MCS® BASIC-52
USERS MANUAL

]
Copyright © 1986 Intel Corporation
Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 Order Number: 270010-003

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may
appear in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.
Cbntact your local sales office to obtain the latest specifications before placing your order.
The following are trademarks of Intel Corporation and may only be used to identify Intel Products:

Above, BITBUS, COMMputer, CREDIT, Data Pipeline, FASTPATH, Genius, i,?,
ICE, iCEL, iCS, iDBP, iDIS, PICE, iLBX, i, iMDDX, iMMX, Insite, Intel, intgl,
intelBOS, Intelevision, intgligent Identifier, intgligent Programming, Intellec,
Intellink, iOSP, iPDS, iPSC, iRMX, iSBC, iSBX, iSDM, iSXM, KEPROM, Library
Manager, MAP-NET, MCS, Megachassis, MICROMAINFRAME, MULTIBUS,
MULTICHANNEL, MULTIMODULE, MultiSERVER, ONCE, OpenNET, OTP,
PC-BUBBLE, Plug-A-Bubble, PROMPT, Promware, QUEST, QueX,
Quick-Pulse Programming, Ripplemode, RMX/80, RUPI, Seamless, SLD, UPI,
and VLSICEL, and the combination of ICE, iCS, iRMX, iSBC, iSBX, MCS, or UPI
and a numerical suffix, 4-SITE.

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered trademark of Mohawk
Data Sciences Corporation.

*MULTIBUS is a patented Intel bus.

Additional copies of this manual or other Intel literature may be obtained from:
Intel Corporation
Literature Distribution
Mail Stop SC6-59

3065 Bowers Avenue
Santa Clara, CA 95051

O©INTEL CORPORATION 1986

intal Table of Contents

CHAPTER 1
Introduction
1.1 Introductionto MCS BASIC-52. ittt i e e e e i e 1
1.2 Getting Started e 2
1.3 Getting Started — What Happens After Reset 2
1.4 Definition of Terms. e e 4
1.5 What's the difference between Version 1.0 and Version1.1. 9
CHAPTER 2
Description of Commands
2.1 RUN . e e e e 13
2.2 CONT .. e i e e e e 14
2.8 LIST i e e e 15
2 R I 1 I 16
2.5 LIST@. . ..ot e e e e e 17
2.6 NEW. .. 18
2.7 NULL .. e e 19
CHAPTER 3
Description of EPROM File Commands
31 RAMaAand ROM e 21
B2 XFER .. i e e e e 22
3.8 PROG. ... i e e e e 23
34 PROGTaAnNd PROG2 ittt i e e 24
3.5 FPROG,FPROGT1and FPROG2 ittt i 25
3.6 PROGS3, PROG4, FPROG3, and FPROG4 (Version 1.1 onIy) 26
3.7 PROGS5, PROG6, FPROGS5, and FPROGS6 (Version1.ionly) 27
CHAPTER 4
Description of Statements
41 BAUD e e e 28
4.2 CALL. ... e e 29
43 CLEAR......... e e e e e 30
44 CLEARS and CLEARIttt et et e e eas 31
45 CLOCK1 and CLOCKOttt i 32
46 DATA—READ — RESTOREttt 33
4.7 DIM. . e e 35
48 DO —UNTIL. ... e e e e e e e e e 36
49 DO —WHILE e 37
410 END ..t e e 38
411 FOR—TO —STEP — NEXTottt i e e e e e 39
412 GOSUB —RETURN.......... e 41
418 GOTO . i e e e e 43
414 ONGOTO —ONGOSUB it e e e e e e e e e 44
415 IF—THEN —ELSE. it e e e 45
416 INPUT . .. e e e e 47
B A T 49
418 ONERR. i i i e e e 50
419 ONEXTT ..t e e e e e e e e e 51
420 ONTIME i ettt e e e e e e 52
421 PRINT . . e e e e 54
422 PRINT# i e e 57
423 PHO., PH1., PHO. #, PH1. # i e i i 58
4.24 PRINT@, PHO.@, PH1.@ (Version1.10nly). i, 59

4.25 PUSH e e 60

intel

Table of Contents

CHAPTER 4
Description of Statements
426 POP . . e e e e 61
427 PWM. . e 62
4,28 REM e e e 63
4,29 RET. .. 64
430 STOP ..o e e e e 65
431 STRING 66
432 UL AND U0 . . .ot e e s e 67
433 UOT and UOO0o e e 68
434 IDLE (Version 1.1 0nly) e e e e e 69
435 RROM (Version 1.1 0Nly)ot e 70
436 LD@ and ST@ (Version 1.1 only) i i 71
437 PGM (Version 1.1 0Nnly) e 72
CHAPTER 5
Description of Arithmetic/Logical Operators and Expressions
5.1 Dual Operand (DYADIC) Operatorsc.oiiiiiiiinenennannnnn 74
52 Unary Operatorsot e e 76
521 General PUPOSEot e e 76
5.2.2 Log Functions e 78
523 TrigFunctions 78
-~ 5.3 Understanding Precedence of Operators. it 80
5.4 How Relational Expressions Work i 81
CHAPTER 6
Description of String Operators
6.1 Whatare Strings?ot e e 82
6.2 The ASC Operator.ttt e e e 83
6.3 The CHR Operator.ttt e 85
CHAPTER 7
Special Operators
7.1 Special Function Operators, 86
7.2 Examples of Manipulating Special Function Operators. 94
7.3 System Control Values.t i 95
CHAPTER 8
Error Messages, Bells, Whistles, and Anomalies
8.1 EMmOrMesSages. . ..o vv ittt e e 96
8.2 DisablingControl-C 100
8.3 Implementating “Fake DMA” e 101
8.4 Run Trap Option (Version 1.1only) 102
8.5 ANOMAliESot e e 103
CHAPTER 9
Assembly Language Linkage
9.1 OVEBIVIBW. . o .ttt e 104
9.2 General Purpose Routines i 106
9.3 Unary Operatorsttt e 113
9.4 Special Operatorst e 115
9.5 DualOperand Operatorsuiiiiiiint it 118
9.6 Added Link RoutinestoVersion 1.1, 122
0.7 IMeITUPES. . . ot e it e 129
9.8 1/OResource Allocationt ittt e 131

intel Table of Contents

CHAPTER 10

System Configuration

10.1 Memory/Hardware Configuration i .. 132

10.2 EPROM Programming Configuration/Timingo, 135

10.3 Serial Port Implementation. i 136
CHAPTER 11

Reset Options (Version1.1only) 145
CHAPTER 12

Command/Statement Extensions (Version1.ionly) 153
CHAPTER 13

Mapping User Code Memory (Version1.ionly). 159
APPENDIX A

1.1 Memory Usage (Version 1.0and Version 1.1)., 162

1.2 Usingthe PWM Statement. i, 170

1.3 BaudRatesandCrystals............. ... i ... 174

1.4 QuickReference i P 176

1.5 Instruction Set Summary i e e 183

1.6 Floating PointFormat. e 184

1.7 Storage Allocation e 185

1.8 Format of an MCS BASIC-52 program i 188

1.9 AnswerstoaFew Questions it 190

110 Pin-out Listo e e 192

1.11 8052AH Special Function Registers o ... 193

1.12 Referenceso e e 199
APPENDIX B

Instruction Set Summary 200

CHAPTER 1
Introduction

1.1 INTRODUCTION TO MCS BASIC-52

Welcome to MCS® BASIC-52. This program functions as a BASIC interpreter occupying 8K of ROM in
INTEL’s 8052AH microcontroller. MCS BASIC-52 provides most of the features of ‘‘standard’’ BASICS,
plus many additional features that apply to control environments and to the architecture of the 8052AH.

The design goal of MCS BASIC-52 was to develop a software program that would make it easy for a
hardware/software designer to interact with the 8052 device; but, at the same time not limit the designer
to the slow and sometimes awkward constructs of BASIC. This program is not a ‘‘toy’’ like many of the
so called TINY BASICS. It is a powerful software tool that can significantly reduce the design time of
many projects. MCS BASIC-52 is ideal for so called imbedded systems, where terminals are not attached
to system, but the system controls and manipulates equipment and data.

MCS BASIC-52 offers many unique hardware and software features, including the ability to store and
execute the user program out of an EPROM, the ability to process interrupts within the constructs of a
BASIC program, plus an accurate real time clock. In addition, the arithmetic routines and I/O routines
contained in MCS BASIC-52 can be accessed with assembly language CALL routines. This feature can
be used to eliminate the need for the user to write these sometimes difficult and tedious programs.

All of the above are covered in this document. This is NOT a ‘‘How to Write Basic Programs’’ manual.
Many excellent texts on this subject have been produced. Your local computer store can recommend many
such texts.

The descriptions of many of the statements in this manual involve rather detailed discussions that relate
to interfacing MCS BASIC-52 to assembly language programs. If the user is not interested in using assembly
language with MCS BASIC-52 these discussions may be ignored. If you are only interested in programming
the MCS BASIC-52 device in BASIC, you can treat all statements the same way they would be in any
standard BASIC interpreter.

In reading this manual, you will find that some information may be repeated two or three times. This is
not an accident. Years of experience have proven that one of the most frustrating experiences one encounters
with manuals is trying to find a particular piece of information that the reader knows is in the manual, but
can’t remember where.

intel MCS® BASIC-52

1.2 GETTING STARTED

If you are like most engineers, technicians, hobbyists and humans, and don’t like to read manuals, this
section is for you. The purpose of this section is to get you off on the right foot. If you are in the High
Anxiety Mode and just want to see if the darn chip works, wire the device in the minimum hardware
configuration as suggested in the Hardware Configuration chapter of this manual, apply power, and watch
what happens. NOTHING! That’s because after power is applied to the MCS BASIC-52 device, the
program initializes the 8052AH hardware and goes into an AUTO-BAUD search routine. You must touch
the space bar on the serial input device in order to get MCS BASIC-52 to SIGN ON. The message that
will appear is *MCS-51 BASIC Vx.x*. If a space character is not the first character sent to the MCS
BASIC-51 device after reset, you can spend a lot of time trying to figure out what went wrong. So do
yourself a favor, read this section and touch the space bar before you call your local Intel Field Applications
Engineer. We received a number of questions asking how the AUTO-BAUD search routine worked. As
a result this routine is listed in Chapter 11 of this manual.

1.3 WHAT HAPPENS AFTER RESET?
After RESET, MCS BASIC-52:

1) Clears the INTERNAL 8052AH memory

2) Initializes the internal registers and pointers

3) Tests, clears, and sizes the EXTERNAL memory

BASIC then assigns the top of EXTERNAL RANDOM ACCESS MEMORY to the SYSTEM CONTROL
VALUE — MTOP and uses this number as the random number seed. BASIC assigns the default crystal
value, 11.0592 Mhz, to the SYSTEM CONTROL VALUE — XTAL and uses this default value to calculate
all time dependent functions, such as the EPROM programming timer and the interrupt driven REAL TIME
CLOCK. Finally, BASIC checks external memory location 8000H to see if the baud rate information is
stored. If the baud rate is stored, MCS BASIC-52 initializes the baud rate generator (the 8052AH’s SPECIAL
FUNCTION REGISTER — T2CON) with this information and signs on. If it isn’t stored, BASIC inter-
rogates the serial port input and waits for a space character to be typed. This sounds like a lot, but on the
8052AH, it doesn’t take much time.

intel MCS® BASIC-52

1.3 WHAT HAPPENS AFTER RESET?

MCS BASIC-52 initializes the 8052AH’s Special Function Registers, TMOD, TCON, and T2CON with
the following values: ’

TCON - 244 (OF4H)

TMOD - 16 (10H)

T2CON - 52 (34H)

After Reset, the console device should display the following:

MCS-51(tm) BASIC Vx.x
READY

To see if everything is OK after Reset, type the following:

>PRINT XTAL, TMOD, TCON, T2CON
(BASIC should respond)
11059200 16 244 52

If it does, everything is working properly. If it does not make sure that the external memory, the serial
port, and the oscillator are connected and working. Hardware debug begins here.

In the Appendix of this manual is a QUICK REFERENCE GUIDE. It provides a short description of all
of the COMMANDS and STATEMENTS implemented in MCS BASIC-52. You might want to use this
section to gain a quick understanding of the MCS BASIC-52 software package. Those of you who are
familiar with the BASIC language will notice that most of the STATEMENTS and COMMANDS used in
MCS BASIC-52 are “‘standard,’’ so getting started should not be a problem.

intel - MCS® BASIC-52

1.4 DEFINITION OF TERMS:
COMMANDS:

MCS BASIC-52 operates in two modes, the COMMAND or direct mode and the interpreter or RUN mode.
MCS BASIC-52 Commands can only be entered when the processor is in the COMMAND or direct mode.
MCS BASIC-52 takes immediate action after a command has been entered. This document will use the
terms RUN MODE and COMMAND MODE to refer to the two different modes of operatron

STATEMENTS

A BASIC program is comprised of statements. Every statement begins with a line number, followed by
the statement body, and terminated with a Carriage Return (cr), or a colon (:) in the case of multiple
statements per line. Some statements can be executed in the COMMAND MODE, others cannot. The
DESCRIPTION OF STATEMENTS section of this manual describes whether a statement can be executed
in the COMMAND mode or on]y in the RUN mode

lThere are three general types of statements in MCS BASIC-52 ASSIGNMENTS INPUT/OUTPUT and
CONTROL. The DESCRIPTION OF STATEMENT section of this manual explarns what type is associated
with each statement. :

® EVERY line in a program must have a statement line number ranging between 0 and 65535 inclusive.
@ Statement numbers are used by BASIC to.order the program statements sequentially.-

® In any program, a statement number can be used only once.

® Statements need not be entered in numenca] order, because BASIC will automatrcally order them in
-ascending order. : : : »

® A statement may contain no more than 72 characters in Version 1.0 and no more than 79 in Version
1.1.

® Blanks (spaces) are ignored by BASIC and BASIC automatically inserts blanks during LIST.

‘® More than one: statement can be put ona lme 1f separated by a colon (:), but only one statement number
- is allowed per lrne i Ve .

FORMAT STATEMENTS

Format Statements may only be used within the PRINT STATEMENT. The format statements include
TAB([expr]), SPC([expr]), USING(special symbols), and CR (carriage return with no line feed). Details
of the format statements are provided in the description of the PRINT STATEMENT section of this manual.

intel MCS® BASIC-52

1.4 DEFINITION OF TERMS

DATA FORMAT:
The range of numbers that can be represented in MCS BASIC-52 is:
*+1E-127 to *+.99999999E + 127.

There are eight digits of significance in MCS BASIC-52. Numbers are internally rounded to fit this precision.
Numbers may be entered and displayed in four formats: integer, decimal, hexadecimal, and exponential.
EXAMPLE: 129, 34.98, OAG6EH, 1.23456E+3

INTEGERS:

In MCS BASIC-52, integers are numbers that ranges from 0 to 65535 or OFFFFH. All integers can be
entered in either decimal or hexadecimal format and all hexadecimal numbers must begin with a valid digit
(e.g. the number AOOOH must be entered 0AOOOH). When an operator, such as .AND. requires an integer,
MCS BASIC-52 will truncate the fraction portion of number so it will fit the integer format. All line
numbers used by MCS BASIC-52 are integers. This document will refer to integers and line numbers,
respectively in the following manner:

[integer] — [In num]

NOTE — Throughout this document the brackets [] are used only to indicate an integer, constant, etc.
They are NOT entered when typing the actual number or variable.

CONSTANTS:

A constant is a real number that ranges from =1 E—127 to =.99999999E + 127. A constant, of course,
can be an integer. This document will refer to constants in the following manner:

[const]
OPERATORS:

An operator performs a pre-defined operation on variables and/or constants. Operators require either one
or two operands. Typical two operand or dyadic operators include ADD (+), SUBTRACT (-—), MUL-
TIPLY (*), and DIVIDE (/). Operators that require only one operand are often referred to as UNARY
OPERATORS. Some typical UNARY OPERATORS are SIN, COS, and ABS.

intel MCS® BASIC-52

1.4 DEFINITION OF TERMS
VARIABLES:

In Version 1.0 of MCS BASIC-52 a variable could be defined as either a letter, (i.e. A, X, I), a letter
followed by a number, (i.e. Q1, T7, L3), a letter followed by a ONE DIMENSIONED expression, (i.e.
J(4), G(A+6), I(10*SIN(X))), or a letter followed by a number followed by a ONE DIMENSIONED
expression (i.e. A1(8), P7(DBY(9)), W8(A+B). In Version 1.1 variables can be defined in the same"
manner as in Version 1.0, however variables may also contain up to 8 letters or numbers including the
underline character. This permits the user to use a more descriptive name for a given variable. Examples
of valid variables in Version 1.1 of MCS BASIC-52 are as follows:

FRED VOLTAGE! I_I1 ARRAY(ELE_1)

When using the expanded variable names available in Version 1.1 of MCS BASIC-52 it is important to
note that 1) It takes longer for MCS BASIC-52 to process these expanded variable names and 2) The user
may not use any keyword as part of a variable name (i.¢. the variables TABLE and DIET could not be
used because TAB and IE are reserved words). BAD SYNTAX ERRORS will be generated if the user
attempts to define a variable that contains a reserved word.

Variables that include a ONE DIMENSIONED expression [expr] are often referred to as DIMENSIONED
or ARRAYED variables. Variables that only involve a letter or a letter and a number are called SCALAR
variables. The details concerning DIMENSIONED variables are covered in the description of the STATE-
MENT ROUTINE DIM. This document will refer to VARIABLES as:

[var].

MCS BASIC-52 allocates variables in a ‘‘static’’ manner. That means each time a variable is used, BASIC
allocates a portion of memory (8 bytes) specifically for that variable. This memory cannot be de-allocated
on a variable by variable basis. That means if you execute a statement like Q =3, later on you cannot tell
BASIC that the variable Q no longer exists so, please ‘‘free up’’ the 8 bytes of memory that belong to Q.
Sorry, it doesn’t work this way. The only way the user can clear the memory that is allocated to variables
is to execute a CLEAR STATEMENT. This Statement ‘‘frees’” all memory allocated to variables.

IMPORTANT NOTE:

Relative to a dimensioned variable, it takes MCS BASIC-52 a lot less time to find a scalar variable. That’s
because there is no expression to evaluate in a scalar variable. So, if you want to make a program run as
fast as possible, use dimensioned variables only when you have to. Use scalars for intermediate variables,
then assign the final result to a dimensioned variable.

EXPRESSIONS:

An expression is a logical mathematical formula that involves OPERATORS (both unary and dyadic),
CONSTANTS, and VARIABLES. Expressions can be simple or quite complex, i.e. 12*EXP(A)/100,
H(1)+ 55, or (SIN(A)*SIN(A) +COS(A)*COS(A))/2. A “‘stand alone’’ variable [var] or constant [const]
is also considered an EXPRESSION. This document will refer to EXPRESSIONS as:

[expr].

intel MCS® BASIC-52

1.4 DEFINITION OF TERMS
RELATIONAL EXPRESSIONS:

Relational expressions involve the operators EQUAL (=), NOT EQUAL (<>), GREATER THAN (>),
LESS THAN (<), GREATER THAN OR EQUAL TO (> =) and LESS THAN OR EQUAL TO (< =).
They are used in control statements to ‘‘test’’ a condition (i.e. IF A < 100 THEN . . .). Relational
expressions ALWAYS REQUIRE TWO OPERANDS. This document will refer to RELATIONAL
EXPRESSIONS as:

[rel expr].
SPECIAL FUNCTION OPERATORS:

Virtually all of the special function registers on the 8052AH can be accessed by using the special function
operators. The exceptions are PORTS 0, 2 and 3 and non-I/O associated registers such as ACC, B, and
PSW. Other SPECIAL FUNCTION OPERATORS are XTAL and TIME. Details of the SPECIAL FUNC-
TION OPERATORS are covered in the section SPECIAL FUNCTION OPERATORS.

SYSTEM CONTROL VALUES:

The system control values include.the following: LEN (which returns the length of the program), FREE
(which designates how many bytes of RAM are not used that are allocated to BASIC), and MTOP (which
is the last memory location that is assigned to BASIC). Details of the system control values are covered
in the section SYSTEM CONTROL VALUES. »

intel MCS® BASIC-52

1.4 DEFINITION OF TERMS
STACK STRUCTURE:

MCS BASIC-52 reserves the first 512 bytes of EXTERNAL DATA MEMORY to implement two ‘‘soft-
ware’” stacks. These are the control stack and the arithmetic stack or ARGUMENT STACK. Understanding
how the stacks work in MCS BASIC-52 is NOT NECESSARY if the user wishes only to program in
BASIC. However, understanding the stack structure is necessary if the user wishes to link MCS BASIC-52
to. ASSEMBLY language routines. The details of how to link to assembly language are covered in the
ASSEMBLY. LANGUAGE LINKAGE section of this manual.

CONTROL STACK — The control stack occupies locations 96 (60H) through 254 (OFEH) in external
ram memory. This memory is used to store all information associated with loop control (i.e. DO— WHILE,

DO — UNTIL, and FOR — NEXT) and basic subroutines (GOSUB). The stack is initialized to 254
(OFEH) and ‘‘grows down

ARGUMENT STACK — The ARGUMENT STACK occupies locations 301 (12DH) through 510 (1FEH)
in external ram memory. This stack stores all constants that MCS BASIC-52 is currently using. Operations
such as ADD, SUBTRACT, MULTIPLY, and DIVIDE always operate on the first two numbers on the
ARGUMENT STACK and return the result to the ARGUMENT STACK. The argument stack is initialized
to 510 (1FEH) and ‘‘grows down’’ as more values are placed on the ARGUMENT STACK. Each floating
point number placed on the ARGUMENT STACK requires 6 BYTES of storage.

INTERNAL STACK — The stack pointer on the 8052AH (SPECIAL FUNCTION REGISTER, SP) is
initialized to 77 (4DH). The 8052AH’s stack pointer ‘‘grows up’’ as values are placed on the stack. In
MCS BASIC-52 the user has the option of placing the 8052AH’s STACK POINTER anywhere (above
location 77) in internal memory. The details of how to do this are covered in the ASSEMBLY LANGUAGE
'LINKAGE section of this manual.

LINE EDITOR:

MCS BASIC-52 contains a minimum level line editor. Once a line is entered the user may not change the
line without re-typing the line. However, it is possible to delete characters while a line is in the process
of being entered: This is done by entering a RUBOUT or DELETE character (7FH). The RUBOUT
character will cause the last character entered to be erased from the text input buffer. Additionally, a
control-D will cause the entire line to be erased. In Version 1.1 of MCS BASIC-52, Control-Q (X-ON)
and Control' S (X-OFF) recognition have been added to the serial port. The user is cautioned not to
accidently type a Control-S when entering information because the MCS BASIC-52 will no longer respond
to the console device. Control-Q is used to bring the console device back to life after Control-S is typed.

NOTE — In this document a carriage return is indicated by the symbol (cr) The carrlage return is. the
RETURN key on most keyboards. :

intgl MCS® BASIC-52

1.5 WHAT’S THE DIFFERENCE BETWEEN V1.0 AND V1.1

Thanks to feedback from many of the users of MCS BASIC-52, a number of changes and additions have
been made to Version 1.1. All of these changes and additions were made to enhance the usefulness of the
product and yet retain 100% compatibility, well almost 100% compatibility with the original version. To
make things simple, all of the changes will be mentioned here and a reference will be provided as to where
the reader of this manual may obtain more information about the change or addition.

The only change that has been made to V1.1 that is not compatible with V1.0 is with the IF_THEN__
ELSE STATEMENT when used with multiple statements per line. In V1.0, the following two examples
would function in the same manner.

EXAMPLE 1:

10 IF A=B THEN C=A : A=A/2 : GOTO 100
20 PRINT A

EXAMPLE 2:

10 IF A=B THEN C=A
12 A=A/2

14 6OTO 100

20 PRINT A

They function in the same manner because V1.0 treats the delimiter (:) exactly the same as a carriage
return (cr) in every case. However, V1.1 executes the remainder of the line if and only if the test A=B
proves to be true. This means in EXAMPLE 1 IF A did equal B, V1.1 would then set C=A, then set
A=A/2, then execute line 100. IF A did not equal B, V1.1 would then PRINT A and ignore the statements
C=A:A=A/2:GOTO 100. V1.1 will execute EXAMPLE 2 exactly the same way as V1.0. This same
logical interpretation holds true for the ELSE statement as well. This example dictates a simple rule for
maintaining IF_THEN_ELSE compatability between the two versions. IF THE DELIMITER (:) IS NOT
USED IN AN IF_THEN_ELSE STATEMENT, V1.0 AND V1.1 WILL TREAT THE STATEMENTS
IN THE SAME MANNER!!

This change was made because most users of MCS BASIC-52 felt that the V1.1 interpretation of this
statement was more useful because fewer GOTO statements need be employed in a typical program.

Additionally, V1.1 accepts inputs in either lower or upper case, whereas V1.0 converted lower case to
upper case. V1.1 will however, convert keywords from lower case to upper case during the LISTing of a
program. Finally, MCS BASIC-52 V1.1 runs between 2% and 10% faster than V1.0. Typically, this should
not cause any problems.

As far as the user is concerned, these are the only changes that may affect the operation of a typical
program. Now, on to the additions.

intel MCS® BASIC-52

1.5 WHAT’S THE DIFFERENCE BETWEEN V1.0 AND V1.1
ADDITIONS TO MCS BASIC-52 V1.1:

® X-ON (control Q) and X-OFF (control S) have been added. These permit the user to ‘‘stop’” (control
S) and start (control Q) the display of characters during a LIST or PRINT. This feature also permits
synchronization with external I/O (input/output) devices. The X-OFF (control S) functions on a line by
line basis, not on a character by character basis.

® Five new statements have been added. These include IDLE, LD@, ST@, PGM, and RROM. Details
of these statements are listed under the DESCRIPTION OF STATEMENTS section of this manual.

® Six new RESET options have been provided. They permit the user to assign the top of memory (MTOP)
during reset, and allow the user to write specific RESET programs in assembly language. Additionally,
they provide an option where the memory WILL NOT be cleared during RESET. More information on
the specific RESET OPTIONS is detailed in the DESCRIPTIONS OF EPROM FILE COMMANDS
under PROG1, PROG2, PROG3, PROG4, PROGS, and PROG6 COMMANDS and in Chapter 11 of
this manual.

® The Timing of the EPROM programming algorithm has been significantly relaxed between the various
strobes required for the EPROM programming function. This relaxed timing permits the user to program
devices such as the 8751H and the 8748/9 using the EPROM programming capabilities of the MCS
BASIC-52 device. Details of the timing changes are in Chapter 10 of this manual. ,

® During EPROM programming, the INTO/DMA REQUEST pin of the MCS B ASIC-52 device is treated
as a ready input pin. This allows for a simple direct connection to EEPROM devices such as the 2817A.
For normal EPROM programming, INTO must be kept high or the programming hangs up. Details
concerning the use of EEPROMS with the MCS BASIC-52 device are provided in Chapter 10 of this
manual.

® A RUN TRAP option has been provided. This option traps the MCS BASIC-52 interpreter in the program
RUN mode and will not permit the user to exit this mode. Details of this option are covered in Chapter
8.4 of this manual.

® A user STATEMENT/COMMAND expansion option has been provided. This permits the user to easily

add new or custom STATEMENTS and COMMANDS to MCS BASIC-52. Detalls of this option are
covered in Chapter 12 of this manual.

10

|I"ter MCS® BASIC-52

1.5 WHAT’S THE DIFFERENCE BETWEEN V1.0 AND V1.1
ADDITIONS TO MCS BASIC-52 V1.1:

® A number of new assembly language user OP BYTES have been added. These permit the user to make
better use of the STATEMENT/COMMAND expansion option previously described. Details of these
new OP BYTES are presented in Chapter 9.6 of this manual.

® The length of the input buffer has been increased from 72 characters to 79 characters and the ERROR:
LINE TOO LONG has been eliminated. Instead, when the cursor reaches the 79th position a bell
character will be echoed everytime the user attempts to enter another character.

® A new variation on the PRINT (including PHO. and PH1.) and LIST statements have been added. This
new option is evoked with an @ character (EXAMPLE: PRINT@ or LIST@) and permits the user to
write specific output drivers for these statements and commands. When the @ PRINT or LIST is evoked,
MCS BASIC-52 CALLS external code memory location 403CH. The user must put the specific output
driver in this location. More details of this option is in Description of Statements section of this manual.

® The control stack has been made more ‘‘forgiving.”’ This means that the user can execute a GOSUB
to a subroutine that contains a FOR-NEXT loop and return from the subroutine without completing the
FOR-NEXT loop. Version 1.0 would yield a C-STACK ERROR under these circumstances, V1.1 yields
no error.

® The question mark character ? is interpreted as a PRINT statement (EXAMPLE: (PRINT 10+ 20 is the
same as ? 10+ 20). The symbols P. remains a shorthand notation for PRINT just as in V1.0.

® The FOR-NEXT statement can be executed in the direct mode. This lets the user write short routines
in the DIRECT MODE to, for example, display a region of memory (EXAMPLE: FOR 1=200H to
210H: PHO. XBY(I): NEXT I)

® Variables can be up to 8 characters in length, however, only the first character, the last character, and

the total number of characters are of signifance. This lets the user better describe variables that are used
in a program. Chapter 1.4 details the limitations on the expanded variables in Version 1.1.

11

intel - MCS® BASIC-52

1.5 WHAT’S THE DIFFERENCE BETWEEN V1.0 AND V1.1
ADDITIONS TO MCS BASIC-52 V1i.1: |

® The CALL statement vectors to locations 4100H through 41FFH if the CALL integer is between 0 and
7FH inclusive. This means that CALL 0 will vector to location 4100H, CALL 1 to location 4102H,
CALL 2 to location 4104H, etc. This permits the user to easily generate assembly language CALL tables
by using simple integers with the CALL statement. Anyway, CALL 0 through CALL 1FFFH was not
too useful because these numbers vectored into the MCS BASIC-52 ROM.

® The error message anomaly for an invalid line number on a GOTO or GOSUB STATEMENT has been
eliminated on V1.1 of MCS BASIC-52. The correct line number is now processed and displayed by the
€error processor.

® The FOR-TO-{STEP}-NEXT statement can be executed in the COMMAND MODE in version 1.1 of
MCS BASIC-52. Additionally, the NEXT statement does not require a variable in version 1.1. Details
of these features are covered in the Description of Statements section of this manual.

® The REM statement can be executed in the COMMAND MODE. If the user is employing some type
of UPLOAD/DOWNLOAD routine with a computer, this lets the user insert REM statements, without
line numbers in the text and not download them to the MCS BASIC-52 device. This helps to conserve
memory.

® Version 1.1 is also a little less ‘‘crashable’’ than version 1.0. This is due to a more extensive ‘‘type
checking’’ on control transfer routines (i.e. GOTO, GOSUB).

12

CHAPTER 2
Description of Commands

2.1 DESCRIPTION OF COMMANDS
COMMAND: RUN(cr)
ACTION TAKEN:

After RUN(cr) is typed all variables are set equal to zero, all BASIC evoked interrupts are cleared and
program execution begins with the first line number of the selected program. The RUN command and the
GOTO statement are the only way the user can place the MCS BASIC-52 interpreter into the RUN mode
from the COMMAND mode. Program execution may be terminated at any time by typing a control-C on
the console device.

VARIATIONS:

Unlike some Basic interpreters that allow a line number to follow the RUN command (i.e., RUN 100),
MCS BASIC-52 does not permit such a variation on the RUN command. Execution always begins with the
first line number. To obtain the same functionality as the RUN[In num] command, use the GOTO[In num]
statement in the direct mode. SEE STATEMENT GOTO.

EXAMPLE:

210 FOR I=1 TQ 3.
220 PRINT I

>30 NEXT I

>RUN

13

intel MCS® BASIC-52

2.2 DESCRIPTION OF COMMANDS:

COMMAND: CONT(cr)

ACTION TAKEN:

If a program is stopped by typing a control-C on the console device or by execution of a STOP statement,
you can resume execution of the program by typing CONT(cr). Between the stopping and the re-starting
of the program you may display the values of variables or change the values of variables. How_e\ier, you
may NOT CONTinue if the program is modified during the STOP or after an error.

VARIATIONS:

None.

EXAMPLE:

>10 FOR I=1 TO 10000
220 PRINT I

>30 NEXT 1

>RUN

apON -

- (TYPE CONTROL-C ON CONSOLE)
STOP - IN LINE 20
READY
S>PRINT I
&
>I=10
>CONT
10

11
12

14

intel MCS® BASIC-52

2.3 DESCRIPTION OF COMMANDS:
COMMAND: LIST(cr)

ACTION TAKEN:
The LIST(cr) command prints the program to the console device. Note that the list command ‘‘formats’’
the program in an easy to read manner. Spaces are inserted after the line number and before and after
statements. This feature is designed to aid in the debugging of MCS BASIC-52 programs. The ‘‘listing”’
of a program may be terminated at anytime by typing a control-C on the console device.
VARIATIONS:
Two variations of the LIST COMMAND are possible with MCS BASIC-52. They are:

LIST [In num] (cr) and

LIST [In num] — [In num] (cr)
The first variation causes the program to be printed from the designated line number (integer) to the end
of the program. The second variation causes the program to be printed from the first line number (integer)
to the second line number (integer). NOTE — the two line numbers MUST BE SEPARATED BY A
DASH —.

EXAMPLE:

READY
>LIST

10 PRINT "“LOOP PROGRAM"
20 FOR I=1 TO 3

30 PRINT I

40 NEXT I

SO END

READY

>LIST 30
30 PRINT I
40 NEXT I
S0 END

READY

>LIST 20-40

20 FOR I=1 TO 3
30 PRINT I

40 NEXT I

15

intel MCS® BASIC-52

2.4 DESCRIPTION OF COMMANDS

COMMAND: LIST#(cr)

ACTION TAKEN:

The LIST#(cr) command prints the program to the LIST device. The BAUD rate to this device must be
initialized by the STATEMENT — BAUDJ[expr]. All comments that apply to the LIST command apply _

to the LIST# command. The LIST#(cr) command is included to permit the user to make “hard coples
of a program. The output to the list device is on P1.7 of the MCS BASIC- 52 device.

16

intel MCS® BASIC-52

2.5 DESCRIPTION OF COMMANDS
COMMAND: LIST@(cr) (VERSION 1.1 ONLY)
ACTION TAKEN:

The LIST@ command does the same thing as the LIST command except that the output is directed to a
user defined output driver. This command assumes that the user has placed an assembly language output
routine in external code memory location 403CH. To enable the @ driver routine the user must SET BIT
27H (39D) in the internal memory of the MCS B ASIC-52 device. BIT 27H (39D) is BIT 7 of internal
memory location 24H (36D). This BIT can be set by the BASIC statement DBY(24H) =DBY(24H).
OR.80H or by a user supplied assembly language routine. If the user evokes the @ driver routine and this
bit is not set, the output will be directed to the console driver. The only reason this BIT must be set to
‘enable the @ driver is that it adds a certain degree of protection from accidently typing LIST@ when no
assembly language routine exist. The philosophy here is that if the user sets the bit, the user provides the
driver or else!!!

When MCS BASIC-52 calls the user output driver routine at location 403CH, the byte to output is in the
accumulator and RS of register bank 0 (RB0). The user may modify the accumulator (A) and the data
pointer (DPTR) in the assembly language output routine, but cannot modify any of the registers in RBO.
This is intended to make it real easy for the user to implement a parallel or serial output driver without
having to do a PUSH or a POP.

17

intel MCS® BASIC-52

2.6 DESCRIPTION OF COMMANDS

COMMAND: NEW(cr)

ACTION TAKEN:

When NEW(cr) is entered, MCS BASIC-52 deletes the pfogram that is currently sfored in RAM memory.
In addition, all variables are set equal to ZERO, all strings and all BASIC evoked interrupts are cleared.

The REAL TIME CLOCK, string allocation, and the internal stack pointer value (location 3EH) are NOT
effected. In general, NEW (cr) is used simply to erase a program and all variables.

18

intel MCS® BASIC-52

2.7 DESCRIPTION OF COMMANDS
COMMAND: NULL [integer](cr)
ACTION TAKEN:

The NULL[integer] (cr) command determines how many NULL characters (00H) MCS BASIC-52 will
output after a carriage return. After initialization NULL = 0. The NULL command was more important
back in the days when a ‘‘pure’’ mechanical printer was the most common I/O device. Most modern
printers contain some kind of RAM buffer that virtually eliminates the need to output NULL characters
after a carriage return. NOTE — the NULL count used by MCS BASIC-52 is stored in internal RAM
location 21 (15H). The NULL value can be changed dynamically in a program by using a DBY(21) = [expr]
statement. The [expr] can be any value between 0 and 255 (OFFH) inclusive.

VARIATIONS:

None.

19

CHAPTER 3
Description of EPROM File Commands

DESCRIPTION OF EPROM FILE COMMANDS

One of the unique and powerful features of MCS BASIC-52 is that it has the ability to execute and SAVE
programs in an EPROM. MCS BASIC-52 actually generates all of the timing signals needed to program
most EPROM devices. Saving programs in EPROMS is a much more attractive and RELIABLE alternative
relative to cassette tape, especially in control and/or noisy environments. ‘ :

The hardware needed to permit MCS BASIC-52 to program an EPROM device is minimal, typically only
one NAND gate, three or four transistors, and a few resistors are all that is required. Details of the hardware
requirements are in the EPROM PROGRAMMING section of this manual.

MCS BASIC-52 can save more than one program in an EPROM. In fact, it can save as many programs
as the size of the EPROM memory permits. The programs are stored sequentially in the EPROM and any
program can be retrieved and executed. This sequential storing of programs is referred to as the EPROM
FILE. The following commands permit the user to generate and manipulate the EPROM FILE.

20

intel MCS® BASIC-52

3.1 DESCRIPTION OF EPROM FILE COMMANDS
COMMANDS: RAM(cr) and ROM [integer] (cr)
ACTION TAKEN:

These two commands tell the MCS BASIC-52 interpreter whether to select the current program (the current
program is the one that will be displayed during a LIST command and executed when RUN is typed) out
of RAM or EPROM. The RAM address is assumed to be 512 (200H) and the EPROM address begins at
32, 784 (8010H).

RAM

When RAM(cr) is entered MCS BASIC-52 selects the current program from RAM MEMORY. This is
usually considered the ‘‘normal’’ mode of operation and is the mode that most users interact with the
command interpreter.

ROM

When ROM [integer] (cr) is entered MCS BASIC-52 selects the current program out of EPROM memory.
If no integer is typed after the ROM command (i.e. ROM (cr)) MCS BASIC-52 defaults to ROM 1. Since
the programs are stored sequentially in EPROM the integer following the ROM command selects which
program the user wants to run or list. If you attempt to select a program that does not exist (i.e. you type
in ROM 8 and only 6 programs are stored in the EPROM) the message ERROR: PROM MODE will be
displayed.

MCS BASIC-52 does not transfer the program from EPROM to RAM when the ROM mode is selected.
So, you cannot EDIT a program in the ROM mode. If you attempt to edit a program in the ROM mode,
by typing in a line number, the message ERROR: PROM MODE will be displayed. The following command
to be described, XFER, permits one to transfer a program from EPROM to RAM for editing purposes.

Since the ROM command does NOT transfer a program to RAM, it is possible to have different programs
in ROM and RAM simultaneously. The user can ‘‘flip”” back and forth between the two modes at any
time. Another added benefit of NOT transferring a program to RAM is that all of the RAM memory can
be used for variable storage if the PROGRAM is stored in EPROM. The SYSTEM CONTROL VALUES
— MTOP and FREE always refer to RAM not EPROM.

VARIATIONS:

None.

21

intel MCS® BASIC-52

3.2 DESCRIPTION OF EPROM FILE COMMANDS

COMMAND: XFER(cr)

ACTION TAKEN:

The XFER (transfer) command transfers the current selected program in EPROM to RAM and then selects
the RAM mode. If XFER is typed while MCS BASIC-52 is in the RAM mode, the program stored in
RAM is transferred back into RAM and the RAM mode is selected. The net result is that nothing happens
except that a few milli-seconds of CPU time is used to do a wasted move. After the XFER command is
executed, the user may edit the program in the same manner any RAM program may be edited. =

VARIATIONS:

None.

22

intel MCS® BASIC-52

3.3 DESCRIPTION OF EPROM FILE COMMANDS

COMMAND: PROG(cr)

ACTION TAKEN:

The PROG COMMAND programs the resident EPROM with the current selected program. The current
selected program may reside in either RAM or EPROM. This command assumes that the hardware is

configured in the manner described in the EPROM PROGRAMMING section of this manual.

After PROG (cr) is typed, MCS BASIC-52 displays the number in the EPROM FILE the program will
occupy.

EXAMPLE:

10 FOR I=1 TO 10
20 PRINT I
30 NEXT 1

READY
>ROM 12

READY

>LIST

10 FOR I=1 TO 10
20 PRINT I

30 NEXT I

In this example, the program just placed in the EPROM is the 12th program stored.
VARIATIONS:

None.

23

intel MCS® BASIC-52

3.4 DESCRIPTION OF EPROM FILE COMMANDS
COMMANDS: PROGI(cr) and PROG2(cr)

ACTION TAKEN:

PROG1

Normally, after power is applied to the MCS BASIC-52 device, the user MUST type a ‘‘space’’ character
to initialize the 8052AH’s serial port. As a convenience, MCS BASIC-52 contains a PROG1 COMMAND.
What this command does is program the resident EPROM with the BAUD RATE information. So, the
next time the MCS BASIC-52 device is ‘‘powered up,’’ i.e. RESET, the chip will read this information
and initialize the serial port with the stored baud rate. The ‘‘sign-on’’ message will be sent to the console
immediately after the MCS BASIC-52 device completes its reset sequence. The ‘‘space’” character no
longer needs to be typed. Of course, if the BAUD rate on the console device is changed a new EPROM
must be programmed to make MCS BASIC-52 compatible with the new console.

PROG2

The PROG2 command does everything the PROG1 command does, but instead of ‘‘signing-on’’ and
entering the COMMAND MODE, the MCS BASIC-52 device immediately begins executing the first
program stored in the resident EPROM.

THIS IS AN IMPORTANT FEATURE!!

By using the PROG2 command it is possible to RUN a program from a RESET condition and NEVER
connect the MCS BASIC-52 chip to a console. In essence, saving PROG2 information is equivalent to
typing a ROM 1, RUN command sequence. This is ideal for control applications, where it is not always
possible to have a terminal present. In addition, this feature permits the user to write a special initialization
sequence in BASIC or ASSEMBLY LANGUAGE and generate a custom ‘‘sign-on’’ message for specific
applications.

24

intel MCS® BASIC-52

3.5 DESCRIPTION OF EPROM FILE COMMANDS

COMMANDS: FPROG(cr), FPROG1(cr), AND FPROG2(cr)

ACTION TAKEN:

FPROG(cr), FPROGI(cr), and FPROG2(cr) do exactly the same thing as PROG(cr), PROGI1(cr), and
PROG?2(cr) respectively, except that the algorithm used to perform the programming function is the INTEL

“INTELLIGENT"’ fast programming algorithm. The user MUST provide a way to increase VCC to the
EPROM to 6 volts.

25

intal MCS® BASIC-52

3.6 DESCRIPTION OF EPROM FILE COMMANDS

COMMANDS: PROG3(cr), PROG4(cr), FPROG3(cr), FPROG4(cr) (VERSION 1.1 ONLY)
ACTION TAKEN:

PROG3

The PROG3 COMMAND functions the same way as the PROG1 COMMAND previously described, except
that PROG3 also saves the system control value, MTOP, when it is evoked. During a RESET or power-
up sequence MCS BASIC-52 will only clear the external data memory up to the MTOP value that was
saved when the PROG3 COMMAND was evoked. This permits the user to ‘‘protect’” regions of memory
from being cleared during a RESET or power-up condition. In typical use, the PROG3 COMMAND
assumes that the user is saving some critical information if some type of battery-backed-up or non-volitle
memory and does not want this information to be destroyed during a RESET or power-up sequence.

PROG4
The PROG4 COMMAND is a combination of the PROG2 and PROG3 COMMAND. PROG4 saves the

same information as PROG3, but also executes the first program stored in the EPROM after a RESET or
power-up condition.

FPROG3 and FPROG4

The FPROG3 and FPROG4 commands save the same information as the \PROG3 and PROG4 commands
respectively, except that the INTELligent™ algorithm is used to program the EPROM.

VARIATIONS:

None.

26

intel MCS® BASIC-52

3.7 DESCRIPTION OF EPROM FILE COMMANDS

COMMANDS: PROGS(cr), PROGS(cr), FPROGS(cr), FPROGS(cr) (VERSION 1.1 ONLY)
ACTION TAKEN:

PROGS5 & FPROGS

The PROGS command saves both the baud rate information and the MTOP information, just like the
PROG3 command previously described. However, during a RESET or power-up condition the MCS
BASIC-52 device examines external data memory location SFH (95 decimal). If the user has placed the
value 0ASH (165 decimal) in this location, the MCS BASIC-52 device will not clear the external memory
during a RESET or power-up condition. This permits the user to ‘‘save’’ programs in external memory,
providing some type of battery back-up scheme has been employed.

Normally, when using the PROGS command to establish the RESET or power-up condition, the MCS
BASIC-52 device will enter the command mode after RESET or power-up. However, if the user wishes
to execute the program stored in external memory, the character 34H (52 decimal) needs to be placed in
external memory location SEH (94 decimal). Placing a 34H in location SEH causes MCS BASIC-52 to
enter the ‘“‘RUN TRAP MODE."’ Details of this mode are presented in chapter 8 of this manual.

PROG6 & FPROG6

Does the same thing as PROGS, but CALLS external program memory location 4039H during a RESET
or power-up sequence. This option also requires the user to put the character 0OASH in external memory
location 5FH to insure that external RAM will not be cleared during RESET or power-up. The user must
put an assembly language initialization routine in external code memory location 4039H or else this RESET
mode will crash. When the user returns from the customized assembly language RESET routine, three
options exist:

OPTION 1 FOR PROG6

If the CARRY BIT is CLEARED (CARRY = 0) upon return from the user RESET routine MCS BASIC-52
will enter the auto-baud rate determining routine. The user must then type a space character (20H) on the
terminal to complete the RESET routine and produce a RESET message on the terminal.

OPTION 2 FOR PROG6

If the CARRY BIT is SET (CARRY = 1) and BIT 0 of the ACCUMULATOR is CLEARED (ACC. 0
= 0) MCS BASIC-52 will produce the standard sign-on message upon return from the user supplied
RESET routine. The baud rate will be the one that was saved when the PROG6 option was used.
OPTION 3 FOR PROG6

If the CARRY BIT is SET (CARRY = 1) and BIT 0 of the ACCUMULATOR is SET (ACC. 0 = 1),

MCS BASIC-52 will execute the first program stored by the user in EPROM (starting address of the
program is 8010H) upon return from the user supplied RESET routine.

27

CHAPTER 4
Description of Statements

4.1 DESCRlPTlON OF STATEMENTS
STATEMENT: BAUD [expr]

MODE: COMMAND AND/OR RUN

TYPE: CONTl‘lOL’

The BAUD [expr] statement is used to set the baud rate for the software line printer port resident on the
MCS BASIC-52 device. In order for this STATEMENT to properly calculate the baud rate, the crystal
(special function operator — XTAL) must be correctly assigned (e.g. XTAL = 9000000). MCS BASIC-52
assumes a crystal value of 11.0592 MHz if no XTAL value is assigned. The software line printer port is
P1.7 on the 8052AH device. The main purpose of the software line printer port is to let the user make a
‘‘hard copy’’ of program listings and/or data. The COMMAND LIST# and the STATEMENT PRINT#
direct outputs to the software line printer port. If the BAUD [expr] STATEMENT is not executed before
a LIST# or PRINT# command/statement is entered, the output to the software line printer port will be
at about 1 BAUD and it will take A LONG TIME to output something. You may even think that BASIC
has crashed, but it hasn’t. It’s just outputting at a VERY SLOW rate. So be sure to assign a BAUD rate
to the software printer port BEFORE using LIST# or PRINT#. The maximum baud rate that can be
assigned by the BAUD statement depends on the crystal. In general, 4800 is a reasonable maximum baud
rate, however the user may want to experiment with different rates. The software serial transmits 8 data
bits, 1 start bit, and two stop bits. No parity is transmitted.

EXAMPLE:

BAUD 1200

Will cause the line printer port to output data at 1200 BAUD.

VARIATIONS:

None.

28

intal MCS® BASIC-52

4.2 DESCRIPTION OF STATEMENTS

STATEMENT: CALL [integer]

MODE: COMMAND AND/OR RUN

TYPE: CONTROL

The CALL [integer] STATEMENT is used to call an assembly language program. The integer following
CALL is the address where the user must provide the assembly language routine. To return to BASIC the
user must execute an assembly language RET instruction. Examples of how to use the CALL [integer]

instruction are given in the ASSEMBLY LANGUAGE LINKAGE section of this manual.

EXAMPLE:

CALL 9000H

Will cause the 8052AH to execute the assembly language program beginning at location 9000H (i.e. the
program counter will be loaded with 9000H).

VARIATIONS: (VERSION 1.1 ONLY)

If the integer following the CALL statement is between 0 and 127 (7FH), Version 1.1 of MCS BASIC-52
will multiply the user integer by two, then add 4100H and vector to that location. This means that CALL
0 will call location 4100H, CALL 1 will call 4102H, CALL 2 — 4104H and so on. This permits the user
to generate a simple table of assembly language routines without having to enter 4 digit hex integers after
the CALL statement from the user supplied RESET routine. '

29

intel MCS® BASIC-52

4.3 DESCRIPTION OF STATEMENTS
STATEMENT: CLEAR

MODE: COMMAND AND/OR RUN

TYPE: CONTROL

The CLEAR STATEMENT sets all variables equal to O and resets all BASIC evoked interrupts and stacks.
This means that after the CLEAR statement is executed an ONEX1 or ONTIME statement must be executed
before MCS BASIC-52 will acknowledge interrupts. ERROR trapping via the ONERR statement will also
not occur until an ONERR[integer] STATEMENT is executed. The CLEAR STATEMENT does not affect
the real time clock that is enabled by the CLOCK1 STATEMENT. CLEAR also does not reset the memory
that has been allocated for STRINGS, so it is NOT necessary to enter the STRING [expr], [expr] STATE-
MENT to re-allocate memory for strings after the CLEAR STATEMENT is executed In general, CLEAR
is simply used to ‘‘erase’’ all variables.

VARIATIONS:

None.

30

intel MCS® BASIC-52

4.4 DESCRIPTION OF STATEMENTS

STATEMENTS: CLEARI (clear interrupts)
CLEARS (clear stacks)

MODE: COMMAND AND/OR RUN

TYPE: CONTROL

CLEARI

The CLEARI STATEMENT clears all of the BASIC evoked interrupts. Specifically, the ONTIME and
ONEX1 interrupts are DISABLED after the CLEARI STATEMENT is executed. This is accomplished by
clearing bits 2 and 3 of the 8052AH’s special function register, IE and by clearing the status bits that
determine whether MCS BASIC-52 or the user is controlling these interrupts. The real time clock which
is enabled by the CLOCK1 STATEMENT is not affected by CLEARI. This statement can be used to
selectively DISABLE interrupts during specific sections of the users BASIC program. The ONTIME and/
or ONEX1 STATEMENTS MUST BE EXECUTED AGAIN before the specific interrupts will be enabled.

CLEARS

The CLEARS statement RESETS all of MCS BASIC-52’s STACKS. The CONTROL and ARGUMENT
STACKS are reset to their initialization value, 254 (OFEH) and 510 (1FEH) respectively. The INTERNAL
STACK (the 8052AH’s STACK POINTER, SPECIAL FUNCTION REGISTER-SP) is loaded with the
value that is in INTERNAL RAM location 62 (3EH). This statement can be used to ‘‘purge’’ the stack
should an error occur in a subroutine. In addition, this statement can be used to provide a ‘‘special’’ exit
from a FOR-NEXT, DO-WHILE, or DO-UNTIL loop.

EXAMPLE OF CLEARS:

210 PRINT "MULTIPLICATION TEST, YOU HAVE 3 SECONDS"
20 FOR I = 2 TQ ¢

>30 N = INT(RND#10) : A = N#l

>40 PRINT "WHAT IS “,N, “#", I, "?": CLOCK1

>50 TIME = O : ONTIME $,200 : INPUT R: IF ROA THEN 100
>60 PRINT "THAT'S RIGHT": TIME=Q: NEXT I

>70 PRINT "YOU DID IT, 6QOD JOB":END

2100 PRINT "WRONG, TRY AGAIN":GOTO SO

2200 REM WASTE CONTROL STACK, TOO MUCH TIME

2210 CLEARS: PRINT "YOU TOOK TOO LONG":GQTO 10

NOTE: When the CLEARS and CLEARI STATEMENTS are LISTED they will appear as CLEAR S
and CLEAR I respectively. Don’t be alarmed, that is the way it’s supposed to work,

31

intel MCS® BASIC-52

4.5 DESCRIPTION OF STATEMENTS
STATEMENTS: CLOCKI and CLOCKO
MODE: COMMAND AND/OR RUN

TYPE: CONTROL

CLOCK1

‘The CLOCK1 STATEMENT enables the REAL TIME CLOCK feature resident on the MCS BASIC-52
device. The special function operator TIME is incremented once every S milliseconds after the CLOCK 1
STATEMENT has been executed. The CLOCK1 STATEMENT uses TIMER/COUNTER 0 in the 13-bit
mode to generate an interrupt once every 5 milliseconds. Because of this, the special function operator
TIME has a resolutlon of 5 mllllseconds

MCS BASIC- 52 automatlcally calculates the proper reload value for TIMER/COUNTER O after the crystai
value has been assigned (i.e. XTAL = value). If no crystal value is assigned,”MCS BASIC-52 assumes a
value of 11.0592 MHz. The special function operator TIME counts from 0 to 65535.995 seconds. After
reaching a count of 65535.995 seconds TIME overflows back to a count of zero. Because the CLOCK1
STATEMENT uses the interrupts associated with TIMER/COUNTER O (the CLOCK1 statement sets bits
7 and 2 in the 8052AH’s special function register, IE), the user may not use this interrupt in an assembly
language routine if the CLOCK1 STATEMENT is executed in BASIC. The interrupts associated with the
CLOCK1 STATEMENT cause MCS BASIC-52 programs to run at about 99.6% of normal speed.. That
means that the interrupt handling for the REAL TIME CLOCK feature only consumes about .4% of the
total CPU time. This very small interrupt overhead is attributed to the very fast and effective ‘intérrupt
handling of the 8052AH device.
. CLOCKO
The CLOCKO (zero) STATEMENT disables or ‘‘turns off’’ the REAL TIME CLOCK feature. This
statement clears bit 2 in the 8052AH’s special function register, IE. After CLOCKO is executed, the special
 function operator TIME will no longer increment. The CLOCKO STATEMENT also returns control of the
interrupts associated with TIMER/COUNTER 0 back to the user, so this interrupt may be handled at the
-assembly language level. CLOCKO is the only MCS BASIC-52 statement that can disable the REAL TIME
CLOCK. CLEAR and CLEARI will NOT disable the REAL TIME CLOCK. :

VARIATIONS:

None.

32

intel - 'MCS® BASIC-52

4.6 DESCRIPTION OF STATEMENTS
STATEMENTS: DATA — READ — RESTORE
MODE: RUN

TYPE: ASSIGNMENT

DATA

DATA specifies expressions that may be retrieved by a READ STATEMENT. If multiple expressions per
line are used, they MUST be separated by a comma.

READ

READ retrieves the expressions that are specified in the DATA STATEMENT and assigns the value of
the expression to the variable in the READ STATEMENT. The READ STATEMENT MUST ALWAYS
be followed by one or more variables. If more than one variable follows a READ STATEMENT, they
MUST be separated by a comma.

RESTORE

RESTORE ‘‘resets’’ the internal read pointer back to the begmmng of the data so that it may be read
again.

EXAMPLE:

210 FOR I=1 TO 3

220 READ A, B

>30 PRINT ‘A, B

240 NEXT I

»90 RESTORE

260 READ A, B

»70 PRINT A.B

>80 DATA 10,20,10/2,20/2, SIN(PI), COS(PI)
>RUN

10 20
S 10
o -1

10 20

VARIATIONS:

None.

intel MCS® BASIC-52

4.6 DESCRIPTION OF STATEMENTS

Explanation of previous example:

Everytime a READ STATEMENT is encountered the next consecutive expression in the DATA STATE-
MENT is evaluated and assigned to the variable in the READ STATEMENT. DATA STATEMENTS may
be placed anywhere within a program, they will NOT be executed nor will they cause an error. DATA
STATEMENTS are considered to be chained together and appear to be one BIG DATA STATEMENT.
If at anytime all the DATA has been read and another READ STATEMENT is executed then the program
is terminated and the message ERROR: NO DATA — IN LINE XX is printed to the console device.

34

intel MCS® BASIC-52

4.7 DESCRIPTION OF STATEMENTS
STATEMENT: DIM

MODE: COMMAND AND/OR RUN

TYPE: ASSIGNMENT

DIM reserves storage for matrices. The storage area is first assumed to be zero. Matrices in MCS BASIC-
52 may have only ONE DIMENSION and the size of the dimensioned array MAY NOT exceed 254
elements. Once a variable is dimensioned in a program it may not be re-dimensioned. An attempt to re-
dimension an array will cause an ARRAY SIZE ERROR. If an arrayed variable is used that has NOT been
dimensioned by the DIM STATEMENT, BASIC will assign a default value of 10 to the array size. All
arrays are set equal to zero when the RUN COMMAND, NEW COMMAND, or the CLEAR STATEMENT
is executed. The number of bytes allocated for an array is 6 times the (array size plus 1). So, the array
A(100) would require 606 bytes of storage. Memory size usually limits the size of a dimensioned array.

VARIATIONS:

More than one variable can be dimensioned by a single DIM STATEMENT, i.e., DIM A(10), B(15),
A1(20).

EXAMPLE:

DEFAULT ERROR ON ATTEMPT TO RE-DIMENSION ARRAY

»10 A(5)=10 - BASIC ASSIGNS DEFAULT OF 10 TO ARRAY SIZE HERE
>20 DIM A(S) - ARRAY CANNOT BE RE-DIMENSIONED
>RUN

ERROR: ARRAY SIZE - IN LINE 20

20 DIM A(S)

35

intel MCS® BASIC-52

4.8 DESCRIPTION OF STATEMENTS

STATEMENTS: DO — UNTIL [rel expr]

MODE: RUN

TYPE: CONTROL

The DO — UNTIL [rel expr] instruction provides a meahs of ““loop control’’ within an MCS BASIC-52

program. All statements between the DO and the UNTIL [rel expr] will be executed until the relanonal
expression following the UNTIL statement is TRUE DO UNTIL loops may be nested.

EXAMPLES:
SIMPLE DO-UNTIL NESTED DO-UNTIL
>»10 A=Q) 210 DO : AmA+1 : DO : B=B+1
>20 DA 220 PRINT A, B, A®B
230 AmA+1 230 UNTIL B=3
>40 PRINT A © 240 B=0
2850 UNTIL A=4 250 UNTIL A=3
260 PRINT "DONE" >RUN
>RUN
1 1 1
1 1 2 2
2 1 3 3
3 2 1 2
4 2 2 4
DONE 2 3 6
3 1 3
READY 3 2 64
> 3 3 9
READY
>
VARIATIONS:
None

intel MCS® BASIC-52

4.9 DESCRIPTION OF STATEMENTS

STATEMENTS: DO — WHILE [rel expr]

MODE: RUN

TYPE: CONTROL

The DO — WHILE [rel expr] instruction provides a means of ‘‘loop control’’ within an MCS BASIC-52
program. This operation of this statement is similar to the DO — UNTIL [rel expr] except that all statements

between the DO and the WHILE [rel expr] will be executed as long as the relational expression following
the WHILE statement is true. DO — WHILE and DO — UNTIL statements can be nested.

EXAMPLES:
SIMPLE DO-WHILE NESTED DO-WHILE - DO-UNTIL
>10 DO >10 DO : A=A+1 : B=B+1
>20 A=A+1 >20 PRINT A, B, A#B
>30 PRINT A >30 WHILE B<>3
>40 WHILE A<4 >40 B=0
>50 PRINT "“DONE" >50 UNTIL A=3
>RUN >RUN
1 1 1 1
2 1 2 2
3 1 3 3
4 2 1 2
DONE 2 2 4
2 3 6
READY 3 1 3
> 3 2 6
3 3 9
READY
>
VARIATIONS:
None

37

intel MCS® BASIC-52

4.10 DESCRIPTION OF STATEMENTS

STATEMENT: END

MODE: RUN

TYPE: CONTROL

The END STATEMENT terminates program execution. The continue command, CONT will not operate
if the END STATEMENT is used to terminate execution (i.e., a CAN’T CONTINUE ERROR will be

printed to the console). The last statement in an MCS BASIC-52 program will automatically terminate
program execution if no END STATEMENT is used.

EXAMPLES:
LAST STATEMENT TERMINATION END STATEMENT TERMINATION
>10 FOR I=1 TO 4 >10 FOR I=1 TO 4
220 PRINT I ' >20 GOsSUB 100
>30 NEXT I >30 NEXT I
>RUN) >40 END
2100 PRINT 1
1 >110 RETURN
2 >RUN
3
4 1
2
READY 3
> 4
READY
VARIATIONS:
None

38

intel MCS® BASIC-52

4.11 DESCRIPTION OF STATEMENTS

STATEMENTS: FOR — TO — {STEP} — NEXT

MODE: RUN VERSION 1.0 (COMMAND AND/OR RUN in Version 1.1)

TYPE: CONTROL

The FOR — TO — {STEP} — NEXT STATEMENTS are used to set up and control loops.

EXAMPLE:

10 FOR A=B TO C STEP D
20 PRINT A
30 NEXT A

If B=0, C=10, and D=2, the PRINT STATEMENT at line 20 will be executed 6 times. The values of
““A”’ that will be printed are 0, 2, 4, 6, 8, 10. ““A’’ represents the name of the index or loop counter.
The value of “‘B’’ is the starting value of the index, the value of ‘‘C’’ is the limit value of the index, and
the value of *‘D’’ is the increment to the index. If the STEP STATEMENT and the value ‘‘D’’ are omitted,
the increment value defaults to 1, therefore, STEP is an optional statement. The NEXT STATEMENT
causes the value of ‘‘D’’ to be added to the index. The index is then compared to the value of ‘‘C,”’ the
limit. If the index is less than or equal to the limit, control will be transferred back to the statement after
the FOR STATEMENT. Stepping ‘‘backwards’’ (i.e. FOR I = 100 TO 1 STEP-1) is permitted in MCS
BASIC-52. Unlike some BASICS, the index MAY NOT be omitted from the NEXT STATEMENT in
MCS BASIC-52 (i.e. the NEXT statement MUST always be followed by the appropriate variable).

EXAMPLES:
»>10 FOR I=1 TO 4 >10 FOR I=0 TO 8 STEP 2
>20 PRINT I >20 PRINT I
»30 NEXT I >30 NEXT I
>RUN >RUN

1 (o]
2 2
<] 4
4 é
a8
READY
> READY

39

intel MCS® BASIC-52

4.11 DESCRIPTION OF STATEMENTS

In Version 1.1 of MCS BASIC-52 it is possible execute the :FOR-TO-{STEP}-NEXT stateémentin the-
Command Mode. This makes it possible for the user to do things like display regions of memory by writing
a short program like FOR I=512 TO 560: PHO. XBY(I),: NEXT I. It may also have other uses, but:they
haven’t been thought of.

Also Version 1.1 allows the NEXT statement to be used without a variable following the statement. This
means that programs like:

EXAMPLE:

10 FOR I =1 TO 100
20 PRINT I
30 NEXT

Are permitted in Version 1.1 of MCS BASIC-52. The variable associated with the NEXT is always assumed
to be the variable used in the last FOR statement.

40

intel MCSe BASIC-52

4.12 DESCRIPTION OF STATEMENTS
STATEMENTS: GOSUB|In num] — RETURN
MODE: RUN
TYPE: CONTROL
GOSsuB
The GOSUB [In num] STATEMENT will cause MCS BASIC-52 to transfer control of the program directly
to the line number ([In num]) following the GOSUB STATEMENT. In addition, the GOSUB STATEMENT
saves the location of the STATEMENT following GOSUB on the control stack so that a RETURN
STATEMENT can be performed to return control.
RETURN
This statement is used to ‘‘return’’ control back to the STATEMENT following the most recently executed

GOSUB STATEMENT. The GOSUB-RETURN sequence can be ‘‘nested’”’ meaning that a subroutine
called by the GOSUB STATEMENT can call another subroutine with another GOSUB STATEMENT.

EXAMPLES:
SIMPLE SUBROUTINE NESTED SUBROUTINES
>10 FOR I=1 TO S >10 FOR I=1 TO 3
>20 GOSUB 100 220 GOSUB 100
>30 NEXT I >30 NEXT I
>100 PRINT I >40 END
>110 RETURN >100 PRINT I,
>RUN >110 GOSUB 200
2120 RETURN
1 >200 PRINT Il
2 2210 RETURN
3 >RUN
4
S 11
24
READY 39
READY
>

41

intgl | MCS® BASIC-52

4.12 DESCRIPTION OF STATEMENTS .

NOTE — The Control Stack on Version 1.1 permits a graceful exit from incompleted control loops, given
the following example:

EXAMPLE:

50 COSUB 1000

1000 FOR I =1 TO 10
1010 IF X = I THEN 1040
1020 PRINT I#X

1030 NEXT I

1040 RETURN

Version 1.1 would permit the programmer to exit the subroutine even though the FOR-NEXT loop might
not be allowed to complete if X did equal I. Version 1.0 of MCS BASIC-52 would yield a C-STACK
error if the FOR-NEXT loop was not allowed to complete before the RETURN statement was executed.

42

intel MCS® BASIC-52

4.13 DESCRIPTION OF STATEMENTS
STATEMENT: GOTO [In num]

MODE: COMMAND AND/OR RUN

TYPE: CONTROL

The GOTO [In num] STATEMENT will cause BASIC to transfer control directly to the line number
([In num]) following the GOTO STATEMENT.

EXAMPLE:

S0 GOTO 100

Will, if line 100 exists, cause execution of the prbgram to resume at line 100. If line number 100 does
not exist the message ERROR: INVALID LINE NUMBER will be printed to the console device.

Unlike the RUN COMMAND the GOTO STATEMENT, if executed in the COMMAND MODE, does
not CLEAR the variable storage space or interrupts. However, if the GOTO STATEMENT is executed in
the COMMAND MODE after a line has been edited, MCS BASIC-52 will CLEAR the variable storage
space and all BASIC evoked interrupts. This is a necessity because the variable storage and the BASIC
program reside in the same RAM memory. So editing a program can destroy variables.

NOTE — (Version 1.0 only)

Because of the way MCS BASIC-52’s text interpreter processes a line, when an INVALID LINE NUMBER
ERROR occurs on the GOTO, GOSUB, ON GOTO, and ON GOSUB STATEMENTS the line AFTER
the GOTO or GOSUB STATEMENT will be printed out in the error message. This may be confusing,
but it was a trade-off between execution speed, code size, and error handling. Error handling lost.

EXAMPLE:

>10° GOTO 100

>20 PRINT X

>RUN

ERROR: INVALID LINE NUMBER - IN LINE 20
20 PRINT X

Version 1.1 does not exhibit this particular anomaly.

43

intal MCS® BASIC-52

4.14 DESCRIPTION OF STATEMENTS

STA'i’EMENTS: ON [expr] GOTO[In num], [In num], . . . [In num]
ON [expr] GOSUB[In num], [In num], . . . [in num]

MODE: RUN

TYPE: CONTROL

The value of the expression following the ON statement is the number in the line list that contrel will be
transferred to.

EXAMPLE:

10 ON G GOTO 100,200, 300

If Q was equal to 0, control would be transferred to line number 100. If Q was equal to 1, control would
be transferred to line number 200. If Q was equal to 2, GOTO line 300, etc. All comments that apply to
GOTO and GOSUB apply to the ON STATEMENT. If Q is less than ZERO a BAD ARGUMENT ERROR.
will be generated. If Q is greater than the line number list following the GOTO or GOSUB STATEMENT,
a BAD SYNTAX ERROR will be generated. The ON STATEMENT provides ‘‘conditional branchmg”
options within the constructs of an MCS BASIC-52 program

44

intel MCS® BASIC-52

4.15 DESCRIPTION OF STATEMENTS
STATEMENTS: IF — THEN — ELSE

MODE: RUN

TYPE: CONTROL

The IF statement sets up a conditional test. The generalized form of the IF — THEN — ELSE statement
is as follows:

[In num] IF [rel expr] THEN valid STATEMENT ELSE valid STATEMENT

A specific example is as follows:

»10 IF A=100 THEN A=0 ELSE A=A+1

Upon execution of line 10 IF A is equal to 100, THEN A would be assigned a value of 0. IF A does not
equal 100, A would be assigned a value of A + 1. If it is desired to transfer control to different line numbers
using the IF statement, the GOTO statement may be omitted. The following examples would yield the
same results: - » : - :

»20 IF INT(A)< 10 THEN GOTO 100 ELSE GOTQ 200

20 IF INT(A)< 10 THEN 100 ELSE 200

Additionally, the THEN statement can be replaced by any valid MCS BASIC-52 statement, as shown
below:

>30 IF A<>10 THEN PRINT A ELSE 10

230 IF A<>10 PRINT A ELSE 10

The ELSE statement may be omitted. If it is, control will pass to the next statement.

EXAMPLE:

20 IF A=10 THEN 40

>30 PRINT A

In this example, IF A equals 10 then control would be passed to line number 40. If A does not equal 10
line number 30 would be executed.

45

mter MCS® BASIC-52

4.15 DESCRIPTION OF STATEMENTS
COMMENTS ON IF-THEN-ELSE-

Version 1.1 is not compatible with V1.0 when the IF_THEN_ELSE STATEMENT is used with multiple
statements per line. In V1.0, the following two examples would function in the same manner.

EXAMPLE 1:

10 IF A=B THEN C=A : A=A/2 : GOTO 100
20 PRINT A

EXAMPLE 2:

10 IF A=B THEN C=A
12 A=A/2

14 GOTO 100

20 PRINT A

They function in the same manner because V1.0 treats the delimiter (:) exactly the same as a carriage
return (cr) in every case. However, V1.1 executes the remainder of the line if and only if the test A=B
proves to be true. This means in EXAMPLE 1 IF A did equal B, V1.1 would then set C=A, then set
A =A/2, then execute line 100. IF A did not equal B, V1.1 would then PRINT A and ignore the statements
C=A:A=A/2:GOTO 100. V1.1 will execute EXAMPLE 2 exactly the same way as V1.0. This same
logical interpretation holds true for the ELSE statement as well. This example dictates a simple rule for
maintaining IF_THEN__ELSE compatibility between the two versions. IF THE DELIMITER (:) IS NOT
USED IN AN IF_THEN_ELSE STATEMENT, V1.0 AND V1.1 WILL TREAT THE STATEMENTS
IN THE SAME MANNER!!

This change was made because most users of MCS BASIC-52 felt that the V1.1 interpretation of this
statement was more useful because fewer GOTO statements need be employed in a typical program.

46

intel MCS® BASIC-52

4.16 DESCRIPTION OF STATEMENTS
STATEMENTS: INPUT

MODE: RUN

TYPE: INPUT/OUTPUT

The INPUT statement allows users to enter data from the console during program execution. One or more
variables may be assigned data with a single input statement. The variables must be separated by a comma.

EXAMPLE:

INPUT A, B

Would cause the printing of a question mark (?) on the console device as a prompt to the operator to input
two numbers separated by a comma. If the operator does not enter enough data, then MCS BASIC-52
responds by outputting the message TRY AGAIN to the console device.

EXAMPLE:

>10 INPUT A, B
>20 PRINT A, B
>RUN

?1

TRY AGAIN

The INPUT statement may be written so that a descriptive prompt is printed to tell the user what to type.
The message to be printed is placed in quotes after the INPUT statement. If a comma appears before the
first variable on the input list, the question mark prompt character will not be displayed.

EXAMPLES:

>10 INPUT"ENTER A NUMBER"A >10 INPUT"ENTER A NUMBER-", A

>20 PRINT SQR(A) >20 PRINT SQR(A)
>RUN >RUN
ENTER A NUMBER ENTER A NUMBER-100
7100 10

10

47

intel MCS® BASIC-52

4.16 DESCRIPTION OF STATEMENTS

Strings can also be assigned with an INPUT statement. Strings are always terminated with a carriage return -
(cr). So, if more than one string input is requested with a single INPUT statement, MCS BASIC-52 will
prompt the user with a question mark. ‘

EXAMPLES:
>10 STRING 110, 10 >10 STRING 110,10
>20 INPUT “NAME: ", $(1) 220 INPUT "NAMES: ", $(1),%(2)
>30 PRINT "HI ", $(1} >30 PRINT "HI ", $(1)," AND ™, $(2)
>RUN >RUN
NAME: SUSAN NAMES: BILL
HI SUSAN ?ANN
HI BILL AND ANN
READY
READY

Additionally, strings and variables can be assigned with a single INPUT statement.

EXAMPLE:

>10 STRING 100, 10

>20 INPUT"NAME(CR): AGE - ", #(1),A
>30 PRINT "HELLO ",$(1),", YOU ARE ", A, "YEARS QLD"
DRUN

NAME(CR), AGE - FRED
718 .
HELLO FRED, YOU ARE 15 YEARS OLD

READY
>

48

intel MCS® BASIC-52

4.17 DESCRIPTION OF STATEMENTS
STATEMENT: LET

MODE: COMMAND AND/OR RUN

TYPE: ASSIGNMENT

The LET statement is used to assign a variable to the value of an expression. The generalized form of
LET is:

LET [var] = [expr]

EXAMPLES:

LET A = 10#SIN(B)/100 or

LET A=A+ 1

Note that the = sign used in the LET statement is not equality operator, but rather a ‘‘replacement’’
operator and that the statement should be read A is replaced by A plus one. THE WORD LET IS ALWAYS
OPTIONAL, i.e.

LET A = 2 is the same as A = 2

When LET is omitted the LET statement is called an IMPLIED LET. This document will use the word
LET to refer to both the LET statement and the IMPLIED LET statement.

The LET statement is also used to assign the string variables, i.e:

LET $(1)="THIS IS A STRING" or

LET $(2)=%(1)

Before Strings can be assigned the STRING [expr], [expr] STATEMENT MUST be executed, or else a
MEMORY ALLOCATION ERROR will occur.

SPECIAL FUNCTION VALUES can also be assigned by the LET statement, i.e.:

LET IE = 82H or
LET XBYTE(2000H)=5AH or

LET DBYTE(25)=XBYTE(1000)

49

intel MCS® BASIC-52

4.18 DESCRIPTION OF STATEMENTS
STATEMENT: ONERR([In num]

MODE: RUN

TYPE: CONTROL

The ONERR[In num] statement lets the programmer handle arithmetic errors, should they occur, during
program execution. Only ARITH. OVERFLOW, ARITH. UNDERFLOW, DIVIDE BY ZERO, and BAD
ARGUMENT errors can be ‘‘trapped’’ by the ONERR statement, all other errors are not. If an arithmetic
error occurs after the ONERR statement is executed, the MCS BASIC-52 interpreter will pass control to
the line number following the ONERR[In num] statement. The programmer can handle the error condition
in any manner suitable to the particular application. Typically, the ONERR[In num] statement should be
viewed as an easy way to handle errors that occur when the user provides inappropriate data to an INPUT
statement.

With the ONERR[In num] statement, the programmer has the option of determining what type of error
occurred. This is done by examining external memory location 257 (101H) after the error condition is
trapped. The error codes are as follows:

ERROR CODE = 10

[}

DIVIDE BY ZERQO
ERROR CODE

20

ARITH. OVERFLOW

ERROR CODE = 30

ARITH. UNDERFLOW

ERROR CODE = 40

BAD ARGUMENT

This location may be examined by using an XBY(257) statement.

50

intel MCS® BASIC-52

4.19 DESCRIPTION OF STATEMENTS
STATEMENT: ONEXI1 [in num]

MODE: RUN

TYPE: CONTROL

The ONEX1 [In num] statement lets the user handle interrupts on the 8052AH’s INT1 pin with a BASIC
program. The line number following the ONEX1 statement tells the MCS BASIC-52 interpreter which line
to pass control to when an interrupt occurs. In essence, the ONEXI1 statement ‘‘forces’” a GOSUB to the
line number following the ONEX1 statement when the INT1 pin on the 8052AH is pulled low. The
programmer must execute a RETI statement to exit from the ONEX1 interrupt routine. If this is not done
all future interrupts on the INT1 pin will be ‘‘locked out’’ and ignored until a RETI is executed.

The ONEX1 statement sets bits 7 and 2 of the 8052AH’s interrupt enable register IE. Before an interrupt
can be processed, the MCS B ASIC-52 interpreter must complete execution of the staement it is currently
processing. Because of this, interrupt latency can vary from microseconds to tens of milliseconds. The
ONTIME [expr], {In num] interrupt has priority over the ONEX1 interrupt. So, the ONTIME interrupt
can interrupt the ONEX1 interrupt routine.

51

intel MCS® BASIC-52

4.20 DESCRIPTION OF STATEMENTS
STATEMENT: ONTIME [expr], [In num]

MODE: RUN

TYPE: CONTROL

Since MCS BASIC-52 processes a line in the millisecond time frame and the timer/counters on the 8052AH
operate in the micro-second time frame, there is an inherent incompatibility between the timer/counters on
the 8052AH and MCS BASIC-52. To help solve this situation the ONTIME [expr], [In num] statement
was devised. What ONTIME does is generate an interrupt everytime the SPECIAL FUNCTION OPER-
ATOR, TIME, is equal to or greater than the expression following the ONTIME statement. Actually, only
the integer portion of TIME is compared to the integer portion of the expression. The interrupt forces a
GOSUB to the line number ([In num]) following the expression ([expr]) in the ONTIME statement.

Since the ONTIME statement uses the SPECIAL FUNCTION OPERATOR, TIME, the CLOCKI1 statement
must be executed in order for ONTIME to operate. If CLOCK1 is not executed the SPECIAL FUNCTION
OPERATOR, TIME, will never increment and not much will happen.

Since the ONTIME statement generates an interrupt when TIME is greater than or equal to the expression
following the ONTIME statement, how can periodic interrupts be generated" That’s easy, the ONTIME
statement must be executed again in the interrupt routine: ’

EXAMPLE:

>10 TIME=0 : CLOCK1 : ONTIME 2,100 : DO

20 WHILE TIME<10 : END

2100 PRINT "“TIMER INTERRUPT AT -", TIME, "SECONDS"
2110 ONTIME TIME+2,100 : RETI

>RUN

TIMER INTERRUPT AT
TIMER INTERRUPT AT
TIMER INTERRUPT AT
TIMER INTERRUPT AT
TIMER INTERRUPT AT

2. 045 SECONDS
4. 045 SECONDS
6. 045 SECONDS
8. 045 SECONDS
10. 043 SECONDS

READY

You may wonder why the TIME that was printed out was 45 milliseconds greater than the time that the
interrupt was supposed to be generated. That’s because the terminal used in this example was running at
4800 BAUD and it takes about 45 milliseconds to print the message TIMER INTERRUPT AT -‘¢ *’

52

intel MCS® BASIC-52

4.20 DESCRIPTION OF STATEMENTS

If the programmer does not want this delay, a variable should be assigned to the SPECIAL FUNCTION
OPERATOR, TIME, at the beginning of the interrupt routine.

EXAMPLE:

»10 TIME=0 : CLOCA1 : ONTIME 2,100: DO

»20 WHILE TIME<10 : END

2100 A=TIME

>110 PRINT “TIMER INTERRUPT AT -*", A, "SECONDS"
2120 ONTIME A+2,100 : RETI

>RUN

TIMER INTERRUPT AT - 2 SECONDS
TIMER INTERRUPT AT - 4 SECONDS
TIMER INTERRUPT AT - & SECONDS
TIMER INTERRUPT AT - 8 SECONDS
TIMER INTERRUPT AT - 10 SECONDS

READY

Like the ONEX1 statement, the ONTIME interrupt routine must be exited with a RETI statement. Failure
to do this will ‘‘lock-out’’ all future interrrupts.

The ONTIME interrupt has priority over the ONEX1 interrupt. This means that the ONTIME interrupt can
interrupt the ONEX1 interrupt routine. This priority was established because time related functions in
control applications were viewed as critical routines. If the user does not want the ONEXI1 routine to be
interrupted by the ONTIME interrupt, a CLOCKO or a CLEARI statement should be executed at the
beginning of the ONEX1 routine. The interrupts would have to be re-enabled before the end of the ONEX1
routine. The ONEX1 interrupt cannot interrupt an ONTIME routine.

The ONTIME statement in MCS BASIC-52 is unique, relative to most BASICS. This powerful statement

eliminates the need for the user to ‘‘test’’ the value of the TIME operator periodically throughout the
BASIC program.

53

intel MCS® BASIC-52

4.21 DESCRIPTION OF STATEMENTS

STATEMENT: PRINT or P. (? VERSION 1.1 ONLY)

MODE: COMMAND and/or RUN

TYPE: INPUT/OUTPUT

The PRINT statement directs MCS BASIC-52 to output to the console device. The value of expressions,
strings, literal values, variables or test strings may be printed out. The various forms may be combined in
the print list by separating them with commas. If the list is terminated with-a comma, the carriage return/

line feed will be suppressed. P. is a ‘‘shorthand’’ notation for PRINT. In Version 1.1 ? is also ‘‘shorthand”’
notation for PRINT.

EXAMPLES:
SPRINT 10#10, 3#3 >PRINT "MCS-S1“ >PRINT 5, 1E3
100 9 MCS-51 5 1000

Values are printed next to one another with two intervening blanks. A PRINT statement with no arguments
causes a carriage return/line feed sequence to be sent to the console device.

SPECIAL PRINT FORMATTING STATEMENTS

TAB([expr])

The TAB([expr]) function is used in the PRINT statement to cause data to be printed out in exact locations
on the output device. TAB([expr]) tells MCS BASIC-52 which position to begin printing the next value
in the print list. If the printhead or cursor is on or beyond the specified TAB position, MCS BASIC-52

will ignore the TAB function.

EXAMPLE:

>PRINT TAB(S), "X, TAB(10), "Y"
X Y

SPC([expr])

The SPC([expr]) function is used in the PRINT statement to cause MCS BASIC-52 to output the number
of spaces in the SPC argument. ,

EXAMPLE:

>PRINT A,SPC(S),B

may be used to place an additional 5 spaces between the A and B over and above the two that would
normally be printed.

54

intel MCS® BASIC-52

4.21 DESCRIPTION OF STATEMENTS

CR

The CR function is interesting and unique to MCS BASIC-52. When CR is used in a PRINT statement it
will force a carriage return, but no line feed. This can be used to create one line on a CRT device that is

repeatedly updated.

EXAMPLE:

>10 FOR I=1 TO 1000
>20 PRINT I,CR,
>30 NEXT I

will cause the output to remain only on one line. No line feed will ever be sent to the console device.
USING(special characters)

The USING function is used to tell MCS BASIC-52 what format to display the values that are printed.
MCS BASIC-52 “‘stores’’ the desired format after the USING statement is executed. So, all outputs
following a USING statement will be in the format evoked by the last USING statement executed. The
USING statement need not be executed within every PRINT statement unless the programmer wants to
change the format. U. is a ‘‘shorthand’’ notation for USING. The options for USING are as follows:

USING(Fx) — This will force MCS BASIC-52 to output all numbers using the floating point format. The
value of x determines how many significant digits will be printed. If x equals 0, MCS
BASIC-52 will not output any trailing zeros, so the number of digits will vary depending
upon the number. MCS BASIC-52 will always output at least 3 significant digits even if
x is 1 or 2. The maximum value for x is 8.

EXAMPLE:

>10 PRINT USING(F3),1,2,3
»20 PRINT USING(F4),1,2,3
>30 PRINT USING(FS),1,2,3
>40 FOR I=10 TO 40 STEP 10
>S50 PRINT I

»>60 NEXT I

>RUN

.00 E0O 2 00E C 3.00EO

.000 E0C 2000 E O 3.000 E O
.0000 E O 2.0000 E O 3.0000 E O
. 0000 E+1

. 0000 E+1

. 0000 E+1

. 0000 E+1

P WN = =

READY

55

intel MCS® BASIC-52

4.21 DESCRIPTION OF STATEMENTS

USING(#.#) — This will force MCS BASIC-52 to output all numbers using an integer and/or’ fraction
format. The number of ‘‘#’’ ’s before the decimal point represents the number of sig-
nificant integer digits that will be printed in the fraction. The decimal point may be
omitted, in which case only integers will be printed. USING may be abbreviated U.
USING (###.###), USING(######) and USING(## #### ##) are allvalid
in MCS BASIC-52. The maximum number of *‘#’’ characters is 8. If MCS BASIC-52
cannot output the value in the desired format (usually because the value is too large) a
.question mark (?) will be printed to console device, then BASIC will output the number
in the FREE FORMAT described below-

EXAMPLE:

>10 PRINT USING(##. ##),1,2,3
»>20 FOR I=1 TO 120 STEP 20
>30 PRINT I

>40 NEXT I

>RUN

NOTE: The USING(Fx) and the USING(#.#) formats will always ‘‘align’’ the decimal points when
printing a number. This feature makes displayed columns of numbers easy to read.

USING(0) — This argument lets MCS BASIC-52 determine what format to use. The rules are simple, if
the number is between +99999999 and =+ .1, BASIC will display integers and fractions. If
it is out of this range, BASIC will use the USING(FO0) format. Leading and trailing zeros
will always be suppressed. After reset, MCS BASIC-52 is placed in the USING(0) format.

56

intel MCS® BASIC-52

4.22 DESCRIPTION OF STATEMENTS

STATEMENT: PRINT# or P.# (?# VERSION 1.1 ONLY)

MODE: COMMAND and/or RUN

TYPE: INPUT/OUTPUT

The PRINT#, P.#, and ?# (in Version 1.1 only) statement does the same thing as the PRINT, P. and ?
(in Version 1.1 only) statement except that the output is directed to the list device instead of the console
device. The BAUD rate to the list device must be initialized by the STATEMENT — BAUD[expr] before
the PRINT#, P.#, or, 7# statement is used. All comments that apply to the PRINT, P. or, ? statement .

apply to the PRINT#, P.#, or ? statement. P.# and ?# (in Version 1.1 only) are ‘shorthand’’ notations
for PRINT#.

57

intel MCS® BASIC-52

4.23 DESCRIPTION OF STATEMENTS
'STATEMENTS: PHO., PH1., PHO.#, PH1.#
MODE: COMMAND and/or RUN

TYPE: INPUT/OUTPUT

The PHO. and PH1. statements do the same thing as the PRINT statement except that the values are printed
out in a hexadecimal format. The PHO. statement suppresses two leading zeros if the number to be printed
is less than 255 (OFFH). The PHI. statement always prints out four hexadecimal digits. The character
. ““H”’ is always printed after the number when PHO. or PH1. is used to direct an output. The values printed
are always truncated integers. If the number to be printed is not within the range of valid integer (i.e.
between 0 and 65535 (OFFFFH) inclusive), MCS BASIC-52 will default to the normal mode of print. If
this happens no ‘‘H’’ will be printed out after the value. Since integers can be entered in either decimal
or hexadecimal form the statements PRINT, PHO., and PH1. can be used to perform decimal to hexadecimal
and hexadecimal to decimal conversion. All comments that apply to the PRINT statement apply to the
PHO. and PHI1. statements. PHO.# and PH1.# do the same thing as PHO. and PH1. respectively, except
that the output is directed to the list device instead of the console device.

EXAMPLES:
SPHO. 2#2 >PHL. 2#2 >PRINT 99H >PHO. 100
04H 0004H 153 64H
>PHO. 1000 >PHL. 1000 >P. 3EBH >PHO. PI
3EBH O3ESH 1000 03H

58

intel ~ MCS® BASIC-52

4.24 DESCRIPTION OF STATEMENTS

STATEMENT: PRINT@, PHO.@, PH1.@ (VERSION 1.1 ONLY)
MODE: COMMAND AND/OR RUN

TYPE: INPUT/OUTPUT

The PRINT@ (P.@ OR ?@), PHO.@, and PH1.@ statements do the same thing as the PRINT (P.@ or
@), PHO., and PH1. statements respectively except that the output is directed to a user defined output
driver. These statements assume that the user has placed an assembly language output routine in external
code memory location 403CH. To enable the @ driver routine the user must SET BIT 27H (39D) in the
internal memory of the MCS B ASIC-52 device. BIT 27H (39D) is BIT 7 of internal memory location 24H
(36D). This BIT can be set by the BASIC statement DBY(24H) = DBY(24H).OR. 80H or by a user supplied
assembly language routine. If the user evokes the @ driver routine and this bit is not set, the output will
be directed to the console driver. The only reason this BIT must be set to enable the @ driver is that it
adds a certain degree of protection from accidently typing LIST@ when no assembly language routine
exist. The philosophy here is that if the user sets the bit, the user provides the driver or else!!!

When MCS BASIC-52 calls the user output driver routine at location 403CH, the byte to output is in the
accumulator and RS of register bank 0 (RB0). The user may modify the accumulator (A) and the data
pointer (DPTR) in the assembly language output routine, but cannot modify any of the registers in RBO.
This is intended to make it real easy for the user to implement a parallel or serial output driver without
having to do a PUSH or a POP.

59

intel MCS® BASIC-52

"4.25‘ DESCRIPTION OF STATEMENTS
STATEMENT: PUSH[expr]

MODE: COMMAND AND / OR RUN

TYPE: ASSIGNMENT

The arithmetic expression, or expressions following the PUSH statement are evaluated and then sequentially
placed on MCS BASIC-52’s ARGUMENT STACK. This statement, in conjunction with the POP statement
provide a simple means of passing parameters to assembly language routines. In addition, the PUSH and
POP statements can be used to pass parameters to BASIC subroutines and to ‘‘SWAP”’ variables. The last
value PUSHED onto the ARGUMENT STACK will be the first value POPPED off the ARGUMENT
STACK.

VARIATIONS:
More than one expression can be pushed onto the ARGUMENT stack with a single PUSH statement. The

expressions are simply followed by a comma: PUSH[expr],[expr],........ [expr]. The last value PUSHED
onto the ARGUMENT STACK will be the last expression [expr] encountered in the PUSH STATEMENT.

EXAMPLES:
SWAPP ING SUBROUTINE
VARIABLES PASSING
>10 A=10 210 PUSH 1,3,2
»20 B=20 >20 GOSUB 100
>30 PRINT A, B >30 POP R1,R2
>40 PUSH A, B >40 PRINT R1,R2
>S5S0 POP A, B >S50 END
>60 PRINT A, B >100 REM QUADRATIC A=2, B=3,C=1 IN EXAMPLE
>RUN >110 POP A, B, C
>120 PUSH (-B+SQR(B#B-4#A%C))/ (2%#A)
~10 20 >130 PUSH (-B-SQR(B#B-43#A%C))/ (2#A)
20 10 >140 RETURN
>RUN
READY
> -1 -85
READY
>

60

intel MCS® BASIC-52

4.26 DESCRIPTION OF STATEMENTS

STATEMENT: POP[var]

MODE: COMMAND AND / OR RUN

TYPE: ASSIGNMENT

The top of the ARGUMENT STACK is assigned to the variable following the POP statement and the
ARGUMENT STACK is ‘‘POPPED’’ (i.e. incremented by 6). Values can be placed on the stack by either

the PUSH statement or by assembly language CALLS. NOTE — If a POP statement is executed and no
number is on the ARGUMENT STACK, an A-STACK ERROR will occur.

VARIATIONS:

More than one variable can be popped off the ARGUMENT stack with a single POP statement. The
variables are simply followed by a comma (i.e. POP [var],[var], [var]).

EXAMPLES:

See PUSH statement.

COMMENT:

The PUSH and POP statements are unique to MCS BASIC-52. These powerful statements can be used to
“‘get around’’ the GLOBAL variable problems so often encountered in BASIC PROGRAMS. This problem
arises because in BASIC the ‘‘main’’ program and all subroutines used by the main program are required
to use the same variable names (i.e. GLOBAL VARIABLES). It is not always convenient to use the same
variables in a subroutine as in the main program and you often see programs re-assign a number of variables
(i.e. A=Q) before a GOSUB STATEMENT is executed. If the user reserves some variable names JUST
for subroutines (i.e. S1, S2) and passes variables on the stack as shown in the previous example, you will
avoid any GLOBAL variable problems in MCS BASIC-52.

61

intel MCS® BASIC-52

4.27 DESCRIPTION OF STATEMENTS
STATEMENT: PWM [expr], [expr], [expr]

MODE: COMMAND and/or RUN

TYPE: INPUT/OUTPUT

PWM stands for PULSE WIDTH MODULATION. What it does is generate a‘user defined pulse sequence
on P1.2 (bit 2 of I/O PORT 1) of the MCS BASIC-52 device. The first expression following the PWM
statement is the number of clock cycles the pulse will remain high. A clock cycle is equal to 12/XTAL,
which is 1.085 microseconds at 11.0592 MHz. The second expression is the number of clock cycles the
pulse will remain low and the third expression is the total number of cycles the user wishes to output. All
expressions in the PWM statement must be valid integers (i.e. between 0 and 65535 (OFFFFH) 1nclus1ve)
Additionally, the minimum value for the first two expressions in the PWM statement is 25.

The PWM statement can be used to create ‘‘audiable’” feedback in a system. In addition, just for fun, the
programmer can play music using the PWM statement. More details about using the PWM statement are

in the appendix.

EXAMPLE:

>PWIt 100, 100, 1000

At 11.0592 MHz would generate 1000 cycles of a square wave that has a périod of 217 microseconds
(4608 Hz) on P1.2.

62

intal MCS® BASIC-52

4.28 DESCRIPTION OF STATEMENTS

STATEMENT: REM

MODE: RUN (Version 1.0) COMMAND AND/OR RUN (Version 1.1)

TYPE: CONTROL — PERFORMS NO OPERATION

REM is short for REMark. It does nothing, but allows the user to add comments to a program. Comments
are usually needed to make a program a little easier to understand. Once a REM statement appears on a
line the entire line is assumed to be a remark, so a REM statement may not be terminated by a colon (:),
however, it may be placed after a colon. This can be used to allow the programmer to place a comment

on each line.

EXAMPLES:

>10 REM INPUT ONE VARIABLE

220 INPUT A

>30 REM INPUT ANOTHER VARIABLE
>40 INPUT B

>80 REM MULTIPLY THE TWO

260 Z=A#B

>70 REM PRINT THE ANSWER

>80 PRINT Z

>10 INPUT A : REM INPUT ONE VARIABLE

>20 INPUT B : REM INPUT ANOTHER VARIABLE
>30 Z=A#B : REM MULTIPLY THE TWO

>40 PRINT Z :REM PRINT THE ANSWER

The following will NOT work because the entire line would be interpreted as a REMark, so the PRINT
statement would not be executed: '

>10 REM PRINT THE NUMBER : PRINT A

NOTE — The reason the REM statement was made executable in the command mode in Version 1.1 of
MCS BASIC-52 is that if the user is employing some type of UPLOAD/DOWNLOAD routine with a
computer, this lets the user insert REM statements, without line numbers in the text and not download
them to the MCS BASIC-52 device. This helps to conserve memory.

intel MCS® BASIC-52

4.29 DESCRIPTION OF STATEMENTS

STATEMENT: RETI

MODE: RUN

TYPE: CONTROL

The RETI statement is used to exit from interrupts that ‘are handled by an MCS BASIC-52 program.
Specifically, the ONTIME and the ONEX1 interrupts. The RETI statement does the same: thing as the
RETURN statement except that it also clears a software interrupt flags so interrupts can again be acknowl-

edged. If the user fails to exécute the RETI statement in the interrupt procedure, all future interrupts will
be ignored. o : . 4 e

64

intel MCS® BASIC-52

4.30 DESCRIPTION OF STATEMENTS

STATEMENT: STOP

MODE: RUN

TYPE: CONTROL

The STOP statement allows the programmer to break program execution at specific points in a program.
After a program is STOPped variables can be displayed and/or modified. Program execution may be
resumed with a CONTinue command. The purpose of the STOP statement is to allow for easy program
‘‘debugging.”’ More details of the STOP-CONT sequence are covered in the DESCRIPTION OF COM-
MAND — CONT section of this manual.

EXAMPLE:

>10 FOR I=1 TO 100
>20 PRINT I

»30 STOP

>40 NEXT I

>RUN

1
STOP - IN LINE 40

READY
>CONT

2

Note that the line number printed out after the STOP statement is executed is the line number following
the STOP statement, NOT the line number that contains the STOP statement!!!

65

intel MCS® BASIC-52

4.31 DESCRIPTION OF STATEMENTS
STATEMENT: STRING [expr], [expr]

MODE: COMMAND and/or RUN

TYPE: CONTROL

The STRING [expr],[expr] statement allocates memory for strings. Initially, no memory is allocated for
strings. If the user attempts to define a string with a statement such as LET $(1)=‘“HELLO’’ before
memory has been allocated for strings, a MEMORY ALLOCATION ERROR will be generated. The first
expression in the STRING [expr],[expr] statement is the total number of bytes the user wishes to allocate
for string storage. The second expression denotes the maximum number of bytes that are in each string.
- These two numbers determine the total number of defined string variables.

You might think that the total number of defined strings would be equal to the first expression in the
STRING [expr],[expr] statement divided by the second expression. Ha,ha, do not be so presumptuous.
MCS BASIC-52 requires one additional byte for each string, plus one additional byte overall. This means
that the statement STRING 100,10 would allocate enough memory for 9 string variables, ranging from
$(0) to $(8) and all of the 100 allocated bytes would be used. Note that $(0) is a valid string in MCS
BASIC-52.

After memory is allocated for string storage, neither commands, such as NEW nor statements, such as
CLEAR, will ‘‘de-allocate’’ this memory. The only way memory can be de-allocated is to execute a
STRING 0,0 statement. STRING 0,0 will allocate no memory to string variables.

IMPORTANT NOTE

Every time the STRING [expr],[expr] statement is executed, MCS BASIC-52 executes the equivalent of
a CLEAR statement. This is a necessity because string variables and numeric variables occupy the same
external memory space. So, after the STRING statement is executed, all variables are ‘‘wiped-out.’’ Because
of this, string memory allocation should be performed early in a program (like the first statement or so)
and string memory should never be *‘re-allocated’’ unless the programmer is willing to destroy all defined
variables.

66

intal MCS® BASIC-52

4.32 DESCRIPTION OF STATEMENTS
STATEMENTS: UI1 and UI0 (USER INPUT)
MODE: COMMAND and/or RUN

TYPE: CONTROL

un

The UIl statement permits the user to write specific console input drivers for MCS BASIC-52. After UIl
is executed BASIC will call external program memory location 4033H when a console input is requested.
The user must provide a JUMP instruction to an ASSEMBLY LANGUAGE INPUT ROUTINE at this
location. The appropriate ASCII input from this routine is placed in the 8052AH’s accumulator and the
user input routine returns back to BASIC by executing an ASSEMBLY LANGUAGE RET instruction.
The user must NOT modify any of the 8052AH’s registers in the assembly language program with the
exception of the MEMORY and REGISTER BANK allocated to the USER. THE ASSEMBLY LAN-
GUAGE LINKAGE section of this manual explains what memory MCS BASIC-52 allocates to the user
and how the user may allocate additional memory if needed.

In addition to providing the INPUT driver routine for the UIl statement, the user must also provide a
CONSOLE STATUS CHECK routine. This routine checks to see if the CONSOLE DEVICE has a character
ready for MCS BASIC-52 to read. BASIC CALLS external memory location 4036H to check the CONSOLE
STATUS. The CONSOLE STATUS ROUTINE sets the CARRY BIT to 1 (C=1) if a character is ready
for BASIC to read and CLEARS the CARRY BIT (C=0) if no character is ready. Again, the contents of
the REGISTERS must not be changed. MCS BASIC-52 uses the CONSOLE STATUS CHECK routine
to examine the keyboard for a control-C character during program execution and during a program LISTING.
This routine is also used to perform the GET operation.

ulo

The UIO statement assigns the console input console routine back to the software drivers resident on the
MCS BASIC-52 device. UIO and UIl may be placed anywhere within a program. This allows the BASIC
program to accept inputs from different devices at different times.

NOTE: The UIO and UI1 function is controlled by BIT 30 (1EH) in the 8052AH’s internal memory. BIT
30 is in internal memory location 35.6 (23.6H) i.e. the sixth bit in internal memory location 35 (23H).
When BIT 30 is SET (BIT 30 = 1), the user routine will be called. When BIT 30 is CLEARED (BIT 30
= (), the MCS BASIC-52 input driver routine will be used. The assembly language programmer can use
this information to change the input device selection in assembly language.

67

intel MCS® BASIC-52

4.33 DESCRIPTION OF STATEMENTS

STATEMENTS: UO1 and UO0 (USER OUTPUT)

MODE: COMMAND AND/OR RUN

TYPE: CONTROL

uo1

The UO1 STATEMENT permits the user to write specific console output drivers for MCS BASIC-52.
After UOLI is executed BASIC will call external program memory location 4030H when a console output
is requested. The user must provide a JUMP instruction to an ASSEMBLY LANGUAGE OUTPUT
ROUTINE at this location. MCS BASIC-52 places the output character in REGISTER 5 (R5) of REGISTER
BANK 0 (RBO0). The user returns back to BASIC executing an assembly language RET instruction. The
user must NOT modify any of the 8052AH’s REGISTERS, including the ACCUMULATOR during the

user output procedure with the exception of the MEMORY and REGISTER BANK allocated to the user.
UO1 gives the user the freedom to wrlte custom output routines for MCS BASIC-52 :

uoo

UOO STATEMENT assigns the console output routine back to the software drivers resident on the MCS
BASIC-52 device. UOO and UO1 may be placed anywhere within a program. This allows the BASIC
program to output characters to dlfferent dev1ces at dlfferent times.

NOTE: The UOO and UOL1 function is controlled by BIT 28 (1CH) in the 8052AH’s internal memory.
BIT 28 is in the internal memory location 35.4 (23.4H), i.e. the fourth bit in the internal memory location
35 (28H). When BIT 28 is SET (BIT 28 = 1), the user routines will be called. When BIT 28 is cleared,
(BIT 28 = 0), the MCS BASIC-52 output drivers will be used. The assembly language prograrnmer can
use this information to change the output device selection in assembly language.

68

intel MCS® BASIC-52

4.34 DESCRIPTION OF STATEMENTS
~ STATEMENT: IDLE (VERSION 1.1 ONLY)
MODE: RUN

TYPE: CONTROL

The IDLE statement forces the MCS BASIC-52 device into a ‘‘wait until interrupt mode.’’ Execution of
statements is halted until either an ONTIME [expr], [In num] or an ONEX1 [In num] interrupt is received.
The user must make sure that one or both of these interrupts have been enabled before executing the IDLE
instruction or else the MCS BASIC-52 device will enter a ‘‘wait forever mode’’ and for all practical
purposes the system will have crashed.

When an ONTIME [expr], [In num] or an ONEXT1 [In nufn] is received while in the IDLE mode, the MCS
BASIC-52 device will execute the interrupt routine, then execute the statement following the IDLE in-
struction. Hence, the execution of the IDLE instruction is terminated when an interrupt is received.

While in the IDLE mode, the MCS BASIC-52 device asserts the /DMA ACKNOWLEDGE pin (PORT 1,
BIT 6 = 0) to indicate that the IDLE instruction is active and that no external bus activity will occur.
This PIN is physically pin 7 on the MCS BASIC-52 device. When the MCS BASIC-52 device exits from
the IDLE mode, this pin is placed back into the logically 1 (non-active) state.

The user may also exit from the IDLE mode with an assembly language interrupt routine. This is accom-
plished by setting BIT 33 (21H) (which is in Bit addressable RAM location 36.1) when returning from
the assembly language interrupt routine. If this bit is not set by the user, the MCS BASIC-52 device, will
remain in thc'IDLE mode when the user assembly language routine returns to BASIC. | ‘ '

An aﬁempt to execute the IDLE statement in the direct mode will yield a BAD SYNTAX ERROR.

69

intal | MCS® BASIC-52

4.35 DESCRIPTION OF STATEMENTS
STATEMENT: RROM [interger] (VERSION 1.1 ONLY)
MODE: COMMAND AND/OR RUN

TYPE: CONTROL

RROM stands for RUN ROM. What it does is select a program in the EPROM file, then execute the
program. The integer after the RROM statement selects what program in the EPROM file is to be executed.
In the COMMAND mode RROM 2 would be equivalent to typing ROM 2, then RUN. But, notice that
RROM [integer] is a statement. This means that a program that is already executing can actually force the
execution of a completely different program that is in the EPROM file. This gives the user the ability to
‘‘change programs’’ on the fly.

If the user executes a RROM [integer] statement and an invalid integer is entered (say 6 programs are
contained in the EPROM file and the user enters RROM 8, or no EPROM is in the system), no error will
be generated and MCS BASIC-52 will execute the statement following the RROM [integer] statement.

NOTE — Every time the RROM [integer] statement is executed, all variables and strings are set equal to

zero, so variables and strings CANNOT be passed from one program to another by using the RROM
[integer] statement. Additionally, all MCS BASIC-52 evoked interrupts are cleared.

70

intel MCS® BASIC-52

4.36 DESCRIPTION OF STATEMENTS

STATEMENTS: LD@ [expr] and ST@ [expr] (VERSION 1.1 ONLY)

MODE: COMMAND AND/OR RUN

TYPE: INPUT/OUTPUT

ST@

The ST@ [expr] statement lets the user specify where MCS BASIC-52 floating point numbers are to be
stored. The expression [expr] following the ST@ statement specifies the address of where the number is
to be stored and the number is assumed to be on the argument stack. The ST@ [expr] statement is
designed to be used in conjunction with the LD@ [expr] statement. The purpose of these two statements
is to allow the user to save floating point numbers anywhere in memory with the assumption that the user
will employ some type of battery back-up or non-volatile scheme with this memory.

LD@

The LD@ [expr] statement lets the user retrieve floating point numbers that were saved with the ST@
[expr] statement. The expression [expr] following the LD@ statement specifies where the number is stored

and after executing the LD@ [expr] statement, the number is placed on the argument stack.

EXAMPLE: Saving and retrieving a ten element array at location array at location OFO00H

10 REM ##:# ARRAY SAVE ##%

20 FOR I = 0 TO 9

‘30 PUSH A(I) : REM PUT ARRAY VALUE ON STACK

40 ST@ OFOOSH+6*1 : REM STORE IT. SIX BYTES PER NUMBER
50 NEXT I

&0 REM ##% GET ARRAY ##%

70 FOR I =0 T0 9

80 LD@ OFOOSH+6#1

?0 POP B(I)

100 NEXT I

Remember that each floating point number requires 6 bytes of storage. Also note that expression in the
ST@ [expr] and LD@ [expr] statements point to the most significant byte of the stored number. Hence,
ST@ (OF005H) would save the number in locations OF005H, OF004H, OF003H, OF002H, OF001H, and
OFO0OH.

71

intel MCS® BASIC-52

4.37 DESCRIPTION OF STATEMENTS

STATEMENT: PGM

MODE: COMMAND AND/OR RUN

TYPE: INPUT/OUTPUT

The PGM statement. givés the user the eibility to program an EPROM or EEPROM while executing a
BASIC program. The PGM statement requires that the user set up internal memory locations 18H
(24D), 19H (25D), 1AH (26D), 1BH (27H), 1EH (30D) and 1GH (31D). Note that these internal memory

locations are normally reserved for the user!!

The User must initialize these internal memory locations with the following:

EXAMPLE:
LOCATION CONTENTS

1BH: 19H THE ADDRESS UF THE SOURCE INFORMATION THAT IS TO BE

(27D: 25D) PROGRAMMED INTO THE EPROM , LOCATION 19H IS THE LOW
BYTE AND LOCATION !BH IS THE HIGH BYTE -

1AH: 18H * THE ADDRESS - 1 OF THE EPROM LOCATION(S) THAT ARE TD

(26D: 24D) BE PROGRAMMED, LOCATION 18H IS TH LON BYTE AND
LDCATIDN 1AH IS THE HIGH BYTE

1FH: 1EH : ‘THE NUMBER OF BYTES THAT THE USER WANTS TO PROGRAM

(31D: 30D} LOCATION 1EH IS THE LOW BYTE AND LOCATION 1FH IS
THE HIGH BYTE

The user must also initialize the width of the desired EPROM programming pulse and store the value in
internal memory locations 40H (64D).(high byte) and 41H (65D) (low byte). The reload for a 50 millisecond
EPROM programming pulse is calculated as follows:

10 REM R = RELDAD VALUE, W = WIDTH IN SECONDS (50 MILLISECONDS)

20 W= .05

30 R 65536 - W XTAL/12
40 DBY(40H) = R/256

S0 DBY(41H) = R . AND. OFFH

In addition, the user must also SET or CLEAR BIT 38.3 (26.3H) to select the INTELligent EPROM
programming algorithm. The Bit is SET to select INTELligent programming and CLEARED to select the
normal 50 millisecond algorithm. To SET the BIT, execute a DBY(38) = DBY(38) .OR. 8H Statement,
to CLEAR the BIT, execute a DBY(38) = DBY(38) .AND. OF7H instruction.

72

intel

MCS®@ BASIC-52

4.37 DESCRIPTION OF STATEMENTS
IMPORTANT NOTE!

When executed in the RUN mode, The PGM statement will not generate an error if the EPROM fails tb

program properly. Instead, the control of the program will be passed back to the user just as if the EPROM
programmed properly. The user must then examine locations 1EH and 1FH. If the contents of locations
1EH and 1FH both equal zero, then the EPROM programmed properly. If they do not, then an ERROR
occurred during the programming process. The user can then examine locations 1AH:18H to determine

what location in the EPROM failed to program.

Well, this sounds like a lot to do just to program an EPROM, but it’s not so bad. The following program
is an example of a universal EPROM/EEPROM programmer built around MCS BASIC-52. This program
can program a block of RAM into an EPROM or EEPROM that is addressed at 8000H or above.

EXAMPLE:
10 PRINT "UNIVERSAL PROM PROCRAMMER" : PRINT "WHAT TYPE OF DEVICE ?"
20 PRINT : PRINT "1 = EEPROM" : PRINT "2 = INTELLIGENT EPROM"
30 PRINT "3 = NORMAL (S0 MS) EPROM" : PRINT : INPUT “TYPE (1,2,3) - ", T
40 ON (T-1) GOSUB 340, 350, 360
S0 REM this sets up intelligent programming if needed
&0 IF W=, 001 THEN DBY(26)=DBY(26). OR. 8 ELSE DBY(26)=DBY(2&). AND. OF 7H
70 REM calculate pulse width and save it
80 PUSH (65336-(W#XTAL/12)) : GOSUB 380
{0 POP G1 : DBY(40H)=G1 : POP G1 : DBY(41H)=C1 : PRINT
100 INPUT " STARTING DATA ADDRESS - ",8 : IF 8<312 OR. S>OFFFFH THEN 100
110 PRINT : INPUT " ENDING DATA ADDRESS - ", E
120 IF E<S8. OR. E>DOFFFFH THEN 110
130 PRINT : INPUT " PROM ADDRESS - ",P : IF P<B8000H. OR. P>OFFFFH THEN 130
140 REM calculate the number of bytes to program
150 PUSH (E-S)+1 : GOSUB 380 : POP Gi : DBY(31)=G1 : POP €1 : DBY(30)=G1
1460 REM set up the eprom address
170 PUSH (P-1) : GOSUB 380 : POP G1i : DBY(26)=G1 : POP G1 : DBY(24)=0G1
180 REM set up the source address
190 PUSH S : GOSUB 380 : POP Gi : DBY(27)=G1 : POP 61 : DBY(25)=G1
200 PRINT : PRINT "TYPE A ‘CR’ ON THE KEYBOARD WHEN READY TO PROGRAM"
210 REM wait for a ‘cr’ then program the eprom
220 X=GET : IF X<>0DH THEN 220
230 REM program the eprom
240 PGM
250 REM see if any errors
260 IF (DBY(30).0R. DBY(31))=0 THEN PRINT "PROGRAMMING COMPLETE" : END
270 PRINT : PRINT "###ERROR###ERROR*##ERROR##+" : PRINT
280 REM these routines calculate the address of the source and
290 REM eprom location that failed to program
300 S1=DBY(25)+256#DBY(27) : S1=S1-1 : D1=DBY(24)+256#DBY(26)
310 PHO. "THE VALUE ", XBY(S1), : PH1. " WAS READ AT LOCATION ",S1 : PRINT
320 PHO. "THE EPROM READ ", XBY(D1), : PH1. " AT LOCATION ".Di : END
330 REM these subroutines set up the pulse width
340 W=.0005 : RETURN
350 W=.001 : RETURN
360 W=.05 : RETURN
370 REM this routine takes the top of stack and returns high, low bytes
380 POP G1 : PUSH (G1. AND. OFFH) : PUSH (INT(G1/256)) : RETURN

73

intel

CHAPTER 5 ~
Description of Arithmetic/Logic Operators and Expressions

5.1 DUAL OPERAND OPERATORS

MCS BASIC-52 contains a complete set of arithmetical and logical operators. Operators are divided into
two groups, dual operand or dyadic operators and single operand or unary operators. The generalized form
of all dual operand instructions is as follows:

[expr] OP [expr], where OP is one of the following operators:

+ ADDITION OPERATOR
EXAMPLE:

PRINT 3+2
S

/ DIVISION OPERATOR
EXAMPLE:

PRINT 100/3
20

** EXPONENTIATION OPERATOR

Raises the first expression to the power of the second expression. The power any number can be raised to
is limited to 255. The notation ** was chosen instead of the sometimes used- 1 symbol because the “‘up
arrow’’ symbol appears different on various terminals. To eliminate confusion the ** notation was chosen.

EXAMPLE:

PRINT 2##3
8

* MULTIPLICATION OPERATOR
EXAMPLE:

PRINT 33
9

— SUBTRACTION OPERATOR
EXAMPLE:

PRINT 9-6
3 -

74

intel MCS® BASIC-52

5.1 DUAL OPERAND OPERATIONS
.AND. LOGICAL AND OPERATOR

EXAMPLE:

PRINT 3. AND. 2
2

.OR. LOGICAL OR OPERATOR

EXAMPLE:

PRINT 1.0R. 4
S

.XOR. LOGICAL EXCLUSIVE OR OPERATOR

- EXAMPLE:

PRINT 7. XOR. &
1

COMMENTS ON LOGICAL OPERATORS .AND., .OR., and .XOR.

These operators perform a BIT-WISE logical function on valid INTEGERS. That means both arguments
for these operators must be between 0 and 65535 (OFFFFH) inclusive. If they are not, MCS BASIC-52
will generate a BAD ARGUMENT ERROR. All non-integer values are truncated, NOT rounded.

You may wonder why the notation .OP. was chosen for the logical functions. The only reason for this is
that MCS BASIC-52 eliminates ALL spaces when it processes a user line and inserts spaces before and
after STATEMENTS when it LISTS a user program. MCS BASIC-52 does not insert spaces before and
after operators. So, if the user types in a line such as 10 A = 10 * 10, this line will be listed as
10 A=10*10. All spaces entered by the user before and after the operator will be eliminated. The .OP.
notation was chosen for the logical operators because a line entered as 10 B = A AND B would be listed
as 10 B=AANDB. This just looked confusing, so the dots were added to the logical instructions and the
previous example would be listed as 10 B=A.AND.B, which is easier to read.

75

intel ~ MCS® BASIC-52

5.2.1 UNARY OPERATORS — GENERAL PURPOSE
ABS([expr])

Returns the ABSOLUTE VALUE of the expression.

EXAMPLES:
PRINT ABS(S) PRINT ABS(-5)
5 5

NOT([expr])

Returns a 16 bit one’s complement of the expression. The expression must be a valid integer (i.e. between
0 and 65535 (OFFFFH) inclusive). Non-integers will be truncated, not rounded. -

EXAMPLES:

PRINT NOT(65000) PRINT NOT(O)
35339 65335

INT([expr])

Returns the integer portion of the expression.

EXAMPLES:
PRINT INT(3.7) PRINT INT(100.876)
3 100

SGN([expr])

Will return a value of +1 if the argument is greater than zero, zero if the argument is equal to zero, and
—1 if the argument is less than zero.

EXAMPLES:
PRINT SGN(S52) PRINT SGN(O) PRINT SGN(-8)
1 o -1

76

intel MCS® BASIC-52

5.2.1 UNARY OPERATORS — GENERAL PURPOSE
SQR([expr])

Returns the square root of the argument. The argument may not be less than zero. The result returned will
be accurate to within +/— a value of 5 on the least significant digit.

EXAMPLES:
PRINT SGR(%) PRINT SGR(45) PRINT SGR(100)
3 &. 7082035 10

RND

Returns a pseudo-random number in the range between O and 1 inclusive. The RND operator uses a 16-
bit binary seed and generates 65536 pseudo-random numbers before repeating the sequence. The numbers
generated are specifically between 0/65535 and 65535/65535 inclusive. Unlike most BASICS, the RND
operator in MCS BASIC-52 does not require an argument or a dummy argument. In fact, if an argument
is placed after the RND operator, a BAD SYNTAX error will occur.

EXAMPLES:
PRINT RND
30278477
Pl

PI is not really an operator, it is a stored constant. In MCS BASIC-52, PI is stored as 3.1415926. Math
experts will notice that PI is actually closer to 3.141592653, so proper rounding for PI should yield the
number 3.1415927. The reason MCS BASIC-52 uses a 6 instead of a 7 for the last digit is that errors in
the SIN, COS and TAN operators were found to be greater when the 7 was used instead of 6. This is
because the number PI/2 is needed for these calculations and it is desireable, for the sake of accuracy to
have the equation PI/2 + PI/2 = PI hold true. This cannot be done if the last digit in PI is an odd number,
so the last digit of PI was rounded to 6 instead of 7 to make these calculations more accurate.

77

MCS® BASIC-52

intel

5.2.2 UNARY OPERATORS — LOG FUNCTIONS
LOG([expr])

Returns the natural logarithm of the argument. The argument must be greater than 0. This calculation is
carried out to 7 significant digits.

EXAMPLES:

PRINT LOG(12) PRINT LOG(EXP(1))
2. 484906 1

EXP([expr])
This function raises the number ‘‘e’’ (2.7182818) to the power of the argument.

EXAMPLES:

PRINT EXP(1) PRINT EXP(LOG(2))
2.7182818 2

5.2.3 UNARY OPERATORS — TRIG FUNCTIONS
SIN([expr])

Returns the SIN of the argument. The argument is expressed in radians. Calculations are carried out to 7
significant digits. The argument must be between =+200000.

EXAMPLES:

PRINT SIN(PI/4) PRINT SIN(O)
. 7071067 0

COS([expr])

Returns the COS of the argument. The argument is expressed in radians. Calculations are carried out to
7 significant digits. The argument must be between =200000.

EXAMPLES:

PRINT COS(PI/4)
. 7071067

PRINT COS(0)
1

78

intel MCS® BASIC-52

5.2.3 UNARY OPERATORS — TRIG FUNCTIONS
TAN([expr])

Returns the TAN of the argument. The argument is expressed in radians. The argument must be between
#+200000.

EXAMPLES:
PRINT TAN(PI/4&) PRINT TAN(O)
1 o

ATN([expr])

Returns the ARCTANGENT of the argument. The result is in radians. Calculations are carried out to 7
significant digits. The ATN operator returns a result between —PI/2 (3.1415926/2) and PL/2.

EXAMPLES:
PRINT ATN(PI) PRINT ATN(1)
1. 2626272 . 78539804

COMMENTS ON TRIG FUNCTIONS

The SIN, COS, and TAN operators use a Taylor series to calculate the function. These operators first
reduce the argument to a value that is between O and PI/2. This reduction is accomplished by the following
equation:

REDUCED ARGUMENT = (user arg/PI — INT(user arg/PI)) * PI

The REDUCED ARGUMENT, from the above equation, will be between 0 and PI. The REDUCED
ARGUMENT is then tested to see if it is greater than PI/2. If it is, then it is subtracted from PI to yield
the final value. If it isn’t, then the REDUCED ARGUMENT is the final value.

Although this method of angle reduction provides a simple and economical means of generating the
appropriate arguments for a Taylor series, there is an accuracy problem associated with this technique.
The accuracy problem is noticed when the user argument is large (i.e. greater than 1000). That is because
significant digits, in the decimal (fraction) portion of REDUCED ARGUMENT are lost in the (user arg/PI
— INT(user arg/PI)) expression. As a general rule, try to keep the arguments for the TRIG functions as
small as possible!

79

intel MCS® BASIC-52

5.3 UNDERSTANDING PRECEDENCE OF OPERATORS

The hierarchy of mathematics dictates that some operations are carried out before others. If you understand
the hierarchy of mathematics, it is possible to write complex expressions using only a minimum amount
of parentheses. It’s easy to illustrate what precedence is all about, examine the following equation:
4+3*%2 .=

Should you add (4 +3) then multiply seven by 2, or should you multiply (3*2) then add 47 Well, the
hierarchy of mathematics says that multiplication has precedence over addition, so you would mu]tlply
(3*2) first then add 4. So,

4+3*2 = 10

The rules for the hierarchy of math are simple. When an expression is scanned from left to right an operation
is not performed until an operator of lower or equal precedence is encountered. In the example addition
could not be performed because multiplication has higher precedence. The precedence of operators from
highest to lowest in MCS BASIC-52 is as follows:

1)OPERATORS THAT USE PARENTHESES ()

2)EXPONENTATION (**)

3)NEGATION (—)

4)MULTIPLICATION (*) AND DIVISION (/)

S)ADDITION (+) AND SUBTRACTION (-)

6)RELATIONAL EXPRESSIONS (=, <>, >, >=, <, <=)

T)LOGICAL AND (.AND.)

8)LOGICAL OR (.OR.)

9)LOGICAL XOR (.XOR.)

Relative to operator precedence, the rule of thumb should always be; when in doubt, use parentheses.

80

intel MCS® BASIC-52

5.4 HOW RELATIONAL EXPRESSIONS WORK

Relational expressions involve the operators =, <>, >, >=, <, and <=. These operators are typically
used to ‘‘test’” a condition. In MCS BASIC-52 relational operators return a result of 65535 (OFFFFH) if
the relational expression is true, and a result of 0, if the relation expression is false. But, where is the
result returned? It is returned to the argument stack. Because of this, it’s possible to actually display the
result of a relational expression.

EXAMPLES:
PRINT 1=0 PRINT 130 PRINT A<D>A PRINT A=A
) 65535 o 65535

It may seem strange to have a relational expression actually return a result, but it offers a unique benefit
in that relational expressions can actually be ‘‘chained’’ together using the logical operators .AND., .OR.,
and .XOR.. This makes it possible to test a rather complex condition with ONE statement.

EXAMPLE:

210 IF A<B. AND. A>C. OR. A>D THEN.........

Additionally, the NOT([expr]) operator can be used.

EXAMPLE:

>10 IF NOT(A>B). AND. A<C THEN...........

By ‘‘chaining’’ together relational expressions with logical operators, it is possible to test very particular
conditions with one statement. When using logical operators to link together relational expressions, it is
very important that the programmer pay careful attention to the precedence of operators. The logical
operators were assigned lower precedence, relative to relational expressions, just to make the linking of
relational expressions possible without using parentheses.

81

CHAPTER 6 |
‘Description of String Operators

6.1 WHAT ARE STRINGS?

A string is a character or a bunch of characters that are stored in memory. Usually, the characters stored
in a string make up a word or a sentence. Strings are handy because they allow the programmer to deal
with words instead of numbers. This is useful because it allows one to write ‘‘friendly’’ programs, where
individuals can be referred to by their names instead of a number.

MCS BASIC-52 contains ONE dimensioned string variable, $([expr]). The dimension of the string variable
(the [expr] value) ranges from O to 254. This means that 255 different strings can be defined and manipulated
in MCS BASIC-52. Initially, NO memory is allocated for strings. Memory is allocated by the STRING
[expr], [expr] STATEMENT. The details of this statement are covered in the DESCRIPTION OF STATE-
MENTS chapter of this manual.

In MCS BASIC-52, strings can be defined in two ways, with the LET STATEMENT and with the INPUT
STATEMENT.

EXAMPLE:

>10 STRING 100, 20
220 $(1)="THIS IS A STRING, "

>30 INPUT "WHAT’S YOUR NAME? - ", $(2)
>40 PRINT $(1),$(2)
>RUN

WHAT ‘S YOUR NAME?T - FRED

THIS IS A STRING, FRED

STRINGS can also be assigned to each other with a LET statement.

EXAMPLE:

$(2)=3(1)

Would assign the STRING value in $(1) to the STRING $(2).

82

intel MCS® BASIC-52

6.2 THE ASC OPERATOR

In MCS BASIC-52, two operators manipulate STRINGS. These operators are ASC() and CHR(). Ad-
mittedly, the string operators contained in MCS BASIC-52 are not quite as powerful as the string operators
contained in some BASICS. But surprisingly enough, by using the string operators available in MCS
BASIC-52 it is possible to manipulate strings in almost any way imaginable. This in itself is a commendable
feat since MCS BASIC-52 was designed primarily to be a sophisticated BASIC language oriented controller,
not a string manipulator. The string operators available in MCS BASIC-52 are as follows:

ASC()
The ASC() operator returns the integer value of the ASCII character placed in the parentheses.

EXAMPLE:

>PRINT ASC(A)
&5

65 is the decimal representation for the ASCII character *“A.’’ In addition, individual characters in a pre-
defined ASCII string can be evaluated with the ASC() operator.

EXAMPLE:

210 $(1)="THIS IS A STRING"
>20 PRINT $(1)

>30 PRINT ASC($(1),1)

>RUN

THIS IS A STRING
84

When the ASC() operator is used in the manner shown above, the $([expr]) denotes what string is being
accessed and the expression after the comma *‘picks out’’ an individual character in the string. In the above
example, the first character in the string was picked out and 84 is the decimal representation for the ASCII
character “‘T.”

83

intel | MCS® BASIC-52

6.2 THE ASC OPERATOR

EXAMPLE:

>10 $(1)="ABCDEFGHIJAL"
>20 FOR X=1 TO 12

>30 PRINT ASC($(1),X),
>40 NEXT X

>RUN

&5 &b &7 &8 69 70 71 72 73 74 75 76

‘The numbers printed in the previous example are the values that represent the ASCII characters A,B,C,
. L.

Additionally, the ASC() operator can be used to change individual characters in a defined string.

EXAMPLE:

>10 $(1)="ABCDEFGHIJKL"

>20 PRINT $(1)

>30 ASC($(1),1)=75

>40 PRINT $(1)

>50 ASC($(1),2)=ASC($(1),3)
260 PRINT (1) -

>RUN

ABCDEFGHI VKL
KBCDEFGHI VKL
KCCDEFGHIJKL

In general, the ASC() operator lets the programmer manipulate individual characters in a string. A simple
program can determine if two strings are identical.

EXAMPLE:

>10 $(1)="SECRET" : REM SECRET IS THE PASSWORD

>20 INPUT "“WHAT 'S THE PASSWORD - ", $(2)

»30 FOR I=1 7O &

>40 IF ASC(3(1), I)=ASC(3(2), I) THEN NEXT I ELSE 70
>S50 PRINT "YOU GUESSED IT!“

>60 END

>70 PRINT “WRONG, TRY AGAIN" : GOTO 20

>RUN

WHAT ‘'S THE PASSWORD - SECURE
WRONG, TRY AGAIN

WHAT ‘'S THE PASSWORD - SECRET
YOU GUESSED IT

84

intel MCS® BASIC-52

6.3 THE CHR OPERATOR
CHR()

The CHR() operator is the converse of the ASC() operator. It converts a numeric expression to an ASCII
character.

EXAMPLE:

>PRINT CHR(&5)
A

Like the ASC() operator, the CHR() operator can also ‘‘pick out’’ individual characters in a defined
ASCII string.

EXAMPLE:

>10 $(1)="MCS BASIC-52"

20 FOR I=1 TO 12 : PRIRT CHR($(1),I), : NEXT I
>30 PRINT : FOR I=12 TO 1 STEP -1

>40 PRINT CHR($(1),I), : NEXT I

>RUN

tCS BASIC-S2
25-CISAB SCM

In the above example, the expressions contained within the parentheses, following the CHR operator have
the same meaning as the expressions in the ASC() operator.

Unlike the ASC() operator, the CHR() operator CANNOT be assigned a value. A statement such as

CHR($(1),1) = H, is INVALID and will generate a BAD SYNTAX ERROR. Use the ASC() operator
to change a value in a string. The CHR() operator can only be used within a print statement!

85

CHAPTER 7
Special Operators

7.1 SPECIAL FUNCTION OPERATORS

SPECIAL FUNCTION OPERATORS are called SPECIAL FUNCTION OPERATORS because they di-
rectly manipulate the /O hardware and the memory addresses on the 8052AH device. All SPECIAL
FUNCTION OPERATORS, with the exception of CBY([expr]) and GET, can be placed on either side of
the replacement operator (=) in a LET STATEMENT.

EXAMPLES:

A = DBY(100) and DBY(100) = A+2

Both of the above are valid statements in MCS BASIC-52. The SPECIAL FUNCTION OPERATORS in
MCS BASIC-52 include the following:

CBY([expr])

The CBY ([expr]) operator is used to retrieve data from the PROGRAM or CODE MEMORY address space
of the 8052AH. Since CODE memory cannot be written into on the 8052AH, the CBY([expr]) operator
cannot be assigned a value. It can only be read.

EXAMPLE: A = CBY(1000) Causes the value in code memory space 1000 to be assigned to the variable
A. The argument for the CBY([expr]) operator MUST be a valid integer (i.e. between O and 65535
(OFFFFH)). If it is not, a BAD ARGUMENT ERROR will occur.

DBY([expr])

The DBY([expr]) operator is used to retrieve or assign a value to the 8052AH’s internal data memory.
Both the value and argument in the DBY operator must be between 0 and 255 inclusive. This is because
there are only 256 internal memory locations in the 8052AH and one byte can only represent a quantity
between 0 and 255 inclusive. '

EXAMPLES:

A=DBY(B) and DBY(250) = CBY(1000)

The first example would assign variable A the value that is in internal memory location B. B would have
to be between 0 and 255. The second example would load internal memory location 250 with the same
value that is in program memory location 1000.

86 /

intel MCS® BASIC-52

7.1 SPECIAL FUNCTION OPERATORS

XBY([expr])

The XBY([expr]) operator is used to retrieve or assign a value to the 8052AH’s external data memory.
The argument in the XBY([expr]) operator must be a valid integer (i.e. between 0 and 65535 (OFFFFH)).
The value assigned to the XBY([expr]) operator must be between 0 and 255. If it is not a BAD ARGUMENT
ERROR will occur.

EXAMPLES:

XBY (4000H)=DBY(100) and A=XBY(OFOQOOH)

The first example would load external memory location 4000H with the same value that was in internal
memory location 100. The second example would make the variable A equal to the value in external
memory location OFOO0H.

GET

The GET operator only produces a meaningful result when used in the RUN mode. It will always return
a result of zero in the command mode. What GET does is read the console input device. Actually, it takes
a “‘snapshot’’ of the console input device. If a character is available from the console device, the value
of the character will be assigned to GET. After GET is read in the program, GET will be assigned the
value of zero until another character is sent from the console device. The following example will print the
decimal representation of any character sent from the console:

EXAMPLE:

»10 A=GET
220 IF A<>»0 THEN PRINT A
>30 GOTO 10

>RUN

&5 (TYPE "“A" ON CONSOLE)

49 (TYPE "“1" ON CONSOLE)

24 (TYPE "“CONTROL-X" ON CONSOLE)
S0 (TYPE “2" ON CONSOLE)

The reason the GET operator can be read only once before it is assigned a value of zero is that this
implementation guarantees that the first character entered will always be read, independent of where the
GET operator is placed in the program.

87

intel MCS® BASIC-52

7.1 SPECIAL FUNCTION OPERATORS

The following operators. directly manipulate the 8052AH’s special function registers. Specific details"of
the operation of these registers is in the MICROCONTROLLER USERS HANDBOOK, available from
INTEL.

IE

The IE operator is used to retrieve or assign a value to the 8052AH’s special function register IE. Since

the IE register on the 8052AH is a BYTE register, the value assigned to IE must be between 0 and 255

The IE register on the 8052AH contains an unused bit, BIT IE.6. Since this bit is ‘‘undefined,”’ it may

be read as a random one or zero, so the user may want to mask this bit when reading the IE register. This

can be done with a statement like A =IE.AND.OBFH. The only statements in MCS BASIC-52 that wrxte
to the IE register are the CLOCKO, CLOCK1, ONEX1, CLEAR, and CLEARI statements.

EXAMPLES:

IE = 81H and A = IE. AND. OBFH

IP

The IP operator is used to retrleve or assign a value to the 8052AH’s special function reg1ster IP. Since
the IP register on the 8052AH is a BYTE register, the value assigned to IP must be between 0 and 255.
The IP register on the 8052AH contains two unused bits, BIT IP.6 and IP.7. Since these bits are ““un-
defined,”’ they may be read as a random 1 or O, so the user may want to mask these bits when reading
the IP register. This can be done with a statement such as B=IP.AND.3FH. MCS BASIC-52 does not
write to the IP register during initialization, so user can estabhsh whatever interrupt priorities are required
in a given application.

EXAMPLES:

IP = 3 and A = IP. AND. 3FH

PORT1

The PORT1 operator is used to retrieve or assign a value to the 8052AH’s P1 I/O port. Since P1 on the
8052AH is a BYTE wide register, the value assigned to P1 must be between 0 and 255 inclusive. Certain
bits on P1 have pre-defined functions. If the user does not implement any of the hardware associated with
these pre-defined functions, The PORT1 instruction can be used in any manner appropriate in the application.

88

intal MCS® BASIC-52

7.1 SPECIAL FUNCTION OPERATORS
PCON

The PCON operator is used to retrieve or assign a value to the 8052AH’s PCON register. In the 8052AH,
only the most significant bit of the PCON register is used, all other bits are undefined. Setting this bit will
double the baud rate if TIMER/COUNTER 1 is used as the baud rate generator for the serial port. PCON
is a byte register.

RCAP2

The RCAP2 operator is used to retrieve and/or assign a value to the 8052AH’s special function registers
RCAP2H and RCAP2L. This operator treats RCAP2H and RCAP2L as a 16-bit register pair. RCAP2H is
the high byte and RCAP2L is the low byte. The RCAP2H and RCAP2L registers are the reload/capture
registers for TIMER2. The user must use caution when writing to RCAP2 register because RCAP2 controls
the BAUD rate of the serial port on the MCS BASIC-52 device. The following can be used to determine
what BAUD rate the MCS BASIC-52 device is operating at:

BAUD = XTAL/(32*(65536-RCAP2))
T2CON
The T2CON operator is used to retrieve and/or assign a value to the 8052AH’s special function register
T2CON. The T2CON is a byte register that controls TIMER2’s mode of operation and determines which
timer (TIMER1 or TIMER?2) is used as the 8052AH’s baud rate generator. MCS BASIC-52 initializes

T2CON with the value 52 (34H) and assumes that its value is never changed. Randomly changing the
value of T2CON, without knowing what you are doing can ““crash’’ the serial port on the 8052AH. Beware!

89

intgl MCS® BASIC-52

7.1 SPECIAL FUNCTION OPERATORS
TCON

The TCON operator is used to retrieve and/or assign value to the 8052AH’s special function register TCON.
TCON is a byte register that is used to enable or disable TIMERO and TIMERI, plus the interrupts that
are associated with these timers. Additionally, TCON determines whether the external interrupt pins on
the 8052AH are operating in a level sensitive or edge-triggered mode. MCS BASIC-52 initializes TCON
with the value 244 (OF4H) and assumes that it is never changed. The value 244 (OF4H) places both TIMERO
and TIMERI in the run (enabled) mode. If the user disables the operation of TIMERO, by clearing BIT
4 in the TCON register, the REAL TIME CLOCK will NOT work. If the user disables the operation of
TIMER1, by clearing BIT 6 in the TCON register, the EPROM programming routines, the software serial
port, and the PWM statement will NOT work. Use caution when changing TCON"'

TMOD

The TMOD operator is used to retrieve and/or assign a value to the 8052AH’s special function register
TMOD. TMOD is a byte register that controls TIMERO and TIMER1’s mode of operation. MCS BASIC-52
initializes the TCON register with a value of 16 (10H). The value 16 (10H) places TIMERO in mode 0, which
is a 13-bit counter mode and TIMERI in mode 1, which is a 16-bit counter mode. MCS BASIC-52
assumes that the modes of these two timer/counters are never changed. If the user changes the mode of
TIMERO, the REAL TIME CLOCK will not operate properly. If the user changes the mode of TIMERI,
EPROM programming, the software serial port, and the PWM statement will not work properly. If the
user does not use these features available in MCS BASIC-52, either timer/counter can be placed in any
mode required by the specific application.

90

intel MCSe BASIC-52

7.1 SPECIAL FUNCTION OPERATORS
TIME

The TIME operator is used to retrieve and/or assign a value to the REAL TIME CLOCK resident in MCS
BASIC-52. After reset, TIME is equal to 0. The CLOCKI1 statement enables the REAL TIME CLOCK.
When the REAL TIME CLOCK is enabled, the SPECIAL FUNCTION OPERATOR, TIME will increment
once every 5 milliseconds. The TIME operator uses TIMERO and the interrupts associated with TIMEROQ
on the 8052AH. The unit of TIME is seconds and the appropriate XTAL value must be assigned to insure
that the TIME operator is accurate.

When TIME is assigned a value with a LET statement (i.e. TIME = 100), only the integer portion of
TIME will be changed.

EXAMPLE:
>CLOCK1 (enable REAL TIME CLOCK)
$CLOCKO (disable REAL TIME CLOCK)
SPRINT TIME (display TIME)
3.318
STIME = O (set TIME = 0)

>PRINT TIME (display TIME)
. 3189 ‘ (only the integer is changed)

The “"fraction" portion of TIME can be changed by

manipulating the contents of internal memory

location 71 (47H). This is accomplished by a DBY(71)

statement. Note that each count in internal memory

location 71 (47H) represents 5 milliseconds of TIME.
- Continuing with the EXAMPLE; : :

>DBY(71) = 0O (fraction of TIME = 0)

>PRINT TIME
o]

>DBY(71) = 3 (fraction of TIME = 3, 15 ms)

>PRINT TIME
1.5 E-2

91

intd | MCS® BASIC-52

7.1 SPECIAL FUNCTION OPERATORS

The reason only the integer portion of TIME is changed when assigned a value is that it allows the user
to generate accurate time intervals. For instance, let’s say you want to create an accurate 12 hour clock.
There are 43200 seconds in a 12 hour period, so an ONTIME 43200,[In num] statement is used. Now,
when the TIME interrupt occurs the statement TIME = 0 is executed, but the millisecond counter is not
re-assigned a value so if interrupt latency happens to exceed 5 milliseconds, the clock will still remain
accurate.

TIMERO

The TIMERO operator is used to retrieve or assign a value to the 8052AH’s special function registers THO
and TLO. This operator treats the byte registers THO and TLO as a 16-bit register pair. THO is the high
byte and TLO is the low byte. MCS BASIC-52 uses THO and TLO to implement the REAL TIME CLOCK
function. If the user does not implement the REAL TIME CLOCK function (i.¢. does not use the statement
CLOCK1) in the BASIC program THO and TLO may be used in any manner suitable to the particular
.application. ’ ‘

TIMER1

The TIMER1 operator is used to retrieve or assign a value to the 8052AH’s special function registers TH1
and TL1. This operator treats the byte registers TH1 and TL1 as a 16-bit register pair. TH1 is the high
byte and TL1 is the low byte. MCS BASIC-52 uses TH1 and TL1 to implement the timings for the software
serial port, the EPROM programming feature, and the PWM statement. If the user does not use any of
these features TH1 and TL1 may be used in any manner suitable to the particular application.

TIMER2

The TIMER? operator is used to retrieve or assign a value to the 8052AH’s special function registers TH2
and TL2. This operator treats the byte registers TH2 and TL2 as a 16-bit register pair. TH2 is the high
byte and TL2 is the low byte. MCS BASIC-52 uses TH2 and TL2 to generate the baud rate for the serial
port. If the user does not use TIMER? to clock the serial port, TH2 and TL2 may be used in any manner
suitable to the particular application.

92

intel MCS® BASIC-52

7.1 SPECIAL FUNCTION OPERATORS

XTAL

The XTAL operator tells MCS BASIC-52 what frequency the system is operating at. The XTAL operator
is used by MCS BASIC-52 to calculate the REAL TIME CLOCK reload value, the PROM programming
timing, and the software serial port baud rate generation. The XTAL value is expressed in Hz. So,

XTAL = 9000000

would set the XTAL value to 9 MHz.

93

intel MCS® BASIC-52

7.2 EXAMPLES OF MANIPULATING SPECIAL FUNCTION VALUES

Using the logical operators available in - MCS BASIC-52, it is possible to write to or read from any byte
of the special function registers that MCS BASIC-52 treats as a register pair:

EXAMPLE:

WRITING TO THE HIGH BYTE

STIMERO = (TIMERO .AND. OOFFH)+ INT(256%(USER BYTE))

EXAMPLE:

WRITING TO THE LOW BYTE

>TIMERO = (TIMERO . AND. OFFCOH) + (USER BYTE)

EXAMPLE:

READING HIGH BYTE

>PHO. INT(TIMERO/256)

EXAMPLE:

READING LOW BYTE

>PHO. TIMERO . AND. OFFH

TIMERI can function as the baud rate generator for MCS BASIC-52. To assign TIMERI1 as the baud rate
generator, the following instructions must be executed:

>TMOD = 32 - TIMER1 in auto reload mode
>TfMER1 = 256#(256-(65536-RCAP2)/12) -~ load TIMER1
>T2CON = O - use TIMER1 as baud rate gen

This sequence of instructions can be executed in either the direct mode or as part of a program. When
TIMERLI is used as the baud rate generator, TIMER2 can be used in anyway suitable to the application.
The PROG, FPROG, LIST#, PRINT# and PWM commands/statements cannot be used when TIMER1
functions as the baud rate generator for the MCS BASIC-52 device. Certain crystals may not be able to
use TIMERI as the baud rate generator, especially at high (above 2400) baud rates.

94

intel MCS® BASIC-52

7.3 SYSTEM CONTROL VALUES
The SYSTEM CONTROL VALUES determine or reveal how memory is allocated by MCS BASIC-52.

MTOP

After reset, MCS BASIC-52 sizes the external memory and assigns the last valid memory address to the
SYSTEM CONTROL VALUE, MTOP. MCS BASIC-52 will not use any external RAM memory beyond
the value assigned to MTOP. If the user wishes to allocate some external memory for an assembly language
routine the LET statement can be used (e.g. MTOP = USER ADDRESS). If the user assigns a value to
MTOP that is greater than the last valid memory address, a MEMORY ALLOCATION ERROR will be
generated.

EXAMPLES:

>PRINT MTOP
2047

>MTOP=2000

>PRINT MTOP
2000

LEN

The SYSTEM CONTROL VALUE, LEN, tells the user how many bytes of memory the current selected
program occupies. Obviously, LEN cannot be assigned a value, it can only be read. A NULL program
(i.e. no program) will return a LEN of 1. The 1 represents the end of program file character.

FREE

The SYSTEM CONTROL VALUE, FREE, tells the user how many bytes of RAM memory are available
to the user. When the current selected is in RAM memory, the following relationship will always hold
true.

FREE = MTOP - LEN - 511

NOTE: Unlike some BASICS, MCS BASIC-52 does not require any ‘‘dummy’’ arguments for the SYSTEM
CONTROL VALUES.

95

CHAPTER 8 -
Error Messages, Bells, Whistles, and Anomalies

8.1 ERROR 'MESSAGES

MCS BASIC-52 has a relatively sophisticated ERROR processor When BASIC is in the RUN mode the
gencrahzed form of the ERROR message is as follows: .

ERROR: XXX = IN LINE YYY

YYY BASIC STATEMENT

Where XXX is the ERROR TYPE and YYY is the line number of the prografn in which the error occurred.
A specific example is:

ERROR: BAD SYNTAX - IN LINE 10

10 PRINT 34#21#

‘The X signifies approx1mately where the ERROR occurred in the line number. The specific location of
the X may be off by one or two characters or expressions depending on the type of error and where the
error occurred in the program. If an ERROR occurs in the COMMAND MODE only the ERROR TYPE
will be printed out NOT the Line number. This makes sense, because there are no line numbers in the
COMMAND MODE. The ERROR TYPES are as follows: :

BAD SYNTAX

A BAD SYNTAX error means that either an invalid MCS BASIC-52 COMMAND, STATEMENT,. or
OPERATOR was entered and BASIC cannot process the entry. The user should check and make sure that
_everything was typed in correctly. In Version 1.1 of MCS BASIC-52 a BAD SYNTAX ERROR is also
generated if the programmer attempts to use a reserved keyword as part of a variable..

BAD ARGUMENT

When the argument of an operator is not within the limits of the operator a BAD ARGUMENT ERROR
will be generated. For instance, DBY(257) would generate a BAD ARGUMENT ERROR because the
argument for the DBY operator is limited to the range O to 255. Similarly, XBY(5000H) = —1 would
generate a BAD ARGUMENT ERROR because the value of the XBY operator is limited to the range 0
to 255.

96

intal MCS® BASIC-52

8.1 ERROR MESSAGES

ARITH. UNDERFLOW

If the result of an arithmetic operation exceeds the lower limit of an MCS BASIC-52 floating point number,
an ARITH. UNDERFLOW ERROR will occur. The smallest floating point number in MCS BASIC-52 is
+ 1E—127. For instance, 1E —80/1E + 80 would cause an ARITH. UNDERFLOW ERROR.

ARITH. OVERFLOW

If the result of an arithmetic operation exceeds the upper limit of an MCS BASIC-52 floating point number,
an ARITH. OVERFLOW ERROR will occur. The largest floating point number in MCS BASIC-52 is
+.99999999E + 127. For instance, 1E +70*1E + 70 would cause an ARITH. OVERFLOW ERROR.
DIVIDE BY ZERO

A division by ZERO was attempted i.e. 12/0, will cause a DIVIDE BY ZERO ERROR.

ILLEGAL DIRECT (VERSION 1.0 ONLY)

Some statements, such as IF-THEN and DATA cannot be executed while the MCS BASIC-52 device is
in the COMMAND MODE. If you attempt to execute one of these statements the message ERROR:
ILLEGAL DIRECT will be printed to the console device. The ILLEGAL DIRECT ERROR is not trapped
in Version 1.1 of MCS BASIC-52. ILLEGAL DIRECT ERRORS return a BAD SYNTAX ERROR in
Version 1.1.

LINE TOO LONG (VERSION 1.0 ONLY)

If you type in a line that contains more than 73 characters the message ERROR: LINE TOO LONG will
be printed to the console device. MCS BASIC-52’s input buffer can only handle up to 73 characters.

NOTE
This error does not exist in Version 1.1. Instead the input buffer has been increased to 79 characters and

MCS BASIC-52 will echo a bell character to the user terminal if too many characters are entered into the
input buffer.

NO DATA
If a READ STATEMENT is executed and no DATA STATEMENT exists or all DATA has been read

and a RESTORE instruction was not executed the message ERROR: NO DATA — IN LINE XXX will
be printed to the console device.

97

intel MCS® BASIC-52

8.1 ERROR MESSAGES
CAN’'T CONTINUE

Program execution can be halted by either typing in a control-C to the console device or by executing a
STOP STATEMENT. Normally, program execution can be resumed by typing in the CONT command.
However, if the user edits the program after halting execution and then enters the CONT command, a
CAN’T CONTINUE ERROR will be generated. A control-C must be typed during program execution or
a STOP STATEMENT must be executed before the CONT command will work.

'PROGRAMMING

If an error occurs while the MCS BASIC-52 device is programming an EPROM, a PROGRAMMING
ERROR will be generated. An error encountered during programming destroys the EPROM FILE STRUC-
TURE, so the user cannot save any more programs on that particular EPROM once a PROGRAMMING
ERROR occurs.

A-STACK

An A-STACK (ARGUMENT STACK) error occurs when the argument stack pointer is forced ‘‘out of
bounds.”’ This can happen if the user overflows the argument stack by PUSHing too many expressxons
onto the stack, or by attempting to POP data off the stack when no data is present.

C-STACK

A C-STACK (CONTROL STACK) error will occur if the control stack pointer is forced ‘‘out of bounds.’’
158 bytes of external memory are allocated for the control stack, FOR — NEXT loops require 17 bytes
of control stack DO — UNTIL, DO — WHILE, and GOSUB require 3 bytes of control stack. This means
that 9 nested FOR — NEXT loops is the maximum that MCS BASIC-52 can handle because 9 times 17
equals 153. If the user attempts to use more control stack than is available in MCS BASIC-52 a C-STACK
error will be generated. In addition, C-STACK errors will occur if a RETURN is executed before a GOSUB,
a WHILE or UNTIL before a DO, or a NEXT before a FOR.

98

intel MCS® BASIC-52

8.1 ERROR MESSAGES

I-STACK

An I-STACK (INTERNAL STACK) error occurs when MCS BASIC-52 does not have enough stack space
to evaluate an expression. Normally, I-STACK errors will not occur unless insufficient memory has been
allocated to the 8052AH’s stack pointer. Details of how to allocate memory to the stack pointer are covered

in the ASSEMBLY LANGUAGE LINKAGE section of this manual.

ARRAY SIZE

If an array is dimensioned by a DIM statement and then you attempt to access a variable that is outside
of the dimensioned bounds, an ARRAY SIZE error will be generated.

EXAMPLE:

>DIM AC(10)
PPRINT A(C11)

ERROR: ARRAY SIZE
READY

MEMORY ALLOCATION
MEMORY ALLOCATION ERRORS are generated when user attempts to access STRINGS that are

‘‘outside’’ the defined string limits. Additionally, if the SYSTEM CONTROL VALUE, MTOP is assigned
a value that does not contain any RAM memory, a MEMORY ALLOCATION ERROR will occur.

99

intel

MCSe BASIC-52

8.2 DISABLING CONTROL-C

In some applications, ‘it may be desirable or even a requirement that program execution not accidentally
Under ‘‘normal’’ operation the execution of any MCS BASIC-52 program can be terminated
a “‘control-C*’ on the console device. However, it is possible to disable the *‘control-C’’ break
function in MCS BASIC-52. This is accomplished by setting BIT 48 (30H) to a one. BIT 48 is located in
internal memory location 38.0 (26.0H). This BIT may be set by executing the following statement in an

be halted.
by typing

MCS BASIC-52 program: '

DBY(38)

Once this

= DBY(38).0OR.01H

BIT is set to a one, the control-C break function, for both LIST and RUN operations will be
disabled. The user has the option to create a custom break character or string of characters by using the
GET operator. The following is an example of how to implement a custom break character:

EXAMPLE:

210 STRING 100, 10: A=1: REM INITIALIZE STRINGS

- 220 $(1) = “BREAK" : REM "BREAK" IS THE PASSWORD
»30 DBY(38)=DBY(38).0R. 1 : REM DISABLE CONTROL-C
240 FOR I=1 TO 1000 : REM DUMMY LOOP
>S50 J=SIN(I)
260 K=GET : IF K<>0 THEN 100 ELSE NEXT I
>70 END
2100 IF K=ASC($(1),A) THEN A=A+1 ELSE A=l
>110 REM TEST FOR MATCH
>120 IF A=1 THEN NEXT .I
2130 IF A=6 THEN 200 ELSE NEXT I
>140 END
>200 PRINT "BREAK".
>210

DBY(38)=DBY(38). AND. OFEH : REM‘ENABLE CONTROL-C

In this example, typing the word BREAK will stop program execution. In other words, BREAK is

password.

100

intal MCS® BASIC-52

8.3 IMPLEMENTING “FAKE DMA”

The MCS BASIC-52 device does not contain any hardware mechanism that supports Direct Memory Access
(DMA). However, the DMA function is supported in software by MCS BASIC-52. During DMA operation
MCS BASIC-52 guarantees that no external memory access will be performed. To enable the DMA function,
the following must be performed:

1) BIT. 49, which is located in internal memory location 38.1 (26.1H) must be set to a one. This can be
accomplished in BASIC by using the statement — DBY(38) = DBY(38).OR.02H

2) BIT 0 and BIT 7 of the SPECIAL FUNCTION REGISTER, IE (Interrupt enable) must be set to a one.
This can be accomplished in BASIC by using the statement — IE = IE.OR.81H

After the three BITS mentioned above are set to a one, external interrupt zero (INTO) acts as a DMA input
pin. INTO is pin 12 on the 8052AH. Whenever INTO is pulled low (to a logical zero state), the MCS
BASIC-52 device will enter the DMA mode and no accesses will be made to external memory. To
acknowledge that MCS BASIC-52 has entered the DMA mode, MCS BASIC-52 outputs a zero on pin 7
(P1.6). In essence, PORT 1.6 is the DMA ACK pin of the MCS BASIC-52 device. In most applications,
this pin would be used to disable three-state buffers that would be placed on PORT2, PORTO, and the
address latch of the MCS BASIC-52 system. After the user pulls the INTO pin high, MCS BASIC-52 will
output a one on P1.6 and normal program execution will continue. During this ‘‘fake DMA’’ cycle, the
MCS BASIC-52 program does nothing except wait for the INTO pin to be pulled high. So, program
execution is halted.

It should be noted that although this ‘‘fake DMA’’ operation does provide the same functionality as a
normal DMA hardware mechanism, it also takes substantially longer for the normal DMA REQUEST —
DMA ACKNOWLEDGE cycle to be performed. That is because MCS BASIC-52 uses interrupts to
implement the DMA operation, instead of dedicated hardware. As a general rule, cycle stealing DMA is
not an option with MCS BASIC-52’s ‘‘fake’” DMA. Only *‘burst mode’” DMA cycles can be implemented
without a significant time penalty. When *‘fake DMA’’ is implemented, the user must provide three-state
buffers on the PORT2, PORTO, and the address latch of the MCS BASIC-52 system.

101

intel MCS® BASIC-52

8.4 RUN TRAP OPTION (Version 1.1 Only)

Version 1.1 of MCS BASIC-52 permits the user to trap the interpreter in the RUN MODE. This option
is evoked by putting a 34H (52D) in external data memory location SEH (94D). After a 34H (52D) is
placed in external data memory location SEH (94D) the MCS BASIC-52 interpreter will be trapped in the
RUN mode forever or until the contents of external data memory location is changed to something other
than 34H (52D). If no program is present when a 34H (52D) is placed in location 5SEH (94D), MCS
BASIC-52 will print the READY message forever and it will be time to RESET the device. The RUN
TRAP option can be employed with the other RESET options to permit the user to execute a program from
RAM on a RESET or power-up condition when some type of battery back-up memory scheme is employed.

102

intel MCS® BASIC-52

8.5 ANOMALIES

Most dictionaries define an anomaly as a deviation from the normal or common-order or as an irregularity.
Anomalies to an extreme become ‘‘BUGS’’ or something that is wrong with the program. Like all programs,
MCS BASIC-52 contains some anomalies, hopefully, no bugs. The purpose of mentioning the known
anomalies here is that it may save the programmer some time, should strange things happen during program
execution. The known anomalies deal mainly with the way MCS BASIC-52 compacts or tokenizes the
BASIC program. The known anomalies and cautions are as follows:

1) When using the variable H after a line number, make sure you put a space between the line number
and the H, or else BASIC will assume that the line number is a HEX number.

EXAMPLES:
>20H=10 (WRONG) 20 H=10 (RIGHT)
>LIST >LIST
32 =10 20 H=10

2) When using the variable I before an ELSE statement, make sure you put a space between the I and the

ELSE statement, or else BASIC will assume that the IE portion of IELSE is the special function operator
IE.

EXAMPLES:

>20 IF I>10 THEN PRINT IELSE 100
LIST

20 IF I>10 THEN PRINT IELSE 100 (WRONG)

»20 IF I>10 THEN PRINT I ELSE 100
>LIST
20 IF I>10 THEN PRINT I ELSE 100 (RIGHT)

3) A Space character may not be placed inside the ASC() operator. In other words, a statement like
PRINT ASC() will yield a BAD SYNTAX ERROR. Spaces may be placed in strings however, so
a statement like LET $(1) = ‘“HELLO, HOW ARE YOU”’ will work properly. The reason ASC()
yields an error is because MCS BASIC-52 eliminates all spaces when a line is processed, so ASC()
will be stored as ASC() and MCS BASIC-52 interprets this as an error.

103

CHAPTER 9
Assembly Language Linkage

9.1 OVERVIEW',)

'NOTE ThlS section assumes that the designer has an understanding of the architecture and assembly
1anguage of the MCS-51 Mlcrocontroller fam1ly”'

MCS BASIC,—52 contains a complete library of routmes that can easily be accessed with assembly language
CALL instructions. The advantage of using assembly language is that it offers a significant improvement
in execution speed relative to interpreted BASIC. In order to successfully interface MCS BASIC-52 with
an assembly language program, the software designer must be aware of a few simple facts..

READ THIS CAREFULLY!!!

1. MCS BASIC-52 uses REGISTER BANKS 0, 1, and 2 (RBO, RB1, and RB2). REGISTER BANK 3
(RB3) is never used except during a PGM statement. RB3 is designated the USER REGISTER BANK
and the users can do whatever they want to with REGISTER BANK 3 (RB3) and MCS BASIC-52 will
never alter the contents of this REGISTER BANK except during the execution of a PGM statement.
The contents of REGISTER BANK 3 (RB3) can be changed by executing a DBY ([expr]) = [0.to 255]
statement. Where the [expr] evaluates to a number between 24 (18H) and 31 (1FH) inclusive. In
addition, INTERNAL MEMORY LOCATIONS 32 (20H) and 33 (21H) are also NEVER used by MCS
BASIC-52. These two BIT and/or BYTE addressable locations. are specifically reserved for assembly
language programs.

2. MCS BASIC-52 uses REGISTER BANK 0 (RB0) as the WORKING REGISTER FILE. Whenever

© assembly language is used to access MCS BASIC-52’s routines, the WORKING REGISTER FILE,
REGISTER BANK 0 (RB0) MUST BE SELECTED!!! This means that the USER MUST MAKE SURE
THAT REGISTER BANK 0 (RBO0) IS SELECTED BEFORE CALLING ANY OF MCS BASIC-52’s
ROUTINES. This is done simply by setting BITS 3 and 4 in the PSW equal to ZERO. If this is not
done, MCS BASIC-52 will *‘KICK OUT”’ the USER and NO operation will be performed. When an
ASSEMBLY LANGUAGE program is accessed by using the MCS BASIC-52’s CALL instruction,
REGISTER BANK 0 (RBO0) will always be selected. So unless the user selects REGISTER BANK 3
(RB3) in assembly language, it is NOT NECESSARY to change the designated REGISTER BANK.

3. ALWAYS ASSUME THAT MCS BASIC-52 DESTROYS THE CONTENTS OF THE WORKING
REGISTER FILE AND THE DPTR, UNLESS OTHERWISE STATED IN FOLLOWING DOCU-
MENTATION.

4. Certain routines in MCS BASIC-52 require that REGISTERS be initialized BEFORE the user CALLS
that specific ROUTINE. These reglsters are ALWAYS in the WORKING REGISTER FILE, REGISTER
BANK 0 (RBO).

5. Certain routines in MCS BASIC-52 return the result of an operation in a register or registers. The result
registers are ALWAYS in the WORKING REGISTER FILE, REGISTER BANK 0, (RBO0).

104

intel MCS® BASIC-52

9.1 OVERVIEW
READ THIS CAREFULLY!!!

6. MCS BASIC-52 loads the INTERNAL STACK POINTER (SPECIAL FUNCTION REGISTER- SP)
with the value that is in INTERNAL MEMORY LOCATION 62 (3EH). MCS BASIC-52 initializes
INTERNAL MEMORY LOCATION 62 (3EH) by writing a 77 (4DH) to this location after a hardware
RESET. MCS BASIC-52 does NOT use any memory beyond 77 (4DH) for anything EXCEPT STACK
SPACE. If the user wants to ALLOCATE some additional internal memory for their application, this
is done by changing the contents of INTERNAL MEMORY LOCATION 62 (3EH) to a value that is
GREATER than 77 (4DH). This will allocate the INTERNAL MEMORY LOCATIONS from 77 (4DH)
to the value that is placed in INTERNAL MEMORY LOCATION 62 (3EH) to the user. As a guideline,
it is a good idea to allow at least 48 (30H) bytes of stack space for MCS BASIC-52. The bad news
about reducing the stack space is that it will reduce the amount of nested parentheses that MCS BASIC-52
can evaluate in an expression [expr]. This will either cause a -.STACK ERROR or will cause a fatal
CPU ‘““crash.”’ Use caution and DON’T allocate more memory than you need.

EXAMPLE OF THE EFFECTS OF ALTERING THE STACK ALLOCATION:

COMMENTS

>PRINT DBY(62) AFTER RESET INTERNAL MEMORY LOCATION &2

77 CONTAINS A 77

PPRINT (1#(2#(3))) BASIC HAS NO PROBLEM EVALUATING 3.LEVELS

& OF NESTED PARENTHESIS

>DBY (62)=230 NOW ALLOCATE 255-230 = 25 BYTES OF STACK
SPACE TO BASIC, REMEMBER, THE STACK ON

PPRINT (1#(2%#(3))) THE 8052AH GROWS "UP"

ERROR: I-STACK BASIC CANNOT EVALUATE THIS EXPRESSION

READY BECAUSE IT DOES NOT HAVE ENOUGH STACK

>DBY (62)=210 NOW ALLOCATE 255-210 = 45 BYTES OF STACK
SPACE TO BASIC

PPRINT (1#(2%#(3))) THE I-STACK ERROR GOES AWAY

)

7. Throughout this section a 16-BIT REGISTER PAIR is designated-Rx:Ry, where Rx is the most sig-
nificant byte and Ry is the least significant byte.

EXAMPLE:

R3:R1 = R3=MOST SIGNIFICANT BYTE, R1=LEAST SIGNIFICANT BYTE

105

intel MCSe BASIC-52

9.2 GENERAL PURPOSE ROUTINES

Accessing MCS BASIC-52 routines with assembly language is easy. The user just loads the ACCUMU-
LATOR with a specific value and CALLS LOCATION 48 (30H). The value placed in the ACCUMULATOR
determines what operation will be performed. Unless otherwise stated, the CONTENTS of the DPTR and
REGISTER BANK 0 (RB0) will ALWAYS be altered when calling these routines. The gcnerahzed form
for accessing MCS BASIC-52’s routines is as follows:

ANL PSW,#11100111B ; make sure
RBO is
selected

MOV A,#OPBYTE ; load the
instruction

CALL 30H , execute the
instruction

The value of OPBYTE determines what operation will be performed. The following operations can be
performed:

OPBYTE = 0 (00H) RETURN TO COMMAND MODE

This instruction causes MCS BASIC-52 to enter the COMMAND MODE. Control of the CPU is handed

back to the MCS BASIC-52 interpreter and BASIC w111 respond by outputting a READY and a PROMPT
character (>).

OPBYTE = 1 (01H) POP ARGUMENT STACK AND PUT VALUE IN R3:R1

This instruction converts the value that is on the ARGUMENT STACK to a 16 BIT BINARY INTEGER

and returns the BINARY INTEGER in registers R3 (high byte) and R1 (low byte) of REGISTER BANK
0 (RB0). The ARGUMENT STACK gets popped after this instruction is executed. If the value on the
ARGUMENT STACK cannot be represented by a 16-BIT BINARY NUMBER (i.e. it is NOT between 0
and 65535 (OFFFFH) inclusive), BASIC WILL TRAP THE ERROR and print a BAD ARGUMENT
ERROR MESSAGE. The BINARY VALUE returned is TRUNCATED, NOT ROUNDED.

EXAMPLE:

BASIC PROGRAM - 10 PUSH 260
20 CALL SOCOH

ASSEMBLY LANGUAGE PROGRAM - QORG SOQOH ‘
MOV A, #01H i load opbyte i
CALL 30H i RBO still selected
i
i at this point R3 (of RBO) = 01H
i and R1 (of RBO) = 04H
i so, R3:R1 = 260, which was the value
i that was placed on the ARGUMENT STACK

106

intel MCS® BASIC-52

9.2 GENERAL PURPOSE ROUTINES
COMMENTS ON THE NEXT TWO INSTRUCTIONS:

The next two instructions permit the user to transfer floating point numbers between an assembly language
program and MCS BASIC-52. The user provides the address where a floating point number is stored or
will be stored in a 16-bit REGISTER PAIR. Depending on the operation requested, the floating point
numbers are either PUSHED ON or POPPED OFF MCS BASIC-52’s ARGUMENT STACK. This in-
struction permits the user to keep track of variables in assembly language and bypass the relatively slow
procedure BASIC must follow.

As mentioned earlier, when a floating point number is PUSHED onto the ARGUMENT STACK, the
ARGUMENT STACK POINTER is decremented by a count of 6. This is because a floating point number
requires 6 bytes of RAM storage. Although it may seem confusing to the novice, the LAST value placed
on the ARGUMENT STACK is referred to as the value on the TOP of the ARGUMENT STACK, even
though it is on the BOTTOM of the STACK relative to the sequential numbering of memory addresses.
No one knows why this is so.

The ARGUMENT STACK resides in EXTERNAL RAM MEMORY LOCATIONS 301 (12DH) through
510 (1FEH). The lower BYTE of the ARGUMENT STACK POINTER resides in INTERNAL MEMORY
LOCATION 9 (09H). MCS BASIC-52 always assumes that the upper BYTE (higher order address) of the
ARGUMENT STACK POINTER is 1 (01H). The software designer can use this information, along with
the next two instructions to perform operations like copying the stack.

OPBYTE = 2 (02H) PUSH THE FLOATING POINT NUMBER ADDRESSED BY REGISTER
PAIR R2:R0 ONTO THE ARGUMENT STACK.

R2 and RO (in REGISTER BANK 0, RBO) contain the ADDRESS (R2 = high byte, RO = low byte) of
the location where the floating point number is stored. After this instruction is executed the floating point
number that the REGISTER PAIR R2:R0 points to-is PUSHED onto the TOP of the ARGUMENT STACK.
The ARGUMENT STACK POINTER automatically gets DECREMENTED, by a count of 6, when the
value is placed on the stack. A floating point number in MCS BASIC-52 requires 6 BYTES of RAM
storage. The register Pair R2:R0 points to the MOST SIGNIFICANT BYTE of the floating point number
and is DECREMENTED BY 6 after the CALL instruction is executed. So, if R2:R0 = 7F18H before this
instruction was executed, it would equal 7F12H after this instruction was executed.

107

intel

MCS® BASIC-52

9.2 GENERAL PURPOSE ROUTINES

OPBYTE =

NUMBER IN THE LOCATION ADDRESSED BY R3:R1.

The TOP of the ARGUMENT STACK is moved to the location pointed to by the REGISTER PAIR
= low byte, in REGISTER BANK 0, RB0). The ARGUMENT STACK
POINTER is automatically INCREMENTED BY 6. Just as in the previous PUSH instruction, the REG-
ISTER PAIR R3:R1 points to the MOST SIGNIFICANT BYTE of the ﬂoatlng pomt number and is
DECREMENTED BY 6 after the CALL instruction is executed.

R3:R1(R3

= high byte, R1

EXAMPLE OF USER PUSH AND POP:

3 (03H) POP THE ARGUMENT STACK AND SAVE THE FLOATING POINT

ASM PROGRAM:

BASIC PROGRAM:

>3 REM PUT 100 AND 200 ON THE ARGUMENT STACK

>10 PUSH 100, 200

>15 REM CALL THE USER ROUTINE TO SAVE NUMBERS

>20 CALL SOO0OH
>25 REM CLEAR THE STAC&
>30 CLEARS

>3% REM USE ASM TO PUT NUMBERS BACK ON STACK

>40 CALL SO10H
>50 POP A, B
260 PRINT A, B
>RUN

100 200
READY

ORG SO0CH

MOV R3, #HIGH USER_SAVE
MOV R1, #LOW USER_SAVE
MOV A, #O3H ‘
CALL 30H

MOV A, #O3H

CALL 30H

RET

ORG SO10H

mov R2, #HIGH USER SAVE
Mov RO, #LOW USER_SAVE
MoV A, #02H

CALL 30H

Mov A, #O2H

CALL 30H

RET

i LOAD POINTERS TO WHERE
i NUMBERS WILL BE SAVED.
i LOAD OPBYTE

i SAVE ONE NUMBER

i LOAD OPBYTE AGAIN

i SAVE ANOTHER NUMBER

i BACK TD BASIC

i LOAD ADDRESS WHERE

i NUMBERS ARE STORED

i LOAD OPBYTE

i PUT ONE NUMBER ON STACK
i LOAD OPBYTE

i NEXT NUMBER ON STACK

i BACK TO BASIC

108

intel MCS® BASIC-52

9.2 GENERAL PURPOSE ROUTINES

OPBYTE = 4 (04H) PROGRAM A PROM USING R3:R1 AS THE SOURCE ADDRESS
POINTER, R2:R0 AS THE DESTINATION (PROM) ADDRESS POINTER, AND R7:R6 AS THE
BYTE COUNTER.

This instruction assumes that the DATA to be programmed into a PROM is stored in external memory
and that the REGISTER PAIR R3:R1 (in RBO) contains the address of this external memory. REGISTER
PAIR R7:R6 contains the total number of bytes that are to be programmed. The PROM is programmed
sequentially and everytime a byte is programmed the REGISTER PAIR R7:R6 is decremented and the
REGISTER PAIRS R3:R1 and R2:R0 are incremented. Programming continues until R7:R6 equals ZERO.
The REGISTER PAIR R2:R0O must be initialized with the desired ADDRESS of the EPROM to be
programmed MINUS 1. This may sound strange, but that is the way it works. So, if you wanted to program
an EPROM starting at address 9000H, with the data stored in address ODOOH and you wanted to program
500 BYTES, then the registers would be set up as follows: R2:RO = 8FFFH, R3:R1 = 0DOOH, and
R7:R6 = 01F4H (500 decimal). You would then put a 4 (04H) in the ACC and CALL location 30H.

NOTE: In Version 1.0, if an ERROR OCCURS DURING PROGRAMMING, MCS BASIC-52 WILL
TRAP THE ERROR AND ENTER THE COMMAND MODE. The user cannot handle errors that occur
during the EPROM programming operation!!!!

In Version 1.1, programming errors will only be trapped if the MCS BASIC-52 device is in the COMMAND
‘MODE. If the MCS BASIC-52 device is in the run mode, control will be passed back to the user. The
user must then examine registers R6 and R7. If R6 = R7 = 0, then the programming operation was
successfully completed, if these registers do not equal zero then registers R2:R0 contain the address of the
EPROM location that failed to program. This feature in Version 1.1 permits the user to program EPROMS
in embedded applications and manage errors, should they occur in the programming process, without
trapping to the command mode.

In addition to setting up the pointers previously described, the user must also initialize the INTERNAL
MEMORY locations that control the width of the programming pulse. This gives the user complete control
over this critical prom programming parameter. The internal memory locations that must be initialized
with this information are 64 (40H) and 65 (41H). These locations are treated as a 16 bit register pair with
location 64 (40H) designated as the most significant byte and location 65 (41H) as the least significant
‘byte. Locations 64 (40H) and 65 (41H) are loaded into TH1 (TIMER 1 high byte) and TL1 (TIMER 1
‘low byte) respectively. The width of the prograniming pulse, in microseconds is determined by the following
equation: ,

WIDTH = (65536 —»256*1).BY(64)+DBY(65))*12/XTAL microseconds
, conyersgly;_
DBY(64):DBY(65) = 65536 — WIDTH*XTAL/12

The proper values for the ‘‘normal’’ 50 millisecond programming algorithm and the 1 millisecond
“INTELligent’’ algorithm are calculated and stored by MCS BASIC-52 in external memory locations
296:297 (128H:129H) and 298:299 (12AH:12BH) respectively. If the user wants to use the pre-calculated
values the statements DBY(64) = XBY(296) and DBY(65) = XBY(297) may be used to initialize the prom
programming width for the normal algorithm and the statements DBY(64)=XBY(298) and
DBY(65)=XBY(299) can be used to initialize for the INTELligent algorithm.

109

intel MCS® BASIC-52

9.2 GENERAL PURPOSE ROUTINES

To select the ‘“INTELLIGENT”’ EPROM PROGRAMMING algorithm the directly addressable BIT 51
(33H) MUST be set to 1 before the EPROM PROGRAMMING routine is called. The ‘“‘STANDARD”’
50 ms EPROM PROGRAMMING algorithm is selected by CLEARING BIT 51 (33H) (i.e. BIT 51 = 0)
before calling the EPROM PROGRAMMING routine. The directly addressable BIT 51 is located in internal
memory location 38.3 (26 3H) (BIT 3 of BYTE 38 (26H) in internal memory). This BIT can be SET or
CLEARED by the BASIC STATEMENTS DBY(38)=DBY(38).OR.08H to SET and
DBY(38)=DBY(38).AND.OF7H to CLEAR. Of course, the user can set or clear this bit in assembly
language with a SETB 51 or CLR 51 instruction.

The user must also turn on the EPROM PROGRAMMING voltage BEFORE calling the EPROM PRO-
GRAMMING routine. This is done by CLEARING BIT P1.5, the fifth BIT on PORT 1. This too can be
done in BASIC with a PORT1=PORT1.AND.ODFH instruction or in assembly language with a CLR P1.5
instruction. The user must also set this bit when the PROM PROGRAMMING procedure is complete.

This instruction assumes that the hardware surrounding the MCS BASIC-52 device is the same as the
suggestions in the EPROM PROGRAMMING chapter of this manual.

110

intel MCS® BASIC-52

9.2 GENERAL PURPOSE ROUTINES

OPBYTE = 5 (05H) INPUT A STRING OF CHARACTERS AND STORE IN THE BASIC
INPUT BUFFER.

This instruction inputs a line of text from the console device and saves the information in the MCS BASIC-
52’s input buffer. MCS BASIC-52’s input buffer begins at EXTERNAL MEMORY LOCATION 7 (0007H).
All of the line editing features available in MCS BASIC-52 are implemented in this instruction. If a control-
C is typed during the input process, MCS BASIC-52 will trap back into the command mode. A carriage
return (cr) terminates the input procedure.

OPBYTE = 6 (06H) OUTPUT THE STRING OF CHARACTERS POINTED TO BY THE
REGISTER PAIR R3:R1 TO THE CONSOLE DEVICE.

This instruction is used to OUTPUT a string of characters to the céhsole device. R3:R1 contains the initial
address of this string. The string can either be stored in PROGRAM MEMORY or EXTERNAL DATA
MEMORY. If BIT 52 (34H) (which is BIT 4 of internal RAM location 38 (26H)) is set, the output will
be from PROGRAM MEMORY. If BIT 52 is cleared, the output will be from EXTERNAL DATA
MEMORY. The DATA stored in MEMORY is sent out to the console device one byte at a time and the
memory pointer is incremented. The output is stopped when a termination character is read. The termination
character for PROGRAM MEMORY and EXTERNAL DATA MEMORY are different. The termination
character for EXTERNAL DATA MEMORY is a (cr) ODH. The termination character for PROGRAM
MEMORY is a ” or 22H.

OPBYTE = 7 (07H) OUTPUT A CARRIAGE RETURN-LINE FEED SEQUENCE TO THE
CONSOLE DEVICE.

Enough said.

OPBYTE = 128 (80H) OUTPUT THE CHARACTER IN R5 (REGISTER BANK 0) TO THE
CONSOLE DEVICE.

This routine takes the character that is in R5 (register bank 0) and directs it to the console device. Any
console device may be selected (i.e. U0 or U1 or the software serial port).

111

intel MCS® BASIC-52

9.2 GENERAL PURPOSE ROUTINES

OPBYTE = 144 (90H) OUTPUT THE NUMBER ON THE TOP OF ARGUMENT STACK TO
'THE CONSOLE DEVICE.:

The floating point number that is on the top of the argument stack is outputted to the console device. The
FORMAT is determined by the USING statement. The argument stack is POPPED after the output operation.

OPBYTE = 154 (9AH) THE 16 BIT NUMBER REPRESENTED BY REGISTER PAIR:R2:R0 IS
PUSHED ON THE ARGUMENT STACK.

This instruction converts the 16 bit register pair R2:R0 to a floating pomt number and pushes this number
onto the argument stack. This instruction is the converse of the OPBYTE = 1 instruction.

112

intel MCS® BASIC-52

9.3 UNARY OPERATORS

The next group of instructions perform an operation on the number that is on the TOP of the ARGUMENT
STACK. If the TOP of the ARGUMENT STACK is represented by the symbol [TOS], then the following
instructions would take the general form:

[TOS] < OP [TOS]

Where OP is one of the following operators:

OPBYTE = 24 (18H) — ABSOLUTE VALUE

[TOS] < ABS([TOS]). The [TOS] is replaced by the absolute value of [TOS].

OPBYTE = 25 (19H) — INTEGER

[TOS] < INT([TOS]). The [TOS] is replaced by the integer portion of [TOS].

OPBYTE = 26 (1AH) — SIGN

[TOS] < SGN([TOS)). If [TOS] > 0 then [TOS] = 1, if [TOS] = 0 then [TOS] = 0, and if [TOS] < 0
then [TOS] = —1.

OPBYTE = 27 (1BH) — ONE’S COMPLEMENT

[TOS] < NOT([TOS]). [TOS] must be a valid integer.

OPBYTE = 28 (1CH) — COSINE OPERATOR

[TOS] < COS([TOS]). [TOS] must be between =200000.

OPBYTE = 29 (1DH) — TANGENT OPERATOR

[TOS] < TAN([TOS]). [TOS] must be between =+ 200000 and [TOS] cannot equal PI/2, 3*PI/2, 5*PI/2,
....(@2*N + 1)*PI2.

113

intel MCS® BASIC-52

9.3 UNARY OPERATORS
OPBYTE = 30 (1EH) — SINE OPERATOR

[TOS] < SIN([TOS)). [TOS] must be between =200000.

OPBYTE = 31 (1FH) — SQUARE ROOT

[TOS] < SQR ([TOS]). [TOS] must be >= 0.

OPBYTE = 32 (20H) — CBY OPERATOR

[TOS] < CBY ([TOS]). [TOS] must be a valid integer.

OPBYTE = 33 (21H) — E TO THE [TOS] OPERATOR

[TOS] < e(2.7182818)**[TOS]. e is raised to the [TOS] power.

OPBYTE = 34 (22H) — ATN OPERATOR

[TOS] < ATN([TOS]). Arctangent, the value returned is between * PI/2.

OPBYTE = 35 (23H) — LOG OPERATOR (natural LOG)

[TOS] < LOG([TOS]) — [TOS] must be > 0.

OPBYTE = 36 (24H) — DBY OPERATOR

[TOS] < DBY([TOS]). [TOS] must be between 0 and 255 inclusive.

OPBYTE = 37 (25H) — XBY OPERATOR

[TOS] < XBY([TOS]). [TOS] must be a valid integer.

114

intel MCS® BASIC-52

9.4 SPECIAL OPERATORS

The next group of instructions place a value on the stack. The value placed on the stack is as follows:

OPBYTE = 38 (26H) — PI

[TOS] = PIL. PI (3.1415926) is placed on the [TOS].

OPBYTE = 39 (27H) — RND

[TOS] = RND. A random number is placed on the [TOS].

OPBYTE = 40 (28H) — GET

[TOS] = GET. The value of the SPECIAL FUNCTION OPERATOR, GET is put on the [TOS].

OPBYTE = 41 (29H) — FREE

[TOS] = FREE. The value of the SYSTEM CONTROL VALUE, FREE is put on the [TOS].

OPBYTE = 42 (2AH) — LEN

[TOS] = LEN. The value of the SYSTEM CONTROL VALUE, LEN is put on the [TOS].

OPBYTE = 43 (2BH) — XTAL

[TOS] = XTAL. The value of the SPECIAL FUNCTION OPERATOR, XTAL is put on the [TOS].

OPBYTE = 44 (2CH) — MTOP

[TOS] = MTOP. The value of the SYSTEM CONTROL VALUE, MTOP is put on the [TOS].

115

intgl MCS® BASIC-52

9.4 ’SPE_CIAL OPHERATOR‘S
OPBYTE = 45 (2DH) — TIME

[TOS] = TIME. The value of the SPECIAL FUNCTION OPERATOR, TIME is put on the [TOS].

OPBYTE = 46 (2EH) — IE

[TOS] = IE. The value of the IE register is put on the [TOS].

OPBYTE = 47 (2FH) — IP

[TOS] = IP. The value of the IP register is put on the [TOS].

OPBYTE = 48 (30H) — TIMERO

[TOS] = TIMERO. The value of TIMERO (THO:TLO) is put on the [TOS].

OPBYTE = 49 (31H) — TIMER1

[TOS] = TIMERI. The value of TIMER1 (TH1:TL1) is put on the [TOS].

OPBYTE = 50 (32H) — TIMER2

[TOS] = TIMER2. The value of TIMER2 (TH2:TL2) is put on the [TOS].

OPBYTE = 51 (33H) — T2CON

[TOS] = T2CON. The value of the T2CON register is put on the [TOS].

OPBYTE = 52 (34H) — TCON

[TOS] = TCON. The value of the TCON register is put on the [TOS].

116

intal MCS® BASIC-52

9.4 SPECIAL OPERATORS
OPBYTE = 53 (35H) — TMOD

[TOS] = TMOD. The value of the TMOD register is put on the [TOS].

OPBYTE = 54 (36H) — RCAP2

[TOS] = RCAP2. The value of the RCAP2 registers (RCAP2H:RCAP2L) is put on the [TOS].

OPBYTE = 55 (37H) — PORT1

[TOS] = PORT1. The value of the PORT1 (P1) pins is placed on the [TOS].

OPBYTE = 56 (38H) — PCON

[TOS] = PCON. The value of the PCON register is put on the [TOS].

117

intel MCS® BASIC-52

9.5 DUAL OPERAND OPERATORS

The next group of instructions assume that TWO values are on the ARGUMENT STACK. If number on
the TOP of the ARGUMENT STACK is represented by the symbol [TOS] and the number NEXT to TOP
of the ARGUMENT STACK is represented by the symbol [NxTOS] and the ARGUMENT STACK
POINTER is represented by the symbol AGSP, then the following instructions would take the general
form: : : ~ ‘ ‘

TEMP1 = [TOS]
TEMP2 = [NxTOS]
AGSP <AGSP+6
RESULT = TEMP2 OP TEMP1
[TOS] = RESULT

Where OP is one of the following operators to be described. NOTE that the group of instructions ALWAYS
POP the ARGUMENT STACK by one FLOATING POINT NUMBER SIZE (i.e. 6 BYTES).

ERRORS can be handled in two different ways with the ADD, SUBTRACT, MULTIPLY, and DIVIDE
routines. One option is to let MCS BASIC-52 trap ERRORS, should they occur during the operation. With
this option MCS BASIC-52 will print the appropriate error. message to the console device. The other option
passes a STATUS CODE to the user. After the operation the Accumulator contains the status code
information. The Status information is as follows:

ACC.0 — ARITHMETIC UNDERFLOW

ACC.1 — ARITHMETIC OVERFLOW

ACC.2 — RESULT WAS ZERO (not an error, just a condition)
ACC.3 — DIVIDE BY ZERO '
ACC.4 — NOT USED, ZERO RETURNED

ACC.5 — NOT USED, ZERO RETURNED

ACC.6 — NOT USED, ZERO RETURNED

ACC.7 — NOT USED, ZERO RETURNED

If an ARITH. OVERFLOW or a DIVIDE BY ZERO ERROR occurs and the user is handling the error
condition, the floating point processor will return a result of = 99999999E + 127 to the argument stack.
The user can do what they want to with this result (i.e. use it or waste it). An ARITH. UNDERFLOW
ERROR will return to the argument stack a result of 0 (zero).

118

intel MCS® BASIC-52

9.5 DUAL OPERAND OPERATORS

MCS BASIC-52 can perform the following DUAL OPERAND OPERATIONS:

OPBYTE = 9 (09H) EXPONENTIATION — The [NxTOS] value is raised to the [TOS] power. RESULT
= [NxTOS] ** [TOS]. NOTE — [TOS] MUST BE LESS THAN 256.

OPBYTE = 10 (0AH) MULTIPLY

RESULT = [NxTOS] * [TOS]. If an ERROR occurs during this operation (i.e. ARITH. OVERFLOW
or UNDERFLOW) MCS BASIC-52 will trap the error and print the error message to the console device.

OPBYTE = 136 (88H) MULTIPLY

RESULT = [NxTOS] * [TOS]. If an error occurs during this operation, the status byte previously discussed
will be returned to the user.

OPBYTE = 11 (0BH) ADD

RESULT = [NxTOS] + [TOS]. BASIC handles errors.

OPBYTE = 130 (82H) ADD

RESULT = [NxTOS] + [TOS]. User handles errors.

OPBYTE = 12 (OCH) DIVIDE

RESULT = [NxTOS] / [TOS]. BASIC handles errors.

OPBYTE = 138 (8AH) DIVIDE

RESULT = [NxTOS] / [TOS]. User handles errors.

OPBYTE = 13 (ODH) SUBTRACT

RESULT = [NxTOS] — [TOS]. BASIC handles errors.

119

intel MCS® BASIC-52

9.5 DUAL OPERAND OPERATORS
OPBYTE = 132 (84H) SUBTRACT

RESULT = [NxTOS] — [TOS]. User handles errors.

OPBYTE = 14 (OEH) EXCLUSIVE OR

RESULT = [NxTOS] XOR [TOS], both values must be GREATER THAN OR ‘EQUAL TO ZERO and
LESS THAN OR EQUAL TO 65535 (OFFFFH).

OPBYTE = 15 (OFH) LOGICAL AND

RESULT = [NxTOS] émd [TOS], both values must be GREATER THAN OR EQUAL TO ZERO and
LESS THAN OR EQUAL TO 65535 (OFFFFH).

OPBYTE = 16 (10H) LOGICAL OR

RESULT = [NxTOS] OR [TOS], both values must be GREATER THAN OR EQUAL TO ZERO and
LESS THAN OR EQUAL TO 65535 (OFFFFH).

OPBYTE = 18 (12H) TEST FOR EQUALITY

IF [NxTOS] = [TOS] .then, RESULT = 65535 (OFFFFH), else RESULT = 0.

OPBYTE = 19 (13H) TEST FOR GREATER THAN OR EQUAL

IF [NxTOS] >= [TOS] then, RESULT = 65535 (OFFFFH), else RESULT = 0.

OPBYTE = 20 (14H) TEST FOR LESS THAN OR EQUAL

IF [NXxTOS] <= [TOS] then, RESULT = 65535 (OFFFFH), else RESULT = 0.

120

intel MCS® BASIC-52

9.5 DUAL OPERAND OPERATORS
"OPBYTE = 21 (15H) TEST FOR NOT EQUAL

IF [NxTOS] <> [TOS] then, RESULT = 65535 (OFFFFH), else RESULT = 0.

OPBYTE = 22 (16H) TEST FOR LESS THAN

I
e

IF [NXxTOS] < [TOS] then, RESULT = 65535 (OFFFFH), else RESULT

OPBYTE = 23 (17H) TEST FOR GREATER THAN

]
e

IF [NXTOS] > [TOS] then, RESULT = 65535 (OFFFFH), else RESULT

121

intel MCS® BASIC-52

9.6 ADDED LINK ROUTINES TO VERSION 1.1

Version 1.1 of MCS BASIC-52 contains a number of useful assembly language link routines that were
not available in Version 1.0. Most of these routines were designed to be used in conjunction with the new
Command/Statement extensions that are described in Chapter 11 of this manual. The added link routmes
are as follows:

OPBYTE = 57 (39H) EVALUATE AN EXPRESSION WITHIN THE BASIC TEXT STRING AND
PLACE THE RESULT ON THE ARGUMENT STACK

This routine permits the user to evaluate a BASIC expression [expr] containing variables, operators and
constants. The result of the evaluated expression is placed on the floating point argument stack. This lets
- the user evaluate expressions in ‘‘customized”’ statements and commands. An example of use of this
OPBYTE is given at the end of this section.

OPBYTE = 58 (3AH) PERFORM CRYSTAL DEPENDENT CALCULATIONS WITH THE
VALUE THAT IS ON THE ARGUMENT STACK

This routine is provided mainly to let the user write an assembly language RESET routine and perform all
of the crystal dependent calculations that are required by MCS BASIC-52. An example of a customized
RESET routine that uses this OPBYTE is presented in Chapter 11 of this manual.

OPBYTE = 63 (3FH) GET A CHARACTER OUT OF THE BASIC TEXT STRING

This routine permits the user to ‘‘pick’’ a character out of the BASIC program. For instance, in BASIC
the user could have the following:

10 CALL 1000H A
If the user executed the following in assembly language at 1000H:

MOV A, #63
LCALL 30H

The character A would be returned in the accumulator. The Basic text pointer is located in location 8 (8H)
(low byte) and 10 (OAH) (high byte) of the internal ram on the MCS BASIC-52 device. If the user were
to implement the above function, the basic text pointer must be advanced to the carriage return at the end
of the statement before returning back to Basic. Failure to do this will cause a BAD SYNTAX ERROR
when the user returns back to Basic. The following OPBYTE can be used to advance the Basic Text
pointer.

122

intel MCS® BASIC-52

9.6 ADDED LINK ROUTINES TO VERSION 1.1
OPBYTE = 64 (40H) GET CHARACTER, THEN INCREMENT TEXT POINTER

This OPBYTE does the same thing as the previous one described, except that the BASIC text pointer is
INCREMENTED AFTER the character is read. An example of this OPBYTE is presented at the end of
this section.

OPBYTE = 65 (41H) INPUT A CHARACTER FROM THE CONSOLE DEVICE, PUT IT IN
THE ACCUMULATOR, THEN RETURN

This OPBYTE permits the user to input characters from MCS BASIC-52’s console input routine. The
character is placed in the accumulator upon return.

OPBYTE = 66 (42H) ENTER THE RUN MODE

This OPBYTE permits the user to start the execution of an MCS BASIC-52 program from assembly
language. The user need only insure that locations 19 (13H) and 20 (14H) of internal data memory contain
the start address (high byte, low byte respectively) of the BASIC program.

OPBYTE = 129 (81H) INPUT AN ASCII FLOATING POINT NUMBER AND PLACE IT ON
THE ARGUMENT STACK. THE DPTR POINTS TO THE EXTERNAL
RAM LOCATION, WHERE THE ASCII TEXT STRING IS STORED

This routine assumes that the user has placed an ASCII text string somewhere in memory and that this
ASCII text string represents a valid floating point number. The user then puts the DPTR to the starting
address of this text string. After this OPBYTE is executed the text string will be converted to a valid MCS
BASIC-52 floating point number and placed on the argument stack and the DPTR will be advanced to the
end of the floating point number. If the DPTR does not point to a text string that contains a valid floating
point number, the accumulator will contain an OFFH upon return.

OPBYTE = 152 (98) OUTPUT, IN HEX, TO THE CONSOLE OUTPUT DRIVER, THE
CONTENTS OF R3:R1

This routine is used to display HEX numbers, assuming that they are in registers R3:R1. If R3 = 0,
leading zeros can be supressed by setting BIT 54 (36H) before calling this routine. If BIT 54 (36H) is
cleared when this routine is called, the driver will always output four hex digits followed by the character
H. This routine always outputs a space character (20H) to the console device, before any hex digits are
output. BIT 54 (36H) is bit 6 of internal RAM location 38.

123

144}

MCS-51 MACRO ASSEMBLER

ISIS-11 MCS-51 MACRO ASSEMBLER V1.0
OBJECT MODULE PLACED IN :F4:DEMO. HEX

ASSEMBLER INVOKED BY: ASMS1

r
-
4
m

Loc o0BJY

CONCUADWN -

:F4: DEMO

SOURCE

3 63336636 36 I3 3 I 3 36 36 I 36 I 3 34 3635 3 3 36 3 35 36 3 3 3 I 36 36 35 IE 36 I I 3636 36 3 6 36 3¢ 3 3 3 I 3 3 3 36 36 I 3F 3E 3436 36 3¢ 3 34 3 334 34 3¢

The following is an example of a program that uses the new OPBYTES
available in version 1.1 of MCS BASIC-52. This code is by no means
optimized, but it is meant to demonstrate how the user can define
"customized"” commands and statements in version 1.1 of MCS BASIC-52.

The new command defined here is DISPLAY. What it does is display a
region of external data memory to the console device. The syntax
for this statement is:

DISPLAY Cexprl, [expr]
expression is the ending address. In this example the DISPLAY is
treated like a command which means that it cannot be executed in
RUN mode.
The output for the DISPLAY command is as follows:
ADDRESS then 146 Bytes of Characters i.e.
1000H OOH 22H 33H 27H

Now, on to the program.

i
5
i
’
3
3
[
’
i
i
i
i
i Where the first expression is the starting address and the last
i
i
i
i
[
i
i
[
i
i
[
§ IS I TE I I I 63 33 03 0 S 36 20 36 303 3 303 36 36 30 003 636 36 96 30 36 30 3696 3 03 3036 0636 3030 3038 30 300310900 303 00 98

P

ITdAVX3

L'l NOISH3A OL SANILNOY YMNIT a3aav 96
¢S-0ISveE «SON

Gcl

Lac

2002
2002
2048

2048
204A

2070

2070
2073

2078

2078
2078

207C

207E
207F
2083
2086

2087

208A
208C

oBJ

SA

D22D

22

0207C
22

90207E
22

2087

10
44495350
4C4159
FF

302F&3

7439
120030

SOURCE

ORe
DB
ORG

SETB
RET

ORG

MoV
RET

OReG

MOV
RET

VECTOR_TABLE:
DW
USER_TABLE:

DB
DB

DB

DO_DISPLAY:

JNB

Mov
LCALL

2002H

SAH i Tell basic that expansion option is
i present

2048H

45 i Set the bit that says so

2070H i Set up DPTR to jump table

DPTR, #VECTOR_TABLE

2078H i Set up DPTR to expansion table

DPTR, #USER_TABLE

DO_DISPLAY i This is the address of DISPLAY
10H i Token for Display
- ‘DISPLAY’ i ASCII for display
OFFH i End of table (short table)
47, DUMMY 5 make sure that MCS BASIC-52 is in
i the command mode. Bit 47 is set
if it is.
A, #37 Evaluate the first expression after
30H the keyword display, MCS BASIC-52

will handle any errors. The value
of the expression will be on the
Argument Stack

e we e e

I'L NOISH3A Ol SANILNOY MNIT d3aav 96

P

¢S-0ISveE «SON

9cl

Loc

208F
2091

2094

2097
2099

209C
209E

20A1
20A3

20AS5
20A7

20AA
20AC

204E
20AF
20B1
20B3
20B5
2087
20B9

20BA

20BD
20BF

20c2
20C4

20C6

0BJ

7440
120030

B42C6A

7439
120030

7401
120030

8918
8819

7401
120030

891A
8B1B

c3
ES18
951A
ES19
951B
5004
E4

020030

7407
120030

A?1A
AB1B

C236

109

112
113
114
115

SOURCE

"LOOP1:

LoorP2:

MoV
LCALL

CJUNE

MOV
LcAaLL

Mov
LcaLL

MOV
MOV

MoV
LCALL

MOV
MoV

CLR
MoV
SUBB
MoV
SUBB

CLR

LJUMP

MoV
LCALL

MOV
MoV
CLR

A, #64
30H

A #’, /4 C_ERROR

A, #57
30H

A, #1
30H

18H, R1
19H, R3

A, #1
30H

1AH, R1
1BH, R3

A, 18H
A, 1AH
A, 19H
A, 1BH
Loor2

30H

A, #7
30H

Ri, 1AH
R3, 1BH

36H

Get the character after the expression
and bump the BASIC text pointer

Make sure it is a comma, if not do an
error

Evaluate the next expression (the
ending address) and put it on the
Argument Stack

Convert the last expression (the
ending address) on the stack to
an integer and put it in R3:R1

Save the ending address in the user
reserved locations 18H and 19H. This
is reserved as register bank 3
Convert the first expression (the
starting address) on the stack to

an integer and put it in R3:R1

Save the starting address in the user
reserved locations 1AH and 1BH

Now éverqthing is set up to loop
Check to make sure that the starting

or current address is <= the ending
address

If the carry is set, it’s over

Go to the command mode

(if display was a statement instead
of a command, this routine would

exit with a RET

Do a carriage return, line feed
Output the Starting address

Don‘t supress leading zeros

L'l NOISH3A Ol S3INILNOY MNIT d3aav 96

P

¢S-0ISvE «SON

L2l

Loc

20C8
20CA

20CD
2000

20D3
2004

20DS
2008

20DB
20DC
20DE
20EC
20E2

20ES
20E7
20E9
20EB

20ED
20EF

20F2
20F4
20Fé&
20F8
20FA
20FD
20FE

2101
2103

2104
2108
210A
210C
210E

0BJ

7498
120030

851A82
851883

EO
A3

85821A
858318

F9
7800
D236
7498
120030

ES1A
S40F
70E2
80C1

7407
120030

7B21
7215
D234
7406
120030
E4
020030

7407
120030

7B21
7938
D234
7406
120030

LINE

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

SOURCE

LOOP3:

DUMMY:

C_ERROR:

MOV
LCALL

MoV
MoV

MOvX
INC

MoV
Mov

MoV
MoV
SETB
MOV
LcaLL

MoV
ANL
JINZ
SJumMP

MoV
LCcALL

MoV
MoV
SETB

LCALL
CLR
LJMP

MOV
LCALL

MoV
MoV
SETB
MOV
LCALL

A, #98H
30H

DPL., 1AH
DPH, 1BH

A, @DPTR
DPTR

1AH, DPL
1BH, DPH

R1, A
R3, #0
36H

A, #98H
30H

A, 1AH
A, #OFH
LOOP3
LOOP1

A #7
30H

R3, #HIGH D_MSe
R1i, #L.0W D_MSG
52

A, #6

30H

A

30H

A #7
30H

R3, #HIGH C_MSe@
R1, #LOW C_MSG
S52

A, #6

30H

Now: set up to read 16 bytes
put address in DPTR

Read the byte in external RAM
Bump to the next location
Save the Address

Output the byte
The high byte is always zero
Supress leading Zeros

Check to see if on a 16 byte boundry

Loop until on a 16 Byte Boundry

Do a carriage return—-line feed

Display the error message

Print from ROM

Go back to the command mode

Do what we did before

I’ NOISH3A OL S3ANLLNOY MNIT a3aav 96

P

¢S-0ISve «SON

82l

Loc

2111
2112

21195
2119
211D
2121
2128
2129
212D
2131
2135
2139

213B
213F
2143
2147
214B
214F
2153
2157
215B
215F

0BJ

E4
020030

44495350
4C415920
49532041
20434F4D
4ADA14E44
2C204E4F
54204120
53544154
454DAS4E
5422

594F5520
4EA54544
20412043
4F4DADA1
20544F20
4D414BAS
20444953
504C4159

20574F 52

4B22

LINE

162
163
164
165

166
167

168
169

SOURCE
CLR
LJMP

D_MSG: DB

C_MSG: DB
END

ASSEMBLY COMPLETE, NO ERRORS FOUND
(that’s all it takes)

A
30H

- 'DISPLAY IS A COMMAND, NOT A STATEMENT"'’

‘YOU NEED A COMMA TO MAKE DISPLAY WORK"’

Pt

'L NOISH3A Ol S3NILNOY XNIT a3aav 96

¢S-0Isve «SON

intal MCS® BASIC-52

9.7 INTERRUPTS

Interrupts can be handled by MCS BASIC-52 in two distinct ways. The first, which has already been
discussed, allows statements in an MCS BASIC-52 program to perform the required interrupt routine. The
ONTIME and ONEXI1 statements enable this particular interrupt mode. Additionally, setting BIT 26.1H
permits EXTERNAL INTERRUPT O to act as a ‘‘fake’” DMA input and the details of this feature are in
the BELLS, WHISTLES, and ANOMALIES section of this manual. The second method of handling
interrupts in MCS BASIC-52 allows the programmer to write assembly language routines to perform the
interrupt task. This method yields a much faster interrupt response time, but, the programmer must exercise
some caution.

All interrupt vectors on the MCS BASIC-52 device are ‘‘mirrored’’ to external PROGRAM MEMORY
LOCATIONS 4003H through 402BH inclusive. The only MCS BASIC-52 STATEMENTS that enable the
interrupts on the 8052AH are the CLOCK1 and the ONEX1 STATEMENTS. If interrupts are NOT enabled
by these STATEMENTS, BASIC assumes that the USER is providing the interrupt routine in assembly
language. The vectors for the various interrupts are as follows:

LOCATION---INTERRUPT

4003H------ EXTERNAL INTERRUPT 0

400BH------ TIMER 0 OVERFLOW

4013H------ EXTERNAL INTERRUPT 1

401BH------ TIMER 1 OVERFLOW

4023H------ SERIAL PORT

402BH------ TIMER 2 OVERFLOW/EXTERNAL INTERRUPT 2
The programmer can enable interrupts in MCS BASIC-52 by using the statement IE = IE.OR.XXH, where

XX enables the appropriate interrupts. The bits in the interrupt register (IE) on the 8052AH are defined
as follows:

BIT7‘6|5|4|3|2|1I0

EA X ET2 ES ET1 EX1 ETO EXO0

ENABLE | UNDE- | TIMER 2 |SERIAL|TIMER 1| EXT 1| TIMER O EXT 0
ALL FINED PORT

129

intel MCS® BASIC-52

9.7 INTERRUPTS

Interrupts are enabled when the appropriate BITS in the IE register are set to a one. Details of the 8052AH
interrupt structure are available in the MICROCONTROLLER USERS MANUAL available from INTEL.

IMPORTANT NOTE!!

Before MCS BASIC-52 vectors to the USER interrupt locations just described, the PROCESSOR STATUS
WORD (PSW) is PUSHED onto the STACK. So, the USER does not have to save the PSW in the assembly
language interrupt routine!!! HOWEVER, THE USER MUST POP THE PSW BEFORE RETURNING
FROM THE INTERRUPT.

VERY IMPORTANT NOTE!!!

If the user is running some interrupt driven ‘‘background’’ routine while MCS BASIC-52 is running a
program, the user MUST NOT CALL any of the assembly language routines available in the MCS BASIC-52
device. The only way the routines in the MCS BASIC-52 device can be accessed is when the CALL
statement in MCS BASIC-52 is used to transfer control to the users assembly language program. The
reason for this is that the MCS BASIC-52 interpreter must be in a ‘‘known’’ state before the user can call
the routines available in the MCS BASIC-52 device and a ‘‘random’’ interrupt does not guarantee that the
interpreter is in this known state. The user should use REGISTER BANK 3 to handle interrupt routines
in assembly language.

130

intel MCS® BASIC-52

9.8 RESOURCE ALLOCATION

Specific statements in MCS BASIC-52 require the use of certain hardware features on the device. If the
user wants to use these hardware features for interrupt driven routines, conflicts between BASIC and the
assembly language routine may occur. To avoid these potential conflicts, the programmer needs to know
what hardware features are used by MCS BASIC-52. The following is a list of the COMMANDS and/or
STATEMENTS that use the hardware features on the 8052AH.

CLOCK1 — uses TIMER/COUNTER O in the 13 bit 8048 mode.

PWM — uses TIMER/COUNTER 1 in the 16 bit mode

LIST# — uses TIMER/COUNTER 1 to generate baud rate in 16 bit mode

PRINT# — same as LIST#

PROG — uses TIMER/COUNTER 1 for programming pulse

ONEX1 — uses EXTERNAL INTERRUPT 1
In addition, TIMER/COUNTER 2 is used to generate the baud rate for the serial port. What the preceding
list means is that if CLOCK1, PWM, ONEXI1, LIST#, PRINT#, and PROG commands/statements are
used by the programmer, the user MAY NOT use the associated TIMER/COUNTER or EXTERNAL
INTERRUPT pin for an assembly language routine.
MCS BASIC-52 initializes the TIMER/COUNTER modes by writing a 244 (OF4H), 16 (10H), and 52
(34H) to the TCON, TMOD, and T2CON registers respectively. These registers are initialized only during
the RESET initialization sequence, and MCS BASIC-52 assumes that these registers are NEVER changed.
So, if the user changes the contents of TCON, TMOD, or T2CON, something funny and/or disastrous is
bound to happen if the Statements/Commands listed above are executed. If the user does not execute any

of the previously mentioned Statements or Commands, the user is free to use the interrupts in any way
suitable to the application.

131

CHAPTER 10
System Configuration

>1 0.1 MEMORY/HARDWARE CONFIGURATION

MCS BASIC-52 always requires at least 1K bytes of external memory. After reset, MCS BASIC-52 sizes
the external memory. If less than 1K bytes of external memory -are available, MCS BASIC-52 will not
‘“‘sign-on,”’ in fact, it will internally loop forever. This obviously is not too exciting, so it is wise to hang
some external memory on the MCS BASIC-52 device.

MCS BASIC-52 sizes consecutative external memory locations from 0000H until a memory failure is
detected. The sizing operation is performed simply by writing a SAH to an external memory location, then
testing the location. If the particular memory location passes this test, BASIC then writes a 00H to the
location, then again, checks the location. MCS BASIC-52 only sizes the external memory from locations
0 through ODFFFH. Memory locations 0EOOOH through OFFFFH are reserved for user I/O and/or assembly
language programs. a ~

The MCS BASIC-52 program resides in the 8K of ROM available in INTEL’s 8052AH device and as a
result requires that external memory be ‘‘partitioned’’ in a specific manner. The architecture of the 8052AH
is NOT Von Neumann. This means that Data and Program Memory do not reside in the same physical
address space on the 8052AH. Specifically, the RD (pin 17) and WR (pin 16) pins on the 8052AH are
used to enable DATA memory and PSEN (pin 29) pin is used to enable PROGRAM memory. Depending
on the hardware configuration, MCS BASIC-52 operates in two distinct ‘‘memory’’ modes.

RAM ONLY MODE

In this mode of operation, Read/write memory is connected to the MCS BASIC-52 device starting at
memory address 0000H. Memory can be placed up to location OFFFFH. In this mode of operation the
decoded addresses are used to generate the CHIP SELECT (CS) signal for the RAM devices. The RD pin
on the 8052AH is used to generate the OUTPUT ENABLE (OE) strobe and the WR pin generates the
WRITE ENABLE (WE or WR) strobe. PSEN is not used in the RAM only mode of operation. The RAM
only mode of operation offers the simplest hardware configuration available for the MCS BASIC-52
device. An example of this configuration is shown in Figure 1. Since PSEN is not used in the RAM only
mode, the user may not CALL assembly language routines. The RAM only also does not support EPROM
programming. In general, the RAM only mode will be used only to ‘‘check out” the device during the
initial system development stage.

132

intel MCS® BASIC-52

10.1 MEMORY/HARDWARE CONFIGURATION

RAM/EPROM MODE

The RAM/EPROM mode of operation allows for the complete system implementation of MCS BASIC-52.
This mode of operation requires that external memory be mapped in a certain manner. The RAM/EPROM
memory configuration is as follows:

1) The RD and the WR pins on the MCS BASIC-52 device are used to enable RAM memory that is

addressed frcﬂ 0000H to 7FFFH. Addresses ar_e__l_lsed t_(_)_gecodg_t_he chip select (CS) for the RAM
devices and RD and WR are used to enable the OE and WE or (WR) pins respectively.

2) The PSEN pin on the MCS BASIC-52 device is used to enable EPROM memory that is addressed from

3)

2000H to 7FFFH. Adglie_sses are used to decode the chip select (CS) for the EPROM devices and PSEN
is used to enable the OE pin.

For addresses between 8000H and OFFFFH both the RD and the PSEN pin on the MCS BASIC-52
device are used to enable the memory. Either EPROM or RAM devices can be placed in this address
space. To permit both the RD and the PSEN pins to enable addresses in this address space, RD and
PSEN must be logically ‘‘ANDED’’ together. This can be accomplished with a simple TTL gate such

as a 74LS08. The WR pin on the MCS BASIC-52 device is used to write to RAM memory in this

same address space. The PSEN and RD signals do not have to be anded beyond address 7FFFH to
enable MCS BASIC-52 to program an EPROM. This is only a suggestion since it will permit the user
to execute assembly language routines as well as MCS BASIC-52 programs that are located in this

address space.

133

intel MCS® BASIC-52

10.1 MEMORY/HARDWARE CONFIGURATION

This scheme of memory addressing actually permits MCS BASIC-52 to address 96K bytes of memory,
32K of RAM devices, 32K of EPROM/ROM devices and 32K of combined RAM/EPROM/ROM deyvices.
Since RD and PSEN are ANDED for addresses from 8000H through OFFFFH, the 8052AH ‘‘looks like”’
a Von Neumann machine in this address space. The XBY and CBY special function operators will yield
the same value when their arguments are between 8000H and OFFFFH.

When the EPROM programming feature in MCS BASIC-52 is used, BASIC assumes that the EPROM to
be programmed is addressed starting at location 8000H. MCS BASIC-52 can only program EPROMS
addressed between 8000H and OFFFFH. When the PROG command is used for the first time, on an erased
EPROM, MCS BASIC-52 stores this program beginning at address. 8010H. Locations 8000H through
800FH are used to save the baud rate information, plus configuration information. Some suggestions for
implementation of the RAM/EPROM mode are shown in figure 2.

134

intel MCS® BASIC-52

10.2 EPROM PROGRAMMING CONFIGURATION/TIMING

With the proper hardware, the MCS BASIC-52 device can program just about any EPROM or EEPROM
device. The only requirement for EPROM programming is that the EPROM to be programmed is addressed
starting at location 8000H. MCS BASIC-52 requires very little external hardware to programs EPROMS.
All of the critical EPROM programming timings are generated by threel/O port pins on the MCS BASIC-52
device. These pins provide the following signals:

P1.3 — ALE DISABLE

PORT 1, BIT 3 (pin 4 on the 8052AH) is used to DISABLE the ALE signal to the external latched required
by the 8052AH when external memory is addressed. This pin should be logically ANDED with ALE. A
simple TTL gate, such as a 74L.S08 can be used to perform the ANDING function. Under normal operation,
P1.3 is in a logical high state (1). ONLY DURING EPROM PROGRAMMING IS P1.3 PLACED IN A
LOGICAL LOW STATE (0). Disabling the ALE signal to the external latch is required to program EPROMS
because of the way MCS BASIC-52 carries out the EPROM programming process.

During programming, MCS BASIC-52 treats [/O PORT 0 and I/O PORT 2 as I/O ports, not as address/
data ports. MCS BASIC-52 first writes the low order address to be programmed to PORT 0. The data in
PORT O is then latched into the external address latch and then MCS BASIC-52 disables the ALE signal
to the latch by clearing bit P1.3. Thus, the low order address is ‘‘permanently’’ stored in the external
latch. MCS BASIC-52 then writes the high order address to PORT 2 and the DATA to be programmed
to PORT 0. So, the external address latch contains the low order address, PORT 2 contains the high order
address, and PORT O contains the DATA when EPROM programming occurs.

IMPORTANT NOTES

When PORT 0 on the 8052AH is used as an I/O port, the output structure is an ‘‘open drain’’ configuration.
This requires that ‘‘pull-up’’ resistors be placed on PORT 0 to permit MCS B ASIC-52 to program EPROMS.
Experimentally, 10K ohm pull-ups resistors on PORT 0 have yielded satisfactory results.

In Version 1.1, INTO must be kept high when programming EPROMs.

135

intal MCS® BASIC-52

10.2 EPROM PROGRAMMING CONFIGURATION/TIMING
P1.4 — PROGRAM PULSE WIDTH

PORT 1, BIT 4 (pin 5 on the 8052AH) is used to provide the 50 millisecond or the 1 millisecond
programming pulse. The length of the programming pulse is determined by whether the ‘‘normal’’ or the
“INTELligent”” EPROM programming mode is selected. MCS BASIC-52 calculates the length of the
programming pulse from the assigned crystal value. So, be sure the proper XTAL has been assigned. The
accuracy of this pulse is within 10 CPU clock cycles. This pin is normally in a logical high (1) state. It
is asserted low (0) to program the EPROMS. Depending on the EPROM to be programmed this signal
will be used in different ways. More about this later.

P1.5 — ENABLE PROGRAM VOLTAGE

PORT 1, BIT 5 (pin 6 on the 8052AH) is used to enable the EPROM programming voltage. This pin is
normally in a logical high (1) state. Prior to the EPROM programming operation, this pin is brought to a
logical low (0) state. This pin is used to turn on or off the high voltage (12 5 volts to 25 volts, depending
on the EPROM) required to program the EPROMS.

The timing for the EPROM programming pins is shown in figure 3. The hardware required to program
different devices is shown in figure 4. Note that with very little external hardware the MCS BASIC-52
device can program virtually all commercially available EPROMS. Additionally, figure 5 suggests a circuit
using an INTEL 2816A EEPROM. This circuit also features a push button erase option.

IMPORTANT NOTE

MCS BASIC-52 calculates the programming pulse width when the XTAL value is assigned. To insure
proper programming, make sure XTAL is assigned the proper value. MCS BASIC-52 performs the pro-
gramming pulse width calculation to within 5 clock cycles, so the accuracy of the programming pulse is
well within the limits of any EPROM device. :

10.3 SERIAL PORT IMPLEMENTATION

The serial port I/O s1gnals on the 8052AH are TTL compatible signals. They are typically not compatible
with most terminals. Figure 6 suggests hardware options for making the serial interface compatible with
terminals. The serial port is initialized by MCS BASIC-52 to the 8-bit uart mode. In this mode 8 data bits,
plus one start and one stop bit are transmitted. Parity is not used.

136

L8}

EEEEREE Ta[z]éla[: = PP

+5V F +5V |_1
Vee GND Vee CE GND
D10 D00 A0
[13]] Do1 A1 Ag
D12 D02 A2
D13 74 D03 A3 Ag
D14 LS D04 A4
D15~ 373 D05 AS A0
D16 D06 A6
D17 Do7 A7
2K
X
8
— SRAM
E OF
Op
04
02
03
O4
Os
Og
o7 OF WE

+5V
1 |4o 20
Vee Vss P10
| XTAL 1 .
30 pF | I P11
P1.2
] P13
= T | 18 P14
30 pF XTAL 2 P15
P16
MCS P17
BASI
1L 82 ASIC-52 P20
= 9 P21
+5s v——{¢€ RESET P2.2
10 uF p2e
P25
P26
EA P27
1_0 P3.0 (RXD) P0.0
A1) p3.1 (TXD) P01
121 P32 (NT0) P02
4] P3.3 (INT1) P03
=51 P340 P04
— P35 (T1) PO.5
131p3s (WR) P06
P3.7 (RD)ALE PSEN P0.7
30 |29

Figure 1. Interface to 2K x 8 Static RAM

¢S-0ISVE «SON

8€El

L

4l
C1

C2

HH

AVl
K4

C1=Cz

=30 pF
FOR
XTALS
40 pF
FOR
CERAMIC
‘RESONATORS

XTAL 1

XTAL 2

apNOO®

P14

P27

P26

P25

+21vV

Figure 2A. Full system with EPROM power on protection (no DMA)

This system will decode: RAM from 0 to 16K on 2K boundaries, EPROM from 0 to 32K on 8K boundaries,
RAM/EPROM from 32K to 64K on 8K boundaries

| P 47K
10K
+5 b
ADDITIONAL CHIP ENABLE 0-64K WITH 8K BOUNDRIES
—— ®
E3l—+5 é 2N4403
+5—E3 7407 K
B2 7 ;7 I 10K
o 7 . § |————> ADDITIONAL CHIP ENABLES +5V
< 5 f——— 8K-16K WITH 2K BOUNDRIES 1N270
E1 L 6) L 5 =
s 5 5 3 - ,
=) 4 1 -
3 3 3 3t
e °t — °oz PaN VPP
; -
ik Iw.soe o !
_ 2 _
g o Az A a0 O
T _
CE
1 2
A1
A1
Ag
1 M Al |*
] CE Ag CE Ag CE Ag| CE 7
pyR9A0 L Ip,AeA0 | 1 AsAto | Ip, AsAro by 6
Dg 106 106 10 Dg 4
Ds 105 F—10s —10s Ds
Ds o4 — o4 — o4 Ds
D3 —103 103 —10s3 D3
D2 102 [—1P2 —102 D2
Dy 2K 101 2k P12k —D1 2k Dy
Do X 1% x b0 x —1% x Do
8 8 8 8
+5V e— 10K STATIC STATIC STATIC STATIC
b7 Do7 A7 pam [1A7 mram [1A7 Rram A7 RAM A7
M De 7 Dos As —4s 146 —1As Ag
74LS08 WA D5, g:i — :‘5 — z - ﬁ — ﬁ :s‘
A o | [[]]
ANA- D3 g Do3af—1A3 —1 A3 1 A3 F—1A3 A3
A D2 5 Doz [A2 — A2 —1 A2 —1 A2 A2
A D1 7 Dot [A 1A 1 A1 A1 At
Do 3 Doo[—] % 1 40 — 40 — %0 A
+5
ono 52 Yool > |we o WE O WE_OE WE_OF oF
1=
—+5 _
D
— ENABLE FOR
= Imsoe > MEMORY ADDRESSED
= FROM 32K TO 64K

¢S-0ISVE «SON

6€1

1l

I
o

"
4

]
—le—

INTO

DMA
REQUEST

XTAL 1

XTAL 2

sapNBO®

SERIAL
IN

SERIAL
out

P14

P27

P25

P24

P22
P21
P2.0
PO.7
P0.6
P04
P03
PO.2

PO.1
P0.0

P13
ALE
WR
RD
PSEN
EA
Vee

GND

- +5

— +5

1

+5—E3
B2 7 _
4 i o
Bl L 6
s gl
- 1 5
3 3
pn 8 2|—
’—Al =
gl ° 1|
+5V - 10K
WA D, Do® |—
AA D, 7 Do b
P 1S
A Dy L Dodf—
A D, S Dotf—s
A Ds 3 Dosf—
vy D, 7 Dot
—AWA D, 3 Do’
E +5
GND GE VCC [

8K
x
8
STATIC
CE RAM
A2

A11

A10

al

WE

10K

|7M£ﬂ

Figure 2B. Programming 2817A’s with Version 1.1 of MCS BASIC-52

Ao

PN N

¢S-0ISVE «SON

ovi

o

é&

XTAL 1

XTAL 2

SERIAL
our

P14

Figure 2C. Programming 2817A’s with Version 1.0 of MCS BASIC-52

+5
10K 10K
'
330 pF
+5— E3
=L i
Bl L §—
S 5
= 1 i
: i
8 — 8K WR
™ i x
Ml i 8 =
5 STATIC €
A0 0
| L | Ram :
A2 1
7
A1 A
A1 Ao
Ag Ag
Ag Ag
b7 07
Ds Dg
Ds Ds
Dy Dy
D3 03
D2 D2
Dy (]
0o 0o
+5Ve— 10K
VWA L Do7 A7 Ay
A Dg , Dos[— As Ag
2 e :
AAA Ds |, Dos|—As Ay
O g busf—ag n
A D2 5 Do2— Az A2
D1, Do A A
Dy 5 Dool— Ao a9
enp OE VO[> | we oE oE
s =
—+5 _
1 [ruson

2S-0ISvVe «SON

i

EPROM PROGRAMMING TIMING

P15
EPROM VOLTAGE ENABLE

ol o

R
LOW ORDER ADDRESS VALID

{ ¢

77
PORT 0 , DATA VALID X
| | yya |
|
|
|

| |
17CY 17CY I X
] Il
| |
P13] |
ALE DISABLE | I
)/ 1 — GED b D
] 7 I |
| | |
I /L | |
|
HIGH ORDER ADDRESS
PORT 2 | VALID |
| (7 : IN L -
[27 : |
I TCY - 40 TCY > I
MIN [T 5 82 TCY MIN
|<—> 0 MS lt— MIN —>} ! :
P14 : :
PROGRAMMING PULSE I l
s e _; {_ pu - -
1MS
IF INTELLIGENT ALGORITHM USED NOTE: HORIZONTAL TIME SCALE IS NOT
12 ;0 TCY =1us
TCY = XTAL AT 12 MHz

WHEN USING THE INTELLIGENT ALGORITHM (FPROG)
THE LENGTH OF THE LAST PROGRAMMING PULSE

IS THREE TIMES THE TOTAL NUMBER OF PULSES
AFTER THE PROM IS PROGRAMMED.

Figure 3A. EPROM Programming Timing Version 1.0

2G-JISvd «SON

vl

PROGRAM ENABLE

P15

ADDRESS HIGH
PORT 2

ADDRESS LOW/
DATA
PORT 0

ALE DISABLE
P13

PROGRAM PULSE
P14

READ
P3.7

PROGRAM ONE BYTE

PROGRAM NEXT
VERIFY BYTE _’IG— BYTE

DON'T CAREX

ADDRESS HIGH

NEXT
ADDRESS HIGH

-

DON'T CARE

DATA OUT

lt—ao toy——>1 1tcy [@—

|30 tcy ——>]

NEXT
ADDRESS LOW

[e—36 tcy —> —] |« 1 tcy
=1 NOTE 1 L— — le—1 tcy
'I |' NOTE 2 30 tey 1tey
NOTE 1. This pulse is either 1 millisecond (INTELigent élgorithrn) or 50 milliseconds (normal algorithm). SAMPLED 7

NOTE 2. When PROG command is executed, P1.5 goes low, and then the EPROM is read to see where to place the BASIC program.

Figure 3B. EPROM programming timing for Version 1.1

25-0Isve «SON

el

MCS® BASIC-52

P15
OF

+5

(PIN 6) 1K

7407

ANY NON-INVERTER
TTL GATE MAY
BE USED

T0

ADDRESS
DECODE
(ACTIVE LOW)

74LS08
PSEN

RD

(PIN 5) 7407
8052AH [: 47K Q

10K 0 ¢

(PIN 1) Vpp

PGM (PIN 27)

ON=-NN-BONN

T

Figure 4A. Programming 2764's/27128’s

P15 |
OF 10KQQ
8052AH | [:7407]
P14
| 47K Q
OF
8052AH
TO CE/PGM
ADDRESS = Vpp
DECODE 741508
(ACTIVE
Low)
2
7
1
6
5
74LS08 74LS32

PSEN
RD

Figure 4C. Programming 2716’s

143

+25 VOLTS

Figure 4B. Programming 2732A’s

21 +21
VOLTS VoLTS
10KQ 2
741832 7407 3
2N4403 P15 :D—D—'\WJ 2N4403
P14 47K Q
+5
voLTS
10
ADDRESS & _ MNP
DECODE ¢ OE v
(ACTIVE

Low))

- 7
3

2

A

74508
FeEn 7407
RD

el

MCS® BASIC-52

+10 TO +15 VOLTS

+5
+5
o 7 |4 10k $ PUSH BUTTON
~ B 8 T goiean
a A a A 1
15K @ © 15K =
Ry/Cx +5 Rx/Cx +5

5 uF
J‘M

Cx Cx

]

T

1/2 74221 1/2 74221

Figure 5. 2816A Circuit with Push Button Erase.

5 pF

(Basic-52 should be “Idle” in the command mode when the Erase Button is pushed.)

10K
7407
2N4403 - -
47K
+5 —wWA—e
4.7K
~_RD OE (PIN 20)
PSEN 7007
740508
T0)—{> CE (PIN 18)
ADDRESS 7407 2
DECODE 8
LOGIC +5 M 1
(ACTIVE LOW) 10K 6 _
(-
A PIN21
7407 () 74LS08
P14
PROGRAM
PULSE
WIDTH 7
TO RXD ON
BASIC-52
DEVICE
SERIAL
INPUT
+5
4.7K
TO TXD ON
BASIC-52
SERIAL 47K DEVICE
OUTPUT
3 18K
i<
7 10kF
= 15V
Figure 6A.

TWO TRANSISTORS TO IMPLEMENT RS-232. THE "NEGATIVE"
SUPPLY FOR THE SERIAL OUTPUT LINE IS TAKEN FROM THE
SERIAL INPUT LINE. NO +12 VOLT SUPPLY IS REQUIRED.

+5 _
SERIAL | R T(a)Ans)l(g-sozN
7 7
INPUT DEVICE
174 = 1489
+12
-12 TO TXD ON
SERIAL { BASIC-52
ouTPUT DEVICE
14 1488
Figure 6B.

USING THE STANDARD 1489 AND 1488 LINE RECEIVERS AND
DRIVERS, 12 VOLTS IS NEEDED WITH THIS IMPLEMENTATION.

144

CHAPTER 11
Reset Options (Version 1.1 Only)

Version 1.1 of MCS BASIC-52 contains numerous RESET options that were not available in Version 1.0.
They are discussed in detail in chapters 3.2 through 3.5 of this manual. Briefly, they are as follows:

PROG1
Saves only the serial port baud rate for a power-up or RESET condition.
PROG2

Saves the serial port baud rate and automatically runs the first program that is saved in EPROM on a
power-up or RESET condition.

PROG3

Saves the serial port baud rate plus the assigned MTOP value. If RAM is available beyond the assigned
MTOP value, it will not be cleared during a power-up or RESET condition.

PROG4

Saves the serial port baud rate plus the assigned MTOP value, just like PROG3, but also automatically
runs the first program that is saved in EPROM on a power-up or RESET condition.

PROGS5
Does the same thing as PROG4, however, if external memory location SFH contains the character 0ASH

on a power-up or RESET condition, external memory will not be cleared. This mode assumes that the
user has employed some type of memory back-up.

145

intel MCS® BASIC-52

RESET OPTIONS (VERSION 1.1 ONLY)
PROG6

Does the same thing as PROGS, but CALLS external program memory location 4039H during a RESET
or power-up sequence. This option also requires the user to put the character 0ASH in external memory
location 5FH to insure that external RAM will not be cleared during RESET or power-up. The user must
put an assembly language RESET routine in external memory location 4039H or else this RESET mode
will crash. When the user returns from the customized assembly language RESET routine, three options
exist:

OPTION 1 FOR PROG6

If the CARRY BIT is CLEARED (CARRY = 0) upon return from the user RESET routine MCS BASIC-
52 will enter the auto-baud rate determining routine. The user must then type a space character (20H) on
the terminal to complete the RESET routine and produce a RESET message on the terminal.

OPTION 2 FOR PROG6
If the CARRY BIT is SET (CARRY = 1) and BIT 0 of the ACCUMULATOR is CLEARED (ACC. 0

= 0) MCS BASIC-52 will produce the standard sign-on message upon return from the user supplied
RESET routine. The baud rate will be the one that was saved when the PROG6 option was used.

OPTION 3 FOR PROG6
If the CARRY BIT is SET (CARRY = 1) and BIT 0 of the ACCUMULATOR is SET (ACC. 0 = 1),

MCS BASIC-52 will execute the first program stored by the user in EPROM (starting address of the
program is 8010H) upon return from the user supplied RESET routine.

146

intel MCS® BASIC-52

RESET OPTIONS (VERSION 1.1 ONLY)

If these options are still not sufficient to address the needs of a specific application, one other option exists
and it functions as follows:

After RESET, MCS BASIC-52 initializes the SPECIAL FUNCTION REGISTERS SCON, TMOD, TCON,
and T2CON with the following respective values, SAH, 10H, 54H, and 34H. If the user places the character
0AAH in external CODE MEMORY location 2001H (remember CODE MEMORY is enabled by PSEN),
MCS BASIC-52 will CALL external CODE MEMORY location 2090H immediately after these special
function registers are initialized. No other registers or memory locations will be altered except that the
ACCUMULATOR will contain a 0AAH and the DPTR will contain a 2001H.

Since MCS BASIC-52 does not write to the above mentioned Special Function Registers at any time except
during the RESET or power-up sequence the user has the option of modifying any of the Special Function
Registers with this RESET option. Upon returning from this RESET mode, the MCS BASIC-52 software
package will clear the internal memory of the 8052AH and proceed with the RESET routine. The PROG1
through PROG®6 options will function as usual.

Now, suppose the user does not want to enter the normal RESET routines, or the user wants to implement
some type of ‘‘warm’’ start-up routine. This can be accomplished simple by initializing the necessary
Special Function Registers and then jumping back into either MCS BASIC-52’s COMMAND mode or
RUN MODE. For a warm start-up or RESET (warm means that the MCS BASIC-52 device was RESET,
but power was not removed — i.e. the user hit the RESET button) the following must be initialized:

SCON, TMOD, TCON, T2CON, if the user does not want to use the values that MCS BASIC-52 supplies.
RCAP2H and RCAP2L must be loaded with the proper baud rate values. If the user has programmed an
EPROM with one of the PROGI1 through PROG6 options, the proper baud rate value will be stored in
external DATA MEMORY locations 8001H (RCAP2H) and 8002H (RCAP2L).

The STACK POINTER (Special Function Register SP) must be initialized with the contents of the STACK

POINTER SAVE location, which is in internal DATA MEMORY location 3EH. A MOV SP, 3EH assembly
language instruction will accomplishment the STACK POINTER initialization.

147

intel MCS® BASIC-52

RESET OPTIONS (VERSION 1.1 ONLY)

After the above are initialized by the user supplied RESET routine, the user may enter MCS BASIC-52’s
command mode by executing the following:

CLR A
LIMP 30H

Now, it is important to remember that the previous description applies only to a ‘‘warm’’ RESET with
power remaining to the MCS BASIC-52 system. This means that the user must also provide some way of
detecting the difference between a warm RESET and a power-on RESET. This usually involves some type
of flip-flop getting set with a power-on-clear signal from the users power supply. The details of imple-
mentating this RESET detection mechanism will not be discussed here as the possible hardware options
vary depending upon the design.

The user may also implement a ‘‘cold start’’ reset option with the previously described reset mode. The
following code details what is necessary to implement a cold start option.

EXAMPLE:

ORG 2001H

i

DB OAAH i TELL BASIC THAT RESET IS EXTERNAL

i

ORG 2090H } LOCATION BASIC WILL CALL FOR RESET

i
i AT THIS POINT BASIC HAS PLACED A SAH IN
i SCON, A 10H IN TMOD, A S4H IN TCON AND
3 A 34H IN T2CON

i
1 FIRST CLEAR THE INTERNAL MEMORY

mMov RO, #OFFH 1 LOAD RO WITH THE TOP OF INTERNAL MEMORY

CLR A 1 SET ACCUMULATOR = O

RESET1: MOV @RO, A 3 LOOP UNTIL ALL THE INTERNAL RAM IS CLEARED

DJUNZ RO, RESET1

NOW SET UP THE STACK POINTER AND THE STACK
POINTER HOLDING REGISTER

- e e

MoV SP. #4DH 4DH IS THE INITIALIZED VALUE OF THE STACK
Mov 3EH, #4DH THIS IS THE SP HOLDING REGISTER
i .
i NOW CLEAR THE EXTERNAL RAM, IN THIS
i EXAMPLE ASSUME THAT 1FFFH BYTES OF RAM
i ARE AVAILABLE
i THE USER MUST CLEAR AT LEAST THE FIRST 512
+ BYTES OF RAM FOR A COLD START RESET
i
MoV R3, #HIGH IFFFH
MOV R1, #LOW 1FFFH
Mov DPTR, #OFFFFH

148

intel MCS® BASIC-52

RESET OPTIONS (VERSION 1.1 ONLY)

;i BE IN THIS LOOP

CJUNE A, DPH, RESET2

Mov A, R1

CJNE A, DPL, RESET2

i

i WHEN YOU GET HERE, YOU ARE DONE

i

i NOW SET UP THE MEMORY POINTERS, FIRST MTOP

MOV A, #HIGH 1FFFH; SAVE MTOP

MOVX @DPTR, A

INC DPTR i NOW, SAVE THE LOW BYTE
Mov A, #LOW 1FFFH

MOVX @DPTR, A

i

+ NOW SET UP THE VARTOP POINTER, WITH NO STRINGS,
i VARTOP = MEMTOP

i

MOV DPTR, #104H i LOCATION OF VARTOP IN EXTERNAL RAM
Mov A, #HIGH 1FFFH

MOVX @DPTR, A

INC DPTR

MOV A, #LOW 1FFFH

MOVX @DPTR, A
i

i
i
i DESCRIBED IN THE APPENDIX, WITH NO PROGRAM IN RAM,
i DIMUSE = 528 AFTER RESET

i

Mov DPTR, #108H i LOCATION OF DIMUSE IN EXTERNAL RAM
MOV A, #HIGH 528

MOVX @DPTR, A

INC DPTR

MoV A, #LOW 528

MOVX @DPTR, A
i

i

MoV DPTR. #106H ; LOCATION OF VARUSE IN EXTERNAL RAM
MoV A, #HIGH 1FFFH

MOVX @DPTR, A

INC DPTR

Mov A, #LOW 1FFFH

MavX @DPTR, A
i
i NOW SETUP BASICS CONTROL STACK AND ARGUMENT STACK

i

i IF THE USER HAS A PROGRAM IN RAM

MoV A, #01H i END OF FILE CHARACTER
MOVX @DPTR, A

RESET2: INC DPTR 3 DPTR = O THE FIRST TIME THRU
CLR A
MavX @DPTR, A 3 CLEAR THE RAM, A MEMORY TEST PROGRAM COULD

Mov A, R3 i NOW TEST FOR THE MEMORY LIMITS

i
Mav DPTR, #10AH i LOCATION OF MTOP IN EXTERNAL RAM

NOW SAVE THE MATRIX POINTER “DIMUSE", THIS POINTER IS

i NOW SAVE THE VARIABLE POINTER "VARUSE" THIS POINTER 1S
i ALSO DESCRIBED IN THE APPENDIX, AFTER RESET VARUSE = VARTOP

i
Mav 9H, #OFEH i THIS INITIALIZES THE ARGUMENT STACK
Mov 11H, #OFEH i THIS INITIALIZES THE CONTROL STACK

i NOW TELL BASIC THAT NO PROGRAM I8 IN RAM, THIS IS NOT NEEDED

i
MoV DPTR, #512 + LOCATION OF THE START OF A USER PROGRAM

149

intel

MCS® BASIC-52

RESET OPTIONS (VERSION 1.1 ONLY)

XTAL:

RESET3:

RESET4:

i
i NOW PUSH THE CRYSTAL VALUE ON TO THE STACK AND LET BASIC
i CALCULATE ALL CRYSTAL DEPENDENT PARAMETERS

i
SJMP
I

DB
DB
DB
DB
DB
DB

]

i
MoV
MOV
CLR
SUBB
MOV
MoV
MoV
MoV
i

CLR
MOvC
MOVX
INC
DEC
DJUNZ
i

i NOW CALL BASIC TO DO

MOV
LCALL
P

NOW TELL BASIC WHERE
BY LOADING THE START
13H WOULD = HIGH BO11H AND 14H = LOW 8011H,

RESET3

88H
OO0H
OO0H
92H
OSH
11H

DPTR, #XTAL
A9

(o

A #6

9 A

RO, A

P2, #1

R1, #6

A

A, @A+DPTR
@RO, A
DPTR

RO
R1,RESET4

A, #58
30H

PROGRAM

}
3

THIS IS THE FLOATING POINT VALUE
FOR AN 11.0592 MHZ CRYSTAL

SET UP TO PUSH CRYSTAL VALUE
GET THE ARG STACK

DECREMENT ARG STACK BY ONE FP NUMBER
SAVE THE CALCULATED ADDRESS IN RO
THIS IS THE ARG STACK PAGE ADDRESS
NUMBER OF BYTES TO TRANSFER

TRANSFER ROM CRYSTAL VALUE TO THE
ARGUMENT STACK OF BASIC :

BUMP THE POINTERS
LOOP UNTIL THE TRANSFER 1S COMPLETE
ALL THE CRYSTAL CACULATIONS

OPBYTE FOR CRYSTAL CALCULATION
DO THE CALCULATION

START OF THE USER BASIC PROGRAM IS
ADDRESS, IF THE PROGRAM IS IN EPROM
ANYWAY

i
i ADDRESS 13H: 144 MUST POINT TO THE START OF THE BASIC
i
i

MoV
MoV

[

13H, #HIGH 512;
14H, #LOW 512 ; THE PROGRAM IS IN LOCATION 512

HOWEVER,
ROUTINE
i
mav R3, #O00H
Mov R1, #O00H
MOV RO, #04H
JB

i

RXD, ¢

NOW THE SERIAL PORT MUST BE INITIALIZED,
CAN SET UP THE SERIAL PORT TO ANY DESIRED CONFIGURATION
THIS DEMO CODE WILL SHOW THE AUTO BAUD

H

THIS TELLS BASIC THAT THE START OF

THE USER

INITIALIZE THE AUTO BAUD COUNTERS

LOOP UNTIL A START BIT IS RECEIVED

150

intel

MCS® BASIC-52

RESET OPTIONS (VERSION 1.1 ONLY)

H
RESETS: " DJNZ RO, &

MSG:

1 WASTE 8 CLOCKS INITIALLY, SIX CLOCKS
+ IN THE LOOP (16) TOTAL

CLR C 1 1 CLOCK (1)

Mov A, R1 + 1 CLOCK (2)

SUBB A, #1 3 1 CLOCK (3)

Mav R1,A i 1 CLOCK (4)

MoV A, R3 1 1 CLOCK (3)

SUBB A, #00H 3 1 CLOCK -- R3:R1 = R3:R1 - 1 (&)

Mov R3, A 3 1 CLOCK (7)

MoV RO, #3 3 1 CLOCK (8)

JNB RXD, RESETS 1 2 CLOCKS (10), WAIT FOR END OF SPACE

JB RXD, ¢ i WAIT FOR THE SPACE TO END (20H)

JNB RXD, ¢ i WAIT FOR THE STOP BIT

MoV RCAP2H, R3 i LOAD THE TIMER 2 HOLDING REGISTERS

MoV RCAP2L, R1

i
1 NOW YOU CAN ADD A CUSTOM SIGN ON MESSAGE
i

Mov R3, #HIGH MSG : PUT ADDRESS OF MESSAGE IN R3:R1
MoV R1, #LOW MSG

SETB 52 + PRINT FROM ROM

Mmov A %6 3 OP BYTE TO PRINT TEXT STRING
LCALL 30H

i

i NOW OUTPUT A CR LF

}

Mov A, #7 i+ OP BYTE FOR CRLF
LCALL 30H

i

1 G0 TO THE COMMAND MODE

i

CLR A

JMP 30H

i

DB ‘CUSTOM SIGN ON MESSAGE ‘

DB 22H 3 TERMINATES MESSAGE
i

END

151

intel MCseBASIC52

RESET OPTIONS (VERSION 1.1 ONLY)

To Summarize what the user must do to successfully implement.a ““COLD START’’ RESET:

n

2)

3)

4)

5)

6)

The user must clear the internal RAM of the MCS BASIC-52 device and at least the first 512 bytes of
external RAM memory.

The userv musi initialize the stack pointér (special function register — SP) and the stack pointer holding
register (internal RAM location 3EH) with a value that is between 4DH and OEOH. 4DH gives MCS
BASIC-52 the maximum stack size.

The user must initialize the following pointers in external RAM. MTOP at location 10AH (high byte)
and 10BH (low byte). VARTOP at locations 104H (high byte) and 105H (low byte). DIMUSE at
locations 108H (high byte) and 109H (low byte). VARUSE at locations' 106H (high byte) and 107H
(low byte). Details of what needs to be in these locations are presented in appendix 1.7 of this manual.

The Control stack pointer (location 11H in internal memory) and the Argument stack pointer (location
0%H in internal memory) must also be initialized with the value OFEH. If the user is not going to assign
the XTAL (crystal) value in BASIC, then the XTAL value must be pushed onto the argument stack
and the user must to an OPBYTE 58 call to MCS BASIC-52.

The User must also initialize the start address of a program. The start address is in locations 13H (high
byte) and 14H (low byte) of internal data memory. If the user BASIC program is in RAM, then 13H:
14H = 512, if the user program is the the first program in EPROM, then 13H: 14H = 8011H.

The user must finally initialize the serial port. Any scheme can be used (as long as it works!!)

The added reset options should go a long way toward making MCS BASIC-52 configurable to any custom
application. S

152

CHAPTER 12
Command/Statement Extensions (Version 1.1 Only)

MCS BASIC-52 V1.1 provides a simple, but yet effective way for the user to add COMMANDS and/or
STATEMENTS to the ones that are provided on the chip. All the user must do is write a few simple
programs that will reside in external code memory. The step by step approach is as follows:

STEP 1

The user must first inform the MCS BASIC-52 device that the expansion options are available. This is
done by putting the character SAH in CODE memory location 2002H. When MCS BASIC-52 enters the
command mode it will examine CODE memory location 2002H. If a SAH is in this location, MCS BASIC-
52 will CALL external CODE memory location 2048H. The user must then write a short routine to SET
BIT 45 (2DH), which is bit 5 of internal memory location 37 (decimal) and place this routine at code
memory location 2048H. Setting BIT 45 tells MCS BASIC-52 that the expansion option is available. The
following simple code will accomplish all that is stated above:

ORG 2002H
DB SAH
OoG 2048H
SETB 45
RET

STEP 2
With BIT 45 SET, MCS BASIC-52 will CALL external CODE memory location 2078H everytime it

attempts to tokenize a line that has been entered. At location 2078H, the user must load the DPTR (Data
Pointer) with the address of the user supplied lookup table, complete with tokens.

153

intel

MCS® BASIC-52

COMMAND/STATEMENT EXTENSIONS (VERSION 1.1 ONLY)

STEP 3

The user needs the following information to generate a user token table:

1) THE USER TOKENS ARE THE NUMBRES 10H THROUGH 1FH (16 TOKENS AVAILABLE)

2) THE USER TOKEN TABLE BEGINS WITH THE TOKEN, FOLLOWED BY THE ASCI TEXT
THAT IS TO BE REPRESENTED BY THAT TOKEN, FOLLOWED BY A ZERO (00H) INDICATING

THE END OF THE ASCII, FOLLOWED BY THE NEXT TOKEN.

3) THE TABLE IS TERMINATED WITH THE CHARACTER OFFH.

EXAMPLE:

orRe 2078H
i
MOV DPTR, #USER_TABLE
RET
1
ORG 2200H) THIS DOES NOT NEED TO BE
;) IN THIS LOCATION

USER_TABLE:
1
DB 10H JFIRST TOKEN
DB ‘DISPLAY JUSER KEYWORD
DB O0H) KEYWORD TERMINATOR
i
DB 11H) SECOND TOKEN
DB *TRANSFER /) SECOND USER KEYWORD
DB 00H) KEYWORD TERMINATOR
H
DB 124) THIRD TOKEN (UP TO 1&)
DB ‘ROTATE’) THIRD USER KEYWORD
DB OFFH JEND OF USER TABLE

This same user table is used when MCS BASIC-52 ‘‘de-tokenizes’’ a line during a LIST.

154

intel MCS® BASIC-52

COMMAND/STATEMENT EXTENSIONS (VERSION 1.1 ONLY)

STEP 4

Step 3 tokenizes the user keyword, this means that MCS BASIC-52 translates the user keyword into the
user token. So, in the preceding example, the keyword TRANSFER would be replaced with the token
11H. When MCS BASIC-52 attempts to execute the user token, it first makes sure that the user expansion
option BIT is set (BIT 45), then CALLS location 2070H to get the address of the user vector table. This
address is placed in the DPTR. The user vector table consist of series of Data Words that define the address
_of the user assembly language routines.

EXAMPLE:

OReG 2070H 1 LOCATION BASIC CALLS TO
1 GET USER LOOKUP

i

Mov DPTR, #VECTOR_TABLE

RET

H
VECTOR_TABLE:
H
DW RUN_DISPLAY i ADDRESS OF DISPLAY

i ROUTINE, TOKEN (10H)
DW RUN_TRANSFER i ADDRESS OF TRANSFER

iROUTINE, TOKEN (11H)
DW RUN_ROTATE i ADDRESS OF ROTATE

i ROUTINE, TOKEN (12H)

i
ORG 2300H 1 AGAIN, THESE ROUTINES
i MAY BE PLACED ANYWHERE

RUN___DISPLAY:
, USER ASM CODE FOR DISPLAY GOES HERE

RUN__TRANSFER:
, USER ASM CODE FOR TRANSFER GOES HERE

RUN_RUTATE:

i
1+ USER ASM CODE FOR ROTATE GOES HERE
; .

155

intdl

MCS®@ BASIC-52

COMMAND/STATEMENT EXTENSIONS (VERSION 1.1 ONLY)

Note that the ordinal position of the DATA WORDS in the user vector table must correspond to the token,
so the user statement with the token 10H must be the first DW entry in the vector table, 11H, the second,
12H, the third, and so on. The order of the tokens in the user table is not important!! The following user

lookup table would function properly with the previous example:

EXAMPLE:

i

USER_TABLE:
i
DB 13H) THE TOKENS DO NOT HAVE
DB ‘ROTATE’ 1 TO BE IN ORDER IN THE
DB 00H 1 USER LOOKUP TABLE
i
DB 10H
DB ‘DISPLAY *
DB OO0H
)
DB 12H
DB ‘TRANSFER *
DB OFFH JEND OF TABLE

156

intel

MCS¢@ BASIC-52

COMMAND/STATEMENT EXTENSIONS (VERSION 1.1 ONLY)

The user may also use the command/statement extension option to re-define the syntax of MCS BASIC-
52. This is done simply by placing your own syntax in the user table and placing the appropriate BASIC
token in front of your re-defined keyword. A complete listing of all MCS BASIC-52 tokens and keywords
are provided in the back of this chapter. MCS BASIC-52 will always list out the program using the user
defined systax, but it will still accept the standard keyword as a valid instruction. As an example, suppose
that the user would like to substitute the keyword HEXOUT for PH1., then the user would generate the

following entry in the user table:

EXAMPLE:

USER_TABLE:
DB 8FH s TOKEN FOR PH1.
DB ‘HEXOUT 1 ; TO BE IN ORDER IN THE
DB O0H i USER LOOKUP TABLE
i
DB 10H
DB ‘DISPLAY
DB OOH
i
i REST OF USER_TABLE
i
DB OFFH i END OF TABLE

MCS BASIC-52 will now accept the keyword HEXOUT and it will function in a manner identical to PH1.
PH1. will still function correctly, however HEXOUT will be displayed when the user LIST a program.

157

intgl

MCS® BASIC-52

COMMAND/STATEMENT EXTENSIONS (VERSION 1.1 ONLY)

TOKEN

80H
B1H
82H
83H
B84H

86H
a7H
88H
89H
a9H
89H
BAH
BBH
8CH
8DH
BEH
8FH
F0H
F1H
92H
93H
94H
95H
F6H
97H
98H
99H
FAH
9BH
9CH
9DH
9EH
9FH
0AOH
0A1H
0A2H
0A3H
0A4H
0ASH
0AGH
0A7H
0ABH
0A%H
0AAH
OABH
OACH
OADH
OAEH
OAFH

KEYWORD

LET
CLEAR
PUSH
eoTo
PWM
PHO.
uI

uo
POP
PRINT
P

2 (V1.1 ONLY)

CALL
DIM
STRING
BAUD
CLOCK
PH1.
STOP
ONTIME
ONEX 1
RETI

DO
RESTORE
REM
NEXT
ONERR
ON
INPUT
READ
DATA
RETURN
IF
60SUB
FOR
WHILE
UNTIL
END

TAB
THEN

TO

STEP
ELSE
8PC

CR

IDLE
sTe (V1.
LDe (vi.
PGM (V1.
RROM(V1.

1 ONLY)
1 ONLY)
1 ONLY)
1 ONLY)

TOKEN

OBOH
OB1H
0B2H
0B3H
OB4H
OBSH
OB&H
OB7H
OBSH
OBSH
OBAH
OBBH’
OBCH
OBDH
OBEH
OBFH
OCOH
OC1H
0C2H
0C3H
0C4H
0CSH
0C&H
0C7H
0CEH
OCHH
0CAH
OCBH
OCCH
OCDH
OCEH
OCFH
ODOH
OD1H
oD2H
0D2H
OD3H
OD4H-ODFH
OEOH
OE1H-
OE2H
OE3H
OE4H
OESH
OE&H
OE7H
OEBH
OE9H
OEAH
OEBH

KEYWORD

ABS
INT
SGN
NOT
cos
TAN
SIN
SQR
CBY
EXP
ATN
LOG
DBY
XBY
PI
RND
GET
FREE
LEN
XTAL
MTOP
TIME
1E

1P
TIMERO
TIMER1
TIMER2
T2CON
TCON
THMOD
RCAP2
PORT1
PCON
ASC(
USING(
U. (
CHR (
NOT USED
(

3

N+ %

. XOR.

. AND.

. OR.

- (NEGATE)

-

>=

158

TOKEN

OECH
OEDH
OEEH
OEFH
OFOH
OF 1H
OF2H
OF3H
OF4H
OFSH
OF6H
OF7H
OFBH
OF9H
OFAH-OFFH

KEYWORD

L=
<

<

>
RUN
LIST
NULL
NEW
CONT
PROG
XFER
RAM
ROM
FPROG
NOT USED

CHAPTER 13
Mapping User Code Memory

You might have noticed by now that some of external CODE memory locations that MCS BASIC-52 calls
and uses are located around 2000H and some of the locations are located around 4000H. Specifically, they
are as follows:

LOCATION FUNCTION

2001H ON RESET, MCS BASIC-52 LOOKS FOR A 0AAH IN THIS LOCATION, IF
PRESENT, CALLS LOCATION 2090H

2002H MCS BASIC-52 EXAMINES THIS LOCATION TO SEE IF THE USER

WANTS TO IMPLEMENT THE COMMAND/STATEMENT EXTENSION OP-
TION, A 05AH IS TO BE PLACED IN THIS LOCATION TO EVOKE THE
COMMAND/EXTENSION OPTION

2048H MCS BASIC-52 CALLS THE LOCATION IF THE USER WANTS TO IMPLE-
MENT THE COMMAND/STATEMENT EXTENSION OPTION. THE USER
WILL USUALLY SET BIT 45 THEN RETURN.

2070H MCS BASIC-52 CALLS THIS LOCATION TO GET THE USER VECTOR TA-
BLE ADDRESS WHEN THE COMMAND/STATEMENT EXTENSION OP-
TION IS EVOKED. THE ADDRESS OF THE VECTOR TABLE IS PUT IN
THE DPTR BY THE USER.

2078H MCS BASIC-52 CALLS THIS LOCATION TO GET THE USER LOOKUP TA-
BLE ADDRESS WHEN THE COMMAND/STATEMENT EXTENSION OP-
- TION IS EVOKED. THE ADDRESS OF THE LOOKUP TABLE IS PUT IN
THE DPTR BY THE USER.

2090H MCS BASIC-52 CALLS THIS LOCATION WHEN THE USER EVOKES THE
ASSEMBLY LANGUAGE RESET OPTION
4003H EXTERNAL INTERRUPT 0
400BH TIMER O INTERRUPT
4013H EXTERNAL INTERRUPT 1
401BH TIMER 0 INTERRUPT
4023H SERIAL PORT INTERRUPT
402BH TIMER 2 INTERRUPT
4030H USER CONSOLE OUTPUT
4033H USER CONSOLE INPUT
4036H USER CONSOLE STATUS
403CH USER PRINT@ OR LIST@ VECTOR

4100H-41FFH USER CALLS FORM 0 TO 7FH

159

intel MCS® BASIC-52

MAPPING USER CODE MEMORY

Other vectors between 2040H and 2090H also exist, but they are mainly for testing purposes, but for your
information they are:

LOCATION FUNCTION

2040H TRAP LOCATION FOR EXTERNAL INTERRUPT 0 IF BIT 26H OF INTER-
NAL RAM IS SET AND THE DMA OPTION IS EVOKED. PSW IS NOT
PUSHED ONTO STACK. INTERRUPTS OF COURSE, MUST BE ENA-
BLED. ALSO, THIS LOCATION WILL BE CALLED FOR CONSOLE OUT-
PUT IF BIT 2CH OF INTERNAL RAM IS SET.

2050H TRAP LOCATION FOR SERIAL PORT INTERRUPT IF BIT 1FH OF INTER-
' NAL RAM IS SET. PSW IS PUSHED ONTO THE STACK.

2060H CALLED FOR CONSOLE INPUT IF BIT 32H OF INTERNAL RAM IS SET.

2068H CALLED FOR CONSOLE STATUS CHECK IF BIT 32H OF INTERNAL RAM

' IS SET.

2088H TIMER 1 INTERRUPT TRAP IF BIT 1AH OF INTERNAL RAM IS SET. PSW
‘ IS PUSHED ONTO THE STACK.

Contrary to popular belief, these vectors were not chosen to force the user to buy bigger EPROMS. They
are chosen so that addresses 2000H and 4000H can be overlayed and create no conflicts. The Overlayed
addresses would appear as 2001H, 2002H, 4003H, 400BH, 4013H, 401BH, 4023H, 402BH, 4030H,
4033H, 4036H, 4039H, 2040H, 2048H, 2050H, 2060H, 2068H, 2070H, 2078H, 2088H, 2090H, and
4100H thru 41FFH. The diagram on the next page illustrates how to implement overlapping addresses for
2000H and 4000H. By using overlapping addresses, the user can implement all MCS BASIC-52 user
expansion options with only a few hundred bytes of EPROM.

The reason this type of addressing scheme was chosen is that it permits the designer to offer custom
versions of MCS BASIC-52, by using the vector locations in the 2000H region. And give the des1gners
OEM the ability to take advantage of the I/O vectors located in the 4000H region.

As an added note, the MCS-51 instruction set is object relocatable on 2K boundaries if no LCALL or
LIMP instructions are used. This means that it is possible for the designer to ORG a program for 2000H
and actually execute the program at 2800H, 3000H, 3800H, etc. If the user does not use the LCALL or
LIMP instructions. ‘

160

191

&

10MFD

—l—

RST

XTAL 1

XTAL 2

SERIAL
IN

SERIAL
our

P15

P14

P27

P25

P24

P23

P22

P21

S1 CLOSED PRODUCES OVERLAPPING ADDRESSES

$2 CLOSED PERMITS 27128 TO BE AT ADDRESS 8000H. A13 MUST BE CONNECTED ON 27128

Overlapping user EPROM address space

[\ 4.7K +21V
I 7407 10K
+5 —W
+5
1K
<
+s—{e N
7 1N270
B2, ; —~ ——+5V
e L 3
s i
= 4 +5
s @ I/
A2 2 e vep
By P
37 USER
Al 1
LI) STATIC EXPANSION
r A0 0 RAM EPROM
L CE CE CE
A2 A2 A2
A1 1 A1 A1y
A0 A0 A0
Ag | Ae Ag 2
Ag — |As As 7
1
D7 o7 o; 2
Dg +—Dg o 8
Ds —0s Ds
Ds |~ Dg Dg
D3 —D3 D3
D2 102 D2
D1 104 Dy
0o — oo Do
+5V w— 10K o
A o7 7 — a7 a7 A7
05 7 Dos|— Ag] Ag Ag
74LS08 A Ds 4 Dos|— As — As As
M Dy L Dosi—a A Aq
AM D3 S Doaf—A; a3 A3
A D2 3 Do2l—a; A2 A2
A D1 7 Dot f—a¢ — A Ay
Do 3 Doo mk 40 Ao
+
GNDOE VeC[™ [we OE 3 OF
E Fo—

¢S-0ISveE «SON

APPENDIX A

1.1 MEMORY USAGE (Version 1.0)

The following list specifies what locations in internal and external memory MCS BASIC-52 uses, and
what these locations are used for. This information can largely be regarded as ‘‘for your information,’’
but it can be used to do things like alter the pulse width of a EPROM programming pulse, etc.

INTERNAL MEMORY ALLOCATION:

LOCATION(S) IN HEX MCS BASIC-52 USAGE

00H THRU 07H “WORKING REGISTER BANK”

08H BASIC TEXT POINTER — LOW BYTE

09H ARGUMENT STACK POINTER

0AH BASIC TEXT POINTER — HIGH BYTE

0BH THRU OFH TEMPORARY BASIC STORAGE

10H READ TEXT POINTER — LOW BYTE

11H CONTROL STACK POINTER

12H READ TEXT POINTER — HIGH BYTE

13H START ADDRESS OF BASIC PROGRAM — HIGH BYTE
14H START ADDRESS OF BASIC PROGRAM — LOW BYTE
15H NULL COUNT

16H PRINT HEAD POSITION FOR OUTPUT

17H FLOATING POINT OUTPUT FORMAT TYPE

18H THRU 21H NOT USED — RESERVED FOR USER

22H BITS USED SPECIFICALLY AS FOLLOWS

BIT 22.0H ' SET WHEN “ONTIME” STATEMENT IS EXECUTED
BIT 22.1H SET WHEN BASIC INTERRUPT IN PROGRESS

BIT 22.2H SET WHEN “ONEX1” STATEMENT IS EXECUTED
BIT 22.3H SET WHEN “ONERR” STATEMENT IS EXECUTED
BIT 22.4H SET WHEN “ONTIME” INTERRUPT IS IN PROGRESS
BIT 22.5H SET WHEN A LINE IS EDITED

BIT 22.6H SET WHEN EXTERNAL INTERRUPT IS PENDING
BIT 22.7H WHEN SET, CONT COMMAND WILL WORK

23H BITS USED SPECIFICALLY AS FOLLOWS

BIT 23.0H USED AS FLAG FOR “GET” OPERATOR

BIT 23.1H SET WHEN INVALID INTEGER FOUND IN TEXT
BIT 23.2H TEMPORARY BIT LOCATION

BIT 23.3H CONSOLE OUTPUT CONTROL, 1=LINE PRINTER
BIT 23.4H CONSOLE OUTPUT CONTROL, 1=USER DEFINED
BIT 23.5H BASIC ARRAY INITIALIZATION BIT

BIT 23.6H CONSOLE INPUT CONTROL, 1=USER DEFINED
BIT 23.7H RESERVED

162

intel MCS® BASIC-52

1.1 MEMORY USAGE

INTERNAL MEMORY ALLOCATION:

LOCATION(S) IN HEX MCS BASIC-52 USAGE

24H BITS USED SPECIFICALLY AS FOLLOWS

BIT 24.0H STOP STATEMENT OR CONTROL-C ENCOUNTERED
BIT 24.1H 0 = HEX INPUT, 1 = FP INPUT

BIT 24.2H 0 = RAM MODE, 1 = ROM MODE

BIT 24.3H ZERO FLAG FOR DOUBLE BYTE COMPARE

BIT 24.4H SET WHEN ARGUMENT STACK HAS A VALUE

BIT 24.5H RETI INSTRUCTION EXECUTED

BIT 24.6H RESERVED

BIT 24.7H RESERVED

25H BITS USED SPECIFICALLY AS FOLLOWS

BIT 25.0H RESERVED, SOFTWARE TRAP TEST

BIT 25.1H FIND THE END OF PROGRAM, IF SET

BIT 25.2H RESERVED

BIT 25.3H INTERRUPT STATUS SAVE BIT

BIT 25.4H SET WHEN PROGRAM EXECUTION IS COMPLETE
BIT 25.5H RESERVED, EXTERNAL TRAP TEST

BIT 25.6H SET WHEN CLOCK1 EXECUTED, ELSE CLEARED
BIT 25.7H SET WHEN BASIC IS IN THE COMMAND MODE
26H BITS USED SPECIFICALLY AS FOLLOWS

BIT 26.0H SET TO DISABLE CONTROL-C

BIT 26.1H SET TO ENABLE “FAKE” DMA

BIT 26.2H RESERVED

BIT 26.3H SET TO EVOKE “INTELLIGENT” PROM PROGRAMMING
BIT 26.4H SET TO PRINT TEXT STRING FROM ROM

BIT 26.5H RESERVED

BIT 26.6H SET TO SUPPRESS ZEROS IN HEX MODE PRINT
BIT 26.7H SET TO EVOKE HEX MODE PRINT

163

intel

MCS® BASIC-52

1.1 MEMORY USAGE

INTERNAL MEMORY ALLOCATION:

LOCATION(S) IN HEX

27H
28H THRU 3DH
3EH
3FH
40H
41H
42H
43H
44H
45H
46H
47H
48H

49H

4AH
4BH

4CH ,
4DH THRU OFFH

MCS BASIC-52 USAGE

“BIT” ADDRESSABLE BYTE COUNTER

BIT AND BYTE FLOATING POINT WORKING SPACE
INTERNAL STACK POINTER HOLDING REGISTER
LENGTH OF USER DEFINED STRING — $

TIMER 1 RELOAD LOCATION — HIGH BYTE

TIMER 1 RELOAD LOCATION — LOW BYTE

BASIC TEXT POINTER SAVE LOCATION — HIGH BYTE
BASIC TEXT POINTER SAVE LOCATION — LOW BYTE
RESERVED ~

TRANSCENDENTAL FUNCTION TEMP STORAGE
TRANSCENDENTAL FUNCTION TEMP STORAGE
MILLI-SECOND COUNTER FOR REAL TIME CLOCK
SECOND COUNTER FOR REAL TIME CLOCK — HIGH
BYTE

SECOND COUNTER FOR REAL TIME CLOCK — LOW
BYTE

TIMER 0 RELOAD FOR REAL TIME CLOCK
SOFTWARE SERIAL PORT BAUD RATE — HIGH BYTE
SOFTWARE SERIAL PORT BAUD RATE — LOW BYTE
8052AH STACK SPACE AND USER WORKING SPACE

164

intel

MCS® BASIC-52

1.1 MEMORY USAGE

EXTERNAL MEMORY ALLOCATION

LOCATION(S) IN HEX

00H AND 01H
02H AND 03H
04H

05H AND 06H
07H THRU 49H
50H THRU 5FH
60H THRU OFEH
OFFH

100H

101H

102H AND 103H
104H AND 105H
106H AND 107H
108H AND 109H
10AH AND 10BH
10CH AND 10DH
10EH THRU 113H
114H THRU 11FH
120H AND 121H
122H AND 123H
124H THRU 127H
128H AND 129H
12AH AND 12BH
12CH

12DH THRU 1FEH

MCS BASIC-52 USAGE

“LAST" END OF FILE ADDRESS FOR RAM FILE (H-L)
CURRENT END OR FILE ADDRESS FOR RAM FILE (H-L)
LENGTH OF THE CURRENT EDITED LINE

LN NUM IN BINARY OF CURRENT EDITED LINE (H-L)
BASIC INPUT BUFFER

FLOATING POINT OUTPUT TEMP

CONTROL STACK

CONTROL STACK OVERFLOW

LOCATION TO SAVE “GET” CHARACTER

LOCATION TO SAVE ERROR CHARACTER CODE
LOCATION TO GO TO ON USER “ONERR” (H-L)

TOP OF VARIABLE STORAGE (H-L)

FP STORAGE ALLOCATION (H-L)

MEMORY ALLOCATED FOR MATRICES (H-L)

TOP OF MEMORY ASSIGNED TO BASIC (H-L)
RANDOM NUMBER SEED (H-L)

CRYSTAL VALUE

FLOATING POINT TEMPS

LOCATION TO GO TO ON ONEX1 INTERRUPT (H-L)
NUMBER OF BYTES ALLOCATED FOR STRINGS (H-L)
ONTIME INTERRUPT AND LINE NUMBER (H-L)
“NORMAL” PROM PROGRAMMER TIME OUT (H-L)
“INTELLIGENT” PROM PROGRAMMER TIME OUT (H-L)
RESERVED

ARGUMENT STACK

NOTE: (H-L) means HIGH BYTE — LOW BYTE, in external memory all 16 bit binary numbers
are stored with the HIGH BYTE in the first (lower order) address and the LOW BYTE in the

next sequential address.

165

intel

MCS® BASIC-52

1.1 MEMORY USAGE (VERSION 1.1)

The following list specifies what locations in internal and external memory locations are used by Version
1.1 of MCS BASIC-52. Any differences between V1.0 and V1.1 are in bold face type.

INTERNAL MEMORY ALLOCATION: (VERSION 1'.1)

LOCATION(S) IN HEX

00H THRU 07H
08H
09H
OAH
O0BH THRU OFH

10H
11H
12H
13H
14H
15H
16H
17H
18H THRU 21H

22H

BIT 22.0H
BIT 22.1H
BIT 22.2H
BIT 22.3H
BIT 22.4H
BIT 22.5H
BIT 22.6H
BIT 22.7H

23H

BIT 23.0H
BIT 23.1H
BIT 23.2H
BIT 23.3H
BIT 23.4H
BIT 23.5H
BIT 23.6H
BIT 23.7H

MCS BASIC-52 USAGE

“WORKING REGISTER BANK”

BASIC TEXT POINTER — LOW BYTE

ARGUMENT STACK POINTER

BASIC TEXT POINTER — HIGH BYTE

TEMPORARY BASIC STORAGE (Available to user in BASIC
CALLS to ASM routines)

READ TEXT POINTER — LOW BYTE

CONTROL STACK POINTER

READ TEXT POINTER — HIGH BYTE

START ADDRESS OF BASIC PROGRAM — HIGH BYTE
START ADDRESS OF BASIC PROGRAM — LOW BYTE
NULL COUNT

PRINT HEAD POSITION FOR OUTPUT

FLOATING POINT OUTPUT FORMAT TYPE

NOT USED — RESERVED FOR USER

BITS USED SPECIFICALLY AS FOLLOWS

SET WHEN “ONTIME” STATEMENT IS EXECUTED
SET WHEN BASIC INTERRUPT IN PROGRESS

SET WHEN “ONEX1” STATEMENT IS EXECUTED
SET WHEN “ONERR” STATEMENT IS EXECUTED
SET WHEN “ONTIME” INTERRUPT IS IN PROGRESS
SET WHEN A LINE IS EDITED

SET WHEN EXTERNAL INTERRUPT IS PENDING
WHEN SET, CONT COMMAND WILL WORK

BITS USED SPECIFICALLY AS FOLLOWS

USED AS FLAG FOR “GET” OPERATOR

SET WHEN PRINT@ OR LIST@ IS EVOKED
RESERVED, TRAPS TIMER 1 INTERRUPT .
CONSOLE OUTPUT CONTROL, 1=LINE PRINTER
CONSOLE OUTPUT CONTROL, 1=USER DEFINED
BASIC ARRAY INITIALIZATION BIT

CONSOLE INPUT CONTROL, 1=USER DEFINED
RESERVED, USED TO TRAP SERIAL PORT INTERRUPT

166

intel

MCS® BASIC-52

INTERNAL MEMORY ALLOCATION (VERSION 1.1)

LOCATION(S) IN HEX
24H

BIT 24.0H
BIT 24.1H
BIT 24.2H
BIT 24.3H
BIT 24.4H
BIT 24.5H
BIT 24.6H
BIT 24.7H

25H

BIT 25.0H
BIT 25.1H
BIT 25.2H
BIT 25.3H
BIT 25.4H
BIT 25.5H
BIT 25.6H
BIT 25.7H

26H

BIT 26.0H
BIT 26.1H
BIT 26.2H
BIT 26.3H
BIT 26.4H
BIT 26.5H
BIT 26.6H
BIT 26.7H

MCS BASIC-52 USAGE
BITS USED SPECIFICALLY AS FOLLOWS

STOP STATEMENT OR CONTROL-C ENCOUNTERED
USER IDLE BREAK BIT

SET DURING AN INPUT INSTRUCTION

RESERVED

SET WHEN ARGUMENT STACK HAS A VALUE

RET! INSTRUCTION EXECUTED

RESERVED, TRAPS EXTERNAL INTERRUPT 0

SET BY USER TO SIGNIFY THAT A VALID LIST@ OR
PRINT@ DRIVER IS PRESENT

BITS USED SPECIFICALLY AS FOLLOWS

RESERVED, SOFTWARE TRAP TEST

FIND THE END OF PROGRAM, IF SET

SET DURING A DIM STATEMENT

INTERRUPT STATUS SAVE BIT

RESERVED, INPUT TRAP

SET TO SIGNIFY EXPANSION IS PRESENT

SET WHEN CLOCK1 EXECUTED, ELSE CLEARED
SET WHEN BASIC IS IN THE COMMAND MODE

BITS USED SPECIFICALLY AS FOLLOWS

SET TO DISABLE CONTROL-C

SET TO ENABLE “FAKE” DMA

RESERVED, OUTPUT TRAP

SET TO EVOKE “INTELLIGENT” PROM PROGRAMMING
SET TO PRINT TEXT STRING FROM ROM

SET WHEN CONTROL-S ENCOUNTERED

SET TO SUPPRESS ZEROS IN HEX MODE PRINT

SET EVOKE HEX MODE PRINT

167

inte

MCS® BASIC-52

INTERNAL MEMORY ALLOCATION (VERSION 1.1).

LOCATION(S) IN HEX

27H
28H THRU 3DH
3EH
3FH
40H
41H
42H
43H
44H
45H
46H
47H
48H

49H

4AH
4BH
4CH
4DH THRU OFFH

MCS BASIC-52 USAGE

“BIT” ADDRESSABLE BYTE COUNTER

BIT AND BYTE FLOATING POINT WORKING SPACE
INTERNAL STACK POINTER HOLDING REGISTER
LENGTH OF USER DEFINED STRING — $:

TIMER 1 RELOAD LOCATION — HIGH BYTE -

TIMER 1 RELOAD LOCATION — LOW BYTE

BASIC TEXT POINTER SAVE LOCATION — HIGH BYTE
BASIC TEXT POINTER SAVE LOCATION — LOW BYTE'
RESERVED ‘

TRANCENDENTAL FUNCTION TEMP STORAGE
TRANCENDENTAL FUNCTION TEMP STORAGE
MILLI-SECOND COUNTER FOR REAL TIME CLOCK
SECOND COUNTER FOR REAL TIME CLOCK — HIGH
BYTE

SECOND COUNTER FOR REAL TIME CLOCK — LOW
BYTE

TIMER 0 RELOAD FOR REAL TIME CLOCK

USER ARGUMENT FOR ONTIME — HIGH BYTE

USER ARGUMENT FOR ONTIME — LOW BYTE
8052AH STACK SPACE AND USER WORKING SPACE

168

intel

MCS¢® BASIC-52

EXTERNAL MEMORY ALLOCATION (VERSION 1.1)

LOCATION(S) IN HEX

00H THRU 03H
04H

05H AND 06H
07H THRU 56H
56H THRU 5DH
5EH

5FH

60H THRU OFEH
00FH

100H

101H

102H AND 103H
104H AND 105H
106H AND 107H
108H AND 109H
10AH AND 10BH
10CH AND 10DH
10EH THRU 113H
114H THRU 11FH
120H AND 121H
122H AND 123H
124H AND 125H
126H AND 127H
128H AND 129H
12AH AND 12BH
12CH

12DH THRU 1FEH

MCS BASIC-52 USAGE

NOT USED, RESERVED

LENGTH OF THE CURRENT EDITED LINE

LN NUM IN BINARY OF CURRENT EDITED LINE (H-L)
BASIC INPUT BUFFER

BINARY TO INTEGER TEMP

USED FOR RUN TRAP MODE (= 34H)

USED FOR POWER-UP TRAP (= 0A5H)

CONTROL STACK

CONTROL STACK OVERFLOW

LOCATION TO SAVE “GET” CHARACTER

LOCATION TO SAVE ERROR CHARACTER CODE
LOCATION TO GO TO ON USER “ONERR” (H-L)

TOP OF VARIABLE STORAGE (H-L)

FP STORAGE ALLOCATION (H-L)

MEMORY ALLOCATED FOR MATRICIES (H-L)

TOP OF MEMORY ASSIGNED TO BASIC (H-L)
RANDOM NUMBER SEED (H-L)

CRYSTAL VALUE

FLOATING POINT TEMPS

LOCATION TO GO TO ON ONEX1 INTERRUPT (H-L)
NUMBER OF BYTES ALLOCATED FOR STRINGS (H-L)
SOFTWARE SERIAL PORT BAUD RATE (H-L)

LINE NUMBER FOR ONTIME INTERRUPT (H-L)
“NORMAL” PROM PROGRAMMER TIME OUT (H-L)
“INTELLIGENT” PROM PROGRAMMER TIME OUT (H-L)
RESERVED

ARGUMENT STACK

NOTE: (H-L) still means HIGH BYTE — LOW BYTE, in external memory all 16 bit binary numbers
are stored with the HIGH BYTE in the first (lower order) address and the LOW BYTE in the next sequential

address.

169

intel MCS® BASIC-52

1.2 USING THE PWM STATEMENT

The PWM statement can be used to generate quite accurate frequencies. The following table lists the reload
values 8 octaves of an equal tempered chromatic scale. The reload values are for the first two arguments
of the PWM statement, so it is assumed that a square wave is being generated. The reload values assume
a 11.0592 MHz crystal.

IDEAL ACTUAL HEX
NOTE OCTAVE FREQUENCY FREQUENCY RELOAD RELOAD
C 1 32.703 32.704 14090 370AH
C# 1 34.648 34.649 13299 33F3H
D 1 36.708 36.708 12553 3109H
D# 1 38.891 38.889 11849 2E49H
E 1 41.203 41.202 11184 2BBOH
F 1 43.654 43.653 10556 293CH
F# 1 46.246 46.215 9963 26EBH
G 1 48.999 49.000 9404 24BCH
G# 1 51.913 51.915 8876 22ACH
A 1 55.000 55.001 8378 . 20BAH
A# 1 58.270 58.270 7908 1EE4H
B 1 61.735 ' 61.736 7464 1D28H
C 2 65.406 65.408 7045 1B85H
C# 2 69.296 69.293 6650 19FAH
D 2 73.416 v 73.411 6277 1885H
D# 2 77.782 77.785 5924 1724H
E 2 82.406 : 82.403 5592 15D8H
F 2 87.308 87.306 5278 149EH
F# 2 92.498 92.493 4982 1376H
G 2 97.998 98.000 4702 125EH
G# 2 103.826 103.830 4438 1156H
A 2 110.000 110.002 4189 105DH
A# 2 116.540 116.540 3954 OF72H
B 2 123.470 123.472 3732 O0E94H
C 3 130.812 130.798 3523 O0DC3H
C# 3 138.592 138.586 3325 OCFDH
D 3 146.832 146.845 3138 0C42H
D# 3 155.564 155.570 2962 0B92H
E 3 164.812 164.807 2796 OAECH
F 3 174.616 174.612 2639 0A4FH
F# 3 184.996 184.986 2491 09BBH
G 3 195.996 196.001 2351 092FH
G# 3 207.652 207.661 2219 08ABH
A 3 220.000 219.952 2095 082FH
A# 3 233.080 233.080 1977 07B9H
B 3 246.940 246.946 1866 074AH

170

intel MCS® BASIC-52

1.2 USING THE PWM STATEMENT

IDEAL ACTUAL HEX

NOTE OCTAVE FREQUENCY FREQUENCY RELOAD RELOAD
C 4 261.624 261.669 1761 06E1H
C# 4 277.184 277.256 1662 067EH
D 4 293.664 293.690 1569 0621H
D# 4 311.128 311.141 1481 05C9H
E 4 329.624 329.614 1398 0576H
F 4 349.232 349.355 1319 0527H
F# 4 369.992 370.120 1245 04DDH
G 4 391.992 391.836 1176 0498H
G# 4 415.304 415.135 1110 0456H
A 4 440.000 440.114 1047 0417H
A# 4 466.160 465.925 989 03DDH
B 4 493.880 493.890 933 03A5H
C 5 5283.248 523.042 881 0371H
C# 5 554.368 554.512 831 033FH
D 5 587.238 587.006 785 0311H
D# 5 622.256 621.862 741 02E5H
E 5 659.248 659.228 699 02BBH
F 5 698.464 698.182 660 0294H
F# 5 739.984 739.647 623 026FH
G 5 783.984 783.674 588 024CH
G# 5 830.608 830.270 555 022BH
A 5 880.000 879.389 524 020CH
A# 5 932.320 932.793 494 O1EEH
B 5 987.760 986.724 467 01D3H
C 6 1046.496 1047.272 440 01B8H
C# 6 1108.736 1107.692 416 01AOH
D 6 1174.656 1175.510 392 0188H
D# 6 1244.512 1245.405 370 0172H
E 6 1318.496 1320.343 349 015DH
F 6 1396.928 1396.364 330 014AH
F# 6 1479.968 1481.672 311 0137H
G 6 1567.968 1567.347 294 0126H
G# 6 1661.216 1663.538 277 0115H
A 6 1760.000 1758.779 262 0106H
A# 6 1864.640 1865.587 247 00F7H
B 6 1975.520 1977.682 233 00ESH

171

intel MCS® BASIC-52

1.2 USING THE PWM STATEMENT

IDEAL ACTUAL HEX
NOTE OCTAVE FREQUENCY FREQUENCY = RELOAD RELOAD
Cc 7 2092.992 2094.545 220 00DCH
C# 7 2217.472 - 2215.385 208 00DOH
D 7 2349.312 2351.020 196 00C4H
D# 7 2489.024 2490.811 185 00BoH
E 7 2636.992 2633.143 175 O00AFH
F 7 2793.856 2792.727 165 00A5H
F# 7 2959.936 2953.846 156 009CH
G 7 3135.936 3134.694 147 0093H
G# 7 3322.432 3315.108 139 008BH
A 7 3520.000 3517.557 131 0083H
A# 7 3729.280 3716.129 124 007CH
B 7 3951.040 3938.362 117 0075H
Cc 8 4185.984 4189.091 110 006EH
C# 8 4434.944 4430.770 104 0068H
D 8 4698.624 4702.041 98 0062H
D# 8 4987.048 5008.695 92 005CH
E 8 5273.984 5296.552 87 0057H
F 8 5587.712 5619.512 82 0052H
F# 8 5919.872 5907.692 78 004EH
G 8 6217.872 6227.027 74 004AH
G# 8 6644.864 6678.261 69 0045H
A 8 7040.000 7089.231 65 0041H
A# 8 7458.560 7432.258 - 62 003EH
B 8 7902.080 7944.827 58 003AH

172

intal MCS® BASIC-52

1.2 USING THE PWM STATEMENT

The following program generates the appropriate reload values for the PWM statement, using any crystal.
The user enters the desired frequency and the crystal and the program determined the reload values and
errors.

>10 INPUT "ENTER CRYSTAL FREQUENCY - ", X

>20 T=12/X

>30 INPUT "ENTER DESIRED FREQUENCY FOR PWM - ", F
>40 Fi=1/F

»90 C=(F1/T)/2 : REM CALCULATE RELOAD VALUE
>&60 IF C<20 THEN 30

>70 C1=C-INT(C) : REM CALCULATE FRACTION
>80 IF C1<. 5 THEN 90 : C=C+1

>?0 PRINT : PRINT "THE DESIRED FREQUENCY IS - ", X, "HZ"

>100 C=INT(C) : PRINT

>110 PRINT "THE ACTUAL FREQUENCY IS - ", 1/(2#C#T), "HZ"

>120 PRINT

>130 PRINT "THE RELOAD VALUE FOR PWM IS - ",C," IN HEX - ",: PHi.C
>140 INPUT “ANOTHER FREQUENCY, 1=YES, O=NO - ", Q

»150 IF @=1 THEN 20

173

intel MCS® BASIC-52

1.3 BAUD RATES AND CRYSTALS

The 16 bit auto-reload timer/counter (TIMER2) that is used to generate baud rates for the MCS BASIC-52
device is capable of generating accurate baud rates with a number of crystals. The following is a list of
crystals that will accurately generate 9600 baud on the MCS BASIC-52 device. Additionally, the crystal
values on the left hand side of the table will accurately generate 19200 baud.

XTAL RCAP2 RELOAD ‘ XTAL RCAP2 RELOAD
3680400 65524 3993600 , . 65523
4300800 65522 - 4608000 65521
4915200. 65520 5222400 65519
5529600 : 65518 5836800 65517
6144000 65516 6451200 65515
6758400 65514 7065600 65513
7372800 65512 7680000 65511
7987200 65510 8294400 65509
8601600 65508 8908800 65507
9216000 65506 9523200 65505
9830400 65504 10137600 65503

10444800 65502 10752000 65501
11059200 65500 11366400 65499
11673600 65498 11980800 65497

With the crystals listed above, the accuracy of the baud rate generator and the REAL TIME CLOCK will
depend ONLY on the absolute accuracy of the crystal. Note that the baud rate generator for the 8052AH
is so accurate that any crystal above 10 MHz will generate 9600 baud to within 1.5% accuracy.

174

intel MCS® BASIC-52

1.3 BAUD RATES AND CRYSTALS

The following program generates the appropriate TIMER?2 reload values for a given baud rate. The user
supplies the system clock frequency and the desired baud rate and the program calculates the proper
TIMER?2 reload value. Additionally, percent error, for both the baud rate generator and MCS BASIC-52’s

REAL TIME CLOCK are calculated and displayed.

>10 INPUT"ENTER CRYSTAL - ", X
>20 INPUT"ENTER BAUD RATE - ", B
>30 R=X/(32#B): T=X/76800

240 R1=R-INT(R): Ti=T-INT(T)

»50 IF R1<. S THEN 80

»60 R1=1-R1

>70 R=R+1

>80 IF T1<. 5 THEN 110

90 Ti=1-T1

2100 T=T+1 .

»110 PRINT "“TIMERZ2 RELOAD VALUE IS - ", USING(######), INT(65536-R)
>120 PRINT "“BAUD RATE ERROR IS - ", USING(##. ###), (R1/R)#100, "%4"
>130 PRINT "“REAL TIME CLOCK ERROR IS - "“(T1/T)#100, "%"

175

intel

MCS® BASIC-52

1.4 QUICK REFERENCE

COMMANDS:
COMMAND
RUN

CONT

LIST
LIST#
LIST@

NEW

NULL
RAM
ROM
XFER

PROG
PROGH1

PROG2
PROG3

PROG4

FUNCTION
Execute a program
CONTinue after a STOP or control-C

LIST program to the console device
LIST program to serial printer

LIST program to user driver (version 1.1
only)

-erase the program stored in RAM

set NULL count after carriage return-
line feed

evoke RAM mode, current program in
READ/WRITE memory

evoke ROM mode, current program in
ROM/EPROM memory

transfer a program from ROM/EPROM to
RAM

save the current program in EPROM
save baud rate information in EPROM

save baud rate information in EPROM
and execute program after RESET

save baud rate and MTOP information in
EPROM (version 1.1 only)

save baud rate and MTOP information in

EPROM and execute program after
RESET (version 1.1 only)

176

EXAMPLE(S)
RUN
CONT

LIST
LIST 10-50

LIST#
LIST# 50

LIST@
LIST@ 50

NEW

NULL
NULL 4

RAM
ROM
ROM 3

XFER

PROG
PROG1

PROG2
PROGS3

PROG4

intel

MCS® BASIC-52

1.4 QUICK REFERENCE

COMMANDS:
COMMAND

PROGS5

PROG6

FPROG

FPROG1

FPROG2

FPROG3

FPROG4

FPROGS5

FPROG6

FUNCTION

same as PROG4 except that external
RAM is not cleared on RESET or power
up if external RAM contains a 0A5H in
location 5EH (version 1.1 only)

same as PROG®6 except that external
code location 4039H is CALLED after
RESET (version 1.1 only)

save the current program in EPROM
using the INTELligent algorithm

save baud rate information in EPROM
using the INTELligent algorithm

save baud rate information in EPROM
and execute program after RESET, use
INTELligent algorithm

same as PROGS, except INTELIligent
programming algorithm is used (version
1.1 only)

same as PROG4, except INTELligent
programming algorithm is used (version
1.1 only)

same as PROGS5, except INTELligent
programming algorithm is used (version
1.1 only)

same as PROGS6, except INTELligent

programming algorithm is used (version
1.1 only)

177

EXAMPLE(S)

PROGS

PROG6

FPROG

FPROG1

FPROG2

FPROGS3

FPROG4

FPROGS5

FPROG6

intel

MCS® BASIC-52

-

1.4 QUICK REFERENCE

STATEMENTS:
STATEMENT
BAUD

CALL

CLEAR
CLEARS
CLEARI
CLOCK1
CLOCKO

DATA

READ
RESTORE

DIM

DO

UNTIL

WHILE

END
FOR-TO-{STEP}

NEXT

FUNCTION
set baud rate for line printer port

CALL assembly language program

CLEAR variables, interrupts and Strings

CLEAR Stacks

CLEAR Interrupts

enable REAL TIME CLOCK

disable REAL TIME CLOCK

DATA to be read by READ statement
READ data in DATA statement
RESTORE READ pointer

allocate memory for arrayed variables
set up loop for WHILE or UNTIL

test DO loop condition (loop if false)
test DO loop condition (loop if true)
terminate program execution

set up FOR-NEXT loop

test FOR-NEXT loop condition

178

EXAMPLE(S)
BAUD 1200
CALL 9000H
CLEAR
CLEARS
CLEARI
CLOCKT1
CLOCKO
DATA 100
READ A
RESTORE
DIM A(20)
DO

UNTIL A=10
WHILE A=B
END
FORA=1TO5

NEXT A

intel

MCS® BASIC-52

1.4 QUICK REFERENCE

STATEMENTS:
STATEMENT
GOsuB
RETURN
GOTO

ON GOTO

ON GOSuB

IF-THEN-{ELSE}

INPUT

LET

ONERR

ONTIME

ONEX1

PRINT

PRINT#
PHO.

PH1.

PHO.#

PH1.#

FUNCTION

execute subroutine
RETURN from subroutine
GOTO program line number

conditional GOTO

conditional GOSUB

conditional test

INPUT a string or variable

assign a variable or string a value
(LET is optional)

ONERRor GOTO line number
generate an interrupt when TIME is equal
to or greater than ONTIME argument-line

number is after comma

GOSUB to line number following ONEX1
when INT1 pin is pulled low

PRINT variables, strings or literals
P. is shorthand for PRINT

PRINT to software serial port
PRINT HEX mode with zero suppression

PRINT HEX mode with no zero
suppression

PHO. to line printer

PH1.# to line printer

179

EXAMPLE(S)
GOSUB 1000
RETURN
GOTO 500

ON A GOTO 5,
20

ON A GOSUB 2,
6

IF A<B THEN
A=0

INPUT A

LET A=10

ONERR 1000

ONTIME 10, 1000

ONEX1 1000

PRINT A

PRINT# A
PHO. A

PH1. A

PHO.# A

PH1.# A

intel

MCS® BASIC-52

1.4 QUICK REFERENCE

STATEMENTS:
STATEMENT

PRINT@

PHO.@

PH1.@

PGM
PUSH
POP
PWM
REM
RETI
STOP
STRING
Ui
ulo
uo1
uoo

ST@

LD@

IDLE

RROM

FUNCTION

PRINT to user defined driver (version 1.1
only)

PHO. to user defined driver (version 1.1
only)

PH1. to user defined driver (version 1.1
only)

Program an EPROM (version 1.1 only)
PUSH expressions on argument stack
POP argument stack to variables
PULSE WIDTH MODULATION
REMark

RETurn from Interrupt

break program execution

allocate memory for STRINGs

evoke User console Input routine
evoke BASIC console Input routine
evoke User console Output routine
evoke BASIC console Output routine

store top of stack at user specified
location (version 1.1 only)

load top of stack from user specified
location (version 1.1 only)

wait for interrupt (version 1.1 only)

run a program in EP(ROM) (version 1.1
only)

180

EXAMPLE(S)
PRINT@ 55
PHO. @
XBY(5EH)

PH1.@ A

PGM

PUSH 10, A
POPA,B,C
PWM 50, 50, 100
REM DONE
RETI

STOP

STRING 50, 10
Uit

vlo

UO1

uoo

ST@ 1000H
ST@ A

LD@ 1000H
LD@ A

IDLE

RROM 3

intel

MCS®@ BASIC-52

1.4 QUICK REFERENCE

OPERATORS — DUAL OPERAND:

OPERATOR
+

/

*k

.AND.

.OR.

XOR.

FUNCTION
ADDITION
DIVISION
EXPONENTATION
MULTIPLICATION
SUBTRACTION
LOGICAL AND
LOGICAL OR

LOGICAL EXCLUSIVE OR

OPERATORS — SINGLE OPERAND:

ABS()
NOT()
INT()
SGN()
SQR()
RND
LOG()
EXP()
SIN()
cos()

TAN()

ATN()

ABSOLUTE VALUE

ONES COMPLEMENT

INTEGER

SIGN

SQUARE ROOT

RANDOM NUMBER

NATURAL LOG

“e” (2.7182818) TO THE X

RETURNS THE SINE OF ARGUMENT

RETURNS THE COSINE OF
ARGUMENT

RETURNS THE TANGENT OF
ARGUMENT

RETURNS ARCTANGENT OF
ARGUMENT

181

EXAMPLE(S)
1+1

10/2

2*4

4*4

8-4
10.AND.5
2.0R.1

3.XOR.2

ABS(-3)
NOT(0)
INT(3.2)
SGN(-5)
SQR(100)
RND
LOG(10)
EXP(10)
SIN(3.14)

COS(0)

TAN(.707)

ATN(1)

intel | MCS® BASIC-52

1.4 QUICK REFERENCE

OPERATORS — SPECIAL FUNCTION:

CBY() READ PROGRAM MEMORY

DBY() READ/ASSIGN INTERNAL DATA
MEMORY

XBY() READ/ASSIGN EXTERNAL DATA
MEMORY

GET READ CONSOLE

IE READ/ASSIGN IE REGISTER

P READ/ASSIGN IP REGISTER

PORT1 READ/ASSIGN I/0 PORT 1 (P1)

PCON READ/ASSIGN PCON REGISTER

RCAP2 READ/ASSIGN RCAP2
(RCAP2H:RCAP2L)

T2CON READ/ASSIGN T2CON REGISTER

TCON READ/ASSIGN TCON REGISTER

TMOD READ/ASSIGN TMOD REGISTER

TIME READ/ASSIGN THE REAL TIME CLOCK

TIMERO READ/ASSIGN TIMERO (THO: TLO)

TIMER1 READ/ASSIGN TIMER1 (TH1: TL1)

TIMER2 " READ/ASSIGN TIMER2 (TH2: TL2)

STORED CONSTANT:

PI Pl — 3.1415926

182

P. CBY(4000)

DBY(99) =10
P. XBY(10)

P. GET

IE= 82H

IP=0
PORT1=0FFH
PCON=0

RCAP2=100

P. T2CON
TCON=10H
P. TMOD

P. TIME
TIMERO=0
P. TIMER1

TIMER2 =0FFH

Pl

intel 'MCS® BASIC-52

1.5 INSTRUCTION SET SUMMARY

COMMANDS STATEMENTS OPERATORS

RUN BAUD ADD (+)

CONT CALL DIVIDE (/)

LIST CLEAR EXPONENTIATION (**)
LIST# CLEAR(S&I) MULTIPLY (*)

LIST@ (V1.1) CLOCK(1&0) SUBTRACT (-)

NEW DATA LOGICAL AND (.AND.)

NULL READ LOGICAL OR (.OR.)
RAM RESTORE LOGICAL X-OR (.XOR.)
ROM DIM LOGICAL NOT (.OR.)
XFER DO-WHILE ABS()
PROG DO-UNTIL INT()
PROGH1 END SGN()
PROG2 FOR-TO-STEP SQR()
PROG3 (V1.1) NEXT RND
PROG4 (V1.1) GOSuB LOG()
PROGS5 (V1.1) RETURN EXP()
PROG®6 (V1.1) GOTO SIN()
FPROG ON-GOTO COs()
FPROGH1 ON-GOSUB TAN()
FPROG2 IF-THEN-ELSE ATN()
FPROGS3 (V1.1) INPUT =,>>=< <=,<>
FPROG4 (V1.1) LET ASC()
FPROGS5 (V1.1) ONERR CHR()
FPROGS6 (V1.1) ONEXA1 CBY()
ONTIME DBY()
PRINT XBY()
PRINT# GET
PRINT@ (V1.1) IE
PHO. IP
PHO.# PORT1
PHO.@ (V1.1) PCON
PH1. RCAP2
PH1.# T2CON
PH1.@ (V1.1) TCON
PGM (V1.1) TMOD
PUSH TIME
POP TIMERO
PWM TIMER1
REM TIMER2
RETI XTAL
STOP MTOP
STRING LEN
UI(1&0) FREE
Uo(1&0) Pl
LD@ (V1.1)
ST@ (V1.1)
IDLE (V1.1)
RROM (V1.1)

183

intel MCS® BASIC-52

1.6 FLOATING POINT FORMAT

MCS BASIC-52 stores all floating point numbers in a normalized packed BCD format with an offset binary
exponent. The simplest way to demonstrate the floating point format is to use an example. If the number
PI (3.1415926) was stored in location X, the following would appear in memory.

LOCATION VALUE DESCRIPTION

X 81H EXPONENT — 81H = 10™1, 82H = 10**2,
80H = 10**0, 7FH = 10 —1 efc.
THE NUMBER ZERO IS REPRESENTED WITH A
ZERO EXPONENT

X-1 00H SIGN BIT — 00H = POSITIVE, 01H = NEGATIVE OTHER BITS ARE
~ USED AS TEMPS ONLY DURING A CALCULATION

X-2 26H LEAST SIGNIFICANT TWO DIGITS

X-3 S9H NEXT LEAST SIGNIFICANT TWO DIGITS

ka4 41H NEXT MOST SIGNIFICANT TWO DIGITS

X-5 31H MOST SIGNIFICANT TWO DIGITS

Because MCS BASIC-52 normalizes all numbers, the most significant digit is never a zero unless the
number is zero.

184

intal MCS® BASIC-52

1.7 STORAGE ALLOCATION

This section is intended to answer the question — where does MCS BASIC-52 store its variables and
strings?

Two 16 bit pointers stored in external memory control the allocation of strings and variables and an
additional two pointers control the allocation of scalar variables and dimensioned variables. These pointers
are located and defined as follows:

LOCATION (H-L) NAME DESCRIPTION
10AH-10BH MTOP THE TOP OF RAM THAT IS ASSIGNED TO BASIC

104H-105H VARTOP VARTOP = MTOP — (THE NUMBER OF BYTES OF MEM-
ORY THAT THE USER HAS ALLOCATED FOR STRINGS).
IF STRINGS ARE NOT USED, VARTOP = MTOP

106H-107H VARUSE AFTER A NEW, CLEAR, OR RUN IS EXECUTED, VARUSE =
VARTOP, EVERYTIME THE USER ASSIGNS OR USES A
VARIABLE VARUSE IS DECREMENTED BY A COUNT OF 8.

108H-109H DIMUSE AFTER A NEW, CLEAR, OR RUN IS EXECUTED, DIMUSE =
[LENGTH OF THE USER PROGRAM THAT IS IN RAM MEM-
ORY + STARTING ADDRESS OF THE USER PROGRAM IN
RAM (512) + THE LENGTH OF ONE FLOATING POINT
NUMBER (6)]. IF NO PROGRAM IS IN RAM MEMORY,
DIMUSE = 518 AFTER A CLEAR IS EXECUTED

MCS BASIC-52 stores string variables between VARTOP and MTOP. $(0) is stored from VARTOP to
VARTOP + (user defined string length + 1), $(1) is stored from VARTOP + (user defined string length
+ 1) + 1to VARTOP + 2 * (user defined string length + 1) etc. If MCS BASIC-52 attempts to access
a string that is outside the bounds established by MTOP , a MEMORY ALLOCATION ERROR is generated.

Now, Scalar variables are stored from VARTOP ‘‘down’’ and Dimensioned variables are stored from
DIMUSE ‘‘up.”” When the user dimensions a variable either implicity or explicity the value of DIMUSE
increases by the number of bytes required to store that dimensioned variable. For example, if the user ex-
ecutes a DIM A(10) statement, DIMUSE would increase by 66. This is because the user is requesting
storage for 11 numbers (A(0) through A(10)) and each number requires 6 bytes for storage and 6 * 11 = 66.

185

intel

MCS® BASIC-52

1.7 STORAGE ALLOCATION

As mentioned in the previous example, everytime the user defines a new variable the VARUSE pointer
decrements by a count of 8. Six of the eight counts are due to the memory required to store a floating
point number and the other two counts are the storage required for the variable name (i.e. Al, B7, etc).
The variable B7 would be stored as follows:

LOCATION VALUE DESCRIPTION

X

X-2
THRU
X-7

37H

42H

??

THE ASCII VALUE — 7, IF B7 WAS A DIMENSIONED VARIABLE THE
MOST SIGNIFICANT BIT OF THIS LOCATION WOULD BE SET. IN
VERSION 1.1 THIS LOCATION ALWAYS CONTAINS THE ASCII
VALUE FOR THE LAST CHARACTER USED TO DEFINE A
VARIABLE

THE ASCII VALUE — B, IN VERSION 1.1 OF MCS BASIC-52 THIS
LOCATION CONTAINS THE ASCII VALUE OF THE FIRST CHARAC-
TER USED TO DEFINE A VARIABLE PLUS 26 * THE NUMBER OF
CHARACTERS USED TO DEFINE A VARIABLE, IF THE VARIABLE
CONTAINS MORE THAN 2 CHARACTERS.

THE NEXT SIX LOCATIONS WOULD CONTAIN THE FLOATING
POINT NUMBER THAT THE VARIABLE IS ASSIGNED TO, IF THE
VARIABLE WAS A SCALAR VARIABLE. IF THE VARIABLE WAS DI-
MENSIONED, X-2 WOULD CONTAIN THE LIMIT OF THE DIMENSION
(L.LE. THE MAX. NUMBER OF ELEMENTS IN THE ARRAY) AND

X-3: X-4 WOULD CONTAIN THE BASE ADDRESS OF THE ARRAY.
THIS ADDRESS IS EQUAL TO THE OLD VALUE OF THE DIMUSE
POINTER BEFORE THE ARRAY WAS CREATED

Whenever a new scalar or dimensioned variable is used in a program, MCS BASIC-52 checks both the
DIMUSE nd VARUSE pointers to make sure that VARUSE > DIMUSE. If the relationship is not true, a
MEMORY ALLOCATION ERROR is generated.

186

intel MCS® BASIC-52

1.7 STORAGE ALLOCATION

To Summarize:

Strings are stored from VARTOP to MTOP.

Scalar variables are stored from VARTOP ‘‘down’’ and VARUSE points to the next available scalar location.
Dimensioned variables are stored from the end of the user program in RAM ‘‘up.”’ If no program is in
RAM this location is 518. DIMUSE keeps track of the number of bytes the user has allocated for dimensioned

variables.

If DIMUSE >= VARUSE a MEMORY ALLOCATION ERROR is generated

187

intal MCS® BASIC-52

1.8 FORMAT OF AN MCS BASIC-52 PROGRAM

This section answers the question ‘‘How does MCS BASIC-52 store a program?’’
LINE FORMAT

Each line of MCS BASIC-52 text consists of tokens and ASCII characters, plus 4 bytes of overhead. Three
of these four bytes are stored at the beginning of every line. The first byte contains the length of a line in
binary and the second two bytes are the line number in binary. The fourth byte is stored at the end of the
line and this byte is always a ODH or a carriage return in ASCII. An example of a typical line is shown
below, assume that this is the first line of a program in RAM.

10 FORI = 1TO 10: PRINTI: NEXT I

LOCATION BYTE DESCRIPTION

512 11H THE LENGTH OF THE LINE IN BINARY (17D BYTES)
513 00H HIGH BYTE OF THE LINE NUMBER
514 0OAH LOW BYTE OF THE LINE NUMBER
515 OAOH THE TOKEN FOR “FOR”

516 49H THE ASCIlI CHARACTER “I”

517 OEAH THE TOKEN FOR “="

518 31H THE ASCIl FOR “1”

519 0A6H THE TOKEN FOR “TO”

520 31H THE ASCII FOR “1”

521 30H THE ASCII FOR “0”

522 3AH THE ASCII FOR “”

523 89H THE TOKEN FOR “PRINT”

524 49H THE ASCII FOR “I”

525 3AH THE ASCII FOR *”

526 97H THE TOKEN FOR “NEXT”

527 49H THE ASCII FOR “I”

528 ODH END OF LINE (CARRIAGE RETURN)

TO FIND THE LOCATION OF THE NEXT LINE, THE LENGTH OF THE LINE IS ADDED TO THE
LOCATION WHERE THE LENGTH OF THE LINE IS STORED. IN THIS EXAMPLE,
512 + 17D = 529, WHICH IS WHERE THE NEXT LINE IS STORED.

The END of a program is designated by the value 01H. So, in the previous example if line 10 was the
only line in the program, location 529 would contain the value 01H. A program simply consists of a number
of lines packed together in one continuous block with the last line ending in a ODH, 01H sequence.

188

intel MCS® BASIC-52

1.8 FORMAT OF AN MCS BASIC-52 PROGRAM
EPROM FILE FORMAT .

The EPROM FILE format consists of the same line and program format, previously described except that
each program in the EPROM file begins with the value S5H. The value 55H is only used by MCS BASIC-
52 to determine if a valid program is present. If the user types ROM 6, MCS BASIC-52 actually goes
through the first program stored in EPROM line by line until the END of PROGRAM (01H) is found,
then it examines the next location to see if a 55H is stored in that location. It then goes through that
program line by line. This process is repeated 6 times. If the character 55H is not found after the end of
a program, MCS BASIC-52 will return with the PROM MODE error message. This would mean that less
than six programs were stored in that EPROM.

The first program stored in EPROM (ROM 1) always begins at location 8010H and this location will always
contain a 55H. The actual user program will begin at location 8011H.

EPROM locations 8000H through 800FH are reserved by MCS BASIC-52. These locations contain ini-
tialization information when the PROGX options are used. Version 1.0 of MCS BASIC-52 only used the
first three bytes of this reserved EPROM area. The information stored in these bytes is as follows:

LOCATION DESCRIPTION

8000H CONTAINED A 31H IF PROG 1 WAS USED, CONTAINED A 32H IF PROG 2
WAS USED

8001H BAUD RATE (RCAP2H)
8002H BAUD RATE (RCAP2L)

Version 1.1 of MCS BASIC-52 uses the same locations as Version 1.0, but additionally locations 8003H
and 8004H (high byte, low byte) are used to store the MTOP information for the PROG 3, 4, 5, 6 options.

IMPORTANT NOTE —

The PROG X options simply store ASCII character foliowing the PROG command in loction 8000H. That
is why PROG 1 stores a 31H in location 8000H, PROG 2 a 32H, PROG 3 (Version 1.1 only) a 33H etc.
If the user employs the user defined reset option defined in Chapter 11 of this manual, it would be possible
for the user to create unique PROG options. For example, PROG A would store a 41H in location 8000H
and upon RESET the user could examine this location with an assembly language routine and generate a
unique PROG A reset routine for that particular application.

189

Inter MCS® BASIC-52

1.9 ANSWERS TO A FEW QUESTIONS

QUESTION .

Why can’t MCS BASIC-52 access the 8052’s SPECIAL FUNCTION REGISTER SCON?
ANSWER

The only time the user would likely change the contents of SCON is if the user is writing custom I/O
drivers in assembly language. If the user is writing assembly language I/O drivers, then the user can change
the contents of SCON in assembly language. Changing the contents of SCON can cause MCS BASIC-
52’s console routines to crash.

QUESTION

I have written an upload/download routine using my computer, but when I download a program, MCS
BASIC-52 misses characters, why?

ANSWER

MCS BASIC-52 is actually capable of accepting characters at 38,400 baud. The problem is that after MCS
BASIC-52 receives a carriage return (cr), it tokenizes the line of text that was just entered. Depending on
how complicated and how long the line is, MCS BASIC-52 can take up to a couple of hundred milliseconds
to tokenize the line. If the user keeps stuffing characters into the serial port while MCS BASIC-52 is
tokenizing the line, the characters will be lost. What the user must do in the download routine is wait until
MCS BASIC-52 responds with the prompt character (>) after a carriage return is sent to the MCS BASIC-
52 device. The prompt (>) informs the user that MCS BASIC-52 is ready to receive characters from the
console device.

QUESTION

I am writing in assembly language and I notice that the 8052AH has no decrement DPTR instruction. What
is the easiest, shortest or simplest way to decrement the DPTR?

ANSWER

The shortest one we know is:

XCH A, DPL ; SWAP A<>DPL
JNZ DECDP ; DPH = DPH-1IFDPL =0
DEC DPH
DECDP: DEC A ; DPL = DPL-1
XCH A, DPL

.

This routine affects no flags or registers (except the DPTR) either!

190

'nter MCS® BASIC-52

1.9 ANSWERS TO A FEW QUESTIONS

QUESTION

After RESET or power-up, MCS BASIC-52 does not return the proper value for MTOP, what’s the
problem?

ANSWER

Virtuaily everytime this problem occurs it is because something is wrong with the decoding circuitry in
the system or one or more of the address lines to the RAM are open or shorted. The user should make
sure that all of the address lines to the system RAM are connected properly!

A simple memory test can be implemented in the COMMAND MODE to verify the addressing to the
RAM. First set XBY(1000H) = 55, then walk ones across the address (i.e. P. XBY(1001H) — P.
XBY(1002H) — P. XBY(1004H) — P. XBY(1008H) P. XBY(1010H)) until all locations are tested. If
for instance, P. XBY(1008H) returns a result of 55, then address line 3 (A3) would probably be open or
shorted.

191

intel | MCS® BASIC-52

1.10 PIN-OUT LIST

The following is a pin-out list of the most common devices found in an MCS BASIC-52 system:

vee [1] [1a] vee WPuT A [7] (73] vee

INPUT A [2] [13] NPUT D1 bﬁ’;ﬂ:’: 2 %_‘ [13] NpUT D
2 RESPONSE
outpuT A [3 19 |-' [12] wput 02 ouTPUT A 3] L‘g 7z] RESPONSE

inpuT 81 4] 57_7] ouTRUT D weut e [4]

[11] outputD
INPUT B2 5 [10] NPUT C1 m 5 [10] meutc
outpuT B [€ (9] wput c2 outeuT B E%—J 9 | RESPONSE
CONTROL ¢ om[3 2] vee
- ano[7 18] output GROUND [7 | (] ourrutc
1488 1489 “E [1s] o

A‘lz‘ Elao
w 1]

> 5
< |
L ?H__Ea‘
MSF—W ‘Z’;_LZIL_N”
Ag —}_{:ﬂ{;v‘ —zlL'sa
[H>=]
===

o
2
& as |7 14| By
D ag |8 13| Bs
[]
& az[e 12| Be
ano[7] em@ 1] 87
74L8373 74L832 74LS138 74LS245
P27128A

27256 2764A 27328 27324 2784 27256

Vep vep Vec Ve

A2 A2 PGM Af.c

A7 A7 A7 Vee N.C. A3

Ag As] Ag As Ag

As As As Ay Ag Ag

A A Ay A1 A A1

A3 A3 A3 OEApp| OE [

A2 Az A2 Ao A10* Ato

Ay Ay Ay CE CE CE

Ao Ao Ao o7 o7 o7

Oo Op %o Og Og g

0y 0y 0y 05 Os 05

O2 [+/] 02 O3 | O 04

GND GND al 03 03 03

O
]
8 EPROMS
[
T2/P1.0 1] vee
B T2EX / P1.1[2] 9 ADo
L] PWM OUTPUT / P1.2 3] ADY
ano[7 ALE DISABLE / P1.3 [4 la7] AD2
PROGRAM PULSE / P1.4 5] AD3
74LS08 PROGRAM ENABLE / P1.5 (6| AD4
74LS00 DMA ACKNOWLEDGE / P1.6 7| ADS
INVERTING LINE PRINTER OUTPUT / P1.7 (8| ADS .
RESET 9| 2] AD7
CONSOLE SERIAL INPUT i0) [51) +5 voLTS
CCONSOLE SERIAL OUTPUT [11] 39 ALE
O INTO / DMA REQUEST [12] 9| PSEN
E iNT1 [13] Al5
3 To [14] A4
- ™1 i8] A13
] W [ie] 28] A12
(5] 5] ant
0 xTAL2 fig] B3] Ato
XTAL1 [i9] 2| A9
GND 7 vss -
7406/L.S04/LS05
7407 NON- 8K x 8 SRAM
INVERTING

192

intel

MCS® BASIC-52

1.11 8052AH SPECIAL FUNCTION REGISTERS

The following details the operation of the special function registers on the 8052AH:

SYMBOL

NAME NAME ADDRESS MCS BASIC-52
ACC Accumulator OEOH NOT ADDRESSABLE
B B Register OFOH NOT ADDRESSABLE
PSW Program Status Word 0DOH NOT ADDRESSABLE
SP Stack Pointer 81H NOT ADDRESSABLE
DPTR Data Pointer 2 Bytes:

DPH Low Byte 82H NOT ADDRESSABLE

DPL High Byte 83H NOT ADDRESSABLE
PO Port 0 80H NOT ADDRESSABLE
P1 Port 1 90H PORT1
P2 Port 2 0AQH NOT ADDRESSABLE
P3 Port 3 0BOH NOT ADDRESSABLE
IP Interrupt Priority Control 0B8H IP
IE Interrupt Enable Control 0A8H IE
TMOD Timer/Counter Mode Control 89H TMOD
TCON Timer/Counter Control 88H TCON
T2CON Timer/Counter 2 Control 0C8H T2CON
THO Timer/Counter 0 High Byte 8CH

} TIMERO
TLO Timer/Counter 0 Low Byte 8AH
TH1 Timer/Counter 1 High Byte _8DH
} TIMER1
TL Timer/Counter 1 Low Byte 8BH
TH2 Timer/Counter 2 High Byte OCDH
} TIMER2
TL2 Timer/Counter 2 Low Byte 0CCH
RCAP2H T/C 2 Capture Reg. High Byte 0CBH
} RCAP2
RCAP2L T/C 2 Capture Reg. Low Byte 0CAH
SCON Serial Control 98H NOT ADDRESSABLE
SBUF Serial Data Buffer 99H NOT ADDRESSABLE
PCON Power Control 87H NOT ADDRESSABLE

193

ntg

MCS® BASIC-52

1.11 8052AH SPECIAL FUNCTION REGISTERS

PSW: PROGRAM STATUS WORD. ADDRESS 0DOH

cYy AC FO RSt RSO ov
cYy PSW.7 Carry Flag.
AC PSW.6 Auxiliary Carry Flag.
FO PSW.5 Flag 0 available to the user for general purpose.
RS1 PSW.4 Register Bank selector bit 1.
RSO PSW.3 Register Bank selector bit 0.
OV PSW.2 Overflow Flag.
—_— PSW.1 RESERVED FOR FUTURE USE.
P PSW.0 PARITY FLAG.

PCON: POWER CONTROL REGISTER. NOT BIT ADDRESSABLE.

SMOD

SMOD Doubles the baud rate when TIMER 1 is used to generate the baud rate for the serial port.

The remaining bits of PCON are not implemented on the MCS BASIC-52 device.

194

intel MCS® BASIC-52

1.11 8052AH SPECIAL FUNCTION REGISTERS

(MSB) (LSB)

GATE| C/T | M1 | MO |GATE| C/T | M1 | MO

AN /\ /
N\ N
TIMER 1 TIMER 0

GATE Gating control When set. Timer/Counter “x” M1 MO Operating Mode

is enabled only while “INTx” pin is high and 0 0 MCS-48 Timer “TLx"” serves as five-bit

“TRx" control pin is set. When cleared Timer prescaler.

“x" is enabled whenever “TRx" control bit is 0 1 16 bit Timer/Counter “THx” and “TLX”

set are cascaded; there is no prescaler
CcT Timer or Counter Selector Cleared for Timer 1 0 8-bit auto-reload timer-counter “THx”

operation (input from internal system clock). holds a value which is to be reloaded into

Set for Counter operation (input from “Tx” “TLx" each time it overflows.

input pin).

1 1 (Timer 0) TLO is an eight-bit timer

counter-controlled by the
standard Timer O control bits
THO is an eight-bit timer only
controlled by Timer 1 control
bits.

1 1 (Timer 1) Timer-counter 1 stopped.

TMOD: Timer/Counter Mode Control Register

195

intel

MCS® BASIC-52

1.11 8052AH SPECIAL FUNCTION REGISTERS

(MSB) (LSB)
TF2 EXF2 RCLK TCLK -EXEN2 TR2 c2 CP/RLS2
Symbol Position Name and Significance

TF2 T2CON.7 Timer 2 overflow flag set by a Timer 2 overflow and must be cleared by software. TF2
will not be set when either RCLK = 1 or TCLK = 1.

EXF2 T2CON.6 Timer 2 external flag set when either a capture or reload is caused by a negative
transition on T2EX and EXEN2 = 1. When Timer 2 interrupt is enabled, EXF2 = 1
will cause the CPU to vector to the Timer 2 interrupt routine. EXF2 must be cleared by
software.

RCLK T2CON.5 Receive clock flag. When set, causes the serial port to use Timer 2 overflow pulses
for its receive clock in modes 1 and 3. RCLK = 0 causes Timer 1 overflow to be used
for the receive clock.

TCLK T2CON.4 Transmit clock flag. When set, causes the serial port to use Timer 2 overflow pulses
for its transmit clock in modes 1 and 3. TCLK = 0 causes Timer 1 overflows to be
used for the transmit clock.

EXEN2 T2CON.3 Timer 2 external enable flag. When set, allows a capture or reload to occur as a result
of a negative transition on T2EX if Timer 2 is not being used to clock the serial port.
EXEN2 = 0 causes Timer 2 to ignore events at T2EX.
TR2 T2CON.2 Start/stop control for Timer 2. A logic 1 starts the timer.
c/T2 T2CON.1 Timer or counter select. (Timer 2)
0 = Internal timer (OSC/12) !
1 = External event counter (falling edge triggered).
CP/RL2Z T2CON.0 Capture/Reload flag. When set, captures will occur on negative transitions at T2EX if

EXEN2 = 1. When cleared, auto reloads will occur either with Timer 2 overflows or
negative transitions at T2EX when EXEN 2 = 1. When either RCLK = 1 or TCLK = 1,
this bit is ignored and the timer is forced to auto-reload on Timer 2 overflow.

Timer/Counter 2 Control Reglsier

196

intel

MCS® BASIC-52

1.11 8052AH SPECIAL FUNCTION REGISTERS

(MSB) (LSB)
SMO | SM1 | SM2 | REN | TB8 | RB8 | TI Rl
where SMO, SM1 specify the serial port mode, as follows:
SMO SM1 Mode Description Baud
Rate
e TB8 s the 9th data bit that will be transmitted in

0 0 0 shift fosc./12 modes 2 and 3. Set or clear by software as

0 1 register variable desired.

1 0 8-bit UART fosc./64

9-bit UART or e RB8 In modes 2 and 3, is the 9th data bit that
fosc./32 was received. In mode 1, if SM2 = 0, RB8
is the stop bit that was received. In mode 0,

1 3 9-bit UART variable RBS8 is not used.

e SM2 enables the multiprocessor communication o Tl is transmit interrupt flag. Set by hardware at
feature in modes 2 and 3. In mode 2 or 3, the end of the 8th bit time in mode 0, or at
if SM2 is set to 1 then RI will not be activated the beginning of the stop bit in the other
if the received 9th data bit (RB8) is 0. In modes, in any serial transmission. Must be
mode 1, if SM2 = 1 then RI will not be cleared by software.
activated if a valid stop bit was not received.

In mode 0, SM2 should be 0. o RI is receive interrupt flag. Set by hardware at
the end of the 8th bit time in mode 0, or

e REN enables serial reception. Set by software to halfway through the stop bit time in the other
enable reception. Clear by software to dis- modes, in any serial reception (except see
able reception. SM2). Must be cleared by software.

SCON: Serial Port Control Register
(MSB) (LSB)
TF1 | TR1 | TFO | TRO | IE1 | IT1 | IEO | ITO
0 1 0 1 0 1 0 0

Symbol Position Name and Significance Symbol Position Name and Significance

TF1 TCON.7 Timer 1 overflow Flag. Set by IE1 TCON.3 Interrupt 1 Edge flag. Set by
hardware on timer/counter ov- hardware when external inter-
erflow. Cleared by hardware rupt edge detected. Cleared
when processor vectors to inter- when interrupt processed.
rupt routine. T TCON.2 Interrupt 1 Type control bit. Set/

TR1 TCON.6 Timer 1 Run control bit. Set/ cleared by software to specify
cleared by software to turn timer/ falling edge/low level triggered
counter on/off. external interrupts.

TFO TCON.5 Timer O overflow Flag. Set by IEO TCON.1 Interrupt 0 Edge flag. Set by
hardware on timer/counter ov- hardware when external inter-
erflow. Cleared by hardware rupt edge detected. Cleared
when processor vectors to inter- when interrupt processed.
rupt routine. ITO TCON.0 Interrupt O Type control bit. Set/

TRO TCON.4 Timer O Run control bit. Set/ cleared by software to specify
cleared by software to turn timer/ falling edge/low level triggered
counter on/off. external interrupts.

TCON: Timer/Counter Control Réglster

197

intel

MCS® BASIC-52

1.11 8052AH SPECIAL FUNCTION REGISTERS

Symbol

PT2

PS

PT1

PX1

PTO

PX0

(MSB) LSB)
X | X |PT2| PS [PT1|PX1|PTO|PX0
Position Function
IR.7 reserved
IP.6 reserved
IP5 defines the Timer 2 interrupt
priority level. PT2 = 1 programs
it to the higher priority level.
P4 defines the Serial Port interrupt
priority level. PS = 1 programs
it to the higher priority level.
IP.3 defines the Timer 1 interrupt
priority level. PT1 = 1 programs
it to the higher priority level.
IP.2 defines the External Interrupt 1
priority level. PX1 = 1 programs
it to the higher priority level.
IP1 defines the Timer O interrupt
priority level. PTO = 1 programs
it to the higher priority level.
IP.O defines the External Interrupt O

priority level. PX0 = 1 programs
it to the higher priority level.

IP: Interrupt Priority Register

Symbol

EA

ET2

ES

ET1

EX1

ETO

EX0

(MSB)

LSB

EA

X |ET2

ES |ET1|EX1

ETﬂ EX0

Position

IE.7

IE.6

IE.5

IE.4

IE.3

IE.2

IEA

IE.0

Function

disables all interrupts. If EA = 0,
no interrupt will be acknowl-
edged. If EA = 1, each interrupt
source is individually enabled or
disabled by setting or clearing its
enable bit.

reserved

enables or disables the Timer 2
overflow or capture interrupt. If
ET2 = 0, the Timer 2 interrupt
is disabled.

enables or disables the Serial
Port interrupt. If ES = 0, the Se-
rial Port interrupt is disabled.

enables or disables the Timer 1
Overflow interrupt. If ET1 = 0,
the Timer 1 interrupt is disabled.

enables or disables External In-
terrupt 1. If EX1 = 0, External
Interrupt 1 is disabled.

enables or disables the Timer 0
Overflow interrupt. If ETO = 0,
the Timer O Interrupt is disabled.

enables or disables External In-
terrupt 0. If EXO = 0, External
Interrupt 0 is disabled.

198

|E: Interrupt Enable Register

intel MCS® BASIC-52

1.12 REFERENCES

REFERENCES

J. Sack and J. Meadows, Entering BASIC, Science Research Associates, 1973.

C. Pegels, BASIC: A Computer Programming Language, Holden-Day, Inc., 1973.

J. Kemeny and T. Kurtz, BASIC Programming, People Computer Company, 1967.

Albrecht, Finkle, and Brown, BASIC, People Computer Company, 1973.

T. Dwyer, A Guided Tour of Computer Programming in BASIC, Houghton Mifflin Co., 1973.
Eugene H. Barnett, Programming Time Shared Computers in BASIC, Wiley-Interscience, L/C 72-175789.
Programming Language #2, Digital Equipment Corp., Maynard, Mass. 01754.

101 BASIC Computer Games, Digital Equipment Corp., Maynard, Mass. 01754,

What to do After You Hit Return. People Computer Company.

BASIC-80 REFERENCE MANUAL, Intel Corp., Santa Clara, Calif.

199

APPENDIX B

INSTRUCTION SET SUMMARY

This appendix contains two tables (see tables B-1 and B-2): the first identifies all of the 8052’s instructions

in alphabetical order; the second table lists the instructions according to their hexadecimal opcodes and
lists the assembly language instructions that produced that opcode.

The alphabetical listing also includes documentation of the bit pattern, flags affected, number of machine
cycles per execution and a description of the instructions operation and function. The list below defines
the conventions used to identify operation and bit patterns.

ABBREVIATIONS AND NOTATIONS USED

A

AB

B

bit address
page address

relative offset
]

code address
data

data address
DPTR

PC

Rr

SP

high

low

i~

.n

aaa aaaaaaaa

bbbbbbbb

dddddddd

Accumulator

Register Pair

Multiplication Register

8052 bit address

11-bit code address within
2K page

8-bit 2's complement offset

Carry Flag

Absolute code address

Immediate data

On-chip 8-bit RAM address

Data pointer

Program Counter

Register (r = 0-7)

Stack pointer

High order byte

Low order byte

Bits i through j

Bit n ,

Absolute page address
encoded in instruction
and operand byte

Bit address encoded in
operand byte

Immediate data encoded in
operand byte

i

mmmmmmmm
00000000
rorrr

AND

NOT

OR
XOR

One byte of a 16-bit
address encoded in
operand byte

Data address encoded in
operand byte

Relative offset encoded in
operand byte

Register identifier encoded
in operand byte

Logical AND

Logical complement

Logical OR

Logical exclusive OR

Plus

Minus

Divide

Multiply

The contents of X -

The memory location
addressed by (X)

(The contents of X)

Is equal to

Is not equal to

Is less than

Is greater than

Is replaced by

200

ntefl

MCS® BASIC-52

Table B-1. Instruction Set Summary

Mnemonic

Binary

Flags

Operation Cycles | code P OV ACC Function
ACALL code addr 2 aaal10001 Push PC on stack, and
(PC) « (PC) + 2 aaaaaaaa replace low order 11 bits
(SP) < (SP) + 1 with low order 11 bits of
((SP)) « (PC) low code address.
(SP) < (SP) + 1
((SP)) < (PC) high
(PC) 0-10 < page address
ADD A,#data 1 00100100 | POV AC C | Add immediate data to A.
(A) < (A) + data dddddddd
ADD A,@Rr 1 0010011r | POV ACC | Add contents of indirect
(A) < (A) + ((Rn) address to A.
ADD ARr 1 00101rrr | POVACC | Add register to A.
(A) < (A) + (Rr)
ADD A,data addr 1 00100101 | POV AC C | Add contents of data
(A) < (A) + (data address) mmmmmmmm address to A.
ADDC A, #data 1 00110100 | POV ACC | Add C and immediate data
(A) < (A) + (C) + data dddddddd to A.
ADDC A,@Rr 1 0011011r | POVACC | Add C and contents of
(A) < (A) + (C) + ((Rn) indirect address to A.
ADDC A,Rr 1 00111rrr | POVACC | Add C and register to A.
(A) < (A) + (C) + (Rr)
ADDC A,data addr 1 00110101 | POVACC | Add C and contents of data
(A) < (A) + (C) + (data address) mmmmmmmm address to A.
AJMP code addr 2 aaa00001 Replace low order 11 bits of
(PC) 0-10 « code address aaaaaaaa PC with low order 11 bits
code address.
ANL A, #data 1 01010100 | P Logical AND immediate data
(A) < (A) AND data dddddddd to A.
ANL A,@Rr 1 0101011r | P Logical AND contents of
(A) < (A) AND ((Rr)) indirect address to A.
ANL ARr 1 01011rrr | P Logical AND register to A.
(A) < (A) AND (Rr)
ANL A,data addr 1 01010101 | P Logical AND contents of
(A) < (A) AND (data address) mmmmmmmm data address to A.
ANL C,bit addr 2 10000010 C | Logical AND bit to C.
(C) < (C) AND (bit address) bbbbbbbb
ANL C,/bit addr 2 10110000 C | Logical AND complement of
(C) « (C) AND NOT (bit address) bbbbbbbb bit to C.
ANL data addr, #data 2 01010011 Logical AND immediate data
(data address) < mmmmmmmm to contents of data address
(data address) AND data dddddddd
ANL data addr,A 1 01010010 Logical AND A to contents of
(data address) <« mmmmmmmm data address.

(data address) AND A

201

ntel

MCS® BASIC-52

Table B-1. Instruction Set Summary (Cont’d.)

Mnemonic Binary Flags
Operation Cycles| code POV AC C Function
CJINE @Rr,#data,code addr 2 1011011r C | If immediate data and
(PC) < (PC) + 3 dddddddd contents of indirect address
IF ((Rr)) <> data 00000000 are not equal, jump to code
THEN address.
(PC) < (PC) + relative offset
IF ((Rr)) <data
THEN (C) « 1
ELSE (C) <0
CJUNE A, #data,code addr 2 10110100 C | If immediate data and A are
(PC) < (PC) + 3 dddddddd not equal, jump to code
IF (A) < > data 00000000 address.
THEN
(PC) < (PC) + relative offset
IF (A) <data
THEN (C) <1
ELSE (C) < 0
CJNE A,data addr,code addr 2 10110101 C | If contents of data address
(PC) <~ (PC) + 3 mmmmmmmm and A are not equal, jump to
IF (A) < > (data address) 00000000 code address.
THEN
(PC) « (PC) + relative offset
IF (A) < (data address)
THEN (C) « 1
ELSE (C) <0
CJUNE Rr,#data,code addr 2 10111rrr C | If immediate data and
(PC) « (PC) + 3 dddddddd register are not equal, jump
IF (Rr) < > data 00000000 to code address.
THEN
(PC) « (PC) + relative offset
IF (Rr) < data
THEN (C) « 1
ELSE (C) <0
CLR A 1 11100100 | P Set A to zero (0).
(A) <0
CLRC 1 11000011 C | Set C to zero (0).
(C)<0
CLR bit addr 1 11000010 Set bit to zero (0).
(bit address) « 0 bbbbbbbb
CPLA 1 11110100 | P Complements each bit in A.
(A) < NOT (A) , -
CPLC 1 10110011 C | Complement C.
(C) < NOT (C)
CPL bit addr 1 10110010 Complement bit.
(bit address) «— bbbbbbbb
NOT (bit address)
DA A 1 11010100 | P C | Adjust A after a BCD add.
DEC @Rr 1 0001011r Decrement contents of
((Rr)) < ((Rn) — 1 indirect address.
DEC A 1 00010100 | P Decrement A.
(A) < (A) - 1
DEC Rr 1 00011rrr Decrement register.
(Rr) < (Rr) — 1 \

202

ntel

MCS® BASIC-52

Table B-1. Instruction Set Summary (Cont’d.)

Mnemonic Binary Flags .
Operation Cycles Code POVACC Function
DEC data addr 1 00010101 Decrement contents of data
(data address) « mmmmmmmm address.
(data address) — 1
DIV AB 4 10000100 | P OV C | Divide A by B (multiplication
(AB) < (A)/(B) register).
DJNZ Rr,code adadr 2 1101 1rrr Decrement register, if not

(PC) < (PC) + 2
(R) <~ (Rr) — 1
IF(R)<>0
THEN
(PC) « (PC) + relative offset

00000O0OO0O

zero (0), then jump to code
address.

DJNZ data addr,code addr 2 11010101 Decrement data address, if
(PC), <« (PC) + 3 mmmmmmmm zero (0), then jump to code
(data address) « 00000000 address.

(data address) — 1
IF (data address) < >0
THEN
(PC) « (PC) + relative offset

INC @ Rr 1 0000011 Increment contents of
((Rr)) < ((Rr)) + 1 indirect address.

INC A 1 00000100 | P Increment A.

(A) < (A) + 1

INC DPTR 1 10100011 Increment 16-bit data
(DPTR) « (DPTR) + 1 pointer.

INC Rr 1 00001rrr Increment register.

((R) < (Rr) + 1

INC data addr 2 00000101 Increment contents of data

(data address) « mmmmmmmm address.
(data address) + 1

JB bit addr,code addr 2 00100000 If bit is one, n jump to code
(PC) < (PC) + 3 bbbbbbbb address.

IF (bit address) = 1 00000000
THEN
(PC) « (PC) + relative offset

JBC bit addr,code addr 2 00010000 If bit is one, n clear bit and
(PC) < (PC) + 3 bbbbbbbb jump to code address.

IF (bit address) = 1 00000000
THEN
(bit address) < 0
(PC) « (PC) + relative offset

JC code addr 2 01000000 If C is one, then jump to
(PC) « (PC) + 2 00000000 code address.

IF(C) =1
THEN
(PC) « (PC) + relative offset

JMP @ A + DPTR 2 01110011 Add A to data pointer and
(PC) < (A) + (DPTR) jump to that code address.

JNB bit addr,code addr 2 00110000 If bit is zero, n jump to code
(PC) < (PC) + 3 bbbbbbbb address.

IF (bit address) = 0
THEN
(PC) < (PC) + relative offset

00000000

203

MCS® BASIC-52

Table B-1. Instruction Set Summary (Cont’d.)

Mnemonic Binary Flags
Operation Cycles Code POVACC Function
JNC code addr 2 01010000 If C is zero (0), n jump to
(PC) + (PC) + 2 00000000 code address.
IF(C)=0
THEN
(PC) « (PC) + relative offset
JNZ code addr 2 01110000 If A'is not zero (0), n jump to
(PC) < (PC) + 2 00000000 code address.
IF(A)<>0
THEN
(PC) « (PC) + relative offset
JZ code addr 2 01100000 If A is zero (0), then jump to
(PC) < (PC) + 2 00000000 code address.
IF(A) =0 ‘
THEN
(PC) < (PC) + relative offset
LCALL code addr 2 00010010 Push PC on stack and
(PC) « (PC) + 3 I O I I 5 replace entire PC value with
(SP) < (SP) + 1 Tt rrrn code address.
((SP)) < ((PC)) low
(SP) < (SP) + 1
((SP)) < (PC) high
(PC) « code address
LJMP code addr 2 00000010 Jump to code address.
(PC) < code address [N I I 5 s
[I I A B I
MOV @Rr,#data 1 0111011 Move immediate data to
((Rr)) < data dddddddd indirect address.
MOV @Rr,A 1 1111011 Move A to indirect address.
((Rn) < (A)
MOV @Rr,data addr 2 1010011r Move contents of data
((Rr)) « (data address) mmmmmmmm address to indirect address.
MOV A, #data 1 01110100 | P Move immediate data to A.
(A) « data dddddddd
MOV A,@Rr 1 1110011r | P Move contents of indirect
(A) < ((Rr)) address to A.
MOV A,Rr 1 11101rrr | P Move register to A.
(A) < (Rr)
MOV A,qata addr 1 11100101 | P Move contents of data
(A) « (data address) mmmmmmmm address to A.
MOV C,bit addr 1 10100010 C | Move bit to C.
(C) « (bit address) bbbbbbbb
MOV DPTR, #data 2 10010000 Move two bytes of
(DPTR) < data ddddddddt immediate data pointer.
ddddddddt
MOV Rr,#data 1 O1111rrr Move immediate data to
(Rr) < data dddddddd register.
MOV Rr,A 1 11111rrr Move A to register.
(Rr) < (A)

second byte following the opcode.

1 The high order byte of the 16-bit operand is in the first byte following the opcode. The low order byte is in the

204

ntel

MCS® BASIC-52

Table B-1. Instruction Set Summary (Cont’d.)

Mnemonic Binary Flags .
Operation Cycles| code POV ACC Function
MOV Rr,data addr 2 10101rrr Move contents of data
(Rr) « (data address) mmmmmmmm address to register.
MOV bit addr,C 2 10010010 Move C to bit.
(bit address) < (C) bbbbbbbb
MOV data addr,#data 2 01110101 Move immediate data to data
(data address) < data mmmmmmmm address.
dddddddd
MOV data addr,@Rr 2 1000011 Move contents of indirect
(data address) < ((Rr)) mmmmmmmm address to data address.
MOV data adadr,A 1 11110101 Move A to data address.
(data address) < (A) mmmmmmmm
MOV data addr,Rr 2 10001rrr Move register to data
(data address) < (Rr) mmmmmmmm address.
MOV data addr1,data addr2 2 10000101 Move contents of second
(data address?1) « - mmmmmmmm”* data address to first data
(data address2) mmmmmmmm®* address.
MOVC A,@A + DPTR 2 10010011 | P Add A to DPTR and move
(PC) < (PC) + 1 contents of that code
(A) < ((A) + (DPTR)) address with A.
MOVC A,@A + PC 2 10000011 | P Add A to PC and move
(A) < ((A) + (PC)) contents of that code
address with A.
MOVX @DPTR,A 2 11110000 Move A to external data
((DPTR)) < (A) location addressed by
DPTR.
MOVX @Rr,A 2 1111001 Move A to external data
((Rn) < (A) location addressed by
register.
MOVX A,@DPTR 2 11100000 | P Move contents of external
(A) < ((DPTRY)) data location addressed by
DPTR to A.
MOVX A,@Rr 2 1110001r | P Move contents of external
(A) < ((Rn) data location addressed by
register to A.
MUL AB 4 10100100 | POV C | Multiply Aby B
(AB) < (A) * (B) (multiplication register).
NOP 1 00000000 Do nothing.
ORL A,#data 1 01000100 | P Logical OR immediate data
(A) < (A) OR data dddddddd to A.
ORL A,@Rr 1 0100011r | P Logical OR contents of
(A) < (A) OR ((Rr)) indirect address to A.
ORL ARr 1 01001rrr | P Logical OR register to A.
(A) < (A) OR (Rr)
ORL A,data addr 1 01000101 | P Logical OR contents of data
(A) < (A) OR (data address) mmmmmmmm address to A.
ORL C,bit addr 2 01110010 C | Logical OR bit to C.
(C) < (C) OR (bit address) bbbbbbbb

* The source data address (second data address) is encoded in the first byte following the opcode. The destination
data address is encoded in the second byte following the opcode.

205

ntel

MCS® BASIC-52

Table B-1. Instruction Set Summary (Cont’d.)

Mnemonic Binary Flags
Operation Cycles| code P OV AC C Function
ORL C,/bit addr 2 10100000 C | Logical OR complement of
(C) < (C) OR NOT (bit address) bbbbbbbb bit to C.
ORL data addr,#data 2 01000011 Logical OR immediate data
(data address) < mmmmmmmm to data address.
-(data address) OR data dddddddd
ORL data addr,A 1 01000010 ‘ Logical OR A to data
(data address) < mmmmmmmm address.
(data address) OR A
POP data addr 2 11010000 Place top of stack at data
(data address) < ((SP)) mmmmmmmm address and decrement SP.
(SP) < (SP) — 1
PUSH data addr 2 11000000 Increment SP and place
(SP) <« (SP) + 1 mmmmmmmm contents of data address at
((SP)) < (data address) top of stack.
RET 2 00100010 Return from subroutine call.
(PC)high < ((SP))
(SP) < (SP) — 1
(PC)low < ((SP))
(SP) < (SP) — 1
RETI 2 00110010 Return from interrupt routine.
(PC)high < ((SP))
(SP) < (SP) — 1
(PC)low « ((SP))
(SP) < (SP) — 1
RL A 1 00100011 Rotate A left one position.
RLC A 1 00110011 | P C | Rotate A through C left one
position.)
RR A 1 00000011 Rotate A right one position.
RRC A 1 ooot1co11t1 | P C | Rotate A through C right one
position.
SETB C 1 11010011 C | Set Ctoone (1)..
(C) «1
SETB bit addr 1 11010010 Set bit to one (1).
(bit address) « 1 bbbbbbbb
SJMP code addr 2 10000000 Jump to code address.
(PC) <~ (PC) + 2 00000000
(PC) < (PC) + relative offset
SUBB A,#data 1 10010100 | POV ACC | Subtractimmediate data
(A) < (A) — (C) — data dddddddd from A.
SUBB A,@Rr 1 1001011r |} POV ACC | Subtract contents of indirect
(A) < (A) — (C) — ((Rr)) address from A.
SUBB ARr 1 10011rrr | POV ACC | Subtract register from A.
(A) < (A) - (C) - (R
SUBB A,data addr 1 10010101 | POV AC C | Subtract contents of data
(A) < (A) — (C) — (data address) mmmmmmmm address from A.
SWAP A 1 11000100 Exchange low order nibble

with high order nibble in A.

206

ntel

MCS®@ BASIC-52

Table B-1. Instruction Set Summary (Cont’d.)

Mnemonic Binary Flags
Operation Cycles| Code POVACC Function
XCH A,@Rr 1 1100011r | P Move A to indirect address
temp < ((Rr)) and vice versa.
((Rn)) < (A)
(A) < temp
XCH A,Rr 1 11001rrr | P Move A to register and vice
temp < (Rr) versa.
(Rr) < (A)
(A) < temp
XCH A,data addr 1 11000101 | P Move A to data address and
temp < (data address) mmmmmmmm vice versa.
(data address) < (A)
(A) < temp
XCHD A,@Rr 1 1101011r | P Move low order of A to low
temp < ((Rr)) 0-3 order nibble of indirect
((Rr)) 0-3 < (A) 0-3 address and vice versa.
(A) 0-3 « temp
XRL A,#data 1 01100100 | P Logical exclusive OR
(A) < (A) XOR data dddddddd immediate data to A.
XRL A,@Rr 1 0110011r | P Logical exclusive OR
(A) < (A) XOR ((Rr)) contents of indirect address
to A.
XRL A,Rr 1 01101rrr | P Logical exclusive OR register
(A) < (A) XOR (Rn) to A.
XRL A,data adadr 1 01100101 (P Logical exclusive OR
(A) < (A) XOR (data address) mmmmmmmm contents of data address to
A.
XRL data addr,#data 2 01100011 Logical exclusive OR
(data address) « mmmmmmmm immediate data to data
(data address) XOR data dddddddd address.
XRL data adadr,A 1 01100010 Logical exclusive OR A to
(data address) < mmmmmmmm data address.

(data address) XOR A

207

MCS@ BASIC-52

- Table B-2. Instruction Opcodes in Hexadecimal

(l:llo?e ;u:;:; Mnemonic Operands
00 1 NOP
01 2 AJMP code addr
02 3 LJMP code addr
03 1 RR A
04 1 INC A
05 2 INC data addr
06 1 INC @RO0
07 1 INC @R1
08 1 INC RO
09 1 INC R1
0A 1 INC R2
0B 1 INC R3
oC 1 INC R4
oD 1 INC R5
OE 1 INC R6
OF 1 INC R7
10 3 JBC bit addr,code addr
11 2 ACALL code addr
12 3 LCALL code addr
13 1 RRC A
14 1 DEC A
15 2 DEC data addr
16 1 DEC @RO0
17 1 DEC @R1
18 1 DEC RO
19 1 DEC R1
1A 1 DEC R2
1B 1 DEC R3
1C 1 DEC R4
1D 1 DEC R5
1E 1 DEC R6
1F 1 DEC R7
20 3 JB bit addr,code addr
21 2 AJMP code addr
22 1 RET
23 1 RL A
24 2 ADD A,#data
25 2 ADD A,data addr
26 1 ADD A,@RO
27 1 ADD A @R1
28 1 ADD ARO
29 1 ADD AR1
2A 1 ADD AR2
2B 1 ADD AR3
2C 1 ADD AR4
2D 1 ADD AR5
2E 1 ADD AR6
2F 1 ADD AR7
30 3 JNB bit addr,code addr
31 2 ACALL code addr
32 1 RETI
33 1 RLC A
34 2 ADDC A, #data
35 2 ADDC A,data addr
36 1 ADDC A,@R0O
37 1 ADDC A,@R1
38 1 ADDC A,RO
39 1 ADDC AR1
3A 1 ADDC AR2
3B 1 ADDC AR3

208

MCS® BASIC-52

Table B-2. Instruction Opcodes in Hexadecimal (Cont’d.)

:o?e ‘:u;nyl::; Mnemonic Operands
3C 1 ADDC A R4
3D 1 ADDC AR5
3E 1 ADDC AR7
3F 1 ADDC AR7
40 2 JC code addr
41 2 AJMP code addr
42 2 ORL data addr,A
43 3 ORL data addr,#data
44 2 ORL A, #data
45 2 ORL A,data addr
46 1 ORL A,@RO
47 1 ORL A,@R1
48 1 ORL A,RO
49 1 ORL AR1
4A 1 ORL AR2
4B 1 ORL AR3
4C 1 ORL AR4
4D 1 ORL AR5
4E 1 ORL AR6
4F 1 ORL AR7
50 2 JNC code addr
51 2 ACALL code addr
52 2 ANL data addr,A
53 3 ANL data addr,#data
54 2 ANL A, #data
55 2 ANL A,data addr
56 1 ANL A,@RO
57 1 ANL A,@R1
58 1 ANL ARO
59 1 ANL AR1
5A 1 ANL AR2
5B 1 ANL AR3
5C 1 ANL A,R4
5D 1 ANL AR5
5E 1 ANL A,R6
5F 1 ANL AR7
60 2 Jz code addr
61 2 AJMP code addr
62 2 XRL data addr,A
63 3 XRL data addr,#data
64 2 XRL A, #data
65 2 XRL A,data adadr
66 1 XRL A,@R0O
67 1 XRL A@R1
68 1 XRL A,RO
69 1 XRL AR1
6A 1 XRL AR2
6B 1 XRL AR3
6C 1 XRL A,R4
6D 1 XRL AR5
6E 1 XRL AR6
6F 1 XRL A,R7
70 2 JNZ code addr
71 2 ACALL code addr
72 2 ORL C,bit addr
73 1 JMP @A + DPTR
74 2 MOV A #data
75 3 MOV data addr,#data
76 2 MOV @RO,#data
77 2 MOV @R1,#data

209

MCS® BASIC-52

Table B-2. Instruction Opcodes in Hexadecimal (Cont’d.)

go?e :lfu;nyl::; Mnemonic Operands
78 2 MOV RO,#data
79 2 MOV R1,#data
7A 2 MOV R2,#data
7B 2 MoV R3,#data
7C 2 MOV R4,#data
7D 2 MOV R5,#data
7E 2 MOV R6,#data
7F 2 MoV R7,#data
80 2 SJMP code addr
81 2 AJMP code addr
82 2 ANL C,bit addr
83 1 MOVC A@A + PC
84 1 DIV AB
85 3 MOV data addr,data addr
86 2 MOV data addr,@R0O
87 2 MOV data addr,@R1
88 2 MoV data addr,R0
89 2 MOV data addr,R1
8A 2 MOV data addr,R2
8B 2 MOV data addr,R3
8C 2 MoV data addr,R4
8D 2 MOV data addr,R5
8E 2 MOV data addr,R6
8F 2 MOV data addr,R7
90 3 MOV DPTR,#data
91 2 ACALL code addr
92 2 MOV bit addr,C
93 1 MOVC A,@A + DPTR
94 2 SuBB A, #data
95 2 sSuBB A,data addr
96 1 SUBB A,@RO
97 1 SUBB A,@R1
98 1 SuUBB ARO
99 1 SuBB AR1
9A 1 SUBB AR2
9B 1 SUBB AR3
9C 1 SUBB AR4
9D 1 SuBB AR5
9E 1 SUBB A,R6
oF 1 SUBB AR7
AO 2 ORL C,Ibit addr
A1l 2 AJMP code addr
A2 2 MoV C,bit addr
A3 1 INC DPTR
Ad 1 MUL AB
A5 reserved
A6 2 MOV @RO0,data addr
A7 2 MOV @R1,data addr
A8 2 MOV RO,data addr
A9 2 MOV R1,data addr
AA 2 MOV R2,data addr
AB 2 MOV R3,data adadr
AC 2 MOV R4,data addr
AD 2 MOV R5,data addr
AE 2 MOV R6,data addr
AF 2 MOV R7,data addr
BO 2 ANL C,Ibit addr
B1 2 ACALL code addr
B2 2 CPL bit addr
B3 1 CPL C

210

MCS® BASIC-52

Table B-2. Instruction Opcodes in Hexadecimal (Cont’d.)

Number

Code of Bytes Mnemonic Operands
B4 3 CINE A,#data,code addr
B5 3 CJNE A,data addr,code addr
B6 3 CJINE @RO0,#data,code addr
B7 3 CJNE @R1,#data,code addr
B8 3 CINE RO, #data,code addr
B9 3 CJNE R1,#data,code addr
BA 3 CJNE R2,#data,code addr
BB 3 CJINE R3,#data,code addr
BC 3 CINE R4,#data,code addr
BD 3 CJINE R5,#data,code addr
BE 3 CINE R6,#data,code addr
BF 3 CJINE R7,#data,code addr
co 2 PUSH data addr
C1 2 AJMP code addr
c2 2 CLR bit addr
Cc3 1 CLR C
c4 1 SWAP A
C5 2 XCH A,data addr
Ccé6 1 XCH A,@R0
Cc7 1 XCH A,@R1
c8 1 XCH ARO
C9 1 XCH AR1
CA 1 XCH AR2
CcB 1 XCH A,R3
CcC 1 XCH A,R4
CcD 1 XCH AR5
CE 1 XCH A,R6
CF 1 XCH A,R7
Do 2 POP data addr
D1 2 ACALL code addr
D2 2 SETB bit addr
D3 1 SETB (o}

D4 1 DA A

D5 3 DJNZ data addr,code addr
D6 1 XCHD A,@RO

D7 1 XCHD A,@R1

D8 2 DJINZ R0,code adar
D9 2 DJNZ R1,code adar
DA 2 DJNZ R2,code addr
DB 2 DJNZ R3,code addr
DC 2 DJNZ R4,code addr
DD 2 DJNZ R5,code addr
DE 2 DJNZ R6,code adar
DF 2 DJNZ R7,code addr
EO 1 MOVX A,@DPTR

E1 2 AJMP code addr
E2 1 MOVX A,@R0

E3 1 MOVX A @R1

E4 1 CLR A

E5 2 MOV A,data addr
E6 1 MOV A,@RO

E7 1 MOV A,@R1

E8 1 MOV ARO

E9 1 MOV AR1

EA 1 MOV AR2

EB 1 MOV AR3

EC 1 MOV AR4

ED 1 MOV AR5

EE 1 MOV A,R6

EF 1 MOV AR7

211

MCS® BASIC-52

Table B-2. Instruction Opcodes in Hexadecimal (Cont’d.)

c":::(e :ué“‘::; Mnemonic Operands
FO 1 - MOVX @DPTR,A
F1 2 ACALL code addr
F2 1 MOVX @R0,A
F3 1 MOVX @R1,A
F4 1 CPL A
F5 2 MOV data addr,A
F6 1 MOV @RO0,A
F7 1 MOV @R1,A
F8 1 MoV RO,A
F9 1 MOV R1,A
FA 1 MoV R2,A
FB 1 MOV R3,A
FC 1 MOV R4,A
FD 1 MOV R5,A
FE 1 MoV R6,A
FF 1 MOV R7,A

212

INDEX

A

ABS, 5, 76, 113, 158, 181, 183

Accumulator, 27, 106, 123, 146, 147, 193

ADD, 5, 8, 74, 80, 118, 119, 181, 183

Argument Stack, 8, 31, 60, 61, 98, 106—108,
112, 113, 118, 122, 123, 163, 165, 167,
169

Arithmetic Overflow, 97, 118

Arithmetic Underflow, 97, 118

Array Size, 99

ASC, 83-85, 103, 158, 183

Assembly Language Linkage, 29, 67, 99, 104

ATN, 79, 114, 158, 181, 183

Auto_Baud, 2

B

BAUD Rate, 16, 24, 27, 28, 57, 89, 93, 94,
131, 145—-147, 158, 164, 169, 174, 175,
178, 183, 189, 194

C

CALL, 12, 29, 104, 107, 108, 130, 132, 158,
178, 183

Carry Bit, 27, 146

CBY, 86, 114, 158, 182, 183

CHR, 83, 85, 158, 183

CLEAR, 6, 30, 32, 35, 66 158, 178

CLEARI, 31, 32, 53, 178, 183

CLEARS, 31, 178, 183

CLOCKaO, 32, 53, 158, 178, 183

CLOCK1, 30-32, 52, 91, 92, 131, 158, 163,
167, 178, 183

Command Mode, 4, 12, 13, 24, 106, 109,
111, 167, 191

Command/Statement Extension, 10, 11, 122,
153—-159

Constants, 5, 6, 122

CONT, 14, 38, 65, 158, 166, 176, 183

Control Stack, 8, 11, 31, 42, 98, 169

COs, 5, 77-79, 113, 158, 181, 183

CR, 4, 55, 158

D

DATA, 33, 34, 97, 158, 178, 183
Data Format, 5

DBY, 86, 114, 158, 182, 183

213

DIM, 6, 35, 99, 158, 167, 178, 183

DIMUSE, 185, 186

Direct Memory Access (DMA), 101, 129,
163, 167

DIVIDE, 5, 8, 80, 118, 119, 181, 183

DO _UNTIL, 8, 31, 36, 37, 98, 158, 178, 183

DO _WHILE, 8, 31, 37, 98, 158, 178, 183

DPTR, 104, 106, 123, 147, 153, 155, 159,
190, 193

E

END, 38, 158, 178, 183, 188

EPROM Programming, 10, 20, 23, 72, 109,
110, 132, 134-136, 141, 142, 162

EQUAL, 7, 80, 81, 120, 158, 183

Error Messages, 96—99

EXCLUSIVE OR, 120, 158

EXP, 78, 158, 181, 183

EXPONENT, 74, 80, 119, 181, 183

Expression, 6

F

Floating Point Numbers, 55, 71, 107, 108,
112, 118, 123, 184, 186

FOR_TO_{STEP} NEXT, 8, 11, 12, 31, 39,
40, 42, 98, 158, 178, 183

FPROG, 25, 94, 158, 177, 183

FPROGH1, 25, 177, 183

FPROG2, 25, 177, 183

FPROGS, 26, 177, 183

FPROG4, 26, 177, 183

FPROGS, 27, 177, 183

FPROGS, 27, 177, 183

FREE, 7, 21, 95, 115, 158, 183

G

GET, 67, 86, 87, 100, 115, 122, 123, 158,
162, 165, 166, 169, 182, 183

GOSUB, 8, 11, 12, 41, 43, 44, 51, 52, 61,
98, 158, 179, 183

GOTO, 12, 13, 43, 44, 46, 158, 179, 183

GREATER THAN, 7, 80, 81, 121, 158, 183

GREATER THAN OR EQUAL, 7, 80, 81,
120, 158, 183

intel

MCS® BASIC-52

I

IDLE, 10, 69, 158, 167, 180, 183

IE, 31, 51, 88, 101, 103, 116, 129, 130, 158,
182, 183, 193, 198

IF_THEN_ ELSE, 9, 45, 46, 97, 158, 179,
183

lilegal Direct, 97

INPUT, 47, 48, 82, 158, 179, 183

Input Buffer, 11, 111

INT, 76, 113, 158, 181, 183

Integers, 5, 75, 76

INTELligent Algorithm, 25, 26, 72, 109, 110,
136, 141, 163, 165, 167, 169, 177

Internal Stack, 8, 99

Interrupts, 129, 130, 159, 160, 162, 163,
166, 167

IP, 88, 116, 158, 182, 183, 193, 198

L

LD@, 10, 71, 158, 180, 183

LEN, 7, 95, 115, 158, 183

LESS THAN, 7, 80, 81, 121, 158, 183

LESS THAN OR EQUAL, 7, 80, 81, 120,
158, 183

LET, 49, 66, 82, 86, 91, 95, 158, 179, 183

Line Editor, 8

LIST, 4, 9, 10, 15-17, 21, 100, 158, 176,
183

LIST#, 16, 28, 94, 131, 176, 183

LIST@, 11, 17, 59, 159, 166, 167, 176, 183

LOG, 78, 114, 158, 181, 183

LOGICAL AND, 76, 80, 81, 120, 158, 181,
183

LOGICAL EXCLUSIVE OR, 75, 80, 81, 181,
183

LOGICAL OR, 75, 80, 81, 120, 158, 181,
183

M

MTORP 2, 7, 21, 26, 27, 95, 115, 145, 152,
158, 176, 183, 185, 187, 189, 191

MULTIPLY, 8, 74, 80, 118, 119, 181, 183

N

NEGATION, 80, 158

NEW, 18, 35, 66, 158, 176, 183

NOT, 76, 81, 113, 158, 181, 183

NOT EQUAL, 7, 80, 81, 121, 158, 183
NULL, 19, 95, 158, 166, 176, 183

214

0

ON GOSUB, 43, 44, 158, 179

ON GOTO, 43, 44 158, 179

ONERR, 30, 50, 158, 162, 166, 169, 179,
183

ONEX1, 30, 31, 51, 53, 64, 69, 129, 131,
158, 162, 166, 169, 179, 183

ONTIME, 30, 31, 51, 52, 53, 64, 69, 129,
158, 162, 166, 168, 179, 183

ON_GOSuUB, 183

ON_GOTO, 183

Opbyte, 11, 106—-109, 111-124

Operators, 122

P

PCON, 89, 117, 158, 182, 183, 193, 194

PGM, 10, 72, 73, 104, 158, 180 183

PHoO., 58, 158, 179, 183

PHO.#, 58, 179, 183

PHO.@, 59, 180, 183

PH1., 58, 157, 158, 179, 183

PH1.#, 58, 179, 183

PH1.@, 59, 180, 183

PI, 77, 79, 115, 158, 182, 183

POP, 60, 61, 98, 106, 108, 118, 130, 158,
180, 183

PORT1, 88, 117, 158, 182, 183

PRINT, 4, 10, 11, 54, 55, 57-59, 63, 158,
179, 183

PRINT#, 28, 57, 94, 131, 179, 183

PRINT@, 11, 59, 159, 166, 167, 180, 183

PROG, 23, 25, 94, 131, 134, 158, 176, 183,
189

PROGH1, 10, 24, 25, 145, 176, 183, 189

PROG2, 10, 24, 25, 145, 176, 183, 189

PROGS, 10, 26, 145, 176, 183, 189

PROG4, 10, 26, 145, 176, 183

PROGS, 10, 27, 145, 177, 183

PROGS®, 10, 27, 146, 177, 183

Programming Error, 98

PSW, 130, 160, 193, 194

PUSH, 60, 61, 98, 107, 130, 158, 180, 183

PWM, 62, 90, 94, 131, 158, 170-173, 180,
183

intel

MCS® BASIC-52

R

RAM, 21, 158, 176, 183

RAM Only Mode, 132

RAM/EPROM Mode, 133, 134

RCAP2, 89, 117, 158, 182, 183

READ, 33, 34, 97, 158, 178, 183

REM, 12, 63, 158, 180, 183

Reset, 2, 3, 10, 24, 26, 27, 29, 102, 122,
131, 145-152, 159, 176, 177, 191

RESTORE, 33, 158, 178, 183

RETI, 51, 53, 64, 158, 163, 180, 183

RETURN, 41, 42, 64, 98, 123, 158, 179, 183

RND, 77, 115, 158, 181, 183

ROM, 21, 158, 176, 183

RROM, 10, 70, 158, 180, 183

RUN, 13, 21, 24, 35, 43, 100, 158, 176, 183

Run Mode, 4, 13, 123

Run Trap, 10, 27, 102, 169

S

SCON, 147, 190, 193, 197

Serial Port, 131, 136, 159, 160, 166

SGN, 76, 113, 158, 181, 183

Sign-On, 2

SIN, 5, 77-79, 114, 158, 181, 183

SMOD, 194

SPC, 4, 54, 158

SQR, 77, 114, 158, 181, 183

ST@, 10, 71, 158, 180, 183

Stack Pointer, 8, 31, 105, 147, 152, 193

STOP, 14, 65, 98, 158, 163, 176, 180, 183

STRING, 30, 49, 66, 82, 83, 99, 158, 164,
168, 180, 183, 185

SUBTRACT, 5, 8, 74, 80, 118—120, 181, 183

215

T

T2CON, 2, 3, 89, 116, 131, 147, 158, 182,
183, 193

TAB, 4, 54, 158

TAN, 77, 79, 113, 158, 181, 183

TCON, 3, 90, 116, 131, 147, 158, 182, 183,
193, 197

Text Pointer, 122, 123, 162, 164, 166

TIME, 7, 32, 52, 53, 91, 92, 116, 158, 182,
183

TIMERO, 90, 92, 116, 158, 182, 183

TIMERT1, 89, 90, 92, 94, 116, 158, 182, 183

TIMERZ2, 89, 92, 94, 116, 158 174, 175, 182,
183, 196

TMOD, 3, 90, 117, 131, 147, 158, 182, 183,
193, 195

U

Ul, 67, 158, 180, 183
UNTIL, 178

UO, 68, 158, 180, 183
USING, 4, 55, 56, 112, 158

A%

Variables, 6, 11, 122, 185
VARTOP, 185, 187
VARUSE, 185-187

X

X-OFF, 10

X-ON, 10

XBY, 87, 114, 158, 182, 183

XFER, 21, 22, 158, 176, 183

XTAL, 2, 3, 7, 28, 32, 62, 89, 91, 93, 115,
136, 152, 158, 165, 169, 174, 175, 183

ALABAMA

Intel Corp.

5015 Bradford Drive
Suite 2

Huntsville 35805
Tel: (205) 830-4010

ARIZONA

Intel Corp.

11225 N. 28th Drive
Suite 214D

Phoenix 85029

Tel: (602) 869-4980

Intel Corp.

1161 N. El Dorado Place
Suite 301

Tucson 8

Tel: (602) 299 6815

CALIFORNIA

Intel Corp.

21515 Vanowen Street
Suite 116

Canoga Park 91303
Tel: (818) 704-8500

Intel Corp.

2250 E. Imperial Highway
Suite 218

El Seé;undo 90245

Tel: (213) 640-6040

Intet Corp.

1510 Arden Way, Suite 101
Sacramento 95815

Tel: (916) 920-8096

Intel Corp.

4350 Executive Drive
Suite 105

San Diego 92121
Tel: (619) 452-5880

Intel Corp.*

2000 East 4th Street
Suite 100

Santa Ana 92705
Tel: (714) 835-9642
TWX: 910-595-1114

Intel Corp.*
San Tomas 4

2700 San Tomas Expressway

Santa Clara, CA 95051
Tel: (408) 986-8086
TWX: 910-338-0255
COLORADO

Intel Corp.

3300 Mitchell Lane, Suite 210

Boulder 80301
Tel: (303) 442-8088

Intel Corp.

4445 Northpark Drive
Suite 100

Colorado Springs 80907
Tel: (303) 594-6622

Intel Corp.*
650 S. Cherry Street
Suite 9 5

222
Tel: (303) 321-8086
TWX: 910-931-2289

CONNECTICUT

intel Corp.

26 Mill Plain Road
Danbury 06810

Tel: (203) 748-3130
TWX: 710-456-1199

EMC Corp.

222 Summer Street
Stamford 06901
Tel: (203) 327-2934

FLORIDA

Intel Corp.

242 N. Westmonte Drive
Suite 105

Altamonte Springs 32714
Tel: (305) 869-5588

Intel Corp.

6363 N.W. 6th Way, Suite 100

Ft. Lauderdale 33309
Tel: (305) 771-0600
TWX: 510-956-9407

DOMESTIC SALES OFFICES

FLORIDA (Cont'd)

Intel Corp.

11300 4th Street North
Suite 170

St. Petersburg 33702
Tel: (813) 577-2413

GEORGIA

Intel Corp.

3280 Pointe Parkway
Suite 200

Norcross 30092

Tel: (404) 449-0541

ILLINOIS

Intel Corp.*

300 N. Martingale Road, Suite 400
Schaumburg 60172

Tel: (312) 310-8031

INDIANA

Intel Corp.

8777 Purdue Road
Suite 125
Indianapolis 46268
Tel: (317) 875-0623

IOWA

Intel Corp.

St. Andrews Building

1930 St. Andrews Drive N.E.
Cedar Rapids 52402

Tel: (319) 393-5510

KANSAS

Intel Corp.

8400 W. 110th Street
Suite 170

Overland Park 66210
Tel: (913) 345-2727

MARYLAND

Intel Corp.

7321 Parkway Drive South
Suite C

Hanover 21076

Tel: (301) 796-7500

TWX: 710-862-1944

Intel Corp.

7833 Walker Drive
Greenbelt 20770
Tel: (301) 441-1020

MASSACHUSETTS

Intel Corp.*

Westford Corp. Center
3 Carlisle Road
Westford 01886

Tel: (617) 692-3222
TWX: 710-343-6333

MICHIGAN

Intel Corp.

7071 Orchard Lake Road
Suite 100

West Bloomfield 48033
Tel: (313) 851-8096

MINNESOTA

Intel Corp.
3500 W. 80th Street
Suite 360
Bloomington 55431
Tel: (612) 835-6722
TWX: 910-576-2867

MISSOURI

Intel Corp.

4203 Earth City Expressway
Suite 131

Earth City 63045

Tel: (314) 291-1990

NEW JERSEY

Intel Corp.*

Parkway 109 Office Center
328 Newman Springs Road
Red Bank 07701

Tel: (201) 747-2233

Intel Corp.

75 Livingston Avenue
First Floor

Roseland 07068

Tel: (201) 740-0111

NEW MEXICO

Intel Corp.

8500 Menual Boulevard N.E.
Suite B 295

Albuquerque 87112

Tel: (505) 292-8086

NEW YORK

Intel Corp.”

300 Vanderbilt Motor Parkway
Hauppauge 11788

Tel: (516) 231-3300

TWX: 510-227-6236

Intel Corp.

Suite 2B Hollowbrook Park
15 Myers Corners Road
Wappinger Falls 12590
Tel: (914) 297-6161

TWX: 510-248-0060

Intel Corp.*

850 Cross Keys Office Park
Fairport 1445

Tel: (716) 425-2750

TWX: 510-253-7391

NORTH CAROLINA

Intel Corp.

5700 Executive Center Drive
Suite 213

Charlotte 28212

Tel: (704) 568-8966

Intel Corp.

2700 Wycliff Road
Suite 1 02

Raleigh 27607

Tel: (919) 781-8022

OHIO

Intel Corp.*

3401 Park Center Drive
Suite 220

Dayton 45414

Tel: (513) 890-5350
TWX: 810-450-2528

Intel Corp.*

25700 Science Park Drive
Beachwood 44122

Tel: (216) 464-2736

TWX: 810-427-9298

OKLAHOMA

Intel Corp.

6801 N. Broadway
Suite 115

Oklahoma City 73116
Tel: (405) 848-8086

OREGON

‘Intel Corp.

15254 N.W. Greenbrier Parkway, Bidg. B
Beaverton 97006

Tel: (503) 645-8051

TWX: 910-467-8741

PENNSYLVANIA

Intel Corp.

1513 Cedar Cliff Drive
Camphill 17011

Tel: (717) 737-5035

Intel Corp.*

455 Pennsylvania Avenue
Fort Washington 19034
Tel: (215) 641-1000

TWX: 510-661-2077

Intel Corp.*

400 Penn Center Boulevard
Suite 610

Pittsburgh 15235

Tel: (412) 823-4970

PUERTO RICO

Intel Microprocessor Corp.
South Industrial Park

P.0. Box 910

Las Piedras 00671

Tel: (809) 733-3030

TEXAS

Intel Corp.

313 E. Anderson Lane
Suite 314

Austin 78752

Tel: (512) 454-3628

Intel Corp.*

12300 Ford Road
Suite 380

Dallas 75234

Tel: (214) 241-8087
TWX: 810-860-5617

intel Corp.*
7322 S.W. Freeway
Suite 1490
Houston 77074

Tel: (713) 988-8086
TWX: 910-881-2490

Industrial Digital Systerns Corp.
5925 Sovereign

Suite 101

Houston 77036

Tel: (713) 988-9421

UTAH

Intel Corp.

5201 Green Street
Suite 290

Murray 84123

Tel: (801) 263-8051

VIRGINIA

Intel Corp.

1603 Santa Rosa Road
SuiteM 09

Richm

Tel: (804} 282 5668

WASHINGTON

Intel Cor|

155- 105 Avenue N.E.
Suite 386

Bellevue 98004

Tel: (206) 453-8086
TWX: 910-443-3002

Intel Corp.

408 N. Mullan Road
Suite 102

Spokane 99206
Tel: (509) 928-8086

WISCONSIN

e A

N. Sunnyslope Road
Suite 130

Chancellory Park 1
Brookfield 53005

Tel: (414) 784-8087

CANADA
BRITISH COLUMBIA

Intel Semiconductor of Canada, Ltd.
301-2245 W. Broadway

Vancouver V6K 2E4

Tel: (604) 738-6522

ONTARIO

Intel Semiconductor of Canada, Ltd.
2650 Queensview Drive

Suite 250

Ottawa K2B 8H6

Tel: (613) 829-9714

TELEX: 053-4115

Intel Semiconductor of Canada, Ltd.
190 Attwell Drive

Suite 500

Rexdale MW 6H8

Tel: (416) 675-2105

TELEX: 06983574

QUEBEC

Intel Semiconductor of Canada. Ltd.
620 St. Jean Boulevard

Tel: (514) 694-9130
TWX: 514-604-9134

*Fieid Application Location

CG-11/6/86

ALABAMA

Arrow Electronics, Inc.
1015 Henderson Road
Huntsville 35805

Tel: (205) 837-6955

tHamilton/Avnet Electronics
812 Commercial Drive N.W.

Huntsville 35805

Tel: (205) 837-7210

TWX: 810-726-2162

Pioneer/Technologies Group Inc.

4825 University Square
Huntsville 35805

Tel: (205) 837-9300
TWX: 810-726-2197

ARIZONA

tHamilton/Avnet Electronics
505 S. Madison Drive

Tempe 85281

Tel: (602) 231-5100

TWX: 910-950-0077

Kierulff Electronics
4134 E. Wood Street
Phoenix 85040

Tel: (602) 437-0750
TWX: 910-951-1550

W le Dvstnbution Group

17855 N. Black Canyon Highway
Phoenix 85023
Tel: (602) 866-2888

CALIFORNIA

Arrow Electronics, Inc.
19748 Dearborn Street
Chatsworth 91311

Tel: (818) 701-7500
TWX: 910-493-2086

Arrow Electronics, Inc.
1502 Crccker Avenue
Hayward 94544

Ter (é (403) 487-4600

Arrow Electronics

9511 Rldgehaven Court
San Dleg 2123

Tel (61)565-4800

tArrow Electronics, Inc.
521 Weddell Drive
Sunnyvale 94086

Tel: (408) 745-6600
TWX: 910-339-9371

Arrow Electronics, Inc.
2961 Dow Avenue
Tustin 92680

Tel: (714) 838-5422
TWX: 910-595-2860

tAvnet Electronics

350 McCormick Avenue
Costa Mesa 92626

Tel: (714) 754-6051
TWX: 910-595-1928

Hamilton/Avnet Electronics
1175 Bordeaux Drive
Sunnyvale 94086

Tel: (408) 743-3300

TWX: 910-339-9332

tHamilton/Avnet Electronics
4545 Viewridge Avenue

San Diego 92123

Tel: (619) 571-7500

TWX: 910-595-2638

tHamilton/Avnet Electronics
20501 Plummer Street
Chatsworth 91311

Tel: (818) 700-6271

TWX: 910-494-2207

THamllton/Avnet Electronics
4103 Northgate Boulevard

Sacramento 95834

Tel: (916) 920-3150

HamiltorgAvnet Electronics

Ontario 91311
Tel: (714) 989-9411

Hamilton/Avnet Electronics
19515 So. Vermont Avenue
Torrance 90502

Tel: (213) 615-3909

TWX: 910-349-6263

Hamilton Electro Sales
9650 De Soto Avenue
Chatsworth 91311

Tel: (818) 700-6500

tHamilton Electro Sales

10950 W. Washington Boulevard
Culver City 80230

Tel: (213) 558-2458

TWX: 910-340-6364

DOMESTIC DISTRIBUTORS

CALIFORNIA (Cont'd)

Hamilton Electro Sales
1361 B West 190th Street
Gardena 90248

Tel: (213) 568-2131

tHamilton Electro Sales
3170 Puliman Street
Costa Mesa 92626

Tel: (714) 641-4150
TWX: 910-595-2638

Kierulff Electronics
10824 Hope Street
Cypress 90430

Tel: (714) 220-6300

Kierulff Electronics, Inc.
1180 Murphy Avenue
San Jose 95131

Tel: (408) 971-2600
TWX: 910-379-6430

Kierulff Electronics, Inc.
14101 Franklin Avenue
Tustin 92680

Tel: (714) 731-5711
TWX: 910-595-2599

tKierulff Electronics, Inc.
5650 Jillson Street
Commerce 90040

Tel: (213) 725-0325
TWX: 910-580-3666

Wyle Distribution Group
26560 Agoura Street
Calabasas 91302

Tel: (818) 880-9000
TWX: 818-372-0232

tWyle Distribution Group

8100
TWX: 910-348-7140 or 7111

1Wyle Distribution Group
17872 Cowan Avenue
Irvine 92714

Tel: (714) 843-9953
TWX: 910-595-1572

1Wyle Distribution Group
11151 Sun Center Drive
Rancho Cordova 95670
Tel: (916) 638-5282

tWyle Distribution Group
9525 Chesapeake Drive
San Diego 92123

Tel: (619) 565-9171
TWX: 910-335-1590

tWyle Distribution Group
3000 Bowers Avenue
Santa Clara 95051

Tel: (408) 727-2500
TWX: 910-338-0296

Wyle Military

18910 Teller Avenue
Irvine 92750

Tel: (714) 851-9958
TWX: 310-371-9127

Wyle Systems

7382 Lampson Avenue
Garden Grove 92641
Tel: (714) 851-9953
TWX: 910-595-2642

COLORADO

Arrow Electronics, Inc.
1390 S. Potomac Street
Suite 136

Aurora 80012

Tel: (303) 696-1111

tHamilton/Avnet Electronics
8765 E. Orchard Road

Suite 708

Englewood 80111

Tel: (303) 740-1017

TWX: 910-935-0767

TWyle Distribution Group
E. 124th Avenue

1
Tel: (303) 457-9953
TWX: 910-936-0770

CONNECTICUT

tArrow Electronics, Inc.
12 Beaumont Road
Wallm%ford 06492

Tel: (203) 265-7741
TWX: 710-476-0162

tHamilton/Avnet Electronics
Commerce Industrial Park
Commerce Drive

Danburg 06810

Tel: (203) 797-2800

TWX: 710-456-9974

CONNECTICUT (Cont'd)

tPioneer Northeast Electronics
112 Main Street

Norwalk 06851

Tel: (203) 853-1515

TWX: 710-468-3373

FLORIDA

tArrow Electronics, Inc.
350 Fairway Drive
Deerfield Beach 33441
Tel: (305) 429-8200
TWX: 510-955-9456

tArrow Electronics, Inc.
1001 N.W. 62nd Street
Suite 108

Ft. Lauderdale 33309
Tel: (305) 776-7790
TWX: 510-955-9456

tArrow Electronics, Inc.

50 Woodlake Drive W., Bldg. B
Palm 32905

Tel: (305) 725-1480

TWX: 510-959-6337

tHamilton/Avnet Electronics
6801 N.W. 15th Wa

Ft. Lauderdale 33309

Tel: (305) 971-2900

TWX: 510-956-3097

tHamilton/Avnet Electronics
3197 Tech Drive North

St. Petersburg 33702

Tel: (813) 576-3930

TWX: 810-863-0374

Hamilton/Avnet Electronics
6947 Universi Boulevard
Winterpark 3279

Tel: (305) 628-. 3883

TWX: 810-853-0322

tPioneer Electronics

221 N. Lake Boulevard
Suite 412

Alta Monte Springs 32701
Tel: (305) 834-9090
TWX: 810-853-0284

tPioneer Electronics
674 S. Military Trail
Deerfield Beach 33442
Tel: (305) 428-8877
TWX: 510-955-9653

GEORGIA

tArrow Electronics, Inc.

3155 Northwoods Parkway, Suite A

Norcross 30071
Tel: (404) 449-8252
TWX: 810-766-0439

Hamilton/Avnet Electronics
5825 D. Peachtree Corners
Norcross 30092

Tel: (404) 447-7500

TWX: 810-766-0432

Pioneer Efectronics

58358 Peachtree Corners E
Norcross 30092

Tel: (404) 448-1711

TWX: 810-766-4515

ILLINOIS

tArrow Electronics, Inc.
2000 E. Alonquin Street
Schaumberg 60195
Tel: (312) 397-3440
TWX: 910-291-3544

tHamilton/Avnet Electronics
1130 Thorndale Avenue
Bensenville 60106

Tel: (312) 860-7780

TWX: 910-227-0060

MTI Systems Sales
1100 West Thorndale
Itasca 6

Tel: (312) 773 2300

tPioneer Electronics
1551 Carmen Drive
Elk Grove Vllla e 60007
Tel: (312) 43

TWX: 910- 222 1834

INDIANA

tArrow Electronics, Inc.
2495 Directors Row, Suite H
Indianapolis 46241

Tel: (317) 243-9353

TWX: 810-341-3119

Hamilton/Avnet Electronics
485 Gradle Drive

Carmel 46032

Tel: (317) 844-9333

TWX: 810-260-3966

INDIANA (Cont'd)

tPioneer Electronics
6408 Castleplace Drive
Indianapolis 46250
Tel: (317) 849-7300
TWX: 810-260-1794

KANSAS

tHamilton/Avnet Electronics
9219 Quivera Road
Overland Park 66215

Tel: (913) 888-8900

TWX: 910-743-0005

KENTUCKY

Hamilton/Avnet Electronics
105 Newton Park
Lexington 40511

MARYLAND

Arrow Electronics, Inc.
8300 Gulford Road #H
Rivers Center
Columbia 21046

Tel: (301) 995-0003
TWX: 710-236-9005

tHamilton/Avnet Electronics
6822 Oak Hall Lane
Columbia 21045

Tel: (301) 995-3500

TWX: 710-862-1861

tMesa Technolo%y Corporation
16021 Industrial Drive
Gaithersburg 20877

Tel: (301) 948-4350

Twx: 710-828-9702

tPioneer Electronics
9100 Gaither Road
Gaithersburg 20877
Tel: (301) 948-0710
TWX: 710-828-0545

MASSACHUSETTS

tArrow Electronics, Inc.
1 Arrow Drive

Woburn 01801

Tel: (617) 933-8130
TWX: 710-393-6770

fHamilton/Avnet Electronics
10D Centennial Drive
Peabod)l 01960

Tel: (617) 532-3701

TWX: 710-393-0382

MTI Systems Sales
13 Fortune Drive
Billerica 01821

Pioneer Northeast Electronics
44 Hartwell Avenue
Lexington 02173

Tel: (617) 863-1200

TWX: 710-326-6617

MICHIGAN

Arrow Electronics, Inc.
755 Phoenix Drive
Ann Arbor 48104

Tel: (313) 971-8220
TWX: 810-223-6020

tHamilton/Avnet Electronics
32487 Schoolcraft Road
Livonia 48150

Tel: (313) 522-4700

TWX: 810-242-8775

Hamilton/Avnet Electronics
2215 29th Street S.E.
Space A5

Grand Rapids 49508

Tel: (616) 243-8805

TWX: 810-273-6921

1Pioneer Electronics
13485 Stamford
Livonia 48150

Tel: (313) 525-1800
TWX: 810-242-3271

MINNESOTA

tArrow Electronics, Inc.
5230 W 73rd Street
Edina

Tel: (612) 330- 00
TWX: 910-576-3125

Hamilton/Avnet Electronics
10300 Bren Road Eas'
Minnetonka 55343

Tel: (612) 932-0600

TWX: (910) 576-2720

tPioneer Electronics
10203 Bren Road East
Minnetonka 55:

Tel: (612) 935-5444
TWX: 910-576-2738

tMicrocomputer System Technical Demonstrator Centers

CG-11/6/86

MISSOURI

tArrow Electronics, Inc.
2380 Schuetz

St. Louis 63141

Tel: (314) 567-6888
TWX: 910-764-0882

tHamilton/Avnet Electronics
13743 Shoreline Court
Earth City 63045

Tel: (31 4) 344-1200

TWX: 910-762-0684

NEW HAMPSHIRE

tArrow Electronics, Inc.
3 Perimeter Road
Manchester 03103

Tel: (603) 668-6968
TWX: 710-220-1684

Hamilton/Avnet Electronics
444 E. Industrial Drive
Manchester 03104

Tel: (603) 624-9400

NEW JERSEY

tArrow Electronics, Inc.
6000 Lincoln East
Mariton 08053

Tel: (609) 596-8000
TWX: 710-897-0829

tArrow Electronics, Inc.
2 Industrial Road
Fairfield 07006

Tel: (201) 575-5300
TWX: 710-998-2206

tHamilton/Avnet Electronics
1 Keystone Avenue

Bldg. 36

Cherry Hill 08003

Tel: (609) 424-0110

TWX: 710-940-0262

tHamilton/Avnet Electronics
10 Industrial

Fairfield 07006

Tel: (201) 575-3390

TWX: 701-734-4388

1Pioneer Northeast Electronics
Route 46

Pinebrook 07058

Tel: (201) 575-3510
TWX: 710-734-4382

1MTI| Systems Sales
383 Route 46 W
Fairfield 07006

Tel: (201) 227-5552

NEW MEXICO

Alliance Electronics Inc.
11030 Cochiti S.E.
Albu%uerque 87123
Tel: (505) 292-3360
TWX: 910-989-1151

Hamilton/Avnet Electronics
2524 Baylor Drive S.E.
Albugquerque 87106

Tel: (505) 765-1500

TWX: 910-989-0614

NEW YORK

tArrow Electronics, Inc.
25 Hub Drive

Melville 11747

Tel: (516) 694-6800
TWX: 510-224-6126

1Arrow Electronics, Inc.

3375 rghwn -Henrietta Townline Road

Rochester 14623
Tel: (71 6) 427-0300
TWX: 510-253-4766

Arrow Electronics, Inc.
7705 Maitage Drive
Liverpool 1

Tel: (315) 652-1000
TWX: 710-545-0230

Arrow Electronics, Inc.
20 Oser Avenue
Hauppauge 11788
Tel: (516) 231-1000
TWX: 510-227-6623

Hamilton/Avnet Electronics

333 Metro Park

Rochester 14623

Tel: (716) 475-9130
10-253-5470

Hamilton/Avnet Electronics
103 Twin Oaks Drive
Syracuse 13206

Tel: (315) 437-264
TWX: 710-541- 1560

NEW YORK (Cont’d)

tHamilton/Avnet Electronics
933 Motor Parkway
Hauppauge 11788

Tel: (516) 231-9800

TWX: 510-224-6166

1MTI Systems Sales
38 Harbor Park Drive
P.O. Box 271

Port Washington 11050
Tel: (516) 621-6200
TWX: 510-223-0846

tPioneer Northeast Electronics
1806 Vestal Parkway East
Vestal 13850

Tel: (607) 748-8211

TWX: 510-252-0893

tPioneer Northeast Electronics

60 Crossway Park West
dbury, Long Island 11797

Tel (51 6) 921

TWX: 510-221- 2184

Pioneer Northeast Electronics

Tel: (716) 381-7070
TWX: 510-253-7001

NORTH CAROLINA

Arrow Electronics, Inc.
5240 Greendairy Road
Raleigh 27604

Tel: (319) 876-3132
TWX: 510-928-1856

tHamilton/Avnet Electronics
3510 Sprini Forest Drive
Raleigh 27604

Tel: (919) 878-0819

TWX: 510-928-1836

Pioneer Electronics

9801 A-Southern Pine Boulevard
Charlotte 28210

Tel: (704) 524-8188

TWX: 810-621-0366

OHIO

Arrow Electronics, Inc.
7620 McEwen Road
Centerville 45459

Tel: (513) 435-5563
TWX: 810-459-1611

tArrow Electronics, Inc.
6238 Cochran Road
Solon 44139

Tel (216) 248-3990
TWX: 810-427-9409

tHamilton/Avnet Electronics
954 Senate Drive

Dayton 45459

Tel: (513) 433-0610

TWX: 810-450-2531

{Hamilton/Avnet Electronics
4588 Emery Industrial Parkway
Warrensville Heights 44128
Tel: (216) 831-3500

TWX: 810-427-9452

tPioneer Electronics
4433 Interpoint Boulevard
Dayton 45424

Tel: (513) 236-9900
TWX: 810-459-1622

tPioneer Electronics
4800 E. 131st Street
Cleveland 44105
Tel: (216) 587-3600
TWX: 810-422-2211

OKLAHOMA

Arrow Electronics, Inc.
4719 S. Memorial Drive
Tulsa 74145

Tel: (918) 665-7700

OREGON

tAlmac Electronics Corporation
1885 N.W. 169th Place
Beaverton 97006

Tel: (503) 629-8090

TWX: 910-467-8746

Hamilton/Avnet Electronics
6024 S.W. Jean Road
Bldg. C, Suite 10

Lake Oswego 97034

Tel: (503) 635-7848

TWX: 910-455-8179

Wyle Distribution Group

5250 N.E. Elam Young Parkway
Suite 600

Hillsboro 97124

Tel: (503) 640-6000

TWX: 910-460-2203

DOMESTIC DISTRIBUTORS

PENNSYLVANIA

Arrow Electronics, Inc.
650 Seco Road
Monroeville 15146
Tel: (412) 856-7000

Pioneer Electronics
259 Kappa Drive
Pittsburgh 15238
Tel: (413) 782-2300
TWX: 710-795-3122

tPioneer Electronics
261 Gibralter Road
Horsham 19044

Tel: (215) 674-4000
TWX: 510-665-6778

TEXAS

tArrow Electronics, Inc.
3220 Commander Drive
Carrollton 75006
e (214) 380-6464,
X: 910-860-5377

tArrow Electronics, Inc.
10899 Kinghurst

Suite 100

Houston 77099

Tel: (713) 530-4700
TWX: 910-880-4439

Arrow Electronics, Inc.
10125 Metropolitan
Austin 78758

Tel: (512) 835-4180
TWX: 910-874-1348

tHamilton/Avnet Electronics
1807 W. Braker Lane
Austin 78758

Tel: (512) 837-8911

TWX: 910-874-1319

tHamilton/Avnet Electronics
2111 W. Walnut Hill Lane
Irving 75062

Tel: (214) 659-4100

TWX: 910-860-5929

tHamilton/Avnet Electronics
4850 Wright Road #190
Houston 77477

Tel: (713) 780-1771

TWX: 910-881-5523

tPioneer Electronics
9901 Burnet Road
Austin 78758

Tel: (512) 835-4000
TWX: 910-874-1323

Pioneer Electronics
13710 Omega Road
Dallas 752

Tel: (214) 386-7300
TWX: 910-850-5563

Pioneer Electronics
5853 Point West Drive
Houston 77036

Tel: (713) 988-5555
TWX: 910-881-1606

UTAH

tHamilton/Avnet Electronics
1585 West 2100 South

Salt Lake City 84119

Tel: (801) 972-2800

TWX: 910-925-4018

Wyle Distribution Group

1959 South 4130 West, Unit B
Salt Lake City 84104

Tel: (801) 974-9953

WASHINGTON

TAImac Electronics Corpora!ion
4360 S E Eastgate Way

Bellevue 98007
Tel (206) 643-9992
X: 910-444-2067

Arrow Electronics, Inc.
14320 N.E. 21st Street

Tel: (206) 643-4800
TWX: 910-444-2017

Hamilton/Avnet Electronics
14212 N.E. 21st Street
Bellevue 98005

Tel: (206) 453-5874

TWX: 910-443-2469

WISCONSIN

tArrow Electronics, Inc.
W. Rausson Avenue

Oakcreek 53154

Tel: (414) 764-6600

TWX: 910-262-1193

WISCONSIN (Cont'd)

Hamilton/Avnet Electronics
2975 Moorland Road

New Berlin 53151

Tel: (414) 784-4510

TWX: 910-262-1182

CANADA
ALBERTA

Hamilton/Avnet Electronics
2816 21st Street N.E.
Calgary T2E 6Z2

Tel: (3) 230-3586

TWX: 03-827-642

Hamilton/Avnet Electronics
6845 Rexwood Road Unit 6
Mississauga, Ontario L4V1R2
Tel: (416) 677-0484

Zen(ﬁ)nlﬁs

3300 14th Avenus N.E.
Calgal g T2A 6J

Tel: (4 3) 272- 1021

BRITISH COLUMBIA

Hamilton/Avnet Electronics
105-2550 Boundry Road
Burmalay V5M 3Z3

Tel: (604) 272-4242

Zentronics

108-11400 Brldgepon Road
Richmond V¢

Tel: (604) 273-5575

TWX: 04-5077-89

MANITOBA

Zentronics

590 Berry Street
Winnipeg R3H 0S1
Tel: (204) 775-8661

ONTARIO

Arrow Electronics Inc.
24 Martin Ross Avenue
Downsview M3J 2K9
Tel: (416) 661-0220
TELEX: 06-218213

Arrow Electronics Inc.
148 Colonnade Road
Nepean K2E 7J5

Tel: (613) 226-6903

tHamilton/Avnet Electronics
6845 Rexwood Road

Units G & H

Mississauga L4V 1R2

Tel: (416) 677-7432

TWX: 610-492-8867

tHamilton/Avnet Electronics
210 Colonnade Road South
Nepean K2E 7L5

Tel (6(1]3) 226 71 700

tZentronics

8 Tilbury Court
Bramfton L6T 3T4
Tel: (16) 451-9600

Zentronics

564/10 Weber Street North
Waterloo N2L 5C6

Tel: (519) 884-5700

Zentronics

155 Colonnade Road
Unit 17

Nepean K2E 7K1

Tel: (613) 225-8840
TWX: 06-976-78

QUEBEC

Arrow Electronics Inc.
4050 Jean Talon Quest
Montreal H4P 1W1

Tel: (514) 735-5511
TELEX: 05-25596

Arrow Electronics Inc.
909 Charest Bivd.
Quebec 61N 269

Tel: (418) 687-4231
TLX: 05-13388

Hamilton/Avnet Electronics
2795 Rue Halpern

St. Laurent H4S 1P8

Tel: (514) 335-1000

TWX: 610-421-3731

Zentronics

505 Locke Street
St. Laurent H4T 1X7
Tel: (514) 735-5361
TWX: 05-827-535

tMicrocomputer System Technical Demonstrator Centers

CG-11/6/86

Intel Corporation, 3065 Bowers Avenue, Santa Clara, CA 95051; Tel. (408) 987-8080

Printed in U.S.A./TP511B/1186/3K/IL SM

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	xBack

