Bit 5 Out*	311	31 B	Bit 6 Out*
Bit 7 Out*	32T	32B	Bit $80 \mathrm{O}^{*}$
Bit 9 Out*	33 T	33B	Bit 10 Out*
Bit 11 Out*	34 T	34 B	Bit 12 Out* (LSB)
Digital Gnd.	35 T	35B	Digital Gnd.
+5VDC	36T	36B	+5VDC

FUNCTION	PIN	DESCRIPTION
Amplifier In Lo	11B	Analog monitoring point for MDAS-8D. For the MDAS-16 this pin must be grounded.
Amplifier $\operatorname{ln~Hi}$	11T	Analog monitoring point.
Range 2 Select Range 1 Select	$\begin{aligned} & 12 \mathrm{~B} \\ & 12 \mathrm{~T} \end{aligned}$	These pins program analog input voltage range. See Table II
Amplifier Out	13B	Analog monitoring point.
Sample Hold Out	13T	Analog monitoring point.
Summing Junction	14B	Used to program analog input voltage range and bipolar offset. See Table II
Enable	14 T	Input LO enables tri-state outputs for bits 1-4. Input HI inhibits outputs.
Enable	15B	Input LO enables tri-state outputs for bits 5-8. Input HI inhibits outputs.
Bipolar Offset	15 T	Connects to 14B for bipolar operation and to analog ground for unipolar operation. See Table II
Ext. Gain Adjust	16B	Used to adjust out gain error. Operates independently of the internal adjustment. See External Adjustments diagram.
Ext. Offset Adjust	16 T	Used to adjust out offset error. Operates independently of the internal adjustment. See External Adjustments diagram.
Mux Enable	17B	Input HI enables analog multiplexer. Input LO inhibits analog multiplexer.
Enable	17 T	Input LO enables tri-state outputs for bits 9-12. Input HI inhibits outputs.
Count Enable	18B	Input HI enables Mux Address Register. Input LO inhibits Mux address Register.
Mux Address In	$\begin{aligned} & \text { 19B, 20B, } \\ & 21 \mathrm{~B}, 22 \mathrm{~B} \end{aligned}$	Digital inputs for channel address selection in random addressing mode. Straight binary coding. See Table III
Mux Address Out	$\begin{aligned} & 19 \mathrm{~T}, 20 \mathrm{~T}, \\ & 21 \mathrm{~T}, 22 \mathrm{~T} \end{aligned}$	Straight binary coded output of Mux Address Register.
MSB Out	23B	Bit 1 TTL output of A/D converter. Connect to pin 24T for straight binary or offset binary output coding.
Delay Output	23 T	An output delay pulse set for $12 \mu \mathrm{sec}$. to allow for multiplexer and amplifier settling time and sample hold acquisition time. This pin is normally connected to A/D Trigger (pin 27 T) to initiate A/D conversion.
Load Enable	24B	Input HI for sequential addressing. Input LO for random addressing.
MSB In	24 T	Bit 1 input to tri-state output buffers. Connect to either pin 23B (MSB Out) or pin 28B (MSB Out).
Clear Enable	25B	Input LO and a negative transition on pin 25T resets Mux address counter to zero.
Strobe	25 T	Negative input transition initiates channel scanning sequence in sequentia mode or a conversion in the random mode. A Schmidt trigger input adds hysteresis for good noise rejection.
Clock Output	26B	A/D converter clock pulses for synchronization of serial data. Negative going pulses of approximately 100 nsec . duration.
A/D Trigger	26 T	A positive logic transition on this input initiates A/D conversion.
EOC (status)	27B	End of conversion (status) output. Output HI during conversion and LO when conversion is complete.
A/D Trigger	271	A negative logic transition on this input initiates A / D conversion. This pin is normally connected to pin 23T (Delay Output).
MSB Out	28B	Complemented bit 1 TTL output of A/D converter. Connect to pin 24T for two's complement output coding.
Short Cycle	28 T	For 12 bit resolution connect this pin to ground. To short cycle A/D converter for lower resolution, connect this pin to output bit $n+1$ for a resolution of n bits. Short cycling of the A/D converter can only be done with the Enable inputs (pins 14T, 15B and 17T) LO.

TABLE II INPUT RANGE SELECTION

$*$ INPUT RANGE	CONNECT THESE PINS TOGETHER		
	RANGE 1	RANGE 2	BIPOLAR OFF.
	13 B	PIN 12B	PIN 15T
$0 \mathrm{TO}+10 \mathrm{~V}$	2 B OR 2T	13 T	2 B OR 2T
$\pm 2.5 \mathrm{~V}$	13 B	13 T	2 B OR 2T
$\pm 5 \mathrm{~V}$	2 B OR 2T	$13 T$	14 B
$\pm 10 \mathrm{~V}$	2 B OR 2T	OPEN	14 B

TABLE IV
THROUGHPUT RATES VS. NO. BITS FOR SHORT-CYCLED A/D CONVERTER

NO. BITS	THROUGHPUT RATE
12	50 kHz
10	53 kHz
8	57 kHz
4	67 kHz

ロA1EL

TABLE III MUX
CHANNEL ADDRESSING

\longleftarrow MUX ADDRESS \longrightarrow					$\begin{array}{r} \text { u } \\ 2 \\ 2 \\ 2 \mathbb{1} \\ 0 \backslash \end{array}$	
PIN						
19B	20B	21B	22B	17B		
8	4	2	1	MUX ENAB.		
X	X	X	x	0	NONE	
0	0	0	0	1	0	
0	0	0	1	1	1	
0	0	1	0	1	2	
0	0	1	1	1	3	
0	1	0	0	1	4	
0	1	0	1	1	5	
0	1	1	0	1	6	MDAS-8D
0	1	1	1	1	7	(3 BIT ADDRESS)
1	0	0	0	1	8	
1	0	0	1	1	9	
1	0	1	0	1	10	
1	0	1	1	1	11	
1	1	0	0	1	12	
1	1	0	1	1	13	
1	1	1	0	1	14	MDAS-16
1	1	1	1	1	15	(4 BIT ADDRESS)

TABLE V

CALIBRATION TABLE

UNIPOLAR RANGE	ADJUST.	INPUT VOLTAGE
$0 \mathrm{TO}+5 \mathrm{~V}$	$\begin{aligned} & \text { ZERO } \\ & \text { GAIN } \end{aligned}$	$\begin{aligned} & +0.6 \mathrm{mV} \\ & +4.9982 \mathrm{~V} \end{aligned}$
0 TO +10V	ZERO GAIN	$\begin{gathered} +1.2 \mathrm{mV} \\ +9.9963 \mathrm{~V} \\ \hline \end{gathered}$
BIPOLAR RANGE		
$\pm 2.5 \mathrm{~V}$	OFFSET GAIN	$\begin{aligned} & -2.4994 \mathrm{~V} \\ & +2.4982 \mathrm{~V} \\ & \hline \end{aligned}$
$\pm 5 \mathrm{~V}$	OFFSET GAIN	$\begin{aligned} & -4.9988 \mathrm{~V} \\ & +4.9963 \mathrm{~V} \end{aligned}$
$\pm 10 \mathrm{~V}$	OFFSET GAIN	$\begin{array}{r} -9.9976 \mathrm{~V} \\ +9.9927 \mathrm{~V} \\ \hline \end{array}$

FIG. 1 EXTERNAL ADJUSTMENTS

SET-UP AND CALIBRATION INSTRUCTIONS

1. Select input voltage range desired and connect pins $12 B$ 12 T , and 15 T in accordance with Table II. If the MDAS-16 is used, ground pin 11B. Ground all analog channel inputs which are not to be used. Leave pin 17B open.
2. Determine resolution to be used. For full 12 bits, ground pin 28T. For lower resolution requirements, connect pin 28 T to bit output $\mathrm{n}+1$ for n bit resolution. For example: for 8 bit resolution connect pin 28T to pin 33T (Bit 9 Out). To operate the A/D converter in this short cycled mode, the Enable inputs (pins 14T, 15B, and 17T) must be connected to ground thereby enabling the tri-state outputs For 12 bit resolution the tri-state outputs can be either enabled or disabled
3. Select the output coding desired. For straight binary (unipolar) or offset binary (bipolar) connect pin 23B (MSB Out) to pin 24T (MSB In). For two's complement (bipolar) connect pin 28B (MSB Out) to pin 24T
4. Select desired multiplexer mode. Connect pin 23T (Delay Out) to pin 27T (A/D Trigger)

A. Free Running Sequential Addressing

Connect pin 27B (EOC) to pin 25T (Strobe). Leave pins 24B (Load Enable) and 25B (Clear Enable) open. Sequencing is initiated by a positive logic transition applied to pin 26T (A/D Trigger). Pin 26T must remain HI during free running sequential addressing. Sequencing is stopped by a LO applied to pin 26T

B. Triggered Sequential Addressing

Leave pins 24B (Load Enable) and 25B (Clear Enable) open. Apply a falling edge trigger to pin 25 T (Strobe). The negative transition of the strobe will cause the contents of the address counter to be incremented by one.
C. Random Addressing

Ground pin 24B (Load Enable). Leave pin 25B (Clear Enable) open. Each negative transition applied to pin 25T (Strobe) will cause the data at pins 19B, 20B, 21B and 22B (Mux Address In) to be loaded into the Address Register. Address inputs must be stable for at least 300 nsec . after negative transition of Strobe.
5. Calibration Procedure
A. Offset and gain adjustments may be made either internally or externally. Self-contained trimming potentiometers are provided for the internal adjustments. For external adjustment, 20K trimming potentiometers must be used with pins 16 B and 16 T . Connect as shown in Figure 1.
B. Connect power supplies to the module and a precision voltage source to pin 3 T (Chan O In). If the MDAS-8D is used, connect pin 3B (Chan OLO) to analog ground. Ground pin 25B (Clear Enable) and momentarily short pin 25 T (Strobe) to ground. Use an oscilloscope to monitor the serial output code at pin 18T. Trigger the A/D converter with 50 kHz positive going pulses applied to pin 26T (A/D Trigger).
C. Adjust the precision voltage source to the value shown in the Calibration Table for the unipolar zero adjustment (zero $+1 / 2$ LSB) or the bipolar offset adjustment (-FS $+1 / 2$ LSB). Adjust the offset trimming potentiometer so that the output code flickers equally between 000000000000 and 000000000001
D. Change the output of the precision voltage source to the value shown in the Calibration Table for the unipolar or bipolar gain adjustment (+ FS - $11 / 2$ LSB) Adjust the gain trimming potentiometer so that the output flickers equally between 111111111110 and 111111111111.

MDAS-16, MDAS-8D TIMING DIAGRAM Output Code: 010101010101

1020G Turnpike Street, Building S
Canton, Massachusetts 02021 U.S.A.
TEL: (617) 828-8000
TWX: 710-348-0135 TELEX: 924461

Power Supplies

Single Output Line Operated Power Modules

NEW

SPECIFICATIONS, $25^{\circ} \mathrm{C}$	UPM-5/250	UPM-5/500	UPM-5/1000	UPM-5/1000B	UPM-5/2000	UPM-5/4000
Output Voltage	5VDC	5VDC	5VDC	5VDC	5VDC	5VDC
Output Voltage Accuracy	$\pm 1 \%$	$\pm 1 \%$	$\pm 1 \%$	$\pm 2 \%$	$\pm 1 \%$	$\pm 1 \%$
Rated Output Current	250 mA	500 mA	1.0A	1.0A	2.0 A	4.0A
Line Regulation, max.	.05\%	.05\%	.05\%	0.25\%	.05\%	.05\%
Load Regulation, max.	0.1\%	0.1\%	0.1\%	0.25\%	0.1\%	0.1\%
Temp. Coefficient, max.	. $02 \% /{ }^{\circ} \mathrm{C}$. $02 \% /{ }^{\circ} \mathrm{C}$.02\%/ ${ }^{\circ} \mathrm{C}$. $02 \% /{ }^{\circ} \mathrm{C}$	02\%/ ${ }^{\circ} \mathrm{C}$. $22 \% /{ }^{\circ} \mathrm{C}$
Output Ripple, RMS max.	1 mV	1 mV	1 mV	mV	1 mV	2 mV
Output Impedance, max.	05Ω	. 05Ω	01Ω	. 01Ω	. 005Ω	. 005Ω
Trans. Recovery Time, max.	$50 \mu \mathrm{sec}$.					
Isolation Resistance, min.	100 Meg .					
Isolation Capacitance, max.	250pF	250pF	250pF	250pF	250pF	250pF
Breakdown Voltage, min.	1500VAC	1500VAC	1500VAC	1500VAC	1500VAC	1500VAC
Operating Temp. Range			$-25^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$	(No Derating)		
Storage Temp. Range			$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
Case Material	Phenolic	Phenolic	Phenolic	Phenolic	Phenolic	Phenolic
Module Size, inches	$3.5 \times 2.5 \times .875$	$3.5 \times 2.5 \times .875$	$3.5 \times 2.5 \times 1.25$	$3.5 \times 2.5 \times 1.25$	$3.5 \times 2.5 \times 1.56$	$3.5 \times 2.5 \times 1.56$
Module Size, millimeters	88,9×63,5×22,2	88,9×63,5×22,2	88,9X63,5×31,8	88,9X63,5×31,8	88,9×63,5×39,6	88,9×63,5×39,6
Module Weight	14 oz (397 g)	14 oz . 397 g)	18 oz (510 g)	18 oz (510 g)	24 oz. (680g)	24 oz (680g)
Case/Pin Configuration	C1	C1	C2	C2	C3	C3
Other Versions	E, J (1)	E, J (1)	E, J	E, J	E, J	E, J
Mating Socket	MS-7	MS-7	MS-7	MS-7	MS-7	MS-7
Price (1-9)	\$39.00	\$49.00	\$69.00	\$49.00	\$79.00	\$99.00

Note:

1. For " E " version module size is $C 2(3.5 \times 2.5 \times 1.25$ inches, 18 oz .)

UPM-6/150A	UPM-9/100A	UPM-12/100A	UPM-15/100A
6VDC	9VDC	12VDC	15VDC
$\pm 1 \%$	$\pm 1 \%$	$\pm 1 \%$	$\pm 1 \%$
150 mA	100 mA	100 mA	100 mA
.05\%	. 05%	. 02%	. 02%
0.1\%	0.1\%	.05\%	. 05%
.02\%/ ${ }^{\circ} \mathrm{C}$. $02 \% /{ }^{\circ} \mathrm{C}$. $02 \% /{ }^{\circ} \mathrm{C}$. $02 \% /{ }^{\circ} \mathrm{C}$
1 mV	2 mV	2 mV	2 mV
. 05Ω	0.1Ω	0.1Ω	0.1Ω
$50 \mu \mathrm{sec}$.	$50 \mu \mathrm{sec}$.	$50 \mu \mathrm{sec}$.	$50 \mu \mathrm{sec}$.
100 Meg .	100 Meg .	100 Meg .	100 Meg .
250pF	250pF	250pF	250 pF
1500VAC	1500VAC	1500VAC	1500VAC
$-25^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$ (No Derating)			
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
Phenolic	Phenolic	Phenolic	Phenolic
$3.5 \times 2.5 \times 875$	$3.5 \times 2.5 \times .875$	$3.5 \times 2.5 \times 875$	$3.5 \times 2.5 \times 875$
$88,9 \times 63,5 \times 22,2$	$88,9 \times 63,5 \times 22,2$	88,9×63,5×22,2	$88.9 \times 63,5 \times 22,2$
14 oz (397 g)	14 oz (397 g)	14 oz . 397 g)	14 oz (397 g)
C1	C1	C1	C1
E, J (1)	E, J (1)	E, J (1)	E,J (1)
MS-7	MS-7	MS-7	MS-7
\$39.00	\$39.00	\$49.00	\$49.00

DESCRIPTION

This line of single output, voltage regulated DC power supplies features six 5 volt output models with output currents from 250 mA to 4 amperes. In addition, there are 4 other models with 6 V to 15 V outputs. All outputs have current limiting short circuit protection. Temperature coefficients are $02 \% /{ }^{\circ} \mathrm{C}$ and output ripple voltage is 1 to 2 millivolts RMS.

Model UPM-5/4000 is a special high current, high efficiency supply in a compact C3 case size. Full load efficiency of 65% is achieved by a high performance switching regulator.

INPUT VOLTAGE SPECIFICATIONS

Standard input specification: 115VAC $\pm 10 \%$ @ 60 Hz
E version: 220VAC $\pm 10 \%$ @ $50-60 \mathrm{~Hz}$
J version: 100VAC $\pm 10 \%$ @ $50-60 \mathrm{~Hz}$
There is no extra charge for E and J versions. When ordering, add E or J suffix after model number. Note that in some instances the module size is larger for the E version. MS-7 sockets are $\$ 3.50$ each.

THESE POWER SUPPLIES ARE COVERED BY GSA CONTRACT

Dual Output,Line Operated Power Modules

SPECIFICATIONS, $25^{\circ} \mathrm{C}$	BPM-5/250	BPM-5/500	BPM-12/60	BPM-12/100	BPM-12/200	BPM-12/300
Output Voltage	$\pm 5 \mathrm{VDC}$	$\pm 5 \mathrm{VDC}$	$\pm 12 \mathrm{VDC}$	$\pm 12 \mathrm{VDC}$	$\pm 12 \mathrm{VDC}$	$\pm 12 \mathrm{VDC}$
Output Voltage Accuracy	$\pm 1 \%$					
Rated Output Current	$\pm 250 \mathrm{~mA}$	$\pm 500 \mathrm{~mA}$	$\pm 60 \mathrm{~mA}$	$\pm 100 \mathrm{~mA}$	$\pm 200 \mathrm{~mA}$	$\pm 300 \mathrm{~mA}$
Line Regulation, max.	.05\%	.05\%	.02\%	. 02%	.02\%	.02\%
Load Regulation, max.	0.1\%	0.1\%	.05\%	. 05%	. 05%	. 05%
Temp. Coefficient, max.	02\%/ ${ }^{\circ} \mathrm{C}$.02\%/ ${ }^{\circ} \mathrm{C}$.02\%/ ${ }^{\circ} \mathrm{C}$. $02 \% /{ }^{\circ} \mathrm{C}$. $02 \% /{ }^{\circ} \mathrm{C}$. $02 \% /{ }^{\circ} \mathrm{C}$
Output Ripple, RMS max.	1 mV	1 mV	2 mV	2 mV	2 mV	2 mV
Output Impedance, max.	. 05Ω	. 03Ω	0.2Ω	0.1Ω	. 05Ω	. 05Ω
Trans. Recovery Time, max.	$50 \mu \mathrm{sec}$.					
Isolation Resistance, min.	100 Meg .					
Isolation Capacitance, max.	250pF	250pF	250pF	250pF	250pF	250pF
Breakdown Voltage, min.	1500 VAC	1500VAC	1500VAC	1500VAC	1500VAC	1500VAC
Operating Temp. Range			$-25^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$	(No Derating)		
Storage Temp. Range			$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
Case Material	Phenolic	Phenolic	Phenolic	Phenolic	Phenolic	Phenolic
Module Size, inches	$3.5 \times 2.5 \times 875$	$3.5 \times 2.5 \times 1.25$	$3.5 \times 2.5 \times 875$	$3.5 \times 2.5 \times .875$	$3.5 \times 2.5 \times 1.25$	$3.5 \times 2.5 \times 1.56$
Module Size, millimeters	88,9X63,5×22,2	88,9X63,5×31,8	88,9×63,5×22,2	$88,9 \times 63,5 \times 22,2$	88,9×63,5×31,8	88,9×63,5×39,6
Module Weight	14 oz . 397 g)	18 oz (510 g)	14 oz . 397 g)	14 Oz. (397g)	18 oz . 510 g)	$24 \mathrm{oz} .(680 \mathrm{~g})$
Case/Pin Configuration	C1	C2	C1	C1	C 2	C3
Other Versions	E, J (1)	E, J (2)	E,J (1)	E, J (1)	E, J	E, J
Mating Socket	MS-7	MS-7	MS-7	MS-7	MS-7	MS-7
Price (1-9)	\$69.00	\$79.00	\$39.00	\$49.00	\$59.00	\$79.00

Notes:

(1) For " E " version module size is $\mathrm{C} 2(3.5 \times 2.5 \times 1.25$ inches, 18 oz .)
(2) For " E " version module size is $\mathrm{C} 3(3.5 \times 2.5 \times 1.56$ inches, 24 oz .)

DESCRIPTION

This broad line of dual output, voltage regulated DC power supplies features 10 different models with a wide choice of output voltages and currents. Output voltages are $\pm 5, \pm 12$, and $\pm 15 \mathrm{VDC}$ with $\pm 1 \%$ accuracy. Rated output currents range from ± 60 to $\pm 500 \mathrm{~mA}$ with output short circuit protection. Temperature coefficient is . 02% per degree Centigrade and output ripple voltage is 1 to 2 millivolts RMS. These rugged, encapsulated modules are useful for powering a wide variety of devices including linear IC's, op amps, data converters, and other analog circuits.

INPUT VOLTAGE SPECIFICATIONS

Standard input specification: 115VAC $\pm 10 \%$ @ 60Hz.
E version: $220 \mathrm{VAC} \pm 10 \%$ @ $50-60 \mathrm{~Hz}$. J version: 100VAC $\pm 10 \%$ @ $50-60 \mathrm{~Hz}$.
There is no extra charge for E and J versions. When ordering, add E or J suffix after model number. Note that in some instances the module size is larger for the E version. MS-7 sockets are $\$ 3.50$ each.

THESE POWER SUPPLIES ARE COVERED BY GSA CONTRACT

Triple Qutput Modules

These power modules are specially designed for operation with data conversion and other circuits where both a dual analog supply and a 5 V logic supply are required. Using a triple output supply to power these circuits can be more economical than using two separate equivalent supplies.

INPUT VOLTAGE SPECIFICATIONS

Standard input specification: 115VAC $\pm 10 \%$ @ 60 Hz
E version: $220 \mathrm{VAC} \pm 10 \%$ @ $50-60 \mathrm{~Hz}$
J version: 100VAC $\pm 10 \%$ @ $50-60 \mathrm{~Hz}$

Mating MS-13 sockets are $\$ 3.50$ each

	NEW	NEW
SPECIFICATIONS, $25^{\circ} \mathrm{C}$	TPM-12/100-5/500	TPM-15/100-5/500
Output Voltages	$\pm 12 \mathrm{VDC} / 5 \mathrm{VDC}$	$\pm 15 \mathrm{VDC} / 5 \mathrm{VDC}$
Output Voltage Accuracy	$\pm 1 \%$	$\pm 1 \%$
Rated Output Current	$\pm 100 \mathrm{~mA} / 500 \mathrm{~mA}$	$\pm 100 \mathrm{~mA} / 500 \mathrm{~mA}$
Line Regulation, max.	.02\% / .05\%	.02\% / .05\%
Load Regulation, max.	.05\% / 0.1\%	.05\% / 0.1\%
Temperature Coefficient, max.	. $02 \% /{ }^{\circ} \mathrm{C}$. $02 \% /{ }^{\circ} \mathrm{C}$
Output Ripple, RMS max.	$2 \mathrm{mV} / 1 \mathrm{mV}$	$2 \mathrm{mV} / 1 \mathrm{mV}$
Output Impedance, max.	0.1/.05 ohm	0.1/.05 ohm
Transient Recovery Time, max.	$50 \mu \mathrm{sec}$.	$50 \mu \mathrm{sec}$.
Isolation Resistance, min.	100 Meg .	100 Meg .
Isolation Capacitance, max.	250pF	250pF
Breakdown Voltage, min.	1500VAC	1500VAC
Operating Temp. Range	$-25^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$ (No Derating)	
Storage Temp. Range	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Case Material	Phenolic	Phenolic
Module Size, inches	$3.5 \times 2.5 \times 1.56$	3.5X2.5×1.56
Module Size, millimeters	88,9×63,5×39,6	88,9X63,5×39,6
Module Weight	24 oz . (681g)	24 oz . (681g)
Case/Pin Configuration	E3	E3
Other Versions	E, J	E J
Mating Socket	MS-13	MS-13
Price (1-9)	\$67.00	\$67.00

THESE POWER SUPPLIES ARE COVERED BY GSA CONTRACT

Chassis Mounting Modules

This line of popular power supplies has input-output connections made to a terminal strip on top of the modules. These supplies are useful in applications where it is impractical or undesirable to use printed circuit cards or sockets. For simple mounting to a metal chassis, screw inserts are provided on the bottom of the modules.

INPUT VOLTAGE SPECIFICATIONS

Standard Input Specification: 115VAC $\pm 10 \%$
@ 60 Hz
E version: 220VAC $\pm 10 \%$ @ $50-60 \mathrm{~Hz}$
J version: 100VAC $\pm 10 \%$ @ $50-60 \mathrm{~Hz}$

NEW NEW NEW NEW NEW

SPECIFICATIONS $25^{\circ} \mathrm{C}$	SINGLE OUTPUT		DUAL OUTPUT		
	UCM-5/1000	UCM-5/2000	ВСМ-15/100	BCM-15/200	BCM-15/300
Output Voltage	5VDC	5VDC	$\pm 15 \mathrm{VDC}$	$\pm 15 \mathrm{VDC}$	$\pm 15 \mathrm{VDC}$
Output Voltage Accuracy	$\pm 1 \%$				
Rated Output Current	1.0A	2.0 A	100 mA	200 mA	300 mA
Line Regulation, max.	.05\%	.05\%	.02\%	.02\%	.02\%
Load Regulation, max.	0.1\%	0.1\%	.05\%	. 05%	05\%
Temperature Coefficient, max.	02\% $/{ }^{\circ} \mathrm{C}$. $02 \% /{ }^{\circ} \mathrm{C}$. $02 \% /{ }^{\circ} \mathrm{C}$. $02 \% /{ }^{\circ} \mathrm{C}$	02\%/ ${ }^{\circ} \mathrm{C}$
Output Ripple, RMS max.	1 mV	1 mV	2 mV	2 mV	2 mV
Output Impedance, max.	. 01Ω	. 005Ω	0.1Ω	. 05Ω	05Ω
Transient Recovery Time, max.	$50 \mu \mathrm{sec}$.				
Isolation Resistance, min.	100 Meg .				
Isolation Capacitance, max.	250pF	250pF	250pF	250pF	250pF
Breakdown Voltage, min.	1500VAC	1500VAC	1500VAC	1500 VAC	1500 VAC
Operating Temp. Range	$-25^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$ (No Derating)				
Storage Temp. Range	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$				
Case Material	Phenolic	Phenolic	Phenolic	Phenolic	Phenolic
Module Size, inches	$3.5 \times 2.5 \times 1.25$	$3.5 \times 2.5 \times 1.56$	$3.5 \times 2.5 \times .875$	$3.5 \times 2.5 \times 1.25$	$3.5 \times 2.5 \times 1.56$
Module Size, millimeters	$88,9 \times 63,5 \times 31,8$ 88,9X63,5×39,6 88,9×63,5X22,2 88,9×63,5×31,8 88,9×63,5×39,6				
Module Weight	18 oz (510 g)	24 oz. 680 g)	14 oz. $(397 \mathrm{~g})$	18 oz. $(510 \mathrm{~g})$	24 oz (680 g)
Case/Pin Configuration	D2	D3	D1	D2	D3
Other Versions	E, J	E, J	E, J (1)	E, J	E, J
Price (1-9)	\$69.00	\$79.00	\$54.00	\$64.00	\$79.00

Note:

1. For " E " version module size is $D 2$ ($3.5 \times 2.5 \times 1.25$ inches, 18 oz .)

Miniature Power Modules

MINIATURE POWER MODULES

These miniature line operated, regulated power supplies are ideal for applications where space is at a premium, and yet power supply performance cannot be compromised. The two models offered in this series have outputs of 5 VDC at 350 mA and $\pm 15 \mathrm{VDC}$ at $\pm 60 \mathrm{~mA}$. Performance specifications include voltage accuracy of $\pm 1 \%$, temperature coefficient of $.005 \% /{ }^{\circ} \mathrm{C}$, and isolation resistance of 100 megohms with only 100 pF capacitive coupling.

INPUT VOLTAGE SPECIFICATIONS

Standard input specification: 115VAC $\pm 10 \%$ @ 60 Hz . J version: 100VAC $\pm 10 \%$ @ $50-60 \mathrm{~Hz}$.
There is no extra charge for the J version. When ordering add J suffix after the model number.

SPECIFICATIONS. $25^{\circ} \mathrm{C}$	UPM-5/350	BPM-15/60A
Output Voltage	5VDC	$\pm 15 \mathrm{VDC}$
Output Voltage Accuracy	$\pm 1 \%$	$\pm 1 \%$
Rated Output Current	350 mA	$\pm 60 \mathrm{~mA}$
Line Regulation, max.	.05\%	05\%
Load Regulation, max.	0.2\%	05\%
Temperature Coefficient, max.	.005\% $/{ }^{\circ} \mathrm{C}$	005\%/ ${ }^{\circ} \mathrm{C}$
Output Ripple, RMS max.	2 mV	1 mV
Output Impedance, max.	005 ohm	0.15 ohm
Transient Recovery Time, max.	$50 \mu \mathrm{sec}$.	$50 \mu \mathrm{sec}$.
Isolation Resistance, min.	100 Meg .	100 Meg .
Isolation Capacitance, max.	100pF	100pF
Breakdown Voltage, min.	300VAC	300VAC
Operating Temp. Range	$-25^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$ (No Derating)	
Storage Temp. Range	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Case Material	Diallyl Phthalate	Diallyl Phthalate
Module Size, inches	$2 \times 2 \times .432$. $2 \times 2 \times .432$
Module Size, millimeters	$50,8 \times 50,8 \times 11,0$	$50,8 \times 50,8 \times 11,0$
Module Weight	2.5 oz (71 g .)	2.5 oz . 71 g .)
Case/Pin Configuration	G1	G1
Other Versions	J	J
Mating Socket	DILS-1, DILS-2	DILS-1, DILS-2
Price	\$69.00	\$69.00

THESE POWER SUPPLIES ARE COVERED BY GSA CONTRACT

HighVoltage Modules

This series of dual high voltage supplies is specially designed for use with high voltage operational amplifiers such as Datel Systems AM-300 series. The 3 supplies in this series offer output voltages of $\pm 120, \pm 150$, and ± 180 volts with excellent regulation, stability, and low output ripple.

INPUT VOLTAGE SPECIFICATIONS

Standard input specification: 115VAC $\pm 10 \%$ @ 60 Hz
E version: 220VAC $\pm 10 \%$ @ $50-60 \mathrm{~Hz}$
J version: 100VAC $\pm 10 \%$ @ $50-60 \mathrm{~Hz}$
Mating MS-7 sockets are $\$ 3.50$ each

	NEW	NEW	NEW
SPECIFICATIONS. $25^{\circ} \mathrm{C}$	BPM-120/25	BPM-150/20	BPM-180/16
Output Voltage	$\pm 120 \mathrm{VDC}$	$\pm 150 \mathrm{VDC}$	$\pm 180 \mathrm{VDC}$
Output Voltage Accuracy	$\pm 1 \%$	$\pm 1 \%$	$\pm 1 \%$
Rated Output Current	25 mA	20 mA	16 mA
Line Regulation, max.	.05\%	05\%	.05\%
Load Regulation, max.	0.1\%	0.1\%	0.1\%
Temperature Coefficient, max.	. $02 \% /{ }^{\circ} \mathrm{C}$	02\%/ ${ }^{\circ} \mathrm{C}$. $02 \% /{ }^{\circ} \mathrm{C}$
Output Ripple, RMS max.	10 mV	10 mV	10 mV
Output Impedance, max.	5 ohms	5 ohms	5 ohms
Transient Recovery Time, max.	$50 \mu \mathrm{sec}$.	$50 \mu \mathrm{sec}$.	$50 \mu \mathrm{sec}$
Isolation Resistance, min.	100 Meg .	100 Meg .	100 Meg .
Isolation Capacitance, max.	250pF	250pF	250 pF
Breakdown Voltage, min.	1500 VAC	1500VAC	1500 VAC
Operating Temp. Range	$-25^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$ (No Derating)		
Storage Temp. Range	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		
Case Material	Phenolic	Phenolic	Phenolic
Module Size, inches	$3.5 \times 2.5 \times 1.56$	$3.5 \times 2.5 \times 1.56$	$3.5 \times 2.5 \times 1.56$
Module Size, millimeters	$88,9 \times 63,5 \times 39,6$	$88.9 \times 63.5 \times 39,6$	$88.9 \times 63.5 \times 39.6$
Module Weight	24 oz . (681g.)	24 oz (681 g)	24 oz (681 g .)
Case/Pin Configuration	C3	C3	C3
Other Versions	E.J	E.J	E.J
Mating Socket	MS-7	MS-7	MS-7
Price (1-9)	\$79.00	\$79.00	\$79.00

MP Series: High Power, Line Operated Supplies

MP SERIES: SUPPLIES FROM DATEL SYSTEMS ARE BETTER IN 12 WAYS

1. No output derating over $0^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$ operation. Twice as much power available at $65^{\circ} \mathrm{C}$ compared with open frame type supplies
2. No derating for 50 Hz operation. Open frame type supplies have 10% derating for 50 Hz operation.
3. Overvoltalge protection on 5 volt outputs is standard. This is optional on most open frame type supplies.
4. Barrier strip connector for input and output connections. Open frame type supplies require soldering connections directly to transformer and circuit board.
5. Aluminum cover protects power supply circuitry. Open frame type supplies have no cover.
6. High efficiency ($40-50 \%$) series regulated design. Open frame type supplies have efficiencies as low as 25%.
7. Rugged, four-sided anodized aluminum chassis has 3 different mounting positions.
8. Output current limiting protects supplies from short circuit or overload conditions
9. Remote sensing with open lead protection is a standard feature.
10. No turn-on or turn-off overshoot for protection of your circuits.
11. Dual output supplies are tracking for best performance of your circuits.
12. Low prices start at $\$ 38.00$ for 5 V at 3 amps

CHECK THESE

RELIABILITY FEATURES:
\forall Hermetically sealed series pass transistor with case temperature rise limited to $50^{\circ} \mathrm{C}$.
\forall Computer grade $85^{\circ} \mathrm{C}$ aluminum electrolytic capacitors with conservative rating
\forall Custom designed integral heat sink with conservative thermal design for cool operation.
\forall Layer wound polyester impregnated transformer with integral Faraday shield
\forall Single sided circuit board with wide conductor runs for best reliability.
\forall All heat generating components directly connected to heat sink
\forall Low loss transformer and circuit technique to minimize internal power dissipation
$\forall 4$ hour burn-in at full load and $65^{\circ} \mathrm{C}$ before shipment

GENERAL SPECIFICATIONS COMMON TO ALL MODELS
Input Voltage. 115/230VAC $\pm 10 \%$
Line Frequency. 50-60 Hz
Output Voltage Adjustment. $\pm 5 \%$
$\begin{array}{r} \text { Output Ripple. } 1 \mathrm{mV} \text { RMS, max. } \\ \text { 3mV P-P typ. } \end{array}$
Transient Response. $50 \mu \mathrm{sec}$. max.
Output Protection Current Limiting or Foldback Limiting
Overvoltage Protection, 5 V outputs..6.2V $\pm 5 \%$
Voltage Stability, after warmup.... $\pm 0.25 \%, 24$ hours
Dual Output Tracking. .05\%, 0.1\% over temp. range
Operating Temperature Range. . . $0^{\circ} \mathrm{C}$ to $71^{\circ} \mathrm{C}$
Storage Temperature Range. . . . - $25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

DESCRIPTION

The MP Series high power, line operated supplies are new entries in the field of low cost, open frame type supplies. Although priced competitively with the open frame units, The MP Series offers significant advantage in performance and design features. The 16 models in this series offer popular single, dual, and triple outputs for use with data conversion devices, operational amplifiers, and other analog and digital circuits. Output power capability ranges from 15 Watts to 105 Watts and prices are from $\$ 38$ to $\$ 149$.

The unique feature of the MP Series over open frame type supplies is its conservative thermal design which results in full rated output over $0^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$ ambient temperature and only 15% derating at $71^{\circ} \mathrm{C}$. This results in approximately twice the output power at $65^{\circ} \mathrm{C}$ compared with open frame supplies. The careful attention to thermal design is evidenced by use of conservatively rated components including $85^{\circ} \mathrm{C}$ computer grade aluminum electrolytic capacitors, integral heat sink and chassis design, and a high efficiency linear regulator design. The power transformer is a low loss type with no derating for 50 Hz operation. It is layer wound with polyester impregnation, and incorporates a Faraday shield which is connected to chassis ground. Power supply efficiency is 50% for $\pm 12 \mathrm{~V}$ and $\pm 15 \mathrm{~V}$ outputs and 40% for 5 V outputs.

Other significant features include output current limiting protection, . 05% tracking of dual outputs, barrier strip terminal connector, ventilating protective cover, remote sensing with open lead protection, and $\pm 5 \%$ output voltage adjustment by means of externally accessible trimming potentiometers. In addition, all 5 V outputs have built-in overvoltage protection as a standard feature.

MP Series: High Power, Line Operated Supplies

MODEL	OUTPUT VOLTAGE 8 CURRENT (0 to $65^{\circ} \mathrm{C}$)	OUTPUT I AT $71^{\circ}{ }^{\prime}$	LINE REG. (MAX.) ${ }^{2}$	LOAD REG. (MAX.) ${ }^{3}$	TEMPCO (TYPICAL)	RIPPLE (RMS MAX.) ${ }^{4}$
SINGLE OUTPUT						
MPS-5/3	5V@3.0A	2.5A	0.1\%	0.1\%	01\%/ ${ }^{\circ} \mathrm{C}$	1 mV
MPS-5/6	5V@6.0A	5.0 A	0.1\%	0.1\%	01\% ${ }^{\circ} \mathrm{C}$	1 mV
MPS-5/12	5V@12.0A	10.0A	0.1\%	0.1\%	. $01 \%{ }^{\circ} \mathrm{C}$	1 mV
MPS-5/18	5V@18.0A	15.0 A	0.1\%	0.1\%	.01\%/ ${ }^{\circ} \mathrm{C}$	1 mV
DUAL OUTPUT						
MPD-12/1	$\pm 12 \mathrm{~V} @ 1.0 \mathrm{~A}$	0.85A	.05\%	.05\%	. $01 \% /{ }^{\circ} \mathrm{C}$	1 mV
MPD-15/1	$\pm 15 \mathrm{~V} @ 1.0 \mathrm{~A}$	0.85A	.05\%	05\%	.01\%/ ${ }^{\circ} \mathrm{C}$	1 mV
MPD-12/1.5	$\pm 12 \mathrm{~V} @ 1.5 \mathrm{~A}$	1.25 A	05\%	05\%	. $01 \% /{ }^{\circ} \mathrm{C}$	1 mV
MPD-15/1.5	$\pm 15{ }^{\prime \prime}$ @ 1.5A	1.25 A	05\%	05\%	. $01 \% /{ }^{\circ} \mathrm{C}$	1 mV
MPD-12/3	$\pm 12 \mathrm{~V} @ 3.0 \mathrm{~A}$	2.5 A	05\%	05\%	.01\%/ ${ }^{\circ} \mathrm{C}$	1 mV
MPD-15/3	$\pm 15 \mathrm{~V} @ 3.0 \mathrm{~A}$	2.5A	.05\%	05\%	.01\%/ ${ }^{\circ} \mathrm{C}$	1 mV
TRIPLE OUTPUT						
MPT-12/1-5/3	$\pm 12 \mathrm{~V} @ 1 \mathrm{~A} / 5 \mathrm{~V} @ 3 \mathrm{~A}$	0.85/2.5A	.05/0.1\%	05/0.1\%	. $01 \% /{ }^{\circ} \mathrm{C}$	1 mV
MPT-15/1-5/3	$\pm 15 \mathrm{~V} @ 1 \mathrm{~A} / 5 \mathrm{~V}$ @ 3A	0.85/2.5A	.05/0.1\%	.05/0.1\%	. $01 \% /{ }^{\circ} \mathrm{C}$	1 mV
MPT-12/1.5-5/6	$\pm 12 \mathrm{~V} @ 1.5 \mathrm{~A} / 5 \mathrm{~V}$ @ 6A	1.25/5.0A	.05/0.1\%	05/0.1\%	$.01 \% /{ }^{\circ} \mathrm{C}$	1 mV
MPT-15/1.5-5/6	$\pm 15 \mathrm{~V}$ @ 1.5A/5V@6A	1.25/5.0A	.05/0.1\%	.05/0.1\%	. $01 \% /{ }^{\circ} \mathrm{C}$	1 mV
MPT-12/1.5-5/12	$\pm 12 \mathrm{~V} @ 1.5 \mathrm{~A} / 5 \mathrm{~V} @ 12 \mathrm{~A}$	1.25/10.0A	05/0.1\%	05/0.1\%	.01\%/ ${ }^{\circ} \mathrm{C}$	1 mV
MPT-15/1.5-5/12	$\pm 15 \mathrm{~V} @ 1.5 \mathrm{~V} / 5 \mathrm{~V}$ @ 12A	1.25/10.0A	05/0.1\%	.05/0.1\%	. $01 \% /{ }^{\circ} \mathrm{C}$	1 mV
NOTES 1. 15% derating from $65^{\circ} \mathrm{C}$ output. 3. No load to full load. 5. 0.1% tracking over operating temp. range. 2. For $\pm 10 \%$ line change. 4. Typically 3 mV peak to peak.						

EFFICIENCY	TRACKING	REMOTE	OVER-VOLT	CASE SIZE	WEIGHT	PRICE
(NOM. LINE)	(DUALS)	SENSING	PROTECTION	(HXWXL, INCHES/CM)	(LBS./KG)	(1-9)

40\%	-	YES	YES	2.0×4.6X7.6 / 50,8X116,8X193,0	3.6/1,6	\$ 38.00
40\%	-	YES	YES	$4.9 \times 5.3 \times 10.3 / 12,4 \times 13,5 \times 26,2$	6.5/2,9	\$ 56.00
40\%	-	YES	YES	$4.9 \times 5.3 \times 11.9 / 12,4 \times 13,5 \times 30,2$	10.4/4,7	\$ 88.00
40\%	-	YES	YES	$4.9 \times 5.3 \times 11.9 / 12,4 \times 13,5 \times 30,2$	14.0/6,3	\$ 99.00
50\%	. 05%	YES	NO	$2.5 \times 4.9 \times 10.0 / 6,4 \times 12,4 \times 25,4$	5.0/2,3	\$ 54.00
50\%	. 05%	YES	NO	$2.5 \times 4.9 \times 10.0 / 6,4 \times 12,4 \times 25,4$	5.0/2,3	\$ 54.00
50\%	.05\%	YES	NO	$3.7 \times 5.3 \times 10.3 / 9,4 \times 13,5 \times 26,2$	6.5/2,9	\$ 65.00
50\%	.05\%	YES	NO	$3.7 \times 5.3 \times 10.3 / 9,4 \times 13,5 \times 26,2$	6.5/2,9	\$ 65.00
50\%	.05\%	YES	NO	$4.9 \times 5.3 \times 10.3 / 12,4 \times 13,5 \times 26,2$	10.5/4,8	\$ 95.00
50\%	.05\%	YES	NO	$4.9 \times 5.3 \times 10.3 / 12,4 \times 13,5 \times 26,2$	10.5/4.8	\$ 95.00
45\%	.05\%	5 V ONLY	5V ONLY	$3.4 \times 4.9 \times 11.0 / 8,6 \times 12,4 \times 27,9$	11.0/5,0	\$ 85.00
45\%	. 05%	5V ONLY	5V ONLY	$3.4 \times 4.9 \times 11.0 / 8,6 \times 12,4 \times 27,9$	11.0/5,0	\$ 85.00
45\%	.05\%	5V ONLY	5V ONLY	$4.9 \times 5.3 \times 14.0 / 12,4 \times 13,5 \times 35,6$	14.0/6,3	\$116.00
45\%	.05\%	5V ONLY	5V ONLY	$4.9 \times 5.3 \times 14.0 / 12,4 \times 13,5 \times 35,6$	14.0/6,3	\$116.00
45\%	. 05%	5V ONLY	5V ONLY	$4.9 \times 5.3 \times 15.6 / 12,4 \times 13,5 \times 39,6$	17.0/7,7	\$149.00
45\%	. 05%	5 V ONLY	5V ONLY	$4.9 \times 5.3 \times 15.6 / 12,4 \times 13,5 \times 39.6$	17.0/7,7	\$149.00

1and 3Watt DC-DC Converters

1 WATT SERIES

MODEL UPM-5/200-D1	OUTPUT OUTPUT INPUT VOLTAGE CURRENT VOLTAGE			VOLT. ANCE	NO LOAD INPUT CURRENT	FULL LOAD INPUT CURRENT	EFFICIENCY (FULL LOAD)	LINE REGULATION
	$+5 \mathrm{~V}$	200 mA	12VDC	$\pm 10 \%$	40 mA	170 mA	50\%	.05\%
UPM-5/200-D28	$+5 \mathrm{~V}$	200 mA	28VDC	$\pm 10 \%$	10 mA	75 mA	50\%	.05\%
UPM-12/80-D5	$+12 \mathrm{~V}$	80 mA	5VDC	$\pm 10 \%$	85 mA	360 mA	53\%	.05\%
UPM-12/80-D28	$+12 \mathrm{~V}$	80 mA	28VDC	$\pm 10 \%$	15 mA	62 mA	55\%	.05\%
UPM-24/40-D5	$+24 \mathrm{~V}$	40 mA	5VDC	$\pm 10 \%$	95 mA	350 mA	55\%	05\%
UPM-24/40-D12	$+24 \mathrm{~V}$	40 mA	12VDC	$\pm 10 \%$	40 mA	145 mA	55\%	05\%
UPM-28/25-D5	$+28 \mathrm{~V}$	25 mA	5 VDC	$\pm 10 \%$	95 mA	250 mA	55\%	.05\%
UPM-28/25-D12	$+28 \mathrm{~V}$	25 mA	12VDC	$\pm 10 \%$	40 mA	105 mA	55\%	05\%
BPM-12/25-D5	$\pm 12 \mathrm{~V}$	25 mA	5VDC	$\pm 10 \%$	95 mA	210 mA	58\%	.05\%
BPM-12/25-D12	$\pm 12 \mathrm{~V}$	25 mA	12VDC	$\pm 10 \%$	40 mA	85 mA	60\%	.05\%
BPM-12/25-D28	$\pm 12 \mathrm{~V}$	25 mA	28VDC	$\pm 10 \%$	15 mA	36 mA	60\%	05\%
BPM-15/25-D5	$\pm 15 \mathrm{~V}$	25 mA	5 VDC	$\pm 10 \%$	95 mA	260 mA	58\%	05\%
BPM-15/25-D12	$\pm 15 \mathrm{~V}$	25 mA	12VDC	$\pm 10 \%$	40 mA	105 mA	60\%	.05\%
BPM-15/25-D28	$\pm 15 \mathrm{~V}$	25 mA	28VDC	$\pm 10 \%$	15 mA	45 mA	60\%	.05\%
BPM-18/25-D5	$\pm 18 \mathrm{~V}$	25 mA	5 VDC	$\pm 10 \%$	95 mA	310 mA	58\%	.05\%
BPM-18/25-D12	$\pm 18 \mathrm{~V}$	25 mA	12VDC	$\pm 10 \%$	40 mA	125 mA	60\%	.05\%
BPM-18/25-D28	$\pm 18 \mathrm{~V}$	25 mA	28VDC	$\pm 10 \%$	15 mA	55 mA	60\%	.05\%

3 WATT SERIES

MODEL	OUTPUT VOLTAGE	OUTPUT CURRENT	INPUT VOLTAGE	INPUT VOLTAGE TOLER.	NO LOAD INPUT CURRENT	FULL LOAD INPUT CURRENT	EFFICIENCY (FULL LOAD)	LINE REGULATION
UPM-5/500-D5	$+5 \mathrm{~V}$	500 mA	5VDC	$\pm 10 \%$	240 mA	1100 mA	45\%	.05\%
UPM-5/500-D12	$+5 \mathrm{~V}$	500 mA	12VDC	$\pm 10 \%$	90 mA	430 mA	48\%	.05\%
UPM-5/500-D28	$+5 \mathrm{~V}$	500 mA	28VDC	$\pm 10 \%$	32 mA	180 mA	50\%	.05\%
UPM-12/250-D5	$+12 \mathrm{~V}$	250 mA	5 VDC	$\pm 10 \%$	240 mA	1100 mA	55\%	.05\%
UPM-12/250-D28	$+12 \mathrm{~V}$	250 mA	28VDC	$\pm 10 \%$	30 mA	195 mA	55\%	.05\%
UPM-24/125-D5	$+24 \mathrm{~V}$	125 mA	5 VDC	$\pm 10 \%$	240 mA	1100 mA	55\%	.05\%
UPM-24/125-D12	$+24 \mathrm{~V}$	125 mA	12VDC	$\pm 10 \%$	75 mA	450 mA	55\%	.05\%
UPM-28/100-D5	$+28 \mathrm{~V}$	100 mA	5VDC	$\pm 10 \%$	200 mA	1000 mA	55\%	.05\%
UPM-28/100-D12	$+28 \mathrm{~V}$	100 mA	12VDC	$\pm 10 \%$	75 mA	420 mA	55\%	. 05%
BPM-12/100-D5	$\pm 12 \mathrm{~V}$	100 mA	5VDC	$\pm 10 \%$	190 mA	900 mA	53\%	.05\%
BPM-12/100-D12	$\pm 12 \mathrm{~V}$	100 mA	12VDC	$\pm 10 \%$	75 mA	410 mA	50\%	.05\%
BPM-12/100-D28	$\pm 12 \mathrm{~V}$	100 mA	28VDC	$\pm 10 \%$	30 mA	156 mA	55\%	.05\%
BPM-15/100-D5	$\pm 15 \mathrm{~V}$	100 mA	5VDC	$\pm 10 \%$	240 mA	1100 mA	53\%	.05\%
BPM-15/100-D12	$\pm 15 \mathrm{~V}$	100 mA	12VDC	$\pm 10 \%$	85 mA	470 mA	53\%	.05\%
BPM-15/100-D28	$\pm 15 \mathrm{~V}$	100 mA	28VDC	$\pm 10 \%$	30 mA	195 mA	55\%	.05\%
BPM-18/100-D5	$\pm 18 \mathrm{~V}$	100 mA	5VDC	$\pm 10 \%$	200 mA	1360 mA	53\%	.05\%
BPM-18/100-D12	$\pm 18 \mathrm{~V}$	100 mA	12VDC	$\pm 10 \%$	75 mA	545 mA	55\%	.05\%
BPM-18/100-D28	$\pm 18 \mathrm{~V}$	100 mA	28VDC	$\pm 10 \%$	30 mA	235 mA	55\%	.05\%

THESE POWER SUPPLIES ARE COVERED BY GSA CONTRACT

D) $\underset{\text { SYSTEMS,INC }}{ }$
 DC/DC
 CONVERTER

LOAD REGULATION	TEMP. COEFFICIENT	OUTPUT IMPEDANCE	CASE CO:IFIG.	PRICE $(1-9)$
0.1%	$.02 \% /{ }^{\circ} \mathrm{C}$	$.07 \Omega$	F	$\$ 42.00$
0.1%	$.02 \% /{ }^{\circ} \mathrm{C}$	$.07 \Omega$	F	$\$ 42.00$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	0.2Ω	F	$\$ 42.00$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	0.2Ω	F	$\$ 42.00$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	0.2Ω	F	$\$ 42.00$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	0.2Ω	F	$\$ 42.00$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	0.2Ω	F	$\$ 42.00$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	0.2Ω	F	$\$ 42.00$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	0.2Ω	F	$\$ 49.00$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	0.2Ω	F	$\$ 49.00$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	0.2Ω	F	$\$ 49.00$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	0.2Ω	F	$\$ 49.00$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	0.2Ω	F	$\$ 49.00$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	0.2Ω	F	$\$ 49.00$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	0.2Ω	F	$\$ 49.00$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	0.2Ω	F	$\$ 49.00$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	0.2Ω	F	$\$ 49.00$

LOAD REGULATION	TEMP. COEFFICIENT	OUTPUT IMPEDANCE	CASE CONFIG.	PRICE $(1-9)$
0.1\%	.02\%/ ${ }^{\circ} \mathrm{C}$. 07Ω	G1	\$64.00
0.1\%	. $02 \% /{ }^{\circ} \mathrm{C}$. 07Ω	G1	\$64.00
0.1\%	. $02 \% /{ }^{\circ} \mathrm{C}$. 07Ω	G1	\$64.00
05\%	.02\%/ ${ }^{\circ} \mathrm{C}$	0.2Ω	G1	\$64.00
.05\%	. $02 \% /{ }^{\circ} \mathrm{C}$	0.2Ω	G1	\$64.00
.05\%	. $02 \% /{ }^{\circ} \mathrm{C}$	0.2Ω	G1	\$64.00
.05\%	. $02 \% /{ }^{\circ} \mathrm{C}$	0.2Ω	G1	\$64.00
.05\%	.02\%/ ${ }^{\circ} \mathrm{C}$	0.2Ω	G1	\$64.00
.05\%	. $02 \% /{ }^{\circ} \mathrm{C}$	0.2Ω	G1	\$64.00
.05\%	. $02 \% /{ }^{\circ} \mathrm{C}$	0.2Ω	G1	\$69.00
.05\%	. $02 \% /{ }^{\circ} \mathrm{C}$	0.2Ω	G1	\$69.00
.05\%	. $02 \% /{ }^{\circ} \mathrm{C}$	0.2Ω	G1	\$69.00
.05\%	. $02 \% /{ }^{\circ} \mathrm{C}$	0.2Ω	G1	\$69.00
.05\%	.02\%/ ${ }^{\circ} \mathrm{C}$	0.2Ω	G1	\$69.00
.05\%	. $02 \% /{ }^{\circ} \mathrm{C}$	0.2Ω	G1	\$69.00
05\%	. $02 \% /{ }^{\circ} \mathrm{C}$	0.2Ω	G1	\$69.00
.05\%	. $02 \% /{ }^{\circ} \mathrm{C}$	0.2Ω	G1	\$69.00
05\%	.02\%/ ${ }^{\circ} \mathrm{C}$	0.2Ω	G1	\$69.00

DESCRIPTION

This broad line of DC-DC converters features 17 one watt models and 18 three watt models with single and dual output voltages. Input voltages are 5, 12. and 28 V with single outputs of $5.12,24$, and 28 V , and dual outputs of $\pm 12, \pm 15$, and $\pm 18 \mathrm{~V}$. Output voltage accuracies are $\pm 1 \%$ with $02 \% /{ }^{\circ} \mathrm{C}$ temperature coefficient. Other features include low output ripple, 100 megohm isolation, grounded internal copper shield, and output current limiting.
GENERAL SPECIFICATIONS - ALL MODELS

Output Voltage Accuracy
Output Noise and Ripple, max. Back Ripple Current, max. Capacitive Coupling, max. Breakdown Voltage, min. Transient Recovery Time, max. Operating Temp. Range Storage Temp. Range Internal Shield

Case Material
MODULE SIZES
F Case:

Weight
G1 Case

Weight
$\pm 1 \%$
20 mV P-P (2mV RMS)
1% of lin
250 pF
300 VDC
$50 \mu \mathrm{sec}$.
$-25^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Copper, connected to common
Diallyl Phthalate

Both 1 and 3 watt series use 2 DILS-1 or DILS-2 terminal strips (at $\$ 5.00 /$ pair) for sockets.

Sand 10 Watt DC-DCConverters

5 WATT SERIES

MODEL	OUTPUT VOLTAGE	OUT GE CURR	INPUT NT VOLTAGE	INPUT VOLTAGE TOLER.	NO LOAD INPUT CURRENT	FULL LOAD INPUT CURRENT	EFFICIENCY (FULL LOAD)	LINE REGULATION
UPM-5/1000-D12	$+5 \mathrm{~V}$	1000 mA	12VDC	\pm ¢0\%	88 mA	776 mA	54\%	.05\%
UPM-5/1000-D28	$+5 \mathrm{~V}$	1000 mA	28VDC	$\pm 10 \%$	45 mA	300 mA	60\%	.05\%
UPM-12/420-D5	$+12 \mathrm{~V}$	420 mA	5VDC	$\pm 10 \%$	300 mA	1800 mA	56\%	.05\%
UPM-12/420-D28	$+12 \mathrm{~V}$	420 mA	28VDC	$\pm 10 \%$	40 mA	270 mA	67\%	.05\%
UPM-24/210-D5	$+24 \mathrm{~V}$	210 mA	5VDC	$\pm 10 \%$	300 mA	1800 mA	56\%	05\%
UPM-24/210-D12	$+24 \mathrm{~V}$	210 mA	12VDC	$\pm 10 \%$	80 mA	760 mA	55\%	.05\%
UPM-28/180-D5	$+28 \mathrm{~V}$	180 mA	5VDC	$\pm 10 \%$	300 mA	1800 mA	56\%	05\%
UPM-28/180-D12	$+28 \mathrm{~V}$	180 mA	12VDC	$\pm 10 \%$	80 mA	760 mA	55\%	.05\%
BPM-12/210-D5	$\pm 12 \mathrm{~V}$	210 mA	5 VDC	$\pm 10 \%$	330 mA	1800 mA	56\%	.05\%
BPM-12/210-D12	$\pm 12 \mathrm{~V}$	210 mA	12VDC	$\pm 10 \%$	110 mA	660 mA	64\%	.05\%
BPM-12/210-D28	$\pm 12 \mathrm{~V}$	210 mA	28VDC	$\pm 10 \%$	43 mA	278 mA	65\%	05\%
BPM-15/165-D5	$\pm 15 \mathrm{~V}$	165 mA	5 VDC	$\pm 10 \%$	370 mA	1750 mA	56\%	.05\%
BPM-15/165-D12	$\pm 15 \mathrm{~V}$	165 mA	12VDC	$\pm 10 \%$	110 mA	660 mA	63\%	.05\%
BPM-15/165-D28	$\pm 15 \mathrm{~V}$	165 mA	28VDC	$\pm 10 \%$	43 mA	278 mA	64\%	05\%
BPM-18/140-D5	$\pm 18 \mathrm{~V}$	140 mA	5VDC	$\pm 10 \%$	370 mA	1750 mA	58\%	.05\%
BPM-18/140-D12	$\pm 18 \mathrm{~V}$	140 mA	12 VDC	$\pm 10 \%$	110 mA	660 mA	64\%	05\%
BPM-18/140-D28	$\pm 18 \mathrm{~V}$	140 mA	28VDC	$\pm 10 \%$	43 mA	278 mA	65\%	05\%

10 WATT SERIES

MODEL	OUTPUT VOLTAGE		T INPUT NT VOLTAGE	INPUT VOLTAGE TOLER.	NO LOAD INPUT CURRENT	FULL LOAD INPUT CURRENT	EFFICIENCY (FULL LOAD)	LINE REGULATION
UPM-5/2000-D12	$+5 \mathrm{~V}$	2000 mA	12VDC	$\pm 10 \%$	105 mA	1700 mA	49\%	05\%
UPM-5/2000-D28	$+5 \mathrm{~V}$	2000 mA	28VDC	$\pm 10 \%$	38 mA	550 mA	65\%	.05\%
UPM-12/840-D5	$+12 \mathrm{~V}$	840 mA	5VDC	$\pm 10 \%$	400 mA	3680 mA	55\%	05\%
UPM-12/840-D28	$+12 \mathrm{~V}$	840 mA	28VDC	$\pm 10 \%$	38 mA	550 mA	65\%	05\%
UPM-24/420-D5	$+24 \mathrm{~V}$	420 mA	5VDC	$\pm 10 \%$	400 mA	3400 mA	59\%	.05\%
UPM-24/420-D12	$+24 \mathrm{~V}$	420 mA	12VDC	$\pm 10 \%$	118 mA	1230 mA	68\%	05\%
UPM-28/360-D5	$+28 \mathrm{~V}$	360 mA	5VDC	$\pm 10 \%$	400 mA	3400 mA	59\%	.05\%
UPM-28/360-D12	$+28 \mathrm{~V}$	360 mA	12VDC	$\pm 10 \%$	118 mA	1230 mA	68\%	05\%
BPM-12/420-D5	$\pm 12 \mathrm{~V}$	420 mA	5VDC	$\pm 10 \%$	600 mA	3600 mA	56\%	05\%
BPM-12/420-D12	$\pm 12 \mathrm{~V}$	420 mA	12VDC	$\pm 10 \%$	150 mA	1410 mA	60\%	05\%
BPM-12/420-D28	$\pm 12 \mathrm{~V}$	420 mA	28VDC	$\pm 10 \%$	56 mA	613 mA	59\%	.05\%
BPM-15/330-D5	$\pm 15 \mathrm{~V}$	330 mA	5 VDC	$\pm 10 \%$	600 mA	3600 mA	55\%	.05\%
BPM-15/330-D12	$\pm 15 \mathrm{~V}$	330 mA	12VDC	$\pm 10 \%$	150 mA	1410 mA	59\%	.05\%
BPM-15/330-D28	$\pm 15 \mathrm{~V}$	330 mA	28VDC	$\pm 10 \%$	56 mA	613 mA	58\%	.05\%
BPM-18/280-D5	$\pm 18 \mathrm{~V}$	280 mA	5VDC	$\pm 10 \%$	600 mA	3600 mA	56\%	.05\%
BPM-18/280-D12	$\pm 18 \mathrm{~V}$	280 mA	12VDC	$\pm 10 \%$	150 mA	1410 mA	60\%	.05\%
BPM-18/280-D28	$\pm 18 \mathrm{~V}$	280 mA	28VDC	$\pm 10 \%$	56 mA	613 mA	59\%	05\%

THESE POWER SUPPLIES ARE COVERED BY GSA CONTRACT

NEW

LOAD REGULATION	TEMP. COEFFICIENT	OUTPUT IMPEDANCE	CASE CONFIG.	PRICE $(1-9)$
0.1%	$.02 \% /{ }^{\circ} \mathrm{C}$	$.005 \Omega$	G2	$\$ 69.00$
0.1%	$.02 \% /{ }^{\circ} \mathrm{C}$	$.005 \Omega$	G2	$\$ 69.00$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	$.015 \Omega$	G2	$\$ 69.00$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	$.15 \Omega$	G2	$\$ 69.00$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	$.03 \Omega$	G2	$\$ 69.00$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	$.03 \Omega$	G2	$\$ 69.00$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	$.035 \Omega$	G2	$\$ 69.00$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	$.035 \Omega$	G2	$\$ 69.00$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	$.03 \Omega$	G2	$\$ 75.00$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	$.03 \Omega$	G2	$\$ 75.00$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	$.03 \Omega$	G2	$\$ 75.00$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	$.03 \Omega$	G2	$\$ 75.00$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	03Ω	G2	$\$ 75.00$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	03Ω	G2	$\$ 75.00$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	$.03 \Omega$	G2	$\$ 75.00$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	$.03 \Omega$	G2	$\$ 75.00$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	$.03 \Omega$	G2	$\$ 75.00$

NEW

LOAD REGULATION	TEMP. COEFFICIENT	OUTPUT IMPEDANCE	CASE CONFIG.	PRICE $(1-9)$
0.1%	$.02 \% /{ }^{\circ} \mathrm{C}$	$.005 \Omega$	CB	$\$ 89.00$
0.1%	$.02 \% /{ }^{\circ} \mathrm{C}$	$.005 \Omega$	CB	$\$ 89.00$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	$.02 \Omega$	CB	$\$ 89.00$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	$.02 \Omega$	CB	$\$ 89.00$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	$.02 \Omega$	CB	$\$ 89.00$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	$.02 \Omega$	CB	$\$ 89.00$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	$.02 \Omega$	CB	$\$ 89.00$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	$.02 \Omega$	CB	$\$ 89.00$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	$.02 \Omega$	CB	$\$ 94.00$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	$.02 \Omega$	CB	$\$ 94.00$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	$.02 \Omega$	CB	$\$ 94.00$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	$.02 \Omega$	CB	$\$ 94.00$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	$.02 \Omega$	CB	$\$ 94.00$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	$.02 \Omega$	CB	$\$ 94.00$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	$.02 \Omega$	CB	$\$ 94.00$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	$.02 \Omega$	CB	$\$ 94.00$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	$.02 \Omega$	CB	$\$ 94.00$

DESCRIPTION

This comprehensive line of higher power DC-DC converters features 34 different models with both single and dual outputs. Input voltages are 5,12 , and 28 V with single output voltages of $5,12,24$, and 28 volts, and dual outputs of $\pm 12, \pm 15$, and ± 18 volts. Output voltage accuracies are $\pm 1 \%$ with $.02 \% /{ }^{\circ} \mathrm{C}$ temperature coefficients. Other features include low output ripple, 100 megohm isolation, grounded internal copper shield, and output current limiting protection.
GENERAL SPECIFICATIONS - ALL MODELS
Output Voltage Accuracy $\pm 1 \%$
Output Noise and Ripple, max. 20 mV P-P (2 mV RMS)
Back Ripple Current, max. 1% of lin
Capacitive Coupling, max. 250 pF
Breakdown Voltage, min. 300VDC
Transient Recovery Time, max. $50 \mu \mathrm{sec}$.
Operating Temp. Range $\quad-25^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$
Storage Temp. Range $\quad-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Internal Shield
Case Material
MODULE SIZES
G2 Size: 2.0X2.0X. 750 inches $50,8 \times 50,8 \times 19,1 \mathrm{~mm}$
Weight
4.5 oz. (128g.)

CB Size:

Weight
$3.5 \times 2.5 \times 875$ inches 88,9X63,5X22,2 mm
14 oz. (397g.)
The 5 watt series use 2 DILS- 1 or DILS-2 terminal strips (at $\$ 5.00$ /pair) for sockets. The 10 watt series use the MS-7 socket at $\$ 3.50$ each.

4.5WattDC-DCConverters

These miniature, aluminum cased DC-DC converters are ideal for applications where mounting space is tight, yet highly regulated $\pm 15 \mathrm{VDC}$ is required at up to 150 mA output current. Specifications include voltage accuracy of $\pm 1 \%$, line regulation of . 05% max., load regulation of $.05 \%$ max., and tempco of $.005 \% /{ }^{\circ} \mathrm{C}$. For convenient heat sinking, two 2-56 studs are provided on the bottom of the case. All models have output current limiting protection.
OTHER SPECIFICATIONS
Isolation Resistance, min. 100 Meg .
Isolation Capacitance, max. 100 pF
Breakdown Voltage, min. 300VDC
Operating Temp. Range -25° to $+71^{\circ} \mathrm{C}$
Storage Temp. Range $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
MS-6 sockets are $\$ 3.50$ each.

NEW

SPECIFICATIONS. $25^{\circ} \mathrm{C}$	BPM-15/150-D5	BPM-15/150-D24	BPM-15/150-D28
Output Voltage	$\pm 15 \mathrm{VDC}$	$\pm 15 \mathrm{VDC}$	$\pm 15 \mathrm{VDC}$
Output Voltage Accuracy	$\pm 1 \%$	$\pm 1 \%$	$\pm 1 \%$
Rated Output Current ${ }^{1}$	$\pm 150 \mathrm{~mA}$	$\pm 150 \mathrm{~mA}$	$\pm 150 \mathrm{~mA}$
Input Voltage	5VDC	24VDC	28VDC
Input Voltage Tolerance	$\pm .25 \mathrm{~V}$	$\pm 3.5 \mathrm{~V}$	$\pm 4 \mathrm{~V}$
Maximum Input Current	1.75 A	0.35 A	0.3A
Efficiency, full load	51\%	54\%	54\%
Line Regulation, max.	.05\%	05\%	.05\%
Load Regulation, max.	.05\%	.05\%	.05\%
Temperature Coefficient, max.	. $005 \% /{ }^{\circ} \mathrm{C}$.005\%/ ${ }^{\circ} \mathrm{C}$.005\%/ ${ }^{\circ} \mathrm{C}$
Output Ripple RMS max.	1 mV	1 mV	1 mV
Output Impedance, max.	. 05Ω	05	. 05Ω
Transient Recovery Time, max.	$50 \mu \mathrm{sec}$.	$50 \mu \mathrm{sec}$	$50 \mu \mathrm{sec}$.
Case Material	Aluminum	Aluminum	Aluminum
Module Size, inches	$2.0 \times 2.0 \times 0.4$	$2.0 \times 2.0 \times 0.4$	$2.0 \times 2.0 \times 0.4$
Module Size, millimeters	$50,8 \times 50,8 \times 10,2$	$50,8 \times 50,8 \times 10,2$	$50,8 \times 50,8 \times 10,2$
Module Weight	3.0 oz. (85g)	3.0 oz. 85 g)	$3.0 \mathrm{oz} .(85 \mathrm{~g})$
Case/Pin Configuration	B	B	B
Mating Socket	MS-6	MS-6	MS-6
Price (1-9)	\$79.00	\$79.00	\$79.00

THESE POWER SUPPLIES ARE COVERED BY GSA CONTRACT

NOTE:

1. Above $35^{\circ} \mathrm{C}\left(95^{\circ} \mathrm{F}\right)$ mounting surface temperature, derate $1.3 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.

Model 1200: μ C Supply

Model 1200 microcomputer supply is a DC-DC converter designed to operate from a 5 volt logic supply to power a CPU and 4 K of memory. The output voltages of $+12,-5$, and -9 V in conjunction with the 5 V input will power an 8080 CPU and four 2107A RAM's or four 1702A ROM'S. This supply operates with a full load efficiency of 58% and has output current limiting protection.

Operating temperature range is $-25^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$ and storage temperature range is $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Mating sockets, 2 DILS-1 or DILS-2 terminal strips, are $\$ 5.00$ per pair.

NEW

SPECIFICATIONS. $25^{\circ} \mathrm{C}$	MODEL 1200
Outputs	+12VDC@ 160mA
	-9VDC @ 300mA
	-5 VDC @ 2 mA
Output Voltage Accuracy	$\pm 1 \%(+12 \mathrm{~V}$ \& $-9 \mathrm{~V}), \pm 5 \%(-5 \mathrm{~V})$
Input Voltage	$5 \mathrm{VDC} \pm 0.25 \mathrm{~V}$
Input Current, no load	0.3 Amp.
Input Current, full load	1.6 Amp.
Efficiency, full load	58\%
Line Regulation, max., all outputs	.05\%
Load Regulation, max., +12V out	.05\%
Load Regulation, max., -9V out	0.1\%
Load Regulation, max., -5 V out	1.0\%
Temperature Coefficient, max.	.02\%/ ${ }^{\circ} \mathrm{C}$
Output Ripple, RMS max.	1 mV
Transient Recovery Time, max.	$25 \mu \mathrm{sec}$.
Case Material	Diallyl Phthalate
Module Size, inches	2.0×2.0×0.75
Module Size, millimeters	50,8×50,8×19,1
Module Weight	4.5 oz. $(128 \mathrm{~g})$
Case/Pin Configuration	K
Mating Socket	DILS-1, DILS-2
Price (1-9)	\$89.00

THIS POWER SUPPLY IS COVERED BY GSA CONTRACT

DIGITAL PANEL METER SHORT FORM GUIDE SPECIFICATIONS • COVERED BY GSA CONTRACT

DATEL MODEL	DM-350 3-1/2 Digits . $43^{\prime \prime}$ H Displays AC or +5 VDC Portable Display Only	DM-3000 3 digit, 0 to +1 V Input DPM/Counter $.43^{\prime \prime} \mathrm{H}$ Displays +5 V Power, $\$ 99$	DM-2100 $3-1 / 2$ digits $\pm 200 \mathrm{mV}, \pm 2 \mathrm{~V}$ Differential Input, +5 V Power, $\$ 129$
	SPECIFICATIONS PHYSICAL Case Size Case Material Temperature Ranges Operating Storage	OMMON TO ALL MODELS $\begin{aligned} & 3^{\prime \prime} \mathrm{W} \times 1.75^{\prime \prime} \mathrm{H} \times 2.25^{\prime \prime} \mathrm{D}(76,2 \\ & 57.2 \mathrm{~mm}) \end{aligned}$ Black Polycarbonate plastic. Chemical resistant. Through a $1.812^{\prime \prime \prime} \times 3.062^{\prime \prime}(46 \times$ cutout secured by (4) 4.40 flath $\begin{aligned} & 0 \text { to }+50^{\circ} \mathrm{C} \\ & -55^{\circ} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	x $44,5 \times$ pact and $77.8 \mathrm{~mm})$ ad screws
ANALOG INPUT Configuration Range, Full Scale CMR CMV Bias Current Impedance.	Specifications (typical at $+25^{\circ} \mathrm{C}$ unless Single Ended, Unipolar or Bipolar 0 to +1.999 V or $\pm 1.999 \mathrm{~V}$ 70 db @ DC (AC Models Only) ± 300 VDC (AC Models Only) 45nA typ, 500 nA Max. 100 Megohms, Min.	oted) Single-ended unipolar 0 to $+999 \mathrm{mV},(+9.99,+99.9 \mathrm{~V}$ opt $)$ NA (unipolar) NA (unipolar) 100nA typ, 250nA max 100 Megohms, $\min (1 \mathrm{~V}), .1 \mathrm{~m} \Omega(10,100 \mathrm{~V})$	Differential Bipolar $\pm 199.9 \mathrm{mV}$ or $\pm 1.999 \mathrm{~V}$ $70 \mathrm{~dB}, \mathrm{DC}$ to 60 Hz (See ordering $\pm 2 \mathrm{~V}$ to logic gnd. guide) 20 nA 100 Megohms, min
PERFORMANCE Accuracy Temp Drift Sample Rate. LED Digit Height BCD Outputs Power Supply	Adj. to $\pm 0.05 \%$ of F.S. ± 1 Digit ± 100 ppm $\mathrm{FS} /{ }^{\circ} \mathrm{C}$ typ. 2 Samples Per Sec, Adj. $0.43^{\prime \prime}$ (11 mm) NONE AC Line or +5 VDC, 300 mA Max.	Adj. to $\pm 0.1 \%$ of Reading ± 1 digit $\pm 100 \mathrm{ppm} \mathrm{FS} /{ }^{\circ} \mathrm{C}$ max 0 to 250 Samples per Sec $0.43^{\prime \prime}(11 \mathrm{~mm})$ Full parallel Std. $+5 \mathrm{VDC}, 800 \mathrm{~mA}$ max	Adj. to $\pm 0.05 \%$ of Reading ± 1 digit $\pm 50 \mathrm{ppm} \mathrm{FS} /{ }^{\circ} \mathrm{C}$ max 0 to 200 Samples per Sec $0.30^{\prime \prime}(7,6 \mathrm{~mm})$ Full parallel Std. $+5 \mathrm{VDC}, 650 \mathrm{~mA}$ max
NOTES	Low Cost for Display Only Applications	DM-3000 has count and reset inputs and optional crystal clock so that it can be configured as a 10 Mz counter, frequency meter, tachometer or 4wire slave display.	DM-2100 has true differential bipolar inputs and choice of $\pm 200 \mathrm{mV}$ or $\pm 2 \mathrm{~V}$ input ranges.
ORDERING GUIDE Datel's products are available both direct and through GSA. If you are connected with a military or federal agency or receive federal funds, you may be entitled to purchase Datel's Digital Panel Meters and other products through the General Services Administration. Datel's DPM's are approved under FSC Group 66-17, Part II, GSA Contract No. GS-00S27959. Contact Datel for assistance.		DM-3000 500 KHz Clock $\mathrm{R}=$ Ceramic Resonator $\mathrm{X}=$ Quartz Crystal Input Range and Resistance $1=0$ to +999 mV $100 \mathrm{M} \Omega$ impedance $2=0$ to +9.99 V $100 \mathrm{~K} \Omega$ impedance $3=0$ to +99.9 V $100 \mathrm{~K} \Omega$ impedance	Another version of the DM-2100 (model DM-1100) has special options available loptoisolation, low input bias, input filter, etc.) Contact Datel for details.
PRICES (1.9 quantity) (contact Datel for quantity discounts and International prices and GSA orders)	DM-350D1 (5V, unipolar) $\$ 69$ DM-350D2 (5V, bipolar)....... $\$ 75$ DM-350A1 (AC, unipolar) $\$ 79$ DM-350A2 (AC, bipolar). $\$ 89$	DM-3000RI $\$ 99$ for 10 V or 100 V inputs . . add $\$ 10$ for crystal clock add $\$ 10$	DM2100 A $\$ 129$ DM2100B $\$ 129$
DPM CONNECTORS (not includea with DPM). Dual 18-pin, PC-type	2335-1 (Solder Tab) $\$ 4.95$ 2335-2 (Wire Wrap). $\$ 4.95$	$2335-1$ (solder tab). $\$ 4.95$ $2335-2$ (wire wrap) $\$ 4.95$	2335-1 (solder tab). $\$ 4.95$ 2335-2 (wire wrap). . . . $\$ 4.95$
Suggested +5VDC POWER SUPPLY (not included with DPM) See Pg. 4	Not Required On AC Powered Versions	UPM-5/1000B Power Supply $\$ 49.00$ MS-7 Power Supply Socket $\$ 3.50$	UPM-5/1000B Power Supply $\$ 49.00$ MS-7 Power Supply Socket $\$ 3.50$
FOR FURTHER INFORMATION	SEE PAGE 184	SEE PAGE 186	SEE PAGE 191

DIGITAL PANEL METER SHORT FORM GUIDE SPECIFICATIONS • COVERED BY GSA CONTRACT

DM-2115
3-1/2 digits . $43^{\prime \prime} \mathrm{H}$ Displays AC or +5 V portable Differential, $\$ 159$

DM-2000AR
$3-1 / 2$ digit Autoranging $\pm 200 \mathrm{mV}$, 2V, 20V Input Ranges, \$169

DM-4000

4-1/2 digit, +2 V Input Autozeroed Optoisolated Ratiometric, \$219

DM-4300
4-3/4 digit, $\pm 4 \mathrm{~V}$ Input Autozeroed Optoisolated Ratiometric \$235

DIGITAL CONTROLS \& OUTPUTS - All digital controls and outputs are compatible with TTL logic levels
All panel meters have the following controls and outputs:
Internal Start Clock

External Start Adjust
nternal Start Gate
BCD Data Outputs

Internal TTL start clock trigger pulse, initially set at two samples per second

External adjustment of internal start clock sample rate, (not included DM-4000, 4300)
Provides external asynchronous gating of the interna start clock, or for hold to read.
Full parallel binary coded decimal ($B C D$) outputs are valid when the EOC pulse goes low. $B C D$ is standard on all models except the DM-2115, DM-4000, and DM-4300 where it is optional. Overrange bit on all models except DM-3000.

Overflow EOC

Sign
Decimal Points

Input/Output Connector
Displays

Overflow output indicates when full scale input has been exceeded. End of Conversion (Status or Busy) indicates when conversion is complete and BCD output data is valid.
Automatically indicates polarity of input (except unipolar DM-3000). Any left-of-full-digit decimal points may be illuminated by grounding appropriate rear PC connector pins lexcept DM-2000AR which automatically lights the proper decimal point).
Dual 18 -pin PC edge-board type, $0.1^{\prime \prime}$ centers, Viking 3 VH18/1JN-5, or equivalent \$4.95
All digits are red LED (Light Emitting Diode) 7 -segment displays with automatic overflow indication and autopolarity (except unipolar DM-3000)

Differential Bipolar 0 to ± 1.999 Volts 70 dB , DC to 60 Hz $\pm 3 \mathrm{~V}$ to logic gnd. 3nA typ, 2nA max 100 Megohms, min	Single-ended Bipolar floating (opt) 0 to $\pm 199.9 \mathrm{mV}, \pm 1.999 \mathrm{~V}, \pm 19.99 \mathrm{~V}$ $70 \mathrm{~dB}, \mathrm{DC}$ to 60 Hz (optional) $\pm 100 \mathrm{~V}$ to logic gnd (optional) 2nA 1 Megohm to summing junction	Differential Bipolar floating 0 to ± 1.9999 Volts $120 \mathrm{~dB}, \mathrm{DC}$ to 60 Hz $\pm 300 \mathrm{~V}$ to logic gnd 100pA max 100 Megohms, min	Differential Bipolar floating 0 to ± 3.9999 Volts $120 \mathrm{~dB}, \mathrm{DC}$ to 60 Hz $\pm 300 \mathrm{~V}$ to logic gnd 100pA max 100 Megohms, min
Adj. to $\pm 0.05 \%$ of Reading ± 1 digit ± 50 ppm FS $/{ }^{\circ} \mathrm{C}$ max 0 to 40 Samples per Sec $0.43^{\prime \prime}(11 \mathrm{~mm})$ Full parallel optional AC line or $+5 \mathrm{VDC}, 400 \mathrm{~mA}$ max	Adj. to $\pm 0.1 \%$ of Full Scale ± 1 digit ± 100 ppm FS $/{ }^{\circ} \mathrm{C}$ max 0 to 30 samples per Sec $0.30^{\prime \prime}(7,6 \mathrm{~mm})$ Full parallel Std. $+5 \mathrm{VDC}, 800 \mathrm{~m}$ A max	Adj. to $\pm 0.01 \%$ of Reading ± 1 digit $\pm 15 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ of Reading max 0 to 5 samples per Sec $0.43^{\prime \prime}(11 \mathrm{~mm})$ Full parallel optional $+5 \mathrm{VDC}, 600 \mathrm{~mA}$ max	Adj. to $\pm 0.01 \%$ of Reading ± 1 digit $\pm 15 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ of Reading, max 0 to 3.3 samples per Sec $0.30^{\prime \prime}(7,6 \mathrm{~mm})$ Full parallel optional $+5 \mathrm{VDC}, 600 \mathrm{~mA}$ max
DM-2115 may be operated AC or portable with $+5 \mathrm{VDC}, 400 \mathrm{~mA}$ max power. With blanked display, current drops to 120 mA , ideal for "press to read" instruments.	DM-2000AR is a 3 -decade autoranging DPM which automatically switches ranges and decimal point over $\pm 0.2 \mathrm{~V}$, $\pm 2 \mathrm{~V}$, and $\pm 20 \mathrm{~V}$ Full Scale.	DM-4000 features optoisolated inputs, crystal oscillator counter for 60dB NMR AC line noise rejection and autozeroing to eliminate residual offset errors. DM-4000 includes a 3 wire ratiometric input.	DM-4300 features optoisolated inputs, crystal oscillator counter for 60 dB NMR AC line noise rejection and autozeroing to eliminate residual offset errors. DM-4300 includes a 3 wire ratiometric input.
DM-2115Power Supply $A=115 \mathrm{VAC}$ $\mathrm{E}=230 \mathrm{VAC}$ $\mathrm{J}=100 \mathrm{VAC}$ $\mathrm{D}=+5 \mathrm{VDC}$ (AC, 47 to 440 Hz) Full Parallel BCD Output 1=without 2=with	DM-2000AR \qquad Add suffix -2 for optoisolated differential input (DM-2000AR less optoisolation has a single-ended input to logic ground)	DM-4000 TI Parallel TTL BCD Output A=without $B=$ with Synch. to AC line frequency of $5=50 \mathrm{~Hz}$ $6=60 \mathrm{~Hz}$	DM-4300 Parallel TTL BCD Output A=without $B=$ with Synch. to AC line frequency of $5=50 \mathrm{~Hz}$ $6=60 \mathrm{~Hz}$
DM-2115 +5V, no BCD $\$ 129$ DM-2115 +5V, with BCD. . . $\$ 145$ DM-2115 AC, no BCD . . . $\$ 159$ DM-2115 AC, with BCD . . . $\$ 175$		DM-4000A without BCD $\$ 219$ DM-4000B with BCD $\$ 239$	DM-4300A without BCD . . . $\$ 235$ DM-4300B with BCD $\$ 255$
2335-3 (solder tab) $\$ 4.95$ 2335-4 (wire wrap). $\$ 4.95$	2335-1 (solder tab) $\$ 4.95$ 2335-2 (wire wrap). $\$ 4.95$	2335-1 (solder tab) $\$ 4.95$ 2335-2 (wire wrap) $\$ 4.95$	2335-1 (solder tab) $\$ 4.95$ 2335-2 (wire wrap) $\$ 4.95$
Not required DM-2115 includes Internal AC Power Supply	UPM-5/1000B Power Supply $\$ 49.00$ MS-7 Power Supply Socket $\$ 3.50$	$\begin{array}{lr}\text { UPM-5/1000B Power Supply } & \$ 49.00 \\ \text { MS-7 Power Supply Socket } & \$ 3.50\end{array}$	UPM-5/1000B Power Supply $\$ 49.00$ MS-7 Power Supply Socket $\quad \$ 3.50$
SEE PAGE 197	SEE PAGE 193	SEE PAGE 201	SEE PAGE 201

1020G Turnpike Street, Building S Canton, Massachusetts 02021 U.S.A. TEL: (617) 828-8000
TWX: 710-348-0135 TELEX: 924461

FEATURES

- Large $0.43^{\prime \prime}(11 \mathrm{~mm})$ LED Display
- Very Low Cost, \$69.
- Choice of Unipolar or Bipolar 1.999V Ranges
- Choice of AC or 5VDC Power Supply
- Very Low Power Consumption for Portable Instruments, 5VDC @ 300 mA max.

DESCRIPTION

Datel's model DM-350 Digital Panel Meter features very low cost but high performance in a miniature case for display-only applications. The instrument uses advanced CMOS LSI circuits for a very low overall parts count, high reliability and low internal heat rise. The large red high-efficiency LED displays measure 0.43 inches (11 mm) high for easy, noparallax viewing from comfortable working distances.
The DM-350 employs a high impedance (100 Megohms min.) single-ended input with a choice of 0 to +1.999 Volt or -1.999 Volt to +1.999 Volt input ranges.
The optional AC powered models are trans-former-isolated, allowing operation in differential circuits not exceeding ± 300 Volts to the $A C$ line. $A C$ power voltages are user-selected by jumpers on the rear connector for 115 or 230 VAC, 47 to 440 Hz input. The +5 VDC models require only 300 mA max. current, making them ideal for battery-operated instruments.
Additional application features include an automatic polarity sign for bipolar models and user-selected decimal points on the rear connector for scaling inputs. The sampling rate of 2 per second may be varied by using external resistors, and the display may be held using a rear connector input. Overscale inputs are automatically indicated with horizontal bars on the display.
The DM-350 is housed in an impact-resistant, solvent-proof polycarbonate plastic case with four screwholes for front-panel mounting. The operating temperature range is 0 to $+50^{\circ} \mathrm{C}$.

Rear Connector Wiring

ANALOG HI INPUT
ANALOG LO (NO INTERNAL CONNECTION) ANALOG GROUND INTERNALLY
POWER COMMON CONNECTED KEYWAY
DECIMAL POINT 000
DECIMAL POINT . 00
DECIMAL POINT
$\overline{\text { LAMP TEST }}$
HOLD DISPLAY
SAMPLE RATE ADJUST
+5VDC POWER
AC POWER WINDING A HI AC POWER WINDING B HI AC POWER WINDING A LO AC POWER WINDING B LO
RIGHT
Pins A and B (Bottom and Top) are wired in parallel

$31 / 2$ DIGIT MINIATURE LOW COST DIGITAL PANEL METER

 MODEL DM-350

DISPLAY

Number of Digits	$3-1 / 2$ digits with sign and 3 decimal points $(+1.9 .9 .9)$
Display Type	Red, Light Emitting Diode (LED)
Display Size	0.43 inches (11 mm) high
Overscale	Inputs greater than 1.999 V indicated by steady horizontal bars and a "one"
Polarity	Plus and minus sign automatically displayed on bipolar models. No sign on unipolar models.
Lamp Test	All display segments may be tested (using 888) by grounding pin 9.
Sampling Rate	2 samples per second, may be varied using ext. resistors
Underscale	Reads all zero's
ANALOG INPUT	
Configuration	Single-ended referenced to ground and common or single-ended transformer isolated (AC models)
Full Scale Input Ranges	0 to +1.999 Volts (unipolar) or
	-1.999 Volts to +1.999 Volts (bipolar)
Input Bias Current	45 nA , typical, 500 nA , maximum
Displayed Accuracy	Within 2 mV of correct reading after calibration at steady operating temperature. $(\pm 0.05 \%$ of $F . S . ~ \pm 1$ count)
Temp. Drift	With in 10 mV between 0 and $+50^{\circ} \mathrm{C}$ $\left(\pm 100 \mathrm{ppm}\right.$ of F.S. $/{ }^{\circ} \mathrm{C}$)
Operating Temp.	0 to $+50^{\circ} \mathrm{C}$
Range	
Storage Temp.	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Range	
Input Overvoltage	$\pm 50 \mathrm{~V}$ continuous maximum for no damage
Input Impedance	100 Megohms minimum
Common Mode	$\pm 300 \mathrm{VDC}$ to AC pwr gnd (AC models only)
Voltage	
Common Mode	70dB @ DC (AC models only)
Rejection	

DIGITAL INPUTS (Disregard These Inputs If Not Required)
LAMP TEST (Pin 9) Ground this pin to illuminate the three ' 8 's" in the display. 1 TTL load (Sink 1.6 mA)

Hold Display (Pin 10) Switch this input to +5VDC to freeze the last displayed reading. 10 Kilohm load to ground.
Sample Rate (Pin 11) Sampling rate is 2 samples per second Adjust with no connection on pin 11. Connect a 680 Kohms resistor to $\pm 5 \mathrm{~V}$ for 4 samples/second. Connect a $1 \mu \mathrm{~F}, 10 \mathrm{~V}$ capacitor to ground for 1 sample/second. (Plus lead of cap to pin 11).
$\overline{\text { Decimal Points }} \overline{\text {. (Pins 5, 6, and 7) Ground each pin to illumin- }}$ ate corresponding decimal points.

ADJUSTMENTS
Zero, Full Scale,
Balance
POWER SUPPLY +5VDC Sink 20 mA .

Screwdriver trim pots for calibration adjustable by removing front panel bezel and filter. (Pin 13) +5 VDC power $\pm .25$ VDC @ 300 mA max. Noise and spikes must be less than 50 mV . Approximately 50 mA may be used from pin 13 for external circuitry on AC models. Avoid errors by using a regulated supply.
AC $\ldots \ldots \ldots \ldots$ (Pins 15 thru 18) 115 to 230 VAC, $\pm 10 \%, 47$ to 440 Hz 5 W max. required at these pins. Externally pin-strapped by the user as shown

PHYSICAL
Case Size below.
$3^{\prime \prime} \mathrm{W} \times 1.75^{\prime \prime} \mathrm{H} \times 2.25^{\prime \prime} \mathrm{D}$
Case Material Black polycarbonate plastic
Weight Approx. 10 oz . (280 g) AC Models Approx. 5 oz. (140 g) DC Models
Mounting Panel mounted through a $1.812^{\prime \prime} \times 3.062^{\prime \prime}$ cutout with 4-40 flathead screws.
Connector Dual 18-pin, PC edgeboard type 0.1"' centers, Datel \#2335-1. (Viking 3VH18/IJN-5)

Calibration Procedure (perform at a steady operating temperature)
Calibration Procedure (perform at a steady operating temperature)

1. The instrument will have factory calibrated accuracy of 0.1% at +25 C when power is first applied, but a full 15 minutes is required for warm-up before recalibration. 2. BIPOLAR Models

Connect pins 1 and 3 (i.e., short the analog input or apply a known zero DC input), Adjust the BALANCE pot until the sign flickers equally between + and - lignore the numerical content of the display).
Apply +0.0005 Volts from a precision reterence source to pin 1 and adjust the ZERO
potentiometer until the display flickers between +000 and +001 Rotating the ZERO control below the 000 reading will produce +000 and +001 . Rotating the ZERO control below the 000 reading will produce readings of $999,998, \ldots$ etc. It the recommend that the +000 to +001 change be calibrated with an input of +0.00075 volts. This will produce a slightly "wide" zero but will preclude false 999, 998 displays at zero.
Apply any negative input between -0.1 and -2 V . and adjust the ZERO pot to display 000 . Apply +0.0005 V . and adjust the BALANCE pot so the display flickers between 000 and 001
3. Apply +1.900 Volts and adjust the GAIN pot to display +1.900 . Bipolar models will automatically read within 1 count of -1.900 if the polarity is reversed to -1.900
RECALIBRATION IS SUGGESTED EVERY 90 DAYS OR MORE OFTEN FOR VARIABLE CONDITIONS

APPLICATION NOTES

If you are new to digital panel meters, you'll find them easy to use if you observe some simple precautions. Digital Panel Meters differ from mechanical meters in important ways. These include:

1. Input Characteristics - DPM's have very high input impedance and present a negligible load to most circuits. Because of input bias current error, an external buffer amplifier is recommended for input source resistance of $10 \mathrm{~K} \Omega$ or greater. Always connect the signal source between ANALOG HI and ANALOG COMMON. Do not use the POWER COMMON as an analog return in order to prevent a ground loop.
2. $A C$ and noise on the input terminals and power supply can cause variations in the display and possible loss of readings around zero. If this occurs, try to reduce input source noise and hum. An input filter consisting of $10 \mathrm{~K} \Omega$ from ANALOG HI to the source and $10 \mu \mathrm{~F}$ from ANALOG HI to ANALOG COMMON can be tried. Increase the capaci-
tor for more filtering or use an external multi-pole active filter. Note that input filters give delayed response time. DPM's are sampling devices and measure DC or slowly-varying signals and require special external circuits to measure AC or complex waveforms. If in doubt, make sure the input is truly noiseless, slow DC by checking with a direct-coupled oscilloscope connected right at the DPM's input terminals.
Always use a regulated power supply for 5V-powered DPM's. A filtered 7805 or LM309K 3-terminal regulator can be used or Datel's UPM-5/1000B supply. Current varies rapidly as digits turn off and on so that unregulated supplies cannot be used.

The DM-350 includes a hold display input to freeze the last reading. Instrument manufacturers typically connect this input to a front panel pushbutton to allow an operator long enough to copy down a momen-tarily-stabilized reading. Contact Datel if you need assistance.

ORDERING GUIDE Model Number	DM-350 T		Prices (Single Quantity) DM-350D1 (5V, unipolar) DM-350D2 (5V, bipolar) DM-350A1 (AC, unipolar) DM-350A2 (AC, bipolar)	Covered by GSA Contract No. GS-OOS-27959 \$69 $\$ 75$ \$79 \$89 Connector: Datel \#2335-1, Solder Tab \$4.95 (Viking 3VH18/1 JN-5)
	POWER SUPPLY	INPUT RANGE		
	$\begin{gathered} \hline D=+5 \mathrm{VDC} \\ A=115 \text { or } 230 \mathrm{VAC} \\ \text { (User-selected on } \\ \text { rear connector) } \end{gathered}$	1 = Unipolar		
		0 to +1.999 V		
		$\begin{aligned} 2= & \text { Bipolar } \\ & -1.999 \mathrm{~V} \text { to }+1.999 \mathrm{~V} \end{aligned}$		

1020G Turnpike Street，Building S Canton，Massachusetts 02021 U．S．A
TEL：（617）828－8000
TWX：710－348－0135 TELEX： 924461

MULTIFUNCTION DIGITAL PANEL METER AND COUNTER DISPLAY

MODEL DM－3000

USE AS：
－ 3 digit DPM
－ 4 －wire slaved display
－ 0.1% tachometer，period or fre－ quency meter using optional crystal clock
－DC to 10 MHz general purpose counter with 0 to 999 selectable full count

FEATURES

3 red， $0.43^{\prime \prime}$ high LED displays
－Dimmable display using external variable duty cycle blanking input
－$-5 \mathrm{~V}, 5 \mathrm{~mA}$ short－circuit proof out－ put for external bipolar or differ－ ential op amps
－Built in 2 sample／second variable start clock
－Externally triggerable up to 250 conversions／second
－Selectable leading zero suppression

GENERAL DESCRIPTION

The model DM－3000 combines a low－cost unipolar digital panel meter，a DC to 10 MHz 3 digit general－purpose counter or slaved BCD digital display using only 4 lines in a single instrument．By using simple external circuits the DM－3000 3 digit DPM may be converted to a frequency meter，event counter，absolute value bipolar or differential input digital panel meter or 3 －digit period measuring instrument．

The DM－3000 has a built－in short circuit proof $-5 \mathrm{~V}, 5 \mathrm{~mA}$ power supply to operate external input amplifiers or other circuitry，yet the DM－3000 is a complete 3－digit digital panel meter which includes its own internal start clock．Other operating modes include count termination at any arbitrary full scale displayed count．Many suggested circuits are shown in this brochure．A 0.02% crystal clock option may be ordered for precision period and fre－ quency measurement．

The DM－3000 accepts analog inputs from 0 to +0.999 volts，（ 10 V and 100 V ranges optional）， uses a single slope conversion and displays the input on three seven－segment LED digits to an accuracy of 0.1% of reading，± 1 digit．The instrument uses conventional +5 VDC TTL logic power（such as Datel＇s model UPM－5／1000B power supply）and consumes $800 \mathrm{~mA}(320 \mathrm{~mA}$ with blanked display）．
The single－ended input has greater than 100 megohms input impedance and typically 100 nanoamps，bias current．The temperature co－ efficient is $\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max．over an op－ erating temperature range of 0 to $+50^{\circ} \mathrm{C}$ ． Storage temperature is from $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ ． The DM－3000 can accept from 0 to 250 conversions per second from an external start pulse．A built－in start clock operates at 2 conversions／second and may be speeded up using an external resistor．
The red 7 －segment LED displays are $0.43^{\prime \prime}$ high and each left－of－digit decimal point may be illuminated using contacts on the rear con－ nector．Counter overflow is indicated by a
blanked display and a high output on the rear connector contact．

Included in the DTL／TTL compatible logic outputs are full parallel $1-2-4-8 \mathrm{BCD}$ outputs for each digit，an end of conversion（busy） output and overflow．Digital inputs include the external start clock，internal start output，and gate（for hold－to－read）and a segment test input． Leading zero suppression of the 2 most signif－ icant digits can be selected as well as display blanking．Clock output and gated clock out are available with counter zero reset，and the end of scale inputs．The large number of control inputs and outputs are provided for extended system use and for custom programming．

The DM－3000 is packaged in a rugged Lexan case with overall dimensions of $3.745^{\prime \prime} \mathrm{W} \times$ $2.960^{\prime \prime} \mathrm{D} \times 2.120^{\prime \prime} \mathrm{H}$ ．The case mounts with 4 screws through a $1.812^{\prime \prime} \mathrm{H} \times 3.062^{\prime \prime} \mathrm{W}$ front panel cutout identical to other Datel digital panel meters．A large degree of electrical and pin－out commonality is shared with other Datel DPM＇s for simple interchangeability．

INPUT／OUTPUT CONNECTIONS

	P．C．BOARD CONNECTOR		
	$\underset{\text { A }}{\substack{\text { Bortom }}}$	$\begin{gathered} \text { TOP } \\ \text { B } \end{gathered}$	
10 V .100 V in（opt）	1	1	analog infut（hi）
analog Gnd．	2	2	logic grouno
DISPLAY BLANK	3	3	OS RESET INPUT
［EADING ZERO SUPP	4	4	500 kHz Clock out
DECIMAL POINT 100	5	5	Bit I OUT
DECIMAL POINT $\overline{10}$	6	6	Bit zout
DECIMAL POINT ${ }^{\text {i }}$	7	7	BIT 4OUT
E．O．C．（STATUS）	8	8	Bir 8 OUt
overscale out	9	9	Bit 10 OUt
INT START GATE	10	10	Bit 20 OUt
Int start ads．	11	11	BIT 40 OUT
INT．Start out	12	12	BIT 80 OUT
Start input	13	13	BIT 100 OUT
$\overline{\text { LAMP }}$ TEST	14	14	Bit 200 OUt
gated clock out	15	15	BIT 400 OUT
COUNTER INPUT	16	16	Bit goo Out
－5v out	17	17	END OF SCALE INPUT
PWR GND．	18	18	PWR INPUT +5 V D．C

Note：For normal operation，connect jumpers as shown in application note．

SPECIFICATIONS (Typical at $25^{\circ} \mathrm{C}$ unless otherwise stated)

INPUTS

Input Voltage Range (Full Scale) 0 to +999 mV , $1+9.99 \mathrm{~V}$, or +99.9 V with atten.)
Input Impedance
Input Bias Current
100 Megohms min. See pg. 3.

Input Configuration
Max. Continuous Input Overvoltage
Single-ended unipolar
Max. Momentary Input Overvoltage
$\pm 125 \mathrm{~V}$
(5 sec . max.)
PERFORMANCE

Accuracy @ $25^{\circ} \mathrm{C}$	Adjustable to $\pm 0.1 \%$ of reading ± 1 digit
Resolution	$\pm 1 \mathrm{mV}$
Temperature Coefficient	$\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max. of FS.
Conversion Speed	0-250 conversions/sec.
Internal Trigger Rate	$2 / \mathrm{sec}$. adjustable upwards by external resistor. See note.
Operating Temperature Range	0 to $+50^{\circ} \mathrm{C}$
Storage Temperature Range	-20° to $+85^{\circ} \mathrm{C}$
Warm Up Time	Essentially zero
Adjustments	Zero, Full Scale $(\pm 8 \mathrm{mV}$ typ range)
Input Power	$+5 V D C \pm 5 \%$ @ 800 mA max. (320 mA with display blanked). See note.
Output Power	$-5 V D C$ @ $5 \mathrm{~mA} \pm 10 \%$. Short circuit proof. For operation of external amplifiers etc.

DISPLAY OUTPUT

Display Type	Seven segment LED, Red $0.43^{\prime \prime}$ high full digits (0 to 9) and decimal points.
Overscale	Display blanked
Decimal Points	Selectable at rear connec tor. Decimal points are dis played left of each digit.
Negative Analo	Displays 000

INPUT/OUTPUT CONTROL

External Start Input (A13) . .
Positive pulse 100 nS min . transition from low to high resets register and blanks readout. Negative edge initiates conversion. 10 TTL loads.
Internal Start Gate (A10) Low input holds last conversion. 3 TTL loads.
Internal Start Adjust (A11) Resistor to +5 V increases trigger rate. See note.
Internal Start Out (A12) Positive pulse - see application. Has low cuty cycle to avoid display blanking and flicker.

INPUT/OUTPUT CONTROL -Continued

Lamp Test Input (A14)	Low input lights all segments. 3 TTL loads.
	Low input provides suppression of zeros on the two most significant digits. 1 TTL load.
$\overline{\text { Display }} \overline{\text { Blanking (}}$ (3)	Low input blanks display. Does not affect conversion. May be used for intensity modulation of display and conserving power. 1 TTL load.
$\overline{\text { Decimal }} \overline{\text { Point }} \overline{\text { Inputs }}(\mathrm{A} 5,6,7)$	Grounding inputs illuminates corresponding decimal point. Sink 20 mA .
Clock Output (B4)	$500 \mathrm{kHz} \pm 10 \mathrm{kHz} 50 \%$ duty cycle. 2 TTL loads. $500 \mathrm{kHz} \pm 0.02 \%$ crystal optional
Counter Input (A16)	Provides input to counter. Counting occurs on negative transition. 2 TTL loads.
Gated Clock Out (A15)	Provides pulse train of $\mathrm{N}+1$ counts where N is displayed number. 5 TTL loads. Used for slave display or counter.
Zeros Reset (B3)	High input resets counter to zero. 100 nS min. duration. 3 TTL loads.
$\overline{\text { End }} \overline{\text { of Scale }} \overline{\text { Input }}$ (B 17)	Activates overflow flip-flop and blanks display on negative input transition. 1 TTL load. Used to short cycle counter.

Note: unused inputs should be grounded or tied to +5 V as required to avoid false readings in noisy environments.

PHYSICAL

Case Material	Black Lexan Plastic
Weight	6 oz . approx.
Mounting	Through $1.812^{\prime \prime} \times 3.062^{\prime \prime}$ cut out. Secured with four 4-40 flathead screws. See mounting diagram.
Price	(1-9) \$99.00
Connector	Dual 18 -pin PC Brd. Edge Connector Type, 0.1" Centers (not included with DPM)

OPTIONS

1. Quartz crystal timebase 500 kHz . $\pm .02 \%$. Operating temp. range drift undetectable on display.
2. 0.1% Precision resistor attenuator kit (RN-DM-3000) 900K, $90 \mathrm{~K}, 10 \mathrm{~K}$ for 10 V and 100 V ranges.

NOTE:

BCD outputs are invalid while EOC is HI .

Note: Internal start clock can be speeded up using an external resistor from A11 to +5 V . The resistor value is: $R(K \Omega) \simeq \frac{440-\text { Rate }}{\text { Rate- } 2}$ (Rate is in conversions/second) $R \geqslant 4 \mathrm{~K} \Omega$

A recommended power supply is Datel's model UPM-5/1000B or equivalent highly regulated type. Avoid spikes entering DPM on +5 V power input. Use external filtering or regulation if required. Significant power supply spikes ($>10 \mathrm{mV}$) increase the chance of false readings. DPM current varies rapidly up to 800 mA depending on digits displayed and sample rate.

INPUT RANGE SELECTION

ロ4TEL

To facilitate use of the DM-3000 for $+9.99 y$ and +99.9 V ranges, a separate kit of matched, low drift input attenuator 0.1% resistors is available (part number RN-DM-3000). These resistors mount directly on the PC board connector and provide 0.1 and 1 Megohm input impedance on the +9.99 V and +99.9 V ranges. They are ratio matched and will track within $\pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ over the 0 to $+50^{\circ} \mathrm{C}$ operating range of the DM-3000. They are customer connected as shown below. Input attenuators may be ordered prewired. See ranges 2 and 3 in ordering guide below.
0 TO +999 mV
RANGE
(100 Megohm Zin)
(100 Megohm Zin)

0 TO +9.99V
RANGE
(0.1 Megohm Zin)

0 TO +99.9V
RANGE
Ana. (1 Megohm Zin)*

A B
BOTTOM TOP
PC BRD CONNECTOR

ABOUT RELIABILITY

The DM3000 digital panel meter features proven mechanical construction and sound, yet simple, electrical design for a long trouble free service life of repeatable accuracy and performance. Recalibration is suggested every 90 days under variable conditions but the period after initial adjustment can safely be extended in constant environments, e.g., laboratories, offices, etc. without any significant change in performance. In cases where the panel meter is used as a digital counter for frequency, period, events, etc., front panel adjustments do not affect operation and can be ignored.
The DM3000 consists of only 2 printed circuit boards of high grade G10 epoxy-glass laminate (not phenolic) as used in military, aerospace and computer applications. The boards are permanently joined by a soldered interconnect to assure reliability. A gold plated edgeboard connector is used for all input/output connections and can be positively located and secured to the case by integral bosses. A polarizing key prevents mislocation.
The electronic circuitry is composed of high quality digital and linear integrated circuits and a small number of discrete components. Datel's extensive vendor quality assurance and incoming inspection program allows full control of reliability at the component level. Computer automated inspection, selection and grading techniques and a continuously updated vendor quality history file have established a very efficient, reliable supply of components for all Datel's products. Reliability at the component level is extended to reliability at the circuit level by the low parts count and functional simplicity of the DM3000. In addition, this is achieved in a small rugged black Lexan® case that requires a modest 3 inches of panel depth and leaves no doubt about the mechanical integrity of attachment or electrical insulation.

Conventional 7400 series TTL logic is employed, and all parts are commonly available for straightforward repair should it ever prove necessary. Datel maintains a complete stock of replacement parts, assembled circuit boards and repair facilities for fast service. 7400 series logic has been in common use throughout the world in computer and data systems with a proven record of billions of hours of operational experience in every conceivable circuit.
The electrical design is conservative of component ratings and is especially careful with regard to thermal characteristics which is a principal factor affecting reliable operation. Each Datel panel meter receives a 72 hour burn in comprising in excess of 100 power on/off cycles. Experience has shown that the thermal cycling inherent in this type of burn-in is best at locating "infant mortality" failures as components are stressed not only electrically but also mechanically by repeated expansion and contraction. This is many times more effective than a continuous burn in of the same duration which would only apply constant electrical stress. Also, thermal cycling provides a much closer accelerated correspondence to the most frequently encountered operational conditions.
Datel uses rugged solid state 0.43 inch L.E.D. seven segment displays. The displays are located behind a proprietary scratch and solvent resistant red filter with a diffusing surface that minimizes annoying reflections. L.E.D. displays offer exceptionally long life, freedom from lethal voltages, interference, and highly stressed interface circuitry.
As a further assurance of quality, Datel provides a full one year warranty on materials and workmanship for its digital panel meters.
®General Electric Corp.

CALIBRATION PROCEDURE

1. Remove front bezel and filter.
2. Set input to DM-3000 from voltage reference source to $+0.05 \%$ of full scale (+500 microvolts for the 0 to +.999 VFS model).
3. Rotate zero adjust pot until display flickers equally between " 000 " and " 001 ". ($\pm 8 \mathrm{mV}$ typ adj. range)
4. Reset voltage reference input source to 99.85% of full scale (+998.5 mV for 0 to +.999 VFS model).
5. Rotate gain adjust until display flickers equally between " 998 " and " 999 ".
6. Recommended recalibration interval: 3 months.

1020G Turnpike Street, Building S Canton, Massachusetts 02021 U.S.A TEL: (617) 828-8000
TWX: 710-348-0135 TELEX: 924461

3-1/2 DIGIT LOW COST DIGITAL PANEL METER

DM-2100 SERIES

$\pm 199.9 \mathrm{mV}$ or $\pm 1.999 \mathrm{~V}$ Full Scale Inputs

- True Floating Bipolar Differential Input
- Automatic Polarity and Overflow Display
- Up to 200 Readings per Second Using External Trigger
- Includes 2 Samples/Second Internal Trigger Clock
- Operates From Single +5VDC Supply
- Solid State LED Display, Full parallel BCD outputs
- Adjustable Zero Control Compensating For External Offset Voltages
- Priced under \$100 in OEM quantities

DESCRIPTION

Featuring accurate, stable readings with $31 / 2$ digit resolution, the DM-2100 digital panel meter has wide acceptance because of its proven record of performance and reliability.
The DM-2100 combines the ease and accuracy of digital readout with high input impedance and noise rejection to provide an inexpensive digital panel meter (digital voltmeter) that will enhance the operation, performance and appearance of any instrumentation system.
The DM-2100 is ideal for new equipment design or may be utilized in updating existing instruments or systems that require a stable, accurate digital readout for voltage. Simple to install, the DM-2100 is supplied complete and ready to operate requiring only a connection of an input signal and power cable. Applications include measuring of any parameter for which a suitable output voltage is available. These include absorption, acceleration, current, displacement, distortion, emission, flow, frequency, Ph, pressure, strain, torque, and many others.
The DM-2100 provides a differential input with a 100 MegOhms input impedance and a common mode rejection of 70 db at 60 Hz . The input range is ± 1.999 volts or ± 199.9 millivolts. The display is $31 / 2$ digits including automatic polarity and overflow indication. In addition the output is presented to the I/O connector as BCD/TTL information.
High quality computer grade components, superior workmanship and wide-safety margin designs combine to make the DM-2100 a must in your designs.

CALIBRATION

PROCEDURE

(Using Trimpots
The following adjustment pror mended after allowing for a five minute warm-up.
Balance Control

1) Short the analog input terminals to analog common. (See I/O chart for proper pin connection.)
2) Rotate the balance control until the display is flickering between (+) zero and (-) zero.
Zero Control
3) Connect a precision voltage reference source to the analog input terminals.
4) Adjust the voltage output from the reference source to $.3 \mathrm{LSD}(30 \mu \mathrm{~V}$ Model A , $300 \mu \mathrm{~V}$ Model B). Rotate the zero control until the LSD (Least significant digit) flickers between zero and one.
Full Scale Control
5) Adjust the output from the reference source to 1.990 volts. Rotate the full scale control of the panel meter until the meter displays 1.990 volts. Recalibration is suggested every 90 days or more often for variable conditions.

Covered by GSA Contract No. GS-00S-27959

Note: The DM- 2100 replaces the DM-2000 and is identical except for external timing capacitor wiring and conversion rate and displays. DM-2000 is available by contacting factory.

MOUNTING DETAILS

MECHANICAL DIMENSIONS
 (INCHES)

INPUT/OUTPUT CONNECTIONS

-Calibration trimpote wre behind poop aff tront parnal barel and fitter

SPECIFICATIONS Typical @ $25^{\circ} \mathrm{C}, 5$ minutes warm up

1020G Turnpike Street，Building S Canton，Massachusetts 02021 U．S．A TEL：（617） 8288000
TWX：710－348－0135 TELEX： 924461

WORLD＇S FIRST AUTOMATIC RANGING digital panel meter

MODEL DM－2000AR

DESCRIPTION

The Datel DM－2000AR is the first digital panel meter to feature automatic ranging over three full scale input ranges．It measures readings from 20 volts down to 100 microvolts without external scaling and increases the dynamic range of the instrument to 103 db over con－ ventional DPM＇s．The unique autoranging cir－ cuitry operates by first sampling an input on the most sensitive range（ $\pm 199.9 \mathrm{mV}$ ）．If an overange condition is indicated，the circuitry is automatically switched to the next higher range and recycled，and again to the highest range if the second is exceeded．The worst case con－ version time is 33 milliseconds（ 30 conversions per second）if the highest range is selected and somewhat faster on the lower ranges．

The automatic ranging feature，with three full scale input voltage ranges of ± 19.99 volts， ± 1.999 volts and $\pm 199.9 \mathrm{mV}$ offers the user a number of advantages．The cost savings over the parts，installation and test of a front panel range switch alone would justify the use of DM－2000AR．Another advantage is the savings in operator time and the associated errors in－ curred with the use of a range switch．Also，the versatility of a 20 volt to 100 microvolt dy－ namic range cannot be discounted in bench testing situations．

The DM－2000AR has a single ended input with an input impedance of 1 Megohm and over－ voltage protection to ± 100 volts．Accuracy is $\pm .1 \%$ of full scale，± 1 count with a maximum conversion time of 33 milliseconds．The temperature coefficient of the DM－2000AR is $\pm 100 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$ ．

The display of the DM－2000AR is a $3-1 / 2$ digit， seven－segment LED display with automatic polarity indication and automatic overflow indication．A digital input allows for the testing of all readout segments by displaying＂+1888 ＂ All segments are viewed through a red filter which sharpens contrast and eliminates internal reflections．

All displayed information is available at the $1 / 0$ connector in BCD form．Digital inputs and outputs also allow for start－stop control and external clocking．Also，the automatic ranging can be overriden for external（manual）control． In addition，an optical isolation option is avail able which decouples the analog input section from the digital logic so that ground dis－ turbances caused by the fast－switching digital circuits will not affect the analog input．

The DM－2000AR is packaged in a rugged $3^{\prime \prime} W \times$ $1.3 / 4^{\prime \prime} \mathrm{H} \times 2-1 / 4^{\prime \prime} \mathrm{D}$ LEXAN case with a total weight of less than 6 oz ．Construction is en－ tirely modular with snap－apart PC boards．The unit can easily be panel mounted with access to calibration controls obtained by snapping off the front bezel．The entire unit can be removed from its mounting panel and disassembled with just a screw driver in less than one minute．

Covered by GSA Contract No．GS－00S－27959
FEATURES
－ 3 Full－Auto Ranging－Scales：$\pm 19.99 \mathrm{~V}$ ， $\pm 1.999 \mathrm{~V}, \pm 199.9 \mathrm{mV}$
－3－1／2 Digit Solid State LED Display
－Automatic Polarity and Overflow Display
－Operates From Single＋5V DC Supply
－Optional Optically Isolated Input
－Optional External Ranging Control

ANALOG INPUT (single ended) Full Scale Input Ranges (automatic ranging)	Note: Display reads in volts on high ranges, millivalts on $\pm 19.99 \mathrm{~V}$ low range. $\pm 1.999 \mathrm{~V}$ $\pm 199.9 \mathrm{mV}$	$\overline{\text { End }} \overline{\text { of }} \overline{\text { Conversion }}$ (pin A8, Busy) Internal Start Output	1 line, HIGH - during the conversion period (display blanked) LOW - conversion complete Loading: 2 TTL loads (2) 1 line, positive true pulse	
Input Bias Current 2nA (all ranges)	2nA (all ranges)	Internal Start Output (pin A12)	Loading: 1 TTL load (2)	
Additional specifications (available only with optical isolation option):		DIGITAL INPUTS (Dynamic inputs should have TTL rise times)		
		Ranging Mode Control (pin A4)	1 line, " 1 " = external ranging,	
Input Configuration. Common Mode Voltage			" 0 " = automatic ranging	
	$\pm 100 V_{\text {CM }}$ max.	External Ranging Control	Loading: 3 TTL loads (1)	
Common Mode Rejection . . 70 dB @ 60 Hz		(pins B17 and A17)	Range Pin A17 Pin B17	
PERFORMANCE		A4 at HI .	19.99V 1.90	
Accuracy $\pm .1 \%$ of F.S. ± 1 count (5)			A17 \& B17 are disabled if A4 is LO.	199.9 mV "0" "0" " 11 " Range code lights 2 D.P.
$\begin{aligned} & \text { Resolution } \pm 1 \text { count (} \pm 100 \mu \mathrm{volts} \\ & \text { Temperature Coefficient of } \end{aligned}$		Don't use		
		External Start Convert		
Full Scale.	$\pm 100 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$	Command (Pin A13) Start Trigger Clock, may be supplied from int. start, A12	1 line-min pulse width-100 nsec " 0 " to " 1 " ($ऽ$) resets output	
Zero Drift (referred to the input) \qquad				
	$30 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ (199.9mV and 1.999 V range)		register and blanks display, " 1 " to " 0 " ($~(L) ~ i n i t i a t e s ~ c o n v e r s i o n ~$	
			process. Loading: 1 TTL load (1)	
	range) $150 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ (19.99V range)			
		Internal Start Gate (Pin A 10)	1 line, gates internal clock	
Conversion Time	(19.99V range) 33 msec max (see timing diagram)		" 1 " = run, " 0 " = stop Loading: 1 TTL load (1)	
Input Setting Time .	1 m sec for F.S. change	Internal Start Adjust (Pin A11)	Controls rate of Internal Start Clock	
Operating Temperature				
Range	to +50		(see application section)	
Storage Temperature		Lamp Test (Pin A14)	1 line, negative true, displays	
Range . . .	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		+1888 to test all display segments	
Warm-up Time Input Power (See Note 4)	15 min to specified accuracy $+5 \pm .25 \mathrm{VDC}$ at $800 \mathrm{~mA}(\max),<50 \mathrm{mV}$ spikes		Loading: sink 35 mA .	
		NOTE: Internal start clock is 2 samples/second and is externally adjustable		
DISPLAY OUTPUT		ADJUSTMENTS	Zero, balance, full scale, VGA zero, 2 V cal and 0.2 V cal trimpots accessible behind snap-on front bezel	
Display Type.	red LED seven segment 3-1/2 digits (1999 max c \pm automatically displayed automatically displayed "OF" automatically displayed			
Data				
Polarity				
Decimal Point Overflow		Recalibration Interval (Nater	(Normal conditions) 90 days	
		PHYSICAL (3)		
DIGITAL OUTPUTS			$3^{\prime \prime} \mathrm{W} \times 1.75^{\prime \prime} \mathrm{H} \times 2.25$ " D Black polycarbonate plastic	
BCD (3LSD's) Data Outputs . (pins B5 thru B16)	3 digits (8421) 12 lines positive true Loading: 2 TTL loads (2)		6 oz, approx. Panel mounted through a $1.812^{\prime \prime} x$	
		Mounting		
		Connector \qquad (not included with DPM, add to order)	$3.062^{\prime \prime}$ cutout with four 4-40 screws.	
1/2 Digit (MSD) Data Output (pin A15)	1/2 digit-1 line-positive true Loading: 2 TTL loads (2)		Dual 18-pin, PC Edgeboard Type, $0.1^{\prime \prime}$ centers (Viking \#3VH18/IJN-5	
Polarity (pin A1	1 line, " 1 " = positive, " 0 " = negative		pins 4 and 5	
$\overline{\text { Overload Scale }} \overline{\mathrm{Out}}$ (pin A9)	Loading: 2 TTL loads 1 line, HIGH - input signal within range LOW - input signal outside range	PRICE (1-9)	\$169. (no optoisolation, less connectors)	
		NOTES:		
Note: Negative True		(1) Low (" 0 ") $\leq+0.8 \mathrm{~V}$ High ("1") $\geq+2.0 \mathrm{~V}$	Recommended power supply is a Datel UPM-5/1000B or equivalent highly regulated type. Power current is 400 to 800 mA max depending on digits displayed and sample rate	
Decimal Point Outputs	Loading: 2 TTL loads 3 lines, negative true	(2) Low (" 0 ") $\leq+0.4 \mathrm{~V}$ High (" 1 ") $\geq+2.4 \mathrm{~V}$		
Note: Negative True,	Range 19.99 V @ Pin 6 Range 1.999 V @ Pin 5	(3) Module is fully repairable and features snap together PC Boards		
Decimal points are,	Range 199.9mV @ Pin 7		(5) 1 Megohm input resistor is in series with input summing junction. Accuracy specification will degrade with significant external source impedance ($>1 \mathrm{~K} \Omega$)	
controlled by autoranging logic.	Loading: 1 TTL load (2)	(4) Avoid logic spikes entering DPM on the +5 V power input. Use external filtering if required.		

DM-2000AR DPM TIMING DIAGRAM AUTORANGING MODE (PIN A4 GROUNDED) 19.0 VOLTS ANALOG INPUT

NOTES:

1. TIMING IS NOT TO SCALE
2. TIMING IS TYPICAL EXCEPT WHERE INDICATED MIN OR MAX
3. EOC WILL FALL 4.5 TO 33 mSec TYP AFTER START CONVERT DEPENDING ON ANALOG INPUT LEVEL
4. DUTY CYCLE OF DISPLAY BLANKING DURING EOC HIGH VARIES WITH SAMPLE RATE AND INPUT RANGE. MAY CAUSE DISPLAY FLICKER IN SOME APPLICATIONS. IF AN EXTERNAL START TRIGGER CLOCK IS USED, KEEP DUTY CYCLE LOW TO AVOID DISPLAY BLANKING AND FLICKER.

COMPLETE MODULAR CONSTRUCTION

Total modular construction is another plus for the DM-2000 AR.

Servicing is simple and straightforward.
The unit can be removed through the front panel without opening the users' instrument. Once the snap-on front bezel and four mounting screws are removed, the meter slides out of its Lexan case. The procedure is uncomplicated and takes less than one minute. Once removed, modular service is possible due to the five plug-in interconnected PC boards - no wiring or soldering is required.

Troubleshooting is accomplished through board substitution and servicing can be completed within five minutes.
A full complement of replacement boards are readily available from Datel's Service Department.

ALPHA NUMERIC INDICATION OF OVERFLOW

When the voltage input exceeds full scale by a minimum of one least significant digit, the characters "OF" are displayed. All data digits are blanked. An example of this would be when full scale is +19.99 V , then +20.00 V would be the smallest possible overload.

BUILT IN DISPLAY TEST FOR PERIODIC TESTING

Testing for faulty display segments can be achieved in a matter of moments guarding against erroneous readings. Grounding pin 14 at the rear connector will display +1888 to test all possible segment combinations.

OPTICALLY ISOLATED INPUT

The DM-2000AR autoranging Digital Panel Meter normally uses a singleended input with 1 megohm impedance to the input amplifier summing junction. A common bus, (pins A1, A2, B2, B4 and A18) reference analog input ground, digital output ground and +5 V power common.
The DM-2000AR-2 version includes optoisolators and a DC/DC converter to give transformer isolation of the analog input up to ± 100 Volts to power common. However, the digital outputs are still referenced to the power common/logic ground bus. Differential input impedance of the optoisolated DM-2000AR-2 is 1 megohm.
The DM-2000AR-2 isolated DPM reduces false readings in common mode voltage applications.

CALIBRATION PROCEDURE

1. Select manual mode (tie A 4 to +5 V) and the 20 V range. Adjust the "balance" pot to obtain a flickering \pm sign on the display.
2. Select the 0.2 V range, and adjust the "V.G.A. zero" pot to obtain a flickering sign.
3. Repeat steps 1 and 2 until a flickering sign is obtained on both the 0.2 V and 20 V ranges (takes $2-3$ adjustments).
4. On the 0.2 V range, apply an input of $\pm 300 \mu \mathrm{~V}$ (be careful of noise on such a small input). Adjust the "zero" pot to obtain a reading of $\pm 003 \pm 1$ digit.
5. Select auto mode (ground A4) and apply input of +18.00 V from a precision voltage reference source. Adjust "full scale" to obtain correct reading.
6. Apply input of +1.800 V . Adjust " 2 VCAL" to obtain correct reading.
7. Apply input of +.1800 V . Adjust " 0.2 VCAL " to obtain correct reading.
This completes calibration. Small drifts in the zero can be adjusted with the "V.G.A. zero" pot only which will not require selection of manual mode.

Location of trim pots

| FULL |
| :---: | :---: | :---: | :---: |
| SCALE | ZERO BALANCE

DON'T FLOAT A4. GROUND A4 FOR AUTORANGING, JUMPER A12/A13 FOR INT. START CLOCK

ORDERING INFORMATION Model DM-2000AR	PRICES (1-9 quantity)	Connectors (not included with DPM. Be sure		
	DM-2000AR (no optoisolation,	add to your DPM order)		
	less connectors) $\$ 169.00$	Solder Tab, Datel \#2335-1 (Viking 3VH1		4.95
	DM-2000AR-2 (with optoisolation,	Wire Wrap, Datel \#2335-2 (Viking 3VH18/1JHD-5) 4.95		
Add -2 suffix for optoisolated inputs	Covered by GSA Contract No. GS-00S-27959	Suggested AC power supply: UPM-5/1000 B 5V 1A 115VAC input		
		UPM-5/1000 BE 5V, 1A, 230 VAC input		54.00
		Power supply Socket, MS-7		3.50

MINIATURE 3½ DIGTT AC-POWERED DIGITAL PANEL METER

MODEL DM-2115

FEATURES

- Choice of AC line or +5VDC power
- Compact: Only $1.75^{\prime \prime}$ H. $\times \mathbf{2 . 2 5} 5^{\prime \prime}$ D. $\times 3^{\prime \prime}$ W.
- Large, Bright, $0.43^{\prime \prime}$ High Red LED Displays
- Automatic Polarity and Overflow Display
-5V/400mA Optional Power Input - Ideal for Portable Use
- Differential Input
- Optional Parallel BCD/TTL Output

GENERAL DESCRIPTION

Datel Systems' DM-2115 is the world's smallest AC line operated Digital Panel Meter. Packaged in a compact $1.75^{\prime \prime} \mathrm{H} . \times 2.25^{\prime \prime} \mathrm{D} \times$ $3^{\prime \prime}$ W. Polycarbonate plastic case and using large $0.43^{\prime \prime}$ high seven-segment LED digits, Model DM-2115 provides an easy-to-read 31/2 digit display of ± 1.999 volt full scale inputs complete with automatic polarity and overflow indication. Both the size and the power consumption of the DM-2115 have been significantly reduced through extensive use of MSI CMOS logic. Power input options include AC inputs of $100 \mathrm{VAC}, 115 \mathrm{VAC}$ or 230 VAC at 47 to 440 Hz , or from +5 VDC at 400 mA , max. All AC supplies use a high quality C-core, strip-wound line transformer that consumes a low 3.5 watts of input power. For portable applications using the +5 VDC input option, current drain can be further reduced to 120 mA by blanking the display and using a press-to-read switch, or the display can be separately duty cycled.
Model DM-2115 provides true differential input characteristics with an input impedance of 100 Megohms, min., and common mode rejection of 70 dB from DC to 60 Hz . The instrument accepts a single-ended or differential input voltage range of $\pm 1.999 \mathrm{~V}$ and generates a display that is accurate to within $\pm 0.05 \%$ of reading ± 1 count. The temperature coefficient is $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$, max. over the operating temperature range of 0 to $+50^{\circ} \mathrm{C}$. Optional models are available with full parallel, BCD TTL data outputs and auxiliary signals at the PC board I/O connector.
An internal start clock commands 4 conversions per second but an external capacitor will reduce this sampling rate. Or this internal clock can be inhibited to hold and display the last sample. An external start trigger pulse may be used to sample from 0 to 40 conversions per second.
Convenience features include display test and decimal point illumination by grounding pins. In AC versions, the high isolation line transformer and the separation of analog and digital grounds provide additional protection against ground loops.
Applications for the DM-2115 include measurement and display of any variable that can be converted to a voltage. These include pH , pressure, distortion, torque, liquid level, temperature, displacement and many others.

Covered by GSA Contract No. GS-00S-27959

INPUT/OUTPUT CONNECTIONS

PIN FUNCTIONS
NOTE: *Parallel BCD Outputs appear at asterisked pins for BCD Models only. Models without BCD have no connections at these

LOGIC
A
GND

AC LINE POWER INPUT
(A. EAND JVERSIONSI)

POWER AND SIGNAL CONNECTIONS (Internal Start Mode Shown)

INPUTS	
Input Voltage Range	± 1.999 Volts DC
Input Impedance	100 Megohms, min.
Type of Input	True Differential
Input Bias Current	Analog HI Input 3nA Typ, 7nA Max.
	Analog LO Input 45nA
	Typ, 500nA Max.
Input Polarity	Bipolar-Automatic
Common Mode Rejection	$70 \mathrm{~dB}, \mathrm{DC}-60 \mathrm{~Hz}$
Common Mode Range .	$\left(E_{I N}+E_{C M}\right)$ Must be with-
	in $\pm 3.0 \mathrm{~V}$ to logic or Analog Ground, $\pm 300 \mathrm{~V}$ to AC line
Input Overvoltage	$\pm 50 \mathrm{~V}$ Max. continuous
	$\pm 200 \mathrm{~V}$ Max. 5 sec. duration
PERFORMANCE	
Accuracy @ $\mathbf{2 5}^{\circ} \mathrm{C}$	$\pm 0.05 \%$ of reading ± 1 count
Resolution	1 mV
Temperature Coefficient	$\pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Max.
Conversion Speed	0 to 40 conversions/sec. max. (ext. trigger required at max. rate) 4 samples $/ \mathrm{sec}$.
	normal from Int. Clock. (adjustable)
Input Settling Time	$500 \mu \mathrm{~s}$ to 0.05% for full scale step. See timing diagram.
Operating Temperature Range	0 to $+50^{\circ} \mathrm{C}$
Storage Temperature Range	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Warm Up Time	5 minutes to specified accuracy.
Adjustments	Diff. Amp. Balance and
	Full Scale located behind snap on front Bezel and filter.
Power Supply	$\begin{aligned} & 100,115 \text { or 230VAC, } \\ & \pm 10 \%, 47 \text { to } 440 \mathrm{~Hz} @ 3.5 \end{aligned}$
	Watts or $+5 \mathrm{VDC} \pm 5 \%$, regulated at 400 mA max. total, spikes $\leqslant 10 \mathrm{mV}$.
	LOGIC and Analog: 150 mA drain (+5 V) (120 mA without BCD outputs)
	DISPLAY: $(+1888), 250 \mathrm{~mA}$ drain (+5 V) max ($\mathbf{p i n} \mathrm{A} 16$)
	NOTE: Display is on separate power connection, does not require regulation and can withstand $5 \mathrm{~V} \pm 1 \mathrm{~V}$ ripple.
DISPLAY OUTPUT	
Display Type	Solid State 0.43" Red
	LED. 100\% overrange.
Overload Scale	Indicated by alternating
	flashing of center bars and zeroes.
Decimal Points	3 left-hand decimal points
	selectable at rear connector.
	Ground appropriate pin for
	desired decimal point.
DATA OUTPUTS	(Available with BCD option
	only) TTL/DTL compat-
	ible, all outputs buffered.
	LOGIC LO $=$ ' 0 " $\leqslant+0.4 \mathrm{~V}$
	LOGIC HI = " 1 " $\geqslant+2.4 \mathrm{~V}$

ALL INPUT CONTROLS ARE TTL/DTL COMPATIBLE EXCEPT EXT. START (A13) (SEE PG. 4)

$$
\text { LOGIC LO }=0 \mathrm{~V} \leqslant{ }^{\prime \prime} 0^{\prime \prime} \leqslant+0.8 \mathrm{~V}
$$

$$
\text { LOGIC HI }=+2.0 \mathrm{~V} \leqslant{ }^{\prime \prime} 1 " \leqslant+5.0 \mathrm{~V}
$$

Internal Start Gate (Pin A10) . .	HIGH - RUN \} Loading, 1 LOW - HOLD $\}$ TTL load.
Internal Start Adjust (Pin A11)	Controls rate of Internal Start Pulse. See pg. 1.
Internal Start Out (Pin A12)	+5 V positive pulse 1 mS duration. 4 samples $/ \mathrm{sec}$.(adj)
$\overline{\text { Lamp Test Input (Pin A14) }}$	Grounding this input displays +1888 for testing all segments (4 TTL loads)
Decimal Point Inputs (Pins A5, 6, 7)	Grounding these inputs illuminates corresponding decimal points on the display. Sink $40 \mathrm{~mA}, 80 \mu \mathrm{sec}$, 33\% duty cycle
Display Power (pin A16)	250 mA max. at +5VDC
PHYSICAL	
Case Size	$\begin{aligned} & 3^{\prime \prime} \mathrm{W} \times 1.75^{\prime \prime} \mathrm{H} \times 2.25^{\prime \prime} \mathrm{D} \\ & (76,2 \mathrm{~mm} \times 44,4 \mathrm{~mm} \times \\ & 57,2 \mathrm{~mm}) \end{aligned}$
Case Material	Black polycarbonate plastic
Weight	Line Power Units - 10 oz. $(284 \mathrm{~g})$
	5 V Units - 5 oz . (141g)
Mounting	$1.812^{\prime \prime} \times 3.062^{\prime \prime}$ cut out attached by four 4.40 flathead countersunk screws.
Connector	DUAL 18-pin PC edgeboard type on $0.1^{\prime \prime}$ centers (Viking 3VH18/1JN-5 or 1JHD-5 equiv. w/keys).

CALIBRATION PROCEDURE

1. Remove the front bezel and filter and jumper pins A12 and A13 to initiate repetitive sampling using the internal start clock.
2. Connect both ANALOG INPUT pins to ANALOG GROUND and apply power
3. After 5 minutes of warmup, adjust the BALANCE potentiometer so that all display digits read zero while the display polarity indicator flickers equally between plus and minus. Offset range is approximately $\pm 15 \mathrm{mV}$.
4. On the DM-2115 under test, jumper ANALOG LO $I N$ and ANALOG GND. Then, apply +1.9905 VDC from a calibrated precision voltage reference to ANALOG HI IN, using ANALOG GND as signal input return.
5. Adjust the GAIN potentiometer of the unit under test so that the display flickers equally between +1.990 and +1.991 VDC

MINIATURE 4122 AND 433/4 DIGIT DIGITAL PANEL METERS

1020G Turnpike Street, Building S
Canton, Massachusetts 02021 U.S.A TEL: (617) 828-8000
TWX: 710-348-0135 TELEX: 924461

MODELS DM-4000 AND DM-4300

GENERAL DESCRIPTION

The Datel Models DM-4000 and DM-4300 are, respectively, the world's smallest $41 / 2$ and $43 / 4$ digit LED digital panel meters, and include input offset autozeroing.

Both models feature large, easy to read red LED displays that are $0.43^{\prime \prime}$ high in the DM-4000 and $0.3^{\prime \prime}$ high in the DM-4300. Input power for either model is +5 VDC at 600 mA , max.

These DPM's employ a differential, optically isolated floating input that withstands ± 300 volts common mode to digital ground with 120 dB common mode rejection from DC to 60 Hz . This provides high noise immunity in industrial applications.

The counter circuits are driven by a stable crystal controlled oscillator which may be specified to synchronize with either 50 or 60 Hz , the common $A C$ power line frequencies. Dual slope integration synchronized to 50 or 60 Hz provides 60 dB of normal mode rejection to power hum on the signal input.

An internal $\pm 6.4 \mathrm{VDC}$ reference and the reference input may be externally connected for 3 -wire, TC-tracking ratiometric measurements. This configuration reduces temperature drift errors by normalizing to a single positive reference voltage.

Model DM-4000 measures and displays a full scale input of $\pm 1.9999 \mathrm{~V}$. The full scale input/ display range of Model DM-4300 is $\pm 3.9999 \mathrm{~V}$. Both models have an input impedance in ex cess of 100 megohms, input bias current of 100 pA max. - which doubles each $10^{\circ} \mathrm{C}$.

Accuracy of Models DM-4000/4300 is $\pm 0.01 \%$ of reading ± 1 digit, with a temperature coefficient of $15 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max. over the 0 to $+50^{\circ} \mathrm{C}$ operating range. When operating from the internal clock both models update their display at a 2 sample per second rate, but when driven by an external start pulse the DM -4000 sampling rate can be varied from 0 to 5 per second and the DM-4300 from 0 to 3.3 per second. Calibration adjustments after a 15 minute warmup are easily accessible behind the front panel filter.
The red LED seven segment digits provide automatic display of overrange, overload, polarity and decimal point: Overload is indicated by alternate flashing of the center bars of the sign and 4 LSD displays. The decimal points are illuminated by grounding the appropriate connector pin.

DTL/TTL compatible overrange, polarity overload and EOC outputs are available at the rear case, 18 -pin dual PC board connector in both models. Sixteen lines of BCD data are optionally available at the rear connector in full parallel, 8-4-2-1 posifive true format.
These DPM's are housed in a high-impact polycarbonate case that measures only $3^{\prime \prime} \mathrm{W} \times$ $1.75^{\prime \prime} \mathrm{H} \times 2.25^{\prime \prime} \mathrm{D}$.

High immunity to common mode and normal mode voltages combined with the ratiometric feature especially recommend these DPM's for use with many bridge transducers. Applications include temperature measurement, motion, stress and many other physical phenomena.

SPECIFICATIONS (Typical @ $+25^{\circ} \mathrm{C}$ unless noted)

INPUT CHARACTERISICS	
Input Voltage Range (Full Scale)	DM-4000: ± 1.9999 Volts DM-4300: ± 3.9999 Volts
Input Impedance	Greater than 100 megohms
Input Bias Current	100pA max. @ $25^{\circ} \mathrm{C}$ (doubles $/ 10^{\circ} \mathrm{C}$)
Input Configuration	Single-ended floating. Optical isolation to digital ground employed for differential characteristics.
Input Polarity	Automatic bipolar with polarity display indication.
Common Mode Rejection	120 dB , DC to 60 Hz with up to 1 K ohm source unbalance.
Common Mode Voltage Range	± 300 Volts to digital ground.
Input Overvoltage	$\pm 50 \mathrm{~V}$ min. (sustained) between inputs without damage. $\pm 100 \mathrm{~V}$ to 5 seconds without damage.
PERFORMANCE	
Accuracy (@ $\mathbf{2 5}^{\circ} \mathrm{C}$)	$\pm .01 \%$ of reading ± 1 digit.
Resolution	$100 \mu \mathrm{~V}$
Temperature Coefficient of Rea	15ppm/ ${ }^{\text {C }}$ max.
Conversion Speed (Adjustable ext. trigger)	DM-4000: 0 to 5 conversions/sec. DM-4300: 0 to $3-1 / 3$ conversions/sec.
Input Settling Time	50 mS integration for 60 Hz line. 60 mS integration for 50 Hz line optional.
Operating Temperature Range	0 to $+50^{\circ} \mathrm{C}$.
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Warm Up Time	15 minutes to rated accuracy.
Adjustments	Full scale (Gain) trim located behind front bezel. Separate \pm adjustment and ratio zero trim. Autozeroing.
Input Power	$+5 \pm .25$ VDC @ 600 mA max. (with input logic spikes 10 mV max.). Suggested power supply is a Datel UPM-5/1000B or equivalent highly regulated type. Power current varies rapidly with digits displayed, conversion rate, etc.
DISPLAY OUTPUT	
Display Type	Red, LED seven segment digits with automatic display of overrange, overload, polarity and decimal point: DM-4000: Digits $0.43^{\prime \prime}$ high DM-4300: Digits $0.30^{\prime \prime}$ high
Overload Scale	Sign and 4 LSD's display center bars blink.
Decimal Points	Selectable at rear connector. Left of each full digit.
OPTIONAL DATA OUTPUTS	
BCD Outputs	16 parallel lines (8-4-2-1) positive true. Loading: 2 TTL loads.
Overrange	DM-4000: 10000 to 19999 counts indicated by HIGH on pin A15 with LOW on overflow (pin A9).

	DM-4300: 10000 to 39999 counts indicated by a positive true 2-1 BCD code on pins A14 and A15 along with a LOW on overflow (pin A9)
Polarity	Input signal polarity positive indicated with a HIGH. Negative polarity indicated with a LOW.
Overload Scale	DM-4000: Greater than 19999 counts indicated by a HIGH (positive true) on overflow (pin A9). Less than 19999 counts indicated by a LOW. DM-4300: Greater than 39999 indicated by HIGH on overflow (pin A9). Less than 39999 counts indicated by a LOW.
End of Conversion (EOC)	HIGH - during conversion, BCD outputs counting and invalid. LOW - conversion complete. BCD outputs valid $500 \mu \mathrm{sec}$ after EOC. (See timing diagram)
INPUT/OUTPUT CONTROL	
External Start Conversion Command.	Positive pulse 100 nsec. min . width. 2.0 V min . 5 V max. height. Conversion initiated upon return from "HIGH" to "LOW".
Internal Clock Start Gate	Controls internal start clock "HIGH" - Run "LOW" - Stop Loading - 1 TTL load.
Internal Start Output	Positive pulse output of internal start clock. 2 pulses/second.
Decimal Point Inputs	Grounding these inputs illuminates corresponding decimal points on the display.
Ratiometric Output	Derived from internal reference for TC-tracking. Provides $\pm 6.4 \mathrm{~V}$ @ 2 mA max. for 3-wire ratiometric measurement. Ratiometric inputs can be normalized to a single positive reference voltage.
Ratiometric Input	Calibrated for $+6.4 \quad \mathrm{~V} \pm 5 \%$ input lavail. from ratiometric output, above). May be varied from +3 V to +10 VDC for TC-tracking bridge applications. Read- $\text { ing (volts) }=\frac{V_{\text {IN }} \times 6.4}{V_{\text {REF IN }}}$
PHYSICAL	
Case Size	$3^{\prime \prime} \mathrm{W} \times 1.75^{\prime \prime} \mathrm{H} \times 2.25^{\prime \prime} \mathrm{D}$
Case Material	Black high-impact polycarbonate plastic.
Weight	8-10 oz.
Mounting	Through a $1.812^{\prime \prime} \times 3.062^{\prime \prime}$ cutout secured with four $4-40$ screws.
Connector	Dual 18 -pin PC edgeboard type, $0.1^{\prime \prime}$ centers (not included, see ordering guide)

CALIBRATION POTENTIOMETERS
SEE CALIBRATION PROCEDURE, PG. 4

USE OF
EXTERNAL START TRIGGER

DATEL

JUMPER A12/A13 TO USE INTERNAL START CLOCK, JUMPER A2/B2 TO CONNECT INT. REFERENCE

CALIBRATION PROCEDURE

1. For normal operation (see figure) jumper pin $A 12$ to $A 13$ and pin A2 to B 2 .
2. Apply power to the DPM and a precision calibrated DC voltage source and allow both at least fifteen minutes for warm up before proceeding.
a) Short the input leads (A1 and-B1) to ground. Adjust the FINE ZERO so that the display reads all zero's and the sign flickers between plus and minus. Disconnect the input leads from ground and connect them to the precision voltage source.
3. For both models, zeroing is automatic and the calibration adjustments are accessible after the front panel bezel and filter are removed.
a) FOR MODEL DM-4000: Apply an input of +1.99905 volts and set the + SCALE ADJ. potentiometer so that the display flickers equally between +1.9990 and +1.9991 VDC. Reverse the input polarity and set the -SCALE ADJ. potentiometer for a display that flickers between -1.9990 and -1.9991 .
b) FOR MODEL DM-4300: Apply an input of +3.99905 Volts and set the +SCALE ADJ. potentiometer so that the display flickers between +3.9990 and +3.9991 VDC. Reverse the input polarity and Set-SCALE ADJ. for display that flickers between-3.9990 and-3.9991 VDC.
4. For ratiometric operation (see figure showing typical connection) the previous steps must first be performed.

PRICES (1-9)

	Without BCD Option	With B	ption
(41/2 digit)	DM-4000A . . \$219.00	DM-4000B	00
(4\%/2 digit)	DM-4300A . . \$235.00	DM-4300B	\$255.00
Suggested Power Supply:			
UPM-5/1000B +5VDC Modular Power Supply \$49.00 (115VAC Input)			
UPM-5/1000BE +5VDC Modular Power Supply \$54.00 (230 VAC Input)			
MS-7 Mating Power Supply Socket \$3.50			

Connectors (Not included with DPM. Please order with your DPM)
Solder Tab, Datel \#2335-1 (Viking 3VH18/1JN-5 \$4.95 or equivalent with key)
Wire Wrap, Datel \#2335-2 (Viking 3VH18/1JHD-5 \$4.95 or equivalent with key)

ORDERING GUIDE

GSA Contracted: Datel's Digital Panel Meters are covered by GSA Contract GS-00S-27959

6-DIGIT, PANEL-MOUNT COUNTER/ TOTALIZER WITH TIMEBASE

 MODEL DPC-8100
FEATURES

- Count capacity 999,999 pulses (6 decades) displàyed on $.6^{\prime \prime}$ high digits, AC line or +5 VDC powered
- Accepts several input types:

1. Switch inputs, Form A, B \& C
2. Comparator, 25 mV to $2 \mathrm{~V}, \mathbf{3 0 0} \mathrm{~V}$ rms isolation
3. Logic to 10 MHz , or optoisolated logic to 500 kHz

- Full parallel BCD data outputs

Optional stored BCD outputs can be gated or multiplexed onto a data bus.

- Optional crystal timebase to measure frequency, countrate or tachometer inputs.

DESCRIPTION

The DPC-8100 Digital Panel Counter records and displays up to 6 digits of input counts or events (999,999 capacity) on bright .6" (15 mm) high LED readouts. The panel mounting instrument accepts a very wide variety of inputs so that one basic instrument will serve many applications.
The all-electronic counting circuitry can record up to 10 million counts per second. Applications include industrial event counting and totalizing and process control batch counting.
Inputs may be derived from Form A, B or C switch closures with anti-bounce filtering provided. Low level signals down to $\pm 25 \mathrm{mV}$ with $\pm 300 \mathrm{~V}$ isolation may be accepted at rates up to 1 MHz using the optional low level comparator. Optoisolated inputs are also available with count rates up to 500 kHz and isolation to $\pm 300 \mathrm{~V}$ RMS. Control inputs such as start, stop and reset as well as the count input may be optoisolated. Finally, direct TTL logic inputs will accept up to 10 MHz count rate.
The DPC-8100 Counter features digital logic outputs of the displayed count for data transmission to a computer or digital processor. These outputs are in full parallel standard binary coded decimal form (BCD) with TTL/ DTL compatible logic levels. An optional second PC board with a fully latched and gated $B C D$ register will store the digital outputs.
These stored outputs may be transmitted at any time on external command to a remote processor using a data bus. Gating is compatible to open collector TTL/DTL logic and outputs can be multiplexed in groups of 4 lines up to 24 lines (6 digits).
The optional second PC board can also contain a high accuracy timebase to allow precise gating of external count inputs. The crystal-controlled timebase converts the DPC-8100 into a countrate, frequency or period meter or a tachometer. When used with the BCD buffer, very short samples (down to $10 \mu \mathrm{~s}$) of count rates may be taken then displayed for convenient viewing. (See Display Modes).
Front panel controls on the DPC-8100 manually control start, stop, and reset functions while logic inputs duplicate these functions. Many other input/output functions and displays are provided to adapt to a range of applications. The DPC-8100 Counter is powered by a choice of 100,115 or $230 \mathrm{VAC}, 47$ to 440 Hz or from +5VDC at 1.5 Amps max.
A black anodized extruded aluminum case houses the DPC-8100 for high electrical noise rejection in industrial environments. Additional power line filtering is offered by a bifilarwound choke and regulated power supply.

Covered by GSA Contract No. GS-00S-27959

GENERAL

CONTROL INPUTS

LOW LEVEL COMPARATOR

Level - sensitive (rise time not critical) to inputs from $\pm \mathbf{2 5 m V} \mathbf{m i n}$. to $-2 \mathrm{~V},+5 \mathrm{~V}$ max. using ext. threshold adj. (see applications).

Hysteresis	15 mV
Max count rate	1 MHz
Isolation	300 V rms from input to logic gnd.
Input Impedance (differential)	$1 \mathrm{M} \Omega$
Input Impedance	
(to Lo Level Com.)	$500 \mathrm{~K} \Omega$
Input Bias Current	$10 \mu \mathrm{~A}$
Capacitive Coupling (In puts and floating power	
leads to logic gnd.)	50 pF
Excitation current .	Up to 1 mA out available from +10 V and -5 V floating power outputs to excite ex ternal threshold potentiometer, or bridge circuit.

SWITCH INPUT

Transistor stage with int./ext anti-bounce filtering for Form A, B or C switch inputs. 50 counts/sec, max., adj. using ext. filtr. components. TTL input (below) may be wired for higher speed.

TTL COUNT INPUT

Logic compatible inputs, using Schmitt level-sensitive NAND gates (rise time not critical).

Positive - going threshold +1.7 V
Negative-going threshold +0.9 V
Loading 1 TTL load plus $4.7 \mathrm{~K} \Omega$
pullup to +5 V
May be wired for latching operation to accept Form C contacts. Count is recorded on A31 (latch) falling edge.
Max count rate 10 MHz

OPTOISOLATOR FOR TTL INPUT - Externally wired to TTL input. Pins A33 (+) and A34 (-), see applications.
Isolation.............. 300 V rms
Max count rate 500 KHz
DIGITAL INPUTS
ALL DIGITAL INPUTS ARE COMPATIBLE WITH DTL/TTL LOGIC SOURCES:
LO = "ZERO" $<+0.8 \mathrm{~V}$
$\mathrm{HI}=$ "ONE" $>+2.0 \mathrm{~V}$
$\overline{R U N} / \mathrm{STOP}$ (pin A 15) - 1 line, 1 TTL load, plus $4.7 \mathrm{~K} \Omega$ pullup to +5 V . $\overline{\text { STOP }}$ input (pin A18) must be grounded when using $\overline{\mathrm{RUN}} /$ STOP input. Leave $\overline{\mathrm{RUN} / \mathrm{STOP} \text { floating or } \mathrm{HI} \text { if not used. }}$
Level sensitive (rise time not critical) using Schmitt logic
HI - Counting is stopped
LO - Counts are accepted
Positive-going threshold . +1.7V
Negative-going threshold +0.9 V
START (pin A17) 1 line, 1 TTL load plus $4.7 \mathrm{~K} \Omega$ pullup to +5 V . Counts accepted after falling edge of LO pulse, 50 nsec min. width, until STOP is pulsed. $\overline{\mathrm{RESET}}$ must be HI to enable start of counting. START LO pulse will be stored if $\overline{\operatorname{RESET}}$ is LO but will not be enabled until RESET goes HI. (Note: $\overline{\text { START and }} \overline{\text { STOP }}$ form an RS latch circuit. The last input to be LO determines the latch state.
$\overline{\operatorname{STOP}}($ pin A18) 1 line, 1 TTL load plus $4.7 \mathrm{~K} \Omega$ pullup to +5 V . Counting is stopped on falling edge of LO pulse, 50 nsec min . width. Count pulse in progress is recorded if STOP occurs. Gnd. if using $\overline{R U N} /$ STOP control. Counts are held after $\overline{\text { STOP }}$ until cleared by RESET.
$\overline{\operatorname{RESET}}$ (pin A16)
1 line, 1 TTL load, LO pulse 50 nsec min. clears counter to 000,000 but does not inhibit additional counts unless STOP has occurred. Schmitt level-sensitive input. Negative going threshold to +0.9 V . Posi-tive-going threshold +1.7 V .
Optoisolated inputs for START, STOP, and RESET are also provided, see applications. Pulse resolution, 1 microsecond. Max. pulse rate, 500 KHz . Isolation 300 V rms
Display Blank (pin A11) 1 line, 3 TTL load. Ground to illuminate display. Float to blank display, or connect to TTL logic.
Display Follow/Hold
(pin A12)
(for optional latchable
display only)
$\overline{\text { Decimal }} \overline{\text { Points }} \ldots . . . \begin{aligned} & \text { regulated must be used on } \text { V LED's }^{\prime} \\ & \text { lines, ground to illuminate correspond. }\end{aligned}$ ing left of digit decimal point (see pin out). 16 mA sink req'd for logic drive.
$\overline{\text { Leading }} \overline{\text { Zero }} \overline{\text { Blank }}$
(pin A22) 1 line, 1 TTL load. LO blanks leading zeroes.

DATA OUTPUTS

All digital outputs are compatible with DTL/TTL logic levels.
LO = "ZERO" < + 0.4 V Positive
$\mathrm{HI}=$ "ONE" $>+2.4 \mathrm{~V} \quad$ True
BCD COUNT DIGITS (pins B13 thru B36) Full parallel binary coded decimal (1-2-4-8), consecutively spaced in ascending order. 24 lines, totem-pole TTL logic levels out, positive true. 7 TTL loads.
Overrange Out (pin A23) - 1 line, 10 TTL loads
HI - Count exceeds 999,999
LO - When RESET occurs, or if count is less than $1,000,000$.

CONTROL OUTPUTS

Reset Out (pin A35) . . . 1 line, 10 TTL loads. Logic output of $\overline{\mathrm{RE}}$. $\overline{\text { SET }}$ function, can be tied to STOP input to clear and inhibit counts. Totem-pole format.
$\overline{\text { Gate }}$ Out (pin B8) 1 line, 10 TTL loads LO - counts are accepted. Count pulse in progress holds GATE LO until count is recorded, if $\overline{\text { STOP }}$ is pulsed.
HI - counting is stopped
$\overline{\text { Power }} \overline{\text { Fail }}$ (pin B9) 1 line, 10 TTL loads
LO - power has been interrupted, counts may be invalid. LO at power turn-on. HI - when RESET occurs.

ADDITIONAL CONNECTIONS

$\mathrm{V}_{\text {LED }} 1$ (pin A36) 3MSD's) Each input connects +5 V power to 3 dis-
 connection. Internally connected on AC versions. (Don't connect.)
+5VDC Power (pins A1 \&
B1 internally connected) These pins are for +5VDC logic power input on +5 V powered units, 1 Amp max. On AC-powered models, an output of $+5 V D C @ 200 \mathrm{~mA}$ max is available from these pins.
A1 \& B1 are not internally connected to the displays except on AC models. (Use $V_{\text {LED }} 1 \& 2$ for displays)

Power and Logic Ground
(pins A2 \& B2 internally
connected +5 V power return for display and logic.
POWER SUPPLY
Choice of 100,115 or 230 VAC $\pm 10 \%, 10$ watts typ, 47 to 63 Hz . OR -
$+5 \pm 0.25 \mathrm{VDC} @ 1.6 \mathrm{~A} \max$ (displays \& logic), logic noise 50 mV max. BCD Buffer/Timebase +5VDC @ 175 mA , regulated (spikes $<50 \mathrm{mV}$)

CONNECTORS

Dual 36 -pin PC edgeboard type, $0.1^{\prime \prime}$ centers, solder tabs, Datel 2597-14 (Viking 3VH 36/1JN-5 or equivalent) AC power connected by triple $1 / 4^{\prime \prime}$ tab assembly, recessed male, center tab grounded to case. PC board connectors included with each unit, plus a U.S. 3-prong type 9115 line cord.

MOUNTING

Panel-mounting through a cutout measuring 2.16" $\mathrm{H} \times 5.59^{\prime \prime} \mathrm{W}(54,8$ $X 142,1 \mathrm{~mm}$) and secured by 2 U-Straps. See mounting diagram.
MECHANICAL DIMENSIONS
 $53,6 \times 146,8 \mathrm{~mm})$
Bezel $5.86^{\prime \prime}$ W $\times 2.25^{\prime \prime} \mathrm{H} \times 0.50^{\prime \prime}$ ТНК $(148,7 \times$ $57,0 \times 12,7 \mathrm{~mm})$ (See Diagrams) Bezel, filter and PC Brds are removable from front while unit remains secured in panel.
Weight $2.25 \mathrm{LB}(1,0 \mathrm{Kg})$

INPUT/OUTPUT CONNECTIONS
DPC- 8100 DIGITAL

PANEL COUNTER
(REAR PC BRD)

A BOTTOM	LEFT	$\begin{gathered} \text { B } \\ \text { TOP } \end{gathered}$
+5V POWER	1	+5V POWER
PWR \& DIG. GND	2	PWR \& DIG. GND
+10V PWR. FLOAT.	3	ISOL. RESET +
LO LEVEL - IN	4	-5V PWR. FLOAT.
LO LEVEL + IN	5	LO LVL. COM. FLOAT.
ISOL. RESET -	6	LO LEVEL OUT
ISOL. START +	7	+5 V TO V LED 2
ISOL. START -	8	GATE OUT
ISOL. STOP +	9	POWER FAIL OUT
ISOL. STOP -	10	$\overline{\mathrm{DEC}} . \overline{\mathrm{PT}} .0$
DISPLAY BLANK	11	$\overline{\mathrm{DEC}}$. $\overline{\text { PT. }} .00$
DISPLAY FOLLOW/[HOLE	12	$\overline{\text { DEC. }}$. $\overline{\text { T }} .000$
ISOL. $\overline{\text { RUN }}$ /STOP +	13	BCD OUT 1
ISOL. $\overline{\text { RUN } / S T O P ~-~}$	14	BCD OUT 2
$\overline{R U N / S T O P I N}$	15	BCD OUT 4
RESET IN	16	BCD OUT 8
START IN	17	BCD OUT 10
$\overline{\text { STOP IN }}$	18	BCD OUT 20
$\overline{\text { DEC. }}$. $\overline{\text { PT}} .0000$	19	BCD OUT 40
$\overline{\text { DEC. }}$. $\overline{\text { PT. }} .00000$	20	BCD OUT 80
$\overline{\text { DEC. }} \overline{\text { PT }} .000000$	21	BCD OUT 100
LEAD ZERO BLANK	22	BCD OUT 200
OVERRANGE OUT	23	BCD OUT 400
CNT. OUT/RC ADJ	24	BCD OUT 800
+5V RC ADJ	25	BCD OUT 1 K
SW. COUNT IN	26	BCD OUT 2 K
AUX. DIG. GND	27	BCD OUT 4K
COUNT IN TTL	28	BCD OUT 8K
COUNT IN TTL	29	BCD OUT 10K
COUNT IN TTL	30	BCD OUT 20K
COUNT LATCH	31	BCD OUT 40 K
ISOL. COUNT OUT	32	BCD OUT 80K
ISOL. COUNT + IN	33	BCD OUT 100K
ISOL. COUNT - IN	34	BCD OUT 200K
$\overline{\text { RESET OUT }}$	35	BCD OUT 400K
+5 V to $\mathrm{V}_{\text {LED }} 1$	36	BCD OUT 800K
A BOTTOM	RIGHT	$\begin{gathered} \text { B } \\ \text { TOP } \end{gathered}$

EQUIVALENT INPUT CIRCUITS (SEE APPLICATIONS SECTION)

COUNTER BLOCK DIAGRAM

OPTOISOLATOR TYPICAL WIRING RECOMMENDED CONNECTION
EXT. $+5 V$ FLOATING

EXT. TOTEM POLE
OR OPEN.
COLLECTOR
TTL OUTPUT

ALTERNATE CONNECTION

COUNTER TIMING DIAGRAM TYPICAL CONTROL SEQUENCE

APPLICATIONS

LOW LEVEL OPTION

SWITCH INPUT WIRING
2-WIRE, 50 COUNTS/SEC, MAX
EXTERNAL CONNECTIONS INTERNAL CONNECTIONS

LATCHING SWITCH INPUT TYPICAL TIMING DIAGRAM

OPTIONAL BCD OUTPUT BUFFER/PROGRAMMABLE TIME BASE

A second PC board mounted in the upper card slot is available with the DPC-8100 Counter. This second board can contain a latchable, gatable BCD output buffer and/or a high-accuracy crystal-controlled timebase generator. The timebase produces count gates which are pin-selectable from $10 \mu \mathrm{~S}$ to 10 seconds in decade steps. Overall accuracy of the timebase is $\pm 50 \mathrm{ppm} \pm 50$ nanoseconds (0 to $+50^{\circ} \mathrm{C}$).
The BCD Buffer and Timebase allow for storing and transmitting count outputs, for frequency, period or tachometer counting modes and for several display viewing modes.

INPUT/OUTPUT CONNECTIONS

BCD Buffer/Timebase power required +5VDC regulated @ 175 mA max (spikes 50 mV max)

sottom	Left	$\begin{gathered} \text { B } \\ \text { Top } \end{gathered}$
+5V POWER © 175 ma	1	H5V POWER 9175 mA
WR. A DIG GND	2	PWR. \triangle DIG. GND
HoLi/Follow out	3	hlo or blank out
enable bco look	4	RESET OUT
ENABLE BCD 10 K	5	ON/OFF IN
enable bco ik	6	timebase -
enable bcd 100	7	timebase 2
enable bcd 10	8	timebase 4
enable bico i	-	Ruvout
ENABLE POLA O.R.	10	ovenscale out
POSNEEG SION IN	11	POS/REC SIGN OUT
overscale in	12	HOLIFOLLOW IN
BCO 1 IN	13	BCDIOUT
BCO2IN	14	BCD 2 OUT
SCD 4 in	15	BCOAOUT
ccosin	16	BCDB OUT
eco 10 in	17	BCD 1000 T
${ }^{3} \mathrm{CO} 20 \mathrm{in}$	18	BCD 20 OUT
SCD 40 in	19	BCD 40 OUT
3 CD 00 in	20	BCD 80 OUT
SCO 100 IN	21	BCD 100 Out
BCO 200 in	22	BCD 200 OUT
BCO 400 IN	23	BCD 400 OUT
BCD 800 IN	24	BCO 800 OUT
SCD IK IN	25	SCD Ik out
SCD 2 K IN	28	SCO 2 K out
8 CD 4 AK IN	27	BCD 4k OUT
ACD Bkin	28	BCO8k out
SCO 10K IN	28	BCD IOK OUT
SCO 20k In	30	BCD 20K OUT
BCD 40K IN	31	BCD A0K OUT
BCO Sok in	32	BCD 80K OUT
BCD 100 K IN	33	BCD 100 K OUT
BCO 200k in	34	SCD 200k Out
SCO 400 K IN	35	BCD A00K OUT
sco 800 ok In	36	8CD 800k out
softom	Right	$\begin{gathered} \text { B } \\ \text { Top } \end{gathered}$

OPTIONAL BCD BUFFER BLOCK DIAGRAM

TYPICAL DATA TRANSMISSION APPLICATION

This block diagram shows the optional BCD Buffer and Timebase connected to the DPC-8100 Counter to create a complete data bussing system. This system utilizes a 4-bit, open-collector TTL data bus which is compatible with most microprocessors and minicomputers. By grouping appropriate DIGIT ENABLE STROBE lines, 8-Bit, 16-Bit or full parallel data transmission can be used for higher speeds.

This application shows all 6 BCD digits multiplexed onto 4 lines using bit-parallel, digit-serial format. The power fail and overscale flags are also multiplexed as a 2 -bit 7 th word after the (6) 4 -bit BCD words. Six enable lines successively multiplex the open collector BCD digits and a seventh enable (A10) multiplexes the power fail and over range flags.

TIMEBASE OPTION

The timebase option produces a $\overline{R U N}$ pulse of precise duration controlled by a crystal oscillator. The overall timing accuracy is $\pm 50 \mathrm{ppm}$ $\pm 50 \mathrm{nSec}$ over 0 to $+50^{\circ} \mathrm{C}$. This RUN pulse may be initiated asynchronously at any time by the $\overline{O N} / O F F$ control (B5). The RUN pulse is normally connected to the $\overline{R U N} /$ STOP control (A15) of the counter to gate in external counts during accurately measured intervals. This mode of operation allows the counter to be used as a frequency meter, tachometer or digital integrator.
After each fixed length $\overline{\text { RUN }}$ pulse, a one second viewing pause is generated during which external counts are locked out and the display shows the last group of accumulated counts.

The fixed length $\overline{R U N}$ timebase pulse can be started at any time or the $\overline{O N} /$ OFF control may be held LO continuously to give a repeating series of $\overline{R U N}$ pulses followed by one second viewing intervals.
The length of the $\overline{R U N}$ timebase pulse is programmable using a 3 bit code wired to rear connector pins B6, B7, and B8. Timebase periods may be selected from 10 microseconds to 10 seconds (see chart).
A 250 nanosecond $\overline{\text { RESET pulse is issued just before the } \overline{R U N} \text { pulse }}$ to clear the counter to zero. Complementary BLANK and FOLLOW/ $\overline{\text { HOLD outputs are also issued for display and BCD buffer control }}$ (see Display Modes description).

TIMING DIAGRAM (OPTIONAL TIMEBASE)

TIMEBASE
OPTION
(UPPER
PC BRD)

TIMEBASE PERIOD

DISPLAY MODES

Several display viewing modes are possible with the DPC-8100 counter and timebase/buffer option.
In the first mode when the display latching feature is not used, the blanking line is connected to illuminate the display only during the one second viewing period. During the counting interval (RUN), the display is blanked to avoid confusion caused by counts rapidly accumulating on the display. The Gate On light shows that counts are accumulating.
In long timebase applications (up to 10 seconds) the display will be illuminated one second out of every 11 seconds. If counts are accu-

NO DISPLAY
LATCH OPTION
mulated slowly and the user wants to observe this, the blanking line can be left disconnected.
In the second mode, the display latch option is used so that the display is never blanked. At the end of the count interval, the display (and optional BCD buffer latches) are updated (unlatched) to follow the count now stored in the DPC-8100 output register. After the one second viewing period, this count is stored in the latches and the counter is cleared by a RESET pulse. The counter begins accumulating counts again while the previous count is displayed. The display is never blanked.

control connections

WITH
DISPLAY
LATCH
OPTION

The DPC-8100 Counter is
covered by GSA Contract No. GS-00S-27959

ORDERING GUIDE
DPC-8100

Prices (1-9)

$\underset{E}{\text { DPC-8100 A2A1A1 }}$	\$299.
J	
DPC-8100 D2A1A1	$\$ 245$.

Add for gatable, latchable BCD $\$ 70$.Note: Input optoisolation omitted on special order only. Standard units include
*Note: Input optoisolation omitted on special order only. Standard units include optoisolated inputs.

* Note: Standard units will have non-latched displays, i.e. data latching must be performed using the optional BCD buffer board or by customer's external latching register. The latching display option is available on special order only (Add \$50, to price).

1020 G Turnpike Street, Building S
Canton, Massachusetts 02021 U.S.A
TEL: (617) $828-8000$
TWX: 710-348-0135 TELEX: 924461

6-DIGIT, PANEL-MOUNT TIMER/STOPCLOCK

FEATURES

- 6-Digit timing ranges available from 999999 μ Sec to 999:59.9 Hrs./Min
$-$ Bright $0.6^{\prime \prime}$ high (15 mm) LED displays High accuracy event or interval timer or period meter with full parallel BCD outputsUse with 8400 -series comparators to form preset timers for process control
A Accepts switch contact or logic control Optional stored BCD outputs can be gated or multiplexed onto a data bus

DESCRIPTION

The model DSC-8200 Digital Stop Clock is a general purpose count-up timer using allelectronic timing and display. A host of expandable systems features allow the user to progress from a simple hand-operated Stop Clock to a complete minicomputer data-buscompatible period measuring instrument. Yet, the DSC-8200 retains the small size and appearance of other panel-mounting instruments in Datel's 8000 series.
All DSC-8200 models have time displays consisting of six Light Emitting Diode (LED) 7 -segment digits 0.6 inches (15 mm) high. A leading zero suppression control allows right-justified display of time periods less than six full digits. Five basic display formats using one or two colons or no colons, provide an extremely wide choice of full scale time ranges covering hours, minutes, seconds, milliseconds or microseconds. (See chart, Page five) An accurate, stable quartz crystal timebase is standard on all units providing $\pm 10 \mathrm{ppm}$ maximum drift over the 0 to $+50^{\circ} \mathrm{C}$ operating temperature range. The user may select the optional 50 or 60 Hz AC line timebase which provides very high long term accuracy periodically corrected by power utilities. The AC line timebase may be used with the +5 VDC-powered versions of the DSC-8200 as well as 100,115 or 230 VAC line-powered versions. Front panel pushbuttons control the start, stop and reset functions of the DSC-8200 but for high speed, high accuracy event timing or automatic control, these functions are duplicated by rear connector logic inputs. These logic inputs accept digital commands from TTL/DTL compatible logic devices or from Form A or B Switch contacts. The switch contact inputs may be used for remote single or multiple station accumulated time functions as well as position or cam-operated limit switches.
Special care was taken in the DSC-8200 design to eliminate timing errors due to electrical or logic noise. The instrument is fully enclosed in a rugged shielded aluminum housing. The regulated AC power supply uses a bifilar-wound choke to filter line noise and all control inputs employ Schmitt level-sensitive logic (not edge-sensitive). Optional input optoisolation provides further immunity to digital noise or for use with floating $A C$ inputs.
Full parallel, binary-coded-decimal (BCD) 1 -2-4-8 outputs of the displayed time period

are provided on the rear $1 / 0$ connector. These logic outputs have TTL/DTL levels and may be externally connected to an optional BCD Buffer board which fits in the top PC board slot. The BCD Buffer option will store one full output of the accumulated time and will transmit this data on external command in full parallel or in groups of 4 bits at a time.
The BCD Buffer provides storage and gating to asynchronous open-collector TTL data busses used on most main frame processors, minicomputers and microprocessors. A processing sys-
tem can automatically poll the DSC-8200 to transmit its data as part of the instruction program of a complete control system.
Many other systems features are incorporated in the DSC-8200. These include power failure and overscale indicators and outputs. Optional display latches let the user view one time period while the next timing interval is counting. This feature is useful for short, high-speed measurements such as period meters requiring longer display viewing times.

GENERAL
Displays

FRONT PANEL CONTROLS

Start Pushbutton initiates timing. Hold Start button in two seconds or longer to test display segments with all 8's. Does not disrupt timing
Stop Pushbutton stops timing and accumulated time remains on the display until RESET occurs.
Reset Pushbutton clears display to all zero's, but next timing interval will immediately begin unless STOP function is also activated (instrument can be externally wired to inhibit the next timing interval).
Display Test See START control. The display test is not available if the optional display latches are ordered.

DIGITAL INPUTS
All digital inputs are compatible with DTL/TTL logic sources:
"ZERO" OV \leqslant LO $\leqslant+0.8 \mathrm{~V}$ | EXCEPT
"ONE" $+2.0 \mathrm{~V} \leqslant \mathrm{HI} \leqslant+5.0 \mathrm{~V}\}$ AS NOTED
All control inputs are level sensitive (rise time is not critical). All other dynamic inputs must use TTL-compatible risetimes.
START (pin B11) 1 line, 1 TTL load plus $4.7 \mathrm{~K} \Omega$ pullup to +5 V . Timing begins on falling edge of LO pulse, 50 nsec minimum width. $\overline{\mathrm{RE}}$ $\overline{\text { SET }}$ must be HI to enable start of timing. START LO pulse will be stored if $\overline{\text { RESET }}$ is LO but will not be enabled until RESET goes HI.
(Note: $\overline{\text { START }}$ and STOP form an RS latch circuit. The last input to be LO determines the latch state.)
$\overline{\text { STOP }}$ (pin A6) 1 line, 1 TTL load plus $4.7 \mathrm{~K} \Omega$ pullup to +5 V . Timing stops on falling edge of LO pulse, 50 nsec minimum width. Ground STOP if using the $\overline{R U N} /$ STOP INPUT. Time is held after STOP until cleared to zero by RESET.
RESET (pin A5) 1 line, 75 TTL loads plus $4.7 \mathrm{~K} \Omega$ pullup to +5 V . Schmitt level-sensitive input.
Negative-going threshold +0.9 V .
Positive-going threshold +1.7V .
LO: Falling edge of $\overline{\text { RESET }}$ LO pulse jams time at all zero's but does not affect the START-STOP latch. A START LO pulse may be stored, but will be inhibited until RESET goes HI. Minimum RESET LO pulse width is 50 nsec.
HI: START or STOP functions may be stored and enabled.

RUN/STOP (pin B12) . . .
1 line, 1 TTL load plus $4.7 \mathrm{~K} \Omega$ pullup to +5 V . Gnd. pin A6 when using $\overline{\mathrm{RUN}} /$ STOP. Float $\overline{R U N} /$ STOP if not used.
HI: Timing is stopped.
LO: Timing in progress.
(Schmitt level-sensitive input)
Positive-going threshold +1.7 V .
Negative-going threshold $+\mathbf{0 . 9 V}$.

OPTOISOLATED CONTROL INPUTS
ISOLATED START, STOP, RESET AND RUN/STOP (See page 4)
Pulse width
$1 \mu \mathrm{sec}, \mathrm{min}$.
Isolation
300 Volts, RMS
Turn-on 15 mA sink
Refer to Applications for wiring details
DISPLAY BLANK (pin A36) 1 line, $I_{I L}=5 \mathrm{~mA}$ (sink), $I_{I H}=0 @$
$+2.5 \mathrm{~V}_{1 \mathrm{~N}}=6.25 \mathrm{~mA} @ 5 \mathrm{~V}_{\mathrm{IN}}$
HI (float or cutoff open collector TTL)
= Blank Display
LO or GND = illuminate display
$\overline{\text { DECIMAL POINTS }}$
(pins A25, A27 thru A31) 6 lines, ground LO to illuminate corresponding left-of-digit decimal point (see I/O connections). 16 mA sink (10 TTL loads) for logic drive.

LAMP TEST or DISPLAY

FOLLOW/HOLD (pin B3)

1 line

This input will test the display with all 8 's if the latchable display option is not included. With the display latch option, this input stores a displayed time until updated, but the lamp test is not available.

1. $\overline{\text { LAMP }} \overline{\text { TEST, sink }} 9.6 \mathrm{~mA}$ (6 TTL loads)

HI or Float = lamp test disabled.
LO or GND = lamp test enabled.
2. DISPLAY $\overline{\text { FOLLOW }} /$ HOLD; sink 2.4 mA (1.5 TTL loads) HI or Float - display will latch on last time input. LO or GND = display will follow time inputs.
$\overline{\text { FOLLOW }}$ pulse width must be 100 nS minimum if input time is stabilized (i.e, allow 500 nsec minimum after the COUNT TIMEBASE IN falling edge). The FOLLOW update latch pulse must be triggered no later than the falling edge of COUNT TIMEBASE IN (pin B7). See timing diagram.

TIMEBASE INPUTS

AC SINE WAVE SYNC
(Pin B8)
1 line, $\simeq 500 \Omega$ to GND, to provide an AC timebase reference when used with
+5 V powered units with a least significant digit of $100 \mathrm{mS}, 1 \mathrm{sec}$ or 0.1 min ute. 3 V to 10 V RMS, referenced to power ground at 50 or 60 Hz . Internally wired on AC models, make no connection. Do not use pin B8 for least significant digits less than 100 mS or when using the crystal timebase. See note under "AC TIMEBASE OUT."

60 Hz TIMEBASE IN (pin A11)
$50 \mathrm{~Hz} / \mathrm{XTAL}$ TIMEBASE IN (pin A13)
100 mS TIMEBASE IN (pin A19)
These lines must be externally jumpered for AC or crystal timebases. Refer to format charts.
COUNT TIMEBASE IN
(pin B7)
1 line, 1 TTL load. This line is the clock input to the display counter and is tapped from the timebase counter as shown in the format charts.

DATA OUTPUTS

All digital outputs are compatible with DTL/TTL logic levels:
"ZERO" $=0 \mathrm{~V} \leqslant \mathrm{LO} \leqslant+0.4 \mathrm{~V}$.
"ONE" $=+2.4 \mathrm{~V} \leqslant \mathrm{HI} \leqslant+5.0 \mathrm{~V}$.
BCD TIMING DATA
(Pins B13 thru B36

OVERSCALE OUT
OVERSC
(pin A35) \qquad
24 lines, consecutively spaced in ascending order. Full parallel 1-2-4-8 binary coded decimal (BCD). Positive true, 7 TTL loads per line, totem pole format (drives HI or LO). Digits immediately to the right of a colon only count up to 5 (bits 1, 2, \& 4) but vacant terminals for the unused BCD " 8 " bits occur on the pinout sequence. Interfacing equipment will usually require grounding corresponding unused input terminals.

1 line, 10 TTL loads out, totem-pole format.
$\mathrm{HI}=$ Time exceeds full scale.
LO $=$ when RESET occurs or if time is less than full scale.
TIMEBASE OUTPUTS
AC TIMEBASE OUT
(pin A12)

TIMEBASE OUTPUTS
(pins A15 thru A18 and
A20 thru A24)
1 line, provides TTL-compatible, squared-up 50 or 60 Hz pulses for input to the timebase counter chain as shown in the format charts. Note: START and STOP circuits are not synchronized to the AC lines. Therefore timing uncertainty will be $\pm 1 / 50$ or $1 / 60$ sec.

1 line each, totem-pole. Connect as shown in the format charts for desired full scale time.

DIGITAL CONTROL OUTPUTS

RESET OUT (pin A4) . . 1 line, 10 TTL loads, totem-pole. Logic output of RESET function, can be externally tied to $\overline{\text { STOP }}$ input to clear and
$\overline{\text { TIMING }} \overline{\text { GATE OUT }}$
(pin B4)
1 line, 10 TTL loads, totem-pole. LO $=$ Timing is in progress.
$\mathrm{HI}=$ Timing is halted. The rising edge of TIMING GATE OUT inhibits the crystal oscillator gate counter chain input. A major carry will take 500 nS maximum to propagate thru all decades.
$\overline{\text { POWER }} \overline{\text { FAIL }}($ pin A34)

1 line, 10 TTL loads, totem-pole.
LO indicates power has been inter-
rupted, time may be invalid. Clear to HI when RESET occurs.

ADDITIONAL CONNECTIONS
$V_{\text {LED }} 1$ (pin A33)
$V_{\text {LED }} 2$ (pin A3)
VED 1 supplies +5 V display power to the three left digit display LED's and VLED 2 is for the three right digits. Each input is 300 mA maximum +5 VDC. Do not use on AC-powered models (internally connected). For DC models, the +5VDC may be full wave DC rectified, or +5 VDC regulated 300 mA each connection.
+5VDC POWER
(pins A1 and B1 internally
connected)
On DC-powered models, +5VDC @ 1 Amp regulated (50 mV maximum spikes) must be connected on these pins. On AC-powered models, up to 200 mA out at +5 VDC regulated is available from these pins for optional external use.
GROUND (pins A2 and B2 internally connected)
+5 V Power, Display and Logic ground return.

POWER REQUIREMENTS
(See Ordering Guide)
AC - powered models: Choice of 100,115 or 230 VAC, $\pm 10 \%, 47$ to $440 \mathrm{~Hz}, 10$ watts typical. Line freq. must be 50 or 60 Hz if the AC line timebase is used.
DC - power models:
Logic: $+5 \pm 0.25$ VDC @ 1 Amp maximum regulated, 50 mV max. spikes.
Display: +5VDC @ 600 mA maximum regulated or full wave rectified DC.
BCD Buffer (optional up-
per PC Board) +5VDC regulated @ 175 mA .
(See separate specifications for the BCD Buffer)

CONNECTORS

Dual 36 -pin PC edgeboard type $0.1^{\prime \prime}$ centers, solder tabs, Datel P / N 2597-14 (Viking 3VH36/1JN-5) included with instrument.

TEMPERATURE RANGES
Operating: 0 to $+50^{\circ} \mathrm{C}$
Storage: $-\mathbf{2 5}$ C to $+85^{\circ} \mathrm{C}$

MOUNTING
Panel-mounting through a cutout measuring $2.16^{\prime \prime} \mathrm{H} \times 5.59^{\prime \prime} \mathrm{W}(54,8 \times$ $142,1 \mathrm{~mm}$) and secured by $2 U$-straps. See mounting diagram.

MECHANICAL DIMENSIONS
Case $5.56^{\prime \prime} \mathrm{W} \times 2.11^{\prime \prime} \mathrm{H} \times 5.78^{\prime \prime} \mathrm{D}(141,2 \times$ $53,6 \times 146,8 \mathrm{~mm})$
Bezel $5.86{ }^{\prime \prime} \mathrm{W} \times 2.25^{\prime \prime} \mathrm{H} \times 0.50^{\prime \prime}$ thick $(148,7$ $\times 57,0 \times 12,7 \mathrm{~mm})$. See diagrams. Bezel, filter, and PC boards are removable from front while the unit remains secured in the panel.
Weight 2.25 pounds ($1,0 \mathrm{Kg}$)

PRICE (See Ordering Guide)

DSC-8200	+5V power, std. BCD, no display latch	\$269
DSC-8200	AC power, std. BCD, no display latch	\$299
Optional BCD		Add \$70
Optional la	isplays	Add

TIME FORMATS
Rear Connector Timebase Wiring

Center colon (999:59.9 min/sec or $\mathrm{hrs} / \mathrm{min}$ display)			
Display Full Count and Timebase	Timebase Jumpers	Dec. Pt.	LSD Jumper
999:59.9 min/sec crystal timebase	A13-A14	$\begin{aligned} & \text { Gnd. } \\ & \text { A25 } \end{aligned}$	B7.A16
$999: 59.9 \mathrm{~min} / \mathrm{sec}$ 50 Hz timebase	A12.A13	$\begin{aligned} & \text { Gnd } \\ & \text { A25 } \\ & \hline \end{aligned}$	87.A16
$999: 59.9 \mathrm{~min} / \mathrm{sec}$ 60 Hz time base	A11-A12	$\begin{aligned} & \text { Gnd } \\ & \text { A25 } \end{aligned}$	B7.A15
999:59.9 hrs/min crystal timebase	$\begin{aligned} & \text { A } 13 \text {-A } 14 \\ & \text { A } 16-\text { A } 19 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Gnd } \\ & \text { A25 } \\ & \hline \end{aligned}$	B7-A17
999:59.9 hrs/min 50 Hz timebase	$\begin{aligned} & \text { A12-A13 } \\ & \text { A16-A19 } \end{aligned}$	$\begin{aligned} & \text { Gnd } \\ & \text { A25 } \end{aligned}$	B7-A17
999:59.9 hrs/min 60 Hz timebase	$\begin{aligned} & \text { A11-A12 } \\ & \text { A15-A19 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Gnd } \\ & \text { A25 } \\ & \hline \end{aligned}$	B7-A17

Two colon (99:59:59 hrs/min/sec display)
Models DSC-8200 2

Display Full Count and Timebase
Timebase Jumpers LSD Jumper
$99: 59: 59 \mathrm{hrs} / \mathrm{min} / \mathrm{sec}$ A13-A14 B7-A18 crystal timebase A16-A19 $99: 59: 59 \mathrm{hrs} / \mathrm{min} / \mathrm{sec}$ A12.A13 B7.A18 50 Hz timebase A16-A19 $99: 59: 59 \mathrm{hrs} / \mathrm{min} / \mathrm{sec}$ A11.A12 B7.A18 60 Hz timebase A15-A19

Left colon (99:59:59 hrs/min $/ \mathrm{sec}$ display)
Models DSC-8200 _3

Displays Full Count and Timebase
Timebase Jumpers

LIMIT SWITCH OR

CAM-CONTACTOR WIRING

No-Colon Decimal (999999 display)
Models DSC-8200 _4 _

Right colon (9999:59 min/sec display)
Models DSC-8200 _ 5 _
Display Full Count and Timebase Timebase Jumpers LSD Jumper

Display Full Count and Timebase
$9999: 59 \mathrm{~min} / \mathrm{sec}$ crystal timebase
$9999: 59 \mathrm{~min} / \mathrm{sec}$
50 Hz timebase Jumpers
:---:
$9999: 59 \mathrm{~min} / \mathrm{sec}$
60 Hz timebase

The suggested circuits shown here illustrate typical applications. Datel cannot warrant the performance of these circuits or their possible patent status by other manufacturers.

This diagram shows a 100 hour capacity count-up timer using a Datel modeI DSC-8200 stopclock and Datel 8400 Series Comparator. Front panel controls start and stop the DSC-8200. Logic controls can be wired to stop timing and hold at the preset time or clear to zero and stop or to clear and start timing. Note that bits BCD 800 (A18) and BCD 80 K (A26) are grounded LO since the count in those decades doesn't exceed 5 .

100-HOUR
PRESET TIMER WITH 1 SECOND resolution

DATEL

OPTIONAL BCD OUTPUT BUFFER/STORAGE REGISTER

An optional BCD Buffer/Storage Register is available with the DSC-8200 Stopclock. This Buffer printed circuit board mounts in the upper card guides inside the DSC-8200 housing. The BCD Buffer/Storage Register allows for storing accumulated timing intervals and for transmitting this data to an external instrument such as Datel's 8400 -series comparators or a computer data bus.
Full parallel timing data is user-wired externally from the top pins of the bottom connector to the underside pins of the top connector. A Datel 24 -wire ribbon jumper (Model 2391, $\$ 10$, singles) offers a convenient connection method between the two rear connectors. On external command through the hold/follow latch input (pin B12) the buffer will store one full parallel data word (26 lines total) with less than one microsecond acquisition time. A second group of external commands (the digit strobes, pins A4 through A10) enable the open collector output gates. These gate strobes are organized in 4 -bit BCD groups so that output gating can be multiplexed in 4 -bit multiples onto 4 , 8 or 16 -wire TTL data busses or 26 -wire full parallel. The uncommitted open collectors accept up to 5 TTL loads for wide compatibility to mainframe processors, minicomputer or microprocessor data busses. Gating on or off is less than one microsecond using standard TTL loading and short leads. Cable reactance will lengthen this gating time. Logic levels are compatible to 7400 -series TTL logic gates. The open collector format allows multiplexing the DSC-8200 outputs along with other instruments sharing the same bus.

OPTIONAL BCD BUFFER INPUT/OUTPUT CONNECTIONS (TOP PC BRD)
POWER REQUIRED FOR BCD BUFFER:
$+5 \mathrm{~V} \pm 0.25 \mathrm{VDC} @ 175 \mathrm{~mA}$, LOGIC NOISE 50 mV MAX.

PERIOD METER APPLICATION

The DSC-8200 is easily connected to operate as a period meter. This particular circuit uses a few external components and a floating analog comparator, part number 2543, available from Datel. The comparator is the same circuit used on Datel's model DPC-8100 Counter and includes a DC/DC converter for 300 V RMS isolated operation. An external potentiometer is adjusted to set the triggering threshold (-1 V to +2 V threshold range).
After the 555 viewing gate timer resets the previous timing and both control flip flops, the next positive-going threshold crossing starts the timing.
Timing stops on the next following threshold crossing. The control flip flops lock out restart triggers and the timed period is displayed for the remainder of the five second viewing pause.
The DSC- 8200 is by no means limited to this type of period timing. By selecting timebases, periods from microseconds to hours may be measured. The display may be blanked or latched and a different external circuit may be designed for full synchronous period timing triggered by the analog waveform. Complex waveforms may be measured for pulse widths or time between pulses.

PERIOD METER

Asynchronously triggered with 5 Second Viewing Pause

ORDERING GUIDE

Prices (1-9)

| DSC-8200 A - A1A |
| :---: | :--- | :--- |
| E |
| J |$\$ 299 . \quad$ AC pwr, std. BCD Outputs

Prices include rear PC board connectors. Add $\$ 50$ for the latching display option.
24-Wire BCD Ribbon Jumper
Datel \#2391 \$10 ea.

1020G Turnpike Street, Building S
Canton, Massachusetts 02021 U.S.A
TEL: (617) 828-8000
TWX: 710-348-0135 TELEX: 924461

1020G Turnpike Street, Building S Canton, Massachusetts 02021 U.S.A.
TEL: (617) 828-8000
TWX: 710-348-0135 TELEX: 924461

6-DIGIT, PANEL MOUNT DIGITAL TIME CLOCK

MODEL DTC-8300

FEATURES

Bright, long-life 0.6 inch high (15 mm) LED displays

- Full parallel TTL/DTL compatible BCD data outputs - optionally latched and gated.
- Choice of power supply: AC line or +5 VDC .
- Both AC line frequency or crystal controlled time base are built in.
- Choice of 12, 24 or 100 hour displays.

DESCRIPTION

The Model DTC-8300 displays the time of day in hours, minutes and seconds in 12 or 24 hour formats on $.6^{\prime \prime}(15 \mathrm{~mm})$ high LED digits. The panel mounting instrument features digital logic outputs of the displayed time for use in data logging systems and time-controlled automatic process systems.
The 12 and 24 hour time formats have two colon and one colon display modes respectively. The 12 -hour format carries on 12:59:59 to $1: 00: 00$ and the 24 -hour version carries from 2359:59 to 0000:00. These modes are customer wired on the rear PC board connector. However, the left colon may be blanked or illuminated on any model. A 100 hour carry may also be con-nector-wired.
Power required for the DTC-8300 is 100 , 115 or 230 VAC at 50 or 60 Hz or +5 volts DC at 1.5 Amps max.
The timebase for the clock is available from an internal quartz crystal oscillator supplied on all units or from a choice of 50 or 60 Hz AC line frequencies.
The line frequency timing reference may also be used on +5 VDC powered units for long term accuracy periodically corrected by power utilities. AC line powered versions contain their own internal +5 VDC regulated supply and 100 mA at +5 VDC may be tapped for external use.

The DTC-8300 is housed in a black anodized aluminum case measuring $5.562^{\prime \prime}$ wide $\times 2.125^{\prime \prime}$ high $\times 5.467^{\prime \prime}$ deep ($141 \times$ $54 \times 139 \mathrm{~mm})$. The clock is mounted through a front-panel cut out and secured by two U-straps. The grounded case acts as shielding for the clock circuitry and additional power line filtering is provided by a bifilar-wound choke and bypass capacitors.
All displayed digits have a corresponding set of digital logic outputs available at the rear connector. These outputs are in full-parallel standard binary coded decimal form (BCD) with TTL/DTL compatible logic levels. Standard BCD versions have a HOLD input which stabilizes the output for one second minimum (2 sec . max. synchronously) for readout by an external device. This "HOLD" function stores one clock pulse during the 2 second read interval and reinserts this pulse so as not to disrupt timing accuracy.

An AM/PM logic output for 12 -hour versions may be used for data logging applications. A "power fail" front panel LED lamp and corresponding logic output is set whenever power is momentarily interrupted, indicating to an external device that the time may be invalid. Resetting the clock using the front panel controls will extinguish the "power fail" lamp and flag.
An optional second PC board provides fully latched and gated BCD capability so that a clock word may be stored and transmitted at any time on external command. Gating is open collector TTL/DTL-compatible and gatable by individual digit These digits may be multiplexed onto 4 or 8 line data busses as well as transmitted in full parallel.

general

Displays Six (6) self-illuminated digits, red LED $0.6^{\prime \prime}$ (15 mm) high, 7 -segment format.
Full scale readouts (with LED colons):
12:59:59 (HOURS:MINUTES:SECONDS) 2359:59 (HOURS MINUTES:SECONDS)
Power Fail Front panel red LED lamp illuminates to warn if power has been interrupted, indicating possible incorrect time displayed. Corresponding logic output (pin A15).
Front Panel Controls Set/Run Switch - (Pushbutton switch which can be locked by pushing in and rotating $1 / 8$ turn clockwise).
"Run" Mode (pushbutton in) - Clock is running. Hours and minutes set pushbuttons (see below) are disabled.
"Set" Mode (pushbutton released out) - Clock is stopped. Hours and minutes set pushbuttons are enabled. Seconds display will be stopped at the current: 00 to $: 59$ count.
Hours Set Pushbutton - Push in to set hours if Set/Run Switch is in "set". Push in will cycle hours display at approx. 4 digits per second. Release on desired hours.
Minutes Set Pushbutton - Functions same as Hours Set for minutes display. [See "How to Set Clock" section]
Display Test - Hold in both the hours and minutes set pushbuttons at any time to test all digit segments by displaying all 8 's. Will not disrupt clock timing.
Performance Temperature Ranges
Operating: 0 to $+50^{\circ} \mathrm{C}$
Storage: - $25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Accuracy and Temperature Drift - (Quartz Crystal Timebase)
$\pm 10 \mathrm{ppm} @+25^{\circ} \mathrm{C}$ (Initial Accuracy)
$\pm 10 \mathrm{ppm}\left(0\right.$ to $+50^{\circ} \mathrm{C}$)
$\pm 10 \mathrm{ppm}$ (one year aging)
Digital Outputs All digital outputs are compatible with DTL/ TTL logic levels
LO = "ZERO" $\leqslant+0.4 \mathrm{~V}\}$
$\mathrm{HI}=$ "ONE" $\geqslant+2.4 \mathrm{~V}\}$ positive true logic
BCD Clock Data (pins B13 thru B36, see I/O connections) - 24 lines, consecutively spaced in ascending order. Full parallel 1-2-4-8 binary coded decimal (BCD). Positive true, 6 TTL loads, totem pole format (drives high or low) Note: Tens of seconds and tens of minutes only reach 5 count, but vacant terminal location for " 8 " bit occurs in sequence. Interfacing equipment may require strapping corresponding terminal to ground.
$\overline{\text { Power }} \bar{F}$ ail (pin A15) - 1 line, LO indicates power has been interrupted. Cleared to HI by "Set" switch. 10 TTL loads out.
$\overline{\text { Data }}$ Valid (pin A36) - 1 line, provides squaredup 1 Hz logic output for external clock slave, read functions, etc. BCD valid on falling edge and while LO. Connected downstream from AC line or crystal oscillator input (see wiring diagram). 10 TTL loads.
Crystal Clock Out (pin A6) - 1 line, provides $1 \mathrm{~Hz}, 31.25$ millisec. wide crystal oscillator clock pulses to the clock input, pin A35. 1 TTL load.
AC Line Clock Out (pin A14) - 1 line, provides 1 Hz , square wave AC line-synchronized clock pulses to the clock input, pin A35. 10 THL loads.
AM/PM Flag (pin A16) - 1 line, alternately transitions HI or LO at carry to 12:00:00 o'clock. Reset to desired level by cycling clock using front panel set controls. 10 TTL loads.
$\overline{\text { Set } / R u n ~ O u t p u t ~(p i n ~ A 27) ~-~} 1$ line, switch contact to ground with 4.7 K ohm pullup to +5 V .
GND - Clock is being set, BCD outputs are invalid.
HI - Clock is running if Run/Fold (A7) is HI.
Digital Inputs All digital inputs are compatible with DTL/ TTL logic levels.
LO $=$ "'ZERO" $\leqslant+0.8 \mathrm{~V}$
$\mathrm{HI}=$ "ONE" $\geqslant+2.0 \mathrm{~V}\}$ positive true logic
Run/Hold (pin A7) - 1 line, 1.6 TTL loads
HI - Clock is running.
LO - BCD outputs stabilized.
May be held 1 sec. max. asynchronous to $\overline{\text { Data }}$ Valid output without disrupting timing. (Saves one pulse which is reinserted when HOLD is released) Hold longer than 2 seconds disrupts timing. (See timing.) 1.6 TTL loads.
Clock In (pin A35) - 1 line, accepts 1 Hz pulses from Crystal Clock (A6) or AC Line Clock (A14). 1 TTL load.
Leading Zero Blank (pin A26) - 1 line, LO blanks the leading zero. 1 TTL load.
Display Blank (pin A30) - 1 line, HI blanks display. 3 TTL loads. Works from jumper, open collector, totem pole TTL, or DTL. Must sink 5 mA pullup. Colons remain illuminated while display is blanked. Must ground for normal operation.
Additional $\quad \overline{\text { LIGHT }} \overline{\mathrm{LEFT}} \overline{\mathrm{COLON}}$ (B28) Gnd. to light
Connections V VED 1 (pin A28) $\}$ Each input connects +5 V $\left.V_{\text {LED }} 2(\operatorname{pinA} A)\right\}$ power to 3 display digits. 550 mA max. @ +5VDC each connection. Internally connected to +5 V power on AC models.
+5VDC POWER (pins A1 \& B1 in parallel) These pins are for +5 VDC logic power input on +5 V -powered units, 400 mA max. On ACpowered models, output of +5 VDC power @ 275 mA max. is available from these pins. Not internally connected to displays on DC models. (Use $\mathrm{V}_{\text {LED }} 1$ \& 2 for displays.)
Power and Logic Ground (pins A2 \& B2 in parallel) +5 V power return for display and logic. Carry Controls (pins A29, A31-A34) - For selecting 12, 24 or 100 hour full scale carries (see chart).
Ext. AC Line Synch. (pin B8) - 1 line, to provide an AC timebase reference when used with +5 V powered units. 3 V RMS to 10 V RMS input, referenced to power supply ground, 50 or 60 Hz .
Power Supply Choice of 100, 115, or 230VAC, $\pm 10 \% 10 \mathrm{~W}$ typ., 47-63 Hz (unless using AC line for timing reference). Fuse . $15 \mathrm{~A}(100,115 \mathrm{VAC})$, .10A (230VAC) OR $+5 \pm 0.25 \mathrm{VDC} @ 1.5 \mathrm{~A}$ max., logic noise $\overline{50 \mathrm{~m}} \mathrm{~V}$ max.
Connectors Dual 36 pin PC edgeboard type, $0.1^{\prime \prime}$ centers, solder tabs, Datel 2597-14 (Viking 3VH36/ $1 \mathrm{JN}-5$ or equivalent), (AC power connected by triple $1 / 4^{\prime \prime}$ tab, recessed male, center tab case ground) PC Board connectors are included with unit.
Mounting Panel mounting through a cutout measuring $2.156^{\prime \prime} \mathrm{H} \times 5.593^{\prime \prime} \mathrm{W}(54,8 \times 142,1 \mathrm{~mm})$ and secured by 2 U -straps. See mounting diagram.
Mechanical
Dimensions Case $5.56^{\prime \prime} \mathrm{H} \times 2.11^{\prime \prime} \mathrm{H} \times 5.78^{\prime \prime} \mathrm{D}(141,2 \times$ $53,6 \times 146,8 \mathrm{~mm}$) behind front panel to rear of U-strap.
Bezel $5.86^{\prime \prime} \mathrm{W} \times 2.25^{\prime \prime} \mathrm{H} \times \mathbf{0 . 5 0 ^ { \prime \prime }}$ Thk ($148,7 \times$ $57,0 \times 12,7 \mathrm{~mm}$) (See Diagrams) Removable from front while unit remains secured in panel.

Weight

1. Release Set/Run pushbutton to "Set". Seconds display will stop at the 3. Push minutes set pushbutton and release on next correct minute
current :00 to :59 indication.
2. Push hours set pushbutton in and the hours display will advance at approx. 4 digits/second. Release pushbutton on correct hour.
indication.
3. Wait until seconds display matches external reference clock then push in Set/Run switch to start digital clock. Twist Set/Run switch $1 / 8$ turn clockwise to lock in Run position.

DTC-8300 CLOCK INPUT/OUTPUT CONNECTIONS	$\stackrel{\text { A }}{\text { воттом }}$	LEFT	$\stackrel{8}{\text { TOP }}$
	+5V POWER	1	+5V POWER
	PWR. \& DIG. GND.	2	PWR. \& DIG. GND
	+5 V to $\mathrm{V}_{\text {Led }}$	3	
		4	
Ground A30 to illuminate display		5	
	XTAL 1 Hz OUT	6	
	RUN/FOLD IN	7	
		8	EXT. AC LINE SYNCH.
		9	
		10	
		11	
		12	
		13	BCD SEC. 1
	AC LINE 1 Hz OUT	14	BCD SEC. 2
	POWER FAIL OUT	15	BCD SEC. 4
	AM/PM OUT	16	BCD SEC. 8
		17	BCD SEC. 10
		18	BCD SEC. 20
		19	BCD SEC. 40
		20	N.C.
		21	BCD MIN. 1
		22	BCD MIN. 2
		23	BCD MIN. 4
		24	BCD MIN. 8
		25	BCD MIN. 10
	LEAD. ZERO BLANK	26	BCD MIN. 20
	SET/RUN OUT	27	BCD MIIN. 40
	+5 V TO $\mathrm{V}_{\text {LED } 1}$	28	
	ADD 1 HR. IN	29	BCD HRS. 1
	DISPLAY BLANK	30	BCD HRS. 2
	Last hr. bit in	31	BCD HRS 4
	LAST HR. BIT IN	32	BCD HRS. 8
	LAST HR. BIT IN	33	BCD HRS. 10
	ADD 1 HR OUT	34	BCD HRS. 20
	1 HzCLOCK IN	35	BCD HRS. 40
	DATA VALID OUT	36	BCD HRS. 80
	$\underset{\text { Bottom }}{\text { and }}$	RIGHT	$\stackrel{\text { ¢ }}{\text { ¢ }}$

PANEL MOUNTING DETAILS (REAR VIEW)

FULL SCALE CARRY			Left colons may be illuminated or blank on any model.		
For Clock to carry		Jumper between			
From	To	A31	A32	A33	A29
11:59:59	00:00:00	B30	B33	B33	N.C.
12:59:59	01:00:00	B30	B33	B29	A34
2359:59	0000:00	A32	B31	B34	N.C.
2459:59	0100:00	B29	B31	B34	A34
99:59:59	00:00:00	N.C.	N.C.	GND	N.C.

Prices (1-9)		
DTC-8300 A5A	\$299.	AC pwr, std. $B C D$
E6		
J		
DTC-8300 D5A	\$245.	+5 V pwr, std. BCD
6		
DTC-8300 A5B	\$369.	AC pwr, latchable BCD
E6		
J		
DTC.8300 D5B	\$315.	+5V pwr, latchable BCD
Prices include rear PC board connectors. (Datel part \#8000-2597-14		
Viking 3VH36/1JN-5 or equivalent)		
24 -wire rear connector BCD Ribbon Jumper - Datel part 2391, \$ 10		
AC models incluc	S. 3 -pro	9115 line cord.

MODELS DDC-8400 AND DLC-8400

FEATURES

- Front panel lights and logic outputs indicate under, over, between or equal to preset limits selected on thumbwheel switches.
- Two Models:

DDC-8400: Two independent single-channel single-limit comparators
DLC-8400: A single-channel, two-limit, 3-zone comparator

- Optional relay outputs control external lamps, motors, pumps, valves, solenoids, etc.
- Compatible with Datel's counters and stopclocks to create mixing/ batching controllers, preset timers, limit alarms, etc.
- Limit tests may be stored and multiplexed onto a data bus.
- Full parallel BCD inputs make rapid limit tests in less than 1 microsecond.

GENERAL DESCRIPTION

Models DDC-8400 and DLC-8400 are full parallel, high speed digital comparators housed in small aluminum panel-mounting cases. Digital inputs are connected at the rear of the instrument and are compared to bipolar decimal numbers selected on the front panel 6-digit thumbwheel switches. Front panel lights indicate various limit modes and rear connector logic outputs are available to operate other digital instruments or optional relays.
These instruments differ from lower cost count-up comparators (predetermining counters) which require a gated serial input and take longer to determine a comparison. The 8400 comparators have 6 digit resolution with polarity for both the inputs and the preset limits. Separate over scale inputs force an out of limit indication, in the appropriate direction depending on polarity. These comparators are fully algebraic in operation. Comparisons are fully bipolar so that true 4 quadrant operation is provided. Logic data inputs are full parallel 1-2-4-8 binary coded decimal (BCD) and are compatible to DTL/TTL logic sources. Inputs may be derived from digital panel meters, counters, clocks, timers, test equipment and digital processors.
Applications include: Precision count-up timers, digital setpoint controllers, batching/mixing/sorting controllers requiring a predetermining counter, level or flowrate monitors and alarms. The instruments are ideal for automatic test equipment applications performing component and system check-outs. New test parameters for pass-fail inspection may be quickly dialed in on the front panel limit selectors.
A full set of seven latchable, gatable logic outputs of comparator tests is available on the rear connector. These outputs indicate

DDC-8400

DLC-8400

the results of any comparison and may be stored and transmitted via open collector data bus to a remote processor upon external command. This bussing arrangement is compatible to most minicomputers and microprocessors. Using this bus, the 8400 -series comparators will interface with a remote digital processor, providing limit indications when polled by the processor, yet retaining full manual control of the set-points at the site of measurement.

The digital outputs from the 8400 series comparators may also be rear-wired to an optional internal PC board containing relays. These relays will operate isolated circuits or power actuators, motors, alarm lamps or horns, pumps, valves or solenoids from the $A C$ line. These relays are a choice of either Form C mechanical types with 2 Amp ratings or zeroswitching optoisolated solid state relays. Both types of relays may also be used in pilot service for larger electrical equipment.
The 8400 series comparators are housed in a
black anodized extruded aluminum grounded case for high electrical noise rejection in industrial environments. Power required is a choice of 100,115 , or 230 VAC, 47 to 440 Hz or +5 VDC at 400 mA max. Additional power line filtering on AC models is provided by a bifilarwound choke and filtered, regulated power supply.

Two Models

Model DDC-8400 consists of 2 separate singlelimit, single-channel comparators in one case, Each comparator has 3 lights to indicate UNDER/AT LIMIT/OVER limit status of the input compared to the thumbwheel set-point limits selected. There are two sets of 3 lights per channel for 6 lights total. Model DLC-8400 accepts a single input channel and compares it to upper and lower set-point limits selected on two front panel thumbwheel switches. This is a 3 -zone comparator with 5 lights indicating whether the input is UNDER/BETWEEN/OVER the LO and HI limits or equal to the LO or HI limits.

GENERAL
Function

Displays

Digital comparators accepting full parallel binary coded decimal (BCD) logic inputs and comparing them to 6 -digit decimal values selected by thumbwheel switches. Comparisons are fully bipolar (4 quadrant true algebraic with out of limit overscale input).
DDC-8400: Two independent single-channel, single-limit comparators
DLC-8400: A single-channel, two-limit, 3-zone comparator with assigned LO and HI limits.
Front panel indicator lights display the status of limit comparisons. The lamps are long-life type 683 incandescent .05 mean spherical candlepower and are replaceable by removing the front panel colored lenses.
DDC-8400: Each of 2 comparator channels A and B indicates:
UNDER (Below limit, red lamp)
AT LIMIT (Equal to limit, green lamp)
OVER (Above limit, red lamp)
DLC-8400: The single-channel comparator indicates:
UNDER LIMIT (Below both limits, red lamp)
LO LIMIT (Equal to lower limit, yellow lamp)
BETWEEN LIMITS (Green lamp)
HI LIMIT (Equal to upper limit, yellow lamp)
OVER LIMIT (Above both limits, red lamp)
Standard lamp lens colors are listed above. Colored lenses may be interchanged on special order using red, green, amber, blue, white or yellow lenses. Contact Datel for assistance.
Two set of thumbwheel switches, each with six digits and polarity, are used to manually select limit setpoints. On the 3 -zone model (DLC-8400) the lower limit is assigned to the left thumbwheel selector and the upper limit is assigned to the right thumbwheel. Decimal points are not included, therefore, significant digits must be coincident with BCD input wiring. (See applications.)

DIGITAL INPUTS

Channel A Data (pin A11 thru A34)

Channel B Data (pins B11 thru B34)
Channel A Overscale (pin A35)

Channel B Overscale (pin B35)
Channel A Polarity (pin A36)

Channel B Polarity (pin B36)
Channel A Hold/Follow In (pin A5)

Channel B Hold/ $\overline{\text { Follow }} \operatorname{In}$ (pin B6)
Channel A Output Gate Input (pin A6)

Channel B Output $\overline{\text { Gate }}$ Input (pin A8)
DIGITAL OUTPUTS

Channel $A \bar{A}<L$ Output (pin B4)

Channel B B<U Output (pin A7)

Channel $A \bar{A}=\mathbf{L}$ Output (pin B5)

Channel B $\overline{\mathrm{B}=\mathrm{U}}$ Output (pin A4)

Channel $A \bar{A}>$ L Output (pin B7).

All digital inputs are compatible with DTL/TTL logic levels:
"ZERO" = OV. $\leqslant \mathrm{LO} \leqslant+0.8 \mathrm{~V}$ positive true
"ONE" $=+2.0 \mathrm{~V} . \leqslant \mathrm{HI} \leqslant+5.0 \mathrm{~V}\}$ logic
Unused inputs should be grounded LO or wired HI through an internal pullup resistor available on rear connector pin B3. Hold/Follow Latch and Gate Enable Inputs must use TTL rise and fall times. 24 lines, consecutively spaced in ascending order. Full parallel 1-2-4-8 binary coded decimal (BCD). Positive true, 1 TTL load per line. Channel A Data is compared to the left thumbwheel selector limit. Channels A and B must be externally wired in parallel for model DLC-8400 by inserting each input wire through both upper and lower solder tabs.
Same specifications as Channel A but Channel B Data are compared to the right thumbwheel limit. 1 TTL load. If used, a HI on this input forces an out of limit indication depending on input polarity, regardless of relative values of input and scale limit mantissas. Channel A and Channel B Overscales must be wired in parallel for model DLC-8400. Ground LO if not used.
Same specifications as Channel A Overscale.
1 line, 1 TTL load.
$\mathrm{HI}=$ positive polarity
LO = negative polarity
Channel A and Channel B Polarities must be wired in parallel for model DLC-8400.
Same specifications as Channel A Polarity.
1 line, 1 TTL load.
HI stores the results of the last Channel A comparison. Outputs will be stabilized.
LO causes Channel A comparison outputs to be updated within 500 nSec of input channel data change; outputs will follow comparison decisions. Momentary LO: acts as update clock.
Same specifications as Channel A Hold / $\overline{\text { Follow }}$ In. Wire Channels A and B in parallel for DLC- 8400
1 line, 1 TTL load.
HI disables Channel A comparison output after the storage circuits. (Output collectors arecut off and other devices sharing the same bus lines may pull these lines down.)
LO enables the comparison outputs after the storage circuits.
Same specifications as Channel A Output Gate Input. Wire Channels A and B in parallel for DLC-8400
All digital outputs are compatible with DTL/TTL logic Max. $I_{\text {sink }}=16 \mathrm{~mA}$
"ZERO" $=0 \mathrm{~V} . \leqslant L O \leqslant+0.4 \mathrm{~V}$. $\}$ Maximum output pullup
"ONE" = Open coll. output Potential +5.5 V
Note that the comparison outputs are valid when LO (negative true). Logic outputs are open collector.
1 line, 10 TTL loads
HI means that the Channel A input is equal to or greater than the left (lower) thumbwheel limit. LO means that the Channel A input is less than the left (lower) thumbwheel limit.
1 line, 10 TTL loads
HI means that the Channel B input is equal to or greater than the right (upper) thumbwheel limit.
LO means that the Channel B input is less than the right (upper) thumbwheel limit.
1 line, 10 TTL loads
HI means that the Channel A input is not equal to the left (lower) thumbwheel limit.
LO means that the channel A input is equal to the left (lower) thumbwheel limit.
1 line, 10 TTL loads
HI means that the Channel B input is not equal to the right (upper) thumbwheel limit.
LO means that the Channel B input is equal to the right (upper) thumbwheel limit.
1 line, 10 TTL loads
HI means that the Channel A input is equal to or lower than the left (lower) thumbwheel limit. LO means that the Channel A input is greater than the left (lower) thumbwheel limit.

Channel B $\overline{\mathbf{B}>\boldsymbol{U} \text { Output (pin A3) }}$
$\overline{(B>U) \cdot(A \Varangle L)}$ Output (pin B8)

ADDITIONAL CONNECTIONS
Spare Inverters (pins A9, A10, B9, B10) .

Aux. Pullup Resistor (pin B3) +5VDC Power (pins A1 and B1
internally connected)

Ground (pin A2 and B2 internally connected)
Power Supply. (See Ordering Guide)

PHYSICAL-ENVIRONMENTAL
Operating Temperature Range
Storage Temperature Range
Connectors

Mechanical Dimensions

Case	$\begin{aligned} & 5.56 " \mathrm{~W} \times 2.11^{\prime \prime} \mathrm{H} \times 5.78 \text { "D } \\ & (141,2 \times 53,6 \times 146,8 \mathrm{~mm}) \end{aligned}$
Bezel	$\begin{aligned} & 5.86^{\prime \prime} \mathrm{W} \times 2.25^{\prime \prime} \mathrm{H} \times 0.50^{\prime \prime} \mathrm{THK} \\ & (148,7 \times 57.0 \times 12.7 \mathrm{~mm}) \end{aligned}$
Mounting	Bezel, filter and PC boards are removable from front while unit remains installed in a panel. Panel-mounting through a cutout measuring $2.16{ }^{\prime \prime} \mathrm{H} \times 5.599^{\prime \prime} \mathrm{W}(54,8 \times 142,1 \mathrm{~mm})$ and secured by 2 U-straps.
Weight	2.25 pounds (1.0 Kg)

1 line, 10 TTL loads
HI means that the Channel B input is equal to or lower than the right (upper) thumbwheel limit.
LO means that the Channel B input is higher than the right (upper) thumbwheel limit.
1 line, 10 TTL loads
This line is provided on both models DDC- and DLC-8400
LO on this line for the 3 -zone model DLC-8400 indicates that the single input channel (A and B wired in parallel) is between the upper and lower limits or equal to either limit. If both input channels A and B on model DDC- 8400 are wired in parallel, this output line has the same meaning. Note that the "between limits" light on the DLC-8400 is dark if the single input is equal to either limit although pin B8 will be low.

Two spare TTL logic inverters are (A9, Inv. 1 Out; A10 Inv. 2 Out) available for optional customer use. (B9, Inv. $2 \ln ;$ B10 $\ln v .1 \ln)$
Outputs are open collector with 2.2 Kilohm pull ups to +5 volts
8 TTL loads out, 1 TTL load in, each inverter.
Spare 2.2 Kilohm resistor connected to +5 V for optional customer use.

On DC-powered models, $+5 V D C @ 400 \mathrm{~mA}$ max. regulated input should be connected to these pins. On AC-powered models, up to 200 mA out at +5 VDC regulated is available from these pins for optional external use.
+5 V Power and Logic ground return.
AC powered models: Choice of 100,115 or $230 \mathrm{VAC}, \pm 10 \%, 47$ to $440 \mathrm{~Hz}, 10$ watts typical.
DC powered models: $+5 \pm 0.25$ volts DC at 400 mA max. Logic noise 50 mV max.
(See separate specifications for optional upper PC relay boards)
0° to $+50^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Controls, data, DC power, and relays (lower and upper PC boards): Connected by a dual 36 -pin PC edgeboard connector for each board, 0.1" centers, solder tab terminals, Datel Connector \#2597-14 (Viking 3VH36/1JN-5), included with unit.
AC Power is connected by a triple $1 / 4^{\prime \prime}$ tab assembly, recessed male, center tab grounded to case. A U.S. 3-prong line cord ($\mathrm{P} / \mathrm{N} 9115$) is included with AC models.
2.25 pounds ($1,0 \mathrm{Kg}$)

INPUT/OUTPUT CONNECTIONS

LOWER PC BOARD (COMPARATORS

THUMBWHEELS, LATCHES,
GATES AND LIGHTS)

$\begin{gathered} \text { A } \\ \text { воттом } \end{gathered}$	Left	$\begin{gathered} \text { 日 } \\ { }_{T O P} \end{gathered}$
+5V POWER IN	1	+5V POWER IN
PWF. \& DIG GND.	2	PWF. \& DIG. GND.
$\mathrm{CH} . \mathrm{B}$ B>U OUTPUT	3	AUX. PULL UP
CH. B E-U OUTPUT	4	CH. A $\bar{A}<L$ OUTPUT
CH. A HOLD/FOLLOW IN	5	CH. $A \bar{A}=$ L OUTPUT
CH. A OUTPUT GATE IN	6	CH B HOLD/FOLLOW
CH. B $\overline{\mathrm{B}<\text { U OUUTPUT }}$	7	CH. A $\overline{A>}>1$ OUTPUT
CH. B OUTPUT GATE IN	8	$(\bar{\square} \times U) \cdot(A \& L) ~ O U T P U T$
SPARE INVERTER 1 OUT	9	SPARE INVERTER 2 IN
SPARE INVERTER 2 OUT	10	SPARE INVERTER 1 IN
CH.AIN	11	$\mathrm{CH}, \mathrm{Bin}$
CH.AIN	12	$\mathrm{CH}, \mathrm{BIN}$
CH.AIN	13	$\mathrm{CH}, \mathrm{Bin}$
CH.AIN	14	$\mathrm{CH}, \mathrm{BIN}$
CH.AIN 10	15	$\mathrm{CH}, 8 \mathrm{in} 10$
CH.AIN 20	16	$\mathrm{CH}, \mathrm{BIN} 20$
CH.AIN 40	17	CH. Bin 40
CH. AIN 80	18	CH. Bin 80
CH. A IN 100	19	CH. 8 IN 100
CH, A IN 200	20	CH. Bin 200
CH, A IN 400	21	CH. BiN 400
CH. A IN 800	22	CH. B IN 800
CH.AIN 1 K	23	CH. Bin 1 K
CH.A IN 2 K	24	CH. BIN 2 K
CH. AIN 4 K	25	$\mathrm{CH}, \mathrm{BIN} 4 \mathrm{~K}$
CH.A IN 8 K	26	$\mathrm{CH} . \mathrm{BIN} \quad 8 \mathrm{~K}$
CH. A IN 10K	27	CH. Bin 10 K
CH. A IN 20K	28	CH. Bin 20 K
CH. A IN 40 K	29	CH. Bin 40 K
CH. A IN B0K	30	CH. Bin 80 K
CH. A IN 100K	31	CH. BiN 100 K
CH. A IN 200K	32	CH. B IN 200 K
CH. A IN 400K	33	CH. Bin 400 K
CH. A IN 800 K	34	CH. B IN 800K
CH. A IN OVERSCALE	35	CH. B IN OVERSCALE
CH. A IN POLARITY	36	CH. A IN POLARITY
$\stackrel{\text { A }}{\text { BOTTOM }}$	RIGHT	$\begin{gathered} \text { B } \\ \text { TT } \end{gathered}$

LIMIT INDICATIONS

MOUNTING DETAILS

1. Dual Limit Models

RULES

Left switch is for setting lower limit.
2. Input Bits Not Used

Should be wired to ground, and corresponding digits on setpoint switches set to zero.
3. Polarity Inputs

Negative sign enters as low level, positive as high. If unused, tie to +5 V (pins A1, B1) through 1000 ohms resistor and leave setpoint polarity switches on $(+)$. This gives normal first quadrant operation. For third quadrant operation, tie unused polarity sign to ground and leave setpoints on (-).
4. Over Scale Inputs

Positive overscale input generates "OVER LIMITS" indication regardless of incoming data bits; negative overscale input generates "UNDER LIMITS" regardless of data bits. If not used, overscale input terminals should be grounded.
5. Positive numbers are handled as greater than negative numbers.
6. A negative number with large magnitude is smaller (lower) than a negative number with small magnitude.
7. Latch update terminals may be permanently grounded (enabled) so lamps will continually track the comparator decisions. Output logic lines are still under control of output gate terminals, for strobing.
8. For latched input sampling operation, actuate latch update terminals at desired time for usual TTL clock duration. Lamp and logic outputs will hold until next update clock. Output logic is still subject to output gate control (low level permissive).
9. When input is from a digital clock, two data bit inputs have to be grounded (i.e. the " 8 " bit line in the tens of seconds digit and tens of minutes digit). These lines are not controlled by digital clock outputs.

OPTIONAL RELAY BOARDS

The 8400 series comparators have a spare PC card slot available in the upper portion of the instrument for optional relay boards to control external devices using various limit outputs from the lower board. Because limit outputs from the lower board are externally wired to the upper (relay) board, a wide variety of control functions can be made. External devices such as pumps, motors, valves, solenoids, lamps, horns, etc. may be turned on or off either above, below, between, or outside of limits. Control and alarm limit functions may also be cascaded using the relay as logic gates. Thus, a pump could be turned on only if a valve was open and a tank level was below setpoint. Cascaded interlocking alarms can be created whereby a local lamp alarm is activated first then a loud horn if the alarm condition isn't corrected after a time delay.
The relay boards directly control DC or $A C$ line-powered devices and provide high isolation to external circuits. Larger electrical equipment may be controlled by using the 8400 relays in pilot service to secondary external relays.
Two types of relay boards are offered:
The first type includes (4) electromechanical relays with Form C SPDT contacts. The second type of relay board contains (2) solid-state relays. These solid-state relays are triac thyristor output devices simulating SPST normally-open relays. The solid-state relays use photocoupled optoisolation for very high resistance between input and output. Zero-voltage switching minimizes RFI and switches heavy loads (20 Amp surge for one line cycle). There are no contacts to pit, weld together, or burn out after many switching operations because all-semiconductor construction is used. The solid-state relays are ideal for lamp load surges and inductive loads (motors, solenoids, actuators, etc.)

APPLICATIONS

Because of the variety of relay configurations and output logic on the 8400 series comparators, a very broad range of applications can be implemented. Figures A through G shown here describe connections between the lower PC board limit outputs and the upper PC board relays. Figures A through D discuss the mechanical relays and E, F and G are concerned with the solid state relays.
The negative true, open collector limit outputs can be wire-OR'ed externally (shown in several applications). The input NAND configuration of the mechanical relays allows external gating of individual relays. The applications are by no means limited to those shown here.
The output gate and latch controls, A5, B6, A6, and A8 are shown grounded LOW. If the gate lines are externally disabled, the relays will simultaneously be de-energized.
Figure H shows a 5 -zone sorting system using two comparators in cascade. A bipolar BCD input is bussed to both comparators and five output lines indicate which zone the input falls into. The configuration could be used to sort items by weight, size, electrical, mechanical or any measurable physical property. The logic outputs would be connected to relays and solenoids which would route the sorted items into bins or slots. The selection limits are dialed in on the comparator front panel thumbwheels, allowing a variation for different items. At least one and only one of the five limit output lines is valid at any one time so that there is no ambiguity or dead zones. Additional comparators can be cascaded to add two more zones per added comparator
RECOMMENDED CONNECTIONS

FIGURE A

FIGURE C

FIGURE E

FIGURE B

FIGURE F

IGURE G

5-ZONE CASCADED SORTING COMPARATOR

A very common application is to connect a BCD A/D converter or Digital Panel Meter to the comparator for high resolution limit observation. If the comparator is not connected to external logic such as a digital processor or computer, connections can be made as shown in Figure 1. In this figure the optional relay board (if used) shows an alternate method of controlling the relays using external logic. The circuit assumes that the EOC Busy or Status) is HI during conversion. Another assumption is that the EOC is set HI on the rising edge of the start convert command. This configuration is compatible with converters made by Datel and most other manufacturers. The EOC is connected to the Hold/Follow (latch) input so that the comparator lights will not change during conversion when the BCD outputs are not valid. This avoids distracting out-of-limit lamp flicker. If some special condition makes this arrangement impractical, the Hold/Follow line can simply be grounded in $\overline{\text { Follow. }}$. If the A/D converter and comparator are part of a digital processing system with higher speeds required for automatic control, timing considerations are quite important as shown in Figure Jand K. Using the comparator on-site at the application allows the user to retain local finger-tip control of the setpoint limit, even with multiple stations.
A typical sequence of operation starts with the processor requesting that an A/D conversion be made. When the conversion is complete, comparisons are made and the system responds with a signal telling the processor to read the limit outputs and the raw BCD data if desired
This particular system includes logic circuits to properly sequence the latching of comparisons and to protect the processor from reading false data.

FIGURE J

FIGURE K

The circuit shown in Figure L shows a comparator system with output on a 4 -wire data bus. The system integrates a varying analog input and compares the average to preset limits. The integration period is easily changed in decade steps from $100 \mu \mathrm{sec}$. to 10 seconds requiring a simple shift right or left on the comparator thumbwheel switches to retain the same limits. The data bus transmits the raw BCD outputs and the comparator outputs on programmed command. A local warning horn is activated through the relay board if limits are tripped in a selected integration period. If desired, the integration period can even be remotely controlled by the processor to record peak and average values.
Figure M shows a 100 hour capacity count-up timer using a Datel model DSC-8200 stopclock.
Front panel controls start and stop the DSC-8200. Logic controls can be wired to stop timing and hold at the preset time or clear to zero and stop or to clear and start timing. Note that bits BCD 800 (A18) and BCD 80 K (A26) are grounded LO since the count in those decades doesn't exceed 5 .
100. HOUR PRECISION TIMER WITH
1 SECOND RESOLUTION 1 SECOND RESOLUTION

ORDERING GUIDE

ALL MODELS ARE AVAIBLE UNDER GSA CONTRACT NO. GS-00S-27959
-

model and limit function
DDC $\cdot 8400=2$ INDE PENDENT, SINGLE.CHANNEL, SINGLE LIMIT COMPARATORS DLC. $8400=$ A SINGLE. CHANNEL, 2-LIMIT, 3-ZONE COMPARATOR WITH ASSIGNED HI AND LO LIMITS

Prices (1.9)

Prices (1.9)
-

DDC 8400 D1
$\left.\begin{array}{l}\text { \$120. } \\ \$ 75 .\end{array}\right\} \begin{aligned} & \text { Choose only } \\ & \text { one type. }\end{aligned}$
Add for type 4 Mechanical Relays $\quad \$ 75$. One ty
Prices include rear PC board connectors, AC models include a Datel model 9115 U.S. 3 -prong line cord.

ロAIEL

1020G Turnpike Street, Building S Canton, Massachusetts 02021 U.S.A Canton, Massachusetts TWX: 710-348-0135 TELEX: 924461

0.005\% MINIATURE DIGITAL VOLTAGE CALIBRATOR

 MODEL DVC-8500
FEATURES

- ± 19.999 Volts Isolated
- Bipolar Output @ 25mA
- 1 mV Settability With $\pm 1.5 \mathrm{mV}$ Continuous Vernier, $100 \mu \mathrm{~V}$ Graduations
- Accuracy $\pm 1 \mathrm{mV}$ of Setting With Low $\pm 20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ Drift
- Miniature Aluminum Case Includes Bench-Top Stand or Can Be PanelMounted
- Low Cost \$295.00 (1-9)

GENERAL DESCRIPTION

A digital voltage calibrator small enough for bench-top use or panelmounting is available from Datel Systems and fulfills many laboratory and portable applications. Datel's model DVC-8500 Calibrator offers full $4 \frac{1}{2}$ digit resolution (1 mV steps) with a +19.999 Volt bipolar output. Up to 25 mA output current may be drawn at the +1 mV rated accuracy. This short-circuit proof output may be continuously varied within +1.5 mV for precise vernier control. The $\pm 20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ drift specification applies over the $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ operating temperature range.
The DVC-8500 uses easy-to-operate digital lever switches to set the output voltage. Front panel banana jacks simplify the connection to calibration circuits while rear panel sense feedback inputs insure output accuracy.

An overload LED lamp is lit when output loading exceeds 25 mA . The rear connector accommodates either standard dual 36 -pin gold-plated PC board connectors or solder or crimp lugs using 4-40 hardware. The +10 V reference is derived from an oven-stabilized zener diode and is brought out at the rear connector for voltage-tracking of external circuits.

The DVC-8500 is powered by a choice of 100,115 , or 230 VAC $+10 \%, 47$ to 440 Hz at 5 watts typical. The black-anodized extruded aluminum housing provides excellent shielding to electrical noise and a regulated power supply provides excellent stability and performance.

SPECIFICATIONS: (Typical between $+20^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$ at steady ambient temperature after 5 minute warm-up)

VOLTAGE OUTPUT
Output Voltage Range 0 to +19.999 Volts DC or 0 to -19.999 Volts DC, lever switch selected.
Output Current Range 0 to $\pm 25 \mathrm{~mA}$ (source or sink) to rated voltage output accuracy.
Output Overload \qquad Greater than $\pm 25 \mathrm{~mA}$ (source or sink) will illuminate front panel LED overload lamp. Output is current limited (continuous short-circuit proof) to $\pm 70 \mathrm{~mA}$ (source or sink) at any voltage up to $\pm 20 \mathrm{VDC}$.
Output Impedance: \qquad Less than 10 milliohms.

PERFORMANCE
Accuracy @ $+25^{\circ} \mathrm{C}$. Within $\pm 1 \mathrm{mV}$ of setting when calibrated. (equivalent to $\pm 0.005 \%$ of Full Scale) Due to all effects except temperature drift.

Resolution
Temperature Drift
Operating Temperature
Range.
Output Noise .
Reference Source
$\pm 1 \mathrm{mV}$ increments and $\pm 1.5 \mathrm{mV}$ Vernier with $100=\mathrm{V}$ graduations. Within $\pm 20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$

FRONT PANEL
Output Selector Switches . . Six lever-operated, detented switches
Output Vernier. Rotary potentiometer, range $\pm 1.5 \mathrm{mV}$ of
6.4 V oven-stabilized zener diode
selected output. Graduated in $100 \mu \mathrm{~V}$ divisions.

INPUT/OUTPUT CONNECTIONS

Front Panel.
Voltage output and output common available from two (2) gold plated brass deep banana jacks.

POWER SUPPLY
Power Required
Choice of 100,115 . or 230 VAC, $\pm 10 \%$

47 to $440 \mathrm{~Hz}, 10$ watts. 3 -prong U.S. captive line cord installed. Ground wire connected to case, but transformer isolated $\pm 300 \mathrm{VDC}$ from output common.

MECHANICAL DIMENSIONS

Case 5.56'W x $2.11^{\prime \prime} \mathrm{H} \times 5.78^{\prime \prime} \mathrm{D}$ ($141,2 \times 53$, $6 \times 146,8 \mathrm{~mm})$
Bezel $5.86^{\prime \prime} \mathrm{W} \times 2.25^{\prime \prime} \mathrm{H} \times 0.50^{\prime \prime}$ THK $(148,7$ $\times 57.0 \times 12,7 \mathrm{~mm}$)
Weight
2.25 pounds ($1,0 \mathrm{Kg}$)

MOUNTING
Choice of bench-top mounting or panel mounting through a cutout measuring $2.16^{\prime \prime} \mathrm{H} \times 5.59 \mathrm{~W}(54,8 \times 142,1 \mathrm{~mm})$ and secured by 2 U-Straps. See ordering guide for optional panel-mount kit.

MODEL NO. DVC-8500 T

```
AC POWER SUPPLY
```

$A=115 \mathrm{VAC}$
$\mathrm{E}=230 \mathrm{VAC}$
$\mathrm{J}=100 \mathrm{VAC}$
$\pm 10 \%, 47$ to 440 Hz

PRICE (1-9)

DVC-8500
$\$ 295.00$
Panel-Mounting Kit
\$ 10.00
(Consists of (2) U-Straps, rear PC-board connector, and hardware. Rubber feet and tilt-stand bale supplied for bench-top use are screwed to case bottom and must be removed before panel mounting).

DIGITAL PANEL PRINTER

Model DPP - 7

- THERMAL PRINTHEAD USES NO INK OR HAMMERS
- PANEL-MOUNTING FEATHERWEIGHT (2.3LB.)
- 6 DIGITS AND SIGN UP TO 3 LINES PER SECOND
- +5VDC OR AC LINE POWER
- MOLUEES AY BCD THL ELECTRONICS PLUS INPUT STORAGE RECISTER

Connect a miniature
DPP - 7 Thermal
Printer to your Digital
Panel Meter.
The DPP - 7 under-
stands a DPM's
language!!

FEATURES

- 3 Lines/Second OEM-Reliable Thermal Printer
- Includes All Electronics for BCD Inputs with Input Storage Register
- 6 Numeric Columns and Sign
- Selectable Leading Zero Blanking
- Positive or Negative True TTL/DTL Inputs
- +5 VDC Power (2.3 lbs.$)$ or $\mathrm{AC}(4.2 \mathrm{lbs}$.
- \$475.00 Single Quantity
- Last Line Visible Immediately After Printing

DESCRIPTION

Imagine a low cost 7 -column panelmounting printer just slightly larger than most digital panel meters. Imagine this lightweight, high-reliability digital panel printer installed in your instrument or system front panel. And imagine an inkless, non-impact thermal printing method with only two moving parts which will last for years.

This is Datel's miniature 3 line per second DPP-7 thermal panel printer. A no-nonsense, simple to apply, OEM-designed digital output device that weighs in at only 2.3 pounds ($1,1 \mathrm{Kg}$). OEM features are designed in to the DPP- 7 such as selectable leading zero blanking, selectable positive or negative true coding inputs and choice of +5 VDC or AC line power. Full parallel TTL input BCD electronics are included as standard.

Other OEM design features include a selection of printout formats, manual print and advance front panel switch, and a low-paper switch output. A unique mounting technique uses an aluminum housing which attaches directly through a front panel cutout. This housing permanently holds the electronics, although the mechancial assembly can be completely removed for paper replacement using a single front panel thumbscrew. As the mechanical assembly is removed, it disconnects from the internal electronics PC board connectors, so that no lethal power voltages are exposed during paper reloading. However, the external PC board connectors at the rear of the case remain connected to the internal electronics.

The housing supports the weight of the mechanical assembly and is mounted on a front panel through a $4.50^{\prime \prime} \times 2.72^{\prime \prime}$ cutout and secured by four screws. Three DPP-7 panel printers can conveniently be mounted across a $19^{\prime \prime} \times 3-1 / 2^{\prime \prime}$ high rack mount panel.

OEM pricing makes the DPP-7 ideal for instrument products. Comparable impact parallel printers with BCD decoding and drive electronics usually list for more than the DPP-7.
Standard 1-3/4" wide thermographic papers are used in handy 150 foot rolls giving about 9,000 lines per roll with 5 lines per inch. The 7 -segment digits are .155" high with left-of-digit decimal points selectable at each digit. Seven column printing formats include sign and six digits or 2 -channel (ident) digits, sign and 4 data digits. Other 7 column decimal formats are also available.

The DPP- 7 Digital Panel Printer extends back $6.2^{\prime \prime}$ from the front surface of the mounting panel (8.62" for the AC powered versions), including space allowance for the two 30 -conductor PC board connectors or AC fuses.

Three universal AC line voltages (100, 115 , and 230 VAC) will power the DPP- 7 Printer as well as +5 VDC at 20 watts average (8 Amps peak).
The DPP- 7 is ruggedly built, using a simple, but sophisticated mechanical design which is optimized for heavy duty OEM applications. A proprietary printhead character coating allows the head to be conservatively rated at 3 million lines.

2.3 Lb. Panel-Mounting Featherweight

At 2.3 pounds $(1,1 \mathrm{Kg})$ the DPP- 7 DC version is one of the lightest panel-mounted recording instruments available. It is directly compatible with the size, shape and interfacing of Digital Panel Meters.

OEM Reliable - only Two Moving Parts
Instead of the usual assembly of ratchets and gears, the DPP-7 Digital Panel Printer needs only two long-life moving parts - a linear solenoid and rotary clutch. Two $1 / 8^{\prime \prime}$ excursions of this solenoid connected to the one-direction rotary clutch cause one line advance. There are no banging hammers or twirling printwheels to fail and to cost extra in assembly. All electronics use low power Schottky TTL logic, assuring minimal heat rise and long, service-free life. Components have been generously derated and were selected particularly for their OEM reliability. A full one-year warranty provides further assurance of product excellence. An absolute minimum of maintenance is needed. Printhead cleaning required in other thermal printers can safely be ignored because of the wiping action of the paper.

Complete with Binary Coded Decimal Inputs and Storage Register

Datel's Miniature DPP-7 Printer is complete with BCD electronics. Many competitive printers don't include full parallel BCD or if they do, it is an expensive additional chasses with bulky cabling and unique power requirements. Datel's little DPP-7 printer is ready to use and all BCD I/O logic (with selectable positive or negative true TTL coding) is built in. A strobed input storage register allows multiplexing with other I/O devices sharing the same data bus lines.

+5VDC or AC Line Powered

Take your pick of power voltages. Use either +5 Volts DC or 100, 115, or 230 Volts AC, 47 to 440 Hz . The +5 VDC printer offers the smallest package, only 6.2 inches (158 mm) deep and only 2.3 pounds ($1,1 \mathrm{Kg}$). The +5 V version requires a regulated power supply capable of 8 Amps peak during print cycles while the AC version can accept a variety of universal worldwide power voltages and is slightly longer than the DC version.

Thermal Printhead

Printing couldn't be simpler. Heat-sensitive thermographic paper is positioned under six decimal digits in 7 -segment format. Each digit consists of conductive thick film resistor matrix segments deposited on a ceramic substrate. Segment-parallel, digit-serial power pulses are applied to each digit for 25 milliseconds. $I^{2} R$ heating then darkens the paper in contact with the heated segments, leaving crisp, black printed digits. A proprietary, thermally conductive surface on the thickfilm elements has high wear resistance allowing a conservative 3 million line printhead life. Characters are formed along the bottom edge of the printhead so they may be viewed immediately after printing.

General

Number of columns: 7
7 -column formats available:
a) Leading \pm sign and 6 decimal digits
b) 2 leading ident or channel digits, \pm sign and 4 data digits
Decimal digit format:
7 -segment 0 to 9 digits $.155^{\prime \prime}(4 \mathrm{~mm})$ high with 10° slant and selectable left decimal point.

Printing method:
Thick film thermal print head, black characters on white paper (using 3M Type 161 paper)
Printer paper:
$1.75^{\prime \prime}$ wide $\times 150$ feet long, ($44,5 \mathrm{~mm} \times 45 \mathrm{~m}$), 3M-type 161 thermal paper roll with the thermal surface facing away from the center of the roll.
Paper advance:
Via linear solenoid and one-direction rotary clutch. Paper tears off cleanly by lifting against the paper slot top edge.

Performance

Max. printing rate: 3 lines per second
Print and paper advance cycle: 330 milliseconds
Line spacing: 0.2 inch (5 mm)
Line density: 5 lines per inch
Line capacity per paper roll: approx. 9,000 lines
Minimum print head life: 3 million lines
Average print pulse on-time: 25 mSec . (height varied by temperature feedback)

Inputs

DTL/TTL compatible, selectable positive or negative true, level sensitive. TTLLS low power Schottky logic used on all inputs.
Logic Levels:
\(\left.\begin{array}{ll}Positive true: \& +2.0 \mathrm{~V} \leqslant{ }^{\prime \prime} 1^{\prime \prime} \leqslant+5.0 \mathrm{~V}

\& 0 \mathrm{~V} \leqslant{ }^{\prime \prime} 0^{\prime \prime} \leqslant+0.5 \mathrm{~V}

Negative true \& 0 \mathrm{~V} \leqslant{ }^{\prime \prime} 1^{\prime \prime} \leqslant+0.5 \mathrm{~V}

\& +2.0 \mathrm{~V} \leqslant{ }^{\prime \prime} 0^{\prime \prime} \leqslant+5.0 \mathrm{~V}\end{array}\right\}\)| Note TTLLS |
| :--- |
| logic levels |

Note: Pullup resistors to +5 V may be optionally removed on all inputs and outputs.
Data: (24 lines)
Full parallel BCD (1-2-4-8), selectable positive or negative true, 1 TTLLS load plus 10 K ohm pullup to +5 V . May be used with Form A (normally open) or Form B (normally closed) switch closure inputs. Level sensitive (rise-time non-critical). Data is stored (see timing, pg. 8)

Change Data Polarity: (Pin C1-B11)

Selects input polarity of data, decimal points and \pm sign simultaneously.
LOW = positive true coding
HIGH = negative true coding
6 TTLLS loads, plus 1 K ohm pullup to +5 V , level sensitive
Print and Advance Command: (Pin C1-B14)
Level sensitive for Form A or Form B contact closure,
selectable positive or negative true.
1 TTLLS load plus 10 K ohm pullup to +5 V .
Pulse Width: 1 miscrosecond to 200 mSec (data must be valid $1 \mu \mathrm{sec}$. after leading edge and 500 nSec . before the print command).
Maximum print command rate: 3 per second.
Paper advance automatically occurs after digit printing. Holding print command TRUE longer than the busy output is true (200 to 330 mSec, typ) causes continuous 3 lines $/ \mathrm{sec}$. printing.
Change Print Polarity: (Pin C1-B7)
HIGH = negative true coding
LOW = positive true coding
1 TTLLS load, plus 10 K ohm pullup to +5 V , level sensitive.
Leading Zero Suppress: (Pin C1-B4) blanks all leading zero's to the left of decimal point except a zero just left of the decimal point
HIGH = Leading 0's blanked
LOW = full print (no suppression)
2 Low Power TTL loads, plus 10 K ohm pullup to +5 V , level sensitive.

Minus Sign: (Pin C1-B1)

Selectable positive or negative true using data level select input.
1 TTLLS load, plus 10 K ohm pullup to +5 V , level sensitive.

Plus Sign: (Pin C1-A5)

(Selectable positive or negative true using change data polarity input). (Minus sign must also be printed since it is used as the horizontal portion of the plus sign).
1 TTLLS load, plus 10 K ohm pullup to +5 V , level sensitive.
Note: Printing "plus" sign only results in vertical portion of plus sign. See above. Usable as 100% overrange digit.

Blanked Character:

Created by loading 1-1-1-1 in a given column. Can be hard-wired.
Decimal Points: (6 lines)
1 TTLLS load, plus 10 K ohm pullup to +5 V , level sensitive.
(Selectable positive or negative true using change data polarity inputs).
No-Print Paper Advance: (Pin C1-A3)
Ground this line $70 \pm 5 \mathrm{mSec}$ to advance one line. Hold to ground for continuous advance at 6.7 lines per second.
1 TTLLS load plus 10 K ohm pullup to +5 V .

No Print Paper Advance:

May also be created by loading the illegal BCD character 1-1-1-1 in all decimal locations, and disabling all decimal points and \pm signs, then initiating a print/ advance command.
Test: ($\mathbf{P i n} \mathrm{C} 2-\mathrm{B6}$)
LOW $= \pm .8$. 8 . 8 . 8 . 8 . 8 printout when print/advance command is given.
1 TTLLS load, plus 10 K ohm pullup to +5 V , level sensitive.
Change Busy Polarity: (Pin C1-A2)
HIGH = positive true busy out
LOW = negative true busy out
1 TTLLS load, plus 10 K ohm pullup to +5 V , level sensitive.

Outputs

DTL/TTL compatible

Positive true: $\quad 0 \mathrm{~V} \leqslant{ }^{\prime \prime} 0$ " $\leqslant+0.4 \mathrm{~V}$

$$
+2.4 \mathrm{~V} \leqslant{ }^{\prime \prime} 1{ }^{\prime \prime} \leqslant+5.0 \mathrm{~V}
$$

Negative true: $\quad+2.4 \mathrm{~V} \leqslant{ }^{\prime \prime} 0$ " $\leqslant+5.0 \mathrm{~V}$
$0 \mathrm{~V} \leqslant{ }^{\prime} 1$ " $\leqslant+0.4 \mathrm{~V}$
Busy: (Pin C2-B12) (Open collector TTL 7438 with 1 K ohm pullup to +5 V)
Remains TRUE during print and advance cycle (approximately 200 to 330 milliseconds). Data inputs may be changed 500 nSec. after transition to TRUE. Next print command can be enabled when busy goes FALSE. Selectable positive or negative true. 10 TTL loads.
Out of Paper: (Pin C2-B4) see dwg. pg. 10
Switch opening via mechanical pawl when approx. $6^{\prime}(2 m)$ of paper are left on roll. Paper roll visually indicates "Iow paper" within 10 to 15 feet (3 to 4.5 m) of end of roll using red stripe on roll. Switch is in series with PC board contacts which disconnect if printer mechanism is not completely seated in case. Open switch contacts or print mechanism removed will disable both local and remote print command. Pin C2-B4 has an internal 1 K ohm pullup to +5 V normally grounded by switch before paper is low.

Front Panel

LED red power-on lamp

Paper Quantity Indicator:
Mechanical pointer which rides on paper roll, indicating relative amount of paper left.

Paper Roll Replacement:

By sliding out front panel printer assembly. PC board interlock automatically disconnects all power to printer assembly and power supply with electronics remain with housing case. Removal by a single Dzus-type front panel thumbscrew.

Print/Remote/Advance

Front panel 3 position toggle switch, stable in center position (REMOTE), must be held in top (ADVANCE) or bottom (PRINT) positions.

ADVANCE:

When switch is held up, the printer continuously advances paper without printing at a 6.7 line per second rate. Paper may be manually advanced simply by pulling paper out of front opening at any time.

REMOTE:

Center position enables all external inputs.
PRINT:
When switch is pushed down, printer prints one line and stops. After print and advance, external input is accepted even if the switch is held down.

Temperature Ranges

Operating: 0 to $+40^{\circ} \mathrm{C}$ (to $+50^{\circ} \mathrm{C}$ at derated speed) Storage: $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Paper darkens above $+60^{\circ} \mathrm{C}$) Active printhead temperature sensor is employed to maintain proper print head temperature at all ambient temperatures and during warmup.

Power Supply

+5 Volt Version:

4 Amps average current (20 watts dissipation) at 3 lines/sec. max. printing rate. (10 Watts, typ in standby)
Segment-parallel, character-serial printing requires $+5 \mathrm{~V} @ 8$ Amps peak, duty cycle is 10 to 90% during print and advance period.*
Separate PC board connection available to supply "clean" ($\pm 2 \%$ @ . 3 Amp) 5 volts to logic section. Logic spikes must be held to 50 mV max. pk-pk.
Unregulated +5 V ($\pm 10 \%$) connected through $1 / 4^{\prime \prime}$ spade terminal connector, 16 gauge wire or larger not to exceed ten feet (3 meters).
Fuse:
7 Amp SLO-BLO, $1 / 4^{\prime \prime} \times 1-1 / 4^{\prime \prime}$
*8 Amp current pulses on and off during print and advance cycle from 10 to 90% duty cycle (depends on character printed, leading zeros, etc.). 8 Amp, 5 to 20 msec . pulses occur several times per second in standby.
Power consumption varies with print rate, leading zeroes, digits printed, signs and decimal points.
Power Supply
AC Version:
105-125 VAC, 47-440 Hz @ 40 watts max (10 watts, typ standby)
Optional:
205-240 VAC, 47-440 Hz @ 40 watts max (10 watts, typ standby)
Optional:
$90-110$ VAC, $47-440 \mathrm{~Hz}$ @ 40 watts max (10 watts, typ standby)
AC Fuse: $1 / 4^{\prime \prime} \times 1-1 / 4^{\prime \prime}$ Buss MDL or equivalent $1 / 2$ A, SLO-BLO, $115 \mathrm{VAC}, 1 / 4 \mathrm{~A}, \mathrm{SLO}-\mathrm{BLO}, 230 \mathrm{VAC}$.
Note: Case is isolated from 5 V ground and AC line. A separate spade terminal is included to ground case.
$+5 \mathrm{~V}, 200 \mathrm{~mA}$ max. logic power out available with AC version.

Connectors

Data and Controls: (and optional logic +5 V)
(2) 30 -conductor (15 per side).

Double-sided PC board connectors.
$0.1^{\prime \prime}$ centers, Viking \#3VH15/1JN-5 or equivalent 2 included with printer).

+5V Power

(2) $1 / 4^{\prime \prime}$ spade terminal connectors, included.

AC Power

(1)Double $1 / 4^{\prime \prime}$ spade terminal connector. Mates to a 9115 AC line cord (included).

Weight (with housing and full paper roll)

5 Volt Version:	2.3 lbs.	$(1,1 \mathrm{Kg})$
AC Version:	4.2 lbs.	$(1,9 \mathrm{Kg})$

Dimensions (Uses \#4 hardware)
Front panel mounting cutout:
$4.50^{\prime \prime}$ WIDE $\times 2.72^{\prime \prime}$ HIGH ($115 \mathrm{~mm} \times 69 \mathrm{~mm}$)
Front panel Bezel dimensions:
$5.25^{\prime \prime}$ WIDE $\times 2.82^{\prime \prime}$ HIGH ($134 \mathrm{~mm} \times 72 \mathrm{~mm}$)
Depth behind front surface of mounting panel including clearance for rear PC connectors and fuses:
5V Version: $\quad 6.2^{\prime \prime}(158 \mathrm{~mm})$
AC Version: $8.7^{\prime \prime}(221 \mathrm{~mm})$

An ideal use for the DPP- 7 is to record analog values from a BCD output A/D converter or Digital Panel Meter. A simple external clock circuit or an A/D converter with an adjustable conversion rate can be used to form a printing data logger. With the addition of Datel's digital time-of-day clock and data acquisition module, a complete multi-channel logging system can be made. See page 11.
Most scientific and analytical instruments with digital interfacing capability will have full parallel BCD outputs which can be directly connected to the DPP-7.

Use the DPP- 7 with Datel's autoranging DM-2000AR Digital Panel Meter to create an analog sampling system with $3-1 / 2$ digit resolution over 3 decades from 200 mV to 20 V full scale. See page 11.
Using the DPP-7 printer with a DPM will allow faster sampling than taking readings by hand or by visual sampling of the DPM readout. Longer-term variations and drifts are more easily viewed when the printer and DPM work hand-in-hand.

1. Shut off all power to the printer if the printer uses a separate power switch.
2. Slide out the printer mechanism by first loosening the front panel thumbscrew counterclockwise until it stops. Pull the thumbscrew firmly straight out and the front panel/printer assembly will slide out all the way. Some force may be needed to release the internal PC connection.
3. Raise the paper loading door by pulling forward until it stops. This automatically lifts the thermal printhead from the paper drive roller (see photo). Remove any paper from a previous roll.
4. Pull the remaining paper backward out from under the printhead. Grasp both ends of the paper roll axle with fingertips and pull straight up out of the printer assembly. The axle will slide past the circular axle retaining spring as shown in the photo.

Inserting new roll

5. Slide the paper roll axle out of the used paper roll and reinsert the axle in a new roll. Do not discard axle!!! The paper roll is Datel part number 9101 supplied only in boxes of ten rolls. Orderbox number 9114 (\$19.95). Spare axles are Datel part number 9062, \$5 each.
6. Slide the new roll and the axle past the retaining spring and insert the paper
over the pad and under the printhead ribbon cable (see photo) until paper appears at front panel slot. Be sure the paper is threaded from the rear and passes over the roll. Paper should be cut straight across for easy insertion. Only the outside paper surface is treated for printing.
7. Pull paper through front panel slot, close the paper loading door and slide the printer mechanism back into the housing. Press the front panel printer assembly firmly into the housing as far as it will go. This will seat the internal PC board connection.
8. Rotate the thumbscrew clockwise until it stops and turn on power. Paper may be manually advanced simply by pulling out of the front slot.

Reloading summary:

1. Loosen thumbscrew, pull out mechanism.
2. Lift paper loading door.
3. Lift out used roll and reinsert axle in new roll.
4. Press new roll and axle into axle slot past circular spring.
5. Thread paper over top of roll and under printhead out through front panel slot. Close door.
6. Push mechanism back into housing and retighten thumbscrew.

ORDERING GUIDE \& PRINT FORMATS

Datel's products are available both direct and through GSA. If you are connected with a military or federal agency or receive federal funds, you may be entitled to purchase Datel's Digital Panel Printers and other products through
the General Services Administration to expedite requisitioning and order processing. Datel's printer is covered under FSC Group 66-17, Part II, GSA Contract No. GS-OOS27959. Contact Datel for assistance.

MODEL NUMBER

Power	Print Format
$\mathrm{D}=+5 \mathrm{VDC}$	1 = $\pm .9 .9 .9 .9 .9 .9$
$\mathrm{A}=115 \mathrm{VAC}$	2 = .9.9 $\pm .9 .9 .9 .9$
$\mathrm{J}=100 \mathrm{VAC}$	3 = .9 $\pm .9 .9 .9 .9 .9$
$\mathrm{E}=230 \mathrm{VAC}$	4 = .9.9.9 .9.9.9
$\mathrm{Y}=+12 \mathrm{VDC}$	5 = .9.9.9.9 . 9.9
$\mathrm{Z}=+28 \mathrm{VDC}$	6 = .9.9.9.9.9 . 9
$B=$ Dual	(Note: .9.9 .9.9.9.9 printout format can be derived from
115/230 VAC (add	type 2 format by hard-wiring
\$15)	a blanked sign)

Prices (1-9) (includes 2 connectors, a roll of paper, and a 9115 line cord if an AC version).

DPP-7

$\$ 475.00$
Model 9114, Box
\$ 19.95 of 10 paper rolls, 150 ft . per roll

Canton, Massachusetts 02021 U.S.A.
TEL: (617) 828-8000
TWX: 710-348-0135 TELEX: 924461

Data Loggers

LOW POWER CASSETTE DATA ACQUISITION AND LOGGING SYSTEM

MODEL LPS-16 DATALOGGER

FEATURES

- Sixteen Channel Analog Input
- Digital Input for Timing Information
- 12 Bit A/D Resolution
- 12VDC Battery Operated
- 900 Milliwatts Maximum Power Consumption
- C/MOS Logic Throughout
- True Incremental Recording
- Certified Phillips Cassette
- 2.2 Million Bit Capacity
- Total Weight 2 Lbs.
- Cassette Reader for Computer Entry

SYSTEM I/O CONTROLS PROVIDE TOTAL SYSTEM FLEXIBILITY

ロAIEL

Datel Systems announces a new approach to the Data Logging system, a complete Data Logging system in a Module, occupying only 134 cubic inches weighing less than 2 lbs. and operating from a single 12VDC source requiring only 900 milliwatts when recording and microwatts during standby.

Through the use of $\mathrm{C} / \mathrm{MOS}$ electronics and a unique incremental digital cassette recorder, Datel Systems has significantly reduced the size, power drain and cost over competitive systems.

In incremental recording, the cassette tape moves only when information is presented. This conserves power in portable operation, and no tape is wasted because data is uniformly recorded in precise tape increments. Further, the length of time a cassette can be left unattended can be accurately predicted from the data rate, the number of bits, and the tape length.
Applications include oceanography, pollution monitoring, meteorology, seismology, or other remote data logging requirements. It is also ideal for other scientific and technical data acquisition uses both in the laboratory and in the field.
A cassette reader is available which allows the user to transcribe the digital data on the cassette to computer compatible media. These readers may be interfaced to produce IBM $1 / 2^{\prime \prime}$ tape or to teletype, data terminals, acoustic coupler, or directly into a digital computer.

GENERAL DESCRIPTION

The LPS-16 Data Logging System is a complete package for recording multi-channel analog data and single channel digital data. It features low power consumption and compactness making it especially suitable for remote data logging applications in unattended areas over long time periods. It will accommodate up to 16 channels of analog input and any number of 16 bit bytes of digital data in serial form. The analog data inputs can be sequentially or randomly multiplexed, converted into digital form, formatted and stored on a standard Phillips cassette. Approximately 120,000 samples of data along with identifying channel number can be stored on one cassette.

A functional Block Diagram of the system is shown below. The inputs required are up to 16 analog voltages, one digital input channel, control logic signals and power. The system can be conveniently divided into two subsystems; analog multiplexing and digitizing is one, and the digital recording is the other.

System LPS-16 utilizes C/MOS type logic throughout, thus negligable stand-by power is consumed. Only during the actual A / D conversion and storage on tape is any appreciable current consumed. Therefore, system LPS-16 may be operated for long periods on battery with low average power.

Cassette tapes prepared in the system may be read with the Datel Systems LPR-16 Reader system which provides a 16 bit parallel output of the data on tape at a rate of about 90 sixteen bit words per second. Each word consists of a 12 bit A/D value plus 4 bit channel address. This LPR-16 reader recognizes and stops on record gaps for convenient computer interface.

FIG: 1, DATA-LOGGER SYSTEM
FUNCTIONAL BLOCK DIAGRAM
SYSTEM-LPS-16

LPS-16 SYSTEM SPECIFICATIONS

DATA ACQUISITION SECTION	
ANALOG INPUTS NUMBER OF ANALOG INPUTS	16
INPUT CHANNEL CONFIGURATION	Single ended
INPUT VOLTAGE RANGES	0 V to -5 VFS or $\pm 5 \mathrm{VFS}, 0$ to +5 VFS
CHANNEL INPUT IMPEDANCE	100 MegOhms "ON" or "OFF"
	NOTE: When the 12VDC system power is turned off each channel has an input impedance of 10 K Ohms
CHANNEL INPUT OVERLOAD	$\pm 10 \mathrm{~V}$ (max.)
CHANNEL MODE OF OPERATION	Random or Sequential
CHANNEL INPUT ACQUISITION TIME	$100 \mu \mathrm{sec}$ - includes input settling time
SYSTEM PERFORMANCE: SYSTEM APERTURE TIME	50 nsec
SYSTEM ACCURACY	$\pm 0.025 \%$ of $\mathrm{FS} \pm 1 / 2 \mathrm{LSB}$
SYSTEM LINEARITY	$\pm 1 / 2 \mathrm{LSB}$
A/D RESOLUTION	8,12 Binary Bits
SYSTEM TEMPERATURE COEFFICIENT	$\pm 0.004 \% /{ }^{\circ} \mathrm{C}$
SYSTEM THROUGHPUT RATE	200 msec per 16 bit word (12 bit A/D plus 4 bit channel address)
INPUT CHANNEL SCAN RATE	Up to 5 per second
A/D DIGITAL OUTPUT CODING	Straight Binary - Unipolar Input Offset Binary or 2's complement - Bipolar Input
CASSETTE TAPE STORAGE METHOD	Two channel NRZ1: Track \#1 - Data, Track \#2 - Data (complement)
CASSETTE TAPE FORMAT (2)	16 bit words ($12 \mathrm{~A} / \mathrm{D}$ bits plus 4 bits for channel address)
CASSETTE TAPE RECORD GAP	Two bit gap separates each 16 bit word
CASSETTE TAPE END-OF-FILE GAP (3)	Twelve bit file gap every 64th word, or per order. See guide.
SYSTEM CONTROL INPUTS (1) RANDOM ADDRESS INPUTS	Selects analog channel Four lines 8-4-2-1-negative true logic
RANDOM/SEQUENTIAL INPUT	Selects multiplexer mode One line - logic zero selects random mode
DEVICE SELECT INPUT	Controls all input command lines One line - negative true logic
CONVERT INPUT	Initiates A/D conversion One line - negative true logic
MULTIPLEXER RESET	Resets multiplexer to channel one One line - negative true logic
STROBE INPUT	Strobes all input lines and internally stores them One line - negative true logic
AUXILIARY SERIAL DATA IN	Permits cassette recording of EXT. serial data in 16 bit bytes - One line
DATA SELECT INPUT	Permits recording of either A/D output or EXT. serial digital data One line - Logic one selects A/D output
START TWO IN	Initiates recording of external serial data One line - Triggers on negative going transition
STATUS	Positive during a recording cycle One line - positive true logic
LOAD FORWARD	Advances cassette tape off leader to recording position One line - negation true logic
SYSTEM CONTROL OUTPUTS (1) FRAME SYNC OUTPUT	Identifies channel one One line - positive true logic
A/D BUSY OUTPUT	Identifies A/D conversion in process One line - positive true logic (during conv.)
WRITE CLOCK OUTPUT	When gated with file gap output, it provides shift signals for auxiliary data input One line - positive true logic
FILE GAP OUTPUT	When gated with write clock output, it provides shift signals for auxiliary data input One line - positive true logic
POWER ON RESET OUTPUT	Generates negative going pulse when system power is turned on One line - negative true logic
NOTES: (1) All input/output control (2) Jumper connections can be example an 8 bit A/D conver (3) Jumper connections can be	S logic levels, Logic zero -0 V to +3 V , Logic one -+9 V to +12 V card allowing selection of either 12 or 16 bit words. For els would require only a 12 bit word length. rd allowing for file gaps every $1,2,4,8,16,32$, or 64 words.

LPS-16 SYSTEM SPECIFICATIONS (continued)

RECORDER CHARACTERISTICS	
STORAGE MEDIA	Standard Phillips certified data cassette 300 foot length
STORAGE METHOD	2 channel NRZI
NUMBER OF TRACKS	TWO: Data on track one $\overline{\text { Data }}$ complement on track two
TAPE FORMAT	16 bit words (12 A/D data bits and 4 channel address bits)
RECORD GAP	Two step record gap for every 16 bit word
FILE GAP	Twelve bit file gap every 64th word, or per order. See guide.
TAPE STORAGE CAPACITY	120,000 sixteen bit words including gaps and load forward
WRITE SPEED	90 steps per second 5 sixteen bit words per second (max.)
DATA INPUT/OUTPUT	Serial NRZI or parallel 16-bit thru the A/D Converter connector
PLAY-BACK SPEED	See Datel's LPR-16 Reader
MOTOR	Single 1.5° angle stepper coupled to take-up reel by slip clutch mechanism
MOTOR STEP ANGLE	1.5°
ANGULAR ACCURACY	$\pm 8 \mathrm{~min}$. of arc non-accumulative
TAPE MOTION CONTROL	Single capstan pinch roller drive Head engages mechanically during write time
TAPE TENSION	0.4 oz . inches
ERROR RATE	1 bit in 10^{7}
TYPE OF CASSETTE LOADING	Front
RECORDING HEAD	Dual channel single gap High quality digital type
OPERATING MODE	Write only
INPUT POWER REQUIREMENTS	$+12 \mathrm{VDC} \pm 8 \%$ 80 ma when recording (960 mw) 10μ a during standby $(120 \mu \mathrm{w})$ NOTE: Includes tape transport plus all electronics
OPERATING TEMPERATURE RANGE	$-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
STORAGE TEMPERATURE RANGE	$-35^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
RELATIVE HUMIDITY	10% to 95% w/o condensation
SHOCK \& VIBRATION	1.0 G @ 0-50 cps, all 3 axes
PHYSICAL SIZE W/ELECTRONICS (includes electronics)	$4^{\prime \prime}$ high $\times 41 / 2^{\prime \prime}$ wide $\times 71 / 2^{\prime \prime}$ deep ($61 / 2^{\prime \prime}$ deep behind panel)
ELECTRONICS	Contained on four plug-in PC cards mounted on a removeable PC mother board
WEIGHT	2 lbs . includes recorder and electronics
I/O MATING CONNECTORS	Cinch-part \#251-22-30-160 - (I/O Command Signals) Elco-part \#00-8218-24-722-005-(16 channel analog inputs, located on top rear of mux/S\&H card)
NOTES: 1) The LPS-16 data logger is shipped completely assembled and ready to operate. It is only necessary to connect the analog input signals, control signals, and 12 VDC power source plus inserting a cassette to begin recording. 2) An extremely important factor in the reliability of the LPS-16 data logging system is the cassette itself. Only a properly certified tape cassette should be used. The mechanical tolerances of the cassette cartridge and tape tension are also significant factors in the reliability of operation of the LPS-16 system. The preffered tape cassette is Datel Systems Type 12123-1	

ORDERING INFORMATION

LPS-16-

NUMBER OF BITS \& CODING
$8 \mathrm{~B}=8$ BINARY BITS
$10 B=10$ BINARY BITS
12B $=12$ BINARY BITS

FULL SCALE ANALOG INPUT

$1=0 V$ to $-5 V$
$2= \pm 5 \mathrm{~V}$, inverted analog
$3=0$ to +5 V
$4= \pm 5 \mathrm{~V}$, conventional
FOR EXAMPLE:

FILE LENGTH PRERECORDED CASSETTE MODEL TC-1R \$35.00
GSA Contracted: Datel's products are available both direct and through the General Services Administration (GSA). If you are connected with a military or federal agency or receive federal funds, you may be entitled to purchase Datel's data loggers and other products through GSA to expedite requisitioning and order processing. Datel's data loggers are covered under FSC Group 66-56, Part II, Section K, Contract GS-00S-29002

FEATURES

- Digital Tape Cassette Reader for the 16 -channel battery-powered LPS-16 Data Logger
- Full parallel interface to minicomputer or mainframe processor
- Teletypewriter/RS-232-C serial I/O interface
- Selectable I/O loading and logic coding for complete data buss compatibility
- Complete "handshaking" computer controls and flags for "on-line" external control
- Tape-to-Tape Interface for $1 / 2^{\prime \prime} 7 / 9$ track tape transports
- Open collector parallel interface can be multiplexed with other I/O devices sharing common data bus

GENERAL DESCRIPTION

The LPS-16 Data Logger tape cassettes, containing up to 16 channels of analog data can be fed directly into a minicomputer or mainframe processor using the LPR-16 Cassette Reader. The LPR-16 will also simultaneously connect directly to a teletypewriter or RS-232C I/O device. The LPR-16 has two side-by-side interface card slots with identical pinout so that two interfaces can be simultaneously connected.

A special feature of the LPR-16 is selectable positive or negative true coding of the TTL outputs and a variety of input/output loading for full compatibility with an external minicomputer data bus.

GENERAL Function	Read Only
Media	Standard Phillips-type certified digital tape cassette
Number of Tracks.	Two
Tape Motion	One direction, capstan stepper motor drive
Tape Speed	2.75 inches per second
Reading Format .	Complementary NRZI
Reading Density .	615 bits per inch
Bit Rate	1700 bits per second
Bit Capacity	2.2 million bits per cassette (including all gaps)
Word Length . .	8,12 or 16 bits
Record, Word or Intercharacter Gap	2 bits
File gap	16 bits
Words per File . .	Any (Standard is 64 words per file)
Power Required	100,115 or 230 VAC, 47 to 63 Hz ,

LOGIC OUTPUT CHARACTERISTICS (Computer Interface)

LOGIC OUTPUTS (Computer Interface)
(All outputs are selectable as positive or negative true unless otherwise noted.)

Data Format 16 lines: Normally 12 A/D lines and 4 address lines. However a 16 bit digital word can also be used.
Word Sync Output 1 line
End of File (EOF) Output . . 1 line, normally flags every 64 words.
Rewind Status Output 1 line
Busy Status Output 1 line
Load Forward Status
Output 1 line
Cassette-in-Place Status
Output 1 line
Head Down Status Output . . 1 line
EOT/BOT Status Output . . . 1 line
Shift Clock Output 1 line, positive pulse
Tape Clock Output 1 line, positive pulse
Serial Data Output 1 line, positive true, NRZI coding

LOGIC INPUT CHARACTERISTICS (Computer Interface)
Logic Levels TTL Compatible
$" 0 "=(\mathrm{LO})=0$ to +0.8 volts $" 1 "=(\mathrm{HI})=+2.0 \mathrm{~V}$ to +5.0 volts
Input Loading
Optional one TTL load, or 1 TTL load with $1 \mathrm{~K} \Omega$ pullup to +5 V , or 1 TTL load with 330Ω pullup to +5 V and 470Ω pull down to ground.
LOGIC INPUTS (Computer Interface)
Start Input 1 line, positive true
Start Input 1 line, negative true

OUTPUT LEVEL CONTROL INPUTS 1 1		OUTPUT CODING
1	1	POS. TRUE
1	0	NEG. TRUE
0	1	Jammed LO
0	0	ONE'S*

The output Level Control Inputs control the coding of most outputs as shown in the chart - see the listing of outputs.
*With both Output Level Control Inputs at
zero, most outputs whose coding is controlled by these inputs will have cutoff open collectors. In this state, external open collector devices sharing the same data buss lines as the LPR-16 may be multiplexed onto these lines.

CONTROLS AND INDICATORS
Power On/Off (Pushbutton
Switch) Turns power on and off. Illuminates when power is on.
EOT/BOT (LED indicator) . . Illuminates when on clear leader beginning of tape or at clear end of tape.

Switch).
Depressed to cause tape to load forward from clear leader to oxide portion of tape. (EOT/BOT lamp will extinguish over oxide).
Rewind (Pushbutton switch). Depressed to cause tape to rewind to the beginning of tape clear leader.
Busy (LED Indicator) Illuminates when the tape is in motion.
Rewind (LED Indicator) . . . Illuminates while tape is rewinding.
Run/Standby (Toggle Switch) When in "RUN", tape will continuously read. When in "STANDBY" tape will read one file each time the START switch is depressed.
Start (Pushbutton Switch) . . When in standby mode, this switch will cause one file to be read each time it is depressed.
Size 19"W x 5.25"H x 19"D (16.25"
Connector Type Dual 25/pin PC Brd type, 0.1" Centers, Viking 3VH25/1JN-5 (1 included with unit)

Data Logger 2: A New Instrument for Field Data Logging

Scientists and industrial researchers have long required a battery-powered, portable multichannel analog recording system for long term unattended data logging of slowly varying signals. The power and long-term requirements have been particularly difficult to achieve in a portable commercial instrument. Many applications in meteorology, pollution monitoring, oceanography, biomedicine, geophysics and natural resource exploration require an instrument which can literally be left in the field to run on its own batteries, recording slowly changing data unattended for up to a year.

SYSTEM DESCRIPTION

Datel System's new Data Logger 2 provides the missing link needed for a remote analog recorder with an output system compatible with most computer systems. Using this system, up to 64 analog inputs derived from physical variables can be displayed or printed out on a computer with the date and time of each measurement. Up to 120,000 separate measurements or samples can be recorded using a single digital magnetic tape cassette. By using a suitable computer program, each input can be displayed - identifying the physical quantity being measured - and properly offset and scaled to the correct engineering units.

In this way the Data Logger 2 system and computer will print out the day, hours, minutes and seconds, and then the actual measurement (i.e. temperature in degrees F, wind speed in miles per hour, etc.). Connected to a set of sensors, the sealed Data Logger 2 makes an ideal weather station, geophysical monitor, or oceanographic buoy data acquisition and recording system.

The complete Data Logger 2 system consists of three separate instruments: the Data Logger, the Tester, and the Reader/Interface. The Logger is the data acquisition and write-only digital cassette recording system. It runs from its own internal battery and makes scans of up to 64 channels at preselected intervals from 1 second to 30 hours. The Logger is housed in a rugged weatherproof metal case and weighs 20 pounds $(9,1 \mathrm{Kg})$. Analog inputs are connected through sealed I/O connectors on the case. A typical data recording system consists of one Tester, one Reader/Interface, and several Loggers deployed for data collection at different locations. The tester is taken to the field to test and calibrate each Logger during set-up; completed digital cassettes are taken back to the laboratory for playback on the Reader/Interface.

DATA LOGGER 2 TESTER

The Tester is used to calibrate the Logger and to test all its functions before it is committed to long-term unattended recording. The tester checks all controls of the Logger, the battery status (voltage and current), Logger power drain, and tape heads. Simulated data generated on the Tester can be recorded on the Logger. The Tester will also display actual data or the simulated data on the Tester's LED readouts. In addition the Tester performs a complete self-check of all its own switches, displays, and batteries. The Tester is housed in a portable weatherproof case identical to that of the Logger

READER/INTERFACE AND INTERFACE OPTIONS

The Reader/Interface for the Data Logger 2 system is a complete computer front end for playing back the digital cassettes recorded on the Logger. The Reader can be operated from front panel controls or can be remotely controlled

KEY SPECS: DATA LOGGER 2

No. Channels	Up to 64
Analog Inputs, HI Level	0 to +5 V or -5 V to +5 V (Single Ended)
Analog Inputs, LO Level	```0 to +10mV or }-5\textrm{mV}\mathrm{ to +5mV (Differential)```
Input Impedance	100 Megohms
Common Mode Voltage Range	$\pm 5 \mathrm{~V}$
Common Mode Rejection	110 dB
Resolution	12 Bits, Hi Level 8 Bits, Lo Level
Accuracy, HI Level	. $04 \% \mathrm{FS} \pm 1 / 2 \mathrm{LSB}$
Temperature Coefficient	$\pm 12 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Data Capacity	$\begin{aligned} & 120,000 \text { samples } / 300^{\prime} \\ & \text { Cassette } \\ & (200064 \text { Channel } \\ & \text { Scans) } \end{aligned}$
Scan Intervals	1 Second to 30 hours
Throughput Rate	5 samples/second
Power Requirement	12VDC 15 Lithium D-Cells) (100 mA Recording, 1 mA standby)
Operating Temperature Range	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Weight	$20 \mathrm{lbs} .(9,1 \mathrm{Kg}$)

Data Logger 2 Reader

on-line by a minicomputer, mainframe processor or other I/O device. Front panel displays allow the operator to manually step through a recording to find a sample on a particular date and time. Front panel binary and decimal LED's will display this date and time in addition to the raw binary data for that sample on a selected channel.

By suitable computer programming an automatic search for a particular sample can be conducted.

The Reader is available with one of three interface types. A full parallel interface provides buffered TTL binary data at rates up to 100 samples per second with the cassette tape moving

continuously. This interface provides the highest output rate and may be used to load a computer memory in interrupt mode or block transfer (direct memory access).

The second interface is full serial (2 wire) to connect to teletypewriters and RS-232-C 1/O devices such as CRT terminals and high speed printers in ASCII format. The teletypewriter (TTY) output provides a simple way to connect to a computer which has a TTY port. The teletypewriter can be used off-line to prepare paper tapes of the raw data and to get a "quick look" at the data. Feeding the paper tape back to the computer on-line will then produce a plain language print out with suitable programming. The RS-232-C outputs may also operate an acoustic coupler modem for telephone transmission or frequency-shift keying of a radio link. The TTY/RS-232-C serial interfaces are programmable from 75 to 9600 baud rates to accommodate different output devices and transmission lines.
The third Reader interface connects to a Kennedy 1600 incremental $1 / 2^{\prime \prime}$ magnetic tape transport. Tapes prepared using this transport may be played back at high speed on any 7/9-track mainframe processor tape deck. This tape-to-tape interface provides simplified no-wiring data entry to a computer and user retention of the data on a high speed tape medium.

Various user configurations of the Data Logger 2 system are shown in the "Data Logger 2 System Configurations" diagram.

LOGGER OPERATION

The Logger and Reader both employ Datel Systems' low power stepper-motor incremental cassette tape transport. This transport features very fast power turn-on permitting the transport to be normally off except during actual recording. Extensive use of fast turn-on circuits using MOS devices allows the Logger to operate for a year or longer (depending on sample rate) using only 5 D cell Lithium batteries mounted inside the front cover. While recording, the tape transport and data acquisition electronics are powered up for only 11 seconds maximum to record all 64 channels. The system then turns off except for a CMOS crystal-controlled clock circuit which

The Data Logger 2 Story

The conception and development of Data Logger 2 goes back a little over a year, and culminates on September 18, 1975 when Robert L. Hill, developer of the unit, received an IR-100 award from Industrial Research Magazine at its awards banquet. The awards are given annually for the 100 most significant new products developed during the past year. Products are selected by a distinguished panel of judges on the basis of importance, uniqueness, and usefulness, from a technical standpoint.

The Data Logger 2 design was conceived out of customer interest in another Datel Systems product, the LPS-16, an OEM type low power digital cassette recorder with built-in data acquisition system (see product description on page 10). Mr. Hill found that many customers were interested in a complete packaged instrument for field use and indeed were using the LPS-16 to build such units themselves. The field model needed to have features such as these: high and low level analog inputs; low temperature operation; low power consumption to permit extended unmanned field operation; provision for external digital inputs in addition to analog inputs; provision for recording operator identifying information on the cassette; and internal data/time clock to record when data was taken. The companies who expressed interest in such a system, which was not available from any other manufacturer, were in such diverse fields as oil exploration, mining, oceanography, meteorology, and ecology. A further important requirement was a ruggedized all-weather type enclosure for field environment.

Robert Hill designed the Data Logger 2 based on these customer requirements, using the low power incremental cassette recorder of the LPS-16 along with low power CMOS circuitry. A key part of this design is the crystal-controlled CMOS clock which runs at 2.1 MHz continuously while the Logger is in the standby mode; total current drain is typically $500 \mu \mathrm{~A}$ in standby. While running and recording the current drain is typically 75 mA .

Robert L. Hill receiving IR-100 award plaque from Tim Burkholder, publisher of Industrial Research magazine.

Another important part of the design effort was the search for suitable internal batteries for field operation. Lithium batteries in D cell size were finally chosen based on their superior characteristics: operation down to $-65^{\circ} \mathrm{F}, 10$ ampere-hour capacity, and 10 year shelf life. By using just 5 of these D cells the Data Logger 2 can operate for a year, unattended in the field.
initiates the next scan at the time determined by the manually selected scan rate. During each scan the data and time are automatically recorded on the cassette tape. A battery monitor will record if the battery voltage falls too low.

The Logger is rated for a year or more of operation at moderate sample rates over an operating temperature range of $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. External inputs may be used to record 36 bit parallel digital data on command or to make an analog scan on external command.

Both high and low level analog inputs are accepted with unipolar, bipolar, or two's complement coding on the 12 bit A/D converter. The high level ranges are -5 V to +5 V or 0 to +5 V ; low level ranges are 0 to +10 mV or -5 mV to +5 mV with 8 bit accuracy. The low level inputs are differential with 100 meghom input impedance, $\pm 5 \mathrm{~V}$ common mode range, and 110 dB common mode rejection out to 100 Hz . Basic high level accuracy is $\pm .04 \%$ of full scale $\pm 1 / 2$ LSB with a temperature coefficient of $\pm 12 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

Data Logger 2 Tester

During recording the Logger draws a maximum 100 mA of current from its 12 V Lithium batteries; between scans only the crystal clock is running, drawing just 1 mA maximum. A variety of power options may be used with Data Logger 2 including external AC, or +12 VDC. In addition the internal battery holders may be rewired to accept rechargeable D cell nickel cadmium batteries or other types of D cells. Sample prices for Data Logger 2 systems are:

DL-2A Logger with 32 high level channels
\$3995.00
DL-2E Logger with 64 low level channels
DL-2T2 Tester, less calibrator
DL-2T1 Tester with 12 bit + sign D/A calibrator
DL-2R1 Reader with full parallel TTL interface
$\$ 4995.00$ $\$ 3495.00$
\$3995.00
$\$ 3495.00$
DL-2R2 Reader with TTY/RS-232C serial interface
$\$ 3895.00$
DL-2R4 Reader with 7/9-track $1 / 2^{\prime \prime}$ Mag. tape interface
$\$ 3895.00$

FEATURES

- 64 channel cassette digital tape data acquisition system in a sealed weatherproof, high reliability ruggedized metal case
- One year lithium battery supply
- $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ operating temperature range
- $+10 \mathrm{mV}, \pm 5 \mathrm{mV}$ or $\pm 5 \mathrm{~V}, 0$ to +5 V Volt input ranges, 100 megohm impedance, 100 dB CMR differential configuration
- 6 mW standby power CMOS design, 1 watt power while scanning, +12VDC power
- 1 second to 30 hour selectable scan rates
- \$3995. single quantity

GENERAL DESCRIPTION

For remote environmental recording or long term unattended field measurement of any variable, the battery powered Data Logger 2 will record up to 64 channels of analog data on a Philips-type digital tape cassette. The Data Logger 2 is housed in a sealed, weatherproof ruggedized metal case and will operate for more than a year on its internal lithium battery supply in temperatures from $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. Military type sealed connectors are used for all analog inputs and CMOS circuitry is employed for a low standby drain of 6 milliwatts.
Philips-type digital cassettes with 300 feet of tape are used to record analog data in selectable scan lengths from 1 second to 30 hours. The number of channels to be scanned is preset on front panel thumbwheel switches for efficient use of the tape. The incremental single direction NRZI recording method combined with low power electronics results in a running current of 100 mA max. In addition, a header word may be recorded on the tape for later computer indentification of that particular tape. A longer 36-bit external header may be entered using the input connectors. In each scan of the selected number of input channels, a 40 -bit clock word is recorded before each scan. This 40 -bit clock word contains a 36 -bit one-year digital clock derived from a CMOS crystal oscillator and having one second resolution. The last 4-bits of the clock word are used to flag a low battery voltage. The system will continue running with a low battery voltage but the user is advised that readings may be unreliable.
A normal scan consists of the clock word, a 12-bit file gap and a string of 14 -bit data words up to 64 channels.
The 14 -bit data words consist of an analog voltage represented by 12 binary bits and 2 additional high level/low level bits to describe whether full scale is ± 5 millivolts or 5 volts. A 2 -bit character gap begins each word.
The Data Logger 2 can accept up to 64 high level or 64 low level channels or a mix of 32 high level and 32 low level channels. Full external control of the Data Logger 2 is also provided using the input connectors. This includes such flexibility as varied scan rate
for selected inputs by using a second external clock and control circuit.
A 5-cell, long life, 10 Amp-hour lithium battery supply is mounted on the front inside cover of the Data Logger 2. A second set of D-size battery holders allows rewiring to alkaline, mercury or carbon-zinc batteries or for a parallel set of lithium batteries, or any other D cells.
The internal CMOS circuitry of the Data Logger 2 features fast power turn-on initiated by the clock control. An MOS high accuracy analog multiplexer is followed by a differential FET front end instrumentation amplifier for low level inputs. A fast acting sample and hold amplifier is followed by a 12 -bit A/D converter at the output. The parallel A / D words are then assembled and formatted into serial information fed to the tape head driver amplifiers. Motor stepper drive circuits, clock and control/ addressing systems complete the electronics.
The instrumentation amplifier provides low level differential inputs down to 10 mV span full scale. Common mode rejection of 110 dB is maintained over $\pm 5 \mathrm{~V}$ for high noise immunity. Overall accuracy (high level) is $\pm .04 \%$ of Full Scale $\pm 12 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ temperature drift. Low level accuracy is $\pm 0.3 \%$ of Full Scale $\pm 1 / 2$ LSB (8 bits) $\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ tempco. (See specifications)
The sample and hold exhibits a 100 nsec. aperture time and A/D settling and conversion occurs within 450 microseconds. The tape is stepped at 100 bits per second so that A/D words are written in 160 msec . 120 msec . for the 12 -bit data, 20 msec . for the High Level/Low Level bits and 20 msec . for the intercharacter tape gap). A complete recording of a 64 -channel scan takes about 11 seconds. This limits the maximum sampling rate unless a smaller number of channels is selected. Tape capacity is about 2 megabits including all gaps. About six hours is required to fill a tape at continuous running.
The complete system weighs $20 \mathrm{lbs} .(9,1 \mathrm{Kg})$ with batteries and measures $12^{\prime \prime} \mathrm{H} \times 12^{\prime \prime} \mathrm{W} \times 10^{\prime \prime} \mathrm{D}(305 \mathrm{~mm} \times 305 \mathrm{~mm} \times 254 \mathrm{~mm}$).

DATA LOGGER 2

Specifications (Typical over $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted)

Number of Analog Channels:

Selectable up to 64. Can be mixed up to 32Low Level and 32 High Level channels or up to 64 High Level or Low Level channels.
Power Supply:
+14.75 Volts DC composed of (5) D-size Lithium cells, non-rechargeable, +2.85 to +2.95 Volts per cell. 10 Amp-hours per cell. (10) D-size battery holders provided for customer conversion to NiCad, Alkaline or Carbon-Zinc D-cells, or for a parallel set of Lithium batteries.

Power Supply Requirement:

12V (-.5, +1V) :
70 mA typ, 100 mA max during motor stepping $10 \mu \mathrm{~A}$ typ, $100 \mu \mathrm{~A}$ max during standby

Power Supply Operating Range:

+10 Volts to +14.5 Volts DC. Low battery flag is encoded on tape when voltage drops to +11 Volts or +5.5 V at low power supply tap. However, system will continue operating down to +10 Volts at rated specifications.

Battery Power Usage:

Approximately 615 mA -Hrs. per cassette.
AC Supplies: (optional)
115 VAC $\pm 10 \%$
100 VAC $\pm 10 \%$
230 VAC $\pm 10 \%$
AC Line Frequencies:
47 to 440 Hz
External Battery Supply:
Connected through sealed I/O connectors.
System Weight:
$20 \mathrm{lbs} .(9,1 \mathrm{Kg})$

Dimensions:

$12^{\prime \prime} \mathrm{H} \times 12^{\prime \prime} \mathrm{W} \times 10^{\prime \prime} \mathrm{D}(305 \mathrm{~mm} \times 305 \mathrm{~mm} \times 254 \mathrm{~mm})$
System Temperature Ranges:
Operating: -20° to $+70^{\circ} \mathrm{C}$
Storage: $-55^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

DATA LOGGER 2:

Analog Specifications (Typical over $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted)

Input Ranges:
Low Level differential -5 mV to +5 mV or 0 to +10 mV , (Other LL ranges $>10 \mathrm{mV}$ span available on special order). High Level single-ended -5 V to +5 V or 0 to +5 V .

Input Impedance:

$\geqslant 100$ megohm single-ended or differential.
CMV:
$\pm 5 \mathrm{~V}$ (differential only)
CMRR:
110 dB to 100 Hz (differential only with 1 K source unbalance).
Accuracy:
(High Level) $\pm .04 \%$ of Full Scale ($\pm 1 / 2$ LSB) $+\left(\pm 0.0012 \% /{ }^{\circ} \mathrm{C}\right)$. Accuracy:
(Low Level) $\pm 0.3 \%$ of Full Scale ($\pm 1 / 2$ LSB 8 bits) $+(\pm 0.01 \%$
$\left.\mathrm{FS} /{ }^{\circ} \mathrm{C}\right)+\left(.002 \% /{ }^{\circ} \mathrm{C} \times\right.$ Gain $\left.{ }^{*}\right)$.
*Where gain $=10$ volts \div FS LL Input Range.
Resolution:
12 binary bits
Aperture Time:
100 nanoseconds max. (sample \& hold).
A/D Conversion Time: (including input settling time)
450 microseconds.
Sample Time:
150 microseconds.
Input Connection (Differential, Low Level):
Analog HI, Analog LO and shield ground for each input.
(Single-Ended, High Level) : Analog HI and ground
Overvoltage:
$\pm 10 \mathrm{~V}(\mathrm{HL})$
$\pm 5 \mathrm{~V}$ (LL)

DATA LOGGER 2

Recorder Characteristics

Storage Media:

Standard Philips certified data tape cassette 300' length (91 m). Storage Method:
2 channel complementary NRZI, one recording direction. Storage Density:
615 bits per inch.
Number of Tracks:
Two, data on Track one, $\overline{\text { data }}$ on Track two.
Tape Format:
40 -bit digital clock word, 12 -bit file gap and one scan of 14 bit binary A/D words (up to 64 A/D words). Internal header 12 bits (4 digit octal) written from front panel push button and 4 digit thumbwheel switch. External header 36 bits written from external source and strobe. (parallel data).
Gaps:
2 bit gap written before every 14 bit A / D word, (12 bit A/D word +2 bit HL/LL Channel ID) 12 bit gap written after every clock or header word (Int. or Ext.)
Tape Storage Capacity:
2.2 megabits (gaps are considered as bits) per 300 ft . cassette. Write Speed:
$100 \mathrm{steps} / \mathrm{sec}$. (one bit (data gap)/step). Incremental.
Data Format:
Serial NRZI

Motor:

Single 1.5° angle capstan drive stepper motor coupled to take up reel by slip clutch mechanism.

Capstan:

.250" diameter
Step Angle: 1.5°
Angular Accuracy:
$\pm 8 \mathrm{~min}$. of arc non-accumulative.
Tape Motion Control:
Single capstan pinch roller. Drive head is engaged mechanically during write time.
Tape Tension:
0.4 oz .

Error Rate:
1 bit in 10^{7}
Type of Cassette Loading:
Front (after instrument housing sealed front cover is opened). Recording Head:
Dual channel single gap high quality digital type.
Operating Mode:
Write only.

FRONT PANEL CONTROLS;

Scan Rate:

$1,2,5,10,20$ or 30 seconds, minutes or hours and max. (Max. is maximum rate allowed by the setting of the scan length switches), to nearest second resolution.
Scan Length:
Four digit octal thumbwheel switch selects the number of channels/scan. (Two digits for High Level and two digits for Low Level), or (two switches for $\mathrm{CH}-1-32$ and two switches for $\mathrm{CH} 33-64$ for all HL or LL channels).
Header (Octal):
Four digit octal thumbwheel switch may be entered on tape. (Same switch as scan length).

Enter Internal Header: (Int./Ext.)

Push button switch enters front panel header on tape. (When in the Ext. Mode). Locking toggle switch. When in Int., the Internal Clock has control of the Data Logger via the scan length switches. (Except in between scans, external data may be entered). When in the Ext. position, the logger may be externally controlled; also an Internal Header or External Header may be entered.

Load Forward:

Push button switch will light BOT (Beginning of tape) lamp if tape is over clear leader and will move tape forward to oxide while depressed. (When in the EXT. Mode).

BOT Lamp:

Will indicate, (when load forward button is depressed) when tape is on clear leader. Lamp is on when over clear leader and off when over oxide coating on tape.

Clock Reset:

Push button switch, will reset 1 year internal clock to zero. (When in the Ext. Mode).
Power On/Off:
Toggle switch will turn the power on or off.

Analog Input Selector:

Four position selector switch selects High Level/Low Level, or High Level and Low Level channels to be scanned.
There is also an Ext. position which is used for optional external control of thse functions.

DATA LOGGER 2

Digital Inputs

NOTE: CMOS logic levels used. External CMOS driver logic should be used and should track Vdd logic bus from the 3 -cell tap or drive through protective external diodes. (Avail. from Ext. connector). 22 K ohm pulldowns on all external digital inputs, 1 uSec min .
Clock Inputs:
36 lines for pre-setting internal 1 year digital clock or for entering External Header.
Load Clock:
1 line presets internal clock to comply with 36 line input. Enter Header:
1 line enters External Header. Must be spaced 500 mSec min. from adjacent scans.

Start Scan:

1 line will cause a clock to be written and a word scan to occur (used for external calibration or control). One microsecond minimum duration.

DATA LOGGER 2
 Digital Outputs

Status Output:
1 line, indicates when system is busy. This line is used if external data is to be written in between scans. 36 bits of external data may be entered on tape from the external header inputs, provided time is allowed by selecting the proper scan rate position for the number of channels to be scanned, plus the 36 external bits. i.e.: it takes 450 ms to write the 36 bits on tape.
Clock Output:
1 line, 1 second time base.

Head Track 1 \& 2:

4 lines, represent data written on Track 1 and Track 2 respectively. When the Data Logger 2 Tester is used, these lines are used to recover data from the Head to be displayed on the Tester.

Available under GSA Contract
No. GS-00S-29002

Ordering Guide

Data Logger 2

Prices (single quantity)

DL-2A	$(32 \mathrm{HL})$	$\$ 3995$.
DL-2B	$(32 \mathrm{LL})$	$\$ 4245$.
DL-2C	$(32 \mathrm{HL} \&$	$\$ 4745$.
	$32 \mathrm{LL})$	
DL-2D	$(64 \mathrm{HL})$	$\$ 4495$.
DL-2E	$(64 \mathrm{LL})$	$\$ 4995$.

"Naked DL-2":
(Panel-mounting version of any model above less housing and connectors --- less \$1000.
*Add \$175. for A, E, or J power supply options.
Prices include connectors and a cassette but do not include Lithium batteries.

Lithium batteries are D-SIZE "Eternacell" Model 550 manufactured by :

Power Conversion Inc.
70 Mac Questen Parkway South
Mt. Vernon, NY 10550
or available from Datel, part number DL-2-12049-24, $\$ 15.00$ each. (5 required)

Certified digital tape cassettes, 300 feet (91 m)

Model	Operating Temp.	Price (1-9)
12123-1	$+10^{\circ} \mathrm{C}$ to $+45^{\circ} \mathrm{C}$	\$ 9.95
12123-2	$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	\$11.95

1020G Turnpike Street，Building S Canton，Massachusetts 02021 U．S．A． TEL：（617）828－8000
TWX：710－348－0135 TELEX： 924461

DATA LOGGER II READER DIGITAL CASSETTE TAPE READER

MODEL DL－2R

FEATURES

－Digital tape cassette reader for the 64－ channel Data Logger II．
－Displays digital calendar clock，binary A／D data words，int．octal or ext． digital header words．
－Provides full parallel computer data buss interfacing or $7 / 9$ track $1 / 2^{\prime \prime}$ IBM tape interface．
－Also provides teletypewriter（TTY） RS－232－C I／O serial interface．
－Selectable I／O TTL loading and coding options for complete data buss com－ patibility．
－Complete＂handshaking＂computer controls and flags，for automatic ex－ ternal computer control，or＂off－line＂ front panel control．

GENERAL DESCRIPTION

Digital cassette tapes written on the Data Logger II containing up to 64 channels of analog data may be read directly on the Data Logger II Reader，model DL－2R．This reader accepts Philips－type tape cassettes written in Datel＇s NRZI digital format．Information recorded on tape such as temperature，pressure，rainfall，and wind velocity from external sensors may be transferred directly into a mainframe computer or minicomputer data buss using the DL－2R Cassette Reader．

The Data Logger II Reader has two front panel displays，one to list 12 bit binary A／D data words and another decimal display for the calendar clock or external header word．The 9－digit calendar clock in the Data Logger II records up to one year of data with one－second resolution．Using clock words，the DL－2R Reader can be stepped through manually or by computer control to find a particular record written at any time．The binary display also shows octal internal headers and the decimal display can be used for external digital header words．
The Data Logger II Reader has complete front panel controls to select the channel of interest，to properly start the tape and load data into a computer．A complete full parallel computer interface and／or serial teletypewriter／RS－232－C interface is included inside the $19^{\prime \prime} \times 19^{\prime \prime} \times 5 \frac{1}{4} 4^{\prime \prime}$ cabinet of the DL－2R．The full parallel computer interface features open collector TTL bussing including a variety of output loading and selectable positive or negative－true coding．This flexibility enables universal connection to majority
of digital processors without any modifications．
The serial teletypewriter／RS－232－C interface directly connects to a variety of I／O devices such as CRT terminals，and mainframe computers accessed by remote TTY terminals．

The DL－2R Reader contains special handshaking functions for full computer compatibility．These include word sent and word taken signals and an abort flag which stops the Reader if transmit－ ted words are not accepted 3 times in succession．

Another important feature of the DL－2R Reader is that it con－ nects directly to a variety of Datel data acquisition／processing systems．These include connection to a local，＂quick－look＂ teletypewriter terminal with or without arithmetic capabilities． Another option is direct connection to an IBM compatible 7 or 9 －track $1 / 2^{\prime \prime}$ tape drive．The DL－2R Reader with the Datel proces－ sor will correctly format the serial information being read from the cassette tape．

The housing of the DL－2R Reader is brushed aluminum and is $51 / 4^{\prime \prime}$ high， $19^{\prime \prime}$ deep，and $19^{\prime \prime}$ wide．It can be rack mounted or set up for stand－alone，table top configuration．The DL－2R Reader is complete and includes AC power supplies for $115 / 60,220 / 50$ or 100／60 power voltages．

Cassette tapes are mounted directly on the front panel tape deck． The system can be completely operated through the front panel controls or remotely by computer or teletypewriter terminal．
The complete system weights approximately 25 pounds．

DATA LOGGER 2 CASSETTE TAPE READER

MODEL DL-2R

SPECIFICATIONS (Typical @ $+25^{\circ} \mathrm{C}$ unless otherwise noted)

GENERAL

TAPE DATA FORMAT

The $D L-2 R$ Reader is designed to respond to the tape data format of the Model DL-2 Data Logger II data acquisition/recording system.

The Data Logger II normally records a full scan starting with a 40 -bit clock word, 12 bit gap and up to 64 channels of 12 bit binary A/D words. The exact tape format of the Data Logger II is as follows:

2	bit	Intercharacter gap
36	bit	Calendar clock word
4 bit	Battery low voltage flag	
12	bit	File gap
2	bit	Intercharacter gap
12	bit	Binary A/D data word
2	bit	High Level/Low Level flag
2	bit	Intercharacter gap
12	bit	Binary A/D data word
-	\bullet	
-		\bullet

Up to 64 12-bit A/D data words and 2 bit HL/LL flags and 2 bit gaps per scan.
Note that intercharacter gap, word gap, tape gap and interrecord gap all refer to the 2 bit gap.
The Data Logger II Reader is designed to decode the calendar clock word first and to stop and display this word in the 12-bit file gap. This allows an operator to decide if he wishes to select a particular A/D word in that scan for display. When the system is under external computer control the same sequence applies. That is, the computer decodes each calendar clock word in its search for a particular channel at a given time.

In the Local mode all of the front panel controls and displays may be utilized. They are:

CONTROLS

Local/Remote: Toggle Switch
Continuous/Scan: Toggle Switch
High Level/Low Level: Toggle Switch
A/D or Internal Header Word: Toggle Switch
Load Forward: Momentary Switch
Start: Momentary Switch
Rewind: Momentary Switch
Power: ON/OFF key lock switch (key removable in either ON/ OFF position).
Displayed Channel (Octal): 2 Octal thumbwheel switches. Channel to be displayed.

DISPLAYS

Internal Header: LED Lamp
EOT/BOT: LED Lamp
Busy: LED Lamp
Rewind: LED Lamp
Abort: LED Lamp
Clock (ID): LED Lamp
External Header (ID): LED Lamp
Battery Low: LED Lamp
End of File: LED Lamp
A/D or Internal Header Readout: 12 LED Lamps External Header or Clock Readout: 9 Digit
7 Segment Display

INPUT LINES

There are 10 input lines to the Computer Interface Board, they are:

1) Level Control Status Output 1 (L Cont 1 Stat \emptyset)
2) Level Control Status Output 2 (L Cont 2 Stat \emptyset)
3) Level Control Data Output 1 (L Cont 1 Data Ø)
4) Level Control Data Output 2 (L Cont 2 Data Ø)
5) Level Control, Control Input 1 (L Cont 1 I)
6) Level Control, Control Input 2 (L Cont 2 I)
7) Initialize Input (Init I)
8) Word taken Input (WDT I)
9) Start Input (STRT I)
10) External Rewind

The Level Control Lines determine the logic coding (positive or negative true) of all I/O signals. The 3 sets of these inputs are: Status Output Level Controls, Data Output Controls, and Control Input Level Controls.

LOCAL/REMOTE

When the DL-2R Reader is in the "Local" mode, it is operated from its own front panel controls. In the "Remote" mode, the system is operated by an external computer and its own front panel controls are inoperative except for the Local/Remote switch.

PROGRAM SEQUENCE

When the DL-2R Reader is externally controlled by a "Remote" computer, the program will ordinarily begin its chores by initializing the Reader. This involves checking to see that a number of conditions are met in the proper sequence.

The program will poll various status output lines to see if the cassette is in place, if the head is down, the end of file status, rewind not in progress, local/remote switch position and EOT/BOT status. If all conditions are met, the initialize sequence will begin, proceeding with a Load Forward onto the tape oxide and a Start command if the computer is ready to accept data. Operation then proceeds with simple exchanges of controls between the computer and the DL-2R Reader. The Reader assembles a word in its output register and flags its Word Ready control output. Assuming the computer's input register is ready to accept data, the Word Ready signal will strobe this register and the computer will return a Word Taken signal to the Reader. The return of the Word Taken signal is to inform the DL-2R Reader that the computer is continuing to process data words. The computer also returns a Start signal to keep the tape moving or to start it again if it has stopped in a file gap waiting for the Word Taken signal.

Price for the DL-2R Cassette Reader/Display/Interface are as follows:

DL-2R-1	with full parallel computer interface . $\$ 3495.00$
DL-2R-2	with TTY/RS232C serial interface . $\$ 3895.00$
DL-2R-4	with 7 or 9-track $1 / 2^{\prime \prime}$ tape interface

Covered by GSA Contract No. GS-00S-29002

FEATURES

- Completely exercises and calibrates all functions of the Data Logger 2 weatherproof analog cassette recording system.
- Functionally tests all displays and the A/D converter.
- Tests all batteries under full operational load.
- Contains A/D and Digital clock readouts for full calibration and presetting of the Data Logger 2.
- Operates from built-in lithium battery supply or AC power supply.
- Performs a complete self-test to ensure proper Tester operation.

DESCRIPTION

The Data Logger 2 weatherproof, battery-powered data acquisition and cassette data-logging system will normally require a complete system check-out before committing it to prolonged unattended data monitoring. In addition, the Data Logger 2 will occasionally need on-site field calibration to establish its accuracy. The ideal instrument to perform these tests and calibration is the Data Logger 2 Tester, model DL-2T.

The DL-2T Tester is particularly valuable because it tests the Data Logger 2 and itself. The DL-2T Tester completely exercises the Data Logger 2 on location and performs a self-check to be sure all internal systems are functioning properly in the Data Logger 2.

When testing the Data Logger 2, the DL-2T Tester provides input control signals to recover data directly from the head of the cassette transport. Data is displayed on one of two readouts on the front panel of the DL-2T Tester.
To ensure a complete test of all systems, the DL-2T Tester operates from the internal lithium battery power supply of the Data Logger 2 with the exception of display lamps and drivers powered by a separate 6 volt battery in the DL-2T Tester, or from the internal AC power supply.
The Tester has 2 basic operating modes. In the Logger Mode, the Data Logger 2 is tested. In the Tester Mode, the DL-2T tests itself.

ORDERING INFORMATION

Price (Single quantity)

DL-2T1	Tester with 13-bit D/A calibrator	\$3995.00
DL-2T2	Tester less D/A calibrator	\$3495.00

PRINTING DATA LOGGER
1020G Turnpike Street, Building S
TEL: (617) 828-8000
TWX: 710-348-0135 TELEX: 924461
MODEL PDL-10

DESCRIPTION

Meeting the demand for a high performance laboratory-grade printing data recorder, Datel's model PDL-10 Printing Data Logger accepts up to 10 floating analog input voltages and automatically prints them out at preselected intervals. The PDL-10 digitizes all selected inputs to $41 / 2$ digit accuracy, displays and prints them out as decimal voltages on a very compact inkless thermal printer. Analog inputs are accepted over $\pm 199.99 \mathrm{mV}, \pm 1.9999 \mathrm{~V}$ and ± 19.999 Volt front-panel selected voltage ranges and are printed out every second with the channel number at preselected scan intervals.

PDL-10
SPECIFICATIONS

ANALOG INPUT

Number of Channels

Configuration

3-Wire differential inputs, transformer-isolated using a mechanical relay multiplexer.
Input Voltage Ranges
Choice of 3 DC ranges:
$\pm .19999 \mathrm{~V}$,
$\pm 1.9999 \mathrm{~V}$,
$\pm 19.999 \mathrm{~V}$
preselected by ten front panel slide switches for each channel.

Overvoltage

Input is diode-protected for up to $\pm 100 \mathrm{~V}$ maximum continuous.
Common Mode Rejection
$108 \mathrm{~dB}, \mathrm{DC}$ to 60 Hz with 1000Ω maximum input unbalance.
Common Mode Voltage Range
± 20 volts maximum to signal guard. ± 300 volts maximum to AC power ground.
Input Impedance ($\pm 20 \mathrm{~V}$ input max)
(Differential)
(To Signal Guard)
500 Megohms minimum.
100 Megohms minimum.

Input Bias Current
500pA typ.,
8 nA maximum

PERFORMANCE

Accuracy @ $+25^{\circ} \mathrm{C}$
Within $\pm 0.01 \%$ when calibrated due to all effects except temperature drift.
Resolution
$10 \mu \mathrm{~V}$ (200 mV range)
$100 \mu \mathrm{~V}$ (2V range)
1 mV (20V range)
Temperature Drift
ZERO: $\pm 1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
GAIN: $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
BIAS CURRENT: $1 \% /{ }^{\circ} \mathrm{C}$
Operating Temperature Range $0^{\circ} \mathrm{C}$ to $+45^{\circ} \mathrm{C}$
Storage Temperature Range
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Sampling Rate
Pre-selected channels are advanced, displayed and printed one channel per second.
Scan Intervals
Intervals from 00 to 99 seconds or minutes

DISPLAYS

Input

A digital panel meter (DPM) displays the analog input voltage using Light Emitting Diode red digits. The digits are $0.43^{\prime \prime}$ high (11 mm) and $41 / 2$ digit resolution. Decimal points, overscale, and polarity (\pm) are automatically printed and displayed.

Channel

A single $0.43^{\prime \prime}$ (11 mm) red LED digit indicates channel 0 through 9 .

Printing Method

Seven segment digits are formed on thermal paper using a thick-film resistor matrix printhead requiring no ink, hammers or ribbons.

Printer Digits

7 -segment 0 to 9 digits $0.155^{\prime \prime}(4 \mathrm{~mm})$ high. Spacing between printed lines: 0.2 inch (5 mm).
Line Capacity
Approximately 9000 lines.

Printout Format

Printout format is $9 \pm .1 .9 .9 .9 .9$ with the leading digit indicating channel number. Three lines are skipped between scans.
Printing Paper
Using heat sensitive thermal printing paper, $1.75^{\prime \prime} \mathrm{W}(44$,
5 mm) and supplied in rolls 150 feet (45 mm) long.

FRONT PANEL CONTROLS

Channel Select and Input Range

(Ten 4-position slide switches) ",2V, 2V, 20V and SKIP". "SKIP" prevents the multiplexer relay for the channel from cycling.

Scan Interval

(Two decade thumbwheel switch) Sets the time interval between scan starts from 00 to 99 seconds or minutes.

Minutes/Seconds

(2 position toggle switch) Determines whether the Scan is set for minutes or seconds.

No Print/Run/Reset \& Start

(Three position toggle switch) In NO PRINT, the instrument scans and displays but does not print. In RUN the instrument scans, displays and prints out.
In RESET \& START, the scan timer is reset and starts timing. One scan is printed out one second from switch release.

One Channel/Scan

(Two position toggle switch) The ONE CHANNEL position prevents the multiplexer relay for the selected channel from disconnecting with each scan. In the SCAN position, normal relay cycling, display and printout occur.

Paper Quantity

A lever indicates relative quantity of paper remaining.

REAR PANEL INPUT CONNECTIONS

Analog input voltages are connected using screwdriver barrier terminal strips. (30 terminals).

POWER SUPPLY

Choice of 115 or 230 VAC $\pm 5,10,15$ or 20 volts at 50 or 60 Hz only. Power voltages and frequency may be rewired by the user. Three-prong grounded U.S. captive line cord supplied. Power consumption (all models) 30 watts, typical.

PHYSICAL DIMENSIONS

Mounting

Bench-top mounting with tilt-up stand and mar-proof plastic feet. Users can remove the feet and stand for optional $1 / 2$-rack mounting.
Outline Dimensions
$5.25^{\prime \prime} \mathrm{H} \times 8.5^{\prime \prime} \mathrm{W} \times 12^{\prime \prime} \mathrm{D}(133 \times 216 \times 305 \mathrm{~mm})$
Weight
12 pounds $(5,5 \mathrm{Kg})$

ORDERING GUIDE

PRICES (single quantity)

\qquad

COMPUTER COMPATIBLE DATA ACQUISITION／ DISTRIBUTION SYSTEM

INTRODUCTION

System 256 is a complete high reliability computer input－ output system for analog signals．It is capable of operating on－line or off－line．It has been designed to provide a versa－ tile and permanent solution to the problem of interfacing analog signals to and from a digital computer．The modular principle used throughout enables the user to realize the most economic solution to any problem while maintaining maximum flexibility．Further expansion to an initial system is made by plug－in cards．

A wide range of options outlined elsewhere in this catalog allows a comprehensive system to be specified for applica－ tions to an instrumentation or control problem．

System 256 offers the flexibility，speed，economy and reli－ ability necessary in today＇s world of real time applications．

It can function as an interface between an analog and digital computer in hybrid computer systems or as a periph－ eral device for general purpose digital computers．

It fills a growing need in industrial process control systems．
The ability to mix Analog Multiplexers，A／D＇s，Sample and Hold amplifiers and D／A＇s in virtually any configuration makes System 256 a valuable and dynamic systems tool．

GENERAL DESCRIPTION

The most unique feature of System 256 is its large analog input channel capacity while at the same time providing extremely low power consumption．The power consumed is a fraction of any system offered today while providing four times the channel capacity in the same package area．Sys－ tem 256 offers up to 256 analog channels and 32 Digital－to－ Analog channels in a $19^{\prime \prime} \mathrm{W} \times 19^{\prime \prime} \mathrm{D} \times 3.5^{\prime \prime} \mathrm{H}$ rack mounted enclosure，while competitors＇systems offer 64 analog chan－ nels and 8 Digital－to－Analog channels in the same area，and still System 256 consumes less power．System 256 utilizes C／MOS（Complementary Metal Oxide Silicon）logic throughout．
C／MOS logic provides the necessary high－speed capabilit！ while at the same time drastically reduces power consump tion．The quiescent power consumed by C／MOS logic i： extremely low，or more precisely，the product of the supply voltage and the leakage current of the device（measured ir pA ）．Its dynamic power consumption is somewhat more complex in that it is dependent on the supply voltage operating speed and load capacitance．With a supply voltage of +15 V operating at IMHz into 15 pF ，the dynamic power consumption per logic function is approximately 1 mW When this is compared with TTL logic at approximately 10.5 mW per logic function，both quiescent and dynamic，it can be seen that a considerable reduction in power dissipa－ tion throughout the system will result by using C／MOS logic rather than TTL or DTL logic．The advantages of this low power dissipation in the system are obvious－less drift due to temperature rise，smaller power requirements，no cooling required，and more hardware per area．

SYSTEM DESCRIPTION

System 256 is designed to accept up to 256 single－ended or 128 differential analog signals plus 64 simultaneous sample $\&$ hold channels in the basic package．The analog inputs are multiplexed one at a time into a high impedance buffer amplifier then supplied to a sample \＆hold amplifier．The buffered analog signals are converted to digital data via a high speed successive approximation Analog to Digital Con－ verter of up to 14 bits．The analog multiplexing process may be accomplished in either a sequential scan or a ran－ dom address mode of operation．The digital output data is then fed to an LSB（least significant bit）positioning cir－ cuit which assures that regardless of the resolution of the converter，the LSB will always be on the extreme right hand position．This is in compliance with most mini－ computer programming requirements．

THROUGHPUTTIME	A／D RESOLUTION			
	8 Bits	10 Bits	12 Bits	14 Bits
100 KHz	\checkmark	$\sqrt{\text {（opt）}}$	$\sqrt{ }$（opt）	
$\begin{aligned} & 70 \mathrm{KHz} \\ & 50 \mathrm{KHz} \end{aligned}$		\sqrt{V}	\checkmark	
17 KHz				\checkmark
SYSTEM THROUGHPUT TIME VS RESOLUTION				

Display and Control in both the Local and Remote mode of operation are provided on the front panel．This includes an LED display of digitized input data and A／D－D／A channel address．The Local Control features allow selection of input A／D channel address via an advance pushbutton switch， continuous conversion cycles on the same channel via a convert pushbutton switch，D／A channel address and manual insertion of D／A data via toggle switches．
Contained in the same package are provisions for supplying up to 32 Digital to Analog Converters．This conversion process again utilizes the LSB positioning circuit and is supplied with C／MOS storage registers．The Digital to Ana－ \log Converters accept up to 12 binary bits and generate an analog output corresponding to the selected channel．Four standard voltage range outputs are supplied to provide up to 10 milliamperes．

SYSTEM 256 SPECIFICATIONS

PARAMETER	A/D SECTION
ANALOG INPUTS	
Number of Multiplexer Channels Single Ended Input	Expandable to 256 channels in 32 channel increments
Number of Multiplexer Channels Diff. Input (Optional)	Expandable to 128 channels in 16 channel increments
Number of Simultaneous Sample/Hold Channels	Expandable to $\mathbf{6 4}$ channels in 2 channel increments
Input Voltage Ranges	+5V FS, + 10 V FS, $\pm 5 \mathrm{~V}$ FS, $\pm 10 \mathrm{~V}$ FS
Channel Input Acquisition Time	5 usec to $\pm 0.025 \%$ of FS
Channel Input Impedance	100 Megohms-"on" or "off"
Input Configuration	Single ended or Differential
Maximum Input Overload	$\pm 15 \mathrm{~V}$
Input Channel Time Skew Simultaneous S/H Section	50 nsec
$\begin{aligned} & \text { Maximum Common Mode } \\ & \text { Voltage - (3) } \end{aligned}$	Any Combination of $20 V P$ to $P-E s+E C M$
Common Mode Input Impedance - (3)	>100 Megohms
Common Mode Source Impedance - (3)	1 Kohms unbalanced
$\begin{aligned} & \text { Common Mode Rejection } \\ & \text { Ratio - (3) } \end{aligned}$	$\begin{aligned} & \hline 60 \mathrm{db} @ 1 \mathrm{KHz} \\ & 80 \mathrm{db} \text { @ } 60 \mathrm{~Hz} \\ & \hline \end{aligned}$
Crosstalk (Between inputs)	$\begin{aligned} & 80 \mathrm{db} @ 100 \mathrm{~Hz} \\ & 45 \mathrm{db} \text { @ } 10 \mathrm{MHz} \end{aligned}$
SYSTEM PERFORMANCE Output Resolution	$8,10,12,14$ binary bits
Output Data Coding (4)	Straight Binary - unipolar input Offset Binary - bipolar input 2's Complement - bipolar input
Throughput Rate	8 Binary Bits -100 KHz 10 Binary Bits-50 KHz 10 Binary Bits- 70 KHz (opt.) 12 Binary Bits 50 KHz 14 Binary Bits -17 KHz
Aperture Time	$50 n 5 e c$
Accuracy	$\pm 0.02 \%$ of $\mathrm{FS} \pm 1 / 2 \mathrm{LSB}$
Temperature Coefficient	$40 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Throughput Rate	up to 100 KHz
Linearity	$\pm 1 / 2$ LSB
DIGITAL CONTROL INPUTS Device Select	1 line, 1 TTL Load-Negative True
Random/Sequential	1 line, 1 TTL Load-Negative True (seq.)
Reset	1 line, 1 TTL Load-Negative True
Strobe	1 line, 1 TTL Load-Negative True
Convert Command Input	1 line, 1 TTL Load-Negative True
Random Address Inputs	9 llnes, 1 TTL Load-Negative True
DIGITAL OUTPUTS A/D Converter Data	Up to 14 parallel lines-TTL Compatible (1)
Serial Output Train	1 line-TTL Compatible (1)
Busy (E.O.C.)	1 line-TTL Compatible (1)
Frame Sync	1 line-TTL Compatible (1)
A/D Clock	1 line-TTL Compatible (1)
Input Strobe Output	1 line-TTL 'Compatible (1)
Output Strobe Output	1 line-TTL Compatible (1)
Buffer Full Output	1 line-TTL Compatible (1)
FRONT PANEL CONTROLS Output Data Display	Up to 14 Bits of A/D Data Read Out
Channel Address Switches	Address Multiplexer in Random Mode
Channel Address Lamps	Display Multiplexer Position
A/D Mode Switch	Selects A/D Operation
A/D Convert Switch	Will Initiate an A/D Conversion
Reset Switch	Resets Multiplexer to Channel One
Random/Sequential Switch	Selects Multiplexer Mode of Operation
Advance Switch	Random Mode-Will Select Addressed Channel Sequential Mode-Will Advance to Next Higher Channel
Lacal/Remote Switch	Selects Source of System Control. Front Panel Controls or Computer
Last Channel Selector	Short Cycle Multiplexer in Sequential Mode
Power ON/OFF Switch	Applies AC power to System
MECHANICAL-ENVIRONMENTAL	
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperáture Range	$-55^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Relative Humidity	10\% to 90\% Non-condensing
Physical Size	$33^{1 / 2^{\prime \prime}} \mathrm{H} \times 19^{\prime \prime} \mathrm{W} \times 19^{\prime \prime} \mathrm{D}$
Weight	12 LBS (Typ.)
I/O Mating Connectors	Up to Eleven Viking \# 3 VH25/IJN5
Input Power	$\begin{aligned} & 115 \mathrm{VAC} \pm 10 \mathrm{VAC} @ 47.63 \mathrm{~Hz} \\ & 225 \mathrm{VAC} \pm 15 \mathrm{VAC} @ 50-400 \mathrm{~Hz} \text { (opt.) } \end{aligned}$
(1) Open Collector. Will Sink 30 m (2) Optional	(3) Pertains only to Differential Input (4) Contact Factory for Binary Coded Decimal

PARAMETER

D/A SECTION

DIGITAL INPUTS Number of Channels	Expandable to 32 channels in Ela
Resolution	$8,10,12,14$ Binary Bits

MECHANICAL-ENVIRONM	TAL $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$.55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Relative Humidity	10\% to 90\% Non-condensing
Physical Size	$3^{1 / 2^{\prime \prime}} \mathrm{H} \mathrm{H} \times 19^{\prime \prime} \mathrm{W} \times 19^{\prime \prime} \mathrm{D}$
Weight	12 LBS (Typ.)
I/O Mating Connectors	Viking \#3VH25/IJN5
Input Power	$\begin{aligned} & 115 \mathrm{VAC} \pm 10 \mathrm{VAC} @ 47.63 \mathrm{~Hz} \\ & 225 \mathrm{VAC} \pm 15 \mathrm{VAC} \end{aligned}$

[^2]FOR IMMEDIATE APPLICATION ASSISTANCE -
CALL OR WRITE

1020G Turnpike Street, Building S Canton, Massachusetts 02021 U.S.A TEL: (617) $828-8000$
TWX: 710-348-0135 TELEX: 924461

SPECIFYING SYSTEM 256 TO MEET YOUR PARTICULAR NEEDS

NOTE: (1) D/A Channeis are Limited to 16 when any number of Simultaneous SAMPLE/HOLD Channels are ordered Otherwise up to 32 D/A Chennels may be ordered.
(2) When Both A / D and D / A Sections Are Required, Make the Appropriate Selection Using Both Ordering Numbers. Example A/D Section: DAS-256-32-S-A-8B-1
Example D/A Section: DDS-32-16-8B-A-4
Also specify one or two device select lines.

(3) Single Ended Inputs and Differential Inputs Cannot be Combined.

FEATURES

- 32-Channel analog

 input capability slides directly into Intel's MDS-800 or the SBC-80/10.- Register-to-register interface for 75 kHz data transfer.
- Three methods of programming: Program-controlled mode Interrupt Mode Direct Memory Access
- Expandable in increments of $32 \mathrm{~A} / \mathrm{D}$ channels and/or $8 \mathrm{D} / \mathrm{A}$ channels.
- 12-bit Resolution with choice of output coding.
- Choice of program-controlled random or sequential channel addressing.

DESCRIPTION

Datel offers a simple approach to measuring analog inputs via the Intel MDS-800 Microcomputer Development System or Intel's SBC-80/10 Single Board Computer. Datel's SineTrac 800 data acquisition module plugs directly into the MDS-800 or SBC-80/10, accepting 32 or more analog channels inside the same housing. The SineTrac 800 high-speed analog card communicates on the MDS or SBC CPU bus and is handled as an addressable peripheral I/O device. Analog connections are made through convenient rear-panel connections on the MDS-800 housing. Programs written in universal 8080 microprocessor assembly language instructions completely control all activities of the SineTrac 800 data acquisition card. These include random or sequential channel addressing with automatic reset on user-specified first and last channels. By using the I/O device communications capability resident in Intel's monitor program, the SineTrac 800 analog inputs can be directly printed out on a teletypewriter, punched onto paper tape or magnetic tape cassette or left in memory for further arithmetic manipulation before printout.
The SineTrac 800 card is ideal for process control, automatic test systems, laboratory measurement systems and similar applications. Additional SineTrac 800 boards allow for (1) A/D channel expansion in increments of 32 channels per board or (2) a D/A board with eight 12 -bit D/A analog output converters per board (expandable to 256 channels).
The D/A option board contains storage registers for each 12 -bit analog word to maintain a stabilized analog output between output cycles. The D/A option is ideal for plotter, chart recorder, oscilloscope or actuator drive.
The SineTrac 800 can accept three modes of operation including program control, direct memory access (DMA) or interrupt operation. Program mode consists of direct operation of the SineTrac 800 system by assembly language instructions at the time and sequence specified by the program. DMA operation ac-

commodates direct memory loading in blocks using Intel's DMA board but without routing through the CPU. DMA operation can accommodate block transfers up to the SineTrac 800's full speed of 75,000 samples per second. Interrupt operation is ideal for serving other peripherals besides the SineTrac 800 whenever the device or the data is ready. Interrupt can accept virtually simultaneous data conversion, output formatting and printout.
The SineTrac 800 card is organized around Datel's MDAS-16, a high density data acquisition module employing a hybrid successive
approximation A/D converter, FET multiplexer switches, integrated circuit Sample/Hold amplifier and tri-state TTL output buffer/registers. Address decoders, bidirectional bus drivers and receivers, status registers, FET MUX switches, a $\pm 15 \mathrm{~V}$ DC/DC converter and control logic complete the rest of the SineTrac 800.
Using an assembly language application program developed on the MDS-800 or SBC-80/10, the SineTrac 800 channels can be randomly addressed or in automatic sequential operation incremented with each conversion and resetting when a preloaded last channel is reached.

SPECIFICATIONS (typical @ $+25^{\circ} \mathrm{C}$ when calibrated unless noted)

SPECIFICATIONS (cont.)

ANALOG DATA PERIPHERALS FOR DATA GENERAL＇S NOVA SERIES MINICOMPUTERS

SINETRAC NOVA SERIES

FEATURES

－64－channel analog input（A／D）and 4 output（D／A）channels fit directly inside Data General＇s NOVA series minicomputers．
－Data Acquisition rates up to 75,000 samples per second．
－Three modes of programming．
－Program－controlled mode
－Program－interrupt mode
－Direct Memory Access
－Expandable up to 256 A／D and／or 256 D／A channels．
－ 12 －bit analog resolution with choice of coding and voltage ranges．
－Optional auto－zeroing and program－ mable gain．
－Includes on－board control for block transfer and automatic channel se－ quencing and for random channels．

DESCRIPTION

Datel offers a simple approach to provid－ ing analog signal inputs and outputs to Data General＇s popular NOVA series minicomputers．Datel＇s Sine Trac analog peripheral I／O module plugs directly into the card guides and connector slots inside NOVA，NOVA 800， 1200 and Super NOVA housings．The Sine Trac module accepts up to 64 analog input （A／D）channels and 4 analog output （D／A）channels on the same interface card．

The Sine Trac analog I／O card com－ municates directly with the NOVA bi－ directional bus，thereby，eliminating all CPU cabling．Sine Trac is handled as an addressable peripheral I／O device．Ana－ log connections are made through PC board connectors to the NOVA housing．
Assembly language or high level lan－ guages completely control all activities of the Sine Trac analog I／O card．These include random or sequential analog channel addressing with automatic reset on program－specified first and last chan－ nels．By using the appropriate I／O instructions，Sine Trac analog channels may be transferred to a teletypewriter， paper or magnetic tape，tape cassettes， CRT terminal or other peripherals．
The Sine Trac board is organized around Datel＇s MDAS－16，a high density data acquisition module employing a hybrid successive approximation A／D converter

FET multiplexer switches，integrated circuit Sample／Hold amplifier，and tri－ state TTL output buffer／registers．Ad－ dress decoders，bidirectional bus trans－ ceivers，status and address registers，a $\pm 15 \mathrm{~V}$ DC／DC converter and control logic complete the rest of the Sine Trac system．
The Sine Trac NOVA card is ideal for process control，automatic test systems， laboratory measurement systems and similar applications．Datel＇s System 256 will allow for expansion up to 256 A／D channels and／or 256 D／A channels．

The D／A analog output channels avail－ able on Sine Trac A／D boards contain storage registers for each 12 －bit analog word to maintain a stable analog output between CPU output cycles．The D／A option is ideal for plotter，chart record－ er，oscilloscope or actuator drive．It is also excellent for analog feedback or test waveforms to systems under test． Digitally synthesized analog waveforms may be program－generated with a set－ tling time of 4 microseconds per D／A step．

The Sine Trac analog system can accept
three modes of operation including pro－ gram control，program interrupt mode and direct memory access（DMA）．Pro－ gram control requires simple instruc－ tion sequences and controls the inter－ face at the time and sequence specified by the program．Interrupt operation is ideal for releasing the CPU for other chores while an A／D conversion is in progress．DMA operation bypasses the CPU and uses the Sine Trac＇s start and final channel and word counter registers to transfer Sine Trac－controlled blocks of data addresses sequenced by the Sine Trac＇s memory address register and frame clock．

Very fast auto zeroing circuits and pro－ grammable gains are optional on Sine Trac systems．The auto zeroing corrects for voltage offsets and programmable gains of $1,2,5$ ，and 10 provide input ranges down to $\pm 500 \mathrm{mV}$ full scale．The gain is program controlled and is ideal for applications requiring extended range．Systems without the auto zero／ programmable gain option have A / D data throughput of 75,000 samples per second．Throughput for systems with the option is 40,000 samples per second．

SPECIFICATIONS (Typical @ $+25^{\circ} \mathrm{C}$, dynamic conditions unless otherwise specified.)

SINETRAC NOVA SERIES	DYNAMIC CHARACTERISTICS	PHYSICAL
ANALOG DATA SYSTEMS	Throughput Rate (without prog. gain/auto \qquad	Operating Temperature Range $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
DATA ACQUISITION SECTION (A/D Analog Inputs)	Throughput Rate	Storage Temperature ${ }^{\text {Range }}$ - $25^{\circ} \mathrm{C}$ to $+85{ }^{\circ}$
ANALOG INPUTS	(with prog. gain/auto zero) 40,000 samples/sec., max.	
Number of Channels. . . . 64 single-ended	Acquisition Time 6 microseconds	including PC card fingers).
Channel Expansion \ldots up to 256 single-ended channels or(using Datel's System 256 in an external housing)128 full differential channels	Sample/Hold Switch Feedthrough 01% max. MUX Crosstalk from	Humidity 20\% to 90\% (no condensation)
$\begin{aligned} \text { Input Voltage Ranges. . . } & 0 \text { to }+5 \text { Volts } \\ & 0 \text { to }+10 \text { Volts } \\ & -5 \text { to }+5 \text { Volts } \\ & -10 \text { to }+10 \text { Volts } \end{aligned}$	OFF Channels01\%@ 1 kHz DIGITAL OUTPUTS	DATA DISTRIBUTION SECTION (D/A Analog Outputs)
Programmable Gains and Auto zero (optional) $\times 1, \times 2, \times 5, \times 10$ (not	Output Coding (prewired jumpers) Straight Binary (unipolar) Offset Binary (bipolar)	ANALOG OUTPUTS
Common Mode Range $\ldots \pm 10 \mathrm{~V}$ Volts - guaranteed max	2's complement (bipolar)	Number of Channels 4 single-ended Channel Expansion. 256 channels addressable using
Input Overvoltage, (no damage).............. $\pm 15 \mathrm{~V}$, max. sustained	Output Format (prewired jumpers) Buffered output electrically compatible to the Nova	Datel's System 256 (separate housing)
Input Impedance $\begin{aligned} & 100 \text { megohms differential or } \\ & \text { to ground }\end{aligned}$	bidirectional bus. Sign ex-	
Input Bias Current 3nA typical, 10nA max.	$\begin{aligned} & \text { tension } \\ & 12-15 . \end{aligned}$	-5 V to +5 Volts*
(to ground) 10pF, OFF channel, 100pF, ON channel	Channel Addressing \qquad RANDOM - Under program control SEQUENTIAL - Under program control or under interface DMA control using preloaded start	('specify offset binary or 2's complement output coding) Output Impedance $\ldots \ldots \ldots$ Output Current $\ldots \ldots \ldots$ $\pm 5 \mathrm{~mA}$, min., short circuit proof to ground
PERFORMANCE	annel, final channel, number of	
Accuracy @ $+25^{\circ} \mathrm{C}$ and 75 kHz Sampling	channels and next memory address registers.	PERFORMANCE
Resolution 12 Binary Bits Nonlinearity $1 / 2$ LSB, max.	DMA Frame Clock Selectable period up to 1 second per channel (specify with order)	Nonlinearity Differential Nonlinearity $\pm 1 / 2$ LSB, max.
Differential Nonlinearity. . $\pm 1 / 2$ LSB, max. Gain Error Adjustable to zero	INTERFACE ADDRESSING	Gain Error \qquad Adj. to zero using fot for each each channel
Offset Error \qquad Adjustable to zero Gain Temperature Drift Within ± 30 ppm of scale $/{ }^{\circ} \mathrm{C}$	NO VA Sine Traces are supplied with addressing shown below. Contact Datel if other addressing is required.	Zero Error \qquad Adj. to zero using pot for each channel
	A/D System Device	Gain Temperature Drift $\pm 30 \mathrm{ppm}$ of output $/{ }^{\circ} \mathrm{C}$
Offset Temperature Drift $\ldots \ldots \ldots \ldots . \begin{aligned} & \text { Within } \pm 7 \text { ppm of full } \\ & \text { scale } /{ }^{\circ} \mathrm{C}\end{aligned}$	Address. 21 Assembler Mnemonic ADCV D/A System Device	Zero Temperature Drift (unipolar output) $\pm 5 \mathrm{ppm}$ of full scale range/ ${ }^{\circ} \mathrm{C}$ Offset Temperature
Common Mode Rejection (with 1 kilohm unbalance) . . 70 dB min ., DC to 1 kHz Power Supply Rejection (to +5 V bus) \ldots.	Address $\ldots23$ Assembler Mnemonic . . . DACV	(bift (bipolar output) . . . $\pm 15 \mathrm{ppm}$ of full scale range/ $/{ }^{\circ} \mathrm{C}$
	A/D Interrupt Location LOC 21	Power Supply $\pm 0.02 \%$ of full scale range 1% Rejection Power Requirements supply variation $\pm 15 \mathrm{VDC} @$
	POWER CONSUMPTION . . 2.5 Amps typical @ +5VDC supplied by DEC backplane connector power bus. Onboard $\pm 15 \mathrm{~V}$ DC/DC converter powers linear circuits.	$\pm 40 \mathrm{~mA}$ full load per D/A channel. Furnished by on-board DC/DC converter for A/D-D/A card. $\pm 15 \mathrm{VDC}$ externally supplied for expanded D/A channels.

PRICES (Single Quantity)

ST-NOVA-64S (or -64P or -32D)
(All A/D input channels and no D/A output channels) \$1445.
ST-NOVA-64S (or -64P or -32D)
(All A/D channels plus 4 D/A channels) $\$ 1795$.
ST-NOVA-DAC
(No A/D channels but including 4 D/A channels).
$\$ 1345$.
ADD \$250 FOR THE PROGRAMMABLE GAIN/AUTO ZERO OPTION

[^3]
ANALOG DATA PERIPHERALS FOR DEC LSI-11 MICROCOMPUTERS

SINETRAC LSI SERIES

FEATURES

- 64-channel analog input (A/D) and 2 output (D / A) channels fit directly inside DEC's LSI-11 series minicomputer.
- Data acquisition rates up to 75,000 samples per second.
- Two modes of programming.
- Program-controlled mode
- Program-interrupt mode
- Expandable up to 256 A/D and/or 256 D/A channels.
- 12-bit analog resolution with choice of coding and voltage ranges.

DESCRIPTION

Datel offers a simple approach to providing analog signal inputs and outputs to DEC's popular LSI-11 (PDP-11/03) series microcomputers. Datel's Sine Trac analog peripheral I/O module plugs directly into the card guides in LSI-11 housings or H9270 backplanes. The Sine Trac module accepts up to 64 analog input (A/D) channels and 2 analog output (D/A) channels on the same interface card.

The Sine Trac analog I/O card communicates directly with the LSI-11 bus, thereby, eliminating all CPU cabling. Sine Trac is handled as an addressable peripheral I/O device. Analog connections are made through PC board connectors on the Sine Trac card.

Assembly language or high level languages completely control all activities of the Sine Trac analog I/O card. These include random or sequential analog channel addressing with automatic reset on program-specified first and last channels. By using the appropriate I/O instructions, Sine Trac analog channels may be transferred to a teletypewriter, paper or magnetic tape, tape cassettes, CRT terminal or other peripherals.
The Sine Trac board is organized around Datel's MDAS-16, a high density data acquisition module employing a hybrid successive approximation A/D converter, FET multiplexer switches, integrated circuit Sample/Hold amplifier, and Tristate TTL output buffer/registers. Address decoders, bidirectional bus transceivers, status and address registers, a $\pm 15 \mathrm{~V}$ DC/DC converter and control logic complete the rest of the Sine Trac system.

The Sine Trac LSI-11 card is ideal for process control, automatic test systems, laboratory measurment systems and similar applications. Datel's System 256 will allow for expansion up to 256 A/D channels and/or $256 \mathrm{D} / \mathrm{A}$ channels.

The D/A analog output channels available on Sine Trac A/D boards contain storage registers for each 12 -bit analog word to maintain a stable analog output between CPU output cycles. The D/A option is ideal for plotter, chart recorder, oscilloscope or actuator drive. It is also excellent for analog feedback or test waveforms to systems under test. Digitally synthesized analog waveforms may be program-generated with a settling time of 4 microseconds per D/A step.

The Sine Trac analog system can accept two modes of operation including pro-
gram control, and program interrupt mode. Program control requires simple instruction sequences and controls the interface at the time and sequence specified by the program. Interrupt operation is ideal for releasing the CPU for other chores while an A/D conversion is in progress.
Very fast auto zeroing circuits and programmable gains are optional on Sine Trac systems. The auto zeroing corrects for voltage offsets and programmable gains of $1,2,5$, and 10 provide input ranges down to $\pm 500 \mathrm{mV}$ full scale. The gain is program controlled and is ideal for applications requiring extended dynamic range. Systems without the auto zero/programmable gain option have A / D data throughput of 75,000 samples per second. Throughput for systems with the option is 40,000 samples per second.

SPECIFICATIONS (Typical @ $+25^{\circ} \mathrm{C}$, dynamic conditions unless otherwise specified.)

ANALOG DATA SYSTEMS

SPECIFICATIONS
(Typical @ $+25^{\circ} \mathrm{C}$, dynamic conditions unless otherwise specified.)
DATA ACQUISITION SECTION (A/D Analog Inputs)

ANALOG INPUTS

Number of Channels	64 single-ended 64 Pseudo-differential 32 full differential
Channel Expansion (using Datel's System 256 in an external housing)	. up to 256 single-ended channels or 128 full differential channels
Input Voltage Ranges.	0 to +5 Volts 0 to +10 Volts -5 to +5 Volts -10 to +10 Volts
Programmable Gains and Autozero (optional)	$\times 1, \times 2, \times 5, \times 10$ (not avail. 0 to +5 V range)
Common Mode Range Input Overvoltage, (no damage).	$\pm 10 \mathrm{~V}$ Volts guaranteed max. $\pm 15 \mathrm{~V}$, max. sustained
Input Impedance Input Bias Current .	100 megohms differential or to ground 3nA typical, 10nA max.
Input Capacitance (to ground)	10pF, OFF channel, 100 pF

PERFORMANCE
Accuracy @ $+25^{\circ} \mathrm{C}$ and
75 kHz Sampling
Resolution
Nonfinearity
Nonlinearity
Gain Error .
Offset Error
Gain Temperature Drif
Offset Temperature
Drift
Common Mode
Rejection (with 1 kilohm
unbalance).
(to +5 V b b us). Rejection

64 single-ended 32 full differential up to 256 single-ended channels or 128 full differential channels
0 to +5 Volts
0 to +10 Volts
-5 to +5 Volts
-10 to +10 Volts
$\times 1, \times 2, \times 5, \times 10$ (not avail. 0 to $\pm 10 \mathrm{~V}$ Volts guaranteed max.
$\pm 15 \mathrm{~V}$, max. sustained 100 megohms differential or to ground ON channel
. Within $\pm .025 \%$ of full scale 12 Binary Bits $\pm 1 / 2$ LSB, max.
$\pm 1 / 2$ LSB, max. Adjustable to zero Adjustable to zero Within ± 30 ppm of full scale $/{ }^{\circ} \mathrm{C}$ With ± 7 ppm of full scale $/{ }^{\circ} \mathrm{C}$

70 dB min., DC to 1 kHz 100 dB

DYNAMIC CHARACTERISTICS
Throughput Rate (without prog. gain/auto zero).... Throughput Rate (with prog, gain/auto zero) . . Acquisition Time A/D Conversion Time Aperture Time Sample/Hold Switch Feedthrough
MUX Crosstalk from MUX Crosstalk from OFF Channels. DIGITAL OUTPUTS

Output Coding

 (prewired jumpers).
Output Format

(prewired jumpers)

POWER CONSUMPTION

PHYSICAL

75,000 samples $/ \mathrm{sec} .$, max
40,000 samples/sec., max 6 microseconds 7.3 microseconds 50 nanoseconds
.01\% max.
$.01 \%$ @ 1 kHz

Straight Binary (unipolar) Offset Binary (bipolar) 2's complement (bipolar)
Buffered output electrically compatible to DEC's bidirectional bus. Sign extension is provided on Bits 12-15.
RANDOM - Under program control
SEQUENTIAL Under program control
2.5 Amps typical @ +5VDC supplied by DEC backplane connector power bus. On board $\pm 15 \mathrm{~V}$ DC/DC verter powers linear circuits.

DATA DISTRIBUTION (D/A Analog Outputs)
ANALOG OUTPUTS

Number of Channels	2 -single ended
Channel Expansion	256 channels addressable using Datel's System 256 (separate housing)
Output Voltage Ranges	0 to +5 Volts
	0 to +10 Volts
	-5 V to +5 Volts*
	-10 V to +10 Volts*
	('offset binary or 2's complement, specify when ordering)
Output Impedance	50 milliohms
Output Current . .	$\pm 5 \mathrm{~mA}$, min., short circuit proof

PERFORMANCE
Nonlinearity .
Differential Nonlinearity $\pm 1 / 2$ LSB, max
Gain Error
Zero Error
Gain Temperature Drift
Zero Temperature Drift (unipolar output)
Offset Temperature Drift
(bipolar output)
Settling Time .
Power Supply
Rejection … $\pm 0.02 \%$ of full scale range 1%
Power Requirements

Adj to zero usin Adj. to zero using pot for each channel
Adj. to zero using pot for each channel
-30 ppm of output $/{ }^{\circ} \mathrm{C}$
$\pm 5 \mathrm{ppm}$ of full scale range $/{ }^{\circ} \mathrm{C}$
± 15 ppm of full scale range 1% 4 microseconds to $\pm 1 / 2$ LSB supply variation
$\pm 15 \mathrm{VDC} @ \pm 40 \mathrm{~mA}$ full load per D/A channel. Furnished by onboard DC/DC converter for A/D-D/A card. $\pm 15 \mathrm{VDC}$ externally supplied for expanded D/A channels.

ORDERING GUIDE

LSI-11 SineTrac Series

PRICES (Single Quantity)

ST-LSI-64S (or -64P or -32D)
(A/D analog input cards without D/A outputs. \$ 895.
ST-LSI-64S (or -64P or -32D)
(A/D analog input card including 2 D/A outputs)
\$1045.

ST-LSI-DAC

(NoA/D inputs but with 2 D/A outputs)
\$ 545.
ADD \$250 FOR THE PROGRAMMABLE GAIN/AUTO ZERO OPTION

Model ST-LSI-DA8

Optional 8 channel single-ended analog output (D/A)
(Specify $+5 \mathrm{~V},+10 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}$ full scale outputs.
Requires A / D section for control. Uses $\pm 15 \mathrm{~V}$ power
from DEC power supply or from external source)
\$ 750
Model ST-LSI-DA4
4 channel analog output.
Same as -DA8 but includes ± 15 V DC/DC converter \$ 595.

1020G Turnpike Street, Building S
Canton, Massachusetts 02021 U.S.A
TEL: (617) 828-8000
TWX: 710-348-0135 TELEX: 924461

1020G Turnpike Street, Building S Canton, Massachusetts 02021 U.S.A. TEL: (617) 828-8000
TWX: 710-348-0135 TELEX: 924461

ANALOG DATA PERIPHERALS FOR DEC PDP-11 MINICOMPUTERS

SINETRAC PDP SERIES

FEATURES

- 64-channel analog input (A/D) and 2 output (D/A) channels fit directly inside DEC's PDP-11 series minicomputers.
- Data acquisition rates up to 75,000 samples per second.
- Three modes of programming.
- Program-controlled mode
- Program-interrupt mode
- Direct Memory Access
- Expandaple up to 256 A/D and/or 256 D/A channels. 12-bit analog resolution with choice of coding and voltage ranges.
- Optional auto-zeroing and programmable gain.
- Includes on-board control for block transfer and automatic channel sequencing and for random channels.

DESCRIPTION

Datel offers a simple approach to providing analog signal inputs and outputs to DEC's popular PDP-11 series minicomputers. Datel's Sine Trac analog peripheral I/O module plugs directly into the card guides and connector slots inside PDP-11 housings. The Sine Trac module accepts up to 64 analog input (A/D) channels and 2 analog output (D/A) channels on the same interface card.
The Sine Trac analog I/O card communicates directly with the PDP-11 unibus, thereby, eliminating all CPU cabling. Sine Trac is handled as an addressable peripheral I/O device. Analog connections are made through the rear cable clamps on the PDP-11 housing.
Assembly or high level languages completely control all activities of the Sine Trac analog I/O card. These include random or sequential analog channel addressing with automatic reset on program-specified first and last channels. By using the appropriate I/O instructions, Sine Trac analog channels may be transferred to a teletypewriter, paper or magnetic tape, tape cassettes, CRT terminal or other peripals.
The Sine Trac board is organized around Datel's MDAS-16, a high density data acquisition module employing a hybrid successive approximation A/D converter, FET multiplexer switches, integrated

circuit Sample/Hold amplifier, and tristate TTL output buffer/registers. Address decoders, bidirectional bus transceivers, status and address registers, a $\pm 15 \mathrm{~V}$ DC/DC converter and control logic complete the rest of the Sine Trac system.
The Sine Trac PDP-11 card is ideal for process control, automatic test systems, laboratory measurement systems and similar applications. Datel's System 256 will allow for expansion up to 256 A/D channels and/or 256 D/A channels.
The D/A analog output channels available on Sine Trac A/D boards contain storage registers for each 12 -bit analog word to maintain a stable analog output between CPU output cycles. The D/A option is ideal for plotter, chart recorder, oscilloscope or actuator drive. It is also excellent for analog feedback or testwaveforms to systems under test. Digitally synthesized analog waveforms may be program-generated with a settling time of 4 microseconds per D/A step.
The Sine Trac analog system can accept three modes of operation including program control, program interrupt
mode and direct memory access (DMA). Program control requires simple instruction sequences and controls the interface at the time and sequence specified by the program. Interrupt operation is ideal for releasing the CPU for other chores while an A/D conversion is in progress. DMA operation bypasses the CPU and uses the Sine Trac's start and final channel and word counter registers to transfer Sine Trac-Controlled blocks of data addresses sequenced by the Sine Trac's memory address register and frame clock.

Very fast auto zeroing circuits and programmable gains are optional on Sine Trac systems. The auto zeroing corrects for voltage offsets and programmable gains of $1,2,5$, and 10 provide input ranges down to $\pm 500 \mathrm{mV}$ full scale. The gain is program controlled and is ideal for applications requiring extended dynamic range. Systems without the auto zero/programmable gain option have A / D data throughput of 75,000 samples per second. Throughput for systems with the option is 40,000 samples per second.

SPECIFICATIONS (Typical @ $+25^{\circ} \mathrm{C}$; dynamic conditions unless otherwise specified.)

ANALOG INPUTS	
Number of Channels. . . . 64 single-ended	
	64 pseudo-differential
	32 full differential
Channel Expansion (using Datel's System 256 in an external housing)	up to 256 single ended channels or 128 full differential channels
Input Voltage Ranges. . . . 0 to +5 Volts	
0 to +10 Volts	
-5 to +5 Volts	
-10 to +10 Volts	
Programmable Gains and Autozero (optional)	$\times 1, \times 2, \times 5, \times 10$ (not available 0 to +5 V range)
Common Mode Range . . $\pm 10 \mathrm{~V}$ Volts guaranteed maximum	
Input Overvoltage, $\pm 15 \mathrm{~V}$, max. sustained (no damage)	
Input Impedance 100 megohms differential or to ground	
Input Bias Current 3nA typical, 10nA max.	
$\underset{\text { Ito ground) }}{\text { Input Capacitance } \ldots \ldots .1} \begin{gathered}\text { channel } \\ \text { (to }\end{gathered}$	
PERFORMANCE	
Accuracy @ $+\mathbf{2 5}{ }^{\circ} \mathrm{C}$. Within $\pm 025 \%$ of full scale and 75 kHz Sampling	
Resolution 12 Binary Bits	
Nonlinearity $\pm 1 / 2$ LSB, max.	
Differential Nonlinearity . $\pm 1 / 2$ LSB, max.	
Gain Error Adjustable to zero	
Offset Error Adjustable to zero	
Gain Temperature Drift . . Within $\pm 30 \mathrm{ppm}$ of full scale $/{ }^{\circ} \mathrm{C}$	
Offset Temperature Drift Within $\pm 7 \mathrm{ppm}$ of full scale $/{ }^{\circ} \mathrm{C}$	
Common Mode Rejection (with 1 kilohm unbalance) . . 70 dB min., DC to 1 kHz	
Power Supply Rejection (to +5 V bus)	100 dB

DYNAMIC CHARACTERISTICS
Throughput Rate (without
prog, gain/auto zero).
Throughput Rate (with
prog. gain/auto zero)
prog. gain/auto zero).
Acquisition Time . .
A/D Conversion Time
Aperture Time.. Sample/Hold Switch Feedthrough . OFF Crosstalk from OFF Channels.

75,000 samples $/ \mathrm{sec} .$, max.
40,000 samples $/ \mathrm{sec}$. max. 6 microseconds
7.3 microseconds 50 nanoseconds
$.01 \%$ max.
.01\%@ 1 kHz

DIGITAL OUTPUTS

Output Coding

 (prewired jumpers.Output Format
(prewired jumpers)

Channel Addressing

DMA Frame Clock
INTERFACE ADDRESSING
PDP. 11 Sinetracs are supplied with addressing shown below. Contact Datel if other addressing is required.
M105 (Address Selector)
Address.
.......

762000 thru 762006 with jumper 10 cut.
62010 thru 762016 with jumpers
Vector Address-Interrupt
Interface (Program Interrupt)
M7821 (VECTOR BIT 2L) 770 (no jumper cuts)
Vector Address (DMA Mode)
M7821 (VECTOR BIT 2H) 774 (no jumper cuts)
Bus Request Level 7
Bus Grant Level 7
POWER CONSUMPTION
2.5 Amps typical @ +5VDC supplied by DEC backplane connector power bus. On-board ± 15 V DC/DC
converter powers linear circuits.
PHYSICAL
Range
Range
Storage Temperature
Range
Card Size.

Card Connection .
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$7.69^{\prime \prime} \times 15.5^{\prime \prime} \times 0.375^{\prime \prime}$ (not including PC card fingers). Card area covers 6 BB11 card slots. Four BB11 card slots (C thru F). Wire wrapped BB11, power and 1/O connectors supplied on full systems (see ordering).
Humidity 20\% to 90\% (no condensation)

DATA DISTRIBUTION SECTION (D/A Analog Outputs)
ANALOG OUTPUTS

Number of Channels	2 single-ended
Channel Expansion	.256 channels addressable using Datel's System 256 (separate housing)
Output Voltage Ranges .	.0 to +5 Volts
	0 to 10 Volts
	-5 V to +5 Volts*
	-10 V to +10 Volts*
	(*oftset binary or 2's complement specify when ordering)
Output Impedance	50 milliohms
Output Current	.$\pm 5 \mathrm{~mA}$, min., short circuit proof to ground

PERFORMANCE

Nonlinearity $\pm 1 / 2$ LSB, max.
Differential Nonlinearity $\pm 1 / 2$ LSB, max.
Gain Error .
Zero Error
Adj. to zero using pot for each channel
Adj. to zero using pot for each channel
Gain Temperature Drift
Zero Temperature
Drift (unipolar output)
Offset Temperature
Drift (bipolar ou tput).
Settling Time
Power Supply
Power Requirements
± 5 ppm of full scale range $/{ }^{\circ} \mathrm{C}$
± 15 ppm of full scale range $/{ }^{\circ} \mathrm{C}$ 4 microseconds to $+1 / 2$ LSB
$\pm 0.02 \%$ of full scale range 1% supply variation $\pm 15 \mathrm{VDC} @ \pm 40 \mathrm{~mA}$ full load per D / A channel. Furnished by onboard DC/DC converter for A/DD/A card. ± 15 VDC externally supplied for expanded D/A channels.

CONTACT DATEL FOR LATEST ORDERING INFORMATION

[^4]PRICES (Single Quantity)
ST-PDP-64S, -64 P or -32D A/D Section
(less $2 \mathrm{D} / \mathrm{A}^{\prime}$'s, less prog. gain/auto zero) .
Add for programmable gain/auto zero option
(see specifier in A/D Section Model Number)
Add for two analog output (D/A) channels mounted
on A/D Section (see specifier in A/D Section Model Number . . \$ 150.
Model 11175, DMA Board, 3 Backplane slots
(see full system description below) .
Model ST-PDP-DA8 optional eight channel single-ended
analog output (D / A) (specify $+5 \mathrm{~V},+10 \mathrm{~V}, \pm 10 \mathrm{~V}$. Requires
A/D section for control. Uses $\pm 15 \mathrm{~V}$ power from DEC power
supply or from external source)
Model ST-PDP-DA4 - 4 channel analog output.
Same as -DA8 but includes $\pm 15 \mathrm{~V}$ DC/DC converters . \$ 595 .

FULL SYSTEMS

(Analog output D/A and programmable gain/auto zero options may be added to any of these systems.)
PROGRAM CONTROL (includes the following:)
Model Description Manufacturer

M920B	Bus Extender	DEC
M105C	Address Selector	DEC
BB11	Connector Block (wire-wrapped by Datel for analog I/O systems)	DEC
11180	+5V Jumper Card	DATEL
ST-PDP.	64 channel A/D Section	DATEL

Total Price \$2295.
PROGRAM INTERRUPT (includes the above, plus the following:)
M7821B Interrupt Control
DEC
Total Price $\$ 2495$.
DIRECT MEMORY ACCESS (includes the above, plus the following:)
11175 DMA Board DATEL
Total Price $\$ 2775$.

Digital Cassette Recorders \& Systems

WRITE-ONLY, ULTRA LOW POWER INCREMENTAL DIGITAL CASSETTE TRANSPORTS AND RECORDER SYSTEMS

- ICT-SERIES

TRANSPORT FEATURES

- Simple, reliable capstan/pinch roller stepping motor drive
- Ultra-low power (700 milliwatts while writing) using CMOS electronics
- True standby incremental performance starts writing within 20 milliseconds
- Choice of complementary NRZ or ANSI/ ECMA/ISO phase-encoding formats
- High data capacity: Up to 2.2 million bits per 300 foot cassette

RECORDER SYSTEM FEATURES

- Accepts digitized analog, serial or parallel digital inputs
- Ideal for +12VDC battery portable digital data recorders
- ANSI/ECMA/ISO systems automatically record preamble, postamble, CRC, CR, NULL, LF ASCII characters
- Optional A/D converter, 16 channel analog multiplexer, sample/hold and channel sequencer available
- Reader Systems available to interface most computer terminals, RS-232-C CRT displays, modems and teleprinters (TTY)

INTRODUCTION

Datel presents its ICT-series digital incremental cassette tape transport systems. These unique data recorders and reader systems offer a new concept to the instrument designer-miniature, removable ultra-low power, digital data storage. Using a Philips data tape cassette, low power incremental stepping motor and CMOS electronics, these recorders are ideal for portable-battery-powered data collection instruments.
Datel's cassette systems form the nucleus of your data recorder. They complement your selection of input transducers, signal conditioners and your computer system. Inputs to the optional A/D converter analog section have been standardized to 5 and 10 Volt levels commonly available from many sensors.

Reader/interface systems which are separate from the data recorder provide several output forms (full parallel, TTY/ RS-232-C ASCII, $1 / 2^{\prime \prime}$ mag. tape) to adapt to different computers and printout devices.

Datel also offers a new concept to the engineer or scientist interested in data recording with tape systems. The ICT-series offers a simplified approach with circuit card modules which are specified in terms familiar to circuit designers who know digital logic. Data entry, retrieval and power-up, power-down considerations are simplified to the point of providing and accepting logic levels at the required times. For a complete system design, details of the transport's flux levels and motor drive are transparent to the designer, requiring only a knowledge of ultimate word size, bit rate and data capacity. Yet Datel's transport and individual card modules are fully specified so that customized systems may be created at any level from transports alone up to fully packaged systems.

With very fast power turn on, the tape moves only when actually recording data or creating a gap. At all other times when not recording data, the transport and power-multiplexed electronics remain turned off to save tape and batteries.
The fast turn-on, turn-off feature means that tape is up to writing speed within 10 milliseconds with no coasting when turned off. Data systems such as seismic recorders may be designed to record only when data is actually present, providing a very large data capacity per cassette. Hand-held stock inventory recorders move the tape only when keyboard data has been entered.

MODELS AVAILABLE

Datel offers these cassette recorders and companion readers as complete systems or as general purpose component modules for the widest range of applications. The basic ICT-series transports are available with a family of printed circuit cards, parallel-to-serial/formatter cards, A/D converter, multiplexer and sample/holds for analog inputs. Transport and PC cards may be purchased separately at any time to build complete customized low power digital recording systems.

APPLICATIONS

Complete Cassette Data Logging Systems from Datel are available to record up to 16 or 64 analog channels, both as user-mounted modular systems and as stand-alone, weatherproof automatic data acquisition/logging systems (refer to Datel Models LPS-16 and DL-2). Applications include oceanographic buoys and submersible probes, portable air and water quality environmental monitors, traffic and noise loggers, natural resources exploration, vehicular testing, seismic and geophysical measurements, RF field strength and transmission loggers, unmanned weather stations and biomedical loggers.

RECORDING FORMATS

Datel uses two cassette digital recording methods. A dual-track complementary NRZ (CNRZ) method is used for high noise immunity and self-clocking on playback. This high capacity method uses both tracks of the tape simultaneously and records in only one direction. Using separate 1's and 0's tracks and very small gaps, one cassette can hold up to 2.2 million bits, or 120,000 A/D samples.

Datel also uses a single-track phase-encoding serial method fully compatible with widely accepted ANSI/ECMA/ISO standards. Both sides of the cassette may be written. The ANSI/ECMA/ISO format is 8 -bit oriented with optional parity as the 8 th bit or fixed at one or zero. This format is ideal for interfacing to ASCII
encoded data or to the IEEE-488 instrument interface bus. The proper preamble, cyclic redundancy check characters and postamble are recorded for playback synchronization, start of data recognition and error detection. Datel's ANSI/ECMA/ISO transports are unique from those of other manufacturers in that full incremental operation is a standard feature (rapid start and stop with each byte). Yet the transport retains its ultra low-power stepping motor design. Tapes prepared on Datel's cassette transport may be used on any reader which is fully ANSI/ECMA/ISO compatible. This includes a variety of CRT terminals and computers accepting ASCII coding using a serial interface with EIA RS-232-C electrical specifications.

CASSETTE TRANSPORT FEATURES

Datel's incremental cassette transport features a design simplicity not found in other mechanisms. An elegantly simple tape speed control is provided using a four-winding stepping motor with 48 rotor steps per revolution and geared down capstan drive. The stepping motor relies on electronically rotating the stator field around permanent magnet multi-pole rotors instead of mechanical brushes and a commutator. A CMOS clock sequences the stepping motor drivers. This avoids the usual methold found in continuous recorders employing slotted strobe discs, tachometers or prerecorded clock tracks. All of these methods require some servo slewing time to reach accurate speed, thereby adding a delay in true incremental applications. The stepping motor drive features high electrical to mechanical efficiency since there is no brush friction drag. The complete transport and electronics are optimized for ultra-low power (one watt while stepping) making it ideal for battery-operated portable systems.
Further mechanical simplicity and ultra-low power is enhanced by the single-motor write-only transport. Instead of a second
motor to maintain take-up tape tension, a spring-belt and friction clutch takeoff from the capstan drive maintain constant take-up hub torque and tape tension.
The ICT-series write-only transports are optimized for ultra-low battery power with bit writing rates within bytes or words of 50 or 100 bits/second. These bit rates are adequate for a wide variety of portable and long term instrumentation applications. These include hand-held keyboard inventory recorders and field data logging of slowly varying analog parameters such as temperature, pressure, RF field strength, etc. However, on playback, ICT-recorder cassettes may be read at the full speed of most computer cassette readers, typically several thousand bits per second. Playback bit rates within blocks or files at a tape speed of 2.5 inches per second are 2 Kilo bits per second or 250 bytes per second.
Special reader transports with appropriate heads and drives available from several manufacturers allow data search speeds up to 30 inches per second or more.

RECORDING TECHNIQUES TO CONSERVE POWER AND TAPE

Datel's ICT recorder systems use several methods to save available battery energy and to record a maximum amount of data on tape.
The stepping motor drive allows immediate access (with 10 milliseconds) from data input to writing on tape unless the system is within a gap. This fast turn-on saves time, tape, and battery energy normally required to establish higher tape speeds typical of continuous or constant-speed incremental transports.

The second factor which saves time, tape and batteries is the incremental operating mode. Since tape can be stopped or started at any time except within a byte, word or gap, the transport can be shut off any time data is not ready to record. The
tape is moved only when actually recording data or generating gaps.
The fast turn-off and turn-on are controlled by logic levels generated on the ICT-series circuit cards. Extensive use of digital integrated circuits means that no warm-up time is required. The logic family chosen was CMOS (Complementary Metal Oxide Semiconductor) because of the exceptionally low power required, high reliability and high noise immunity.
For these reasons, Datel's ICT incremental cassette systems comprise one of the more energy-efficient data storage systems that are commercially available.

DIGITAL CASSETTE TRANSPORT SPECIFICATIONS (Typical over 0° to $+70^{\circ} \mathrm{C}$ unless noted)

	Model ICT-Wa BiphaseLevel ANSI/ECMA/ISO Format	Model ICT-WZ Complementary Format
GENERAL		
Recording Medium	Philips magnetic tape cas operation by using a bit-err The transport is designed plying with ANSIX3. 48, DIS3407 specs.	ette, certified for digital rror check for dropouts. to accept cassettes com-ECMA-34 and ISO/
Number of Tracks	One half-width track	Two half-width tracks, recorded simultaneously
Recording Direction	Two directions by flipping cassette over	One direction only
TAPE MOTION		
Motor	4 -winding 24 pole, permanent magnet stepping motor	
Equivalent Tape Speed Range	Zero to 0.063 inches per second ($1,59 \mathrm{~mm} /$ $\mathrm{sec})$	Zero to 0.163 inches per second $(4,13 \mathrm{~mm} /$ sec)
Nominal Tape Speed	$0.063 \mathrm{in} . / \mathrm{sec} .(1,59 \mathrm{~mm} /$ $\mathrm{sec})$ at $100 \mathrm{steps} / \mathrm{sec}$.	$0.163 \mathrm{in} . / \mathrm{sec} .(4,13 \mathrm{~mm} /$ $\mathrm{sec})$ at $100 \mathrm{steps} / \mathrm{sec}$.
Bit Density	800 bits per inch (1600 FRPI) 32 bits per mm	615 bit per inch (615 FRPI) 24 bits per mm
Bit Cell Spacing	0.00125 inches per bit $0,0318 \mathrm{~mm}$ per bit	0.00163 inches per bit $0,0414 \mathrm{~mm}$ per bit
Bit Writing Rate	Zero to 50 bits/second, asynchronous	Zero to 100 bits/second, asynchronous
STEPPING MOTOR CHARACTERISTICS		
Tape Drive Capstan Diameter	$\begin{aligned} & 0.118 \text { inches } \\ & 3,0 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 0.1246 \text { inches } \\ & 3,16 \mathrm{~mm} \end{aligned}$
Capstan Rotation Step Angle	$0.6{ }^{\circ}$	1.5°
Stepping Rate	Zero to 100 steps per second, asynchronous	Zero to 100 steps per second, asynchronous
Number of Stator Windings	4	
Winding Resistance	450 ohms per winding, $\pm 20 \%$	
Winding Inductance	335 millihenries per winding, $\pm 20 \%$	
Motor Steps per Bit Cell	2	1
Winding Voltage	$\pm 10 \mathrm{~V}$ min. to $\pm 24 \mathrm{~V}$ max.	
Hub and Capstan Torques and Tape Tension	Suitable for cassettes with in ANSI/ECMA/ISO specifications	
TAPE HEAD CHARACTERISTICS		
Tape Saturation Current	5 mA typ.	
Suggested Write Current	7.5 mA typ.	
D.C. Resistance	50 ohms $\pm 20 \%$	
Effective Track Width	0.057 inches ($1,45 \mathrm{~mm}$)	
Nominal Space Between Tracks	0.035 inches ($0,88 \mathrm{~mm}$) (Tracks are symmetrically spaced)	
DATA CHARACTERISTICS USING DATEL'S ELECTRONICS		
Recording Format	Single track full serial, externally clocked using 8 -bit bytes phase-encoded per ANSI/ECMA/ISO standards	2-track serial complementary NRZ 1's on Track 1, 0's on Track 2

1020G Turnpike Street, Building S Canton, Massachusetts 02021 U.S.A. TEL: (617) 828-8000 TWX: 710-348-0135 TELEX: 924461

Character Record Length	8 -bit bytes	8, 10, 12, 14 or 16 bit characters or words
File or Block Length	Blocks consisting of 2 \min. up to 256 max. usable data bytes per block	Files consisting of 1,2 , $4,8,16,32$ or 64 characters or words per block
Gaps	$0.8^{\prime \prime}(20,3 \mathrm{~mm})$ nominal noiseless gap written between each block. No gaps within blocks. Onehalf gap generated before each data block and the other half after the data block.	2-bit intercharacter, or inter-word gaps added before each character. 12 bit end-of-file gap written after each file.
Gap Stepping Rate	250 steps/sec.	100 steps/sec.
Time to General Full Gap Length	5.1 sec .	0.12 sec .
Power Consumption (Transport \& Tapehead only)	$\begin{gathered} 700 \mathrm{~mW} \text { typ. @ } 100 \mathrm{steps} / \mathrm{sec} . \\ (+12 \mathrm{VDC} @ 60 \mathrm{~mA}) \end{gathered}$	
DATA CAPACITY (Assuming 648 -bit characters per block or file, plus non-data characters and 282 feet (86 m) usable recording area)		
Block or File Length including Controls and Gaps	$\begin{aligned} & 1.48 \text { inches } \\ & (37,6 \mathrm{~mm}) \end{aligned}$	$\begin{aligned} & 1.06 \text { inches } \\ & (26,9 \mathrm{~mm}) \end{aligned}$
Block or Files per Cassette	2260 blocks (recording one side)	3200 files
Bit Cells per Block or File (including Gaps and Control Characters)	1200	652
Time per Block or File (not including gaps)	11.2 seconds	6.4 seconds
Time to Fill a Cassette (continuous running at max. step rate)	10.2 hours per side	5.8 hours
Bit Writing Rate	$50 \mathrm{bits} / \mathrm{sec}$.	$100 \mathrm{bits} / \mathrm{sec}$.
Playback Speed, typical	250 bytes/sec. (2.5 ips) (TI 733 ASR) or higher	$1700 \mathrm{bits} / \mathrm{sec}$. (LPR-16 Reader, 2.75 ips
Time to Generate Full Gap* Length	$\begin{aligned} & 5.1 \mathrm{sec} \text {. @ } 250 \\ & \text { steps } / \mathrm{sec} \text {. } \end{aligned}$	$\begin{aligned} & 0.12 \mathrm{sec} \text {. @ } 100 \\ & \text { steps } / \mathrm{sec} \text {. } \end{aligned}$
Gear backlash, tape creep and slack is taken up by load forward and gapping operations. *2.55 second half-gap generated before and after each data block.		
PHYSICAL		
Weight	1.25 pounds (0,567 kilogram)	
Dimensions	$\begin{gathered} 3.91^{\prime \prime} \text { High } \times 4.5^{\prime \prime} \text { Wide } \times 4.2^{\prime \prime} \text { Deep } \\ (99,3 \times 114,3 \times 106,7 \mathrm{~mm}) \end{gathered}$	
Maximum Extension in Front of Mounting Panel * (door closed) (door open)	$\begin{aligned} & 1.40^{\prime \prime \prime} \\ & 2.26^{\prime \prime} \\ & \hline \end{aligned}$	$\begin{aligned} & 35,6 \mathrm{~mm}) \\ & 57,4 \mathrm{~mm}) \\ & \hline \end{aligned}$
Maximum Depth Behind Mounting Panel	$1.94{ }^{\prime \prime}(49,3 \mathrm{~mm})$ from panel front surface	
Mounting Method	Front insertion into a panel cutout, secured by (4) 4.40 bolts inserted from the rear into tapped Helicoil thread inserts, $0.187^{\prime \prime}(4,76 \mathrm{~mm})$ deep	
Mounting Position	Horizontal or vertical. Recommended with cassette vertical, tapehead at top for easy cassette insertion.	
Temperature Range (Operating and Storage)	$\begin{aligned} & -20^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \text { standard (}-40^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & \text { available on special order) } \end{aligned}$	
Power Consumption (Auxiliary Cards and EOT/BOT Detector)	Phase Board, ANSI Formatter, Block Formatter, and Expander consume approximately 120 microwatts each (+12 VDC @ 10 microamps). The EOT/BOT Lamp and detector consume 900 mW (+12VDC @ 75 mA$)$.	

Prices and specifications subject to change without notice.

CASSETTE TRANSPORT OUTLINE DIMENSION - INCHES (MM)

MECHANICAL DIMENSIONS

ICT-WA \& ICT-WZ: LEFT SIDE VIEW

CASSETTE RECORDER SYSTEM MODELS AVAILABLE

Both ICT series write-only recorders are available in many configurations, from transport-only to stand-alone recorders.
The basic ICT transport is a panel mounting assembly which fits through a front panel cutout. The transport includes the stepping motor, tape head, both hub assemblies and optional EOT/BOT photodetector.
All electronics for the ICT systems are mounted in an optional
five-slot PC card cage which attaches to the rear of the transport. The entire assembly consisting of the cage, PC cards and transport are firmly supported when the transport is mounted to the user's front panel. The five optional cards slide into card guides in the card cage and mate with PC edgeboard connectors mounted on a motherboard on the bottom of the card cage. All signals and power voltages are transferred along a bus on this motherboard which terminates at a rear PC connector for all I/O signals.

WHICH DATA FORMAT? CNRZ or ANSI/ECMA/ISO PHASE-ENCODING?

Both CNRZ and ANSI/ECMA/ISO phase-encoding formats have been optimized for ultra-low power incremental recording, yet each has its particular advantages.
CRNZ formatting should be used for noise-immunity and shortest gaps for data logging applications. ANSI/ECMA/ISO phaseencoded formatting should be selected where interchangeability with other makes of writers and readers and most computer terminals is a consideration.
Phase encoded cassettes from Datel's ICT-WA series systems are available with first level (octal or hexadecimal) ASCII printout formatting recorded directly on the write-only system. ICT-WA cassettes may be played back immediately on any ANSI/ECMA/ ISO compatible CRT display terminal or computer teleprinter.
Both formats are readily available with code conversion to ASCII 8-bit formats for later storage or transmission of the data. ANSI/ ECMA/ISO recording may be used for all slowly-varying analog data logging applications except those which cannot wait the 2.55 seconds to generate the half-gap preceding each data block.
Code conversion to ASCII is performed in the write-only system for ANSI/ECMA/ISO formats and in the reader for Datel's CNRZ format. This contributes to tape storage efficiency on CNRZ systems, but also to preformatted interchangeable cassettes on ANSI/ECMA/ISO systems, for playback on many types of

Readers. ICT-WZ CNRZ cassettes must use a CNRZ-compatible Reader such as Datel's model LPR-16 (refer to the LPR-16 Reader in the Data Logging section).

Both formats can accept varied block or file length and both require similar cost in electronics to perform the same functions. Datel's ICT-WZ CNRZ systems have room in a single 5 -slot card cage for an optional 12-bit analog/digital converter and 16channel multiplexer (see Model LPS-16). ICT-WA systems require additional area to accommodate an A/D section.

The minimum 5.1 second, 0.8 inch $(20,3 \mathrm{~mm})$ gaps required of ANSI/ECMA/ISO formatting become a serious data capacity consideration if blocks cannot contain substantial numbers of bytes. Short blocks waste excessive tape in writing gaps and ANSI/ECMA/ISO data systems frequently use external semiconductor memory storage to produce efficiently-long blocks. ANSI/ECMA/ISO formatting relies on regulated speed control while writing and reading single-track phase-encoded data with two motor steps per bit cell. Data is recorded in blocks ranging from two to 256 bytes with no gaps within the blocks. Noiseless gaps of specified minimum length are required before and after each block and these are automatically generated by Datel's circuit card modules.

FILE OR BLOCK LENGTH
In ANSI/ECMA/ISO formatting, the number of bytes per block is selected using an externally supplied 8 -bit block length code which must be stored before writing the block.

The CNRZ format allows for variable file length and jumperselected bits per word. The file length (words per file) may be

MIXED ANALOG AND DIGITAL INPUTS

By the simple addition of Datel's A/D converter and Sample/Hold Amplifier PC cards, the ICT-series can record either analog inputs (up to 12 binary bits) or parallel or serial digital inputs. On full data logging systems (model LPS-16), a one line mode control accepts A/D converter parallel binary outputs or full serial external digital inputs synchronously clocked in from outboard serial sources or parallel-to-serial shift registers.
ICT-WZ systems accept digital inputs up to 16 bits in parallel.

16-CHANNEL ULTRA LOW POWER
ANALOG DATA LOGGER

MODEL LPS-16
internally or externally controlled. An internal word counter may be jumper-programmed to end the file at $1,2,4,8,16,32$ or 64 words. An external word counter can also end the file at any word count. Bit length per word is jumper selected at $8,12,14$ or 16 bits.

ICT-WA systems have an optional Expander Board accommodating 1, 2, 3, 4, 5 bytes (up to 40 bits total) of parallel digital inputs.

Both systems can accept Datel's optional 16 channel, high speed single ended high impedance FET analog multiplexer and Sample/ Hold amplifier. ICT-WA systems require a second short (4-card) card cage to accommodate the analog section plus all the ANSI/ ECMA/ISO tape electronics. System power consumption remains below 1.5 Watts while recording and in the microwatts in standby

BATTERY POWERED WEATHERPROOF AUTOMATIC ANALOG DATA LOGGER FOR 64 CHANNELS. INCLUDES ONE YEAR
CALENDAR CLOCK
MODEL DL-2

COMPLEMENTARY NRZ APPLICATION SYSTEM EXAMPLE

The block diagram shown indicates the types of input sources used with the ICT Transport System. Also shown are computer system output devices used when reading cassettes. This particular example shows an analog signal from an input bridge used to measure strain, temperature, etc. The ICT system cannot directly record this analog signal so it must first be digitized using an A / D converter. Datel supplies modular encapsulated 12-bit CMOS A/D converters mounted on cards which slide directly into the ICT series card cage. The digitized analog signals may then be recorded on the cassette.
The block diagram also shows digital signal sources. These can include parallel and serial TTL or CMOS inputs. The TTL signals should be buffered through open collector level shifters to be compatible with the ICT's +12 V CMOS logic levels. Serial digital inputs may be shifted into the ICT systems by using the shift clock output.

Not shown in this application diagram are 8-bit bytes in ASCII format externally encoded from portable hand-held keyboards and other sources.

The ICT Transport Systems using CNRZ format must use a CNRZ-compatible Reader such as Datel's model LPR-16 shown here. Refer to the Data Logging section for more information on the LPR-16.

The LPR-16 Reader is available with 3 types of outputs to feed computers and various output and display devices. These outputs are full parallel, full serial or half-inch magnetic tape. Between them, practically every current computer-compatible device can easily by interfaced to.

For example, if you have access to a powerful high speed mainframe computer with BASIC or FORTRAN languages but without convenient electrical input, transcribing cassettes off line onto half-inch magnetic tape is the logical route to follow.
Half-inch tapes are then loaded into mainframe memory and a complete printout is available with user-controlled output formatting, variable labeling and arithmetic functions. The high density tapes can be retained by the user if they ever need to be run again or analyzed differently.
A computer is shown in this block diagram and it will be required in practically all situations needing arithmetic on the data or output formatting. However, the LPR-16 Reader can be operated off-line directly to a local teletypewriter or CRT terminal to get a quick look at the data in hexadecimal output. Simple TTY printout formatting presents A / D samples and digital words as hexadecimal characters with optional channel identification for analog channels. Spacing, carriage returns and line feeds help identify individual words and data files.

ANSI/ECMA/ISO APPLICATION EXAMPLE

The ICT-WA ANSI/ECMA/ISO phase-encoding format is designed specifically for direct compatibility with many terminals, teleprinters, and other I/O devices which accept ASCII characters transferred over TTY 20 mA current loops or RS-232-C interface cables. In contrast, ICT-WZ CNRZ systems are not limited to the 8 -bit formatting of phase-encoding systems. In fact, ICT-WZ CNRZ transports can be preformatted using the customer's external ASCII formatting electronics. Or the ASCII formatting can be done in the LPR-16 Reader. Or the ASCII formatting does

ELECTRONICS

Both cassette systems accept serial and parallel digital inputs. These are presented to input terminals at the proper times and are internally stored. DATA ACCEPTED flag signals appear, allowing the user's external electronics to clear and load the input bus with the next group of data. This can occur in parallel or bit by bit in full serial by using the shift clock output.

Since the transport must run at a given tape speed, data bits must be ready fast enough for input to the write electronics. However, the transport is truly character or word incremental so that the tape can stop within a block or file and wait after writing one word for new data that isn't ready yet.

ICT-WZ COMPLEMENTARY NRZ BOARDS

In addition to the Write Step Board, ICT-WZ Recorder systems have the Formatter Board available. An optional A/D Converter Board, and Sample/Hold, Multiplexer, Channel Sequencer are also available for analog inputs. Refer to complete analog systems specifications under Datel's LPS-16 series.
The ICT-WZ Formatter Board accepts parallel CMOS digital words from 8 to 16 bits long, stores them and shifts them over serially to the Write Step Board. The Formatter also supplies a 2 -step bitless gap beginning each word to the Write Step Board and a longer 12 step gap at the end of a file or from external command. Word length from 8 to 16 bits is jumper programmed as is a word counter which automatically generates the 12 -step file gap after the jumper-selected number of words per file. File length can also be externally controlled.
not have to be done at all. In the case of a long-term analog and digital data logger, most efficient tape use and highest data transfer rate will occur using a full parallel reader without the extra bits required for ASCII characters.

Tapes prepared on ICT-WA ANSI/ECMA/ISO systems may be displayed or printed out directly on an ANSI-compatible terminal I/O device. A computer is not needed but will be required for arithmetic and reformatting the output.

Several circuit boards with similar functions are used on ICT-WA and -WZ systems. The Write Step board drives the 4-phase windings of the stepping motor. The 100 Hz motor clock pulses are also used to sequence input bits which drive the tape head through the Write Step board. Flip flops for the tape head keep track of the present drive state of the head and apply the proper flux change. CNRZ systems route zero and one bits to alternate tracks and phase-encoding systems orient the single-track flux change direction for zeroes and ones. The basic motor clock serves as a master clock for all the remaining logic in either ICT system.

ICT-WA CARDS LESS TRANSPORT (SEE BLOCK DIAGRAM)

ANSI/ECMA/ISO

ICT-WA Recorder Block Diagram

Complementary NRZ ICT-WZ
Recorder System Block Diagram

ICT-WA PHASE-ENCODING PC BOARDS

ANSI/ECMA/ISO ICT-WA Recorders employ several more boards besides the Write Step Board, These include the Phase Board, ANSI Formatter, Block Formatter and Expander.

EXPANDER

Full Parallel inputs of $16,24,32$, or 40 bits are accepted by the Expander. Two other input lines select the input word length code. The Expander stores both the word length code and full parallel inputs. It flags when data is accepted and shifts inputs out serially to the Phase Board prior to writing on tape.

BLOCK FORMATTER

The Block Formatter Counts the number of bytes being written in a block and terminates the block at a preselected number of bytes determined by an eight-bit input code which is stored at the beginning of the block. The Block Formatter ends the block by automatically generating ASCII carriage return (CR), NULL and line feed (LF) characters. The Block Formatter then commands the ANSI Formatter to sequence the CRC and Postamble generated on the Phase Board to the Write Step Board. The ANSI Formatter completes the block by generating the interblock half gap. The CR, NULL and LF characters can be omitted by short cycling the number of bytes in the block compared to the stored block length code.
The block Formatter provides direct input for 8-bit parallel digital words only. This parallel input would be used if the Expander is not required.

ANSI FORMATTER

The ANSI formatter generates certain gaps, controls whether the Phase Board accepts serial or parallel data and controls the Beginning of Tape (BOT) lamp logic and photodetector until the BOT
tape hole is passed. The ANSI Board directs the sequence of bytes generated on the Phase Board including Preamble, Postamble, Data and CRC.

The ANSI Formatter generates an overriding bitless gap at any time on external command (using the EXT. LOAD FWD. input).
An initial gap is externally commanded when the cassette is first mounted and rewound. This bitless gap passes the clear leader/ oxide splice and stops tape motion $1.5^{\prime \prime}(38 \mathrm{~mm})$ past the BOT hole, after which the photodetector lamp is turned off.
The $0.4^{\prime \prime}(11,6 \mathrm{~mm})$ half-gaps beginning and ending each block are generated by the ANSI Formatter automatically.
All gaps are generated with saturated (DC Erase) tape head flux and an accelerated step rate (250 steps/second) to limit the required gap-generating time to 2.55 seconds per half interblock gap.
The ANSI Formatter also commands the Phase Board to generate a tape or file mark block on external command consisting of a preamble, 16 -bit NULL CRC (all zeros) a postamble and both beginning and ending interblock gaps.

PHASE BOARD

The Phase Board contains the 100 Hz motor clock, computes the CRC characters and generates preambles and postambles. The recording sequence of these bytes is directed by the ANSI Formatted Board.
The EOT/BOT photodetector sensing circuit is located on the Phase Board. Its output is fed to logic on the ANSI Formatter which decides whether to shutoff the lamp and/or continue tape motion.

ANSI/ECMA/150 ICT-WA RECORDER SYSTEM SPECIFICATIONS

GENERAL

Function

Digital ultra-low power write-only phase-encoding cassette recorder accepting serial or parallel data incrementally in 8-bit bytes.

Data Rate

Writing rate is 50 bits per second within blocks. Parallel inputs may be stored. Input data bus must be valid 100 microseconds minimum at time of start command.

EOT/BOT Photodetector

Optional lamp and photodetector to sense passage of clear leader/oxide splice, BOT (Beginning of Tape) and EOT (End of Tape) holes.
Lamp requires $12 \mathrm{~V} @ 75 \mathrm{~mA}$.
For optional long term, low power data logging, automatic circuits provide a load forward past the splice. This continues 1.5 inches (38 mm) past the BOT, then the EOT/BOT lamp is shut off for the remainder of the cassette to save power.

Digital Inputs and Outputs

All input/outputs are compatible with CMOS logic characteristics, using 4000 A series devices. Nominal power supply voltage for ICT series electronics is $+12 \pm 0.5 \mathrm{VDC}$, regulated. Logic input levels must fall within zero and the power supply voltage. CMOS logic is edge sensitive, requiring 15 microseconds maximum rise or fall times.

The following listing describes only major I/O connections between individual circuit boards and outside circuits. Full descriptions of line functions and timing are shown in the ICT brochure.

EXPANDER INPUTS

Parallel Data (40 Lines)

Accepts digital inputs to be recorded with $16,24,32$, or 40 bits.

Expander Start (1 line)

Data and commands are stored on rising edge. Phase board initiates shift of parallel data and begins recording on tape.

40/8 (1 line)

Low disables the Expander
Word Length (2 lines)
Selects parallel input length of $16,24,32$, or 40 bits.
EXPANDER OUTPUTS

Serial Data (1 line)

Parallel data shifted out to phase board.
Expander Status (1 line)
HI when parallel data is being shifted.

Expander Data Accepted

Ready for data when high. Bus may be changed when low.

BLOCK FORMATTER INPUTS

Parallel Data (8 lines)
8-bit parallel data input when Expander is not used.
Block Length (8 lines)
Selects Block Length from 2 to 256 Bytes. This code is stored at start.
Ext. End Data Block (1 line)
Generates CRC, Postamble and interblock half-gap at any time before the block is full.

BLOCK FORMATTER OUTPUTS

Parallel Data (8 lines)
8 -bit parallel data bussed to Phase Board as bytes are counted.

ANSI FORMATTER INPUTS

Initial Gap (1 line)
Moves the tape 1.5 inches (38 mm) past the BOT hole and stops.

Start Data Block (1 line)

Generates interblock half-gap, preamble and stops tape, waiting for additional data.
Ext. Load Forward (1 line)
Overriding command to generate a bitless gap at 250 steps/ second at any time.

ANSI FORMATTER OUTPUT

Data Block Full (1 line)
HI flag indicates maximum allowable bytes recorded in a block.

PHASE BOARD INPUTS

Parallel Data (8 lines)
8-bit data bussed from Block formatter.
Serial Data (1 line)
Shifted from Expander
External Lamp Control (1 line)
LO turns EOT/BOT lamp on, HI turns it off. Used for incremental applications.
POWER REQUIREMENTS
Transport and Tapehead 700 mW typical @ 100 steps/second (+12VDC @ 60mA)

EOT/BOT Lamp (optional)
900 mW typical (+12VDC @ 75 mA)

Auxiliary Boards

120 microwatts per board (+12VDC @ 10 microamps)

PHYSICAL

Outline Dimensions (Transport plus Card Cage)
3.91 -in. high, $4.50-\mathrm{in}$. wide, $7.20-\mathrm{in}$. deep. $(99,3 \times 114,3 \times$ $182,9 \mathrm{~mm}$). 126.7 cu. in. (2076 cu. cm)
Weight
2 pounds $(0,9 \mathrm{~kg})$
Connectors
3 sets of dual-readout 44-pin PC edgeboard fingers (male) are used for external connections. The fingers are spaced on 0.156 -inch centers on the BLOCK FORMATTER, EXPANDER and rear of the MOTHERBOARD. Each PC jack mates to Cinch \#251-22-30-160 connector or Viking 2 VH $22 / 1$ AN or equivalent (Datel $\# 2075060$)
Temperature Range (Operating and Storage)
$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}$ optional)

MODEL NUMBERING AND ORDERING GUIDE

ANSI/ECMA/150 WRITE-ONLY CASSETTE TRANSPORT SYSTEMS
Individual Component Prices (1-9 quantity)
Model ICT-WA1 Transport only, less EOT/BOT sensor . $\$ 325$.
Model ICT-WA2 Transport only, with EOT/BOT sensor . $\$ 355$.
Card Cage P/N 36-2669-1 and Hardware . \$ 35.
Motherboard for ANSI/ECMA/ISO Systems, P/N 36-10720
with 5 card slots and connectors . \$ 55.
Write Step, Motor Clock and Head Drive PC Board, P/N 36-10700. \$ 60.
Phase Board, Parallel/Serial Input, Preamble, Postamble, CRC generators, P/N 36-10704. \$130.
Formatter Board, Gap Control, EOT/BOT spacing, Block counter full flag, P/N 36-10708. \$140.
Block Formatter Board, Generates ASCII CR, LF Chars., Block length short-cycling (stored 8-bit input) P/N 36-10712.
$\$ 125$.
Expanded Board, Accepts $16,24,32$ or 40 bit full parallel inputs for ANSI/ECMA recording,
number of bits controlled by 2 -bit modified gray code. Both controls and inputs are stored
(strobable) P/N 36-10716.

Model Numbering and Ordering Guide

COMPLEMENTARY NRZ WRITE-ONLY CASSETTE TRANSPORT SYSTEMS

COMPLEMENTARY NRZ WRITE-ONLY CASSETTE TRANSPORT SYSTEMS

Individual Component Prices (1-9 quantity)
Model ICT-WZ1 Transport only, less EOT/BOT sensor \$325.
Model ICT-WZ2 Transport only, with EOT/BOT sensor \$355.
Card Cage P/N 36-2669-1 and Hardware \$ 35.
Motherboard for Comp. NRZ systems, P/N 36-2699-1 \$ 55.
Write Step PC Board, P/N 36-2625-1 \$125.
Formatter PC Board, P/N 36-2633-1 \$180.
A/D Converter* and PC Board, 8-bit P/N 36-1637-1 \$385.
A/D Converter* and PC Board, 12-bit P/N 36-1637-1-2 \$405.
Sample/Hold and 16-channel single-ended analog multiplexer, P/N 36-1711. \$375. plus channel sequencer.
*Specify input voltage range and output coding when ordering A/D converters.
For full analog 16 -channel data logging systems (includes A / D converter, mux, sample/hold and channel sequencer), refer to the model LPS-16 numbering and order guide.

1020G Turnpike Street, Building S
Canton, Massachusetts 02021 U.S.A
TEL: (617) 828-8000
TWX: 710-348-0135 TELEX: 924461

Other Datel Brochures

Extended Performance Modules

MODEL/SERIES	EX	EXX-HS
D/A CONVERTERS		
DAC-9	x	X
DAC-19	X	X
DAC-29	X	X
DAC-49	X	X
DAC-69	X	
DAC-169	X	
DAC-CM	X	X
DAC-DG	X	X
DAC-FI	${ }^{-x}$	X
DAC-GI	X	X
DAC-HB	X	
DAC-HI	X	X
DAC-HR	X	X
DAC-HV	X	X
DAC-I	X	X
DAC-MI	X	X
DAC-MV	X	X
DAC-R	X	X
DAC-TR	X	X
DAC-V	X	X
DAC-VR	X	X

MODEL/SERIES	EX	EXX-HS
A/D CONVERTERS		
ADC-Econov.	X	X
ADC-89A	X	X
ADC-149-14B	X	X
ADC-CM	X	X
ADC-D	X	X
ADC-E	X	
ADC-EH	X	X
ADC-EP	X	
ADC-ER	X	X
ADC-G	X	X
ADC-H	X	X
ADC-K	X	X
ADC-L	X	X
ADC-M	X	X
ADC-MA	X	X
ADC-N	X	X
ADC-P	X	X
ADC-SH4B	X	X
ADC-UH	X	X
ADC-VH	X	X

MODEL/SERIES	EX	EXX-HS
CONVERTER ACCESSORY MODULES		
SHM-1	X	X
SHM-2	X	X
SHM-2E	X	X
SHM-3	X	X
SHM-4	X	X
SHM-5	X	X
SHM-CM	X	X
SHM-CMI	X	X
SHM-UH	X	X
MM-8	X	X
MMD-8	X	X
MM-16	X	X
MM-16-1	X	
AM-100	X	
AM-201	X	X
AM-303	X	
VFV-10K		X
VFV-100K		
SCL		

Most of Datel Systems' products are specified over the operating temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$ with a storage temperature range of $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}\left(-67^{\circ} \mathrm{F}\right.$ to $\left.+185^{\circ} \mathrm{F}\right)$. While this operating temperature range is satisfactory for most applications encountered in industrial environments or research laboratories, there are some applications which may require a wider temperature range and/or the additional reliability of hermetically sealed semiconductor components. Datel Systems can supply extended performance versions of most of its modular products in accordance with the following suffix designation:
$\mathrm{EX}=$ Extended operating temperature range of $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
$\mathrm{EXX}-\mathrm{HS}=$ Extended operating temperature range of $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ with all hermetically sealed semiconductor components.

In the following table an " X " indicates availability of the above described options. In addition to the extended performance options Datel Systems also offers standard burn-in options for any of these modules. The burn-in options are indicated by the following add-on suffixes:

BU01	96 hours at $+25^{\circ} \mathrm{C}$
BU02	96 hours at $+85^{\circ} \mathrm{C}$
BU03	168 hours at $+25^{\circ} \mathrm{C}$
BU04	168 hours at $+85^{\circ} \mathrm{C}$

For pricing and delivery time of any of these options please contact the factory or Datel Systems' local sales office.

Accessory Products

TRIMMING POTENTIOMETERS

- 15 Turn, 200 cycle rotational life
- Virtually infinite resolution
- $3 / 4$ Watt rating, $25^{\circ} \mathrm{C}$ (derated to zero at $+105^{\circ} \mathrm{C}$)
- $-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ operating temperature range
- $100 \mathrm{ppm} /{ }^{\circ}$ C CERMET element
- Clutch action stops, no damage
- Sealed against flux solvents and potting compounds

Datel Systems stocks a variety of trimming potentiometers which are used for external adjustment of zero and gain for our $A / D \& D / A$ converters, sample-holds, operational amplifiers, etc. We have chosen the Beckman Model 89P for this purpose because of its excellent characteristics. Please refer to the appropriate data sheet for the trimming potentiometer required for a given Datel Systems product.

MODEL	RESISTANCE $(\pm \mathbf{1 0 \%)}$	PRICE
TP20	20 ohms	$\$ 3.00$
TP50	50 ohms	$\$ 3.00$
TP100	100 ohms	$\$ 3.00$
TP200	200 ohms	$\$ 3.00$
TP500	500 ohms	$\$ 3.00$
TP1K	1 K ohms	$\$ 3.00$
TP2K	2 K ohms	$\$ 3.00$
TP5K	5 K ohms	$\$ 3.00$
TP10K	10 K ohms	$\$ 3.00$
TP20K	20 K ohms	$\$ 3.00$
TP50K	50 K ohms	$\$ 3.00$
TP100K	100 K ohms	$\$ 3.00$

DUAL-IN-LINE SOCKETS

DILS-1
DILS-2 20 Contact Strip, dip solder
\$ 2.50
DILS-3 24 Pin Socket, dip solder
\$ 2.50
\$ 1.95

MODULE SOCKETS

MS-1
MS-2
MS-3
MS-4
MS-5
MS-6
MS-7
MS-9
MS-11
MS-12
MS-13

Socket for $2^{\prime \prime} \times 1^{\prime \prime}$ module
\$25.00
$\$ 25.00$
$\$ 25.00$
\$25.00
$\$ 25.00$
\$ 3.50
\$ 3.50
\$ 3.50
\$ 3.50
\$ 5.00
\$ 3.50

PRINTED CIRCUIT BOARDS
PCB-1 \& 2 Printed circuit board for mounting one ADC-D, ADC-K, ADC-M, ADC-E, ADC-89, ADC-L, ADC-H, ADC-N, ADC-P
Printed circuit board for mounting three DAC-I
Printed circuit board for mounting two DAC-I and one BPM-15/50
Printed circuit board for mounting two DAC-V, VR, DAC-HI, DAC-FI, DAC-GI
Printed circuit board for mounting two DAC-HB and one BPM-15/50
PCB-7 Printed circuit board for mounting two UPM-5/300 and two BPM-15/50
РСВ-9

PCB-EX
PCB-CN

Printed circuit board for mounting two DAC-19, DAC-29, DAC-49, DAC-69
$\$ 35.00$
\$25.00
\$ 3.50

DILS MECHANICAL DIMENSIONS - INCHES

DIGITAL PANEL METER CONNECTORS

These connectors are dual 18 pin PC edgeboard types with $0.1^{\prime \prime}$ finger spacing on .062" thick boards.

Connector For DPM Model	Solder Tab Connector Model	Wire Wrap Connector Model
DM-2115	$2335-3$	$2335-4$
All Other Models	$2335-1$	$2335-2$

Abstract

PLACING AN ORDER When ordering a Datel Systems product, the complete model number, product description, and option description should be given. For example: Model ADC-M12D1A2, 12 bit A/D converter, input buffer, 0 to +5 V input, BCD outputs. Use the product Specification Guides where necessary. Orders may be placed with a Datel Systems field sales representative or with the factory by letter, telephone, TWX, or TELEX. Minimum order is $\$ 30.00$. Outside the U.S.A. and CANADA: Orders should be placed with a Datel Sales Subsidiary (in West Germany, France, and the United Kingdom) or with a Datel overseas sales representative. Orders received directly will be treated the same as if placed through our overseas sales representative. In countries without a Datel Systems representative, orders should be placed by TELEX and confirmed by air mail.

FIELD SALES REPRESENTATIVES

Datel Systems employs field sales representatives throughout the United States, Canada, Europe, and the Far East. In addition, it has a Western Regional Sales Office in Santa Ana, California and Datel Sales Subsidiaries in Munich, West Germany; Paris, France; and London, England. These sales representatives are the only ones authorized by Datel Systems to solicit sales, and any information or data received by sources other than these authorized representatives or the Datel factory cannot be considered binding.

PRICES

All prices are F.O.B. Canton, Massachusetts, U.S.A. in U.S. dollars. Applicable federal, state, and local taxes are extra. Prices are subject to change without notice.
TERMS: Net 30 Days

DISCOUNTS

Quantity discounts are available when placed in a single order. OEM discounts are available on an order or contract basis. Corporate discount plans are available for all catalog items. Consult the factory for details on any of these plans. Most Datel products are covered by GSA contracts for which an appropriate Federal Government discount applies. Price lists with government discounts are available upon request.

QUOTATIONS

Price and delivery quotations made by Datel Systems or its authorized field sales representatives are valid for 60 days.

DELIVERY

Datel uses an IBM System 3, Model 10, for efficient processing of orders. All orders placed with Datel Systems are acknowledged within a few days by an acknowledgement copy of our sales order form. This copy will indicate pertinent information including estimated delivery date. This date has preference over all other agreed upon dates unless otherwise specified.
All products are shipped in rugged commercial containers suitable for insuring safe delivery under normal shipping conditions. Unless shipping method is specified, the best available method will be used. UPS, UPS Blue Label, Parcel Post, and Air Parcel Post are among the methods normally used. Datel recommends insurance on Parcel Post and Air Parcel Post shipments for tracing purposes. Shipping charges are normally prepaid and billed to the customer except for Air Freight charges which are sent collect. The appropriate data sheet and/or instruction manual is packed with each product shipped.

ORDER CANCELLATION

All orders entered with Datel Systems are binding and are subject to a cancellation charge if cancelled before or after the scheduled shipping date on the acknowledgement copy of the sales order form. The normal cancellation charge is 20% but may be higher depending on expenses already incurred and commitments made by Datel Systems.

WARRANTY

Datel Systems warrants that its products are free from defects in material and workmanship under normal use and service for a period of one year from date of shipment for module products and digital panel
meters. For systems and subsystems products, the applicable period is 90 days. Datel Systems' obligations under this warranty are limited to replacing or repairing, at its option, at its factory or facility, any of the products which shall within the applicable period after shipment be returned to Datel Systems' facility, transportation charges prepaid, and which are after examination disclosed to the satisfaction of Datel Systems to be thus defective. This warranty shall not apply to any such equipment which shall have been repaired or altered except by Datel Systems or which shall have been subjected to misuse, negligence, or accident. In no case shall Datel Systems' liability exceed the original purchase price. The aforementioned provisions do not extend the original warranty period of any product which has either been repaired or replaced by Datel Systems, Inc.

SERVICE POLICY

During the warranty period, non-catastrophic failures resulting from misuse, negligence, accident, or improper application or installation of modular converter products, modular power supplies, amplifiers, or digital panel meters will be repaired for a flat charge as follows:

PRODUCT PRICE RANGE	FLAT CHARGE
$\$ 20-\$ 70$	$\$ 20.00$
$\$ 71-\$ 150$	$\$ 30.00$
$\$ 151-\$ 300$	$\$ 40.00$
$\$ 301-\$ 500$	$\$ 55.00$
$\$ 501-U p$	$\$ 75.00 \mathrm{~min}$.

RETURNING PRODUCTS FOR REPAIR

If a Datel Systems product malfunctions during the warranty period, the unit should be carefully checked to determine that the unit is in fact at fault. Then call the factory or field sales representative for authorization to return the unit. The product should be carefully packaged and shipped prepaid with original purchase order number and date and an explanation of the malfunction. Allow 3 to 4 weeks for repair and return of the unit. For out of warranty period repairs, the customer will be invoiced for repair charges. If an estimate of repair charge is required first, the following additional items should be furnished with the return unit.

1. A new purchase order number for the estimated repair charge.
2. Name of project engineer or other technical person and telephone number for contact reference.
When returning products for any reason, contact the factory first for authorization and shipping instructions. Items should not be returned air freight collect as they cannot be accepted.
Returns Outside the U.S.A. and CANADA: Contact the local sales representative or factory for authorization and shipping instructions first.

EVALUATION SAMPLES

In cases where it is necessary to evaluate the performance of a product before purchasing, a 30 day no charge evaluation model may be obtained by contacting the factory or local Datel Systems sales representative. The request must be accompanied by a purchase order stating "no charge 30 day evaluation unit." At the end of the 30 day period the customer should return the unit in operating condition. Note: module pins should not be soldered on these units. If the customer decides to keep the unit or does not return it at the end of 30 days, the no charge purchase order is converted into a normal purchase order and invoicing is sent out.

CERTIFICATE OF COMPLIANCE

Datel Systems will provide a standard Certificate of Compliance with all shipments when requested by the customer. This request must be specified on the purchase order.

1020G Turnpike Street, Building S
Canton, Massachusetts 02021 U.S.A.
TEL: (617) $828-8000$
TWX: 710-348-0135 TELEX: 924461

FIELD SALES REPRESENTATIVES for direct factory call Canton, Mass. (617) 828-8000

NORTHEAST

Metropolitan New York
Long Island, New York
Northern New Jersey
EASTERN INSTRUMENTATION
(516) 466-9505-Great Neck, LI, NY (201) 661-2000 - New Jersey Exchange

New Er.gland States
Contact Factory
(617) 828-8000

Upstate New York
R \& D ASSOCIATES, INC.
(315) 622-2350 - Liverpool, N.Y

MIDDLE ATLANTIC

Southern New Jersey
Eastern Pennsylvania
Delaware
Maryland
Virginia

WASHINGTON, D.C.
REGIONAL OFFICE
(301) 840-9490 $\}$ Gaithersburg. Md

SOUTHEAST

SABER ASSOCIATES
(800) 327-1181 No. and So. Carolina. toll-free
(800) 432-3007 All-Forida toll-free

INTL. SCIENTIFIC INSTRUMENTS
(205) 533-6880 - Huntsville, Ala.

MIDWEST
GEORGE R. PETERS ASSOC.
(313) 362-1220 - Troy, Mich.

INSTRUMENTATION SYSTEMS INC.
Onio
West Virginia
Western Pen
(216) 486-0782 - Cleveland, Ohio
(513) 294-2838 - Dayton, Ohio
(412) 243-1111 - Pittsburgh, Pa

CARTER ELECTRONICS, INC
312) 585-5485 - Chicago, III.
414) 464-5555 - Milwaukee, Wis.
317) 293-0696 - Indianapolis, Ind (612) 559-1976 - Minneapolis, Minn.

TECHNICAL REPRESENTATIVES INC.
314) 731-5200 - Hazelwood, Mo
(913) 782-1177 - Olathe, Ks
(319) 396-5662 - Cedar Rapids, la.

Southern Illinois
lowa
Nebraska
E \& M MICROSYSTEMS MKTG., INC.
(713) 783-2900 - Houston, TX
214) 238-7157 - Dallas, TX
512) 266-1750 - Austin TX

MIDWEST DISTRIBUTOR
COMPONENT SPECIALTIES, INC
Dallas, Tx (214) 357-6511
Houston. Tx (713) 771-7237
Austin, Tx (512) 459-3307
Tulsa, Ok (918) 664-2820

INTERNATIONAL SALES OFFICES

FRANCE SUBSIDIARY

DATEL SYSTEMS SARL
11 Avenue Ferdinand Buisson
75016 Paris, France
Tel: 603-06-74
Telex: (842)204280

JAPAN SUBSIDIARY

DATEL KK
Kobayashi Building
3-26-3 Higashi
Shibuya-ku, Tokyo 150
Tel: Toyko 499-0631
Telex: 2422389
Yachiyo BIdg. Higashikan
33 Daikucho
Kita-Ku, Osaka 530
Tel: (06) 354-2025

UNITED KINGDOM SUBSIDIARY

DATEL (U.K.) LTD
Stephenson Close
Portway Industrial Estate
Andover
Hants
Tel: Andover (0264) 51055

WEST GERMANY SUBSIDIARY

DATELEK SYSTEMS GmbH
8 MUENCHEN 71
BECKER-GUNDAHLSTRASSE
Postf. 71-03-04
Tel. (089) 78-40-45
Telex: 5212855

AUSTRALIA
DIGITAL ELECTRONICS
(MARKETING) PTY. LTD.
4/29 Hotham Parade
Artarmon 2064, N.S.W. Australia
Tel: 437-6668
Cable: DITRONICS, Sydney
AUSTRIA \& E. EUROPE
BACHER ELEKTRONISCHE
GERATE GES. M.B.H.
Meidlinger Haupstrasse 78
A-1120 Vienna Austria
Tel: 8363960
Telex: (01) 1532

BELGIUM

SIMAC ELECTRONICS spri
Bd. du Triomphe 148
1160 Bruxelles
Belgium
Tel: 02-6724556
Telex: 23662

DENMARK

PARATRON A/S
Saxhojvej 19
DK-2500 Valby, Denmark
Tel: (01) 744466
Telex: 16444
Cable: PASEINIK
FINLAND
HAVULINNA OY
Vuorikatu 16
SF-00100 Helsinki, Finland
Tel: (90) 661451
Telex: 12426

ROCKY MOUNTAIN STATES
CLEVELAND ENTERPRISES
Arizona
Colorado
Southern Idaho
Nevada
New Mexico
Utah
Wyoming
(505) 345-2481 - Albuquerque, N.M.
602) 949-0872 - Phoenix, Ariz
(303) 751-3252 - Aurora, Colo

WEST

WESTERN REGIONAL OFFICE (714) 835-2751 - Santa Ana, Calif (213) 933-7256 - LA Exchange

NO. CALIF.
DISTRICT SALES OFFICE (408) 733-2424 - Sunnyvale, Calif

NORTHWEST

TASCO, INC.
Oregon
Washington
(206) 453-1414 I Bellevue, Wash.

HAWAII
HAWAII DATA SYSTEMS
(808) 946-1533 - Honolulu, Hawaii

CANADA

MULTILEK, INC.
(613) 825-4695 - Ottawa, Ontario
(416) 245-4622 - Toronto, Ontario
(514) 481-1350 - Montreal, Quebec

CANADIAN DISTRIBUTOR
PRELCO ELECTRONICS LTD.
(514) 389-8051 - Montreal, Quebec
(613) 237-6150 - Ottawa, Ontario
(416) 678-0401 - Rexdale, Ontario

FOR APPLICATIONS
ASSISTANCE ON
DATEL SYSTEMS
PRODUCTS CAL
(213) 933-7256
(213) 933-7256

WESTERN REGIONAL OFFICE
SANTA ANA, CALIFORNIA
(617) 828-8000

HOME OFFICE
CANTON, MASS.

NORWAY

MORGENSTIERNE \& CO. A/S
Konghellegate 3
Oslo 5, Norway
Tel: 37, Norwa
Telex: 11719
SOUTH AFRICA
PETER JONES ELECTRONIC
EQUIPMENT (PTY.) LTD.
P.O. Box 31582

Braamfontein, Johannesburg
South Africa
Tel: 22-3658
Telex: 8-6935

SPAIN

AUPOCA ELECTRONICA
Y SISTEMAS
Colombia, 34
Madrid, Spain-16
Tel: 4575312
Telex: 23742
Rosellon 345
Barcelona, Spain-9
Tel: 2574898

SWEDEN

AB NORDQVIST \& BERG

Box 9145
Bergsunds Strand 37
S-10272 Stockholm, Sweden
Tel: 08-69 04001
Telex: 10407

SWITZERLAND

TRACO ELECTRONIC CO. LTD.
1 Jenatschstrasse
8002 Zurich, Switzerland
Tel: 01/3607 11
Telex: 54318

DICITALPANEL PRINIIER

Model DPP-7

+19.9

- Thermal Printhead uses no Ink or Hammers

DM-2000AR

- Panel-Mounting Featherweight (2.3 lb .)
- 6 Digits and Sign up to 3 lines per second
- +5 VDC or AC Line Power
- Includes all BCD TTL Electronics plus Input Storage Register

Connect a miniature DPP-7 Thermal Printer to your Digital Panel Meter. The DPP-7 understands a DPM's language.

[^0]: *To be announced
 ** Contact nearest Datel sales office for data sheet and availability.

[^1]: *To be announced
 ** Contact nearest Datel sales office for data sheet and availability.

[^2]: (1) Open Collector. Will Sink 30 ma
 (2) Fast Settling Current Output Available on Special Order
 (3) Contact Factory for Binary Coded Decimal

[^3]: Specity DMA Frame Clock period up to 1 second maximum.

[^4]: Specify DMA Frame Clock period up to 1 second maximum

