
DSP56800FM/D
Rev. 2.0, 05/2002

DSP56800
16-Bit Digital Signal Processor

Family Manual

MOTOROLA and the Stylized M Logo are registered in the US Patent & Trademark Office. All other product or service names are the property of
their respective owners. © Motorola, Inc. 2002.

How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or
1–800–441–2447

JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3–20–1, Minami–Azabu. Minato–ku, Tokyo 106–8573 Japan. 81–3–3440–3569

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.
852–26668334

Technical Information Center: 1–800–521–6274

HOME PAGE: http://www.motorola.com/semiconductors/

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee
regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters
which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over
time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not
convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the
failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for
any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the
design or manufacture of the part. Motorola and the Stylized M Logo are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.

� iii

Chapter 1
Introduction

1.1 DSP56800 Family Architecture .1-1
1.1.1 Core Overview .1-2
1.1.2 Peripheral Blocks .1-3
1.1.3 Family Members .1-5
1.2 Introduction to Digital Signal Processing .1-5
1.3 Summary of Features .1-9
1.4 For the Latest Information .1-10

Chapter 2
Core Architecture Overview

2.1 Core Block Diagram .2-1
2.1.1 Data Arithmetic Logic Unit (ALU) .2-3
2.1.2 Address Generation Unit (AGU) .2-3
2.1.3 Program Controller and Hardware Looping Unit .2-4
2.1.4 Bus and Bit-Manipulation Unit. .2-5
2.1.5 On-Chip Emulation (OnCE) Unit .2-5
2.1.6 Address Buses. .2-5
2.1.7 Data Buses .2-5
2.2 Memory Architecture .2-6
2.3 Blocks Outside the DSP56800 Core .2-7
2.3.1 External Data Memory .2-7
2.3.2 Program Memory .2-8
2.3.3 Bootstrap Memory .2-8
2.3.4 IP-BUS Bridge .2-8
2.3.5 Phase Lock Loop (PLL) .2-8
2.4 DSP56800 Core Programming Model .2-8

Chapter 3
Data Arithmetic Logic Unit

3.1 Overview and Architecture .3-2
3.1.1 Data ALU Input Registers (X0, Y1, and Y0) .3-4
3.1.2 Data ALU Accumulator Registers .3-4
3.1.3 Multiply-Accumulator (MAC) and Logic Unit .3-5
3.1.4 Barrel Shifter. .3-5
3.1.5 Accumulator Shifter .3-6
3.1.6 Data Limiter and MAC Output Limiter .3-6
3.2 Accessing the Accumulator Registers .3-7
3.2.1 Accessing an Accumulator by Its Individual Portions3-8

Contents

iv DSP56800 Family Manual �

3.2.2 Accessing an Entire Accumulator. .3-10
3.2.2.1 Accessing for Data ALU Operations .3-10
3.2.2.2 Writing an Accumulator with a Small Operand .3-10
3.2.2.3 Extension Registers as Protection Against Overflow3-10
3.2.2.4 Examples of Writing the Entire Accumulator .3-11
3.2.3 General Integer Processing .3-11
3.2.3.1 Writing Integer Data to an Accumulator .3-11
3.2.3.2 Reading Integer Data from an Accumulator. .3-12
3.2.4 Using 16-Bit Results of DSP Algorithms .3-12
3.2.5 Saving and Restoring Accumulators. .3-12
3.2.6 Bit-Field Operations on Integers in Accumulators .3-13
3.2.7 Converting from 36-Bit Accumulator to 16-Bit Portion 3-13
3.3 Fractional and Integer Data ALU Arithmetic .3-14
3.3.1 Interpreting Data .3-16
3.3.2 Data Formats. .3-17
3.3.2.1 Signed Fractional .3-17
3.3.2.2 Unsigned Fractional .3-17
3.3.2.3 Signed Integer .3-18
3.3.2.4 Unsigned Integer. .3-18
3.3.3 Addition and Subtraction .3-18
3.3.4 Logical Operations .3-19
3.3.5 Multiplication .3-19
3.3.5.1 Fractional Multiplication .3-19
3.3.5.2 Integer Multiplication .3-20
3.3.6 Division. .3-21
3.3.7 Unsigned Arithmetic. .3-22
3.3.7.1 Conditional Branch Instructions for Unsigned Operations.3-22
3.3.7.2 Unsigned Multiplication .3-22
3.3.8 Multi-Precision Operations. .3-23
3.3.8.1 Multi-Precision Addition and Subtraction .3-23
3.3.8.2 Multi-Precision Multiplication .3-23
3.4 Saturation and Data Limiting .3-26
3.4.1 Data Limiter .3-26
3.4.2 MAC Output Limiter .3-28
3.4.3 Instructions Not Affected by the MAC Output Limiter3-29
3.5 Rounding. .3-30
3.5.1 Convergent Rounding .3-30
3.5.2 Two’s-Complement Rounding .3-31
3.6 Condition Code Generation .3-33
3.6.1 36-Bit Destinations—CC Bit Cleared. .3-33
3.6.2 36-Bit Destinations—CC Bit Set .3-34
3.6.3 20-Bit Destinations—CC Bit Cleared. .3-34
3.6.4 20-Bit Destinations—CC Bit Set .3-34
3.6.5 16-Bit Destinations .3-35
3.6.6 Special Instruction Types .3-35
3.6.7 TST and TSTW Instructions. .3-36
3.6.8 Unsigned Arithmetic. .3-36

� v

Chapter 4
Address Generation Unit

4.1 Architecture and Programming Model .4-2
4.1.1 Address Registers (R0-R3) .4-4
4.1.2 Stack Pointer Register (SP). .4-4
4.1.3 Offset Register (N) .4-4
4.1.4 Modifier Register (M01). .4-5
4.1.5 Modulo Arithmetic Unit .4-5
4.1.6 Incrementer/Decrementer Unit .4-5
4.2 Addressing Modes .4-6
4.2.1 Register-Direct Modes .4-7
4.2.1.1 Data or Control Register Direct .4-7
4.2.1.2 Address Register Direct .4-7
4.2.2 Address-Register-Indirect Modes .4-7
4.2.2.1 No Update: (Rn), (SP) .4-9
4.2.2.2 Post-Increment by 1: (Rn)+, (SP)+ .4-11
4.2.2.3 Post-Decrement by 1: (Rn)-, (SP)- .4-12
4.2.2.4 Post-Update by Offset N: (Rn)+N, (SP)+N .4-13
4.2.2.5 Index by Offset N: (Rn+N), (SP+N). .4-14
4.2.2.6 Index by Short Displacement: (SP-xx), (R2+xx)4-15
4.2.2.7 Index by Long Displacement: (Rn+xxxx), (SP+xxxx).4-16
4.2.3 Immediate Data Modes .4-17
4.2.3.1 Immediate Data: #xxxx. .4-18
4.2.3.2 Immediate Short Data: #xx .4-20
4.2.4 Absolute Addressing Modes .4-20
4.2.4.1 Absolute Address (Extended Addressing): xxxx4-21
4.2.4.2 Absolute Short Address (Direct Addressing): <aa>4-22
4.2.4.3 I/O Short Address (Direct Addressing): <pp> .4-23
4.2.5 Implicit Reference. .4-23
4.2.6 Addressing Modes Summary .4-23
4.3 AGU Address Arithmetic .4-25
4.3.1 Linear Arithmetic .4-25
4.3.2 Modulo Arithmetic .4-25
4.3.2.1 Modulo Arithmetic Overview. .4-25
4.3.2.2 Configuring Modulo Arithmetic .4-27
4.3.2.3 Supported Memory Access Instructions .4-29
4.3.2.4 Simple Circular Buffer Example .4-29
4.3.2.5 Setting Up a Modulo Buffer .4-30
4.3.2.6 Wrapping to a Different Bank .4-31
4.3.2.7 Side Effects of Modulo Arithmetic. .4-32
4.3.2.7.1 When a Pointer Lies Outside a Modulo Buffer 4-32
4.3.2.7.2 Restrictions on the Offset Register .4-32
4.3.2.7.3 Memory Locations Not Available for Modulo Buffers 4-33
4.4 Pipeline Dependencies .4-33

Chapter 5
Program Controller

vi DSP56800 Family Manual �

5.1 Architecture and Programming Model .5-1
5.1.1 Program Counter. .5-3
5.1.2 Instruction Latch and Instruction Decoder .5-3
5.1.3 Interrupt Control Unit .5-3
5.1.4 Looping Control Unit .5-4
5.1.5 Loop Counter .5-4
5.1.6 Loop Address .5-5
5.1.7 Hardware Stack. .5-6
5.1.8 Status Register .5-6
5.1.8.1 Carry (C)—Bit 0 .5-7
5.1.8.2 Overflow (V)—Bit 1. .5-7
5.1.8.3 Zero (Z)—Bit 2 .5-7
5.1.8.4 Negative (N)—Bit 3 .5-7
5.1.8.5 Unnormalized (U)—Bit 4 .5-8
5.1.8.6 Extension (E)—Bit 5 .5-8
5.1.8.7 Limit (L)—Bit 6 .5-8
5.1.8.8 Size (SZ)—Bit 7 .5-8
5.1.8.9 Interrupt Mask (I1 and I0)—Bits 8–9 .5-8
5.1.8.10 Reserved SR Bits— Bits 10–14 .5-9
5.1.8.11 Loop Flag (LF)—Bit 15 .5-9
5.1.9 Operating Mode Register .5-9
5.1.9.1 Operating Mode Bits (MB and MA)—Bits 1–0 .5-10
5.1.9.2 External X Memory Bit (EX)—Bit 3 .5-11
5.1.9.3 Saturation (SA)—Bit 4 .5-11
5.1.9.4 Rounding Bit (R)—Bit 5. .5-12
5.1.9.5 Stop Delay Bit (SD)—Bit 6 .5-12
5.1.9.6 Condition Code Bit (CC)—Bit 8 .5-12
5.1.9.7 Nested Looping Bit (NL)—Bit 15 .5-13
5.1.9.8 Reserved OMR Bits—Bits 2, 7 and 9–14. .5-13
5.2 Software Stack Operation .5-13
5.3 Program Looping .5-14
5.3.1 Repeat (REP) Looping .5-14
5.3.2 DO Looping .5-15
5.3.3 Nested Hardware DO and REP Looping .5-15
5.3.4 Terminating a DO Loop .5-15

Chapter 6
Instruction Set Introduction

6.1 Introduction to Moves and Parallel Moves. .6-1
6.2 Instruction Formats .6-3
6.3 Programming Model .6-5
6.4 Instruction Groups .6-6
6.4.1 Arithmetic Instructions .6-6
6.4.2 Logical Instructions .6-7
6.4.3 Bit-Manipulation Instructions. .6-8
6.4.4 Looping Instructions .6-9
6.4.5 Move Instructions .6-9

� vii

6.4.6 Program Control Instructions .6-11
6.5 Instruction Aliases .6-12
6.5.1 ANDC, EORC, ORC, and NOTC Aliases .6-12
6.5.2 LSLL Alias .6-13
6.5.3 ASL Alias .6-13
6.5.4 CLR Alias .6-13
6.5.5 POP Alias .6-14
6.6 DSP56800 Instruction Set Summary .6-14
6.6.1 Register Field Notation .6-14
6.6.2 Using the Instruction Summary Tables .6-16
6.6.3 Instruction Summary Tables .6-17
6.7 The Instruction Pipeline .6-30
6.7.1 Instruction Processing. .6-30
6.7.2 Memory Access Processing .6-31

Chapter 7
Interrupts and the Processing States

7.1 Reset Processing State .7-1
7.2 Normal Processing State .7-2
7.2.1 Instruction Pipeline Description .7-2
7.2.2 Instruction Pipeline with Off-Chip Memory Accesses.7-3
7.2.3 Instruction Pipeline Dependencies and Interlocks .7-4
7.3 Exception Processing State .7-5
7.3.1 Sequence of Events in the Exception Processing State 7-5
7.3.2 Reset and Interrupt Vector Table .7-7
7.3.3 Interrupt Priority Structure .7-8
7.3.4 Configuring Interrupt Sources .7-8
7.3.5 Interrupt Sources. .7-9
7.3.5.1 External Hardware Interrupt Sources .7-10
7.3.5.2 DSP Core Hardware Interrupt Sources .7-11
7.3.5.3 DSP Core Software Interrupt Sources .7-11
7.3.6 Interrupt Arbitration .7-12
7.3.7 The Interrupt Pipeline .7-14
7.3.8 Interrupt Latency. .7-16
7.4 Wait Processing State .7-17
7.5 Stop Processing State .7-19
7.6 Debug Processing State .7-22

Chapter 8
Software Techniques

8.1 Useful Instruction Operations .8-1
8.1.1 Jumps and Branches .8-2
8.1.1.1 JRSET and JRCLR Operations. .8-2
8.1.1.2 BR1SET and BR1CLR Operations. .8-3
8.1.1.3 JR1SET and JR1CLR Operations. .8-3
8.1.1.4 JVS, JVC, BVS, and BVC Operations .8-4

viii DSP56800 Family Manual �

8.1.1.5 Other Jumps and Branches on Condition Codes .8-4
8.1.2 Negation Operations .8-4
8.1.2.1 NEGW Operation .8-4
8.1.2.2 Negating the X0, Y0, or Y1 Data ALU registers .8-5
8.1.2.3 Negating an AGU register .8-5
8.1.2.4 Negating a Memory Location .8-5
8.1.3 Register Exchanges. .8-6
8.1.4 Minimum and Maximum Values .8-6
8.1.4.1 MAX Operation .8-6
8.1.4.2 MIN Operation .8-7
8.1.5 Accumulator Sign Extend .8-7
8.1.6 Unsigned Load of an Accumulator .8-7
8.2 16- and 32-Bit Shift Operations .8-8
8.2.1 Small Immediate 16- or 32-Bit Shifts. .8-8
8.2.2 General 16-Bit Shifts .8-8
8.2.3 General 32-Bit Arithmetic Right Shifts .8-9
8.2.4 General 32-Bit Logical Right Shifts .8-9
8.2.5 Arithmetic Shifts by a Fixed Amount. .8-10
8.2.5.1 Right Shifts (ASR12–ASR20) .8-10
8.2.5.2 Left Shifts (ASL16–ASL19). .8-12
8.3 Incrementing and Decrementing Operations .8-13
8.4 Division. .8-13
8.4.1 Positive Dividend and Divisor with Remainder .8-14
8.4.2 Signed Dividend and Divisor with No Remainder .8-15
8.4.3 Signed Dividend and Divisor with Remainder .8-16
8.4.4 Algorithm Examples .8-18
8.4.5 Overflow Cases. .8-19
8.5 Multiple Value Pushes .8-19
8.6 Loops .8-20
8.6.1 Large Loops (Count Greater Than 63) .8-20
8.6.2 Variable Count Loops .8-21
8.6.3 Software Loops .8-21
8.6.4 Nested Loops .8-22
8.6.4.1 Recommendations. .8-22
8.6.4.2 Nested Hardware DO and REP Loops .8-23
8.6.4.3 Comparison of Outer Looping Techniques .8-24
8.6.5 Hardware DO Looping in Interrupt Service Routines 8-25
8.6.6 Early Termination of a DO Loop .8-25
8.7 Array Indexes .8-26
8.7.1 Global or Fixed Array with a Constant. .8-26
8.7.2 Global or Fixed Array with a Variable .8-27
8.7.3 Local Array with a Constant .8-27
8.7.4 Local Array with a Variable .8-27
8.7.5 Array with an Incrementing Pointer .8-27
8.8 Parameters and Local Variables .8-28
8.9 Time-Critical DO Loops .8-29
8.10 Interrupts .8-30

� ix

8.10.1 Setting Interrupt Priorities in Software .8-30
8.10.1.1 High Priority or a Small Number of Instructions8-31
8.10.1.2 Many Instructions of Equal Priority .8-31
8.10.1.3 Many Instructions and Programmable Priorities 8-32
8.10.2 Hardware Looping in Interrupt Routines .8-32
8.10.3 Identifying System Calls by a Number. .8-32
8.11 Jumps and JSRs Using a Register Value .8-33
8.12 Freeing One Hardware Stack Location. .8-34
8.13 Multitasking and the Hardware Stack. .8-34
8.13.1 Saving the Hardware Stack. .8-35
8.13.2 Restoring the Hardware Stack .8-35

Chapter 9
JTAG and On-Chip Emulation (OnCE™)

9.1 Combined JTAG and OnCE Interface .9-1
9.2 JTAG Port .9-2
9.2.1 JTAG Capabilities. .9-3
9.2.2 JTAG Port Architecture .9-3
9.3 OnCE Port. .9-4
9.3.1 OnCE Port Capabilities. .9-5
9.3.2 OnCE Port Architecture .9-5
9.3.2.1 Command, Status, and Control .9-7
9.3.2.2 Breakpoint and Trace .9-7
9.3.2.3 Pipeline Save and Restore. .9-7
9.3.2.4 FIFO History Buffer .9-7

Appendix A
Instruction Set Details

A.1 Notation . A-1
A.2 Programming Model . A-5
A.3 Addressing Modes . A-6
A.4 Condition Code Computation . A-6
A.4.1 The Condition Code Bits . A-7
A.4.1.1 Size (SZ)—Bit 7 . A-7
A.4.1.2 Limit (L)—Bit 6 . A-8
A.4.1.3 Extension in Use (E)—Bit 5 . A-8
A.4.1.4 Unnormalized (U)—Bit 4 . A-9
A.4.1.5 Negative (N)—Bit 3 . A-9
A.4.1.6 Zero (Z)—Bit 2 . A-10
A.4.1.7 Overflow (V)—Bit 1. A-10
A.4.1.8 Carry (C)—Bit 0 . A-10
A.4.2 Effects of the Operating Mode Register’s SA Bit . A-11
A.4.3 Effects of the OMR’s CC Bit . A-11
A.4.4 Condition Code Summary by Instruction . A-12
A.5 Instruction Timing . A-16
A.6 Instruction Set Restrictions . A-26

x DSP56800 Family Manual �

A.7 Instruction Descriptions . A-27

Appendix B
DSP Benchmarks

B.1 Benchmark Code. B-2
B.1.1 Real Correlation or Convolution (FIR Filter) . B-3
B.1.2 N Complex Multiplies . B-4
B.1.3 Complex Correlation Or Convolution (Complex FIR). B-4
B.1.4 Nth Order Power Series (Real, Fractional Data) . B-5
B.1.5 N Cascaded Real Biquad IIR Filters (Direct Form II) B-5
B.1.6 N Radix 2 FFT Butterflies . B-6
B.1.7 LMS Adaptive Filter . B-7
B.1.7.1 Single Precision . B-9
B.1.7.2 Double Precision. B-10
B.1.7.3 Double Precision Delayed . B-11
B.1.8 Vector Multiply-Accumulate . B-12
B.1.9 Energy in a Signal. B-13
B.1.10 [3x3][1x3] Matrix Multiply . B-14
B.1.11 [NxN][NxN] Matrix Multiply. B-15
B.1.12 N Point 3x3 2-D FIR Convolution . B-17
B.1.13 Sine-Wave Generation . B-20
B.1.13.1 Double Integration Technique . B-20
B.1.13.2 Second Order Oscillator . B-21
B.1.14 Array Search . B-22
B.1.14.1 Index of the Highest Signed Value . B-22
B.1.14.2 Index of the Highest Positive Value . B-22
B.1.15 Proportional Integrator Differentiator (PID) Algorithm. B-23
B.1.16 Autocorrelation Algorithm . B-24

� xi

Table 3-1 Accessing the Accumulator Registers . 3-7

Table 3-2 Interpretation of 16-Bit Data Values . 3-16

Table 3-3 Interpretation of 36-bit Data Values . 3-16

Table 3-4 Saturation by the Limiter Using the MOVE Instruction. 3-27

Table 3-5 MAC Unit Outputs with Saturation Enabled . 3-29

Table 4-1 Addressing Mode Forcing Operators . 4-6

Table 4-2 Jump and Branch Forcing Operators . 4-6

Table 4-3 Addressing Mode—Register Direct . 4-7

Table 4-4 Addressing Mode—Address Register Indirect . 4-8

Table 4-5 Address-Register-Indirect Addressing Modes Available 4-9

Table 4-6 Addressing Mode—Immediate. 4-17

Table 4-7 Addressing Mode—Absolute . 4-20

Table 4-8 Addressing Mode Summary . 4-24

Table 4-9 Programming M01 for Modulo Arithmetic . 4-27

Table 5-1 Interrupt Mask Bit Definition . 5-9

Table 5-2 Program ROM Operating Modes . 5-10

Table 5-3 Program RAM Operating Modes . 5-11

Table 5-4 MAC Unit Outputs With Saturation Mode Enabled (SA = 1) 5-11

Table 5-5 Looping Status . 5-13

Table 6-1 Memory Space Symbols . 6-2

Table 6-2 Instruction Formats . 6-4

Table 6-3 Arithmetic Instructions List . 6-6

Table 6-4 Logical Instructions List . 6-8

Table 6-5 Bit-Field Instruction List . 6-8

Table 6-6 Loop Instruction List . 6-9

Table 6-7 Move Instruction List . 6-11

Table 6-8 Program Control Instruction List . 6-11

Table 6-9 Aliases for Logical Instructions with Immediate Data 6-12

Table 6-10 LSLL Instruction Alias . 6-13

Table 6-11 ASL Instruction Remapping . 6-13

Table 6-12 Clear Instruction Alias . 6-14

Table 6-13 Move Word Instruction Alias—Data Memory . 6-14

Table 6-14 Register Fields for General-Purpose Writes and Reads 6-15

Table 6-15 Address Generation Unit (AGU) Registers . 6-15

List of Tables

xii DSP56800 Family Manual �

Table 6-16 Data ALU Registers . 6-16

Table 6-17 Move Word Instructions . 6-18

Table 6-18 Immediate Move Instructions . 6-19

Table 6-19 Register-to-Register Move Instructions . 6-19

Table 6-20 Move Word Instructions—Program Memory. 6-19

Table 6-21 Conditional Register Transfer Instructions. 6-20

Table 6-22 Data ALU Multiply Instructions. 6-20

Table 6-23 Data ALU Extended Precision Multiplication Instructions 6-21

Table 6-24 Data ALU Arithmetic Instructions . 6-21

Table 6-25 Data ALU Miscellaneous Instructions . 6-23

Table 6-26 Data ALU Logical Instructions. 6-23

Table 6-27 Data ALU Shifting Instructions . 6-24

Table 6-28 AGU Arithmetic Instructions . 6-25

Table 6-29 Bit-Manipulation Instructions. 6-25

Table 6-30 Branch on Bit-Manipulation Instructions . 6-26

Table 6-31 Change of Flow Instructions. 6-27

Table 6-32 Looping Instructions . 6-27

Table 6-33 Control Instructions . 6-28

Table 6-34 Data ALU Instructions—Single Parallel Move . 6-29

Table 6-35 Data ALU Instructions—Dual Parallel Read . 6-30

Table 7-1 Processing States. 7-1

Table 7-2 Instruction Pipelining . 7-3

Table 7-3 Additional Cycles for Off-Chip Memory Accesses . 7-4

Table 7-4 DSP56800 Core Reset and Interrupt Vector Table. 7-7

Table 7-5 Interrupt Priority Level Summary. 7-8

Table 7-6 Interrupt Mask Bit Definition in the Status Register . 7-8

Table 7-7 Fixed Priority Structure Within an IPL. 7-13

Table 8-1 Operations Synthesized Using DSP56800 Instructions 8-1
Table A-1 Register Fields for General-Purpose Writes and Reads . A-1

Table A-2 Address Generation Unit (AGU) Registers . A-2

Table A-3 Data ALU Registers . A-2

Table A-4 Address Operands. A-3

Table A-5 Addressing Mode Operators. A-3

Table A-6 Miscellaneous Operands. A-3

Table A-7 Other Symbols . A-4

Table A-8 Notation Used for the Condition Code Summary Table . A-12

Table A-9 Condition Code Summary . A-13

Table A-10 Instruction Timing Symbols . A-17

Table A-11 Instruction Timing Summary . A-18

� xiii

Table A-12 Parallel Move Timing. A-19

Table A-13 MOVEC Timing Summary . A-20

Table A-14 MOVEM Timing Summary . A-20

Table A-15 Bit-Field Manipulation Timing Summary . A-20

Table A-16 Branch/Jump Instruction Timing Summary . A-20

Table A-17 RTS Timing Summary . A-21

Table A-18 TSTW Timing Summary . A-21

Table A-19 Addressing Mode Timing Summary . A-21

Table A-20 Memory Access Timing Summary. A-22

Table B-1 Benchmark Summary . B-1

Table B-2 Variable Descriptions . B-17

xiv DSP56800 Family Manual �

� xv

Figure 1-1 DSP56800-Based DSP Microcontroller Chip. 1-1

Figure 1-2 DSP56800 Core Block Diagram. 1-3

Figure 1-3 Example of Chip Built Around the DSP56800 Core . 1-5

Figure 1-4 Analog Signal Processing . 1-6

Figure 1-5 Digital Signal Processing . 1-7

Figure 1-6 Mapping DSP Algorithms into Hardware . 1-8

Figure 2-1 DSP56800 Core Block Diagram. 2-2

Figure 2-2 DSP56800 Memory Spaces . 2-6

Figure 2-3 Sample DSP56800-Family Chip Block Diagram . 2-7

Figure 2-4 DSP56800 Core Programming Model . 2-9

Figure 3-1 Data ALU Block Diagram . 3-3

Figure 3-2 Data ALU Programming Model . 3-4

Figure 3-3 Right and Left Shifts Through the Multi-Bit Shifting Unit 3-6

Figure 3-4 Writing the Accumulator Extension Registers (F2) . 3-8

Figure 3-5 Reading the Accumulator Extension Registers (F2). 3-9

Figure 3-6 Writing the Accumulator by Portions . 3-9

Figure 3-7 Writing the Accumulator as a Whole . 3-11

Figure 3-8 Bit Weightings and Operand Alignments . 3-15

Figure 3-9 Word-Sized Integer Addition Example . 3-18

Figure 3-10 Comparison of Integer and Fractional Multiplication 3-19

Figure 3-11 MPY Operation—Fractional Arithmetic . 3-20

Figure 3-12 Integer Multiplication (IMPY) . 3-21

Figure 3-13 Single-Precision Times Double-Precision Signed Multiplication 3-24

Figure 3-14 Example of Saturation Arithmetic . 3-28

Figure 3-15 Convergent Rounding . 3-31

Figure 3-16 Two’s-Complement Rounding . 3-32

Figure 4-1 Address Generation Unit Block Diagram. 4-3

Figure 4-2 Address Generation Unit Programming Model . 4-3

Figure 4-3 Address Register Indirect: No Update . 4-10

Figure 4-4 Address Register Indirect: Post-Increment . 4-11

Figure 4-5 Address Register Indirect: Post-Decrement . 4-12

Figure 4-6 Address Register Indirect: Post-Update by Offset N . 4-13

Figure 4-7 Address Register Indirect: Indexed by Offset N. 4-14

Figure 4-8 Address Register Indirect: Indexed by Short Displacement 4-15

List of Figures

xvi DSP56800 Family Manual �

Figure 4-9 Address Register Indirect: Indexed by Long Displacement 4-16

Figure 4-10 Special Addressing: Immediate Data . 4-18

Figure 4-11 Special Addressing: Immediate Short Data . 4-19

Figure 4-12 Special Addressing: Absolute Address. 4-21

Figure 4-13 Special Addressing: Absolute Short Address . 4-22

Figure 4-14 Special Addressing: I/O Short Address . 4-23

Figure 4-15 Circular Buffer . 4-26

Figure 4-16 Circular Buffer with Size M=37 . 4-27

Figure 4-17 Simple Five-Location Circular Buffer . 4-29

Figure 4-18 Linear Addressing with a Modulo Modifier . 4-32

Figure 5-1 Program Controller Block Diagram . 5-2

Figure 5-2 Program Controller Programming Model. 5-3

Figure 5-3 Accessing the Loop Count Register (LC). 5-5

Figure 5-4 Status Register Format . 5-7

Figure 5-5 Operating Mode Register (OMR) Format . 5-10

Figure 6-1 Single Parallel Move. 6-2

Figure 6-2 Dual Parallel Move . 6-3

Figure 6-3 DSP56800 Core Programming Model . 6-5

Figure 6-4 Pipelining . 6-31

Figure 7-1 Interrupt Processing . 7-6

Figure 7-2 Example Interrupt Priority Register . 7-9

Figure 7-3 Example On-Chip Peripheral and IRQ Interrupt Programming 7-9

Figure 7-4 Illegal Instruction Interrupt Servicing. 7-12

Figure 7-5 Interrupt Service Routine . 7-15

Figure 7-6 Repeated Illegal Instruction . 7-16

Figure 7-7 Interrupting a REP Instruction . 7-17

Figure 7-8 Wait Instruction Timing . 7-18

Figure 7-9 Simultaneous Wait Instruction and Interrupt . 7-18

Figure 7-10 STOP Instruction Sequence . 7-19

Figure 7-11 STOP Instruction Sequence . 7-20

Figure 7-12 STOP Instruction Sequence Recovering with RESET 7-21

Figure 8-1 Example of a DSP56800 Stack Frame . 8-29

Figure 9-1 JTAG/OnCE Interface Block Diagram. 9-2

Figure 9-2 JTAG Block Diagram . 9-4

Figure 9-3 OnCE Block Diagram. 9-6
Figure A-1 DSP56800 Core Programming Model . A-5

Figure A-2 Status Register (SR) . A-7

Figure B-1 N Radix 2 FFT Butterflies Memory Map. B-6

Figure B-2 LMS Adaptive Filter Graphic Representation . B-7

� xvii

Figure B-3 LMS Adaptive Filter—Single Precision Memory Map . B-9

Figure B-4 LMS Adaptive Filter—Double Precision Memory Map . B-10

Figure B-5 LMS Adaptive Filter—Double Precision Delayed Memory Map B-11

Figure B-6 Vector Multiply-Accumulate . B-12

Figure B-7 [3x3][1x3] Matrix Multiply . B-14

Figure B-8 [NxN][NxN] Matrix Multiply . B-15

Figure B-9 3x3 Coefficient Mask . B-17

Figure B-10 Image Stored as 514x514 Array . B-17

Figure B-11 Sine Wave Generator—Double Integration Technique . B-20

Figure B-12 Sine Wave Generator—Second Order Oscillator. B-21

Figure B-13 Proportional Integrator Differentiator Algorithm. B-23

xviii DSP56800 Family Manual �

� xix

Example 3-1 Loading an Accumulator with a Word for Integer Processing 3-11

Example 3-2 Reading a Word from an Accumulator for Integer Processing 3-12

Example 3-3 Correctly Reading a Word from an Accumulator to a D/A 3-12

Example 3-4 Correct Saving and Restoring of an Accumulator—Word Accesses 3-13

Example 3-5 Bit Manipulation on an Accumulator . 3-13

Example 3-6 Converting a 36-Bit Accumulator to a 16-Bit Value . 3-14

Example 3-7 Fractional Arithmetic Examples . 3-14

Example 3-8 Integer Arithmetic Examples . 3-14

Example 3-9 Multiplying Two Signed Integer Values with Full Precision 3-21

Example 3-10 Fast Integer MACs using Fractional Arithmetic. 3-21

Example 3-11 Multiplying Two Unsigned Fractional Values . 3-23

Example 3-12 64-Bit Addition . 3-23

Example 3-13 64-Bit Subtraction. 3-23

Example 3-14 Fractional Single-Precision Times Double-Precision Value—Both Signed . . 3-24

Example 3-15 Integer Single-Precision Times Double-Precision Value—Both Signed 3-24

Example 3-16 Multiplying Two Fractional Double-Precision Values. 3-25

Example 3-17 Demonstrating the Data Limiter—Positive Saturation. 3-26

Example 3-18 Demonstrating the Data Limiter — Negative Saturation 3-27

Example 3-19 Demonstrating the MAC Output Limiter . 3-28

Example 4-1 Initializing the Circular Buffer . 4-29

Example 4-2 Accessing the Circular Buffer. 4-30

Example 4-3 Accessing the Circular Buffer with Post-Update by Three 4-30

Example 4-4 No Dependency with the Offset Register . 4-33

Example 4-5 No Dependency with an Address Pointer Register. 4-33

Example 4-6 No Dependency with No Address Arithmetic Calculation. 4-34

Example 4-7 No Dependency with (Rn+xxxx) . 4-34

Example 4-8 Dependency with a Write to the Offset Register . 4-34

Example 4-9 Dependency with a Bit-Field Operation on the Offset Register 4-34

Example 4-10 Dependency with a Write to an Address Pointer Register 4-34

Example 4-11 Dependency with a Write to the Modifier Register . 4-35

Example 4-12 Dependency with a Write to the Stack Pointer Register. 4-35

Example 4-13 Dependency with a Bit-Field Operation and DO Loop 4-35

List of Examples

xx DSP56800 Family Manual �

Example 6-1 MOVE Instruction Types . 6-1

Example 6-2 Logical OR with a Data Memory Location . 6-13

Example 6-3 Valid Instructions . 6-16

Example 6-4 Invalid Instruction. 6-16

Example 6-5 Examples of Single Parallel Moves . 6-29

Example 7-1 Pipeline Dependencies in Similar Code Sequences . 7-4

Example 7-2 Common Pipeline Dependency Code Sequence. 7-5

Example 8-1 JRSET and JRCLR . 8-2

Example 8-2 BR1SET and BR1CLR . 8-3

Example 8-3 JR1SET and JR1CLR . 8-3

Example 8-4 JVS, JVC, BVS and BVC. 8-4

Example 8-5 JPL and BES . 8-4

Example 8-6 Simple Fractional Division . 8-18

Example 8-7 Signed Fractional Division . 8-18

Example 8-8 Simple Integer Division . 8-18

Example 8-9 Signed Integer Division . 8-18

Example A-1 Arithmetic Instruction with Two Parallel Reads . A-22

Example A-2 Jump Instruction . A-23

Example A-3 RTS Instruction . A-25

Example B-1 Source Code Layout . B-1

� xxi

About This Book
This manual describes the central processing unit of the DSP56800 Family in detail. It is intended to be
used with the appropriate DSP56800 Family member user’s manual, which describes the central
processing unit, programming models, and details of the instruction set. The appropriate DSP56800
Family member technical data sheet provides timing, pinout, and packaging descriptions.

This manual provides practical information to help the user accomplish the following:

• Understand the operation and instruction set of the DSP56800 Family

• Write code for DSP algorithms

• Write code for general control tasks

• Write code for communication routines

• Write code for data manipulation algorithms

Audience
The information in this manual is intended to assist design and software engineers with integrating a
DSP56800 Family device into a design and with developing application software.

Organization
Information in this manual is organized into chapters by topic. The contents of the chapters are as follows:

Chapter 1, “Introduction.” This section introduces the DSP56800 core architecture and its application. It
also provides the novice with a brief overview of digital signal processing.

Chapter 2, “Core Architecture Overview.” The DSP56800 core architecture consists of the data
arithmetic logic unit (ALU), address generation unit (AGU), program controller, bus and bit-manipulation
unit, and a JTAG/On-Chip Emulation (OnCE™) port. This section describes each subsystem and the buses
interconnecting the major components in the DSP56800 central processing module.

Chapter 3, “Data Arithmetic Logic Unit.” This section describes the data ALU architecture, its
programming model, an introduction to fractional and integer arithmetic, and a discussion of other topics
such as unsigned and multi-precision arithmetic on the DSP56800 Family.

Chapter 4, “Address Generation Unit.” This section specifically describes the AGU architecture and its
programming model, addressing modes, and address modifiers.

Chapter 5, “Program Controller.” This section describes in detail the program controller architecture, its
programming model, and hardware looping. Note, however, that the different processing states of the
DSP56800 core, including interrupt processing, are described in Chapter 7, “Interrupts and the Processing
States.”

xxii DSP56800 Family Manual �

Chapter 6, “Instruction Set Introduction.” This section presents an introduction to parallel moves and a
brief description of the syntax, instruction formats, operand and memory references, data organization,
addressing modes, and instruction set. It also includes a summary of the instruction set, showing the
registers and addressing modes available to each instruction. A detailed description of each instruction is
given in Appendix A, “Instruction Set Details.”

Chapter 7, “Interrupts and the Processing States.” This section describes five of the six processing
states (normal, exception, reset, wait, and stop). The sixth processing state (debug) is covered more
completely in Chapter 9, “JTAG and On-Chip Emulation (OnCE™).”

Chapter 8, “Software Techniques.” This section teaches the advanced user techniques for more efficient
programming of the DSP56800 Family. It includes a description of useful instruction sequences and
macros, optimal loop and interrupt programming, topics related to the stack of the DSP56800, and other
useful software topics.

Chapter 9, “JTAG and On-Chip Emulation (OnCE™).” This section describes the combined
JTAG/OnCE port and its functions. These two are integrally related, sharing the same pins for I/O, and are
presented together in this section.

Appendix A, “Instruction Set Details.” This section presents a detailed description of each DSP56800
Family instruction, its use, and its effect on the processor.

Appendix B, “DSP Benchmarks.” DSP56800 Family benchmark example programs and results are listed
in this appendix.

Suggested Reading
A list of DSP-related books is included here as an aid for the engineer who is new to the field of DSP:

Advanced Topics in Signal Processing, Jae S. Lim and Alan V. Oppenheim (Prentice-Hall: 1988).

Applications of Digital Signal Processing, A. V. Oppenheim (Prentice-Hall: 1978).

Digital Processing of Signals: Theory and Practice, Maurice Bellanger (John Wiley and Sons: 1984).

Digital Signal Processing, Alan V. Oppenheim and Ronald W. Schafer (Prentice-Hall: 1975).

Digital Signal Processing: A System Design Approach, David J. DeFatta, Joseph G. Lucas, and William S.
Hodgkiss (John Wiley and Sons: 1988).

Discrete-Time Signal Processing, A. V. Oppenheim and R.W. Schafer (Prentice-Hall: 1989).

Foundations of Digital Signal Processing and Data Analysis, J. A. Cadzow (Macmillan: 1987).

Handbook of Digital Signal Processing, D. F. Elliott (Academic Press: 1987).

Introduction to Digital Signal Processing, John G. Proakis and Dimitris G. Manolakis (Macmillan: 1988).

Multirate Digital Signal Processing, R. E. Crochiere and L. R. Rabiner (Prentice-Hall: 1983).

Signal Processing Algorithms, S. Stearns and R. Davis (Prentice-Hall: 1988).

Signal Processing Handbook, C. H. Chen (Marcel Dekker: 1988).

Signal Processing: The Modern Approach, James V. Candy (McGraw-Hill: 1988).

Theory and Application of Digital Signal Processing, Lawrence R. Rabiner and Bernard Gold
(Prentice-Hall: 1975).

� xxiii

Conventions
This document uses the following notational conventions:

• Bits within registers are always listed from most significant bit (MSB) to least significant bit (LSB).

• Bits within a register are formatted AA[n:0] when more than one bit is involved in a description.
For purposes of description, the bits are presented as if they are contiguous within a register.
However, this is not always the case. Refer to the programming model diagrams or to the
programmer’s sheets to see the exact location of bits within a register.

• When a bit is described as “set,” its value is set to 1. When a bit is described as “cleared,” its value
is set to 0.

• Memory addresses in the separate program and data memory spaces are differentiated by a
one-letter prefix. Data memory addresses are preceded by “X:” while program memory addresses
have a “P:” prefix. For example, “P:$0200” indicates a location in program memory.

• Hex values are indicated with a dollar sign ($) preceding the hex value, as follows: $FFFB is the X
memory address for the Interrupt Priority Register (IPR).

• Code examples are displayed in a monospaced font, as follows:

Definitions, Acronyms, and Abbreviations
The following terms appear frequently in this manual:

DSP digital signal processor

JTAG Joint Test Action Group

OnCE™ On-Chip Emulation

ALU arithmetic logic unit

AGU address generation unit

A complete list of relevant terms is included in the Glossary at the end of this manual.

BFSET #$0007,X:PCC ; Configure: line 1

; MISO0, MOSI0, SCK0 for SPI master line 2

; ~SS0 as PC3 for GPIO line 3

xxiv DSP56800 Family Manual �

� Introduction 1-1

Chapter 1
Introduction
The DSP56800 Digital Signal Processors provide low cost, low power, mid-performance computing,
combining DSP power and parallelism with MCU-like programming simplicity. The DSP56800 core is a
general-purpose central processing unit, designed for both efficient digital signal processing and a variety
of controller operations.

1.1 DSP56800 Family Architecture
The DSP56800 Family uses the DSP56800 16-bit DSP core. This core is a general-purpose central
processing unit (CPU), designed for both efficient DSP and controller operations. Its instruction-set
efficiency as a DSP is superior to other low-cost DSP architectures and has been designed for efficient,
straightforward coding of controller-type tasks.

Figure 1-1. DSP56800-Based DSP Microcontroller Chip

The general-purpose MCU-style instruction set, with its powerful addressing modes and bit-manipulation
instructions, enables a user to begin writing code immediately, without having to worry about the
complexities previously associated with DSPs. A software stack allows for unlimited interrupt and
subroutine nesting, as well as support for structured programming techniques such as parameter passing

Address

Data

JTAG I/O

GPIO
PeripheralsMemory

16-Bit DSP

CPU Core

Debug

Port

PLL

I/O Pins

External

Bus

Interface

AA0012

1-2 DSP56800 Family Manual �

Introduction

and the use of local variables. The veteran DSP programmer sees a powerful DSP instruction set with
many different arithmetic operations and flexible single- and dual-memory moves that can occur in parallel
with an arithmetic operation. The general-purpose nature of the instruction set also allows for an efficient
compiler implementation.

A variety of standard peripherals can be added around the DSP56800 core (see Figure 1-1 on page 1-1)
such as serial ports, general-purpose timers, real-time and watchdog timers, different memory
configurations (RAM, ROM, or both), and general-purpose I/O (GPIO) ports.

On-Chip Emulation (OnCE™) capability is provided through a debug port conforming to the Joint Test
Action Group (JTAG) standard. This provides real-time, embedded system debugging with on-chip
emulation capability through the five-pin JTAG interface. A user can set hardware and software
breakpoints, display and change registers and memory locations, and single step or step through multiple
instructions in an application.

The DSP56800’s efficient instruction set, multiple internal buses, on-chip program and data memories,
external bus interface, standard peripherals, and industry-standard debug support make the DSP56800
Family an excellent solution for real-time embedded control tasks. It is an excellent fit for wireless or
wireline DSP applications, digital control, and controller applications in need of more processing power.

1.1.1 Core Overview
The DSP56800 core is a programmable 16-bit CMOS digital signal processor that consists of a 16-bit data
arithmetic logic unit (ALU), a 16-bit address generation unit (AGU), a program decoder, On-Chip
Emulation (OnCE), associated buses, and an instruction set. Figure 1-2 on page 1-3 shows a block diagram
of the DSP56800 core. The main features of the DSP56800 core include the following:

• Processing capability of up to 35 million instructions per second (MIPS) at 70 MHz

• Requires only 2.7–3.6 V of power

• Single-instruction cycle 16-bit x 16-bit parallel multiply-accumulator

• Two 36-bit accumulators including extension bits

• Single-instruction 16-bit barrel shifter

• Parallel instruction set with unique DSP addressing modes

• Hardware DO and REP loops

• Two external interrupt request pins

• Three 16-bit internal core data buses

• Three 16-bit internal address buses

• Instruction set that supports both DSP and controller functions

• Controller-style addressing modes and instructions for smaller code size

• Efficient C compiler and local variable support

• Software subroutine and interrupt stack with unlimited depth

• On-Chip Emulation for unobtrusive, processor-speed-independent debugging

• Low-power wait and stop modes

• Operating frequency down to DC

• Single power supply

DSP56800 Family Architecture

� Introduction 1-3

Figure 1-2. DSP56800 Core Block Diagram

1.1.2 Peripheral Blocks
The following peripheral blocks are available for members of the DSP56800 16-bit Family:

• Program ROM and RAM modules

• Bootstrap ROM for program RAM parts

• Data ROM and RAM modules

• Phase-locked loop (PLL) module

— 32.0 kHz and 38.4 kHz crystals accepted

— Crystal frequencies ≥ 1 MHz accepted

— Programmable multiplication factor

— Three pins required (SXFC, VDDS, and GNDS)

Y1 Y0

Limiter

X0 A2 A1 A0 B2 B1 B0

MAC
and
ALU

Bus And Bit
Manipulation

Unit

OnCE

SP
R0
R1
R2

MOD.
ALU+/-Instr. Decoder

And

Interrupt Unit

Clock Gen.

PGDB

CGDB

PDB

XAB2

XAB1

PAB

Clock & Control

Data
ALU

Program
Controller

AGU

Program
 Memory

Data Memory

Peripherals
XDB2

R3

OMR

External
Bus

Interface

PC

LA LC

SR

HWS

M01 N

AA0006

1-4 DSP56800 Family Manual �

Introduction

• 16-bit Timer Module

— Three independent 16-bit timers

— Each may be clocked from a pin, the oscillator clock, or the PLL output

— Zero to two pins required

• Computer operating properly (COP) and real-time timer module

— COP timer uses output of real-time timer chain

— Programmable real-time timer

— Count register readable

— No pins required

• Synchronous serial interface module (SSI)

— Synchronous serial interface for hooking up to codecs

— Frame sync and gated clock modes

— Independent transmit and receive channels

— Up to 32-slot network mode available

— Three to six pins required

• Serial peripheral interface (SPI)

— Simple, synchronous, 8-bit serial interface for interfacing to MCUs and MCU-style peripherals

— Master and slave modes

— Four pins required

• Programmable general-purpose I/O

— Pins can be individually programmed as input or output

— Pins can be individually multiplexed between peripheral functionality and GPIO

— Pins can have interrupt capability

More blocks will be defined in the future to meet customer needs.

Introduction to Digital Signal Processing

� Introduction 1-5

1.1.3 Family Members
The DSP56800 core processor is designed as a core processor for a family of Motorola DSPs. An example
of a chip that can be built with this core is shown in Figure 1-3 on page 1-5.

Figure 1-3. Example of Chip Built Around the DSP56800 Core

1.2 Introduction to Digital Signal Processing
DSP is the arithmetic processing of real-time signals sampled at regular intervals and digitized. Examples
of DSP processing include the following:

• Filtering

• Convolution (mixing two signals)

• Correlation (comparing two signals)

• Rectification, amplification, and transformation

Figure 1-4 on page 1-6 shows an example of analog signal processing. The circuit in the illustration filters
a signal from a sensor using an operational amplifier and controls an actuator with the result. Since the
ideal filter is impossible to design, the engineer must design the filter for acceptable response by
considering variations in temperature, component aging, power-supply variation, and component accuracy.
The resulting circuit typically has low noise immunity, requires adjustments, and is difficult to modify.

1Kx16

XRAM16Kx16

ROM

Watchdog

Serial

DSP56800

16-Bit

DSP

Core

Ext. Bus

Interface

GPIO

16

16

ADR

DATA

IRQA

IRQB

& Real-time

PLL

JTAG

Timers

AA0002

1-6 DSP56800 Family Manual �

Introduction

The equivalent circuit using a DSP is shown in Figure 1-5 on page 1-7. This application requires an
analog-to-digital (A/D) converter and digital-to-analog (D/A) converter in addition to the DSP. Even with
these additional parts, the component count can be lower using a DSP due to the high integration available
with current components.

Figure 1-4. Analog Signal Processing

x(t)
Input
From

Sensor

y t()
x t()

Rf
Ri

1
1 jwRfCf+
----------------------------–=

y(t)
Output

To
Actuator

t

x(t)

Ri

Rf

Cf

Analog Filter

Frequency Characteristics

Ideal
Filter

f
fcFrequency

G
ai

n
y(t)+

–

AA0003

Actual
Filter

Introduction to Digital Signal Processing

� Introduction 1-7

Processing in this circuit begins by band limiting the input signal with an anti-alias filter, eliminating
out-of-band signals that can be aliased back into the pass band due to the sampling process. The signal is
then sampled, digitized with an A/D converter, and sent to the DSP.

The filter implemented by the DSP is strictly a matter of software. The DSP can directly employ any filter
that can also be implemented using analog techniques. Also, adaptive filters can be easily put into practice
using DSP, whereas these filters are extremely difficult to implement using analog techniques. (Similarly,
compression can also be implemented on a DSP.)

Figure 1-5. Digital Signal Processing

A

DSP Operation

Ideal
Filter

f
fc

Frequency

G
ai

n

FIR Filter

Finite Impulse
Response

c k() n k–()×

k 0=

N

∑A/D D/A

x(n) y(n)
y(t)x(t)

Analog
Filter

f
fc

Frequency

G
ai

n

Digital
Filter

f
fc

Frequency

G
ai

n

Low-Pass
Anti-Aliasing

Filter

Digital-to-Analog
Converter

Reconstruction
Low-Pass

A

A

Analog In Analog Out

Sampler and
Analog-to-Digital

Converter

AA0004

1-8 DSP56800 Family Manual �

Introduction

The DSP output is processed by a D/A converter and is low-pass filtered to remove the effects of
digitizing. In summary, the advantages of using the DSP include the following:

• Fewer components

• Stable, deterministic performance

• No filter adjustments

• Wide range of applications

• Filters with much closer tolerances

• High noise immunity

• Adaptive filters easily implemented

• Self-test can be built in

• Better power-supply rejection

The DSP56800 Family is not a custom IC designed for a particular application; it is designed as a
general-purpose DSP architecture to efficiently execute commonly used DSP benchmarks and controller
code in minimal time.

As shown in Figure 1-6, the key attributes of a DSP are as follows:

• Multiply/accumulate (MAC) operation

• Fetching up to two operands per instruction cycle for the MAC

• Program control to provide versatile operation

• Input/output to move data in and out of the DSP

Figure 1-6. Mapping DSP Algorithms into Hardware

X

Σ

MAC

X
Memory

Program

AA0005

FIR Filter

c k() n k–()×

k 0=

N

∑A/D D/A

x(n) y(n)
y(t)x(t)

Summary of Features

� Introduction 1-9

The multiply-accumulation (MAC) operation is the fundamental operation used in DSP. The DSP56800
Family of processors has a dual Harvard architecture optimized for MAC operations. Figure 1-6 on
page 1-8 shows how the DSP56800 architecture matches the shape of the MAC operation. The two
operands, c() and x(), are directed to a multiply operation, and the result is summed. This process is built
into the chip by allowing two separate data-memory accesses to feed a single-cycle MAC. The entire
process must occur under program control to direct the correct operands to the multiplier and save the
accumulated result as needed. Since the memory and the MAC are independent, the DSP can perform two
memory moves, a multiply and an accumulate, and two address updates in a single operation. As a result,
many DSP benchmarks execute very efficiently for a single-multiplier architecture.

1.3 Summary of Features
The high throughput of the DSP56800 Family processors makes them well-suited for wireless and wireline
communication, high-speed control, low-cost voice processing, numeric processing, and computer and
audio applications. The main features that contribute to this high throughput include the following:

• Speed—The DSP56800 supports most mid-performance DSP applications.

• Precision—The data paths are 16 bits wide, providing 96 dB of dynamic range; intermediate results
held in the 36-bit accumulators can range over 216 dB.

• Parallelism—Each on-chip execution unit, memory, and peripheral operates independently and in
parallel with the other units through a sophisticated bus system. The data ALU, AGU, and program
controller operate in parallel so that the following can be executed in a single instruction:

— An instruction pre-fetch

— A 16-bit x 16-bit multiplication

— A 36-bit addition

— Two data moves

— Two address-pointer updates using one of two types of arithmetic (linear or modulo)

— Sending and receiving full-duplex data by the serial ports

— Timers continuing to count in parallel

• Flexibility—While many other DSPs need external communications circuitry to interface with
peripheral circuits (such as A/D converters, D/A converters, or host processors), the DSP56800
Family provides on-chip serial and parallel interfaces that can support various configurations of
memory and peripheral modules. The peripherals are interfaced to the DSP56800 core through a
peripheral interface bus, designed to provide a common interface to many different peripherals.

• Sophisticated debugging— Motorola’s On-Chip Emulation technology (OnCE) allows simple,
inexpensive, and speed-independent access to the internal registers for debugging. OnCE tells
application programmers exactly what the status is within the registers, memory locations, and even
the last instructions that were executed.

• Phase-locked loop (PLL)–based clocking—The PLL allows the chip to use almost any available
external system clock for full-speed operation while also supplying an output clock synchronized
to a synthesized internal core clock. It improves the synchronous timing of the processors’ external
memory port, eliminating the timing skew common on other processors.

• Invisible pipeline—The three-stage instruction pipeline is essentially invisible to the programmer,
allowing straightforward program development in either assembly language or high-level
languages such as C or C++.

1-10 DSP56800 Family Manual �

Introduction

• Instruction set—The instruction mnemonics are MCU-like, making the transition from
programming microprocessors to programming the chip as easy as possible. New microcontroller
instructions, addressing modes, and bit-field instructions allow for significant decreases in program
code size. The orthogonal syntax controls the parallel execution units. The hardware DO loop
instruction and the repeat (REP) instruction make writing straight-line code obsolete.

• Low power—Designed in CMOS, the DSP56800 Family inherently consumes very low power.
Two additional low power modes, stop and wait, further reduce power requirements. Wait is a
low-power mode where the DSP56800 core is shut down but the peripherals and interrupt controller
continue to operate so that an interrupt can bring the chip out of wait mode. In stop mode, even more
of the circuitry is shut down for the lowest power-consumption mode. There are also several
different ways to bring the chip out of stop mode.

1.4 For the Latest Information
For the latest electronic version of this document, as well as other DSP documentation (including user’s
manuals, product briefs, data sheets, and errata) please consult the inside front cover of this manual for
contact information for the following services:

• Motorola MFAX™ service

• Motorola DSP World Wide Web site

• Motorola DSP Helpline

The MFAX service and the DSP Web site maintain the most current specifications, documents, and
drawings. These two services are available on demand 24 hours a day.

� Core Architecture Overview 2-1

Chapter 2
Core Architecture Overview
The DSP56800 core architecture is a 16-bit multiple-bus processor designed for efficient real-time digital
signal processing and general purpose computing. The architecture is designed as a standard
programmable core from which various DSP integrated circuit family members can be designed with
different on-chip and off-chip memory sizes and on-chip peripheral requirements. This chapter presents
the overall core architecture and the general programming model. More detailed information on the data
ALU, AGU, program controller, and JTAG/OnCE blocks within the architecture are found in later
chapters.

2.1 Core Block Diagram
The DSP56800 core is composed of functional units that operate in parallel to increase the throughput of
the machine. The program controller, AGU, and data ALU each contain their own register set and control
logic, so each may operate independently and in parallel with the other two. Likewise, each functional unit
interfaces with other units, with memory, and with memory-mapped peripherals over the core’s internal
address and data buses. The architecture is pipelined to take advantage of the parallel units and
significantly decrease the execution time of each instruction.

For example, it is possible for the data ALU to perform a multiplication in a first instruction, for the AGU
to generate up to two addresses for a second instruction, and for the program controller to be fetching a
third instruction. In a similar manner, it is possible for the bit-manipulation unit to perform an operation of
the third instruction described above in place of the multiplication in the data ALU.

The major components of the core are the following:

• Data ALU

• AGU

• Program controller and hardware looping unit

• Bus and bit-manipulation unit

• OnCE debug port

• Address buses

• Data buses

Figure 2-1 on page 2-2 shows a block diagram of the CPU architecture.

2-2 DSP56800 Family Manual �

Core Architecture Overview

Figure 2-1. DSP56800 Core Block Diagram

Note that Figure 2-1 illustrates two methods for connecting peripherals to the DSP56800 core: using the
Motorola-standard IP-BUS interface or via a dedicated peripheral global data bus (PGDB). When the
IP-BUS interface is used, peripheral registers may be memory mapped into any data (X) memory address
range and are accessed with standard X-memory reads and writes. When the PGDB interface is used,
peripheral registers are mapped to the last 64 locations in X memory and are accessed with a special
memory addressing mode (see Section 4.2.4.3, “I/O Short Address (Direct Addressing): <pp>,” on
page 4-23).

The interface method used to connect to peripherals is dependent on the specific DSP56800-based device
being used. Consult your device user’s manual for more information on peripheral interfacing.

CGDB
PDB

PAB
XAB2
XAB1

XDB2

PGDB

Program
Memory

Data
Memory

IP-BUS
Interface

External
Bus

Interface

Instr. Decoder

and

Interrupt Unit

Program
Controller

OMR

PC

LA LC

SR

HWS

SP
R0
R1
R2

MOD.
ALU+/-

AGU

R3

M01 N

Bus and Bit
Manipulation

Unit

OnCE

Y1 Y0

Limiter

X0 A2 A1 A0 B2 B1 B0

Data
ALU

MAC
and
ALU

Core Block Diagram

� Core Architecture Overview 2-3

2.1.1 Data Arithmetic Logic Unit (ALU)
The data arithmetic logic unit (ALU) performs all of the arithmetic and logical operations on data
operands. It consists of the following:

• Three 16-bit input registers (X0, Y0, and Y1)

• Two 32-bit accumulator registers (A and B)

• Two 4-bit accumulator extension registers (A2 and B2)

• An accumulator shifter (AS)

• One data limiter

• One 16-bit barrel shifter

• One parallel (single cycle, non-pipelined) multiply-accumulator (MAC) unit

The data ALU is capable of multiplication, multiply-accumulation (with positive or negative
accumulation), addition, subtraction, shifting, and logical operations in one instruction cycle. Arithmetic
operations are done using two’s-complement fractional or integer arithmetic. Support is also provided for
unsigned and multi-precision arithmetic.

Data ALU source operands may be 16, 32, or 36 bits and may individually originate from input registers,
memory locations, immediate data, or accumulators. ALU results are stored in one of the accumulators. In
addition, some arithmetic instructions store their 16-bit results either in one of the three data ALU input
registers or directly in memory. Arithmetic operations and shifts can have a 16-bit or a 36-bit result.
Logical operations are performed on 16-bit operands and always yield 16-bit results.

Data ALU register values can be transferred (read or write) across the core global data bus (CGDB) as
16-bit operands. The X0 register value can also be written by X memory data bus two (XDB2) as a 16-bit
operand. Refer to Chapter 3, “Data Arithmetic Logic Unit,” for a detailed description of the data ALU.

2.1.2 Address Generation Unit (AGU)
The address generation unit (AGU) performs all of the effective address calculations and address storage
necessary to address data operands in memory. The AGU operates in parallel with other chip resources to
minimize address-generation overhead. It contains two ALUs, allowing the generation of up to two 16-bit
addresses every instruction cycle: one for either X memory address bus one (XAB1) or program address
bus (PAB) and one for X memory address bus two (XAB2). The ALU can directly address 65,536
locations on the XAB1 or XAB2 and 65,536 locations on the PAB, totaling 131,072 sixteen-bit data words.
It supports a complete set of addressing modes. Its arithmetic unit can perform both linear and modulo
arithmetic.

The AGU contains the following registers:

• Four address registers (R0-R3)

• A stack pointer register (SP)

• An offset register (N)

• A modifier register (M01)

• A modulo arithmetic unit

• An incrementer/decrementer unit

2-4 DSP56800 Family Manual �

Core Architecture Overview

The address registers are 16-bit registers that may contain an address or data. Each address register can
provide an address for the XAB1 and PAB address buses. For instructions that read two values from X data
memory, R3 provides an address for the XAB2, and R0 or R1 provides an address for the XAB1. The
modifier and offset registers are 16-bit registers that control updating of the address registers. The offset
register can also be used to store 16-bit data. AGU registers may be read or written by the CGDB as 16-bit
operands. Refer to Chapter 4, “Address Generation Unit,” for a detailed description of the AGU.

2.1.3 Program Controller and Hardware Looping Unit
The program controller performs the following:

• Instruction prefetch

• Instruction decoding

• Hardware loop control

• Interrupt (exception) processing

Instruction execution is carried out in other core units such as the data ALU, AGU, or bit-manipulation
unit. The program controller consists of the following:

• A program counter unit

• Instruction latch and decoder

• Hardware looping control logic

• Interrupt control logic

• Status and control registers

Located within the program controller are the following:

• Four user-accessible registers:

— Loop address register (LA)

— Loop count register (LC)

— Status register (SR)

— Operating mode register (OMR)

• A program counter (PC)

• A hardware stack (HWS)

In addition to the tasks listed above, the program controller also controls the memory map and operating
mode. The operating mode and memory map are programmable via the OMR, and are established after
reset by external interface pins.

The HWS is a separate internal last-in-first-out (LIFO) buffer of two 16-bit words that stores the address of
the first instruction in a hardware DO loop. When a new hardware loop is begun by executing the DO
instruction, the address of the first instruction in the loop is stored (pushed) on the “top” location of the
HWS, and the LF bit in the SR is set. The previous value of the loop flag (LF) bit is copied to the OMR’s
NL bit. When an ENDDO instruction is encountered or a hardware loop terminates naturally, the 16-bit
address in the “top” location of the HWS is discarded, and the LF bit is updated with the value in the
OMR’s nested looping (NL) bit.

The program controller is described in detail in Chapter 5, “Program Controller.” For more details on
program looping, refer to Section 5.3, “Program Looping,” on page 5-14 and Section 8.6, “Loops,” on
page 8-20. For information on reset and interrupts, refer to Chapter 7, “Interrupts and the Processing
States.”

Core Block Diagram

� Core Architecture Overview 2-5

2.1.4 Bus and Bit-Manipulation Unit
Transfers between internal buses are accomplished in the bus unit. The bus unit is similar to a switch
matrix and can connect any two of the three internal data buses together without introducing delays. This
allows data to be moved from program to data memory, for example. The bus unit is also used to transfer
data to the PGDB on those devices that use it to connect to on-chip peripherals.

The bit-manipulation unit performs bit-field manipulations on X (data) memory words, peripheral
registers, and all registers within the DSP56800 core. It is capable of testing, setting, clearing, or inverting
any bits specified in a 16-bit mask. For branch-on-bit-field instructions, this unit tests bits on the upper or
lower byte of a 16-bit word (that is, the mask can only test up to 8 bits at a time).

2.1.5 On-Chip Emulation (OnCE) Unit
The On-Chip Emulation (OnCE) unit allows the user to interact in a debug environment with the
DSP56800 core and its peripherals non-intrusively. Its capabilities include examining registers, on-chip
peripheral registers or memory, setting breakpoints on program or data memory, and stepping or tracing
instructions. It provides simple, inexpensive, and speed-independent access to the internal DSP56800 core
by interacting with a user-interface program running on a host workstation for sophisticated debugging and
economical system development.

Dedicated pins through the JTAG port allow the user access to the DSP in a target system, retaining debug
control without sacrificing other user-accessible on-chip resources. This technique eliminates the costly
cabling and the access to processor pins required by traditional emulator systems. Refer to Chapter 9,
“JTAG and On-Chip Emulation (OnCE™),” for a detailed description of the JTAG/OnCE port. Consult
your development system’s documentation for information on debugging using the JTAG/OnCE port
interface.

2.1.6 Address Buses
Addresses are provided to the internal X data memory on two unidirectional 16-bit buses, X memory
address bus one (XAB1) and X memory address bus two (XAB2). Program memory addresses are
provided on the 16-bit program address bus (PAB). Note that XAB1 can provide addresses for accessing
both internal and external memory, whereas XAB2 can only provide addresses for accessing internal
memory.

2.1.7 Data Buses
Inside the chip, data is transferred using the following:

• Bidirectional 16-bit buses:

— Core global data bus (CGDB)

— Program data bus (PDB)

— Peripheral data bus (PGDB)1

• One unidirectional 16-bit bus: X memory data bus two (XDB2)

Data transfer between the data ALU and the X data memory uses the CGDB when one memory access is
performed. When two simultaneous memory reads are performed, the transfers use the CGDB and the
XDB2. All other data transfers occur using the CGDB, except transfers to and from peripherals on

1. Implemented on DSP56800 family devices that do not use the IP-BUS interface for peripherals.

2-6 DSP56800 Family Manual �

Core Architecture Overview

DSP56800-based devices that implement the PGDB peripheral data bus. Instruction word fetches occur
simultaneously over the PDB. The bus structure supports general register-to-register moves,
register-to-memory moves, and memory-to-register moves, and can transfer up to three 16-bit words in the
same instruction cycle. Transfers between buses are accomplished in the bus and bit-manipulation unit. As
a general rule, when any register less than 16 bits wide is read, the unused bits are read as zeros. Reserved
and unused bits should always be written with zeros to insure future compatibility.

2.2 Memory Architecture
The DSP56800 has a dual Harvard memory architecture, with separate program and data memory spaces.
Each address space supports up to 216 (65,536) memory words. Dedicated address and data buses for each
address space allow for simultaneous accesses to both program memory and data memory. There is also a
support for a second read-only data path to data memory. In DSP56800 Family devices that implement this
second bus, it is possible to initiate two simultaneous data read operations, allowing for a total of three
parallel memory accesses.

Figure 2-2. DSP56800 Memory Spaces

Locations $0 through $007F in the program memory space are available for reset and interrupt vectors.
Peripheral registers are located in the data memory address space as memory-mapped registers. This
peripheral space can be located anywhere in the data address space, although the address range
$FFC0–$FFFF is frequently used because an addressing mode optimized for this region provides faster
access; however, the location of the peripheral space is dependent on the specific system implementation
of the DSP56800 core. See Section 4.2.4.3, “I/O Short Address (Direct Addressing): <pp>,” on page 4-23
for more information.

$0

$FFFF

0

64K or 216

$FFC0 (64K - 64)

Optimized for
Peripherals

X Data

Memory
Space

$0

$FFFF

0

64K or 216

Program
Memory

Space

Interrupt
Vectors

$7F 127

Blocks Outside the DSP56800 Core

� Core Architecture Overview 2-7

2.3 Blocks Outside the DSP56800 Core
The following blocks are optionally found on DSP56800-based DSP chips and are considered peripheral
and memory blocks, not part of the DSP56800 core. These and other blocks are described in greater detail
in the appropriate chip-specific user’s manual. Figure 2-3 shows an example DSP56800-based device.
Note that this device uses the Motorola IP-BUS interface to connect to peripherals. Other chips may use
the PGDB peripheral bus.

Figure 2-3. Sample DSP56800-Family Chip Block Diagram

2.3.1 External Data Memory
External data memory (data RAM, data ROM, or both) can be added around the core on a chip. Addresses
are received from the XAB1 and XAB2. Data transfers occur on the CGDB and XDB2. One read, one
write, or two reads can be performed during one instruction cycle using the internal data memory.
Depending upon the particular on-chip peripherals found on a device, some portion of the data address
space may be reserved for peripheral registers, and not be accessible as external data memory. A total of
65,536 memory locations can be addressed.

Program
RAM/ROM
Expansion

XAB1

XAB2

PAB

PDB

CGDB

IRQB

RESET

16-Bit Data Bus
IRQA

Peripheral
Modules

Expansion
Area

DSP
16-Bit
Core

Program

Data ALU

16 x 16 + 36 → 36-Bit MAC

Three 16-Bit Input Registers

Two 36-Bit Accumulators

JTAG/

On-Chip

Address
Generation

Unit

Internal
Data Bus

Switch

PLL

X
D

B
2

Data
RAM/ROM
Expansion

Clock
Generator

Controller

IP-BUS

Bridge

OnCETM

2-8 DSP56800 Family Manual �

Core Architecture Overview

2.3.2 Program Memory
Program memory (program RAM, program ROM, or both) can be added around the core on a chip.
Addresses are received from the PAB and data transfers occur on the PDB. The first 128 locations of the
program memory are available for interrupt vectors, although it is not necessary to use all 128 locations for
interrupt vectors. Some can be used for the user program if desired. The number of locations required for
an application depends on what peripherals on the chip are used by an application and the locations of their
corresponding interrupt vectors. The program memory may be expanded off chip, and up to 65,536
locations can be addressed.

2.3.3 Bootstrap Memory
A program bootstrap ROM is usually found on chips that have on-chip program RAM instead of ROM.
The bootstrap ROM is used for initially loading application code into the on-chip program RAM so it can
be run from there. Refer to Section 5.1.9.1, “Operating Mode Bits (MB and MA)—Bits 1–0,” on page 5-10
and to the user’s manual of the particular DSP chip for a description of the different bootstrapping modes.

2.3.4 IP-BUS Bridge
Some devices based on the DSP56800 architecture connect to on-chip peripherals using the
Motorola-standard IP-BUS interface. These devices contain an IP-BUS bridge unit, which allows
peripherals to be accessed using the CGDB data bus and XAB1 address bus. Peripheral registers are
memory-mapped into the data address space. Consult the appropriate DSP56800-based device User’s
Manual for more information on peripheral interfacing for a particular chip.

2.3.5 Phase Lock Loop (PLL)
The phase lock loop (PLL) allows the DSP chip to use an external clock different from the internal system
clock, while optionally supplying an output clock synchronized to a synthesized internal clock. This PLL
allows full-speed operation using an external clock running at a different speed. The PLL performs
frequency multiplication, skew elimination, and reduces overall system power by reducing the frequency
on the input reference clock.

2.4 DSP56800 Core Programming Model
The registers in the DSP56800 core that are considered part of the DSP56800 core programming model are
shown in Figure 2-4 on page 2-9. There may also be other important registers that are not included in the
DSP56800 core, but mapped into the data address space. These include registers for peripheral devices and
other functions that are not bound into the core.

DSP56800 Core Programming Model

� Core Architecture Overview 2-9

Figure 2-4. DSP56800 Core Programming Model

N M01

Program Controller Unit

Hardware Stack (HWS)

Data ALU Input Registers

Accumulator Registers

Data Arithmetic Logic Unit

SP

R3

R2

R1

R0

MR CCR OMR

Pointer

Registers

Offset

Register

Modifier

Register

Program

Counter

Status

Register (SR)

Operating Mode

Register

LALC

Loop AddressLoop Counter

Y

A

B

X0 Y0Y1

A0A1A2

B0B1B2

PC

31 16 15 0

15 0 15 015 0

31 16 15 035 32

15 015 03

31 16 15 035 32

15 015 0

15 0 15 0 15 0

15 0 15 0 15 08 7

15 015 0

Address Generation Unit

AA0007

12 0

0

3 0

2-10 DSP56800 Family Manual �

Core Architecture Overview

� Data Arithmetic Logic Unit 3-1

Chapter 3
Data Arithmetic Logic Unit
This chapter describes the architecture and the operation of the data arithmetic logic unit (ALU), the block
where the multiplication, logical operations, and arithmetic operations are performed. (Addition can also
be performed in the address generation unit, and the bit-manipulation unit can perform logical operations.)
The data ALU contains the following:

• Three 16-bit input registers (X0, Y0, and Y1)

• Two 32-bit accumulator registers (A and B)

• Two 4-bit accumulator extension registers (A2 and B2)

• An accumulator shifter (AS)

• One data limiter

• One 16-bit barrel shifter

• One parallel (single cycle, non-pipelined) multiply-accumulator (MAC) unit

Multiple buses in the data ALU perform complex arithmetic operations (such as a multiply-accumulate
operations) in parallel with up to two memory transfers. A discussion of fractional and integer data
representations; signed, unsigned, and multi-precision arithmetic; condition code generation; and the
rounding modes used in the data ALU are also described in this section.

The data ALU can perform the following operations in a single instruction cycle:

• Multiplication (with or without rounding)

• Multiplication with inverted product (with or without rounding)

• Multiplication and accumulation (with or without rounding)

• Multiplication and accumulation with inverted product (with or without rounding)

• Addition and subtraction

• Compares

• Increments and decrements

• Logical operations (AND, OR, and EOR)

• One’s-complement

• Two’s-complement (negation)

• Arithmetic and logical shifts

• Rotates

• Multi-bit shifts on 16-bit values

• Rounding

• Absolute value

3-2 DSP56800 Family Manual �

Data Arithmetic Logic Unit

• Division iteration

• Normalization iteration

• Conditional register moves (Tcc)

• Saturation (limiting)

3.1 Overview and Architecture
The major components of the data ALU are the following:

• Three 16-bit input registers (X0, Y0, and Y1)

• Two 32-bit accumulator registers (A and B)

• Two 4-bit accumulator extension registers (A2 and B2)

• An accumulator shifter (AS)

• One data limiter

• One 16-bit barrel shifter

• One parallel (single cycle, non-pipelined) multiply-accumulator (MAC) unit

A block diagram of the data ALU unit is shown in Figure 3-1 on page 3-3, and its corresponding
programming model is shown in Figure 3-2 on page 3-4. In the programming model, accumulator “A”
refers to the entire 36-bit accumulator register, whereas “A2,” “A1,” and “A0” refer to the directly
accessible extension, most significant portions, and least significant portions of the 36-bit accumulator,
respectively. Instructions can access the register as a whole or by these individual portions (see
Section 3.1.2, “Data ALU Accumulator Registers,” on page 3-4 and Section 3.2, “Accessing the
Accumulator Registers,” on page 3-7). The blocks and registers within the data ALU are explained in the
following sections.

Overview and Architecture

� Data Arithmetic Logic Unit 3-3

Figure 3-1. Data ALU Block Diagram

XDB2

Condition Codes
to Status Register

Arith/Logical
Shifterx

Optional
Invert

SHIFTER/MUX

A0A2 A1

+

B0B2 B1

Condition Code
Generation

CGDB

36-bit Accumulator Shifter

Rounding
Constant

Y1

Y0

X0

MAC Output Limiter

EXT:MSP:LSP

LI
M

IT
E

R

OMR’s SA Bit

OMR’s CC Bit

3-4 DSP56800 Family Manual �

Data Arithmetic Logic Unit

3.1.1 Data ALU Input Registers (X0, Y1, and Y0)
The data ALU registers (X0, Y1, and Y0) are 16-bit registers that serve as inputs for the data ALU. Each
register may be read or written by the CGDB as a word operand. They may be treated as three independent
16-bit registers, or as one 16-bit register and one 32-bit register. Y1 and Y0 can be concatenated to form
the 32-bit register Y, with Y1 being the most significant word and Y0 being the least significant word.
Figure 3-2 shows this arrangement.

These data ALU input registers are used as source operands for most data ALU operations and allow new
operands to be loaded from the memory for the next instruction while the register contents are used by the
current instruction. X0 may also be written by the XDB2 during the dual read instruction. Certain
arithmetic operations also allow these registers to be specified as destinations.

3.1.2 Data ALU Accumulator Registers
The two 36-bit data ALU accumulator registers can be accessed either as a 36-bit register (A or B) or as the
following, individual portions of the register:

• 4-bit extension register (A2 or B2)

• 16-bit MSP (A1 or B1)

• 16-bit LSP (A0 or B0)

The three individual portions make up the entire accumulator register, as shown in Figure 3-2.

These two techniques for accessing the accumulator registers provide important flexibility for both DSP
algorithms and general-purpose computing tasks. Accessing these registers as entire accumulators (A or B)
is particularly useful for DSP tasks, because this preserves the full precision of multiplication and other
ALU operations. Data limiting and saturation are also possible using the full registers, in cases where the
final result of a computation that has overflowed is moved (see Section 3.4.1, “Data Limiter,” on page
3-26).

Figure 3-2. Data ALU Programming Model

X0

Data ALU Input Registers

Accumulator Registers

Data Arithmetic Logic Unit

Y

A

B

Y0Y1

A0A1A2

B0B1B2

AA0035

15 0

15 0

31 16 15 0

15 0

31 16 15 035 32

15 0 15 03 0

31 16 15 035 32

15 0 15 03 0

Overview and Architecture

� Data Arithmetic Logic Unit 3-5

Accessing an accumulator through its individual portions (A2, A1, A0, B2, B1, or B0) is useful for systems
and control programming. When accumulators are manipulated using their constituent components,
saturation and limiting are disabled. This allows for microcontroller-like 16-bit integer processing for
non-DSP purposes.

Section 3.2, “Accessing the Accumulator Registers,” provides a complete discussion of the ways in which
the accumulators can be employed. A description of the data limiting and saturation features of the data
ALU is provided in Section 3.4, “Saturation and Data Limiting.”

3.1.3 Multiply-Accumulator (MAC) and Logic Unit
The multiply-accumulator (MAC) and logic unit is the main arithmetic processing unit of the DSP. This is
the block that performs all multiplication, addition, subtraction, logical, and other arithmetic operations
except shifting. It accepts up to three input operands and outputs one 36-bit result of the form
EXT:MSP:LSP (extension:most significant product:least significant product). Arithmetic operations in the
MAC unit occur independently and in parallel with memory accesses on the CGDB, XDB2, and PDB. The
data ALU registers provide pipelining for both data ALU inputs and outputs. An input register may be
written by memory in the same instruction where it is used as the source for a data ALU operation. The
inputs of the MAC and logic unit can come from the X and Y registers (X0, Y1, Y0), the accumulators
(A1, B1, A, B), and also directly from memory for common instructions such as ADD and SUB.

The multiplier executes 16-bit x 16-bit parallel signed/unsigned fractional and 16-bit x 16-bit parallel
signed integer multiplications. The 32-bit product is added to the 36-bit contents either of the A or B
accumulator or of the 16-bit contents of the X0, Y0, or Y1 registers and then stored in the same register.
This multiply-accumulate is a single cycle operation (no pipeline). For integer multiplication, the 16 LSBs
of the product are stored in the MSP of the accumulator; the extension register is filled with sign extension
and the LSP of the accumulator remains unchanged.

If a multiply without accumulation is specified by a MPY or MPYR instruction, the unit clears the
accumulator and then adds the contents to the product. The results of all arithmetic instructions are valid
(sign extended) 36-bit operands in the form EXT:MSP:LSP (A2:A1:A0 or B2:B1:B0).

When a 36-bit result is to be stored as a 16-bit operand, the LSP can simply be truncated, or it can be
rounded into the MSP. The rounding performed is either the convergent rounding (round to the nearest
even) or two’s-complement rounding. The type of rounding is specified by the rounding bit in the
operating mode register. See Section 3.5, “Rounding,” for a more detailed discussion of rounding.

The logic unit performs the logical operations AND, OR, EOR, and NOT on data ALU registers. It is 16
bits wide and operates on data in the MSP of the accumulator. The least significant and EXT portions of
the accumulator are not affected. Logical operations can also be performed in the bit-manipulation unit.
The bit-manipulation unit is used when performing logical operations with immediate values and can be
performed on any register or memory location.

3.1.4 Barrel Shifter
The 16-bit barrel shifter performs single-cycle, 0- to 15-bit arithmetic or logical shifts of 16-bit data. Since
both the amount to be shifted as well as the value to shift come from registers, it is possible to shift data by
a variable amount. See Figure 3-3 on page 3-6. It is also possible to use this unit to right shift 32-bit values
using the ASRAC and LSRAC instructions, as demonstrated in Section 8.2, “16- and 32-Bit Shift
Operations,” on page 8-8.

3-6 DSP56800 Family Manual �

Data Arithmetic Logic Unit

Figure 3-3. Right and Left Shifts Through the Multi-Bit Shifting Unit

After shifting, the extension register is always loaded with zero extension for logical shifts or sign
extension for arithmetic shifts. For right shifts, the LSP is set to zero except for the ASRAC and LSRAC
instructions, where the lower bits are shifted into the LSP. For left shifts, the upper bits are not shifted into
the extension register, and the LSP is always set to zero.

3.1.5 Accumulator Shifter
The accumulator shifter is an asynchronous parallel shifter with a 36-bit input and a 36-bit output. The
operations performed by this unit are as follows:

• No shift performed—ADD, SUB, MAC, and so on

• 1-bit left shift—ASL, LSL, ROL

• 1-bit right shift—ASR, LSR, ROR

• Force to zero—MPY, IMPY(16)

The output of the shifter goes directly to the MAC unit as an input.

3.1.6 Data Limiter and MAC Output Limiter
The data ALU contains two units that implement optional saturation of mathematical results, the Data
Limiter and the MAC Output Limiter. The Data Limiter saturates values when data is moved out of an
accumulator with a move instruction or parallel move. The MAC Output Limiter saturates the output of the
data ALU’s MAC unit.

Section 3.4, “Saturation and Data Limiting,” provides an in-depth discussion of saturation and limiting, as
well as a description of the operation of the two limiter units.

F A A AF

EXT MSP

0 0 0 0

LSP

A

Multi-Bit

Shifting Unit

16 4

A A A 0F

EXT MSP

0 0 0 0

LSP

A

Multi-Bit

Shifting Unit

16 4

$AAAA $4 $AAAA $4

Example: Right Shifting (ASRR) Example: Left Shifting (ASLL)

35 32 31 16 15 0 35 32 31 16 15 0

AA0039

Accessing the Accumulator Registers

� Data Arithmetic Logic Unit 3-7

3.2 Accessing the Accumulator Registers
An accumulator register can be accessed in two different ways:

• as an entire register (F)

• by the individual register portion (F2, F1, or F0)

The ability to access the accumulator registers in both ways provides important flexibility, allowing for
powerful DSP algorithms as well as general-purpose computing tasks.

Accessing an entire accumulator register (A or B) is particularly useful for DSP tasks, since it preserves the
complete 36-bit register—and thus the entire precision of a multiplication or other ALU operation. It also
provides limiting (or saturation) capability in cases when storing a result of a computation that would
overflow the destination size. See Section 3.4, “Saturation and Data Limiting.”

Accessing an accumulator through its individual portions (F2, F1, or F0) is useful for systems and control
programming. For example, if a DSP algorithm is in progress and an interrupt is received, it is usually
necessary to save every accumulator used by the interrupt service routine. Since an interrupt can occur at
any step of the DSP task (that is, right in the middle of a DSP algorithm), it is important that no saturation
takes place. Thus, an interrupt service routine can store the individual accumulator portions on the stack,
effectively saving the entire 36-bit value without any limiting. Upon completion of the interrupt routine,
the contents of the accumulator can be exactly restored from the stack.

The DSP56800 instruction set transparently supports both methods of access. An entire accumulator may
be accessed simply through the specification of the full-register name (A or B), while portions are accessed
through the use of their respective names (A0, B1, and so on).

Table 3-1 provides a summary of the various access methods. These are described in more detail in
Section 3.2.1, “Accessing an Accumulator by Its Individual Portions,” and Section 3.2.2, “Accessing an
Entire Accumulator.”

Table 3-1. Accessing the Accumulator Registers

Register Read of an Accumulator Register Write to an Accumulator Register

A
B

For a MOVE instruction:
If the extension bits are not in use for the
accumulator to be read, then the 16-bit con-
tents of the F1 portion of the accumulator are
read onto the CGDB bus.
If the extension bits are in use, then a 16-bit
“limited” value is instead read onto the CGDB.
See Section 3.4.1, “Data Limiter.”

When used in an arithmetic operation:
All 36 bits are sent to the MAC unit without
limiting.

For a MOVE instruction:
The 16 bits of the CGDB bus are written into
the 16-bit F1 portion of the register.
The extension portion of the same accumula-
tor, F2, is filled with sign extension. The F0
portion is set to zero.

A2
B2

For a MOVE instruction:
The 4-bit register is read onto the 4 LSBs of
the CGDB bus.
The upper 12 bits of the bus are sign
extended.
See Figure 3-5 on page 3-9.

For a MOVE instruction:
The 4 LSBs of the CGDB are written into the
4-bit register; the upper 12 bits are ignored.
The corresponding F1 and F0 portions are not
modified.
See Figure 3-4 on page 3-8.

3-8 DSP56800 Family Manual �

Data Arithmetic Logic Unit

In all cases in Table 3-1 where a MOVE operation is specified, it is understood that the function is
identical for parallel moves and bit-field operations.

3.2.1 Accessing an Accumulator by Its Individual Portions
The instruction set provides instructions for loading and storing one of the portions of an accumulator
register without affecting the other two portions. When an instructions uses the F1 or F0 notation instead of
F, the instruction only operates on the 16-bit portion specified without modifying the other two portions.
When an instruction specifies F2, then the instruction operates only on the 4-bit accumulator extension
register without modifying the F1 or F0 portions of the accumulator. Refer to Table 3-1 for a summary of
accessing the accumulator registers.

Data limiting, as outlined in Section 3.4, “Saturation and Data Limiting,” is enabled only when an entire
accumulator is being stored to memory. When only a portion of an accumulator is being stored (by using
an instruction which specifies F2, F1, or F0), limiting through the data limiter does not occur.

When F2 is written, the register receives the low-order portion of the word; the high-order portion is not
used. See Figure 3-4.

Figure 3-4. Writing the Accumulator Extension Registers (F2)

A1
B1

For a MOVE instruction:
The 16-bit F1 portion is read onto the CGDB
bus.

When used in an arithmetic operation:
The F1 register is used as a 16-bit source
operand for an arithmetic operation.

F1 can be used in the following:
MOVE
Parallel Move
Several different arithmetic

For a MOVE instruction:
The contents of the CGDB bus are written into
the 16-bit F1 register.
The corresponding F2 and F0 portions are not
modified.

A0
B0

For a MOVE instruction:
The 16-bit F0 register is read onto the CGDB
bus.

For a MOVE instruction:
The contents of the CGDB bus are written into
the 16-bit F0 register.
The corresponding F2 and F1 portions are not
modified.

Table 3-1. Accessing the Accumulator Registers (Continued)

Register Read of an Accumulator Register Write to an Accumulator Register

CGDB Bus Contents

Not Used
LSB of
Word

Register F2 Used
as a Destination

15 4 3 0

F2No Bits Present Register F2

15 4 3 0

Accessing the Accumulator Registers

� Data Arithmetic Logic Unit 3-9

When F2 is read, the register contents occupy the low-order portion (bits 3–0) of the word; the high-order
portion (bits 15–4) is sign extended. See Figure 3-5.

Figure 3-6 shows the result of writing values to each portion of the accumulator. Note that only the portion
specified in the instruction is modified; the other two portions remain unchanged.

See Section 3.2, “Accessing the Accumulator Registers,” for a discussion of when it is appropriate to
access an accumulator by its individual portions and when it is appropriate to access it as an entire
accumulator.

Figure 3-5. Reading the Accumulator Extension Registers (F2)

Figure 3-6. Writing the Accumulator by Portions

F2

CGDB Bus Contents

Register F2
Used as a Source

Sign Extension
of F2

Contents
of F2

No Bits Present Register F2

LSB Of
Word

15 4 3 0

15 4 3 0

Before Execution

X X X XX
A2 A1

X X X X
A0

A

After Execution

X X X XD
A2 A1

X X X X
A0

A
35 32 31 16 15 0 35 32 31 16 15 0

Writing the F2 Portion Example: MOVE #$ABCD,A2

Before Execution

X X X XX
A2 A1

X X X X
A0

A

After Execution

1 2 3 4X
A2 A1

X X X X
A0

A
35 32 31 16 15 0 35 32 31 16 15 0

Writing the F1 Portion Example: MOVE #$1234,A1

Before Execution

X X X XX
A2 A1

X X X X
A0

A

After Execution

X X X XX
A2 A1

A 9 8 7
A0

A
35 32 31 16 15 0 35 32 31 16 15 0

Writing the F0 Portion Example: MOVE #$A987,A0

3-10 DSP56800 Family Manual �

Data Arithmetic Logic Unit

3.2.2 Accessing an Entire Accumulator

3.2.2.1 Accessing for Data ALU Operations

The complete accumulator is accessed to provide a source, a destination, or both for an ALU or
multiplication operation in the data ALU. In this case, the accumulator is written as an entire 36-bit
accumulator (F), not as an individual register (F2, F1, or F0). The accumulator registers receive the
EXT:MSP:LSP of the multiply-accumulator unit output when used as a destination and supply a source
accumulator of the same form. Most data ALU operations specify the 36-bit accumulator registers as
source operands, destination operands, or both.

3.2.2.2 Writing an Accumulator with a Small Operand

Automatic sign extension of the 36-bit accumulators is provided when the accumulator is written with a
smaller size operand. This can occur when writing F from the CGDB (MOVE instruction) or with the
results of certain data ALU operations (for example, ADD, SUB, or TFR from a 16-bit register to a 36-bit
accumulator). If a word operand is to be written to an accumulator register (F), the F1 portion of the
accumulator is written with the word operand, the LSP is zeroed, and the EXT portion receives sign
extension. This is also the case for a MOVE instruction that moves one accumulator to another, but is not
the case for a TFR instruction that moves one entire accumulator to another. No sign extension is
performed if an individual 16-bit register is written (F1 or F0).

NOTE:

A read of the F1 register in a MOVE instruction is identical to a read of the
F accumulator for the case where the extension bits of that accumulator
only contain sign-extension information. In this case there is no need for
saturation or limiting, so reading the F accumulator produces the same
result as reading the F1 register.

3.2.2.3 Extension Registers as Protection Against Overflow

The F2 extension registers offer protection against 32-bit overflow. When the result of an accumulation
crosses the MSB of MSP (bit 31 of F), the extension bit of the status register (E) is set. Up to 15 overflows
or underflows are possible using these extension bits, after which the sign is lost beyond the MSB of the
extension register. When this occurs, the overflow bit (V) in the status register is set. Having an extension
register allows overflow during intermediate calculations without losing important information. This is
particularly useful during execution of DSP algorithms, when intermediate calculations (but not the final
result that is written to memory or to a peripheral) may sometimes overflow.

The logic detection of “extension register in use” is also used to determine when to saturate the value of an
accumulator when it is being read onto the CGDB or transferred to any data ALU register. If saturation
occurs, the content of the original accumulator is not affected (except if the same accumulator is specified
as both source and destination); only the value transferred over the CGDB is limited to a full-scale positive
or negative 16-bit value ($7FFF or $8000).

When limiting occurs, a flag is set and latched in the status register (L). The limiting block is explained in
more detail in Section 3.4.1, “Data Limiter.”

NOTE:

Limiting will be performed only when the entire 36-bit accumulator
register (F) is specified as the source for a parallel data move or a register
transfer. It is not performed when F2, F1 or F0 is specified.

Accessing the Accumulator Registers

� Data Arithmetic Logic Unit 3-11

3.2.2.4 Examples of Writing the Entire Accumulator

Figure 3-7 shows the result of writing a 16-bit signed value to an entire accumulator. Note that all three
portions of the accumulator are modified. The LSP (B0) is set to zero, and the extension portion (B2) is
appropriately sign extended.

Figure 3-7. Writing the Accumulator as a Whole

Successfully using the DSP56800 Family requires a full understanding of the methods and implications of
the various accumulator-register access methods. The architecture of the accumulator registers offers a
great deal of flexibility and power, but it is necessary to completely understand the access mechanisms
involved to fully exploit this power.

3.2.3 General Integer Processing
General integer and control processing typically involves manipulating 16- and 32-bit integer quantities.
Rarely will such code use a full 36-bit accumulator such as that implemented by the DSP56800 Family.
The architecture of the DSP56800 supports the manipulation of 16-bit integer quantities using the
accumulators, but care must be taken when performing such manipulation.

3.2.3.1 Writing Integer Data to an Accumulator

When loading an accumulator, it is most desirable for the 36 bits of the accumulator to correctly reflect the
16-bit data. To this end, it is recommended that all accumulator loads of 16-bit data clear the least
significant portion of the accumulator and also sign extend the extension portion. This can be
accomplished through specifying the full accumulator register as the destination of the move, as shown in
Example 3-1.

Example 3-1. Loading an Accumulator with a Word for Integer Processing

MOVE X:(R0),A ; A2 receives sign extension
; A1 receives the 16-bit data
; A0 receives the value $0000

Before Execution

X X X XX
B2 B1

X X X X
B0

B

After Execution

1 2 3 40
B2 B1

0 0 0 0
B0

B
35 32 31 16 15 0 35 32 31 16 15 0

Writing a Positive Value into 36-Bit Accumulator Example: MOVE #$1234,B

Before Execution

X X X XX
B2 B1

X X X X
B0

B

After Execution

A 9 8 7F
B2 B1

0 0 0 0
B0

B
35 32 31 16 15 0 35 32 31 16 15 0

Writing a Negative Value into 36-Bit Accumulator Example: MOVE #$A987,B

3-12 DSP56800 Family Manual �

Data Arithmetic Logic Unit

Loading a 16-bit integer value into the A1 portion of the register is generally discouraged. In almost all
cases, it is preferable to follow Example 3-1 on page 3-11. One notable exception is when 36-bit
accumulator values must be stored temporarily. See Section 3.2.5, “Saving and Restoring Accumulators,”
for more details.

3.2.3.2 Reading Integer Data from an Accumulator

Integer and control processing algorithms typically involve the manipulation of 16-bit quantities that
would be adversely affected by saturation or limiting. When such integer calculations are performed, it is
often desirable not to have overflow protection when results are stored to memory. To ensure that the data
ALU’s data limiter is not active when an accumulator is being read, it is necessary to store not the full
accumulator, but just the MSP (A1 portion). See Example 3-2.

Example 3-2. Reading a Word from an Accumulator for Integer Processing

MOVE A1,X:Variable_1; Saturation is disabled

Note that with the use of the A1 register instead of the A register, saturation is disabled. The value in A1 is
written “as is” to memory.

3.2.4 Using 16-Bit Results of DSP Algorithms
A DSP Algorithm may use the full 36-bit precision of an accumulator while performing DSP calculations
such as digital filtering or matrix multiplications. Upon completion of the algorithm, however, sometimes
the result of the calculation must be saved in a 16-bit memory location or must be written to a 16-bit D/A
converter. Since DSP algorithms process digital signals, it is important that when the 36-bit accumulator
value is converted to a 16-bit value, saturation is enabled so signals that overflow 16 bits are appropriately
clipped to the maximum positive or negative value. See Example 3-3.

Example 3-3. Correctly Reading a Word from an Accumulator to a D/A

MOVE A,X:D_to_A_data; Saturation is enabled

Note the use of the A accumulator instead of the A1 register. Using the A accumulator enables saturation.

3.2.5 Saving and Restoring Accumulators
Interrupt service routines offer one example of a time when it is critical that an accumulator be saved and
restored without being altered in any way. Since an interrupt can occur at any time, the exact usage of an
accumulator at that instant is unknown, so it cannot be altered by the interrupt service routine without
adversely affecting any calculation that may have been in progress. In order for an accumulator to be saved
and restored correctly, it must be done with limiting disabled. This is accomplished through sequentially
saving and restoring the individual parts of the register, and not the whole register at once. See
Example 3-4 on page 3-13.

Accessing the Accumulator Registers

� Data Arithmetic Logic Unit 3-13

Example 3-4. Correct Saving and Restoring of an Accumulator—Word Accesses

; Saving the A Accumulator to the Stack
LEA (SP)+ ; Point to first empty location
MOVE A2,X:(SP)+ ; Save extension register
MOVE A1,X:(SP)+ ; Save F1 register
MOVE A0,X:(SP) ; Save F0 register

; Restoring the A Accumulator from the Stack
MOVE X:(SP)-,A0 ; Restore F0 register
MOVE X:(SP)-,A1 ; Restore F1 register
MOVE X:(SP)-,A2 ; Restore extension register

It is important that interrupt service routines do not use the MOVE A,X:(SP)+ instruction when saving to
the stack. This instruction operates with saturation enabled, and may inadvertently store the value $7FFF
or $8000 onto the stack, according to the rules employed by the Data Limiter. This could have catastrophic
effects on any DSP calculation that was in progress.

3.2.6 Bit-Field Operations on Integers in Accumulators
When bit-manipulation operations on accumulator registers are performed, as is done for integer
processing, care must be taken. The bit-manipulation instructions operate as a “Read-Modify-Write”
sequence, and thus may be affected by limiting during the “Read” portion of this sequence. In order for
bit-manipulation operations to generate the expected results, limiting must be disabled. To ensure that this
is the case, the MSP (A1 portion) of an accumulator should be used as the target operand for the ANDC,
EORC, ORC, NOTC, BFCLR, BFCHG, and BFSET instructions, not the full accumulator. See
Example 3-5.

Example 3-5. Bit Manipulation on an Accumulator

; BFSET using the A1 register
BFSET #$0F00,A1 ; Reads A1 with saturation disabled

; Sets bits 11 through 8 and stores back to A1
; Note: A2 and A0 unmodified

; BFSET using the A register
BFSET #$0F00,A ; Reads A1 with saturation enabled - may limit

; Sets bits 11 through 8 and stores back to A1
; A2 is sign extended and A0 is cleared

Since the BFTSTH, BFTSTL, BRCLR, and BRSET instructions only test the accumulator value and do
not modify it, it is recommended to do these operations on the A1 register where no limiting can occur
when integer processing is performed.

3.2.7 Converting from 36-Bit Accumulator to 16-Bit Portion
There are two types of instructions that are useful for converting the 36-bit contents of an accumulator to a
16-bit value, which can then be stored to memory or used for further computations. This is useful for
processing word-sized operands (16 bits), since it guarantees that an accumulator contains correct sign
extension and that the least significant 16 bits are all zeros. The two techniques are shown in Example 3-6
on page 3-14.

3-14 DSP56800 Family Manual �

Data Arithmetic Logic Unit

Example 3-6. Converting a 36-Bit Accumulator to a 16-Bit Value

;Converting with No Limiting
MOVE A1,A ;Sign Extend A2, A0 set to $0000
MOVE A1,B ;Sign Extend B2, B0 set to $0000

;Converting with Limiting Enabled
MOVE A,A ;Sign Extend A2, Limit if Required
MOVE A,B ;Sign Extend B2, Limit if Required

Where limiting is enabled, as in the second example in Example 3-6, limiting only occurs when the
extension register is in use. You can determine if the extension register is in use by examining the
extension bit (E) of the status register. Refer to Section 5.1.8, “Status Register,” on page 5-6.

3.3 Fractional and Integer Data ALU Arithmetic
The ability to perform both integer and fractional arithmetic is one of the strengths of the DSP56800
architecture; there is a need for both types of arithmetic.

Fractional arithmetic is typically required for computation-intensive algorithms such as digital filters,
speech coders, vector and array processing, digital control, and other signal-processing tasks. In this mode
the data is interpreted as fractional values, and the computations are performed interpreting the data as
fractional. Often, saturation is used when performing calculations in this mode to prevent the severe
distortion that occurs in an output signal generated from a result where a computation overflows without
saturation (see Figure 3-14 on page 3-28). Saturation can be selectively enabled or disabled so that
intermediate calculations can be performed without limiting, and limiting is only done on final results (see
Example 3-7).

Integer arithmetic, on the other hand, is invaluable for controller code, for array indexing and address
computations, compilers, peripheral setup and handling, bit manipulation, bit-exact algorithms, and other
general-purpose tasks. Typically, saturation is not used in this mode, but is available if desired. (See
Example 3-8.)

The main difference between fractional and integer representations is the location of the decimal (or
binary) point. For fractional arithmetic, the decimal (or binary) point is always located immediately to the
right of the MSP’s most significant bit; for integer values, it is always located immediately to the right of
the value’s LSB. Figure 3-8 on page 3-15 shows the location of the decimal point (binary point), bit
weightings, and operands alignment for different fractional and integer representations supported on the
DSP56800 architecture.

Example 3-7. Fractional Arithmetic Examples

0.5 x 0.25 = 0.125
0.625 + 0.25 = 0.875
0.125 / 0.5 = 0.25
0.5 >> 1 = 0.25

Example 3-8. Integer Arithmetic Examples

4 x 3 = 12
1201 + 79 = 1280
63 / 9 = 7
100 << 1 = 200

Fractional and Integer Data ALU Arithmetic

� Data Arithmetic Logic Unit 3-15

The representation of numbers allowed on the DSP56800 architecture are as follows:

• Two’s-complement values

• Fractional or integer values

• Signed or unsigned values

• Word (16-bit), long word (32-bit), or accumulator (36-bit)

The different representations not only affect the arithmetic operations, but also the condition code
generation. These numbers can be represented as decimal, hexadecimal, or binary numbers.

To maintain alignments of the binary point when a word operand is written to an accumulator A or B, the
operand is written to the most significant accumulator register (A1 and B1) and its most significant bit is
automatically sign extended through the accumulator extension register. The least significant accumulator
register is automatically cleared.

Some of the advantages of fractional data representation are as follows:

• The MSP (left half) has the same format as the input data.

• The LSP (right half) can be rounded into the MSP without shifting or updating the exponent.

Figure 3-8. Bit Weightings and Operand Alignments

16-Bit Word Operand
 X0,Y0,Y1,A1,B1,

16-Bit Memory

32-Bit Long Word Operand
 Y = Y1:Y0

36-Bit Accumulator
 A,B

16-Bit Word Operand
 X0,Y0,Y1,A1,B1,

16-Bit Memory

32-Bit Long Word Operand
in A1,B1

36-Bit Accumulator
 A,B

Fractional Two’s-Complement Representations

Integer Two’s-Complement Representations

.

-20 2-15

-20 2-15

2-16 2-31

20 2-15 2-16 2-31-24

-215 20214

-231 216 215 20

231 216 215 20-235

AA0041

3-16 DSP56800 Family Manual �

Data Arithmetic Logic Unit

• Conversion to floating-point representation is easier because the industry-standard floating-point
formats use fractional mantissas.

• Coefficients for most digital filters are derived as fractions by DSP digital-filter design software
packages. The results from the DSP design tools can be used without the extensive data conversions
that other formats require.

• A significant bit is not lost through sign extension.

3.3.1 Interpreting Data
Data in a memory location or register can be interpreted as fractional or integer, depending on the needs of
a user’s program. Table 3-2 shows how a 16-bit value can be interpreted as either a fractional or integer
value, depending on the location of the binary point.

The following equation shows the relationship between a 16-bit integer and a fractional value:

Fractional Value = Integer Value / (215)

There is a similar equation relating 36-bit integers and fractional values:

Fractional Value = Integer Value / (231)

Table 3-3 shows how a 36-bit value can be interpreted as either an integer or a fractional value, depending
on the location of the binary point.

Table 3-2. Interpretation of 16-Bit Data Values

Binary
Representation1

1.This corresponds to the location of the binary point when the data is interpreted as fractional. If
the data is interpreted as integer, the binary point is located immediately to the right of the LSB.

Hexadecimal
Representation

Integer Value
(decimal)

Fractional Value
(decimal)

0.100 0000 0000 0000 $4000 16,384 0.5

0.010 0000 0000 0000 $2000 8,192 0.25

0.001 0000 0000 0000 $1000 4,096 0.125

0.111 0000 0000 0000 $7000 28,672 0.875

0.000 0000 0000 0000 $0000 0 0.0

1.100 0000 0000 0000 $C000 - 16,384 - 0.5

1.110 0000 0000 0000 $E000 - 8,192 - 0.25

1.111 0000 0000 0000 $F000 - 4,096 - 0.125

1.001 0000 0000 0000 $9000 - 28,672 - 0.875

Table 3-3. Interpretation of 36-bit Data Values

Hexadecimal
Representation1

36-Bit Integer in
Entire Accumulator

(decimal)

16-Bit Integer in MSP
(decimal)

Fractional
Value

(decimal)

$7 FFFF FFFF 34,359,738,367 - ~ 16.0

$1 4000 0000 5,368,709,120 - 2.5

$0 4000 0000 1,073,741,824 16,384 0.5

$0 2000 0000 536,870,912 8,192 0.25

$0 0000 0000 0 0 0.0

$F C000 0000 - 1,073,741,824 - 16,384 - 0.5

Fractional and Integer Data ALU Arithmetic

� Data Arithmetic Logic Unit 3-17

3.3.2 Data Formats
Four types of two’s-complement data formats are supported by the 16-bit DSP core:

• Signed fractional

• Unsigned fractional

• Signed integer

• Unsigned integer

The ranges for each of these formats, discussed in the following subsections, apply to all data stored in
memory and to data stored in the data ALU registers. The extension registers associated with the
accumulators allow word growth so that the most positive signed fractional number that can be represented
in an accumulator is approximately 16.0 and the most negative signed fractional number is -16.0 as shown
in Table 3-3. An important factor to consider is that when the accumulator extension registers are in use,
the data contained in the accumulators cannot be stored exactly in memory or other registers. In these cases
the data must be limited to the most positive or most negative number consistent with the size of the
destination and the sign of the accumulator, the MSB of the extension register.

3.3.2.1 Signed Fractional

In this format the N bit operand is represented using the 1.[N-1] format (1 sign bit, N-1 fractional bits).
Signed fractional numbers lie in the following range:

-1.0 ≤ SF ≤ +1.0 - 2-[N-1]

For words and long-word signed fractions, the most negative number that can be represented is -1.0, whose
internal representation is $8000 and $80000000, respectively. The most positive word is $7FFF or 1.0 -
2-15, and the most positive long word is $7FFFFFFF or 1.0 - 2-31.

3.3.2.2 Unsigned Fractional

Unsigned fractional numbers may be thought of as positive only. The unsigned numbers have nearly twice
the magnitude of a signed number with the same number of bits. Unsigned fractional numbers lie in the
following range:

0.0 ≤ UF ≤ 2.0 - 2-[N-1]

Examples of unsigned fractional numbers are 0.25, 1.25, and 1.999. The binary word is interpreted as
having a binary point after the MSB. The most positive 16-bit unsigned number is $FFFF or {1.0 + (1.0 - 2
-[N-1])} = 1.99996948. The smallest unsigned number is zero ($0000).

$F E000 0000 - 536,870,912 - 8,192 - 0.25

$E C000 0000 - 5,368,709,120 - -2 .5

$8 0000 0001 -34,359,738,367 - -16.0

1.When the accumulator extension registers are in use, the data contained in the accu-
mulators cannot be stored exactly in memory or other registers. In these cases the data
must be limited to the most positive or most negative number consistent with the size
of the destination.

Table 3-3. Interpretation of 36-bit Data Values (Continued)

Hexadecimal
Representation1

36-Bit Integer in
Entire Accumulator

(decimal)

16-Bit Integer in MSP
(decimal)

Fractional
Value

(decimal)

3-18 DSP56800 Family Manual �

Data Arithmetic Logic Unit

3.3.2.3 Signed Integer

This format is used when data is being processed as integers. Using this format, the N-bit operand is
represented using the N.0 format (N integer bits). Signed integer numbers lie in the following range:

-2-[N-1]

≤ SI ≤ [2[N-1]-1]

For words and long-word signed integers the most negative word that can be represented is -32768
($8000), and the most negative long word is -2147483648 ($80000000). The most positive word is 32767
($7FFF), and the most positive long word is 2147483647 ($7FFFFFFF).

3.3.2.4 Unsigned Integer

Unsigned integer numbers may be thought of as positive only. The unsigned numbers have nearly twice
the magnitude of a signed number of the same length. Unsigned integer numbers lie in the following range:

0 ≤ UI ≤ [2N-1]

Examples of unsigned integer numbers are 25, 125, and 1999. The binary word is interpreted as having a
binary point immediately to the right of the LSB. The most positive, 16-bit, unsigned integer is 65536
($FFFF). The smallest unsigned number is zero ($0000).

3.3.3 Addition and Subtraction
For fractional and integer arithmetic, the operations are performed identically for addition, subtraction, or
comparing two values. This means that any add, subtract, or compare instruction can be used for both
fractional and integer values.

To perform fractional or integer arithmetic operations with word-sized data, the data is loaded into the
MSP (A1 or B1) of the accumulator as shown in Figure 3-9.

Figure 3-9. Word-Sized Integer Addition Example

Fractional word-sized arithmetic would be performed in a similar manner. For arithmetic operations where
the destination is a 16-bit register or memory location, the fractional or integer operation is correctly
calculated and stored in its 16-bit destination.

Before Execution

$0000$0020$0

A2 A1 A0

$0040X0

After Execution

$0000$0060$0

A2 A1 A0

$0040X0

MOVE #64,X0 ; Load integer value 64 ($40) into X0
MOVE #32,A ; Load integer value 32 ($20) into A Accumulator

; (correctly sign extends into A2 and zeros A0)
ADD X0,A ; Perform Integer Word Addition
MOVE A1,X:RESULT ; Save Result (without saturating) to Memory

AA0045

Fractional and Integer Data ALU Arithmetic

� Data Arithmetic Logic Unit 3-19

3.3.4 Logical Operations
For fractional and integer arithmetic, the logical operations (AND, OR, EOR, and bit-manipulation
instructions) are performed identically. This means that any DSP56800 logical or bit-field instruction can
be used for both fractional and integer values. Typically, logical operations are only performed on integer
values, but there is no inherent reason why they cannot be performed on fractional values as well.

Likewise, shifting can be done on both integer and fractional data values. For both of these, an arithmetic
left shift of 1 bit corresponds to a multiplication by two. An arithmetic right shift of 1 bit corresponds to a
division of a signed value by two, and a logical right shift of 1 bit corresponds to a division of an unsigned
value by two.

3.3.5 Multiplication
The multiplication operation is not the same for integer and fractional arithmetic. The result of a fractional
multiplication differs in a simple manner from the result of an integer multiplication. This difference
amounts to a 1-bit shift of the final result, as illustrated in Figure 3-10. Any binary multiplication of two
N-bit signed numbers gives a signed result that is 2N-1 bits in length. This 2N-1 bit result must then be
correctly placed into a field of 2N bits to correctly fit into the on-chip registers. For correct fractional
multiplication, an extra 0 bit is placed at the LSB to give a 2N bit result. For correct integer multiplication,
an extra sign bit is placed at the MSB to give a 2N bit result.

The MPY, MAC, MPYR, and MACR instructions perform fractional multiplication and fractional
multiply-accumulation. The IMPY(16) instruction performs integer multiplication. Section 3.3.5.2,
“Integer Multiplication,” explains how to perform integer multiplication.

3.3.5.1 Fractional Multiplication

Figure 3-11 on page 3-20 shows the multiply-accumulation implementation for fractional arithmetic. The
multiplication of two, 16-bit, signed, fractional operands gives an intermediate 32-bit, signed, fractional
result with the LSB always set to zero. This intermediate result is added to one of the 36-bit accumulators.
If rounding is specified in the MPY or MAC instruction (MACR or MPYR), the intermediate results will
be rounded to 16 bits before being stored back to the destination accumulator, and the LSP will be set to
zero.

Figure 3-10. Comparison of Integer and Fractional Multiplication

S S

S

2N—1 Product

2N Bits

S S

0

2N—1 Product

2N Bits

Integer Fractional

Signed Multiplication: N X N Æ 2N - 1 Bits

X

Sign Extension Zero Fill

X
Signed Multiplier Signed Multiplier

S MSP LSP S MSP LSP

AA0042

3-20 DSP56800 Family Manual �

Data Arithmetic Logic Unit

3.3.5.2 Integer Multiplication

Two techniques for performing integer multiplication on the DSP core are as follows:

• Using the IMPY(16) instruction to generate a 16-bit result in the MSP of an accumulator

• Using the MPY and MAC instructions to generate a 36-bit full precision result

Each technique has its advantages for different types of computations.

An examination of the instruction set shows that for execution of single precision operations, most often
the instructions operate on the MSP (bits 31–16) of the accumulator instead of the LSP (bits 15–0). This is
true for the LSL, LSR, ROL, ROR, NOT, INCW, and DECW instructions and others. Likewise, for the
parallel MOVE instructions, it is possible to move data to and from the MSP of an accumulator, but this is
not true for the LSP. Thus, an integer multiplication instruction that places its result in the MSP of an
accumulator allows for more efficient computing. This is the reason why the IMPY(16) instruction places
its results in bits 31–16 of an accumulator. The limitation with the IMPY(16) instruction is that the result
must fit within 16 bits or there is an overflow.

Figure 3-12 on page 3-21 shows the multiply operation for integer arithmetic. The multiplication of two
16-bit signed integer operands using the IMPY(16) instruction gives a 16-bit signed integer result that is
placed in the MSP (A1 or B1) of the accumulator. The corresponding extension register (A2 or B2) is filled
with sign extension and the LSP (A0 or B0) remains unchanged.

Figure 3-11. MPY Operation—Fractional Arithmetic

ss

0ss

EXP MSP LSP

Signed Fractional
Input Operands

Signed
Intermediary

Multiplier Result

Signed Fractional
MPY Result

Input Operand 1 Input Operand 2

32 Bits

36 Bits

16 Bits 16 Bits

AA0043

16 16

0

Fractional and Integer Data ALU Arithmetic

� Data Arithmetic Logic Unit 3-21

At other times it is necessary to maintain the full 32-bit precision of an integer multiplication. To obtain
integer results, an MPY instruction is used, immediately followed by an ASR instruction. The 32-bit long
integer result is then correctly located into the MSP and LSP of an accumulator with correct sign extension
in the extension register of the same accumulator (see Example 3-9).

Example 3-9. Multiplying Two Signed Integer Values with Full Precision

MPY X0,Y0,A ; Generates correct answer shifted
; 1 bit to the left

ASR A ; Leaves Correct 32-bit Integer
; Result in the A Accumulator
; and the A2 register contains
; correct sign extension

When a multiply-accumulate is performed on a set of integer numbers, there is a faster way for generating
the result than performing an ASR instruction after each multiply. The technique is to use fractional
multiply-accumulates for the bulk of the computation and to then convert the final result back to integer.
See Example 3-10.

Example 3-10. Fast Integer MACs using Fractional Arithmetic

MOVE X:(R0)+,Y0 X:(R3)+,X0
DO #N,LABEL
MAC X0,Y0,A X:(R0)+,Y0 X:(R3)+,X0

LABEL
ASR A ; Convert to Integer only after MACs are

; completed

3.3.6 Division
Fractional and integer division of both positive and signed values is supported using the DIV instruction.
The dividend (numerator) is a 32-bit fractional or 31-bit integer value, and the divisor (denominator) is a
16-bit fractional or integer value, respectively. See Section 8.4, “Division,” on page 8-13 for a complete
discussion of division.

Figure 3-12. Integer Multiplication (IMPY)

16 Bits

Signed Integer
 Output

ss

Unchanged EXP MSP

Signed Integer
Input Operands

Signed
Intermediate

Multiplier Result
0s

S Ext.

Input Operand 1 Input Operand 2

31 Bits

16 Bits 16 Bits

16 Bits
AA0044

3-22 DSP56800 Family Manual �

Data Arithmetic Logic Unit

3.3.7 Unsigned Arithmetic
Unsigned arithmetic can be performed on the DSP56800 architecture. The addition, subtraction, and
compare instructions work for both signed and unsigned values, but the condition code computation is
different. Likewise, there is a difference for unsigned multiplication.

3.3.7.1 Conditional Branch Instructions for Unsigned Operations

Unsigned arithmetic is supported on operations such as addition, subtraction, comparison, and logical
operations using the same ADD, SUB, CMP, and other instructions used for signed computations. The
operations are performed the same for both representations. The difference lies both in which status bits
are used in comparing signed and unsigned numbers and in how the data is interpreted, for which see
Section 3.3.2, “Data Formats.”

Four additional Bcc instruction variants are provided for branching based on the comparison of two
unsigned numbers. These variants are:

• HS (High or same)—unsigned greater than or equal to

• LS (Low or same)—unsigned less than or equal to

• HI (High)—unsigned greater than

• LO (Low)—unsigned less than

The variants used for comparing unsigned numbers, HS, LS, HI, and LO, are used in place of GE, LE, GT,
and LT respectively, which are used for comparing signed numbers. Note that the HS condition is exactly
the same as the carry clear (CC), and that LO is exactly the same as carry set (CS).

Unsigned comparisons are enabled when the CC bit in the OMR register is set. When this bit is set, the
value in the extension register is ignored when generating the C, V, N, and Z condition codes, and the
condition codes are set using only the 32 LSBs of the result. Typically, this mode is very useful for
controller and compiled code.

NOTE:

The unsigned branch condition variants (HS, LS, HI, and LO) may only be
used when the CC bit is set in the program controller’s OMR register. If
this bit is not set, then these condition codes should not be used.

In cases where it is necessary to maintain all 36 bits of the result and the extension register is required, any
unsigned numbers must first be converted to signed when loaded into the accumulator using the technique
in Section 8.1.6, “Unsigned Load of an Accumulator,” on page 8-7. In these cases, the extension register
will contain the correct value, and since values are now signed, it is possible to use the signed branch
conditions: GE, LE, GT, or LT. Typically, this mode is more useful for DSP code.

3.3.7.2 Unsigned Multiplication

Unsigned multiplications are supported with the MACSU and MPYSU instructions. If only one operand is
unsigned, then these instructions can be used directly. If both operands are unsigned, an
unsigned-times-unsigned multiplication is performed using the technique demonstrated in Example 3-11
on page 3-23.

Fractional and Integer Data ALU Arithmetic

� Data Arithmetic Logic Unit 3-23

Example 3-11. Multiplying Two Unsigned Fractional Values

MOVE X:FIRST,X0 ; Get first operand from memory
ANDC #$7FFF,X0 ; Force first operand to be positive
MOVE X:SECOND,Y0 ; Get second operand from memory
MPYSU X0,Y0,A
TSTW X:FIRST ; Perform final addition if MSB of first operand was a one
BGE OVER ; If first operan is less that one, jump to OVER
MOVE #$0,B
MOVE Y0,B1 ; Move Y0 to B without sign extension
ADD B,A

OVER
(ASR A) ; Optionally convert to integer result

3.3.8 Multi-Precision Operations
The DSP56800 instruction set contains several instructions which simplify extended- and multi-precision
mathematical operations. By using these instructions, 64-bit and 96-bit calculations can be performed, and
calculations involving different-sized operands are greatly simplified.

3.3.8.1 Multi-Precision Addition and Subtraction

Two instructions, ADC and SBC, assist in performing multi-precision addition (Example 3-12) and
subtraction (Example 3-13), such as 64-bit or 96-bit operations.

3.3.8.2 Multi-Precision Multiplication

Two instructions are provided to assist with multi-precision multiplication. When these instructions are
used, the multiplier accepts one signed and one unsigned two’s-complement operand. The instructions are:

• MPYSU—multiplication with one signed and one unsigned operand

Example 3-12. 64-Bit Addition

X:$1:X:$0:Y1:Y0 + A2:A1:A0:B1:B0 = A2:A1:A0:B1:B0
(B2 must contain only sign extension before addition begins;
that is, bits 35–31 are all 1s or 0s)

MOVE X:$21,B ; Correct sign extension
MOVE X:$20,B0
ADD Y,B ; First 32-bit addition
MOVE X:$0,Y0 ; Get second 32-bit operand from memory
MOVE X:$1,Y1
ADC Y,A ; Second 32-bit addition

Example 3-13. 64-Bit Subtraction

A2:A1:A0:B1:B0 - X:$1:X:$0:Y1:Y0 = A2:A1:A0:B1:B0
(B2 must contain only sign extension before addition begins;
that is, bits 35–31 are all 1s or 0s)

MOVE X:$21,B ; Correct sign extension
MOVE X:$20,B0
SUB Y,B ; First 32-bit subtraction
MOVE X:$0,Y0 ; Get second 32-bit operand from memory
MOVE X:$1,Y1
SBC Y,A ; Second 32-bit subtraction

3-24 DSP56800 Family Manual �

Data Arithmetic Logic Unit

• MACSU—multiply-accumulate with one signed and one unsigned operand

The use of these instructions in multi-precision multiplication is demonstrated in Figure 3-13, with
corresponding examples shown in Example 3-14, Example 3-15 on page 3-24, and Example 3-16 on
page 3-25.

Figure 3-13. Single-Precision Times Double-Precision Signed Multiplication

Example 3-14. Fractional Single-Precision Times Double-Precision Value—Both Signed

 (5 Icyc, 5 Instruction Words)

MPYSU X0,Y0,A ; Single Precision times Lower Portion
MOVE A0,B

MOVE A1,A0 ; 16-bit Arithmetic Right Shift
MOVE A2,A1 ; (note that A2 contains only sign extension)

MAC X0,Y1,A ; Single Precision times Upper Portion
; and added to Previous

Example 3-15. Integer Single-Precision Times Double-Precision Value—Both Signed

 (7 Icyc, 7 Instruction Words)

MPYSU X0,Y0,A ; Single Precision times Lower Portion
MOVE A0,B

MOVE A1,A0 ; 16-bit Arithmetic Right Shift
MOVE A2,A1 ; (note that A2 contains only sign

; extension)

MAC X0,Y1,A ; Single Precision x Upper Portion and add to Previous
ASR A ; Convert result to integer, A2 contains sign extension
ROR B ; (52-bit shift of A2:A1:A0:B1)

32 Bits

X0

x

Sign Ext.

Signed x Unsigned

Y1 Y0

B1A0A1A2

X0 x Y0

Signed x Signed

AA0046

 +

16 Bits

48 Bits

X0 x Y1

Fractional and Integer Data ALU Arithmetic

� Data Arithmetic Logic Unit 3-25

Example 3-16. Multiplying Two Fractional Double-Precision Values

;
; Signed 32x32 => 64 Multiplication Subroutine
;
; Parameters:
; R1 = ptr to lowest word of one operand
; R2 = ptr to lowest word of one operand
; R3 = ptr to where results are stored

MULT_S32_X_S32
 CLR B ; clears B2 portion

; Multiply lwr1 * lwr2 and save lowest 16-bits of result

 ; Operation ; X0 Y1 Y0 A
 ; --------- ; ----- ----- ----- -------------------
 MOVE X:(R1),Y0 ; --- --- lwr1 -----
 ANDC #CLRMSB,Y0 ; --- --- lwr1’ -----
 MOVE X:(R2)+,Y1 ; --- lwr2 lwr1’ -----
 MPYSU Y0,Y1,A ; --- lwr2 lwr1’ lwr1’.s * lwr2.u
 TSTW X:(R1)+ ; check if MSB set in original lwr1 value
 BGE CORRECT_RES1 ; perform correction if this was true
 MOVE Y1,B1 ; --- lwr2 lwr1’ -----
 ADD B,A ; --- lwr2 lwr1’ lwr1.u * lwr2.u
CORRECT_RES1
 MOVE A0,X:(R3)+ ; --- lwr2 lwr1’ lwr1.u * lwr2.u

; Multiply two cross products and save next lowest 16-bits of result
 ; Operation ; X0 Y1 Y0 A
 ; --------- ; ----- ----- ----- -------------------
 MOVE A1,X:TMP ; (arithmetic 16-bit right shift of 36-bit accum)
 MOVE A2,A ; ---- ---- ---- -----
 MOVE X:TMP,A0 ; ---- ---- ---- A = product1 >> 16

 MOVE X:(R1)-,X0 ; upr1 lwr2 lwr1’ A = product1 >> 16
 MACSU X0,Y1,A ; upr1 lwr2 lwr1’ A+upr1.s*lwr2.u

 MOVE X:(R1),Y1 ; upr1 lwr1 lwr1’ A+upr1.s*lwr2.u
 MOVE X:(R2),Y0 ; upr1 lwr1 upr2 A+upr1.s*lwr2.u
 MACSU Y0,Y1,A ; upr1 lwr1 upr2 A+upr1.s*lwr2.u+upr2.s*lwr1.u
 MOVE A0,X:(R3)+ ; upr1 lwr1 upr2 A = result w/ cross prods

; Multiply upr1 * upr2 and save highest 32-bits of result
 ; Operation ; X0 Y1 Y0 A
 ; --------- ; ----- ----- ----- -------------------
 MOVE A1,X:TMP ; (arithmetic 16-bit right shift of 36-bit accum)
 MOVE A2,A ; upr1 lwr1 upr2 -----
 MOVE X:TMP,A0 ; upr1 lwr1 upr2 A = result >> 16

 MAC X0,Y0,A ; upr1 lwr1 upr2 A + upr1.s * upr2.s
 MOVE A0,X:(R3)+ ; --- --- --- -----
 MOVE A1,X:(R3)+ ; --- --- --- -----

 RTS

; The corresponding algorithm for integer multiplication of 32-bit values
; would be the same as for fractional with the addition of a final arithmetic
; right shift of the 64-bit result.

3-26 DSP56800 Family Manual �

Data Arithmetic Logic Unit

3.4 Saturation and Data Limiting
DSP algorithms are sometimes capable of calculating values larger than the data precision of the machine
when processing real data streams. Normally, a processor would allow the value to overflow when this
occurred, but this creates problems when processing real-time signals. The solution is saturation, a
technique whereby values that exceed the machine data precision are “clipped,” or converted to the
maximum value of the same sign that fits within the given data precision.

Saturation is especially important when data is running through a digital filter whose output goes to a
digital-to-analog converter (DAC), since it “clips” the output data instead of allowing arithmetic overflow.
Without saturation, the output data may incorrectly switch from a large positive number to a large negative
value, which can cause problems for DAC outputs in embedded applications.

The DSP56800 architecture supports optional saturation of results through two limiters found within the
data ALU:

• the Data Limiter

• the MAC Output Limiter

The Data Limiter saturates values when data is moved out of an accumulator with a MOVE instruction or
parallel move. The MAC Output Limiter saturates the output of the data ALU’s MAC unit.

3.4.1 Data Limiter
The data limiter protects against overflow by selectively limiting when reading an accumulator register as
a source operand in a MOVE instruction. When a MOVE instruction specifies an accumulator (F) as a
source, and if the contents of the selected source accumulator can be represented in the destination operand
size without overflow (that is, the accumulator extension register not in use), the data limiter is enabled but
does not saturate, and the register contents are placed onto the CGDB unmodified. If a MOVE instruction
is used and the contents of the selected source accumulator cannot be represented without overflow in the
destination operand size, the data limiter will substitute a “limited” data value onto the CGDB that has
maximum magnitude and the same sign as the source accumulator, as shown in Table 3-4 on page 3-27.

The F0 portion of an accumulator is ignored by the data limiter.

Consider a simple example, shown in Example 3-17.

Example 3-17. Demonstrating the Data Limiter—Positive Saturation

MOVE #$7FFC,A ; Initialize A = $0:7FFC:0000

INC A ; A = $0:7FFD:0000
MOVE A,X:(R0)+ ; Write $7FFD to memory (limiter enabled)
INC A ; A = $0:7FFE:0000
MOVE A,X:(R0)+ ; Write $7FFE to memory (limiter enabled)
INC A ; A = $0:7FFF:0000
MOVE A,X:(R0)+ ; Write $7FFF to memory (limiter enabled)

INC A ; A = $0:8000:0000 <=== Overflows 16-bits
MOVE A,X:(R0)+ ; Write $7FFF to memory (limiter saturates)
INC A ; A = $0:8001:0000
MOVE A,X:(R0)+ ; Write $7FFF to memory (limiter saturates)
INC A ; A = $0:8002:0000
MOVE A,X:(R0)+ ; Write $7FFF to memory (limiter saturates)

MOVE A1,X:(R0)+ ; Write $8002 to memory (limiter disabled)

Saturation and Data Limiting

� Data Arithmetic Logic Unit 3-27

Once the accumulator increments to $8000 in Example 3-17, the positive result can no longer be written to
a 16-bit memory location without overflow. So, instead of writing an overflowed value to memory, the
value of the most positive 16-bit number, $7fff, is written instead by the data limiter block. Note that the
data limiter block does not affect the accumulator; it only affects the value written to memory. In the last
instruction, the limiter is disabled because the register is specified as A1.

Consider a second example, shown in Example 3-18 on page 3-27.

Example 3-18. Demonstrating the Data Limiter — Negative Saturation

MOVE #$8003,A ; Initialize A = $F:8003:0000

DEC A ; A = $F:8002:0000
MOVE A,X:(R0)+ ; Write $8002 to memory (limiter enabled)
DEC A ; A = $F:8001:0000
MOVE A,X:(R0)+ ; Write $8001 to memory (limiter enabled)
DEC A ; A = $F:8000:0000
MOVE A,X:(R0)+ ; Write $8000 to memory (limiter enabled)

DEC A ; A = $F:7FFF:0000 <=== Overflows 16-bits
MOVE A,X:(R0)+ ; Write $8000 to memory (limiter saturates)
DEC A ; A = $F:7FFE:0000
MOVE A,X:(R0)+ ; Write $8000 to memory (limiter saturates)
DEC A ; A = $F:7FFD:0000
MOVE A,X:(R0)+ ; Write $8000 to memory (limiter saturates)

MOVE A1,X:(R0)+ ; Write $7FFD to memory (limiter disabled)

Once the accumulator decrements to $7FFF in Example 3-18, the negative result can no longer fit into a
16-bit memory location without overflow. So, instead of writing an overflowed value to memory, the value
of the most negative 16-bit number, $8000, is written instead by the data limiter block.

Test logic exists in the extension portion of each accumulator register to support the operation of the
limiter circuit; the logic detects overflows so that the limiter can substitute one of two constants to
minimize errors due to overflow. This process is called “saturation arithmetic.” When limiting does occur,
a flag is set and latched in the status register. The value of the accumulator is not changed.

It is possible to bypass this limiting feature when reading an accumulator by reading it out through its
individual portions.

Figure 3-14 on page 3-28 demonstrates the importance of limiting. Consider the A accumulator with the
following 36-bit value to be read to a 16-bit destination:

0000 1.000 0000 0000 0000 0000 0000 0000 0000 (in binary)
(+ 1.0 in fractional decimal, $0 8000 0000 in hexadecimal)

If this accumulator is read without the limiting enabled by a MOVE A1,X0 instruction, the 16-bit X0
register after the MOVE instruction would contain the following, assuming signed fractional arithmetic:

1.000 0000 0000 0000(- 1.0 fractional decimal, $8000 in hexadecimal)

Table 3-4. Saturation by the Limiter Using the MOVE Instruction

Extension bits in use in selected
accumulator?

MSB of F2 Output of Limiter onto the CGDB Bus

No n/a Same as Input—Unmodified MSP

Yes 0 $7FFF—Maximum Positive Value

Yes 1 $8000—Maximum Negative Value

3-28 DSP56800 Family Manual �

Data Arithmetic Logic Unit

This is clearly in error because the value -1.0 in the X0 register greatly differs from the value of +1.0 in the
source accumulator. In this case, overflow has occurred. To minimize the error due to overflow, it is
preferable to write the maximum (“limited”) value the destination can assume. In this example, the limited
value would be:

0.111 1111 1111 1111(+ 0.999969 fractional decimal, $7FFF in hexadecimal)

This is clearly closer to the original value, +1.0, than -1.0 is, and thus introduces less error. Saturation is
equally applicable to both integer and fractional arithmetic.

Thus, saturation arithmetic can have a large effect in moving from register A1 to register X0. The
instruction MOVE A1,X0 performs a move without limiting, and the instruction MOVE A,X0 performs a
move of the same 16 bits with limiting enabled. The magnitude of the error without limiting is 2.0; with
limiting it is 0.000031.

3.4.2 MAC Output Limiter
The MAC output limiter optionally saturates or limits results calculated by data ALU arithmetic operations
such as multiply, add, increment, round, and so on.

The MAC Output Limiter can be enabled by setting the SA bit in the OMR register. See Section 5.1.9.3,
“Saturation (SA)—Bit 4,” on page 5-11.

Consider a simple example, shown in Example 3-19.

Example 3-19. Demonstrating the MAC Output Limiter

BFSET #$0010,OMR ; Set SA bit—-enables MAC Output Limiter
MOVE #$7FFC,A ; Initialize A = $0:7FFC:0000
NOP

INC A ; A = $0:7FFD:0000
INC A ; A = $0:7FFE:0000
INC A ; A = $0:7FFF:0000

INC A ; A = $0:7FFF:FFFF <=== Saturates to 16-bits!
INC A ; A = $0:7FFF:FFFF <=== Saturates to 16-bits!
ADD #9,A ; A = $0:7FFF:FFFF <=== Saturates to 16-bits!

Figure 3-14. Example of Saturation Arithmetic

*Limiting automatically occurs when the 36-bit operands A and B are read with a MOVE instruction. Note that the
contents of the original accumulator are not changed.

Without Limiting—MOVE A1,X0 With Limiting—MOVE A,X0

A = +1.00 . . . 0 1 0 0 0 0 0 0 0 0

3 0 15 0 15 0

35 0

X0 = +0.9999690 1 1 1 1

IERRORI = .000031

A = +1.00 . . . 0 1 0 0 0 0 0 0 0 0

3 0 15 0 15 0

35 0

X0 = -1.01 0 0 0 0

IERRORI = 2.015 0 15 0

Saturation and Data Limiting

� Data Arithmetic Logic Unit 3-29

Once the accumulator increments to $7FFF in Example 3-19, the saturation logic in the MAC Output
limiter prevents it from growing larger because it can no longer fit into a 16-bit memory location without
overflow. So instead of writing an overflowed value to back to the A accumulator, the value of the most
positive 32-bit number, $7FFF:FFFF, is written instead as the arithmetic result.

The saturation logic operates by checking 3 bits of the 36-bit result out of the MAC unit: EXT[3], EXT[0],
and MSP[15]. When the SA bit is set, these 3 bits determine if saturation is performed on the MAC unit’s
output and whether to saturate to the maximum positive value ($7FFF:FFFF) or the maximum negative
value ($8000:0000), as shown in Table 3-5.

The MAC Output Limiter not only affects the results calculated by the instruction, but can also affect
condition code computation as well. See Appendix A.4.2, “Effects of the Operating Mode Register’s SA
Bit,” on page A-11 for more information.

3.4.3 Instructions Not Affected by the MAC Output Limiter
The MAC Output Limiter is always disabled (even if the SA bit is set) when the following instructions are
being executed:

• ASLL, ASRR, LSRR

• ASRAC, LSRAC

• IMPY

• MPYSU, MACSU

• AND, OR, EOR

• LSL, LSR, ROL, ROR, NOT

• TST

The CMP is not affected by the OMR’s SA bit except for the case when the first operand is not a register
(that is, it is a memory location or an immediate value) and the second operand is the X0, Y0, or Y1
register. In this particular case, the U bit calculation is affected by the SA bit. No other bits are affected by
the SA bit for the CMP instruction.

Table 3-5. MAC Unit Outputs with Saturation Enabled

EXT[3] EXT[0] MSP[15] Result Stored in Accumulator

0 0 0 Result out of MAC Array with no limiting
occurring

0 0 1 $0:7FFF:FFFF

0 1 0 $0:7FFF:FFFF

0 1 1 $0:7FFF:FFFF

1 0 0 $F:8000:0000

1 0 1 $F:8000:0000

1 1 0 $F:8000:0000

1 1 1 Result out of MAC Array with no limiting
occurring

3-30 DSP56800 Family Manual �

Data Arithmetic Logic Unit

Also, the MAC Output Limiter only affects operations performed in the data ALU. It has no effect on
instructions executed in other blocks of the core, such as the following:

• Bit Manipulation Instructions (Table 6-29 and Table 6-30 on page 6-26)

• Move instructions (Table 6-17 through Table 6-20)

• Looping instructions (Table 6-32 on page 6-27)

• Change of flow instructions (Table 6-31 on page 6-27)

• Control instructions (Table 6-33 on page 6-28)

NOTE:

The SA bit affects the TFR instruction when it is set, optionally limiting
data as it is transferred from one accumulator to another.

3.5 Rounding
The DSP56800 provides three instructions that can perform rounding—RND, MACR, and MPYR. The
RND instruction simply rounds a value in the accumulator register specified by the instruction, whereas
the MPYR or MACR instructions round the result calculated by the instruction in the MAC array. Each
rounding instruction rounds the result to a single-precision value so the value can be stored in memory or
in a 16-bit register. In addition, for instructions where the destination is one of the two accumulators, the
LSP of the destination accumulator (A0 or B0) is set to $0000.

The DSP core implements two types of rounding: convergent rounding and two’s-complement rounding.
For the DSP56800, the rounding point is between bits 16 and 15 of a 36-bit value; for the A accumulator, it
is between the A1 register’s LSB and the A0 register’s MSB. The usual rounding method rounds up any
value above one-half (that is, LSP > $8000) and rounds down any value below one-half (that is, LSP <
$8000). The question arises as to which way the number one-half (LSP = $8000) should be rounded. If it is
always rounded one way, the results will eventually be biased in that direction. Convergent rounding
solves the problem by rounding down if the number is even (bit 16 equals zero) and rounding up if the
number is odd (bit 16 equals one), whereas two’s-complement rounding always rounds this number up.
The type of rounding is selected by the rounding bit (R) of the operating mode register (OMR) in the
program controller.

3.5.1 Convergent Rounding
This is the default rounding mode. This rounding is also called “round to nearest even number.” For most
values, this mode rounds identically to two’s-complement rounding; it only differs for the case where the
least significant 16 bits is exactly $8000. For this case, convergent rounding prevents any introduction of a
bias by rounding down if the number is even (bit 16 equals zero) and rounding up if the rounding is odd
(bit 16 equals one). Figure 3-15 on page 3-31 shows the four possible cases for rounding a number in the A
or B accumulator.

Rounding

� Data Arithmetic Logic Unit 3-31

3.5.2 Two’s-Complement Rounding
When this type of rounding is selected by setting the rounding bit in the OMR, one is added to the bit to the
right of the rounding point (bit 15 of A0) before the bit truncation during a rounding operation. Figure 3-16
shows the two possible cases.

Figure 3-15. Convergent Rounding

Case I: If A0 < $8000 (1/2), then round down (add nothing)

Before Rounding After Rounding

Case II: If A0 > $8000 (1/2), then round up (Add 1 To A1)

Case III: If A0 = $8000 (1/2), and the LSB of A1 = 0 (even),then round down (add nothing)

Case IV: If A0 = $8000 (1/2), and the LSB = 1 (odd), then round up (add 1 To A1)

*A0 is always clear; performed during RND, MPYR, and MACR

X X . . X X X X X . . . X X X 0 1 0 0 0 1 1 X X X X X X
35 32 31 16 15 0

A2 A1 A0
0

X X . . X X X X X . . . X X X 0 1 0 0 0 0 0 0 0 0
35 32 31 16 15 0

A2 A1 A0*

Before Rounding After Rounding

X X . . X X X X X . . . X X X 0 1 0 0 1 1 1 0 X X X X X
35 32 31 16 15 0

A2 A1 A0

1

X X . . X X X X X . . . X X X 0 1 0 1 0 0 0 0 0 0
35 32 31 16 15 0

A2 A1 A0*

Before Rounding After Rounding

X X . . X X X X X . . . X X X 0 1 0 0 1 0 0 0 0 0 0
35 32 31 16 15 0

A2 A1 A0
0

X X . . X X X X X . . . X X X 0 1 0 0 0 0 0 0 0 0
35 32 31 16 15 0

A2 A1 A0*

Before Rounding After Rounding

X X . . X X X X X . . . X X X 0 1 0 1 1 0 0 0 0 0 0
35 32 31 16 15 0

A2 A1 A0

1

X X . . X X X X X . . . X X X 0 1 1 0 0 0 0 0 0 0
35 32 31 16 15 0

A2 A1 A0*

AA0048

3-32 DSP56800 Family Manual �

Data Arithmetic Logic Unit

Once the rounding bit has been programmed in the OMR register, there is a delay of one instruction cycle
before the new rounding mode becomes active.

Figure 3-16. Two’s-Complement Rounding

XXXX XX...XX0100 011XXX...XX XXXX XX...XX0100 0000...0000

XXXX XX...XX0100 1110XX...XX XXXX XX...XX0101 0000...0000

Case I: A0 < 0.5 ($8000), then round down

Case II: A0 >= 0.5 ($8000), then round up

Before Rounding After Rounding

A2 A1 A0 A2 A1 A0*

36 31 15 0 36 31 15 0

A2 A1 A0 A2 A1 A0*

36 31 15 0 36 31 15 0

Before Rounding After Rounding

AA0050
*A0 is always clear; performed during RND, MPYR, MACR

Condition Code Generation

� Data Arithmetic Logic Unit 3-33

3.6 Condition Code Generation
The DSP core supports many different arithmetic instructions for both word and long-word operations.
The flexible nature of the instruction set means that condition codes must also be generated correctly for
the different combinations allowed. There are three questions to consider when condition codes are
generated for an instruction:

• Is the arithmetic operation’s destination an accumulator, or a 16-bit register or memory location?

• Does the instruction operate on the whole accumulator or only on the upper portion?

• Is the CC bit set in the program controller’s OMR register?

The CC bit in the OMR register allows condition codes to be generated without an examination of the
contents of the extension register. This sets up a computing environment where there is effectively no
extension register because its contents are ignored. Typically, the extension register is most useful in DSP
operations. For the case of general-purpose computing, the CC bit is often set when the program is not
performing DSP tasks. However, it is possible to execute any instruction with the CC bit set or cleared,
except for instructions that use one of the unsigned condition codes (HS, LS, HI, or LO).

This section covers different aspects of condition code generation for the different instructions and
configurations on the DSP core. Note that the L, E, and U bits are computed the same regardless of the size
of the destination or the value of the CC bit:

• L is set if overflow occurs or limiting occurs in a parallel move.

• E is set if the extension register is in use (that is, if bits 35–31 are not all the same).

• U is set according to the standard definition of the U bit.

3.6.1 36-Bit Destinations—CC Bit Cleared
Most arithmetic instructions generate a result for a 36-bit accumulator. When condition codes are being
generated for this case and the CC bit is cleared, condition codes are generated using all 36 bits of the
accumulator. Examples of instructions in this category are ADC, ADD, ASL, CMP, MAC, MACR, MPY,
MPYR, NEG, NORM, and RND.

The condition codes for 36-bit destinations are computed as follows:

• N is set if bit 35 of the corresponding accumulator is set except during saturation. During a
saturation condition, the V (overflow) bit is set and the N bit is not set.

• Z is set if bits 35–0 of the corresponding accumulator are all cleared.

• V is set if overflow has occurred in the 36-bit result.

• C is set if a carry (borrow) has occurred out of bit 35 of the result.

3-34 DSP56800 Family Manual �

Data Arithmetic Logic Unit

3.6.2 36-Bit Destinations—CC Bit Set
Most arithmetic instructions generate a result for a 36-bit accumulator. When condition codes are being
generated for this case and the CC bit is set, condition codes are generated using only the 32 bits of the
accumulator located in the MSP and LSP. There may be values in the extension registers, but the contents
of the extension register are ignored. It is effectively the same as if there is no extension register. Examples
of instructions in this category are ADC, ADD, ASL, CMP, MAC, MACR, MPY, MPYR, NEG, NORM,
and RND.

The condition codes for 32-bit destinations (CC equals one) are computed as follows:

• N is set if bit 31 of the corresponding accumulator is set.

• Z is set if bits 31–0 of the corresponding accumulator are all cleared.

• V is set if overflow has occurred in the 32-bit result.

• C is set if a carry (borrow) has occurred out of bit 31 of the result.

3.6.3 20-Bit Destinations—CC Bit Cleared
Two arithmetic instructions generate a result for the upper two portions of an accumulator, the MSP and
the extension register, leaving the LSP of the accumulator unchanged. When condition codes are being
generated for this case and the CC bit is cleared, condition codes are generated using the 20 bits in the
upper two portions of the accumulator. The two instructions in this category are DECW and INCW.

The condition codes for DECW and INCW (CC equals zero) are computed as follows:

• N is set if bit 35 of the corresponding accumulator is set except during saturation. During a
saturation condition, the V (overflow) bit is set and the N bit is not set.

• Z is set if bits 35–16 of the corresponding accumulator are all cleared.

• V is set if overflow has occurred in the 20-bit result.

• C is set if a carry (borrow) has occurred out of bit 35 of the result.

3.6.4 20-Bit Destinations—CC Bit Set
Two arithmetic instructions generate a result for the upper two portions of an accumulator, the MSP and
the extension register, leaving the LSP of the accumulator unchanged. When condition codes are being
generated for this case and the CC bit is set, the bits in the extension register and the LSP of the
accumulator are not used to calculate condition codes. The two instructions in this category are DECW and
INCW.

The condition codes for 16-bit destinations (CC equals one) are computed as follows:

• N is set if bit 31 of the corresponding accumulator is set.

• Z is set if bits 31–16 of the corresponding accumulator are all cleared.

• V is set if overflow has occurred in the 16-bit result.

• C is set if a carry (borrow) has occurred out of bit 31 of the result.

Condition Code Generation

� Data Arithmetic Logic Unit 3-35

3.6.5 16-Bit Destinations
Some arithmetic instructions can generate a result for a 36-bit accumulator or a 16-bit destination such as a
register or memory location. When condition codes for a 16-bit destination are being generated, the CC bit
is ignored and condition codes are generated using the 16 bits of the result. Instructions in this category are
ADD, CMP, SUB, DECW, INCW, MAC, MACR, MPY, MPYR, ASR, and ASL.

The condition codes for 16-bit destinations are computed as follows:

• N is set if bit 15 of the result is set.

• Z is set if bits 15–0 of the result are all cleared.

• V is set if overflow has occurred in the 16-bit result.

• C is set if a carry (borrow) has occurred out of bit 15 of the result.

Other instructions only generate results for a 16-bit destination such as the logical instructions. When
condition codes are being generated for this case, the CC bit is ignored and condition codes are generated
using the 16 bits of the result. Instructions in this category are AND, EOR, LSL, LSR, NOT, OR, ROL,
and ROR. The rules for condition code generation are presented for the cases where the destination is a
16-bit register or 16 bits of a 36-bit accumulator.

The condition codes for logical instructions with 16-bit registers as destinations are computed as follows:

• N is set if bit 15 of the corresponding register is set.

• Z is set if bits 15–0 of the corresponding register are all cleared.

• V is always cleared.

• C—Computation dependent on instruction.

The condition codes for logical instructions with 36-bit accumulators as destinations are computed as
follows:

• N is set if bit 31 of the corresponding accumulator is set.

• Z is set if bits 31–16 of the corresponding accumulator are all cleared.

• V is always cleared.

• C—Computation dependent on instruction.

3.6.6 Special Instruction Types
Some instructions do not follow the preceding rules for condition code generation, and must be considered
separately. Examples of instructions in this category are the logical and bit-field instructions (ANDC,
EORC, NOTC, ORC, BFCHG, BFCLR, BFSET, BFTSTL, BFTSTH, BRCLR, and BRSET), the CLR
instruction, the IMPY(16) instruction, the multi-bit shifting instructions (ASLL, ASRR, LSLL, LSRR,
ASRAC, and LSRAC), and the DIV instruction.

The bit-field instructions only affect the C and the L bits. The CLR instruction only generates condition
codes when clearing an accumulator. The condition codes are not modified when clearing any other
register. Some of the condition codes are not defined after executing the IMPY(16) and multi-bit shifting
instructions. The DIV instruction only affects a subset of all the condition codes. See Appendix A.4,
“Condition Code Computation,” on page A-6 for details on the condition code computation for each of
these instructions.

3-36 DSP56800 Family Manual �

Data Arithmetic Logic Unit

3.6.7 TST and TSTW Instructions
There are two instructions, TST and TSTW, that are useful for checking the value in a register or memory
location.

The condition codes for the TST instruction (on a 36-bit accumulator) with CC equal to zero are computed
as follows:

• L is set if limiting occurs in a parallel move.

• E is set if the extension register is in use—that is, if bits 35–31 are not all the same.

• U is set according to the standard definition of the U bit.

• N is set if bit 35 of the corresponding accumulator is set except during saturation.

• Z is set if bits 35–0 of the corresponding accumulator are all cleared.

• V is always cleared.

• C is always cleared.

The condition codes for the TST instruction (on a 36-bit accumulator) with CC equal to one are computed
as follows:

• L is set if limiting occurs in a parallel move.

• E is set if the extension register is in use, that is, if bits 35–31 are not all the same.

• U is set according to the standard definition of the U bit.

• N is set if bit 31 of the corresponding accumulator is set.

• Z is set if bits 31–0 of the corresponding accumulator are all cleared.

• V is always cleared.

• C is always cleared.

The condition codes for the TSTW instruction (on a 16-bit value) are computed as follows:

• N is set if the MSB of the 16-bit value is set.

• Z is set if all 16 bits of the 16-bit value are cleared.

• V is always cleared.

• C is always cleared.

3.6.8 Unsigned Arithmetic
When arithmetic on unsigned operands is being performed, the condition codes used to compare two
values differ from those used for signed arithmetic. See Section 3.3.7, “Unsigned Arithmetic,” for a
discussion of condition code usage for unsigned arithmetic.

� Address Generation Unit 4-1

Chapter 4
Address Generation Unit
This chapter describes the architecture and the operation of the address generation unit (AGU). The
address generation unit is the block where all address calculations are performed. It contains two
arithmetic units—a modulo arithmetic unit for complex address calculations and an
incrementer/decrementer for simple calculations. The modulo arithmetic unit can be used to calculate
addresses in a modulo fashion, automatically wrapping around when necessary. A set of pointer registers,
special-purpose registers, and multiple buses within the unit allow up to two address updates or a memory
transfer to or from the AGU in a single cycle.

The capabilities of the address generation unit include the following operations:

• Provide one address to X data memory on the XAB1 bus

• Post-update an address after providing the original address value on XAB1 bus

• Calculate an effective address which is then provided on the XAB1 bus

• Provide two addresses to X data memory on the XAB1 and XAB2 buses and post-update both
addresses

• Provide one address to program memory for program memory data accesses and post-update the
address

• Increment or decrement a counter during normalization operations

• Provide a conditional register move (Tcc instruction)

Note that in the cases where the address generation unit is generating one or two addresses to access X data
memory, the program controller generates a second or third address used to concurrently fetch the next
instruction.

The AGU provides many different addressing modes, which include the following:

• Indirect addressing with no update

• Indirect addressing with post-increment

• Indirect addressing with post-decrement

• Indirect addressing with post-update by a
register

• Indirect addressing with index by a 16-bit
offset

• Indirect addressing with index by a 6-bit
offset

• Indirect addressing with index by a register

• Immediate data

• Immediate short data

• Absolute addressing

• Absolute short addressing

• Peripheral short addressing

• Register direct

• Implicit

4-2 DSP56800 Family Manual �

Address Generation Unit

This chapter covers the architecture and programming model of the address generation unit, its addressing
modes, and a discussion of the linear and modulo arithmetic capabilities of this unit. It concludes with a
discussion of pipeline dependencies related to the address generation unit.

4.1 Architecture and Programming Model
The major components of the address generation unit are as follows:

• Four address registers (R0-R3)

• A stack pointer register (SP)

• An offset register (N)

• A modifier register (M01)

• A modulo arithmetic unit

• An incrementer/decrementer unit

The AGU uses integer arithmetic to perform the effective address calculations necessary to address data
operands in memory. The AGU also contains the registers used to generate the addresses. It implements
linear and modulo arithmetic and operates in parallel with other chip resources to minimize
address-generation overhead.

Two ALUs are present within the AGU: the modulo arithmetic unit and the incrementer/decrementer unit.
The two arithmetic units can generate up to two 16-bit addresses and two address updates every instruction
cycle: one for XAB1 and one for XAB2 for instructions performing two parallel memory reads. The AGU
can directly address 65,536 locations on XAB1 and 65,536 locations on the PAB. The AGU can directly
address up to 65,536 locations on XAB2, but can only generate addresses to on-chip memory. The two
ALUs work with the data memory to access up to two locations and provide two operands to the data ALU
in a single cycle. The primary operand is addressed with the XAB1, and the second operand is addressed
with the XAB2. The data memory, in turn, places its data on the core global data bus (CGDB) and the
second external data bus (XDB2), respectively (see Figure 4-1 on page 4-3). See Section 6.1, “Introduction
to Moves and Parallel Moves,” on page 6-1 for more discussion on parallel memory moves.

Architecture and Programming Model

� Address Generation Unit 4-3

All four address pointer registers and the SP are used in generating addresses in the register indirect
addressing modes. The offset register can be used by all four address pointer registers and the SP, whereas
the modulo register can be used by the R0 or by both the R0 and R1 pointer registers.

Whereas all the address pointer registers and the SP can be used in many addressing modes, there are some
instructions that only work with a specific address pointer register. These cases are presented in Table 4-5
on page 4-9.

The address generation unit is connected to four major buses: CGDB, XAB1, XAB2, and PAB. The
CGDB is used to read or write any of the address generation unit registers. The XAB1 and XAB2 provide
a primary and secondary address, respectively, to the X data memory, and the PAB provides the address
when accessing the program memory.

A block diagram of the address generation unit is shown in Figure 4-1, and its corresponding programming
model is shown in Figure 4-2. The blocks and registers are explained in the following subsections.

Figure 4-1. Address Generation Unit Block Diagram

Figure 4-2. Address Generation Unit Programming Model

R0

R2

R3

N

XAB2(15:0)PAB(15:0) XAB1(15:0)

R3 Only

Inc./Dec.

R1

SP

Modulo

Arithmetic

Unit

M01

CGDB(15:0)

AA0014

N M01

SP

R3

R2

R1

R0

Pointer
Registers

Offset
Register

Modifier
Register

AA0015

15 0 15 0 15 0

4-4 DSP56800 Family Manual �

Address Generation Unit

4.1.1 Address Registers (R0-R3)
The address register file consists of four 16-bit registers R0-R3 (Rn) that usually contain addresses used as
pointers to memory. Each register may be read or written by the CGDB. High speed access to the XAB1,
XAB2, and PAB buses is required to allow maximum access time for the internal and external X data
memory and program memory. Each address register may be used as input for the modulo arithmetic unit
for a register update calculation. Each register may be written by the output of the modulo arithmetic unit.

The R3 register may be used as input to a separate incrementer/decrementer unit for an independent
register update calculation. This unit is used in the case of any instruction that performs two data memory
reads in its parallel move field. For instructions where two reads are performed from the X data memory,
the second read using the R3 pointer must always access on-chip memory.

NOTE:

Due to pipelining, if an address register (Rn, SP, or M01) is changed with
a MOVE or bit-field instruction, the new contents will not be available for
use as a pointer until the second following instruction. If the SP is changed,
no LEA or POP instructions are permitted until the second following
instruction.

4.1.2 Stack Pointer Register (SP)
The stack pointer register (SP) is a single 16-bit register that is used implicitly in all PUSH instruction
macros and POP instructions. The SP is used explicitly for memory references when used with the
address-register-indirect modes. It is post-decremented on all POPs from the software stack. The SP
register may be read or written by the CGDB.

NOTE:

This register must be initialized explicitly by the programmer after coming
out of reset.

Due to pipelining, if an address register (Rn, SP, or M01) is changed with
a MOVE or bit-field instruction, the new contents will not be available for
use as a pointer until the second following instruction. If the SP is changed,
no LEA or POP instructions are permitted until the second following
instruction.

4.1.3 Offset Register (N)
The offset register (N) usually contains offset values used to update address pointers. This single register
can be used to update or index with any of the address registers (R0-R3, SP). This offset register may be
read or written by the CGDB. The offset register is used as input to the modulo arithmetic unit. It is often
used for array indexing or indexing into a table, as discussed in Section 8.7, “Array Indexes,” on page
8-26.

Architecture and Programming Model

� Address Generation Unit 4-5

NOTE:

If the N address register is changed with a MOVE instruction, this
register’s contents will be available for use on the immediately following
instruction. In this case the instruction that writes the N address register
will be stretched one additional instruction cycle. This is true for the case
when the N register is used by the immediately following instruction; if N
is not used, then the instruction is not stretched an additional cycle. If the
N address register is changed with a bit-field instruction, the new contents
will not be available for use until the second following instruction.

4.1.4 Modifier Register (M01)
The modifier register (M01) specifies whether linear or modulo arithmetic is used when calculating a new
address and may be read or written by the CGDB. This modifier register is automatically read when the R0
address register is used in an address calculation and can optionally be used also when R1 is used. This
register has no effect on address calculations done with the R2, R3, or SP registers. It is used as input to the
modulo arithmetic unit. This modifier register is preset during a processor reset to $FFFF (linear
arithmetic).

NOTE:

Due to pipelining, if an address register (Rn, SP, or M01) is changed with
a MOVE or bit-field instruction, the new contents will not be available for
use as a pointer until the second following instruction. If the SP is changed,
no LEA or POP instructions are permitted until the following instruction.

4.1.5 Modulo Arithmetic Unit
The modulo arithmetic unit can update one address register or the SP during one instruction cycle. It is
capable of performing linear and modulo arithmetic, as described in Section 4.3, “AGU Address
Arithmetic.” The contents of the modifier register specifies the type of arithmetic to be performed in an
address register update calculation. The modifier value is decoded in the modulo arithmetic unit and
affects the unit’s operation. The modulo arithmetic unit’s operation is data-dependent and requires
execution cycle decoding of the selected modifier register contents. Note that the modulo capability is only
allowed for R0 or R1 updates; it is not allowed for R2, R3, or SP updates.

The modulo arithmetic unit first calculates the result of linear arithmetic (for example, Rn+1, Rn-1, Rn+N)
which is selected as the modulo arithmetic unit’s output for linear arithmetic. For modulo arithmetic, the
modulo arithmetic unit will perform the function (Rn+N) modulo (M01+1), where N can be 1, -1, or the
contents of the offset register N. If the modulo operation requires “wraparound” for modulo arithmetic, the
summed output of the modulo adder will give the correct, updated address register value; otherwise, if
wraparound is not necessary, the linear arithmetic calculation gives the correct result.

4.1.6 Incrementer/Decrementer Unit
The incrementer/decrementer unit is used for address-update calculations during dual data-memory read
instructions. It is used either to increment or decrement the R3 register. This adder performs only linear
arithmetic; it performs no modulo arithmetic.

4-6 DSP56800 Family Manual �

Address Generation Unit

4.2 Addressing Modes
The DSP56800 instruction set contains a full set of operand addressing modes, optimized for
high-performance signal processing as well as efficient controller code. All address calculations are
performed in the address generation unit to minimize execution time.

Addressing modes specify where the operand or operands for an instruction can be found—whether an
immediate value, located in a register, or in memory—and provide the exact address of the operand(s).

The addressing modes are grouped into four categories:

• Register direct—directly references the processor registers as operands

• Address register indirect—uses an address register as a pointer to reference a location in memory
as an operand

• Immediate—the operand is contained as a value within the instruction itself

• Absolute—uses an address contained within the instruction to reference a location in memory as an
operand

An effective address in an instruction will specify an addressing mode (that is, where the operands can be
found), and for some addressing modes the effective address will further specify an address register that
points to a location in memory, how the address is calculated, and how the register is updated.

These addressing modes are referred to extensively in Section 6.5.2, “LSLL Alias,” on page 6-13.

Several of the examples in the following sections demonstrate the use of assembler forcing operators.
These can be used in an instruction to force a desired addressing mode, as shown in Table 4-1.

Other assembler forcing operators are available for jump and branch instructions, as shown in Table 4-2.

Table 4-1. Addressing Mode Forcing Operators

Desired Action Forcing Operator Syntax Example

Force immediate short data #<xx #<$07

Force 16-bit immediate data #>xxxx #>$07

Force absolute short address X:<xx X:<$02

Force I/O short address X:<<xx X:<<$FFE3

Force 16-bit absolute address X:>xxxx X:>$02

Force short offset X:(SP-<xx) X:(SP-<$02)

Force 16-bit offset X:(Rn+>xxxx) X:(R0+>$03)

Table 4-2. Jump and Branch Forcing Operators

Desired Action Forcing Operator Syntax Example

Force 7-bit relative branch offset <xx <LABEL1

Force 16-bit absolute jump address >xxxx >LABEL5

Force 16-bit absolute loop address >xxxx >LABEL4

Addressing Modes

� Address Generation Unit 4-7

4.2.1 Register-Direct Modes
The register-direct addressing modes specify that the operand is in one (or more) of the nine data ALU
registers, seven address registers, or four control registers. The various options are shown in Table 4-3 on
page 4-7.

4.2.1.1 Data or Control Register Direct

The operand is in one, two, or three data ALU register(s) as specified in the operands or in a portion of the
data bus movement field in the instruction. This addressing mode is also used to specify a control register
operand. This reference is classified as a register reference.

4.2.1.2 Address Register Direct

The operand is in one of the seven address registers (R0-R3, N, M01, or SP) specified by an effective
address in the instruction. This reference is classified as a register reference.

NOTE:

Due to pipelining, if any address register is changed with a MOVE or
bit-field instruction, the new contents will not be available for use as a
pointer until the second following instruction. If the SP is changed, no
LEA or POP instructions are permitted until the second following
instruction.

4.2.2 Address-Register-Indirect Modes
When an address register is used to point to a memory location, the addressing mode is called address
register indirect. The term indirect is used because the operand is not the address register itself, but the
contents of the memory location pointed to by the address register. The effective address in the instruction
specifies the address register Rn or SP and the address calculation to be performed. These addressing

Table 4-3. Addressing Mode—Register Direct

Addressing Mode:
Register Direct

Notation for Register Direct in the

Instruction Set Summary1

1. The register field notations found in the middle column are explained in more detail
in Table 6-16 on page 6-16 and Table 6-15 on page 6-15.

Examples

Any register DD
DDDDD

HHH
HHHH

F
F1

F1DD
FDD

Rj
Rn

A, A2, A1, A0
B, B2, B1, B0

Y, Y1, Y0
X0

R0, R1, R2, R3
SP
N

M01

PC
OMR, SR

LA, LC
HWS

4-8 DSP56800 Family Manual �

Address Generation Unit

modes specify that the operand is (or operands are) in memory and provide the specific address(es) of the
operand(s). A portion of the data bus movement field in the instruction specifies the memory reference to
be performed. The type of address arithmetic used is specified by the address modifier register.

Address-register-indirect modes may require an offset and a modifier register for use in address
calculations. The address register (Rn or SP) is used as the address register, the shared offset register is
used to specify an optional offset from this pointer, and the modifier register is used to specify the type of
arithmetic performed.

Some addressing modes are only available with certain address registers (Rn). For example, although all
address registers support the “indexed by long displacement” addressing mode, only the R2 address
register supports the “indexed by short displacement” addressing mode. For instructions where two reads
are performed from the X data memory, the second read using the R3 pointer must always be from on-chip
memory. The addressed register sets are summarized in Table 4-5.

Table 4-4. Addressing Mode—Address Register Indirect

Addressing Mode:
Address Register Indirect

Notation in the Instruction

Set Summary1

1. Rj represents one of the four pointer registers R0-R3; Rn is any of the AGU address
registers R0-R3 or SP.

Examples

Accessing Program (P) Memory

Post-increment P:(Rj)+ P:(R0)+

Post-update by offset N P:(Rj)+N P:(R3)+N

Accessing Data (X) Memory

No update X:(Rn) X:(R3)
X:(N)

X:(SP)

Post-increment X:(Rn)+ X:(R1)+
X:(SP)+

Post-decrement X:(Rn)- X:(R3)-
X:(N)-

Post-update by offset N or N3
available for word accesses only

X:(Rn)+N X:(R1)+N

Indexed by offset N X:(Rn+N) X:(R2+N)
X:(SP+N)

Indexed by 6-bit displacement
R2 and SP registers only

X:(R2+xx)
X:(SP-xx)

X:(R2+15)
X:(SP-$1E)

Indexed by 16-bit displacement X:(Rn+xxxx) X:(R0-97)
X:(N+1234)

X:(SP+$03F7)

Addressing Modes

� Address Generation Unit 4-9

The type of arithmetic to be performed is not encoded in the instruction, but it is specified by the address
modifier register (M01 for the DSP56800 core). It indicates whether linear or modulo arithmetic is
performed when doing address calculations. In the case where there is not a modifier register for a
particular register set (R2 or R3), linear addressing is always performed. For address calculations using R0,
the modifier register is always used; for calculations using R1, the modifier register is optionally used.

Each address-register-indirect addressing mode is illustrated in the following subsections.

4.2.2.1 No Update: (Rn), (SP)

The address of the operand is in the address register Rn or SP. The contents of the Rn register are
unchanged. The M01 and N registers are ignored. This reference is classified as a memory reference. See
Figure 4-3.

Table 4-5. Address-Register-Indirect Addressing Modes Available

Register
Set

Arithmetic
Types

Addressing Modes Allowed Notes

R0/M01/N Linear or modulo (R0)
(R0)+
(R0)-
(R0)+N
(R0+N)
(R0+xxxx)

R0 always uses the M01 register
to specify modulo or linear arith-
metic. R0 can optionally be used
as a source register for the Tcc
instruction. R0 is the only register
allowed as a counter for the
NORM instruction.

R1/M01/N Linear or modulo (R1)
(R1)+
(R1)-
(R1)+N
(R1+N)
(R1+xxxx)

R1 optionally uses the M01 reg-
ister to specify modulo or linear
arithmetic. R1 can optionally be
used as a destination register for
the Tcc instruction.

R2/N Linear (R2)
(R2)+
(R2)-
(R2)+N
(R2+N)
(R2+xx)
(R2+xxxx)

R2 supports a one-word indexed
addressing mode. R2 is not
allowed as either pointer for
instructions that perform two
reads from X data memory. No
modulo arithmetic is allowed.

R3/N Linear (R3)
(R3)+
(R3)-
(R3)+N
(R3+N)
(R3+xxxx)

R3 provides a second address
for instructions with two reads
from data memory. This second
address can only access internal
memory. It can also be used for
instructions that perform one
access to data memory. No mod-
ulo arithmetic is allowed.

SP/N Linear (SP)
(SP)-
(SP)+
(SP)+N
(SP+N)
(SP-xx)
(SP+xxxx)

The SP supports a one-word
indexed addressing mode, which
is useful for accessing local vari-
ables and passed parameters.
No modulo arithmetic is allowed.

4-10 DSP56800 Family Manual �

Address Generation Unit

Figure 4-3. Address Register Indirect: No Update

$1000

Before Execution

X Memory

X X X X

$1000R0

(n/a)N

(n/a)M01

1 2 3 40

A2 A1

5 6 7 8

A0

A

After Execution

$1000R0

(n/a)N

(n/a)M01

1 2 3 40

A2 A1

5 6 7 8

A0

A

Assembler syntax: X:(Rn), X:(SP)
Additional instruction execution cycles: 0
Additional effective address program words: 0

35 32 31 16 15 0

15 0

35 32 31 16 15 0

15 0 15 0

15 0 15 0

15 0 15 0

AA0016

No Update Example: MOVE A1,X:(R0)

$1000

X Memory

1 2 3 4

15 0

Addressing Modes

� Address Generation Unit 4-11

4.2.2.2 Post-Increment by 1: (Rn)+, (SP)+

The address of the operand is in the address register Rn or SP. After the operand address is used, it is
incremented by one and stored in the same address register. The type of arithmetic (linear or modulo) used
to increment Rn is determined by M01 for R0 and R1 and is always linear for R2, R3, and SP. The N
register is ignored. This reference is classified as a memory reference. See Figure 4-4.

Figure 4-4. Address Register Indirect: Post-Increment

$2500

Before Execution

X Memory

X X X X

$2500R1

(n/a)N

$FFFFM01

6 5 4 3A

B2 B1

F E D C

B0

B

After Execution

$2501R1

(n/a)N

$FFFFM01

6 5 4 3A

B2 B1

F E D C

B0

B

Assembler syntax: X:(Rn)+, X:(SP)+, P:(Rn)+
Additional instruction execution cycles: 0
Additional effective address program words: 0

35 32 31 16 15 0

15 0

35 32 31 16 15 0

15 0 15 0

15 0 15 0

15 0 15 0

AA0017

Post-Increment Example: MOVE B0,X:(R1)+

$2500

X Memory

F E D C

15 0

$2501 X X X X $2501 X X X X

4-12 DSP56800 Family Manual �

Address Generation Unit

4.2.2.3 Post-Decrement by 1: (Rn)-, (SP)-

The address of the operand is in the address register Rn or SP. After the operand address is used, it is
decremented by one and stored in the same address register. The type of arithmetic (linear or modulo) used
to increment Rn is determined by M01 for R0 and R1 and is always linear for R2, R3, and SP. The N
register is ignored. This reference is classified as a memory reference. See Figure 4-5.

Figure 4-5. Address Register Indirect: Post-Decrement

$4734

Before Execution

X Memory

X X X X

$4735R1

(n/a)N

$FFFFM01

6 5 4 30

B2 B1

F E D C

B0

B

After Execution

$4734R1

(n/a)N

$FFFFM01

6 5 4 30

B2 B1

F E D C

B0

B

Assembler syntax: X:(Rn)-, X:(SP)-
Additional instruction execution cycles: 0
Additional effective address program words: 0

35 32 31 16 15 0

15 0

35 32 31 16 15 0

15 0 15 0

15 0 15 0

15 0 15 0

AA0018

Post-Decrement Example: MOVE B,X:(R1)-

$4734

X Memory

X X X X

15 0

$4735 X X X X $4735 6 5 4 3

Addressing Modes

� Address Generation Unit 4-13

4.2.2.4 Post-Update by Offset N: (Rn)+N, (SP)+N

The address of the operand is in the address register Rn or SP. After the operand address is used, the
contents of the N register are added to Rn and stored in the same address register. The content of N is
treated as a two’s-complement signed number. The contents of the N register are unchanged. The type of
arithmetic (linear or modulo) used to update Rn is determined by M01 for R0 and R1 and is always linear
for R2, R3, and SP. This reference is classified as a memory reference. See Figure 4-6.

Figure 4-6. Address Register Indirect: Post-Update by Offset N

$3200

Before Execution

X Memory

X X X X

$3200R2

$0004N

$FFFFM01

5 5 5 5

Y1

A A A A

Y0

Y

After Execution

$3204R2

$0004N

$FFFFM01

5 5 5 5

Y1

A A A A

Y0

Y

Assembler syntax: X:(Rn)+N, X:(SP)+N, P:(Rn)+N
Additional instruction execution cycles: 0
Additional effective address program words: 0

31 16 15 0

15 0

31 16 15 0

15 0 15 0

15 0 15 0

15 0 15 0

AA0019

Post-Update by Offset N Example: MOVE Y1,X:(R2)+N

$3200

X Memory

5 5 5 5

15 0

$3204 X X X X $3204 X X X X

4-14 DSP56800 Family Manual �

Address Generation Unit

4.2.2.5 Index by Offset N: (Rn+N), (SP+N)

The address of the operand is the sum of the contents of the address register Rn or SP and the contents of
the address offset register N. This addition occurs before the operand can be accessed and, therefore,
inserts an extra instruction cycle. The content of N is treated as a two’s-complement signed number. The
contents of the Rn and N registers are unchanged by this addressing mode. The type of arithmetic (linear or
modulo) used to add N to Rn is determined by M01 for R0 and R1 and is always linear for R2, R3, and SP.
This reference is classified as a memory reference. See Figure 4-7.

Figure 4-7. Address Register Indirect: Indexed by Offset N

$7000

Before Execution

X Memory

X X X X

$7000R0

$0003N

$FFFFM01

E D C BF

A2 A1

A 9 8 7

A0

A

After Execution

$7000R0

$0003N

$FFFFM01

E D C BF

A2 A1

A 9 8 7

A0

A

Assembler syntax: X:(Rn+N), X:(SP+N)
Additional instruction execution cycles: 1
Additional effective address program words: 0

35 32 31 16 15 0

15 0

35 32 31 16 15 0

15 0 15 0

15 0 15 0

15 0 15 0

AA0020

Indexed by Offset N Example: MOVE A1,X:(R0+N)

$7000

X Memory

X X X X

15 0

$7003 X X X X $7003 E D C B

+

Addressing Modes

� Address Generation Unit 4-15

4.2.2.6 Index by Short Displacement: (SP-xx), (R2+xx)

This addressing mode contains the 6-bit short immediate index within the instruction word. This field is
always one-extended to form a negative offset when the SP register is used and is always zero-extended to
form a positive offset when the R2 register is used. The type of arithmetic used to add the short
displacement to R2 or SP is always linear; modulo arithmetic is not allowed. This addressing mode
requires an extra instruction cycle. This reference is classified as an X memory reference. See Figure 4-8.

Figure 4-8. Address Register Indirect: Indexed by Short Displacement

$7000

Before Execution

X Memory

X X X X

$7000R2

$4567N

$FFFFM01

E D C BF

A2 A1

A 9 8 7

A0

A

After Execution

$7000R2

$4567N

$FFFFM01

E D C BF

A2 A1

A 9 8 7

A0

A

Assembler syntax: X:(Rn+xx), X:(SP-xx)
Additional instruction execution cycles: 1
Additional effective address program words: 0

35 32 31 16 15 0

15 0

35 32 31 16 15 0

15 0 15 0

15 0 15 0

15 0 15 0

AA0021

Indexed by Short Displacement Example: MOVE A1,X:(R2+3)

$7000

X Memory

X X X X

15 0

$7003 X X X X $7003 E D C B

+

Short Immediate Value
from the Instruction Word

4-16 DSP56800 Family Manual �

Address Generation Unit

4.2.2.7 Index by Long Displacement: (Rn+xxxx), (SP+xxxx)

This addressing mode contains the 16-bit long immediate index within the instruction word. This second
word is treated as a signed two’s-complement value. The type of arithmetic (linear or modulo) used to add
the long displacement to Rn is determined by M01 for R0 and R1 and is always linear for R2, R3, and SP.
This addressing mode requires two extra instruction cycles. This addressing mode is available for MOVEC
instructions. This reference is classified as an X memory reference. See Figure 4-9.

Figure 4-9. Address Register Indirect: Indexed by Long Displacement

Before Execution

X Memory

$7000R0

$4567N

$FFFFM01

E D C BF

A2 A1

A 9 8 7

A0

A

After Execution

$7000R0

$4567N

$FFFFM01

E D C BF

A2 A1

A 9 8 7

A0

A

Assembler syntax: X:(Rn+xxxx), X:(SP+xxxx)
Additional instruction execution cycles: 2
Additional effective address program words: 1

35 32 31 16 15 0

15 0

35 32 31 16 15 0

15 0 15 0

15 0 15 0

15 0 15 0

AA0022

Indexed by Long Displacement Example: MOVE A1,X:(R0+$10CF)

X Memory

+

Long Immediate Value
from the Instruction Word

15 0

$80CF X X X X $80CF E D C B

$7000 X X X X $7000 X X X X

Addressing Modes

� Address Generation Unit 4-17

4.2.3 Immediate Data Modes
The immediate data modes specify the operand directly in a field of the instruction. That is, the operand
value to be used is contained within the instruction word itself (or words themselves). There are two types
of immediate data modes: immediate data, which uses an extension word to contain the operand, and
immediate short data, where the operand is contained within the instruction word. Table 4-6 summarizes
these two modes.

Table 4-6. Addressing Mode—Immediate

Addressing Mode:
Immediate

Notation in the Instruction
Set Summary

Examples

Immediate short data—5, 6, 7-bit
(unsigned and signed)

#xx #14
#<3

Immediate data—16-bit
(unsigned and signed)

#xxxx #$369C
#>1234

4-18 DSP56800 Family Manual �

Address Generation Unit

4.2.3.1 Immediate Data: #xxxx

This addressing mode requires one word of instruction extension. This additional word contains the 16-bit
immediate data used by the instruction. This reference is classified as a program reference. Examples of
the use and effects of immediate-data mode are shown in Figure 4-10 on page 4-18.

Figure 4-10. Special Addressing: Immediate Data

Assembler syntax: #xxxx
Additional instruction execution cycles: 1
Additional effective address program words: 1

Before Execution

X X X XX

B2 B1

X X X X

B0

B

After Execution

A 9 8 7X

B2 B1

X X X X

B0

B

35 32 31 16 15 0 35 32 31 16 15 0

Immediate into 16-Bit Register Example: MOVE #$A987,B1

Before Execution

X X X XX

B2 B1

X X X X

B0

B

After Execution

1 2 3 40

B2 B1

0 0 0 0

B0

B

35 32 31 16 15 0 35 32 31 16 15 0

Positive Immediate into 36-Bit Accumulator Example: MOVE #$1234,B

Before Execution

X X X XX

B2 B1

X X X X

B0

B

After Execution

A 9 8 7F

B2 B1

0 0 0 0

B0

B

35 32 31 16 15 0 35 32 31 16 15 0

Negative Immediate into 36-Bit Accumulator Example: MOVE #$A987,B

AA0023

Addressing Modes

� Address Generation Unit 4-19

Figure 4-11. Special Addressing: Immediate Short Data

Assembler syntax: #xx
Additional instruction execution cycles: 0
Additional effective address program words: 0

Before Execution

XXXXN

After Execution

15 0

Immediate Short into 16-Bit Address Register Example: MOVE #$0027,N

Before Execution

X X X XX

B2 B1

X X X X

B0

B

After Execution

0 0 1 CX

B2 B1

X X X X

B0

B

35 32 31 16 15 0 35 32 31 16 15 0

Immediate Short into 16-Bit Accumulator Register Example: MOVE #$001C,B1

AA0024

$0027N

15 0

Before Execution

XXXXX0

After Execution

15 0

Immediate Short into 16-Bit Data Register Example: MOVE #$FFC6,X0

$FFC6X0

15 0

Before Execution

X X X XX

B2 B1

X X X X

B0

B

After Execution

0 0 1 C0

B2 B1

0 0 0 0

B0

B

35 32 31 16 15 0 35 32 31 16 15 0

Positive Immediate Short into 36-Bit Accumulator Example: MOVE #$001C,B

Before Execution

X X X XX

B2 B1

X X X X

B0

B

After Execution

F F C 6F

B2 B1

0 0 0 0

B0

B

35 32 31 16 15 0 35 32 31 16 15 0

Negative Immediate Short into 36-Bit Accumulator Example: MOVE #$FFC6,B

4-20 DSP56800 Family Manual �

Address Generation Unit

4.2.3.2 Immediate Short Data: #xx

The immediate-short-data operand is located within the instruction operation word. A 6-bit unsigned
positive operand is used for DO and REP instructions, and a 7-bit signed operand is used for an immediate
move to an on-core register instruction. This reference is classified as a program reference. See
Figure 4-11 on page 4-19.

4.2.4 Absolute Addressing Modes
Similar to the direct addressing modes, the absolute addressing modes specify the operand value within the
instruction or instruction-extension words. Unlike the direct modes, these values are not used as the
operands themselves, but are interpreted as absolute data memory addresses for the operand values. The
different absolute addressing modes are shown in Table 4-7.

Table 4-7. Addressing Mode—Absolute

Addressing Mode:
Absolute

Notation in the Instruction
Set Summary

Examples

Absolute short address—6 bit
(direct addressing)

X:aa X:$0002
X:<$02

I/O short address—6 bit
(direct addressing)

X:pp X:$00FFE3
X:<<$FFE3

Absolute address—16-bit
(extended addressing)

X:xxxx X:$00F001
X:>$C002

Addressing Modes

� Address Generation Unit 4-21

4.2.4.1 Absolute Address (Extended Addressing): xxxx

This addressing mode requires one word of instruction extension, which contains the 16-bit absolute
address of the operand. No registers are used to form the address of the operand. Absolute address
instructions are used with the bit-manipulation and move instructions. This reference is classified as a
memory reference and a program reference. See Figure 4-12.

Figure 4-12. Special Addressing: Absolute Address

Assembler syntax: X:xxxx
Additional instruction execution cycles: 1
Additional effective address program words: 1

$5079

X Memory

1 2 3 4

15 0

$5079

X Memory

1 2 3 4

15 0

Before Execution

XXXXX0

After Execution

15 0

$1234X0

15 0

Absolute Address Example: MOVE X:$5079,X0

AA0025

4-22 DSP56800 Family Manual �

Address Generation Unit

4.2.4.2 Absolute Short Address (Direct Addressing): <aa>

For the absolute short addressing mode, the address of the operand occupies 6 bits in the instruction
operation word and is zero-extended. This allows direct access to the first 64 locations in X memory. No
registers are used to form the address of the operand. Absolute short instructions are used with the bit-field
manipulation and move instructions. See Figure 4-13.

Figure 4-13. Special Addressing: Absolute Short Address

Assembler syntax: X:<aa>
Additional instruction execution cycles: 0
Additional effective address program words: 0

$0003

X Memory

X X X X

15 0

$0003

X Memory

A B C D

15 0

Before Execution

$ABCDR2

After Execution

15 0

$ABCDR2

15 0

Absolute Short Address Example: MOVE R2,X:<$0003

AA0026

$0000 $0000

Addressing Modes

� Address Generation Unit 4-23

4.2.4.3 I/O Short Address (Direct Addressing): <pp>

For the I/O short addressing mode, the address of the operand occupies 6 bits in the instruction operation
word and is one-extended. This allows direct access to the last 64 locations in X memory, which contain
the on-chip peripheral registers. No registers are used to form the address of the operand. See Figure 4-14
for examples of using the I/O short direct addressing mode.

4.2.5 Implicit Reference
Some instructions make implicit reference to the program counter (PC), software stack, hardware stack
(HWS), loop address register (LA), loop counter (LC), or status register (SR). The implied registers and
their use are defined by the individual instruction descriptions. See Appendix A, “Instruction Set Details,“
for more information.

4.2.6 Addressing Modes Summary
Table 4-8 on page 4-24 contains a summary of the addressing modes discussed in the preceding
subsections of Section 4.2.

Figure 4-14. Special Addressing: I/O Short Address

Assembler syntax: X:<pp>
Additional instruction execution cycles: 0
Additional effective address program words: 0

$FFFF

X Memory

5 6 7 8

15 0

$FFFF

X Memory

5 6 7 8

15 0

Before Execution

XXXXR3

After Execution

15 0

$5678R3

15 0

I/O Short Address Example: MOVE X:<<$FFFB,R3

AA0027

$FFFB $FFFB

4-24 DSP56800 Family Manual �

Address Generation Unit

Table 4-8. Addressing Mode Summary

Addressing Mode
Uses

M011

1. The M01 modifier can only be used on the R0/N/M01 or R1/N/M01 register sets

Operand Reference

Assembler Syntax

S2

2. Hardware stack reference

C3

3. Program controller register reference

D4

4. Data ALU register reference

A5

5. Address Generation Unit register reference

P6

6. Program memory reference

X7

7. X memory reference

XX8

8. Dual X memory read

Register Direct

Data or control register No X X

Address register (Rn, SP) No X Rn

Address modifier register (M01) No X M01

Address offset register (N) No X N

Hardware stack (HWS) No X HWS

Software stack No X

Address Register Indirect

No update No X (Rn)

Post-increment by 1 Yes X X X (Rn)+

Post-decrement by 1 Yes X (Rn)-

Post-update by offset N Yes X X X (Rn)+N

Index by offset N Yes X (Rn+N)

Index by short displacement No X (R2+xx) or (SP-xx)

Index by long displacement Yes X (Rn+xxxx) or
(SP+xxxx)

Immediate, Absolute, and Implicit

Immediate data No X #xxxx

Immediate short data No X #xx

Absolute address No X X xxxx

Absolute short address No X <aa>

I/O short address No X <pp>

Implicit No X X X X

AGU Address Arithmetic

� Address Generation Unit 4-25

4.3 AGU Address Arithmetic
When an arithmetic operation is performed in the address generation unit, it can be performed using either
linear or modulo arithmetic. Linear arithmetic is used for general-purpose address computation, as found in
all microprocessors. Modulo arithmetic is used to create data structures in memory such as circular buffers,
first-in-first-out queues (FIFOs), delay lines, and fixed-size stacks. Using these structures allows data to be
manipulated simply by updating address register pointers, rather than by moving large blocks of data.

Linear versus modulo arithmetic is selected using the modifier register, MO1. Arithmetic on the R0 and R1
AGU registers may be performed using either linear or modulo arithmetic. The R2, R3, and SP registers
can be modified using linear arithmetic only.

4.3.1 Linear Arithmetic
Linear arithmetic is “normal” address arithmetic, as found on general-purpose microprocessors. It is
performed using 16-bit two’s-complement addition and subtraction. The 16-bit offset register N, or
immediate data (+1, -1, or a displacement value), is used in the address calculations. Addresses are
normally considered unsigned; offsets are considered signed.

Linear arithmetic is enabled for the R0 and R1 registers by setting the modifier register (M01) to $FFFF.
The M01 register is set to $FFFF on reset.

NOTE:

To ensure compatibility with future generations of DSP56800-compatible
DSP devices, care should be taken to avoid address arithmetic operations
that can cause address register values to overflow. On DSP56800 Family
chips, register values can be expected to “wrap” appropriately. Future
generations may support address ranges > 64K, however, causing potential
address-calculation errors.

4.3.2 Modulo Arithmetic
Many DSP and standard control algorithms require the use of specialized data structures, such as circular
buffers, FIFOs, and stacks. The DSP56800 architecture provides support for these algorithms by
implementing modulo arithmetic in the address generation unit.

4.3.2.1 Modulo Arithmetic Overview

To understand modulo address arithmetic, consider the example of a circular buffer. A circular buffer is a
block of sequential memory locations with a special property: a pointer into the buffer is limited to the
buffer’s address range. When a buffer pointer is incremented such that it would point past the end of the
buffer, the pointer is “wrapped” back to the beginning of the buffer. Similarly, decrementing a pointer that
is located at the beginning of the buffer will wrap the pointer to the end. This behavior is achieved by
performing modulo arithmetic when incrementing or decrementing the buffer pointers. See Figure 4-15 on
page 4-26.

4-26 DSP56800 Family Manual �

Address Generation Unit

Figure 4-15. Circular Buffer

The modulo arithmetic unit in the AGU simplifies the use of a circular buffer by handling the address
pointer wrapping for you. After establishing a buffer in memory, the R0 and R1 address pointers can be
made to wrap in the buffer area by programming the M01 register.

Modulo arithmetic is enabled by programming the M01 register with a value that is one less than the size
of the circular buffer. See Section 4.3.2.2, “Configuring Modulo Arithmetic,” for exact details on
programming the M01 register. Once enabled, updates to the R0 or R1 registers using one of the
post-increment or post-decrement addressing modes are performed with modulo arithmetic, and will wrap
correctly in the circular buffer.

The address range within which the address pointers will wrap is determined by the value placed in the
M01 register and the address contained within one of the pointer registers. Due to the design of the modulo
arithmetic unit, the address range is not arbitrary, but limited based on the value placed in M01. The lower
bound of the range is calculated by taking the size of the buffer, rounding it up to the next highest power of
two, and then rounding the address contained in the R0 or R1 pointers down to the nearest multiple of that
value.

For example: for a buffer size of M, a value 2k is calculated such that 2k > M. This is the buffer size
rounded up to the next highest power of two. For a value M of 37, 2k would be 64. The lower boundary of
the range in which the pointer registers will wrap is the value in the R0 or R1 register with the low-order k
bits all set to zero, effectively rounding the value down to the nearest multiple of 2k (64 in this case). This
is shown in Figure 4-16 on page 4-27.

Circular
Buffer

Address
Pointer

Lower Boundary: “K” LSBs Are All “0s”

M01 = Size of Modulo Region Minus One

Upper Boundary: Lower Boundary + M01

Address of Lower Boundary:

Base Address
01k-1 ...k15

0 0 0 0 0

AGU Address Arithmetic

� Address Generation Unit 4-27

Figure 4-16. Circular Buffer with Size M=37

When modulo arithmetic is performed on the buffer pointer register, only the low-order k bits are
modified; the upper 16 - k bits are held constant, fixing the address range of the buffer. The algorithm used
to update the pointer register (R0 in this case) is as follows:

R0[15:k] = R0[15:k]
R0[k-1:0] = (R0[k-1:0] + offset) MOD (M01 + 1)

Note that this algorithm can result in some memory addresses being unavailable. If the size of the buffer is
not an even power of two, there will be a range of addresses between M and 2k-1 (37 and 63 in our
example) that are not addressable. Section 4.3.2.7.3, “Memory Locations Not Available for Modulo
Buffers,” addresses this issue in greater detail.

4.3.2.2 Configuring Modulo Arithmetic

As noted in Section 4.3.2.1, “Modulo Arithmetic Overview,” modulo arithmetic is enabled by
programming the address modifier register, M01. This single register enables modulo arithmetic for both
the R0 and R1 registers, although in order for modulo arithmetic to be enabled for the R1 register it must
be enabled for the R0 register as well. When both pointers use modulo arithmetic, the sizes of both buffers
are the same. They can refer to the same or different buffers as desired.

The possible configurations of the M01 register are given in Table 4-9.

Table 4-9. Programming M01 for Modulo Arithmetic

16-Bit M01
Register Contents

Address Arithmetic
Performed

Pointer Registers
Affected

$0000 (Reserved) —

$0001 Modulo 2 R0 pointer only

$0002 Modulo 3 R0 pointer only

Upper Boundary: $00A4

$009F

$00B0

Lower Bound Relative to R0

Initial R0 Pointer Value

Memory

Circular
Buffer

Lower Boundary: $0080

Lower Bound + Size - 1 = Upper Bound

(Unavailable
Addresses)

4-28 DSP56800 Family Manual �

Address Generation Unit

The high-order two bits of the M01 register determine the arithmetic mode for R0 and R1. A value of 00
for M01[15:14] selects modulo arithmetic for R0. A value of 10 for M01[15:14] selects modulo arithmetic
for both R0 and R1. A value of 11 disables modulo arithmetic. The remaining 14 bits of M01 hold the size
of the buffer minus one.

NOTE:

The reserved values ($0000, $4000-$8000, and $C000-$FFFE) should not
be used. The behavior of the modulo arithmetic unit is undefined for these
values, and may result in erratic program execution.

...

$3FFE Modulo 16383 R0 pointer only

$3FFF Modulo 16384 R0 pointer only

$4000 (Reserved) —

...

$7FFF (Reserved) —

$8000 (Reserved) —

$8001 Modulo 2 R0 and R1 pointers

$8002 Modulo 3 R0 and R1 pointers

...

$BFFE Modulo 16383 R0 and R1 pointers

$BFFF Modulo 16384 R0 and R1 pointers

$C000 (Reserved) —

...

$FFFE (Reserved) —

$FFFF Linear Arithmetic R0 and R1 pointers both
set up for linear arith-
metic

Table 4-9. Programming M01 for Modulo Arithmetic (Continued)

16-Bit M01
Register Contents

Address Arithmetic
Performed

Pointer Registers
Affected

AGU Address Arithmetic

� Address Generation Unit 4-29

4.3.2.3 Supported Memory Access Instructions

The address generation unit supports modulo arithmetic for the following address-register-indirect modes:

As noted in the preceding discussion, modulo arithmetic is only supported for the R0 and R1 address
registers.

4.3.2.4 Simple Circular Buffer Example

Suppose a five-location circular buffer is needed for an application. The application locates this buffer at
X:$800 in memory. (This location is arbitrary—any location in data memory would suffice.) In order to
configure the AGU correctly to manage this circular buffer, the following two pieces of information are
needed:

The size of the buffer: five words
The location of the buffer: X:$0800 – X:$0804

Modulo addressing is enabled for the R0 pointer by writing the size minus one ($0004) to M01[13:0], and
00 to M01[15:14]. See Figure 4-17.

Figure 4-17. Simple Five-Location Circular Buffer

The location of the buffer in memory is determined by the value of the R0 pointer when it is used to access
memory. The size of the memory buffer (five in this case) is rounded up to the nearest power of two (eight
in this case). The value in R0 is then rounded down to the nearest multiple of eight. For the base address to
be X:$0800, the initial value of R0 must be in the range X:$0800 – X:$0804. Note that the initial value of
R0 does not have to be X:$0800 to establish this address as the lower bound of the buffer. However, it is
often convenient to set R0 to the beginning of the buffer. The source code in Example 4-1 shows the
initialization of the example buffer.

Example 4-1. Initializing the Circular Buffer

MOVE #(5-1),M01 ; Initialize the buffer for five locations
MOVE #$0800,R0 ; R0 can be initialized to any location

; within the buffer. For simplicity, R0
; is initialized to the value of the lower
; boundary

(Rn) (Rn)+

(Rn)- (Rn)+N

(Rn+N) (Rn+xxxx)

Circular
Buffer

$0800

M01 Register = Size - 1 = 5 - 1 = $0004

$0804

R0

4-30 DSP56800 Family Manual �

Address Generation Unit

The buffer is used simply by accessing it with MOVE instructions. The effect of modulo address
arithmetic becomes apparent when the buffer is accessed multiple times, as in Example 4-2 on page 4-30.

Example 4-2. Accessing the Circular Buffer

MOVE X:(R0)+,X0 ; First time accesses location $0800
; and bumps the pointer to location $0801

MOVE X:(R0)+,X0 ; Second accesses at location $0801
MOVE X:(R0)+,X0 ; Third accesses at location $0802
MOVE X:(R0)+,X0 ; Fourth accesses at location $0803
MOVE X:(R0)+,X0 ; Fifth accesses at location $0804

; and bumps the pointer to location $0800

MOVE X:(R0)+,X0 ; Sixth accesses at location $0800 <=== NOTE
MOVE X:(R0)+,X0 ; Seventh accesses at location $0801
MOVE X:(R0)+,X0 ; and so forth...

For the first several memory accesses, the buffer pointer is incremented as expected, from $0800 to $0801,
$0802, and so forth. When the pointer reaches the top of the buffer, rather than incrementing from $0804 to
$0805, the pointer value “wraps” back to $0800.

The behavior is similar when the buffer pointer register is incremented by a value greater than one.
Consider the source code in Example 4-3, where R0 is post-incremented by three rather than one. The
pointer register correctly “wraps” from $0803 to $0801—the pointer does not have to land exactly on the
upper and lower bound of the buffer for the modulo arithmetic to wrap the value properly.

Example 4-3. Accessing the Circular Buffer with Post-Update by Three

MOVE #(5-1),M01 ; Initialize the buffer for five locations
MOVE #$0800,R0 ; Initialize the pointer to $0800
MOVE #3,N ; Initialize “bump value” to 3
NOP
NOP
MOVE X:(R0)+N,X0 ; First time accesses location $0800

; and bumps the pointer to location $0803
MOVE X:(R0)+N,X0 ; Second accesses at location $0803

; and wraps the pointer around to $0801

MOVE X:(R0)+N,X0 ; Third accesses at location $0801
; and bumps the pointer to location $0804

MOVE X:(R0)+N,X0 ; Fourth accesses at ...

In addition, the pointer register does not need to be incremented; it could be decremented instead.
Instructions that post-decrement the buffer pointer also work correctly. Executing the instruction MOVE
X:(R0)-,X0 when the value of R0 is $0800 will correctly set R0 to $0804.

4.3.2.5 Setting Up a Modulo Buffer

The following steps detail the process of setting up and using the 37-location circular buffer shown in
Figure 4-16 on page 4-27.

1. Determine the value for the M01 register.

— Select the size of the desired buffer; it can be no larger than 16,384 locations. If modulo
arithmetic is to be enabled only for the R0 address register, this gives the following:
M01 = # locations - 1 = 37 - 1 = 36 = $0024

— If modulo arithmetic is to be enabled for both the R0 and R1 address registers, be sure to set the
high-order bit of M01:
M01 = # locations - 1 + $8000 = 37 - 1 + 32768 = 32804 = $8024

AGU Address Arithmetic

� Address Generation Unit 4-31

2. Find the nearest power of two greater than or equal to the circular buffer size. In this

example, the value would be 2k ≥ 37, which gives us a value of k = 6.

3. From k, derive the characteristics of the lower boundary of the circular buffer. Since the “k”
least-significant bits of the address of the lower boundary must all be 0s, then the buffer

base address must be some multiple of 2k. In this case, k = 6, so the base address is some

multiple of 26 = 64.

4. Locate the circular buffer in memory.

— The location of the circular buffer in memory is determined by the upper 16 - k bits of the
address pointer register used in a modulo arithmetic operation. If there is an open area of
memory from locations 111 to 189 ($006F to $00BD), for example, then the addresses of the
lower and upper boundaries of the circular buffer will fit in this open area for J = 2:
Lower boundary = (J x 64) = (2 x 64) = 128 = $0080
Upper boundary = (J x 64) + 36 = (2 x 64) + 36 = 164 = $00A4

— The exact area of memory in which a circular buffer is prepared is specified by picking a value
for the address pointer register, R0 or R1, whose value is inclusively between the desired lower
and upper boundaries of the circular buffer. Thus, selecting a value of 139 ($008B) for R0
would locate the circular buffer between locations 128 and 164 ($0080 to $00A4) in memory
since the upper 10 (16 - k) bits of the address indicate that the lower boundary is 128 ($0080).

— In summary, the size and exact location of the circular buffer is defined once a value is assigned
to the M01 register and to the address pointer register (R0 or R1) that will be used in a modulo
arithmetic calculation.

5. Determine the upper boundary of the circular buffer, which is the lower boundary + #
locations - 1.

6. Select a value for the offset register if it is used in modulo operations.

— If the offset register is used in a modulo arithmetic calculation, it must be selected as follows:
|N| ≤ M01 + 1 [where |N| refers to the absolute value of the contents of the offset register]

— The special case where N is a multiple of the block size, 2k, is discussed in Section 4.3.2.6,
“Wrapping to a Different Bank.”

7. Perform the modulo arithmetic calculation.

— Once the appropriate registers are set up, the modulo arithmetic operation occurs when an
instruction with any of the following addressing modes using the R0 (or R1, if enabled) register
is executed:
(Rn)
(Rn)+
(Rn)-
(Rn)+N
(Rn+N)
(Rn+xxxx)

— If the result of the arithmetic calculation would exceed the upper or lower bound, then wrapping
around is correctly performed.

4.3.2.6 Wrapping to a Different Bank

For the normal case where |N| is less than or equal to M01, the primary address arithmetic unit will
automatically wrap the address pointer around by the required amount. This type of address modification is
useful in creating circular buffers for FIFOs, delay lines, and sample buffers up to 16,384 words long. It is
also used for decimation, interpolation, and waveform generation.

4-32 DSP56800 Family Manual �

Address Generation Unit

If |N| is greater than M01, the result is data dependent and unpredictable except for the special case where
N = L*(2k), a multiple of the block size, 2k, where L is a positive integer. For this special case when using
the (Rn)+N addressing mode, the pointer Rn will be updated using linear arithmetic to the same relative
address that is L blocks forward in memory (see Figure 4-18). Note that this case requires that the offset N
must be a positive two’s-complement integer.

Figure 4-18. Linear Addressing with a Modulo Modifier

This technique is useful in sequentially processing multiple tables or N-dimensional arrays. The special
modulo case of (Rn)+N with N = L*(2k) is useful for performing the same algorithm on multiple blocks of
data in memory (e.g., implementing a bank of parallel IIR filters).

4.3.2.7 Side Effects of Modulo Arithmetic

Due to the way modulo arithmetic is implemented by the DSP56800 Family, there are some side effects of
using modulo arithmetic that must be kept in mind. Specifically, since the base address of a buffer must be
a power of two, and since the modulo arithmetic unit can only detect a single wraparound, there are some
restrictions and limitations that must be considered.

4.3.2.7.1 When a Pointer Lies Outside a Modulo Buffer

If a pointer is outside the valid modulo buffer range and an operation occurs that causes R0 or R1 to be
updated, the contents of the pointer will be updated according to modulo arithmetic rules. For example, a
MOVE B,X:(R0)+N instruction, where R0 = 6, M01 = 5, and N = 0, would apparently leave R0 unchanged
since N = 0. However, since R0 is above the upper boundary, the AGU calculates R0 + N - (M01 + 1) for
the new contents of R0 and sets R0 = 0.

4.3.2.7.2 Restrictions on the Offset Register

The modulo arithmetic unit in the AGU is only capable of detecting a single wraparound of an address
pointer. As a result, if the post-update addressing mode, (Rn)+N, is used, care must be taken in selecting
the value of N. The 16-bit absolute value |N| must be less than or equal to M01 + 1 for proper modulo
addressing. Values of |N| larger than the size of the buffer may result in the Rn address value wrapping
twice, which the AGU cannot detect.

(Rn) + N MOD M01
where N = 2k (L = 1)

M

M

2k

2k

Pipeline Dependencies

� Address Generation Unit 4-33

4.3.2.7.3 Memory Locations Not Available for Modulo Buffers

For cases where the size of a buffer is not a power of two, there will be a range of memory locations
immediately after the buffer that are not accessible with modulo addressing. Lower boundaries for modulo
buffers always begin on an address where the lowest k bits are zeros—that is, a power of two. This means
that for buffers that are not an exact power of two, there are locations above the upper boundary that are
not accessible through modulo addressing.

In Figure 4-16 on page 4-27, for example, the buffer size is 37, which is not a power of two. The smallest
power of two greater than 37 is 64. Thus, there are 64 - 37 = 27 memory locations which are not accessible
with modulo addressing. These 27 locations are between the upper boundary + 1 = $00A5 and the next
power of two boundary address - 1 = $00C0 - 1 = $00BF.

These locations are still accessible when no modulo arithmetic is performed. Using linear addressing (with
the R2 or R3 pointers), absolute addresses, or the no-update addressing mode makes these locations
available.

4.4 Pipeline Dependencies
There are some cases within the address generation unit where the pipelined nature of the DSP core can
affect the execution of a sequence of instructions. The pipeline dependencies are caused by a write to an
AGU register immediately followed by an instruction that uses that same register in an address arithmetic
calculation. When there is a dependency caused by a write to the N register, the DSP automatically stalls
the pipeline one cycle. If a dependency is caused by a write to the R0-R3, SP, or M01 registers, however,
there is no pipeline stall. This is also true if a bit-field operation is performed on the N register. Instead, the
user must take care to avoid this case by rearranging the instructions or by inserting a NOP instruction to
break the instruction sequence.

Several instruction sequences are presented in the following examples to examine cases where their
pipeline dependency occurs, how this affects the machine, and how to correctly program to avoid these
dependencies.

In Example 4-4 there is no pipeline dependency since the N register is not used in the second instruction.
Since there is no dependency, no extra instruction cycles are inserted.

Example 4-4. No Dependency with the Offset Register

MOVE #$7,N ; Write to the N register
MOVE X:(R2)+,X0 ; N not used in this instruction

In Example 4-5 there is no pipeline dependency since the R2 and N registers, used in the address
calculation, are not written in the previous instruction. Since there is no dependency, no extra instruction
cycles are inserted.

Example 4-5. No Dependency with an Address Pointer Register

MOVE #$7,R1 ; Write to R1 register
MOVE X:(R2)+N,X0 ; R1 not used in this instruction

In Example 4-6 there is no pipeline dependency since there is no address calculation performed in the
second instruction. Instead, the R1 register is used as the source operand in a MOVE instruction, for which
there is no pipeline dependency. Since there is no dependency, no extra instruction cycles are inserted.

4-34 DSP56800 Family Manual �

Address Generation Unit

Example 4-6. No Dependency with No Address Arithmetic Calculation

MOVE #$7,R1 ; Write to R1 register
MOVE R1,X:$0004 ; No address arithmetic calculation

; performed

Example 4-7 represents a special case. For the X:(Rn+xxxx) addressing mode, there is no pipeline
dependency even if the same Rn register is written on the previous cycle. This is true for R0-R3 as well as
the SP register. Since there is no dependency, no extra instruction cycles are inserted.

Example 4-7. No Dependency with (Rn+xxxx)

MOVE #$7,R1 ; Write to R1 register
MOVE X:(R1+$3456),X0 ; X:(Rn+xxxx) addressing mode

; using R1

In Example 4-8 there is a pipeline dependency since the N register is used in the second instruction. This is
true for using N to update R0-R3 as well as the SP register. For the case where a dependency is caused by
a write to the N register, the DSP core automatically stalls the pipeline by inserting one extra instruction
cycle. Thus, this sequence is allowed. This dependency also exists for the (Rn+N) addressing mode.

Example 4-8. Dependency with a Write to the Offset Register

MOVE #$7,N ; Write to the N register
MOVE X:(R2)+N,X0 ; N register used in address

; arithmetic calculation

In Example 4-9 there is a pipeline dependency since the N register is used in the second instruction. This is
true for using N to update R0-R3 as well as the SP register. For the case where a dependency is caused by
a bit-field operation on the N register, this sequence is not allowed and is flagged by the assembler. This
sequence may be fixed by rearranging the instructions or inserting a NOP between the two instructions.
This dependency only applies to the BFSET, BFCLR, or BFCHG instructions. There is no dependency for
the BFTSTH, BFTSTL, BRCLR, or BRSET instructions. This dependency also exists for the (Rn+N)
addressing mode.

Example 4-9. Dependency with a Bit-Field Operation on the Offset Register

BFSET #$7,N ; Bit-field operation on the N
; register

MOVE X:(R2)+N,X0 ; N register used in address
; arithmetic calculation

In Example 4-10 there is a pipeline dependency since the address pointer register written in the first
instruction is used in an address calculation in the second instruction. For the case where a dependency is
caused by a write to one of these registers, this sequence is not allowed and is flagged by the assembler.
This sequence may be fixed by rearranging the instructions or inserting a NOP between the two
instructions.

Example 4-10. Dependency with a Write to an Address Pointer Register

MOVE #$7,R2 ; Write to the R2 register
MOVE X:(R2)+,X0 ; R2 register used in address

; arithmetic calculation

In Example 4-11 there is a pipeline dependency since the M01 register written in the first instruction is
used in an address calculation in the second instruction. For the case where a dependency is caused by a
write to the M01 register, this sequence is not allowed and is flagged by the assembler. This sequence may
be fixed by rearranging the instructions or inserting a NOP between the two instructions.

Pipeline Dependencies

� Address Generation Unit 4-35

Example 4-11. Dependency with a Write to the Modifier Register

MOVE #$7,M01 ; Write to the M01 register
MOVE X:(R0)+,X0 ; M01 register used in address

; arithmetic calculation

In Example 4-12 there is a pipeline dependency since the SP register written in the first instruction is used
by the immediately following JSR instruction to store the subroutine return address. The stack pointer will
not be updated with the immediate value in this case. This sequence may be fixed by inserting a NOP
between the two instructions.

Example 4-12. Dependency with a Write to the Stack Pointer Register

MOVE #$3800,SP ; Write to the SP register
JSR LABEL ; SP implicitly used to save the return address

; of the subroutine call

In Example 4-13 there is a pipeline dependency due to contention in the LF bit of the SR register. During
the first execution cycle of the BFSET instruction, the SR, whose LF bit is zero, is read. At the same time,
the first operand of the DO instruction is fetched. During the second execution cycle of the BFSET
instruction, the SR’s content is modified and written back to the SR. This is also the DO instruction decode
cycle, when the LF bit is set. In this case, the LF bit is first set by the DO decode, then cleared by the
BFSET SR modification. A cleared LF bit signals the end of a DO loop, so the DO loop is executed only
once. This sequence can be fixed by inserting a NOP instruction between these two instructions.

Example 4-13. Dependency with a Bit-Field Operation and DO Loop

BFSET #$0200,SR ; Write to the SR register
DO #8,ENDLOOP ; Repeat 8 times body of loop

.....
ENDLOOP:

4-36 DSP56800 Family Manual �

Address Generation Unit

� Program Controller 5-1

Chapter 5
Program Controller
The program controller unit is one of the three execution units in the central processing module. The
program controller performs the following:

• Instruction fetching

• Instruction decoding

• Hardware DO and REP loop control

• Exception (interrupt) processing

This section covers the following:

• The architecture and programming model of the program controller

• The operation of the software stack

• A discussion of program looping

Details of the instruction pipeline and the different processing states of the DSP chip, including reset and
interrupt processing, are covered in Chapter 7, “Interrupts and the Processing States.”

5.1 Architecture and Programming Model
A block diagram of the program controller is shown in Figure 5-1 on page 5-2, and its corresponding
programming model is shown in Figure 5-2 on page 5-3. The programmer views the program controller as
consisting of five registers and a hardware stack (HWS). In addition to the standard program flow-control
resources such as a program counter (PC) and status register (SR), the program controller features registers
dedicated to supporting the hardware DO loop instruction—loop address (LA), loop counter (LC), and the
hardware stack—and an operating mode register (OMR) defining the DSP operating modes.

The blocks and registers within the program controller are explained in the following subsections.

5-2 DSP56800 Family Manual �

Program Controller

Figure 5-1. Program Controller Block Diagram

CGDB

HWS0

HWS1

SR

Condition Codes

Status and Control

LF

NL

from Data ALU

Bits to DSP Core

LA

LC

PAB

Program Counter

IPR

Interrupt Request

Looping Control

Interrupt Control

OMR

External Mode

Control Bits

Select Pin(s)

to DSP Core

Instruction Latch

Instruction Decoder

PDB

Control Signals

AA0008

16-Bit Incrementer

Architecture and Programming Model

� Program Controller 5-3

5.1.1 Program Counter
The program counter (PC) is a 16-bit register that contains the address of the next location to be fetched
from program memory space. The PC may point to instructions, data operands, or addresses of operands.
Reference to this register is always implicit and is implied by most instructions. This special-purpose
address register is stacked when hardware DO looping is initiated (on the hardware stack), when a jump to
a subroutine is performed (on the software stack), and when interrupts occur (on the software stack).

5.1.2 Instruction Latch and Instruction Decoder
The instruction latch is a 16-bit internal register used to hold all instruction opcodes fetched from memory.
The instruction decoder, in turn, uses the contents of the instruction latch to generate all control signals
necessary for pipeline control—for normal instruction fetches, jumps, branches, and hardware looping.

5.1.3 Interrupt Control Unit
The interrupt control unit receives all interrupt requests, arbitrates among them, and then checks the
highest-priority interrupt request against the interrupt mask bits for the DSP core (I1 and I0 in the SR). If
the requesting interrupt has higher priority than the current priority level of the DSP core, then exception
processing begins. When exception processing begins, the interrupt control unit provides the address of the
interrupt vector for interrupts generated on the DSP core, whereas the peripherals generate the vector
address for interrupts generated by an on-chip peripheral.

Interrupts have a simple priority structure with levels zero or one. Level 0 is the lowest interrupt priority
level (IPL) and is maskable. Level 1 is the highest level and is not maskable. Two interrupt mask bits in the
SR reflect the current IPL of the DSP core and indicate the level needed for an interrupt source to interrupt
the processor.

The DSP56800 core provides support for internal (on-chip) peripheral interrupts and two external interrupt
sources, IRQA and IRQB. The interrupt control unit arbitrates between interrupt requests generated
externally and by the on-chip peripherals.

Asserting the reset pin causes the DSP core to enter the reset processing state. This has higher priority and
overrides any activity in the interrupt control unit and the exception processing state.

Figure 5-2. Program Controller Programming Model

Program Controller

DO Loop Stack (HWS)

MR CCR OMR

Program
Counter

Operating Mode
Register

LALC

Loop AddressLoop Counter

PC

15 0 15 08 7 15 0

15 0 15 0

AA0009

Status Register (SR)

12 0

5-4 DSP56800 Family Manual �

Program Controller

Details of interrupt arbitration and the exception processing state are discussed in Section 7.3, “Exception
Processing State,” on page 7-5. The reset processing state is discussed in Section 7.1, “Reset Processing
State,” on page 7-1.

5.1.4 Looping Control Unit
The looping control unit provides hardware dedicated to support loops, which are frequent constructs in
DSP algorithms.

The repeat instruction (REP) loads the 13-bit LC register with a value representing the number of times the
next instruction is to be repeated. The instruction to be repeated is only fetched once per loop, so power
consumption is reduced, and throughput is increased when running from external program memory by
decreasing the number of external fetches required.

The DO instruction loads the 13-bit LC register with a value representing the number of times the loop
should be executed, loads the LA register with the address of the last instruction word in the loop (fetched
only once per loop), and sets the loop flag (LF) bit in the SR. The top-of-loop address is stacked on the
HWS so the loop can be repeated with no overhead. When the LF in the SR is asserted, the loop state
machine will compare the PC contents to the contents of the LA to determine if the last instruction word in
the loop was fetched. If the last word was fetched, the LC contents are tested for one. If LC is not equal to
one, then it is decremented, and the contents of the HWS (the address of the first instruction in the loop)
are read into the PC, effectively executing an automatic branch to the top of the loop. If the LC is equal to
one, then the LF in the SR is restored with the contents of the OMR’s nested looping (NL) bit, the
top-of-loop address is removed from the HWS, and instruction fetches continue at the incremented PC
value (LA + 1).

Nested loops are supported by stacking the address of the first instruction in the loop (top of loop) in the
HWS and copying the LF bit into the OMR’s NL bit prior to the execution of the first instruction in the
loop. The user, however, must explicitly stack the LA and LC registers as described in Section 8.6.4,
“Nested Loops,” on page 8-22.

Looping is described in more detail in Section 5.3, “Program Looping,” and Section 8.6, “Loops,” on page
8-20.

5.1.5 Loop Counter
The loop counter (LC) is a special 13-bit down counter used to specify the number of times to repeat a
hardware program loop (DO and REP loops). When the end of a hardware program loop is reached, the
contents of the loop counter register are tested for one. If the loop counter is one, the program loop is
terminated. If the loop counter is not one, it is decremented by one and the program loop is repeated.

The loop counter may be read and written under program control. This gives software programs access to
the value of the current loop iteration. It also allows for saving and restoring the LC to and from the
software stack when nesting DO loops in software. Note that since the LC is only a 13-bit counter, it is
zero-extended when read; when written, the top three bits of the source word are ignored. This is shown in
Figure 5-3 on page 5-5.

Architecture and Programming Model

� Program Controller 5-5

Figure 5-3. Accessing the Loop Count Register (LC)

This register is not stacked by a DO instruction and not unstacked by end-of-loop processing, as is done on
other Motorola DSPs. Section 5.3, “Program Looping,” discusses what occurs when the loop count is zero.
See Section 8.6.4, “Nested Loops,” on page 8-22 for a discussion of nesting loops in software.

The upper three bits of this register will read as zero during DSP read operations and should be written as
zero to ensure future compatibility.

5.1.6 Loop Address
The loop address (LA) register indicates the location of the last instruction word in a hardware program
loop (DO loop only). When the instruction word at the address contained in this register is fetched, the LC
is checked. If it is not equal to one, the LC is decremented, and the next instruction is taken from the
address at the top of the system stack; otherwise the PC is incremented, the LF is restored with the value in
the OMR’s NL bit, one location from the Hardware Stack is purged, and instruction execution continues
with the instruction immediately after the loop.

The LA register is a read/write register written into by the DO instruction. The LA register can be directly
accessed by the MOVE instructions as well. This also allows for saving and restoring the LA to and from
the stack during the nesting of loops. This register is not stacked by a DO instruction and is not unstacked
by end-of-loop processing. See Section 8.6.4, “Nested Loops,” on page 8-22 for a discussion of nesting
loops in software.

LC

CGDB Bus Contents

Register LC

Used as a Source

Zero Extension
of LC

Contents
of LC

No Bits Present Register LC

LSB of
Word

Reading the Loop Count Register

CGDB Bus Contents

Not Used

LSB of

Word

LC
Register LC Used

as a Destination
No Bits Present Register LC

Writing the Loop Count Register

15 013 12

15 013 12

15 013 12

15 013 12

AA0010

5-6 DSP56800 Family Manual �

Program Controller

5.1.7 Hardware Stack
The hardware stack (HWS) is a 2-deep, 16-bit wide, last-in-first-out (LIFO) stack. It is used for supporting
hardware DO looping; the software stack is used for storing return addresses and the SR for subroutines
and interrupts.

When a DO instruction is executed, the 16-bit address of the first instruction in the DO loop is pushed onto
the hardware stack, the value of the LF bit is copied into the NL bit, and the LF bit is set. Each ENDDO
instruction or natural end-of-loop will pop and discard the 16-bit address stored in the top location of the
hardware stack, copy the NL bit into the LF bit, and clear the NL bit. One hardware stack location is used
for each nested DO loop, and the REP instruction does not use the hardware stack. Thus, a two-deep
hardware stack allows for a maximum of two nested DO loops and a nested REP loop within a program.
Note that this includes any looping that may occur due to a DO loop in an interrupt service routine.

When a write to the hardware stack would cause the stack limit to be exceeded, the write does not take
place, and a non-maskable hardware-stack-overflow interrupt occurs. There is no interrupt on hardware
stack underflow.

5.1.8 Status Register
The status register (SR) is a 16-bit register consisting of an 8-bit mode register (MR) and an 8-bit condition
code register (CCR). The MR register is the high-order 8 bits of the SR; the CCR register is the low-order
8 bits.

The mode register is a special-purpose register that defines the operating state of the DSP core. It is
conveniently located within the SR so that is it stacked correctly on an interrupt. This allows an interrupt
service routine to set up the operating state of the DSP core differently.

The mode register bits are affected by processor reset, exception processing, DO, ENDDO, any type of
jump or branch, RTI, RTS, and SWI instructions, and instructions that directly reference the MR register.
During processor reset, the interrupt mask bits of the mode register will be set, and the LF bit and program
extension bits will be cleared.

The condition code register is a special-purpose control register that defines the current status of the
processor at any given time. Its bits are set as a result of status detected after certain instructions are
executed. The CCR bits are affected by data ALU operations, bit-field manipulation instructions, the
TSTW instruction, parallel move operations, and instructions that directly reference the CCR register. In
addition, the computation of the C, V, N, and Z condition code bits are affected by the OMR’s CC bit,
which specifies whether condition codes are generated using the information in the extension register. The
CCR bits are not affected by data transfers over CGDB unless data limiting occurs when reading the A or
B accumulators. During processor reset, all CCR bits are cleared. The standard definitions of the CCR bits
are given in the following subsections, and more information about condition code bits is found in
Section 3.6, “Condition Code Generation,” on page 3-33. Refer to Appendix A, “Instruction Set Details,“
for computation rules.

The SR register is stacked on the software stack when a JSR is executed or when an interrupt occurs. The
SR register is restored from the stack upon completion of an interrupt service routine by the
return-from-interrupt instruction (RTI). The program extension bits in the SR are restored from the stack
by the return-from-subroutine (RTS) instruction—all other SR bits are unaffected.

The SR format is shown in Figure 5-4 on page 5-7 and is also described in the following subsections.

Architecture and Programming Model

� Program Controller 5-7

Figure 5-4. Status Register Format

5.1.8.1 Carry (C)—Bit 0

The carry (C) bit (SR bit 0) is set if a carry is generated out of the MSB of the result for an addition. It also
is set if a borrow is generated in a subtraction. If the CC bit in the OMR register is zero, the carry or borrow
is generated out of bit 35 of the result. If the CC bit in the OMR register is one, the carry or borrow is
generated out of bit 31 of the result. The carry bit is also modified by bit manipulation and shift
instructions. Otherwise, this bit is cleared.

5.1.8.2 Overflow (V)—Bit 1

If the CC bit in the OMR register is zero and if an arithmetic overflow occurs in the 36-bit result, the
overflow (V) bit (SR bit 1) is set. If the CC bit in the OMR register is one and an arithmetic overflow
occurs in the 32-bit result, the overflow bit is set. This indicates that the result is not representable in the
accumulator register and the accumulator register has overflowed. Otherwise, this bit is cleared.

5.1.8.3 Zero (Z)—Bit 2

The zero (Z) bit (SR bit 2) is set if the result equals zero. Otherwise, this bit is cleared. The number of bits
checked for the zero test depends on the OMR’s CC bit and which instruction is executed, as documented
in Section 3.6, “Condition Code Generation,” on page 3-33.

5.1.8.4 Negative (N)—Bit 3

If the CC bit in the OMR register is zero and if bit 35 of the result is set, the negative (N) bit (SR bit 3) is
set. If the CC bit in the OMR register is one and if bit 31 of the result is set, the negative bit is set.
Otherwise, this bit is cleared.

* Indicates reserved bits that are read as zero and should be written with zero for future compatibility

SR
Status Register
Reset = $0300
Read/Write

* * I1 I0 SZ L E U N Z V CLF * * *

11 10 9 8 7 6 5 4 3 2 1 015 14 13 12

LF—Loop Flag
I1,I0—Interrupt Mask
SZ—Size
L—Limit
E—Extension
U—Unnormalized
N—Negative
Z—Zero
V—Overflow
C—Carry

Mode Register (MR) Condition Code Register (CCR)

AA0011

5-8 DSP56800 Family Manual �

Program Controller

5.1.8.5 Unnormalized (U)—Bit 4

The unnormalized (U) bit (SR bit 4) is set if the two most significant bits of the most significant product
portion of the result are the same, and is cleared otherwise. The U bit is computed as follows: U = (Bit 31
XOR Bit 30).

If the U bit is cleared, then a positive fractional number, p, satisfies the following relation: 0.5 < p < 1.0. A
negative fractional number, n, it satisfies the following equation: -1.0 < n < -0.5.

This bit is not affected by the OMR’s CC bit.

5.1.8.6 Extension (E)—Bit 5

The extension (E) bit (SR bit 5) is cleared if all the bits of the integer portion (bits 35–31) of the 36-bit
result are the same (the upper five bits of the value are 00000 or 11111). Otherwise, this bit is set.

If E is cleared, then the MS and LS portions of an accumulator contain all the bits with information—the
extension register only contains sign extension. In this case, the accumulator extension register can be
ignored. If E is set, then the extension register in the accumulator is in use.

This bit is not affected by the OMR’s CC bit.

5.1.8.7 Limit (L)—Bit 6

The limit (L) bit (SR bit 6) is set if the overflow bit is set or if the data limiters perform a limiting
operation; it is not affected otherwise. The L bit is cleared only by a processor reset or an instruction that
specifically clears it. This allows the L bit to be used as a latching overflow bit. Note that L is affected by
data movement operations that read the A or B accumulator registers onto the CGDB.

This bit is not affected by the OMR’s CC bit.

5.1.8.8 Size (SZ)—Bit 7

The size (SZ) bit (SR bit 7) is set when moving a 36-bit accumulator to data memory if bits 30 and 29 of
the source accumulator are not the same—that is, if they are not both ones or zeros. This bit is latched, so it
will remain set until the processor is reset or an instruction explicitly clears it.

By monitoring the SZ bit, it is possible to determine whether a value is growing to the point where it will
be saturated or limited when moved to data memory. It is designed for use in the fast Fourier transform
(FFT) algorithm, indicating that the next pass in the algorithm should scale its results before computation.
This allows FFT data to be scaled only on passes where it is necessary instead of on each pass, which in
turn helps guarantee maximum accuracy in an FFT calculation.

5.1.8.9 Interrupt Mask (I1 and I0)—Bits 8–9

The interrupt mask (I1 and I0) bits (SR bits 9 and 8) reflect the current priority level of the DSP core and
indicate the interrupt priority level (IPL) needed for an interrupt source to interrupt the processor. The
current priority level of the processor may be changed under software control. Interrupt mask bit I0 must
always be written with a one to ensure future compatibility and compatibility with other family members.
The interrupt mask bits are set during processor reset. See Table 5-1 on page 5-9 for interrupt mask bit
definitions.

Architecture and Programming Model

� Program Controller 5-9

5.1.8.10 Reserved SR Bits— Bits 10–14

The reserved SR bits 10–14 are reserved for future expansion and will read as zero during DSP read
operations. These bits should be written with zero for future compatibility.

5.1.8.11 Loop Flag (LF)—Bit 15

The loop flag (LF) bit (SR bit 15) is set when a program loop is in progress and enables the detection of the
end of a program loop. The LF bit is the only SR bit that is restored when terminating a program loop.
Stacking and restoring the LF when initiating and exiting a program loop, respectively, allows the nesting
of program loops; see Section 5.1.9.7, “Nested Looping Bit (NL)—Bit 15.” REP looping does not affect
this bit. The LF is cleared during processor reset.

NOTE:

The LF is not cleared at the start of an interrupt service routine. This differs
from the DSP56100 Family, where this bit is cleared upon entering an
interrupt service routine. This will not cause a problem as long as the
interrupt service routine code does not fetch the instruction whose address
is stored in the LA register. This is typically the case because usually the
interrupt service routine is located in a separate portion of program
memory.

This bit should never be explicitly cleared by a MOVE or bit-field
instruction when the NL bit in the OMR register is set to a one.

The LF bit is also affected by any accesses to the hardware stack register. Any move instruction that writes
this register copies the old contents of the LF bit into the NL bit and then sets the LF bit. Any reads of this
register, such as from a MOVE or TSTW instruction, copy the NL bit into the LF bit and then clear the NL
bit.

5.1.9 Operating Mode Register
The operating mode register (OMR) is a 16-bit register that defines the current chip operating mode of the
processor. The OMR bits are affected by processor reset, operations on the HWS, and instructions that
directly reference the OMR. A DO loop will also affect the OMR, specifically the NL bit.

During processor reset, the chip operating mode bits will be loaded from the external mode select pins. The
operating mode register format is shown in Figure 5-5 on page 5-10 and is described in the subsequent
discussion.

Table 5-1. Interrupt Mask Bit Definition

I1 I0 Exceptions Permitted Exceptions Masked

0 0 (Reserved) (Reserved)

0 1 IPL 0, 1 None

1 0 (Reserved) (Reserved)

1 1 IPL 1 IPL 0

5-10 DSP56800 Family Manual �

Program Controller

NOTE:

When a bit of the OMR is changed by an instruction, a delay of one
instruction cycle is necessary before the new mode comes into effect.

Figure 5-5. Operating Mode Register (OMR) Format

5.1.9.1 Operating Mode Bits (MB and MA)—Bits 1–0

The chip operating mode (MB and MA) bits (OMR bits 1 and 0) indicate the operating mode and memory
maps of a DSP chip that has an external bus. Possible operating modes for a program RAM part are shown
in Table 5-2.

The exact implementation of the mode bits, and the number of modes supported, depends on the specific
DSP56800 Family device being used. See the appropriate user’s manual for more detailed information on
the operating modes.

The bootstrap modes are used to initially load an on-chip program RAM upon exiting reset from external
memory or through a peripheral. Operating modes 0 and 1 typically would be different for a program ROM
part because no bootstrapping operation is required for a ROM part. An example of possible operating
modes for a program ROM part are shown in Table 5-3 on page 5-11.

Table 5-2. Program ROM Operating Modes

MB MA Chip Operating Mode Reset Vector
Program Memory

Configuration

0 0 Bootstrap 0 BOOTROM P:$0000
(Boot from External Bus)

Internal P-RAM is write only

0 1 Bootstrap 1 BOOTROM P:$0000
(Boot from Peripheral)

Internal P-RAM is write only

1 0 Normal Expanded External Pmem P:$E000 Internal Pmem enabled

1 1 Development External Pmem P:$0000 Internal Pmem disabled

* Indicates reserved bits that are read as zero and should be written with zero for future compatibility

OMR
Operating Mode
Register
Reset = $0000
Read/Write

* * * CC * SD R EX * MB MANL * * *

11 10 9 8 7 6 5 4 3 2 1 015 14 13 12

NL—Nested Looping
CC—Condition Codes
SD—Stop Delay
R—Rounding
SA—Saturation
EX—External X Memory
MA,MB—Operating Mode

OMR

AA0013

SA

Architecture and Programming Model

� Program Controller 5-11

The MB and MA bit values are typically established on reset from an external input. Once the chip leaves
reset, they can be changed under software control. For more information about how they are configured on
reset, consult the appropriate device’s user’s manual.

5.1.9.2 External X Memory Bit (EX)—Bit 3

The external X memory (EX) bit (OMR bit 3), when set, forces all primary data memory accesses to be
external. The only exception to this rule is that if a MOVE or bit-field instruction is executed using the I/O
short addressing mode, then the EX bit is ignored, and the access is performed to the on-chip location. The
EX bit allows access to internal X memory with all addressing modes when this bit is cleared. This bit is
cleared by processor reset.

The EX bit is ignored by the second read of a dual-read instruction, which uses the XAB2 and XDB2 buses
and always accesses on-chip X data memory. For instructions with two parallel reads, the second read is
always performed to internal on-chip memory. Refer to Section 6.1, “Introduction to Moves and Parallel
Moves,” on page 6-1 for a description of the dual-read instructions.

5.1.9.3 Saturation (SA)—Bit 4

The Saturation (SA) bit enables automatic saturation on 32-bit arithmetic results, providing a user-enabled
Saturation mode for DSP algorithms that do not recognize or cannot take advantage of the extension
accumulator. When the SA bit is set, automatic saturation occurs at the output of the MAC unit for basic
arithmetic operations such as multiplication, addition, and so on. The SA bit is cleared by processor reset.
Automatic limiting as outlined in Section 3.4.1, “Data Limiter,” on page 3-26 is not affected by the state of
the SA bit.

Saturation is performed by a dedicated circuit inside the MAC unit. The saturation logic operates by
checking 3 bits of the 36-bit result out of the MAC unit—EXT[3], EXT[0], and MSP[15]. When the SA bit
is set, these 3 bits determine if saturation is performed on the MAC unit’s output and whether to saturate to
the maximum positive or negative value, as shown in Table 5-4.

Table 5-3. Program RAM Operating Modes

MB MA Chip Operating Mode Reset Vector
Program Memory

Configuration

0 0 Single Chip Internal PROM P:$0000 Internal Pmem enabled

0 1 (Reserved) (Reserved) (Reserved)

1 0 Normal Expanded External Pmem P:$E000 Internal Pmem enabled

1 1 Development External Pmem P:$0000 Internal Pmem disabled

Table 5-4. MAC Unit Outputs With Saturation Mode Enabled (SA = 1)

EXT[3] EXT[0] MSP[15] Result Stored in Accumulator

0 0 0 (Unchanged)

0 0 1 $0 7FFF FFFF

0 1 0 $0 7FFF FFFF

0 1 1 $0 7FFF FFFF

5-12 DSP56800 Family Manual �

Program Controller

NOTE:

Saturation mode is always disabled during the execution of the following
instructions: ASLL, ASRR, LSLL, LSRR, ASRAC, LSRAC, IMPY16,
MPYSU, MACSU, AND, OR, EOR, NOT, LSL, LSR, ROL, and ROR.
For these instructions, no saturation is performed at the output of the MAC
unit.

5.1.9.4 Rounding Bit (R)—Bit 5

The rounding (R) bit (OMR bit 5) selects between convergent rounding and two’s-complement rounding.
When set, two’s-complement rounding (always round up) is used. The two rounding modes are discussed
in Section 3.5, “Rounding,” on page 3-30. This bit is cleared by processor reset.

5.1.9.5 Stop Delay Bit (SD)—Bit 6

The stop delay (SD) bit (OMR bit 6) is used to select the delay that the DSP needs to exit the stop mode.
When set, the processor exits quickly from stop mode. This bit is cleared by processor reset.

5.1.9.6 Condition Code Bit (CC)—Bit 8

The condition code (CC) bit (OMR bit 8) selects whether condition codes are generated using a 36-bit
result from the MAC array or a 32-bit result. When this bit is set, the C, N, V, and Z condition codes are
generated based on bit 31 of the data ALU result. When this bit is cleared, the C, N, V, and Z condition
codes are generated based on bit 35 of the data ALU result. The generation of the L, E, and U condition
codes are not affected by the CC bit. This bit is cleared by processor reset.

NOTE:

The unsigned condition tests used when branching or jumping (HI, HS,
LO, and LS) can only be used when the condition codes are generated with
this bit set to one. Otherwise, the chip will not generate the unsigned
conditions correctly.

The effects of the CC bit on the condition codes generated by data ALU arithmetic operations are
discussed in more detail in Section 3.6, “Condition Code Generation,” on page 3-33.

1 0 0 $F 8000 0000

1 0 1 $F 8000 0000

1 1 0 $F 8000 0000

1 1 1 (Unchanged)

Table 5-4. MAC Unit Outputs With Saturation Mode Enabled (SA = 1) (Continued)

EXT[3] EXT[0] MSP[15] Result Stored in Accumulator

Software Stack Operation

� Program Controller 5-13

5.1.9.7 Nested Looping Bit (NL)—Bit 15

The nested looping (NL) bit (OMR bit 15) is used to display the status of program DO looping and the
hardware stack. If this bit is set, then the program is currently in a nested DO loop (that is, two DO loops
are active). If this bit is cleared, then there may be a single or no DO loop active. This bit is necessary for
saving and restoring the contents of the hardware stack, which is described further in Section 8.13,
“Multitasking and the Hardware Stack,” on page 8-34. REP looping does not affect this bit.

It is important that the user never put the processor in the illegal combination specified in Table 5-5. This
can be avoided by ensuring that the LF bit is never cleared when the NL bit is set.

The NL bit is cleared on processor reset. Also see Section 5.1.8.11, “Loop Flag (LF)—Bit 15,” which
discusses the LF bit in the SR.

If both the NL and LF bits are set (that is, two DO loops are active) and a DO instruction is executed, a
hardware-stack-overflow interrupt occurs because there is no more space on the hardware stack to support
a third DO loop.

The NL bit is also affected by any accesses to the hardware stack register. Any MOVE instruction that
writes this register copies the old contents of the LF bit into the NL bit and then sets the LF bit. Any reads
of this register, such as from a MOVE or TSTW instruction, copy the NL bit into the LF bit and then clear
the NL bit.

5.1.9.8 Reserved OMR Bits—Bits 2, 7 and 9–14

The OMR bits 2, 7, and 9–14 are reserved. They will read as zero during DSP read operations and should
be written as zero to ensure future compatibility.

5.2 Software Stack Operation
The software stack is a last-in-first-out (LIFO) stack of arbitrary depth implemented using memory
locations in the X data memory. It is accessed through the POP instruction and the PUSH instruction
macro (see Section 8.5, “Multiple Value Pushes,” on page 8-19) and will read or write the location in the X
data memory pointed to by the stack pointer (SP) register. The PUSH instruction macro (two instruction
cycles) pre-increments the SP register, and the POP instruction (one instruction cycle) will post-decrement
the SP register.

The program counter and the SR are pushed on this stack for subroutine calls and interrupts. These
registers are pulled from the stack for returns from subroutines using the RTS instruction (which restores
only the program extension bits in SR), and for returns from interrupt service routines that use the RTI
instruction (the entire SR is restored from the stack).

Table 5-5. Looping Status

NL LF DO Loop Status

0 0 No DO loops active

0 1 Single DO loop active

1 0 (Illegal combination)

1 1 Two DO loops active

5-14 DSP56800 Family Manual �

Program Controller

The software stack is also used for nesting hardware DO loops in software on the DSP56800 architecture.
On the DSP56800 architecture, the user must stack and unstack the LA and LC registers explicitly if DO
loops are nested. In this case, the software stack is typically used for this purpose, as demonstrated in
Section 8.6.4, “Nested Loops,” on page 8-22. The hardware stack is used, however, for stacking the
address of the first instruction in the loop. Because this stack is implemented using locations in the X data
memory, there is no limit to the number of interrupts or jump-to subroutines or combinations of these that
can be accommodated by this stack.

NOTE:

Care must be taken to allocate enough space in the X data memory so that
stack operations do not overlap other areas of data used by the program.
Similarly, it may be desirable to locate the stack in on-chip memory to
avoid delays due to wait states or bus arbitration.

See Section 8.5, “Multiple Value Pushes,” on page 8-19 and Section 8.8, “Parameters and Local
Variables,” on page 8-28 for recommended techniques for using the software stack.

5.3 Program Looping
The DSP core supports looping on a single instruction (REP looping) and looping on a block of
instructions (DO looping). Hardware DO looping allows fast looping on a block of instructions and is
interruptible. Once the loop is set up with the DO instruction, there is no additional execution time to
perform the looping tasks. REP looping repeats a one-word instruction for the specified number of times
and can be efficiently nested within a hardware DO loop. It allows for excellent code density because
blocks of in-line code of a single instruction can be replaced with a one-word REP instruction followed by
the instruction to be repeated. The correct programming of loops is discussed in detail in Section 8.6,
“Loops,” on page 8-20.

5.3.1 Repeat (REP) Looping
The REP instruction is a one-word instruction that performs single-instruction repeating on one-word
instructions. It repeats the execution of a single instruction for the amount of times specified either with a
6-bit unsigned value or with the 13 least significant bits of a DSP core register. When a repeat loop is
begun, the instruction to be repeated is only fetched once from the program memory; it is not fetched each
time the repeated instruction is executed. Repeat looping does not use any locations on the hardware stack.
It also has no effect on the LF or NL bits in the SR and OMR, respectively. Repeat looping cannot be used
on an instruction that accesses the program memory; it is necessary to use DO looping in this case.

NOTE:

REP loops are not interruptible since they are fetched only once. A DO
loop with a single instruction can be used in place of a REP instruction if
it is necessary to be able to interrupt while the loop is in progress.

For the case of REP looping with a register value, when the register
contains the value zero, then the instruction to be repeated is not executed
(as is desired in an application), and instruction flow continues with the
next sequential instruction. This is also true when an immediate value of
zero is specified.

Program Looping

� Program Controller 5-15

5.3.2 DO Looping
The DO instruction is a two-word instruction that performs hardware looping on a block of instructions. It
executes this block of instructions for the amount of times specified either with a 6-bit unsigned value or
using the 13 least significant bits of a DSP core register. DO looping is interruptible and uses one location
on the hardware stack for each DO loop. For cases where an immediate value larger than 63 is desired for
the loop count, it is possible to use the technique presented in Section 8.6.1, “Large Loops (Count Greater
Than 63),” on page 8-20.

The program controller register’s 13-bit loop count and 16-bit loop address register are used to implement
no-overhead hardware program loops. When a program loop is initiated with the execution of a DO
instruction, the following events occur:

1. The LC and LA registers are loaded with values specified in the DO instruction.

2. The SR’s LF bit is set, and its old value is placed in the NL bit.

3. The address of the first instruction in the program loop is pushed onto the hardware stack.

A program loop begins execution after the DO instruction and continues until the program address fetched
equals the loop address register contents (the last address of program loop). The contents of the loop
counter are then tested for one. If the loop counter is not equal to one, the loop counter is decremented and
the top location in the DO Loop Stack is read (but not pulled) into the PC to return to the top of the loop. If
the loop counter is equal to one, the program loop is terminated by incrementing the PC, purging the stack
(pulling the top location and discarding the contents), and continuing with the instruction immediately
after the last instruction in the loop.

NOTE:

For the case of DO looping with a register value, when the register contains

the value zero, then the loop code is repeated 2k times, where k = 13 is the
number of bits in the LC register. If there is a possibility that a register
value may be less than or equal to zero, then the technique outlined in
Section 8.6.2, “Variable Count Loops,” on page 8-21 should be used. A
DO loop with an immediate value of zero is not allowed.

5.3.3 Nested Hardware DO and REP Looping
It is possible to nest up to two hardware DO loops and to nest a hardware REP loop within the two DO
loops. It is recommended when nesting loops, however, that hardware DO loops not be nested within code.
Instead, a software loop should be used for an outer loop instead of a second DO loop (see Section 8.6.4,
“Nested Loops,” on page 8-22).

The reason that nesting of hardware DO loops is supported is to provide for faster interrupt servicing.
When hardware DO loops are not nested, a second hardware stack location is left available for immediate
use by an interrupt service routine.

5.3.4 Terminating a DO Loop
A DO loop normally terminates when it has completed the last instruction of a loop for the last iteration of
the loop (LC equals one). Two techniques for early termination of the DO loops are presented in
Section 8.6.6, “Early Termination of a DO Loop,” on page 8-25.

5-16 DSP56800 Family Manual �

Program Controller

� Instruction Set Introduction 6-1

Chapter 6
Instruction Set Introduction
As indicated by the programming model in Figure 6-3 on page 6-5, the DSP architecture can be viewed as
several functional units operating in parallel:

• Data ALU

• AGU

• Program controller

• Bit-manipulation unit

The goal of the instruction set is to keep each of these units busy each instruction cycle. This achieves
maximum speed, minimum power consumption, and minimum use of program memory.

The complete range of instruction capabilities combined with the flexible addressing modes provide a very
powerful assembly language for digital-signal-processing algorithms and general-purpose computing.
(The addressing modes are presented in detail in Section 4.2, “Addressing Modes,” on page 4-6.) The
instruction set has also been designed to allow for the efficient coding of DSP algorithms, control code,
and high-level language compilers. Execution time is enhanced by the hardware looping capabilities.

This section introduces the MOVE instructions available on the DSP core, the concept of parallel moves,
the DSP instruction formats, the DSP core programming model, instruction set groups, a summary of the
instruction set in tabular form, and an introduction to the instruction pipeline. The instruction summary is
particularly useful because it shows not only every instruction but also the operands and addressing modes
allowed for each instruction.

6.1 Introduction to Moves and Parallel Moves
To simplify programming, a powerful set of MOVE instructions is found on the DSP56800 core. This not
only eases the task of programming the DSP, but also decreases the program code size and improves the
efficiency, which in turn decreases the power consumption and MIPs required to perform a given task.
Some examples of MOVE instructions are listed in Example 6-1.

Example 6-1. MOVE Instruction Types

MOVE <any_DSPcore_register>,<any_DSPcore_register>

MOVE <any_DSPcore_register>,<X_Data_Memory>
MOVE <any_DSPcore_register>,<On_chip_peripheral_register>
MOVE <X_Data_Memory>,<any_DSPcore_register>
MOVE <On_chip_peripheral_register>,<any_DSPcore_register>

MOVE <immediate_value>,<any_DSPcore_register>
MOVE <immediate_value>,<X_Data_Memory>
MOVE <immediate_value>,<On_chip_peripheral_register>

6-2 DSP56800 Family Manual �

Instruction Set Introduction

For any MOVE instruction accessing X data memory or an on-chip memory mapped peripheral register,
seven different addressing modes are supported. Additional addressing modes are available on the subset
of DSP core registers that are most frequently accessed, including the registers in the data ALU, and all
pointers in the address generation unit.

For all moves on the DSP56800, the syntax orders the source and destination as follows: SRC,DST. The
source of the data to be moved and the destination are separated by a comma, with no spaces either before
or after the comma.

The assembler syntax also specifies which memory is being accessed (program or data memory) on any
memory move. Table 6-1 shows the syntax for specifying the correct memory space for any memory
access; an example of a program memory access is shown where the address is contained in the register R2
and the address register is post-incremented after the access. The two examples for X data memory
accesses show an address-register-indirect addressing mode in the first example and an absolute address in
the second.

The DSP56800 instruction set supports two additional types of moves—the single parallel move and the
dual parallel read. Both of these are considered “parallel moves” and are extremely powerful for DSP
algorithms and numeric computation.

The single parallel move allows an arithmetic operation and one memory move to be completed with one
instruction in one instruction cycle. For example, it is possible to add two numbers while reading or
writing a value from memory in the same instruction.

Figure 6-1 illustrates a single parallel move, which uses one program word and executes in one instruction
cycle.

In the single parallel move, the following occurs:

1. Register X0 is added to the register A and the result is stored in the A accumulator.

2. The contents of the Y0 register are moved into the X data memory at the location contained
in the R1 register.

3. After completing the memory move, the R1 register is post-updated with the contents of the
N register.

The dual parallel read allows an arithmetic operation to occur and two values to be read from X data
memory with one instruction in one instruction cycle. For example, it is possible to execute in the same
instruction a multiplication of two numbers, with or without rounding of the result, while reading two
values from X data memory to two of the data ALU registers.

Table 6-1. Memory Space Symbols

Symbol Examples Description

P: P:(R2)+ Program memory access

X: X:(R0)
X:$C000

X data memory access

Figure 6-1. Single Parallel Move

Opcode And Operands Single Parallel Move

ADD X0,A Y0,X:(R1)+N ; One DSP56800 Instruction

(Uses XAB1 and CGDB)

Instruction Formats

� Instruction Set Introduction 6-3

Figure 6-2 illustrates a double parallel move, which uses one program word and executes in one instruction
cycle.

Figure 6-2. Dual Parallel Move

In the dual parallel move, the following occurs.

1. The contents of the X0 and Y0 registers are multiplied, this result is added to the A
accumulator, and the final result is stored in the A accumulator.

2. The contents of the X data memory location pointed to with the R0 register are moved into
the Y0 register.

3. The contents of the X data memory location pointed to with the R3 register are moved into
the X0 register.

4. After completing the memory moves, the R0 register is post-updated with the contents of
the N register, and the R3 register is decremented by one.

Both types of parallel moves use a subset of available DSP56800 addressing modes, and the registers
available for the move portion of the instruction are also a subset of the total set of DSP core registers.
These subsets include the registers and addressing modes most frequently found in high-performance
numeric computation and DSP algorithms. Also, the parallel moves allow a move to occur only with an
arithmetic operation in the data ALU. A parallel move is not permitted, for example, with a JMP, LEA, or
BFSET instruction.

6.2 Instruction Formats
Instructions are one, two, or three words in length. The instruction is specified by the first word of the
instruction. The additional words may contain information about the instruction itself or may contain an
operand for the instruction. Samples of assembly language source code for several instructions are shown
in Table 6-2.

From the instruction formats listed in Table 6-2, it can be seen that the DSP offers parallel processing using
the data ALU, AGU, program controller, and bit-manipulation unit. In the parallel move example, the DSP
can perform a designated ALU operation (data ALU) and up to two data transfers specified with address
register updates (AGU), and will also decode the next instruction and fetch an instruction from program
memory (program controller), all in one instruction cycle. When an instruction is more than one word in
length, an additional instruction-execution cycle is required. Most instructions involving the data ALU are
register based (that is, operands are in data ALU registers) and allow the programmer to keep each parallel
processing unit busy. Instructions that are memory oriented (for example, a bit-manipulation instruction),
all logical instructions, or instructions that cause a control flow change (such as a jump) prevent the use of
all parallel processing resources during their execution.

Opcode and Operands Primary Read

MACR X0,Y0,A X:(R0)+N,Y0 X:(R3)-,X0

(Uses XAB1 and CGDB)
Secondary Read

(Uses XAB2 and XDB2)

6-4 DSP56800 Family Manual �

Instruction Set Introduction

Table 6-2. Instruction Formats

Opcode1

1. Indicates data ALU, AGU, program controller, or bit-manipulation operation to be performed.

Operands2

2. Specifies the operands used by the opcode.

CGDB
Transfer3

3. Specifies optional data transfers over the CGDB bus.

XDB2
Transfer4

4. Specifies optional data transfers over the XDB2 bus.

PDB
Transfer5

5. Specifies optional data transfers over the PDB bus.

Comments

ADD #$1234,Y1 No parallel move

ANDC #$7C,X:$E27 No parallel move

ENDDO No parallel move

TSTW X:(SP-9) No parallel move

MAC A1,Y0,B No parallel move

LEA (R2)- No parallel move

MOVE R0,Y0 No parallel move

CMP X0,B Y0,X:(R2)+ Single parallel move

NEG A X:(R1)+N,X0 Single parallel move

SUB Y1,A X:(R0)+,Y0 X:(R3)+,X0 Dual parallel read

MPY X1,Y0,B X:(R1)+N,Y1 X:(R3)+,X0 Dual parallel read

MACR X0,Y0,A X:(R1)+N,Y0 X:(R3)-,X0 Dual parallel read

MOVE X0,P:(R1)+ Program memory move

JMP $3C10 16-bit jump address

Programming Model

� Instruction Set Introduction 6-5

6.3 Programming Model
The registers in the DSP56800 core programming model are shown in Figure 6-3.

Figure 6-3. DSP56800 Core Programming Model

N M01

Program Controller Unit

Hardware Stack (HWS)

Data ALU Input Registers

Accumulator Registers

Data Arithmetic Logic Unit

SP

R3

R2

R1

R0

MR CCR OMR

Pointer

Registers

Offset

Register

Modifier

Register

Program

Counter

Status

Register (SR)

Operating Mode

Register

LALC

Loop AddressLoop Counter

Y

A

B

X0 Y0Y1

A0A1A2

B0B1B2

PC

31 16 15 0

15 0 15 015 0

31 16 15 035 32

15 015 03

31 16 15 035 32

15 015 0

15 0 15 0 15 0

15 0 15 0 15 08 7

15 015 0

Address Generation Unit

AA0007

12 0

0

3 0

6-6 DSP56800 Family Manual �

Instruction Set Introduction

6.4 Instruction Groups
The instruction set is divided into the following groups:

• Arithmetic

• Logical

• Bit manipulation

• Looping

• Move

• Program control

Each instruction group is described in the following subsections. In addition, Section 6.5.2, “LSLL Alias,”
includes a useful summary for every instruction and the addressing modes and operand registers allowed
for each instruction. Detailed information on each instruction is given in Appendix A, “Instruction Set
Details.”

6.4.1 Arithmetic Instructions
The arithmetic instructions perform all of the arithmetic operations within the data ALU. They may affect
a subset or all of the condition code register bits. Arithmetic instructions are typically register based
(register-direct addressing modes are used for operands) so that the data ALU operation indicated by the
instruction does not use the CGDB or the XDB2, although some instructions can also operate on
immediate data or operands in memory.

Optional data transfers (parallel moves) may be specified with many arithmetic instructions. This allows
for parallel data movement over the CGDB and over the XDB2 during a data ALU operation. This allows
new data to be pre-fetched for use in following instructions and results calculated by previous instructions
to be stored. Arithmetic instructions typically execute in one instruction cycle, although some of the
operations may take additional cycles with different operand addressing modes. The arithmetic
instructions are the only class of instructions that allow parallel moves.

In addition to the arithmetic shifts presented here, other types of shifts are also available in the logical
instruction group. See Section 6.4.2, “Logical Instructions.” Table 6-3 lists the arithmetic instructions.

Table 6-3. Arithmetic Instructions List

Instruction Description

ABS Absolute value

ADC Add long with carry1

ADD Add

ASL Arithmetic shift left (36-bit)

ASLL Arithmetic multi-bit shift left1

ASR Arithmetic shift right (36-bit)

ASRAC Arithmetic multi-bit shift right with accumulate1

ASRR Arithmetic multi-bit shift right1

Instruction Groups

� Instruction Set Introduction 6-7

6.4.2 Logical Instructions
The logical instructions perform all of the logical operations within the data ALU. They also affect the
condition code register bits. Logical instructions are register based. So are the arithmetic instructions in
Table 6-3, and, again, some can also operate on operands in memory. Optional data transfers are not
permitted with logical instructions. These instructions execute in one instruction cycle.

Table 6-4 lists the logical instructions.

CLR Clear

CMP Compare

DEC(W) Decrement upper word of accumulator

DIV Divide iteration1

IMPY(16) Integer multiply1

INC(W) Increment upper word of accumulator

MAC Signed multiply-accumulate

MACR Signed multiply-accumulate and round

MACSU Signed/unsigned multiply-accumulate1

MPY Signed multiply

MPYR Signed multiply and round

MPYSU Signed/unsigned multiply1

NEG Negate

NORM Normalize1

RND Round

SBC Subtract long with carry1

SUB Subtract

Tcc Transfer conditionally1

TFR Transfer data ALU register to an accumulator

TST Test a 36-bit accumulator

TSTW Test a 16-bit register or memory location1

1. These instructions do not allow parallel data moves.

Table 6-3. Arithmetic Instructions List (Continued)

Instruction Description

6-8 DSP56800 Family Manual �

Instruction Set Introduction

6.4.3 Bit-Manipulation Instructions
The bit-manipulation instructions perform one of three tasks:

• Testing a field of bits within a word

• Testing and modifying a field of bits in a word

• Conditionally branching based on a test of bits within the upper or lower byte of a word

Bit-field instructions can operate on any X memory location, peripheral, or DSP core register. BFTSTH
and BFTSTL can test any field of the bits within a 16-bit word. BFSET, BFCLR, and BFCHG can test any
field of the bits within a 16-bit word and then set, clear, or invert bits in this word, respectively. BRSET
and BRCLR can only test an 8-bit field in the upper or lower byte of the word, and then conditionally
branch based on the result of the test. The carry bit of the condition code register contains the result of the
bit test for each instruction. These instructions are operations of the read-modify-write type. The BFTSTH,
BFTSTL, BFSET, BFCLR, and BFCHG instructions execute in two or three instruction cycles. The
BRCLR and BRSET instructions execute in four to six instruction cycles.

Table 6-5 lists the bit-manipulation instructions.

Table 6-4. Logical Instructions List

Instruction Description

AND Logical AND

EOR Logical exclusive OR

LSL Logical shift left

LSLL Multi-bit logical shift left

LSRAC Logical right shift with accumulate

LSR Logical shift right

LSRR Multi-bit logical shift right

NOT Logical complement

OR Logical inclusive OR

ROL Rotate left

ROR Rotate right

Table 6-5. Bit-Field Instruction List

Instruction Description

ANDC Logical AND with immediate data

BFCLR Bit-field test and clear

BFSET Bit-field test and set

BFCHG Bit-field test and change

BFTSTL Bit-field test low

Instruction Groups

� Instruction Set Introduction 6-9

NOTE:

Due to instruction pipelining, if an AGU register (Rn, N, SP, or M01) is
directly changed with a bit-field instruction, the new contents may not be
available for use until the second following instruction (see the restrictions
discussed in Section 4.4, “Pipeline Dependencies,” on page 4-33).

See Section 8.1.1, “Jumps and Branches,” on page 8-2 for other instructions that can be synthesized.

6.4.4 Looping Instructions
The looping instructions establish looping parameters and initiate zero-overhead program looping. They
allow looping on a single instruction (REP) or a block of instructions (DO). For DO looping, the address of
the first instruction in the program loop is saved on the hardware stack to allow no-overhead looping. The
last address of the DO loop is specified as a 16-bit absolute address. No locations in the hardware stack are
required for the REP instruction. The ENDDO instruction is used only when breaking out of the loop;
otherwise, it is better to use MOVE #1,LC. This is discussed in more detail in Section 8.6.6, “Early
Termination of a DO Loop,” on page 8-25.

Table 6-6 lists the loop instructions.

6.4.5 Move Instructions
The move instructions move data over the various data buses: CGDB, PGDB, XDB2, and PDB. Move
instructions do not affect the condition code register, except for the limit bit if limiting is performed when
reading a data ALU accumulator register. These instructions do not allow optional data transfers. In
addition to the following move instructions, there are parallel moves that can be used simultaneously with
many of the arithmetic instructions. The parallel moves are shown in Table 6-34 on page 6-29 and

BFTSTH Bit-field test high

BRSET Branch if selected bits are set

BRCLR Branch if selected bits are clear

EORC Logical exclusive OR with immediate data

NOTC Logical complement on memory location and registers

ORC Logical inclusive OR with immediate data

Table 6-6. Loop Instruction List

Instruction Description

DO Start hardware loop

ENDDO Disable current loop and unstack parameters

REP Repeat next instruction

Table 6-5. Bit-Field Instruction List (Continued)

Instruction Description

6-10 DSP56800 Family Manual �

Instruction Set Introduction

Table 6-35 on page 6-30 and are discussed in detail in Section 6.1, “Introduction to Moves and Parallel
Moves,” and Appendix A, “Instruction Set Details.” The LEA instruction is also included in this
instruction group.

Instruction Groups

� Instruction Set Introduction 6-11

NOTE:

There is a PUSH instruction macro, described in Section 8.5, “Multiple
Value Pushes,” on page 8-19, that can be used with the POP instruction
presented here.

Table 6-7 lists the move instructions.

NOTE:

Due to instruction pipelining, if an AGU register (Rn, SP, or M01) is
directly changed with a move instruction, the new contents may not be
available for use until the second following instruction. See the restrictions
discussed in Section 4.4, “Pipeline Dependencies,” on page 4-33.

6.4.6 Program Control Instructions
The program control instructions include branches, jumps, conditional branches, conditional jumps, and
other instructions that affect the program counter and software stack. Program control instructions may
affect the status register bits as specified in the instruction. Also included in this instruction group are the
STOP and WAIT instructions that can place the DSP chip in a low-power state. See Section 8.1.1, “Jumps
and Branches,” on page 8-2 and Section 8.11, “Jumps and JSRs Using a Register Value,” on page 8-33 for
additional jump and branch instructions that can be synthesized from existing DSP56800 instructions.

Table 6-8 lists the program control instructions.

Table 6-7. Move Instruction List

Instruction Description

LEA Load effective address

POP Pop a register from the software stack

MOVE Move data

MOVE(C) Move control register

MOVE(I) Move immediate

MOVE(M) Move program memory

MOVE(P) Move peripheral data

MOVE(S) Move absolute short

Table 6-8. Program Control Instruction List

Instruction Description

Bcc Branch conditionally

BRA Branch

DEBUG Enter debug mode

Jcc Jump conditionally

6-12 DSP56800 Family Manual �

Instruction Set Introduction

6.5 Instruction Aliases
The DSP56800 assembler provides a number of additional useful instruction mnemonics that are actually
aliases to other instructions. Each of these instructions is mapped to one of the core instructions and
disassembles as such.

6.5.1 ANDC, EORC, ORC, and NOTC Aliases
The DSP56800 instruction set does not support logical operations using 16-bit immediate data. It is
possible to achieve the same result, however, using the bit-manipulation instructions. To simplify
implementing these operations, the DSP56800 assembler provides the following operations:

• ANDC—logically AND a 16-bit immediate value with a destination

• EORC—logically exclusive OR a 16-bit immediate value with a destination

• ORC—logically OR a 16-bit immediate value with a destination

• NOTC—logical one’s-complement of a 16-bit destination

These operations are not new instructions, but aliases to existing bit-manipulation instructions. They are
mapped as shown in Table 6-9.

JMP Jump

JSR Jump to subroutine

NOP No operation

RTI Return from interrupt

RTS Return from subroutine

STOP Stop processing (lowest power standby)

SWI Software interrupt

WAIT Wait for interrupt (low power standby)

Table 6-9. Aliases for Logical Instructions with Immediate Data

Desired
Instruction

Operands
Remapped
Instruction

Operands

ANDC #xxxx,DST BFCLR #xxxx,DST

ORC #xxxx,DST BFSET #xxxx,DST

EORC #xxxx,DST BFCHG #xxxx,DST

NOTC DST BFCHG #$FFFF,DST

Table 6-8. Program Control Instruction List (Continued)

Instruction Description

Instruction Aliases

� Instruction Set Introduction 6-13

Note that for the ANDC instruction, a one’s-complement of the mask value is used when remapping to the
BFCLR instruction. For the NOTC instruction, all bits in the 16-bit mask are set to one.

In Example 6-2, an immediate value is logically ORed with a location in memory.

Example 6-2. Logical OR with a Data Memory Location

ORC #$00FF,X:$400; Set all bits of lower byte in X:$400

The assembler translates this instruction into BFSET #$00FF,X:$400, which performs the same
operation. If the assembled code is later disassembled, it will appear as a BFSET instruction.

6.5.2 LSLL Alias
Because the LSLL instruction operates identically to an arithmetic left shift, this instruction is actually
assembled as an ASLL instruction. When the assembler encounters the LSLL mnemonic, an ASLL
instruction is assembled. See Table 6-10.

6.5.3 ASL Alias
Because the ASL instruction operates similarly to a logical left shift when executed on the Y1, Y0, and X0
registers, this instruction is actually assembled as an LSL instruction. Note that while the result in the
destination register will be the same as if an arithmetic shift had been performed, condition codes are
calculated based on a logic shift and might differ from the expected result. See Table 6-11.

The ASL instruction is not aliased to LSL when the register specified is one of the accumulator registers.

6.5.4 CLR Alias
Because CLR operates identically to a MOVE instruction with an immediate value of zero, a MOVE
instruction is used to implement CLR when the specified register is a 16-bit register. When the assembler
encounters the CLR mnemonic in a program, it assembles a MOVE #0,<register> instruction in its
place. See Table 6-12.

NOTE:

This operation does not apply to the CLR instruction when it is performed
on the A or B accumulators.

Table 6-10. LSLL Instruction Alias

Operation Operands Comments

LSLL Y1,X0,DD
Y0,X0,DD
Y1,Y0,DD
Y0,Y0,DD
A1,Y0,DD
B1,Y1,DD

Multi-bit logical left shift.

First register is the value to be shifted, second register is
the shift amount (uses 4 LSBs).

Use ASLL when left shifting is desired on one of the two
accumulators.

Table 6-11. ASL Instruction Remapping

Operation Operands Comments

ASL X0, Y0, Y1 Arithmetic left shift

6-14 DSP56800 Family Manual �

Instruction Set Introduction

6.5.5 POP Alias
The POP instruction operates identically to a move from the stack with post-decrement. When the
assembler encounters the POP instruction in a program, it assembles a MOVE (SP)-,<register>
instruction in its place. If POP does not specify a destination register, it is assembled as LEA (SP)-.

6.6 DSP56800 Instruction Set Summary
This section presents the entire DSP56800 instruction set in tabular form. The tables provide a quick
reference to the entire instruction set because they show not only the instructions themselves, but also the
registers, addressing modes, cycle counts, and program words required for each instruction. From these
tables, it is very easy to determine if a particular operation can be performed with a desired register or
addressing mode.

The summary, found in Section 6.6.3, “Instruction Summary Tables,” is based on logical groupings of
instructions, listing the instructions alphabetically within each grouping. This summary also contains the
number of program words required by the instruction as well as the number of cycles required for
execution.

This section contains the following information:

• Usage of the instruction summary tables

• Addressing mode notation

• Register field notation

• The instruction summary tables

6.6.1 Register Field Notation
There are many different register fields used within the instruction summary tables. These will be grouped
into sets that are more easily understood.

Table 6-14 shows the register set available for the most important move instructions. Sometimes the
register field is broken into two different fields—one where the register is used as a source (src), and the
other where it is used as a destination (dst). This is important because a different notation is used when an
accumulator is being stored without saturation. Also see the register fields in Table 6-15, which are also
used in move instructions as sources and destinations within the AGU.

Table 6-12. Clear Instruction Alias

Operation Destination Comments

CLR X0, Y1, Y0,
A1, B1,

R0–R3, N

Identical to MOVE #0,<register>; does not set condition
codes

Table 6-13. Move Word Instruction Alias—Data Memory

Operation Source Destination Comments

POP (Any register) Pop a single stack location

(None specified) Simply decrements the SP

DSP56800 Instruction Set Summary

� Instruction Set Introduction 6-15

In some cases, the notation used when specifying an accumulator determines whether or not saturation is
enabled when the accumulator is being used as a source in a move or parallel move instruction. Refer to
Section 3.4.1, “Data Limiter,” on page 3-26 and Section 3.2, “Accessing the Accumulator Registers,” on
page 3-7 for information.

Table 6-15 shows the register set available for use as pointers in address-register-indirect addressing
modes. This table also shows the notation used for AGU registers in AGU arithmetic operations.

Table 6-16 shows the register set available for use in data ALU arithmetic operations. The most common
field used in this table is FDD.

Table 6-14. Register Fields for General-Purpose Writes and Reads

Register Field Registers in This Field Comments

HHH A, B, A1, B1
X0, Y0, Y1

Seven data ALU registers—two accumulators, two 16-bit MSP
portions of the accumulators, and three 16-bit data registers

HHHH A, B, A1, B1
X0, Y0, Y1
R0-R3, N

Seven data ALU and five AGU registers

DDDDD A, A2, A1, A0
B, B2, B1, B0

Y1, Y0, X0

R0, R1, R2, R3
N, SP
M01

OMR, SR
LA, LC
HWS

All CPU registers

Table 6-15. Address Generation Unit (AGU) Registers

Register Field
Registers in This

Field
Comments

Rn R0–R3
SP

Five AGU registers available as pointers for addressing and as
sources and destinations for move instructions

Rj R0, R1, R2, R3 Four pointer registers available as pointers for addressing

N N One index register available only for indexed addressing modes

M01 M01 One modifier register

6-16 DSP56800 Family Manual �

Instruction Set Introduction

6.6.2 Using the Instruction Summary Tables
This section contains helpful information on using the summary tables. It contains some notation used
within the tables.

The register field notation is found in Section 6.6.1, “Register Field Notation.”

Some additional notation to be considered is found in the instruction summary tables when allowed
registers for multiplications are specified (Table 6-22 on page 6-20). In these tables, the following entry is
found:

(+)Y0,X0,FDD

The notation (+) in this entry indicates that an optional + or - sign can be specified before the input register
combination. If a - is specified, the multiplication result is inverted. This allows each of the following
examples to be valid DSP56800 instructions:

MAC X0,Y0,A; A + X0*Y0 -> A
MAC +X0,Y0,A; A + X0*Y0 -> A
MAC -X0,Y0,A; A - (X0*Y0) -> A

As an example, Table 6-35 on page 6-30 shows all registers and addressing modes that are allowed when
performing a dual read instruction, one of the DSP56800’s parallel move instructions. The instructions
shown in Example 6-3 are allowed.

Example 6-3. Valid Instructions

MOVE X:(R0)+,Y0 X:(R3)+,X0
MACR X0,Y1,A X:(R1)+N,Y1 X:(R3)-,X0
ADD Y0,B X:(R1)+N,Y0 X:(R3)+,X0

The instruction in Example 6-4 is not allowed:

Example 6-4. Invalid Instruction

ADD X0,Y1,A X:(R2)-,X0 X:(R3)+N,Y0

Table 6-16. Data ALU Registers

Register Field Registers in This Field Comments

FDD A, B
X0, Y0, Y1

Five data ALU registers—two 36-bit accumulators and three 16-bit
data registers accessible during data ALU operations

Contains the contents of the F and DD register fields

F1DD A1, B1
X0, Y0, Y1

Five data ALU registers—two 16-bit MSP portions of the
accumulators and three 16-bit data registers accessible during data
ALU operations

DD X0, Y0, Y1 Three 16-bit data registers

F A, B Two 36-bit accumulators accessible during parallel move instruc-
tions and some data ALU operations

F1 A1, B1 The 16-bit MSP portion of two accumulators accessible as source
operands in parallel move instructions

DSP56800 Instruction Set Summary

� Instruction Set Introduction 6-17

Consulting the information in Table 6-35 on page 6-30 shows that this instruction is not valid for each of
the following reasons:

• The only operands accepted for ADD or SUB are X0,F, Y1,F, Y0,F, A,B, or B,A, where F is either
the A or B accumulator register. Thus, X0,Y1,A is an invalid entry.

• The pointer R2 is not allowed for the first memory read.

• The post-decrement addressing mode is not available for the first memory read.

• The X0 register may not be a destination for the first memory read because it is not listed in the
Destination 1 column.

• The post-update by N addressing mode is not allowed for the second memory read. The second
memory read is always identified as the memory move that uses R3 in instructions with two
memory moves. For the second memory read, only the post-increment and post-decrement
addressing modes are allowed.

• The Y0 register may not be a destination for the second memory read because it is not listed in the
Destination 2 column.

6.6.3 Instruction Summary Tables
A summary of the entire DSP56800 instruction set is presented in this section in tabular form. In these
tables, Table 6-17 on page 6-18 through Table 6-35 on page 6-30, the instructions are broken into several
different categories and then listed alphabetically.

The tables specify the operation, operands, and any relevant comments. There are separate fields for
sources and destinations of move instructions. There are also two additional fields:

• C—Time required to execute the instruction

• W—Number of program words occupied by the instruction

Instruction execution times are measured in oscillator clock cycles. This should not be confused with
instruction cycles, which comprise the timing granularity of the DSP56800 execution units. Each
instruction cycle is equivalent to two oscillator clock cycles. The numbers given for instruction times
assume that internal memory—or external memory that requires no wait states—is used.

All parallel move instructions are located in the last two tables in this section:

• Table 6-34 on page 6-29

• Table 6-35 on page 6-30

6-18 DSP56800 Family Manual �

Instruction Set Introduction

vb

Table 6-17. Move Word Instructions

Operation Source Destination C W Comments

MOVE
or

MOVEC

X:(Rn)
X:(Rn)+
X:(Rn)-

DDDDD 2 1 Move signed 16-bit integer word from
memory

X:(Rn+N) DDDDD 4 1 Address = Rn + N

X:(Rn)+N DDDDD 2 1 Post-update of Rn register

X:(R2+xx) HHHH 4 1 xx: offset ranging from 0 to 63

X:(Rn+xxxx) DDDDD 6 2 Signed 16-bit offset

X:(SP-xx) HHHH 4 1 Unsigned 6-bit offset

X:xxxx DDDDD 4 2 Unsigned 16-bit address

MOVE
or

MOVEP

X:pp
or

X:<<pp

HHHH 2 1 X:pp represents a 6-bit absolute I/O
address. Refer to I/O Short Address
(Direct Addressing): <pp> on page 4-23

MOVE
or

MOVES

X:aa
or

X:<aa

HHHH 2 1 X:aa represents a 6-bit absolute address.
Refer to Absolute Short Address (Direct
Addressing): <aa> on page 4-22

MOVE
or

MOVEC

DDDDD X:(Rn)
X:(Rn)+
X:(Rn)-

2 1 Move signed 16-bit integer word to memory

DDDDD X:(Rn+N) 4 1 Address = Rn + N

DDDDD X:(Rn)+N 2 1 Post-update of Rn register

HHHH X:(R2+xx) 4 1 xx: offset ranging from 0 to 63

DDDDD X:(Rn+xxxx) 6 2 Signed 16-bit offset

HHHH X:(SP-xx) 4 1 Unsigned 6-bit offset

DDDDD X:xxxx 4 2 Unsigned 16-bit address

MOVE
or

MOVEP

HHHH X:pp
or

X:<<pp

2 1 X:pp represents a 6-bit absolute I/O
address. Refer to I/O Short Address
(Direct Addressing): <pp> on page 4-23

MOVE
or

MOVES

HHHH X:aa
or

X:<aa

2 1 X:aa represents a 6-bit absolute address.
Refer to Absolute Short Address (Direct
Addressing): <aa> on page 4-22

DSP56800 Instruction Set Summary

� Instruction Set Introduction 6-19

Table 6-18. Immediate Move Instructions

Operation Source Destination C W Comments

MOVE
or

MOVEI

#xx HHHH 2 1 Signed 7-bit integer data (data is put in the lowest 7
bits of the word portion of any accumulator, upper 8
bits and extension reg are sign extended, LSP por-
tion is set to “0”)

#xxxx DDDDD 4 2 Signed 16-bit immediate data. When LC is the desti-
nation, use 13-bit values only.

X:(R2+xx) 6 2

X:(SP-xx) 6 2

X:xxxx 6 3

MOVE
or

MOVEP

#xxxx X:pp
or

X:<<pp

4 2 Move 16-bit immediate data to the last 64 locations
of X data memory-peripheral registers.
X:pp represents a 6-bit absolute I/O address.

MOVE
or

MOVES

#xxxx X:aa
or

X:<aa

4 2 Move 16-bit immediate data to the first 64 locations
of X data memory.
X:aa represents a 6-bit absolute address.

Table 6-19. Register-to-Register Move Instructions

Operation Source Destination C W Comments

MOVE
or

MOVEC

DDDDD DDDDD 2 1 Move signed word to register

Table 6-20. Move Word Instructions—Program Memory

Operation Source Destination C W Comments

MOVE
or

MOVEM

P:(Rj)+
P:(Rj)+N

HHHH 8 1 Read signed word from program memory

HHHH P:(Rj)+
P:(Rj)+N

8 1 Write word to program memory

6-20 DSP56800 Family Manual �

Instruction Set Introduction

Table 6-21. Conditional Register Transfer Instructions

Operation
Data ALU Transfer AGU Transfer

C W Comments
Source Destination Source Destination

Tcc DD F (No transfer) 2 1 Conditionally transfer one
register

A B (No transfer) 2 1

B A (No transfer) 2 1

DD F R0 R1 2 1 Conditionally transfer one
data ALU register and one
AGU register

A B R0 R1 2 1

B A R0 R1 2 1

Note: The Tcc instruction does not allow the following condition codes: HI, LS, NN, and NR.

Table 6-22. Data ALU Multiply Instructions

Operation Operands C W Comments

IMPY(16) Y1,X0,FDD
Y0,X0,FDD
Y1,Y0,FDD
Y0,Y0,FDD
A1,Y0,FDD
B1,Y1,FDD

2 1 Integer 16x16 multiply with 16-bit result

When the destination is an accumulator F, the
F0 portion is unchanged by the instruction

Note: Assembler also accepts first two oper-
ands when they are specified in opposite order

MAC (±)Y1,X0,FDD
(±)Y0,X0,FDD
(±)Y1,Y0,FDD
(±)Y0,Y0,FDD
(±)A1,Y0,FDD
(±)B1,Y1,FDD

2 1 Fractional multiply accumulate; multiplication
result optionally negated before accumulation

Note: Assembler also accepts first two oper-
ands when they are specified in opposite orde

MACR (±)Y1,X0,FDD
(±)Y0,X0,FDD
(±)Y1,Y0,FDD
(±)Y0,Y0,FDD
(±)A1,Y0,FDD
(±)B1,Y1,FDD

2 1 Fractional MAC with round, multiplication result
optionally negated before addition

Note: Assembler also accepts first two oper-
ands when they are specified in opposite orde

MPY (±)Y1,X0,FDD
(±)Y0,X0,FDD
(±)Y1,Y0,FDD
(±)Y0,Y0,FDD
(±)A1,Y0,FDD
(±)B1,Y1,FDD

2 1 Fractional multiply where one operand is
optionally negated before multiplication

Note: Assembler also accepts first two oper-
ands when they are specified in opposite order

DSP56800 Instruction Set Summary

� Instruction Set Introduction 6-21

MPYR (±)Y1,X0,FDD
(±)Y0,X0,FDD
(±)Y1,Y0,FDD
(±)Y0,Y0,FDD
(±)A1,Y0,FDD
(±)B1,Y1,FDD

2 1 Fractional multiply where one operand is
optionally negated before multiplication. Result
is rounded

Note: Assembler also accepts first two oper-
ands when they are specified in opposite order

Table 6-23. Data ALU Extended Precision Multiplication Instructions

Operation Operands C W Comments

MACSU X0,Y1,FDD
X0,Y0,FDD
Y0,Y1,FDD
Y0,Y0,FDD
Y0,A1,FDD
Y1,B1,FDD

2 1 Signed or unsigned 16x16 fractional MAC with
32-bit result.

The first operand is treated as signed and the
second as unsigned.

MPYSU X0,Y1,FDD
X0,Y0,FDD
Y0,Y1,FDD
Y0,Y0,FDD
Y0,A1,FDD
Y1,B1,FDD

2 1 Signed or unsigned 16x16 fractional multiply
with 32-bit result.

The first operand is treated as signed and the
second as unsigned.

Table 6-24. Data ALU Arithmetic Instructions

Operation Operands C W Comments

ABS F 2 1 Absolute value.

ADC Y,F 2 1 Add with carry (sets C bit also).

ADD DD,FDD 2 1 36-bit addition of two registers.

F1,DD

~F,F

Y,F

X:(SP-xx),FDD 6 1 Add memory word to register.

X:aa represents a 6-bit absolute address. Refer to
Absolute Short Address (Direct Addressing): <aa>
on page 4-22

X:aa,FDD 4 1

X:xxxx,FDD 6 2

FDD,X:(SP-xx) 8 2 Add register to memory word, storing the result back to
memory.FDD,X:xxxx 8 2

FDD,X:aa 6 2

#xx,FDD 4 1 Add an immediate integer 0–31.

#xxxx,FDD 6 2 Add a signed 16-bit immediate.

CLR F 2 1 Clear 36-bit accumulator and set condition codes.

F1DD 2 1 Identical to move #0,<reg>; does not set condition
codes.Rj

N

Table 6-22. Data ALU Multiply Instructions (Continued)

Operation Operands C W Comments

6-22 DSP56800 Family Manual �

Instruction Set Introduction

CMP DD,FDD 2 1 36-bit compare of two accumulators or data registers.

F1,DD

~F,F

X:(SP-xx),FDD 6 1 Compare memory word with 36-bit accumulator.

X:aa represents a 6-bit absolute address. Refer to
Absolute Short Address (Direct Addressing): <aa>
on page 4-22

Note: Condition codes set based on 36-bit result

X:aa,FDD 4 1

X:xxxx,FDD 6 2

#xx,FDD 4 1 Compare accumulator with an immediate integer 0–31.

#xxxx,FDD 6 2 Compare accumulator with a signed 16-bit immediate.

DEC(W) FDD 2 1 Decrement word.

X:(SP-xx) 8 1 Decrement word in memory using appropriate
addressing mode.X:aa 6 1

X:xxxx 8 2

DIV DD,F 2 1 Divide iteration.

INC(W) FDD 2 1 Increment word.

X:(SP-xx) 8 1 Increment word in memory using appropriate address-
ing mode.X:aa 6 1

X:xxxx 8 2

NEG F 2 1 Two’s-complement negation.

RND F 2 1 Round.

SBC Y,F 2 1 Subtract with carry (set C bit also).

SUB DD,FDD 2 1 36-bit subtract of two registers. 16-bit source registers
are first sign extended internally and concatenated
with 16 zero bits to form a 36-bit operand.

F1,DD

~F,F

Y,F

X:(SP-xx),FDD 6 1 Subtract memory word from register.
X:aa represents a 6-bit absolute address. Refer to
Absolute Short Address (Direct Addressing): <aa>
on page 4-22

X:aa,FDD 4 1

X:xxxx,FDD 6 2

#xx,FDD 4 1 Subtract an immediate value 0–31.

#xxxx,FDD 6 2 Subtract a signed 16-bit immediate.

TFR DD,F 2 1 Transfer register to register.

A,B 2 1 Transfer one accumulator to another (36-bits).

B,A 2 1 Transfer one accumulator to another (36-bits).

TST F 2 1 Test 36-bit accumulator.

Table 6-24. Data ALU Arithmetic Instructions (Continued)

Operation Operands C W Comments

DSP56800 Instruction Set Summary

� Instruction Set Introduction 6-23

The ANDC, EORC, ORC, and NOTC can also be used to perform logical operations on registers and data
memory locations. ANDC, EORC, and ORC allow logical operations with 16-bit immediate data. See
Section 6.5.1, “ANDC, EORC, ORC, and NOTC Aliases,” for additional information.

TSTW DDDDD
(except HWS)

2 1 Test 16-bit word in register. All registers allowed
except HWS. Limiting is not performed if an accumula-
tor is specified.

X:(Rn) 2 1 Test a word in memory using appropriate addressing
mode.

X:aa represents a 6-bit absolute address. Refer to
Absolute Short Address (Direct Addressing): <aa>
on page 4-22

X:(Rn)+ 2 1

X:(Rn)- 2 1

X:(Rn+N) 4 1

X:(Rn)+N 2 1

X:(Rn+xxxx) 6 2

X:(R2+xx) 4 1

X:(SP-xx) 4 1

X:aa 2 1

X:pp 2 1

X:xxxx 4 2

Table 6-25. Data ALU Miscellaneous Instructions

Operation Operands C W Comments

NORM R0,F 2 1 Normalization iteration instruction for normalizing
the F accumulator

Table 6-26. Data ALU Logical Instructions

Operation Operands C W Comments

AND DD,FDD 2 1 16-bit logical AND

F1,DD

EOR DD,FDD 2 1 16-bit exclusive OR (XOR)

F1,DD

NOT FDD 2 1 One’s-complement (bit-wise negation)

OR DD,FDD 2 1 16-bit logical OR

F1,DD

Table 6-24. Data ALU Arithmetic Instructions (Continued)

Operation Operands C W Comments

6-24 DSP56800 Family Manual �

Instruction Set Introduction

Table 6-27. Data ALU Shifting Instructions

Operation Operands C W Comments

ASL FDD 2 1 Arithmetic shift left entire register by 1 bit

ASLL Y1,X0,FDD
Y0,X0,FDD
Y1,Y0,FDD
Y0,Y0,FDD
A1,Y0,FDD
B1,Y1,FDD

2 1 Arithmetic shift left of the first operand by value
specified in four LSBs of the second operand;
places result in FDD

ASR FDD 2 1 Arithmetic shift right entire register by 1 bit

ASRR Y1,X0,FDD
Y0,X0,FDD
Y1,Y0,FDD
Y0,Y0,FDD
A1,Y0,FDD
B1,Y1,FDD

2 1 Arithmetic shift right of the first operand by
value specified in four LSBs of the second
operand; places result in FDD

ASRAC Y1,X0,F
Y0,X0,F
Y1,Y0,F
Y0,Y0,F
A1,Y0,F
B1,Y1,F

2 1 Arithmetic word shifting with accumulation

LSL FDD 2 1 1-bit logical shift left of word

LSR FDD 2 1 1-bit logical shift right of word

LSRR Y1,X0,FDD
Y0,X0,FDD
Y1,Y0,FDD
Y0,Y0,FDD
A1,Y0,FDD
B1,Y1,FDD

2 1 Logical shift right of the first operand by value
specified in four LSBs of the second operand;
places result in FDD (when result is to an accu-
mulator F, zero extends into F2)

LSRAC Y1,X0,F
Y0,X0,F
Y1,Y0,F
Y0,Y0,F
A1,Y0,F
B1,Y1,F

2 1 Logical word shifting with accumulation

ROL FDD 2 1 Rotate 16-bit register left by 1 bit through the
carry bit

ROR FDD 2 1 Rotate 16-bit register right by 1 bit through the
carry bit

DSP56800 Instruction Set Summary

� Instruction Set Introduction 6-25

Table 6-28. AGU Arithmetic Instructions

Operation Operands C W Comments

LEA (Rn)+ 2 1 Increment the Rn pointer register

(Rn)- 2 1 Decrement the Rn pointer register

(Rn)+N 2 1 Add N index register to the Rn register and store the
result in the Rn register

(R2+xx) 2 1 Add a 6-bit unsigned immediate value to R2 and store
in the R2 pointer

(SP-xx) 2 1 Subtract a 6-bit unsigned immediate value from SP and
store in the SP register

(Rn+xxxx) 4 2 Add a 16-bit signed immediate value to the specified
source register

TSTW (Rn)- 2 1 Test and decrement AGU register. Refer to Table 6-24
for other forms of TSTW that are executed in the Data
ALU.

Table 6-29. Bit-Manipulation Instructions

Operation Operands C W Comments

BFTSTH #xxxx,DDDDD 4 2 BFTSTH tests all bits selected by the 16-bit
immediate mask. If all selected bits are set,
then the C bit is set. Otherwise it is cleared.

All registers in DDDDD are permitted except
HWS.
X:aa represents a 6-bit absolute address.
Refer to Absolute Short Address (Direct
Addressing): <aa> on page 4-22
X:pp represents a 6-bit absolute I/O address.

#xxxx,X:(R2+xx) 6 2

#xxxx,X:(SP-xx) 6 2

#xxxx,X:aa 4 2

#xxxx,X:pp 4 2

#xxxx,X:xxxx 6 3

BFTSTL #xxxx,DDDDD 4 2 BFTSTL tests all bits selected by the 16-bit
immediate mask. If all selected bits are clear,
then the C bit is set. Otherwise it is cleared.

All registers in DDDDD are permitted except
HWS.
X:aa represents a 6-bit absolute address.
Refer to Absolute Short Address (Direct
Addressing): <aa> on page 4-22
X:pp represents a 6-bit absolute I/O address.

#xxxx,X:(R2+xx) 6 2

#xxxx,X:(SP-xx) 6 2

#xxxx,X:aa 4 2

#xxxx,X:pp 4 2

#xxxx,X:xxxx 6 3

6-26 DSP56800 Family Manual �

Instruction Set Introduction

BFCHG #xxxx,DDDDD 4 2 BFCHG tests all bits selected by the 16-bit
immediate mask. If all selected bits are set,
then the C bit is set. Otherwise it is cleared.
Then it inverts all selected bits.

All registers in DDDDD are permitted except
HWS.
X:aa represents a 6-bit absolute address.
Refer to Absolute Short Address (Direct
Addressing): <aa> on page 4-22
X:pp represents a 6-bit absolute I/O address.

#xxxx,X:(R2+xx) 6 2

#xxxx,X:(SP-xx) 6 2

#xxxx,X:aa 4 2

#xxxx,X:pp 4 2

#xxxx,X:xxxx 6 3

BFCLR #xxxx,DDDDD 4 2 BFCLR tests all bits selected by the 16-bit
immediate mask. If all selected bits are set,
then the C bit is set. Otherwise it is cleared.
Then it clears all selected bits.

All registers in DDDDD are permitted except
HWS.
X:aa represents a 6-bit absolute address.
Refer to Absolute Short Address (Direct
Addressing): <aa> on page 4-22
X:pp represents a 6-bit absolute I/O address.

#xxxx,X:(R2+xx) 6 2

#xxxx,X:(SP-xx) 6 2

#xxxx,X:aa 4 2

#xxxx,X:pp 4 2

#xxxx,X:xxxx 6 3

BFSET #xxxx,DDDDD 4 2 BFSET tests all bits selected by the 16-bit
immediate mask. If all selected bits are clear,
then the C bit is set. Otherwise it is cleared.
Then it sets all selected bits.

All registers in DDDDD are permitted except
HWS.
X:aa represents a 6-bit absolute address.
Refer to Absolute Short Address (Direct
Addressing): <aa> on page 4-22
X:pp represents a 6-bit absolute I/O address.

#xxxx,X:(R2+xx) 6 2

#xxxx,X:(SP-xx) 6 2

#xxxx,X:aa 4 2

#xxxx,X:pp 4 2

#xxxx,X:xxxx 6 3

Table 6-30. Branch on Bit-Manipulation Instructions

Operation Operands C1 W Comments

BRCLR #MASK8,DDDDD,AA 10/8 2 BRCLR tests all bits selected by the immediate
mask. If all selected bits are clear, then the carry
bit is set and a PC relative branch occurs. Other-
wise it is cleared and no branch occurs.

All registers in DDDDD are permitted except
HWS.

MASK8 specifies a 16-bit immediate value where
either the upper or lower 8 bits contains all zeros.

AA specifies a 7-bit PC relative offset.
X:aa represents a 6-bit absolute address.
X:pp represents a 6-bit absolute I/O address.

#MASK8,X:(R2+xx),AA 12/10 2

#MASK8,X:(SP-xx),AA 12/10 2

#MASK8,X:aa,AA 10/8 2

#MASK8,X:pp,AA 10/8 2

#MASK8,X:xxxx,AA 12/10 3

Table 6-29. Bit-Manipulation Instructions (Continued)

Operation Operands C W Comments

DSP56800 Instruction Set Summary

� Instruction Set Introduction 6-27

BRSET #MASK8,DDDDD,AA 10/8 2 BRSET tests all bits selected by the immediate
mask. If all selected bits are set, then the carry bit
is set and a PC relative branch occurs. Otherwise
it is cleared and no branch occurs.

All registers in DDDDD are permitted except
HWS.

MASK8 specifies a 16-bit immediate value where
either the upper or lower 8 bits contains all zeros.

AA specifies a 7-bit PC relative offset.
X:aa represents a 6-bit absolute address.
X:pp represents a 6-bit absolute I/O address.

#MASK8,X:(R2+xx),AA 12/10 2

#MASK8,X:(SP-xx),AA 12/10 2

#MASK8,X:aa,AA 10/8 2

#MASK8,X:pp,AA 10/8 2

#MASK8,X:xxxx,AA 12/10 3

1. First cycle count is if branch is taken (condition is true); second is if branch is not taken.

Table 6-31. Change of Flow Instructions

Operation Operands C1

1. First cycle count is if branch is taken (condition is true); second is if branch is not taken.

W Comments

Bcc xx 6/4 1 7-bit signed PC relative offset. (xx <=> <OFFSET7>)

BRA xx 6 1 7-bit signed PC relative offset. (xx <=> <OFFSET7>)

Jcc xxxx 6/4 2 16-bit absolute address

JMP xxxx 6 2 16-bit absolute address

JSR xxxx 8 2 Push 16-bit return address and jump to 16-bit target address

RTI 10 1 Return from interrupt, restoring 16-bit PC and SR from the
stack

RTS 10 1 Return from subroutine, restoring 16-bit PC from the stack

Table 6-32. Looping Instructions

Operation Operands C W Comments

DO #xx,xxxx 6 2 Load LC register with unsigned value and start hardware
DO loop with 6-bit immediate loop count. The last address
is 16-bit absolute. #xx = 0 not allowed by assembler.

DDDDD,xxxx 6 2 Load LC register with unsigned value. If LC is not equal to
zero, start hardware DO loop with 16-bit loop count in regis-
ter. Otherwise, skip body of loop (adds three additional
cycles). The last address is 16-bit absolute.

Any register allowed except: SP, M01, SR, OMR, and HWS.

Table 6-30. Branch on Bit-Manipulation Instructions (Continued)

Operation Operands C1 W Comments

6-28 DSP56800 Family Manual �

Instruction Set Introduction

ENDDO 2 1 Remove one value from the hardware stack and update the
NL and LF bits appropriately.
Note: Does not branch to the end of the loop.

REP #xx 6 1 Hardware repeat of a one-word instruction with immediate
loop count.

DDDDD 6 1 Hardware repeat of a one-word instruction with loop count
specified in register.

Any register allowed except: SP, M01, SR, OMR, and HWS.

Table 6-33. Control Instructions

Operation Operands C W Comments

DEBUG 4 1 Generate a debug event.

ILLEGAL 4 1 Execute the illegal instruction exception. This instruction is made
available so that code may be written to test and verify interrupt
handlers for illegal instructions.

NOP 2 1 No operation.

STOP n/a 1 Enter STOP low-power mode.

SWI 8 1 Execute the trap exception at the highest interrupt priority level,
level 1 (non-maskable).

WAIT n/a 1 Enter WAIT low-power mode.

Table 6-32. Looping Instructions (Continued)

Operation Operands C W Comments

DSP56800 Instruction Set Summary

� Instruction Set Introduction 6-29

Each instruction in Table 6-34 requires one program word and executes in one cycle. The data type
accessed by the single memory move in all single parallel move instructions is signed word.

The solid double line running down the center of the table indicates that the data ALU operation is
independent from the parallel memory move. As a result, any valid operation can be combined with any
valid memory move. Example 6-5 lists examples of valid single parallel move instructions.

Example 6-5. Examples of Single Parallel Moves

MAC Y1,X0,A X:(R0)+,X0
MAC Y1,X0,A X0,X:(R0)+
ASL B X:(R0)+,Y1
ASL B Y1,X:(R0)+

It is not permitted to perform MAC A,B X:(R0)+,X0 because the MAC instruction requires three
operands, as shown in Table 6-34. The operands are not independent of the operation performed. This is
why a single line is used to separate the operation from the operands instead of a double line.

Table 6-34. Data ALU Instructions—Single Parallel Move

Data ALU Operation Parallel Memory Move

Operation Operands Source Destination

MAC
MPY

MACR
MPYR

Y1,X0,F
Y0,X0,F
Y1,Y0,F
Y0,Y0,F

A1,Y0,F
B1,Y1,F

X:(Rj)+
X:(Rj)+N

X0
Y1
Y0

A
B

A1
B1

X0
Y1
Y0

A
B

A1
B1

X:(Rj)+
X:(Rj)+N

ADD
SUB
CMP

TFR

X0,F
Y1,F
Y0,F

A,B
B,A

ABS
ASL
ASR
CLR
RND
TST

INC or INCW
DEC or DECW

NEG

F

6-30 DSP56800 Family Manual �

Instruction Set Introduction

For the MAC, MPY, MACR, and MPYR instructions, the assembler accepts the two source operands in
any order.

Each instruction in Table 6-35 requires one program word and executes in one cycle.

The data types accessed by the two memory moves in all dual parallel read instructions are signed words.

6.7 The Instruction Pipeline
Instruction execution is pipelined to allow most instructions to execute at a rate of one instruction every
two clock cycles. However, certain instructions require additional time to execute, including instructions
with the following properties:

• Exceed length of one word

• Use an addressing mode that requires more than one cycle

• Access the program memory

• Cause a control flow change

In the case of a control flow change, a cycle is needed to clear the pipeline.

6.7.1 Instruction Processing
Pipelining allows the fetch-decode-execute operations of an instruction to occur during the
fetch-decode-execute operations of other instructions. While an instruction is executed, the next instruction
to be executed is decoded, and the instruction to follow the instruction being decoded is fetched from
program memory. If an instruction is two words in length, the additional word will be fetched before the
next instruction is fetched.

Figure 6-4 demonstrates pipelining; F1, D1, and E1 refer to the fetch, decode, and execute operations,
respectively, of the first instruction. Note that the third instruction contains an instruction extension word
and takes two cycles to execute.

Table 6-35. Data ALU Instructions—Dual Parallel Read

Data ALU
 Operation

First Memory
Read

Second Memory
Read

Operation Operands Source 1 Destination 1 Source 2 Destination 2

MAC
MPY

MACR
MPYR

Y1,X0,F
Y1,Y0,F
Y0,X0,F

X:(R0)+
X:(R0)+N
X:(R1)+

X:(R1)+N

Y0
Y1

X:(R3)+
X:(R3)-

X0

ADD
SUB

X0,F
Y1,F
Y0,F

MOVE

The Instruction Pipeline

� Instruction Set Introduction 6-31

Figure 6-4. Pipelining

Each instruction requires a minimum of three instruction cycles (six machine cycles) to be fetched,
decoded, and executed. A new instruction may be started after two machine cycles, making the throughput
rate to be one instruction executed every instruction cycle for single-cycle instructions. Two-word
instructions require a minimum of eight machine cycles to execute, and a new instruction may start after
four machine cycles.

6.7.2 Memory Access Processing
One or more of the DSP memory sources (X data memory and program memory) may be accessed during
the execution of an instruction. Three address buses (XAB1, XAB2, and PAB) and three data buses
(CGDB, XDB2, and PDB) are available for internal memory accesses during one instruction cycle, but
only one address bus and one data bus are available for external memory accesses (when the external bus is
available). If all memory sources are internal to the DSP, one or more of the two memory sources may be
accessed in one instruction cycle (that is, program memory access, or program memory access plus an X
memory reference, or program memory access with two X memory references).

NOTE:

For instructions that contain two X memory references, the second transfer
using XAB2 and XDB2 may not access external memory. All accesses
across these buses must access internal memory only.

See Section 7.2.2, “Instruction Pipeline with Off-Chip Memory Accesses,” on page 7-3 for a discussion of
off-chip memory accesses.

Fetch F1 F2 F3 F3e F4 F5 F6 ...

Decode D1 D2 D3 D3e D4 D5 ...

Execute E1 E2 E3 E3e E4 ...

Instruction Cycle 1 2 3 4 5 6 7 ...

6-32 DSP56800 Family Manual �

Instruction Set Introduction

� Interrupts and the Processing States 7-1

Chapter 7
Interrupts and the Processing States
The DSP56800 Family processors have six processing states and are always in one of these states (see
Table 7-1). Each processing state is described in detail in the following sections except the debug
processing state, which is discussed in Section 9.3, “OnCE Port,” on page 9-4. In addition, special cases of
interrupt pipelines are discussed at the end of the section. Section 8.10, “Interrupts,” on page 8-30
discusses software techniques for interrupt processing.

7.1 Reset Processing State
The processor enters the reset processing state when the external RESET pin is asserted and a hardware
reset occurs. On devices with a computer operating properly (COP) timer, it is also possible to enter the
reset processing state when this timer reaches zero. The DSP is typically held in reset during the power-up
process through assertion of the RESET pin, making this the first processing state entered by the DSP. The
reset state performs the following:

1. Resets internal peripheral devices

2. Sets the M01 modifier register to $FFFF

3. Clears the interrupt priority register (IPR)

4. Sets the wait state fields in the bus control register (BCR) to their maximum value, thereby
inserting the maximum number of wait states for all external memory accesses

Table 7-1. Processing States

State Description

Reset The state where the DSP core is forced into a known reset state. Typically, the first
program instruction is fetched upon exiting this state.

Normal The state of the DSP core where instructions are normally executed.

Exception The state of interrupt processing, where the DSP core transfers program control from its
current location to an interrupt service routine using the interrupt vector table.

Wait A low-power state where the DSP core is shut down but the peripherals and interrupt
machine remain active.

Stop A low-power state where the DSP core, the interrupt machine, and most (if not all) of the
peripherals are shut down.

Debug The state where the DSP core is halted and all registers in the On-Chip Emulation
(OnCE) port of the processor are accessible for program debug.

7-2 DSP56800 Family Manual �

Interrupts and the Processing States

5. Clears the status register’s (SR) loop flag and condition code bits and sets the interrupt
mask bits

6. Clears the following bits in the operating mode register: nested looping, condition codes,
stop delay, rounding, and external X memory

The DSP remains in the reset state until the RESET pin is deasserted. When hardware deasserts the RESET
pin, the following occur:

1. The chip operating mode bits in the OMR are loaded from an external source, typically mode
select pins; see the appropriate device manual for details.

2. A delay of 16 instruction cycles (NOPs) occurs to sync the local clock generator and state
machine.

3. The chip begins program execution at the program memory address defined by the state of
the MA and MB bits in the OMR and the type of reset (hardware or COP time-out). The
first instruction must be fetched and then decoded before execution. Therefore, the first
instruction execution is two instruction cycles after the first instruction fetch.

After this last step, the DSP enters the normal processing state upon exiting reset. It is also possible for the
DSP to enter the debug processing state upon exiting reset when system debug is underway.

7.2 Normal Processing State
The normal processing state is the typical state of the processor where it executes instructions in a
three-stage pipeline. This includes the execution of simple instructions such as moves or ALU operations
as well as jumps, hardware looping, bit-field instructions, instructions with parallel moves, and so on.
Details about the execution of the individual instructions can be found in Appendix A, “Instruction Set
Details.” The chip must be reset before it can enter the normal processing state.

7.2.1 Instruction Pipeline Description
The instruction-execution pipeline is a three-stage pipeline, which allows most instructions to execute at a
rate of one instruction per instruction cycle. For the case where there are no off-chip memory accesses, or
for the case of a single off-chip access with no wait states, one instruction cycle is equivalent to two
machine cycles. A machine cycle is defined as one cycle of the clock provided to the DSP core. Certain
instructions, however, require more than one instruction cycle to execute. These instructions include the
following:

• Instructions longer than one word

• Instructions using an addressing mode that requires more than one cycle

• Instructions that cause a control-flow change

Pipelining allows instruction executions to overlap so that the fetch-decode-execute operations of a given
instruction occur concurrently with the fetch-decode-execute operations of other instructions. Specifically,
while the processor is executing one instruction, it is decoding the next instruction and fetching a third
instruction from program memory. The processor fetches only one instruction word per instruction cycle;
if an instruction is two words in length, it fetches the additional word with an additional cycle before it
fetches the next instruction.

Normal Processing State

� Interrupts and the Processing States 7-3

Table 7-2 demonstrates pipelining. “F1,” “D1,” and “E1” refer to the fetch, decode, and execute operations
of the first instruction, respectively. The third instruction, which contains an instruction extension word,
takes two instruction cycles to execute. Although it takes three instruction cycles (six machine cycles) for
the pipeline to fill and the first instruction to execute, an instruction usually executes on each instruction
cycle thereafter (two machine cycles).

7.2.2 Instruction Pipeline with Off-Chip Memory Accesses
The three sets of internal on-chip address and data buses (XAB1/CGDB, XAB2/XDB2, PAB/PDB) allow
for fast memory access when memories are being accessed on-chip. The DSP can perform memory
accesses on all three bus pairs in a single instruction cycle, permitting the fetch of an instruction
concurrently with up to two accesses to the X data memory. Thus, for applications where all program and
data is located in on-chip memory, there is no speed penalty when performing up to three memory accesses
in a single instruction.

Similarly, the external address and data bus also allows for fast program execution. For the case where
only program memory is external to the chip or only X data memory is external (XAB1/CDGB bus pair),
the DSP chip will still execute programs at full speed if there are no wait states programmed on the
external bus by the user. For the case where an instruction requires an external program fetch and an
external X data memory access simultaneously, the instruction will still operate correctly. The instruction
is automatically stretched an additional instruction cycle so that the two external accesses may be
performed correctly, and wait states are inserted accordingly. All this occurs transparently to the user to
allow for easier program development.

This information is summarized in Table 7-3, which shows how the chip automatically inserts instruction
cycles and wait states for an instruction that is simultaneously accessing program and data memory. For
dual parallel read instructions, the second X memory access that uses XAB2/XDB2 must always be done
to on-chip memory. This second access may never access external off-chip memory.

Table 7-2. Instruction Pipelining

Operation
Instruction Cycle

1 2 3 4 5 6 7 • • •

Fetch F1 F2 F3 F3e F4 F5 F6 • • •

Decode D1 D2 D3 D3e D4 D5 • • •

Execute E1 E2 E3 E3e E4 • • •

7-4 DSP56800 Family Manual �

Interrupts and the Processing States

7.2.3 Instruction Pipeline Dependencies and Interlocks
The pipeline is normally transparent to the user. However, there are certain instruction-sequence
combinations where the pipeline will affect the program execution. Such situations are best described by
case studies. Most of these restricted sequences occur because either all addresses are formed during
instruction decode or they are the result of contention for an internal resource such as the SR.

If the execution of an instruction depends on the relative location of the instruction in a sequence of
instructions, there is a pipeline effect.

It is possible to see if there is a pipeline dependency. To test for a suspected pipeline effect, compare the
execution of the suspect instruction when it directly follows the previous instruction and when four NOPs
are inserted between the two. If there is a difference, it is caused by a pipeline effect. The assembler flags
instruction sequences with potential pipeline effects so that the user can determine if the operation will
execute as expected.

Table 7-3. Additional Cycles for Off-Chip Memory Accesses

Memory Space
Number of

Additional Cycles
Comments

Program
Fetch

X Memory
First Access

X Memory
Second Access

On-chip On-chip On-chip 0 All accesses internal

External On-chip On-chip 0 + mvm One external access

On-chip External On-chip 0 + mv One external access

External External On-chip 1 + mv + mvm Two external accesses

Note: The ‘mv’ and ‘mvm’ cycle time values reflect the additional time required for all MOVE instructions and for
MOVEM instructions, respectively.

Example 7-1. Pipeline Dependencies in Similar Code Sequences

No Pipeline Effect

ORC #$0001,SR ; Changes carry bit at the end of execution time slot
JCS LABEL ; Reads condition codes in SR in its

; execution time slot
The JCS instruction will test the carry bit modified by the ORC without any pipeline effect in this code segment.

Pipeline Effect

ORC #$0008,OMR ; Sets EX bit at execution time slot
MOVE X:$17,A ; Reads internal memory instead of external

; memory
A pipeline effect occurs because the address of the MOVE is formed at its decode time before the ORC changes the
EX bit (which changes the memory map) in the ORC’s execution time slot. The following code produces the expected
results of reading the external ROM:

ORC #$0008,OMR ; Sets EX bit at execution time slot
NOP ; Delays the MOVE so it will read the updated memory map
MOVE X:$17,A ; Reads external memory

Exception Processing State

� Interrupts and the Processing States 7-5

Section 4.4, “Pipeline Dependencies,” on page 4-33 contains more details on interlocks caused during
address generation.

7.3 Exception Processing State
The exception processing state is the state where the DSP core recognizes and processes interrupts that can
be generated by conditions inside the DSP or from external sources. Upon the occurrence of an event,
interrupt processing transfers control from the currently executing program to an interrupt service routine,
with the ability to later return to the current program upon completion of the interrupt service routine. In
digital signal processing, some of the main uses of interrupts are to transfer data between DSP memory and
a peripheral device or to begin execution of a DSP algorithm upon reception of a new sample. An interrupt
can also be used to exit the DSP’s low-power wait processing state.

An interrupt will cause the processor to enter the exception processing state. Upon entering this state, the
current instruction in decode executes normally. The next fetch address is supplied by the interrupt
controller and points into the interrupt vector table (Table 7-4 on page 7-7). During this fetch the PC is not
updated. The instruction located at these two addresses in the interrupt vector table must always be a
two-word, unconditional jump-to-subroutine instruction (JSR). Note that the interrupt controller only
fetches the second word of the JSR instruction. This results in the program changing flow to an interrupt
routine, and a context switch is performed.

There are many sources for interrupts on the DSP56800 Family of chips, and some of these sources can
generate more than one interrupt. Interrupt requests can be generated from conditions within the DSP core,
from the DSP peripherals, or from external pins. The DSP core features a prioritized interrupt vector
scheme with up to 64 vectors to provide faster interrupt servicing. The interrupt priority structure is
discussed in Section 7.3.3, “Interrupt Priority Structure.”

7.3.1 Sequence of Events in the Exception Processing State
The following steps occur in exception processing:

1. A request for an interrupt is generated either on a pin, from the DSP core, from a peripheral
on the DSP chip, or from an instruction executed by the DSP core. Any hardware interrupt
request from a pin is first synchronized with the DSP clock.

Example 7-2. Common Pipeline Dependency Code Sequence

MOVE X0,R2 ; Move a value into register R2
MOVE X:(R2),A ; Uses the OLD contents of R2 to address memory.

In this case, before the first MOVE instruction has written R2 during its execution cycle, the second MOVE has
accessed the old R2, using the old contents of R2. This is because the address for indirect moves is formed during
the decode cycle. This overlapping instruction execution in the pipeline causes the pipeline effect.
After an address register has been written by a MOVE instruction, one instruction cycle should be allowed before the
new contents are available for use as an address register by another MOVE instruction. The proper instruction
sequence follows:

MOVE X0,R2 ; Moves a number into register R2
NOP ; Executes any instruction or instruction sequence not

; using the R2 register written in the previous
; instruction

MOVE X:(R2),A ; Uses the new contents of R2

7-6 DSP56800 Family Manual �

Interrupts and the Processing States

2. The request for an interrupt by a particular source is latched in an interrupt-pending flag if
it is an edge or non-maskable interrupt (all other interrupts are not latched and must remain
asserted in order to be serviced). For peripherals that can generate more than one interrupt
request and have more than one interrupt vector, the interrupt arbiter only sees one request
from the peripheral active at a time.

3. All pending interrupt requests are arbitrated to select which interrupt will be processed. The
arbiter automatically ignores any interrupts with an interrupt priority level (IPL) lower than
the interrupt mask level specified in the SR. If there are any remaining requests, the arbiter
selects the remaining interrupt with the highest IPL, and the chip enters the exception
processing state (see Figure 7-1).

4. The interrupt controller then freezes the program counter (PC) and fetches the JSR
instruction located at the two interrupt vector addresses associated with the selected
interrupt. It is required that the instruction located at the interrupt vector address must be a
two-word JSR instruction. Note that only the second word of the JSR instruction is fetched;
the first word of the JSR is provided by the interrupt controller.

5. The interrupt controller places this JSR instruction into the instruction stream and then
releases the PC, which is used for the next instruction fetch. Arbitration among the
remaining interrupt requests is allowed to resume. The next interrupt arbitration then
begins.

6. The execution of the JSR instruction stacks the PC and the SR as it transfers control to the
first instruction in the interrupt service routine. These two stacked registers contain the
16-bit return address that will later be used to return to the interrupted code, as well as the
condition code state. In addition, the IPL is raised to level 1 to disallow any level 0
interrupts. Note that the OnCE trap, stack error, illegal instruction, and SWI can still
generate interrupts because these are level 1 interrupts and are non-maskable.

The exception processing state is completed when the processor executes the JSR instruction located in the
interrupt vector table and the chip enters the normal processing state. As it enters the normal processing
state, it begins executing the first instruction in the interrupt service routine. Each interrupt service routine
should return to the main program by executing an RTI instruction.

Interrupt routines for level 0 interrupts are interruptible by higher priority interrupts. Figure 7-1 shows an
example of processing an interrupt.

Figure 7-1. Interrupt Processing

Explicit Return
from Interrupt
Recognized

Main
Program

JSR Instruction
in Vector Table to
Interrupt Service
Routine

$0100 —

$0101

$000E

$000F

$0104

$0105

$0106

MACR

JSR

$0300

REP

MAC

—

$0102

$0103

MOVE

MAC

SSI Receive Data
with Exception Status

Interrupt Service Routine

$0300

$0301

ADD

ASL

$0302

$0303

MOVE

RTI

Interrupt
Recognized

AA0056

Exception Processing State

� Interrupts and the Processing States 7-7

Steps 1 through 3 listed on page page 7-5 require two additional instruction cycles, effectively making the
interrupt pipeline five levels deep.

7.3.2 Reset and Interrupt Vector Table
The interrupt vector table specifies the addresses that the processor accesses once it recognizes an interrupt
and begins exception processing. Since peripherals can also generate interrupts, the interrupt vector map
for a given chip is specified by all sources on the DSP core as well as all peripherals that can generate an
interrupt. Table 7-4 lists the reset and interrupt vectors available on DSP56800-based DSP chips. The
interrupt vectors used by on-chip peripherals, or by additional device-specific interrupt will be listed in the
user’s manual for that chip.

Table 7-4. DSP56800 Core Reset and Interrupt Vector Table

Interrupt
Starting
Address

Interrupt
Priority Level

Interrupt Source

$0000 - Hardware Reset

$0002 - COP Watchdog Reset

$0004 - (Reserved)

$0006 1 Illegal Instruction Trap

$0008 1 SWI

$000A 1 Hardware Stack Overflow

$000C 1 OnCE Trap

$000E 1 (Reserved)

$0010 0 IRQA

$0012 0 IRQB

$0014 0 (Vector Available for On-Chip Peripherals)

$0016 0 (Vector Available for On-Chip Peripherals)

$0018 0 (Vector Available for On-Chip Peripherals)

$001A 0 (Vector Available for On-Chip Peripherals)

$001C 0 (Vector Available for On-Chip Peripherals)

$001E 0 (Vector Available for On-Chip Peripherals)

$0020 0 (Vector Available for On-Chip Peripherals)

...

$007C 0 (Vector Available for On-Chip Peripherals)

$007E 0 (Vector Available for On-Chip Peripherals)

7-8 DSP56800 Family Manual �

Interrupts and the Processing States

It is required that a two-word JSR instruction is present in any interrupt vector location that may be fetched
during exception processing. If an interrupt vector location is unused, then the JSR instruction is not
required.

The hardware reset and COP reset are special cases because they are reset vectors, not interrupt vectors.
There is no IPL specified for these two because these conditions reset the chip and reset takes precedence
over any interrupt. Typically a two-word JMP instruction is used in the reset vectors. The hardware reset
vector will either be at address $0000 or $E000 and the COP reset vector will either be at $0002 or $E002
depending on the operating mode of the chip. The different operating modes are discussed in
Section 5.1.9.1, “Operating Mode Bits (MB and MA)—Bits 1–0,” on page 5-10.

7.3.3 Interrupt Priority Structure
Interrupts are organized in a simple priority structure. Each interrupt source has an associated IPL: Level 0
or Level 1. Level 0, the lowest level, is maskable, and Level 1 is non-maskable. Table 7-5 summarizes the
priority levels and their associated interrupt sources.

The interrupt mask bits (I1, I0) in the SR reflect the current priority level and indicate the IPL needed for
an interrupt source to interrupt the processor (see Table 7-6). Interrupts are inhibited for all priority levels
below the current processor priority level. Level 1 interrupts, however, are not maskable and, therefore,
can always interrupt the processor.

7.3.4 Configuring Interrupt Sources
The interrupt unit in the DSP56800 core supports seven interrupt channels for use by on-chip peripherals,
in addition to the IRQ interrupts and interrupts generated by the DSP core. Each maskable interrupt source
can individually be enabled or disabled as required by the application. The exact method for doing so is
dependant on the particular DSP56800-based device, as some of the interrupt handling logic is
implemented as an on-chip peripheral.

One example of how interrupts can be enabled and disabled, and their priority level established, is with an
interrupt priority register (IPR).

Table 7-5. Interrupt Priority Level Summary

IPL Description Interrupt Sources

0 Maskable On-chip peripherals,
IRQA and IRQB

1 Non-maskable Illegal instruction, OnCE trap,
HWS overflow, SWI

Table 7-6. Interrupt Mask Bit Definition in the Status Register

I1 I0 Exceptions Permitted Exceptions Masked

0 0 (Reserved) (Reserved)

0 1 IPL 0, 1 None

1 0 (Reserved) (Reserved)

1 1 IPL 1 IPL 0

Exception Processing State

� Interrupts and the Processing States 7-9

Figure 7-2. Example Interrupt Priority Register

In the example interrupt priority register (IPR), shown in Figure 7-2, the interrupt for each on-chip
peripheral device (channels 0–6) and for each external interrupt source (IRQA, IRQB), can be enabled or
disabled under software control. The IPR also specifies the trigger mode of the external interrupt sources.
Figure 7-3 shows how it might be programmed for different interrupts.

Figure 7-3. Example On-Chip Peripheral and IRQ Interrupt Programming

7.3.5 Interrupt Sources
An interrupt request is a request to break out of currently executing code to enter an interrupt service
routine. Interrupt requests in the DSP are generated from one of three sources: external hardware, internal
hardware, and internal software. The internal hardware interrupt sources include all of the on-chip
peripheral devices.

Each interrupt source has at least one associated interrupt vector, and some sources may have several
interrupt vectors. The interrupt vector addresses for each interrupt source are listed in the interrupt vector
table (Table 7-4). These addresses are usually located in either the first 64 or 128 locations of program
memory. For further information on a device’s on-chip peripheral interrupt sources, see the device’s
individual user’s manual.

* Indicates reserved bits, read as zero and should be written with zero for future compatibility

IRQA Mode

IRQB Mode

Channel 6 IPL

Channel 5 IPL

Channel 4 IPL

Channel 3 IPL

Channel 2 IPL

Channel 1 IPL

Channel 0 IPL

(Reserved)

Ch0 Ch1 Ch2 Ch3 Ch4 Ch5 Ch6 * * *
IBL IBL

*
IAL IAL

*
1 0 1 0

AA0057

Chx Enabled? IPL

0 No —

1 Yes 0

IBL0
IAL0

Enabled? IPL

0 No —

1 Yes 0

IBL1
IAL1

Trigger Mode

0 Level sensitive

1 Edge sensitive

AA0058

7-10 DSP56800 Family Manual �

Interrupts and the Processing States

When an interrupt request is recognized and accepted by the DSP core, a two-word JSR instruction is
fetched from the interrupt vector table. Because the program flow is directed to a different starting address
within the table for each different interrupt, the interrupt structure can be described as “vectored.” A
vectored interrupt structure has low execution overhead. If it is known beforehand that certain interrupts
will not be used or enabled, those locations within the table can instead be used for program or data
storage.

7.3.5.1 External Hardware Interrupt Sources

The external hardware interrupt sources are listed below:

• RESET pin

• IRQA pin—priority level 0

• IRQB pin—priority level 0

An assertion of the RESET is not truly an interrupt, but rather it forces the chip into the reset processing
state. Likewise, for any DSP chip that contains a COP timer, a time-out on this timer can also place the
chip into the reset processing state. The reset processing state is at the highest priority and takes
precedence over any interrupt, including an interrupt in progress.

Assertions on the IRQA and IRQB pins generate IRQA and IRQB interrupts, which are priority level 0
interrupts and are individually maskable. The IRQA and IRQB interrupt pins are internally synchronized
with the processor’s internal clock and can be programmed as level-sensitive or edge-sensitive.

Edge-sensitive interrupts are latched as pending when a falling edge is detected on an IRQ pin. The IRQ
pin’s interrupt-pending bit remains set until its associated interrupt is recognized and serviced by the DSP
core. Edge-sensitive interrupts are automatically cleared when the interrupt is recognized and serviced by
the DSP core. In an edge-sensitive interrupt the interrupt-pending bit is automatically cleared when the
second vector location is fetched.

Level-sensitive interrupts, on the other hand, are never latched but go directly into the interrupt controller.
A level-sensitive interrupt is examined and processed when the IRQ pin is low and the interrupt arbiter
allows this interrupt to be recognized. Since there is no interrupt-pending bit associated with
level-sensitive interrupts, the interrupt cannot not be cleared automatically when serviced; instead, it must
be explicitly cleared by other means to prevent multiple interrupts.

NOTE:

On all level-sensitive interrupts, the interrupt must be externally released
before interrupts are internally re-enabled. Otherwise, the processor will
be interrupted repeatedly until the release of the level-sensitive interrupt.

When either the IRQA or IRQB pin is disabled in the IPR, any interrupt request on its associated pin is
ignored, regardless of whether the input was defined as level-sensitive or edge-sensitive. If the interrupt
input is defined as edge-sensitive, its interrupt-pending bit will remain in the reset state for as long as the
interrupt pin is disabled. If the interrupt is defined as level-sensitive, its edge-detection latch will stay in the
reset state. If the level-sensitive interrupt is disabled while it is pending, it will be cancelled. However, if
the interrupt has been fetched, it normally will not be cancelled.

The level-sensitive interrupt capability is useful for the case where there is more than one external interrupt
source, yet only one IRQ pin is available. In this case the interrupts are wire ORed onto a single IRQ pin
with a resistor pull-up, and any one of these can assert an interrupt. It is important that the interrupt service
routine poll each device, and, after finding the source of the interrupt, it must clear the conditions causing
the interrupt request.

Exception Processing State

� Interrupts and the Processing States 7-11

7.3.5.2 DSP Core Hardware Interrupt Sources

Other interrupt sources include the following:

• Stack error interrupt—priority level 1

• OnCE trap—priority level 1

• All on-chip peripherals (such as timers and serial ports)—priority level 0

An overflow of the hardware stack (HWS) causes a stack overflow interrupt that is vectored to P:$000A
(see Section 5.1.7, “Hardware Stack,” on page 5-6). Encountering the stack overflow condition means that
too many DO loop addresses have been stacked and that the oldest top-of-loop address has been lost. The
stack error is non-recoverable. The stack error condition refers to hardware stack overflow and does not
affect the software stack pointed to by the stack pointer (SP) register in any manner.

The OnCE trap interrupt is an interrupt that can be setup in the OnCE debug port accessible through the
JTAG pins. This gives the debug port the capability to generate an interrupt on a trigger condition such as
the matching of an address in the OnCE port (see Section 9.3, “OnCE Port,” on page 9-4 for more
information).

In addition to these sources there are seven general-purpose interrupt channels, Ch0 through Ch6, available
for use by on-chip peripherals such as timers and serial ports. Each channel can independently generate an
interrupt request, each can be individually masked, and each channel can have one or more dedicated
locations in the interrupt vector table. Typically, one channel is assigned to each on-chip peripheral, but, in
cases where there are more than seven peripherals that can generate interrupts, it is possible to put more
than one peripheral on a single interrupt channel.

7.3.5.3 DSP Core Software Interrupt Sources

The two software interrupt sources are listed below:

• Software interrupt (SWI)—priority level 1

• Illegal instruction interrupt (Ill)— priority level 1

A SWI is a non-maskable interrupt that is serviced immediately following the SWI instruction execution
(that is, no other instructions are executed between the SWI instruction and the JSR instruction found in
the interrupt vector table). The difference between an SWI and a JSR instruction is that the SWI sets the
interrupt mask to prevent level 0–maskable interrupts from being serviced. The SWI’s ability to mask out
lower-level interrupts makes it very useful for setting breakpoints in monitor programs or for making a
system call in a simple operating system. The JSR instruction does not affect the interrupt mask.

The illegal instruction interrupt is also a non-maskable interrupt (priority level 1). It is serviced
immediately following the execution or attempted execution of an illegal instruction (an undefined
operation code). Illegal exceptions are fatal errors. The JSR located in the illegal instruction interrupt
vector will stack the address of the instruction immediately after the illegal instruction.

7-12 DSP56800 Family Manual �

Interrupts and the Processing States

Figure 7-4. Illegal Instruction Interrupt Servicing

This interrupt can be used as a diagnostic tool to allow the programmer to examine the stack and locate the
illegal instruction, or the application program can be restarted with the hope that the failure was a soft
error. The ILLEGAL instruction, found in Appendix A, “Instruction Set Details,“ is useful for testing the
illegal interrupt service routine to verify that it can recover correctly from an illegal instruction. Note that
the illegal instruction trap does not fire for all invalid opcodes.

7.3.6 Interrupt Arbitration
Interrupt arbitration and control, which occurs concurrently with the fetch-decode-execute cycle, takes two
instruction cycles. External interrupts are internally synchronized with the processor clock before their
interrupt-pending flags are set. Each external and internal interrupt has its own flag. After each instruction
is executed, the DSP arbitrates all interrupts. During arbitration, each pending interrupt’s IPL is compared
with the interrupt mask in the SR, and the interrupt is either allowed or disallowed. The remaining pending

I1
I2

Main
Program
Fetches

II (NOP)
n6

No Fetch
No Fetch

Interrupt
Service Routine

Fetches

Interrupt Control Cycle 1 i

Interrupt Control Cycle 2 i

Fetch n1 n2 n3 n4 II n6 — — ii1 ii2 ii3 ii4 ii5

Decode n1 n2 n3 n4 II — — — ii1 ii2 ii3 ii4

Execute n1 n2 n3 n4 NOP — — — ii1 ii2 ii3

Instruction Cycle Count 1 2 3 4 5 6 7 8 9 10 11 12 13 14

i = Interrupt
ii = Interrupt Instruction Word
II = Illegal Instruction
n = Normal Instruction Word

Illegal Instruction Interrupt
Recognized as Pending

I3
I4
I5

(a) Instruction Fetches from Memory

(b) Program Controller Pipeline AA0059

Exception Processing State

� Interrupts and the Processing States 7-13

interrupts are prioritized according to the IPLs shown in Table 7-7, and the interrupt source with the
highest priority is selected. The interrupt vector corresponding to that source is then placed on the program
address bus so that the program controller can fetch the interrupt instruction.

Interrupts from a given source are not buffered. The processor will not arbitrate a new interrupt from the
same source until after it fetches the second word of the interrupt vector of the current interrupt.

An internal interrupt-acknowledge signal clears the appropriate interrupt-pending flag for DSP core
interrupts. Some peripheral interrupts may also be cleared by the internal interrupt-acknowledge signal, as
defined in their specifications. Peripheral interrupt requests that need a read/write action to some register
do not receive the internal interrupt-acknowledge signal, and their interrupt request will remain pending
until their registers are read/written. Further, if the interrupt comes from an IRQ pin and is programmed as
level triggered, the interrupt request will not be cleared. The acknowledge signal will be generated after the
interrupt vectors have been generated, not before.

If more than one interrupt is pending when an instruction is executed, the processor will first service the
interrupt with the highest priority level. When multiple interrupt requests with the same IPL are pending, a
second fixed-priority structure within that IPL determines which interrupt the processor will service. For

Table 7-7. Fixed Priority Structure Within an IPL

Priority Exception Enabled By

Level 1 (Non-maskable)

Highest Hardware RESET —

Watchdog timer reset —

Illegal instruction —

HWS overflow —

OnCE trap —

Lower SWI —

Level 0 (Maskable)

Higher IRQA (external interrupt) IPR bit 1

IRQB (external interrupt) IPR bit 4

Channel 6 peripheral interrupt IPR bit 9

Channel 5 peripheral interrupt IPR bit 10

Channel 4 peripheral interrupt IPR bit 11

Channel 3 peripheral interrupt IPR bit 12

Channel 2 peripheral interrupt IPR bit 13

Channel 1 peripheral interrupt IPR bit 14

Lowest Channel 0 peripheral interrupt IPR bit 15

7-14 DSP56800 Family Manual �

Interrupts and the Processing States

two interrupts programmed at the same priority level (non-maskable or level 0), Table 7-7 shows the
exception priorities within the same priority level. The information in this table only applies when two
interrupts arrive simultaneously or where two interrupts are simultaneously pending.

Whenever a level 0 interrupt has been recognized and exception processing begins, the DSP56800
interrupt controller changes the interrupt mask bits in the program controller’s SR to allow only level 1
interrupts to be recognized. This prevents another level 0 interrupt from interrupting the interrupt service
routine in progress. If an application requires that a level 0 interrupt can interrupt the current interrupt
service routine, it is necessary to use one of the techniques discussed in Section 8.10.1, “Setting Interrupt
Priorities in Software,” on page 8-30.

7.3.7 The Interrupt Pipeline
The interrupt controller generates an interrupt instruction fetch address, which points to the second
instruction word of a two-word JSR instruction located in the interrupt vector table. This address is used
instead of the PC for the next instruction fetch. While the interrupt instructions are being fetched, the PC is
loaded with the address of the interrupt service routine contained within the JSR instruction. After the
interrupt vector has been fetched, the PC is used for any subsequent instruction fetches and the interrupt is
guaranteed to be executed.

Upon executing the JSR instruction fetched from the interrupt vector table, the processor enters the
appropriate interrupt service routine and exits the exception processing state. The instructions of the
interrupt service routine are executed in the normal processing state and the routine is terminated with an
RTI instruction. The RTI instruction restores the PC to the program originally interrupted and the SR to its
contents before the interrupt occurred. Then program execution resumes. Figure 7-5 shows the interrupt
service routine. The interrupt service routine must be told to return to the main program by executing an
RTI instruction.

The execution of an interrupt service routine always conforms to the following rules:

1. A JSR to the starting address of the interrupt service routine is located at the first of two
interrupt vector addresses.

2. The interrupt mask bits of the SR are updated to mask level 0 interrupts.

3. The first instruction word of the next interrupt service (of higher IPL) will reach the decoder
only after the decoding of at least four instructions following the decoding of the first
instruction of the previous interrupt.

4. The interrupt service routine can be interrupted (that is, nested interrupts are supported).

5. The interrupt routine, which can be any length, should be terminated by an RTI, which
restores the PC and SR from the stack.

Exception Processing State

� Interrupts and the Processing States 7-15

Figure 7-5. Interrupt Service Routine

Figure 7-5 demonstrates the interrupt pipeline. The point at which interrupts are re-enabled and subsequent
interrupts are allowed is shown to illustrate the non-interruptible nature of the early instructions in the long
interrupt service routine.

Reset is a special exception, which will normally contain only a JMP instruction at the exception start
address.

There is only one case in which the stacked address will not point to the illegal instruction. If the illegal
instruction follows an REP instruction (see Figure 7-6), the processor will effectively execute the illegal
instruction as a repeated NOP, and the interrupt vector will then be inserted in the pipeline. The next
instruction will be fetched, decoded, and executed normally.

JSR
Jump Address

Main
Program

ii2
ii3
ii4

iin
RTI

Interrupt
Vector Table

Interrupt
Subroutine

(a) Instruction Fetches from Memory

Interrupt Control Cycle 1 i

Interrupt Control Cycle 2 i

Fetch n1 n2 — Adr — ii2 ii3 ii4 ii5 iin RTI — — — — n2 — —

Decode n1 JSR JSR JSR JSR ii2 ii3 ii4 ii5 iin RTI RTI RTI RTI RTI n2 —

Execute n1 JSR JSR JSR JSR ii2 ii3 ii4 ii5 iin RTI RTI RTI RTI RTI n2

Instruction Cycle Count 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Interrupt Synchronized and
Recognized as Pending

Interrupts Re-enabled

(b) Program Controller Pipeline

i = Interrupt
ii = Interrupt Instruction Word
n = Normal Instruction Word

Explicit
Return From

Interrupt
(Should Be RTI)

n1

n2

Interrupt
Synchronized

and
Recognized
as Pending

PC Resumes
Operation

Interrupts
Re-enabled

Interrupt
Routine

AA0069

7-16 DSP56800 Family Manual �

Interrupts and the Processing States

Figure 7-6. Repeated Illegal Instruction

In DO loops, if the illegal instruction is in the loop address (LA) location and the instruction preceding it
(that is, at LA-1) is being interrupted, the loop counter (LC) will be decremented as if the loop had reached
the LA instruction. When the interrupt service ends and the instruction flow returns to the loop, the
instruction after the illegal instruction will be fetched (since it is the next sequential instruction in the
flow).

7.3.8 Interrupt Latency
Interrupt latency represents the time between when an interrupt request first appears and when the first
instruction in an interrupt service routine is actually executed. The interrupt can only take place on
instruction boundaries, and so the length of execution of an instruction affects interrupt latency.

There are some special cases to consider. The SWI, STOP, and WAIT instructions are not interruptible.
Likewise, the REP instruction and the instruction it repeats are not interruptible.

A REP instruction and the instruction that follows it are treated as a single two-word instruction, regardless
of how many times it repeats the second instruction of the pair. Instruction fetches are suspended and will
be reactivated only after the LC is decremented to one (see Figure 7-7). During the execution of n2 in
Figure 7-7, no interrupts will be serviced. When LC finally decrements to one, the fetches are re-initiated,
and pending interrupts can be serviced.

Interrupt Control Cycle 1 i

Interrupt Control Cycle 2 i

Fetch n1 n2 n3 n4 REP n6 n7 — — — ii1 ii2 n8

Decode n1 n2 n3 n4 REP II — — — — ii1 ii2 n8

Execute n1 n2 n3 n4 REP REP REP II — — ii1 ii2 n8

Instruction Cycle Count 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

i = Interrupt
ii = Interrupt Instruction Word
II = Illegal Instruction
n = Normal Instruction Word

Illegal Instruction Interrupt
Recognized as Pending

AA0070

Wait Processing State

� Interrupts and the Processing States 7-17

7.4 Wait Processing State
The WAIT instruction brings the processor into the wait processing state, which is one of two low
power-consumption states. Asserting any valid interrupt request higher than the current processing level
(as defined by the I1 and I0 bits in the status register) releases the DSP from the wait state. In the wait state
the internal clock is disabled from all internal circuitry except the internal peripherals. All internal
processing is halted until an unmasked interrupt occurs or until the DSP is reset.

Figure 7-7. Interrupting a REP Instruction

Interrupt Synchronized and
Recognized as Pending

n2

i1

Main
Program
Fetches

n1 REP m
n2

Interrupt
Synchronized and

Recognized
as Pending

Interrupt
Service Routine Fetches
(From Between P:$0000 And
P:$003F)

i2

n2

n3
n4
n5
n6

Interrupts
Re-enabled

n2
n2

Instruction N2
Replaced Per
The REP Instruction

i= Interrupt Instruction
n= Normal Instruction

(a) Instruction Fetches from Memory

Interrupt Control Cycle 1 i i

Interrupt Control Cycle 2 i% i

Fetch REP n2 n3 ii1 ii2 n5 n6

Decode REP REP REP n2 n2 n2 n2 JSR JSR JSR JSR

Execute REP REP REP n2 n2 n2 n2 JSR JSR JSR

Instruction Cycle Count 1 2 3 4 5 6 7 8 9 10 11 12

i = Interrupt
ii = Interrupt Instruction Word
n = Normal Instruction Word
i% = Interrupt Rejected

Interrupts Re-enabled

(b) Program Controller Pipeline

Repeat m
Times

AA0071

7-18 DSP56800 Family Manual �

Interrupts and the Processing States

Figure 7-8 shows a wait instruction being fetched, decoded, and executed. It is fetched as n3 in this
example and, during decode, is recognized as a wait instruction. The following instruction (n4) is aborted,
and the internal clock is disabled from all internal circuitry except the internal peripherals. The processor
stays in this state until an interrupt or reset is recognized. The response time is variable due to the timing of
the interrupt with respect to the internal clock.

Figure 7-8 shows the result of an interrupt bringing the processor out of the wait state. The two appropriate
interrupt vectors are fetched and put in the instruction pipe. The next instruction fetched is n4, which had
been aborted earlier. Instruction execution proceeds normally from this point.

Figure 7-9 shows an example of the wait instruction being executed at the same time that an interrupt is
pending. Instruction n4 is aborted, as in the preceding example. The wait instruction causes a
five-instruction-cycle delay from the time it is decoded, after which the interrupt is processed normally.
The internal clocks are not turned off, and the net effect is that of executing eight NOP instructions
between the execution of n2 and ii1.

Figure 7-8. Wait Instruction Timing

Figure 7-9. Simultaneous Wait Instruction and Interrupt

Interrupt Control Cycle 1 i

Interrupt Control Cycle 2 i

Fetch n3 n4 — ii1 ii2 ii3 ii4 ii5 ii6 n4

Decode n2 WAIT — ii1 ii2 ii3 ii4 ii5 ii6 n4

Execute n1 n2 WAIT ii1 ii2 ii3 ii4 ii5 ii6 n4

Instruction Cycle Count 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

i = Interrupt
ii = Interrupt Instruction Word
n = Normal Instruction Word

Interrupt Synchronized and
Recognized as Pending

Only Internal Peripherals
Receive Clock

AA0074

Interrupt Control Cycle 1 i

Interrupt Control Cycle 2 i

Fetch n3 n4 — — — — — — ii1 ii2 ii3

Decode n2 WAIT — — — — — — — ii1 ii2

Execute n1 n2 WAIT — — — — — — — ii1

Instruction Cycle Count 1 2 3 4 5 6 7 8 9 10 11

i= Interrupt
ii= Interrupt Instruction Word
n= Normal Instruction Word

Interrupt Synchronized and
Recognized as Pending

Equivalent to Eight NOPs AA0075

Stop Processing State

� Interrupts and the Processing States 7-19

7.5 Stop Processing State
The STOP instruction brings the processor into the stop processing state, which is the lowest
power-consumption state. In the stop state the clock oscillator is gated off, whereas in the wait state the
clock oscillator remains active. The chip clears all peripheral interrupts and external interrupts (IRQA,
IRQB, and NMI) when it enters the stop state. Stack errors that were pending remain pending. The priority
levels of the peripherals remain as they were before the STOP instruction was executed. The on-chip
peripherals are held in their respective, individual reset states while the processor is in the stop state.

The stop processing state halts all activity in the processor until one of the following actions occurs:

• A low level is applied to the IRQA pin

• A low level is applied to the RESET pin

• An on-chip timer reaches zero

Any of these actions will activate the oscillator, and after a clock stabilization delay, clocks to the
processor and peripherals will be re-enabled. The clock-stabilization delay period is equal to either 16 (T)
cycles or 131,072 T cycles as determined by the stop delay (SD) bit in the OMR. One T cycle is equal to
one half of a clock cycle. For example, according to Table 6-33 on page 6-28, one NOP instruction
executes in 2 clock cycles; therefore, one NOP instruction executes in 4T cycles, i.e., 1 instruction cycle
equals 2 clock cycles and is equal to 4T cycles.

The stop sequence is composed of eight instruction cycles called stop cycles. They are differentiated from
normal instruction cycles because the fourth cycle is stretched for an indeterminate period of time while
the four-phase clock is turned off.

As shown in Figure 7-10, the STOP instruction is fetched in stop cycle 1, decoded in stop cycle 2 (which is
where it is first recognized as a stop command), and executed in stop cycle 3. The next instruction (n4) is
fetched during stop cycle 2 but is not decoded in stop cycle 3 because, by that time, the STOP instruction
prevents the decode. The processor stops the clock and enters the stop mode. The processor will stay in the
stop mode until it is restarted.

Figure 7-11 shows the system being restarted through asserting the IRQA signal. If the exit from the stop
state was caused by a low level on the IRQA pin, then the processor will service the highest priority
pending interrupt. If no interrupt is pending, then the processor resumes at the instruction following the
STOP instruction that brought the processor into the stop state.

Figure 7-10. STOP Instruction Sequence

Fetch n3 n4 — — — — n4

Decode n2 STOP — — — —

Execute n1 n2 STOP STOP STOP —

Stop Cycle Count 1 2 3 4 5 6 7 8 9 10 11 12 (13)

IRQA = Interrupt Request A Signal
n = Normal Instruction Word
STOP = Interrupt Instruction Word

IRQA

Resume Stop Cycle Count 4,
Interrupts Enabled

131,072 T or 16 T
Cycle Count StartedClock Stopped

AA0076

7-20 DSP56800 Family Manual �

Interrupts and the Processing States

An IRQA deasserted before the end of the stop cycle count will not be recognized as pending. If IRQA is
asserted when the stop cycle count completes, then an IRQA interrupt will be recognized as pending and
will be arbitrated with any other interrupts.

Specifically, when IRQA is asserted, the internal clock generator is started and begins a delay determined
by the SD bit of the OMR. When the chip uses the internal clock oscillator, the SD bit should be set to zero
to allow a longer delay time of 128K T cycles (131,072 T cycles), so that the clock oscillator may stabilize.
When the chip uses a stable external clock, the SD bit may be set to one to allow a shorter (16 T cycle)
delay time and a faster startup of the chip.

For example, assume that the SD equals 0 so that the 128K T counter is used. During the 128K T count the
processor ignores interrupts until the last few counts and, at that time, begins to synchronize them. At the
end of the 128K T cycle delay period, the chip restarts instruction processing, completes stop cycle 4
(interrupt arbitration occurs at this time), and executes stop cycles 5, 6, 7, and 8. (It takes 17 T from the end
of the 128K T delay to the first instruction fetch.) If the IRQA signal is released (pulled high) after a
minimum of 4T but after fewer than 128K T cycles, no IRQA interrupt will occur, and the instruction
fetched after stop cycle 8 will be the next sequential instruction (n4 in Figure 7-10). An IRQA interrupt
will be serviced as shown in Figure 7-11 if the following conditions are true:

1. The IRQA signal had previously been initialized as level sensitive.

2. IRQA is held low from the end of the 128K T cycle delay counter to the end of stop cycle
count 8.

3. No interrupt with a higher interrupt level is pending.

If IRQA is not asserted during the last part of the STOP instruction sequence (6, 7, and 8) and if no
interrupts are pending, the processor will refetch the next sequential instruction (n4). Since the IRQA
signal is asserted, the processor will recognize the interrupt and fetch and execute the JSR instruction
located at P:$0010 and P:$0011 (the IRQA interrupt vector locations).

To ensure servicing IRQA immediately after leaving the stop state, the following steps must be taken
before the execution of the STOP instruction:

1. Define IRQA as level sensitive; an edge-triggered interrupt will not be serviced.

2. Ensure that no stack error is pending.

3. Execute the STOP instruction and enter the stop state.

4. Recover from the stop state by asserting the IRQA pin and holding it asserted for the entire
clock recovery time. If it is low, the IRQA vector will be fetched.

Figure 7-11. STOP Instruction Sequence

Fetch n3 n4 — — — — ii1

Decode n2 STOP — — — —

Execute n1 n2 STOP STOP STOP —

Stop Cycle Count 1 2 3 4 5 6 7 8 9 10 11 12 (13)

IRQA = Interrupt Request A Signal
n = Normal Instruction Word
STOP = Interrupt Instruction Word

IRQA

Resume Stop Cycle Count 4,
Interrupts Enabled

131,072 T or 16 T
Cycle Count StartedClock Stopped

AA0077

Stop Processing State

� Interrupts and the Processing States 7-21

5. The exact elapsed time for clock recovery is unpredictable. The external device that asserts
IRQA must wait for some positive feedback, such as specific memory access or a change
in some predetermined I/O pin, before deasserting IRQA.

The STOP sequence totals 131,104 T cycles (if the SD equals 0) or 48 T cycles (if the SD equals 1) in
addition to the period with no clocks from the stop fetch to the IRQA vector fetch (or next instruction).
However, there is an additional delay if the internal oscillator is used. An indeterminate period of time is
needed for the oscillator to begin oscillating and then stabilize its amplitude. The processor will still count
131,072 T cycles (or 16 T cycles), but the period of the first oscillator cycles will be irregular; thus, an
additional period of 19,000 T cycles should be allowed for oscillator irregularity (the specification
recommends a total minimum period of 150,000 T cycles for oscillator stabilization). If an external
oscillator is used that is already stabilized, no additional time is needed.

The PLL may or may not be disabled when the chip enters the stop state. If it is disabled and will not be
re-enabled when the chip leaves the stop state, the number of T cycles will be much greater because the
PLL must regain lock.

If the STOP instruction is executed when the IRQA signal is asserted, the clock generator will not be
stopped, but the four-phase clock will be disabled for the duration of the 128K T cycle (or 16 T cycle)
delay count. In this case the STOP instruction looks like a 131,072 T + 35 T cycle (or 51 T cycle) NOP,
since the STOP instruction itself is eight instruction cycles long (32 T) and synchronization of IRQA is 3
T, totaling 35 T.

A stack error interrupt that is pending before the processor enters the stop state is not cleared and will
remain pending. During the clock-stabilization delay in stop mode, any edge-triggered IRQ interrupts are
cleared and ignored.

If RESET is used to restart the processor (see Figure 7-12), the 128K T cycle delay counter would not be
used, all pending interrupts would be discarded, and the processor would immediately enter the reset
processing state as described in Section 7.1, “Reset Processing State.” For example, the stabilization time
recommended in DSP56824 Technical Data for the clock (RESET should be asserted for this time) is only
50 T for a stabilized external clock, but is the same 150,000 T for the internal oscillator. These stabilization
times are recommended and are not imposed by internal timers or time delays. The DSP fetches
instructions immediately after exiting reset. If the user wishes to use the 128K T (or 16 T) delay counter, it
can be started by asserting IRQA for a short time (about two clock cycles).

Figure 7-12. STOP Instruction Sequence Recovering with RESET

Interrupt Control Cycle 1

Interrupt Control Cycle 2

Fetch n3 n4 — — nop nA nB nC nD nE

Decode n2 STOP — — nop nop nA nB nC nD

Execute n1 n2 STOP — nop nop nop nA nB nC

Stop Cycle Count 1 2 3 4

RESET= Interrupt
n = Normal Instruction Word
nA, nB, nC = Instructions in Reset Routine
STOP = Interrupt Instruction Word

RESET

Clock Stopped

Processor Leaves Reset State
Processor Enters

Reset State

AA0078

7-22 DSP56800 Family Manual �

Interrupts and the Processing States

7.6 Debug Processing State
The debug processing state is a state where the DSP core is halted and under the control of the OnCE
debug port. Serial data is shifted in and out of this port, and it is possible to execute single instructions
from this processing state. The debug processing state and the operation of the OnCE port is covered in
more detail in Chapter 9, “JTAG and On-Chip Emulation (OnCE™).”

� Software Techniques 8-1

Chapter 8
Software Techniques
Different software techniques can be used to fully exploit the DSP56800 architecture’s resources and
enhance its features. For example, small sequences of DSP56800 instructions can emulate more powerful
instructions. This chapter discusses how better performance can be obtained from the DSP56800
architecture using software techniques. The following topics are covered:

• Synthesizing useful new instructions

• Techniques for shifting 16- and 32-bit values

• Incrementing and decrementing

• Division techniques

• Pushing variables onto the software stack

• Different looping and nested-looping techniques

• Different techniques for array indexing

• Parameter passing and local variables

• Freeing up registers for time-critical loops

• Interrupt programming

• Jumps and JSRs using a register value

• Freeing one hardware stack (HWS) location

• Multi-tasking and the HWS

8.1 Useful Instruction Operations
The flexible instruction set of the DSP56800 architecture allows new instructions to be synthesized from
existing DSP56800 instructions. This section presents some of these useful operations that are not directly
supported by the DSP56800 instruction set, but can be efficiently synthesized. Table 8-1 lists operations
that can be synthesized using DSP56800 instructions.

Table 8-1. Operations Synthesized Using DSP56800 Instructions

Operation Description

JRSET, JRCLR Jumps if all selected bits in bit field is set or clear

BR1SET, BR1CLR Branches if at least one selected bit in bit field is set or clear

JR1SET, JR1CLR Jumps if at least one selected bit in bit field is set or clear

8-2 DSP56800 Family Manual �

Software Techniques

8.1.1 Jumps and Branches
Several operations for jumping and branching can be emulated, depending on selected bits in a bit field,
overflows, or other condition codes.

8.1.1.1 JRSET and JRCLR Operations

The JRSET and JRCLR operations are very similar to the BRSET and BRCLR instructions. They still test
a bit field and go to another address if all masked bits are either set or cleared. The BRSET and BRCLR
instructions only allow branches of 64 locations away from the current instruction and can only test an
8-bit field; however, JRSET and JRCLR operations allow jumps to anywhere in the 64K-word program
address space, and can specify a 16-bit mask. The following code shows that these two operations allow
the same addressing modes as the BFTSTH and BFTSTL instructions.

Example 8-1. JRSET and JRCLR

; JRSET Operation
; Emulated in 5 Icyc (4 Icyc if false), 4 Instruction Words

BFTSTH #xxxx,X:<ea> ; 16-bit mask allowed
JCS label ; 16-bit jump address allowed

; JRCLR Operation
; Emulated in 5 Icyc (4 Icyc if false), 4 Instruction Words

BFTSTL #xxxx,X:<ea> ; 16-bit mask allowed
JCS label ; 16-bit jump address allowed

JVS, JVC, BVS, BVC Jumps or branches if the overflow bit is set or clear

JPL, JMI, JES, JEC, JLMS, JLMC,
BPL, BMI, BES, BEC, BLMS, BLMC

Jumps or branches on other condition codes

NEGW Negates of upper two registers of an accumulator

NEG Negates another data ALU register, an AGU register, or a memory location

XCHG Exchanges any two registers

MAX Returns the maximum of two registers

MIN Returns the minimum of two registers

Accumulator sign extend Sign extends the accumulator into the A2 or B2 portion

Accumulator unsigned load Zeros the accumulator LSP and extension register

Table 8-1. Operations Synthesized Using DSP56800 Instructions (Continued)

Operation Description

Useful Instruction Operations

� Software Techniques 8-3

8.1.1.2 BR1SET and BR1CLR Operations

The BR1SET and BR1CLR operations are very similar to the BRSET and BRCLR instructions. They still
test a bit field and branch to another address based on the result of some test. The difference is that for
BRSET and BRCLR the condition is true if all selected bits in the bit field are 1s or 0s, respectively,
whereas for BR1SET and BR1CLR the condition is true if at least one of the selected bits in the bit field is
a 1 or 0, respectively. BR1SET and BR1CLR operations can also specify a 16-bit mask, compared to an
8-bit mask for BRSET and BRCLR. The following code shows that these two operations allow the same
addressing modes as the BFTSTH and BFTSTL instructions.

Example 8-2. BR1SET and BR1CLR

; BR1SET Operation
; Emulated in 5 Icyc (4 Icyc if false), 3 Instruction Words

BFTSTL #xxxx,X:<ea> ; 16-bit mask allowed
BCC label ; 7-bit signed PC relative offset allowed

; BR1CLR Operation
; Emulated in 5 Icyc (4 Icyc if false), 3 Instruction Words

BFTSTH #xxxx,X:<ea> ; 16-bit mask allowed
BCC label ; 7-bit signed PC relative offset allowed

8.1.1.3 JR1SET and JR1CLR Operations

The JR1SET and JR1CLR operations are very similar to the JRSET and JRCLR instructions. They still test
a bit field and jump to another address based on the result of some test. The difference is that for JRSET
and JRCLR the condition is true if all selected bits in the bit field are 1s or 0s, respectively, whereas for
JR1SET and JR1CLR the condition is true if at least one of the selected bits in the bit field is a 1 or 0,
respectively. JR1SET and JR1CLR operations allow jumps to anywhere in the 64K-word program address
space, and can specify a 16-bit mask. The following code shows that these two operations allow the same
addressing modes as the BFTSTH and BFTSTL instructions.

Example 8-3. JR1SET and JR1CLR

; JR1SET Operation
; Emulated in 5 Icyc (4 Icyc if false), 4 Instruction Words

BFTSTL #xxxx,X:<ea> ; 16-bit mask allowed
JCC label ; 16-bit jump address allowed

; JR1CLR Operation
; Emulated in 5 Icyc (4 Icyc if false), 4 Instruction Words

BFTSTH #xxxx,X:<ea> ; 16-bit mask allowed
JCC label ; 16-bit jump address allowed

8-4 DSP56800 Family Manual �

Software Techniques

8.1.1.4 JVS, JVC, BVS, and BVC Operations

Although there is no instruction for jumping or branching on overflow, such an operation can be emulated
as shown in the following code. Note that the carry bit will be destroyed by this operation since it receives
the result of the BFTSTH instruction. The following code shows JVS and BVC.

Example 8-4. JVS, JVC, BVS and BVC

; JVS Operation
; Emulated in 5 Icyc (4 Icyc if false), 4 Instruction Words

BFTSTH #$0002,SR ; Test V bit in SR
JCS label ; 16-bit jump address allowed

; BVC Operation
; Emulated in 5 Icyc (4 Icyc if false), 3 Instruction Words

BFTSTH #$0002,SR ; Test V bit in SR
BCC label ; 7-bit signed PC relative offset allowed

8.1.1.5 Other Jumps and Branches on Condition Codes

Jumping and branching using some of the other condition codes (PL, MI, EC, ES, LC, LS) can be
accomplished in the same manner as for overflow; see Section 8.1.1.4, “JVS, JVC, BVS, and BVC
Operations.” Remember that this technique destroys the value in the carry bit. The following code shows
JPL and BES.

Example 8-5. JPL and BES

; JPL Operation
; Emulated in 5 Icyc (4 Icyc if false), 4 Instruction Words

BFTSTH #$0008,SR ; Test the N bit in SR
JCC label ; 16-bit jump address allowed

; BES Operation
; Emulated in 5 Icyc (4 Icyc if false), 3 Instruction Words

BFTSTH #$0020,SR ; Test E bit in SR
BCS label ; 7-bit signed PC relative offset allowed

Similar code can be written for JMI, JEC, JES, JLMC, JLMS, BPL, BMI, BEC, BLMC, and BLMS. The
JLMS and JLMC are used for “jump if limit set” and “jump if limit clear,” respectively; this is done to
avoid any confusion with the JLS (“jump if lower or same”) instruction.

8.1.2 Negation Operations
The NEGW operation can be used to negate the upper two registers of the accumulator. The NEG
operation can be used to negate the X0, Y0, or Y1 data ALU registers, negate an AGU register, or negate a
memory location.

8.1.2.1 NEGW Operation

The NEGW operation can be emulated as shown in the following code:

; 20-bit NEGW Operation
; Operates on EXT:MSP, Clears LSP, 3 Icyc

MOVE #0,A0 ; Clear LSP
NEG A ; Now negates upper 20 bits of accumulator

; since A0 = 0

This correctly negates the upper 20 bits of the accumulator, but also destroys the A0 register.

Useful Instruction Operations

� Software Techniques 8-5

The NEG instruction can be used directly, executing in one instruction cycle, in cases where it is already
known that the least significant portion (LSP) of an accumulator is $0000. This is true immediately after a
value is moved to the A or B accumulator from memory or a register, as shown in the following code:

; Example of 1 Icyc NEGW Operation
; Works because A0 is already equal to $0000

MOVE X:(R0),A ; Move a 16-bit value to an accumulator,
; clearing A0 register

NEG A ; Now negates upper 20 bits of accumulator
; since A0 = 0

The technique shown in the following code can be used for cases when 16-bit data is being processed and
when it can be guaranteed that the LSP or extension register of the accumulator contains no required
information:

; 16-bit NEGW Operation
; Operates on MSP, Forces EXT to sign extension, LSP to $0, 2 Icyc

MOVE A1,A ; Force A2 to sign extension,
; force A0 cleared

NEG A ; Now negates upper 20 bits of accumulator
; since A0 = 0

The following technique may be used for the case where the CC bit in the SR is set to a 1, the LSP may not
be $0000, and the user is not interested in the values in the accumulator extension registers:

; 16-bit NEGW Operation
; CC bit must be set, operates on MSP, doesn’t affect A0, 2 Icyc

NOT A ; One’s-complement of A1, A2 unchanged
INCW A ; Increment to get two’s-complement,

; A2 may be incorrect

8.1.2.2 Negating the X0, Y0, or Y1 Data ALU registers

Although the NEG instruction is supported on accumulators only, NEG can be emulated to perform a
negation of the data ALU’s X0, Y0, or Y1 registers, as shown in the following code:

; NEG Operation
; Emulated at 2 Icyc

NOT Y0
INCW Y0

8.1.2.3 Negating an AGU register

It is possible to negate one of the AGU registers (Rn) without destroying any other register, as shown in the
following code:

; NEG Operation
; Emulated at 3 Icyc

NOTC R0
LEA (R0)+

8.1.2.4 Negating a Memory Location

It is possible to negate a memory location, as shown in the following code:

; NEG Operation
; Emulated at 5 Icyc

NOTC X:$19
INCW X:$19

When an accumulator is available, it may be faster to do this operation simply by moving the value to an
accumulator, performing the operation there, and moving the result back to memory.

8-6 DSP56800 Family Manual �

Software Techniques

8.1.3 Register Exchanges
The XCHG operation can be emulated as shown in the following code:

; XCHG Operation
; Emulated at 4 Icyc

PUSH X0
MOVE A,X0
POP A

If a register is available, the exchange of any two registers can be emulated as shown in the following code:

; XCHG Operation
; Emulated at 3 Icyc

MOVE X0,N
MOVE A,X0
MOVE N,A

A faster exchange of any two registers can be emulated using one address register when N equals 0, as
shown in the following code:

; XCHG Operation
; N register is 0, Emulated at 2 Icyc

MOVE A,X:(R0)
TFR X0,A X:(R0)+N,X0

8.1.4 Minimum and Maximum Values
The MAX operation returns the maximum of two values; the MIN operation return the minimum.

8.1.4.1 MAX Operation

The MAX operation can be emulated as shown in the following code:

; MAX Operation
MAX X0,A

; ------ becomes ------

; MAX operation
; Emulated at 4 Icyc

CMP X0,A
TGT X0,A ; (can also use TGE if desired)

Useful Instruction Operations

� Software Techniques 8-7

8.1.4.2 MIN Operation

The MIN operation can be emulated as shown in the following code:

; MIN Operation
MIN Y0,A

; ------ becomes ------

; MIN Operation
; Emulated at 4 Icyc

CMP Y0,A
TLT Y0,A ; (can also use TLE if desired)

8.1.5 Accumulator Sign Extend
There are two versions of this operation. In the first, the accumulator only contains 16 bits of useful
information in A1 or B1, and it is necessary to sign extend into A2 or B2. In the second version, both A1
and A0 or B1 and B0 contain useful information. The following code shows both versions:

; Sign-Extension Operation of 16-bit Accumulator Data
; Emulated in 1 Icyc, 1 Instruction Words

MOVE A1,A ; Sign extend into A2, clear A0 register

; Sign-Extension Operation of 32-bit Accumulator Data
; Emulated in 4 Icyc, 4 Instruction Words

PUSH A0 ; Save A0 register
MOVE A1,A ; Sign extend into A2, clear A0 register
POP A0 ; Restore A0 register to correct contents

8.1.6 Unsigned Load of an Accumulator
The unsigned load of an accumulator, which zeros the LSP and extension register, can be exactly emulated
as shown in the following code:

; DSP56100 Family Unsigned Load
; Emulated at 2 Icyc

MOVE x:(R0),A
ZERO A

; ------ becomes ------

; DSP56800 Family Unsigned Load
; Emulated at 2 Icyc

CLR A
MOVE x:(R0),A1

This operation is important for processing unsigned numbers when the CC bit in the operating mode
register (OMR) register is a 0, so that the condition codes are set using information at bit 35. This operation
is useful for performing unsigned additions and subtractions on 36-bit values.

8-8 DSP56800 Family Manual �

Software Techniques

8.2 16- and 32-Bit Shift Operations
This technique presents many different methods for performing shift operations on the DSP56800
architecture. Different techniques offer different advantages. Some techniques require several registers,
while others can be performed only on the register to be shifted. It is even possible to shift the value in one
register but place the result in a different register. Techniques are also presented for shifting 36-bit values
by large immediate values.

8.2.1 Small Immediate 16- or 32-Bit Shifts
If it is only necessary to shift a register or accumulator by a small amount, one of the two techniques shown
in the following code may be adequate. These techniques may also be appropriate if there are no registers
available for use in the shifting operation, since more than one register is required with the multi-bit
shifting instructions. For cases where the amount of bit positions to shift is larger than three for 16-bit
registers or five for a 32-bit value, then it may be appropriate to use another technique.

; First Technique - Shift an Accumulator by 3 Bits - Use Inline Code
ASL A
ASL A
ASL A

; Second Technique - Shift an Accumulator by 6 Bits - Use REP Loop
REP #6
ASL A

For places in a program that are executed infrequently, the second technique of using a REP (or DO) loop
results in the smallest code size.

8.2.2 General 16-Bit Shifts
For fast 16-bit shifting, the ASLL, ASRR, LSLL, and LSRR allow for single-cycle shifting of a 16-bit
value where the shift count is specified by a register. If it is desired to shift by an immediate value, the
immediate value must first be loaded into a register as shown in the following code:

; Shifting a 16-Bit Value by an Immediate Value
; Executes in 2 Icyc, 2 Instruction Words

MOVE #7,X0 ; Load shift count into the X0 register
ASLL Y0,X0,Y0 ; Arithmetically shift the contents of Y0

; 7 bits to the left

Note that these instructions clear the LSP of an accumulator. It is possible to perform a right shift where
the bits shifted into the LSP of the accumulator are not lost. Instead of using the ASRR or LSRR
instructions, a CLR instruction is first used to clear the accumulator, and then an ASRAC or LSRAC
instruction is performed. This technique allows a 16-bit value to be right shifted into a 32-bit field, as
shown in the following code:

; Shifting a 16-bit Value into a 32-bit field
; Executes in 2 Icyc, 2 Instruction Words

CLR A ; Clear accumulator
ASRAC Y0,X0,A ; Arithmetically shift into a 32-bit field

16- and 32-Bit Shift Operations

� Software Techniques 8-9

8.2.3 General 32-Bit Arithmetic Right Shifts
It is possible to perform right shifting of up to 15 bits on 32-bit values using the techniques presented in
this section.

The following example shows how to arithmetically shift the 32-bit contents of the Y1:Y0 registers,
storing the results into the A accumulator. Note that this technique uses many of the data ALU registers:
Y1 and Y0 to hold the value to be shifted, X0 to hold the amount to be shifted, and the A accumulator to
store the result. The following code allows shifts of 0 to 15 bits and executes in five instruction cycles.

; Arithmetically Shift Y1:Y0 Register Combination by 8 bits
; Emulated in 5 Icyc, 5 Instruction Words

MOVE #8,X0
LSRR Y0,X0,A ; Logically shift lower word
MOVE A1,A0 ; 16-bit arithmetic right shift
MOVE A2,A1
ASRAC Y1,X0,A ; Arithmetically shift upper word and

; combine with lower word

If it is necessary to shift by more than 15 bits, then the following code should be preceded by a shift of 16
bits, as documented later in this section.

Similar code that follows shows how to arithmetically shift the 32-bit value in the A accumulator. Again,
this technique takes several registers: Y1 to hold the most significant word (MSW) to be shifted and Y0 to
hold the amount to be shifted. This, perhaps, is only useful when the amount to be shifted is a variable
amount or when the amount to be shifted is eight or more and the Y1 and Y0 registers are available. Note
that the extension register (A2) is not shifted in this case.

; Arithmetically Shift A1:A0 Accumulator by 11 bits
; Emulated in 7 Icyc, 7 Instruction Words

MOVE #11,Y0
MOVE A1,Y1 ; Save copy of A1 register (upper word

; to be shifted)
MOVE A0,A1
LSRR A1,Y0,A ; Logically shift lower word
MOVE A1,A0 ; 16-bit arithmetic right shift
MOVE A2,A1
ASRAC Y1,Y0,A ; Arithmetically shift upper word and

; combine with lower word

8.2.4 General 32-Bit Logical Right Shifts
Right shifting logically is identical to right shifting arithmetically except for the final shift instruction. For
arithmetic shifts of 32-bit values the final instruction is an ASRAC instruction, and for logical shifts of
32-bit values the final instruction is a LSRAC instruction. This is shown in the following code:

; Logically Shift Y1:Y0 Register Combination by 8 bits
; Emulated in 5 Icyc, 5 Instruction Words

MOVE #8,X0
LSRR Y0,X0,A ; Logically shift lower word
MOVE A1,A0 ; 16-bit arithmetic right shift
MOVE A2,A1
LSRAC Y1,X0,A ; Logically shift upper word and

; combine with lower word

8-10 DSP56800 Family Manual �

Software Techniques

8.2.5 Arithmetic Shifts by a Fixed Amount
Arithmetic shifts (left or right) by a fixed amount can be emulated with the ASRxx operations.

8.2.5.1 Right Shifts (ASR12–ASR20)

For arithmetic right shifts there is a faster way to shift an accumulator for large shift counts. The following
code shows how to perform arithmetic right shifts of 12 through 20 bits on an accumulator. This emulation
works without destroying any registers on the chip. If desired, it is possible to use this technique for bit
shifts greater than 20, but it is not possible to use this technique for shifts of 11 or fewer bits without losing
information.

16- and 32-Bit Shift Operations

� Software Techniques 8-11

; ASR12 Operation
; Emulated in 8 Icyc, 8 Instruction Words

ASL A
ASL A
ASL A
ASL A
PUSH A1 ; (PUSH is a 2-word, 2 Icyc macro)
MOVE A2,A
POP A0

; ASR13 Operation
; Emulated in 7 Icyc, 7 Instruction Words

ASL A
ASL A
ASL A
PUSH A1 ; (PUSH is a 2-word, 2 Icyc macro)
MOVE A2,A
POP A0

; ASR14 Operation
; Emulated in 6 Icyc, 6 Instruction Words

ASL A
ASL A
PUSH A1 ; (PUSH is a 2-word, 2 Icyc macro)
MOVE A2,A
POP A0

; ASR15 Operation
; Emulated in 5 Icyc, 5 Instruction Words

ASL A
PUSH A1 ; (PUSH is a 2-word, 2 Icyc macro)
MOVE A2,A
POP A0

; ASR16 Operation
; Emulated in 2 Icyc, 2 Instruction Words

MOVE A1,A0 ; (Assumes EXT contains sign extension)
MOVE A2,A1

; ASR17 Operation
; Emulated in 3 Icyc, 3 Instruction Words

ASR A
MOVE A1,A0 ; (Assumes EXT contains sign extension)
MOVE A2,A1

; ASR18 Operation
; Emulated in 4 Icyc, 4 Instruction Words

ASR A
ASR A
MOVE A1,A0 ; (Assumes EXT contains sign extension)
MOVE A2,A1

; ASR19 Operation
; Emulated in 5 Icyc, 5 Instruction Words

ASR A
ASR A
ASR A
MOVE A1,A0 ; (Assumes EXT contains sign extension)
MOVE A2,A1

; ASR20 Operation
; Emulated in 6 Icyc, 6 Instruction Words

ASR A
ASR A
ASR A
ASR A

8-12 DSP56800 Family Manual �

Software Techniques

MOVE A1,A0 ; (Assumes EXT contains sign extension)
MOVE A2,A1

8.2.5.2 Left Shifts (ASL16–ASL19)

For arithmetic left shifts there is a faster way to shift an accumulator for large shift counts. The following
code shows how to perform arithmetic left shifts of 16 through 19 bits on an accumulator. This emulation
works without destroying any registers on the chip. If desired, it is possible to use this technique for bit
shifts greater than 19, but it is not possible for shifts of 15 or fewer bits without losing information.

; ASL16 Operation
; Emulated in 4 Icyc, 4 Instruction Words

PUSH A1 ; (PUSH is a 2-word, 2 Icyc macro)
MOVE A0,A
POP A2

; ASL17 Operation
; Emulated in 5 Icyc, 5 Instruction Words

ASL A
PUSH A1 ; (PUSH is a 2-word, 2 Icyc macro)
MOVE A0,A
POP A2

; ASL18 Operation
; Emulated in 6 Icyc, 6 Instruction Words

ASL A
ASL A
PUSH A1 ; (PUSH is a 2-word, 2 Icyc macro)
MOVE A0,A
POP A2

; ASL19 Operation
; Emulated in 7 Icyc, 7 Instruction Words

ASL A
ASL A
ASL A
PUSH A1 ; (PUSH is a 2-word, 2 Icyc macro)
MOVE A0,A
POP A2

Incrementing and Decrementing Operations

� Software Techniques 8-13

8.3 Incrementing and Decrementing Operations
Almost any piece of data can be incremented or decremented. This section summarizes the different
increments and decrements available to both registers and memory locations. It is important to note the
LEA instruction, which is used to increment or decrement AGU pointer registers. The TSTW instruction is
also used for decrementing AGU pointer registers. This instruction is similar to LEA but also sets the
condition codes, making it useful for program looping and other tasks. The LEA and TSTW instructions do
not cause a pipeline dependency in the AGU (see Section 4.4, “Pipeline Dependencies,” on page 4-33).
The TSTW instruction is not available for incrementing an AGU pointer or for decrementing the SP
register.

; Different ways to increment on the DSP56800 core
INCW A ; on a Data ALU Accumulator
INCW X0 ; on a Data ALU Input Register
LEA (Rn)+ ; on an AGU pointer register (R0-R3 or SP)
INCW X:$0 ; on anywhere within the first 64 locations

; of X data memory
INCW X:$C200 ; on anywhere within the entire 64K locations

; of X data memory
INCW X:(SP-37) ; on a value located on the stack

; Different ways to decrement on the DSP56800 core
DECW A ; on a Data ALU Accumulator
DECW X0 ; on a Data ALU Input Register
LEA (Rn)- ; on an AGU pointer register (R0-R3 or SP)
TSTW (Rn)- ; on an AGU pointer register (R0-R3)
DECW X:$0 ; on anywhere within the first 64 locations

; of X data memory
DECW X:$C200 ; on anywhere within the entire 64K locations

; of X data memory
DECW X:(SP-37) ; on a value located on the stack

The many different techniques available help to prevent registers from being destroyed. Otherwise, as
found on other architectures, it is necessary to first move data to an accumulator to perform an increment.

8.4 Division
It is possible to perform fractional or integer division on the DSP56800 core. There are several questions to
consider when implementing division on the DSP core:

• Are both operands always guaranteed to be positive?

• Are operands fractional or integer?

• Is only the quotient needed, or is the remainder needed as well?

• Will the calculated quotient fit in 16 bits in integer division?

• Are the operands signed or unsigned?

• How many bits of precision are in the dividend?

• What about overflow in fractional and integer division?

• Will there be “integer division” effects?

NOTE:

In a division equation, the “dividend” is the numerator, the “divisor” is the
denominator, and the “quotient” is the result.

8-14 DSP56800 Family Manual �

Software Techniques

Once all these questions have been answered, it is possible to select the appropriate division algorithm. The
fractional algorithms support a 32-bit signed dividend, and the integer algorithms support a 31-bit signed
dividend. All algorithms support a 16-bit divisor.

Note that the most general division algorithms are the fractional and integer algorithms for four-quadrant
division that generate both a quotient and a remainder. These take the largest number of instruction cycles
to complete and use the most registers.

For extended precision division, where the number of quotient bits required is more than 16, the DIV
instruction and routines presented in this section are no longer applicable. For further information on
division algorithms, consult the following references (or others as required):

Theory and Application of Digital Signal Processing, Lawrence R. Rabiner and Bernard Gold
(Prentice-Hall: 1975), pages 524–530.

Computer Architecture and Organization, John Hayes (McGraw-Hill: 1978), pages 190–199.

8.4.1 Positive Dividend and Divisor with Remainder
The algorithms in the following code are the fastest and take the least amount of program memory. In order
to use these algorithms, it must be guaranteed that both the dividend and divisor are both positive, signed,
two’s-complement numbers. One algorithm is presented for the division of fractional numbers and a
second is presented for the division of integer numbers. Both algorithms generate the correct positive
quotient and positive remainder.

; Division of Fractional, Positive Data (B1:B0 / X0)
BFCLR #$0001,SR ; Clear carry bit: required for first DIV
REP 16
DIV X0,B ;Form positive quotient in B0
ADD X0,B ;Restore remainder in B1

;(At this point, the positive quotient is
; in B0 and the positive remainder is in B1)

; Division of Integer, Positive Data (B1:B0 / X0)
ASL B ;Shift of dividend required for integer

; division
BFCLR #$0001,SR ;Clear carry bit: required for first DIV
REP 16
DIV X0,B ;Form positive quotient in B0
MOVE B0,Y1 ;Save quotient in Y1

;(At this point, the positive quotient is in
; B0 but the remainder is not yet correct)

ADD X0,B ;Restore remainder in B1
ASR B ;Required for correct integer remainder

;(At this point, the correct positive
; remainder is in B1)

Division

� Software Techniques 8-15

8.4.2 Signed Dividend and Divisor with No Remainder
The algorithms in the following code provide fast ways to divide two signed, two’s-complement numbers.
These algorithms are faster because they generate the quotient only; they do not generate a correct
remainder. The algorithms are referred to as four-quadrant division because they allow any combination of
positive or negative operands for the dividend and divisor. One algorithm is presented for the division of
fractional numbers, and a second is presented for the division of integer numbers.

; 4 Quadrant Division of Fractional, Signed Data (B1:B0 / X0)
; Generates signed quotient only, no remainder
; Setup

MOVE B,Y1 ;Save Sign Bit of dividend (B1) in MSB of Y1
ABS B ;Force dividend positive
EOR X0,Y1 ;Save sign bit of quotient in N bit of SR
BFCLR #$0001,SR ;Clear carry bit: required for 1st DIV instr

; Division
REP 16
DIV X0,B ;Form positive quotient in B0

; Correct quotient
BGE DONE ;If correct result is positive, then done
NEG B ;Else negate to get correct negative result

DONE
;(At this point, the correctly signed
; quotient is in B0 but the remainder is not
; correct)

; 4 Quadrant Division of Integer, Signed Data (B1:B0 / X0)
; Generates signed quotient only, no remainder
; Setup

ASL B ;Shift of dividend required for integer
; division

MOVE B,Y1 ;Save Sign Bit of dividend (B1) in MSB of Y1
ABS B ;Force dividend positive
EOR X0,Y1 ;Save sign bit of quotient in N bit of SR
BFCLR #$0001,SR ;Clear carry bit: required for 1st DIV instr

; Division
REP 16
DIV X0,B ;Form positive quotient in B0

; Correct quotient
BGE DONE ;If correct result is positive, then done
NEG B ;Else negate to get correct negative result

DONE
;(At this point, the correctly signed
; quotient is in B0 but the remainder is not
; correct)

8-16 DSP56800 Family Manual �

Software Techniques

8.4.3 Signed Dividend and Divisor with Remainder
The algorithms in the following code are another way to divide two signed numbers, where both the
dividend or the divisor are signed two’s-complement numbers (positive or negative). These algorithms are
the most general because they generate both a correct quotient and a correct remainder. The algorithms are
referred to as 4 quadrant division because these algorithms allow any combination of positive or negative
operands for the dividend and divisor. One algorithm is presented for division of fractional numbers and a
second is presented for the division of integer numbers.

Division

� Software Techniques 8-17

; Four-Quadrant Division of Fractional, Signed Data (B1:B0 / X0)
; Generates signed quotient and remainder
; Setup

MOVE B1,A ;Save sign bit of dividend (B1) in MSB of A1
MOVE B1,N ;Save sign bit of dividend (B1) in MSB of N
ABS B ;Force dividend positive
EOR X0,Y1 ;Save sign bit of quotient in N bit of SR
BFCLR #$0001,SR ;Clear carry bit: required for first DIV instruction

; Division
REP 16
DIV X0,B

; Correct quotient
TFR B,A
BGE QDONE ;If correct result is positive, then done
NEG B ; Else negate to get correct negative result

QDONE
MOVE A0,Y1 ;Y1 <- True quotient
MOVE X0,A ;A <- Signed divisor
ABS A ;A <- Absolute value of divisor
ADD B,A ;A1 <- Restored remainder
BRCLR #$8000,N,DONE
MOVE #0,A0
NEG A

DONE
;(At this point, the correctly signed
; quotient is in Y1 and the correct
; remainder in A1)

; Four-Quadrant Division of Integer, Signed Data (B1:B0 / X0)
; Generates signed quotient and remainder
; Setup

ASL B ;Shift of dividend required for integer
; division

MOVE B1,A ;Save sign bit of dividend (B1) in MSB of A1
MOVE B1,N ;Save sign bit of dividend (B1) in MSB of N
ABS B ;Force dividend positive
EOR X0,Y1 ;Save sign bit of quotient in N bit of SR
BFCLR #$0001,SR ;Clear carry bit: required for first DIV instruction

;Division
REP 16
DIV X0,B

; Correct quotient
TFR B,A
BGE QDONE ;If correct result is positive, then done
NEG B ; Else negate to get correct negative result

QDONE
MOVE A0,Y1 ;Y1 <- True quotient
MOVE X0,A ;A <- Signed divisor
ABS A ;A <- Absolute Value of divisor
ADD B,A ;A1 <- Restored remainder
BRCLR #$8000,N,DONE
MOVE #0,A0
NEG A
ASR B ;Shift required for correct integer remainder

DONE
;(At this point, signed quotient in Y1, correct
; remainder in A1)

8-18 DSP56800 Family Manual �

Software Techniques

8.4.4 Algorithm Examples
This subsection provides examples of values calculated with the division algorithms in this section.

The results can be easily checked by multiplying the quotient by the divisor and adding the remainder to
this product. The final answer should be the same as the original dividend.

Example 8-6. Simple Fractional Division

A simple example of fractional division is the following case:

0.125 / 0.5 = 0.25

For this case a positive fractional algorithm can be selected. Converting the fractional numbers into hex gives the fol-
lowing division:

$10000000 / $4000

This gives the following results:

quotient = $2000 = 0.25
remainder = 0

Example 8-7. Signed Fractional Division

Another example of fractional division is the following case:

-0.2628712165169417858123779297 / 0.39035034179687500 = -0.6734008789062500

For this case a four-quadrant fractional algorithm can be selected. Converting the fractional numbers into hex gives
the following division:

$de5a3c69 / $31f7

This gives the following results:

quotient = $a9ce = -0.6734008789062500

Example 8-8. Simple Integer Division

A simple example of integer division is the following case:

64 / 9 = 7 (remainder = 1)

For this case a positive integer algorithm can be selected. Converting the integer numbers into hex gives the follow-
ing division:

$00000040 / $0009

This gives the following results:

quotient = $0007 = 7
remainder = 1

Example 8-9. Signed Integer Division

Another example of integer division is the following case:

-492789125 / -15896 = 31000

For this case a four-quadrant integer algorithm can be selected. Converting the integer numbers into hex gives the
following division:

$e2a0a27b / $c1e8

This gives the following results:

quotient = $7918 = 31000

Multiple Value Pushes

� Software Techniques 8-19

8.4.5 Overflow Cases
Both integer and fractional division are subject to division overflow. Overflow is the case where the
correct value of the quotient will not fit into the destination available to store it.

For division of fractional numbers, the result must be a 16-bit, signed fractional value greater than or equal
to -1.0 and less than 1.0 - 2-[N-1]. In other words, it must satisfy the following:

-1.0 ≤ quotient < +1.0 - 2-[N-1]

For the case where the magnitude of the dividend is larger than the magnitude of the divisor, this inequality
will not be true because any result generated will be larger in magnitude than 1.0. Thus, division overflow
occurs with fractional numbers for the case where the absolute value of the divisor is less than or equal to
the absolute value of the dividend:

|divisor| ≤ |dividend|

If this condition can be true when dividing fractional numbers, it must be prevented from occurring by first
scaling the dividend.

For the division of integer numbers, the result must be a 16-bit, signed integer value greater than or equal
to -2-[N-1] and less than or equal to [2[N-1] -1], where N is equal to 16. In other words:

-2-[N-1] ≤ quotient ≤ [2[N-1] -1], where N = 16

When integer numbers are being divided, it must be guaranteed that the final result can fit into a signed,
16-bit integer value. Otherwise, to prevent this from occurring, it is first necessary to scale the numerator.

8.5 Multiple Value Pushes
The DSP56800 core currently supports a one-word, one-instruction-cycle POP instruction for removing
information from the stack. The PUSH operation, however, is a two-word, two-instruction-cycle macro,
which expands to the following code. (This instruction macro works quite well when pushing a single
variable.)

; Expansion of the PUSH Instruction Macro
; Emulated in 2 Icyc, 2 Instruction Words

LEA (SP)+ ; Increment the SP (1 Icyc, 1 Word)
MOVE <register>,X:(SP) ; Place value onto the stack

; (1 Icyc, 1 Word)

However, there is a better technique when it is necessary to push more than one value onto the software
stack. Instead of using consecutive PUSH instruction macros, it is more efficient and saves more
instruction words by expanding out the PUSH operation:

; Faster technique for pushing multiple values onto the stack
; Finishes in 5 Icyc, 5 Instruction Words

LEA (SP)+ ; Increment SP
MOVE X0,X:(SP)+
MOVE Y0,X:(SP)+
MOVE R0,X:(SP)+
MOVE R1,X:(SP) ; No post-increment SP on last MOVE

In this case five instruction cycles and five words are used to push four values onto the software stack. If
the PUSH instruction macro had been used instead, it would have performed the same function in eight
instruction cycles with eight words.

8-20 DSP56800 Family Manual �

Software Techniques

Another use of the PUSH instruction is for temporary storage. Sometimes a temporary variable is required,
such as in swapping two registers. There are two techniques for doing this, the first using an unused
register and the second using a location on the stack. The second technique uses the PUSH instruction
macro and works whenever there are no other registers available. The two techniques are shown in the
following code:

; Swapping two registers (X0, R0) using an Available Register (N)
; 3 Icyc, 3 Instruction Words

MOVE X0,N ; X0 -> TEMP
MOVE R0,X0 ; R0 -> X0
MOVE N,R0 ; TEMP -> R0

; Swapping two registers (X0, R0) using a Stack Location
; 4 Icyc, 4 Instruction Words

PUSH X0 ; X0 -> TEMP
MOVE R0,X0 ; R0 -> X0
POP R0 ; TEMP -> R0

The operation is faster using an unused register if one is available. Often, the N register is a good choice
for temporary storage, as in the preceding example.

8.6 Loops
The DSP56800 core contains a powerful and flexible hardware DO loop mechanism. It allows for loop
counts up to 8,192, it allows a large number of instructions (maximum of 64K) to reside within the body of
the loop, and hardware DO loops can be interrupted. In addition, loops execute correctly from both on-chip
and off-chip program memory, and it is possible to single step through the instructions in the loop using the
OnCE port for emulation.

The DSP56800 core also contains a useful hardware REP loop mechanism, which is very useful for very
simple, fast looping on a single instruction. It is very useful for simple nesting when the inner loop only
contains a single instruction. For a REP loop, the instruction to be repeated is only fetched once from
program memory, reducing activity on the buses. This is very useful when executing code from off-chip
program memory. However, REP loops are not interruptible.

8.6.1 Large Loops (Count Greater Than 63)
Currently, the DO instruction allows an immediate value up to the value 63 to be specified for the loop
count. When necessary, specifying an immediate value larger than 63 is done using one of the registers on
the DSP56800 core to specify the loop count. Since registers are a precious resource, it is desirable not to
use any important registers that may contain valid data. The following code shows a technique for
specifying loop counts greater than 63 without destroying any register values.

MOVE #2048,LC ; Specify a loop count greater than 63
; using the LC register

DO LC,LABEL ; (LC register used to avoid destroying
; another register)

; (instructions)
LABEL

Since the LC register is already a dedicated register used for looping and is always loaded by the DO
instruction, no information is lost when this register is used to specify a larger loop count. Note that this
technique will also work with the LC register for nested loops, as long as the loading of the LC register
with immediate data occurs after the LC register is pushed for nested loops.

Loops

� Software Techniques 8-21

NOTE:

This technique should not be used for the REP instruction because it will
destroy the value of the LC register if done by a REP instruction nested
within a hardware DO loop.

8.6.2 Variable Count Loops
There are cases where it is useful to loop for a variable number of times instead of a constant number of
times. For these cases the loop count is specified using a register. This allows a variable number of loop
iterations from 1 to 2k times (where k is the number of bits in the LC register, or 13). It is important to
consider what takes place if this variable is zero or negative. Whenever a DO loop is executed and the loop
count is zero, the loop will execute 213 times. For the case where the number of iterations is negative, the
number will simply be interpreted as an unsigned positive number and the loop will be entered. If there is a
possibility that a register value may be less than or equal to zero, then it is necessary to insert extra code
outside of the loop to detect this and branch over the loop. This is demonstrated in the following code.

; Hardware looping when the loop count can be negative or zero
TSTW X0 ; Skip over loop if loop count <= 0
BLE LABEL
DO X0,LABEL
ASL A

LABEL

For the case of REP looping on a register value when the register contains the value 0, the instruction to be
repeated is simply skipped as desired; no extra code is required. This is also true when an immediate value
of 0 is specified. For the case where the number of iterations can be negative, the response is the same as
for the DO loop and can be solved using the preceding technique presented for DO looping.

8.6.3 Software Loops
The DSP56800 provides the capability for implementing loops in either hardware or software. For
non-nested loops in critical code sections, the hardware looping mechanism is always the fastest. However,
there is a limitation when the hardware looping mechanism is used. The DSP56800 allows a maximum of
two nested hardware DO loops. Any looping beyond this generates a HWS overflow interrupt.

Software looping techniques are also efficiently implemented on the DSP core. Software looping simply
uses a register or memory location and decrements this value until it reaches zero. A branch instruction
conditionally branches to the top of the loop.

There are three different techniques for implementing a loop in software: one using a data ALU register,
one using an AGU register, and one using a memory location to hold the loop count. Each of these is
shown in the following code.

8-22 DSP56800 Family Manual �

Software Techniques

; Software Looping
; Data ALU Register Used for Loop Count

MOVE #3,X0 ; Load loop count to execute the loop three times
LABEL ; Enters loop at least once
; (instructions)

DECW X0
BGT LABEL ; Back to top-of-loop if positive and not 0

; Software Looping
; AGU Register Used for Loop Count

MOVE #3-1,R0 ; Load loop count to execute the loop three times
LABEL ; Enters loop at least once
; (instructions)

TSTW (R0)-
BGT LABEL ; Back to top-of-loop if positive and not 0

; Software Looping
; Memory Location (one of first 64 XRAM locations) Used for Loop Count

MOVE #3,X:$7 ; Load loop count to execute the loop three times
LABEL ; Enters loop at least once
; (instructions)

DECW X:$7
BGT LABEL ; Back to top-of-loop if positive and not 0

8.6.4 Nested Loops
This section gives recommendations for and a detailed discussion of nested loops.

8.6.4.1 Recommendations

For nested looping it is recommended that the innermost loop be a hardware DO loop when appropriate
and that all outer loops be implemented as software loops. Even though it is possible to nest hardware DO
loops, it is better to implement all outer loops using software looping techniques for two reasons:

1. The DSP56800 allows only two nested hardware DO loops.

2. The execution time of an outer hardware loop is comparable to the execution time of a
software loop.

Likewise, there is little difference in code size between a software loop and an outer loop implemented
using the hardware DO mechanism.

The hardware nesting capability of DO loops should instead be used for efficient interrupt servicing. It is
recommended that the main program and all subroutines use no nested hardware DO loops. It is also
recommended that software looping be used whenever there is a JSR instruction within a loop and the
called subroutine requires the hardware DO loop mechanism. If these two rules are followed, then it can be
guaranteed that no more than one hardware DO loop is active at a time. If this is the case, then the second
HWS location is always available to ISRs for faster interrupt processing. This significantly reduces the
amount of code required to free up and restore the hardware looping resources such as the HWS when
entering and exiting an ISR, since it is already known upon entering the ISR that a HWS location is
available.

If this technique is used, the ISRs should not themselves be interruptible, or, if they can be interrupted,
then any ISR that can interrupt an ISR already in progress must save off one HWS location. See
Section 8.12, “Freeing One Hardware Stack Location.”

The following code shows the recommended nesting technique:

Loops

� Software Techniques 8-23

; Nesting Loops Recommended Technique

MOVE #3,X:$0003 ; Set up loop count for outer loop
; (software loop)

OUTER
; (instructions)

DO X0,INNER ; DO loop is inner loop (hardware loop)
ASL A
MOVE A,X:(R0)+

INNER
; (instructions)

DECW X:$0003 ; Decrement outer loop count
BGT OUTER ; Branch to top of outer loop if not done

It would also be possible to use a data ALU or AGU register if more speed is needed.

An exception to the preceding recommendation for nesting loops is for the unique case where the
innermost loop executes a single-word instruction. In this case it is possible to use a REP loop for the
innermost loop and a hardware DO loop for the outermost loop. This is demonstrated in the following
code:

; Nesting Loops Recommended Technique for Special Case of REP Loop Nested
; Within a Hardware DO Loop

INCW A
DO X0,LABEL ; DO loop is outer loop (interruptible)
MOVE B,Y1

; (instructions)
REP #4 ; REP loop is inner loop (non-interruptible)
ASL A ; (Must be a one-word instruction)

; (instructions)
MOVE A,X:(R0)+

LABEL

The REP loop may not be interrupted, however, so this technique may not be useful for large loop counts
on the innermost loop if there are tight requirements for interrupt latency in an application. If this is the
case, then the first example with a software outer loop and an inner DO loop may be appropriate.

8.6.4.2 Nested Hardware DO and REP Loops

Nesting of hardware DO loops is permitted on the DSP56800 architecture. However, it is not
recommended that this technique be used for nesting loops within a program. Rather, it is recommended
that the hardware nesting of DO loops be used to provide more efficient interrupt processing, as described
in Section 8.6.4.1, “Recommendations.”

Since the HWS is two locations deep, it is possible to nest one DO loop within another DO loop.
Furthermore, since the REP instruction does not use the HWS, it is possible to place a REP instruction
within these two nested DO loops. The following code shows the maximum nesting of hardware loops
allowed on the DSP56800 processor:

8-24 DSP56800 Family Manual �

Software Techniques

; Hardware Nested Looping Example of the Maximum Depth Allowed
;

DO #3,OLABEL ; Beginning of outer loop
PUSH LC
PUSH LA
DO X0,ILABEL ; Beginning of inner loop

; (instructions)
REP Y0 ; Skips ASL if y0 = 0
ASL A

; (instructions)
ILABEL ; End of inner loop

POP LA
POP LC
NOP ; three instructions required after POP
NOP ; three instructions required after POP
NOP ; three instructions required after POP

OLABEL ; End of outer loop

The HWS’s current depth can be determined by the NL and LF bits, as shown in Table 5-3, “Program
RAM Operating Modes,” on page 5-11. From these bits it is possible to determine whether there are no
loops currently in progress, a single loop, or two nested loops. Refer to Section 5.1.9.8, “Reserved OMR
Bits—Bits 2, 7 and 9–14,” on page 5-13 for the values of these bits in these different conditions.

For nested DO loops, it is required that there be at least three instructions after the POP of the LA and LC
registers and before the label of any outer loop. This requirement shows up in the preceding example as
three NOPs but can be fulfilled by any other instructions.

Further hardware nesting is possible by saving the contents of the HWS and later restoring the stack on
completion, as described in Section 8.13, “Multitasking and the Hardware Stack.”

8.6.4.3 Comparison of Outer Looping Techniques

A comparison of the execution overhead and extra code size of software and hardware outer loops shows
that for loop nesting, it is just as efficient to nest in software (see Table 8-1). If a data ALU register or
AGU register is available for use as the loop count, each loop executes one cycle faster than nesting loops
in hardware. If there are no on-chip registers available for the loop counter, then the third technique can be
used that uses one of the first 64 locations of X data memory. This technique executes one cycle slower per
loop than nesting loops in hardware. Each of the software techniques also uses fewer instruction words.

It is recommended that the nesting of hardware DO loops not be used for implementing nested loops.
Instead, it is recommended that all outer loops in a nested looping scheme be implemented using software
looping techniques. Likewise, it is recommended that software looping techniques be used when a loop
contains a JSR and the called routine contains many instructions or contains a hardware DO loop.

Table 8-1 Outer Loop Performance Comparison

Loop Technique
Number of Icyc
to Set Up Loop

Additional
Number of Icyc

Executed
Each Loop

Total Number of
Instruction

Words

Hardware nested DO loops 3 5 7

Software using data ALU register 1 4 3

Software using AGU register 1 4 3

Software using memory location 2 6 4

Loops

� Software Techniques 8-25

8.6.5 Hardware DO Looping in Interrupt Service Routines
Upon entering an ISR, it is possible that one or two hardware DO loops are currently in progress. This
means that the hardware looping resources (the LA and LC registers and the HWS) are currently in use and
may need to be freed up if hardware looping is required within the ISR.

If the recommendations presented in Section 8.6.4, “Nested Loops,” are followed, then it may be possible
to guarantee that a maximum of one DO loop is active. In this case the HWS is guaranteed to have at least
one open location, and the LF and NL bits will correctly indicate the looping status. In this case an ISR
simply pushes the LA and LC registers upon entering the routine and pops them upon exit. This is very
efficient, as demonstrated in the following code:

; Example of an ISR That Uses the Hardware DO Looping Mechanism
; Assumes that at least one HWS location is free
; Overhead is 5 instruction cycles, 5 instruction words
ISR

LEA (SP)+ ; Save Hardware Looping Resources
MOVE LC,X:(SP)+
MOVE LA,X:(SP)

; (instructions)
DO #7,LABEL ; Example of a DO loop within an ISR
INC A

LABEL
; (instructions)

POP LA ; Restore Hardware Looping Resources
POP LC
RTI

Note that this five-cycle, five-word overhead is not required if the hardware DO loop is not required by the
interrupt service routine. Also note that this overhead is not required if only the hardware REP loop is used
by the ISR.

If this technique is used, it is important that any ISR that uses hardware DO looping cannot be interrupted
by a maskable interrupt and that any non-maskable ISRs save one location of the HWS if they require
hardware looping.

For ISRs where it is possible that there are two DO loops currently in progress upon entering the routine, it
is necessary to free up one HWS location as well. This is accomplished using the technique described in
Section 8.12, “Freeing One Hardware Stack Location.”

8.6.6 Early Termination of a DO Loop
There are two techniques that can be used to terminate a DO loop early. In the first technique the loop is
terminated such that it continues executing the remainder of the instructions in the loop but will not return
to the top of the loop. In this case it is best to use the following instruction instead of ENDDO:

MOVE #1,LC.

This way, the HWS will purge its value at the correct time, as if there is a nesting of hardware DO loops;
the LC and LA registers will be popped correctly in software.

There is also the case where it is desirable to conditionally break out of the loop immediately without
executing any more instructions in the loop. In this case it is recommended to use the technique shown in
the following code:

8-26 DSP56800 Family Manual �

Software Techniques

PUSH LC ; Save outer loop registers if nested loop
PUSH LA
DO #N,LABEL
(instructions in loop)
Bcc EXITLP ; 2 Icyc for each iteration

; 3 Icyc if loop terminates when true
; (instructions)
LABEL

BRA OVER ; 3 additional Icyc for BRA when exiting loop
; if normal exit

EXITLP ENDDO ; 1 additional Icyc for ENDDO when exiting
; loop if exit via Bcc

OVER
POP LA ; Restore outer loop registers if nested loop
POP LC

;
; ------ or with another technique ------
;

PUSH LC ; Save outer loop registers if nested loop
PUSH LA
DO #N,LABEL

; (instructions)
Bcc OVER ; 3 Icyc for each iteration
ENDDO ; 6 Icyc if loop terminates when true
BRA LABEL

OVER
(instructions)

LABEL
POP LA ; Restore outer loop registers if nested loop
POP LC

8.7 Array Indexes
The flexible set of addressing modes on the DSP56800 architecture allow for several different ways to
index into arrays. Array indexing usually involves a base address and an offset from this base. The base
address is the address of the first location in the array, and the offset indicates the location of the data in the
array. For example, the first value in the array typically has an offset of 0, whereas the fourth element has
an offset of 3. The nth element is always accessed with an offset of n - 1.

There are two types of arrays typically implemented: global arrays (whose base address is fixed and known
at assembly time) and local arrays (whose base address may vary as the program is running). Global arrays
that are small in size can benefit from the single-word instruction that directly accesses the first 128
locations of the X data memory, as well as the indexed with short displacement addressing mode.

8.7.1 Global or Fixed Array with a Constant
This type of array indexing is performed with the X:#xxxx or X:<aa> addressing mode, where the
assembler adds the base address to the constant offset into the array. Arrays that are small in size can be
indexed using the X:<aa> addressing mode, saving one program word and one instruction cycle. It is also
possible to use the X:(Rn+xxxx) or X:(R2+xx) addressing modes if the base address of the array is stored
in a Rn register.

Array Indexes

� Software Techniques 8-27

8.7.2 Global or Fixed Array with a Variable
This type of array indexing is performed with the X:(Rn+xxxx), X:(R2+xx), or X:(Rn+N) addressing
mode.

In the first two addressing modes—X:(Rn+xxxx) and X:(R2+xx)—the constant value specifies the base
address of the array, and Rn or R2 specifies the offset into the array. These first two are similar to the
method used by microcontrollers and are useful when only one or two accesses are performed with a
particular base address, because it is not necessary to load a register with the base address. The X:(R2+xx)
addressing mode executes in one fewer instruction cycle and uses one fewer instruction word than the
X:(Rn+xxxx) addressing mode. It is useful for arrays whose base address is located in the first few
locations in X data memory.

In the last addressing mode—X:(Rn+N)—Rn is the base address of the array, and N specifies the offset.
This addressing mode is best for the case where many accesses are to be performed into an array. In this
case the base address is only loaded once into the Rn register and then many accesses can be performed
using the X:(Rn+N) addressing mode. This addressing mode uses a single program word and executes in
two instruction cycles.

8.7.3 Local Array with a Constant
This type of array indexing is done with the X:(Rn+xxxx) or X:(R2+xx) addressing mode, where Rn holds
the base address of the array and the constant value specifies the constant offset into the array. (It can also
be done with the X:(SP+#xxxx) or X:(SP-#xx) addressing mode, but this is not as straightforward.) In this
case SP holds the address of the end of the stack frame, and the base address of the array is located using a
constant offset value from the stack pointer. The constant used to index into this local array is added to the
offset of the base address from the stack pointer to access the desired location of an array stored within the
stack frame. Stack frames are discussed in Section 8.8, “Parameters and Local Variables.”

8.7.4 Local Array with a Variable
This type of array indexing is done with the X:(Rn+N) or X:(SP+N) addressing mode. It is similar to the
technique described in Section 8.7.3, “Local Array with a Constant,” but, instead of using a constant index,
the register N holds the variable offset into the array. For the case of X:(SP+N), the N register contains the
sum of the index into the array and the offset of the array’s base address from the stack pointer.

8.7.5 Array with an Incrementing Pointer
Often it is desired to sequentially access the elements in an array. This type of array indexing is most often
done with the X:(Rn)+ addressing mode, where Rn is initialized to the first element of the array of interest
and sequentially advances to each next element in the array by the automatic post-incrementing address
mode. In special cases it is also possible to use X:(Rn+N), where N holds the base address and Rn is the
incrementing array index that is advanced using an LEA (Rn)+ instruction. The latter is useful where it is
also necessary to have access to the variable that holds the index into the array, which is held in the Rn
register.

8-28 DSP56800 Family Manual �

Software Techniques

8.8 Parameters and Local Variables
The DSP56800 software stack supports structured programming techniques, such as parameter passing to
subroutines and local variables. These techniques can be used for both assembly language programming
and high-level language compilers.

Parameters can be passed to a subroutine by placing these variables on the software stack immediately
before performing a JSR to the subroutine. Placing these variables on the stack is referred to as building a
“stack frame.” These passed parameters are then accessed in the called subroutines using the stack
addressing modes available on the DSP56800. This is demonstrated in the following example (which
destroys the x0 register):

; Example of Subroutine Call With Passed Parameters
MOVE X:$35,X0 ; Pointer variable to be passed to subroutine
LEA (SP)+ ; Push variables onto stack
MOVE X0,X:(SP)+
MOVE X:$21,X0 ; First data variable to be passed to subroutine
MOVE X0,X:(SP)+ ; Push onto stack
MOVE X:$47,X0 ; Second data variable to be passed to

; subroutine
MOVE X0,X:(SP) ; Push onto stack
JSR ROUTINE1
POP ; Remove the three passed parameters from

; stack when done
POP
POP

ROUTINE1
MOVE #5,N ; Allocate room for local variables
LEA (SP)+N

; (instructions)
MOVE X:(SP-9),r0 ; Get pointer variable
MOVE X:(SP-7),B ; Get second data variable
MOVE X:(R0),X0 ; Get data pointed to by pointer variable
ADD X0,B
MOVE B,X:(SP-8) ; Store sum in first data variable

; (instructions)
MOVE #-5,N
LEA (SP)+N
RTS

In a similar manner it is also possible to allocate space and to access variables that are locally used by a
subroutine, referred to as local variables. This is done by reserving stack locations above the location that
stores the return address stacked by the JSR instruction. These locations are then accessed using the
DSP56800’s stack addressing modes. For the case of local variables, the value of the stack pointer is
updated to accommodate the local variables. For example, if five local variables are to be allocated, then
the stack pointer is increased by the value of five to allocate space on the stack for these local variables.
When large numbers of variables are allocated on the stack, it is often more efficient to use the (SP)+N
addressing mode.

It is possible to support passed parameters and local variables for a subroutine at the same time. In this case
the program first pushes all passed parameters onto the stack (see Figure 8-1) using the technique outlined
in Section 8.5, “Multiple Value Pushes.” Then the JSR instruction is executed, which pushes the return
address and the SR onto the stack. Upon being entered, the subroutine first allocates space for local
variables by updating the SP. Then, both passed parameters and local variables can be accessed with the
stack addressing modes.

Time-Critical DO Loops

� Software Techniques 8-29

8.9 Time-Critical DO Loops
Often, a program spends most of its time in time-critical loops. For the efficient execution of these loops, it
is important to have an adequate number of registers. However, sometimes the registers already contain
data that is not necessary for the critical loop but must not be lost. In this case the DSP56800 architecture
provides a convenient mechanism for freeing up these registers using the software stack. The programmer
pushes any registers containing values not required in the tight loop, freeing up these registers for use.
After completion of the loop, these registers are popped. An example is shown in the following code.

Figure 8-1. Example of a DSP56800 Stack Frame

First Passed Parameter

Second Passed Parameter

Third Passed Parameter

Return Address

Status Register

First Local Variable

Second Local Variable

Third Local Variable

Fourth Local Variable

X Data Memory

SP Fifth Local Variable

AA0092

8-30 DSP56800 Family Manual �

Software Techniques

MOVE #$1234,R3 ; Contents of this register not
; required in tight loop

MOVE #$5aa,A ; Contents of this register not
; required in tight loop

PUSH R3 ; Prepare for tight loop: X0, Y0 are
; unused and available, and R0 already
; points to that required for loop

PUSH A0
PUSH A1
PUSH A2

; Enter Section with Tight Loop - R3 and A can now be used by tight loop
MOVE $C000,R3
CLR A
MOVE X:(R0)+,Y0 X:(R3)+,X0
REP #32
MAC X0,Y0,A X:(R0)+,Y0 X:(R3)+,X0
MOVE A,X:(R2)+ ; store result

POP A2 ; tight loop completed, restore
; borrowed registers

POP A1
POP A0
POP R3

In the preceding example there are four PUSH instruction macros in a row. For more efficient and compact
code, use the technique outlined in Section 8.5, “Multiple Value Pushes.” In certain cases it may also be
possible to store critical information within the first 64 locations of X data memory, on the top of the stack,
or in an unused register such as N when an extra location is required within a tight loop itself.

8.10 Interrupts
The interrupt mechanism on the DSP56800 is simple, yet flexible. There are two levels of interrupts:
maskable and non-maskable. All maskable interrupts on the chip can be masked at one spot in the SR.
Likewise, individual peripherals can be individually masked within one register, within the interrupt
priority register (IPR), or at the peripheral itself. It is beneficial to have a single register in which all
maskable interrupts can be individually masked. This gives the user the capability to set up interrupt
priorities within software.

When programming interrupts, it is necessary to correctly set up the following tasks:

1. Initialize and program the peripheral, enabling interrupts within the peripheral.

2. Program the IPR to enable interrupts on that particular interrupt channel.

3. Enable interrupts in the SR.

8.10.1 Setting Interrupt Priorities in Software
This section demonstrates several different styles of coding possible for ISRs on the DSP56800 core. In
counting the number of overhead instruction cycles, it is important to remember that the JSR instruction
executes in four instruction cycles when entering an interrupt, and that the RTI instruction now takes five
instruction cycles to complete.

Interrupts

� Software Techniques 8-31

8.10.1.1 High Priority or a Small Number of Instructions

During ISRs that are short, it is recommended that level 0 interrupts remain disabled. Since the routines are
short, it is not nearly so important to interrupt them, because they are guaranteed to complete execution
quickly. This is also recommended for ISRs with a very high priority, which should not be interrupted by
some other source.

; Interrupt Service Routine
; DSP56800 core (Interrupts Remain Masked, 9 Overhead Cycles)

JSR ISR ; located in interrupt vector table
ISR ; Long ISR
; (interrupt code)

RTI

8.10.1.2 Many Instructions of Equal Priority

For ISRs that require a significant number of instruction cycles to complete, it is possible to reduce the
interrupt servicing overhead if all interrupts can be considered to have the same priority. This is shown in
the following generic ISR.

; Interrupt Service Routine for Long Interrupt
; DSP56800 core (Interrupts Remain Masked, 11 Overhead Cycles)

JSR ISR ; located in interrupt vector table
ISR ; Long ISR

BFCLR #$0200,SR; re-enable interrupts with new mask
; (interrupt code)

RTI

8-32 DSP56800 Family Manual �

Software Techniques

8.10.1.3 Many Instructions and Programmable Priorities

For ISRs that require a significant number of instruction cycles to complete, it is possible for the user to
still program interrupt priorities in software. This is shown in the following generic ISR.

; Generic ISR - DSP56800 core (20 Overhead Cycles)
JSR ISR ; Instr located in Interrupt Vector Table

; (instructions)
ISR ; ISR

LEA (SP)+
MOVE N,X:(SP)+ ; Save “N” register for usage by ISR
MOVE X:IPR,N ; Save interrupted task’s IPR
MOVE N,X:(SP)
MOVE #xxxx,X:IPR ; Load new mask - defines which can interrupt

; this ISR
BFCLR #$0200,SR ; Re-enable interrupts with new mask

; (interrupt code)
POP N ; Restore interrupted task’s IPR
MOVE N,X:IPR
POP N ; Restore saved register used by ISR
RTI

8.10.2 Hardware Looping in Interrupt Routines
Since an interrupt can occur at any location in a program, it is possible that the HWS used by hardware DO
loops may already be full. If an ISR needs to use the DO looping mechanism, it may be necessary to free
up one location in the HWS. This can be done using the technique outline in Section 8.12, “Freeing One
Hardware Stack Location.” Alternatively, if it can be guaranteed that the main program will never use
more than one DO loop at a time (that is, no nested loops), it may then be possible for an ISR to simply use
hardware DO loops without using this technique to free up a stack location.

8.10.3 Identifying System Calls by a Number
In operating systems, system calls are often made by using an SWI instruction when a user’s task needs
assistance from the operating system. Usually, it is useful to have several different types of system calls,
each identified with a number. The following code shows how system calls can have an associated number
when an SWI instruction is executed.

MOVE #xx,N ; Put number associated with system call in N reg
PUSH N ; Push this value on the stack so accessible by O/S
SWI ; Generate interrupt to return to O/S

Jumps and JSRs Using a Register Value

� Software Techniques 8-33

8.11 Jumps and JSRs Using a Register Value
Sometimes it is necessary to perform a jump or a jump to subroutine using the value stored in an on-chip
register instead of using an absolute address. The RTS instruction is used to perform this task because it
takes the value on the software stack and loads it into the program counter, effectively performing a jump.
The register used for the jump can be any register on the DSP core.

; JMP <register> Operation
; 8 Icyc

LEA (SP)+
;Note: Can use any core register

MOVE <register>,X:(SP)+
MOVE SR,X:(SP)
RTS

; Jcc <register> Operation
; 10 Icyc (3 Icyc if condition false)

Bcc~ OVER ; (cc~ is the condition exactly opposite the
; desired cc)

LEA (SP)+
MOVE <register>,X:(SP)+
MOVE SR,X:(SP)
RTS

OVER

; JSR <register> Operation - destroys one register, N
; 11 Icyc

MOVE #NEXT,N
LEA (SP)+
MOVE N,X:(SP)+ ; Push return address onto stack
MOVE SR,X:(SP) ; Push SR onto stack
MOVE <register>,X:(SP)+

; Push address of subroutine onto stack
MOVE SR,X:(SP) ; Push SR onto stack
RTS ; Go to address in top two values on stack

NEXT

8-34 DSP56800 Family Manual �

Software Techniques

8.12 Freeing One Hardware Stack Location
There are certain cases where a section of code should use DO looping, but it is not clear whether the HWS
is full or not. An example is an ISR, which may be called when two nested DO loops are in progress. In
these cases it may be desirable to free a single location on the HWS for use by a section of code such as an
ISR. The following code shows how to free one location for an ISR:

; Interrupt Service Routine - Frees Up One HWS Location
; 14 extra Icyc, 12 extra words
;
ISR

LEA (SP)+ ; Push four registers onto the stack
MOVE LA,X:(SP)+ ; Save LA register in case already in loop
MOVE SR,X:(SP)+ ; Save LF bit in SR register...
MOVE LC,X:(SP)+ ; Save LC register...
MOVE HWS,X:(SP) ; Save HWS register...

; (instructions)
DO #3,LABEL
INCW A

LABEL
; (instructions)

POP LA ; Conditionally restore HWS
BRCLR #$8000,X:(SP-1),_OVER
MOVE LA,HWS

_OVER
POP LC ; Restore LC register from stack
POP ; Toss SR register from stack
POP LA ; Restore LA register from stack
RTI

For ISRs that are maskable, it is better to follow the recommendations outlined in Section 8.6.4, “Nested
Loops,” to reduce the overhead needed for freeing up one HWS location. This greatly simplifies the setup
code required when entering and exiting the ISR.

8.13 Multitasking and the Hardware Stack
For multitasking, it is important to be able to save and later restore the hardware DO loop stack (HWS).
This section shows code that will perform the save and restore operations. When reading the HWS, two
locations of the stack are read as well as the current state of the HWS, contained in the NL and LF bits of
the OMR and SR, respectively. Each read of the HWS register pops the HWS one value, and each write of
the HWS register pushes the HWS one value.

Multitasking and the Hardware Stack

� Software Techniques 8-35

8.13.1 Saving the Hardware Stack
An example of reading the entire contents of the HWS to X memory is shown in the following code:

; Save HWS
; 4 Icyc, 4 words

MOVE SR,X:(R2)+ ; Read HWS pointer’s LSB (LF) and
; save to memory

MOVE HWS,X:(R2)+ ; Read first stack location and
; save in X memory

MOVE SR,X:(R2)+ ; Read HWS pointer’s MSB (NL) and
; save to memory

MOVE HWS,X:(R2)+ ; Read second stack location and
; save in X memory

8.13.2 Restoring the Hardware Stack
When restoring the HWS, it is first necessary that the HWS be empty. If this is unclear, performing two
reads from the HWS will ensure that the stack is empty. Once this is true, then the HWS can be restored.
An example of restoring the contents of the HWS from X data memory follows:

; Restore HWS, 10 words, 14 Icyc worst case
; Assumes R2 points to “stored” HWS
; Destroys R2 register

MOVE HWS,LA ; First read of HWS ensures NL bit is cleared
MOVE HWS,LA ; Second read of HWS ensures LF bit is cleared
BRCLR #$8000,X:(R2),OVER

; If LF bit set, then push a value onto HWS
LEA (R2)+
MOVE X:(R2)+,HWS ; Puts one value onto stack and sets LF bit
BRCLR #$8000,X:(R2),OVER

; If NL bit set, then push a value onto HWS
LEA (R2)+
MOVE X:(R2)+,HWS

OVER

8-36 DSP56800 Family Manual �

Software Techniques

� JTAG and On-Chip Emulation (OnCE™) 9-1

Chapter 9
JTAG and On-Chip Emulation (OnCE™)
The DSP56800 family includes extensive integrated test and debug support. Two modules, the On-Chip
Emulation (OnCE) module and the test access port (TAP, commonly called the JTAG port) provide board-
and chip-level testing and software debugging capability. Both are accessed through a common
JTAG/OnCE interface. Using these modules allows the user to insert the DSP chip into a target system
while retaining debug control. This capability is especially important for devices without an external bus,
since it eliminates the need for a costly cable to bring out the footprint of the chip, as required by a
traditional emulator system.

The OnCE port is a Motorola-designed module used to debug application software used with the chip. The
port is a separate on-chip block that allows non-intrusive interaction with the DSP and is accessible
through the pins of the JTAG interface. The OnCE port makes it possible to examine contents of registers,
memory, or on-chip peripherals in a special debug environment. No user-accessible resources need be
sacrificed to perform debugging operations.

The JTAG port conforms to the IEEE Standard Test Access Port and Boundary-Scan Architecture
specification (IEEE 1149.1a-1993) as defined by the Joint Test Action Group (JTAG). The JTAG module
uses a boundary scan technique to test the interconnections between integrated circuits after they are
assembled onto a printed circuit board. Using a boundary scan allows a tester to observe and control signal
levels at each component pin through a special register coupled to each pin, called a boundary scan cell.
This is important for testing continuity and determining if pins are stuck at a one or zero level.

This chapter presents an overview of the capabilities of the JTAG and OnCE modules. Since their
operation is highly dependent upon the architecture of a specific DSP56800 device, the exact
implementation is necessarily device dependant. For more complete information on interfacing, the debug
and test commands available, and other implementation details, consult the appropriate device’s user’s
manual.

9.1 Combined JTAG and OnCE Interface
The JTAG and OnCE modules are tightly coupled. The JTAG port provides the interface for both modules
and handles communications with host development and test systems. Figure 9-1 on page 9-2 shows a
block diagram of the JTAG/OnCE modules and external host interface.

9-2 DSP56800 Family Manual �

JTAG and On-Chip Emulation (OnCE™)

Figure 9-1. JTAG/OnCE Interface Block Diagram

As already noted, the JTAG module is the master. It enables interaction with the debug services provided
by the OnCE, and its external serial interface is used by the OnCE port for sending and receiving
debugging commands and data.

9.2 JTAG Port
Problems associated with testing high-density circuit boards have led to the development of a proposed
standard under the sponsorship of the Test Technology Committee of IEEE and the Joint Test Action
Group (JTAG). The resulting standard, called the IEEE Standard Test Access Port and Boundary-Scan
Architecture, specifies industry-standard, in-circuit device testing and diagnosis. The DSP56800 family
provides a dedicated test access port (TAP) that is fully compatible with this standard, commonly referred
to as the “JTAG port.”

This section provides an overview of the capabilities of the JTAG port as implemented on the DSP56800.
Information provided here is intended to supplement the supporting IEEE 1149.1a-1993 document, which
outlines the internal details, applications, and overall methodology of the standard. Specific details on the
implementation of the JTAG port for a given DSP56800-based device are provided in that device’s user’s
manual.

JTAG

Pipeline

Registers

XAB1

FIFO

History

Buffer

OnCE Command,

Status & Control

PAB

PAB

PDB
PGDB

Breakpoint Logic

Trace Logic

Event Counter

OnCE

Test

Access

Port

Controller

AA0093

External

Interface

JTAG Port

� JTAG and On-Chip Emulation (OnCE™) 9-3

9.2.1 JTAG Capabilities
The DSP56800 JTAG port has the following capabilities:

• Performing boundary scan operations to test circuit-board electrical continuity

• Sampling the DSP56800-based device system pins during operation and transparently shifting out
the result in the boundary scan register; preloading values to output pins prior to performing a
boundary scan operation

• Querying identification information (manufacturer, part number, and version) from a
DSP56800-based device

• Adding a weak pull-up device on all input signals to cause all open inputs to report a logic 1 and to
force a predictable internal state while performing external boundary scan operations

• Disabling the output drive to pins during circuit-board testing

• Forcing test data onto the outputs of a DSP56800-based device

• Providing a means of accessing the OnCE controller and circuits to control a target system

• Providing a means of entering the debug mode of operation

• Bypassing the DSP56800 core for a given circuit-board test by effectively reducing the boundary
scan register to a single cell

Section 9.2.2, “JTAG Port Architecture,” provides an overview of the port’s architecture and commands.
For additional information on the JTAG port’s implementation and command set, see the appropriate
DSP56800-based device’s user’s manual.

9.2.2 JTAG Port Architecture
The JTAG module consists of the logic necessary to support boundary scan testing as defined in the IEEE
specification. Although tightly coupled to the DSP56800’s core logic, it is an independent module, and,
when disabled, it is guaranteed to have no impact on the function of the core.

The JTAG port consists of the following components:

• Serial communications interface

• Command decoder and interpreter

• Boundary scan register

• ID register

These units, and the overall once port architecture, are shown in Figure 9-2 on page 9-4.

9-4 DSP56800 Family Manual �

JTAG and On-Chip Emulation (OnCE™)

Figure 9-2. JTAG Block Diagram

The serial interface supports communications with the host development or test system. It is implemented
as a serial interface to occupy as few external pins on the device as possible. Consult the device’s user’s
manual for a full description of the interface signals. All JTAG and OnCE commands and data are sent
over this interface from the host system. The JTAG interface is also used by the OnCE port when it is
active. In this mode, the JTAG acts as the OnCE port’s interface controller, and transparently passes all
communications through to the OnCE port.

Commands sent to the JTAG module are decoded and processed by the command decoder. Commands for
the JTAG port are completely independent from the DSP56800 instruction set, and are executed in parallel
by the JTAG logic.

Registers in the JTAG module hold chip identification information and the information gathered by
boundary scan operations. The ID register contains the industry-standard Motorola identification
information, which is unique for each Motorola DSP. The boundary scan register holds a snapshot of the
device’s pins when sampled by the JTAG port.

9.3 OnCE Port
The OnCE port provides emulation and debug capability directly on the chip, eliminating the need for
expensive and complicated stand-alone in-circuit emulators (ICEs). The OnCE port permits full-speed,
non-intrusive emulation on a user’s target system. This section describes the OnCE emulation environment
for use in debugging real-time embedded applications.

The OnCE port has an associated interrupt vector in the DSP56800 interrupt vector table. The OnCE
exception trap is available to the user so that when a debug event (breakpoint or trace occurrence) is
detected, a level 1 non-maskable interrupt can be generated and the program can initiate the appropriate
handler routine.

TAP

Controller

Boundary Scan Register

Instruction Register

TDO

TMS

TCK

ID Register

Bypass Register

Decode

TDI

To OnCE Port

From ONCE Port

JTAG Reset
AA0119

OnCE Port

� JTAG and On-Chip Emulation (OnCE™) 9-5

As emulation capabilities are necessarily tied to the particular implementation of a DSP56800-based
device, the appropriate device’s user’s manual should be consulted for complete details on implementation
and supported functions.

9.3.1 OnCE Port Capabilities
The capabilities of the OnCE port include the following:

• Interrupting and breaking into debug mode on a program memory address

• Interrupting and breaking into debug mode on a data memory address (read, write, or access)

• Interrupting and breaking into debug mode on an on-chip peripheral register access

• Entering debug mode using a microprocessor instruction

• Examining or modifying the contents of any core or memory-mapped peripheral register

• Examining or modifying any desired sections of program or data memory

• Full-speed stepping on one or more instructions (up to 256)

• Tracing one or more instructions

• Saving or restoring the current state of the chip’s pipeline

• Displaying the contents of the real-time instruction trace buffer

• Returning to user mode from debug mode

Depending on the implementation for a particular DSP56800-based device, additional debugging and
emulation capabilities may be provided. Consult the user’s manual for the device in question for more
information.

9.3.2 OnCE Port Architecture
The OnCE port module is composed of four different sub-modules, each of which performs a different
task:

• Command, status, and control

• Breakpoint and trace

• Pipeline save and restore

• FIFO history buffer

These units, and the overall once port architecture, are shown in Figure 9-3 on page 9-6.

9-6 DSP56800 Family Manual �

JTAG and On-Chip Emulation (OnCE™)

Figure 9-3. OnCE Block Diagram

Together, these sub-modules provide a full-featured emulation and debug environment. Communication
with the OnCE port module is handled via the JTAG port and thus may be considered the primary
communications sub-module for the OnCE port, although it operates independently. The operations of the
OnCE port occur independently of the main DSP56800 core logic, and require no core resources.

TDI / TDO

PAB Fetch Register

PAB Decode Register

PDB Register

Breakpoint Register

Count Reg.

Stat. Reg

Cmd. Reg.

Control Register

PAB

XAB1

PGDB Register

PDB

PGDB

X:$FFFF

PAB

OnCE Command,

Status, and Control

Breakpoint

and

Trace

Pipeline

Registers

FIFO

History

BufferPAB Execute Register

Address

FIFO

MUX
Breakpoint

and Trace

OnCE

State

Machine

OnCE

Command

Decoder

and Control

Logic

AA0096

OnCE Port

� JTAG and On-Chip Emulation (OnCE™) 9-7

9.3.2.1 Command, Status, and Control

The command, status and control portion of the OnCE port module handles the processing of emulation
and debugging commands from a host development system. Communications with a host system are
provided by the JTAG port module, and are passed transparently through to this logic, which is responsible
for coordinating all emulation and debugging activity.

As previously noted, all emulation and debug processing takes place independently of the main DSP56800
processor core. This allows for instructions to be executed in debug mode at full speed, without any
overhead introduced by the debugging logic.

9.3.2.2 Breakpoint and Trace

The OnCE port module includes address-comparison hardware for setting breakpoints on program or data
memory accesses. This allows breakpoints to be set on program ROM as well as program RAM locations.
Breakpoints can be programmed for reads, writes, program fetches, or memory accesses. Breakpoints are
also possible during on-chip peripheral register accesses, since these are implemented as memory-mapped
registers in the X data space.

Full-speed instruction stepping capability is also provided. Up to 256 instructions can be executed at full
speed before the processor core is halted and the debug processing state is re-entered. This allows the user
to single step through a program or execute whole functions at a time.

9.3.2.3 Pipeline Save and Restore

To resume normal chip activity when the chip is returning from the debug mode, the previous chip pipeline
state must be reconstructed. The OnCE port module provides logic to correctly save and restore the
pipeline state when entering and exiting debug mode. Pipeline saves and restores operate transparently to
the user, although the pipeline state may be examined while in debug mode if desired.

9.3.2.4 FIFO History Buffer

To ease debugging activity and to help keep track of program flow, a read-only FIFO buffer is provided
that tracks the execution history of an application. It stores the address of the instruction currently being
executed by the processor core, as well as the addresses of the last five execution flow instructions.

The FIFO history buffer is intended to provide a snapshot of the recent execution history of the processor
core. To give a larger picture of instruction flow, not all instructions are recorded in the buffer. Only the
addresses of the following execution flow instructions are stored:

Sequential program flow can be assumed between recorded instructions, so it is possible for the user to
reconstruct the program flow extending back through quite a large number of instructions. To complete the
execution history, the first location of the FIFO always holds the address of the last executed instruction,
regardless of whether or not it caused a change of program flow.

BRA JMP

JSR Bcc (with condition true)

Jcc (with condition true)

9-8 DSP56800 Family Manual �

JTAG and On-Chip Emulation (OnCE™)

� Instruction Set Details A-1

Appendix A
Instruction Set Details
This appendix contains detailed information about each instruction of the DSP56800 instruction set. It
contains sections on notation, addressing modes, and condition codes. Also included is a section on
instruction timing, which shows the number of program words and execution time of each instruction.
Finally, the instruction set summary, which shows the syntax of all allowed DSP56800 instructions, is
presented.

A.1 Notation
Each instruction description contains notation used to abbreviate certain operands and operations. The
symbols and their respective descriptions are listed in Table A-1 through Table A-7 on page A-4.

Table A-1 shows the register set available for the most important move instructions. Sometimes the
register field is broken into two different fields—one where the register is used as a source and the other
where it is used as a destination. This is important because a different notation is used when an
accumulator is being stored without saturation. In addition, see the register fields in Table A-2 on
page A-2, which are also used in move instructions as sources and destinations within the AGU.

Table A-1. Register Fields for General-Purpose Writes and Reads

Register Field Registers in This Field Comments

HHH A, B, A1, B1
X0, Y0, Y1

Seven data ALU registers — two accumulators, two 16-bit MSP por-
tions of the accumulators and three 16-bit data registers

HHHH A, B, A1, B1
X0, Y0, Y1
R0-R3, N

Seven data ALU and five AGU registers

DDDDD A, A2, A1, A0
B, B2, B1, B0

Y1, Y0, X0

R0, R1, R2, R3
N, SP
M01

OMR, SR
LA, LC
HWS

All CPU registers

A-2 DSP56800 Family Manual �

Table A-2 shows the register set available for use as pointers in address-register-indirect addressing
modes. The most common fields used in this table are Rn and Rj. This table also shows the notation used
for AGU registers in AGU arithmetic operations.

Table A-3 shows the register set available for use in data ALU arithmetic operations. The most common
field used in this table is FDD.

Address operands used in the instruction field sections of the instruction descriptions are given in
Table A-4. Addressing mode operators that are accepted by the assembler for specifying a specific
addressing mode are shown in Table A-5.

Table A-2. Address Generation Unit (AGU) Registers

Register Field Registers in This Field Comments

Rn R0-R3
SP

Five AGU registers available as pointers for addressing and as
sources and destinations for move instructions

Rj R0, R1, R2, R3 Four pointer registers available as pointers for addressing

N N One index register available only for indexed addressing modes

M01 M01 One modifier register

Table A-3. Data ALU Registers

Register Field Registers in This Field Comments

FDD A, B
X0, Y0, Y1

Five data ALU registers—two 36-bit accumulators and three 16-bit
data registers accessible during data ALU operations

Contains the contents of the F and DD register fields

F1DD A1, B1
X0, Y0, Y1

Five data ALU registers—two 16-bit MSP portions of the
accumulators and three 16-bit data registers accessible during data
ALU operations

DD X0, Y0, Y1 Three 16-bit data registers

F A, B Two 36-bit accumulators accessible during parallel move instruc-
tions and some data ALU operations

F1 A1, B1 The 16-bit MSP portion of two accumulators accessible as source
operands in parallel move instructions

� Instruction Set Details A-3

Miscellaneous operand notation, including generic source and destination operands and immediate data
specifiers, are summarized in Table A-6.

Table A-4. Address Operands

Symbol Description

ea Effective address

eax Effective address for X bus

xxxx Absolute address (16 bits)

pp I/O short address (6 bits, one-extended)

aa Absolute address (6 bits, zero-extended)

<...> Specifies the contents of the specified address

X: X memory reference

P: Program memory reference

Table A-5. Addressing Mode Operators

Symbol Description

<< I/O short or absolute short addressing mode force operator

> Long addressing mode force operator

Immediate addressing mode operator

#> Immediate long addressing mode force operator

#< Immediate short addressing mode force operator

Table A-6. Miscellaneous Operands

Symbol Description

S, Sn Source operand register

D, Dn Destination operand register

#xx Immediate short data (7 bits for MOVE(I), 6 bits for DO/REP)

#xxxx Immediate data (16 bits)

#ii00 8-bit immediate data mask in the upper byte

#00ii 8-bit immediate data mask in the lower byte

<OFFSET7> 7-bit signed PC relative offset

A-4 DSP56800 Family Manual �

Table A-7. Other Symbols

Symbol Description

() Optional letter, operand, or operation1

1. For instruction names that contain parentheses, such as DEC(W) or IMPY(16), the
portion within the parentheses is optional.

(...) Any arithmetic or logical instruction that allows parallel moves

EXT Extension register portion of an accumulator (A2 or B2)

LSB Least significant bit

LSP Least significant portion of an accumulator (A0 or B0)

LSW Least significant word

MSB Most significant bit

MSP Most significant portion of an accumulator (A1 or B1)

MSW Most significant word

r Rounding constant

LIM Limiting when reading a data ALU accumulator

<op> Generic instruction (specifically defined within each section)

� Instruction Set Details A-5

A.2 Programming Model
The registers in the DSP56800 core programming model are shown in Figure A-1.

Figure A-1. DSP56800 Core Programming Model

N M01

Program Controller Unit

Hardware Stack (HWS)

Data ALU Input Registers

Accumulator Registers

Data Arithmetic Logic Unit

SP

R3

R2

R1

R0

MR CCR OMR

Pointer

Registers

Offset

Register

Modifier

Register

Program

Counter

Status

Register (SR)

Operating Mode

Register

LA

LC

Loop Address

Loop Counter

Software Stack

(Located in X Memory)

Y

A

B

X0 Y0Y1

A0A1A2

B0B1B2

PC

31 16 15 0

15 0 15 015 0

31 16 15 035 32

15 015 03

31 16 15 035 32

15 015 0

15 0 15 0 15 0

15 0 15 0 15 08 7

15 0 15 015 0

Address Generation Unit

AA0007

12 0

0

3 0

A-6 DSP56800 Family Manual �

A.3 Addressing Modes
The addressing modes are grouped into three categories:

• Register direct—directly references the registers on the chip

• Address register indirect—uses an address register as a pointer to reference a location in memory

• Special—includes direct addressing, extended addressing, and immediate data

These addressing modes are described in the following discussion and summarized in Table 4-5 on
page 4-9.

All address calculations are performed in the address ALU to minimize execution time and loop overhead.
Addressing modes specify whether the operands are in registers, in memory, or in the instruction itself
(such as immediate data) and provide the specific address of the operands.

The register-direct addressing mode can be subclassified according to the specific register addressed. The
data registers include X0, Y1, Y0, Y, A2, A1, A0, B2, B1, B0, A, and B. The control registers include
HWS, LA, LC, OMR, SR, CCR, and MR. The address registers include R0, R1, R2, R3, SP, N, and M01.

Address-register-indirect modes use an address register Rn (R0–R3) or the stack pointer (SP) to point to
locations in X and P memory. The contents of the Rn is the effective address (ea) of the specified operand,
except in the indexed-by-offset or indexed-by-displacement mode, where the effective address (ea) is
(Rn+Nn) or (Rn+xxxx), respectively. Address-register-indirect modes use an address modifier register
M01 to specify the type of arithmetic to be used to update the address register R0 and optionally R1. R2
and R3 always use linear arithmetic. If an addressing mode specifies the address offset register (N), it is
used to update the corresponding Rn. This unique implementation is extremely powerful and allows the
user to easily address a wide variety of DSP-oriented data structures. All address-register-indirect modes
use at least one Rn and sometimes N and the modifier register (M01), and the double X memory read uses
two address registers, one for the first X memory read and one for the second X memory read. Only R3 can
be used for this second X memory read, and R3 is always updated using linear arithmetic.

The special addressing modes include immediate and absolute addressing modes as well as implied
references to the program counter (PC), the software stack, the hardware stack (HWS), and the program
(P) memory.

The addressing mode selected in the instruction word is further specified by the contents of the address
modifier register M01. The modifier selects whether linear or modulo arithmetic is performed. The
programming of this register is summarized in Table 4-9 on page 4-27.

A.4 Condition Code Computation
The bits in the Condition Code Register (CCR) are set to reflect the status of the processor after certain
instructions are executed. The CCR bits are affected by data ALU operations, bit-field manipulation
instructions, the TSTW instruction, parallel move operations, and by instructions that directly reference the
CCR register.

In addition, the computation of some condition code bits is affected by the OMR’s Saturation (SA) and
condition code (CC) bits. The SA bit enables the MAC Output Limiter, which can alter the results of
computations and thus the condition code bits affected. The CC bit specifies whether condition codes are
generated using the information in the extension register. See Section A.4.2, “Effects of the Operating
Mode Register’s SA Bit,” and Section A.4.3, “Effects of the OMR’s CC Bit,” for more information.

� Instruction Set Details A-7

A.4.1 The Condition Code Bits
The DSP56800 family defines eight condition code bits, which are contained in the lower-order 8 bits of
the Status Register (SR) as follows:

Figure A-2. Status Register (SR)

The C, V, Z, N, U, and E bits are true condition code bits that reflect the condition of the result of a data
ALU operation. These condition code bits are not affected by address ALU calculations or by data
transfers over the CGDB. The N, Z, and V condition code bits are updated by the TSTW instruction, which
can operate on both memory and registers. The L bit is a latching overflow bit that indicates that an
overflow has occurred in the data ALU or that limiting has occurred when moving an accumulator register
to memory. The SZ bit is a latching bit that indicates the size of an accumulator when it is moved to data
memory.

A.4.1.1 Size (SZ)—Bit 7

The SZ bit is set only when moving one of the two accumulators (A or B) to data memory. It is set if,
during this move, bits 30 and 29 of the specified accumulator are not the same—that is, not 00 or 11—as
follows:

SZ = SZ | (Bit 30 ⊕ Bit 29)

SZ is not affected otherwise. Note that the SZ bit is latched once it is set—it is only cleared by a processor
reset or an instruction that explicitly clears it.

SZ is not affected by the OMR’s CC or SA bits.

* Indicates reserved bits, read as zero and should be written with zero for future compatibility

SR
Status Register
Reset = $0300
Read/Write

* * I1 I0 SZ L E U N Z V CLF * * *

11 10 9 8 7 6 5 4 3 2 1 015 14 13 12

LF—Loop Flag
I1,I0—Interrupt Mask
SZ—Size
L—Limit
E—Extension
U—Unnormalized
N—Negative
Z—Zero
V—Overflow
C—Carry

MR CCR

A-8 DSP56800 Family Manual �

A.4.1.2 Limit (L)—Bit 6

The L bit is set to indicate that one of two conditions has occurred: an overflow has occurred in a data ALU
operation (see Section A.4.1.7, “Overflow (V)—Bit 1,” on page A-10), or limiting has occurred when
moving one of the two accumulators (A or B) with a move or parallel move instruction. L is not affected
otherwise.

The L bit is latched once it is set; it is cleared only by a processor reset or an instruction that explicitly
clears it. The complete formula for calculating L is the following:

L = L | V | (limiting due to a move)

L is not affected by the OMR’s CC or SA bits. Note, however, that the V bit is affected by both the CC and
SA bits. As a result, the L bit can be indirectly affected by these two control bits.

NOTE:

The TFR instructions performs a register-to-register transfer and is not
considered a “move” instruction in terms of the preceding discussion. The
L bit will therefore not be set due to the register-to-register move, even if
SA is set and saturation occurs. The TFR instruction can set the L bit if it
has a parallel move and if limiting occurs in that parallel move.

A.4.1.3 Extension in Use (E)—Bit 5

The E bit is updated based on the result of a data ALU operation to indicate whether the MSP and LSP of
the result contain all of the significant bits, or if the extension bits are needed to express the result. If the E
bit is clear, the MSP and LSP contain all the significant bits—the high-order bits represent only sign
extension.

Based on the size of the result or destination, the E bit is calculated as follows:

For 20- and 36-bit results or destinations:

E is cleared if the upper 5 bits of the result are 00000 or 11111. E is set otherwise.

For 16-bit results or destinations:

If one of the operands is located in X0, Y0, or Y1, or comes from memory, the value is first sign
extended. Sign extension is also performed when the source operand is located in an accumulator.
If one of the operands is 5-bit immediate data, that value is first zero extended. A 20-bit arithmetic
operation is then performed, where the result is located in the lowest 16 bits. E is cleared if all of
the upper 5 bits of the 20-bit result are 00000 or 11111, and is set otherwise.

For 32-bit results or destinations:

If one of the operands comes from memory or the Y register, or is 16-bit immediate data, it is first
sign extended. Sign extension is also performed when the source operand is located in an
accumulator. If one of the operands is 5-bit immediate data, it is first zero extended. A 36-bit
arithmetic operation is then performed, where the long result is located in the lowest 32 bits. E is
cleared if all of the upper 5 bits of the result are 00000 or 11111 and is set otherwise.

E is not affected by the OMR’s CC bit.

� Instruction Set Details A-9

NOTE:

When the SA bit in the OMR register is set to one, the E bit is set based on
the result before passing through the MAC Output Limiter. If SA is set to
one and saturation does occur in the MAC Output Limiter, this can result
in the E bit being set, even though the result is saturated to a value where
the extension portion is not in use.

A.4.1.4 Unnormalized (U)—Bit 4

The U bit is updated under the following conditions. If the SA bit in the OMR is set to one, this bit is
cleared if saturation occurs in the MAC Output Limiter. If the SA bit is zero or no saturation occurs, U is
set if the two MSBs of the MSP of the result are the same following a data ALU operation; it is cleared
otherwise. The computation of U varies depending on the size of the operation’s destination or result.

For 20-, 32-, and 36-bit destinations or results, U is computed according to the following formula (32-bit
destinations are first extended as described for the E bit):

U = ~(Bit 31 ⊕ Bit 30)

Sixteen-bit destinations are first extended as described for the E bit. Then U is computed as follows:

U = ~(Bit 15 ⊕ Bit 14)

The U bit is not affected by the OMR’s CC bit.

A.4.1.5 Negative (N)—Bit 3

The N bit is updated based on the result of a data ALU operation. In general, it reflects the sign bit (MSB)
of the result, according to the following rules:

For 20- or 36-bit results:

N = bit 35 for A or B (bit 31 if the OMR’s CC bit is set to one)
N = bit 15 for Y1, Y0, or X0

For 32-bit results:

N = bit 31 for A, B, or Y (the OMR’s CC bit has no effect)
N = bit 15 for Y1, Y0, or X0

For 16-bit results:

N = bit 31 for A, B, or Y (the OMR’s CC bit has no effect)
N = bit 15 for 16-bit destination

When the SA bit in the OMR register is set to one, the N bit is set based on the result before passing
through the MAC Output Limiter.

For the ASRAC and LSRAC instructions, the N bit is calculated differently based on the SA bit in the
OMR register. When the SA bit is zero and the destination is one of the accumulators, the N bit is obtained
from bit 35. When SA is one and the destination is one of the accumulators, the N bit is set based on bit 31
of the result before passing through the MAC output limiter.

For the IMPY instruction, a 31-bit integer product is calculated internally to the data ALU, and the lowest
16 bits of this product are stored in the destination register. When SA is one or CC is one, the N bit is set to
the value in bit 30 of this internally computed result. When SA is zero and CC is zero, the N bit is set to the
value in bit 15 of this internally computed result. These two values are identical except in the case where
overflow occurs (that is, the result is larger than and will not fit in 16 bits).

A-10 DSP56800 Family Manual �

For the ASLL instruction, if the CC bit is set, the N bit is always cleared. If CC is 0, the N bit is set
according to the standard definition outlined in the preceding discussion.

A.4.1.6 Zero (Z)—Bit 2

The Z bit is updated based on the result of a data ALU operation. Z is set if the result of an operation is
zero—that is, all significant bits are set to zero. It is cleared otherwise.

The number of bits used to compute the value for Z is determined by the size of the result and whether or
not the OMR’s CC bit is set:

For 36-bit results:

Z is set if bits 35 to 0 of the result are all zero, or bits 31 to 0 if the OMR’s CC bit is set.

For 32-bit results:

Z is set if bits 31 to 0 of the result are all zero. It is set using bits 15 to 0 of the result if Y1, Y0, or
X0 is the destination.

For 20-bit results:

Z is set if bits 35 to 16 of the result are all zero, or bits 31 to 16 if the OMR’s CC bit is set.

For 16-bit results:

Z is set if bits 31 to 16 of the result are all zero for A, B, Y; it is set if bits 15 to 0 of the result are
all zero for 16-bit destinations.

Z is not affected by the OMR’s SA bit.

A.4.1.7 Overflow (V)—Bit 1

The V bit is updated under the following conditions. If the SA bit in the OMR is set to one, V is set when
saturation occurs in the MAC Output Limiter. If the SA bit is zero or no saturation occurs, it is set when an
arithmetic overflow occurs as the result of a data ALU operation. Overflow occurs when the carry into the
result’s MSB is not equal to the carry out of the MSB, thus changing the sign of the value. The result of the
ALU operation is therefore not representable in the destination—the result has overflowed. V is cleared
when overflow does not occur.

In general, overflow is calculated based on the size of the result or destination of the operation. When the
CC bit in the OMR is set, however, overflow is determined based on the 32-bit result for what would
otherwise be 36-bit results. The same is true for 20-bit results: when the CC bit is set, overflow is
determined based on the 16-bit result.

For the IMPY instruction, V is set if the computed result does not fit in 16 bits and is cleared otherwise.
The SA bit has no effect in this case.

A.4.1.8 Carry (C)—Bit 0

The C bit is updated based on the result of a data ALU operation. C is set either if a carry is generated out
of the most significant bit (MSB) of the result for an addition, or if a borrow is generated in a subtraction.
C is cleared otherwise.

For 20- or 36-bit results, the carry or borrow is generated out of bit 35. For 32-bit results, the carry or
borrow is generated out of bit 31. The carry or borrow is generated out of bit 15 for 16-bit results.

C is not affected by the OMR’s CC or SA bits.

� Instruction Set Details A-11

A.4.2 Effects of the Operating Mode Register’s SA Bit
The SA bit in the Operating Mode Register (OMR) can affect the computation of certain condition code
bits. This bit enables the MAC Output Limiter within the data ALU. When enabled, the results of many
operations are limited to fit with 32 bits, the extension portion containing only sign information. This
limiting operation has both direct and indirect effects on the way condition codes are computed.

The SA bit directly affects the following condition code bits:

• U—cleared if saturation occurs in the MAC Output Limiter

• V—set when saturation occurs in the MAC Output Limiter

The remaining bits in the Condition Code Register are not affected by the SA bit, with the following
exceptions:

• L—may be indirectly affected through effects on the V bit

• N—affected only by the ASRAC, LSRAC, and IMPY instructions

• C—affected only by the ASL instruction

The value of the SA bit is designed not to affect condition code computation for the TSTW instructions.
Only the U condition code bit is affected by the SA bit for the CMP instruction. These instructions operate
independently of the CC bit and correctly generate both signed and unsigned condition codes.

The SA bit only affects operations in the data ALU, not operations performed in other blocks. These
include move instructions, bit-manipulation instructions, and address calculations performed by the AGU.

NOTE:

When SA is set to one for an application, condition codes are not always
set in an intuitive manner. It is best to examine the instruction details to
determine the effect on condition codes when SA is one. See Section A.7,
“Instruction Descriptions.”

A.4.3 Effects of the OMR’s CC Bit
The CC bit in the OMR may affect the computation of the condition code bits. The CC bit establishes how
many of the bits of an arithmetic or logic operation result are used when calculating condition codes.
Specifically:

• When CC = 0, the result is interpreted as 36 bits with a valid extension portion.

• When CC = 1, the result is interpreted as 32 bits with the extension portion ignored.

Signed values can be computed in both cases, but computation of unsigned values must be performed with
the CC bit set to one. Without setting CC to one prior to executing the TST and CMP instructions, the HI,
HS, LO, and LS branch/jump conditions cannot be used.

When the CC bit is set, the following condition code bits are affected:

• V—set based on the MSB of the result’s MSP portion

• Z—set using only the MSP and LSP portions of the result

The remaining bits in the Condition Code Register are not affected by the CC bit, with the following
exceptions:

• L—may be indirectly affected through effects on the V bit

• N—affected only by the ASRAC, LSRAC, IMPY, and ASLL instructions

• C—affected only by the ASL instruction

A-12 DSP56800 Family Manual �

The value of the CC bit does not affect condition code computation for the TSTW instructions. These
instructions operate independently of the CC bit and correctly generate both signed and unsigned condition
codes.

The CC bit only affects operations in the data ALU, not operations performed in other blocks. These
include move instructions, bit-manipulation instructions, and address calculations performed by the AGU.

A.4.4 Condition Code Summary by Instruction
Table A-9 provides a detailed view of the condition codes affected by each instruction, and the
circumstances under which each condition code is set or cleared. Table A-8 describes the notation used.
Items in the “Notes” column of Table A-9 are explained immediately following the table on page A-15.

The condition code computation shown in Table A-9 may differ from that defined in the opcode
descriptions; see Section A.7, “Instruction Descriptions.” This indicates that the standard definition may be
used to generate the specific condition code result. For example, the Z flag computation for the CLR
instruction is shown as the standard definition, while the opcode description indicates that the Z flag is
always set. Table A-9 gives the chip implementation viewpoint, while the opcode descriptions give the
user viewpoint.

Table A-8. Notation Used for the Condition Code Summary Table

Notation Description

* Set by the result of the operation according to the standard definition.

— Not affected by the operation.

*16 Set according to the standard definition for 16-bit results.

*32 Set according to the standard definition for 32-bit results.

*36 Set according to the standard definition for 36-bit results.

*A Set by the result of the operation according to the size of destination.

*B Set by the result of the operation according to the size of destination.

=0 Cleared.

=1 Set.

? Set according to the special computation defined for the operation.

(number) Set according to the special computation defined by the note with the corresponding number.
The notes may be found immediately after Table A-9.

C L bit can be set if overflow has occurred in result.

T L bit can be set if limiting occurs when reading an accumulator during a parallel move or by the
instruction itself. An example of the latter case is BFCHG #$8000,A, which must first read the
A accumulator before performing the bit-manipulation operation.

CT L bit can be set if overflow has occurred in the result or if limiting occurs when an accumulator is
being read.

� Instruction Set Details A-13

The “Comments” column in the table is also used to report if any of the upper bits in the status register are
modified. These are not status bits because they do not lie in the status portion of the status register, but
rather in the control portion. Sometimes these bits are also affected by instructions. Examples include the
interrupt mask bits, I1 and I0, and the looping bits, LF and NL (NL lies in the OMR register).

The following instruction mnemonics are not found in Table A-9: ANDC, EORC, NOTC and ORC. This is
because each of these is an alias for another instruction and not an instruction in its own right. To
determine condition code calculation for each of these, determine the instructions to which these
mnemonics are mapped (see Section 6.5.1, “ANDC, EORC, ORC, and NOTC Aliases,” on page 6-12) and
look at the condition code information for the corresponding real instructions.

Table A-9. Condition Code Summary

Instruction SZ L E U N Z V C Comments

ABS * CT *36 *36 *36 *36 *36 —

ADC — C *36 *36 *36 *36 *36 *36

ADD * CT *A *A *A *A *A *A

AND — — — — *16 *16 =0 —

ASL * CT *A *A *A *A (1) (2)

ASLL — — — — (18) *32 — —

ASR * T *A *A *A *A =0 (3)

ASRAC — — — — (16) *36 — —

ASRR — — — — *32 *32 — —

Bcc — — — — — — — —

BFCHG — T — — — — — (4)

BFCLR — T — — — — — (4)

BFSET — T — — — — — (4)

BFTSTH — T — — — — — (4)

BFTSTL — T — — — — — (5)

BRA — — — — — — — —

BRCLR — T — — — — — (5)

BRSET — T — — — — — (4)

CLR * CT *36 *36 *36 *36 *36 — Never overflows

CMP * CT *A *A *A *A *A *A

DEBUG — — — — — — — —

DEC(W) * CT *B *B *B *B *B *B

DIV — C — — — — (1) (6)

A-14 DSP56800 Family Manual �

DO — T — — — — — — Affects LF, NL bits

ENDDO — — — — — — — — Condition code not affected

EOR — — — — *16 *16 =0 —

ILLEGAL — — — — — — — — Sets I1, I0 bits in SR

IMPY(16) — C — — (17) *16 (15) —

INC(W) * CT *B *B *B *B *B *B

Jcc — — — — — — — —

JMP — — — — — — — —

JSR — — — — — — — —

LEA — — — — — — — —

LSL — — — — *16 *16 =0 (7)

LSLL — — — — *32 *32 — —

LSR — — — — *16 *16 =0 (8)

LSRAC — — — — (16) *36 — —

LSRR — — — — *32 *32 — —

MAC * CT *A *A *A *A *A —

MACR * CT *A *A *A *A *A —

MACSU — C *A *A *A *A *A —

MOVE *
(10)

T
(10)

—
(10)

—
(10)

—
(10)

—
(10)

—
(10)

—
(10) NA unless SR is the desti-

nation in the instruction

MPY * CT *A *A *A *A *A — V cleared

MPYR * CT *A *A *A *A *A — V cleared

MPYSU — C *A *A *A *A *A — V cleared

NEG * CT *A *A *A *A *A *A

NOP — — — — — — — —

NORM — C *36 *36 *36 *36 (1) —

NOT — — — — *16 *16 =0 —

OR — — — — *16 *16 =0 —

POP — — — — — — — —

Table A-9. Condition Code Summary (Continued)

Instruction SZ L E U N Z V C Comments

� Instruction Set Details A-15

NOTES:

1. V is set if the MSB of the destination operand (bit 35 for an accumulator or bit 31 for the Y
register) is changed as a result of the left shift; V is cleared otherwise.

2. C is set if the MSB of the source operand (bit 35 for an accumulator or bit 31 for the Y
register) is set and is cleared otherwise.

3. C is set if bit 0 of the source operand is set and is cleared otherwise.

4. C is set if all bits specified by the mask are set and is cleared otherwise. Bits that are not set
in the mask should be ignored. If a bit-field instruction is performed on the status register,
all bits in this register selected by the bit field’s mask can be affected.

5. C is set if all bits specified by the mask are cleared and is cleared otherwise. Ignore bits that
are not set in the mask. Note that if a bit-field instruction is performed on the status register,
all bits in this register selected by the bit field’s mask can be affected.

6. C is set if the MSB of the result is cleared (bit 35 for an accumulator or bit 31 for the Y
register). The C bit is cleared if the MSB of the result is set.

7. For the accumulators, C is set if bit 31 of the source operand is set and is cleared otherwise.
For the Y1, Y0, and X0 registers, C is set if bit 15 of the source operand is set and is cleared
otherwise.

8. For the accumulators, C is set if bit 16 of the source operand is set and is cleared otherwise.
For the Y1, Y0, and X0 registers, C is set if bit 0 of the source operand is set and is cleared
otherwise.

REP — T — — — — — —

RND * CT *36 *36 *36 *36 *36 —

ROL — — — — *16 *16 =0 (7)

ROR — — — — *16 *16 =0 (8)

RTI Restored — (9)

RTS — — — — — — — —

SBC — C *36 *36 *36 *36 *36 *36

STOP — — — — — — — —

SUB * CT *A *A *A *A *A *A

SWI — — — — — — — — Affects I1, I0 bits in SR

Tcc — — — — — — — —

TFR — T — — — — — —

TST * CT *36 *36 *36 *36 0 0 Never overflows

TSTW * — — — *36 *36 0 0 Never overflows

WAIT — — — — — — — —

Table A-9. Condition Code Summary (Continued)

Instruction SZ L E U N Z V C Comments

A-16 DSP56800 Family Manual �

9. The “?” bit is set according to value pulled from stack.

10. If the SR is specified as a destination operand (for example, MOVE X:(R0),SR), each bit
is set according to the corresponding bit of the source operand. If SR is not specified as a
destination operand, none of the status bits are affected.

11. C is set if bit 0 of the SP register is set and is cleared otherwise.

12. N is set if bit 15 of the HWS register is set before the ENDDO and is cleared otherwise.

13. Z is set if bits 15–0 of the HWS register are zero before the ENDDO and is cleared
otherwise.

14. The lowest eight condition code bits in the status register are loaded with the value in the
8-bit FISR register.

15. The V bit for the IMPY instruction is set if the calculated integer product does not fit in 16
bits.

16. The setting of the N bit for the ASRAC and LSRAC instructions depends on the OMR’s
SA bit. If SA is one, then the N bit is equal to bit 31 of the result. If SA is zero, then N is
equal to bit 35 of the result.

17. When SA is zero and CC is zero for the IMPY instruction, the N bit is set using *16. When
SA is one or CC is set to one, this bit is set as described in Section A.4.1.5, “Negative
(N)—Bit 3.”

18. When CC is one for the ASLL instruction, the N bit is cleared. When CC is zero, this bit is
set as described under Section A.4.1.5, “Negative (N)—Bit 3.”

See Section 3.6, “Condition Code Generation,” on page 3-33 for additional information on condition
codes.

A.5 Instruction Timing
This section describes how to calculate the DSP56800 instruction timing manually using the provided
tables. Three complete examples are presented to illustrate the use of the tables. Alternatively, the user can
obtain the number of instruction program words and the number of oscillator clock cycles required for a
given instruction by using the simulator; this is a simple and fast method of determining instruction timing
information.

The number of words for an instruction depends on the instruction operation and its addressing mode. The
symbols used in one table may reference subsequent tables to complete the instruction word count.

The number of oscillator clock cycles per instruction is dependent on many factors, including the number
of words per instruction, the addressing mode, whether the instruction fetch pipe is full or not, the number
of external bus accesses, and the number of wait states inserted in each external access. The symbols used
in one table may reference subsequent tables to complete the execution clock-cycle count.

The tables in this section present the following information:

• Table A-11 on page A-18 gives the number of instruction program words and the number of
machine clock cycles for each instruction mnemonic.

• Table A-12 on page A-19 gives the number of additional instruction words (if any) and additional
clock cycles (if any) for each type of parallel move operation.

• Table A-13 on page A-20 gives the number of additional (if any) clock cycles for each type of
MOVEC operation.

� Instruction Set Details A-17

• Table A-14 on page A-20 gives the number of additional (if any) clock cycles for each type of
MOVEM operation.

• Table A-15 on page A-20 gives the number of additional (if any) clock cycles for each type of
bit-field manipulation (BFCHG, BFCLR, BFSET, BFTSTH, BFTSTL, BRCLR, and BRSET)
operation.

• Table A-16 on page A-20 gives the number of additional clock cycles (if any) for each type of
branch or jump (Bcc, Jcc, and JSR) operation.

• Table A-17 on page A-21 gives the number of additional clock cycles (if any) for the RTS or RTI
instruction.

• Table A-18 on page A-21 gives the number of additional clock cycles (if any) for the TSTW
instruction.

• Table A-19 on page A-21 gives the number of additional instruction words (if any) and additional
clock cycles (if any) for each effective addressing mode.

• Table A-20 on page A-22 gives the number of additional clock cycles (if any) for external data,
external program, and external I/O memory accesses.

The symbols used in the tables are summarized in Table A-10.

The assumptions for calculating execution time are the following:

• All instruction cycles are counted in oscillator clock cycles. Two oscillator clock cycles are
equivalent to one instruction cycle.

Table A-10. Instruction Timing Symbols

Symbol Description

aio Time required to access an I/O operand

ap Time required to access a P memory operand

ax Time required to access an X memory operand

axx Time required to access X memory operands for double read

ea Time or number of words required for an effective address

jx Time required to execute part of a jump-type instruction

mv Time or number of words required for a move-type operation

mvb Time required to execute part of a bit-manipulation instruction

mvc Time required to execute part of a MOVEC instruction

mvm Time required to execute part of a MOVEM instruction

mvp Time required to execute part of a MOVEP instruction

mvs Time required to execute part of a MOVES instruction

rx Time required to execute part of an RTS instruction

wp Number of wait states used in accessing external P memory

wx Number of wait states used in accessing external X memory

A-18 DSP56800 Family Manual �

• The instruction fetch pipeline is full.

• There is no contention for instruction fetches. Thus, external program instruction fetches are
assumed not to have to contend with external data memory accesses.

• There are no wait states for instruction fetches done sequentially (as for non-change-of-flow
instructions), but they are taken into account for change-of-flow instructions that flush the pipeline,
such as JMP, Jcc, RTS, and so on.

In order to better understand and use the following tables, examine the three examples for computing an
instruction’s execution time that are presented at the end of this section: Example A-1 on page A-22,
Example A-2 on page A-23, and Example A-3 on page A-25.

Table A-11. Instruction Timing Summary

Mnemonic
Instruction

Words
Clock Cycles Mnemonic

Instruction
Words

Clock Cycles

ABS 1 2+mv LSRAC 1 2

ADC 1 2 LSRR 1 2

ADD 1+mva 2+(ea or mv) MAC 1 2+mv

AND 1 2 MACR 1 2+mv

ANDC 2+ea 4+mvb MACSU 1 2

ASL 1 2+mv MOVE1 1 2+mv

ASLL 1 2 MOVE(C) 1+ea 2+mvc

ASR 1 2+mv MOVE(I) 1+ea 2+ea

ASRAC 1 2 MOVE(M) 1 8+mvm

ASRR 1 2 MOVE(P) 1+ea 2+ea

Bcc 1 4+jx MOVE(S) 1+ea 2+ea

BFCHG 2+ea 4+mvb MPY 1 2+mv

BFCLR 2+ea 4+mvb MPYR 1 2+mv

BFSET 2+ea 4+mvb MPYSU 1 2

BFTSTH 2+ea 4+mvb NEG 1 2+mv

BFTSTL 2+ea 4+mvb NOP 1 2

BRA 1 6+jx NORM 1 2

BRCLR 2+ea 8+mvb+jx NOT 1 2

BRSET 2+ea 8+mvb+jx NOTC 2+ea 4+mvb

CLR 1 2+mv OR 1 2

CMP 1+mva 2+(ea or mv) ORC 2+ea 4+mvb

DEBUG 1 4 POP 1 2+ea

� Instruction Set Details A-19

DEC(W) 1+ea 2+(ea or mv) REP 1 6

DIV 1 2 RND 1 2+mv

DO 2 6 ROL 1 2

ENDDO 1 2 ROR 1 2

EOR 1 2 RTI 1 10+rx

EORC 2+ea 4+mvb RTS 1 10+rx

ILLEGAL 1 4 SBC 1 2

IMPY(16) 1 2 STOP2 1 n/a

INC(W) 1+ea 2+(ea or mv) SUB 1+ea 2+(ea or mv)

Jcc 2 4+jx SWI 1 8

JMP 2 6+jx Tcc 1 2

JSR 2 8+jx TFR 1 2+mv

LEA 1+ea 2+ea TST 1 2+mv

LSL 1 2 TSTW 1 2+tst

LSLL 1 2 WAIT3 1 n/a

LSR 1 2

1. This MOVE applies only to the case where two reads are performed in parallel from the X memory.

2. The STOP instruction disables the internal clock oscillator. After the clock is turned on, an internal
counter counts 65,536 cycles before enabling the clock to the internal DSP circuits.

3. The WAIT instruction takes a minimum of 16 cycles to execute when an internal interrupt is pending at
the time the WAIT instruction is executed.

Table A-12. Parallel Move Timing

Parallel Move Operation + mv Words +mv Cycles

No parallel data move 0 0

X: (X memory move) 0 ax

X: X: (XX memory move) 0 axx

Table A-11. Instruction Timing Summary (Continued)

Mnemonic
Instruction

Words
Clock Cycles Mnemonic

Instruction
Words

Clock Cycles

A-20 DSP56800 Family Manual �

NOTE:

All two-word jumps execute three program memory fetches to refill the
pipeline, one of them being the instruction word located at the jump
instruction’s second-word address + 1. If the jump instruction was fetched
from a program memory segment with wait states, another “ap” should be
added to account for that third fetch.

Table A-13. MOVEC Timing Summary

MOVEC Operation + mvc Cycles

16-bit immediate → register 2

Register → register 0

X memory ↔ register ea + ax

Table A-14. MOVEM Timing Summary

MOVEM + mvm Cycles

Register ↔ P memory ap

Note: The “ap” term represents the wait states spent when accessing the program memory
during DATA read or write operations and does not refer to instruction fetches.

Table A-15. Bit-Field Manipulation Timing Summary

Bit-Field Manipulation Operation + mvb Cycles

BFCHG, BFCLR, or BFSET on X memory ea + (2 * ax)

BFTSTH or BFTSTL on X memory ea + ax

BFTSTH, BFTSTL, BFCHG, BFCLR, or BFSET on register 0

BRSET or BRCLR with condition true 2 + ea + (2 * ax)

BRSET or BRCLR with condition false ea + (2 * ax)

Table A-16. Branch/Jump Instruction Timing Summary

Branch/Jump Instruction Operation + jx Cycles

Jcc, Bcc—condition true 2 + (2 * ap)

Jcc, Bcc—condition false (2 * ap)

JMP, JSR (2 * ap)

� Instruction Set Details A-21

NOTE:

The term “2 * ap” represents the two instruction fetches done by the
RTI/RTS instruction to refill the pipeline. The ax term represents fetching
the return address from the software stack when the stack pointer points to
external X memory, and the 2 * ax term includes both this fetch and the
fetch of the SR as performed by the RTI and RTS instructions.

Table A-17. RTS Timing Summary

Operation +rx Cycles

RTI, RTS 2 * ap + 2 * ax

Table A-18. TSTW Timing Summary

TSTW Operation + tst Cycles

Register 0

X memory ea + ax

Table A-19. Addressing Mode Timing Summary

Effective Addressing Mode + ea Words + ea Cycles

Address Register Indirect

No update 0 0

Post-increment by 1 0 0

Post-decrement by 1 0 0

Post addition by offset Nn 0 0

Indexed by offset Nn 0 2

Special

Immediate data 1 2

Immediate short data 0 0

Absolute address 1 2

Absolute short address 0 0

I/O short address 0 0

Implicit 0 0

Indexed by short displacement 0 2

Indexed by long displacement 1 4

A-22 DSP56800 Family Manual �

Three examples using the preceding tables follow.

Table A-20. Memory Access Timing Summary

Access
Type

X Memory
Access

P Memory
Access

I/O Access
+ ax

Access
+ ap

Cycle
+ aio
Cycle

+ axx
Cycle

X: Int — — 0 — — —

X: Ext — — wx1

1. wx—external X memory access wait states

 — — —

P: — Int — — 0 — —

P: — Ext — — wp2

2. wp—external P memory access wait states

 — —

IO: — — Int — — 0 —

X:X: Int:Ext — — — — — 0

X:X: Ext:Int — — — — — wx

X:X: I/O:Int — — — — — 0

Example A-1. Arithmetic Instruction with Two Parallel Reads

Problem

Calculate the number of DSP56800 instruction program words and the number of oscillator clock cycles
required for the following instruction:

MACR X0,Y0,A X:(R0)+,Y0 X:(R3)+,X0

Where the following conditions are true:

• Operating mode register (OMR) = $02 (normal expanded memory map).

• External X memory accesses require zero wait state, (assume external mem requires no wait state
and BCR contains the value $00).

• R0 address register = $C000 (external X memory).

• R3 address register = $0052 (internal X memory).

Solution

To determine the number of instruction program words and the number of oscillator clock cycles required
for the given instruction, the user should perform the following steps:

1. Look up the number of instruction program words and the number of oscillator clock cycles
required for the opcode-operand portion of the instruction inTable A-11 on page A-18.

According to Table A-11 on page A-18, the MACR instruction will require one instruction
program word and will execute in (2 + mv) oscillator clock cycles. The term “mv”
represents the additional instruction program words (if any) and the additional oscillator
clock cycles (if any) that may be required over and above those needed for the basic MACR
instruction due to the parallel move portion of the instruction.

� Instruction Set Details A-23

2. Evaluate the “mv” term using Table A-12 on page A-19.

The parallel move portion of the MACR instruction consists of an XX memory read.
According to Table A-12 on page A-19, the parallel move portion of the instruction will
require mv = axx additional oscillator clock cycles. The term “axx” represents the number
of additional oscillator clock cycles (if any) that are required to access two operands in the
X memory.

3. Evaluate the “axx” term using Table A-20 on page A-22.

The parallel move portion of the MACR instruction consists of an XX Memory Read.
According to Table A-20 on page A-22, the term “axx” depends upon where the
referenced X memory locations are located in the DSP56800 memory space. External X
memory accesses may require additional oscillator clock cycles depending on the memory
device’s speed. Here we assume external X memory accesses require wx = 0 wait state or
additional oscillator clock cycles. For this example, the second X memory reference is
assumed to be an internal reference, while the first X memory reference is assumed to be
an external reference. Thus, according to Table A-20 on page A-22, the XX memory
reference in the parallel move portion of the MACR instruction will require axx = wx = 0
additional oscillator clock cycle.

4. Compute the final results.

Thus, based upon the assumptions given for Table A-11 on page A-18, the instruction

MACR X0,Y0,A X:(R0)+,Y0 X:(R3)+,X

will require 1 instruction program word and will execute in
(2 + mv) = (2 + axx) = (2 + wx) = (2 + 0) = 2 oscillator clock cycles.

NOTE:

If a similar calculation were made for a MOVEC, MOVEM, or one of the
bit-field manipulation instructions (BFCHG, BFCLR, BFSET or
BFTST), using Table A-12 on page A-19 would no longer be appropriate.
The user would refer to Table A-13 on page A-20, Table A-14 on
page A-20, or Table A-15 on page A-20, respectively.

Example A-2. Jump Instruction

Problem

Calculate the number of DSP56800 instruction program words and the number of oscillator clock cycles
required for the following instruction:

JEQ $2000

Where the following conditions are true:

• OMR = $02 (normal expanded memory map).

• External P memory accesses require four wait states (assume external memory access requires 4
wait states in this example).

Example A-1. Arithmetic Instruction with Two Parallel Reads (Continued)

A-24 DSP56800 Family Manual �

Solution

To determine the number of instruction program words and the number of oscillator clock cycles required
for the given instruction, the user should perform the following steps:

1. Look up the number of instruction program words and the number of oscillator clock cycles
required for the opcode-operand portion of the instruction in Table A-11 on page A-18.

According to Table A-11 on page A-18, the Jcc instruction will require two instruction
program words and will execute in (4 + jx) oscillator clock cycles. The term “jx” represents
the number of additional oscillator clock cycles (if any) required for a jump-type
instruction.

2. Evaluate the “jx” term using Table A-16 on page A-20.

According to Table A-16 on page A-20, the Jcc instruction will require 2 + jx additional
oscillator clock cycles. If the “ea” condition is true, jx = 2 + 2 * ap, whereas jx = 2 * ap if
the condition is false. The term “ap” represents the number of additional oscillator clock
cycles (if any) that are required to access a P memory operand. Note that the “+ (2 * ap)”
term represents the two program memory instruction fetches executed at the end of a
one-word jump instruction to refill the instruction pipeline.

3. Evaluate the “ap” term using Table A-20 on page A-22.

According to Table A-20 on page A-22, the term “ap” depends upon where the referenced
P memory location is located in the 16-bit DSP memory space. External memory accesses
require additional oscillator clock cycles according to the number of wait states required.
Here we assume that external P memory accesses require wp = 4 wait states or additional
oscillator clock cycles. For this example the P memory reference is assumed to be an
external reference. Thus, according to Table A-20 on page A-22, the Jcc instruction will
use the value ap = wp = 4 oscillator clock cycles.

4. Compute the final results.

Thus, based upon the assumptions given for Table A-11 on page A-18, the instruction

JEQ $2000

will require (1 + 1) = (1 + 1) = 2 instruction program word and will execute in (4 + jx) =
(4 + ea + (2 * ap)) = (4 + ea + (2 * wp)) = (4 + 2 + (2 * 4)) = 14 oscillator clock cycles.

Example A-2. Jump Instruction (Continued)

� Instruction Set Details A-25

Example A-3. RTS Instruction

Problem

Calculate the number of DSP56800 instruction program words and the number of oscillator clock cycles
required for the following instruction:

RTS

Where the following conditions are true:

• OMR = $02 (normal expanded memory map).

• External P memory accesses require four wait state.

• Return Address (on the stack) = $0100 (internal P memory).

Solution

To determine the number of instruction program words and the number of oscillator clock cycles required
for the given instruction, the user should perform the following steps:

1. Look up the number of instruction program words and the number of oscillator clock cycles
required for the opcode-operand portion of the instruction in Table A-11 on page A-18.

According to Table A-11 on page A-18, the RTS instruction will require one instruction
program word and will execute in (10 + rx) oscillator clock cycles. The term “rx” represents
the number of additional oscillator clock cycles (if any) required for an RTS instruction.

2. Evaluate the “rx” term using Table A-17 on page A-21.

According to Table A-17 on page A-21, the RTS instruction will require rx = (2 * ap)
additional oscillator clock cycles. The term “ap” represents the number of additional
oscillator clock cycles (if any) that are required to access a P memory operand. The term
“(2 * ap)” represents the two program memory instruction fetches executed at the end of
an RTS instruction to refill the instruction pipeline.

3. Evaluate the “ap” term using Table A-20 on page A-22.

According to Table A-20 on page A-22, the term “ap” depends upon where the referenced
P memory location is located in the 16-bit DSP memory space. External memory accesses
may require additional oscillator clock cycles, according to the memory device’s speed.
Here we assume that external P memory accesses require wp = 4 wait state or additional
oscillator clock cycles. For this example the P memory reference is assumed to be an
internal reference. This means that the return address ($0100) pulled from the system
stack by the RTS instruction is in internal P memory. Thus, according to Table A-20 on
page A-22, the RTS instruction will use the value ap = 0 additional oscillator clock cycles.

4. Compute the final results.

Thus, based upon the assumptions given for Table A-11 on page A-18, the instruction

RTS

will require one instruction program word and will execute in (10 + rx) = (10 + (2 * ap))
= (10 + (2 * 0)) = 10 oscillator clock cycles.

A-26 DSP56800 Family Manual �

A.6 Instruction Set Restrictions
These items are restrictions on the DSP56800 instruction set:

• A NORM instruction cannot be immediately followed by an instruction that accesses X memory
using the R0 pointer. In addition, NORM can only use the R0 address register.

• No bit-field operation (ANDC, ORC, NOTC, EORC, BFCHG, BFCLR, BFSET, BFTSTH,
BFTSTL, BRCLR, or BRSET) can be performed on the HWS register.

• Only positive immediate values less than 8,192 can be moved to the LC register (13 bits).

• The following registers cannot be specified as the loop count for the DO or REP instruction: HWS,
SR, OMR, or M01. Similarly, the immediate value of $0 is not allowed for the loop count of a DO
instruction.

• Any jump, branch, or branch on bit field may not specify the instructions at LA or LA-1 of a
hardware DO loop as their target addresses. Similarly, these instructions may not be located in the
last two locations of a hardware DO loop (that is, at LA or at LA-1).

• A REP instruction cannot repeat on an instruction that accesses the P memory or on any multiword
instruction.

• The HI, HS, LO, and LS condition code expressions can only be used when the CC bit is set in the
OMR register.

• The access performed using R3 and XAB2/XDB2 cannot reference external memory. This access
must always be made to internal memory.

• If a MOVE instruction changes the value in one of the address registers (R0–R3), then the contents
of the register are not available for use until the second following instruction (that is, the
immediately following instruction should not use the modified register to access X memory or
update an address). This also applies to the SP register and the M01 register. In addition, it applies
if a 16-bit immediate value is moved to the N register.

• If a bit-field instruction changes the value in one of the address registers (R0–R3), then the contents
of the register are not available for use until the second following instruction (that is, the
immediately following instruction should not use the modified register to access X memory or
update an address). This also applies to the SP, the N, and the M01 registers.

• For the case of nested hardware DO loops, it is required that there be at least two instructions after
the pop of the LA and LC registers before the instruction at the last address of the outer loop.

� Instruction Set Details A-27

A.7 Instruction Descriptions
This section describes in complete detail each instruction in the DSP56800 Family instruction set. The
format of each instruction description is given in Section A.1, “Notation,” at the beginning of this
appendix. Instructions that allow parallel moves include the notation “(parallel move)” in both the
“Assembler Syntax” and the “Operation” fields. The example given with each instruction discusses the
contents of all the registers and memory locations referenced by the opcode-operand portion of that
instruction, though not those referenced by the parallel move portion of that instruction.

The “Parallel Move Descriptions” section that follows the MOVE instruction description give a complete
discussion of parallel moves, including examples that discuss the contents of all the registers and memory
locations referenced by the parallel move portion of an instruction.

Whenever an instruction uses an accumulator as both a destination operand for a data ALU operation and
as a source for a parallel move operation, the parallel move operation will use the value in the accumulator
prior to the execution of any data ALU operation.

Whenever a bit in the condition code register is defined according to the standard definition as given in
Section A.4, “Condition Code Computation,” a brief definition will be given in normal text in the
“Condition Code” section of that instruction description. Whenever a bit in the condition code register is
defined according to a special definition for some particular instruction, the complete special definition of
that bit is given in the “Condition Code” section of that instruction in bold text to alert the user to any
special conditions concerning its use.

A-28 DSP56800 Family Manual �

ABS Absolute Value ABS
Operation: Assembler Syntax:
|D|→D (parallel move) ABS D (parallel move)

Description: Take the absolute value of the destination operand (D) and store the result in the destination accumu-
lator.

Example:

ABS A X:(R0)+,Y0 ; take ABS value, move data into Y0,
; update R0

Explanation of Example:
Prior to execution, the 36-bit A accumulator contains the value $F:FFFF:FFF2. Since this is a negative
number, the execution of the ABS instruction takes the two’s-complement of that value and returns
$0:0000:000E.

Note: When the D operand equals $8:0000:0000 (-16.0 when interpreted as a decimal fraction), the ABS in-
struction will cause an overflow to occur since the result cannot be correctly expressed using the stan-
dard 36-bit, fixed-point, two’s-complement data representation. Data limiting does not occur (that is,
A is not set to the limiting value of $7:FFFF:FFFF) but remains unchanged.

Condition Codes Affected:

SZ — Set according to the standard definition of the SZ bit (parallel move)
L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of A or B result is in use
U — Set according to the standard definition of the U bit
N — Set if bit 35 of A or B result is set except during saturation.
Z — Set if A or B result equals zero
V — Set if overflow has occurred in A or B result

A Before Execution

FFF2FFFFF

A2 A1 A0

A After Execution

000E00000

A2 A1 A0

LF * * * * * I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

� Instruction Set Details A-29

ABS Absolute Value ABS
Instruction Fields:

Timing: 2 + mv oscillator clock cycles

Memory: 1 program word

Operation Operands C W Comments

ABS F 2 1 Absolute value.

Data ALU Operation Parallel Memory Read or Write

Operation Registers Memory Access Source or Destination

ABS A
B

X:(Rn)+
X:(Rn)+N

X0
Y1
Y0
A
B

A1
B1

A-30 DSP56800 Family Manual �

ADC Add Long with Carry ADC
Operation: Assembler Syntax:
S + C + D →D (no parallel move) ADC S,D (no parallel move)

Description: Add the source operand (S) and C to the destination operand (D) and store the result in the destination
accumulator. Long words (32 bits) may be added to the (36-bit) destination accumulator.

Usage: This instruction is typically used in multi-precision addition operations (see Section 3.3.8, “Multi-Pre-
cision Operations,” on page 3-23) when it is necessary to add together two numbers that are larger than
32 bits (such as 64-bit or 96-bit addition).

Example:

ADC Y,A

Explanation of Example:
Prior to execution, the 32-bit Y register, comprised of the Y1 and Y0 registers, contains the value
$2000:8000, and the 36-bit accumulator contains the value $0:2000:8000. In addition, C is set to one.
The ADC instruction automatically sign extends the 32-bit Y registers to 36 bits and adds this value to
the 36-bit accumulator. In addition, C is added into the LSB of this 36-bit addition. The 36-bit result
is stored back in the A accumulator, and the condition codes are set correctly. The Y1:Y0 register pair
is not affected by this instruction.

Note: C is set correctly for multi-precision arithmetic, using long word operands only when the extension
register of the destination accumulator (A2 or B2) contains sign extension of bit 31 of the destination
accumulator (A or B).

Before Execution

800020000

A2 A1 A0

0301SR

80002000Y

Y1 Y0

After Execution

000140010

A2 A1 A0

0300SR

80002000Y

Y1 Y0

� Instruction Set Details A-31

ADC Add Long with Carry ADC
Condition Codes Affected:

L — Set if overflow has occurred in result
E — Set if the signed integer portion of A or B result is in use
U — Set according to the standard definition of the U bit
N — Set if bit 35 of A or B result is set except during saturation
Z — Set if A or B result is zero; cleared otherwise
V — Set if overflow has occurred in A or B result
C — Set if a carry (or borrow) occurs from bit 35 of A or B result

See Section 3.6.5, “16-Bit Destinations,” on page 3-35 for cases with X0, Y0, or Y1 as D.
See Section 3.6.2, “36-Bit Destinations—CC Bit Set,” on page 3-34 and Section 3.6.4, “20-Bit Desti-
nations—CC Bit Set,” on page 3-34 for the case when the CC bit is set.

Instruction Fields:

Timing: 2 oscillator clock cycles

Memory: 1 program word

Operation Operands C W Comments

ADC Y,F 2 1 Add with carry (sets C bit also)

LF * * * * * I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A-32 DSP56800 Family Manual �

ADD Add ADD
Operation: Assembler Syntax:
S + D → D (parallel move) ADD S,D (parallel move)

Description: Add the source operand (S) to the destination operand (D) and store the result in the destination accu-
mulator. Words (16 bits), long words (32 bits), and accumulators (36 bits) may be added to the desti-
nation.

Usage: This instruction can be used for both integer and fractional two’s-complement data.

Example:

ADD X0,A X:(R0)+,Y0X:(R3)+,X0 ; 16-bit add, update
; Y0,X0,R0,R3

Explanation of Example:
Prior to execution, the16-bit X0 register contains the value $FFFF, and the 36-bit A accumulator con-
tains the value $0:0100:0000. The ADD instruction automatically appends the 16-bit value in the X0
register with 16 LS zeros, sign extends the resulting 32-bit long word to 36 bits, and adds the result to
the 36-bit A accumulator. Thus, 16-bit operands are always added to the MSP of A or B (A1 or B1),
with the result correctly extending into the extension register (A2 or B2). Operands of 16 bits can be
added to the LSP of A or B (A0 or B0) by loading the 16-bit operand into Y0; this forms a 32-bit word
by loading Y1 with the sign extension of Y0 and executing an ADD Y,A or ADD Y,B instruction.
Similarly, the second accumulator can also be used as the source operand.

Note: C is set correctly using word or long word source operands if the extension register of the destination
accumulator (A2 or B2) contains sign extension from bit 31 of the destination accumulator (A or B).
C is always set correctly by using accumulator source operands.

Before Execution

000001000

A2 A1 A0

FFFFX0

After Execution

000000FF0

A2 A1 A0

FFFFX0

� Instruction Set Details A-33

ADD Add ADD
Condition Codes Affected:

SZ — Set according to the standard definition of the S bit (parallel move)
L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of A or B result is in use
U — Set according to the standard definition of the U bit
N — Set if bit 35 of A or B result is set except during saturation
Z — Set if A or B result equals zero
V — Set if overflow has occurred in A or B result
C — Set if a carry (or borrow) occurs from bit 35 of A or B result

Instruction Fields:

Data ALU Operation Parallel Memory Read or Write

Operation Registers Memory Access Source or Destination

ADD X0,F
Y1,F
Y0,F

A,B
B,A

(F = A or B)

X:(Rn)+
X:(Rn)+N

X0
Y1
Y0
A
B

A1
B1

Data ALU
Operation

First and Second Memory
Reads

Destinations for Memory
Reads

Operation Registers Read1 Read2 Destination1 Destination2

ADD X0,A
Y1,A
Y0,A

X0,B
Y1,B
Y0,B

X:(R0)+
X:(R0)+N

X:(R1)+
X:(R1)+N

X:(R3)+
X:(R3)-

Y0 X0

Y1 X0

Valid
destinations
for Read1

Valid
destinations
for Read2

LF * * * * * I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A-34 DSP56800 Family Manual �

ADD Add ADD
Instruction Fields:

Timing: 2 + mv oscillator clock cycles for ADD instructions with a single or dual parallel move.
Refer to previous tables for ADD instructions without a parallel move.

Memory: 1 program word for ADD instructions with a single or dual parallel move.
Refer to previous tables for ADD instructions without a parallel move.

Operation Operands C W Comments

ADD DD,FDD 2 1 36-bit addition of two registers

F1,DD

~F,F

Y,F

X:(SP-xx),FDD 6 1 Add memory word to register.

X:aa represents a 6-bit absolute address. Refer to
Absolute Short Address (Direct Addressing):
<aa> on page 4-22.

X:aa,FDD 4 1

X:xxxx,FDD 6 2

FDD,X:(SP-xx) 8 2 Add register to memory word, storing the result back
to memory

FDD,X:xxxx 8 2

FDD,X:aa 6 2

#xx,FDD 4 1 Add an immediate integer 0–31

#xxxx,FDD 6 2 Add a signed 16-bit immediate

� Instruction Set Details A-35

AND Logical AND AND
Operation: Assembler Syntax:
S•D → D (no parallel move) AND S,D (no parallel move)
S•D[31:16] → D[31:16] (no parallel move) AND S,D (no parallel move)

where • denotes the logical AND operator

Description: Logically AND the source operand (S) with the destination operand (D) and store the result in the des-
tination. This instruction is a 16-bit operation. If the destination is a 36-bit accumulator, the source is
ANDed with bits 31–16 of the accumulator. The remaining bits of the destination accumulator are not
affected.

Usage: This instruction is used for the logical AND of two registers; the ANDC instruction is appropriate to
AND a 16-bit immediate value with a register or memory location.

Example:

AND X0,A ; AND X0 with A1

Explanation of Example:
Prior to execution, the 16-bit X0 register contains the value $7F00, and the 36-bit A accumulator con-
tains the value $6:1234:5678. The AND X0,A instruction logically ANDs the 16-bit value in the X0
register with bits 31–16 of the A accumulator (A1) and stores the 36-bit result in the A accumulator.
Bits 35–32 in the A2 register and bits 15–0 in the A0 register are not affected by this instruction.

Condition Codes Affected:

N — Set if bit 31 of A or B result is set
Z — Set if bits 31–16 of A or B result are zero
V — Always cleared

See Section 3.6.5, “16-Bit Destinations,” on page 3-35 for cases with X0, Y0, or Y1 as D.
See Section 3.6.2, “36-Bit Destinations—CC Bit Set,” on page 3-34 and Section 3.6.4, “20-Bit Desti-
nations—CC Bit Set,” on page 3-34 for the case when the CC bit is set.

Instruction Fields:

Timing: 2 oscillator clock cycles

Memory: 1 program word

Operation Operands C W Comments

AND DD,FDD 2 1 16-bit logical AND

F1,DD

Before Execution

567812346

A2 A1 A0

7F00X0

After Execution

567812006

A2 A1 A0

7F00X0

LF * * * * * I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A-36 DSP56800 Family Manual �

ANDC Logical AND, Immediate ANDC
Operation: Assembler Syntax:
#xxxx•X:<ea> → X:<ea> ANDC #iiii,X:<ea>
##xxxx•D → D ANDC #iiii,D

where • denotes the logical AND operator

Implementation Note:
This instruction is an alias to the BFCLR instruction, and assembles as BFCLR with the 16-bit imme-
diate value inverted (one’s-complement) and used as the bit mask. It will disassemble as a BFCLR in-
struction.

Description: Logically AND a 16-bit immediate data value with the destination operand, and store the results back
into the destination. C is also modified as described in the following discussion. This instruction per-
forms a read-modify-write operation on the destination and requires two destination accesses.

Example:

ANDC #$5555,X:<<$A000; AND with immediate data

Explanation of Example:
Prior to execution, the 16-bit X memory location X:$A000 contains the value $C3FF. Execution of the
instruction tests the state of the bits 4, 8, and 9 in X:$FFE2, clears C (because not all the CCR bits were
set), and then clears the bits.

Condition Codes Affected:

For destination operand SR:
? — Cleared as defined in the field and if specified in the field

For other destination operands:
L — Set if data limiting occurred during 36-bit source move
C — Set if all bits specified by the mask are set

Clear if not all bits specified by the mask are set

Before Execution

C3FFX:$A000

0301SR

After Execution

4155X:$A000

0300SR

LF * * * * * I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

� Instruction Set Details A-37

ANDC Logical AND, Immediate ANDC
Instruction Fields:

Timing: Refer to the preceding Instruction Fields table

Memory: Refer to the preceding Instruction Fields table

Operation Operands C W Comments

BFCLR #xxxx,DDDDD 4 2 Absolute value.
All registers in DDDDD are permitted except HWS.

X:aa represents a 6-bit absolute address. Refer to
Absolute Short Address (Direct Addressing):
<aa> on page 4-22.

X:pp represents a 6-bit absolute I/O address. Refer
to I/O Short Address (Direct Addressing): <pp>
on page 4-23.

#xxxx,X:(R2+xx) 6 2

#xxxx,X:(SP-xx) 6 2

#xxxx,X:aa 4 2

#xxxx,X:pp 4 2

#xxxx,X:xxxx 6 3

A-38 DSP56800 Family Manual �

ASL Arithmetic Shift Left ASL
Operation: Assembler Syntax:
(see following figure) ASL D (parallel move)
:

Description: Arithmetically shift the destination operand (D) 1 bit to the left and store the result in the destination
accumulator. The MSB of the destination prior to the execution of the instruction is shifted into C, and
a zero is shifted into the LSB of the destination.

Implementation Note:
When a 16-bit register is specified as the operand for ASL, this instruction is actually assembled as an
LSL with the same register argument.

Example:

ASL A X:(R3)+N,Y0; multiply A by 2, update R3,Y0

Explanation of Example:
Prior to execution, the 36-bit A accumulator contains the value $A:0123:0123. Execution of the
ASL A instruction shifts the 36-bit value in the A accumulator 1 bit to the left and stores the result
back in the A accumulator. C is set by the operation because bit 35 of A was set prior to the execution
of the instruction. The V bit of CCR (bit 1) is also set because bit 35 of A has changed during the ex-
ecution of the instruction. The U bit of CCR (bit 4) is set because the result is not normalized, the E bit
of CCR (bit 5) is set because the signed integer portion of the result is in use, and the L bit of CCR (bit
6) is set because an overflow has occurred.

C (parallel move)

D0D2 D1

0

Before Execution

01230123A

A2 A1 A0

0300SR

After Execution

024602464

A2 A1 A0

0373SR

� Instruction Set Details A-39

ASL Arithmetic Shift Left ASL
Condition Codes Affected:

SZ — Set according to the standard definition of the S bit (parallel move)
L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of A or B result is in use
U — Set according to the standard definition of the U bit
N — Set if bit 35 of A or B result is set except during saturation
Z — Set if A or B result equals zero
V — Set if bit 35 of A or B result is changed due to left shift
C — Set if bit 35 of A or B was set prior to the execution of the instruction

See Section 3.6.5, “16-Bit Destinations,” on page 3-35 for cases with X0, Y0, or Y1 as D.
See Section 3.6.2, “36-Bit Destinations—CC Bit Set,” on page 3-34 and Section 3.6.4, “20-Bit Desti-
nations—CC Bit Set,” on page 3-34 for the case when the CC bit is set.

Instruction Fields:

Timing: 2 + mv oscillator clock cycles

Memory: 1 program word

Operation Operands C W Comments

ASL FDD 2 1 Arithmetic shift left entire register by 1 bit

Data ALU Operation Parallel Memory Read or Write

Operation Registers Memory Access Source or Destination

ASL A
B

X:(Rn)+
X:(Rn)+N

X0
Y1
Y0
A1
B1
A
B

LF * * * * * I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A-40 DSP56800 Family Manual �

ASLL Multi-Bit Arithmetic Left Shift ASLL
Operation: Assembler Syntax:
S1 << S2 → D (no parallel move) ASLL S1,S2,D (no parallel move)

Description: Arithmetically shift the first 16-bit source operand (S1) to the left by the value contained in the lowest
4 bits of the second source operand (S2) and store the result in the destination register. If the destination
is a 36-bit accumulator, correctly sign extend into the extension register (A2 or B2), and place zero in
the LSP (A0 or B0).

Example:

ASLL Y1,X0,A

Explanation of Example:
Prior to execution, the Y1 register contains the value to be shifted ($AAAA) and the X0 register con-
tains the amount by which to shift ($0004). The contents of the destination register are not important
prior to execution because they have no effect on the calculated value. The ASLL instruction arithmet-
ically shifts the value $AAAA four bits to the left and places the result in the destination register A.
Since the destination is an accumulator, the extension word (A2) is filled with sign extension, and the
LSP (A0) is set to zero.

Condition Codes Affected:

N — Set if bit 35 of A or B result is set except during saturation
Z — Set if A or B result equals zero

Note: If the CC bit is set, N is undefined and Z is set if the LSBs 31–0 are zero.

Before Execution

345634560

A2 A1 A0

AAAAY1

0004X0

After Execution

0000AAA0F

A2 A1 A0

AAAAY1

0004X0

LF * * * * * I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

� Instruction Set Details A-41

ASLL Multi-Bit Arithmetic Left Shift ASLL
Instruction Fields:

Timing: 2 oscillator clock cycles

Memory: 1 program word

Operation Operands C W Comments

ASLL Y1,X0,FDD
Y0,X0,FDD
Y1,Y0,FDD
Y0,Y0,FDD
A1,Y0,FDD
B1,Y1,FDD

2 1 Arithmetic shift left of the first operand by value
specified in four LSBs of the second operand;
places result in FDD

A-42 DSP56800 Family Manual �

ASR Arithmetic Shift Right ASR
Operation: Assembler Syntax:
(see following figure) ASR D (parallel move)

Description: Arithmetically shift the destination operand (D) 1 bit to the right and store the result in the destination
accumulator. The LSB of the destination prior to the execution of the instruction is shifted into C and
the MSB of the destination is held constant.

Example:

ASR B X:(R2)+,Y0; divide B by 2, update R3, load R3

Explanation of Example:
Prior to execution, the 36-bit B accumulator contains the value $A:A864:A865. Execution of the
ASR B instruction shifts the 36-bit value in the B accumulator 1 bit to the right and stores the result
back in the B accumulator. C is set by the operation because bit 0 of A was set prior to the execution
of the instruction. The N bit of CCR (bit 3) is also set because bit 35 of the result in A is set. The E bit
of CCR (bit 5) is set because the signed integer portion of B is used by the result.

(parallel move)

D0D2 D1

C

Before Execution

A865A864A

B2 B1 B0

0300SR

After Execution

54325432D

B2 B1 B0

0329SR

� Instruction Set Details A-43

ASR Arithmetic Shift Right ASR
Condition Codes Affected:

SZ — Set according to the standard definition of the S bit (parallel move)
L — Set if data limiting has occurred during parallel move
E — Set if the signed integer portion of A or B result is in use
U — Set according to the standard definition of the U bit
N — Set if bit 35 of A or B result is set except during saturation
Z — Set if A or B result equals zero
V — Always cleared
C — Set if bit 0 of A or B was set prior to the execution of the instruction

See Section 3.6.5, “16-Bit Destinations,” on page 3-35 for cases with X0, Y0, or Y1 as D.
See Section 3.6.2, “36-Bit Destinations—CC Bit Set,” on page 3-34 and Section 3.6.4, “20-Bit Desti-
nations—CC Bit Set,” on page 3-34 for the case when the CC bit is set.

Instruction Fields:

Timing: 2 + mv oscillator clock cycles

Memory: 1 program word

Operation Operands C W Comments

ASR FDD 2 1 Arithmetic shift right entire register by 1 bit

Data ALU Operation Parallel Memory Read or Write

Operation Registers Memory Access Source or Destination

ASR A
B

X:(Rn)+
X:(Rn)+N

X0
Y1
Y0
A1
B1
A
B

LF * * * * * I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A-44 DSP56800 Family Manual �

ASRAC Arithmetic Right Shift with Accumulate ASRAC
Operation: Assembler Syntax:
S1 >> S2 + D → D (no parallel move) ASRAC S1,S2,D (no parallel move)

Description: Arithmetically shift the first 16-bit source operand (S1) to the right by the value contained in the lowest
4 bits of the second source operand (S2) and accumulate the result with the value in the destination
register. If the destination is a 36-bit accumulator, correctly sign extend into the extension register (A2
or B2).

Usage: This instruction is typically used for multi-precision arithmetic right shifts.

Example:

ASRAC Y1,X0,A ; 16-bit add, update X1,X0,R0,R3

Explanation of Example:
Prior to execution, the Y1 register contains the value to be shifted ($C003), the X0 register contains
the amount by which to shift ($0004), and the destination accumulator contains $0:0000:0099. The
ASRAC instruction arithmetically shifts the value $C003 four bits to the right and accumulates this
result with the value already in the destination register A. Since the destination is an accumulator, the
extension word (A2) is filled with sign extension.

Condition Codes Affected:

N — Set if bit 35 of A or B result is set except during saturation
Z — Set if A or B result equals zero

See Section 3.6.2, “36-Bit Destinations—CC Bit Set,” on page 3-34 and Section 3.6.4, “20-Bit Desti-
nations—CC Bit Set,” on page 3-34 for the case when the CC bit is set.

Before Execution

009900000

A2 A1 A0

C003Y1

0004X0

After Execution

3099FC00F

A2 A1 A0

C003Y1

0004X0

LF * * * * * I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

� Instruction Set Details A-45

ASRAC Arithmetic Right Shift with Accumulate ASRAC
Instruction Fields:

Timing: 2 oscillator clock cycles

Memory: 1 program word

Operation Operands C W Comments

ASRAC Y1,X0,F
Y0,X0,F
Y1,Y0,F
Y0,Y0,F
A1,Y0,F
B1,Y1,F

2 1 Arithmetic word shifting with accumulation

A-46 DSP56800 Family Manual �

ASRR Multi-Bit Arithmetic Right Shift ASRR
Operation: Assembler Syntax:
S1 >> S2 → D (no parallel move) ASRR S1,S2,D (no parallel move)

Description: Arithmetically shift the first 16-bit source operand (S1) to the right by the value contained in the lowest
4 bits of the second source operand (S2) and store the result in the destination register. If the destination
is a 36-bit accumulator, correctly sign extend into the extension register (A2 or B2), and place zero in
the LSP (A0 or B0).

Example:

ASRR Y1,X0,A ; right shift of 16-bit Y1 by X0

Explanation of Example:
Prior to execution, the Y1 register contains the value to be shifted ($AAAA) and the X0 register con-
tains the amount by which to shift ($0004). The contents of the destination register are not important
prior to execution because they have no effect on the calculated value. The ASRR instruction arithmet-
ically shifts the value $AAAA four bits to the right and places the result in the destination register A.
Since the destination is an accumulator, the extension word (A2) is filled with sign extension, and the
LSP (A0) is set to zero.

Condition Codes Affected:

N — Set if bit 35 of A or B result is set except during saturation
Z — Set if A or B result equals zero

Before Execution

567812340

A2 A1 A0

AAAAY1

0004X0

After Execution

0000FAAAF

A2 A1 A0

AAAAY1

0004X0

LF * * * * * I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

� Instruction Set Details A-47

ASRR Multi-Bit Arithmetic Right Shift ASRR
Instruction Fields:

Timing: 2 oscillator clock cycles

Memory: 1 program word

Operation Operands C W Comments

ASRR Y1,X0,FDD
Y0,X0,FDD
Y1,Y0,FDD
Y0,Y0,FDD
A1,Y0,FDD
B1,Y1,FDD

2 1 Arithmetic shift right of the first operand by value
specified in four LSBs of the second operand;
places result in FDD

A-48 DSP56800 Family Manual �

Bcc Branch Conditionally Bcc
Operation: Assembler Syntax:
If cc, then PC + label → PC Bcc <OFFSET7>
else PC + 1 → PC

Description: If the specified condition is true, program execution continues at location PC + displacement. The PC
contains the address of the next instruction. If the specified condition is false, the PC is incremented,
and program execution continues sequentially. The offset is a 7-bit-sized value that is sign extended to
16 bits. This instruction is more compact than the Jcc instruction, but can only be used to branch within
a small address range

The term “cc” specifies the following:

Example:

BNE LABEL ; branch to label if Z condition clear
INCW A
INCW A

LABEL
ADD B,A

Explanation of Example:
In this example, if the Z bit is zero when executing the BNE instruction, program execution skips the
two INCW instructions and continues with the ADD instruction. If the specified condition is not true,
no branch is taken, the program counter is incremented by one, and program execution continues with
the first INCW instruction. The Bcc instruction uses a PC-relative offset of two for this example.

Restrictions:
A Bcc instruction used within a DO loop cannot begin at the LA or LA-1 within that DO loop.
A Bcc instruction cannot be repeated using the REP instruction.

“cc” Mnemonic Condition

CC (HS*)— carry clear (higher or same) C=0

CS (LO*)— carry set (lower) C=1

EQ — equal Z=1

GE — greater than or equal N ⊕ V=0

GT — greater than Z+(N ⊕ V)=0

HI* — higher C•Z=1

LE — less than or equal Z+(N ⊕ V)=1

LS* — lower or same C+Z=1

LT — less than N ⊕ V=1

NE — not equal Z=0

NN — not normalized Z+(U•E)=0

NR — normalized Z+(U•E)=1

* Only available when CC bit set in the OMR

X denotes the logical complement of X
+ denotes the logical OR operator
• denotes the logical AND operator
⊕ denotes the logical exclusive OR operator

� Instruction Set Details A-49

Bcc Branch Conditionally Bcc
Condition Codes Affected:

The condition codes are tested but not modified by this instruction.

Instruction Fields:

Timing: 4 + jx oscillator clock cycles

Memory: 1 program word

Operation Operands C W Comments

Bcc <OFFSET7> 6/4 1 7-bit signed PC relative offset

A-50 DSP56800 Family Manual �

BFCHG Test Bit Field and Change BFCHG
Operation: Assembler Syntax:
(<bit field> of destination) → (<bit field> of destination)BFCHG #iiii,X:<ea>
(<bit field> of destination) → (<bit field> of destination)BFCHG #iiii,D

Description: Test all selected bits of the destination operand. If all selected bits are set, C is set; otherwise, C is
cleared. Then complement the selected bits and store the result in the destination memory location. The
bits to be tested are selected by a 16-bit immediate value in which every bit set is to be tested and
changed. This instruction performs a read-modify-write operation on the destination memory location
or register and requires two destination accesses.

Usage: This instruction is very useful in performing I/O and flag bit manipulation.

Example:

BFCHG #$0310,X:<<$FFE2 ;test and change bits 4, 8, and 9
;in a peripheral register

Explanation of Example:
Prior to execution, the 16-bit X memory location X:$FFE2 contains the value $0010. Execution of the
instruction tests the state of the bits 4, 8, and 9 in X:$FFE2; does not set C (because all of the CCR bits
were not set); and then complements the bits.

Condition Codes Affected:

For destination operand SR:
? — Changed if specified in the field

For other destination operands:
L — Set if data limiting occurred during 36-bit source move
C — Set if all bits specified by the mask are set

Clear if not all bits specified by the mask are set

Note: If all bits in the mask are set to zero, the destination is unchanged, and the C bit is set.

Before Execution

0010X:$FFE2

0001SR

After Execution

0300X:$FFE2

0000SR

LF * * * * * I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

� Instruction Set Details A-51

BFCHG Test Bit Field and Change BFCHG
Instruction Fields:

Timing: Refer to the preceding Instruction Fields table

Memory: Refer to the preceding Instruction Fields table

Operation Operands C W Comments

BFCHG #xxxx,DDDDD 4 2 BFCHG tests all bits selected by the 16-bit immedi-
ate mask. If all selected bits are set, then the C bit is
set. Otherwise it is cleared. Then it inverts all
selected bits.

All registers in DDDDD are permitted except HWS.

X:aa represents a 6-bit absolute address. Refer to
Absolute Short Address (Direct Addressing):
<aa> on page 4-22.

X:pp represents a 6-bit absolute I/O address. Refer
to I/O Short Address (Direct Addressing): <pp>
on page 4-23.

#xxxx,X:(R2+xx) 6 2

#xxxx,X:(SP-xx) 6 2

#xxxx,X:aa 4 2

#xxxx,X:pp 4 2

#xxxx,X:xxxx 6 3

A-52 DSP56800 Family Manual �

BFCLR Test Bit Field and Clear BFCLR
Operation: Assembler Syntax:
0 →(<bit field> of destination) BFCLR #iiii,X:<ea>
0 →(<bit field> of destination) BFCLR #iiii,D

Description: Test all selected bits of the destination operand. If all selected bits are set, C is set; otherwise, C is
cleared. Then clear the selected bits and store the result in the destination memory location. The bits
to be tested are selected by a 16-bit immediate value in which every bit set is to be tested and cleared.
This instruction performs a read-modify-write operation on the destination memory location or register
and requires two destination accesses.

Usage: This instruction is very useful in performing I/O and flag bit manipulation.

Example:

BFCLR #$0310,X:<<$FFE2 ; test and clear bits 4, 8, and 9 in
; an on-chip peripheral register

Explanation of Example:
Prior to execution, the 16-bit X memory location X:$FFE2 contains the value $7F95. Execution of the
instruction tests the state of the bits 4, 8, and 9 in X:$FFE2; clears C (because not all the CCR bits were
clear); and then clears the bits.

Condition Codes Affected:

For destination operand SR:
? — Cleared as defined in the field and if specified in the field

For other destination operands:
L — Set if data limiting occurred during 36-bit source move
C — Set if all bits specified by the mask are set

Clear if not all bits specified by the mask are set

Note: If all bits in the mask are set to zero, the destination is unchanged, and the C bit is set.

Before Execution

7F95X:$FFE2

0001SR

After Execution

7C85X:$FFE2

0000SR

LF * * * * * I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

� Instruction Set Details A-53

BFCLR Test Bit Field and Clear BFCLR
Instruction Fields:

Timing: Refer to the preceding Instruction Fields table

Memory: Refer to the preceding Instruction Fields table

Operation Operands C W Comments

BFCLR #xxxx,DDDDD 4 2 BFCLR tests all bits selected by the 16-bit immedi-
ate mask. If all selected bits are set, then the C bit is
set. Otherwise it is cleared. Then it clears all
selected bits.

All registers in DDDDD are permitted except HWS.

X:aa represents a 6-bit absolute address. Refer to
Absolute Short Address (Direct Addressing):
<aa> on page 4-22.

X:pp represents a 6-bit absolute I/O address. Refer
to I/O Short Address (Direct Addressing): <pp>
on page 4-23.

#xxxx,X:(R2+xx) 6 2

#xxxx,X:(SP-xx) 6 2

#xxxx,X:aa 4 2

#xxxx,X:pp 4 2

#xxxx,X:xxxx 6 3

A-54 DSP56800 Family Manual �

BFSET Test Bit Field and Set BFSET
Operation: Assembler Syntax:
1 → (<bit field> of destination) BFSET #iiii,X:<ea>
1 → (<bit field> of destination) BFSET #iiii,D

Description: Test all selected bits of the destination operand. If all selected bits are set, C is set; otherwise, C is
cleared. Then set the selected bits, and store the result in the destination memory location. The bits to
be tested are selected by a 16-bit immediate value in which every bit set is to be tested and set. This
instruction performs a read-modify-write operation on the destination memory location or register and
requires two destination accesses.

Usage: This instruction is very useful in performing I/O and flag bit manipulation.

Example:

BFSET #$F400,X:<<$FFE2

Explanation of Example:
Prior to execution, the 16-bit X memory location X:$FFE2 contains the value $8921. Execution of the
instruction tests the state of bits 10, 12, 13, 14, and 15 in X:$FFE2; does not set C (because all the CCR
bits were not set); and then sets the bits.

Condition Codes Affected:

For destination operand SR:
? — Set as defined in the field and if specified in the field

For other destination operands:
L — Set if data limiting occurred during 36-bit source move
C — Set if all bits specified by the mask are set

Clear if not all bits specified by the mask are set

Note: If all bits in the mask are set to zero, the destination is unchanged, and the C bit is set.

Before Execution

8921X:$FFE2

0000SR

After Execution

FD21X:$FFE2

0000SR

LF * * * * * I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

� Instruction Set Details A-55

BFSET Test Bit Field and Set BFSET
Instruction Fields:

Timing: Refer to the preceding Instruction Fields table

Memory: Refer to the preceding Instruction Fields table

Operation Operands C W Comments

BFSET #xxxx,DDDDD 4 2 BFSET tests all bits selected by the 16-bit immedi-
ate mask. If all selected bits are clear, then the C bit
is set. Otherwise it is cleared. Then it sets all
selected bits.

All registers in DDDDD are permitted except HWS.

X:aa represents a 6-bit absolute address. Refer to
Absolute Short Address (Direct Addressing):
<aa> on page 4-22.

X:pp represents a 6-bit absolute I/O address. Refer
to I/O Short Address (Direct Addressing): <pp>
on page 4-23.

#xxxx,X:(R2+xx) 6 2

#xxxx,X:(SP-xx) 6 2

#xxxx,X:aa 4 2

#xxxx,X:pp 4 2

#xxxx,X:xxxx 6 3

A-56 DSP56800 Family Manual �

BFTSTH Test Bit Field High BFTSTH
Operation: Assembler Syntax:
Test <bit field> of destination for ones BFTSTH #iiii,X:<ea>
Test <bit field> of destination for ones BFTSTH #iiii,D

Description: Test all selected bits of the destination operand. If all selected bits are set, C is set; otherwise, C is
cleared. The bits to be tested are selected by a 16-bit immediate value in which every bit set is to be
tested. This instruction performs two destination accesses.

Usage: This instruction is very useful for testing I/O and flag bits.

Example:

BFTSTH #$0310,X:<<$FFE2 ; test high bits 4, 8, and 9 in
; an on-chip peripheral register

Explanation of Example:
Prior to execution, the 16-bit X memory location X:$FFE2 contains the value $0FF0. Execution of the
instruction tests the state of bits 4, 8, and 9 in X:$FFE2 and sets C (because all the CCR bits were set).

Condition Codes Affected:

L — Set if data limiting occurred during 36-bit source move
C — Set if all bits specified by the mask are set

Clear if not all bits specified by the mask are set

Note: If all bits in the mask are set to zero, the destination is unchanged, and the C bit is set.

Before Execution

0FF0X:$FFE2

0000SR

After Execution

0FF0X:$FFE2

0001SR

LF * * * * * I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

� Instruction Set Details A-57

BFTSTH Test Bit Field High BFTSTH
Instruction Fields:

Timing: Refer to the preceding Instruction Fields table

Memory: Refer to the preceding Instruction Fields table

Operation Operands C W Comments

BFTSTH #xxxx,DDDDD 4 2 BFTSTH tests all bits selected by the 16-bit immedi-
ate mask. If all selected bits are set, then the C bit is
set. Otherwise it is cleared.

All registers in DDDDD are permitted except HWS.

X:aa represents a 6-bit absolute address. Refer to
Absolute Short Address (Direct Addressing):
<aa> on page 4-22.

X:pp represents a 6-bit absolute I/O address. Refer
to I/O Short Address (Direct Addressing): <pp>
on page 4-23.

#xxxx,X:(R2+xx) 6 2

#xxxx,X:(SP-xx) 6 2

#xxxx,X:aa 4 2

#xxxx,X:pp 4 2

#xxxx,X:xxxx 6 3

A-58 DSP56800 Family Manual �

BFTSTL Test Bit Field Low BFTSTL
Operation: Assembler Syntax:
Test <bit field> of destination for zeros BFTSTL #iiii,X:<ea>
Test <bit field> of destination for zeros BFTSTL #iiii,D

Description: Test all selected bits of the destination operand. If all selected bits are clear, C is set; otherwise, C is
cleared. The bits to be tested are selected by a 16-bit immediate value in which every bit set is to be
tested. This instruction performs two destination accesses.

Usage: This instruction is very useful for testing I/O and flag bits.

Example:

BFTSTL #$0310,X:<<$FFE2 ; test low bits 4, 8, and 9 in
; an on-chip peripheral register

Explanation of Example:
Prior to execution, the 16-bit X memory location X:$FFE2 contains the value $18EC. Execution of the
instruction tests the state of bits 4, 8, and 9 in X:$FFE2 and sets C (because all the CCR bits were
cleared).

Condition Codes Affected:

L — Set if data limiting occurred during 36-bit source move
C — Set if all bits specified by the mask are cleared

Clear if not all bits specified by the mask are cleared

Note: If all bits in the mask are set to zero, the destination is unchanged, and the C bit is set.

Instruction Fields:

Timing: Refer to the preceding Instruction Fields table

Memory: Refer to the preceding Instruction Fields table

Operation Operands C W Comments

BFTSTL #xxxx,DDDDD 4 2 BFTSTL tests all bits selected by the 16-bit immedi-
ate mask. If all selected bits are clear, then the C bit
is set. Otherwise it is cleared.
All registers in DDDDD are permitted except HWS.

X:aa represents a 6-bit absolute address. Refer to
Absolute Short Address (Direct Addressing):
<aa> on page 4-22.
X:pp represents a 6-bit absolute I/O address. Refer
to I/O Short Address (Direct Addressing): <pp>
on page 4-23.

#xxxx,X:(R2+xx) 6 2

#xxxx,X:(SP-xx) 6 2

#xxxx,X:aa 4 2

#xxxx,X:pp 4 2

#xxxx,X:xxxx 6 3

Before Execution

18ECX:$FFE2

0000SR

After Execution

18ECX:$FFE2

0001SR

LF * * * * * I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

� Instruction Set Details A-59

BRA Branch BRA
Operation: Assembler Syntax:
PC+label → PC BRA <OFFSET7>

Description: Branch to the location in program memory at PC + displacement. The PC contains the address of the
next instruction. The displacement is a 7-bit signed value that is sign extended to form the PC-relative
offset.

Example:

BRA LABEL
INCW A
INCW A

LABEL
ADD B,A

Explanation of Example:
In this example, program execution skips the two INCW instructions and continues with the ADD in-
struction. The BRA instruction uses a PC-relative offset of two for this example.

Condition Codes Affected:
The condition codes are not affected by this instruction.

Restrictions:
A BRA instruction used within a DO loop cannot begin at the LA or LA-1 within that DO loop.
A BRA instruction cannot be repeated using the REP instruction.

Instruction Fields:

Timing: 6+jx oscillator clock cycles

Memory: 1 program word

Operation Operands C W Comments

BRA <OFFSET7> 6 1 7-bit signed PC relative offset

A-60 DSP56800 Family Manual �

BRCLR Branch if Bits Clear BRCLR
Operation: Assembler Syntax:
Branch if <bit field> of destination is all zeros BRCLR #iiii,X:<ea>,aa
Branch if <bit field> of destination is all zeros BRCLR #iiii,D,aa

Description: Test all selected bits of the destination operand. If all the selected bits are clear, C is set, and program
execution continues at the location in program memory at PC + displacement. Otherwise, C is cleared
and execution continues with the next sequential instruction. The bits to be tested are selected by an
8-bit immediate value in which every bit set is to be tested.

Usage: This instruction is useful in performing I/O flag polling.

Example:

BRCLR #$0013,X:<<$FFE2,LABEL
INCW A
INCW A

LABEL
ADD B,A

Explanation of Example:
Prior to execution, the 16-bit X memory location X:$FFE2 contains the value $18EC. Execution of the
instruction tests the state of bits 4, 1, and 0 in X:$FFE2 and sets C (because all the CCR bits were clear).
Since C is set, program execution is transferred to the address offset from the current program counter
by the displacement specified in the instruction, (the two INCW instructions are not executed).

Condition Codes Affected:

L — Set if data limiting occurred during 36-bit source move
C — Set if all bits specified by the mask are cleared

Clear if not all bits specified by the mask are cleared

Note: If all bits in the mask are set to zero, C is set, and the branch is taken.

Before Execution

18ECX:$FFE2

0000SR

After Execution

18ECX:$FFE2

0001SR

LF * * * * * I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

� Instruction Set Details A-61

BRCLR Branch if Bits Clear BRCLR
Instruction Fields:

Timing: Refer to the preceding Instruction Fields table

Memory: Refer to the preceding Instruction Fields table

Operation Operands C W Comments

BRCLR #MASK8,DDDDD,AA 10/8 2 BRCLR tests all bits selected by the immediate
mask. If all selected bits are clear, then the carry
bit is set and a PC relative branch occurs. Other-
wise it is cleared and no branch occurs.

All registers in DDDDD are permitted except
HWS.

MASK8 specifies a 16-bit immediate value where
either the upper or lower 8 bits contains all zeros.

AA specifies a 7-bit PC relative offset.

X:aa represents a 6-bit absolute address. Refer
to Absolute Short Address (Direct Address-
ing): <aa> on page 4-22.

X:pp represents a 6-bit absolute I/O address.
Refer to I/O Short Address (Direct Address-
ing): <pp> on page 4-23.

#MASK8,X:(R2+xx),AA 12/10 2

#MASK8,X:(SP-xx),AA 12/10 2

#MASK8,X:aa,AA 10/8 2

#MASK8,X:pp,AA 10/8 2

#MASK8,X:xxxx,AA 12/10 3

A-62 DSP56800 Family Manual �

BRSET Branch if Bits Set BRSET
Operation: Assembler Syntax:
Branch if <bit field> of destination is all ones BRSET #iiii,X:<ea>,aa
Branch if <bit field> of destination is all ones BRSET #iiii,D,aa

Description: Test all selected bits of the destination operand. If all the selected bits are set, C is set, and program
execution continues at the location in program memory at PC + displacement. Otherwise, C is cleared,
and execution continues with the next sequential instruction. The bits to be tested are selected by an
8-bit immediate value in which every bit set is to be tested.

Usage: This instruction is useful in performing I/O flag polling.

Example:

BRSET #$00F0,X:<<$FFE2,LABEL
INCW A
INCW A

LABEL
ADD B,A

Explanation of Example:
Prior to execution, the 16-bit X memory location X:$FFE2 contains the value $0FF0. Execution of the
instruction tests the state of bits 4, 5, 6, and 7 in X:$FFE2 and sets C (because all the CCR bits were
set). Since C is set, program execution is transferred to the address offset from the current program
counter by the displacement specified in the instruction, (the two INCW instructions are not executed)

Condition Codes Affected:

L — Set if data limiting occurred during 36-bit source move
C — Set if all bits specified by the mask are set

Clear if not all bits specified by the mask are set

Note: If all bits in the mask are set to zero, C is set and the branch is taken.

Before Execution

0FF0X:$FFE2

0000SR

After Execution

0FF0X:$FFE2

0001SR

LF * * * * * I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

� Instruction Set Details A-63

BRSET Branch if Bits Set BRSET
Instruction Fields:

Timing: Refer to the preceding Instruction Fields table

Memory: Refer to the preceding Instruction Fields table

Operation Operands C W Comments

BRSET #MASK8,DDDDD,AA 10/8 2 BRSET tests all bits selected by the immediate
mask. If all selected bits are set, then the carry bit
is set and a PC relative branch occurs. Otherwise
it is cleared and no branch occurs.

All registers in DDDDD are permitted except
HWS.

MASK8 specifies a 16-bit immediate value where
either the upper or lower 8 bits contains all zeros.

AA specifies a 7-bit PC relative offset.

X:aa represents a 6-bit absolute address. Refer to
Absolute Short Address (Direct Addressing):
<aa> on page 4-22.

X:pp represents a 6-bit absolute I/O address.
Refer to I/O Short Address (Direct Addressing):
<pp> on page 4-23.

#MASK8,X:(R2+xx),AA 12/10 2

#MASK8,X:(SP-xx),AA 12/10 2

#MASK8,X:aa,AA 10/8 2

#MASK8,X:pp,AA 10/8 2

#MASK8,X:xxxx,AA 12/10 3

A-64 DSP56800 Family Manual �

CLR Clear Accumulator CLR
Operation: Assembler Syntax:
0 → D (parallel move) CLR D (parallel move)

Description: Clear the destination register.

Implementation Note:
When a 16-bit register is used as the operand for CLR, this instruction is actually assembled as a
MOVE #0,<register> instruction. It will disassemble as MOVE.

Example:

CLR A A,X:(R0)+ ; save A into X data memory before
; clearing it

Explanation of Example:
Prior to execution, the 36-bit A accumulator contains the value $2:3456:789A. Execution of the
CLR A instruction clears the 36-bit A accumulator to zero.

Condition Codes Affected:

SZ — Set according to the standard definition of the SZ bit (parallel move)
L — Set if data limiting has occurred during parallel move
E — Always cleared if destination is a 36-bit accumulator
U — Always set if destination is a 36-bit accumulator
N — Always cleared if destination is a 36-bit accumulator
Z — Always set if destination is a 36-bit accumulator
V — Always cleared if destination is a 36-bit accumulator

Note: The condition codes are only affected if the destination of the CLR instruction is one of the two 36-bit
accumulators (A or B).

A Before Execution

789A34562

A2 A1 A0

A After Execution

000000000

A2 A1 A0

LF * * * * * I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

� Instruction Set Details A-65

CLR Clear Accumulator CLR
Instruction Fields:

Timing: 2 + mv oscillator clock cycles

Memory: 1 program word

Operation Operands C W Comments

CLR F 2 1 Clear 36-bit accumulator and set condition codes.

F1DD 2 1 Identical to move #0,<reg>; does not set condition
codes.

Rj

N

Data ALU Operation Parallel Memory Read or Write

Operation Registers Memory Access Source or Destination

CLR A
B

X:(Rn)+
X:(Rn)+N

X0
Y1
Y0
A
B

A1
B1

A-66 DSP56800 Family Manual �

CMP Compare CMP
Operation: Assembler Syntax:
D - S (parallel move) CMP S,D (parallel move)

Description: Subtract the two operands and update the CCR. The result of the subtraction operation is not stored.

Usage: This instruction can be used for both integer and fractional two’s-complement data.

Note: This instruction subtracts 36-bit operands. When a word is specified as the source, it is sign extended
and zero filled to form a valid 36-bit operand. In order for C to be set correctly as a result of the sub-
traction, the destination must be properly sign extended. The destination can be improperly sign ex-
tended by writing A1 or B1 explicitly prior to executing the compare, so that A2 or B2, respectively,
may not represent the correct sign extension. This note particularly applies to the case in which the
source is extended to compare 16-bit operands, such as X0 with A1.

Example:

CMP Y0,A X0,X:(R1)+N ; compare Y0 and A, save X0,
; update R1

Explanation of Example:
Prior to execution, the 36-bit A accumulator contains the value $0:0020:0000, and the 16-bit Y0 reg-
ister contains the value $0024. Execution of the CMP Y0,A instruction automatically appends the
16-bit value in the Y0 register with 16 LS zeros, sign extends the resulting 32-bit long word to 36 bits,
subtracts the result from the 36-bit A accumulator, and updates the CCR (leaving the A accumulator
unchanged).

Before Execution

000000200

A2 A1 A0

0024Y0

0300SR

After Execution

000000200

A2 A1 A0

0024Y0

0319SR

� Instruction Set Details A-67

CMP Compare CMP
Condition Codes Affected:

SZ — Set according to the standard definition of the SZ bit (parallel move)
L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of the result is in use
U — Set if result is not normalized
N — Set if bit 35 of the result is set except during saturation
Z — Set if result equals zero
V — Set if overflow has occurred in result
C — Set if a carry (or borrow) occurs from bit 35 of the result

See Section 3.6.5, “16-Bit Destinations,” on page 3-35 for cases with X0, Y0, or Y1 as D.
See Section 3.6.2, “36-Bit Destinations—CC Bit Set,” on page 3-34 and Section 3.6.4, “20-Bit Desti-
nations—CC Bit Set,” on page 3-34 for the case when the CC bit is set.

Instruction Fields:

Timing: Refer to the preceding Instruction Fields table

Memory: Refer to the preceding Instruction Fields table

Operation Operands C W Comments

CMP DD,FDD 2 1 36-bit compare of two accumulators or data reg

F1,DD

~F,F

X:(SP-xx),FDD 6 1 Compare memory word with 36 bit accumulator.

X:aa represents a 6-bit absolute address. Refer to
Absolute Short Address (Direct Addressing):
<aa> on page 4-22.
Note: Condition codes set based on 36-bit result

X:aa,FDD 4 1

X:xxxx,FDD 6 2

#xx,FDD 4 1 Compare acc with an immediate integer 0–31

#xxxx,FDD 6 2 Compare acc with a signed 16-bit immediate

Data ALU Operation Parallel Memory Read or Write

Operation Registers Memory Access Source or Destination

CMP X0,F
Y1,F
Y0,F

A,B
B,A

(F = A or B)

X:(Rn)+
X:(Rn)+N

X0
Y1
Y0
A
B

A1
B1

LF * * * * * I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A-68 DSP56800 Family Manual �

DEBUG Enter Debug Mode DEBUG
Operation: Assembler Syntax:
Enter the debug processing state DEBUG

Description: Enter the debug processing state if the PWD bit is clear in the OnCE port’s OCR register, and wait for
OnCE commands. If this bit is not clear, then the processor simply executes two NOPs and continues
program execution.

Condition Codes Affected:

No condition codes are affected.

Instruction Fields:

Timing: 4 oscillator clock cycles

Memory: 1 program word

Operation Operands C W Comments

DEBUG 4 1 Generate a debug event

� Instruction Set Details A-69

DEC(W) Decrement Word DEC(W)
Operation: Assembler Syntax:
D2:D1-1 → D2:D1 (parallel move) DECW D (parallel move)

Description: Decrement a 16-bit destination or the two upper portions (A2:A1 or B2:B1) of a 36-bit accumulator.
If the destination is a 36-bit accumulator, leave the LSP (A0 or B0) unchanged.

Usage: This instruction is typically used when processing integer data.

Example:

DECW A X:(R2)+,X0 ; Decrement the 20 MSBs of A and then
; update R2,X0

Explanation of Example:
Prior to execution, the 36-bit A accumulator contains the value $0:0001:0033. Execution of the
DECW A instruction decrements by one the upper 20 bits of the A accumulator.

Condition Codes Affected:

SZ — Set according to the standard definition of the SZ bit (parallel move)
L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of the result is in use
U — Set if result is unnormalized
N — Set if bit 35 of the result is set except during saturation
Z — Set if the 20 MSBs of the result are all zeros
V — Set if overflow has occurred in result
C — Set if a carry (or borrow) occurs from bit 35 of the result

See Section 3.6.5, “16-Bit Destinations,” on page 3-35 for cases with X0, Y0, or Y1 as D.
See Section 3.6.2, “36-Bit Destinations—CC Bit Set,” on page 3-34 and Section 3.6.4, “20-Bit Desti-
nations—CC Bit Set,” on page 3-34 for the case when the CC bit is set.

Instruction Fields:

Operation Operands C W Comments

DEC(W) FDD 2 1 Decrement word

X:(SP-xx) 8 1 Decrement word in memory using appropriate
addressing mode.

X:aa represents a 6-bit absolute address. Refer to
Absolute Short Address (Direct Addressing):
<aa> on page 4-22.

X:aa 6 1

X:xxxx 8 2

A Before Execution

003300010

A2 A1 A0

A After Execution

003300000

A2 A1 A0

LF * * * * * I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A-70 DSP56800 Family Manual �

DEC(W) Decrement Word DEC(W)

Timing: Refer to the preceding Instruction Fields table

Memory: Refer to the preceding Instruction Fields table

Data ALU Operation Parallel Memory Read or Write

Operation Registers Memory Access Source or Destination

DEC(W) A
B

X:(Rn)+
X:(Rn)+N

X0
Y1
Y0
A1
B1
A
B

� Instruction Set Details A-71

DIV Divide Iteration DIV
Operation: Assembler Syntax:
(see following figure) DIV S,D (no parallel move)

Description: This instruction is a divide iteration used to calculate 1 bit of the result of a division. After the correct
number of iterations, this will divide the destination operand (D)—dividend or numerator—by the
source operand (S)—divisor or denominator—and store the result in the destination accumulator. The
32-bit dividend must be a positive value that is correctly sign extended to 36 bits and is stored in the
full 36-bit destination accumulator. The 16-bit divisor is a signed value and is stored in the source op-
erand. (Division of signed numbers is handled using the techniques in Section 8.4, “Division,” on page
8-13.) This instruction can be used for both integer and fractional division. Each DIV iteration calcu-
lates one quotient bit using a non-restoring division algorithm (see the description that follows). After
execution of the first DIV instruction, the destination operand holds both the partial remainder and the
formed quotient. The partial remainder occupies the high-order portion of the destination accumulator
D and is a signed fraction. The formed quotient occupies the low-order portion of the destination ac-
cumulator D (A0 or B0) and is a positive fraction. One bit of the formed quotient is shifted into the
LSB of the destination accumulator at the start of each DIV iteration. The formed quotient is the true
quotient if the true quotient is positive. If the true quotient is negative, the formed quotient must be
negated. For fractional division, valid results are obtained only when |D| < |S|. This condition ensures
that the magnitude of the quotient is less than one (is fractional) and precludes division by zero.

The DIV instruction calculates one quotient bit based on the divisor and the previous partial remainder.
To produce an N-bit quotient, the DIV instruction is executed N times, where N is the number of bits
of precision desired in the quotient (1 < N < 16). Thus, for a full precision (16-bit) quotient, 16 DIV
iterations are required. In general, executing the DIV instruction N times produces an N-bit quotient
and a 32-bit remainder, which has (32 - N) bits of precision and whose N MSBs are zeros. The partial
remainder is not a true remainder and must be corrected (due to the non-restoring nature of the division
algorithm) before it may be used. Therefore, once the divide is complete, it is necessary to reverse the
last DIV operation and restore the remainder to obtain the true remainder. The DIV instruction uses a
non-restoring division algorithm that consists of the following operations:

1) Compare the source and destination operand sign bits. An exclusive OR operation is performed on
bit 35 of the destination operand and bit 15 of the source operand.
2) Shift the partial remainder and the quotient. The 36-bit destination accumulator is shifted 1 bit to
the left. C is moved into the LSB (bit 0) of the accumulator.
3) Calculate the next quotient bit and the new partial remainder. The 16-bit source operand (signed di-
visor) is either added to or subtracted from the MSP of the destination accumulator (A1 or B1), and the
result is stored back into the MSP of the destination accumulator. If the result of the exclusive OR op-
eration described previously was one (that is, the sign bits were different), the source operand S is add-
ed to the accumulator. If the result of the exclusive OR operation was zero (that is, the sign bits were
the same), the source operand S is subtracted from the accumulator. Due to the automatic sign exten-
sion of the 16-bit signed divisor, the addition or subtraction operation correctly sets C with the next
quotient bit.

D1 + S D1

D0D2 D1

C;

D[35] ⊕ S[15] = 1If

Then

D1 - S D1

D0D2 D1

C;

Else

A-72 DSP56800 Family Manual �

DIV Divide Iteration DIV
Explanation of Example:

The DIV iteration instruction can be used in one of several different division algorithms, depending on
the needs of an application. Section 8.4, “Division,” on page 8-13 shows the correct usage of this in-
struction for fractional and integer division routines, discusses in detail issues related to division, and
provides several examples. The division routine is greatly simplified if both operands are positive, or
if it is not necessary to also calculate a remainder.

Condition Codes Affected:

L — Set if overflow bit V is set
V — Set if the MSB of the destination operand is changed as a result of the

instruction’s left shift operation
C — Set if bit 35 of the result is cleared

Instruction Fields:

Timing: 2 oscillator clock cycles

Memory: 1 program word

Operation Operands C W Comments

DIV DD,F 2 1 Divide iteration

LF * * * * * I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

� Instruction Set Details A-73

DO Start Hardware Do Loop DO
Operation upon Executing DO Instruction: Assembler Syntax:
HWS[0] → HWS[1]; #xx → LC DO #xx,expr
PC → HWS[0]; LF → NL; expr → LA
1→ LF

HWS[0] → HWS[1]; S → LC DO S,expr
PC → HWS[0]; LF → NL; expr → LA
1→ LF

Operation When Loop Completes (End-of-Loop Processing):
NL → LF
HWS[1] → HWS[0]; 0 → NL

Description: Begin a hardware DO loop that is to be repeated the number of times specified in the instruction’s
source operand, and whose range of execution is terminated by the destination operand (shown previ-
ously as “expr”). No overhead other than the execution of this DO instruction is required to set up this
loop. DO loops can receive their loop count as an immediate value or as a variable stored in an on-chip
register. When executing a DO loop, the instructions are actually fetched each time through the loop.
Therefore, a DO loop can be interrupted.

During the first instruction cycle, the DO instruction’s source operand is loaded into the 13-bit LC reg-
ister, and the second location in the HWS receives the contents of the first location. The LC register
stores the remaining number of times the DO loop will be executed and can be accessed from inside
the DO loop as a loop count variable subject to certain restrictions. The DO instruction allows all reg-
isters on the DSP core to specify the number of loop iterations, except for the following: M01, HWS,
OMR, and SR. If immediate short data is instead used to specify the loop count, the 6 LSBs of the LC
register are loaded from the instruction, and the upper 7 MSBs are cleared.

During the second instruction cycle, the current contents of the PC are pushed onto the HWS. The DO
instruction’s destination address (shown as “expr”) is then loaded into the LA register. This 16-bit op-
erand is located in the instruction’s 16-bit absolute address extension word (as shown in the opcode
section). The value in the PC pushed onto the HWS is the address of the first instruction following the
DO instruction (that is, the first actual instruction in the DO loop). At the bottom of the loop, when it
is necessary to return to the top for another loop pass, this value is read (that is, copied but not pulled)
from the top of the HWS and loaded into the PC.

During the third instruction cycle, the LF is set. The PC is repeatedly compared with LA to determine
if the last instruction in the loop has been fetched. If LA equals PC, the last instruction in the loop has
been fetched and the LC is tested. If LC is not equal to one, it is decremented by one, and SSH is loaded
into the PC to fetch the first instruction in the loop again. If LC equals one, the end-of-loop processing
begins.

During the end-of-loop processing, the NL bit is written into the LF, and the NL bit is cleared. The
contents of the second HWS location are written into the first HWS location. Instruction fetches now
continue at the address of the instruction that follows the last instruction in the DO loop.

DO loops can also be nested as shown in Section 8.6, “Loops,” on page 8-20. When DO loops are nest-
ed, the end-of-loop addresses must also be nested and are not allowed to be equal. The assembler gen-
erates an error message when DO loops are improperly nested.

A-74 DSP56800 Family Manual �

DO Start Hardware Do Loop DO
Note: The assembler calculates the end-of-loop address to be loaded into LA by evaluating the end-of-loop

“expr” and subtracting one. This is done to accommodate the case in which the last word in the DO
loop is a two-word instruction. Thus, the end-of-loop expression “expr” in the source code must rep-
resent the address of the instruction after the last instruction in the loop.

Note: The LF is cleared by a hardware reset.

Note: Due to pipelining, if an address register (R0–R3, SP, or M01) is changed using a move-type instruction
(LEA, Tcc, MOVE, MOVEC, MOVEP, or parallel move), the new contents of the destination address
register will not be available for use during the following instruction (that is, there is a single instruc-
tion cycle pipeline delay). This restriction also applies to the situation in which the last instruction in
a DO loop changes an address register and the first instruction at the top of the DO loop uses that same
address register. The top instruction becomes the following instruction due to the loop construct.

Note: If the A or B accumulator is specified as a source operand, and the data from the accumulator indicates
that extension is used, the value to be loaded into the LC register will be limited to a 16-bit maximum
positive or negative saturation constant. If positive saturation occurs, the limiter places $7FFF onto the
bus, and the lower 13 bits of this value are all ones. The thirteen ones are loaded into the LC register
as the maximum unsigned positive loop count allows. If negative saturation occurs, the limiter places
$8000 onto the bus, and the lower 13 bits of this value are all zeros. The thirteen zeros are loaded into
the LC register, specifying a loop count of zero. The A and B accumulators remain unchanged.

Note: If LC is zero upon entering the DO loop, the loop is executed 213 times. To avoid this, use the software
technique outlined in Section 8.6, “Loops,” on page 8-20.

Condition Codes Affected:

LF — Set when a DO loop is in progress
L — Set if data limiting occurred

LF * * * * * I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

� Instruction Set Details A-75

DO Start Hardware Do Loop DO
Restrictions:

The end-of-loop comparison previously described occurs at instruction fetch time. That is, LA is com-
pared with PC when the instruction at the LA-2 is being executed. Therefore, instructions that access
the program controller registers or change program flow cannot be used in locations LA-2, LA-1, or
LA.

Proper DO loop operation is not guaranteed if an instruction starting at the LA-2, LA-1, or LA specifies
one of the program controller registers SR, SP, LA, LC, or (implicitly) PC as a destination register.
Similarly, the HWS register may not be specified as a source or destination register in an instruction
starting at the LA-2, LA-1, or LA. Additionally, the HWS register cannot be specified as a source reg-
ister in the DO instruction itself, and LA cannot be used as a target for jumps to subroutine (that is, JSR
to LA). A DO instruction cannot be repeated using the REP instruction.

The following instructions cannot begin at the indicated position(s) near the end of a DO loop:

At the LA-2, LA-1, and LA:
DO
MOVEC from HWS
MOVEC to LA, LC, SR, SP, or HWS
Any bit-field instruction on the Status Register (SR)
Two-word instructions that read LC, SP, or HWS

At the LA-1:
ENDDO
Single-word instructions that read LC, SP, or HWS

At the LA:
Any two-word instruction (this restriction applies to the situation in which the DSP
simulator’s single-line assembler is used to change the last instruction in a DO loop from
a one-word instruction to a two-word instruction)

Bcc, Jcc BRSET, BRCLR
BRA, JMP REP
JSR RTI, RTS
WAIT, STOP

Similarly, since the DO instruction accesses the program controller registers, the DO instruction must
not be immediately preceded by any of the following instructions:

Immediately Before DO:
MOVEC to HWS
MOVEC from HWS

Other Restrictions:
DO HWS,xxxx
JSR to (LA) whenever the LF is set
A DO instruction cannot be repeated using the REP instruction

A-76 DSP56800 Family Manual �

DO Start Hardware Do Loop DO
Example:

DO #cnt1, END ; begin DO loop
MOVE X:(R0),A
REP #cnt2 ; nested REP loop
ASL A ; repeat this instruction
MOVE A,X:(R0)+ ; last instruction in DO loop

END : ; (outside DO loop)

Explanation of Example:
This example illustrates a DO loop with a REP loop nested within the DO loop. In this example, “cnt1”
values are fetched from memory; each is left shifted by “cnt2” counts and is stored back in memory.
The DO loop executes “cnt1” times while the ASL instruction inside the REP loop executes (“cnt1” *
“cnt2”) times. The END label is located at the first instruction past the end of the DO loop, as men-
tioned previously.

Instruction Fields:

Timing: 6 oscillator clock cycles

Memory: 2 program words

Operation Operands C W Comments

DO #xx,xxxx 6 2 Load LC register with unsigned value and start
hardware DO loop with 6-bit immediate loop count.
The last address is 16-bit absolute. #xx = 0 not
allowed by assembler.

DDDDD,xxxx 6 2 Load LC register with unsigned value. If LC is not
equal to zero, start hardware DO loop with 16-bit
loop count in register. Otherwise, skip body of loop
(adds three additional cycles). The last address is
16-bit absolute.

Any register allowed except: SP, M01, SR, OMR,
and HWS.

� Instruction Set Details A-77

ENDDO End Current DO Loop ENDDO
Operation: Assembler Syntax:
NL → LF ENDDO
HWS[1] → HWS[0]; 0 → NL

Description: Terminate the current hardware DO loop immediately. Normally, a hardware DO loop is terminated
when the last instruction of the loop is executed and the current LC equals one, but this instruction can
terminate a loop before normal completion. If the value of the current DO LC is needed, it must be read
before the execution of the ENDDO instruction. Initially, the LF is restored from the NL bit, and the
top-of-loop address is purged from the HWS. The contents of the second HWS location are written into
the first HWS location, and the NL bit is cleared.

Example:

DO Y0,ENDLP ; execute loop ending at ENDLP (Y0) times
:

MOVEC LC,A ; get current value of loop counter (LC)
CMP Y1,A ; compare loop counter with value in Y1
JNE CONTINU ; go to ONWARD if LC not equal to Y1
ENDDO ; LC equal to Y1, restore all DO registers
JMP ENDLP ; go to NEXT
CONTINU : ; LC not equal to Y1, continue DO

; loop
: ; (last instruction in DO loop)

ENDLP MOVE #$1234,X0 ; (first instruction AFTER DO loop)

Explanation of Example:
This example illustrates the use of the ENDDO instruction to terminate the current DO loop. The value
of the LC is compared with the value in the Y1 register to determine if execution of the DO loop should
continue. The ENDDO instruction updates certain program controller registers but does not automat-
ically jump past the end of the DO loop. Thus, if this action is desired, a JMP/BRA instruction (that is,
JMP NEXT as shown previously) must be included after the ENDDO instruction to transfer program
control to the first instruction past the end of the DO loop.

Note: The ENDDO instruction updates the program controller registers appropriately but does not automat-
ically jump past the end of the loop. If desired, this must be done explicitly by the programmer.

Restrictions:
Due to pipelining and the fact that the ENDDO instruction accesses the program controller registers,
the ENDDO instruction must not be immediately preceded by any of the following instructions:

MOVEC to SR or HWS
MOVEC from HWS
Any bit-field instruction on the SR

Also, the ENDDO instruction cannot be the next-to-last instruction in a DO loop (at the LA-1).

A-78 DSP56800 Family Manual �

ENDDO End Current DO Loop ENDDO
Condition Codes Affected:

The condition codes are not affected by this instruction.

Instruction Fields:

Timing: 2 oscillator clock cycles

Memory: 1 program word

Operation Operands C W Comments

ENDDO 2 1 Remove one value from the hardware stack and
update the NL and LF bits appropriately
Note: Does not branch to the end of the loop

� Instruction Set Details A-79

EOR Logical Exclusive OR EOR
Operation: Assembler Syntax:
S ⊕ D → D (no parallel move) EOR S,D (no parallel move)
S ⊕ D[31:16] → D[31:16] (no parallel move) EOR S,D (no parallel move)

where ⊕ denotes the logical exclusive OR operator

Description: Logically exclusive OR the source operand (S) with the destination operand (D) and store the result in
the destination. This instruction is a 16-bit operation. If the destination is a 36-bit accumulator, the
source is exclusive ORed with bits 31–16 of the accumulator. The remaining bits of the destination
accumulator are not affected.

Usage: This instruction is used for the logical exclusive OR of two registers. If it is desired to exclusive OR a
16-bit immediate value with a register or memory location, then the EORC instruction is appropriate.

Example:

EOR Y1,B ; Exclusive OR Y1 with B1

Explanation of Example:
Prior to execution, the 16-bit Y1 register contains the value $FF00, and the 36-bit B accumulator con-
tains the value $5:5555:6789. The EOR Y1,B instruction logically exclusive ORs the 16-bit value in
the Y1 register with bits 31–16 of the B accumulator (B1) and stores the 36-bit result in the B accumu-
lator. The lower word of the accumulator (B0) and the extension byte (B2) are not affected by the op-
eration.

Condition Codes Affected:

N — Set if bit 31 of A or B result is set
Z — Set if bits 31–16 of A or B result are zero
V — Always cleared

Before Execution

678955555

B2 B1 B0

FF00Y1

After Execution

6789AA555

B2 B1 B0

FF00Y1

LF * * * * * I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A-80 DSP56800 Family Manual �

EOR Logical Exclusive OR EOR
Instruction Fields:

Timing: 2 oscillator clock cycles

Memory: 1 program word

Operation Operands C W Comments

EOR DD,FDD 2 1 16-bit exclusive OR (XOR)

F1,DD

� Instruction Set Details A-81

EORC Logical Exclusive OR Immediate EORC
Operation: Assembler Syntax:
#xxxx ⊕ X:<ea> → X:<ea> EORC #iiii,X:<ea>
#xxxx ⊕ D → D EORC #iiii,D

where ⊕ denotes the logical exclusive OR operator

Implementation Note:
This instruction is an alias to the BFCHG instruction, and assembles as BFCHG with the 16-bit imme-
diate value as the bit mask. This instruction will disassemble as a BFCHG instruction.

Description: Logically exclusive OR a 16-bit immediate data value with the destination operand (D) and store the
results back into the destination. C is also modified as described below. This instruction performs a
read-modify-write operation on the destination and requires two destination accesses.

Example:

EORC #$0FF0,X:<<$FFE0; Exclusive OR with immediate data

Explanation of Example:
Prior to execution, the 16-bit X memory location X:$FFE0 contains the value $0010. Execution of the
instruction tests the state of the bits 4, 8, and 9 in X:$FFE0; does not set C (because all of the CCR bits
were not set); and then complements the bits.

Condition Codes Affected:

For destination operand SR:
? — Changed if specified in the field

For other destination operands:
C — Set if all bits specified by the mask are set

Before Execution

5555X:$FFE0

0000SR

After Execution

5AA5X:$FFE0

0000SR

LF * * * * * I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A-82 DSP56800 Family Manual �

EORC Logical Exclusive OR Immediate EORC
Instruction Fields:

Timing: Refer to the preceding Instruction Fields table

Memory: Refer to the preceding Instruction Fields table

Operation Operands C W Comments

EORC #xxxx,DDDDD 4 2 Implemented using the BFCHG instruction.

All registers in DDDDD are permitted except HWS.

X:aa represents a 6-bit absolute address. Refer to
Absolute Short Address (Direct Addressing):
<aa> on page 4-22.

X:pp represents a 6-bit absolute I/O address. Refer
to I/O Short Address (Direct Addressing): <pp>
on page 4-23.

#xxxx,X:(R2+xx) 6 2

#xxxx,X:(SP-xx) 6 2

#xxxx,X:aa 4 2

#xxxx,X:pp 4 2

#xxxx,X:xxxx 6 3

� Instruction Set Details A-83

ILLEGAL Illegal Instruction Interrupt ILLEGAL
Operation: Assembler Syntax:
Begin illegal instruction exception routine ILLEGAL (no parallel move)

Description: Normal instruction execution is suspended and illegal instruction exception processing is initiated. The
interrupt priority level bits (I1 and I0) are set to 11 in the status register. The purpose of the illegal in-
terrupt is to force the DSP into an illegal instruction exception for test purposes. Executing an ILLE-
GAL instruction is a fatal error; the exception routine should indicate this condition and cause the sys-
tem to be restarted.

If the ILLEGAL instruction is in a DO loop at the LA and the instruction at the LA-1 is being inter-
rupted, then LC will be decremented twice due to the same mechanism that causes LC to be decrement-
ed twice if JSR, REP,… are located at the LA.

Since REP is uninterruptible, repeating an ILLEGAL instruction results in the interrupt not being taken
until after completion of the REP. After servicing the interrupt, program control will return to the ad-
dress of the second word following the ILLEGAL instruction. Of course, the ILLEGAL interrupt ser-
vice routine should abort further processing, and the processor should be reinitialized.

Usage: The ILLEGAL instruction provides a means for testing the interrupt service routine executed upon dis-
covering an illegal instruction. This allows a user to verify that the interrupt service routine can cor-
rectly recover from an illegal instruction and restart the application. The ILLEGAL instruction is not
used in normal programming.

Example:

ILLEGAL

Explanation of Example: See the previous description.

Condition Codes Affected:
The condition codes are not affected by this instruction.

Instruction Fields:

Timing: 4 oscillator clock cycles

Memory: 1 program word

Operation Operands C W Comments

ILLEGAL 4 1 Execute the illegal instruction exception. This
instruction is made available so that code may be
written to test and verify interrupt handlers for illegal
instructions.

A-84 DSP56800 Family Manual �

IMPY(16) Integer Multiply IMPY(16)
Operation: Assembler Syntax:
(S1*S2) → D1 IMPY16 S1,S2,D (no parallel move)
sign-extend D2; leave D0 unchanged

Description: Perform an integer multiplication on the two 16-bit signed integer source operands (S1 and S2) and
store the lowest 16 bits of the integer product in the upper word (D1) of the destination accumulator
(D), leaving the lower word (D0) unchanged and sign extending the extension register (D2).

Usage: This instruction is useful in general computing when it is necessary to multiply two integers and the
nature of the computation can guarantee that the result fits in a 16-bit destination. In this case, it is bet-
ter to place the result in the MSP (A1 or B1) of an accumulator, because more instructions have access
to this portion than to the other portions of the accumulator.

Note: No overflow control or rounding is performed during integer multiply instructions. The result is always
a 16-bit signed integer result that is sign extended to 24 bits.

Example:

IMPY Y0,X0,A ; form product

Explanation of Example:
Prior to execution, the data ALU registers X0 and Y0 contain, respectively, two 16-bit signed integer
values ($0003 and $0004). The contents of the destination accumulator are not important prior to ex-
ecution. Execution of the IMPY X0,Y0,A instruction integer multiplies X0 and Y0 and stores the re-
sult ($000C) in A1. A0 remains unchanged, and A2 is sign extended.

Before Execution

789AAAAAF

A2 A1 A0

0003X0

0004Y0

After Execution

789A000C0

A2 A1 A0

0003X0

0004Y0

� Instruction Set Details A-85

IMPY(16) Integer Multiply IMPY(16)
Condition Codes Affected:

E — Not defined
U — Not defined
N — Set if bit 35 of the result is set except during saturation
Z — Set if the 20 MSBs of the result equal zero
V — Set if overflow occurs in the 16-bit result

Instruction Fields:

Timing: 2 oscillator clock cycles

Memory: 1 program word

Operation Operands C W Comments

IMPY(16) Y1,X0,FDD
Y0,X0,FDD
Y1,Y0,FDD
Y0,Y0,FDD
A1,Y0,FDD
B1,Y1,FDD

2 1 Integer 16x16 multiply with 16-bit result.

When the destination register is F, the F0 portion is
unchanged by the instruction.

Note: Assembler also accepts first two operands
when they are specified in opposite order.

LF * * * * * I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A-86 DSP56800 Family Manual �

INC(W) Increment Word INC(W)
Operation: Assembler Syntax:
D2:D1+1 → D2:D1 (parallel move) INCW D (parallel move)

Description: Increment a 16-bit destination (D) or the two upper portions (A2:A1 or B2:B1) of a 36-bit accumulator.
If the destination is a 36-bit accumulator, leave the LSP (A0 or B0) unchanged.

Usage: This instruction is typically used when processing integer data.

Example:

INCW A X:(R0),X0; Increment the 20 MSBs of A; update X0

Explanation of Example:
Prior to execution, the 36-bit A accumulator contains the value $0:0001:0033. Execution of the
INCW A instruction increments by one the upper 20 bits of the A accumulator.

Condition Codes Affected:

SZ — Set according to the standard definition of the SZ bit (parallel move)
L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of the result is in use
U — Set if result is unnormalized
N — Set if bit 35 of the result is set except during saturation
Z — Set if the 20 MSBs of the result are all zeros
V — Set if overflow has occurred in result
C — Set if a carry (or borrow) occurs from bit 35 of the result

See Section 3.6.5, “16-Bit Destinations,” on page 3-35 for cases with X0, Y0, or Y1 as D.
See Section 3.6.2, “36-Bit Destinations—CC Bit Set,” on page 3-34 and Section 3.6.4, “20-Bit Desti-
nations—CC Bit Set,” on page 3-34 for the case when the CC bit is set.

A Before Execution

003300010

A2 A1 A0

A After Execution

003300020

A2 A1 A0

LF * * * * * I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

� Instruction Set Details A-87

INC(W) Increment Word INC(W)
Instruction Fields:

Timing: Refer to the preceding Instruction Fields table

Memory: Refer to the preceding Instruction Fields table

Operation Operands C W Comments

INC(W) FDD 2 1 Increment word

X:(SP-xx) 8 1 Increment word in memory using appropriate
addressing mode.

X:aa represents a 6-bit absolute address. Refer to
Absolute Short Address (Direct Addressing):
<aa> on page 4-22.

X:aa 6 1

X:xxxx 8 2

Data ALU Operation Parallel Memory Read or Write

Operation Registers Memory Access Source or Destination

INC(W) A
B

X:(Rn)+
X:(Rn)+N

X0
Y1
Y0
A1
B1
A
B

A-88 DSP56800 Family Manual �

Jcc Jump Conditionally Jcc
Operation: Assembler Syntax:
If cc, then label → PC Jcc xxxx
else PC+1 → PC

Description: If the specified condition is true, program execution continues at the effective address specified in the
instruction. If the specified condition is false, the PC is incremented and program execution continues
sequentially. The effective address is a 16-bit absolute address. The Bcc instruction, which is more
compact, operates almost identically, and can be used for very short jumps.

The term “cc” specifies the following:

Example:

JCS LABEL ; jump to label if carry bit is set
INCW A
INCW A

LABEL
ADD B,A

Explanation of Example:
In this example, if C is one when executing the JCS instruction, program execution skips the two
INCW instructions and continues with the ADD instruction. If the specified condition is not true, no
jump is taken, the program counter is incremented by one, and program execution continues with the
first INCW instruction. The Jcc instruction uses a 16-bit absolute address for this example.

Restrictions:
A Jcc instruction used within a DO loop cannot begin at the LA or LA-1 within that DO loop.
A Jcc instruction cannot be repeated using the REP instruction.

“cc” Mnemonic Condition

CC (HS*)— carry clear (higher or same) C=0

CS (LO*)— carry set (lower) C=1

EQ — equal Z=1

GE — greater than or equal N ⊕ V=0

GT — greater than Z+(N ⊕ V)=0

LE — less than or equal Z+(N ⊕ V)=1

LT — less than N ⊕ V=1

NE — not equal Z=0

NN — not normalized Z+(U • E)=0

NR — normalized Z+(U • E)=1

* Only available when CC bit set in the OMR

X denotes the logical complement of X
+ denotes the logical OR operator
• denotes the logical AND operator
Ý denotes the logical exclusive OR operator

� Instruction Set Details A-89

Jcc Jump Conditionally Jcc
Condition Codes Affected:

The condition codes are tested but not modified by this instruction.

Instruction Fields:

Timing: 4 + jx oscillator clock cycles

Memory: 2 program words

Operation Operands C W Comments

Jcc xxxx 6/4 2 16-bit absolute address

A-90 DSP56800 Family Manual �

JMP Jump JMP
Operation: Assembler Syntax:
label → PC JMP xxxx

Description: Jump to program memory at the location given by the instruction’s effective address. The effective ad-
dress is a 16-bit absolute address.

Example:

JMP LABEL

Explanation of Example:
In this example, program execution is transferred to the address represented by label. The DSP core
supports up to 16-bit program addresses.

Condition Codes Affected:
The condition codes are not affected by this instruction.

Restrictions:
A JMP instruction used within a DO loop cannot begin at the LA within that DO loop.
A JMP instruction cannot be repeated using the REP instruction.

Instruction Fields:

Timing: 6 + jx oscillator clock cycle

Memory: 2 program words

Operation Operands C W Comments

JMP xxxx 6 2 16-bit absolute address

� Instruction Set Details A-91

JSR Jump to Subroutine JSR
Operation: Assembler Syntax:
SP+1 → SP JSR xxxx
PC → X:(SP)
SP+1 → SP
SR → X:(SP)
xxxx → PC

Description: Jump to subroutine in program memory at the location given by the instruction’s effective address. The
effective address is a 16-bit absolute address.

Example:

JSR LABEL ; jump to absolute address indicated by LABEL

Explanation of Example:
In this example, program execution is transferred to the subroutine at the address represented by LA-
BEL. The DSP core supports up to 16-bit program addresses.

Condition Codes Affected:
The condition codes are not affected by this instruction.

Restrictions:
A JSR instruction used within a DO loop cannot begin at the LA within that DO loop.
A JSR instruction used within a DO loop cannot specify the LA as its target.
A JSR instruction cannot be repeated using the REP instruction.

Instruction Fields:

Timing: 8 + jx oscillator clock cycles

Memory: 2 program word

Operation Operands C W Comments

JSR xxxx 8 2 Push return address and status register and jump to
16-bit target address

A-92 DSP56800 Family Manual �

LEA Load Effective Address LEA
Operation: Assembler Syntax:
ea → D (no parallel move) LEA ea

Description: The address calculation specified is executed and the resulting effective address (ea) is stored in the
destination register (D). The source address register and the update mode used to compute the updated
address are specified by the effective address. The source address register specified in the effective ad-
dress is not updated. All update addressing modes may be used. The new register contents are available
for use by the immediately following instruction.

Example:

LEA (R0)+N ; update R0 using (R0)+N

Explanation of Example:
Prior to execution, the 16-bit address register R0 contains the value $8001, the 16-bit address register
N contains the value $0C01, and the 16-bit modulo register M01 contains the value $1000. Execution
of the LEA (R0)+N instruction adds the contents of the R0 register to the contents of the N register
and stores the resulting updated address in the R0 address register. The addition is performed using
modulo arithmetic since it is done with the R0 register and M01 is not equal to $FFFF. No wraparound
occurs during the addition because the result falls within the boundaries of the modulo buffer.

Condition Codes Affected:
The condition codes are not affected by this instruction.

Instruction Fields:

Timing: 2+ea oscillator clock cycles

Memory: 1+ea program words

Operation Operands C W Comments

LEA (Rn)+ 2 1 Increment the Rn pointer register

(Rn)- 2 1 Decrement the Rn pointer register

(Rn)+N 2 1 Add first operand to the second and store the result
in the second operand

(R2+xx) 2 1 Add a 6-bit unsigned immediate value to R2 and
store in the R2 Pointer

(SP-xx) 2 1 Subtract a 6-bit unsigned immediate value from SP
and store in the SP register

(Rn+xxxx) 4 2 Add a 16-bit signed immediate value to the specified
source register.

Before Execution

8001R0

0C01N

After Execution

8C02R0

0C01N

1000M01 1000M01

� Instruction Set Details A-93

LSL Logical Shift Left LSL
Operation: Assembler Syntax:
(see following figure) LSL D

Description: Logically shift 16 bits of the destination operand (D) 1 bit to the left and store the result in the desti-
nation. If the destination is a 36-bit accumulator, the result is stored in the MSP of the accumulator (A1
or B1), and the remaining portions of the accumulator (A2, B2, A0, B0) are not modified. The MSB
of the destination (bit 31 if the destination is a 36-bit accumulator) prior to the execution of the instruc-
tion is shifted into C, and zero is shifted into the LSB of D1 (bit 16 if the destination is a 36-bit accu-
mulator).

Example:

LSL B ; multiply B1 by 2

Explanation of Example:
Prior to execution, the 36-bit B accumulator contains the value $6:8000:00AA. Execution of the
LSL B instruction shifts the 16-bit value in the B1 register 1 bit to the left and stores the result back
in the B1 register. C is set by the operation because bit 31 of A1 was set prior to the execution of the
instruction. The Z bit of CCR (bit 2) is also set because the result in A1 is zero.

C (no parallel move)

D0D2 D1

0UnchangedUnch.

Before Execution

00AA80006

B2 B1 B0

0300SR

After Execution

00AA00006

B2 B1 B0

0305SR

A-94 DSP56800 Family Manual �

LSL Logical Shift Left LSL
Condition Codes Affected:

L — Set if overflow has occurred in result
N — Set if bit 31 of A or B result is set
Z — Set if A1 or B1 result equals zero
V — Always cleared
C — Set if bit 31 of A or B was set prior to the execution of the instruction

Instruction Fields:

Timing: 2 oscillator clock cycles

Memory: 1 program word

Operation Operands C W Comments

LSL FDD 2 1 1-bit logical shift left of word

LF * * * * * I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

� Instruction Set Details A-95

LSLL Multi-Bit Logical Left Shift LSLL
Operation: Assembler Syntax:
S1 << S2 → D (no parallel move) LSLL S1,S2,D (no parallel move)

Description: Logically shift the first 16-bit source operand (S1) to the left by the value contained in the lowest 4 bits
of the second source operand (S2) and store the result in the destination register (D). The destination
must always be a 16-bit register.

Implementation Note:
This instruction is actually implemented by the assembler using the ASLL instruction. It will disas-
semble as ASLL.

Example:

LSLL Y1,X0,Y1 ; left shift of 16-bit Y1 by X0

Explanation of Example:
Prior to execution, the Y1 register contains the value to be shifted ($AAAA) and the X0 register con-
tains the amount to shift by ($0004). The contents of the destination register are not important prior to
execution because they have no effect on the calculated value. The LSLL instruction logically shifts
the value $AAAA four bits to the left and places the result in the destination register Y1.

Condition Codes Affected:

N — Set if bit 15 of result is set except during saturation
Z — Set if the result in D is zero

Before Execution

AAAAY1

0004X0

After Execution

AAA0Y1

0004X0

LF * * * * * I1 I0 S L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A-96 DSP56800 Family Manual �

LSLL Multi-Bit Logical Left Shift LSLL
Instruction Fields:

Timing: 2 oscillator clock cycles

Memory: 1 program word

Operation Operands C W Comments

LSLL Y1,X0,FDD
Y0,X0,FDD
Y1,Y0,FDD
Y0,Y0,FDD
A1,Y0,FDD
B1,Y1,FDD

2 1 Logical shift left of the first operand by value speci-
fied in four LSBs of the second operand; places
result in FDD

Implemented using ASLL instruction

� Instruction Set Details A-97

LSR Logical Shift Right LSR
Operation: Assembler Syntax:
(see following figure) LSR D

Description: Logically shift 16 bits of the destination operand (D) 1 bit to the right and store the result in the desti-
nation. If the destination is a 36-bit accumulator, the result is stored in the MSP of the accumulator (A1
or B1), and the remaining portions of the accumulator (A2, B2, A0, B0) are not modified.The LSB of
the destination (bit 16 if the destination is a 36-bit accumulator) prior to the execution of the instruction
is shifted into C, and zero is shifted into the MSB of D1 (bit 31if the destination is a 36-bit accumula-
tor).

Example:

LSR B ; divide B1 by 2 (B1 considered unsigned)

Explanation of Example:
Prior to execution, the 36-bit B accumulator contains the value $F:0001:00AA. Execution of the
LSR B instruction shifts the 16-bit value in the B1 register 1 bit to the right and stores the result back
in the B1 register. C is set by the operation because bit 0 of B1 was set prior to the execution of the
instruction. The Z bit of CCR (bit 2) is also set because the result in B1 is zero.

0

(no parallel move)

D0D2 D1

CUnchangedUnch.

Before Execution

00AA0001F

B2 B1 B0

0300SR

After Execution

00AA0000F

B2 B1 B0

0305SR

A-98 DSP56800 Family Manual �

LSR Logical Shift Right LSR
Condition Codes Affected:

L — Set if data limiting has occurred during parallel move
N — Always cleared
Z — Set if A1 or B1 result equals zero
V — Always cleared
C — Set if bit 16 of A or B was set prior to the execution of the instruction

Instruction Fields:

Timing: 2 oscillator clock cycles

Memory: 1 program word

Operation Operands C W Comments

LSR FDD 2 1 1-bit logical shift right of word

LF * * * * * I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

� Instruction Set Details A-99

LSRAC Logical Right Shift with Accumulate LSRAC
Operation: Assembler Syntax:
S1 >> S2 + D →D (no parallel move) LSRAC S1,S2,D (no parallel move)

Description: Logically shift the first 16-bit source operand (S1) to the right by the value contained in the lowest 4
bits of the second source operand (S2), and accumulate the result with the value in the destination reg-
ister (D).

Usage: This instruction is used for multi-precision logical right shifts.

Example:

LSRAC Y1,X0,A ; 16-bit add

Explanation of Example:
Prior to execution, the Y1 register contains the value to be shifted ($C003), the X0 register contains
the amount by which to shift ($0004), and the destination accumulator contains $0:000:0099. The
LSRAC instruction logically shifts the value $C003 four bits to the right and accumulates this result
with the value already in the destination register A. Since the destination is an accumulator, the exten-
sion word (A2) is filled with sign extension.

Condition Codes Affected:

N — Set if bit 35 of A or B result is set except during saturation
Z — Set if A or B result equals zero

See Section 3.6.2, “36-Bit Destinations—CC Bit Set,” on page 3-34 and Section 3.6.4, “20-Bit Desti-
nations—CC Bit Set,” on page 3-34 for the case when the CC bit is set.

Before Execution

009900000

A2 A1 A0

C003Y1

0004X0

After Execution

30990C000

A2 A1 A0

C003Y1

0004X0

LF * * * * * I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A-100 DSP56800 Family Manual �

LSRAC Logical Right Shift with Accumulate LSRAC
Instruction Fields:

Timing: 2 oscillator clock cycles

Memory: 1 program word

Operation Operands C W Comments

LSRAC Y1,X0,F
Y0,X0,F
Y1,Y0,F
Y0,Y0,F
A1,Y0,F
B1,Y1,F

2 1 Logical word shifting with accumulation

� Instruction Set Details A-101

LSRR Multi-Bit Logical Right Shift LSRR
Operation: Assembler Syntax:
S1 >> S2 → D (no parallel move) LSRR S1,S2,D (no parallel move)

Description: Logically shift the first 16-bit source operand (S1) to the right by the value contained in the lowest 4
bits of the second source operand (S2), and store the result in the destination register (D). If the desti-
nation is a 36-bit accumulator, correctly zero extend into the extension register (A2 or B2) and place
zero in the LSP (A0 or B0).

Example:

LSRR Y1,X0,A ; right shift of 16-bit Y1 by X0

Explanation of Example:
Prior to execution, the Y1 register contains the value to be shifted ($AAAA), and the X0 register con-
tains the amount by which to shift ($0004). The contents of the destination register are not important
prior to execution because they have no effect on the calculated value. The LSRR instruction logically
shifts the value $AAAA four bits to the right and places the result in the destination register (A). Since
the destination is an accumulator, the extension word (A2) is filled with sign extension, and the LSP
(A0) is set to zero.

Condition Codes Affected:

N — Set if bit 35 of A or B result is set except during saturation
Z — Set if A or B result equals zero

Before Execution

345634560

A2 A1 A0

AAAAY1

0004X0

After Execution

00000AAA0

A2 A1 A0

AAAAY1

0004X0

LF * * * * * I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A-102 DSP56800 Family Manual �

LSRR Multi-Bit Logical Right Shift LSRR
Instruction Fields:

Timing: 2 oscillator clock cycles

Memory: 1 program word

Operation Operands C W Comments

LSRR Y1,X0,FDD
Y0,X0,FDD
Y1,Y0,FDD
Y0,Y0,FDD
A1,Y0,FDD
B1,Y1,FDD

2 1 Logical shift right of the first operand by value speci-
fied in four LSBs of the second operand; places
result in FDD (when result is to an accumulator F,
zero extends into F2)

� Instruction Set Details A-103

MAC Multiply-Accumulate MAC
Operation: Assembler Syntax:
D + S1 * S2 → D (no parallel move) MAC (+)S1,S2,D (no parallel move)
D + S1 * S2 → D (one parallel move) MAC S1,S2,D (one parallel move)
D + S1 * S2 → D (two parallel reads) MAC S1,S2,D (two parallel reads)

Description: Multiply the two signed 16-bit source operands (S1 and S2) and add or subtract the product to or from
the specified 36-bit destination accumulator (D). The “-” sign option is used to negate the specified
product prior to accumulation. This option is not available when a single parallel move is performed
or when two parallel read operations are performed.

Usage: This instruction is used for multiplication and accumulation of fractional data or integer data when a
full 32-bit product is required (see Section 3.3.5.2, “Integer Multiplication,” on page 3-20). When the
destination is a 16-bit register, this instruction is useful only for fractional data.

Example:

MAC X0,Y1,A X:(R1)+,Y1 X:(R3)+,X0

Explanation of Example:
Prior to execution, the 16-bit X0 register contains the value $4000, the 16-bit Y1 register contains the
value $0AA0, and the 36-bit A accumulator contains the value $0:0003:0003. Execution of the
MAC X0,Y1,A instruction multiplies the 16-bit signed value in the X0 register by the 16-bit signed
value in Y1, adds the resulting 32-bit product to the 36-bit A accumulator, and stores the result
($0:0553:0003) into the A accumulator. In parallel, X0 and Y1 are updated with new values fetched
from data memory, and the two address registers (R1 and R3) are post-incremented by one.

Condition Codes Affected:

SZ — Set according to the standard definition of the SZ bit (parallel move)
L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of A or B result is in use
U — Set according to the standard definition of the U bit
N — Set if bit 35 of A or B result is set except during saturation
Z — Set if A or B result equals zero
V — Set if overflow has occurred in A or B result

See Section 3.6.5, “16-Bit Destinations,” on page 3-35 for cases with X0, Y0, or Y1 as D.
See Section 3.6.2, “36-Bit Destinations—CC Bit Set,” on page 3-34 and Section 3.6.4, “20-Bit Desti-
nations—CC Bit Set,” on page 3-34 for the case when the CC bit is set.

Before Execution

000300030

A2 A1 A0

4000X0

0AA0Y1

After Execution

000305530

A2 A1 A0

4000X0

0AA0Y1

LF * * * * * I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A-104 DSP56800 Family Manual �

MAC Multiply-Accumulate MAC
Instruction Fields:

Timing: 2 + mv oscillator clock cycles for MAC instructions with a parallel move
Refer to previous table for MAC instructions without a parallel move

Memory: 1 program word for MAC instructions with a parallel move
Refer to previous table for MAC instructions without a parallel move

Operation Operands C W Comments

MAC (±)Y1,X0,FDD
(±)Y0,X0,FDD
(±)Y1,Y0,FDD
(±)Y0,Y0,FDD
(±)A1,Y0,FDD
(±)B1,Y1,FDD

2 1 Fractional multiply accumulate; multiplication result
optionally negated before accumulation

Data ALU Operation Parallel Memory Read or Write

Operation Registers Memory Access Source or Destination

MAC Y1,B1,F
Y0,Y0,F
Y0,A1,F
X0,Y0,F
X0,Y1,F
Y0,Y1,F

(F = A or B)

X:(Rn)+
X:(Rn)+N

X0
Y1
Y0
A
B

A1
B1

Data ALU
Operation

First and Second Memory
Reads

Destinations for Memory
Reads

Operation Registers Read1 Read2 Destination1 Destination2

MAC Y0,X0,F
Y1,X0,F
Y1,Y0,F

(F = A or B)

X:(R0)+
X:(R0)+N

X:(R1)+
X:(R1)+N

X:(R3)+
X:(R3)-

Y0 X0

Y1 X0

Valid
destinations
for Read1

Valid
destinations
for Read2

� Instruction Set Details A-105

MACR Multiply-Accumulate and Round MACR
Operation: Assembler Syntax:
D + S1 * S2 + r → D (no parallel move) MACR (+)S1,S2,D(no parallel move)
D + S1 * S2 + r → D (one parallel move) MACR S1,S2,D (one parallel move)
D + S1 * S2 + r → D (two parallel reads) MACR S1,S2,D (two parallel reads)

Description: Multiply the two signed 16-bit source operands (S1 and S2), add or subtract the product to or from the
specified 36-bit destination accumulator (D), and round the result using the specified rounding. The
rounded result is stored in the destination accumulator. (Refer to RND for more complete information
on the convergent rounding process.) The “-” sign option is used to negate the specified product prior
to accumulation. This option is not available when a single parallel move or two parallel reads are per-
formed. The default sign option is “+”.

Usage: This instruction is used for the multiplication, accumulation, and rounding of fractional data.

Example:

MACR -X0,Y1,A

Explanation of Example:
Prior to execution, the 16-bit X0 register contains the value $4000, the 16-bit Y1 register contains the
value $C000, and the 36-bit A accumulator contains the value $0:0003:8000. Execution of the
MACR -X0,Y1,A instruction multiplies the 16-bit signed value in the X0 register by the 16-bit
signed value in Y1 and subtracts the resulting 32-bit product from the 36-bit A accumulator, rounds
the result, and stores the result ($0:2004:0000) into the A accumulator. In this example, the default
rounding (convergent rounding) is performed.

Before Execution

800000030

A2 A1 A0

4000X0

C000Y1

After Execution

000020040

A2 A1 A0

4000X0

C000Y1

A-106 DSP56800 Family Manual �

MACR Multiply-Accumulate and Round MACR
Condition Codes Affected:

SZ — Set according to the standard definition of the SZ bit (parallel move)
L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of A or B result is in use
U — Set according to the standard definition of the U bit
N — Set if bit 35 of A or B result is set except during saturation
Z — Set if A or B result equals zero
V — Set if overflow has occurred in A or B result

See Section 3.6.5, “16-Bit Destinations,” on page 3-35 for cases with X0, Y0, or Y1 as D.
See Section 3.6.2, “36-Bit Destinations—CC Bit Set,” on page 3-34 and Section 3.6.4, “20-Bit Desti-
nations—CC Bit Set,” on page 3-34 for the case when the CC bit is set.

Instruction Fields:

Operation Operands C W Comments

MACR (±)Y1,X0,FDD
(±)Y0,X0,FDD
(±)Y1,Y0,FDD
(±)Y0,Y0,FDD
(±)A1,Y0,FDD
(±)B1,Y1,FDD

2 1 Fractional MAC with round, multiplication result
optionally negated before addition.

Data ALU Operation Parallel Memory Read or Write

Operation Registers Memory Access Source or Destination

MACR Y1,B1,F
Y0,Y0,F
Y0,A1,F
X0,Y0,F
X0,Y1,F
Y0,Y1,F

(F = A or B)

X:(Rn)+
X:(Rn)+N

X0
Y1
Y0
A
B

A1
B1

LF * * * * * I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

� Instruction Set Details A-107

MACR Multiply-Accumulate and Round MACR

Timing: 2 + mv oscillator clock cycles for MACR instructions with a parallel move
Refer to previous table for MACR instructions without a parallel move

Memory: 1 program word for MACR instructions with a parallel move
Refer to previous table for MACR instructions without a parallel move

Data ALU
Operation

First and Second Memory
Reads

Destinations for Memory
Reads

Operation Registers Read1 Read2 Destination1 Destination2

MACR Y0,X0,F
Y1,X0,F
Y1,Y0,F

(F = A or B)

X:(R0)+
X:(R0)+N

X:(R1)+
X:(R1)+N

X:(R3)+
X:(R3)-

Y0 X0

Y1 X0

Valid
destinations
for Read1

Valid
destinations
for Read2

A-108 DSP56800 Family Manual �

MACSU Multiply-Accumulate Signed × Unsigned MACSU
Operation: Assembler Syntax:
D + S1 * S2 → D (S1 signed, S2 unsigned) MACSU S1,S2,D (no parallel move)

Description: Multiply the two 16-bit source operands (S1 and S2) and add the product to the specified 36-bit desti-
nation accumulator (D). S1 can be unsigned, but S2 is always considered unsigned. This mixed arith-
metic multiply-accumulate does not allow a parallel move and can be used for multi-precision multi-
plications.

Usage: In addition to single-precision multiplication of a signed-times-unsigned value and accumulation, this
instruction is also used for multi-precision multiplications, as shown in Section 3.3.8.2, “Multi-Preci-
sion Multiplication,” on page 3-23.

Example:

MACSU X0,Y0,A

Explanation of Example:
The 16-bit X0 register contains the value $3456 and the 16-bit Y0 register contains the value $8000.
Execution of the MACSU X0,Y0,A instruction multiplies the 16-bit signed value in the X0 register
by the 16-bit unsigned value in Y0, and then adds the result to the A accumulator and stores the signed
result back into the A accumulator. If this were a MAC instruction, Y0 ($8000) would equal -1.0, and
the multiplication result would be $F:CBAA:0000. Since this is a MACSU instruction, Y0 is consid-
ered unsigned and equals +1.0. This gives a multiplication result of $0:3456:0000.

Before Execution

009900000

A2 A1 A0

3456X0

8000Y0

After Execution

009934560

A2 A1 A0

3456X0

8000Y0

� Instruction Set Details A-109

MACSU Multiply-Accumulate Signed × Unsigned MACSU
Condition Codes Affected:

E — Set if the signed integer portion of A or B result is in use
U — Set according to the standard definition of the U bit
N — Set if bit 35 of A or B result is set except during saturation
Z — Set if A or B result equals zero
V — Set if overflow has occurred in A or B result

See Section 3.6.5, “16-Bit Destinations,” on page 3-35 for cases with X0, Y0, or Y1 as D.
See Section 3.6.2, “36-Bit Destinations—CC Bit Set,” on page 3-34 and Section 3.6.4, “20-Bit Desti-
nations—CC Bit Set,” on page 3-34 for the case when the CC bit is set.

Instruction Fields:

Timing: 2 oscillator clock cycles

Memory: 1 program word

Operation Operands C W Comments

MACSU X0,Y1,FDD
X0,Y0,FDD
Y0,Y1,FDD
Y0,Y0,FDD
Y0,A1,FDD
Y1,B1,FDD

2 1 Signed or unsigned 16x16 fractional MAC with
32-bit result.

The first operand is treated as signed and the sec-
ond as unsigned.

LF * * * * * I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A-110 DSP56800 Family Manual �

MOVE Introduction to DSP56800 Moves MOVE
Description: The DSP56800 Family instruction set contains a powerful set of moves, resulting not only in better

DSP performance, but in simpler, more efficient general-purpose computing. The powerful set of con-
troller and DSP moves results not only in ease of programming, but in more efficient code that, in turn,
results in reduced power consumption for an application. This description gives an introduction to all
of the different types of moves available on the DSP56800 architecture. It covers all of the variations
of the MOVE instruction, as well as all of the parallel moves. There are eight types of moves available
on the DSP56800:

• Any register ↔ any register

• Any register ↔ X data memory

• Any register ↔ on-chip peripheral register

• Immediate data → any register

• Immediate data → X data memory

• Immediate data → on-chip peripheral register

• Register ↔ program memory

• One X data memory access in parallel with an arithmetic operand (single parallel move)

• Two X data memory reads in parallel with an arithmetic operand (dual parallel read)

• Two X data memory reads in parallel with no arithmetic operand specified (MOVE only)

• Conditional register transfer (transfer only if condition is true)

• Register transfer through the data ALU

The preceding move types are discussed in detail under the following DSP56800 instructions:

MOVE:
• One X data memory access in parallel with an arithmetic operand (single parallel move)

• Two X data memory reads in parallel with an arithmetic operand (dual parallel read)

• Two X data memory reads in parallel with no arithmetic operand specified (MOVE only)

MOVE(C):
• Any register ↔ any register

• Any register ↔ X data memory

• Any register ↔ on-chip peripheral register

MOVE(I):
• Immediate data → any register

• Immediate data → X data memory

MOVE(M):
• Two X data memory reads in parallel with no arithmetic operand specified

MOVE(P):
• Register ↔ on-chip peripheral register

• Immediate data → on-chip peripheral register

MOVE(S):
• Register ↔ first 64 locations of X data memory

• Immediate data → first 64 locations of X data memory

Tcc:
• Conditional register transfer (transfer only if condition is true)

TFR:
• Register transfer through the data ALU

� Instruction Set Details A-111

MOVE Introduction to DSP56800 Moves MOVE
Description: Two types of parallel moves are permitted—register-to-memory moves and dual memory-to-register

moves. Both types of parallel moves use a restricted subset of all available DSP56800 addressing
modes, and the registers available for the move portion of the instruction are also a subset of the total
set of DSP core registers. These subsets include the registers and addressing modes most frequently
found in high performance numeric computation and DSP algorithms. Also, the parallel moves allow
a move to occur only with an arithmetic operation in the data ALU. A parallel move is not permitted,
for example, with a JMP, LEA, or BFSET instruction.

Since the on-chip peripheral registers are accessed as locations in X data memory, there are many move
instructions that can access these peripheral registers. Also, the case of “No Move Specified” for arith-
metic operations optionally allows a parallel move.

When a 36-bit accumulator (A or B) is specified as a source operand (S), there is a possibility that the
data may be limited. If the data out of the accumulator indicates that the accumulator extension bits are
in use, and the data is to be moved into a 16-bit destination, the value stored in the destination is limited
to a maximum positive or negative saturation constant to minimize truncation error. Limiting does not
occur if an individual 16-bit accumulator register (A1, A0, B1, or B0) is specified as a source operand
instead of the full 36-bit accumulator (A or B). This limiting feature allows block floating-point oper-
ations to be performed with error detection since the L bit in the CCR is latched (that is, sticky).

When a 36-bit accumulator (A or B) is specified as a destination operand (D), any 16-bit source data
to be moved into that accumulator is automatically extended to 36 bits by sign extending the MSB of
the source operand (bit 15) and appending the source operand with 16 LS zeros. The automatic sign
extension and zeroing features may be circumvented by specifying the destination register to be one
of the individual 16-bit accumulator registers (A1 or B1).

The MOVE, MOVE(C), MOVE(I), MOVE(M), MOVE(P), and MOVE(S) descriptions are found on
the following pages. Detailed descriptions of the two parallel move types are covered under the MOVE
instruction. The Tcc and TFR descriptions are covered in their respective sections.

A-112 DSP56800 Family Manual �

MOVE Parallel Move—Single Parallel Move MOVE
Operation: Assembler Syntax:
<op> X:<ea> → D <op> X:<ea>,D
<op> S → X:<ea> <op> S,X:<ea>

<op> refers to any arithmetic instruction that allows parallel moves. Examples include ADD, DECW, MACR, NEG,
SUB, TFR, and so on.

Description: Perform a data ALU operation and, in parallel, move the specified register from or to X data memory.
Two indirect addressing modes may be used (post-increment by one and post-increment by the offset
register).

Seventeen data ALU instructions allow the capability of specifying an optional single parallel move.
These data ALU instructions have been selected for optimal performance on the critical sections of fre-
quently used DSP algorithms. A summary of the different data ALU instructions, registers used for the
memory move, and addressing modes available for the single parallel move is shown in Table 6-34,
“Data ALU Instructions—Single Parallel Move,” on page 6-29.

If the arithmetic operation of the instruction specifies a given source register (S) or destination register
(D), that same register or portion of that register may be used as a source in the parallel data bus move
operation. This allows data to be moved in the same instruction in which it is being used as a source
operand by a data ALU operation. That is, duplicate sources are allowed within the same instruction.
Examples of duplicate sources include the following:

ADD A,B A,X:(R2)+ ; A register allowed as source of
; parallel move

ADD A,B X:(R2)+,A ; A register allowed as destination
; of parallel move

Description: If the arithmetic operation portion of the instruction specifies a given destination accumulator, that
same accumulator or portion of that accumulator may not be specified as a destination in the parallel
data bus move operation. Thus, if the opcode-operand portion of the instruction specifies the 36-bit A
or B accumulator as its destination, the parallel data bus move portion of the instruction may not spec-
ify A0/B0, A1/B1, A2/B2, or A/B as its destination. That is, duplicate destinations are not allowed
within the same instruction. Examples of duplicate destinations include the following:

ADD B,A X:(R2)+,A ; NOT ALLOWED--A register used twice
; as a destination

ASL A X:(R2)+,A ; NOT ALLOWED--A register used twice
; as a destination

Exceptions:
TST, CMP, and CMPM allow both the accumulator and its lower portion (A and A0, B and B0) to be
the parallel move destination even if this accumulator is used by the data ALU operation. These in-
structions do not have a true destination.

� Instruction Set Details A-113

MOVE Parallel Move—Single Parallel Move MOVE
Example:

ASL A A,X:(R3)+N ; save old value of A in X:(R3),
; A*2 → A, update R3

Explanation of Example:
Prior to execution, the 16-bit R3 address register contains the value $00FF, the A accumulator contains
the value $0:5555:3333, and the 16-bit X memory location X:$00FF contains the value $1234. Execu-
tion of the parallel move portion of the instruction, A,X:(R3)+, uses the R3 address register to move
the contents of the A1 register before left shifting into the 16-bit X memory location (X:$00FF). R3 is
then updated by the value in the N register.

Condition Codes Affected:

SZ — Set according to the standard definition of the SZ bit during parallel move
L — Set if data limiting has occurred during parallel move

Timing: 2

Memory: 1 program word for all instructions of this type

Data ALU Operation Parallel Memory Read or Write

Operation Registers Memory Access Source or Destination

Operation Operands X:(Rn)+
X:(Rn)+N

X0
Y1
Y0
A1
B1
A
B

Before Execution

333355550

A2 A1 A0

1234X:$00FF

00FFR3

After Execution

CCCCAAAA0

A2 A1 A0

5555X:$00FF

0103R3

0004N 0004N

LF * * * * * I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A-114 DSP56800 Family Manual �

MOVE Parallel Move—Dual Parallel Reads MOVE
Operation: Assembler Syntax:
<op> X:<ea> → D1 X:<ea> → D2 <op> X:<ea>,D1X:<ea>,D2
MOVE X:<ea> → D1 X:<ea> → D2 MOVE X:<ea>,D1X:<ea>,D2

where <op> refers to a limited set of arithmetic instructions which allow double parallel reads

Description: Read two 16-bit word operands from X memory. Two independent effective addresses (ea) can be
specified where one of the effective addresses uses the R0 or R1 address register, while the other ef-
fective address must use address register R3. Two parallel address updates are then performed for each
effective address. The address update on R3 is only performed using linear arithmetic, and the address
update on R0 or R1 is performed using linear or modulo arithmetic.

Six data ALU instructions (ADD, MAC, MACR, MPY, MPYR, and SUB) allow the capability of
specifying an optional dual memory read. In addition, MOVE can be specified. These data ALU in-
structions have been selected for optimal performance on the critical sections of frequently used DSP
algorithms. A summary of the different data ALU instructions, registers used for the memory move,
and addressing modes available for the dual parallel read is shown in Table 6-35, “Data ALU Instruc-
tions—Dual Parallel Read,” on page 6-30. When the MOVE instruction is selected, only the dual
memory accesses occur—no arithmetic operation is performed.

Example:

MPYR X0,Y0,A X:(R0)+,Y0X:(R3)+,X0

Explanation of Example:
Prior to execution, the 16-bit X0 register contains the value $4000, and the 16-bit Y0 register contains
the value $5555. Execution of the parallel move portion of the instruction,
X:(R0)+,Y0 X:(R3)+,X0, moves the 16-bit value in the X memory location X:(R0) into the reg-
ister Y0, moves the 16-bit X memory location X:(R3) into the register X0, and post-increments by one
the 16-bit values in the R0 and R3 address registers. The multiplication is performed with the old val-
ues of X0 and Y0, and the result is convergently rounded before storing it in the accumulator.

Note: The second X data memory parallel read using the R3 address register can never access off-chip mem-
ory or on-chip peripherals. It can only access on-chip X data memory.

Before Execution

567812340

A2 A1 A0

CCCCX:(R3)

BBBBX:(R0)

After Execution

00002AAA0

A2 A1 A0

CCCCX:(R3)

BBBBX:(R0)

4000X0 CCCCX0

5555Y0 BBBBY0

� Instruction Set Details A-115

MOVE Parallel Move—Dual Parallel Reads MOVE
Condition Codes Affected:

L — Set if data limiting has occurred during parallel move

Instruction Fields:

Timing: 2 + mv oscillator clock cycles for all instructions of this type

Memory: 1 program word for all instructions of this type

Data ALU
Operation

First and Second Memory
Reads

Destinations for Memory
Reads

Operation Registers Read1 Read2 Destination1 Destination2

Operation Operands X:(R0)+
X:(R0)+N

X:(R1)+
X:(R1)+N

X:(R3)+
X:(R3)-

Y0 X0

Y1 X0

Valid
destinations
for Read1

Valid
destinations
for Read2

Data ALU
Operation

First and Second Memory
Reads

Destinations for Memory
Reads

Operation Read1 Read2 Destination1 Destination2

MOVE X:(R0)+
X:(R0)+N

X:(R1)+
X:(R1)+N

X:(R3)+
X:(R3)-

Y0 X0

Y1 X0

Valid
destinations
for Read1

Valid
destinations
for Read2

LF * * * * * I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A-116 DSP56800 Family Manual �

MOVE(C) Move Control Register MOVE(C)
Operation: Assembler Syntax:
X:<ea>→ D MOVE(C) X:<ea>,D
S1→ X:<ea> MOVE(C) S,X:<ea>

S → D MOVE(C) S,D

Description: Move the contents of the specified source (control) register (S) to the specified destination, or move
the specified source to the specified destination (control) register (D). The control registers S and D
consist of the AGU registers, data ALU registers, and the program controller registers. These registers
may be moved to or from any other register or location in X data memory.

If the HWS is specified as a destination operand, the contents of the first HWS location are copied into
the second one, and the LF and NL bits are updated accordingly. If the HWS is specified as a source
operand, the contents of the second HWS location are copied into the first one, and the LF and NL bits
are updated accordingly. This allows more efficient manipulation of the HWS.

When a 36-bit accumulator (A or B) is specified as a source operand, there is a possibility that the data
may be limited. If the data out of the shifter indicates that the accumulator extension register is in use,
and the data is to be moved into a 16-bit destination, the value stored in the destination is limited to a
maximum positive or negative saturation constant to minimize truncation error. Limiting does not oc-
cur if an individual 16-bit accumulator register (A1, A0, B1, or B0) is specified as a source operand
instead of the full 36-bit accumulator (A or B). This limiting feature allows block floating-point oper-
ations to be performed with error detection since the L bit in the CCR is latched (that is, sticky).

When a 36-bit accumulator (A or B) is specified as a destination operand, any 16-bit source data to be
moved into that accumulator is automatically extended to 36 bits by sign extending the MSB of the
source operand (bit 15) and appending the source operand with 16 LS zeros. The automatic sign ex-
tension and zeroing features may be circumvented by specifying the destination register to be one of
the individual 16-bit accumulator registers (A1 or B1).

Note: Due to pipelining, if an address register (Rn, SP, or M01) is changed with a MOVE or bit-field instruc-
tion, the new contents will not be available for use as a pointer until the second following instruction.
If the SP is changed, no PUSH or POP instructions are permitted until the second following instruction.

Note: If the N address register is changed with a MOVE instruction, this register’s contents will be available
for use on the immediately following instruction. In this case the instruction that writes the N address
register will be stretched one additional instruction cycle. This is true for the case when the N register
is used by the immediately following instruction; if N is not used, then the instruction is not stretched
an additional cycle. If the N address register is changed with a bit-field instruction, the new contents
will not be available for use until the second following instruction.

� Instruction Set Details A-117

MOVE(C) Move Control Register MOVE(C)
Example:

MOVE(C) LC,X0 ; move the LC register into the X0 register

Explanation of Example:
Execution of the MOVE(C) instruction moves the contents of the program controller’s 16-bit LC reg-
ister into the data ALU’s 16-bit X0 register.

Example:

MOVE(C) X:$CC00,N ; move X data memory value into the
; N register

Explanation of Example:
Execution of the MOVE(C) instruction moves the contents of the X data memory at location $CC00
into the AGU’s 16-bit N register.

Example:

MOVE(C) R2,X:(R3+$3072) ; move R2 register into X data
; memory

Explanation of Example:
Prior to execution, the contents of R3 is $1000. Execution of the MOVE(C) instruction moves the
AGU’s 16-bit R2 register contents into the X data memory at the location $4072.

Restrictions:
A MOVE(C) instruction used within a DO loop that specifies the HWS as the source or that specifies
the SR or HWS as the destination cannot begin at the LA-2, LA-1, or LA within that DO loop.
A MOVE(C) instruction that specifies the HWS as the source or as the destination cannot be used im-
mediately before a DO instruction.
A MOVE(C) instruction that specifies the HWS as the source or that specifies the SR or HWS as the
destination cannot be used immediately before an ENDDO instruction.
A MOVE(C) instruction that specifies the SR, HWS, or SP as the destination cannot be used immedi-
ately before an RTI or RTS instruction.
A MOVE(C) HWS,HWS instruction is illegal and cannot be used.

Before Execution

0100LC

0123X0

After Execution

0100LC

0100X0

Before Execution

0100X:$CC00

0123N

After Execution

0100X:$CC00

0100N

Before Execution

1234X:$4072

AAAAR2

After Execution

AAAAX:$4072

AAAAR2

A-118 DSP56800 Family Manual �

MOVE(C) Move Control Register MOVE(C)
Condition Codes Affected:

If D is the SR:

SZ — Set according to bit 7 of the source operand
L — Set according to bit 6 of the source operand
E — Set according to bit 5 of the source operand
U — Set according to bit 4 of the source operand
N — Set according to bit 3 of the source operand
Z — Set according to bit 2 of the source operand
V — Set according to bit 1 of the source operand
C — Set according to bit 0 of the source operand

If D1 and D2 are not SR:

L — Set if data limiting has occurred during move

LF * * * * * I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

� Instruction Set Details A-119

MOVE(C) Move Control Register MOVE(C)
Instruction Fields:

Timing: 2 + mvc oscillator clock cycles

Memory: 1 + ea program words

Operation
Source or

Destination
Source or

Destination
C W Comments

MOVE(C) X:(Rn)
X:(Rn)+
X:(Rn)-

X:(Rn)+N

X:(SP)
X:(SP)+
X:(SP)-

X:(SP)+N

Any register 2 1 —

X:xxxx Any register 4 2 16-bit absolute address

X:(Rn+N)
X:(SP+N)

Any register 4 1 —

X:(Rn+xxxx)
X:(SP+xxxx)

Any register 6 2 Signed 16-bit
index

X:(R2+xx)
X:(SP-xx)

X0, Y1, Y0,
A, B, A1, B1
R0–R3, N

4 1 —

Any register Any register 2 1 —

A-120 DSP56800 Family Manual �

MOVE(I) Move Immediate MOVE(I)
Operation: Assembler Syntax:
#xx → D MOVE(I) #xx,D
#xxxx → D MOVE(I) #xxxx,D
#xxxx → X:<ea> MOVE(I) #xxxx,X:<ea>

Description: The 7-bit signed immediate operand is stored in the lowest 7 bits of the destination (D), and the upper
bits are filled with sign extension. The destination can be any register, X data memory location, or
on-chip peripheral register.

Example:

MOVE(I) #<$FFC7,X0 ; moves negative value into X0 since bit 6
; is 1

Explanation of Example:
Prior to execution, X0 contains the value $1234. Execution of the instruction moves the value $FFC7
into X0.

Example:

MOVE(I) #$C33C,X:$A009 ; moves 16-bit value directly into a
; memory location

Explanation of Example:
Prior to execution, the X data memory location $A009 contains the value $1234. Execution of the in-
struction moves the value $C33C into this memory location.

Note: The MOVE(P) and MOVE(S) instructions also provide a mechanism for loading 16-bit immediate val-
ues directly into the last 64 and first 64 locations, respectively, in X data memory.

Condition Codes Affected:
The condition codes are not affected by this instruction.

Before Execution

1234X0

After Execution

FFC7X0

Before Execution

1234X:$A009

After Execution

C33CX:$A009

� Instruction Set Details A-121

MOVE(I) Move Immediate MOVE(I)
Instruction Fields:

Timing: Refer to the preceding Instruction Fields table

Memory: Refer to the preceding Instruction Fields table

Operation Source Destination C W Comments

MOVE
or

MOVEI

#xx HHHH 2 1 Signed 7-bit integer data (data is put in the
lowest 7 bits of the word portion of any
accumulator, upper 8 bits and extension
reg are sign extended, LSP portion is set
to “0”)

#xxxx DDDDD 4 2 Signed 16-bit immediate data. When LC is
the destination, use 13-bit values only.

X:(R2+xx) 6 2

X:(SP-xx) 6 2

X:xxxx 6 3

A-122 DSP56800 Family Manual �

MOVE(M) Move Program Memory MOVE(M)
Operation: Assembler Syntax:
P:<ea> → D MOVE(M) P:<ea>,D
S→ P:<ea> MOVE(M) S,P:<ea>

Description: Move the specified register from or to the specified program memory location. The source register (S)
and destination registers (D) are data ALU registers.

When a 36-bit accumulator (A or B) is specified as a source operand, there is a possibility that the data
may be limited. If the data out of the shifter indicates that the accumulator extension register is in use,
and the data is to be moved into a 16-bit destination, the value stored in the destination is limited to a
maximum positive or negative saturation constant to minimize truncation error. Limiting does not oc-
cur if an individual 16-bit accumulator register (A1, A0, B1, or B0) is specified as a source operand
instead of the full 36-bit accumulator (A or B). This limiting feature allows block floating-point oper-
ations to be performed with error detection since the L bit in the CCR is latched (that is, sticky).

When a 36-bit accumulator (A or B) is specified as a destination operand, any 16-bit source data to be
moved into that accumulator is automatically extended to 36 bits by sign extending the MSB of the
source operand (bit 15) and appending the source operand with 16 LS zeros. The automatic sign ex-
tension and zeroing features may be circumvented by specifying the destination register to be one of
the individual 16-bit accumulator registers (A1 or B1).

Example:

MOVE(M) P:(R2)+N,A; move P:(R2) into A, update R2 with N

Explanation of Example:
Prior to execution, the 36-bit A accumulator contains the value $A:1234:5678, R2 contains the value
$0077, the N register contains the value $0003, and the 16-bit program memory location P:(R2) con-
tains the value $0116. Execution of the MOVE(M) instruction moves the 16-bit program memory lo-
cation P:(R2) into the 36-bit A accumulator. R2 is then post-incremented by N.

Before Execution

56781234A

A2 A1 A0

0116P:$0077

After Execution

000001160

A2 A1 A0

0116P:$0077

$0077R2 $007AR2

� Instruction Set Details A-123

MOVE(M) Move Program Memory MOVE(M)
Condition Codes Affected:

L — Set if data limiting has occurred during the move

Instruction Fields:

Timing: 8 + mvm oscillator clock cycles

Memory: 1 program word

Operation Source Destination C W Comments

MOVE(M) P:(Rj)+
P:(Rj)+N

HHHH 8 1 Read signed word from program
memory

HHHH P:(Rj)+
P:(Rj)+N

8 1 Write word to program memory

LF * * * * * I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A-124 DSP56800 Family Manual �

MOVE(P) Move Peripheral Data MOVE(P)
Operation: Assembler Syntax:
X:<pp> → D MOVE(P) X:<pp>,D
S → X:<pp> MOVE(P) S,X:<pp>
#xxxx → X:<pp> MOVE(P) #xxxx,X:<pp>

Description: Move the specified operand to or from a location in the last 64 words of the X data memory map. The
6-bit short absolute address is one-extended to generate a 16-bit address.

When a 36-bit accumulator (A or B) is specified as a source operand, there is a possibility that the data
may be limited. If the data out of the shifter indicates that the accumulator extension register is in use,
and the data is to be moved into a 16-bit destination, the value stored in the destination is limited to a
maximum positive or negative saturation constant to minimize truncation error. Limiting does not oc-
cur if an individual 16-bit accumulator register (A1, A0, B1, or B0) is specified as a source operand
instead of the full 36-bit accumulator (A or B). This limiting feature allows block floating-point oper-
ations to be performed with error detection since the L bit in the CCR is latched (that is, sticky).

When a 36-bit accumulator (A or B) is specified as a destination operand, any 16-bit source data to be
moved into that accumulator is automatically extended to 36 bits by sign extending the MSB of the
source operand (bit 15) and appending the source operand with 16 LS zeros. The automatic sign ex-
tension and zeroing features may be circumvented by specifying the destination register to be one of
the individual 16-bit accumulator registers (A1 or B1).

Usage: This MOVE(P) instruction provides a more efficient way of accessing the last 64 locations in X mem-
ory, which may be allocated to memory-mapped peripheral registers. Consult the specific
DSP56800-based device’s user manual for information on where in the memory map peripheral regis-
ters are located.

Example:

MOVEP R1,X:<$FFE2 ; write to location X:$FFE2

Explanation of Example:
Prior to execution, the location $FFE2 contains the value $0123. Execution of the
MOVE(P) R1,X:<$FFE2 instruction moves the value $5555 contained in the R1 register into the
location.

Example:

MOVEP #$0342,X:<$24 ; moves 16-bit value into location $FFE4

Explanation of Example:
Prior to execution, the word at X data memory location $FFE4 contains the value $AAAA. The
MOVEP one-extends the value $24 to form the address $FFE4. Execution of the instruction moves the
value $0342 into this location.

Before Execution

0123X:$FFE2

5555R1

After Execution

5555X:$FFE2

5555R1

Before Execution

AAAAX:$FFE4

After Execution

0342X:$FFE4

� Instruction Set Details A-125

MOVE(P) Move Peripheral Data MOVE(P)
Condition Codes Affected:

L — Set if data limiting has occurred during move

Note: It is also possible to access the last 64 locations in the X data memory map using the MOVE(C) in-
struction, which can directly access these locations either using the address-register-indirect address-
ing modes or the absolute address addressing mode, which specifies a 16-bit absolute address.

Instruction Fields:

Timing: 2 + ea oscillator clock cycles

Memory: 1 + ea program words

Operation Source Destination C W Comments

MOVE(P) X:pp HHHH 2 1 Last 64 locations in data memory.

X:pp represents a 6-bit absolute I/O
address. Refer to I/O Short
Address (Direct Addressing):
<pp> on page 4-23.

HHHH X:pp 2 1

LF * * * * * I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A-126 DSP56800 Family Manual �

MOVE(S) Move Absolute Short MOVE(S)
Operation: Assembler Syntax:
X:<aa> → D MOVE(S) X:<aa>,D
S → X:<aa> MOVE(S) S,X:<aa>
#xxxx → X:<aa> MOVE(S) #xxxx,X:<aa>

Description: Move the specified operand from or to the first 64 memory locations in X data memory. The 6-bit ab-
solute short address is zero-extended to generate a 16-bit X data memory address.

When a 36-bit accumulator (A or B) is specified as a source operand, there is a possibility that the data
may be limited. If the data out of the shifter indicates that the accumulator extension register is in use,
and the data is to be moved into a 16-bit destination, the value stored in the destination is limited to a
maximum positive or negative saturation constant to minimize truncation error. Limiting does not oc-
cur if an individual 16-bit accumulator register (A1, A0, B1, or B0) is specified as a source operand
instead of the full 36-bit accumulator (A or B). This limiting feature allows block floating-point oper-
ations to be performed with error detection since the L bit in the CCR is latched (that is, sticky).

When a 36-bit accumulator (A or B) is specified as a destination operand, any 16-bit source data to be
moved into that accumulator is automatically extended to 36 bits by sign extending the MSB of the
source operand (bit 15) and appending the source operand with 16 LS zeros. The automatic sign ex-
tension and zeroing features may be circumvented by specifying the destination register to be one of
the individual 16-bit accumulator registers (A1 or B1).

Example:

MOVES X:<$0034,Y1 ; write to X:$0034

Explanation of Example:
Prior to execution, X:$0034 contains the value $5555 and Y1 contains the value $0123. Execution of
the instruction moves the value $5555 into the Y1 register.

Example:

MOVES #$0342,X:<$24 ; moves 16-bit value directly into
; memory location

Explanation of Example:
Prior to execution, the contents of the X data memory location $0024 contains the value $AAAA. The
MOVES zero-extends the value $24 to form the memory address $0024. Execution of the instruction
moves the value $0342 into this location.

Before Execution

5555X:$0034

0123Y1

After Execution

5555X:$0034

5555Y1

Before Execution

AAAAX:$0024

After Execution

0342X:$0024

� Instruction Set Details A-127

MOVE(S) Move Absolute Short MOVE(S)
Condition Codes Affected:

SZ — Set according to the standard definition of the SZ bit
L — Set if data limiting has occurred during move

Note: It is also possible to access the first 64 locations in the X data memory using the MOVE(C) instruction,
which can directly access these locations either using the address-register-indirect addressing modes
or the absolute address addressing mode, which specifies a 16-bit absolute address.

Instruction Fields:

Timing: 2 + ea oscillator clock cycles

Memory: 1 + ea program words

Operation Source Destination C W Comments

MOVE(S) X:aa HHHH 2 1 First 64 locations in data memory.

X:aa represents a 6-bit absolute
address. Refer to Absolute Short
Address (Direct Addressing):
<aa> on page 4-22.

HHHH X:aa 2 1

LF * * * * * I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A-128 DSP56800 Family Manual �

MPY Signed Multiply MPY
Operation: Assembler Syntax:
+ S1 * S2 → D (no parallel move) MPY (+)S1,S2,D (no parallel move)
S1 * S2 → D (one parallel move) MPY S1,S2,D (one parallel move)
S1 * S2 → D (two parallel reads) MPY S1,S2,D (two parallel reads)

Description: Multiply the two signed 16-bit source operands (S1 and S2) and store the product in the specified 36-bit
destination accumulator (D). The “-” sign option is used to negate the specified product. This option
is not available when a single parallel move or two parallel read operations are performed or when D
is the 16-bit X0, Y1, or Y0.

Usage: This instruction is used for multiplication of fractional data or integer data when a full 32-bit product
is required (see Section 3.3.5.2, “Integer Multiplication,” on page 3-20). When the destination is a
16-bit register, this instruction is useful only for fractional data.

Example:

MPY X0,Y1,A ; multiply X0 by Y1

Explanation of Example:
Prior to execution, the 16-bit X0 register contains the value $4000 (0.5), the 16-bit Y1 register contains
the value $F456 (-0.0911255), and the 36-bit A accumulator contains the value $00:1000:0000
(0.125). Execution of the MPY X0,Y1,A instruction multiplies the 16-bit signed value in the X0 reg-
ister by the 16-bit signed value in Y1 and stores the result ($F:FA2B:0000) into the A accumulator
(X0 * Y1 = -0.045562744140625).

Condition Codes Affected:

SZ — Set according to the standard definition of the SZ bit (parallel move)
L — Set if limiting (parallel move) or overflow (result) has occurred
E — Set if the signed integer portion of A or B result is in use
U — Set according to the standard definition of the U bit
N — Set if bit 35 of A or B result is set except during saturation
Z — Set if A or B result equals zero
V — Set if overflow has occurred in A or B result

See Section 3.6.5, “16-Bit Destinations,” on page 3-35 for cases with X0, Y0, or Y1 as D.
See Section 3.6.2, “36-Bit Destinations—CC Bit Set,” on page 3-34 and Section 3.6.4, “20-Bit Desti-
nations—CC Bit Set,” on page 3-34 for the case when the CC bit is set.

Before Execution

000010000

A2 A1 A0

4000X0

F456Y1

After Execution

0000FA2BF

A2 A1 A0

4000X0

F456Y1

LF * * * * * I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

� Instruction Set Details A-129

MPY Signed Multiply MPY
Instruction Fields:

Timing: 2 + mv oscillator clock cycles for MPY instructions with a parallel move
Refer to previous table for MPY instructions without a parallel move

Memory: 1 program word for MPY instructions with a parallel move
Refer to previous table for MPY instructions without a parallel move

Operation Operands C W Comments

MPY (±)Y1,X0,FDD
(±)Y0,X0,FDD
(±)Y1,Y0,FDD
(±)Y0,Y0,FDD
(±)A1,Y0,FDD
(±)B1,Y1,FDD

2 1 Fractional multiply where one operand is optionally
negated before multiplication

Note: Assembler also accepts first two operands
when they are specified in opposite order

Data ALU Operation Parallel Memory Read or Write

Operation Registers Memory Access Source or Destination

MPY Y1,B1,F
Y0,Y0,F
Y0,A1,F
X0,Y0,F
X0,Y1,F
Y0,Y1,F

(F = A or B)

X:(Rn)+
X:(Rn)+N

X0
Y1
Y0
A
B
A1
B1

Data ALU
Operation

First and Second Memory
Reads

Destinations for Memory
Reads

Operation Registers Read1 Read2 Destination1 Destination2

MPY Y0,X0,F
Y1,X0,F
Y1,Y0,F

(F = A or B)

X:(R0)+
X:(R0)+N

X:(R1)+
X:(R1)+N

X:(R3)+
X:(R3)-

Y0 X0

Y1 X0

Valid
destinations
for Read1

Valid
destinations
for Read2

A-130 DSP56800 Family Manual �

MPYR Signed Multiply and Round MPYR
Operation: Assembler Syntax:
+ S1 * S2 + r → D (no parallel move) MPYR (+)S1,S2,D (no parallel move)
 S1 * S2 + r → D (two parallel reads) MPYR S1,S2,D (two parallel reads)

Description: Multiply the two signed 16-bit source operands (S1 and S2), round the result using the specified round-
ing, and store it in the specified 36-bit destination accumulator (D). (Refer to RND for more complete
information on the convergent rounding process.) The “-” sign option is used to negate the specified
product. The default sign option is “+”.

Usage: This instruction is used for multiplication and rounding of fractional data.

Example:

MPYR -X0,Y1,A ; multiply X0 by Y1 and negate the product

Explanation of Example:
Prior to execution, the 16-bit X0 register contains the value $4000 (0.5), the 16-bit Y1 register contains
the value $F456 (-0.0911255), and the 36-bit A accumulator contains the value $00:1000:1234
(0.125002169981599). Execution of the MPYR -X0,Y1,A instruction multiplies the 16-bit signed
value in the X0 register by the 16-bit signed value in Y1, rounds the result, and stores the result
($FF:FE8B:0000) into the A accumulator (-X0 * Y1 = -0.011383056640625). In this example, the de-
fault rounding (convergent rounding) is performed.

Condition Codes Affected:

SZ — Set according to the standard definition of the SZ bit (parallel move)
L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of A or B result is in use
U — Set according to the standard definition of the U bit
N — Set if bit 35 of A or B result is set except during saturation
Z — Set if A or B result equals zero
V — Set if overflow has occurred in A or B result

See Section 3.6.5, “16-Bit Destinations,” on page 3-35 for cases with X0, Y0, or Y1 as D.
See Section 3.6.2, “36-Bit Destinations—CC Bit Set,” on page 3-34 and Section 3.6.4, “20-Bit Desti-
nations—CC Bit Set,” on page 3-34 for the case when the CC bit is set.

Before Execution

123410000

A2 A1 A0

4000X0

F456Y1

After Execution

0000FE8BF

A2 A1 A0

4000X0

F456Y1

LF * * * * * I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

� Instruction Set Details A-131

MPYR Signed Multiply and Round MPYR
Instruction Fields:

Timing: 2 + mv oscillator clock cycles for MPYR instructions with a parallel move
Refer to previous table for MPYR instructions without a parallel move

Memory: 1 program word for MPYR instructions with a parallel move
Refer to previous table for MPYR instructions without a parallel move

Operation Operands C W Comments

MPYR (±)Y1,X0,FDD
(±)Y0,X0,FDD
(±)Y1,Y0,FDD
(±)Y0,Y0,FDD
(±)A1,Y0,FDD
(±)B1,Y1,FDD

2 1 Fractional multiply where one operand is optionally
negated before multiplication; result is rounded

Note: Assembler also accepts first two operands
when they are specified in opposite order

Data ALU Operation Parallel Memory Read or Write

Operation Registers Memory Access Source or Destination

MPYR Y1,B1,F
Y0,Y0,F
Y0,A1,F
X0,Y0,F
X0,Y1,F
Y0,Y1,F

(F = A or B)

X:(Rn)+
X:(Rn)+N

X0
Y1
Y0
A
B
A1
B1

Data ALU
Operation

First and Second Memory
Reads

Destinations for Memory
Reads

Operation Registers Read1 Read2 Destination1 Destination2

MPYR Y0,X0,F
Y1,X0,F
Y1,Y0,F

(F = A or B)

X:(R0)+
X:(R0)+N

X:(R1)+
X:(R1)+N

X:(R3)+
X:(R3)-

Y0 X0

Y1 X0

Valid
destinations
for Read1

Valid
destinations
for Read2

A-132 DSP56800 Family Manual �

MPYSU Signed Unsigned Multiply MPYSU
Operation: Assembler Syntax:
S1 * S2 → D(S1 signed, S2 unsigned) MPYSU S1,S2,D (no parallel move)

Description: Multiply the two 16-bit source operands (S1 and S2), and store the product in the specified 36-bit des-
tination accumulator (D). S1 can be unsigned; S2 is always considered unsigned. This mixed arith-
metic multiply does not allow a parallel move and can be used for multi-precision multiplications.

Usage: In addition to single-precision multiplication of a signed value times unsigned value, this instruction
is also used for multi-precision multiplications, as shown in Section 3.3.8.2, “Multi-Precision Multi-
plication,” on page 3-23.

Example:

MPYSU X0,Y0,A

Explanation of Example:
The 16-bit X0 register contains the value $3456, and the 16-bit Y1 register contains the value $8000.
Execution of the MPYSU X0,Y0,A instruction multiplies the 16-bit signed value in the X0 register
by the 16-bit unsigned value in Y0 and stores the signed result into the A accumulator. If this was a
MPY instruction, Y0 ($8000) would equal -1.0, and the multiplication result would be
$F:CBAA:0000. Since this is a MPYSU instruction, Y0 is considered unsigned and equals +1.0. This
gives a multiplication result of $0:3456:0000.

Before Execution

000000000

A2 A1 A0

3456X0

8000Y0

After Execution

000034560

A2 A1 A0

3456X0

8000Y0

� Instruction Set Details A-133

MPYSU Signed Unsigned Multiply MPYSU
Condition Codes Affected:

E — Set if the signed integer portion of A or B result is in use
U — Set according to the standard definition of the U bit
N — Set if bit 35 of A or B result is set except during saturation
Z — Set if A or B result equals zero
V — Set if overflow has occurred in A or B result

See Section 3.6.5, “16-Bit Destinations,” on page 3-35 for cases with X0, Y0, or Y1 as D.
See Section 3.6.2, “36-Bit Destinations—CC Bit Set,” on page 3-34 and Section 3.6.4, “20-Bit Desti-
nations—CC Bit Set,” on page 3-34 for the case when the CC bit is set.

Instruction Fields:

Timing: 2 oscillator clock cycles

Memory: 1 program word

Operation Operands C W Comments

MPYSU X0,Y1,FDD
X0,Y0,FDD
Y0,Y1,FDD
Y0,Y0,FDD
Y0,A1,FDD
Y1,B1,FDD

2 1 Signed or unsigned 16x16 fractional multiply with
32-bit result.

The first operand is treated as signed and the sec-
ond as unsigned.

LF * * * * * I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A-134 DSP56800 Family Manual �

NEG Negate Accumulator NEG
Operation: Assembler Syntax:
0 - D → D (parallel move) NEG D (parallel move)

Description: The destination operand (D) is subtracted from zero, and the two’s complement result is stored in the
destination accumulator.

Usage: This instruction is used for negating a 36-bit accumulator. It can also be used to negate a 16-bit value
loaded in the MSP of an accumulator if the LSP of the accumulator is $0000 (see Section 8.1.6, “Un-
signed Load of an Accumulator,” on page 8-7).

Example:

NEG B X0,X:(R3)+; 0-B → B, save X0, update R3

Explanation of Example:
Prior to execution, the 36-bit B accumulator contains the value $0:1234:5678. The NEG B instruction
takes the two’s-complement of the value in the B accumulator and stores the 36-bit result back in the
B accumulator.

Condition Codes Affected:

SZ — Set according to the standard definition of the SZ bit (parallel move)
L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of A or B is in use
U — Set according to the standard definition of the U bit
N — Set if bit 35 of A or B result is set except during saturation
Z — Set if A or B result equals zero
V — Set if overflow has occurred in A or B result
C — Set if a borrow is generated from the MSB of the result

See Section 3.6.2, “36-Bit Destinations—CC Bit Set,” on page 3-34 and Section 3.6.4, “20-Bit Desti-
nations—CC Bit Set,” on page 3-34 for the case when the CC bit is set.

Before Execution

567812340

B2 B1 B0

0300SR

After Execution

A988EDCBF

B2 B1 B0

0309SR

LF * * * * * I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

� Instruction Set Details A-135

NEG Negate Accumulator NEG
Instruction Fields:

Timing: 2 + mv oscillator clock cycles

Memory: 1 program word

Operation Operands C W Comments

NEG F 2 1 Two’s-complement negation

Data ALU Operation Parallel Memory Read or Write

Operation Registers Memory Access Source or Destination

NEG A
B

X:(Rn)+
X:(Rn)+N

X0
Y1
Y0
A1
B1
A
B

A-136 DSP56800 Family Manual �

NOP No Operation NOP
Operation: Assembler Syntax:
PC+1 → PC NOP

Description: Increment the PC. Pending pipeline actions, if any, are completed. Execution continues with the in-
struction following the NOP.

Example:

NOP ; increment the program counter

Explanation of Example:
The NOP instruction increments the PC and completes any pending pipeline actions.

Condition Codes Affected:
The condition codes are not affected by this instruction.

Instruction Fields:

Timing: 2 oscillator clock cycles

Memory: 1 program word

Operation Operands C W Comments

NOP 2 1 No operation

� Instruction Set Details A-137

NORM Normalize Accumulator Iteration NORM
Operation: Assembler Syntax:
If (E • U • Z = 1) NORM R0,D (no parallel move)

then ASL D and Rn - 1 → Rn
else if (E = 1)

then ASR D and Rn + 1→ Rn
else NOP

where X denotes the logical complement of X and
where • denotes the logical AND operator

Description: Perform one normalization iteration on the specified destination operand (D), update the address reg-
ister R0 based upon the results of that iteration, and store the result back in the destination accumulator.
This is a 36-bit operation. If the accumulator extension is not in use, the accumulator is unnormalized,
and the accumulator is not zero, then the destination operand is arithmetically shifted 1 bit to the left,
and the specified address register is decremented by one. If the accumulator extension register is in use,
the destination operand is arithmetically shifted 1 bit to the right, and the specified address register is
incremented by one. If the accumulator is normalized or zero, a NOP is executed, and the specified
address register is not affected. Since the operation of the NORM instruction depends on the E, U, and
Z CCR bits, these bits must correctly reflect the current state of the destination accumulator prior to
executing the NORM instruction. The L and V bits in the CCR will be cleared unless they have been
improperly set up prior to executing the NORM instruction.

Example:

TST A
REP #31 ; maximum number of iterations (31) needed
NORM R0,A ; perform one normalization iteration

Explanation of Example:
Prior to execution, the 36-bit A accumulator contains the value $0:0000:8000, and the 16-bit R0 ad-
dress register contains the value $0000. The repetition of the NORM R0,A instruction normalizes the
value in the 36-bit accumulator and stores the resulting number of shifts performed during that normal-
ization process in the R0 address register. A negative value reflects the number of left shifts performed,
while a positive value reflects the number of right shifts performed during the normalization process.
In this example, 15 left shifts are required for normalization.

Before Execution

800000000

A2 A1 A0

0000R0

After Execution

000040000

A2 A1 A0

FFF1R0

A-138 DSP56800 Family Manual �

NORM Normalize Accumulator Iteration NORM
Condition Codes Affected:

L — Set if overflow has occurred in A or B result
E — Set if the signed integer portion of A or B result is in use
U — Set according to the standard definition of the U bit
N — Set if bit 35 of A or B result is set except during saturation
Z — Set if A or B result equals zero
V — Set if bit 35 is changed as a result of a left shift

See Section 3.6.2, “36-Bit Destinations—CC Bit Set,” on page 3-34 and Section 3.6.4, “20-Bit Desti-
nations—CC Bit Set,” on page 3-34 for the case when the CC bit is set.

Instruction Fields:

Timing: 2 oscillator clock cycles

Memory: 1 program word

Operation Operands C W Comments

NORM R0,F 2 1 Normalization iteration instruction for normalizing
the F accumulator

LF * * * * * I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

� Instruction Set Details A-139

NOT Logical Complement NOT
Operation: Assembler Syntax:
D → D (no parallel move) NOT D (no parallel move)
D[31:16] → D[31:16] (no parallel move) NOT D (no parallel move)

where the bar over the D (D) denotes the logical NOT operator

Description: Take the one’s-complement of the destination operand (D) and store the result in the destination. This
instruction is a 16-bit operation. If the destination is a 36-bit accumulator, the one’s-complement is
performed on bits 31–16 of the accumulator. The remaining bits of the destination accumulator are not
affected.

Example:

NOT A A,X:(R2)+ ; save A1 and take the 1’s complement of A1

Explanation of Example:
Prior to execution, the 36-bit A accumulator contains the value $5:1234:5678. The NOT A instruction
takes the one’s-complement of bits 31–16 of the A accumulator (A1) and stores the result back in the
A1 register. The remaining A accumulator bits are not affected.

Condition Codes Affected:

N — Set if bit 31 of A or B result is set
Z — Set if bits 31–16 of A or B result are zero
V — Always cleared

See Section 3.6.5, “16-Bit Destinations,” on page 3-35 for cases with X0, Y0, or Y1 as D.
See Section 3.6.2, “36-Bit Destinations—CC Bit Set,” on page 3-34 and Section 3.6.4, “20-Bit Desti-
nations—CC Bit Set,” on page 3-34 for the case when the CC bit is set.

Instruction Fields:

Timing: 2 oscillator clock cycles

Memory: 1 program word

Operation Operands C W Comments

NOT FDD 2 1 One’s-complement (bit-wise negation)

Before Execution

567812345

A2 A1 A0

0300SR

After Execution

5678EDCB5

A2 A1 A0

0300SR

LF * * * * * I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A-140 DSP56800 Family Manual �

NOTC Logical Complement with Carry NOTC
Operation: Assembler Syntax:

X:<ea> → X:(ea) NOTC X:<ea>
D → D NOTC D

Implementation Note:
This instruction is an alias to the BFCHG instruction, and assembles as BFCHG with the 16-bit imme-
diate mask set to $FFFF. This instruction will disassemble as a BFCHG instruction.

Description: Take the one’s complement of the destination operand (D), and store the result in the destination. This
instruction is a 16-bit operation. If the destination is a 36-bit accumulator, the one’s-complement is
performed on bits 31–16 of the accumulator. The remaining bits of the destination accumulator are not
affected. C is also modified as described in following discussion.

Example:

NOTC R2

Explanation of Example:
Prior to execution, the R2 register contains the value $CAA3. Execution of the instruction comple-
ments the value in R2. C is modified as described in following discussion.

Condition Codes Affected:

For destination operand SR:
? — Changed if specified in the field

For other destination operands:
C — Set if the value equals $FFFF before the complement

Before Execution

CAA3R2

3456SR

After Execution

355CR2

3456SR

LF * * * * * I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

� Instruction Set Details A-141

NOTC Logical Complement with Carry NOTC
Instruction Fields:

Timing: Refer to the preceding Instruction Fields table

Memory: Refer to the preceding Instruction Fields table

Operation Operands C W Comments

NOTC DDDDD 4 2 One’s-complement (bit-wise negation).

All registers in DDDDD are permitted except HWS.

X:aa represents a 6-bit absolute address. Refer to
Absolute Short Address (Direct Addressing):
<aa> on page 4-22.

X:pp represents a 6-bit absolute I/O address. Refer
to I/O Short Address (Direct Addressing): <pp>
on page 4-23.

X:(R2+xx) 6 2

X:(SP-xx) 6 2

X:aa 4 2

X:pp 4 2

X:xxxx 6 3

A-142 DSP56800 Family Manual �

OR Logical Inclusive OR OR
Operation: Assembler Syntax:
S + D → D (no parallel move) OR S,D (no parallel move)
S + D[31:16] → D[31:16] (no parallel move) OR S,D (no parallel move)

where + denotes the logical inclusive OR operator

Description: Logically OR the source operand (S) with the destination operand (D) and store the result in the desti-
nation. This instruction is a 16-bit operation. If the destination is a 36-bit accumulator, the source is
ORed with bits 31–16 of the accumulator. The remaining bits of the destination accumulator are not
affected.

Usage: This instruction is used for the logical OR of two registers. If it is desired to OR a 16-bit immediate
value with a register or memory location, then the ORC instruction is appropriate.

Example:

OR Y1,B ; OR Y1 with B

Explanation of Example:
Prior to execution, the 16-bit Y1 register contains the value $FF00, and the 36-bit B accumulator con-
tains the value $0:1234:5678. The OR Y1,B instruction logically ORs the 16-bit value in the Y1 reg-
ister with B1 and stores the 36-bit result in the B accumulator.

Condition Codes Affected:

N — Set if bit 31 of A or B result is set
Z — Set if bits 31–16 of A or B result are zero
V — Always cleared

Before Execution

567812340

B2 B1 B0

FF00Y1

After Execution

5678FF340

B2 B1 B0

FF00Y1

LF * * * * * I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

� Instruction Set Details A-143

OR Logical Inclusive OR OR
Instruction Fields:

Timing: 2 oscillator clock cycles

Memory: 1 program word

Operation Operands C W Comments

OR DD,FDD 2 1 16-bit logical OR

F1,DD

A-144 DSP56800 Family Manual �

ORC Logical Inclusive OR Immediate ORC
Operation: Assembler Syntax:
#xxxx + X:<ea> → X:<ea> ORC #iiii,X:<ea>
#xxxx + D → D ORC #iiii,D

where + denotes the logical inclusive OR operator

Implementation Note:
This instruction is an alias to the BFSET instruction, and assembles as BFSET with the 16-bit imme-
diate value used as the bit mask. This instruction will disassemble as a BFSET instruction.

Description: Logically OR a 16-bit immediate data value with the destination operand (D) and store the results back
into the destination. C is also modified as described in following discussion. This instruction performs
a read-modify-write operation on the destination and requires two destination accesses.

Example:

ORC #$5050,X:<<$7C30; OR with immediate data

Explanation of Example:
Prior to execution, the 16-bit X memory location X:$7C30 contains the value $00AA. Execution of the
instruction tests the state of bits 14, 12, 6, and 4 in X:$7C30; does not set C (because all these bits were
not set); and then sets the bits.

Condition Codes Affected:

For destination operand SR:
? — Set as defined in the field and if specified in the field

For other destination operands:
C — Set if all bits specified by the mask are set

Before Execution

00AAX:$7C30

0300SR

After Execution

50FAX:$7C30

0300SR

LF * * * * * I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

� Instruction Set Details A-145

ORC Logical Inclusive OR Immediate ORC
Instruction Fields:

Timing: Refer to the preceding Instruction Fields table

Memory: Refer to the preceding Instruction Fields table

Operation Operands C W Comments

ORC #xxxx,DDDDD 4 2 16-bit logical OR of immediate data.

All registers in DDDDD are permitted except HWS.

X:aa represents a 6-bit absolute address. Refer to
Absolute Short Address (Direct Addressing):
<aa> on page 4-22.

X:pp represents a 6-bit absolute I/O address. Refer
to I/O Short Address (Direct Addressing): <pp>
on page 4-23.

#xxxx,X:(R2+xx) 6 2

#xxxx,X:(SP-xx) 6 2

#xxxx,X:aa 4 2

#xxxx,X:pp 4 2

#xxxx,X:xxxx 6 3

A-146 DSP56800 Family Manual �

POP Pop from Stack POP
Operation: Assembler Syntax:
X:(SP) → D POP D
SP-1 → SP

Description: Read one location from the software stack into a destination register (D) and post-decrement the SP.

Implementation Note:
This instruction is implemented by the assembler using either a MOVE or LEA instruction, depending
on the form. When a destination register is specified, a MOVE (SP)-,<register> instruction is
assembled. When no destination register is specified, POP assembles as LEA (SP)-. The instruction
will always disassemble as either MOVE or LEA.

Example:

POP LC

Explanation of Example:
Prior to execution, the LC register contains the value $0099, and the SP contains the value $0100. The
POP instruction reads from the location in X data memory pointed to by the SP and places this value
in the LC register. The SP is then decremented after the read from memory.

Condition Codes Affected:

The condition codes are not affected by this instruction.

Instruction Fields:

Timing: 2 oscillator clock cycles

Memory: 1 program word

Operation Operands C W Comments

POP Any register 2 1 Pop a single stack location

(No register
specified)

2 1 Simply decrements the SP

Before Execution

AAAAX:$0100

0099LC

After Execution

AAAAX:$0100

AAAALC

0100SP 00FFSP

� Instruction Set Details A-147

REP Repeat Next Instruction REP
Operation: Assembler Syntax:
LC → TEMP; #xx → LC REP #xx
Repeat next instruction until LC = 1
TEMP → LC

LC → TEMP; S → LC REP S
Repeat next instruction until LC = 1
TEMP → LC

Description: Repeat the single word instruction immediately following the REP instruction the specified number of
times. The value specifying the number of times the given instruction is to be repeated is loaded into
the 13-bit LC register. The contents of the 13-bit LC register are treated as unsigned (that is, always
positive). The single word instruction is then executed the specified number of times, decrementing
the LC after each execution until LC equals one. When the REP instruction is in effect, the repeated
instruction is fetched only one time, and it remains in the instruction register for the duration of the
loop count. Thus, the REP instruction is not interruptible. The contents of the LC register upon entering
the REP instruction are stored in an internal temporary register and are restored into the LC register
upon exiting the REP loop. If LC is set equal to zero, the instruction is not repeated and execution con-
tinues with the instruction immediately following the instruction that was to be repeated. The instruc-
tion’s effective address specifies the address of the value that is to be loaded into the LC.

The REP instruction allows all registers on the DSP core to specify the number of loop iterations except
for the following: M01, HWS, OMR, and SR. If immediate short data is instead used to specify the
loop count, the 6 LSBs of the LC register are loaded from the instruction and the upper 7 MSBs are
cleared.

Note: If the A or B accumulator is specified as a source operand, and the data out of the accumulator indicates
that extension is in use, the value to be loaded into the LC register will be limited to a 16-bit maximum
positive or negative saturation constant. If positive saturation occurs, the limiter places $7FFF onto the
bus, and the lower 13 bits of this value are all ones. The 13 ones are loaded into the LC register as the
maximum unsigned positive loop count allowed. If negative saturation occurs, the limiter places $8000
onto the bus, and the lower 13 bits of this value are all zeros. The 13 zeros are loaded into the LC reg-
ister, specifying a loop count of zero. The A and B accumulators remain unchanged.

Note: Once in progress, the REP instruction and the REP loop may not be interrupted until completion of the
REP loop.

Restrictions:
The REP instruction can repeat any single word instruction except the REP instruction itself and any
instruction that changes program flow. The following instructions are not allowed to follow a REP in-
struction:

Any instruction that occupies multiple words
DO Bcc, Jcc
BRCLR, BRSET BRA, JMP
MOVEM JSR
REP RTI
RTS STOP, WAIT
SWI, DEBUG Tcc

Also, a REP instruction cannot be the last instruction in a DO loop (at the LA). The assembler will
generate an error if any of the preceding instructions are found immediately following a REP instruc-
tion.

A-148 DSP56800 Family Manual �

REP Repeat Next Instruction REP
Example:

REP X0 ; repeat (X0) times
INCW Y1 ; increment the Y1 register

Explanation of Example:
Prior to execution, the 16-bit X0 register contains the value $0003, and the 16-bit LC register contains
the value $00A5. Execution of the REP X0 instruction takes the lower 13 bits of the value in the X0
register and stores it in the 13-bit LC register. Then, the single word INCW instruction immediately
following the REP instruction is repeated $0003 times. The contents of the LC register before the REP
loop are restored upon exiting the REP loop.

Example:

REP X0 ; repeat (X0) times
INCW Y1 ; increment the Y1 register
ASL Y1 ; multiply the Y1 register by 2

Explanation of Example:
Prior to execution, the 16-bit X0 register contains the value $0000, and the 16-bit LC register contains
the value $00A5. Execution of the REP X0 instruction takes the lower 13 bits of the value in the X0
register and stores it in the 13-bit LC register. Since the loop count is zero, the single word INCW in-
struction immediately following the REP instruction is skipped and execution continues with the ASL
instruction. The contents of the LC register before the REP loop are restored upon exiting the REP
loop.

Before Execution

0003X0

0000Y1

After Execution

0003X0

0003Y1

00A5LC 00A5LC

Before Execution

0000X0

0005Y1

After Execution

0000X0

000AY1

00A5LC 00A5LC

� Instruction Set Details A-149

REP Repeat Next Instruction REP
Condition Codes Affected:

L — Set if data limiting occurred using A or B as source operands

Instruction Fields:

Timing: 6 oscillator clock cycles

Memory: 1 program word

Operation Operands C W Comments

REP #xx 6 1 Hardware repeat of a one-word instruction with
immediate loop count

DDDDD 6 1 Hardware repeat of a one-word instruction with loop
count specified in register

Any register allowed except: SP, M01, SR, OMR,
and HWS

LF * * * * * I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A-150 DSP56800 Family Manual �

RND Round Accumulator RND
Operation: Assembler Syntax:
D + r → D (parallel move) RND D (parallel move)

Description: Round the 36-bit value in the specified destination operand (D), store the result in the EXT and MSPs
of the destination accumulator (A2:A1 or B2:B1), and clear the LSP of the accumulator. This instruc-
tion uses the rounding technique selected by the R bit in the OMR. When the R bit in OMR is cleared
(default mode), convergent rounding is selected; when the R bit is set, two’s-complement rounding is
selected. The rounding constant is added into bit 15 of the destination. Refer to Section 3.5, “Round-
ing,” on page 3-30 for more information about the rounding modes.

Example:

RND A ; round A accumulator into A2:A1, zero A0

Explanation of Example:
Prior to execution, the 36-bit A accumulator contains the value $5:1236:789A for Case I, the value
$0:1236:8000 for Case II and the value $0:1235:8000 for Case III. Execution of the RND A instruction
rounds the value in the A accumulator into the MSP of the A accumulator (A1) and then zeros the LSP
of the A accumulator (A0). The example is given assuming that the convergent rounding is selected.
Case II is the special case that distinguishes convergent rounding from the two’s-complement round-
ing, since it clears the LSB of the MSP after the rounding operation is performed.

After Execution

5 1236 0000

A2 A1 A0

Before Execution

5 1236 789A

A2 A1 A0

After Execution

0 1236 0000

A2 A1 A0

Before Execution

0 1236 8000

A2 A1 A0

After Execution

0 1236 0000

A2 A1 A0

Before Execution

0 1235 8000

A2 A1 A0

I

II

III

� Instruction Set Details A-151

RND Round Accumulator RND
Condition Codes Affected:

SZ — Set according to the standard definition of the SZ bit (parallel move)
L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of A or B result is in use
U — Set according to the standard definition of the U bit
N — Set if bit 35 of A or B result is set except during saturation
Z — Set if A or B result equals zero
V — Set if overflow has occurred in A or B result

Note: If the CC bit is set and bit 31 of the result is set, then N is set. If the CC bit is set and bits 31–0 of the
result equal zero, then Z is set. The rest of the bits are unaffected by the setting of the CC bit.

Instruction Fields:

Timing: 2 + mv oscillator clock cycles

Memory: 1 program word

Operation Operands C W Comments

RND F 2 1 Round

Data ALU Operation Parallel Memory Read or Write

Operation Registers Memory Access Source or Destination

RND A
B

X:(Rn)+
X:(Rn)+N

X0
Y1
Y0
A1
B1
A
B

LF * * * * * I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A-152 DSP56800 Family Manual �

ROL Rotate Left ROL
Operation: Assembler Syntax:
(see following figure) ROL D

Description: Logically shift 16 bits of the destination operand (D) 1 bit to the left, and store the result in the desti-
nation. If the destination is a 36-bit accumulator, the result is stored in the MSP of the accumulator (A1
or B1), and the remaining portions of the accumulator (A2, B2, A0, and B0) are not modified. The
MSB of the destination (bit 31 if the destination is a 36-bit accumulator) prior to the execution of the
instruction is shifted into C, and the previous value of C is shifted into the LSB of the destination (bit
16 if the destination is a 36-bit accumulator).

Example:

ROL A ; rotate A1 left 1 bit

Explanation of Example:
Prior to execution, the 36-bit A accumulator contains the value $F:0001:00AA. Execution of the
ROL A instruction shifts the 16-bit value in the A1 register 1 bit to the left, shifting bit 31 into C, ro-
tating C into bit 16, and storing the result back in the A1 register.

C (parallel move)

D0D2 D1

UnchangedUnch.

Before Execution

00AA0000F

B2 B1 B0

0001SR

After Execution

00AA0001F

B2 B1 B0

0000SR

� Instruction Set Details A-153

ROL Rotate Left ROL
Condition Codes Affected:

N — Set if bit 31 of A or B result is set
Z — Set if bits 31–16 of A or B result are zero
V — Always cleared
C — Set if bit 31 of A or B was set prior to the execution of the instruction

Instruction Fields:

Timing: 2 oscillator clock cycles

Memory: 1 program word

Operation Operands C W Comments

ROL FDD 2 1 Rotate 16-bit register left by 1 bit through the carry
bit

LF * * * * * I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A-154 DSP56800 Family Manual �

ROR Rotate Right ROR
Operation: Assembler Syntax:
(see following figure) ROR D
:

Description: Logically shift 16 bits of the destination operand (D) 1 bit to the right and store the result in the desti-
nation. If the destination is a 36-bit accumulator, the result is stored in the MSP of the accumulator (A1
or B1), and the remaining portions of the accumulator (A2, B2, A0, and B0) are not modified. The LSB
of the destination (bit 16 if the destination is a 36-bit accumulator) prior to the execution of the instruc-
tion is shifted into C, and the previous value of C is shifted into the MSB of the destination (bit 31 if
the destination is a 36-bit accumulator).

Example:

ROR B ; rotate B1 right 1 bit

Explanation of Example:
Prior to execution, the 36-bit B accumulator contains the value $F:0001:00AA. Execution of the
ROR B instruction shifts the 16-bit value in the B1 register 1 bit to the right, shifting bit 16 into C,
rotating C into bit 31, and storing the result back in the B1 register.

C (parallel move)

D0D2 D1

UnchangedUnch.

Before Execution

00AA0001F

B2 B1 B0

0000SR

After Execution

00AA0000F

B2 B1 B0

0005SR

� Instruction Set Details A-155

ROR Rotate Right ROR
Condition Codes Affected:

N — Set if bit 31 of A or B result is set
Z — Set if bits 31–16 of A or B result are zero
V — Always cleared
C — Set if bit 16 of A or B was set prior to the execution of the instruction

Instruction Fields:

Timing: 2 oscillator clock cycles

Memory: 1 program word

Operation Operands C W Comments

ROR FDD 2 1 Rotate 16-bit register right by 1 bit through the carry
bit

LF * * * * * I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A-156 DSP56800 Family Manual �

RTI Return from Interrupt RTI
Operation: Assembler Syntax:
X:(SP) → SR; SP-1→ SP RTI
X:(SP) → PC; SP-1→ SP

Description: Pull the SR and the PC from the software stack. The previous PC is lost.

Example:

RTI ; pull the SR and PC registers from the stack

Explanation of Example:
The RTI instruction pulls the 16-bit PC and the 16-bit SR from the stack and updates the system SP.
Program execution continues at $754C.

Restrictions:
Due to pipelining in the program controller and the fact that the RTI instruction accesses certain pro-
gram controller registers, the RTI instruction must not be immediately preceded by any of the follow-
ing instructions:

MOVE(C) to the SP
Any bit-field instruction performed on the SR

An RTI instruction cannot be the last instruction in a DO loop (at the LA).
An RTI instruction cannot be repeated using the REP instruction.

Before Execution

$1300X:$0100

$0309SR

After Execution

$1300X:$0100

1300SR

$0100SP $00FESP

$754CX:$00FF$754CX:$00FF

� Instruction Set Details A-157

RTI Return from Interrupt RTI
Condition Codes Affected:

LF — Set according to the value pulled from the stack
I1 — Set according to the value pulled from the stack
I0 — Set according to the value pulled from the stack
SZ — Set according to the value pulled from the stack
L — Set according to the value pulled from the stack
E — Set according to the value pulled from the stack
U — Set according to the value pulled from the stack
N — Set according to the value pulled from the stack
Z — Set according to the value pulled from the stack
V — Set according to the value pulled from the stack
C — Set according to the value pulled from the stack

Instruction Fields:

Timing: 10 + rx oscillator clock cycles

Memory: 1 program word

Operation Operands C W Comments

RTI 10 1 Return from interrupt, restoring 16-bit PC and SR
from the stack

LF * * * * * I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A-158 DSP56800 Family Manual �

RTS Return from Subroutine RTS
Operation: Assembler Syntax:
X:(SP) → SR (bits 10-14); SP-1→ SP RTS
X:(SP) → PC; SP-1→ SP

Description: Return from a call to a subroutine. To perform the return, RTS pulls and discards the previously pushed
SR (except bits 10-14); the remaining SR bits are unaffected. It then pops the PC from the software
stack. The previous PC is lost. At the end of the execution, SP points to the previously used location
before entering the subroutine.

Example:

RTS ; pull SR (bits 10-14) and PC from the stack

Explanation of Example:
The example makes the assumption that during entry of the subroutine, only the LF bit (SR bit 15) is
on. During execution of the subroutine, the C and N bits were set. To perform the return, RTS restores
bits 10-14 of the SR and pops the 16-bit PC from the software stack, and updates the SP. Program ex-
ecution continues at $754C.

Restrictions:
Due to pipelining in the program controller and the fact that the RTS instruction accesses certain pro-
gram controller registers, the RTS instruction must not be immediately preceded by any of the follow-
ing instructions:

MOVE(C) to the SP

An RTS instruction cannot be the last instruction in a DO loop (at the LA).
An RTS instruction cannot be repeated using the REP instruction.

Manipulation of bits 10-14 in the stack location corresponding to the SR register may generate unwant-
ed behavior. These bits will read as zero during DSP read operations and should be written as zero to
ensure future compatibility.

Condition Codes Affected:
The condition codes are not affected by this instruction.

Instruction Fields:

Timing: 10 + rx oscillator clock cycles

Memory: 1 program word

Operation Operands C W Comments

RTS 10 1 Return from subroutine, restoring 16-bit PC from the
stack

Before Execution

$8000X:$0100

$8009SR

After Execution

$8000X:$0100

8009SR

$0100SP $00FESP

$754CX:$00FF$754CX:$00FF

� Instruction Set Details A-159

SBC Subtract Long with Carry SBC
Operation: Assembler Syntax:
D - S - C → D (no parallel move) SBC S,D (no parallel move)

Description: Subtract the source operand (S) and C of the CCR from the destination operand (D) and store the result
in the destination accumulator. Long words (32 bits) are subtracted from the 36-bit destination accu-
mulator.

Usage: This instruction is typically used in multi-precision subtraction operations (see Section 3.3.8.1,
“Multi-Precision Addition and Subtraction,” on page 3-23) when it is necessary to subtract two num-
bers that are larger than 32 bits, such as 64-bit or 96-bit subtraction.

Example:

SBC Y,A

Explanation of Example:
Prior to execution, the 32-bit Y register (comprised of the Y1 and Y0 registers) contains the value
$3FFF:FFFE, and the 36-bit accumulator contains the value $0:4000:0000. In addition, C is set to one.
The SBC instruction automatically sign extends the 32-bit Y registers to 36-bits and subtracts this val-
ue from the 36-bit accumulator. In addition, C is subtracted from the LSB of this 36-bit addition. The
36-bit result is stored back in the A accumulator, and the conditions codes are set correctly. The Y1:Y0
register pair is not affected by this instruction.

Note: C is set correctly for multi-precision arithmetic using long-word operands only when the extension reg-
ister of the destination accumulator (A2 or B2) contains sign extension of bit 31 of the destination ac-
cumulator (A or B).

Before Execution

000040000

A2 A1 A0

0301SR

FFFE3FFFY

Y1 Y0

After Execution

000100000

A2 A1 A0

0310SR

FFFE3FFFY

Y1 Y0

A-160 DSP56800 Family Manual �

SBC Subtract Long with Carry SBC
Condition Codes Affected:

L — Set if overflow has occurred in result
E — Set if the signed integer portion of A or B result is in use
U — Set according to the standard definition of the U bit
N — Set if bit 35 of A or B result is set except during saturation
Z — Set if A or B result equals zero; cleared otherwise
V — Set if overflow has occurred in A or B result
C — Set if a carry (or borrow) occurs from bit 35 of A or B result

Instruction Fields:

Timing: 2 oscillator clock cycles

Memory: 1 program word

Operation Operands C W Comments

SBC Y,F 2 1 Subtract with carry (set C bit also)

LF * * * * * I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

� Instruction Set Details A-161

STOP Stop Instruction Processing STOP
Operation: Assembler Syntax:

Enter the stop processing state STOP

Description: Enter the stop processing state. All activity in the processor is suspended until the RESET pin is as-
serted, the IRQA pin is asserted, or an on-chip peripheral asserts a signal to exit the stop processing
state. The stop processing state is a very low-power standby mode where all clocks to the DSP core,
as well as the clocks to many of the on-chip peripherals such as serial ports, are gated off. It is still
possible for timers to continue to run in stop state. In these cases the timers can be individually powered
down at the peripheral itself for lower power consumption. The clock oscillator can also be disabled
for lowest power consumption.

When the exit from the stop state is caused by a low level on the RESET pin, then the processor enters
the reset processing state. The time to recover from the stop state using RESET will depend on a clock
stabilization delay controlled by the stop delay (SD) bit in the OMR.

When the exit from the stop state is caused by a low level on the IRQA pin, then the processor will
service the highest priority pending interrupt and will not service the IRQA interrupt unless it is highest
priority. The interrupt will be serviced after an internal delay counter counts 524,284 clock phases (that
is, [219-4]T) or 28 clock phases (that is, [25-4]T) of delay if the SD bit is set to one. During this clock
stabilization count delay, all peripherals and external interrupts are cleared and re-enabled/arbitrated
at the start of the 17T period following the count interval. The processor will resume program execu-
tion at the instruction following the STOP instruction (the one that caused the entry into the stop state)
after the interrupts have been serviced or, if no interrupt was pending, immediately after the delay
count plus 17T. If the IRQA pin is asserted when the STOP instruction is executed, the internal delay
counter will be started. Refer to Section 7.5, “Stop Processing State,” on page 7-19 for details on the
stop mode.

Restrictions:
A STOP instruction cannot be repeated using the REP instruction.
A STOP instruction cannot be the last instruction in a DO loop (that is, at the LA).

Example:

STOP ; enter low-power standby mode

Explanation of Example:
The STOP instruction suspends all processor activity until the processor is reset or interrupted as pre-
viously described. The STOP instruction puts the processor in a low-power standby mode. No new in-
structions are fetched until the processor exits the STOP processing state.

Condition Codes Affected:
The condition codes are not affected by this instruction.

Instruction Fields:

Timing: The STOP instruction disables internal distribution of the clock. The time to exit the stop state depends
on the value of the SD bit.

Memory: 1 program word

Operation Operands C W Comments

STOP N/A 1 Enter STOP low-power mode

A-162 DSP56800 Family Manual �

SUB Subtract SUB
Operation: Assembler Syntax:
D - S → D (parallel move) SUB S,D (parallel move)

D - S → D (two parallel reads) SUB S,D (two parallel reads)

Description: Subtract the source operand (S) from the destination operand (D), and store the result in the destination
operand. Words (16 bits), long words (32 bits), and accumulators (36 bits) may be subtracted from the
destination.

Usage: This instruction can be used for both integer and fractional two’s-complement data.

Example:

SUB X0,A X:(R2)+N,X0; 16-bit subtract, load X0, update R2

Explanation of Example:
Prior to execution, the 16-bit X0 register contains the value $0003 and the 36-bit A accumulator con-
tains the value $0:0058:1234. The SUB instruction automatically appends the 16-bit value in the X0
register with 16 LS zeros, sign extends the resulting 32-bit long word to 36 bits, and subtracts the result
from the 36-bit A accumulator. Thus, 16-bit operands are always subtracted from the MSP of A or B
(A1 or B1) with the results correctly extending into the extension register (A2 or B2).

Operands of 16 bits can be subtracted from the LSP of A or B (A0 or B0). This can be achieved using
the Y register. When loading the 16-bit operand into Y0 and loading Y1 with the sign extension of Y0,
a 32-bit word is formed. Executing a SUB Y,A or SUB Y,B instruction generates the desired opera-
tion. Similarly, the second accumulator can also be used for the source operand.

Note: Bit C is set correctly using word or long word source operands if the extension register of the destina-
tion accumulator (A2 or B2) contains sign extension from bit 31 of the destination accumulator (A or
B). C is always set correctly using accumulator source operands.

Before Execution

123400580

A2 A1 A0

0003X0

After Execution

123400550

A2 A1 A0

3456X0

� Instruction Set Details A-163

SUB Subtract SUB
Condition Codes Affected:

SZ — Set according to the standard definition of the SZ bit (parallel move)
L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of A or B result is in use
U — Set according to the standard definition of the U bit
N — Set if bit 35 of A or B result is set except during saturation
Z — Set if A or B result equals zero
V — Set if overflow has occurred in A or B result
C — Set if a carry (or borrow) occurs from bit 35 of A or B result

See Section 3.6.5, “16-Bit Destinations,” on page 3-35 for cases with X0, Y0, or Y1 as D.
See Section 3.6.2, “36-Bit Destinations—CC Bit Set,” on page 3-34 and Section 3.6.4, “20-Bit Desti-
nations—CC Bit Set,” on page 3-34 for the case when the CC bit is set.

Instruction Fields:

Operation Operands C W Comments

SUB DD,FDD 2 1 36-bit subtract of two registers. 16-bit source regis-
ters are first sign extended internally and concate-
nated with 16 zero bits to form a 36-bit operand.F1,DD

~F,F

Y,F

X:(SP-xx),FDD 6 1 Subtract memory word from register.

X:aa represents a 6-bit absolute address. Refer to
Absolute Short Address (Direct Addressing):
<aa> on page 4-22.

X:aa,FDD 4 1

X:xxxx,FDD 6 2

#xx,FDD 4 1 Subtract an immediate value 0–31

#xxxx,FDD 6 2 Subtract a signed 16-bit immediate

Data ALU Operation Parallel Memory Read or Write

Operation Registers Memory Access Source or Destination

SUB X0,F
Y1,F
Y0,F

A,B
B,A

(F = A or B)

X:(Rn)+
X:(Rn)+N

X0
Y1
Y0
A
B

A1
B1

LF * * * * * I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A-164 DSP56800 Family Manual �

SUB Subtract SUB

Timing: 2 + mv oscillator clock cycles for SUB instructions with a parallel move
Refer to previous tables for SUB instructions without a parallel move

Memory: 1 program word for SUB instructions with a parallel move
Refer to previous tables for SUB instructions without a parallel move

Data ALU
Operation

First and Second Memory
Reads

Destinations for Memory
Reads

Operation Registers Read1 Read2 Destination1 Destination2

SUB X0,A
Y1,A
Y0,A

X0,B
Y1,B
Y0,B

X:(R0)+
X:(R0)+N

X:(R1)+
X:(R1)+N

X:(R3)+
X:(R3)-

Y0 X0

Y1 X0

Valid
destinations
for Read1

Valid
destinations
for Read2

� Instruction Set Details A-165

SWI Software Interrupt SWI
Operation: Assembler Syntax:
Begin SWI exception processing SWI

Description: Suspend normal instruction execution and begin SWI exception processing. The interrupt priority lev-
el, specified by the I1 and I0 bits in the SR, is set to the highest interrupt priority level upon entering
the interrupt service routine.

Example:

SWI ; begin SWI exception processing

Explanation of Example:
The SWI instruction suspends normal instruction execution and initiates SWI exception processing.

Restrictions:
A SWI instruction cannot be repeated using the REP instruction.

Condition Codes Affected:
The condition codes are not affected by this instruction.

Instruction Fields:

Timing: 8 oscillator clock cycles

Memory: 1 program word

Operation Operands C W Comments

SWI 8 1 Execute the trap exception at the highest interrupt
priority level, level 1 (non-maskable)

A-166 DSP56800 Family Manual �

Tcc Transfer Conditionally Tcc
Operation: Assembler Syntax:
If cc, then S → D Tcc S,D

If cc, then S → D and R0 → R1 Tcc S,D R0,R1

Description: Transfer data from the specified source register (S) to the specified destination accumulator (D) if the
specified condition is true. If a second source register R0 and a second destination register R1 are also
specified, transfer data from address register R0 to address register R1 if the specified condition is true.
If the specified condition is false, a NOP is executed.

Usage: When used after the CMP instruction, the Tcc instruction can perform many useful functions such as
a “maximum value” or “minimum value” function. The desired value is stored in the destination accu-
mulator. If address register R0 is used as an address pointer into an array of data, the address of the
desired value is stored in the address register R1. The Tcc instruction may be used after any instruction
and allows efficient searching and sorting algorithms.

The term “cc” specifies the following:

Note: This instruction is considered to be a move-type instruction. Due to pipelining, if an address register
(R0 or R1 for the Tcc instruction) is changed using a move-type instruction, the new contents of the
destination address register will not be available for use during the following instruction (that is, there
is a single-instruction-cycle pipeline delay).

“cc” Mnemonic Condition

CC (HS*)— carry clear (higher or same) C=0

CS (LO*)— carry set (lower) C=1

EQ — equal Z=1

GE — greater than or equal N ⊕ V=0

GT — greater than Z+(N ⊕ V)=0

LE — less than or equal Z+(N ⊕ V)=1

LT — less than N ⊕ V=1

NE — not equal Z=0

* Only available when CC bit set in the OMR

+ denotes the logical OR operator,
⊕ denotes the logical exclusive OR operator

� Instruction Set Details A-167

Tcc Transfer Conditionally Tcc
Example:

CMP X0,A ; compare X0 and A (sort for minimum)
TGT X0,A R0,R1; transfer X0 → A and R0 → R1 if X0 < A

Explanation of Example:
In this example, the contents of the 16-bit X0 register are transferred to the 36-bit A accumulator, and
the contents of the 16-bit R0 address register are transferred to the 16-bit R1 address register if the
specified condition is true. If the specified condition is not true, a NOP is executed.

Condition Codes Affected:
The condition codes are tested but not modified by this instruction.

Instruction Fields:

Timing: 2 oscillator clock cycles

Memory: 1 program word

Operation
Data ALU Transfer AGU Transfer

C W Comments
Source Destination Source Destination

Tcc DD F (No transfer) 2 1 Conditionally transfer one
register

A B (No transfer) 2 1

B A (No transfer) 2 1

DD F R0 R1 2 1 Conditionally transfer one
data ALU register and one
AGU register

A B R0 R1 2 1

B A R0 R1 2 1

Note: The Tcc instruction does not allow the following condition codes: HI, LS, NN, and NR.

A-168 DSP56800 Family Manual �

TFR Transfer Data ALU Register TFR
Operation: Assembler Syntax:
S → D (parallel move) TFR S,D (parallel move)

Description: Transfer data from the specified source data ALU register (S) to the specified destination data ALU
accumulator (D). The TFR instruction can be used to move the full 36-bit contents of one accumulator
to the other. This transfer occurs with saturation when the saturation bit, SA, is set. The TFR instruction
only affects bits L and SZ bits in the CCR (which can be set by data movement associated with the
instruction’s parallel operations).

Usage: This instruction is very similar to a MOVE instruction but has two uses. First, it can be used to perform
a 36-bit transfer of one accumulator to another. Second, when used with a parallel move, this instruc-
tion allows a register move and a memory move to occur simultaneously in 1 instruction that executes
in 1 instruction cycle.

Example:

TFR B,A X:(R0)+,Y1 ; move B to A and update Y1, R0

Explanation of Example:
Prior to execution, the 36-bit A accumulator contains the value $3:0123:0123 and the 36-bit B accu-
mulator contains the value $A:CCCC:EEEE. Execution of the TFR B,A instruction moves the 36-bit
value in B into the 36-bit A accumulator.

Condition Codes Affected:

SZ — Set according to the standard definition of the SZ bit (parallel move)
L — Set if data limiting has occurred during parallel move

EEEECCCCA

B2 B1 B0

EEEECCCCA

B2 B1 B0

Before Execution

012301233

A2 A1 A0

After Execution

EEEECCCCA

A2 A1 A0

LF * * * * * I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

� Instruction Set Details A-169

TFR Transfer Data ALU Register TFR
Instruction Fields:

Timing: 2 + mv oscillator clock cycles

Memory: 1 program word

Operation Operands C W Comments

TFR DD,F 2 1 Transfer register to register

A,B Transfer one accumulator to another (36-bits)

B,A

Data ALU Operation Parallel Memory Read or Write

Operation Registers Memory Access Source or Destination

TFR X0,F
Y1,F
Y0,F

A,B
B,A

F = A,B

X:(Rn)+
X:(Rn)+N

X0
Y1
Y0
A1
B1
A
B

A-170 DSP56800 Family Manual �

TST Test Accumulator TST
Operation: Assembler Syntax:
S - 0 (parallel move) TST S (parallel move)

Description: Compare the specified source accumulator (S) with zero, and set the condition codes accordingly. No
result is stored, although the condition codes are updated.

Example:

TST A X:(R0)+N,B ; set condition codes for the value
; in A, update B and R0

Explanation of Example:
Prior to execution, the 36-bit A accumulator contains the value $8:0203:0000, and the 16-bit SR con-
tains the value $0300. Execution of the TST A instruction compares the value in the A register with
zero and updates the CCR accordingly. The contents of the A accumulator are not affected.

Condition Codes Affected:

SZ — Set according to the standard definition of the SZ bit (parallel move)
L — Set if data limiting has occurred during parallel move
E — Set if the signed integer portion of A or B result is in use
U — Set according to the standard definition of the U bit
N — Set if bit 35 of A or B result is set except during saturation
Z — Set if A or B result equals zero
V — Always cleared
C — Always cleared

See Section 3.6.2, “36-Bit Destinations—CC Bit Set,” on page 3-34 and Section 3.6.4, “20-Bit Desti-
nations—CC Bit Set,” on page 3-34 for the case when the CC bit is set.

Before Execution

000002038

A2 A1 A0

0300SR

After Execution

000002038

A2 A1 A0

0338SR

LF * * * * * I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

� Instruction Set Details A-171

TST Test Accumulator TST
Instruction Fields:

Timing: 2 + mv oscillator clock cycles

Memory: 1 program word

Operation Operands C W Comments

TST F 2 1 Test 36-bit accumulator

Data ALU Operation Parallel Memory Read or Write

Operation Registers Memory Access Source or Destination

TST A
B

X:(Rn)+
X:(Rn)+N

X0
Y1
Y0
A1
B1
A
B

A-172 DSP56800 Family Manual �

TSTW Test Register or Memory TSTW
Operation: Assembler Syntax:
S - 0 (no parallel move) TSTW S (no parallel move)

Description: Compare 16 bits of the specified source register or memory location with zero, and set the condition
codes accordingly. No result is stored, although the condition codes are updated.

Example:

TSTW X:$0007 ; set condition codes using X:$0007

Explanation of Example:
Prior to execution, location X:$0007contains the value $FC00 and the 16-bit SR contains the value
$0300. Execution of the instruction compares the value in memory location X:$0007 with zero and up-
dates the CCR accordingly. The value of location X:$0007 is not affected.

Note: This instruction does not set the same set of condition codes that the TST instruction does. Both in-
structions correctly set the V, N, Z, and C bits, but TST sets the E bit and TSTW does not. This is a
16-bit test operation when done on an accumulator (A or B), where limiting is performed if appropriate
when reading the accumulator.

Condition Codes Affected:

N — Set if bit 15 (bit 31 of A or B) of result is set
Z — Set if result equals zero
V — Always cleared
C — Always cleared

Before Execution

FC00X:$0007

0300SR

After Execution

FC00X:$0007

0308SR

LF * * * * * I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

� Instruction Set Details A-173

TSTW Test Register or Memory TSTW
Instruction Fields:

Timing: Refer to the preceding Instruction Fields table

Memory: Refer to the preceding Instruction Fields table

Operation Operands C W Comments

TSTW DDDDD
(except HWS)

2 1 Test 16-bit word in register. All registers allowed
except HWS. Limiting is not performed if an accu-
mulator is specified.

X:(Rn) 2 1 Test a word in memory using appropriate address-
ing mode.

X:aa represents a 6-bit absolute address. Refer to
Absolute Short Address (Direct Addressing):
<aa> on page 4-22.

X:pp represents a 6-bit absolute I/O address. Refer
to I/O Short Address (Direct Addressing): <pp>
on page 4-23.

X:(Rn)+ 2 1

X:(Rn)- 2 1

X:(Rn+N) 4 1

X:(Rn)+N 2 1

X:(Rn+xxxx) 6 2

X:(R2+xx) 4 1

X:(SP-xx) 4 1

X:aa 2 1

X:pp 2 1

X:xxxx 4 2

(Rn)- 2 1 Test and decrement AGU register

A-174 DSP56800 Family Manual �

WAIT Wait for Interrupt WAIT
Operation: Assembler Syntax:
Disable clocks to the processor core WAIT
and enter the wait processing state.

Description: Enter the wait processing state. The internal clocks to the processor core and memories are gated off,
and all activity in the processor is suspended until an unmasked interrupt occurs. The clock oscillator
and the internal I/O peripheral clocks remain active.

When an unmasked interrupt or external (hardware) processor reset occurs, the processor leaves the
wait state and begins exception processing of the unmasked interrupt or reset condition.

Restrictions:
A WAIT instruction cannot be the last instruction in a DO loop (at the LA).
A WAIT instruction cannot be repeated using the REP instruction.

Example:

WAIT ; enter low-power mode, wait for interrupt

Explanation of Example:
The WAIT instruction suspends normal instruction execution and waits for an unmasked interrupt or
external reset to occur. No new instructions are fetched until the processor exits the wait processing
state.

Condition Codes Affected:
The condition codes are not affected by this instruction.

Instruction Fields:

Timing: If an internal interrupt is pending during the execution of the WAIT instruction, the WAIT instruction
takes a minimum of 32T cycles to execute.
If no internal interrupt is pending when the WAIT instruction is executed, the period that the DSP is
in the wait state equals the sum of the period before the interrupt or reset causing the DSP to exit the
wait state and a minimum of 28T cycles to a maximum of 31T cycles (see the appropriate data sheet).

Memory: 1 program word

Operation Operands C W Comments

WAIT n/a 1 Enter WAIT low-power mode

� DSP Benchmarks B-1

Appendix B
DSP Benchmarks
The following benchmarks illustrate source code syntax and programming techniques for the DSP56800.
The assembly language source is organized into five columns, as shown in Example B-1.

Example B-1. Source Code Layout

In each code example, the number of program words and that each instruction occupies, and the execution
time for each, is listed in the comments and summed at the end.

Table B-1 shows the number of program words and instruction cycles for each benchmark.

Label1

1.Used for program entry points and end-of-loop indication.

Opcode2

2.Indicates the data ALU, address ALU, or program-controller operation to be performed. This column must
also be included in the source code.

Operands3

3.Specifies the operands to be used by the opcode.

Data bus4

4.Specifies an optional data transfer over the data bus and the addressing mode to be used.

Comment5

5.Used for documentation purposes and does not affect the assembled code.

FIR MAC Y0,X0,A X:(R0)+,Y X:(R3)+,X0 ;Do each tap

Table B-1. Benchmark Summary

Benchmark
Execution Time

(# Icyc)

Program
Length

(# Words)

Real Correlation or Convolution (FIR Filter) 1N 9

N Complex Multiplies 6N 15

Complex Correlation or Convolution (Complex FIR) 5N 15

Nth Order Power Series (Real, Fractional Data) 1N 13

N Cascaded Real Biquad IIR Filters (Direct Form II) 6N 16

N Radix 2 FFT Butterflies 13N 17

LMS Adaptive Filter: Single Precision 3N 18

LMS Adaptive Filter: Double Precision 6N 21

LMS Adaptive Filter: Double Precision Delayed 5N 27

B-2 DSP56800 Family Manual �

B.1 Benchmark Code
The following source code lists all the “defines” for the benchmarks.

Vector Multiply-Accumulate 2N 12

Energy in a Signal 1N 7

[3x3][1x3] Matrix Multiply 20 20

[NxN][NxN] Matrix Multiply N3 + 8N2 30

N Point 3x3 2-D FIR Convolution 13N2 + 11N 41

Sine Wave Generation: Double Integration Technique 2N 13

Sine Wave Generation: Second Order Oscillator 5N 16

Array Search: Index of the Highest Signed Value 4N 10

Array Search: Index of the Highest Positive Value 2N 10

Proportional Integrator Differentiator (PID) Algorithm 6N 6

Autocorrelation Algorithm (p + 1)2 (N - p / 2) 23

page 132

opt cc

; define section

AD EQU 0

BD EQU $100

bd EQU $100

C EQU $200

c EQU $200

D EQU $300

N EQU 100

AR EQU $300

AI EQU $400

OUTPUT EQU $500

output EQU $FFF1

INPUT EQU $501

input EQU $FFF1

W EQU 0

Table B-1. Benchmark Summary (Continued)

Benchmark
Execution Time

(# Icyc)

Program
Length

(# Words)

� DSP Benchmarks B-3

B.1.1 Real Correlation or Convolution (FIR Filter)

w EQU 0

H EQU 0

XM EQU 0

state equ 0

ntaps equ $10

k equ 0

n equ 32

p equ 10

mask equ 10

image equ $40

dividend equ .25

divisor equ .5

paddr equ 0

qaddr equ 4

w1 equ 0

w2 equ 10

s equ 0

tablebase equ 0

lpc equ 8

frame equ 0

cor equ $100

shift equ $80 ; shift constant

table equ $180 ; base address of a-law table

org p:$40

; c(n) = SUM(I=0,...,N-1) { a(I) * b(n-I) }

opt cc

MOVE #AD,R0 ; 2 2

MOVE #BD,R3 ; 2 2

CLR A X:(R0)+,Y0 ; 1 1

MOVE X:(R3)+,X0 ; 1 1

REP #N ; 1 3

MAC Y0,X0,A X:(R0)+,Y0 X:(R3)+,X0 ; 1 1

RND A ; 1 1

; ________

; Total: 9 1N+11

B-4 DSP56800 Family Manual �

B.1.2 N Complex Multiplies

B.1.3 Complex Correlation Or Convolution (Complex FIR)

; cr(I) + jci(I) = (ar(I) + jai(I)) * (br(I) + jbi(I)), I=1,...,N

; cr(I) = ar(I) * br(I) - ai(I) * bi(I) Y1=ar

; ci(I) = ar(I) * bi(I) + ai(I) * br(I) Y0=ai X0=br, bi

 opt cc

MOVE #AD,R0 ; 2 2

MOVE #C-1,R2 ; 2 2

MOVE #BD,R3 ; 2 2

MOVE X:(R2),B ; dummy move!

DO #NUM,END_DO8 ; 2 3

MOVE X:(R0)+,Y1 X:(R3)+,X0 ; 1 1 get ar,br

MPY Y1,X0,A B,X:(R2)+ ; 1 1 ar*br,

; store imag

MOVE X:(R0)+,Y0 ; 1 1 get ai

MPY Y0,X0,B X:(R3)+,X0 ; 1 1 ai*br, get bi

; get bi

MACR -Y0,X0,A ; 1 1 ar*br-ai*bi

MACR Y1,X0,B A,X:(R2)+ ; 1 1 ar*bi+ai*br,

END_DO8 store real

MOVE B,X:(R2)+ ; 1 1

; _______

; Total: 15 6N+11

; cr(n) + jci(n) = SUM(I=0,...,N-1)
; { (ar(I) + jai(I)) * (br(n-I) + jbi(n-I)) }

; cr(n) = SUM(I=0,...,N-1)
; { ar(I) * br(n-I) - ai(I) * bi(n-I) }

Y0=ar Y1=br

; ci(n) = SUM(I=0,...,N-1)
; { ar(I) * bi(n-I) + ai(I) * br(n-I) }

Y0=ai X0=bi

opt cc

MOVE #AD,R0 ; 2 2

MOVE #BD,R3 ; 2 2

CLR A X:(R0)+,Y0 ; 1 1 ar

CLR B X:(R3)+,Y1 ; 1 1 br

DO #N,END_DOB ; 2 3

MAC Y0,Y1,A X:(R3)+,X0 ; 1 1 ar*br ,ai,bi

MAC Y0,X0,B X:(R0)+,Y0 ; 1 1 ar*bi

MAC Y0,Y1,B X:(R3)+,Y1 ; 1 1 ar*bi+ai*br,ar

MAC -Y0,X0,A ; 1 1 ar*br-ai*bi

MOVE X:(R0)+,Y0 ; 1 1

� DSP Benchmarks B-5

B.1.4 Nth Order Power Series (Real, Fractional Data)

B.1.5 N Cascaded Real Biquad IIR Filters (Direct Form II)
Many digital-filter design packages generate coefficients for direct form II IIR filters. Often, these
coefficients are greater in magnitude than 1.0. This implementation is suitable for IIR filters with
coefficients greater in magnitude than 1.0 because it allows the user to simply divide all coefficients
generated by 2.

END_DOB

RND A ; 1 1

RND B ; 1 1

; _______

; Total: 15 5N+11

; c = SUM(I=0,...,N) { a(I) * b**I }
; = [[[a(n) *b+a(n-1)] *b+a(n-2)]*b+a(n-3)].....

opt cc

MOVE #BD,R1 ; 2 2

MOVE #AD,R0 ; 2 2

MOVE X:(R1),Y0 ; 1 1 b

MOVE Y0,Y1 ; 1 1 b

MOVE X:(R0)+,A ; 1 1 get a(n)

MOVE X:(R0)+,B ; 1 1 get a(n-1)

DO #NUM/2,END_DOC ; 2 3

MAC A1,Y0,B X:(R0)+,A ; 1 1 get a(n-2), and
so on

MAC B1,Y1,A X:(R0)+,B ; 1 1 get a(n-3), and
so on

END_DOC

RND A ; 1 1

; _______

; Total: 13 1N+12

; w(n)/2 = x(n)/2 - (a1/2) * w(n-1) - (a2/2) * w(n-2)

; y(n)/2 = w(n)/2 + (b1/2) * w(n-1) + (b2/2) * w(n-2)

; D High Memory Order - w(n-2)1,w(n-1)1,w(n-2)2,w(n-1)2,...

; D Low Memory Order - (a2/2)1,(a1/2)1,(b2/2)1,(b1/2)1,(a2/2)2,...

; This version uses two pointers.

opt cc

MOVE #W,R0 ; 2 2

MOVE #C,R3 ; 2 2

MOVE #-1,N ; 1 1

MOVE x:input,A ; 1 1

B-6 DSP56800 Family Manual �

B.1.6 N Radix 2 FFT Butterflies
This is a decimation in time (DIT), in-place algorithm. Figure B-1 gives a graphic overview and memory
map.

ASR A X:(R3)+,X0 ; 1 1 X0=a2/2

MOVE X:(R0)+,Y0 ; 1 1 Y0=wn-2

DO #N,END_DOE ; 2 3

MAC Y0,X0,A X:(R0)+N,Y1 X:(R3)+,X0 ; 1 1 y1=wn-1

MAC Y1,X0,A Y1,X:(R0)+ ; 1 1

ASL A X:(R3)+,X0 ; 1 1 X0= b2/2

ASR A A,X:(R0)+ ; 1 1 X0=b1/2

MAC Y0,X0,A X:(R3)+,X0 ; 1 1

MAC Y1,X0,A X:(R0)+,Y0 X:(R3)+,X0 ; 1 1

END_DOE

; _______

; Total: 16 6N+11

Figure B-1. N Radix 2 FFT Butterflies Memory Map

; Twiddle Factor Wk= wr + jwi = cos(2πk/N) +j sin(2πk/N) pointed by R1
; - saved on each pass

; xr = ar + wr * br - wi * bi

; xi = ai + wi * br + wr * bi

; yr = ar - wr * br + wi * bi = 2 * ar - xr

; yi = ai - wi * br - wr * bi = 2 * ai - xi

opt cc

X=A+BW
k

Y=A-BW
k

B

A

W
k -

+

X memory
ar/xr
ai/xi

br/yr
bi/yi

cos(2πk/N)
-sin(2πk/N)

r0,r2

r3,r1

r1

yi/ai/yr/ar xi/ai/xr/ar

wr -wibi br

X0 Y0 Y1

A B

AA0079

� DSP Benchmarks B-7

B.1.7 LMS Adaptive Filter
Figure B-2 gives a graphical representation of this implementation of the LMS adaptive filter.

move x:(r1)+,y0 x:(r3)+,x0 ; y0=wr ; x0=br

move x:(r0),b ;b=ar

move x:(r1)+n,y1 ; y1=wi

; save r1, update r1 to point last bi/yi

move #0,n ; emulate X:(Rn) adr mode

do #n,end_bfly ;2 3

push x0 ;1 1 push br

mac y0,x0,b x:(r3)+,x0 ;1 1 b=ar+wrbr

macr -y1,x0,b ;1 1 b=xr

move a,x:(r1)+ ;1 1

move x:(r0)+,a ;1 1 a=ar

asl a b,x:(r2)+ ;1 1 a=2ar-xr=yr

sub b,a x:(r0)+n,b ;1 1

move a,x:(r1)+ ;1 1 b=ai

mac y0,x0,b x:(r0)+,a ;1 1 b=ai+wrbi

pop x0 ;1 1 pop br

macr y1,x0,b x:(r3)+,x0 ;1 1 b=xi ;a=ai

asl a b,x:(r2)+ ;1 1 a=2ai-xi=yi

sub b,a x:(r0)+n,b ;1 1 b=ar

end_bfly

move #xx,n ;1 1

move b,x:(r1)+n ;1 1 save last yi

; save r1,
; update r1 to point twiddle factors ________

; Total: 17 13N+9

Figure B-2. LMS Adaptive Filter Graphic Representation

T T T T

c(0)

x(n)

c(1)

x(n-1)

c(k)

x(n-K)

c(N-1)

x(n-N+1)

y(n)

e(n)d(n)

AA0080

B-8 DSP56800 Family Manual �

The following three LMS adaptive filter benchmarks are provided:

• Single precision

• Double precision

• Double precision delayed

The references for this code include the following:

• Adaptive Digital Filters and Signal Analysis, Maurice G. Bellanger (Marcel Dekker: 1987)

• “The DLMS Algorithm Suitable for the Pipelined Realization of Adaptive Filters,” Proc. IEEE
ASSP Workshop, Academia Sinica, Beijing (IEEE: 1986)

NOTE:

The sections of code shown describe how to initialize all registers, filter an
input sample, and perform the coefficient update. Only the instructions
relating to the filtering and coefficient update are shown as part of the
benchmark. Instructions executed only once (for initialization) or
instructions that may be user application dependent are not included in the
benchmark.

; Notation and symbols:

; x(n) - Input sample at time n.

; d(n) - Desired signal at time n.

; y(n) - FIR filter output at time n.

; H(n) - Filter coefficient vector at time n.
; H={c0,c1,c2,,...,ck,...,c(N-1)}

; X(n) - Filter state variable vector at time N.
; X={x(n),x(n-1),....,x(n-N+1)}

; Mu - Adaptation gain.

; N - Number of coefficient taps in the filter.

; True LMS Algorithm Delayed LMS Algorithm

; Get input sample Get input sample

; Save input sample Save input sample

; Do FIR Do FIR

; Get d(n), find e(n) Update coefficients

; Update coefficients Get d(n), find e(n)

; Output y(n) Output y(n)

; Shift vector X Shift vector X

; System equations:

; e(n)=d(n)-H(n)X(n) e(n)=d(n)-H(n)X(n) (FIR filter and error)

; H(n+1)=H(n)+uX(n)e(n) H(n+1)=H(n)+uX(n-1)e(n-1) (Coefficient update)

� DSP Benchmarks B-9

B.1.7.1 Single Precision

Figure B-3 shows a memory map for this implementation of the single-precision LMS adaptive filter.

Figure B-3. LMS Adaptive Filter—Single Precision Memory Map

opt cc

move #XM,r0 ; start of X

move #N-1,m0 ; modulo N

move #-2,n ; adjustment for filtering

movep x:input,y0 ; get input sample

move #H,r3 ; 2 2 coefficients

clr a y0,x:(r0)+ ; 1 1 save x(n)

move x:(r3)+,x0 ; 1 1 get c0

rep #N-1 ; 1 3 do fir

mac y0,x0,a x:(r0)+,y0 x:(r3)+,x0 ; 1 1

macr y0,x0,a ; 1 1 last tap

movep a,x:output ; 1 1 output fir if desired

; (Get d(n), subtract fir output, multiply by “u”, put the result in y1.

; This section is application dependent.)

move #H,r3 ; 2 2 coefficients

move r3,r1 ; 1 1 coefficients

move x:(r0)+,y0 ; 1 1 get x(n)

move x:(r3)+,a ; 1 1 a=c0

do #ntaps,_coefupdate ; 2 3 update coef.

macr y1,y0,a x:(r0)+,y0 x:(r3)+,x0 ; 1 1

tfr x0,a a,x:(r1)+ ; 1 1 copy c,

_coefupdate

move x:(r0)+n,y0 ; 1 1 update r0

; ________

; Total: 18 3N+18

X memory
x(n)

x(n-1)
.
.

x(n-N+1)

c0
c1
c1
.

c(N-1)

r0

r3,r1

AA0081

B-10 DSP56800 Family Manual �

B.1.7.2 Double Precision

Figure B-4 shows a memory map for this implementation of the double-precision LMS adaptive filter.

Figure B-4. LMS Adaptive Filter—Double Precision Memory Map

opt cc

move #XM,r0 ; start of X

move #N-1,m0 ; modulo N

move #2,n

movep x:input,y0 ; get input sample

move #H,r3 ; 1 1 ; coefficients

clr a y0,x:(r0)+ ; 1 1 ; save x(n)

move x:(r3)+n,x0 ; 1 1 ; get c0

rep #N-1 ; 1 3 ; do fir

mac x0,y0,a x:(r0)+,y0 x:(r3)+n,x0 ; 1 1 ; mac; next x

macr x0,y0,a ; 1 1 ; last tap

movep a,x:output ; output fir if desired

; (Get d(n), subtract fir output, multiply by “u”, put the result in x0.

; This section is application dependent.)

move #H,r3 ; 2 2 ; coefficients

move r3,r1 ; 1 1 ; coefficients

move x:(r0)+,y0 ; 1 1 ; get x(n)

move x:(r3)+,a ; 1 1 ; a1=c0h

move x:(r3)+,a0 ; 1 1 ; a0=col

do #ntaps,_coefupdate ; 2 3 ; update coef.

mac x0,y0,a x:(r0)+,y0 ; 1 1 u e(n) x(n)+c; fetch
x(n)

move a,x:(r1)+ ; 1 1 save updated c()h

move a0,x:(r1)+ ; 1 1 ; save updated c()l

move x:(r3)+,a ; 1 1 ; fetch next c()h

X memory
x(n)

x(n-1)
.
.

x(n-N+1)

c0h
col
c1h
c1l
.

r0

r1,r3

AA0082

� DSP Benchmarks B-11

B.1.7.3 Double Precision Delayed

Figure B-5 shows a memory map for this implementation of the double-precision delayed LMS adaptive
filter.

move x:(r3)+,a0 ; 1 1 ; fetch next c()l

_coefupdate

move #-2,n ; 1 1 ; adjustment for
; filtering

move x:(r0)+n,y0 ; 1 1 ; update r0

; _______

; Total: 21 6N+18

Figure B-5. LMS Adaptive Filter—Double Precision Delayed Memory Map

; Delayed LMS algorithm with matched coefficient and data vectors

; Algorithm runs in 5N (2 coeffs processed in each 10 cycle loop)

; Data Sample is stored in Y0 and Y1.

; Coefficient is stored in X0

; Loop Gain * Error is stored in X:(R2) (will be placed in X0).

; FIR operation done in B.

; Coeff update operation done in A.

; FIR sum = a = a +c(k)
old

*x(n-k)

; c(k)
new

 = b = c(k)
old

 -mu*e
old

 *x(n-k-1)

opt cc

move #state,r0 ; 2 2

move #ntaps,m0 ; 2 2

move #c,r3 ; 2 2

move #c-2,r1 ; 2 2

move #0,n ; 1 1 emulate (Rn) adr
mode

clr b x:(r0)+,y0 ; 1 1 y0 = x(n)

move x:(r0)+,y1 x:(r3)+,x0 ; 1 1 y1= x(n-1), x0=c0h

X memory
x(n)

x(n-1)
.

x(n-N+1)

c0h
col
c1h
c1l

r0

r1,r3

AA0083

B-12 DSP56800 Family Manual �

B.1.8 Vector Multiply-Accumulate
This code multiples a vector by a scalar and adds the result to another vector. The Y0 register holds the
scalar value. Figure B-6 gives a graphical overview and memory map for the vector multiply-accumulate
code.

do #ntaps/2,end_lms2 ; 2 3

mac y0,x0,b a,x:(r1)+ ; 1 1

move a0,x:(r1)+ ; 1 1

tfr x0,a x:(r2)+n,x0 ; 1 1

move x:(r3)+,a0 ; 1 1 a0=ckl

macr x0,y1,a x:(r0)+,y0 x:(r3)+,x0 ; 1 1 x0=c(k+1)h

mac x0,y1,b a,x:(r1)+ ; 1 1

move a0,x:(r1)+ ; 1 1

tfr x0,a x:(r2)+n,x0 ; 1 1

move x:(r3)+,a0 ; 1 1

macr x0,y0,a x:(r0)+,y1 x:(r3)+,x0 ; 1 1

end_lms2

move a,x:(r1)+ ; 1 1

move a0,x:(r1)+ ; 1 1

lea (r0)- ; 1 1

lea (r0)- ; 1 1

; _______

; Total: 27 5N+18

Figure B-6. Vector Multiply-Accumulate

opt cc

move #ad,r0 ; 2 2 point to vec a

move #bd,r3 ; 2 2 point to vec b

move #cd,r1 ; 2 2 point to vec c

c1
c2
c3

a1
a2
a3

a1
a2
a3

b1
b2
b3

c1
c2
c3

b1
b2
b3

X=

X memory
r0

r3

r1

+ y0

AA0084

� DSP Benchmarks B-13

B.1.9 Energy in a Signal
This code calculates the energy in a signal by summing together the square of each sample.

clr a x:(r3)+,x0 ; 1 1

move x:(r0)+,a ; 1 1

do #NUM,_vmac ; 2 3

mac y0,x0,a x:(r0)+,y1 x:(r3)+,x0 ; 1 1

tfr y1,a a,x:(r1)+ ; 1 1

_vmac

; _______

; Total: 12 2N+11

opt cc

move #ad,r0 ; 2 2 point to signal a

nop ; 1 1

clr a x:(r0)+,a ; 1 1

do #NUM,_energy ; 2 3

mac y0,y0,a x:(r0)+,y0 ; 1 1

_energy

; _______

; Total: 7 1N+7

B-14 DSP56800 Family Manual �

B.1.10 [3x3][1x3] Matrix Multiply
Figure B-7 gives a graphical overview and memory map for a [3x3][1x3] matrix multiply.

Figure B-7. [3x3][1x3] Matrix Multiply

opt cc

move #AD,r3 ; 2 2 point to mat a

move #bd,r0 ; 2 2 point to vec b

move #2,m0 ; 1 1 addrb mod 3

move #c,r2 ; 2 2 point to vec c

move x:(r0)+,y0 x:(r3)+,x0 ; 1 1 y0=a11; x0=b1

mpy y0,x0,a x:(r0)+,y0 x:(r3)+,x0 ; 1 1 a11*b1

mac y0,x0,a x:(r0)+,y0 x:(r3)+,x0 ; 1 1 +a12*b2

macr y0,x0,a x:(r0)+,y0 x:(r3)+,x0 ; 1 1 +a13*b3

move a,x:(r2)+ ; 1 1 store c1

mpy y0,x0,a x:(r0)+,y0 x:(r3)+,x0 ; 1 1 a21*b1

mac y0,x0,a x:(r0)+,y0 x:(r3)+,x0 ; 1 1 +a22*b2

macr y0,x0,a x:(r0)+,y0 x:(r3)+,x0 ; 1 1 +a23*b3

move a,x:(r2)+ ; 1 1 store c2

mpy y0,x0,a x:(r0)+,y0 x:(r3)+,x0 ; 1 1 a31*b1

mac y0,x0,a x:(r0)+,y0 x:(r3)+,x0 ; 1 1 +a32*b2

macr y0,x0,a ; 1 1 +a33*b3->c3

move a,x:(r2)+ ; 1 1 store c3

; _______

; Total: 20 20

c1
c2
c3

a11
a12
a13
a21
a22
a23
a31
a32
a33

b1
b2
b3

c1
c2
c3

b1
b2
b3

X=

X memory
r3

r0

r2

AA0085

a11
a21
a31

a12
a22
a32

a13
a23
a33

� DSP Benchmarks B-15

B.1.11 [NxN][NxN] Matrix Multiply
The matrix multiplications are for square NxN matrices (all elements are in row-major format). Figure B-8
gives a graphical overview and memory map of an [NxN][NxN] matrix multiply.

Figure B-8. [NxN][NxN] Matrix Multiply

opt cc

move #ad,r0 ; 2 2 point to A

move r0,y1 ; 1 1 point to current column

move #bd,r3 ; 2 2 point to B

move #c,r2 ; 2 2 output mat C

move #N,b ; 2 2 array size

move b,n ; 1 1

push lc ; 1 1

push la ; 1 1

do n,erows ; 2 3 do rows

push lc ; 1 1

push la ; 1 1

do n,ecols ; 2 3 do columns

move y1,r0 ; 1 1 copy row A

move r1,r3 ; 1 1 copy col B

clr a x:(r0)+,y0 ; 1 1 clr sum & pipe

move x:(r3)+n,x0 ; 1 1

rep #N-1 ; 1 3 sum

mac y0,x0,a x:(r0)+,y0 x:(r3)+n,x0 ; 1 1

macr y0,x0,a x:(r3)+,y0 ; 1 1 finish, next col

move a,x:(r2)+ ; 1 1 save output

a11
.

a1k
.

ak1
.

aN1
.

b11
.

b1k

c11

=

X memory
r3

r0

r2

AA0086

X

a11 .. a1k .. a1N
.

ak1 .. akk .. akN
.

aN1 .. aNk .. aNN

b11 .. b1k .. b1N
.

bk1 .. bkk .. bkN
.

bN1 .. bNk .. bNN

c11 .. c1k .. c1N
.

ck1 .. ckk .. ckN
.

cN1 .. cNk .. cNN

B-16 DSP56800 Family Manual �

ecols pop la ; 1 1

pop lc ; 1 1

add y1,b ; 1 1 next row A

move b,y1 ; 1 1

move #bd,r1 ; 2 2 first element B

erows

pop la ; 1 1

pop lc ; 1 1

; _______

; Words: Cycles:

; Total: 30 ((9+(N-1))N+10)N+12)= N
3
+8N

2
+10N+17

� DSP Benchmarks B-17

B.1.12 N Point 3x3 2-D FIR Convolution
The two-dimensional FIR uses a 3x3 coefficient mask as shown in Figure B-9.

Figure B-9. 3x3 Coefficient Mask

The image is an array of 512 pixels x 512 pixels. To provide boundary conditions for the FIR filtering, the
image is surrounded by a set of zeros such that the image is actually stored as a 514x514 array (see
Figure B-10).

Figure B-10. Image Stored as 514x514 Array

The image (with boundary) is stored in row-major storage. The first element of the array image is
image(1,1) followed by image(1,2). The last element of the first row is image(1,514) followed by the
beginning of the next column image(2,1). These are stored sequentially in the array “im” in d memory. For
example:

• Image(1,1) maps to index 0.

• Image(1,514) maps to index 513.

• Image(2,1) maps to index 514.

See Table B-2 for the definitions of r0, r2, and r3.

Although many other implementations are possible, this is a realistic type of image environment where the
actual size of the image may not be an exact power of two. Other possibilities include storing a 512x512
image but computing only a 511x511 result, computing a 512x512 result without boundary conditions but
throwing away the pixels on the border, and so on.

Table B-2. Variable Descriptions

Variable Description

r0 image(n,m) image(n,m+1) image(n,m+2)

image(n+514,m) image(n+514,m+1) image(n+514,m+2)

image(n+2*514,m) image(n+2*514,m+1) image(n+2*514,m+2)

r2 output image

r3 FIR coefficients

c11
c21
c31

c12
c22
c32

c13
c23
c33

AA0087

514

512

514

0 00

0 00

0

0

0

0

AA0088

Image

Area

B-18 DSP56800 Family Manual �

opt cc

move #coeffs,r3 ; 2 2 pt to coef.

move #image,r0 ; 2 2 top boundary

move #512,y1 ; 2 2

move #-1029,r1 ; 2 2

move #output,r2 ; 2 2 output image

move x:(r0)+,y0 x:(r3)+,x0 ; 1 1 y0=im(1,1),
x0=c11

move y1,n ; 1 1 row i to i+1
adjust

push lc ; 1 1

push la ; 1 1

do y1,rows ; 2 3

push lc ; 1 1

push la ; 1 1

do y1,cols ; 2 3

mpy y0,x0,a x:(r0)+,y0 x:(r3)+,x0 ; 1 1 im(1,1)*c11

mac y0,x0,a x:(r0)+n,y0 x:(r3)+,x0 ; 1 1 +im(1,2)*c12

mac y0,x0,a x:(r0)+,y0 x:(r3)+,x0 ; 1 1 +im(1,3)*c13

mac y0,x0,a x:(r0)+,y0 x:(r3)+,x0 ; 1 1 +im(2,1)*c21

mac y0,x0,a x:(r0)+n,y0 x:(r3)+,x0 ; 1 1 +im(2,2)*c22

move r1,n ; 1 1 row i to i-2
adjust

mac y0,x0,a x:(r0)+,y0 x:(r3)+,x0 ; 1 1 +im(2,3)*c23

mac y0,x0,a x:(r0)+,y0 x:(r3)+,x0 ; 1 1 +im(3,1)*c31

mac y0,x0,a x:(r0)+n,y0 x:(r3)+,x0 ; 1 1 +im(3,2)*c32

move #0,r3 ; 1 1 back to first
coeff

move y1,n ; 1 1 row i to i+1
adjust

macr y0,x0,a x:(r0)+,y0 x:(r3)+,x0 ; 1 1 +im(3,3)*c33

move a,x:(r2)+ ; 1 1

cols

pop la ; 1 1

pop lc ; 1 1

; adjust pointers for frame boundary

lea (r0)+ ; 1 1 adjust r0

lea (r0)+ ; 1 1

lea (r2)+ ; 1 1 adjust r2

lea (r2)+ ; 1 1

rows

� DSP Benchmarks B-19

pop la ; 1 1

pop lc ; 1 1

 ; _______

; Total: 41 13N
2
+11N+16

; Kernel: 13

B-20 DSP56800 Family Manual �

B.1.13 Sine-Wave Generation
The following two sine-wave generation benchmarks are provided:

• Double integration technique

• Second order oscillator

B.1.13.1 Double Integration Technique

Figure B-11 gives a graphical overview of the double integration technique.

Figure B-11. Sine Wave Generator—Double Integration Technique

opt cc

clr b ; 1 1

move #$4000,a ; 2 2

move #0,n ; 1 1

move #$4532,y1 ; 2 2

move #$1,r1 ; 1 1

move y1,y0 ; 1 1

do x0,loop1 ; 2 3

mac y1,b1,a b,x:(r1)+n ; 1 1

mac -y0,a1,b ; 1 1

loop1

move b,x:(r1) ; 1 1

; _______

; Total: 13 2N+12

T T

x0

sin(w
0

t)

a

a = Stored initial value which is the
desired tone amplitude

y1 = 2*sin(πFs/F0)
F0 = Oscillation Frequency
Fs = Sampling Frequency

AA0089

� DSP Benchmarks B-21

B.1.13.2 Second Order Oscillator

Figure B-12 gives a graphical overview of a second order oscillator.

Figure B-12. Sine Wave Generator—Second Order Oscillator

opt cc

clr a ; 1 1

move #$4000,y1 ; 2 2

move #$6d4b,y0 ; 2 2

move #$1,r1 ; 1 1

move #tmp,r0 ; 1 1

move #0,n ; 1 1

do x0,loop2 ; 2 3

mac -y1,y0,a ; 1 1

neg a y1,x:(r1)+n ; 1 1

mac y1,y0,a ; 1 1

move a,x:(r0)+n ; 1 1 temp storage for swap

tfr y1,a x:(r0)+n,y1 ; 1 1

loop2

move y1,x:(r1) ; 1 1

; ______

; Total: 16 5N+12

T T

x0

sin(w
0

t)

a

a = Stored initial value which
is the desired tone amplitude

x0 = 2*cos(2πFs/F0)
F0 = Oscillation Frequency
Fs = Sampling Frequency

–

AA0090

B-22 DSP56800 Family Manual �

B.1.14 Array Search
The following two array search benchmarks are provided:

• Index of the highest signed value

• Index of the highest positive value

B.1.14.1 Index of the Highest Signed Value

B.1.14.2 Index of the Highest Positive Value

opt cc

move #AD,r0 ; 2 2

clr a x:(r0)+,b ; 1 1

do #N,end_lp3 ; 2 3

abs b ; 1 1

cmp b,a ; 1 1

tle b,a r0,r1 ; 1 1

move x:(r0)+,b ; 1 1

end_lp3

lea (r1)- ; 1 1

lea (r1)- ; 1 1

; _______

; Total: 10 4N+8 (worst case)

opt cc

move #AD,r0 ; 2 2

clr a x:(r0)+,x0 ; 1 1

do #N/2,end_lp3 ; 2 3

cmp x0,a x:(r0)+,y0 ; 1 1

tle x0,a r0,r1 ; 1 1

cmp y0,a x:(r0)+,x0 ; 1 1

tle y0,a r0,r1 ; 1 1

end_lp3

lea (r1)- ; 1 1

lea (r1)- ; 1 1

; _______

; Total: 10 2N+8 (worst case)

� DSP Benchmarks B-23

B.1.15 Proportional Integrator Differentiator (PID) Algorithm
The proportional integrator differentiator (PID) algorithm is the most commonly used algorithm in control
applications. Figure B-13 gives a graphical overview and memory map of this implementation of a
proportional integrator differentiator.

Figure B-13. Proportional Integrator Differentiator Algorithm

; y(n) = y(n-1) + k0 x(n) + k1 x(n-1) + k2 x(n-2)

opt cc

move #s+2,r0 ;

move #2,m0 ; r0 mod 3

move #k,r3 ;

move x:(r0)+,b ; 1 1 get y(n-1)

move x:(r0)+,y0 x:(r3)+,y0 ; 1 1 get x(n-2),k2

mac x0,y0,b x:(r0)+,y0 x:(r3)+,y0 ; 1 1 get x(n-1),k1

mac y0,x0,b x:(r3)+,x0 ; 1 1 get k0

movep x:input,b ; 1 1 get x(n)

macr y0,x0,b ; 1 1

move b,x:(r0) ; 1 1 save y(n)

movep b,x:output ; 1 1 y(n) in b

; _________

; Total: 8 8

T T

x(n) y(n)

T

x(n-1)

x(n-2)

k2

k1

k0

y(n)=y(n-1) + k0 x(n) + k1 x(n-1) + k2 x(n-2)

k0
k1
k2

x(n-1)
x(n-2)
x(n)

X memory
r3

r0

AA0091

B-24 DSP56800 Family Manual �

B.1.16 Autocorrelation Algorithm

; A faster version of the PID

; y(n) = y(n-1) + k0 x(n) + k1 x(n-1) + k2 x(n-2)

opt cc

move #s+2,r0 ;

move #2,m0 ; r0 mod 3

move #k,r3 ;

; B accumulator holds y(n-1), Y1 holds the K0 coefficient

move x:(r0)+,y0 x:(r3)+,y0 ; 1 1 get x(n-2),k2

mac x0,y0,b x:(r0)+,y0 x:(r3)-,x0 ; 1 1 get x(n-1),k1

mac y0,x0,b ; 1 1

movep x:input,b ; 1 1 get x(n)

macr y0,x0,b b,x:(r0)+ ; 1 1 save x(n)

movep b,x:output ; 1 1 y(n) in b

; _________

; 6 6

move #cor,r1 ; 2 2

move #frame,r2 ; 2 2

do #lpc+1,_loop1 ; 2 3

move r2,r3 ; 1 1

clr b ; 1 1

move #frame,r0 ; 2 2

lea (r2)+ ; 1 1

move lc,y1 ; 1 1

move #>N-(p+1),a ; 2 2

add y1,a x:(r0)+,y0 x:(r3)+,x0 ; 1 1

rep a ; 1 3

mac y0,x0,b x:(r0)+,y0 x:(r3)+,x0 ; 1 1

move b0,x:(r1)+ ; 1 1

move b1,x:(r1)+ ; 1 1

_loop1 ; ______

; 23 (p+1)
2
(N-p/2)+15(p+1) +6

� Glossary G-1

Glossary
See Section A.1, “Notation,” on page A-1 for notations and symbols not listed here.

A/D analog-to-digital

ADM application development module

ADS application development system

AGU address generation unit

ALU arithmetic logic unit

AS accumulator shifter

BCR bus control register

BE1–BE0 breakpoint enable bits

BK4–BK0 breakpoint configuration bits

BS1–BS0 breakpoint selection bits

G-2 DSP56800 Family Manual �

C carry bit

CC condition code bit

CCR condition code register

CID chip identification register

CGDB core global data bus

CMOS complementary metal oxide semiconductor

COFF common object file format

COP computer operating properly

COPDIS COP timer disable

CPU central processing unit

CS carry bit set

D/A digital-to-analog

DAC digital-to-analog converter

DRM debug request mask bit

� Glossary G-3

DSP digital signal processor

E extension bit

EM1–EM0 event modifier bits

EX external X memory bit

EXT extension register

FH FIFO halt bit

FIFO first-in-last-out

GE greater than or equal to

GPIO general-purpose input/output

GT greater than

GUI graphical user interface

HBO hardware breakpoint occurrence

HI high

HS high or same

G-4 DSP56800 Family Manual �

HWS hardware stack

I1, I0 interrupt mask bits

IC integrated circuit

JTAG Joint Test Access Group

I/O input/output

IPL interrupt priority level

IPR interrupt priority register

K&R Kernighan and Ritchie

L limit bit

LA loop address register

LC loop counter register

LE less than or equal to

LF loop flag bit

LIFO last-in-first-out

� Glossary G-5

LO low

LS least significant; low or same

LSB least significant bit

LSP least significant portion

LT less than

MA, MB operating modes

MAC multiply-accumulate

MCU microcontroller unit

MIPS million instructions per second

MO1 modifier register

MR mode register

MS most significant

MSB most significant bit

MSP most significant portion

G-6 DSP56800 Family Manual �

N offset register

N negative bit in condition code register

NL nested looping bit

OBAR OnCE breakpoint address register

OCMDR OnCE command register

OCNTR OnCE breakpoint counter

ODEC OnCE decoder

OISR OnCE input shift register

OMAC OnCE memory address comparator

OMAL OnCE breakpoint address latch

OMR operating mode register

OPABDR OnCE PAB decode register

OPABER OnCE PAB execute register

OPABFR OnCE PAB fetch register

� Glossary G-7

OPDBR OnCE PDB register

OPGDBR Once PGDB register

OS1, OS0 OnCE status bits

OSR OnCE status register

OnCE™ On-Chip Emulation (unit)

P2–P0 program counter extension

PAB program address bus

PC program counter

PGDB peripheral global data bus

PWD power-down mode bit

PLL phase-locked loop

R rounding bit

Rn address registers (R0–R3)

SA saturation bit

G-8 DSP56800 Family Manual �

SBO software breakpoint occurrence

SD stop delay bit

SP stack pointer

SPI serial peripheral interface

SR status register

SSI synchronous serial interface

SZ size bit

TAP test access port

TO trace occurrence

U unnormalized bit

V overflow bit

WWW World Wide Web

X external

XAB1 X memory address bus one

� Glossary G-9

XAB2 X memory address bus two

XDB2 X memory data bus two

XP X/P memory bit

Z zero bit

G-10 DSP56800 Family Manual �

� Index Index-i

A

A accumulator 3-2, 3-4
A0, see A accumulator
A1, see A accumulator
A2 accumulator extension register 3-2
ABS A-28
Absolute Value ABS A-28
accumulator extension register (A2 or B2) 3-4
accumulator extension registers 3-2
accumulator registers 3-2, 3-4
accumulator shifter 3-2, 3-6
accumulator sign-extend 8-7
ADC A-30
ADD A-32
Add ADD A-32
Add Long with Carry ADC A-30
addition

fractional 3-18
multi-precision 3-23
unsigned 3-22

Address Generation Unit (AGU) 2-3, 4-1
address registers (R0-R3) 4-4
incrementer/decrementer unit 4-5
Modifier Register (M01) 4-5
modulo arithmetic unit 4-5
Offset Register (N) 4-4
Stack Pointer Register (SP) 4-4

address register indirect modes 4-7
addressing modes 4-1, 4-6, A-6
addressing modes summary 4-23
AGU, see Address Generation Unit (AGU) 4-1
ALU, see Data Arithmetic Logic Unit (ALU)
analog signal processing 1-5
analog-to-digital 1-6
AND A-35
ANDC A-36
arithmetic

division 3-21
multiplication 3-19
unsigned 3-22, 3-36

arithmetic instructions 6-6
Arithmetic Right Shift with Accumulate ASRAC A-44
Arithmetic Shift Left ASL A-38
Arithmetic Shift Right ASR A-42
array indexes 8-26
ASL A-38
ASLL A-40

ASR A-42
ASRAC A-44
ASRR A-46

B

B accumulator 3-2, 3-4
B0, see B accumulator
B1, see B accumulator
B2 accumulator extension register 3-2
barrel shifter 3-2, 3-5
Bcc A-48
BEC 8-4
benchmarks B-1
BES 8-4
BFCHG A-50
BFCLR A-52
BFSET A-54
BFTSTH A-56
BFTSTL A-58
bit-manipulation instructions 6-8
bit-manipulation unit 2-5
BLC 8-4
BLS 8-4
BMI 8-4
bootstrap memory 2-8
boundary scan cell 9-1
BPL 8-4
BR1CLR operation 8-3
BR1SET operation 8-3
BRA A-59
Branch BRA A-59
Branch Conditionally Bcc A-48
Branch if Bits Clear BRCLR A-60
Branch if Bits Set BRSET A-62
branching techniques, software 8-2
BRCLR A-60
BRSET A-62
bus unit 2-5
BVC 8-4
BVS 8-4

C

C condition bit 5-7, A-10
CC, see condition code (CC) bit
CCR, see Condition Code Register (CCR)
CGDB, see core global data bus (CGDB)
Clear Accumulator CLR A-64

Index

Index-ii DSP56800 Family Manual �

CLR A-64
CMP A-66
Compare CMP A-66
comparing 3-18
condition code (CC) bit 3-33, 3-34, 3-35, 3-36, 5-12
condition code computation A-7
condition code generation 3-33
Condition Code Register (CCR) 5-6
Condition Codes

carry (C) condition 5-7, A-10
effect of CC bit A-11
effect of SA bit A-11
extension in use (E) condition 5-8, A-8
limit (L) condition 5-8, A-8
negative (N) condition 5-7, A-9
overflow (V) condition 5-7, A-10
size (SZ) condition 5-8, A-7
unnormalized (U) condition 5-8, A-9
zero (Z) condition 5-7, A-10

convergent rounding 3-30
core global data bus (CGDB) 2-5

D

data ALU input registers (X0, Y1, and Y0) 3-4
Data ALU, see Data Arithmetic Logic Unit (ALU)
Data Arithmetic Logic Unit (ALU) 2-3, 3-1

accumulator registers (A and B) 3-4
accumulator shifter 3-6
barrel shifter 3-5
Data Limiter 3-6, 3-26
input registers (X0, Y1, and Y0) 3-4
logic unit 3-5
MAC Output Limiter 3-6, 3-28
multiply-accumulator (MAC) 3-5

Data Limiter 3-2, 3-6, 3-26
DEBUG A-68
debug processing state 7-1, 7-22
DEC(W) A-69
Decrement Word DEC(W) A-69
digital signal processing 1-6
digital-to-analog 1-6
DIV A-71
Divide Iteration DIV A-71
division 3-21, 8-13

fractional 3-21, 8-13
integer 3-21, 8-13

DO A-73
DO looping 5-15
DO loops 8-20
DSP56800 1-1
DSP56800 core 1-2

E

E condition bit 5-8, A-8
End Current DO Loop ENDDO A-77
ENDDO A-77
Enter Debug Mode DEBUG A-68
EOR A-79
EORC A-81
EX, see external X memory (EX)
exception processing state 7-1, 7-5
extension register (A2 or B2) 3-4
external data memory 2-7
external X memory (EX) 5-11

F

fractional arithmetic 3-14
fractional division 3-21, 8-13
fractional multiplication 3-19

H

hardware interrupt sources 7-10
Hardware Stack (HWS) 5-6

I

I1 and I0 interrupt mask bits 5-8
ILLEGAL A-83
Illegal Instruction Interrupt ILLEGAL A-83
IMPY(16) A-84
INC(W) A-86
Increment Word INC(W) A-86
incrementer/decrementer unit 4-5
indexes 8-26
instruction decoder 5-3
instruction execution pipelining 6-30
instruction formats 6-3
instruction groups 6-6
instruction latch 5-3
Instruction Processing 6-30
instruction set restrictions A-26
instruction set summary 6-17
instruction timing A-16
integer arithmetic 3-14, 3-20
integer division 3-21, 8-13
integer multiplication 3-20
Integer Multiply IMPY(16) A-84
interrupt arbitration 7-12
interrupt control unit 5-3
interrupt latency 7-16
interrupt mask (I1 and I0) 5-8
interrupt pipeline 7-14
interrupt priority level (IPL) 5-3
Interrupt Priority Register (IPR) 7-9
interrupt priority structure 7-8
interrupt sources 7-9

� DSP56800 Family Manual Index-iii

hardware 7-10
other 7-11
software 7-11

interrupt vector table 7-7
interrupts 8-30
IPL, see interrupt priority level (IPL)
IPR, see Interrupt Priority Register (IPR)

J

Jcc A-88
JEC 8-4
JES 8-4
JLC 8-4
JLS 8-4
JMI 8-4
JMP A-90
Joint Test Action Group (JTAG), see JTAG
JPL 8-4
JR1CLR operation 8-3
JR1SET operation 8-3
JRCLR operation 8-2
JRSET operation 8-2
JSR A-91
JTAG 9-2
JTAG port 9-2
Jump Conditionally Jcc A-88
Jump JMP A-90
Jump to Subroutine JSR A-91
jump with register argument 8-33
jumping techniques, software 8-2
JVC 8-4
JVS 8-4

L

L condition bit 5-8, A-8
LEA A-92
LF, see loop flag (LF)
Load Effective Address LEA A-92
local variables 8-28
logic unit 3-5
Logical AND A-35
Logical AND, Immediate ANDC A-36
Logical Complement NOT A-139
Logical Complement with Carry NOTC A-140
Logical Exclusive OR EOR A-79
Logical Exclusive OR Immediate EORC A-81
Logical Inclusive OR Immediate ORC A-144
Logical Inclusive OR OR A-142
logical instructions 6-7
logical operations 3-19
Logical Right Shift with Accumulate LSRAC A-99
Logical Shift Left LSL A-93
Logical Shift Right LSR A-97

Loop Address Register (LA) 5-5
Loop Count Register (LC) 5-4
loop flag (LF) 5-9
looping control unit 5-4
looping instructions 6-9
looping termination 5-15
loops 5-14, 8-20
LSL A-93
LSLL A-95
LSR A-97
LSRAC A-99
LSRR A-101

M

M01, see Modifier Register (M01)
MAC 3-2, A-103
MAC Output Limiter 3-6, 3-28
MAC, see multiply-accumulator (MAC)
MACR A-105
MACSU A-108
MAX operation 8-6
MB and MA, see operating mode (MB and MA)
memory access processing 6-31
MIN operation 8-7
Mode Register (MR) 5-6
Modifier Register (M01) 4-5
modulo arithmetic unit 4-5
MOVE A-110, A-112, A-114
Move Absolute Short MOVE(S) A-126
Move Control Register MOVE(C) A-116
Move Immediate MOVE(I) A-120
move instructions 6-9
Move Peripheral Data MOVE(P) A-124
Move Program Memory MOVE(M) A-122
MOVE(C) A-116
MOVE(I) A-120
MOVE(M) A-122
MOVE(P) A-124
MOVE(S) A-126
MPY A-128
MPYR A-130
MPYSU A-132
MR, see Mode Register (MR)
Multi-Bit Arithmetic Left Shift ASLL A-40
Multi-Bit Arithmetic Right Shift ASRR A-46
Multi-Bit Logical Left Shift LSLL A-95
Multi-Bit Logical Right Shift LSRR A-101
multiplication 3-19

fractional 3-19
integer 3-20
multi-precision 3-23
unsigned 3-22

Multiply Accumulate and Round MACR A-105
Multiply-Accumulate MAC A-103

Index-iv DSP56800 Family Manual �

Multiply-Accumulate Signed x Unsigned
MACSU A-108

multiply-accumulator (MAC) 3-2, 3-5
multi-tasking 8-34

N

N condition bit 5-7, A-9
N, see Offset Register (N)
NEG A-134
Negate Accumulator NEG A-134
NEGW 8-4
nested looping 5-15
nested looping bit (NL) 5-13
NL, see nested looping bit (NL)
No Operation NOP A-136
NOP A-136
NORM A-137
normal processing state 7-1, 7-2
Normalize Accumulator Iteration NORM A-137
NOT A-139
notations A-1
NOTC A-140

O

Offset Register (N) 4-4
OMR, see Operating Mode Register (OMR)
OnCE 2-5
OnCE pipeline 9-7
OnCE port

FIFO history buffer 9-7
overview 9-4
PAB FIFO 9-7

OnCE port architecture 9-5
On-Chip Emulation (OnCE) 2-5
operating mode (MB and MA) 5-10
Operating Mode Register (OMR) 5-9

Condition Code bit (CC) 5-12, A-11
External X memory bit (EX) 5-11
Nested Looping bit (NL) 5-13
Operating Mode bits (MB and MA) 5-10
Rounding bit (R) 5-12
Saturation bit (SA) 5-11, A-11
Stop Delay bit (SD) 5-12

OR A-142
ORC A-144

P

Parallel Move—Dual Parallel Reads A-114
parallel moves 6-1
Parallel Move—Single Parallel Move A-112
parameters, passing subroutine 8-28
PC, see Program Counter (PC)
PDB, see program data bus (PDB)

peripheral blocks 1-3
peripheral data bus 2-5
PGDB, see peripheral global data bus (PGDB)
phase-locked loop (PLL) 2-8
pipeline dependencies 4-33
pipelining 6-30
PLL, see phase-locked loop (PLL)
POP A-146
Pop from Stack POP A-146
power consumption 7-19
processing states 7-1

debug 7-1, 7-22
exception 7-1, 7-5
normal 7-1, 7-2
reset 7-1
stop 7-1, 7-19
wait 7-1, 7-17

program control instructions 6-11
Program Controller 2-4
Program Counter (PC) 5-3
program data bus (PDB) 2-5
program memory 2-8
programming model 2-8, 6-5
PUSH operation 8-19

R

R rounding bit 5-12
R0-R3 4-4
register direct addressing modes 4-7
REP A-147
repeat looping 5-14
Repeat Next Instruction REP A-147
reset processing state 7-1

entering 7-1
leaving 7-2

restrictions, instruction set A-26
Return from Interrupt RTI A-156
Return from Subroutine RTS A-158
RND A-150
ROL A-152
ROR A-154
Rotate Left ROL A-152
Rotate Right ROR A-154
Round Accumulator RND A-150
rounding 3-30

convergent 3-30
two’s-complement 3-31

Rounding bit (R) 5-12
RTI A-156
RTS A-158

S

saturation 3-26

� DSP56800 Family Manual Index-v

Saturation bit (SA) 5-11
SBC A-159
SD stop delay bit 5-12
shift operations 8-8
Signed Multiply and Round MPYR A-130
Signed Multiply MPY A-128
Signed Unsigned Multiply MPYSU A-132
software interrupt sources

illegal instruction (III) 7-11
software interrupt (SWI) 7-11

Software Interrupt SWI A-165
software stack 5-13
SP, see Stack Pointer Register (SP)
SR, see Status Register (SR)
Stack Pointer Register (SP) 4-4
Start Hardware Do Loop DO A-73
Status Register (SR) 5-6

carry bit (C) 5-7
extension bit (E) 5-8
interrupt mask bits (I1 and I0) 5-8
limit bit (L) 5-8
loop flag bit (LF) 5-9
negative bit (N) 5-7
overflow bit (V) 5-7
reserved bits 5-9
size bit (SZ) 5-8
unnormalized bit (U) 5-8
zero bit (Z) 5-7

STOP A-161
stop delay (SD) 5-12
STOP instruction 7-19
Stop Instruction Processing STOP A-161
stop processing state 7-1, 7-19
SUB A-162
Subtract Long with Carry SBC A-159
Subtract SUB A-162
subtraction

fractional 3-18
multi-precision 3-23

SWI A-165
SZ condition bit 5-8, A-7

T

TAP, see test access port (TAP)
Tcc A-166
test access port (TAP) 9-2
Test Accumulator TST A-170
Test Bitfield and Change BFCHG A-50
Test Bitfield and Clear BFCLR A-52
Test Bitfield and Set BFSET A-54
Test Bitfield High BFTSTH A-56
Test Bitfield Low BFTSTL A-58
Test Register or Memory TSTW A-172
TFR A-168

time-critical loops 8-29
Transfer Conditionally Tcc A-166
Transfer Data ALU Register TFR A-168
TST A-170
TSTW A-172
two’s-complement rounding 3-31

U

U condition bit 5-8, A-9
unsigned arithmetic 3-22

addition 3-22
condition code computation 3-22
multiplication 3-22
subtraction 3-22

unsigned load of an accumulator 8-7

V

V condition bit 5-7, A-10

W

WAIT A-174
Wait for interrupt WAIT A-174
wait processing state 7-1, 7-17

X

X0 input register 3-2, 3-4
XAB1 2-5
XAB2 2-5
XCHG register exchange operation 8-6
XDB2 2-5

Y

Y0 input register 3-2, 3-4
Y1 input register 3-2, 3-4

Z

Z condition bit 5-7, A-10

Index-vi DSP56800 Family Manual �

	About This Book
	Chapter�1 Introduction
	1.1 DSP56800 Family Architecture
	1.1.1 Core Overview
	1.1.2 Peripheral Blocks
	1.1.3 Family Members

	1.2 Introduction to Digital Signal Processing
	1.3 Summary of Features
	1.4 For the Latest Information

	Chapter�2 Core Architecture Overview
	2.1 Core Block Diagram
	2.1.1 Data Arithmetic Logic Unit (ALU)
	2.1.2 Address Generation Unit (AGU)
	2.1.3 Program Controller and Hardware Looping Unit
	2.1.4 Bus and Bit-Manipulation Unit
	2.1.5 On-Chip Emulation (OnCE) Unit
	2.1.6 Address Buses
	2.1.7 Data Buses

	2.2 Memory Architecture
	2.3 Blocks Outside the DSP56800 Core
	2.3.1 External Data Memory
	2.3.2 Program Memory
	2.3.3 Bootstrap Memory
	2.3.4 IP-BUS Bridge
	2.3.5 Phase Lock Loop (PLL)

	2.4 DSP56800 Core Programming Model

	Chapter�3 Data Arithmetic Logic Unit
	3.1 Overview and Architecture
	3.1.1 Data ALU Input Registers (X0, Y1, and Y0)
	3.1.2 Data ALU Accumulator Registers
	3.1.3 Multiply-Accumulator (MAC) and Logic Unit
	3.1.4 Barrel Shifter
	3.1.5 Accumulator Shifter
	3.1.6 Data Limiter and MAC Output Limiter

	3.2 Accessing the Accumulator Registers
	3.2.1 Accessing an Accumulator by Its Individual Portions
	3.2.2 Accessing an Entire Accumulator
	3.2.2.1 Accessing for Data ALU Operations
	3.2.2.2 Writing an Accumulator with a Small Operand
	3.2.2.3 Extension Registers as Protection Against Overflow
	3.2.2.4 Examples of Writing the Entire Accumulator

	3.2.3 General Integer Processing
	3.2.3.1 Writing Integer Data to an Accumulator
	3.2.3.2 Reading Integer Data from an Accumulator

	3.2.4 Using 16-Bit Results of DSP Algorithms
	3.2.5 Saving and Restoring Accumulators
	3.2.6 Bit-Field Operations on Integers in Accumulators
	3.2.7 Converting from 36-Bit Accumulator to 16-Bit Portion

	3.3 Fractional and Integer Data ALU Arithmetic
	3.3.1 Interpreting Data
	3.3.2 Data Formats
	3.3.2.1 Signed Fractional
	3.3.2.2 Unsigned Fractional
	3.3.2.3 Signed Integer
	3.3.2.4 Unsigned Integer

	3.3.3 Addition and Subtraction
	3.3.4 Logical Operations
	3.3.5 Multiplication
	3.3.5.1 Fractional Multiplication
	3.3.5.2 Integer Multiplication

	3.3.6 Division
	3.3.7 Unsigned Arithmetic
	3.3.7.1 Conditional Branch Instructions for Unsigned Operations
	3.3.7.2 Unsigned Multiplication

	3.3.8 Multi-Precision Operations
	3.3.8.1 Multi-Precision Addition and Subtraction
	3.3.8.2 Multi-Precision Multiplication

	3.4 Saturation and Data Limiting
	3.4.1 Data Limiter
	3.4.2 MAC Output Limiter
	3.4.3 Instructions Not Affected by the MAC Output Limiter

	3.5 Rounding
	3.5.1 Convergent Rounding
	3.5.2 Two’s-Complement Rounding

	3.6 Condition Code Generation
	3.6.1 36-Bit Destinations—CC Bit Cleared
	3.6.2 36-Bit Destinations—CC Bit Set
	3.6.3 20-Bit Destinations—CC Bit Cleared
	3.6.4 20-Bit Destinations—CC Bit Set
	3.6.5 16-Bit Destinations
	3.6.6 Special Instruction Types
	3.6.7 TST and TSTW Instructions
	3.6.8 Unsigned Arithmetic

	Chapter�4 Address Generation Unit
	4.1 Architecture and Programming Model
	4.1.1 Address Registers (R0-R3)
	4.1.2 Stack Pointer Register (SP)
	4.1.3 Offset Register (N)
	4.1.4 Modifier Register (M01)
	4.1.5 Modulo Arithmetic Unit
	4.1.6 Incrementer/Decrementer Unit

	4.2 Addressing Modes
	4.2.1 Register-Direct Modes
	4.2.1.1 Data or Control Register Direct
	4.2.1.2 Address Register Direct

	4.2.2 Address-Register-Indirect Modes
	4.2.2.1 No Update: (Rn), (SP)
	4.2.2.2 Post-Increment by 1: (Rn)+, (SP)+
	4.2.2.3 Post-Decrement by 1: (Rn)-, (SP)-
	4.2.2.4 Post-Update by Offset N: (Rn)+N, (SP)+N
	4.2.2.5 Index by Offset N: (Rn+N), (SP+N)
	4.2.2.6 Index by Short Displacement: (SP-xx), (R2+xx)
	4.2.2.7 Index by Long Displacement: (Rn+xxxx), (SP+xxxx)

	4.2.3 Immediate Data Modes
	4.2.3.1 Immediate Data: #xxxx
	4.2.3.2 Immediate Short Data: #xx

	4.2.4 Absolute Addressing Modes
	4.2.4.1 Absolute Address (Extended Addressing): xxxx
	4.2.4.2 Absolute Short Address (Direct Addressing): <aa>
	4.2.4.3 I/O Short Address (Direct Addressing): <pp>

	4.2.5 Implicit Reference
	4.2.6 Addressing Modes Summary

	4.3 AGU Address Arithmetic
	4.3.1 Linear Arithmetic
	4.3.2 Modulo Arithmetic
	4.3.2.1 Modulo Arithmetic Overview
	4.3.2.2 Configuring Modulo Arithmetic
	4.3.2.3 Supported Memory Access Instructions
	4.3.2.4 Simple Circular Buffer Example
	4.3.2.5 Setting Up a Modulo Buffer
	4.3.2.6 Wrapping to a Different Bank
	4.3.2.7 Side Effects of Modulo Arithmetic
	4.3.2.7.1 When a Pointer Lies Outside a Modulo Buffer
	4.3.2.7.2 Restrictions on the Offset Register
	4.3.2.7.3 Memory Locations Not Available for Modulo Buffers

	4.4 Pipeline Dependencies

	Chapter�5 Program Controller
	5.1 Architecture and Programming Model
	5.1.1 Program Counter
	5.1.2 Instruction Latch and Instruction Decoder
	5.1.3 Interrupt Control Unit
	5.1.4 Looping Control Unit
	5.1.5 Loop Counter
	5.1.6 Loop Address
	5.1.7 Hardware Stack
	5.1.8 Status Register
	5.1.8.1 Carry (C)—Bit 0
	5.1.8.2 Overflow (V)—Bit 1
	5.1.8.3 Zero (Z)—Bit 2
	5.1.8.4 Negative (N)—Bit 3
	5.1.8.5 Unnormalized (U)—Bit 4
	5.1.8.6 Extension (E)—Bit 5
	5.1.8.7 Limit (L)—Bit 6
	5.1.8.8 Size (SZ)—Bit 7
	5.1.8.9 Interrupt Mask (I1 and I0)—Bits 8–9
	5.1.8.10 Reserved SR Bits— Bits 10–14
	5.1.8.11 Loop Flag (LF)—Bit 15

	5.1.9 Operating Mode Register
	5.1.9.1 Operating Mode Bits (MB and MA)—Bits 1–0
	5.1.9.2 External X Memory Bit (EX)—Bit 3
	5.1.9.3 Saturation (SA)—Bit 4
	5.1.9.4 Rounding Bit (R)—Bit 5
	5.1.9.5 Stop Delay Bit (SD)—Bit 6
	5.1.9.6 Condition Code Bit (CC)—Bit 8
	5.1.9.7 Nested Looping Bit (NL)—Bit 15
	5.1.9.8 Reserved OMR Bits—Bits 2, 7 and 9–14

	5.2 Software Stack Operation
	5.3 Program Looping
	5.3.1 Repeat (REP) Looping
	5.3.2 DO Looping
	5.3.3 Nested Hardware DO and REP Looping
	5.3.4 Terminating a DO Loop

	Chapter�6 Instruction Set Introduction
	6.1 Introduction to Moves and Parallel Moves
	6.2 Instruction Formats
	6.3 Programming Model
	6.4 Instruction Groups
	6.4.1 Arithmetic Instructions
	6.4.2 Logical Instructions
	6.4.3 Bit-Manipulation Instructions
	6.4.4 Looping Instructions
	6.4.5 Move Instructions
	6.4.6 Program Control Instructions

	6.5 Instruction Aliases
	6.5.1 ANDC, EORC, ORC, and NOTC Aliases
	6.5.2 LSLL Alias
	6.5.3 ASL Alias
	6.5.4 CLR Alias
	6.5.5 POP Alias

	6.6 DSP56800 Instruction Set Summary
	6.6.1 Register Field Notation
	6.6.2 Using the Instruction Summary Tables
	6.6.3 Instruction Summary Tables

	6.7 The Instruction Pipeline
	6.7.1 Instruction Processing
	6.7.2 Memory Access Processing

	Chapter�7 Interrupts and the Processing States
	7.1 Reset Processing State
	7.2 Normal Processing State
	7.2.1 Instruction Pipeline Description
	7.2.2 Instruction Pipeline with Off-Chip Memory Accesses
	7.2.3 Instruction Pipeline Dependencies and Interlocks

	7.3 Exception Processing State
	7.3.1 Sequence of Events in the Exception Processing State
	7.3.2 Reset and Interrupt Vector Table
	7.3.3 Interrupt Priority Structure
	7.3.4 Configuring Interrupt Sources
	7.3.5 Interrupt Sources
	7.3.5.1 External Hardware Interrupt Sources
	7.3.5.2 DSP Core Hardware Interrupt Sources
	7.3.5.3 DSP Core Software Interrupt Sources

	7.3.6 Interrupt Arbitration
	7.3.7 The Interrupt Pipeline
	7.3.8 Interrupt Latency

	7.4 Wait Processing State
	7.5 Stop Processing State
	7.6 Debug Processing State

	Chapter�8 Software Techniques
	8.1 Useful Instruction Operations
	8.1.1 Jumps and Branches
	8.1.1.1 JRSET and JRCLR Operations
	8.1.1.2 BR1SET and BR1CLR Operations
	8.1.1.3 JR1SET and JR1CLR Operations
	8.1.1.4 JVS, JVC, BVS, and BVC Operations
	8.1.1.5 Other Jumps and Branches on Condition Codes

	8.1.2 Negation Operations
	8.1.2.1 NEGW Operation
	8.1.2.2 Negating the X0, Y0, or Y1 Data ALU registers
	8.1.2.3 Negating an AGU register
	8.1.2.4 Negating a Memory Location

	8.1.3 Register Exchanges
	8.1.4 Minimum and Maximum Values
	8.1.4.1 MAX Operation
	8.1.4.2 MIN Operation

	8.1.5 Accumulator Sign Extend
	8.1.6 Unsigned Load of an Accumulator

	8.2 16- and 32-Bit Shift Operations
	8.2.1 Small Immediate 16- or 32-Bit Shifts
	8.2.2 General 16-Bit Shifts
	8.2.3 General 32-Bit Arithmetic Right Shifts
	8.2.4 General 32-Bit Logical Right Shifts
	8.2.5 Arithmetic Shifts by a Fixed Amount
	8.2.5.1 Right Shifts (ASR12–ASR20)
	8.2.5.2 Left Shifts (ASL16–ASL19)

	8.3 Incrementing and Decrementing Operations
	8.4 Division
	8.4.1 Positive Dividend and Divisor with Remainder
	8.4.2 Signed Dividend and Divisor with No Remainder
	8.4.3 Signed Dividend and Divisor with Remainder
	8.4.4 Algorithm Examples
	8.4.5 Overflow Cases

	8.5 Multiple Value Pushes
	8.6 Loops
	8.6.1 Large Loops (Count Greater Than 63)
	8.6.2 Variable Count Loops
	8.6.3 Software Loops
	8.6.4 Nested Loops
	8.6.4.1 Recommendations
	8.6.4.2 Nested Hardware DO and REP Loops
	8.6.4.3 Comparison of Outer Looping Techniques

	8.6.5 Hardware DO Looping in Interrupt Service Routines
	8.6.6 Early Termination of a DO Loop

	8.7 Array Indexes
	8.7.1 Global or Fixed Array with a Constant
	8.7.2 Global or Fixed Array with a Variable
	8.7.3 Local Array with a Constant
	8.7.4 Local Array with a Variable
	8.7.5 Array with an Incrementing Pointer

	8.8 Parameters and Local Variables
	8.9 Time-Critical DO Loops
	8.10 Interrupts
	8.10.1 Setting Interrupt Priorities in Software
	8.10.1.1 High Priority or a Small Number of Instructions
	8.10.1.2 Many Instructions of Equal Priority
	8.10.1.3 Many Instructions and Programmable Priorities

	8.10.2 Hardware Looping in Interrupt Routines
	8.10.3 Identifying System Calls by a Number

	8.11 Jumps and JSRs Using a Register Value
	8.12 Freeing One Hardware Stack Location
	8.13 Multitasking and the Hardware Stack
	8.13.1 Saving the Hardware Stack
	8.13.2 Restoring the Hardware Stack

	Chapter�9 JTAG and On-Chip Emulation (OnCE™)
	9.1 Combined JTAG and OnCE Interface
	9.2 JTAG Port
	9.2.1 JTAG Capabilities
	9.2.2 JTAG Port Architecture

	9.3 OnCE Port
	9.3.1 OnCE Port Capabilities
	9.3.2 OnCE Port Architecture
	9.3.2.1 Command, Status, and Control
	9.3.2.2 Breakpoint and Trace
	9.3.2.3 Pipeline Save and Restore
	9.3.2.4 FIFO History Buffer

	Appendix�A Instruction Set Details
	A.1 Notation
	A.2 Programming Model
	A.3 Addressing Modes
	A.4 Condition Code Computation
	A.4.1 The Condition Code Bits
	A.4.1.1 Size (SZ)—Bit 7
	A.4.1.2 Limit (L)—Bit 6
	A.4.1.3 Extension in Use (E)—Bit 5
	A.4.1.4 Unnormalized (U)—Bit 4
	A.4.1.5 Negative (N)—Bit 3
	A.4.1.6 Zero (Z)—Bit 2
	A.4.1.7 Overflow (V)—Bit 1
	A.4.1.8 Carry (C)—Bit 0

	A.4.2 Effects of the Operating Mode Register’s SA Bit
	A.4.3 Effects of the OMR’s CC Bit
	A.4.4 Condition Code Summary by Instruction

	A.5 Instruction Timing
	A.6 Instruction Set Restrictions
	A.7 Instruction Descriptions

	Appendix�B DSP Benchmarks
	B.1 Benchmark Code
	B.1.1 Real Correlation or Convolution (FIR Filter)
	B.1.2 N Complex Multiplies
	B.1.3 Complex Correlation Or Convolution (Complex FIR)
	B.1.4 Nth Order Power Series (Real, Fractional Data)
	B.1.5 N Cascaded Real Biquad IIR Filters (Direct Form II)
	B.1.6 N Radix 2 FFT Butterflies
	B.1.7 LMS Adaptive Filter
	B.1.7.1 Single Precision
	B.1.7.2 Double Precision
	B.1.7.3 Double Precision Delayed

	B.1.8 Vector Multiply-Accumulate
	B.1.9 Energy in a Signal
	B.1.10 [3x3][1x3] Matrix Multiply
	B.1.11 [NxN][NxN] Matrix Multiply
	B.1.12 N Point 3x3 2-D FIR Convolution
	B.1.13 Sine-Wave Generation
	B.1.13.1 Double Integration Technique
	B.1.13.2 Second Order Oscillator

	B.1.14 Array Search
	B.1.14.1 Index of the Highest Signed Value
	B.1.14.2 Index of the Highest Positive Value

	B.1.15 Proportional Integrator Differentiator (PID) Algorithm
	B.1.16 Autocorrelation Algorithm

