DSP56800
16-Bit Digital Signhal Processor

Family Manual

DSP56800FM/D
Rev. 2.0, 05/2002

@ MOTOROLA

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee
regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters
which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over
time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not
convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the
failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for
any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the
design or manufacture of the part. Motorola and the Stylized M Logo are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.

MOTOROLA and the Stylized M Logo are registered in the US Patent & Trademark Office. All other product or service names are the property of
their respective owners. © Motorola, Inc. 2002.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1-303-675-2140 or
1-800-441-2447

JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3-20—1, Minami—Azabu. Minato—ku, Tokyo 106—-8573 Japan. 81-3-3440-3569

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.
85226668334

Technical Information Center: 1-800-521-6274

HOME PAGE: http://www.motorola.com/semiconductors/

Contents

Chapter 1

Introduction

1.1 DSP56800 Family Architecturet e 1-1
111 COrE OVEIVIBIN .« . .ottt e e 1-2
112 Peripheral BIOCKS 1-3
113 Family Members.o 1-5
1.2 Introductionto Digital Signal Processing., 1-5
13 Summary Of FEatUreSo e 1-9
14 ForthelLatestInformation 1-10
Chapter 2

Core Architecture Overview

21 CoreBlock Diagram.ut i 2-1
211 DataArithmeticLogicUnit (ALU) ... 2-3
212 Address Generation Unit (AGU) ...t 2-3
213 Program Controller and Hardware Looping Unit. 2-4
214 Busand Bit-ManipulationUnit. 2-5
215 On-ChipEmulation (OnCE) Unit. i 2-5
2.16 AJOreSS BUSES. . . . ottt 2-5
217 DalaBUSES . ..o 2-5
22 Memory Architecture e 2-6
2.3 Blocks Outsidethe DSP56800 COre. oot v et 2-7
231 External DataMemoryt e 2-7
2.3.2 Program Memory e 2-8
2.3.3 BOOtSIraD MEMOIY . ..ot 2-8
234 IP-BUSBIAQE . ..ottt 2-8
235 Phase Lock LOOP (PLL)o e 2-8
24 DSP56800 Core Programming Model 2-8
Chapter 3

Data Arithmetic Logic Unit

31 Overview and ArChiteCture.ot e 3-2
311 DataALU Input Registers (X0, Y1, andY0)............ ... 34
3.1.2 DataALU Accumulator Registers 34
3.1.3 Multiply-Accumulator (MAC) and LogicUnit 3-5
314 Barrel Shifter. 35
3.15 Accumulator Shifter 3-6
3.1.6 DataLimiter and MAC Output Limiter, 3-6
3.2 Accessingthe Accumulator RegIStErSo oot 3-7
321 Accessing an Accumulator by ItsIndividual Portions. 3-8

0 MOTOROLA

3.2.2 Accessing an Entire Accumulator. 3-10

3221 Accessing for DataALU Operationsccoviiinnnnn... 3-10
3.222 Writing an Accumulator withaSmall Operand 3-10
3.2.23 Extension Registers as Protection Against Overflow. 3-10
3224 Examples of Writing the Entire Accumulator 311
3.2.3 General Integer ProcessiNg.o i 311
3231 Writing Integer Datato an Accumulator 311
3.23.2 Reading Integer Datafroman Accumulator. 3-12
3.24 Using 16-Bit Resultsof DSP Algorithms. 312
3.25 Saving and Restoring Accumulators.o 312
3.2.6 Bit-Field Operations on Integersin Accumulators. 3-13
3.2.7 Converting from 36-Bit Accumulator to 16-Bit Portion 3-13
3.3 Fractiona and Integer DataALU Arithmetic. 3-14
331 InterpretingData. e 3-16
3.3.2 DataFormats.o 3-17
3321 Signed Fractional 3-17
3322 Unsigned Fractional 3-17
3.323 Signed Integer.ot e 3-18
3.3.24 unsigned INteger.o vt e 3-18
333 Additionand SUBLraction 3-18
3.34 Logical OperalionS vt e 3-19
335 MUItIPHCALONo 3-19
3351 Fractional Multiplication, 3-19
3.352 Integer Multiplication. i 3-20
3.36 DIVISION. . . 321
3.37 Unsigned Arithmetic. 3-22
3371 Conditional Branch Instructions for Unsigned Operations. 3-22
3.3.7.2 Unsigned Multiplication. i 3-22
3.38 Multi-PreciSion Operations.ot e e 3-23
3381 Multi-Precision Addition and Subtraction 3-23
3.3.8.2 Multi-Precision Multiplicationc. oo, 3-23
34 Saturationand DataLimiting 3-26
34.1 Datalimiter 3-26
34.2 MAC OUtpUt Limiter e et e 3-28
34.3 Instructions Not Affected by the MAC Output Limiter 3-29
35 ROUNAING. . ..o e e 3-30
351 Convergent Rounding.ot e 3-30
35.2 Two'ssComplement Rounding 331
3.6 ConditionCode Generationttt 3-33
36.1 36-Bit Destinations—CC BitCleared. 3-33
3.6.2 36-Bit Destinations—CCBIitSet 3-34
3.6.3 20-Bit Destinations—CC BitCleared., 3-34
364 20-Bit Destinations—CC Bit Set 3-34
3.65 16-Bit DeStiNatioNS. oottt 3-35
3.6.6 Specia INStructioN TYPES . . . oot it e e 3-35
3.6.7 TST and TSTW INStrUCHIONS. . . . oot 3-36
3.6.8 Unsigned Arithmetic. 3-36

v DSP56800 Family Manual @ mororoLa

Chapter 4
Address Generation Unit

4.1 Architectureand ProgrammingModel 4-2
411 AddressRegisters (RO-R3)o 4-4
412 Stack Pointer Register (SP).o 4-4
4.1.3 Offset Register (N) . ..o e 4-4
414 Modifier Register (MOL).t e e 4-5
415 Modulo ArithmeticUnit. 4-5
4.1.6 Incrementer/Decrementer Unit. 4-5
42 AdAressSNgMOOESt 4-6
421 Register-DireCct MOdes 4-7
4211 Dataor Control Register Direct, 4-7
421.2 AddressRegister Direct 4-7
422 Address-Register-Indirect Modes. 4-7
4221 NoUpdate: (RN), (SP) ..o e e 4-9
4222 Post-Increment by 1: (Rn)+, (SP)+. oo 4-11
4223 Post-Decrement by 1: (Rn)-, (SP)-o oo 4-12
4224 Post-Update by Offset N: (Rn)+N, (SP)+N 4-13
4.2.25 Index by Offset N: (Rn+N), (SP+N).o i 4-14
4226 Index by Short Displacement: (SP-xx), (R2+XX) 4-15
4227 Index by Long Displacement: (Rn+xxxX), (SP+XXXX)............... 4-16
423 Immediate DataModes.t 4-17
4231 Immediate Datar #XXXX. . o vttt 4-18
4.2.3.2 Immediate Short Datar #XXo oo 4-20
424 Absolute Addressing Modes. e 4-20
4241 Absolute Address (Extended Addressing): XXXXovviinnnn... 4-21
4242 Absolute Short Address (Direct Addressing): <aa>................. 4-22
4243 I/O Short Address (Direct Addressing): <pp>ccoonn... 4-23
425 Implicit Reference. e e 4-23
4.2.6 AddressngModesSSUMMANYoou it 4-23
43 AGUAddressArithmetic. ... e 4-25
431 Linear Arithmetic 4-25
4.3.2 Modulo ArthmELICo 4-25
4321 Modulo ArithmeticOverview. 4-25
4322 Configuring Modulo Arithmetic. 4-27
4323 Supported Memory AccessInstructions.o 4-29
4324 Simple Circular Buffer Example 4-29
4325 SettingUpaModuloBuffer............ o i 4-30
4.3.2.6 WrappingtoaDifferentBank 4-31
43.2.7 Side Effects of Modulo Arithmetic. 4-32
43271 When a Pointer Lies Outsde aModulo Buffer 4-32
43272 Restrictionsonthe Offset Register. 4-32
43.2.7.3 Memory Locations Not Available for Modulo Buffers 4-33
44 PipeineDependenCiesot 4-33
Chapter 5

Program Controller

0 MOTOROLA

5.1 Architectureand ProgrammingModel 5-1

51.1 Program CoUNtErot 5-3
512 Instruction Latch and InstructionDecodero a... 5-3
513 Interrupt Control Unit. ... e 5-3
514 Looping Control Unit i e 5-4
515 LOOP COUNEr .. e e e 5-4
516 LOOp AdArEsSo 5-5
517 Hardware Stack.o 5-6
5.1.8 SatUS RegIStEr . ..o e 5-6
5181 Carry (C)—Bit 0. ..o 5-7
5.1.8.2 Overflow (V)—Bit L. o e 5-7
5183 Zer0 (Z)—Bit 2. . . 5-7
5184 Negative (N)—Bit 3.o 5-7
5.1.85 Unnormalized (U)—Bit4. ... i 5-8
5186 Extension (BE)—Bit5 ... 5-8
5187 Limit (L)—Bit 6. ... 5-8
5.1.8.8 SIZe(SZ)—Bit 7. .. 5-8
5.1.89 Interrupt Mask (ILand 10)—Bits8-9.............. 5-8
5.1.8.10 Reserved SRBits—Bits10-14 59
51811 LoopHag (LF)—BIit15 59
519 Operating Mode Registert e 5-9
51.9.1 Operating Mode Bits(MB and MA)—Bits1-0.................... 5-10
5.1.9.2 External X Memory Bit (EX)—BIit3............ 5-11
5193 Saturation (SA)—BIit 4. 5-11
5194 Rounding Bit (R)—BIit5. ... 5-12
5195 Stop Delay Bit (SD)—Bit6 ... 5-12
5.1.9.6 Condition CodeBit (CC)—BIt8 i 5-12
5197 Nested Looping Bit (NL)—Bit15 5-13
5198 Reserved OMR Bits—Bits2, 7and 9-14.t 5-13
52 Software Stack Operation. oo v it 5-13
53 ProgramLoopingc.ouiri i 5-14
531 Repeat (REP) LOOPINGo i it et 5-14
532 DO LOOPING - oottt 5-15
533 Nested Hardware DOand REPLooping, 5-15
534 TerminatingaDO Loop . ..o oo vt e 5-15
Chapter 6

Instruction Set Introduction

6.1 Introductionto Movesand Parallel Moves. i 6-1
6.2 InStruction FOrmats. i 6-3
6.3 Programming Model 6-5
6.4 INSIrUCHON GrOUPS . . oottt et ettt et e e 6-6
6.4.1 Arithmetic INStructions. 6-6
6.4.2 Logical INStrUCtiONSo e e 6-7
6.4.3 Bit-Manipulation INStructions.t e 6-8
6.4.4 LoopiNg INSITUCLIONS. oo e et 6-9
6.4.5 MOVEINSIIUCIONS. . . . ottt 6-9

vi DSP56800 Family Manual @ mororoLa

6.4.6 Program Control INStructions e 6-11

6.5 INStruCtion AlI@sesot 6-12
6.5.1 ANDC, EORC, ORC, and NOTCAIlIaSeSo v toe e i i 6-12
6.5.2 LSLL AlIaS. .ot 6-13
6.5.3 ASL AlIaS . .o 6-13
6.5.4 CLR ALIBS. . ot 6-13
6.5.5 POP AlIaS . . .ot 6-14
6.6 DSP56800 Instruction Set SumMmaryvuiiiiiennnnn. 6-14
6.6.1 Register Field Notation. i e 6-14
6.6.2 Using the Instruction Summary Tables 6-16
6.6.3 Instruction Summary Tables. i 6-17
6.7 Thelnstruction Pipeline 6-30
6.7.1 INSLrUCtion PrOCESSING.o ittt ettt ettt 6-30
6.7.2 Memory ACCESSPIOCESSINGo ittt ettt 6-31
Chapter 7

Interrupts and the Processing States

71 ResatProcessing State oo 7-1
7.2 Normal Processing State.ot 7-2
7.2.1 Instruction Pipeline Description. 7-2
722 Instruction Pipeline with Off-Chip Memory Accesses. 7-3
7.2.3 Instruction Pipeline Dependenciesand Interlocks 7-4
7.3 Exception Processing State.t 7-5
731 Sequence of Eventsin the Exception ProcessingState 7-5
7.3.2 Reset and Interrupt Vector Table 7-7
7.3.3 Interrupt Priority Structure e 7-8
734 Configuring INterrupt SOUICESot e 7-8
7.3.5 INTEITUPL SOUMCES.ottt e e 7-9
7.35.1 External Hardware Interrupt SOurces.cocoiiiiennn.n.. 7-10
7.35.2 DSP Core Hardware Interrupt SOUrces.ocoveviivnnnenn... 7-11
7.35.3 DSP Core Software Interrupt Sources, 7-11
7.3.6 Interrupt Arbitration 7-12
7.3.7 Thelnterrupt Pipeline. e 7-14
7.3.8 INterrupt LatenCy.o e 7-16
74 WatProcessing State.ot 7-17
75 SIOPProcessing Stateo ot 7-19
7.6 DebugProcessingState e 7-22
Chapter 8

Software Techniques

8.1 Useful Instruction Operations.oitii i 8-1
811 JumpsandBranches. 8-2
8111 JRSET and JRCLR Operations.oviiiii i e 8-2
8.1.1.2 BR1SET and BRICLR Operations.oovviii i ieeeanan 8-3
8113 JRISET and JRICLR Operations. oo vt ie i 8-3
8114 VS, IVC,BVS andBVC Operations.o, 8-4

0 MOTOROLA

Vii

8.1.15
8.1.2
8121
8.1.2.2
8.1.2.3
8.124
8.1.3
8.1.4
8.14.1
8.1.4.2
8.1.5
8.1.6
8.2
8.2.1
8.2.2
8.2.3
8.24
8.2.5
8.2.5.1
8.2.5.2
8.3

8.4
8.4.1
8.4.2
8.4.3
8.4.4
8.4.5
8.5

8.6
8.6.1
8.6.2
8.6.3
8.6.4
8.6.4.1
8.6.4.2
8.6.4.3
8.6.5
8.6.6
8.7
8.7.1
8.7.2
8.7.3
8.7.4
8.7.5
8.8

8.9
8.10

viii

Other Jumps and Branches on ConditionCodes 8-4
Negation OperationS.ottt e 8-4
NEGW Operationo i et et 8-4
Negating the X0, YO, or Y1 DataALUregisters. 8-5
Negatingan AGU register ...t it 8-5
NegatingaMemory Location.t 8-5
Register EXchanges. 8-6
Minimumand MaximumVaues 8-6
MAX Operationoit i e e e e 8-6

MIN Operationo i e ettt 8-7
Accumulator SignExtend. 8-7
Unsigned Load of an Accumulator. 8-7
16- and 32-Bit Shift Operationst e 8-8
Small Immediate 16- or 32-Bit Shifts.o 8-8
General 16-Bit Shifts o 8-8
Genera 32-Bit ArithmeticRight Shifts 8-9
General 32-Bit Logica Right Shifts. 8-9
Arithmetic Shiftsby aFixed Amount. 8-10
Right Shifts (ASR12-ASR20) 8-10

Left ShiftS(ASL1I6-ASL19). ..ot 8-12
Incrementing and Decrementing Operations, .. 8-13
DIVISION. . . 8-13
Positive Dividend and Divisor with Remainder 8-14
Signed Dividend and Divisor withNoRemainder. 8-15
Signed Dividend and Divisor withRemainder. 8-16
Algorithm Examples. 8-18
OVErfloOW Cases. . ..ot 8-19
MultipleValue Pushes i e e 8-19
L OO . ittt e 8-20
Large Loops (Count Greater Than63), 8-20
Variable Count LOOPS. . . .o oottt 8-21
SOftWAIrE LOOPS. .« ottt ettt 8-21
NeESted LOOPS . ..ottt e e e e 8-22
Recommendations. 8-22
Nested Hardware DOand REPLOOPSo oo oo i 8-23
Comparison of Outer Looping Techniques 8-24
Hardware DO Looping in Interrupt ServiceRoutines 8-25
Early Terminationof aDOLOOP 8-25
Array INOEXES . . .o e 8-26
Global or Fixed Array withaConstant. 8-26
Global or Fixed Array withaVariable. 8-27
Local Array withaConstant. i 8-27
Local Array withaVariable............ i, 8-27
Array withan IncrementingPointer 8-27
Parametersand Local Variables. 8-28
Time-Critical DO LOOPS. . .. ottt ettt e e e 8-29
IO TUPES. . . .ot e 8-30

DSP56800 Family Manual @ mororoLa

8.10.1 Setting Interrupt Prioritiesin Software. 8-30

8.10.1.1 High Priority or a Small Number of Instructions. 8-31
8.10.1.2 Many Instructionsof Equal Priority 8-31
8.10.1.3 Many Instructions and Programmable Priorities 8-32
8.10.2 Hardware Looping inInterrupt Routinest 8-32
8.10.3 Identifying System Callsby aNumber. 8-32
8.11 JumpsandJSRsUsingaRegisterValuecciiiiun... 8-33
8.12 Freeing One Hardware Stack Location.ccoviirinnnnnn... 8-34
8.13 Multitasking andtheHardwareStack. i ... 8-34
8.13.1 SavingtheHardwareStack. i 8-35
8.13.2 Restoringthe Hardware Stack o i, 8-35
Chapter 9

JTAG and On-Chip Emulation (OnCE™)

9.1 Combined JTAGandOnCE Interface ... o-1
0.2 JTAG PO . .o 9-2
921 JTAG Capabilities. . ..ot e 9-3
9.2.2 JTAG Port Architecture 9-3
0.3 ONCE PO, . oottt 9-4
931 ONCE Port Capabilities. e 9-5
9.3.2 ONCE Port Architecture e 9-5
9321 Command, Status, and Control i 9-7
9.3.2.2 Breakpointand TraCet e e 9-7
9.3.2.3 PipelineSaveand Restore. 9-7
9324 FIFOHistory Buffer i i 9-7

Appendix A
Instruction Set Details

AL NOEEION ... e A-1
A.2 ProgrammingModel A-5
A3 AddressSNngMoOdes e A-6
A.4 Condition Code CompUtation.o vt ittt A-6
A4l The Condition CodeBItSt e A-7
A4l1l SIZe(SZ)—Bit 7. . A-7
A412 Limit (L)—Bit 6. ... e A-8
A.41.3 ExtensoninUse(E)—Bit5......... i A-8
A4d.14 Unnormalized (U)—Bit4. i A-9
A.4.15 Negative (N)—Bit 3.o A-9
A.416 Zer0o (Z)—Bit 2. .. A-10
A417 Overflow (V)—Bit 1. e A-10
A.4.18 Carry (C)—Bit 0. ..o A-10
A.42 Effects of the Operating Mode Register’'sSABIit A-11
A.43 Effectsof the OMR'SCCBIt ... A-11
A.4d4 Condition Code Summary by Instruction. A-12
A5 InStruction TiMING . ..ot A-16
A.6 Instruction Set Restrictions. A-26

0 MOTOROLA

A7 InStruction DEeSCIiptioNS oo ot A-27

Appendix B
DSP Benchmarks

B.1 Benchmark Code. B-2
B.1.1 Real Correlation or Convolution (FIRFilter). B-3
B.1.2 N Complex MuUltiplies ... e B-4
B.1.3 Complex Correlation Or Convolution (Complex FIR). B-4
B.14 Nth Order Power Series (Redl, Fractiona Data) B-5
B.1.5 N Cascaded Real Biquad IIR Filters (Direct Form 1) B-5
B.1.6 N Radix 2FFT Butterflies B-6
B.1.7 LMSAdaptiveFilter. e B-7
B.1.7.1 SINGIEPreCISION B-9
B.1.7.2 Double PreCision.o B-10
B.1.7.3 DoublePrecisionDelayed i, B-11
B.1.8 Vector Multiply-Accumulate B-12
B.1.9 EnergyinaSignal. i B-13
B.1.10 [3x3][1x3] Matrix Multiply B-14
B.1.11 [NXN][NXN] Matrix Multiply. e B-15
B.1.12 N Point 3x32-D FIRConvolution, B-17
B.1.13 SIne-Wave Generationui it B-20
B.1.13.1 Double Integration Technique, B-20
B.1.13.2 Second Order OsCIllatoro B-21
B.114 Array SEarCh. ... B-22
B.1.14.1 Index of the Highest Signed Value. B-22
B.1.14.2 Index of the Highest PositiveVaue. B-22
B.1.15 Proportional Integrator Differentiator (PID) Algorithm. B-23
B.1.16 Autocorrelation Algorithm B-24

X DSP56800 Family Manual @ mororoLa

List of Tables

Table 3-1
Table 3-2
Table 3-3
Table 3-4
Table 3-5
Table4-1
Table 4-2
Table4-3
Table4-4
Table 4-5
Table 4-6
Table4-7
Table 4-8
Table 4-9
Table5-1
Table5-2
Table 5-3
Table5-4
Table 5-5
Table6-1
Table6-2
Table 6-3
Table 6-4
Table 6-5
Table 6-6
Table6-7
Table 6-8
Table 6-9
Table6-10
Table6-11
Table6-12
Table6-13
Table 6-14
Table6-15

0 MOTOROLA

Accessing the Accumulator Registers 37
Interpretation of 16-BitDataValues 3-16
Interpretation of 36-bit DataValues., 3-16
Saturation by the Limiter Using the MOVE Instruction. 3-27
MAC Unit Outputs with SaturationEnabled 3-29
Addressing Mode Forcing Operators oo oo i e e 4-6
Jump and Branch Forcing Operatorsccoveiiii i 4-6
Addressing Mode—Register Directo i 4-7
Addressing Mode—Address Register Indirect. 4-8
Address-Register-Indirect Addressing ModesAvailable. 4-9
Addressng Mode—Immediate. i 4-17
AddressngMode—Absolute. 4-20
AddressngMode SUMMaryYt e 4-24
Programming MO1 for Modulo Arithmetic 4-27
Interrupt Mask Bit Definition 5-9
Program ROM OperatingModes i 5-10
Program RAM OperatingModest 5-11
MAC Unit Outputs With Saturation Mode Enabled (SA=1) 5-11
LOOPING SEaLUS . . .o ettt e e 5-13
Memory Space SymbolS. e 6-2
INStruction FOrMatS.o e 6-4
Arithmetic InstructionsList 6-6
Logical InstructionsList. e e 6-8
Bit-Field Instruction List 6-8
Loop INStruction List oo 6-9
Movelnstruction List 6-11
Program Control Instruction Listco i 6-11
Aliasesfor Logica Instructionswith ImmediateData. 6-12
LSLL Instruction Alias.o 6-13
ASL Instruction RemMapping. oo i e 6-13
Clear Instruction Aliaso 6-14
Move Word Instruction Aliass—DataMemory. 6-14
Register Fields for General-Purpose WritesandReads 6-15
Address Generation Unit (AGU) Registers ..., 6-15

Xi

Table 6-16
Table 6-17
Table 6-18
Table 6-19
Table 6-20
Table 6-21
Table 6-22
Table 6-23
Table 6-24
Table 6-25
Table 6-26
Table 6-27
Table 6-28
Table 6-29
Table 6-30
Table 6-31
Table 6-32
Table 6-33
Table 6-34
Table 6-35
Table 7-1
Table 7-2
Table 7-3
Table 7-4
Table 7-5
Table 7-6
Table 7-7
Table 8-1
Table A-1
Table A-2
Table A-3
Table A-4
Table A-5
Table A-6
Table A-7
Table A-8
Table A-9
Table A-10
Table A-11

Xii

Data ALU RegiSterS . . .ot 6-16

MoveWord INStructions. 6-18
Immediate Move INStructions. 6-19
Register-to-Register Movelnstructions., 6-19
Move Word Instructions—ProgramMemory. 6-19
Conditional Register Transfer Instructions. 6-20
Data ALU Multiply Instructions. 6-20
Data ALU Extended Precision Multiplication Instructions 6-21
Data ALU Arithmetic Instructions. 6-21
Data ALU MiscellaneousInstructions 6-23
Data ALU Logical InStructions. i 6-23
Data ALU ShiftingInstructions 6-24
AGU Arithmetic INStructionso 6-25
Bit-Manipulation INStructions. i 6-25
Branch on Bit-Manipulation Instructions. 6-26
Changeof Flow Instructions. i e 6-27
Looping INStrUCtioNS.o e 6-27
Control INSLIUCLIONS . . . oo e e 6-28
Data ALU Instructions—Single Parallel Move 6-29
Data ALU Instructions—Dua Parallel Read 6-30
ProCesSiNg Stales.ot e e 7-1
Instruction PIpelining e 7-3
Additional Cyclesfor Off-Chip Memory ACCeSSESo oo iii e 7-4
DSP56800 Core Reset and Interrupt Vector Table. 7-7
Interrupt Priority Level Summary. ... 7-8
Interrupt Mask Bit Definition inthe StatusRegister 7-8
Fixed Priority Structure WithinanIPL. 7-13
Operations Synthesized Using DSP56800 Instructions 8-1
Register Fields for General-Purpose WritesandReads. A-1
Address Generation Unit (AGU) Registers oo A-2
Data ALU ReEgISIErS. . oot e e A-2
Address OpEranas.o A-3
Addressing Mode Operators. oot e e e A-3
Miscellaneous Operands.ottt e A-3
Other Symbolso A-4
Notation Used for the Condition Code Summary Table A-12
Condition Code SUMMIAIYttt et e et et et e et et A-13
Instruction Timing Symbols. A-17
INStruction TiMiNg SUMMAIYottt A-18

DSP56800 Family Manual @ MOTOROLA

Table A-12
Table A-13
Table A-14
Table A-15
Table A-16
Table A-17
Table A-18
Table A-19
Table A-20
Table B-1

Table B-2

0 MOTOROLA

Parallel MoOVe TimiNg.o e e A-19

MOVEC Timing SUMMarYttt et et A-20
MOVEM Timing SUMMAIY ovit ittt et ettt e e A-20
Bit-Field Manipulation Timing SUmmaryc.iuiieenenanananns A-20
Branch/Jump Instruction Timing SUMMaryo, A-20
RTS TIiMIiNg SUMMAIY . .. oot e et et e A-21
TSTW Timing SUMMAY . ..ottt e e e e e e e A-21
Addressing Mode Timing SUMMArYiuiritei ittt A-21
Memory Access TIMING SUMMaAY.o vttt ettt et e e A-22
Benchmark Summary B-1
Variable DesCriptionst e e B-17

Xiii

Xiv DSP56800 Family Manual @ mororoLa

List of Figures

Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 1-5
Figure 1-6
Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5
Figure 3-6
Figure 3-7
Figure 3-8
Figure 3-9
Figure 3-10
Figure 3-11
Figure 3-12
Figure 3-13
Figure 3-14
Figure 3-15
Figure 3-16
Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6
Figure 4-7
Figure 4-8

0 MOTOROLA

DSP56800-Based DSP Microcontroller Chip., 1-1
DSP56800 CoreBlock Diagram.t 1-3
Example of Chip Built Around the DSP56800Core 1-5
Analog Signal ProCeSSINgo v ot 1-6
Digital Signal ProCcessingvviii 1-7
Mapping DSP AlgorithmsintoHardware 1-8
DSP56800 CoreBlock Diagram.cooi i 2-2
DSP56800 MEMOrY SPACES v vttt ettt e e e 2-6
Sample DSP56800-Family ChipBlock Diagram. 2-7
DSP56800 Core ProgrammingModel 2-9
Data ALU Block Diagramt 3-3
Data ALU ProgrammingModel i 3-4
Right and L eft Shifts Through the Multi-Bit ShiftingUnit 3-6
Writing the Accumulator Extension Registers(F2) 3-8
Reading the Accumulator Extension Registers(F2). 3-9
Writing the Accumulator by Portions. 39
Writing the Accumulator asaWhole. oo 311
Bit Weightings and Operand Alignments.coviun... 3-15
Word-Sized Integer AdditionExample 3-18
Comparison of Integer and Fractional Multiplication 3-19
MPY Operation—Fractional Arithmetic 3-20
Integer Multiplication (IMPY) e 321
Single-Precision Times Double-Precision Signed Multiplication 3-24
Example of Saturation Arithmetic 3-28
Convergent Rounding.t 3-31
Two'sComplementRounding, 3-32
Address Generation Unit Block Diagram., 4-3
Address Generation Unit ProgrammingModel 4-3
Address Register Indirect: NoUpdate, 4-10
Address Register Indirect: Post-Increment. 4-11
Address Register Indirect: Post-Decrementc..... 4-12
Address Register Indirect: Post-Update by Offset N 4-13
Address Register Indirect: Indexed by OffsetN. 4-14
Address Register Indirect: Indexed by Short Displacement. 4-15

XV

Figure 4-9
Figure 4-10
Figure 4-11
Figure 4-12
Figure 4-13
Figure 4-14
Figure 4-15
Figure 4-16
Figure 4-17
Figure 4-18
Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4
Figure 5-5
Figure 6-1
Figure 6-2
Figure 6-3
Figure 6-4
Figure 7-1
Figure 7-2
Figure 7-3
Figure 7-4
Figure 7-5
Figure 7-6
Figure 7-7
Figure 7-8
Figure 7-9
Figure 7-10
Figure 7-11
Figure 7-12
Figure 8-1
Figure 9-1
Figure 9-2
Figure 9-3
Figure A-1
Figure A-2
Figure B-1
Figure B-2

XVi

Address Register Indirect: Indexed by Long Displacement. 4-16
Special Addressing: ImmediateData. oL 4-18
Special Addressing: Immediate ShortData 4-19
Special Addressing: Absolute Address. i 4-21
Special Addressing: Absolute Short Address., 4-22
Special Addressing: /O Short Address 4-23
Circular Buffer 4-26
Circular Buffer withSizeM=37. i 4-27
Simple Five-Location Circular Buffer 4-29
Linear Addressing with aModulo Modifier........................... 4-32
Program Controller Block Diagram 5-2
Program Controller Programming Model. 5-3
Accessing the Loop Count Regiister (LC)., 5-5
Status Register Format e 5-7
Operating Mode Register (OMR) Formatcoouin... 5-10
SingleParallel Move. 6-2
Dual Parallel Move.o 6-3
DSP56800 Core Programming Model 6-5
PIpEliNINg . ..o 6-31
INterrupt ProCESSINGot e 7-6
Example Interrupt Priority Register i 7-9
Example On-Chip Peripheral and IRQ Interrupt Programming. 7-9
[llegal Instruction Interrupt SErvicing.o e 7-12
Interrupt ServiceRoUtIiNe 7-15
Repeated Illegal Instruction i 7-16
InterruptingaREP INstruction i 7-17
Wait Instruction TImiNgt e e e 7-18
Simultaneous Wait Instructionand Interrupt 7-18
STOPINSruction SEqUENCE oot i i et e 7-19
STOPINSIruction SEqUENCE oot i ettt 7-20
STOP Instruction Sequence RecoveringwithRESET 7-21
Exampleof aDSP56800 Stack Frameo 8-29
JTAG/ONCE Interface Block Diagram.o .. 9-2
JTAGBIlock Diagram. 9-4
ONCEBIOCK Diagram.o e e e 9-6
DSP56800 Core Programming Modelo A-5
StatusS RegiSter (SR)ot A-7
N Radix 2 FFT ButterfliesMemory Map. B-6
LMS Adaptive Filter Graphic Representation.cciiiin... B-7

DSP56800 Family Manual @ MOTOROLA

Figure B-3
Figure B-4
Figure B-5
Figure B-6
Figure B-7
Figure B-8
Figure B-9
Figure B-10
Figure B-11
Figure B-12
Figure B-13

0 MOTOROLA

LMS Adaptive Filter—Single Precision Memory Mapoooiivienn.. B-9

LMS Adaptive Filter—Double PrecissonMemory Map B-10
LMS Adaptive Filter—Double Precision Delayed Memory Map B-11
Vector Multiply-Accumulate. e B-12
[3X3][IX3] Matrix MUItiply B-14
[NXN][NXN] Matrix Multiply e B-15
X3 Coefficient MasKo e B-17
Image Stored as 514X514 ArTaY . . .ottt e B-17
Sine Wave Generator—Double Integration Technique. B-20
Sine Wave Generator—Second Order Oscillator.ciiii... B-21
Proportional Integrator Differentiator Algorithm. B-23

XVii

xviii DSP56800 Family Manual @ mororoLa

List of Examples

Example 3-1 Loading an Accumulator with aWord for Integer Processing. 311
Example 3-2 Reading a Word from an Accumulator for Integer Processing 312
Example 3-3 Correctly Reading a Word from an AccumulatortoaD/A 3-12
Example 3-4 Correct Saving and Restoring of an Accumulator—Word Accesses. 3-13
Example 3-5 Bit Manipulationonan Accumulatort 3-13
Example 3-6 Converting a 36-Bit Accumulator toal16-BitValue 3-14
Example 3-7 Fractional ArithmeticExamples. i, 3-14
Example 3-8 Integer ArithmeticExamples i 3-14
Example 3-9 Multiplying Two Signed Integer Vaueswith Full Precision.............. 321
Example 3-10 Fast Integer MACs using Fractional Arithmetic........................ 321
Example 3-11 Multiplying Two Unsigned Fractional Values. 3-23
Example 3-12 64-Bit Addition. e 3-23
Example 3-13 64-Bit SUbtraction. 3-23
Example 3-14 Fractional Single-Precision Times Double-Precision Value—Both Signed .. 3-24
Example 3-15 Integer Single-Precision Times Double-Precision Value—Both Signed. 3-24
Example 3-16 Multiplying Two Fractional Double-PrecisionValues. 3-25
Example 3-17 Demonstrating the Data Limiter—Positive Saturation. 3-26
Example 3-18 Demonstrating the Data Limiter — Negative Saturation. 3-27
Example 3-19 Demonstrating the MAC Output Limiter, .. 3-28
Example4-1 Initializingthe Circular Buffer.......... 4-29
Example4-2 AccessingtheCircular Buffer........... i ., 4-30
Example 4-3 Accessing the Circular Buffer with Post-Updateby Three 4-30
Example4-4 No Dependency withthe Offset Register. 4-33
Example 4-5 No Dependency with an Address Pointer Register. 4-33
Example4-6 No Dependency with No Address Arithmetic Calculation. 4-34
Example 4-7 No Dependency With (RNHXXXX) .o oo v oot e i 4-34
Example 4-8 Dependency with aWriteto the Offset Register 4-34
Example 4-9 Dependency with a Bit-Field Operation on the Offset Register. 4-34
Example 4-10 Dependency with a Write to an Address Pointer Register 4-34
Example 4-11 Dependency with aWrite to the Modifier Register 4-35
Example 4-12 Dependency with a Write to the Stack Pointer Register. 4-35
Example 4-13 Dependency with aBit-Field Operationand DOLoop 4-35

@ MOTOROLA XiX

Example 6-1
Example 6-2
Example 6-3
Example 6-4
Example 6-5
Example 7-1
Example 7-2
Example 8-1
Example 8-2
Example 8-3
Example 8-4
Example 8-5
Example 8-6
Example 8-7
Example 8-8
Example 8-9
Example A-1
Example A-2
Example A-3
Example B-1

XX

MOVE INStrUCtiON TYPES . . oo v vttt e e ettt e 6-1

Logical OR withaDataMemory Location 6-13
Valid INSIrUCtiONSo 6-16
Invalid INStruction. o 6-16
Examplesof SingleParallel Moves 6-29
Pipeline Dependenciesin Similar CodeSequencescoov.. .. 7-4
Common Pipeline Dependency CodeSequence.o i ii i ien s 7-5
JRSET and JRCLRo e 8-2
BRISET and BRICLR. e 8-3
JRISET and JRICLRot e e 8-3
VS, IVC,BVSandBVC. 8-4
JPL and BES.o 8-4
Simple Fractional DIVISION. 8-18
Signed Fractional DiviSiONt 8-18
Simplelnteger DIVISIONo 8-18
Signed Integer DiVISION oottt 8-18
Arithmetic Instructionwith TwoPardllel Reads A-22
JUMP INSITUCHION ..o e A-23
RTSINSIIUCLION e A-25
SourceCodelayoutot B-1

DSP56800 Family Manual @ MOTOROLA

About This Book

This manual describesthe central processing unit of the DSP56800 Family in detail. It isintended to be
used with the appropriate DSP56800 Family member user’ s manual, which describes the central
processing unit, programming models, and details of the instruction set. The appropriate DSP56800
Family member technical data sheet provides timing, pinout, and packaging descriptions.

This manual provides practical information to help the user accomplish the following:
* Understand the operation and instruction set of the DSP56800 Family
e Write code for DSP algorithms
e Write code for general control tasks
* Write code for communication routines
e Write code for data manipulation algorithms

Audience

The information in this manual is intended to assist design and software engineers with integrating a
DSP56800 Family device into a design and with devel oping application software.

Organization

Information in this manual is organized into chapters by topic. The contents of the chapters are as follows:

Chapter 1, “Introduction.” This section introduces the DSP56800 core architecture and its application. It
aso provides the novice with abrief overview of digital signal processing.

Chapter 2, “Core Architecture Overview.” The DSP56800 core architecture consists of the data
arithmetic logic unit (ALU), address generation unit (AGU), program controller, bus and bit-manipulation
unit, and a JTAG/On-Chip Emulation (OnCE™) port. This section describes each subsystem and the buses
interconnecting the major components in the DSP56800 central processing module.

Chapter 3, “ Data Arithmetic Logic Unit.” This section describes the data ALU architecture, its
programming model, an introduction to fractional and integer arithmetic, and a discussion of other topics
such as unsighed and multi-precision arithmetic on the DSP56800 Family.

Chapter 4, “ Address Generation Unit.” This section specifically describesthe AGU architecture and its
programming model, addressing modes, and address modifiers.

Chapter 5, “Program Controller.” Thissection describesin detail the program controller architecture, its
programming model, and hardware looping. Note, however, that the different processing states of the
DSP56800 core, including interrupt processing, are described in Chapter 7, “Interrupts and the Processing
States.”

@ MOTOROLA XXi

Chapter 6, “Instruction Set Introduction.” This section presents an introduction to parallel moves and a
brief description of the syntax, instruction formats, operand and memory references, data organization,
addressing modes, and instruction set. It also includes asummary of the instruction set, showing the
registers and addressing modes available to each instruction. A detailed description of each instruction is
givenin Appendix A, “Instruction Set Details.”

Chapter 7, “Interruptsand the Processing States.” This section describes five of the six processing
states (normal, exception, reset, wait, and stop). The sixth processing state (debug) is covered more
completely in Chapter 9, “JTAG and On-Chip Emulation (OnCE™).”

Chapter 8, “ Softwar e Techniques.” This section teaches the advanced user techniques for more efficient
programming of the DSP56800 Family. It includes a description of useful instruction sequences and
macros, optimal loop and interrupt programming, topics related to the stack of the DSP56800, and other
useful software topics.

Chapter 9, “JTAG and On-Chip Emulation (OnCE™).” This section describes the combined
JTAG/ONCE port and its functions. These two areintegrally related, sharing the same pinsfor 1/0, and are
presented together in this section.

Appendix A, “Instruction Set Details.” This section presents a detailed description of each DSP56800
Family instruction, its use, and its effect on the processor.

Appendix B, “DSP Benchmarks.” DSP56800 Family benchmark example programs and results arelisted
in this appendix.

Suggested Reading

A list of DSP-related books is included here as an aid for the engineer who is new to the field of DSP:
Advanced Topicsin Sgnal Processing, Jae S. Lim and Alan V. Oppenheim (Prentice-Hall: 1988).
Applications of Digital Signal Processing, A. V. Oppenheim (Prentice-Hall: 1978).

Digital Processing of Signals: Theory and Practice, Maurice Bellanger (John Wiley and Sons: 1984).
Digital Sgnal Processing, Alan V. Oppenheim and Ronald W. Schafer (Prentice-Hall: 1975).

Digital Sgnal Processing: A System Design Approach, David J. DeFatta, Joseph G. Lucas, and William S.
Hodgkiss (John Wiley and Sons: 1988).

Discrete-Time Signal Processing, A. V. Oppenheim and R.W. Schafer (Prentice-Hall: 1989).
Foundations of Digital Sgnal Processing and Data Analysis, J. A. Cadzow (Macmillan; 1987).
Handbook of Digital Sgnal Processing, D. F. Elliott (Academic Press. 1987).

Introduction to Digital Sgnal Processing, John G. Proakis and Dimitris G. Manolakis (Macmillan: 1988).
Multirate Digital Signal Processing, R. E. Crochiere and L. R. Rabiner (Prentice-Hall: 1983).

Sgnal Processing Algorithms, S. Stearns and R. Davis (Prentice-Hall: 1988).

Sgnal Processing Handbook, C. H. Chen (Marcel Dekker: 1988).

Sgnal Processing: The Modern Approach, James V. Candy (McGraw-Hill: 1988).

Theory and Application of Digital Sgnal Processing, Lawrence R. Rabiner and Bernard Gold
(Prentice-Hall: 1975).

XXii DSP56800 Family Manual @ MOTOROLA

Conventions

This document uses the following notational conventions:

Bitswithin registersare alwayslisted from most significant bit (M SB) to least significant bit (LSB).

Bitswithin aregister are formatted AA[n:0] when more than one bit isinvolved in a description.
For purposes of description, the bits are presented as if they are contiguous within aregister.
However, thisis not aways the case. Refer to the programming model diagrams or to the
programmer’s sheets to see the exact location of bits within a register.

When abit isdescribed as “set,” itsvalue is set to 1. When abit isdescribed as “ cleared,” its value
issetto 0.

Memory addresses in the separate program and data memory spaces are differentiated by a
one-letter prefix. Data memory addresses are preceded by “ X:” while program memory addresses
have a“P:” prefix. For example, “P:$0200" indicates alocation in program memory.

Hex values are indicated with adollar sign ($) preceding the hex value, asfollows: $FFFB isthe X
memory address for the Interrupt Priority Register (IPR).

Code examples are displayed in a monospaced font, as follows:

BFSET #$0007, X: PCC ; Confi gure: line 1
; MSQ, MXBI0, SCKO for SPI naster line 2
; ~SS0 as PC3 for GPIO line 3

Definitions, Acronyms, and Abbreviations

The following terms appear frequently in this manual:

DSP digital signal processor
JTAG Joint Test Action Group
OnCE™ On-Chip Emulation
ALU arithmetic logic unit
AGU address generation unit

A completelist of relevant termsisincluded in the Glossary at the end of this manual.

0 MOTOROLA XXiii

XXiv DSP56800 Family Manual 0 MOTOROLA

Chapter 1
Introduction

The DSP56800 Digital Signal Processors provide low cost, low power, mid-performance computing,
combining DSP power and parallelism with M CU-like programming simplicity. The DSP56800 coreisa
genera-purpose central processing unit, designed for both efficient digital signal processing and avariety
of controller operations.

1.1 DSP56800 Family Architecture

The DSP56800 Family uses the DSP56800 16-bit DSP core. This core is a general -purpose central
processing unit (CPU), designed for both efficient DSP and controller operations. Its instruction-set
efficiency asaDSP is superior to other low-cost DSP architectures and has been designed for efficient,
straightforward coding of controller-type tasks.

GPIO 1/0 Pins
Memory Peripherals

Address

Bus >
I:I PLL Interface
Data
16-Bit DSP
CPU Core
Debug
Port

Figure 1-1. DSP56800-Based DSP Microcontroller Chip

External

JTAG I/O

AA0012

The general-purpose MCU-style instruction set, with its powerful addressing modes and bit-manipulation
instructions, enables a user to begin writing code immediately, without having to worry about the
complexities previously associated with DSPs. A software stack allows for unlimited interrupt and
subroutine nesting, as well as support for structured programming techniques such as parameter passing

@ MOTOROLA Introduction 1-1

Introduction

and the use of local variables. The veteran DSP programmer sees a powerful DSP instruction set with
many different arithmetic operations and flexible single- and dual-memory movesthat can occur in parallel
with an arithmetic operation. The general-purpose nature of the instruction set also alows for an efficient
compiler implementation.

A variety of standard peripherals can be added around the DSP56800 core (see Figure 1-1 on page 1-1)
such as serial ports, general-purpose timers, real-time and watchdog timers, different memory
configurations (RAM, ROM, or both), and general-purpose 1/0 (GPIO) ports.

On-Chip Emulation (OnCE™) capability is provided through a debug port conforming to the Joint Test
Action Group (JTAG) standard. This provides real-time, embedded system debugging with on-chip
emulation capability through the five-pin JTAG interface. A user can set hardware and software
breakpoints, display and change registers and memory locations, and single step or step through multiple
instructions in an application.

The DSP56800’s efficient instruction set, multiple internal buses, on-chip program and data memories,
external bus interface, standard peripherds, and industry-standard debug support make the DSP56800
Family an excellent solution for real-time embedded control tasks. It isan excellent fit for wireless or
wireline DSP applications, digital control, and controller applications in need of more processing power.

1.1.1 Core Overview

The DSP56800 core is a programmable 16-bit CMOS digital signal processor that consists of a 16-bit data
arithmetic logic unit (ALU), a 16-bit address generation unit (AGU), a program decoder, On-Chip
Emulation (OnCE), associated buses, and an instruction set. Figure 1-2 on page 1-3 shows ablock diagram
of the DSP56800 core. The main features of the DSP56800 core include the following:

* Processing capability of up to 35 million instructions per second (MIPS) at 70 MHz
e Requiresonly 2.7-3.6 V of power

e Single-ingtruction cycle 16-bit x 16-bit parallel multiply-accumulator

e Two 36-bit accumulators including extension bits

e Single-instruction 16-hit barrel shifter

e Pardlel ingtruction set with unique DSP addressing modes

e Hardware DO and REP loops

e Two external interrupt request pins

* Three 16-bit internal core data buses

* Three 16-bit internal address buses

e Instruction set that supports both DSP and controller functions

e Controller-style addressing modes and instructions for smaller code size

« Efficient C compiler and local variable support

« Software subroutine and interrupt stack with unlimited depth

e On-Chip Emulation for unobtrusive, processor-speed-independent debugging
e Low-power wait and stop modes

e Operating frequency downto DC

e Single power supply

1-2 DSP56800 Family Manual @ mororoLa

DSP56800 Family Architecture

Program AGU
Controller Mvor] [~]
[LSR_||OMR] [instr. Decoder +/- MA(BB
I \
Interrupt Unit
11
A A ¢ ;» Clock Gen. A A ¢
< Clock & Control r_»
Program | g—28 >
Memory |gf22BEL Y »| External
€ X2E2 Y - BUS
Data Memory |g—sz Y Y »| Interface
| -CGDB A >
Peripherals |<g—SRE A% % -
| € -XDB2 v >
Data
v ALU
Bus And Bit
Manipulation ¢ * A A
Unit
YYVY YY VY
[yivo|| xo |[A2A1A0|]|B2B1BO]
OnCE
»| VAC
> and
»| ALU
AA0006

Figure 1-2. DSP56800 Core Block Diagram

1.1.2 Peripheral Blocks

The following peripheral blocks are available for members of the DSP56800 16-bit Family:
e Program ROM and RAM modules
e Bootstrap ROM for program RAM parts
 DataROM and RAM modules
e Phase-locked loop (PLL) module
— 32.0kHz and 38.4 kHz crystals accepted
— Crystal frequencies = 1 MHz accepted
— Programmable multiplication factor
— Three pinsrequired (SXFC, Vpps, and GNDS)

@ MOTOROLA Introduction 1-3

Introduction

» 16-bit Timer Module
— Three independent 16-bit timers
— Each may be clocked from a pin, the oscillator clock, or the PLL output
— Zerototwo pinsrequired

e Computer operating properly (COP) and real-time timer module
— COP timer uses output of real-time timer chain
— Programmable real-time timer
— Count register readable
— No pinsrequired

e Synchronous serial interface module (SSI)
— Synchronous serial interface for hooking up to codecs
— Frame sync and gated clock modes
— Independent transmit and receive channels
— Up to 32-dot network mode available
— Threeto six pins required

e Serial peripheral interface (SPI)
— Simple, synchronous, 8-bit serial interface for interfacing to MCUs and M CU-style peripherals
— Master and slave modes
— Four pins required

e Programmable general-purpose |/O
— Pins can be individually programmed as input or output
— Pins can be individually multiplexed between periphera functionality and GPIO
— Pins can have interrupt capability

More blocks will be defined in the future to meet customer needs.

1-4 DSP56800 Family Manual @ mororoLa

Introduction to Digital Signal Processing

1.1.3 Family Members

The DSP56800 core processor is designed as a core processor for afamily of Motorola DSPs. An example
of achip that can be built with this core is shown in Figure 1-3 on page 1-5.

f \ ~€— IRQA
1Kx16
16Kx16
XRAM
ROM ~€— IRQB
16 , DSP56800 Watchdog
ADR <7 Ext. Bus 16-Bit & Real-time
DATA #_» Interface DSP
Core Timers €
—P PLL
Serial €
<P JTAG
\ / GPIO €

AA0002

Figure 1-3. Example of Chip Built Around the DSP56800 Core

1.2 Introduction to Digital Sighal Processing

DSP is the arithmetic processing of real-time signals sampled at regular intervals and digitized. Examples
of DSP processing include the following:

e Filtering

e Convolution (mixing two signals)

e Correlation (comparing two signals)

« Rectification, amplification, and transformation

Figure 1-4 on page 1-6 shows an example of analog signa processing. The circuit in theillustration filters
asignal from asensor using an operational amplifier and controls an actuator with the result. Since the
ideal filter isimpossible to design, the engineer must design the filter for acceptable response by
considering variationsin temperature, component aging, power-supply variation, and component accuracy.
The resulting circuit typically has low noise immunity, requires adjustments, and is difficult to modify.

@ MOTOROLA Introduction 1-5

Introduction

Analog Filter
Ry
11
11 C
X > — > y(t) (0
| I | -
L?gl,i: Rj ‘ > Output
Sensor To
Actuator
t
y() _E[;}
x(t) Ri 1+jWRfo
Frequency Characteristics
|
c Ideal : Actual
‘T Filter 1 Filter
O 1
|
» f :

fe
Frequency AAOOO3

Figure 1-4. Analog Signal Processing

The equivalent circuit using a DSP is shown in Figure 1-5 on page 1-7. This application requires an
analog-to-digital (A/D) converter and digital-to-analog (D/A) converter in addition to the DSP. Even with
these additional parts, the component count can be lower using a DSP due to the high integration available
with current components.

1-6 DSP56800 Family Manual @ mororoLa

Introduction to Digital Signal Processing

Low-Pass Sampler and DSP Operation Digital-to-Analog Reconstruction
Anti-Aliasing Analog-to-Digital Converter Low-Pass
Filter Converter FIR Filter
N
c(k) x (n—k
» 5 o(k)x (n-k) j> ,
X(t) k=0 y()
X(n) Finite Impulse y(n)
Response
Analog In A Analog Out
Ideal <
Filter 8
f
fC
Frequency
A
Analog ¢
Filter 8
} f
fe
Frequency
A
Digital .E
Filter 8
} f
fe
Frequency AA0004

Figure 1-5. Digital Signal Processing

Processing in this circuit begins by band limiting the input signal with an anti-alias filter, eliminating
out-of-band signals that can be aliased back into the pass band due to the sampling process. The signal is
then sampled, digitized with an A/D converter, and sent to the DSP.

Thefilter implemented by the DSP is strictly a matter of software. The DSP can directly employ any filter
that can aso be implemented using analog techniques. Also, adaptive filters can be easily put into practice
using DSP, whereas these filters are extremely difficult to implement using anal og techniques. (Similarly,
compression can also be implemented on aDSP.)

@ MOTOROLA Introduction 1-7

Introduction

The DSP output is processed by a D/A converter and is low-pass filtered to remove the effects of
digitizing. In summary, the advantages of using the DSP include the following:

* Fewer components

e Stable, deterministic performance

* No filter adjustments

* Widerange of applications

* Filters with much closer tolerances
e High noise immunity

e Adaptivefilters easily implemented
o Sdf-test can be built in

e Better power-supply rejection

The DSP56800 Family is hot a custom IC designed for a particular application; it is designed as a
genera-purpose DSP architecture to efficiently execute commonly used DSP benchmarks and controller
code in minimal time.

As shown in Figure 1-6, the key attributes of a DSP are as follows:
e Multiply/accumulate (MAC) operation
e Fetching up to two operands per instruction cycle for the MAC
e Program control to provide versatile operation
e Input/output to move datain and out of the DSP

FIR Filter
N

—> > » (k) x (n—K) —>
x(t) y(®

X(n) 7 / y(n)

Program

AA0005

Figure 1-6. Mapping DSP Algorithms into Hardware

1-8 DSP56800 Family Manual @ mororoLa

Summary of Features

The multiply-accumulation (MAC) operation is the fundamental operation used in DSP. The DSP56800
Family of processors has adual Harvard architecture optimized for MAC operations. Figure 1-6 on

page 1-8 shows how the DSP56800 architecture matches the shape of the MAC operation. The two
operands, ¢() and x(), are directed to a multiply operation, and the result is summed. This processis built
into the chip by allowing two separate data-memory accesses to feed asingle-cycle MAC. The entire
process must occur under program control to direct the correct operands to the multiplier and save the
accumulated result as needed. Since the memory and the MAC are independent, the DSP can perform two
memory moves, a multiply and an accumulate, and two address updates in a single operation. Asaresult,
many DSP benchmarks execute very efficiently for a single-multiplier architecture.

1.3 Summary of Features

The high throughput of the DSP56800 Family processors makes them well-suited for wireless and wireline
communication, high-speed control, low-cost voice processing, humeric processing, and computer and
audio applications. The main features that contribute to this high throughput include the following:

e Speed—The DSP56800 supports most mid-performance DSP applications.

e Precision—Thedatapathsare 16 bitswide, providing 96 dB of dynamic range; intermediate results
held in the 36-bit accumulators can range over 216 dB.

« Parallelism—Each on-chip execution unit, memory, and peripheral operates independently and in
parallel with the other units through a sophisticated bus system. The data ALU, AGU, and program
controller operate in parallel so that the following can be executed in a single instruction:

— Aningtruction pre-fetch

— A 16-bit x 16-bit multiplication

— A 36-bit addition

— Two data moves

— Two address-pointer updates using one of two types of arithmetic (linear or modul o)
— Sending and receiving full-duplex data by the serial ports

— Timers continuing to count in parallel

» Flexibility—While many other DSPs need external communications circuitry to interface with
peripheral circuits (such as A/D converters, D/A converters, or host processors), the DSP56800
Family provides on-chip serial and parallel interfaces that can support various configurations of
memory and peripheral modules. The peripherals are interfaced to the DSP56800 core through a
peripheral interface bus, designed to provide a common interface to many different peripherals.

« Sophisticated debugging— Motorola's On-Chip Emulation technology (OnCE) allows simple,
inexpensive, and speed-independent access to the interna registers for debugging. OnCE tells
application programmers exactly what the statusiswithin the registers, memory locations, and even
the last instructions that were executed.

* Phase-locked loop (PLL)-based clocking—The PLL alowsthe chip to use amost any available
external system clock for full-speed operation while also supplying an output clock synchronized
to asynthesized internal core clock. It improves the synchronoustiming of the processors' external
memory port, eliminating the timing skew common on other processors.

» Invisible pipeline—The three-stage instruction pipelineis essentially invisible to the programmer,
allowing straightforward program development in either assembly language or high-level
languages such as C or C++,

@ MOTOROLA Introduction 1-9

Introduction

e Instruction set—The instruction mnemonics are MCU-like, making the transition from
programming microprocessors to programming the chip as easy as possible. New microcontroller
instructions, addressing modes, and bit-field instructions allow for significant decreasesin program
code size. The orthogonal syntax controls the parallel execution units. The hardware DO loop
instruction and the repeat (REP) instruction make writing straight-line code obsolete.

e Low power—Designed in CMOS, the DSP56800 Family inherently consumes very low power.
Two additional low power modes, stop and wait, further reduce power requirements. Wait isa
low-power mode wherethe DSP56800 coreis shut down but the peripherals and interrupt controller
continue to operate so that an interrupt can bring the chip out of wait mode. In stop mode, even more
of the circuitry is shut down for the lowest power-consumption mode. There are also several
different waysto bring the chip out of stop mode.

1.4 For the Latest Information

For the latest el ectronic version of this document, as well as other DSP documentation (including user’s
manuals, product briefs, data sheets, and errata) please consult the inside front cover of this manual for
contact information for the following services:

« MotorolaMFAX™ service
* Motorola DSP World Wide Web site
« MotorolaDSP Helpline

The MFAX service and the DSP Web site maintain the most current specifications, documents, and
drawings. These two services are available on demand 24 hours a day.

1-10 DSP56800 Family Manual @ MOTOROLA

Chapter 2
Core Architecture Overview

The DSP56800 core architecture is a 16-bit multiple-bus processor designed for efficient real-time digital
signal processing and general purpose computing. The architecture is designed as a standard
programmable core from which various DSP integrated circuit family members can be designed with
different on-chip and off-chip memory sizes and on-chip peripheral requirements. This chapter presents
the overall core architecture and the general programming model. More detailed information on the data
ALU, AGU, program controller, and JTAG/OnCE blocks within the architecture are found in later
chapters.

2.1 Core Block Diagram

The DSP56800 core is composed of functional units that operatein parallé to increase the throughput of
the machine. The program controller, AGU, and data ALU each contain their own register set and control
logic, so each may operate independently and in parallel with the other two. Likewise, each functional unit
interfaces with other units, with memory, and with memory-mapped peripherals over the core’s internal
address and data buses. The architecture is pipelined to take advantage of the parallel units and
significantly decrease the execution time of each instruction.

For example, it is possible for the data ALU to perform amultiplication in afirst instruction, for the AGU
to generate up to two addresses for a second instruction, and for the program controller to be fetching a
third instruction. In asimilar manner, it is possible for the bit-manipulation unit to perform an operation of
the third instruction described above in place of the multiplication in the data ALU.

The major components of the core are the following:
« DataALU
« AGU
e Program controller and hardware looping unit
e Busand bit-manipulation unit
e OnCE debug port
* Address buses
» Databuses
Figure 2-1 on page 2-2 shows a block diagram of the CPU architecture.

0 MOTOROLA Core Architecture Overview 2-1

Core Architecture Overview

Program
Controller
| SR ||OMR| Instr. Decoder
Interrupt Unit
:
A A A
Program
Memory
XAB1 .
>
XAB2 o
v PAB ¢ Data
"1l Memory
PDB
v v CGDB = — — 7
»
XDB2 | External
| Bus |
PGDB L Interface |
> _
v r — — — 7
Data — | IP-BUS |
ALU | Interface |
Bus and Bit
Manipulation T
Unit v v
[Yivo][xo |[A2A1A0] [B2B1B0]
ONnCE
MAC
and
ALU

Figure 2-1. DSP56800 Core Block Diagram

Note that Figure 2-1 illustrates two methods for connecting peripherals to the DSP56800 core: using the
Motorola-standard | P-BUS interface or via a dedicated peripheral global data bus (PGDB). When the
IP-BUS interface is used, peripheral registers may be memory mapped into any data (X) memory address
range and are accessed with standard X-memory reads and writes. When the PGDB interface is used,
periphera registers are mapped to the last 64 locationsin X memory and are accessed with a special
memory addressing mode (see Section 4.2.4.3, “1/0 Short Address (Direct Addressing): <pp>,” on

page 4-23).

The interface method used to connect to peripherals is dependent on the specific DSP56800-based device
being used. Consult your device user’s manual for more information on peripheral interfacing.

2-2

DSP56800 Family Manual

0 MOTOROLA

Core Block Diagram

2.1.1 Data Arithmetic Logic Unit (ALU)

The data arithmetic logic unit (ALU) performs all of the arithmetic and logical operations on data
operands. It consists of the following:

e Three 16-bit input registers (X0, YO, and Y 1)

e Two 32-bit accumulator registers (A and B)

e Two 4-bit accumulator extension registers (A2 and B2)

e Anaccumulator shifter (AS)

e Onedatalimiter

e One 16-bit barrel shifter

e Oneparaléd (single cycle, non-pipdined) multiply-accumulator (MAC) unit
The data ALU is capable of multiplication, multiply-accumulation (with positive or negative
accumulation), addition, subtraction, shifting, and logical operations in one instruction cycle. Arithmetic

operations are done using two’ s-complement fractional or integer arithmetic. Support is also provided for
unsigned and multi-precision arithmetic.

Data ALU source operands may be 16, 32, or 36 bits and may individually originate from input registers,
memory locations, immediate data, or accumulators. ALU results are stored in one of the accumulators. In
addition, some arithmetic instructions store their 16-bit results either in one of the three data ALU input
registers or directly in memory. Arithmetic operations and shifts can have a 16-bit or a 36-hit result.
Logical operations are performed on 16-bit operands and always yield 16-bit results.

Data ALU register values can be transferred (read or write) across the core global data bus (CGDB) as
16-bit operands. The X0 register value can also be written by X memory data bus two (XDB2) as a 16-bit
operand. Refer to Chapter 3, “Data Arithmetic Logic Unit,” for a detailed description of the data ALU.

2.1.2 Address Generation Unit (AGU)

The address generation unit (AGU) performs al of the effective address cal culations and address storage
necessary to address data operands in memory. The AGU operatesin parallel with other chip resources to
minimize address-generation overhead. It contains two ALUs, alowing the generation of up to two 16-bit
addresses every instruction cycle: one for either X memory address bus one (XAB1) or program address
bus (PAB) and one for X memory address bustwo (XAB2). The ALU can directly address 65,536
locations onthe XAB1 or XAB2 and 65,536 |ocations on the PAB, totaling 131,072 sixteen-bit datawords.
It supports a complete set of addressing modes. Its arithmetic unit can perform both linear and modulo
arithmetic.

The AGU contains the following registers.
e Four addressregisters (RO-R3)
e A stack pointer register (SP)
e Anoffset register (N)
e A modifier register (M01)
* A modulo arithmetic unit
* Anincrementer/decrementer unit

0 MOTOROLA Core Architecture Overview 2-3

Core Architecture Overview

The address registers are 16-hit registers that may contain an address or data. Each address register can
provide an address for the XAB1 and PAB address buses. For instructionsthat read two valuesfrom X data
memory, R3 provides an address for the XAB2, and RO or R1 provides an address for the XABL. The
modifier and offset registers are 16-bit registers that control updating of the address registers. The offset
register can also be used to store 16-hit data. AGU registers may be read or written by the CGDB as 16-hit
operands. Refer to Chapter 4, “ Address Generation Unit,” for a detailed description of the AGU.

2.1.3 Program Controller and Hardware Looping Unit

The program controller performs the following:
e Instruction prefetch
e Instruction decoding
e Hardware loop control
e Interrupt (exception) processing
Instruction execution is carried out in other core units such as the data ALU, AGU, or bit-manipulation
unit. The program controller consists of the following:
* A program counter unit
e Instruction latch and decoder
e Hardware looping control logic
e Interrupt control logic
e Statusand control registers
L ocated within the program controller are the following:
e Four user-accessible registers:
— Loop address register (LA)
— Loop count register (LC)
— Status register (SR)
— Operating mode register (OMR)
e A program counter (PC)
e A hardware stack (HWS)

In addition to the tasks listed above, the program controller also controls the memory map and operating
mode. The operating mode and memory map are programmable viathe OMR, and are established after
reset by externa interface pins.

The HWSisaseparate internal last-in-first-out (LIFO) buffer of two 16-bit words that stores the address of
the first instruction in a hardware DO loop. When a new hardware loop is begun by executing the DO
instruction, the address of the first instruction in the loop is stored (pushed) on the “top” location of the
HWS, and the LF bit in the SR is set. The previous value of the loop flag (LF) bit is copied to the OMR’s
NL bit. When an ENDDO instruction is encountered or a hardware loop terminates naturally, the 16-bit
address in the “top” location of the HWSis discarded, and the LF bit is updated with the value in the
OMR'’s nested looping (NL) hit.

The program controller is described in detail in Chapter 5, “Program Controller.” For more details on
program looping, refer to Section 5.3, “Program Looping,” on page 5-14 and Section 8.6, “Loops,” on
page 8-20. For information on reset and interrupts, refer to Chapter 7, “Interrupts and the Processing
States.”

2-4 DSP56800 Family Manual @ mororoLa

Core Block Diagram

2.1.4 Bus and Bit-Manipulation Unit

Transfers between internal buses are accomplished in the bus unit. The bus unit is similar to a switch
matrix and can connect any two of the three internal data buses together without introducing delays. This
alows data to be moved from program to data memory, for example. The bus unit is also used to transfer
datato the PGDB on those devices that useit to connect to on-chip peripherals.

The bit-manipulation unit performs bit-field manipulations on X (data) memory words, peripheral
registers, and all registers within the DSP56800 core. It is capable of testing, setting, clearing, or inverting
any bits specified in a 16-bit mask. For branch-on-bit-field instructions, this unit tests bits on the upper or
lower byte of a 16-bit word (that is, the mask can only test up to 8 bits at atime).

2.1.5 On-Chip Emulation (OnCE) Unit

The On-Chip Emulation (OnCE) unit allows the user to interact in a debug environment with the
DSP56800 core and its peripherals non-intrusively. Its capabilities include examining registers, on-chip
peripheral registers or memory, setting breakpoints on program or data memory, and stepping or tracing
instructions. It provides simple, inexpensive, and speed-independent access to the internal DSP56800 core
by interacting with a user-interface program running on a host workstation for sophisticated debugging and
economical system development.

Dedicated pins through the JTAG port allow the user accessto the DSP in atarget system, retaining debug
control without sacrificing other user-accessible on-chip resources. This technique eliminates the costly
cabling and the access to processor pins required by traditional emulator systems. Refer to Chapter 9,
“JTAG and On-Chip Emulation (OnCE™),” for a detailed description of the JTAG/OnCE port. Consult
your development system’s documentation for information on debugging using the JTAG/OnCE port
interface.

2.1.6 Address Buses

Addresses are provided to the internal X data memory on two unidirectional 16-bit buses, X memory
address bus one (XAB1) and X memory address bus two (XAB2). Program memory addresses are
provided on the 16-bit program address bus (PAB). Note that XAB1 can provide addresses for accessing
both internal and external memory, whereas XAB2 can only provide addresses for accessing internal
memory.

2.1.7 Data Buses

Inside the chip, dataistransferred using the following:
* Bidirectional 16-bit buses:
— Core global data bus (CGDB)
— Program data bus (PDB)
— Peripheral databus (PGDB)?!
e Oneunidirectiona 16-bit bus: X memory data bus two (XDB2)

Datatransfer between the data ALU and the X data memory uses the CGDB when one memory accessis
performed. When two simultaneous memory reads are performed, the transfers use the CGDB and the
XDB2. All other data transfers occur using the CGDB, except transfers to and from peripherals on

1. Implemented on DSP56800 family devices that do not use the IP-BUS interface for peripherals.

0 MOTOROLA Core Architecture Overview 2-5

Core Architecture Overview

DSP56800-based devices that implement the PGDB peripheral data bus. Instruction word fetches occur
simultaneously over the PDB. The bus structure supports general register-to-register moves,
register-to-memory moves, and memory-to-register moves, and can transfer up to three 16-bit wordsin the
same instruction cycle. Transfers between buses are accomplished in the bus and bit-manipulation unit. As
ageneral rule, when any register less than 16 bits wide is read, the unused bits are read as zeros. Reserved
and unused bits should always be written with zeros to insure future compatibility.

2.2 Memory Architecture

The DSP56800 has a dual Harvard memory architecture, with separate program and data memory spaces.
Each address space supports up to 216 (65,536) memory words. Dedicated address and data buses for each
address space allow for simultaneous accesses to both program memory and data memory. Thereisalso a
support for asecond read-only data path to data memory. In DSP56800 Family devices that implement this
second bus, it is possible to initiate two simultaneous data read operations, allowing for atotal of three
paralel memory accesses.

$FFFF 64K or 216 $FFFF . 64K or 216
Optimized for
SFECO Peripherals (64K - 64)
Program
Memory
Space X Data
Memory
Space
$7F 127
Interrupt
$0 Vectors 0 $0 0

Figure 2-2. DSP56800 Memory Spaces

L ocations $0 through $007F in the program memory space are available for reset and interrupt vectors.
Peripheral registers are located in the data memory address space as memory-mapped registers. This
peripheral space can be located anywhere in the data address space, although the address range
$FFCO-$FFFF is frequently used because an addressing mode optimized for this region provides faster
access; however, the location of the peripheral space is dependent on the specific system implementation
of the DSP56800 core. See Section 4.2.4.3, “1/0 Short Address (Direct Addressing): <pp>,” on page 4-23
for more information.

2-6 DSP56800 Family Manual @ mororoLa

Blocks Outside the DSP56800 Core

2.3 Blocks Outside the DSP56800 Core

The following blocks are optionally found on DSP56800-based DSP chips and are considered peripheral
and memory blocks, not part of the DSP56800 core. These and other blocks are described in greater detail
in the appropriate chip-specific user’s manual. Figure 2-3 shows an example DSP56800-based device.
Note that this device uses the Maotorola IP-BUS interface to connect to peripheras. Other chips may use
the PGDB periphera bus.

Program Data On-Cth
—>»| PLL RAM/ROM RAM/ROM Expansion
Expansion Expansion Area
A AA
Clock
Generator N
= Peripheral
< Modules
XAB1
Address XAB2
Generation
. PAB
Unit DSP
A A .
16-Bit
Core
Internal L PDB IP-BUS
Data Bus [€ Bridge
Switch < ceobB
A\ 4 l A\ 4 y l v
Data ALU
Program 16 x 16 + 36 — 36-Bit MAC ITAG/ < >
Controller Three 16-Bit Input Registers OncE™
Two 36-Bit Accumulators
A A ?
@ —— 16-Bit Data Bus
IRQA
RESET

Figure 2-3. Sample DSP56800-Family Chip Block Diagram

2.3.1 External Data Memory

External data memory (data RAM, data ROM, or both) can be added around the core on a chip. Addresses
arereceived from the XAB1 and XAB2. Data transfers occur on the CGDB and XDB2. One read, one
write, or two reads can be performed during one instruction cycle using the internal data memory.
Depending upon the particular on-chip peripherals found on a device, some portion of the data address
space may be reserved for peripheral registers, and not be accessible as external datamemory. A total of
65,536 memory locations can be addressed.

0 MOTOROLA Core Architecture Overview 2-7

Core Architecture Overview

2.3.2 Program Memory

Program memory (program RAM, program ROM, or both) can be added around the core on a chip.
Addresses are received from the PAB and data transfers occur on the PDB. The first 128 locations of the
program memory are available for interrupt vectors, although it is not necessary to use all 128 locations for
interrupt vectors. Some can be used for the user program if desired. The number of locations required for
an application depends on what peripherals on the chip are used by an application and the locations of their
corresponding interrupt vectors. The program memory may be expanded off chip, and up to 65,536
locations can be addressed.

2.3.3 Bootstrap Memory

A program bootstrap ROM is usually found on chips that have on-chip program RAM instead of ROM.

The bootstrap ROM is used for initialy loading application code into the on-chip program RAM so it can
be run from there. Refer to Section 5.1.9.1, “ Operating Mode Bits (MB and MA)—Bits 1-0,” on page 5-10
and to the user’s manual of the particular DSP chip for a description of the different bootstrapping modes.

2.3.4 IP-BUS Bridge

Some devices based on the DSP56800 architecture connect to on-chip peripherals using the
Motorola-standard |P-BUS interface. These devices contain an IP-BUS bridge unit, which allows
peripherals to be accessed using the CGDB data bus and XAB1 address bus. Peripheral registers are
memory-mapped into the data address space. Consult the appropriate DSP56800-based device User’s
Manual for more information on periphera interfacing for a particular chip.

2.3.5 Phase Lock Loop (PLL)

The phase lock loop (PLL) alowsthe DSP chip to use an external clock different from the internal system
clock, while optionally supplying an output clock synchronized to a synthesized internal clock. This PLL
allows full-speed operation using an external clock running at a different speed. The PLL performs
frequency multiplication, skew elimination, and reduces overall system power by reducing the frequency
on the input reference clock.

2.4 DSP56800 Core Programming Model

Theregistersin the DSP56800 core that are considered part of the DSP56800 core programming model are
shown in Figure 2-4 on page 2-9. There may a so be other important registers that are not included in the
DSP56800 core, but mapped into the data address space. Theseinclude registersfor peripheral devicesand
other functions that are not bound into the core.

2-8 DSP56800 Family Manual @ mororoLa

DSP56800 Core Programming Model

Data Arithmetic Logic Unit
Data ALU Input Registers
31 16 15
X0 Y Y1l YO
15 0 15 0 15
Accumulator Registers
35 3231 16 15 0
A A2 Al A0
3 0 15 0 15 0
35 3231 16 15 0
B B2 Bl BO
3 0 15 0 15 0
Address Generation Unit
15 0 15 0 15
RO N MO1
R1
R2
R3
SP
Pointer Offset Modifier
Registers Register Register
Program Controller Unit
15 0 15 8 7 0 15
PC MR CCR OMR
Program Status Operating Mode
Counter Register (SR) Register
15 0 12 0 15
LC LA
Hardware Stack (HWS) Loop Counter Loop Address
AA0007
Figure 2-4. DSP56800 Core Programming Model
@ mororoLa Core Architecture Overview 2-9

Core Architecture Overview

2-10 DSP56800 Family Manual @ MOTOROLA

Chapter 3
Data Arithmetic Logic Unit

This chapter describes the architecture and the operation of the data arithmetic logic unit (ALU), the block
where the multiplication, logical operations, and arithmetic operations are performed. (Addition can also
be performed in the address generation unit, and the bit-manipulation unit can perform logical operations.)
The data ALU contains the following:

e Three 16-hit input registers (X0, YO, and Y1)

e Two 32-bit accumulator registers (A and B)

e Two 4-bit accumulator extension registers (A2 and B2)

e Anaccumulator shifter (AS)

* Onedatalimiter

* One 16-bit barrel shifter

e Onepardlé (single cycle, non-pipeined) multiply-accumulator (MAC) unit

Multiple busesin the data ALU perform complex arithmetic operations (such as a multiply-accumulate
operations) in parallel with up to two memory transfers. A discussion of fractional and integer data
representations; signed, unsigned, and multi-precision arithmetic; condition code generation; and the
rounding modes used in the data ALU are also described in this section.

The data ALU can perform the following operations in a single instruction cycle:
e Multiplication (with or without rounding)
e Multiplication with inverted product (with or without rounding)
e Multiplication and accumulation (with or without rounding)
e Multiplication and accumulation with inverted product (with or without rounding)
* Addition and subtraction
e Compares
* Increments and decrements
e Logical operations (AND, OR, and EOR)
e On€'s-complement
e Two’'s-complement (negation)
e Arithmetic and logical shifts

¢ Rotates
* Multi-bit shifts on 16-bit values
e Rounding

e Absolutevalue

Q mororoLa Data Arithmetic Logic Unit 3-1

Data Arithmetic Logic Unit

Division iteration

Normalization iteration
Conditional register moves (Tcc)
Saturation (limiting)

3.1 Overview and Architecture

The major components of the data ALU are the following:

Three 16-bit input registers (X0, YO, and Y1)

Two 32-bit accumulator registers (A and B)

Two 4-bit accumulator extension registers (A2 and B2)
An accumulator shifter (AS)

One data limiter

One 16-bit barrel shifter

One parallé (single cycle, non-pipelined) multiply-accumulator (MAC) unit

A block diagram of the data ALU unit is shown in Figure 3-1 on page 3-3, and its corresponding
programming model is shown in Figure 3-2 on page 3-4. In the programming model, accumulator “A”
refersto the entire 36-bit accumulator register, whereas “A2,” “Al,” and “AQ" refer to the directly
accessible extension, most significant portions, and least significant portions of the 36-bit accumulator,
respectively. Instructions can access the register as awhole or by these individual portions (see

Section 3.1.2, “Data ALU Accumulator Registers,” on page 3-4 and Section 3.2, “Accessing the
Accumulator Registers,” on page 3-7). The blocks and registers within the data ALU are explained in the
following sections.

3-2

DSP56800 Family Manual

0 MOTOROLA

Overview and Architecture

XDB2
CGDB
A
> A2 Al A0
% <
= B2 Bl BO
=
= Y1
YO
> X0
A
Optional
Invert
k vV Vv
Arith/Logical
Shifter
y v
SHIFTER/MUX | 36-bit Accumulator Shifter
Rounding
Constant
OMR’s SA Bit —»| MAC Output Limiter
EXT:MSP:LSP
v

P Condition Code
OMR’s CC Bit—p| Generation

!

Condition Codes
to Status Register

Figure 3-1. Data ALU Block Diagram

Q mororoLa Data Arithmetic Logic Unit 3-3

Data Arithmetic Logic Unit

Data Arithmetic Logic Unit
Data ALU Input Registers
15 0 31 16 15 0
X0 Y Y1 YO
15 015 0

Accumulator Registers

35 32 31 16 15 0
A A2 Al A0
3 0 15 0 15 0
35 32 31 16 15 0
B B2 Bl BO
3 0 15 0 15 0 AAQ0035

Figure 3-2. Data ALU Programming Model

3.1.1 Data ALU Input Registers (X0, Y1, and YO)

Thedata ALU registers (X0, Y1, and Y Q) are 16-hit registers that serve as inputs for the data ALU. Each
register may be read or written by the CGDB as aword operand. They may be treated as three independent
16-hit registers, or as one 16-bit register and one 32-bit register. Y1 and Y 0 can be concatenated to form
the 32-bit register Y, with Y 1 being the most significant word and Y 0 being the least significant word.
Figure 3-2 shows this arrangement.

These data AL U input registers are used as source operands for most data ALU operations and allow new
operands to be loaded from the memory for the next instruction while the register contents are used by the
current instruction. X0 may also be written by the XDB2 during the dual read instruction. Certain
arithmetic operations also allow these registers to be specified as destinations.

3.1.2 Data ALU Accumulator Registers
Thetwo 36-bit data AL U accumulator registers can be accessed either as a 36-bit register (A or B) or asthe
following, individual portions of the register:
e 4-bit extension register (A2 or B2)
« 16-bit MSP (Al or B1)
e 16-bit LSP (AO or BO)
Thethree individual portions make up the entire accumulator register, as shown in Figure 3-2.

These two techniques for accessing the accumulator registers provide important flexibility for both DSP
algorithms and general -purpose computing tasks. Accessing these registers as entire accumulators (A or B)
is particularly useful for DSP tasks, because this preserves the full precision of multiplication and other
ALU operations. Data limiting and saturation are also possible using the full registers, in cases where the
final result of a computation that has overflowed is moved (see Section 3.4.1, “Data Limiter,” on page
3-26).

3-4 DSP56800 Family Manual @ mororoLa

Overview and Architecture

Accessing an accumulator through itsindividual portions (A2, A1, AO, B2, B1, or BO) isuseful for systems
and control programming. When accumulators are manipulated using their constituent components,
saturation and limiting are disabled. This allows for microcontroller-like 16-bit integer processing for
non-DSP purposes.

Section 3.2, “ Accessing the Accumulator Registers,” provides a complete discussion of the waysin which
the accumulators can be employed. A description of the data limiting and saturation features of the data
ALU isprovided in Section 3.4, “ Saturation and Data Limiting.”

3.1.3 Multiply-Accumulator (MAC) and Logic Unit

The multiply-accumulator (MAC) and logic unit is the main arithmetic processing unit of the DSP. Thisis
the block that performs all multiplication, addition, subtraction, logical, and other arithmetic operations
except shifting. It accepts up to three input operands and outputs one 36-bit result of the form
EXT:MSP:LSP (extension:most significant product:least significant product). Arithmetic operationsin the
MAC unit occur independently and in parallel with memory accesses on the CGDB, XDB2, and PDB. The
data ALU registers provide pipelining for both data ALU inputs and outputs. An input register may be
written by memory in the same instruction where it is used as the source for adata ALU operation. The
inputs of the MAC and logic unit can come fromthe X and Y registers (X0, Y 1, Y0), the accumulators
(A1, B1, A, B), and also directly from memory for common instructions such as ADD and SUB.

The multiplier executes 16-bit x 16-bit paralld signed/unsigned fractional and 16-bit x 16-bit parallel
signed integer multiplications. The 32-bit product is added to the 36-bit contents either of the A or B
accumulator or of the 16-bit contents of the X0, YO, or Y1 registers and then stored in the same register.
This multiply-accumulate is a single cycle operation (no pipeline). For integer multiplication, the 16 LSBs
of the product are stored in the M SP of the accumulator; the extension register isfilled with sign extension
and the L SP of the accumulator remains unchanged.

If amultiply without accumulation is specified by a MPY or MPY R instruction, the unit clears the
accumulator and then adds the contents to the product. The results of all arithmetic instructions are valid
(sign extended) 36-bit operands in the form EXT:MSP:LSP (A2:A1:A0 or B2:B1:B0).

When a 36-bit result is to be stored as a 16-bit operand, the L SP can simply be truncated, or it can be
rounded into the MSP. The rounding performed is either the convergent rounding (round to the nearest
even) or two' s-complement rounding. The type of rounding is specified by the rounding bit in the
operating mode register. See Section 3.5, “Rounding,” for amore detailed discussion of rounding.

Thelogic unit performs the logical operations AND, OR, EOR, and NOT on data ALU registers. It is 16
bits wide and operates on datain the M SP of the accumulator. The least significant and EXT portions of
the accumulator are not affected. Logical operations can also be performed in the bit-manipulation unit.
The bit-manipulation unit is used when performing logical operations with immediate values and can be
performed on any register or memory location.

3.1.4 Barrel Shifter

The 16-bit barrel shifter performs single-cycle, 0- to 15-bit arithmetic or logical shifts of 16-bit data. Since
both the amount to be shifted aswell as the value to shift come from registers, it is possible to shift data by
avariable amount. See Figure 3-3 on page 3-6. It is also possible to use this unit to right shift 32-bit values
using the ASRAC and LSRAC instructions, as demonstrated in Section 8.2, “ 16- and 32-Bit Shift
Operations,” on page 8-8.

Q mororoLa Data Arithmetic Logic Unit 3-5

Data Arithmetic Logic Unit

SAAAA $4 SAAAA $4
Multi-Bit Multi-Bit
Shifting Unit Shifting Unit
EXT MSP LSP EXT MSP LSP
A|F|FAAA|OOOO| A|F|AAAO|OOOO
35 32 31 16 15 0 35 32 31 16 15 0
Example: Right Shifting (ASRR) Example: Left Shifting (ASLL) AA0039

Figure 3-3. Right and Left Shifts Through the Multi-Bit Shifting Unit

After shifting, the extension register is always loaded with zero extension for logical shifts or sign
extension for arithmetic shifts. For right shifts, the LSP is set to zero except for the ASRAC and LSRAC
instructions, where the lower bits are shifted into the L SP. For left shifts, the upper bits are not shifted into
the extension register, and the LSP is always set to zero.

3.1.5 Accumulator Shifter
The accumulator shifter is an asynchronous parallel shifter with a 36-bit input and a 36-bit output. The
operations performed by this unit are as follows:
* No shift performed—ADD, SUB, MAC, and so on
o 1-bit left shift—ASL, LSL, ROL
e 1-bit right shift—ASR, LSR, ROR
» Forceto zero—MPY, IMPY (16)
The output of the shifter goes directly to the MAC unit as an input.

3.1.6 Data Limiter and MAC Output Limiter

The data ALU contains two units that implement optional saturation of mathematical results, the Data
Limiter and the MAC Output Limiter. The Data Limiter saturates values when datais moved out of an
accumulator with amove instruction or parallel move. The MAC Output Limiter saturates the output of the
dataALU’s MAC unit.

Section 3.4, “ Saturation and Data Limiting,” provides an in-depth discussion of saturation and limiting, as
well as a description of the operation of the two limiter units.

3-6 DSP56800 Family Manual @ mororoLa

Accessing the Accumulator Registers

3.2 Accessing the Accumulator Registers

An accumulator register can be accessed in two different ways:

e asanentireregister (F)
e by theindividua register portion (F2, F1, or FO)

The ability to access the accumulator registers in both ways provides important flexibility, allowing for
powerful DSP algorithms as well as general -purpose computing tasks.

Accessing an entire accumulator register (A or B) isparticularly useful for DSPtasks, sinceit preservesthe
complete 36-bit register—and thus the entire precision of a multiplication or other ALU operation. It also
provides limiting (or saturation) capability in cases when storing aresult of a computation that would
overflow the destination size. See Section 3.4, “ Saturation and Data Limiting.”

Accessing an accumulator through itsindividual portions (F2, F1, or FO) is useful for systems and control
programming. For example, if aDSP algorithm isin progress and an interrupt is received, it is usually
necessary to save every accumulator used by the interrupt service routine. Since an interrupt can occur at
any step of the DSP task (that is, right in the middle of a DSP algorithm), it isimportant that no saturation
takes place. Thus, an interrupt service routine can store the individual accumulator portions on the stack,
effectively saving the entire 36-bit value without any limiting. Upon completion of the interrupt routine,
the contents of the accumulator can be exactly restored from the stack.

The DSP56800 instruction set transparently supports both methods of access. An entire accumulator may
be accessed simply through the specification of the full-register name (A or B), while portions are accessed
through the use of their respective names (A0, B1, and so on).

Table 3-1 provides a summary of the various access methods. These are described in more detail in
Section 3.2.1, “Accessing an Accumulator by Its Individual Portions,” and Section 3.2.2, “Accessing an
Entire Accumulator.”

Table 3-1. Accessing the Accumulator Registers

Register Read of an Accumulator Register Write to an Accumulator Register

A For a MOVE instruction: For a MOVE instruction:

B If the extension bits are not in use for the The 16 bits of the CGDB bus are written into
accumulator to be read, then the 16-bit con- the 16-bit F1 portion of the register.
tents of the F1 portion of the accumulator are | The extension portion of the same accumula-
read onto the CGDB bus. tor, F2, is filled with sign extension. The FO
If the extension bits are in use, then a 16-bit portion is set to zero.
“limited” value is instead read onto the CGDB.
See Section 3.4.1, “Data Limiter.”
When used in an arithmetic operation:
All 36 bits are sent to the MAC unit without
limiting.

A2 For a MOVE instruction: For a MOVE instruction:

B2 The 4-bit register is read onto the 4 LSBs of The 4 LSBs of the CGDB are written into the
the CGDB bus. 4-bit register; the upper 12 bits are ignored.
The upper 12 bits of the bus are sign The corresponding F1 and FO portions are not
extended. modified.
See Figure 3-5 on page 3-9. See Figure 3-4 on page 3-8.

0 MOTOROLA

Data Arithmetic Logic Unit

3-7

Data Arithmetic Logic Unit

Table 3-1. Accessing the Accumulator Registers (Continued)

Register Read of an Accumulator Register Write to an Accumulator Register
Al For a MOVE instruction: For a MOVE instruction:
B1 The 16-bit F1 portion is read onto the CGDB The contents of the CGDB bus are written into
bus. the 16-bit F1 register.
The corresponding F2 and FO portions are not
When used in an arithmetic operation: modified.
The F1 register is used as a 16-bit source
operand for an arithmetic operation.
F1 can be used in the following:
MOVE
Parallel Move
Several different arithmetic
A0 For a MOVE instruction: For a MOVE instruction:
BO The 16-bit FO register is read onto the CGDB The contents of the CGDB bus are written into
bus. the 16-bit FO register.
The corresponding F2 and F1 portions are not
modified.

Inall casesin Table 3-1 where a MOV E operation is specified, it is understood that the function is
identical for parallel moves and bit-field operations.

3.2.1 Accessing an Accumulator by Its Individual Portions

The instruction set provides instructions for loading and storing one of the portions of an accumulator
register without affecting the other two portions. When an instructions uses the F1 or FO notation instead of
F, the instruction only operates on the 16-bit portion specified without modifying the other two portions.
When an instruction specifies F2, then the instruction operates only on the 4-bit accumulator extension
register without modifying the F1 or FO portions of the accumulator. Refer to Table 3-1 for a summary of
accessing the accumulator registers.

Data limiting, as outlined in Section 3.4, “ Saturation and Data Limiting,” is enabled only when an entire
accumulator is being stored to memory. When only a portion of an accumulator is being stored (by using
an instruction which specifies F2, F1, or F0), limiting through the data limiter does not occur.

When F2 is written, the register receives the low-order portion of the word; the high-order portion is not
used. See Figure 3-4.

15 43 0
CGDB Bus Contents
| |
\—w——/¢ LSB of ¢
Not Used Word
15 43 0

Register F2 Used

. No Bits Present F2
as a Destination

Register F2

Figure 3-4. Writing the Accumulator Extension Registers (F2)

0 MOTOROLA

3-8 DSP56800 Family Manual

Accessing the Accumulator Registers

When F2 is read, the register contents occupy the low-order portion (bits 3-0) of the word; the high-order
portion (bits 15-4) is sign extended. See Figure 3-5.

15 43 0
Register F2 _ _
Used as a Source No Bits Present F2 Register F2
|
LSB Of ¢
Y word
15 43 0
Sign Extension | Contents
of E2 of E2 CGDB Bus Contents

Figure 3-5. Reading the Accumulator Extension Registers (F2)

Figure 3-6 shows the result of writing valuesto each portion of the accumulator. Note that only the portion
specified in the instruction is modified; the other two portions remain unchanged.

Writing the F2 Portion Example: MOVE #$ABCD, A2

Before Execution After Execution
A2 Al A0 A2 Al A0
Al X [Xx X X X[Xx X X X] AlD[X X X X[x X X X
35 32 31 16 15 0 35 32 31 16 15 0

Writing the F1 Portion Example: MOVE #$1234, Al

Before Execution After Execution
A2 Al A0 A2 Al A0
Al X |x x x xX|x X x X| Al X |1 2 3 4]X X X X
35 32 31 16 15 0 35 32 31 16 15 0

Writing the FO Portion Example: MOVE #$A987, A0

Before Execution After Execution
A2 Al A0 A2 Al A0
Al XX X X X|X X X X Al XX X X X|]A 9 8 7
35 32 31 16 15 0 35 32 31 16 15 0

Figure 3-6. Writing the Accumulator by Portions

See Section 3.2, “Accessing the Accumulator Registers,” for a discussion of when it is appropriate to
access an accumulator by itsindividual portions and when it is appropriate to access it as an entire
accumulator.

Q mororoLa Data Arithmetic Logic Unit 3-9

Data Arithmetic Logic Unit

3.2.2 Accessing an Entire Accumulator

3.2.2.1 Accessing for Data ALU Operations

The complete accumulator is accessed to provide a source, a destination, or both for an ALU or
multiplication operation in the data ALU. In this case, the accumulator iswritten as an entire 36-bit
accumulator (F), not as an individual register (F2, F1, or FO). The accumulator registers receive the
EXT:MSP:LSP of the multiply-accumulator unit output when used as a destination and supply a source
accumulator of the same form. Most data ALU operations specify the 36-bit accumulator registers as
source operands, destination operands, or both.

3.2.2.2 Writing an Accumulator with a Small Operand

Automatic sign extension of the 36-bit accumulators is provided when the accumulator is written with a
smaller size operand. This can occur when writing F from the CGDB (MOVE instruction) or with the
results of certain data ALU operations (for example, ADD, SUB, or TFR from a 16-bit register to a 36-bit
accumulator). If aword operand isto be written to an accumulator register (F), the F1 portion of the
accumulator is written with the word operand, the LSP is zeroed, and the EXT portion receives sign
extension. Thisis aso the case for a MOV E instruction that moves one accumulator to another, but is not
the case for a TFR instruction that moves one entire accumulator to another. No sign extension is
performed if an individual 16-bit register iswritten (F1 or FO).

NOTE:

A read of the F1register inaMOVE ingtruction isidentical to aread of the
F accumulator for the case where the extension bits of that accumulator
only contain sign-extension information. In this case there is no need for
saturation or limiting, so reading the F accumulator produces the same
result as reading the F1 register.

3.2.2.3 Extension Registers as Protection Against Overflow

The F2 extension registers offer protection against 32-bit overflow. When the result of an accumulation
crossesthe MSB of MSP (bit 31 of F), the extension bit of the status register (E) is set. Up to 15 overflows
or underflows are possible using these extension bits, after which the signislost beyond the MSB of the
extension register. When this occurs, the overflow bit (V) in the status register is set. Having an extension
register allows overflow during intermediate calculations without losing important information. Thisis
particularly useful during execution of DSP agorithms, when intermediate calculations (but not the final
result that is written to memory or to a peripheral) may sometimes overflow.

Thelogic detection of “extension register in use” is also used to determine when to saturate the value of an
accumulator when it is being read onto the CGDB or transferred to any data AL U register. If saturation
occurs, the content of the original accumulator is not affected (except if the same accumulator is specified
as both source and destination); only the value transferred over the CGDB islimited to afull-scale positive
or negative 16-bit value ($7FFF or $8000).

When limiting occurs, aflag is set and latched in the status register (L). The limiting block is explained in
more detail in Section 3.4.1, “Data Limiter.”

NOTE:

Limiting will be performed only when the entire 36-bit accumulator
register (F) is specified as the source for a parallel data move or aregister
transfer. It is not performed when F2, F1 or FO is specified.

3-10 DSP56800 Family Manual @ MOTOROLA

Accessing the Accumulator Registers

3.2.2.4 Examples of Writing the Entire Accumulator

Figure 3-7 shows the result of writing a 16-bit signed value to an entire accumulator. Note that all three
portions of the accumulator are modified. The LSP (BO) is set to zero, and the extension portion (B2) is
appropriately sign extended.

Writing a Positive Value into 36-Bit Accumulator Example:. MOVE #$1234, B

Before Execution After Execution
B2 B1 BO B2 B1 BO
B| X [X x X X[Xx X X X B{o]|1 2 3 4]/0 0 0 O]
35 32 31 16 15 0 35 32 31 16 15 0

Writing a Negative Value into 36-Bit Accumulator Example: MOVE #$A987, B

Before Execution After Execution
B2 B1 BO B2 B1 BO
B| X [X x X Xx[Xx X X X B{F|A 9 8 7][0 0 0 0
35 32 31 16 15 0 35 32 31 16 15 0

Figure 3-7. Writing the Accumulator as a Whole

Successfully using the DSP56800 Family requires afull understanding of the methods and implications of
the various accumulator-register access methods. The architecture of the accumulator registers offersa
great deal of flexibility and power, but it is necessary to completely understand the access mechanisms
involved to fully exploit this power.

3.2.3 General Integer Processing

General integer and control processing typically involves manipulating 16- and 32-bit integer quantities.
Rarely will such code use afull 36-bit accumulator such as that implemented by the DSP56800 Family.
The architecture of the DSP56800 supports the manipulation of 16-bit integer quantities using the
accumulators, but care must be taken when performing such manipulation.

3.2.3.1 Writing Integer Data to an Accumulator

When loading an accumulator, it is most desirable for the 36 bits of the accumulator to correctly reflect the
16-bit data. To thisend, it isrecommended that all accumulator loads of 16-bit data clear the least
significant portion of the accumulator and also sign extend the extension portion. This can be
accomplished through specifying the full accumulator register as the destination of the move, as shown in
Example 3-1.

Example 3-1. Loading an Accumulator with a Word for Integer Processing

MOVE X (RO),A ; A2 receives sign extension
; Al receives the 16-bit data
: AO receives the val ue $0000

Q mororoLa Data Arithmetic Logic Unit 3-11

Data Arithmetic Logic Unit

Loading a 16-hit integer value into the A1 portion of the register is generally discouraged. In aimost all
cases, it is preferable to follow Example 3-1 on page 3-11. One notabl e exception is when 36-bit
accumulator values must be stored temporarily. See Section 3.2.5, “ Saving and Restoring Accumulators,”
for more details.

3.2.3.2 Reading Integer Data from an Accumulator

Integer and control processing algorithms typically involve the manipulation of 16-bit quantities that
would be adversely affected by saturation or limiting. When such integer calculations are performed, it is
often desirable not to have overflow protection when results are stored to memory. To ensure that the data
ALU’sdatalimiter is not active when an accumulator is being read, it is necessary to store not the full
accumulator, but just the MSP (A1 portion). See Example 3-2.

Example 3-2. Reading a Word from an Accumulator for Integer Processing
MOVE Al X Variable 1, Saturation is disabl ed

Note that with the use of the A1 register instead of the A register, saturation isdisabled. Thevaluein Alis
written “asis’ to memory.

3.2.4 Using 16-Bit Results of DSP Algorithms

A DSP Algorithm may use the full 36-bit precision of an accumulator while performing DSP calculations
such as digital filtering or matrix multiplications. Upon completion of the algorithm, however, sometimes
the result of the calculation must be saved in a 16-bit memory location or must be written to a 16-bit D/A
converter. Since DSP algorithms process digital signals, it isimportant that when the 36-bit accumul ator
valueis converted to a 16-hit value, saturation is enabled so signalsthat overflow 16 bits are appropriately
clipped to the maximum positive or negative value. See Example 3-3.

Example 3-3. Correctly Reading a Word from an Accumulator to a D/A
MOVE A XDto Adata;, Saturation is enabl ed

Note the use of the A accumulator instead of the A1 register. Using the A accumulator enabl es saturation.

3.2.5 Saving and Restoring Accumulators

Interrupt service routines offer one example of atime when it iscritical that an accumulator be saved and
restored without being altered in any way. Since an interrupt can occur at any time, the exact usage of an
accumulator at that instant is unknown, so it cannot be altered by the interrupt service routine without
adversely affecting any calculation that may have been in progress. In order for an accumulator to be saved
and restored correctly, it must be done with limiting disabled. This is accomplished through sequentially
saving and restoring the individual parts of the register, and not the whole register at once. See

Example 3-4 on page 3-13.

3-12 DSP56800 Family Manual @ MOTOROLA

Accessing the Accumulator Registers

Example 3-4. Correct Saving and Restoring of an Accumulator—Word Accesses
; Saving the A Accunul ator to the Stack

LEA (SP) + ; Point to first enpty |ocation
MOVE A2, X (SP)+ ; Save extension register

MOVE AL X (SP)+ ; Save F1 register

MOVE AQ, X (SP) ; Save FO register

; Restoring the A Accumul ator fromthe Stack

MOWVE X (SP)-,A0 ; Restore FO register

MOWVE X (SP)-,Al ; Restore Fl register

MOVE X (SP)-,A2 ; Restore extension register

It isimportant that interrupt service routines do not use the MOV E A, X:(SP)+ instruction when saving to
the stack. Thisinstruction operates with saturation enabled, and may inadvertently store the value $7FFF
or $8000 onto the stack, according to the rules employed by the Data Limiter. This could have catastrophic
effects on any DSP calculation that was in progress.

3.2.6 Bit-Field Operations on Integers in Accumulators

When bit-manipulation operations on accumulator registers are performed, as is done for integer
processing, care must be taken. The bit-manipulation instructions operate as a “ Read-Modify-Write’
sequence, and thus may be affected by limiting during the “Read” portion of this sequence. In order for
bit-manipulation operations to generate the expected results, limiting must be disabled. To ensure that this
isthe case, the MSP (A1 portion) of an accumulator should be used as the target operand for the ANDC,
EORC, ORC, NOTC, BFCLR, BFCHG, and BFSET instructions, not the full accumulator. See

Example 3-5.

Example 3-5. Bit Manipulation on an Accumulator

; BFSET using the Al register
BFSET #$0F00, Al ; Reads Al with saturation disabled
; Sets bits 11 through 8 and stores back to Al
; Note: A2 and AO unnodified

BFSET using the A register
BFSET #3$0F00, A ; Reads Al with saturation enabled - may |imt
; Sets bits 11 through 8 and stores back to Al
; A2 is sign extended and AD is cleared

Sincethe BFTSTH, BFTSTL, BRCLR, and BRSET instructions only test the accumulator value and do
not modify it, it is recommended to do these operations on the A1 register where no limiting can occur
when integer processing is performed.

3.2.7 Converting from 36-Bit Accumulator to 16-Bit Portion

There are two types of instructions that are useful for converting the 36-bit contents of an accumulator to a
16-bit value, which can then be stored to memory or used for further computations. Thisis useful for
processing word-sized operands (16 bits), since it guarantees that an accumulator contains correct sign
extension and that the least significant 16 bits are all zeros. The two techniques are shown in Example 3-6
on page 3-14.

Q mororoLa Data Arithmetic Logic Unit 3-13

Data Arithmetic Logic Unit

Example 3-6. Converting a 36-Bit Accumulator to a 16-Bit Value

; Converting with No Limting
MOVE Al,A ;S gn Extend A2, AD set to $0000
MOVE Al,B ;S gn Extend B2, B0 set to $0000

; Converting with Linmting Enabl ed
MOVE A A ;Sign Extend A2, Linit if Required
MOVE AB ;Sign Extend B2, Linit if Required

Where limiting is enabled, asin the second example in Example 3-6, limiting only occurs when the
extension register isin use. Y ou can determine if the extension register isin use by examining the
extension hit (E) of the status register. Refer to Section 5.1.8, “ Status Register,” on page 5-6.

3.3 Fractional and Integer Data ALU Arithmetic

The ability to perform both integer and fractional arithmetic is one of the strengths of the DSP56800
architecture; there is a need for both types of arithmetic.

Fractional arithmetic is typically required for computation-intensive algorithms such as digital filters,
speech coders, vector and array processing, digital control, and other signal-processing tasks. In this mode
the datais interpreted as fractional values, and the computations are performed interpreting the data as
fractional. Often, saturation is used when performing calculations in this mode to prevent the severe
distortion that occurs in an output signal generated from a result where a computation overflows without
saturation (see Figure 3-14 on page 3-28). Saturation can be selectively enabled or disabled so that
intermediate cal culations can be performed without limiting, and limiting is only done on final results (see
Example 3-7).

Example 3-7. Fractional Arithmetic Examples

0.5x0.25=0.125
0.625 +0.25=0.875
0.125/0.5=0.25
05>>1=0.25

Integer arithmetic, on the other hand, is invaluable for controller code, for array indexing and address
computations, compilers, peripheral setup and handling, bit manipulation, bit-exact algorithms, and other
general-purpose tasks. Typically, saturation is not used in this mode, but is available if desired. (See
Example 3-8.)

Example 3-8. Integer Arithmetic Examples

4x3=12
1201 + 79 =1280
63/9=7

100 << 1 =200

The main difference between fractional and integer representations is the location of the decimal (or
binary) point. For fractional arithmetic, the decimal (or binary) point is always located immediately to the
right of the MSP's most significant bit; for integer values, it is always located immediately to the right of
the value's LSB. Figure 3-8 on page 3-15 shows the location of the decimal point (binary point), bit
weightings, and operands alignment for different fractional and integer representations supported on the
DSP56800 architecture.

3-14 DSP56800 Family Manual @ MOTOROLA

Fractional and Integer Data ALU Arithmetic

16-Bit Word Operand 20 >15
X0,Y0,Y1,A1,B1,
16-Bit Memory

.
32-Bit Long Word Operand 20 215 16 >3l
Y = Y1:Y0 . |
! 1
! I
-24 :20 15 :2-16 L3

36-Bit Accumulator
AB . |

16-Bit Word Operand 215 14 20
X0,Y0,Y1,A1,B1,
16-Bit Memory .

I
32-Bit Long Word Operand 2% 210 |21 20
in A1,B1
! 1
! 1
! 1
36-Bit Accumulator -2 2% 216 1218 20!
]
Integer Two’'s-Complement Representations AA0OAL

Figure 3-8. Bit Weightings and Operand Alignments

The representation of numbers allowed on the DSP56800 architecture are as follows:
e Two's-complement values
e Fractiona or integer values
e Signed or unsigned values
e Word (16-hit), long word (32-hit), or accumulator (36-bit)

The different representations not only affect the arithmetic operations, but also the condition code
generation. These numbers can be represented as decimal, hexadecimal, or binary numbers.

To maintain alignments of the binary point when aword operand is written to an accumulator A or B, the
operand is written to the most significant accumulator register (A1 and B1) and its most significant bit is
automatically sign extended through the accumulator extension register. The least significant accumulator
register is automatically cleared.

Some of the advantages of fractional data representation are as follows:
e The MSP (left half) has the same format as the input data.
e TheLSP (right half) can be rounded into the M SP without shifting or updating the exponent.

Q mororoLa Data Arithmetic Logic Unit 3-15

Data Arithmetic Logic Unit

Conversion to floating-point representation is easier because the industry-standard floating-point
formats use fractional mantissas.

Coefficients for most digital filters are derived as fractions by DSP digital-filter design software
packages. Theresultsfrom the DSP design tools can be used without the extensive data conversions

that other formats require.
A significant bit is not lost through sign extension.

3.3.1 Interpreting Data

Datain amemory location or register can beinterpreted as fractiona or integer, depending on the needs of
auser’s program. Table 3-2 shows how a 16-bit value can be interpreted as either afractional or integer
value, depending on the location of the binary point.

Table 3-2. Interpretation of 16-Bit Data Values
Binary Hexadecimal Integer Value Fractional Value
Representationl Representation (decimal) (decimal)
0.100 0000 0000 0000 $4000 16,384 0.5
0.010 0000 0000 0000 $2000 8,192 0.25
0.001 0000 0000 0000 $1000 4,096 0.125
0.111 0000 0000 0000 $7000 28,672 0.875
0.000 0000 0000 0000 $0000 0 0.0
1.100 0000 0000 0000 $CO000 - 16,384 -0.5
1.110 0000 0000 0000 $EO00 - 8,192 -0.25
1.111 0000 0000 0000 $F000 - 4,096 -0.125
1.001 0000 0000 0000 $9000 - 28,672 -0.875

1.This corresponds to the location of the binary point when the data is interpreted as fractional. If
the data is interpreted as integer, the binary point is located immediately to the right of the LSB.

The following equation shows the relationship between a 16-bit integer and a fractiona value:
Fractional Value = Integer Value/ (21°)
Thereisasimilar equation relating 36-bit integers and fractional values:
Fractional Value = Integer Value/ (231)
Table 3-3 shows how a 36-hit value can be interpreted as either an integer or afractional value, depending

on the location of the binary point.

3-16

Table 3-3. Interpretation of 36-bit Data Values
Hexadecimal 3(_5'8“ Integer in 16-Bit Integer in MSP Fractional
L Entire Accumulator ; Value
Representation (decimal) (decimal) (decimal)
$7 FFFF FFFF 34,359,738,367 - ~16.0
$1 4000 0000 5,368,709,120 - 25
$0 4000 0000 1,073,741,824 16,384 0.5
$0 2000 0000 536,870,912 8,192 0.25
$0 0000 0000 0 0 0.0
$F C000 0000 -1,073,741,824 - 16,384 -0.5

DSP56800 Family Manual

0 MOTOROLA

Fractional and Integer Data ALU Arithmetic

Table 3-3. Interpretation of 36-bit Data Values (Continued)

Hexadecimal 3(.5'8“ Integer in 16-Bit Integer in MSP Fractional
R tation’ Entire Accumulator decimal Value
epresentation (decimal) (decimal) (decimal)
$F EO00 0000 - 536,870,912 - 8,192 -0.25
$E C000 0000 - 5,368,709,120 - 2.5
$8 0000 0001 -34,359,738,367 - -16.0

1.When the accumulator extension registers are in use, the data contained in the accu-
mulators cannot be stored exactly in memory or other registers. In these cases the data
must be limited to the most positive or most negative number consistent with the size
of the destination.

3.3.2 Data Formats

Four types of two’ s-complement data formats are supported by the 16-bit DSP core:

e Signed fractiona

e Unsigned fractional

e Signed integer

e Unsigned integer
The ranges for each of these formats, discussed in the following subsections, apply to all data stored in
memory and to data stored in the data ALU registers. The extension registers associated with the
accumulators allow word growth so that the most positive signed fractional number that can be represented
in an accumulator is approximately 16.0 and the most negative signed fractional number is-16.0 as shown
in Table 3-3. An important factor to consider is that when the accumulator extension registers are in use,
the data contai ned in the accumulators cannot be stored exactly in memory or other registers. In these cases

the data must be limited to the most positive or most negative number consistent with the size of the
destination and the sign of the accumulator, the MSB of the extension register.

3.3.2.1 Signed Fractional

In thisformat the N bit operand is represented using the 1.[N-1] format (1 sign bit, N-1 fractional bits).
Signed fractional numbers lie in the following range:

-1.0<SF<+1.0-2[N-1

For words and long-word signed fractions, the most negative number that can be represented is-1.0, whose
internal representation is $8000 and $80000000, respectively. The most positive word is $7FFF or 1.0 -
215 and the most positive long word is $7FFFFFFF or 1.0 - 2731,

3.3.2.2 Unsigned Fractional

Unsigned fractional numbers may be thought of as positive only. The unsigned numbers have nearly twice
the magnitude of a signed number with the same number of bits. Unsigned fractional numbersliein the
following range:

00<UF<20-2MN1

Examples of unsigned fractional numbers are 0.25, 1.25, and 1.999. The binary word is interpreted as
having abinary point after the MSB. The most positive 16-bit unsigned number is$FFFF or {1.0 + (1.0 - 2
IN-1l)y = 1.99996948. The smallest unsigned number is zero ($0000).

Q mororoLa Data Arithmetic Logic Unit 3-17

Data Arithmetic Logic Unit

3.3.2.3 Signed Integer

Thisformat is used when datais being processed as integers. Using this format, the N-bit operand is
represented using the N.O format (N integer bits). Signed integer numbers lie in the following range:

2N < g < (2N g)

For words and long-word signed integers the most negative word that can be represented is -32768
($8000), and the most negative long word is -2147483648 ($80000000). The most positive word is 32767
($7FFF), and the most positive long word is 2147483647 ($7FFFFFFF).

3.3.2.4 Unsigned Integer

Unsigned integer numbers may be thought of as positive only. The unsigned numbers have nearly twice
the magnitude of a signed number of the same length. Unsigned integer numbersliein the following range:
o< Ul <[2N-1]

Examples of unsigned integer numbers are 25, 125, and 1999. The binary word isinterpreted as having a
binary point immediately to the right of the LSB. The most positive, 16-bit, unsigned integer is 65536
($FFFF). The smallest unsigned number is zero ($0000).

3.3.3 Addition and Subtraction

For fractional and integer arithmetic, the operations are performed identically for addition, subtraction, or
comparing two values. This means that any add, subtract, or compare instruction can be used for both
fractional and integer values.

To perform fractional or integer arithmetic operations with word-sized data, the datais|oaded into the
MSP (A1 or B1) of the accumulator as shown in Figure 3-9.

Before Execution After Execution

$0 $0020 $0000 $0 $0060 $0000
A2 Al A0 A2 Al A0
X0 $0040 X0 $0040

MOVE #64, X0 ; Load integer value 64 ($40) into X0

MOVE #32, A ; Load integer value 32 ($20) into A Accunul at or

(correctly sign extends into A2 and zeros AO)
ADD X0, A ; Performlinteger Wrd Addition

MOVE Al X RESULT ; Save Result (wthout saturating) to Menory
AA0045

Figure 3-9. Word-Sized Integer Addition Example
Fractional word-sized arithmetic would be performed in a similar manner. For arithmetic operations where

the destination is a 16-bit register or memory location, the fractional or integer operation is correctly
calculated and stored in its 16-bit destination.

3-18 DSP56800 Family Manual @ MOTOROLA

Fractional and Integer Data ALU Arithmetic

3.3.4 Logical Operations

For fractional and integer arithmetic, the logical operations (AND, OR, EOR, and bit-manipulation
instructions) are performed identically. This means that any DSP56800 logical or bit-field instruction can
be used for both fractional and integer values. Typically, logical operations are only performed on integer
values, but there is no inherent reason why they cannot be performed on fractional values as well.

Likewise, shifting can be done on both integer and fractional data values. For both of these, an arithmetic
left shift of 1 bit correspondsto a multiplication by two. An arithmetic right shift of 1 bit correspondsto a
division of asigned value by two, and alogical right shift of 1 bit corresponds to adivision of an unsighed
value by two.

3.3.5 Multiplication

The multiplication operation is not the same for integer and fractional arithmetic. The result of afractional
multiplication differsin a simple manner from the result of an integer multiplication. This difference
amounts to a 1-bit shift of the final result, asillustrated in Figure 3-10. Any binary multiplication of two
N-bit signed numbers gives a signed result that is 2N-1 bitsin length. This 2N-1 bit result must then be
correctly placed into afield of 2N bits to correctly fit into the on-chip registers. For correct fractional
multiplication, an extra O bit is placed at the LSB to give a2N bit result. For correct integer multiplication,
an extrasign hit is placed at the MSB to give a 2N bit result.

Signed Multiplication: N X N & 2N - 1 Bits

Integer Fractional
s | [s | [s E
Signed Multiplier Signed Multiplier
[s MSP LSP S MSP LSP |
~<«— 2N—1 Product —» ~<«— 2N—1 Product —»
Sign Extension Zero Fill
< 2N Bits > < 2N Bits >

AA0042

Figure 3-10. Comparison of Integer and Fractional Multiplication

The MPY, MAC, MPYR, and MACR instructions perform fractional multiplication and fractional
multiply-accumulation. The IMPY (16) instruction performs integer multiplication. Section 3.3.5.2,
“Integer Multiplication,” explains how to perform integer multiplication.

3.3.5.1 Fractional Multiplication

Figure 3-11 on page 3-20 shows the multiply-accumulation implementation for fractional arithmetic. The
multiplication of two, 16-bit, signed, fractional operands gives an intermediate 32-bit, sighed, fractional
result with the LSB always set to zero. This intermediate result is added to one of the 36-bit accumulators.
If rounding is specified in the MPY or MAC ingtruction (MACR or MPY R), the intermediate results will
be rounded to 16 bits before being stored back to the destination accumulator, and the L SP will be set to
zero.

Q mororoLa Data Arithmetic Logic Unit 3-19

Data Arithmetic Logic Unit

! Input Operand 1 ! Input Operand 2 :

Signed Fractional

Input Operands ° °

| ¢—— 16 Bits ———— »»¢— 16 Bits —— >/
i 7 1
1 I 1
] i i

Signed ! 16 ! 16 !
Intermediary sls 0
Multiplier Result A |
AT 32 Bits -
’ 1 |
7
’ | |
7’ I |
7
. . 7’ I |
Signed Fractional
MPY Result EXP MSP LSP 0
| |
€ 36 Bits i
AA0043

Figure 3-11. MPY Operation—Fractional Arithmetic

3.3.5.2 Integer Multiplication

Two techniques for performing integer multiplication on the DSP core are as follows:
e Using the IMPY (16) instruction to generate a 16-bit result in the MSP of an accumulator
e Using the MPY and MAC instructions to generate a 36-bit full precision result

Each technique has its advantages for different types of computations.

An examination of the instruction set shows that for execution of single precision operations, most often
the instructions operate on the M SP (bits 31-16) of the accumulator instead of the L SP (bits 15-0). Thisis
truefor theLSL, LSR, ROL, ROR, NOT, INCW, and DECW instructions and others. Likewise, for the
parallel MOVE instructions, it is possible to move datato and from the MSP of an accumulator, but thisis
not true for the LSP. Thus, an integer multiplication instruction that placesits result in the MSP of an
accumulator allows for more efficient computing. Thisis the reason why the IMPY (16) instruction places
its resultsin bits 31-16 of an accumulator. The limitation with the IMPY (16) instruction is that the result
must fit within 16 bits or there is an overflow.

Figure 3-12 on page 3-21 shows the multiply operation for integer arithmetic. The multiplication of two
16-hit signed integer operands using the IMPY (16) instruction gives a 16-bit signed integer result that is
placed inthe MSP (A1 or B1) of the accumulator. The corresponding extension register (A2 or B2) isfilled
with sign extension and the LSP (A0 or B0O) remains unchanged.

3-20 DSP56800 Family Manual @ MOTOROLA

Fractional and Integer Data ALU Arithmetic

I Input Operand 1 Input Operand 2

Signed Integer
Input Operands

——— 16 Bits > 16 Bits —————— 3o

l
/
|

<« 16Bits —— 3.1

Signed
Intermediate s 0

Multiplier Result =

p < = 31 Bits =
- - -
- -
_— - _ -
) S Ext. - P
Signed Integer
Output EXP MSP Unchanged

~¢——— 16 Bits ———»
AA0044

Figure 3-12. Integer Multiplication (IMPY)

At other times it is necessary to maintain the full 32-bit precision of an integer multiplication. To obtain
integer results, an MPY instruction is used, immediately followed by an ASR instruction. The 32-bit long
integer result isthen correctly located into the MSP and L SP of an accumulator with correct sign extension
in the extension register of the same accumulator (see Example 3-9).

Example 3-9. Multiplying Two Signed Integer Values with Full Precision

MPY X0, YO, A ; CGenerates correct answer shifted
;1 bit to the left
ASR A ; Leaves Correct 32-bit Integer

; Result in the A Accurul at or
; and the A2 register contains
; correct sign extension

When a multiply-accumulate is performed on a set of integer numbers, there is a faster way for generating
the result than performing an ASR instruction after each multiply. The technique is to use fractional
multiply-accumul ates for the bulk of the computation and to then convert the final result back to integer.
See Example 3-10.

Example 3-10. Fast Integer MACs using Fractional Arithmetic

MOVE X (RO)+ YO X (R3)+ X0
DO #N, LABEL
MAC X0, Y0, A X (RO)+ YO X (R3)+ X0
LABEL
ASR A ; Convert to Integer only after MACs are
; conpl et ed
3.3.6 Division

Fractional and integer division of both positive and signed values is supported using the DIV instruction.
The dividend (numerator) is a 32-bit fractional or 31-bit integer value, and the divisor (denominator) isa
16-hit fractional or integer value, respectively. See Section 8.4, “Division,” on page 8-13 for a complete

discussion of division.

Q mororoLa Data Arithmetic Logic Unit 3-21

Data Arithmetic Logic Unit

3.3.7 Unsigned Arithmetic

Unsigned arithmetic can be performed on the DSP56800 architecture. The addition, subtraction, and
compare instructions work for both signed and unsigned values, but the condition code computation is
different. Likewise, there is a difference for unsigned multiplication.

3.3.7.1 Conditional Branch Instructions for Unsigned Operations

Unsigned arithmetic is supported on operations such as addition, subtraction, comparison, and logical
operations using the same ADD, SUB, CMP, and other instructions used for signed computations. The
operations are performed the same for both representations. The difference lies both in which status bits
are used in comparing signed and unsigned numbers and in how the dataisinterpreted, for which see
Section 3.3.2, “Data Formats.”

Four additional Bcc instruction variants are provided for branching based on the comparison of two
unsigned numbers. These variants are;

e HS(High or sasme)—unsigned greater than or equal to
e LS (Low or same)—unsigned less than or equal to

e HI (High)—unsigned greater than

e LO (Low)—unsigned less than

The variants used for comparing unsigned numbers, HS, LS, HI, and LO, are used in place of GE, LE, GT,
and LT respectively, which are used for comparing signed numbers. Note that the HS condition is exactly
the same as the carry clear (CC), and that LO is exactly the same as carry set (CS).

Unsigned comparisons are enabled when the CC bit in the OMR register is set. When this bit is set, the
value in the extension register isignored when generating the C, V, N, and Z condition codes, and the
condition codes are set using only the 32 LSBs of the result. Typically, this mode is very useful for
controller and compiled code.

NOTE:

The unsigned branch condition variants (HS, LS, HI, and LO) may only be
used when the CC bit is set in the program controller's OMR register. If
this bit is not set, then these condition codes should not be used.

In caseswhereit is necessary to maintain all 36 bits of the result and the extension register is required, any
unsigned numbers must first be converted to signed when loaded into the accumulator using the technique
in Section 8.1.6, “Unsigned Load of an Accumulator,” on page 8-7. In these cases, the extension register
will contain the correct value, and since values are now signed, it is possible to use the signed branch
conditions. GE, LE, GT, or LT. Typically, thismode is more useful for DSP code.

3.3.7.2 Unsigned Multiplication

Unsigned multiplications are supported with the MACSU and MPY SU instructions. If only one operand is
unsigned, then these instructions can be used directly. If both operands are unsigned, an
unsigned-times-unsigned multiplication is performed using the technique demonstrated in Example 3-11
on page 3-23.

3-22 DSP56800 Family Manual @ MOTOROLA

Fractional and Integer Data ALU Arithmetic

Example 3-11. Multiplying Two Unsigned Fractional Values

MOVE X FIRST,X0O ; Get first operand from nenory
ANDC #$7FFF, X0 ; Force first operand to be positive
MOVE X SECOND, YO ; Get second operand from nenory
MPYSU X0, YO, A

TSTW X FI RST ; Performfinal addition if MSB of first operand was a one
B&E OVER ; If first operan is less that one, junp to O/ER
MOVE #$0, B
MOVE YO, Bl ; Move YO to B without sign extension
ADD B A
OVER
(ASR A ; Optionally convert to integer result

3.3.8 Multi-Precision Operations

The DSP56800 instruction set contains several instructions which simplify extended- and multi-precision
mathematical operations. By using these instructions, 64-bit and 96-bit cal culations can be performed, and
calculations involving different-sized operands are greatly simplified.

3.3.8.1 Multi-Precision Addition and Subtraction

Two instructions, ADC and SBC, assist in performing multi-precision addition (Example 3-12) and
subtraction (Example 3-13), such as 64-bit or 96-bit operations.

Example 3-12. 64-Bit Addition

X:$1:X:$0:Y1:YO + A2:A1:A0:B1:BO = A2:A1:A0:B1:BO
(B2 must contain only sign extension before addition begins;
that is, bits 35-31 are all 1s or 0s)

MOVE X $21,B ; Correct sign extension

MOVE X $20, BO

ADD VY,B ; First 32-bit addition

MOVE X $0, YO ; Get second 32-bit operand from menory
MOVE X $1,VY1

ADC Y, A ; Second 32-bit addition

Example 3-13. 64-Bit Subtraction

A2:A1:A0:B1:BO - X:$1:X:$0:Y1:YO = A2:A1:A0:B1:BO
(B2 must contain only sign extension before addition begins;
that is, bits 35—31 are all 1s or 0s)

MOVE X $21,B ; Correct sign extension

MOVE X $20, BO

SUB Y, B ; First 32-bit subtraction

MOVE X $0, YO ; Get second 32-bit operand from menory
MOVE X $1,VY1

SBC Y, A ; Second 32-bit subtraction

3.3.8.2 Multi-Precision Multiplication

Two instructions are provided to assist with multi-precision multiplication. When these instructions are
used, the multiplier accepts one signed and one unsigned two’'s-complement operand. The instructions are:

e MPY SU—multiplication with one signed and one unsigned operand

Q mororoLa Data Arithmetic Logic Unit 3-23

Data Arithmetic Logic Unit

« MACSU—multiply-accumulate with one signed and one unsigned operand

The use of these instructions in multi-precision multiplication is demonstrated in Figure 3-13, with
corresponding examples shown in Example 3-14, Example 3-15 on page 3-24, and Example 3-16 on

page 3-25.

~——— 32 Bits —8 ™ »

-¢— 16 Bits —»»

X0

Y1l

YO

X
Signed x Unsigned
X0 x YO
Signed x Signed
X0 x Y1
+
Sign Ext.
A2 Al A0 B1
- 48 Bits -

AA0046

Figure 3-13. Single-Precision Times Double-Precision Signed Multiplication

Example 3-14. Fractional Single-Precision Times Double-Precision Value—Both Signhed

(5 leyc, 5 Instruction Words)
MPYSU X0, YO, A

MOVE AO, B
MOVE Al AO
MOVE A2 Al

MAC XO, Y1, A

Single Precision times Lower Portion

16-bit Arithnmetic Rght Shift
(note that A2 contains only sign extension)

Single Precision times Upper Portion
and added to Previous

Example 3-15. Integer Single-Precision Times Double-Precision Value—Both Signed

(7 leyce, 7 Instruction Words)
MPYSU X0, YO, A

MOVE AO,B
MOVE Al, A0
MOVE A2 Al

MAC X0, Y1, A
ASR A
RCR B

Single Precision times Lower Portion

16-bit Arithmetic R ght Shift
(note that A2 contains only sign

ext ensi on)

Single Precision x Upper Portion and add to Previous
Convert result to integer, A2 contains sign extension

(52-bit shift of A2: Al: AO: Bl)

3-24

DSP56800 Family Manual

0 MOTOROLA

Fractional and Integer Data ALU Arithmetic

Example 3-16. Multiplying Two Fractional Double-Precision Values

Signed 32x32 => 64 Miltiplication Subroutine

R1 =
R2

Par anet er s:
: R3

MULT_S32_X_S32
aRr B

ptr to | owest word of one operand
ptr to | owest word of one operand
ptr to where results are stored

; clears B2 portion

; Miltiply lwl * w2 and save | owest 16-bits of result

; peration
MOVE X (RL), YO
ANDC #CLRVEB, YO
MOVE X (R2)+ VY1
MPYSU YO, Y1, A
TSTW X (R1) +
BGE OORRECT_RESL
MOVE Y1, Bl ;
ADD B A
OORRECT_RESL
MOVE A0, X (R3) +
; Multiply two cross products
; Qperation
MOVE AL X TMP
MOVE A2, A
MOVE X TMP, A0
MOVE X (RL)-, X0
MACSU X0, Y1, A
MOVE X (R, Y1
MOVE X (R2), YO
MACSU YO, YL, A
MOVE A0, X (R3) +
; Multiply uprl * upr2 and sav
; Qperation
MOVE AL X TMP
MOVE A2, A
MOVE X TMP, A0
MAC X0, YO, A
MOVE A0, X (R3) +
MOVE Al X (R3) +
RTS

an

check if MBB set in original

w2

w1l
w1’
w1l
w1’

lwl.s * lw2.u
w1 val ue

performcorrection if this was true

X0

w2
w2

w2

Y1l

w1
w1’

w1’

YO

lwl.u* lw2.u

lwl.u* lw2.u

d save next |owest 16-bits of result

A

(arithmetic 16-bit right shift of 36-bit accun)

A = productl >> 16

A = productl >> 16
At+upr 1. s*lw 2. u

At+upr 1. s*lw 2. u

At+upr 1. s*lw 2. u

At+upr 1. s*l w 2. u+upr2. s*lwl. u
A =result w cross prods

A

(arithmetic 16-bit right shift of 36-bit accun)

A=result >> 16

A+ uprl.s * upr2.s

uprl w2 Iwl
uprl w2 Iwl
uprl Iwl Iwl
uprl Iwl upr2
uprl w2l upr2
uprl Iwl upr2
hi ghest 32-bits of result
X0 Y1 YO
uprl Iwl upr2
uprl Iwl upr2
uprl Iwl upr2
i nt eger

; The corresponding al gorithmfor

; would be the sane as for fractional

; right shift of the 64-bit

result.

mul tiplication of 32-bit val ues

with the addition of a final

arithnmetic

0 MOTOROLA

Data Arithmetic Logic Unit

3-25

Data Arithmetic Logic Unit

3.4 Saturation and Data Limiting

DSP agorithms are sometimes capable of calculating values larger than the data precision of the machine
when processing real data streams. Normally, a processor would allow the value to overflow when this
occurred, but this creates problems when processing real-time signals. The solution is saturation, a
technique whereby values that exceed the machine data precision are “clipped,” or converted to the
maximum value of the same sign that fits within the given data precision.

Saturation is especialy important when data is running through a digital filter whose output goesto a
digital-to-analog converter (DAC), sinceit “clips’ the output data instead of alowing arithmetic overflow.
Without saturation, the output data may incorrectly switch from alarge positive number to alarge negative
value, which can cause problems for DAC outputs in embedded applications.

The DSP56800 architecture supports optional saturation of results through two limiters found within the
data ALU:

e the DataLimiter
e the MAC Output Limiter

The Data Limiter saturates values when data is moved out of an accumulator with a MOV E instruction or
parallel move. The MAC Output Limiter saturates the output of the data ALU’s MAC unit.

3.4.1 Data Limiter

The datalimiter protects against overflow by selectively limiting when reading an accumulator register as
asource operand in aMOVE instruction. When a MOV E instruction specifies an accumulator (F) asa
source, and if the contents of the selected source accumulator can be represented in the destination operand
size without overflow (that is, the accumulator extension register not in use), the data limiter is enabled but
does not saturate, and the register contents are placed onto the CGDB unmodified. If aMOVE instruction
is used and the contents of the selected source accumulator cannot be represented without overflow in the
destination operand size, the data limiter will substitute a“limited” data value onto the CGDB that has
maximum magnitude and the same sign as the source accumulator, as shown in Table 3-4 on page 3-27.

The FO portion of an accumulator is ignored by the data limiter.

Consider a simple example, shown in Example 3-17.

Example 3-17. Demonstrating the Data Limiter—Positive Saturation

MOVE #$7FFC A ; Initialize A = $0: 7FFC 0000

INC A ; A = $0: 7FFD: 0000

MOVE A X (RO)+ ; Wite $7FFD to mermory (limter enabl ed)
INC A ; A = $0: 7FFE: 0000

MOVE A X (RO)+ ; Wite $7FFE to mermory (limter enabl ed)
INC A ; A = $0: 7FFF: 0000

MWVE A X (RO)+ ; Wite $7FFF to nenory (liniter enabl ed)
INC A : A = $0: 8000: 0000 <=== Overflows 16-hits
MOVE A X (RO)+ ; Wite $7FFF to nenory (limter saturates)
INC A ; A = $0: 8001: 0000

MOVE A X (RO)+ ; Wite $7FFF to menmory (limter saturates)
INC A ; A = $0: 8002: 0000

MOVE A X (RO)+ ; Wite $7FFF to menmory (limter saturates)
MOVE AL X (R))+ ; Wite $8002 to nenory (limter disabled)

3-26

DSP56800 Family Manual

0 MOTOROLA

Saturation and Data Limiting

Once the accumul ator increments to $8000 in Example 3-17, the positive result can no longer be written to
a 16-bit memory location without overflow. So, instead of writing an overflowed value to memory, the
value of the most positive 16-bit number, $7fff, is written instead by the data limiter block. Note that the
datalimiter block does not affect the accumulator; it only affects the value written to memory. In the last
instruction, the limiter is disabled because the register is specified as AL

Consider a second example, shown in Example 3-18 on page 3-27.

Example 3-18. Demonstrating the Data Limiter — Negative Saturation

MOVE #$8003, A ; Initialize A = $F: 8003: 0000

DEC A ;A = $F: 8002: 0000

MOVE A X (RO)+ ; Wite $8002 to mermory (limter enabl ed)
DEC A ; A = $F: 8001: 0000

MOVE A X (RO)+ ; Wite $8001 to mermory (limter enabl ed)
DEC A ;A = $F: 8000: 0000

MWVE A X (RO)+ ; Wite $8000 to nenory (liniter enabl ed)
DEC A . A = $F: 7FFF: 0000 <=== Overflows 16-hits
MOVE A X (RO)+ ; Wite $8000 to nenory (limter saturates)
DEC A ; A = $F: 7FFE 0000

MOVE A X (RO)+ ; Wite $8000 to menmory (limter saturates)
DEC A ; A = $F: 7FFD 0000

MOVE A X (RO)+ ; Wite $8000 to nenory (limter saturates)
MOVE AL X (R)+ ; Wite $7FFD to nenory (limter disabled)

Once the accumulator decrements to $7FFF in Example 3-18, the negative result can no longer fit into a
16-bit memory location without overflow. So, instead of writing an overflowed value to memory, the value
of the most negative 16-bit number, $8000, is written instead by the data limiter block.

Test logic exists in the extension portion of each accumulator register to support the operation of the
limiter circuit; the logic detects overflows so that the limiter can substitute one of two constants to
minimize errors due to overflow. This processis caled “ saturation arithmetic.” When limiting does occur,
aflag is set and latched in the status register. The value of the accumulator is not changed.

Table 3-4. Saturation by the Limiter Using the MOVE Instruction

ExtensionaSicternu:Jaigsg selected MSB of F2 Output of Limiter onto the CGDB Bus
No n/a Same as Input—Unmodified MSP
Yes 0 $7FFF—Maximum Positive Value
Yes 1 $8000—Maximum Negative Value

It is possible to bypass this limiting feature when reading an accumulator by reading it out through its
individual portions.

Figure 3-14 on page 3-28 demonstrates the importance of limiting. Consider the A accumulator with the
following 36-bit value to be read to a 16-hit destination:

0000 1.000 0000 0000 0000 0000 0000 0000 0000 (in binary)
(+ 1.0in fractional decimal, $0 8000 0000 in hexadecimal)

If this accumulator is read without the limiting enabled by a MOV E A1,X0 instruction, the 16-bit X0
register after the MOV E instruction would contain the following, assuming signed fractional arithmetic:

1.000 0000 0000 0000(- 1.0 fractional decimal, $8000 in hexadecimal)

Q mororoLa Data Arithmetic Logic Unit 3-27

Data Arithmetic Logic Unit

Thisisclearly in error because the value -1.0 in the X0 register greatly differsfrom thevalue of +1.0inthe
source accumulator. In this case, overflow has occurred. To minimize the error due to overflow, itis
preferable to write the maximum (“limited”) value the destination can assume. In this example, the limited
value would be:

0.111 121111111 1121(+ 0.999969 fractional decimal, $7FFF in hexadecimal)

Thisisclearly closer to the original value, +1.0, than -1.0 is, and thus introduces less error. Saturation is
equally applicable to both integer and fractional arithmetic.

Thus, saturation arithmetic can have alarge effect in moving from register A1 to register X0. The
instruction MOV E A1,X0 performs a move without limiting, and the instruction MOV E A, X0 performs a
move of the same 16 bits with limiting enabled. The magnitude of the error without limiting is 2.0; with
limiting it is 0.000031.

Without Limiting—MOVE A1,X0 With Limiting—MOVE A, X0
35 0 35 0
0...0[100.......... oofoo........... 00(A=+10 [0...0/100.......... 00/00........... 00[A=+1.0
A A

100.......... 00| X0=-1.0 o11.......... 11| X0 =+0.999969
A h A h

15 0 IERRORI =2.0 15 0 IERRORI =.000031

*Limiting automatically occurs when the 36-bit operands A and B are read with a MOVE instruction. Note that the
contents of the original accumulator are not changed.

Figure 3-14. Example of Saturation Arithmetic

3.4.2 MAC Output Limiter

The MAC output limiter optionally saturates or limitsresults cal culated by data AL U arithmetic operations
such as multiply, add, increment, round, and so on.

The MAC Output Limiter can be enabled by setting the SA bit in the OMR register. See Section 5.1.9.3,
“Saturation (SA)—Bit 4,” on page 5-11.

Consider a simple example, shown in Example 3-19.

Example 3-19. Demonstrating the MAC Output Limiter
BFSET #$0010, OMR ; Set SA bit—enables MAC Qutput Liniter

MOVE #$7FFC A s Initialize A = $0: 7FFC 0000

NCP

| NC A ;A = $0: 7FFD. 0000

| NC A ;A = $0: 7FFE 0000

I NC A ;A = $0: 7FFF. 0000

| NC A © A = $0: 7FFF: FFFF <=== Saturates to 16-bits!
I NC A © A = $0: 7TFFF: FFFF <=== Saturates to 16-bits!
ADD #9, A © A = $0: 7FFF: FFFF <=== Saturates to 16-bits!

3-28 DSP56800 Family Manual @ MOTOROLA

Saturation and Data Limiting

Once the accumulator increments to $7FFF in Example 3-19, the saturation logic in the MAC Output
limiter prevents it from growing larger because it can no longer fit into a 16-bit memory location without
overflow. So instead of writing an overflowed value to back to the A accumulator, the value of the most
positive 32-bit number, $7FFF.FFFF, is written instead as the arithmetic result.

The saturation logic operates by checking 3 bits of the 36-bit result out of the MAC unit: EXT[3], EXT[0],
and MSP[15]. When the SA bit is set, these 3 bits determine if saturation is performed on the MAC unit’s
output and whether to saturate to the maximum positive value ($7FFF:FFFF) or the maximum negative
va ue ($8000:0000), as shown in Table 3-5.

Table 3-5. MAC Unit Outputs with Saturation Enabled

EXT[3] EXT[O] MSP[15] Result Stored in Accumulator

0 0 0 Result_out of MAC Array with no limiting
occurring

0 0 1 $0:7FFF:FFFF

0 1 0 $0:7FFF:FFFF

0 1 1 $0:7FFF:FFFF

1 0 0 $F:8000:0000

1 0 1 $F:8000:0000

1 1 0 $F:8000:0000

1 1 1 Result out of MAC Array with no limiting
occurring

The MAC Output Limiter not only affects the results calculated by the instruction, but can also affect
condition code computation aswell. See Appendix A.4.2, “ Effects of the Operating Mode Register’s SA
Bit,” on page A-11 for more information.

3.4.3 Instructions Not Affected by the MAC Output Limiter
The MAC Output Limiter is always disabled (even if the SA bit is set) when the following instructions are
being executed:

+ ASLL,ASRR,LSRR

e ASRAC,LSRAC

« IMPY

« MPYSU, MACSU

¢ AND, OR, EOR

e LSL,LSR,ROL, ROR, NOT

e TST

The CMP is not affected by the OMR'’s SA bit except for the case when the first operand is not aregister
(that is, it isamemory location or an immediate value) and the second operand isthe X0, YO, or Y1
register. In this particular case, the U bit calculation is affected by the SA bit. No other bits are affected by
the SA bit for the CMP instruction.

Q mororoLa Data Arithmetic Logic Unit 3-29

Data Arithmetic Logic Unit

Also, the MAC Output Limiter only affects operations performed in the data AL U. It has no effect on
instructions executed in other blocks of the core, such as the following:

e Bit Manipulation Instructions (Table 6-29 and Table 6-30 on page 6-26)
e Moveinstructions (Table 6-17 through Table 6-20)

e Looping instructions (Table 6-32 on page 6-27)

e Change of flow instructions (Table 6-31 on page 6-27)

e Control instructions (Table 6-33 on page 6-28)

NOTE:

The SA hit affects the TFR instruction when it is set, optionally limiting
dataasit is transferred from one accumulator to another.

3.5 Rounding

The DSP56800 provides three instructions that can perform rounding—RND, MACR, and MPYR. The
RND instruction simply rounds a value in the accumulator register specified by the instruction, whereas
the MPYR or MACR instructions round the result calculated by the instruction in the MAC array. Each
rounding instruction rounds the result to a single-precision value so the value can be stored in memory or
in a 16-bit register. In addition, for instructions where the destination is one of the two accumulators, the
L SP of the destination accumulator (A0 or BO) is set to $0000.

The DSP core implements two types of rounding: convergent rounding and two’ s-complement rounding.
For the DSP56800, the rounding point is between bits 16 and 15 of a 36-bit value; for the A accumulator, it
is between the Al register’s LSB and the AO register’s MSB. The usual rounding method rounds up any
value above one-half (that is, L SP > $8000) and rounds down any value below one-half (that is, LSP <
$8000). The question arises as to which way the number one-half (L SP = $8000) should be rounded. If itis
always rounded one way, the results will eventually be biased in that direction. Convergent rounding
solves the problem by rounding down if the number is even (bit 16 equals zero) and rounding up if the
number is odd (bit 16 equals one), whereas two’' s-complement rounding always rounds this number up.
The type of rounding is selected by the rounding bit (R) of the operating mode register (OMR) in the
program controller.

3.5.1 Convergent Rounding

Thisisthe default rounding mode. This rounding is also called “round to nearest even number.” For most
values, this mode rounds identically to two’s-complement rounding; it only differs for the case where the
least significant 16 bitsis exactly $8000. For this case, convergent rounding prevents any introduction of a
bias by rounding down if the number is even (bit 16 equals zero) and rounding up if the rounding is odd
(bit 16 equals one). Figure 3-15 on page 3-31 shows the four possible cases for rounding anumber inthe A
or B accumulator.

3-30 DSP56800 Family Manual @ MOTOROLA

Rounding

Case I: If A0 < $8000 (1/2), then round down (add nothing)

Before Rounding After Rounding
0
A2 Al AO A2 Al AO*
XX . XX|XXX...XXX0100[011XXX....XXX| [XX. . XX|XxXX...xXxx0100[000......... 000
35 3231 16 15 0 35 3231 16 15 0

Case ll: If A0 > $8000 (1/2), then round up (Add 1 To A1)

Before Rounding After Rounding
1
A2 Al A0 A2 Al AO*
XX . XX[XXX...XXX0100[1110XX....XXX| [XX. . XX|xXX...xXxx0101[000......... 000
35 3231 16 15 0 35 3231 16 15 0

Case Ill: If A0 = $8000 (1/2), and the LSB of Al = 0 (even),then round down (add nothing)

Before Rounding After Rounding
0
A2 Al AO A2 Al AO*
XX .. XX|XXX...XXX0100[1000........ 000] [xX. . XX]XxXxX...xXxx0100[000......... 000
35 3231 16 15 0 35 3231 16 15 0

Case IV: If A0 = $8000 (1/2), and the LSB = 1 (odd), then round up (add 1 To A1)

Before Rounding After Rounding
1
A2 Al A0 A2 Al AO*
[XX. . XX|XXX...XxXX0101[1000........ 000] [XX. . XX|XxXX...xXxx0110[000......... 000
35 3231 16 15 0 35 3231 16 15 0

*A0 is always clear; performed during RND, MPYR, and MACR
AA0048

Figure 3-15. Convergent Rounding

3.5.2 Two’s-Complement Rounding

When thistype of rounding is selected by setting the rounding bit in the OMR, one is added to the bit to the
right of the rounding point (bit 15 of AQ) before the bit truncation during arounding operation. Figure 3-16
shows the two possible cases.

Q mororoLa Data Arithmetic Logic Unit 3-31

Data Arithmetic Logic Unit

Case |: A0 < 0.5 ($8000), then round down

Before Rounding

After Rounding

A2 Al AO A2 Al AO*
XXXX XX...XX0100 011XXX...XX XXXX XX...XX0100 0000...0000
36 31 15 0 36 31 15 0

Case II: A0 >= 0.5 ($8000), then round up
Before Rounding After Rounding

A2 Al A0 A2 Al AO*
XXXX XX...XX0100 1110XX...XX XXXX XX...XX0101 0000...0000
36 31 15 0 36 31 15 0

*A0 is always clear; performed during RND, MPYR, MACR

Figure 3-16. Two’s-Complement Rounding

AAQ0050

Once the rounding bit has been programmed in the OMR register, there is adelay of one instruction cycle
before the new rounding mode becomes active.

3-32

DSP56800 Family Manual

0 MOTOROLA

Condition Code Generation

3.6 Condition Code Generation

The DSP core supports many different arithmetic instructions for both word and long-word operations.
The flexible nature of the instruction set means that condition codes must a so be generated correctly for
the different combinations allowed. There are three questions to consider when condition codes are
generated for an instruction:

« Isthe arithmetic operation’s destination an accumulator, or a 16-bit register or memory location?
« Doestheinstruction operate on the whole accumulator or only on the upper portion?
e Isthe CC hit set in the program controller’'s OMR register?

The CC bit in the OMR register allows condition codes to be generated without an examination of the
contents of the extension register. This sets up a computing environment where there is effectively no
extension register because its contents are ignored. Typically, the extension register is most useful in DSP
operations. For the case of general-purpose computing, the CC bit is often set when the program is not
performing DSP tasks. However, it is possible to execute any instruction with the CC hit set or cleared,
except for instructions that use one of the unsigned condition codes (HS, LS, HI, or LO).

This section covers different aspects of condition code generation for the different instructions and
configurations on the DSP core. Note that the L, E, and U bits are computed the same regardiess of the size
of the destination or the value of the CC bit:

e L issetif overflow occurs or limiting occursin a parallel move.
» Eissetif theextension registerisin use (that is, if bits 35-31 are not all the same).
e U isset according to the standard definition of the U bit.

3.6.1 36-Bit Destinations—CC Bit Cleared

Most arithmetic instructions generate a result for a 36-bit accumulator. When condition codes are being
generated for this case and the CC bit is cleared, condition codes are generated using all 36 bits of the
accumulator. Examples of instructionsin this category are ADC, ADD, ASL, CMP, MAC, MACR, MPY,
MPYR, NEG, NORM, and RND.

The condition codes for 36-bit destinations are computed as follows:

e Nissetif bit 35 of the corresponding accumulator is set except during saturation. During a
saturation condition, the V (overflow) bit is set and the N bit is not set.

e Zissetif bits 35-0 of the corresponding accumulator are all cleared.
* Vissetif overflow has occurred in the 36-bit result.
e Cissetif acarry (borrow) has occurred out of bit 35 of the result.

Q mororoLa Data Arithmetic Logic Unit 3-33

Data Arithmetic Logic Unit

3.6.2 36-Bit Destinations—CC Bit Set

Most arithmetic instructions generate a result for a 36-bit accumulator. When condition codes are being
generated for this case and the CC bit is set, condition codes are generated using only the 32 hits of the
accumulator located in the MSP and L SP. There may be values in the extension registers, but the contents
of the extension register areignored. It is effectively the same asiif thereis no extension register. Examples
of instructionsin this category are ADC, ADD, ASL, CMP, MAC, MACR, MPY, MPYR, NEG, NORM,
and RND.

The condition codes for 32-bit destinations (CC equals one) are computed as follows:
e Nissatif bit 31 of the corresponding accumulator is set.
e Zissetif bits 31-0 of the corresponding accumulator are all cleared.
e Vissetif overflow has occurred in the 32-bit result.
e Cissetif acarry (borrow) has occurred out of bit 31 of the result.

3.6.3 20-Bit Destinations—CC Bit Cleared

Two arithmetic instructions generate a result for the upper two portions of an accumulator, the MSP and
the extension register, leaving the LSP of the accumulator unchanged. When condition codes are being
generated for this case and the CC bit is cleared, condition codes are generated using the 20 bitsin the
upper two portions of the accumulator. The two instructionsin this category are DECW and INCW.

The condition codes for DECW and INCW (CC equals zero) are computed as follows:

« Nisseatif bit 35 of the corresponding accumulator is set except during saturation. During a
saturation condition, the V (overflow) bit is set and the N bit is not set.

e Zissetif bits 3516 of the corresponding accumulator are all cleared.
e Vissetif overflow has occurred in the 20-bit result.
e« Cissatif acarry (borrow) has occurred out of bit 35 of the result.

3.6.4 20-Bit Destinations—CC Bit Set

Two arithmetic instructions generate a result for the upper two portions of an accumulator, the MSP and
the extension register, leaving the LSP of the accumulator unchanged. When condition codes are being
generated for this case and the CC bit is set, the bits in the extension register and the L SP of the
accumulator are not used to calculate condition codes. Thetwo instructionsin this category are DECW and
INCW.

The condition codes for 16-hit destinations (CC equals one) are computed as follows:
e Nissetif bit 31 of the corresponding accumulator is set.
e Zissetif bits 31-16 of the corresponding accumulator are all cleared.
e Vissetif overflow has occurred in the 16-bit result.
e Cissatif acarry (borrow) has occurred out of bit 31 of the result.

3-34 DSP56800 Family Manual @ MOTOROLA

Condition Code Generation

3.6.5 16-Bit Destinations

Some arithmetic instructions can generate aresult for a 36-bit accumulator or a 16-bit destination such asa
register or memory location. When condition codes for a 16-bit destination are being generated, the CC bit
isignored and condition codes are generated using the 16 bits of the result. Instructionsin this category are
ADD, CMP, SUB, DECW, INCW, MAC, MACR, MPY, MPYR, ASR, and ASL.

The condition codes for 16-bit destinations are computed as follows:
e Nissetif bit 15 of theresult is set.
o Zissetif bits 15-0 of theresult are all cleared.
* Vissetif overflow has occurred in the 16-bit result.
e Cissetif acarry (borrow) has occurred out of bit 15 of the result.

Other instructions only generate results for a 16-bit destination such as the logical instructions. When
condition codes are being generated for this case, the CC bit isignored and condition codes are generated
using the 16 bits of the result. Instructions in this category are AND, EOR, LSL, LSR, NOT, OR, ROL,
and ROR. Therulesfor condition code generation are presented for the cases where the destination isa
16-hit register or 16 bits of a 36-bit accumulator.

The condition codes for logical instructions with 16-bit registers as destinations are computed as follows:
« Nisseatif bit 15 of the corresponding register is set.
e Zissetif bits 150 of the corresponding register are all cleared.
e Visawayscleared.
e C—Computation dependent on instruction.

The condition codes for logical instructions with 36-bit accumulators as destinations are computed as
follows:

e Nissetif bit 31 of the corresponding accumulator is set.

e Zissetif bits 31-16 of the corresponding accumulator are all cleared.
e Visawayscleared.

e C—Computation dependent on instruction.

3.6.6 Special Instruction Types

Some instructions do not follow the preceding rules for condition code generation, and must be considered
separately. Examples of instructionsin this category are the logical and bit-field instructions (ANDC,
EORC, NOTC, ORC, BFCHG, BFCLR, BFSET, BFTSTL, BFTSTH, BRCLR, and BRSET), the CLR
instruction, the IMPY (16) instruction, the multi-bit shifting instructions (ASLL, ASRR, LSLL, LSRR,
ASRAC, and LSRAC), and the DIV instruction.

The bit-field instructions only affect the C and the L bits. The CLR instruction only generates condition
codes when clearing an accumulator. The condition codes are not modified when clearing any other
register. Some of the condition codes are not defined after executing the IMPY (16) and multi-bit shifting
instructions. The DIV instruction only affects a subset of all the condition codes. See Appendix A .4,
“Condition Code Computation,” on page A-6 for details on the condition code computation for each of
these instructions.

Q mororoLa Data Arithmetic Logic Unit 3-35

Data Arithmetic Logic Unit

3.6.7 TST and TSTW Instructions

There are two instructions, TST and TSTW, that are useful for checking the value in aregister or memory
location.

The condition codes for the TST instruction (on a 36-bit accumulator) with CC equal to zero are computed
asfollows:

e Lissetif limiting occursin aparallel move.

o Eissetif the extension register isin use—that is, if bits 35-31 are not all the same.
e U isset according to the standard definition of the U bit.

* Nissetif bit 35 of the corresponding accumulator is set except during saturation.

e Zissetif bits 35-0 of the corresponding accumulator are all cleared.

e Visdwayscleared.

e Cisawayscleared.

The condition codes for the TST instruction (on a 36-bit accumulator) with CC equal to one are computed
asfollows:

e Lissetif limiting occursin aparallel move.
« Eissetif the extension register isin use, that is, if bits 35-31 are not all the same.
e U isseat according to the standard definition of the U hit.
« Nisseatif bit 31 of the corresponding accumulator is set.
e Zissetif bits 31-0 of the corresponding accumulator are all cleared.
e Visawayscleared.
e Cisawayscleared.
The condition codes for the TSTW instruction (on a 16-bit value) are computed as follows:
* Nissetif the MSB of the 16-bit valueis set.
o Zissetif al 16 bits of the 16-bit value are cleared.
e Visadwayscleared.
e Cisawayscleared.

3.6.8 Unsigned Arithmetic

When arithmetic on unsigned operands is being performed, the condition codes used to compare two
values differ from those used for signed arithmetic. See Section 3.3.7, “Unsigned Arithmetic,” for a
discussion of condition code usage for unsigned arithmetic.

3-36 DSP56800 Family Manual @ MOTOROLA

Chapter 4
Address Generation Unit

This chapter describes the architecture and the operation of the address generation unit (AGU). The
address generation unit is the block where al address calculations are performed. It contains two
arithmetic units—a modulo arithmetic unit for complex address calculations and an
incrementer/decrementer for simple calculations. The modulo arithmetic unit can be used to calculate
addresses in amodulo fashion, automatically wrapping around when necessary. A set of pointer registers,
special-purpose registers, and multiple buses within the unit allow up to two address updates or a memory
transfer to or from the AGU in asingle cycle.

The capabilities of the address generation unit include the following operations:
» Provide one address to X data memory on the XAB1 bus
e Post-update an address after providing the original address value on XAB1 bus
e Calculate an effective address which is then provided on the XAB1 bus

e Provide two addressesto X data memory on the XAB1 and XAB2 buses and post-update both
addresses

e Provide one address to program memory for program memory data accesses and post-update the
address

* Increment or decrement a counter during normalization operations
e Provide a conditional register move (Tcc instruction)

Note that in the cases where the address generation unit is generating one or two addressesto access X data
memory, the program controller generates a second or third address used to concurrently fetch the next
instruction.

The AGU provides many different addressing modes, which include the following:

e Indirect addressing with no update e Immediate data

e Indirect addressing with post-increment * Immediate short data

» Indirect addressing with post-decrement » Absolute addressing

e Indirect addressing with post-update by a » Absolute short addressing
register - Peripheral short addressing

. |0 r;?;tect addressing with index by a 16-bit Regi .stfar direct

e Indirect addressing with index by a 6-bit " Implicit
offset

« Indirect addressing with index by aregister

0 MoTOROLA Address Generation Unit 4-1

Address Generation Unit

This chapter covers the architecture and programming model of the address generation unit, its addressing
modes, and a discussion of the linear and modulo arithmetic capabilities of this unit. It concludes with a
discussion of pipeline dependencies related to the address generation unit.

4.1 Architecture and Programming Model

The major components of the address generation unit are as follows:

Four address registers (RO-R3)

A stack pointer register (SP)

An offset register (N)

A modifier register (M01)

A modulo arithmetic unit

An incrementer/decrementer unit

The AGU uses integer arithmetic to perform the effective address cal culations necessary to address data
operands in memory. The AGU also contains the registers used to generate the addresses. It implements
linear and modulo arithmetic and operatesin parallel with other chip resources to minimize
address-generation overhead.

Two ALUs are present within the AGU: the modul o arithmetic unit and the incrementer/decrementer unit.
The two arithmetic units can generate up to two 16-bit addresses and two address updates every instruction
cycle: onefor XAB1 and one for XAB2 for instructions performing two parallel memory reads. The AGU
can directly address 65,536 locations on XAB1 and 65,536 locations on the PAB. The AGU can directly
address up to 65,536 locations on XAB2, but can only generate addresses to on-chip memory. The two
AL Uswork with the data memory to access up to two locations and provide two operandsto the data ALU
in asingle cycle. The primary operand is addressed with the XAB1, and the second operand is addressed
with the XAB2. The data memory, in turn, places its data on the core global data bus (CGDB) and the
second external data bus (XDB2), respectively (see Figure 4-1 on page 4-3). See Section 6.1, “ Introduction
to Moves and Parallel Moves,” on page 6-1 for more discussion on parallel memory moves.

DSP56800 Family Manual @ MOTOROLA

Architecture and Programming Model

CGDB(15:0)
v SP
MO1 N RO
Modulo R1
Arithmetic
Unit R2
R3 ;]
| Inc./Dec.
R3 Only A
PAB(15:0) XAB1(15:0) XAB2(15:0)

AAQ0014

Figure 4-1. Address Generation Unit Block Diagram

All four address pointer registers and the SP are used in generating addresses in the register indirect
addressing modes. The offset register can be used by all four address pointer registers and the SP, whereas
the modulo register can be used by the RO or by both the RO and R1 pointer registers.

Whereas all the address pointer registers and the SP can be used in many addressing modes, there are some
instructions that only work with a specific address pointer register. These cases are presented in Table 4-5
on page 4-9.

The address generation unit is connected to four major buses: CGDB, XAB1, XAB2, and PAB. The
CGDB is used to read or write any of the address generation unit registers. The XAB1 and XAB2 provide
aprimary and secondary address, respectively, to the X data memory, and the PAB provides the address
when accessing the program memory.

A block diagram of the address generation unit is shown in Figure 4-1, and its corresponding programming
model is shown in Figure 4-2. The blocks and registers are explained in the following subsections.

15 0 15 0 15 0

RO N MO1

R1

R2

R3

SP

Pointer Offset Modifier

Registers Regqister Register AA0015

Figure 4-2. Address Generation Unit Programming Model

0 MoTOROLA Address Generation Unit 4-3

Address Generation Unit

4.1.1 Address Registers (R0O-R3)

The address register file consists of four 16-bit registers R0-R3 (Rn) that usually contain addresses used as
pointers to memory. Each register may be read or written by the CGDB. High speed access to the XABL,
XAB2, and PAB buses is required to allow maximum access time for the internal and external X data
memory and program memory. Each address register may be used as input for the modulo arithmetic unit
for aregister update calculation. Each register may be written by the output of the modulo arithmetic unit.

The R3 register may be used as input to a separate incrementer/decrementer unit for an independent
register update calculation. This unit is used in the case of any instruction that performs two data memory
reads in its parallel move field. For instructions where two reads are performed from the X data memory,
the second read using the R3 pointer must always access on-chip memory.

NOTE:

Due to pipelining, if an address register (Rn, SP, or M01) is changed with
aMOVE or bit-field instruction, the new contents will not be available for
use as a pointer until the second following instruction. If the SPis changed,
no LEA or POP instructions are permitted until the second following
instruction.

4.1.2 Stack Pointer Register (SP)

The stack pointer register (SP) isasingle 16-bit register that is used implicitly in all PUSH instruction
macros and POP instructions. The SP is used explicitly for memory references when used with the
address-register-indirect modes. It is post-decremented on all POPs from the software stack. The SP
register may be read or written by the CGDB.

NOTE:

Thisregister must beinitialized explicitly by the programmer after coming
out of reset.

Due to pipelining, if an address register (Rn, SP, or M01) is changed with
aMOVE or bit-field instruction, the new contents will not be available for
use as a pointer until the second following instruction. If the SPis changed,
no LEA or POP instructions are permitted until the second following
instruction.

4.1.3 Offset Register (N)

The offset register (N) usually contains offset values used to update address pointers. This single register
can be used to update or index with any of the address registers (RO-R3, SP). This offset register may be
read or written by the CGDB. The offset register is used as input to the modul o arithmetic unit. It is often
used for array indexing or indexing into atable, as discussed in Section 8.7, “ Array Indexes,” on page
8-26.

4-4 DSP56800 Family Manual @ mororoLa

Architecture and Programming Model

NOTE:

If the N address register is changed with a MOVE instruction, this
register’s contents will be available for use on the immediately following
instruction. In this case the instruction that writes the N address register
will be stretched one additional instruction cycle. Thisistrue for the case
when the N register is used by the immediately following instruction; if N
is not used, then the instruction is not stretched an additional cycle. If the
N addressregister is changed with a bit-field instruction, the new contents
will not be available for use until the second following instruction.

4.1.4 Modifier Register (M01)

The modifier register (M01) specifies whether linear or modulo arithmetic is used when calculating a new
address and may be read or written by the CGDB. This modifier register is automatically read when the RO
address register is used in an address calculation and can optionally be used also when R1 is used. This
register has no effect on address calculations done with the R2, R3, or SPregisters. It isused asinput to the
modulo arithmetic unit. This modifier register is preset during a processor reset to $FFFF (linear
arithmetic).

NOTE:

Dueto pipelining, if an address register (Rn, SP, or M01) is changed with
aMOVE or bit-field instruction, the new contents will not be available for
use as a pointer until the second following instruction. If the SPischanged,
no LEA or POP instructions are permitted until the following instruction.

4.1.5 Modulo Arithmetic Unit

The modulo arithmetic unit can update one address register or the SP during one instruction cycle. It is
capable of performing linear and modulo arithmetic, as described in Section 4.3, “AGU Address
Arithmetic.” The contents of the modifier register specifies the type of arithmetic to be performed in an
address register update calculation. The modifier value is decoded in the modul o arithmetic unit and
affects the unit’s operation. The modulo arithmetic unit’'s operation is data-dependent and requires
execution cycle decoding of the selected modifier register contents. Note that the modul o capability isonly
allowed for RO or R1 updates; it is not allowed for R2, R3, or SP updates.

The modulo arithmetic unit first calculates the result of linear arithmetic (for example, Rn+1, Rn-1, Rn+N)
which is selected as the modulo arithmetic unit’s output for linear arithmetic. For modulo arithmetic, the
modulo arithmetic unit will perform the function (Rn+N) modulo (M01+1), where N can be 1, -1, or the
contents of the offset register N. If the modulo operation requires “wraparound” for modulo arithmetic, the
summed output of the modulo adder will give the correct, updated address register value; otherwise, if
wraparound is not necessary, the linear arithmetic cal culation gives the correct result.

4.1.6 Incrementer/Decrementer Unit

The incrementer/decrementer unit is used for address-update cal culations during dua data-memory read
instructions. It is used either to increment or decrement the R3 register. This adder performs only linear
arithmetic; it performs no modulo arithmetic.

0 MoTOROLA Address Generation Unit 4-5

Address Generation Unit

4.2 Addressing Modes

The DSP56800 instruction set contains afull set of operand addressing modes, optimized for
high-performance signal processing as well as efficient controller code. All address calculations are
performed in the address generation unit to minimize execution time.

Addressing modes specify where the operand or operands for an instruction can be found—whether an
immediate value, located in aregister, or in memory—and provide the exact address of the operand(s).

The addressing modes are grouped into four categories:
» Register direct—directly references the processor registers as operands

e Addressregister indirect—uses an address register as a pointer to reference alocation in memory
as an operand

* Immediate—the operand is contained as a value within the instruction itself

« Absolute—uses an address contained within theinstruction to reference alocation in memory asan
operand

An effective addressin an instruction will specify an addressing mode (that is, where the operands can be
found), and for some addressing modes the effective address will further specify an address register that
points to alocation in memory, how the address is calculated, and how the register is updated.

These addressing modes are referred to extensively in Section 6.5.2, “LSLL Alias,” on page 6-13.

Several of the examples in the following sections demonstrate the use of assembler forcing operators.
These can be used in an instruction to force a desired addressing mode, as shown in Table 4-1.

Table 4-1. Addressing Mode Forcing Operators

Desired Action Forcing Operator Syntax Example
Force immediate short data #<XX #<$07
Force 16-bit immediate data H#>XXXX #>$07
Force absolute short address Xi<xx X:<$02
Force I/O short address Xi<<xx X:<<$FFE3
Force 16-bit absolute address Xi>XXXX X:>$02
Force short offset X:(SP-<xx) X:(SP-<$02)
Force 16-bit offset X:(RN+>XxxX) X:(RO+>3$03)

Other assembler forcing operators are available for jump and branch instructions, as shown in Table 4-2.

Table 4-2. Jump and Branch Forcing Operators

Desired Action Forcing Operator Syntax Example
Force 7-bit relative branch offset <XX <LABEL1
Force 16-bit absolute jump address SXXXX >LABEL5
Force 16-bit absolute loop address >XXXX >LABEL4

4-6 DSP56800 Family Manual @ mororoLa

Addressing Modes

4.2.1 Register-Direct Modes

The register-direct addressing modes specify that the operand is in one (or more) of the nine data ALU
registers, seven address registers, or four control registers. The various options are shown in Table 4-3 on

page 4-7.
Table 4-3. Addressing Mode—Register Direct

Addressing Mode: Notation for Register Direct in the
. . . Examples
Register Direct Instruction Set Summary?
Any register DD A, A2, Al, A0
DDDDD B, B2, B1, BO
HHH Y, Y1, YO
HHHH X0
F RO, R1, R2, R3
F1 SP
N
F1DD MO1
FDD
PC
Rj OMR, SR
Rn LA, LC
HWS

1. The register field notations found in the middle column are explained in more detail
in Table 6-16 on page 6-16 and Table 6-15 on page 6-15.

4.2.1.1 Data or Control Register Direct

The operand isin one, two, or three data AL U register(s) as specified in the operands or in a portion of the
data bus movement field in the instruction. This addressing mode is also used to specify a control register
operand. Thisreferenceis classified as a register reference.

4.2.1.2 Address Register Direct

The operand isin one of the seven address registers (R0O-R3, N, MOL1, or SP) specified by an effective
addressin the instruction. This reference is classified as a register reference.

NOTE:

Due to pipelining, if any address register is changed with a MOVE or
bit-field instruction, the new contents will not be available for use as a
pointer until the second following instruction. If the SP is changed, no
LEA or POP instructions are permitted until the second following
instruction.

4.2.2 Address-Register-Indirect Modes

When an address register is used to point to a memory location, the addressing mode is called address
register indirect. The term indirect is used because the operand is not the address register itself, but the
contents of the memory location pointed to by the address register. The effective addressin theinstruction
specifies the address register Rn or SP and the address calculation to be performed. These addressing

@ MOTOROLA Address Generation Unit 4-7

Address Generation Unit

modes specify that the operand is (or operands are) in memory and provide the specific address(es) of the
operand(s). A portion of the data bus movement field in the instruction specifies the memory reference to
be performed. The type of address arithmetic used is specified by the address modifier register.

Table 4-4. Addressing Mode—Address Register Indirect

Addressing Mode: Notation in the Instruction E |
Address Register Indirect Set Summaryl xamples
Accessing Program (P) Memory
Post-increment P:(Rj)+ P:(RO)+
Post-update by offset N P:(Rj)+N P:(R3)+N
Accessing Data (X) Memory
No update X:(Rn) X:(R3)
X:(N)
X:(SP)
Post-increment X:(Rn)+ X:(R1)+
X:(SP)+
Post-decrement X:(Rn)- X:(R3)-
X:(N)-
Post-update by offset N or N3 X:(Rn)+N X:(R1)+N
available for word accesses only
Indexed by offset N X:(Rn+N) X:(R2+N)
X:(SP+N)
Indexed by 6-bit displacement X:(R2+xx) X:(R2+15)
R2 and SP registers only X:(SP-xx) X:(SP-$1E)
Indexed by 16-bit displacement X:(RN+XxxX) X:(R0-97)
X:(N+1234)
X:(SP+$03F7)

1. Rjrepresents one of the four pointer registers R0-R3; Rn is any of the AGU address
registers RO-R3 or SP.

Address-register-indirect modes may require an offset and a modifier register for use in address
calculations. The address register (Rn or SP) is used as the address register, the shared offset register is
used to specify an optional offset from this pointer, and the modifier register is used to specify the type of
arithmetic performed.

Some addressing modes are only available with certain address registers (Rn). For example, although all
address registers support the “indexed by long displacement” addressing mode, only the R2 address
register supports the “indexed by short displacement” addressing mode. For instructions where two reads
are performed from the X data memory, the second read using the R3 pointer must aways be from on-chip
memory. The addressed register sets are summarized in Table 4-5.

4-8 DSP56800 Family Manual @ mororoLa

Addressing Modes

Table 4-5. Address-Register-Indirect Addressing Modes Available

Register Arithmetic Addressing Modes Allowed Notes
Set Types
RO/MO1/N Linear or modulo (RO) RO always uses the MO1 register
(RO)+ to specify modulo or linear arith-
(RO)- metic. RO can optionally be used
(RO)+N as a source register for the Tcc
(RO+N) instruction. RO is the only register
(RO+xxxX) allowed as a counter for the
NORM instruction.
R1/MO1/N Linear or modulo (R1) R1 optionally uses the M0O1 reg-
(R1)+ ister to specify modulo or linear
(R1)- arithmetic. R1 can optionally be
(R1)+N used as a destination register for
(R1+N) the Tcc instruction.
(RL+XxxX)
R2/N Linear (R2) R2 supports a one-word indexed
(R2)+ addressing mode. R2 is not
(R2)- allowed as either pointer for
(R2)+N instructions that perform two
(R2+N) reads from X data memory. No
(R2+xx) modulo arithmetic is allowed.
(R2+xxxX)
R3/N Linear (R3) R3 provides a second address
(R3)+ for instructions with two reads
(R3)- from data memory. This second
(R3)+N address can only access internal
(R3+N) memory. It can also be used for
(R3+xxxx) instructions that perform one
access to data memory. No mod-
ulo arithmetic is allowed.
SP/N Linear (SP) The SP supports a one-word
(SP)- indexed addressing mode, which
(SP)+ is useful for accessing local vari-
(SP)+N ables and passed parameters.
(SP+N) No modulo arithmetic is allowed.
(SP-xx)
(SP+xxxx)

The type of arithmetic to be performed is not encoded in the instruction, but it is specified by the address
modifier register (M01 for the DSP56800 core). It indicates whether linear or modulo arithmetic is
performed when doing address calculations. In the case where there is not a modifier register for a
particular register set (R2 or R3), linear addressing is always performed. For address cal culations using RO,
the modifier register isalways used; for calculations using R1, the modifier register is optionally used.

Each address-register-indirect addressing modeisillustrated in the following subsections.

4.2.2.1 No Update: (Rn), (SP)

The address of the operand is in the address register Rn or SP. The contents of the Rn register are
unchanged. The M01 and N registers are ignored. Thisreferenceis classified as a memory reference. See
Figure 4-3.

0 MoTOROLA Address Generation Unit 4-9

Address Generation Unit

No Update Example: MOVE Al, X: (RO)

Before Execution After Execution
A2 Al A0 A2 Al A0
Alo |1 2 3 a5 6 7 8 Alo |1 2 3 a5 6 7 8
35 32 31 16 15 0 35 32 31 16 15 0
X Memory X Memory
15 0 15 0
/_\/ /\/
$1000 | X X X X [$1000 | 1 2 3 4 [
/—_/ /_/
RO | $1000 — RO | $1000 —
15 0 15 0
N | (n/a) | N | (n/a) |
15 0 15 0
mo1 | (n/a) | mo1 | (n/a) |
15 0 15 0

Assembler syntax: X:(Rn), X:(SP)
Additional instruction execution cycles: 0
Additional effective address program words: 0
AA0016

Figure 4-3. Address Register Indirect: No Update

4-10 DSP56800 Family Manual @ MOTOROLA

Addressing Modes

4.2.2.2 Post-Increment by 1. (Rn)+, (SP)+

The address of the operand isin the address register Rn or SP. After the operand addressis used, it is
incremented by one and stored in the same address register. The type of arithmetic (linear or modulo) used
to increment Rn is determined by MO1 for RO and R1 and is always linear for R2, R3, and SP. The N
register isignored. Thisreferenceis classified as amemory reference. See Figure 4-4.

Post-Increment Example: MOVE BO, X (RL1) +

Before Execution

After Execution

B2 B1 BO B2 B1 BO
B|A|[s 5 4 3[F E D B|A|ls 5 4 3[F E D ¢c
35 32 31 16 15 35 32 31 16 15 0
X Memory X Memory
15 0 15 0
/—\/ /—\/
$2501 [X X X X $2501 | X X X X |—
$2500 | X X X X [$2500
R1 | $2500 — RL | $2501 —
15 0 15 0
N | (n/a) | N | (n/a) |
15 0 15 0
Mol [SFFFF | Mol | SFFFF |
15 0 15 0

Assembler syntax: X:(Rn)+, X:(SP)+, P:(Rn)+
Additional instruction execution cycles: 0
Additional effective address program words: 0
AA0017

Figure 4-4. Address Register Indirect: Post-Increment

0 MoTOROLA Address Generation Unit 4-11

Address Generation Unit

4.2.2.3 Post-Decrement by 1: (Rn)-, (SP)-

The address of the operand isin the address register Rn or SP. After the operand addressis used, it is
decremented by one and stored in the same address register. The type of arithmetic (linear or modul o) used
to increment Rn is determined by MO1 for RO and R1 and is always linear for R2, R3, and SP. The N
register isignored. Thisreferenceis classified as amemory reference. See Figure 4-5.

Post-Decrement Example: MOVE B, X (RL) -

Before Execution After Execution
B2 B1 BO B2 B1 BO
B|lo|s 5 4 3[F E D ¢c B|lo|s 5 4 3[F E D ¢c
35 32 31 16 15 0 35 32 31 16 15 0
X Memory X Memory
15 0 15 0
/—\/ /—\/
$4735 [X X X X |- $4735
$4734 | X X X X $4734 | X X X X |-
R1 | $4735 — RL | $4734 —
15 0 15 0
N | (n/a) | N | (n/a) |
15 0 15 0
Mol [SFFFF | Mol | SFFFF |
15 0 15 0

Assembler syntax: X:(Rn)-, X:(SP)-
Additional instruction execution cycles: 0
Additional effective address program words: 0
AA0018

Figure 4-5. Address Register Indirect: Post-Decrement

4-12 DSP56800 Family Manual @ MOTOROLA

Addressing Modes

4.2.2.4 Post-Update by Offset N: (Rn)+N, (SP)+N
The address of the operand isin the address register Rn or SP. After the operand addressis used, the

contents of the N register are added to Rn and stored in the same address register. The content of N is
treated as atwo’ s-complement signed number. The contents of the N register are unchanged. The type of
arithmetic (linear or modulo) used to update Rn is determined by MO1 for RO and R1 and is always linear
for R2, R3, and SP. Thisreferenceis classified as a memory reference. See Figure 4-6.

Post-Update by Offset N Example:

Before Execution

MOVE Y1, X: (R2) +N

After Execution

Y1 YO Y1 YO
Y 5 5 5 5]A A A A Y 5 5 5 5]A A A A
31 16 15 0 31 16 15 0
X Memory X Memory
15 0 15 0
/\/ /_\/
$3204 | X X X X $3204 | X X X X |-

$3200 | X X X X

$3200 |5 5 5 5

/\/ /_\/

R2 | $3200 R2 | $3204 —
15 0 15 0
N | $0004 | N | $0004 |
15 0 15 0
Mol [SFFFF | Mol | SFFFF |
15 0 15 0

Assembler syntax: X:(Rn)+N, X:(SP)+N, P:(Rn)+N
Additional instruction execution cycles: 0
Additional effective address program words: 0

Figure 4-6. Address Register Indirect:

0 MOTOROLA

Address Generation Unit

AAQ019

Post-Update by Offset N

4-13

Address Generation Unit

4.2.2.5 Index by Offset N: (Rn+N), (SP+N)

The address of the operand is the sum of the contents of the address register Rn or SP and the contents of
the address offset register N. This addition occurs before the operand can be accessed and, therefore,
inserts an extrainstruction cycle. The content of N istreated as a two’ s-complement signed number. The
contents of the Rn and N registers are unchanged by this addressing mode. The type of arithmetic (linear or
modul o) used to add N to Rn is determined by MO1 for RO and R1 and is aways linear for R2, R3, and SP.
Thisreferenceis classified as amemory reference. See Figure 4-7.

Indexed by Offset N Example: MOVE Al, X (RO+N)

Before Execution After Execution
A2 Al AO A2 Al AO
Al F|E D c B|A 9 8 7 Al F|E D c B|lA 9 8 7
35 32 31 16 15 0 35 32 31 16 15 0
X Memory X Memory
15 0 15 0
/—_/ /_\/
$7003 | X X X X ———P $7003 | E D C B
$7000 [X X X X $7000 [X X X X
— —
RO | $7000 RO | $7000 |
15 0 15 0
N | $0003 N | $0003 |
15 0 15 0
mo1 | $FFFF mo1 | $FFFF |
15 0 15 0

Assembler syntax: X:(Rn+N), X:(SP+N)
Additional instruction execution cycles: 1

Additional effective address program words: 0
AA0020

Figure 4-7. Address Register Indirect: Indexed by Offset N

4-14 DSP56800 Family Manual @ MOTOROLA

Addressing Modes

4.2.2.6 Index by Short Displacement: (SP-xx), (R2+xx)

This addressing mode contains the 6-bit short immediate index within the instruction word. Thisfieldis
always one-extended to form a negative offset when the SP register is used and is always zero-extended to
form a positive offset when the R2 register is used. The type of arithmetic used to add the short
displacement to R2 or SP is always linear; modulo arithmetic is not allowed. This addressing mode
reguires an extrainstruction cycle. Thisreferenceis classified as an X memory reference. See Figure 4-8.

Indexed by Short Displacement Example: MOVE Al, X (R2+3)

Before Execution After Execution
A2 Al AO A2 Al AO
AlF|eE b c B|lAa 9 8 7 AlF]e b c B|la 9 8 7
35 32 31 16 15 0 35 32 31 16 15 0
X Memory X Memory
15 0 15 0
/—\/ /\/
$7003 | X X X X — 3 $7003|E D Cc B
$7000 | X X X X $7000 | X X X X
R2| $7000 R2 | $7000 |
15 0 15 0
N | $4567 | N | $4567 |
15 0 15 0
MOl [SFFFF | Mol | SFFFF |
15 0 5 0

Short Immediate Value
from the Instruction Word

Assembler syntax: X:(Rn+xx), X:(SP-xx)
Additional instruction execution cycles: 1

Additional effective address program words: 0 AADO21

Figure 4-8. Address Register Indirect: Indexed by Short Displacement

0 MoTOROLA Address Generation Unit 4-15

Address Generation Unit

4.2.2.7 Index by Long Displacement: (Rn+xxxx), (SP+xxxx)

This addressing mode contains the 16-bit long immediate index within the instruction word. This second
word istreated as a signed two’ s-complement value. The type of arithmetic (linear or modul o) used to add
the long displacement to Rnis determined by MO1 for RO and R1 and is always linear for R2, R3, and SP.
This addressing mode requires two extrainstruction cycles. This addressing modeis available for MOVEC
instructions. This reference is classified as an X memory reference. See Figure 4-9.

Indexed by Long Displacement Example: MOVE Al, X (R0+$10CF)

Before Execution After Execution

A2 A2 Al
AlF|eE b c B|aA AlF]eE b c B 7
35 32 31 16 15 35 32 31 16 15 0
X Memory X Memory
15 0 15
/—\/ /\/
$80CF | X X X X ——» $80CF E D C
—___ —___
$7000 | X X X X $7000 [X X X
/_/ /_/
RO| $7000 RO $7000
15 0 15
N| 4567 | N[s4567
15 0 15
MOl | SFFFF | Mol | SFFFF
15 0 15
Long Immediate Value
from the Instruction Word
Assembler syntax: X:(Rn+xxxx), X:(SP+xxxx)
Additional instruction execution cycles: 2
Additional effective address program words: 1
AA0022

Figure 4-9. Address Register Indirect: Indexed by Long Displacement

4-16 DSP56800 Family Manual

0 MOTOROLA

4.2.3 Immediate Data Modes

The immediate data modes specify the operand directly in afield of the instruction. That is, the operand
value to be used is contained within the instruction word itself (or words themselves). There are two types

of immediate data modes. immediate data, which uses an extension word to contain the operand, and

Addressing Modes

immediate short data, where the operand is contained within the instruction word. Table 4-6 summarizes

these two modes.

Table 4-6. Addressing Mode—Immediate

Addressing Mode:

Notation in the Instruction

Immediate Set Summary Examples
Immediate short data—5, 6, 7-bit #XX #14
(unsigned and signed) #<3
Immediate data—16-bit HXXXX #$369C
(unsigned and signed) #>1234

0 MOTOROLA

Address Generation Unit

4-17

Address Generation Unit

4.2.3.1 Immediate Data: #xXxXX

This addressing mode requires one word of instruction extension. This additional word contains the 16-bit
immediate data used by the instruction. This referenceis classified as a program reference. Examples of

the use and effects of immediate-data mode are shown in Figure 4-10 on page 4-18.

Immediate into 16-Bit Register Example: MOVE #$A987, Bl

Before Execution After Execution
B2 B1 BO B2 B1 BO
B | x [x x x x[x x x x B|x [A 9 8 7[x x x x
35 32 31 16 15 0 35 32 31 16 15 0
Positive Immediate into 36-Bit Accumulator Example: MOVE #3$1234, B
Before Execution After Execution
B2 B1 BO B2 B1 BO
B | x [x x x x[x x x x B|o |1 2 3 4afo 0 o
35 32 31 16 15 0 35 32 31 16 15 0
Negative Immediate into 36-Bit Accumulator Example: MOVE #$A987, B
Before Execution After Execution
B2 B1 BO B2 B1 BO
B | x [x x x x[x x x x B F [a o 8 7]o0 0 o
35 32 31 16 15 0 35 32 31 16 15 0
Assembler syntax: #xxxx
Additional instruction execution cycles: 1
Additional effective address program words: 1
AA0023

Figure 4-10. Special Addressing: Immediate Data

4-18 DSP56800 Family Manual

@ MOTOROLA

Addressing Modes

Immediate Short into 16-Bit Address Register Example: MOVE #$0027, N

Before Execution After Execution

N XXXX N | $0027
15 0 15 0

Immediate Short into 16-Bit Data Register Example: MWE #$FFC5, X0

Before Execution After Execution

X0 XXXX xo | sFFce |
15 0 15 0

Immediate Short into 16-Bit Accumulator Register Example: MOVE #3$001C, Bl

Before Execution After Execution
B2 B1 BO B2 B1 BO
B | x [x x x x[x x x x B[x [o o 1 c|[x x x x
35 32 31 16 15 0 35 32 31 16 15 0

Positive Immediate Short into 36-Bit Accumulator Example: MOVE #$001C, B

Before Execution After Execution
B2 B1 BO B2 Bl BO
B[x [x x x x|x x x x B[ofo o 1 clo o o o
35 32 31 16 15 0 35 32 31 16 15 0

Negative Immediate Short into 36-Bit Accumulator Example: MOVE #$FF(5, B

Before Execution After Execution
B2 B1 BO B2 Bl BO
B[x [x x x x|x x x x B(F|[F F c 6|0 0 0 o
35 32 31 16 15 0 35 32 31 16 15 0

Assembler syntax: #xx
Additional instruction execution cycles: 0
Additional effective address program words: 0
AA0024

Figure 4-11. Special Addressing: Immediate Short Data

0 MoTOROLA Address Generation Unit 4-19

Address Generation Unit

4.2.3.2 Immediate Short Data: #xx

The immediate-short-data operand is located within the instruction operation word. A 6-bit unsigned
positive operand is used for DO and REP instructions, and a 7-bit signed operand is used for an immediate
move to an on-core register instruction. This reference is classified as a program reference. See

Figure 4-11 on page 4-19.

4.2.4 Absolute Addressing Modes

Similar to the direct addressing modes, the absol ute addressing modes specify the operand value within the
instruction or instruction-extension words. Unlike the direct modes, these values are not used as the
operands themselves, but are interpreted as absol ute data memory addresses for the operand values. The
different absolute addressing modes are shown in Table 4-7.

Table 4-7. Addressing Mode—Absolute

Addressing Mode: Notation in the Instruction Exambles
Absolute Set Summary P

Absolute short address—6 bit X:aa X:$0002
(direct addressing) X:<$02
1/0 short address—6 bit X:pp X:$00FFE3
(direct addressing) X:<<$FFE3
Absolute address—16-bit XIXXXX X:$00F001
(extended addressing) X:>$C002

4-20 DSP56800 Family Manual @ MOTOROLA

Addressing Modes

4.2.4.1 Absolute Address (Extended Addressing): Xxxx

This addressing mode requires one word of instruction extension, which contains the 16-bit absolute
address of the operand. No registers are used to form the address of the operand. Absolute address
instructions are used with the bit-manipulation and move instructions. Thisreference is classified asa
memory reference and a program reference. See Figure 4-12.

Absolute Address Example: MOVE X: $5079, X0

Before Execution After Execution
X0 XXXX X0 $1234
15 0 15 0
X Memory X Memory
15 0 15 0
/_/ /\/
$5079 |1 2 3 4 $5079 |1 2 3 4

Assembler syntax: X:xxxx
Additional instruction execution cycles: 1

Additional effective address program words: 1
AA0025

Figure 4-12. Special Addressing: Absolute Address

0 MoTOROLA Address Generation Unit 4-21

Address Generation Unit

4.2.4.2 Absolute Short Address (Direct Addressing): <aa>

For the absolute short addressing mode, the address of the operand occupies 6 bitsin the instruction
operation word and is zero-extended. This alows direct access to the first 64 locationsin X memory. No
registers are used to form the address of the operand. Absolute short instructions are used with the bit-field
mani pulation and move instructions. See Figure 4-13.

Absolute Short Address Example: MOVE R2, X: <$0003

Before Execution After Execution
R2 $ABCD R2 $ABCD
15 0 15 0
X Memory X Memory
15 0 15 0
/\/ /\/
$0003 | X X X X $0003 | A B C D
$0000 $0000

Assembler syntax: X:<aa>
Additional instruction execution cycles: 0
Additional effective address program words: 0

AA0026

Figure 4-13. Special Addressing: Absolute Short Address

4-22 DSP56800 Family Manual @ MOTOROLA

Addressing Modes

4.2.4.3 1/0 Short Address (Direct Addressing): <pp>

For the /O short addressing mode, the address of the operand occupies 6 bits in the instruction operation
word and is one-extended. This alows direct access to the last 64 locationsin X memory, which contain
the on-chip peripheral registers. No registers are used to form the address of the operand. See Figure 4-14
for examples of using the I/O short direct addressing mode.

I/O Short Address Example: MOVE X <<$FFFB, R3

Before Execution After Execution
R3 XXXX R3 | $5678
15 0 15 0
X Memory X Memory
15 0 15 0
$FFFF $FFFF
$FFFB 5 6 7 8 $FFFB 5 6 7 8
— —

Assembler syntax: X:<pp>
Additional instruction execution cycles: 0
Additional effective address program words: 0
AA0027

Figure 4-14. Special Addressing: I/O Short Address

4.2.5 Implicit Reference

Some instructions make implicit reference to the program counter (PC), software stack, hardware stack
(HWS), loop address register (LA), loop counter (LC), or status register (SR). The implied registers and
their use are defined by the individual instruction descriptions. See Appendix A, “Instruction Set Details,”
for more information.

4.2.6 Addressing Modes Summary

Table 4-8 on page 4-24 contains a summary of the addressing modes discussed in the preceding
subsections of Section 4.2.

0 MoTOROLA Address Generation Unit 4-23

Address Generation Unit

Table 4-8. Addressing Mode Summary

Operand Reference

Addressing Mode ;Zii Assembler Syntax
s?|c|Dp*| AS | P | X7 | Xx8
Register Direct
Data or control register No X X
Address register (Rn, SP) No X Rn
Address modifier register (M01) No X MO01
Address offset register (N) No X N
Hardware stack (HWS) No X HWS
Software stack No X

Address Register Indirect

No update No X (Rn)

Post-increment by 1 Yes X X X (Rn)+

Post-decrement by 1 Yes X (Rn)-

Post-update by offset N Yes X X X (Rn)+N

Index by offset N Yes X (Rn+N)

Index by short displacement No X (R2+xx) or (SP-xx)

Index by long displacement Yes X (Rn+xxxx) or
(SP+xxxx)

Immediate, Absolute, and Implicit

Immediate data No X HXXXX
Immediate short data No X #XX
Absolute address No X X XXXX
Absolute short address No X <aa>
I/O short address No X <pp>
Implicit No X X X X

1. The MO01 modifier can only be used on the RO/N/MO01 or R1/N/MO1 register sets

2. Hardware stack reference

3. Program controller register reference

4. Data ALU register reference

5. Address Generation Unit register reference

6. Program memory reference

7. X memory reference

8. Dual X memory read

4-24 DSP56800 Family Manual @ MOTOROLA

AGU Address Arithmetic

4.3 AGU Address Arithmetic

When an arithmetic operation is performed in the address generation unit, it can be performed using either
linear or modulo arithmetic. Linear arithmetic is used for general-purpose address computation, asfound in
al microprocessors. Modulo arithmetic is used to create data structures in memory such as circular buffers,
first-in-first-out queues (FIFOs), delay lines, and fixed-size stacks. Using these structures allows datato be
manipulated simply by updating address register pointers, rather than by moving large blocks of data.

Linear versus modulo arithmetic is selected using the modifier register, MOL. Arithmetic onthe RO and R1
AGU registers may be performed using either linear or modulo arithmetic. The R2, R3, and SP registers
can be modified using linear arithmetic only.

4.3.1 Linear Arithmetic

Linear arithmetic is“norma” address arithmetic, as found on general-purpose microprocessors. It is
performed using 16-bit two’ s-complement addition and subtraction. The 16-hit offset register N, or
immediate data (+1, -1, or adisplacement value), is used in the address calculations. Addresses are
normally considered unsigned; offsets are considered signed.

Linear arithmetic is enabled for the RO and R1 registers by setting the modifier register (M01) to $FFFF.
The MO1 register is set to $FFFF on reset.

NOTE:

To ensure compatibility with future generations of DSP56800-compatible
DSP devices, care should be taken to avoid address arithmetic operations
that can cause address register values to overflow. On DSP56800 Family
chips, register values can be expected to “wrap” appropriately. Future
generations may support addressranges > 64K, however, causing potential
address-calculation errors.

4.3.2 Modulo Arithmetic

Many DSP and standard control algorithms require the use of specialized data structures, such as circular
buffers, FIFOs, and stacks. The DSP56800 architecture provides support for these algorithms by
implementing modulo arithmetic in the address generation unit.

4.3.2.1 Modulo Arithmetic Overview

To understand modul o address arithmetic, consider the example of acircular buffer. A circular buffer isa
block of sequential memory locations with a special property: a pointer into the buffer islimited to the
buffer’ s address range. When a buffer pointer is incremented such that it would point past the end of the
buffer, the pointer is“wrapped” back to the beginning of the buffer. Similarly, decrementing a pointer that
islocated at the beginning of the buffer will wrap the pointer to the end. This behavior is achieved by
performing modul o arithmetic when incrementing or decrementing the buffer pointers. See Figure 4-15 on
page 4-26.

0 MoTOROLA Address Generation Unit 4-25

Address Generation Unit

Upper Boundary: Lower Boundary + M01

Address ___ Circular
Pointer Buffer MO1 = Size of Modulo Region Minus One

Lower Boundary: “K” LSBs Are All “0s”

Address of Lower Boundary:
15 kkl -« 10
| Base Address [o]o]o]o]o]

Figure 4-15. Circular Buffer

The modulo arithmetic unit in the AGU simplifiesthe use of acircular buffer by handling the address
pointer wrapping for you. After establishing a buffer in memory, the RO and R1 address pointers can be
made to wrap in the buffer area by programming the MO1 register.

Modulo arithmetic is enabled by programming the MOL register with avalue that is one less than the size
of the circular buffer. See Section 4.3.2.2, “Configuring Modulo Arithmetic,” for exact details on
programming the MO1 register. Once enabled, updates to the RO or R1 registers using one of the
post-increment or post-decrement addressing modes are performed with modulo arithmetic, and will wrap
correctly in the circular buffer.

The address range within which the address pointers will wrap is determined by the value placed in the
MOL1 register and the address contained within one of the pointer registers. Due to the design of the modulo
arithmetic unit, the address range is not arbitrary, but l[imited based on the value placed in MO1. The lower
bound of the rangeis calculated by taking the size of the buffer, rounding it up to the next highest power of
two, and then rounding the address contained in the RO or R1 pointers down to the nearest multiple of that
value.

For example: for abuffer size of M, avalue 2X is calculated such that 2K > M. Thisisthe buffer size
rounded up to the next highest power of two. For avalue M of 37, 2% would be 64. The lower boundary of
the range in which the pointer registers will wrap isthe valuein the RO or R1 regi ster with the low-order k
bits all set to zero, effectively rounding the value down to the nearest multiple of 2K (64 inthis case). This
is shown in Figure 4-16 on page 4-27.

4-26 DSP56800 Family Manual @ MOTOROLA

AGU Address Arithmetic

Memory
$00B0O
(Unavailable
Addresses)
Upper Boundary: $00A4 -¢— Lower Bound + Size - 1 = Upper Bound
$009F -« Initial RO Pointer Value
Circular
Buffer
Lower Boundary: $0080 <€ Lower Bound Relative to RO

Figure 4-16. Circular Buffer with Size M=37

When modulo arithmetic is performed on the buffer pointer register, only the low-order k bits are
modified; the upper 16 - k bitsare held constant, fixing the address range of the buffer. The algorithm used
to update the pointer register (RO in this case) is as follows:

RO[15:k] = RO[15:K]

RO[k-1:0] = (RO[k-1:0] + offset) MOD (M0O1 + 1)
Note that this algorithm can result in some memory addresses being unavailable. If the size of the buffer is
not an even power of two, there will be a range of addresses between M and 2k-1 (37 and 63 in our
example) that are not addressable. Section 4.3.2.7.3, “Memory Locations Not Available for Modulo
Buffers,” addresses thisissue in greater detail.

4.3.2.2 Configuring Modulo Arithmetic

Asnoted in Section 4.3.2.1, “Modulo Arithmetic Overview,” modulo arithmetic is enabled by
programming the address modifier register, MOL. This single register enables modul o arithmetic for both
the RO and R1 registers, although in order for modulo arithmetic to be enabled for the R1 register it must
be enabled for the RO register as well. When both pointers use modulo arithmetic, the sizes of both buffers
are the same. They can refer to the same or different buffers as desired.

The possible configurations of the MO1 register are given in Table 4-9.
Table 4-9. Programming M01 for Modulo Arithmetic

16-Bit MO1 Address Arithmetic Pointer Registers
Register Contents Performed Affected
$0000 (Reserved) —
$0001 Modulo 2 RO pointer only
$0002 Modulo 3 RO pointer only

Q) mororoLa Address Generation Unit 4-27

Address Generation Unit

Table 4-9. Programming M0O1 for Modulo Arithmetic (Continued)

16-Bit MO1 Address Arithmetic Pointer Registers
Register Contents Performed Affected

$3FFE Modulo 16383 RO pointer only

$3FFF Modulo 16384 RO pointer only

$4000 (Reserved) —

$7FFF (Reserved) —

$8000 (Reserved) —

$8001 Modulo 2 RO and R1 pointers

$8002 Modulo 3 RO and R1 pointers

$BFFE Modulo 16383 RO and R1 pointers

$BFFF Modulo 16384 RO and R1 pointers

$C000 (Reserved) —

$FFFE (Reserved) —

$FFFF Linear Arithmetic RO and R1 pointers both
set up for linear arith-
metic

The high-order two bits of the MOL1 register determine the arithmetic mode for RO and R1. A value of 00
for M01[15:14] selects modulo arithmetic for RO. A value of 10 for M01[15:14] selects modulo arithmetic
for both RO and R1. A vaue of 11 disables modulo arithmetic. The remaining 14 bits of M0O1 hold the size
of the buffer minus one.

NOTE:

Thereserved values ($0000, $4000-$8000, and $C000-$FFFE) should not
be used. The behavior of the modulo arithmetic unit is undefined for these
values, and may result in erratic program execution.

4-28 DSP56800 Family Manual @ MOTOROLA

AGU Address Arithmetic

4.3.2.3 Supported Memory Access Instructions

The address generation unit supports modulo arithmetic for the following address-register-indirect modes:

(Rn) (Rn)+
(Rn)- (Rn)+N
(Rn+N) (RN+xxxx)

Asnoted in the preceding discussion, modulo arithmetic is only supported for the RO and R1 address
registers.

4.3.2.4 Simple Circular Buffer Example

Suppose afive-location circular buffer is needed for an application. The application locates this buffer at
X:$800 in memory. (Thislocation is arbitrary—any location in data memory would suffice.) In order to
configure the AGU correctly to manage this circular buffer, the following two pieces of information are
needed:

The size of the buffer: five words
The location of the buffer: X:$0800 — X:$0804

Modulo addressing is enabled for the RO pointer by writing the size minus one ($0004) to M01[13:0], and
00 to M01[15:14]. See Figure 4-17.

$0804
Circul A
éf#e?r MO1 Register = Size - 1 =5 - 1 = $0004
RO ——\—>» $!800

Figure 4-17. Simple Five-Location Circular Buffer

Thelocation of the buffer in memory is determined by the value of the RO pointer when it is used to access
memory. The size of the memory buffer (five in this case) isrounded up to the nearest power of two (eight
in this case). The valuein RO isthen rounded down to the nearest multiple of eight. For the base addressto
be X:$0800, theinitial value of RO must be in the range X:$0800 — X:$0804. Note that the initial value of
RO does not have to be X:$0800 to establish this address as the lower bound of the buffer. However, itis
often convenient to set RO to the beginning of the buffer. The source code in Example 4-1 shows the
initialization of the example buffer.

Example 4-1. |Initializing the Circular Buffer

MOVE #(5-1),M1 ; Initialize the buffer for five |ocations
MOVE #3$0800, RO ; RO can be initialized to any |ocation
; Wthin the buffer. For sinplicity, RO
; isinitialized to the value of the | ower
; boundary

0 MoTOROLA Address Generation Unit 4-29

Address Generation Unit

The buffer is used simply by accessing it with MOVE instructions. The effect of modulo address
arithmetic becomes apparent when the buffer is accessed multiple times, asin Example 4-2 on page 4-30.

Example 4-2. Accessing the Circular Buffer

MOVE X (RO)+ X0 ; First time accesses |ocation $0800

; and bunps the pointer to | ocati on $0801
MOVE X (RO)+ X0 ; Second accesses at | ocation $0801
MOVE X (RO)+, X0 ; Third accesses at | ocation $0802
MOVE X (RO)+, X0 ; Fourth accesses at | ocation $0803
MOVE X (RO)+ X0 ; Fifth accesses at | ocation $0804

; and bunps the pointer to location $0800
MOVE X (RO)+ X0 ; Sixth accesses at |ocation $0800 <=== NOTE
MOVE X (RO)+, X0 ; Seventh accesses at |ocation $0801
MOVE X (RO)+ X0 ; and so forth...

For thefirst several memory accesses, the buffer pointer isincremented as expected, from $0800 to $0801,
$0802, and so forth. When the pointer reaches the top of the buffer, rather than incrementing from $0804 to
$0805, the pointer value “wraps’ back to $0800.

The behavior is similar when the buffer pointer register isincremented by avalue greater than one.
Consider the source code in Example 4-3, where RO is post-incremented by three rather than one. The
pointer register correctly “wraps’ from $0803 to $0801—the pointer does not have to land exactly on the
upper and lower bound of the buffer for the modulo arithmetic to wrap the value properly.

Example 4-3. Accessing the Circular Buffer with Post-Update by Three

MOVE #(5-1),M1 ; Initialize the buffer for five locations
MOVE #$0800, RO ; Initialize the pointer to $0800
MOVE #3,N ; Initialize “bup value” to 3
NCP
NCP
MOVE X (RO)+N X0 ; First time accesses |ocation $0800

; and bunps the pointer to | ocati on $0803
MOVE X (RO)+N X0 ; Second accesses at | ocation $0803

; and waps the pointer around to $0801
MOVE X (RO)+N X0 ; Third accesses at | ocation $0801

; and bunps the pointer to | ocati on $0804
MOVE X (RO)+N XO ; Fourth accesses at ...

In addition, the pointer register does not need to be incremented; it could be decremented instead.
Instructions that post-decrement the buffer pointer also work correctly. Executing the instruction MOVE
X: (RO) -, X0 when the value of RO is $0800 will correctly set RO to $0804.

4.3.2.5 Setting Up a Modulo Buffer

The following steps detail the process of setting up and using the 37-location circular buffer shown in
Figure 4-16 on page 4-27.

1. Determinethe value for the MO1 register.

— Sdlect the size of the desired buffer; it can be no larger than 16,384 locations. If modulo
arithmetic is to be enabled only for the RO address register, this gives the following:
MO1 = #locations- 1 = 37 - 1 = 36 = $0024

— |f modulo arithmetic isto be enabled for both the RO and R1 address registers, be sure to set the
high-order bit of MOL:
MO1 = # locations - 1 + $8000 = 37 - 1 + 32768 = 32804 = $8024

0 MOTOROLA

4-30 DSP56800 Family Manual

AGU Address Arithmetic

2. Find the nearest power of two greater than or equal to the circular buffer size. In this
example, the value would be 2K > 37, which gives us avalue of k = 6.

3. Fromk, derivethe characteristics of thelower boundary of the circular buffer. Sincethe “k”
least-significant bits of the address of the lower boundary must all be 0s, then the buffer

base address must be some multiple of 2K Inthis case, k = 6, so the base address is some
multiple of 2° = 64.

4. Locatethe circular buffer in memory.

— Thelocation of the circular buffer in memory is determined by the upper 16 - k bits of the
address pointer register used in amodulo arithmetic operation. If there is an open area of
memory from locations 111 to 189 ($006F to $00BD), for example, then the addresses of the
lower and upper boundaries of the circular buffer will fit in this open areafor J= 2:

Lower boundary = (J x 64) = (2 x 64) = 128 = $0080
Upper boundary = (J x 64) + 36 = (2 x 64) + 36 = 164 = $00A4

— Theexact areaof memory inwhich acircular buffer is prepared is specified by picking avalue
for the address pointer register, RO or R1, whose valueisinclusively between the desired lower
and upper boundaries of the circular buffer. Thus, selecting a value of 139 ($008B) for RO
would locate the circular buffer between locations 128 and 164 ($0080 to $00A4) in memory
since the upper 10 (16 - k) bits of the address indicate that the lower boundary is 128 ($0080).

— Insummary, the size and exact location of the circular buffer is defined onceavalueisassigned
to the MOL1 register and to the address pointer register (RO or R1) that will be used in amodulo
arithmetic calculation.

5. Determine the upper boundary of the circular buffer, which is the lower boundary + #
locations - 1.

6. Sdect avauefor the offset register if it isused in modulo operations.

— If the offset register is used in amodulo arithmetic calculation, it must be selected as follows:
IN| < MO1 + 1 [where [N| refers to the absolute value of the contents of the offset register]

— The special case where N isamultiple of the block size, 2", isdiscussed in Section 4.3.2.6,
“Wrapping to a Different Bank.”

7. Perform the modulo arithmetic calculation.

— Once the appropriate registers are set up, the modulo arithmetic operation occurs when an
instruction with any of the following addressing modes using the RO (or R1, if enabled) register
is executed:

(Rn)
(Rn)+
(Rn)-
(Rn)+N
(Rn+N)
(RN+xxxX)

— If theresult of the arithmetic cal culation would exceed the upper or lower bound, then wrapping
around is correctly performed.

4.3.2.6 Wrapping to a Different Bank

For the normal case where [N|is less than or equal to MO1, the primary address arithmetic unit will
automatically wrap the address pointer around by the required amount. Thistype of address modificationis
useful in creating circular buffers for FIFOs, delay lines, and sample buffers up to 16,384 words long. It is
aso used for decimation, interpolation, and waveform generation.

0 MoTOROLA Address Generation Unit 4-31

Address Generation Unit

If N|is greater than MO1, theresult is data dependent and unpredictable except for the special case where
N = L*(2), amulti ple of the block size, 2K, where L is apositive integer. For this specia case when using
the (Rn)+N addressing mode, the pointer Rn will be updated using linear arithmetic to the same relative
addressthat is L blocks forward in memory (see Figure 4-18). Note that this case requires that the offset N
must be a positive two' s-complement integer.

M
> / (Rn) + N MOD M01
———~ — where N = k(1L =1)

24 /

Figure 4-18. Linear Addressing with a Modulo Modifier

Thistechniqueisuseful in %quentlally processing multiple tables or N-dimensional arrays. The specia
modulo case of (Rn)+N withN = L* (2) is useful for performing the same algorithm on multiple blocks of
datain memory (e.g., implementing a bank of parallel IR filters).

4.3.2.7 Side Effects of Modulo Arithmetic

Dueto the way modulo arithmetic isimplemented by the DSP56800 Family, there are some side effects of
using modulo arithmetic that must be kept in mind. Specifically, since the base address of a buffer must be
apower of two, and since the modulo arithmetic unit can only detect a single wraparound, there are some
restrictions and limitations that must be considered.

4.3.2.7.1 When a Pointer Lies Outside a Modulo Buffer

If apointer is outside the valid modul o buffer range and an operation occurs that causes RO or R1 to be
updated, the contents of the pointer will be updated according to modul o arithmetic rules. For example, a
MOVE B, X: (RO) +Ninstruction, where RO =6, MO1 =5, and N = 0, would apparently leave RO unchanged
since N = 0. However, since RO is above the upper boundary, the AGU calculates RO + N - (MO1 + 1) for
the new contents of RO and sets RO = 0.

4.3.2.7.2 Restrictions on the Offset Register

The modulo arithmetic unit in the AGU is only capable of detecting a single wraparound of an address
pointer. As aresult, if the post-update addressing mode, (Rn)+N, is used, care must be taken in selecting
the value of N. The 16-bit absolute value [N| must be less than or equal to MO1 + 1 for proper modulo
addressing. Values of |N| larger than the size of the buffer may result in the Rn address value wrapping
twice, which the AGU cannot detect.

4-32 DSP56800 Family Manual @ MOTOROLA

Pipeline Dependencies

4.3.2.7.3 Memory Locations Not Available for Modulo Buffers

For cases where the size of a buffer is not a power of two, there will be arange of memory locations
immediately after the buffer that are not accessible with modulo addressing. Lower boundaries for modulo
buffers always begin on an address where the lowest k bits are zeros—that is, a power of two. This means
that for buffers that are not an exact power of two, there are locations above the upper boundary that are
not accessible through modulo addressing.

In Figure 4-16 on page 4-27, for example, the buffer size is 37, which is not a power of two. The smallest
power of two greater than 37 is 64. Thus, there are 64 - 37 = 27 memory |ocations which are not accessible
with modulo addressing. These 27 locations are between the upper boundary + 1 = $00A5 and the next
power of two boundary address - 1 = $00CO - 1 = $00BF.

Theselocations are till accessible when no modulo arithmetic is performed. Using linear addressing (with
the R2 or R3 pointers), absolute addresses, or the no-update addressing mode makes these locations
available.

4.4 Pipeline Dependencies

There are some cases within the address generation unit where the pipelined nature of the DSP core can
affect the execution of a sequence of instructions. The pipeline dependencies are caused by awrite to an
AGU register immediately followed by an instruction that uses that same register in an address arithmetic
calculation. When there is a dependency caused by awrite to the N register, the DSP automatically stalls
the pipeline one cycle. If adependency is caused by a write to the RO-R3, SP, or MO1 registers, however,
thereisno pipeline stall. Thisisaso trueif abit-field operation is performed on the N register. Instead, the
user must take care to avoid this case by rearranging the instructions or by inserting a NOP instruction to
break the instruction sequence.

Several instruction sequences are presented in the following examples to examine cases where their
pipeline dependency occurs, how this affects the machine, and how to correctly program to avoid these
dependencies.

In Example 4-4 there is no pipeline dependency since the N register is not used in the second instruction.
Since there is no dependency, no extrainstruction cycles are inserted.
Example 4-4. No Dependency with the Offset Register

MOVE #$7,N ; Wite to the Nregister
MOVE X (R2)+ X0 ; Nnot used in this instruction

In Example 4-5 there is no pipeine dependency since the R2 and N registers, used in the address
calculation, are not written in the previous instruction. Since there is no dependency, no extrainstruction
cycles areinserted.

Example 4-5. No Dependency with an Address Pointer Register

MOVE #3%7,RL ; Wite to RL register
MOVE X (R2)+N X0 ; RL not used in this instruction

In Example 4-6 there is no pipeline dependency since there is no address calculation performed in the
second instruction. Instead, the R1 register is used as the source operand in aM OV E instruction, for which
there is no pipeline dependency. Since there is no dependency, no extrainstruction cycles are inserted.

0 MoTOROLA Address Generation Unit 4-33

Address Generation Unit

Example 4-6. No Dependency with No Address Arithmetic Calculation

MOVE #$7,RL ; Wite to Rl register
MOVE R1, X $0004 ; No address arithnetic cal cul ation
per f or med

Example 4-7 represents a specia case. For the X:(Rn+xxxx) addressing mode, there is no pipeline
dependency even if the same Rn register iswritten on the previous cycle. Thisistrue for RO-R3 aswell as
the SPregister. Since there is no dependency, no extrainstruction cycles are inserted.

Example 4-7. No Dependency with (Rn+xxxx)

MOVE #3%7,RL ; Wite to Rl register
MOVE X (RL+$3456), X0 7 X (Rn+xxxx) addressing node
; using RL

In Example 4-8 thereis a pipeline dependency sincethe N register is used in the second instruction. Thisis
true for using N to update RO-R3 as well as the SP register. For the case where a dependency is caused by
awriteto the N register, the DSP core automatically stalls the pipeline by inserting one extra instruction
cycle. Thus, this sequenceis allowed. This dependency also exists for the (Rn+N) addressing mode.

Example 4-8. Dependency with a Write to the Offset Register

MOVE #%7,N ; Wite to the N register
MOVE X (R2)+N X0 ; N register used in address
; arithnetic cal cul ation

In Example 4-9 thereis a pipeline dependency sincethe N register is used in the second instruction. Thisis
true for using N to update RO-R3 as well as the SP register. For the case where a dependency is caused by
abit-field operation on the N register, this sequence is not allowed and is flagged by the assembler. This
sequence may be fixed by rearranging the instructions or inserting a NOP between the two instructions.
This dependency only appliesto the BFSET, BFCLR, or BFCHG instructions. Thereis no dependency for
the BFTSTH, BFTSTL, BRCLR, or BRSET instructions. This dependency also exists for the (Rn+N)
addressing mode.

Example 4-9. Dependency with a Bit-Field Operation on the Offset Register

BFSET #3%7, N ; Bit-field operation on the N
; register
MOVE X (R2)+N X0 ; Nregister used in address

arithnetic cal cul ation

In Example 4-10 there is a pipeline dependency since the address pointer register written in the first
instruction is used in an address cal culation in the second instruction. For the case where adependency is
caused by awrite to one of these registers, this sequence is not allowed and is flagged by the assembler.
This sequence may be fixed by rearranging the instructions or inserting a NOP between the two
instructions.

Example 4-10. Dependency with a Write to an Address Pointer Register

MOVE #%7, R ; Wite to the R2 register
MOVE X (R2)+ X0 ; R2 register used in address
; arithnetic cal cul ation

In Example 4-11 there is a pipeline dependency since the MO1 register written in the first instruction is
used in an address calculation in the second instruction. For the case where a dependency is caused by a
write to the MO1 register, this sequence is not allowed and is flagged by the assembler. This sequence may
be fixed by rearranging the instructions or inserting a NOP between the two instructions.

4-34 DSP56800 Family Manual @ MOTOROLA

Pipeline Dependencies

Example 4-11. Dependency with a Write to the Modifier Register

MOVE #$7, M1 ; Wite to the M)l register
MOVE X (RO)+ X0 ; M1 register used in address
arithmetic cal cul ation

In Example 4-12 there is a pipeline dependency since the SP register written in the first instruction is used
by the immediately following JSR instruction to store the subroutine return address. The stack pointer will
not be updated with the immediate value in this case. This sequence may be fixed by inserting aNOP
between the two instructions.

Example 4-12. Dependency with a Write to the Stack Pointer Register

MOVE #%$3800, SP ; Wite to the SP register
JSR LABEL ; SPinplicitly used to save the return address
; of the subroutine call

In Example 4-13 there is a pipeline dependency due to contention in the LF bit of the SR register. During
the first execution cycle of the BFSET instruction, the SR, whose LF bit is zero, isread. At the sametime,
the first operand of the DO instruction is fetched. During the second execution cycle of the BFSET
instruction, the SR’ s content is modified and written back to the SR. Thisisalso the DO instruction decode
cycle, when the LF bit is set. In this case, the LF bit isfirst set by the DO decode, then cleared by the
BFSET SR modification. A cleared LF bit signals the end of aDO loop, so the DO loop is executed only
once. This sequence can be fixed by inserting a NOP instruction between these two instructions.

Example 4-13. Dependency with a Bit-Field Operation and DO Loop

BFSET #$0200, SR ; Wite to the SRregister
DO #8, ENDLOCP ; Repeat 8 tines body of |oop
ENDLOCP

0 MoTOROLA Address Generation Unit 4-35

Address Generation Unit

4-36 DSP56800 Family Manual 0 MOTOROLA

Chapter 5
Program Controller

The program controller unit is one of the three execution unitsin the central processing module. The
program controller performs the following:

e Instruction fetching
» Instruction decoding
e Hardware DO and REP loop control
» Exception (interrupt) processing
This section covers the following:
e Thearchitecture and programming model of the program controller
e The operation of the software stack
e A discussion of program looping

Details of the instruction pipeline and the different processing states of the DSP chip, including reset and
interrupt processing, are covered in Chapter 7, “Interrupts and the Processing States.”

5.1 Architecture and Programming Model

A block diagram of the program controller is shown in Figure 5-1 on page 5-2, and its corresponding
programming model is shown in Figure 5-2 on page 5-3. The programmer views the program controller as
consisting of five registers and a hardware stack (HWS). In addition to the standard program flow-control
resources such as a program counter (PC) and status register (SR), the program controller features registers
dedicated to supporting the hardware DO loop instruction—Ioop address (LA), loop counter (LC), and the
hardware stack—and an operating mode register (OMR) defining the DSP operating modes.

The blocks and registers within the program controller are explained in the following subsections.

Q) mororoLa Program Controller >-1

Program Controller

PAB

—

16-Bit Incrementer

14

PDB

Y

Instruction Latch

Y

Instruction Decoder

v

Control Signals

IPR

CGDB
Program Counter
> HWSO ILF I
F=d
HWS1 INL I
<—L LA
e B LC
Looping Control
Interrupt Control 4—'
|l ———
> OMR
—> SR

5-2

L >

Interrupt Request

External Mode
Select Pin(s)

Control Bits
to DSP Core

Condition Codes

from Data ALU

Status and Control
Bits to DSP Core

Figure 5-1. Program Controller Block Diagram

DSP56800 Family Manual

AA0008

0 MOTOROLA

Architecture and Programming Model

Program Controller

15 0 15 8 7 0 15 0
PC MR CCR OMR
Program Status Register (SR) Operating Mode
Counter Register
15 0 12 0 15 0
LC LA

DO Loop Stack (HWS) Loop Counter Loop Address

AA0009

Figure 5-2. Program Controller Programming Model

5.1.1 Program Counter

The program counter (PC) isa 16-bit register that contains the address of the next location to be fetched
from program memory space. The PC may point to instructions, data operands, or addresses of operands.
Reference to this register is always implicit and isimplied by most instructions. This special-purpose
addressregister is stacked when hardware DO looping isinitiated (on the hardware stack), when ajump to
asubroutine is performed (on the software stack), and when interrupts occur (on the software stack).

5.1.2 Instruction Latch and Instruction Decoder

Theinstruction latch isa 16-hit internal register used to hold all instruction opcodes fetched from memory.
The instruction decoder, in turn, uses the contents of the instruction latch to generate all control signals
necessary for pipeline control—for normal instruction fetches, jumps, branches, and hardware looping.

5.1.3 Interrupt Control Unit

The interrupt control unit receives all interrupt requests, arbitrates among them, and then checks the
highest-priority interrupt request against the interrupt mask bits for the DSP core (11 and 10 in the SR). If
the requesting interrupt has higher priority than the current priority level of the DSP core, then exception
processing begins. When exception processing begins, the interrupt control unit provides the address of the
interrupt vector for interrupts generated on the DSP core, whereas the peripherals generate the vector
address for interrupts generated by an on-chip peripheral.

Interrupts have a simple priority structure with levels zero or one. Level 0 isthe lowest interrupt priority
level (IPL) and ismaskable. Level 1isthe highest level and is not maskable. Two interrupt mask bitsin the
SR reflect the current IPL of the DSP core and indicate the level needed for an interrupt source to interrupt
the processor.

The DSP56800 core provides support for internal (on-chip) peripheral interrupts and two external interrupt
sources, IRQA and IRQB. Theinterrupt control unit arbitrates between interrupt requests generated
externally and by the on-chip peripherals.

Asserting the reset pin causes the DSP core to enter the reset processing state. This has higher priority and
overrides any activity in the interrupt control unit and the exception processing state.

Q) mororoLa Program Controller 5-3

Program Controller

Details of interrupt arbitration and the exception processing state are discussed in Section 7.3, “ Exception
Processing State,” on page 7-5. The reset processing state is discussed in Section 7.1, “Reset Processing
State,” on page 7-1.

5.1.4 Looping Control Unit

The looping control unit provides hardware dedicated to support loops, which are frequent constructsin
DSP agorithms.

Therepeat instruction (REP) loads the 13-bit L C register with avalue representing the number of timesthe
next instruction is to be repeated. The instruction to be repeated is only fetched once per loop, so power
consumption is reduced, and throughput is increased when running from external program memory by
decreasing the number of external fetches required.

The DO instruction loads the 13-bit LC register with a value representing the number of times the loop
should be executed, loads the LA register with the address of the last instruction word in the loop (fetched
only once per loop), and sets the loop flag (LF) bit in the SR. The top-of-loop address is stacked on the
HWS so the loop can be repeated with no overhead. When the LF in the SR is asserted, the loop state
machine will compare the PC contentsto the contents of the LA to determineif the last instruction word in
the loop was fetched. If the last word was fetched, the LC contents are tested for one. If LC isnot equal to
one, then it is decremented, and the contents of the HWS (the address of the first instruction in the loop)
are read into the PC, effectively executing an automatic branch to the top of the loop. If the LC isequal to
one, then the LF in the SR is restored with the contents of the OMR’ s nested looping (NL) bit, the
top-of-loop address is removed from the HWS, and instruction fetches continue at the incremented PC
value (LA + 1).

Nested loops are supported by stacking the address of the first instruction in the loop (top of loop) in the
HWS and copying the LF bit into the OMR’s NL bit prior to the execution of the first instruction in the
loop. The user, however, must explicitly stack the LA and LC registers as described in Section 8.6.4,
“Nested Loops,” on page 8-22.

Looping is described in more detail in Section 5.3, “Program Looping,” and Section 8.6, “Loops,” on page
8-20.

5.1.5 Loop Counter

Theloop counter (LC) isaspecia 13-bit down counter used to specify the number of timesto repeat a
hardware program loop (DO and REP loops). When the end of a hardware program loop is reached, the
contents of the loop counter register are tested for one. If the loop counter is one, the program loop is
terminated. If the loop counter is not one, it is decremented by one and the program loop is repeated.

The loop counter may be read and written under program control. This gives software programs access to
the value of the current loop iteration. It also alows for saving and restoring the LC to and from the
software stack when nesting DO loops in software. Note that since the LC isonly a 13-bit counter, it is
zero-extended when read; when written, the top three bits of the source word are ignored. Thisis shownin
Figure 5-3 on page 5-5.

S-4 DSP56800 Family Manual @ mororoLa

Architecture and Programming Model

15 13 12 0
Register LC))
No Bits Present LC Register LC
Used as a Source
LSB of
v Word v
15 13 12 0
Zero Extension Contents CGDB Bus Contents
of LC of LC

Reading the Loop Count Register

15 13 12 0

CGDB Bus Contents

. /| LSB of

Not Used v Word v
15 13 12 0
Register L_C U§ed No Bits Present LC Register LC
as a Destination
Writing the Loop Count Register AA0010

Figure 5-3. Accessing the Loop Count Register (LC)

Thisregister isnot stacked by a DO instruction and not unstacked by end-of-loop processing, asis done on
other Motorola DSPs. Section 5.3, “Program Looping,” discusses what occurs when the loop count is zero.
See Section 8.6.4, “Nested Loops,” on page 8-22 for a discussion of nesting loops in software.

The upper three bits of this register will read as zero during DSP read operations and should be written as
zero to ensure future compatibility.

5.1.6 Loop Address

The loop address (LA) register indicates the location of the last instruction word in a hardware program
loop (DO loop only). When the instruction word at the address contained in this register is fetched, the LC
is checked. If it is not equal to one, the LC is decremented, and the next instruction is taken from the
address at the top of the system stack; otherwise the PC isincremented, the LF isrestored with the value in
the OMR’s NL bit, one location from the Hardware Stack is purged, and instruction execution continues
with the instruction immediately after the loop.

The LA register is aread/write register written into by the DO instruction. The LA register can be directly
accessed by the MOV E ingtructions as well. This also allows for saving and restoring the LA to and from
the stack during the nesting of loops. This register is not stacked by a DO instruction and is not unstacked
by end-of-loop processing. See Section 8.6.4, “Nested Loops,” on page 8-22 for a discussion of nesting
loopsin software.

Q) mororoLa Program Controller 55

Program Controller

5.1.7 Hardware Stack

The hardware stack (HWS) is a 2-deep, 16-bit wide, last-in-first-out (L1FO) stack. It isused for supporting
hardware DO looping; the software stack is used for storing return addresses and the SR for subroutines
and interrupts.

When aDO ingtruction is executed, the 16-bit address of thefirst instruction in the DO loop is pushed onto
the hardware stack, the value of the LF bit is copied into the NL bit, and the LF bit is set. Each ENDDO
instruction or natural end-of-loop will pop and discard the 16-bit address stored in the top location of the
hardware stack, copy the NL bit into the LF bit, and clear the NL bit. One hardware stack location is used
for each nested DO loop, and the REP instruction does not use the hardware stack. Thus, a two-deep
hardware stack allows for amaximum of two nested DO loops and a nested REP |oop within a program.
Note that thisincludes any looping that may occur due to a DO loop in an interrupt service routine.

When awrite to the hardware stack would cause the stack limit to be exceeded, the write does not take
place, and a non-maskable hardware-stack-overflow interrupt occurs. Thereis no interrupt on hardware
stack underflow.

5.1.8 Status Register

The status register (SR) isa 16-bit register consisting of an 8-bit mode register (MR) and an 8-bit condition
code register (CCR). The MR register is the high-order 8 bits of the SR; the CCR register is the low-order
8 hits.

The mode register is a special-purpose register that defines the operating state of the DSP core. It is
conveniently located within the SR so that isit stacked correctly on an interrupt. This allows an interrupt
service routine to set up the operating state of the DSP core differently.

The mode register bits are affected by processor reset, exception processing, DO, ENDDO, any type of
jump or branch, RTI, RTS, and SWI instructions, and instructions that directly reference the MR register.
During processor reset, the interrupt mask bits of the mode register will be set, and the LF bit and program
extension bits will be cleared.

The condition code register is a special-purpose control register that defines the current status of the
processor at any given time. Its bits are set as aresult of status detected after certain instructions are
executed. The CCR hits are affected by data ALU operations, bit-field manipulation instructions, the
TSTW instruction, parallel move operations, and instructions that directly reference the CCR register. In
addition, the computation of the C, V, N, and Z condition code bits are affected by the OMR’s CC hit,
which specifies whether condition codes are generated using the information in the extension register. The
CCR hits are not affected by datatransfers over CGDB unless data limiting occurs when reading the A or
B accumulators. During processor reset, all CCR bits are cleared. The standard definitions of the CCR bits
are given in the following subsections, and maore information about condition code bitsisfound in
Section 3.6, “ Condition Code Generation,” on page 3-33. Refer to Appendix A, “Instruction Set Details,”
for computation rules.

The SR register is stacked on the software stack when a JSR is executed or when an interrupt occurs. The
SR register isrestored from the stack upon completion of an interrupt service routine by the
return-from-interrupt instruction (RTI1). The program extension bits in the SR are restored from the stack
by the return-from-subroutine (RTS) instruction—all other SR bits are unaffected.

The SR format is shown in Figure 5-4 on page 5-7 and is also described in the following subsections.

5-6 DSP56800 Family Manual @ mororoLa

Architecture and Programming Model

<€——— Mode Register (MR) ——p»<@— Condition Code Register (CCR) —»

SR 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Status Register
Reset = $0300 LF
Read/Write

* * * * * 11 10 | Sz L E U N z \% C

LF—Loop Flag
11,10—Interrupt Mask
SZ—Size

L—Limit
E—Extension
U—Unnormalized
N—Negative
Z—Zero
V—Overflow
C—-Carry

* Indicates reserved bits that are read as zero and should be written with zero for future compatibility AA0011

Figure 5-4. Status Register Format

5.1.8.1 Carry (C)—Bit 0

The carry (C) bit (SR bit 0) isset if acarry is generated out of the MSB of the result for an addition. It also
issetif aborrow isgenerated in asubtraction. If the CC bit in the OMR register is zero, the carry or borrow
is generated out of bit 35 of the result. If the CC bit in the OMR register is one, the carry or borrow is
generated out of bit 31 of the result. The carry bit is also modified by bit manipulation and shift
instructions. Otherwise, thisbit is cleared.

5.1.8.2 Overflow (V)—Bit 1

If the CC bhit in the OMR register is zero and if an arithmetic overflow occursin the 36-bit result, the
overflow (V) bit (SR bit 1) is set. If the CC bit in the OMR register is one and an arithmetic overflow
occursin the 32-bit result, the overflow bit is set. Thisindicates that the result is not representable in the
accumulator register and the accumulator register has overflowed. Otherwise, thisbit is cleared.

5.1.8.3 Zero (Z)—Bit 2

The zero (Z) bit (SR bit 2) is set if the result equals zero. Otherwise, this bit is cleared. The number of bits
checked for the zero test depends on the OMR’s CC bit and which instruction is executed, as documented
in Section 3.6, “Condition Code Generation,” on page 3-33.

5.1.8.4 Negative (N)—Bit 3

If the CC hit in the OMR register is zero and if bit 35 of the result is set, the negative (N) bit (SR bit 3) is
set. If the CC bit in the OMR register isone and if bit 31 of the result is set, the negative bit is set.
Otherwise, this bit is cleared.

Q) mororoLa Program Controller >-7

Program Controller

5.1.8.5 Unnormalized (U)—Bit 4

The unnormalized (U) bit (SR bit 4) is set if the two most significant bits of the most significant product
portion of the result are the same, and is cleared otherwise. The U bit is computed as follows: U = (Bit 31
XOR Bit 30).

If the U hit is cleared, then a positive fractional number, p, satisfiesthe following relation: 0.5<p<1.0. A
negative fractional number, n, it satisfies the following equation: -1.0 < n <-0.5.

Thisbit is not affected by the OMR’s CC hit.

5.1.8.6 Extension (E)—Bit 5

The extension (E) bit (SR hit 5) is cleared if all the bits of the integer portion (bits 35-31) of the 36-hit
result are the same (the upper five hits of the value are 00000 or 11111). Otherwise, this bit is set.

If Eiscleared, thenthe MS and L S portions of an accumulator contain all the bits with information—the
extension register only contains sign extension. In this case, the accumulator extension register can be
ignored. If E is set, then the extension register in the accumulator isin use.

This bit is not affected by the OMR’s CC hit.

5.1.8.7 Limit (L)—Bit 6

Thelimit (L) bit (SR bit 6) is set if the overflow bit is set or if the data limiters perform alimiting
operation; it is not affected otherwise. The L bit is cleared only by a processor reset or an instruction that
specifically clearsit. Thisallowsthe L bit to be used as alatching overflow bit. Notethat L is affected by
data movement operations that read the A or B accumulator registers onto the CGDB.

Thisbit is not affected by the OMR’s CC hit.

5.1.8.8 Size (SZ)—Bit 7

The size (SZ) bit (SR bit 7) is set when moving a 36-bit accumulator to data memory if bits 30 and 29 of
the source accumul ator are not the same—that is, if they are not both ones or zeros. Thisbit islatched, so it
will remain set until the processor is reset or an instruction explicitly clearsit.

By monitoring the SZ bit, it is possible to determine whether a value is growing to the point where it will
be saturated or limited when moved to data memory. It is designed for use in the fast Fourier transform
(FFT) agorithm, indicating that the next passin the algorithm should scale its results before computation.
Thisalows FFT datato be scaled only on passes where it is hecessary instead of on each pass, which in
turn helps guarantee maximum accuracy in an FFT calculation.

5.1.8.9 Interrupt Mask (11 and 10)—Bits 8-9

Theinterrupt mask (11 and 10) bits (SR bits 9 and 8) reflect the current priority level of the DSP core and
indicate the interrupt priority level (IPL) needed for an interrupt source to interrupt the processor. The
current priority level of the processor may be changed under software control. Interrupt mask bit 10 must
always be written with a one to ensure future compatibility and compatibility with other family members.
The interrupt mask bits are set during processor reset. See Table 5-1 on page 5-9 for interrupt mask bit
definitions.

5-8 DSP56800 Family Manual @ mororoLa

Architecture and Programming Model

Table 5-1. Interrupt Mask Bit Definition

11 10 Exceptions Permitted Exceptions Masked
0 0 (Reserved) (Reserved)

0 1 IPLO, 1 None

1 0 (Reserved) (Reserved)

1 1 IPL 1 IPLO

5.1.8.10 Reserved SR Bits— Bits 10-14

The reserved SR bits 10-14 are reserved for future expansion and will read as zero during DSP read
operations. These bits should be written with zero for future compatibility.

5.1.8.11 Loop Flag (LF)—Bit 15

Theloop flag (LF) bit (SR bit 15) is set when aprogram loop isin progress and enables the detection of the
end of aprogram loop. The LF bit isthe only SR hit that is restored when terminating a program loop.
Stacking and restoring the LF when initiating and exiting a program loop, respectively, alows the nesting
of program loops; see Section 5.1.9.7, “Nested L ooping Bit (NL)—Bit 15.” REP looping does not affect
this bit. The LF is cleared during processor reset.

NOTE:

TheLFisnot cleared at the start of an interrupt serviceroutine. Thisdiffers
from the DSP56100 Family, where this bit is cleared upon entering an
interrupt service routine. This will not cause a problem as long as the
interrupt service routine code does not fetch the instruction whose address
is stored in the LA register. Thisis typically the case because usualy the
interrupt service routine is located in a separate portion of program
memory.

This bit should never be explicitly cleared by a MOVE or hit-field
instruction when the NL bit in the OMR register is set to aone.

The LF bit isalso affected by any accessesto the hardware stack register. Any moveinstruction that writes
thisregister copies the old contents of the LF bit into the NL bit and then setsthe LF bit. Any reads of this
register, such asfromaMOVE or TSTW instruction, copy the NL bit into the LF bit and then clear the NL
bit.

5.1.9 Operating Mode Register

The operating mode register (OMR) is a 16-bit register that defines the current chip operating mode of the
processor. The OMR bits are affected by processor reset, operations on the HWS, and instructions that
directly reference the OMR. A DO loop will also affect the OMR, specifically the NL bit.

During processor reset, the chip operating mode bits will be loaded from the external mode select pins. The
operating mode register format is shown in Figure 5-5 on page 5-10 and is described in the subsequent
discussion.

Q) mororoLa Program Controller 5-9

Program Controller

NOTE:

When a bit of the OMR is changed by an instruction, a delay of one
instruction cycle is necessary before the new mode comes into effect.

) OMR i
OMR 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Operating Mode
Register NL | « x x| = * « |CC| « |SD| R [sA|EX| « | MB|MA
Reset = $0000
Read/Write | | |

NL—Nested Looping

CC—Condition Codes

SD—Stop Delay

R—Rounding

SA—Saturation

EX—External X Memory

MA,MB—Operating Mode

* Indicates reserved bits that are read as zero and should be written with zero for future compatibility AA0013

Figure 5-5. Operating Mode Register (OMR) Format

5.1.9.1 Operating Mode Bits (MB and MA)—Bits 1-0

The chip operating mode (MB and MA) bits (OMR bits 1 and 0) indicate the operating mode and memory
maps of a DSP chip that has an external bus. Possible operating modes for a program RAM part are shown
in Table 5-2.

Table 5-2. Program ROM Operating Modes

Program Memory

MB MA Chip Operating Mode Reset Vector Configuration
0 0 Bootstrap 0 BOOTROM P:$0000 Internal P-RAM is write only
(Boot from External Bus)
0 1 Bootstrap 1 BOOTROM P:$0000 Internal P-RAM is write only
(Boot from Peripheral)
1 0 Normal Expanded External Pmem P:$E000 Internal Pmem enabled
1 1 Development External Pmem P:$0000 Internal Pmem disabled

The exact implementation of the mode bits, and the number of modes supported, depends on the specific
DSP56800 Family device being used. See the appropriate user’s manual for more detailed information on
the operating modes.

The bootstrap modes are used to initially load an on-chip program RAM upon exiting reset from external
memory or through a peripheral. Operating modes 0 and 1 typically would be different for a program ROM
part because no bootstrapping operation is required for aROM part. An example of possible operating
modes for a program ROM part are shown in Table 5-3 on page 5-11.

5-10 DSP56800 Family Manual @ MOTOROLA

Architecture and Programming Model

Table 5-3. Program RAM Operating Modes

MB MA Chip Operating Mode Reset Vector Prggr:?igu'\r/la?[?c])cr)]ry
0 0 Single Chip Internal PROM P:$0000 Internal Pmem enabled
0 1 (Reserved) (Reserved) (Reserved)
1 0 Normal Expanded External Pmem P:$E000 Internal Pmem enabled
1 1 Development External Pmem P:$0000 Internal Pmem disabled

The MB and MA bit values are typically established on reset from an external input. Once the chip leaves
reset, they can be changed under software control. For more information about how they are configured on
reset, consult the appropriate device' s user's manual.

5.1.9.2 External X Memory Bit (EX)—Bit 3

The external X memory (EX) bit (OMR bit 3), when set, forces all primary data memory accesses to be
external. The only exception to thisruleisthat if aMOVE or bit-field instruction is executed using the I/O
short addressing mode, then the EX bit isignored, and the accessis performed to the on-chip location. The
EX bit allows accessto internal X memory with all addressing modes when this bit is cleared. Thisbit is
cleared by processor reset.

The EX bit isignored by the second read of adual-read instruction, which usesthe XAB2 and XDB2 buses
and always accesses on-chip X data memory. For instructions with two parallel reads, the second read is
aways performed to internal on-chip memory. Refer to Section 6.1, “Introduction to Moves and Parallel
Moves,” on page 6-1 for a description of the dual-read instructions.

5.1.9.3 Saturation (SA)—Bit 4

The Saturation (SA) bit enables automatic saturation on 32-bit arithmetic results, providing a user-enabl ed
Saturation mode for DSP agorithms that do not recognize or cannot take advantage of the extension
accumulator. When the SA bit is set, automatic saturation occurs at the output of the MAC unit for basic
arithmetic operations such as multiplication, addition, and so on. The SA bit is cleared by processor reset.
Automatic limiting as outlined in Section 3.4.1, “Data Limiter,” on page 3-26 is not affected by the state of
the SA bit.

Saturation is performed by adedicated circuit inside the MAC unit. The saturation logic operates by
checking 3 hits of the 36-bit result out of the MAC unit—EXT[3], EXT[0], and MSP[15]. When the SA bit
is set, these 3 bits determineif saturation is performed on the MAC unit’ s output and whether to saturate to
the maximum positive or negative value, as shown in Table 5-4.

Table 5-4. MAC Unit Outputs With Saturation Mode Enabled (SA = 1)

EXT[3] EXT[O0] MSP[15] Result Stored in Accumulator
0 0 0 (Unchanged)
0 0 1 $0 7FFF FFFF
0 1 0 $0 7FFF FFFF
0 1 1 $0 7FFF FFFF

Q) mororoLa Program Controller 5-11

Program Controller

Table 5-4. MAC Unit Outputs With Saturation Mode Enabled (SA = 1) (Continued)

EXT[3] EXT[O] MSP[15] Result Stored in Accumulator
1 0 0 $F 8000 0000
1 0 1 $F 8000 0000
1 1 0 $F 8000 0000
1 1 1 (Unchanged)
NOTE:

Saturation mode is always disabled during the execution of the following
instructions: ASLL, ASRR, LSLL, LSRR, ASRAC, LSRAC, IMPY 16,
MPYSU, MACSU, AND, OR, EOR, NOT, LSL, LSR, ROL, and ROR.
For these instructions, no saturation is performed at the output of the MAC
unit.

5.1.9.4 Rounding Bit (R)—Bit 5

The rounding (R) bit (OMR bit 5) selects between convergent rounding and two’ s-complement rounding.
When set, two’ s-complement rounding (always round up) is used. The two rounding modes are discussed
in Section 3.5, “Rounding,” on page 3-30. This bit is cleared by processor reset.

5.1.9.5 Stop Delay Bit (SD)—Bit 6

The stop delay (SD) bit (OMR bit 6) is used to select the delay that the DSP needs to exit the stop mode.
When set, the processor exits quickly from stop mode. This bit is cleared by processor reset.

5.1.9.6 Condition Code Bit (CC)—Bit 8

The condition code (CC) bit (OMR bit 8) selects whether condition codes are generated using a 36-bit
result from the MAC array or a 32-bit result. When this bit is set, the C, N, V, and Z condition codes are
generated based on bit 31 of the data ALU result. When this hit is cleared, the C, N, V, and Z condition
codes are generated based on bit 35 of the data ALU result. The generation of the L, E, and U condition
codes are not affected by the CC hit. This bit is cleared by processor reset.

NOTE:

The unsigned condition tests used when branching or jumping (HI, HS,
LO, and LS) can only be used when the condition codes are generated with
this bit set to one. Otherwise, the chip will not generate the unsigned
conditions correctly.

The effects of the CC bit on the condition codes generated by data ALU arithmetic operations are
discussed in more detail in Section 3.6, “ Condition Code Generation,” on page 3-33.

5-12 DSP56800 Family Manual @ MOTOROLA

Software Stack Operation

5.1.9.7 Nested Looping Bit (NL)—Bit 15

The nested looping (NL) bit (OMR bit 15) is used to display the status of program DO looping and the
hardware stack. If this bit is set, then the program is currently in a nested DO loop (that is, two DO loops
are active). If thisbit is cleared, then there may be asingle or no DO loop active. This bit is necessary for
saving and restoring the contents of the hardware stack, which is described further in Section 8.13,
“Multitasking and the Hardware Stack,” on page 8-34. REP looping does not affect this bit.

It isimportant that the user never put the processor in the illegal combination specified in Table 5-5. This
can be avoided by ensuring that the LF bit is never cleared when the NL hit is set.

The NL bit is cleared on processor reset. Also see Section 5.1.8.11, “Loop Flag (LF)—Bit 15,” which
discussesthe LF bit in the SR.

Table 5-5. Looping Status

NL LF DO Loop Status

0 0 No DO loops active

0 1 Single DO loop active
1 0 (lllegal combination)

1 1 Two DO loops active

If both the NL and LF bits are set (that is, two DO loops are active) and a DO instruction is executed, a
hardware-stack-overflow interrupt occurs because there is no more space on the hardware stack to support
athird DO loop.

The NL bit is also affected by any accesses to the hardware stack register. Any MOVE instruction that
writes thisregister copies the old contents of the LF bit into the NL bit and then sets the LF bit. Any reads
of thisregister, such asfrom aMOVE or TSTW instruction, copy the NL bit into the LF bit and then clear
the NL bit.

5.1.9.8 Reserved OMR Bits—Bits 2, 7 and 9-14

The OMR bits 2, 7, and 9-14 are reserved. They will read as zero during DSP read operations and should
be written as zero to ensure future compatibility.

5.2 Software Stack Operation

The software stack is a last-in-first-out (LIFO) stack of arbitrary depth implemented using memory
locationsin the X data memory. It is accessed through the POP instruction and the PUSH instruction
macro (see Section 8.5, “Multiple Value Pushes,” on page 8-19) and will read or write the location in the X
data memory pointed to by the stack pointer (SP) register. The PUSH instruction macro (two instruction
cycles) pre-increments the SP register, and the POP instruction (one instruction cycle) will post-decrement
the SPregister.

The program counter and the SR are pushed on this stack for subroutine calls and interrupts. These
registers are pulled from the stack for returns from subroutines using the RTS instruction (which restores
only the program extension bitsin SR), and for returns from interrupt service routines that use the RTI
instruction (the entire SR is restored from the stack).

Q) mororoLa Program Controller 5-13

Program Controller

The software stack is also used for nesting hardware DO loops in software on the DSP56800 architecture.
On the DSP56800 architecture, the user must stack and unstack the LA and L C registers explicitly if DO
loops are nested. In this case, the software stack istypically used for this purpose, as demonstrated in
Section 8.6.4, “Nested Loops,” on page 8-22. The hardware stack is used, however, for stacking the
address of the first instruction in the loop. Because this stack isimplemented using locations in the X data
memory, there is no limit to the number of interrupts or jump-to subroutines or combinations of these that
can be accommodated by this stack.

NOTE:

Care must be taken to allocate enough space in the X data memory so that
stack operations do not overlap other areas of data used by the program.
Similarly, it may be desirable to locate the stack in on-chip memory to
avoid delays due to wait states or bus arbitration.

See Section 8.5, “Multiple Value Pushes,” on page 8-19 and Section 8.8, “Parameters and Local
Variables,” on page 8-28 for recommended techniques for using the software stack.

5.3 Program Looping

The DSP core supports looping on asingle instruction (REP looping) and looping on a block of
instructions (DO looping). Hardware DO looping allows fast looping on ablock of ingructions and is
interruptible. Once the loop is set up with the DO instruction, there is no additional execution timeto
perform the looping tasks. REP looping repeats a one-word instruction for the specified number of times
and can be efficiently nested within a hardware DO loop. It allows for excellent code density because
blocks of in-line code of asingle instruction can be replaced with a one-word REP instruction followed by
the instruction to be repeated. The correct programming of loops is discussed in detail in Section 8.6,
“Loops,” on page 8-20.

5.3.1 Repeat (REP) Looping

The REP instruction is a one-word instruction that performs single-instruction repeating on one-word
instructions. It repeats the execution of asingle instruction for the amount of times specified either with a
6-bit unsigned value or with the 13 least significant bits of a DSP core register. When arepeat loop is
begun, the instruction to be repeated is only fetched once from the program memory; it is not fetched each
time the repeated instruction is executed. Repeat |ooping does not use any locations on the hardware stack.
It also has no effect on the LF or NL bitsin the SR and OMR, respectively. Repeat |ooping cannot be used
onh an instruction that accesses the program memory; it is necessary to use DO looping in this case.

NOTE:

REP loops are not interruptible since they are fetched only once. A DO
loop with a single instruction can be used in place of a REP instruction if
it is necessary to be ableto interrupt while the loop isin progress.

For the case of REP looping with a register value, when the register
contains the value zero, then the instruction to be repeated is not executed
(asis desired in an application), and instruction flow continues with the
next sequential instruction. Thisis also true when an immediate value of
zero is specified.

5-14 DSP56800 Family Manual @ MOTOROLA

Program Looping

5.3.2 DO Looping

The DO instruction is atwo-word instruction that performs hardware looping on a block of instructions. It
executes this block of instructions for the amount of times specified either with a 6-bit unsigned value or
using the 13 least significant bits of a DSP core register. DO looping is interruptible and uses one location
on the hardware stack for each DO loop. For cases where an immediate value larger than 63 is desired for
the loop count, it is possible to use the technique presented in Section 8.6.1, “Large Loops (Count Greater
Than 63),” on page 8-20.

The program controller register’s 13-bit loop count and 16-bit loop address register are used to implement
no-overhead hardware program loops. When a program loop is initiated with the execution of aDO
instruction, the following events occur:

1. TheLC and LA registers are loaded with values specified in the DO instruction.
2. TheSR'sLF bitisset, anditsold valueis placed in the NL bit.
3. Theaddress of the first instruction in the program loop is pushed onto the hardware stack.

A program loop begins execution after the DO instruction and continues until the program address fetched
eguals the loop address register contents (the last address of program loop). The contents of the loop
counter are then tested for one. If the loop counter is not equal to one, the loop counter is decremented and
the top location in the DO Loop Stack isread (but not pulled) into the PC to return to the top of the loop. If
the loop counter is equal to one, the program loop is terminated by incrementing the PC, purging the stack
(pulling the top location and discarding the contents), and continuing with the instruction immediately
after the last instruction in the loop.

NOTE:
For the case of DO looping with aregister value, when the register contains

the value zero, then the loop code is repeated 2K i mes, wherek = 13 isthe
number of bits in the LC register. If there is a possibility that a register
value may be less than or equa to zero, then the technique outlined in
Section 8.6.2, “Variable Count Loops,” on page 8-21 should be used. A
DO loop with an immediate value of zero is not allowed.

5.3.3 Nested Hardware DO and REP Looping

It is possible to nest up to two hardware DO loops and to nest a hardware REP loop within the two DO
loops. It is recommended when nesting loops, however, that hardware DO loops hot be nested within code.
Instead, a software loop should be used for an outer loop instead of a second DO loop (see Section 8.6.4,
“Nested Loops,” on page 8-22).

The reason that nesting of hardware DO loops is supported isto provide for faster interrupt servicing.
When hardware DO loops are not nested, a second hardware stack location is |eft available for immediate
use by an interrupt service routine.

5.3.4 Terminating a DO Loop

A DO loop normally terminates when it has compl eted the last instruction of aloop for the last iteration of
the loop (L C equals one). Two techniques for early termination of the DO loops are presented in
Section 8.6.6, “Early Termination of aDO Loop,” on page 8-25.

Q) mororoLa Program Controller 5-15

Program Controller

5-16 DSP56800 Family Manual 0 MOTOROLA

Chapter 6
Instruction Set Introduction

Asindicated by the programming model in Figure 6-3 on page 6-5, the DSP architecture can be viewed as
several functional units operating in parallel:

+ DataALU

« AGU

e Program controller

e Bit-manipulation unit

The goal of theinstruction set isto keep each of these units busy each instruction cycle. This achieves
maximum speed, minimum power consumption, and minimum use of program memory.

The complete range of instruction capabilities combined with the flexible addressing modes provide avery
powerful assembly language for digital-signal-processing algorithms and general -purpose computing.
(The addressing modes are presented in detail in Section 4.2, “ Addressing Maodes,” on page 4-6.) The
instruction set has also been designed to allow for the efficient coding of DSP algorithms, control code,
and high-level language compilers. Execution time is enhanced by the hardware looping capabilities.

This section introduces the MOV E instructions available on the DSP core, the concept of parallel moves,
the DSP instruction formats, the DSP core programming model, instruction set groups, a summary of the
instruction set in tabular form, and an introduction to the instruction pipeline. The instruction summary is
particularly useful because it shows not only every instruction but also the operands and addressing modes
allowed for each instruction.

6.1 Introduction to Moves and Parallel Moves

To simplify programming, a powerful set of MOVE instructionsis found on the DSP56800 core. This not
only eases the task of programming the DSP, but also decreases the program code size and improves the
efficiency, which in turn decreases the power consumption and M1Ps required to perform a given task.
Some examples of MOVE instructions are listed in Example 6-1.

Example 6-1. MOVE Instruction Types

MOVE <any DSPcore regi ster>, <any DSPcore_regi ster>

MOVE <any DSPcore regi ster>, <X Data Menory>
MOVE <any DSPcore regi ster>, <Onh_chi p_peripheral register>
MOVE <X Data_Menory>, <any_DSPcore_regi ster>
MOVE <On_chi p_peripheral register>, <any DSPcore_register>

MOVE <i nmedi at e_val ue>, <any_DSPcor e_r egi st er >
MOVE <i nmedi at e_val ue>, <X Dat a_Menory>
MOVE <i nmedi at e_val ue>, <Onh_chi p_peri pheral _regi ster>

0 MOTOROLA Instruction Set Introduction 6-1

Instruction Set Introduction

For any MOVE ingtruction accessing X data memory or an on-chip memory mapped peripheral register,
seven different addressing modes are supported. Additional addressing modes are available on the subset
of DSP core registers that are most frequently accessed, including the registersin the data ALU, and all
pointers in the address generation unit.

For al moves on the DSP56800, the syntax orders the source and destination as follows; SRC, DST. The
source of the datato be moved and the destination are separated by a comma, with no spaces either before
or after the comma.

The assembler syntax also specifies which memory is being accessed (program or data memory) on any
memory move. Table 6-1 shows the syntax for specifying the correct memory space for any memory
access; an example of aprogram memory access is shown where the address is contained in the register R2
and the address register is post-incremented after the access. The two examples for X data memory
accesses show an address-register-indirect addressing mode in the first example and an absolute addressin
the second.

Table 6-1. Memory Space Symbols

Symbol Examples Description
P: P:(R2)+ Program memory access
X: X:(RO) X data memory access
X:$C000

The DSP56800 instruction set supports two additional types of moves—the single parallel move and the
dual parallel read. Both of these are considered “ parallel moves’ and are extremely powerful for DSP
agorithms and numeric computation.

The single paralel move allows an arithmetic operation and one memory move to be completed with one
instruction in one instruction cycle. For example, it is possible to add two numbers while reading or
writing a value from memory in the same instruction.

Figure 6-1 illustrates asingle parallel move, which uses one program word and executesin one instruction
cycle.

ADD X0, A YO0, X: (R1) +N ;. One DSP56800 Instruction
Opcode And Operands Single Parallel Move

(Uses XAB1 and CGDB)

Figure 6-1. Single Parallel Move

In the single parallel move, the following occurs:
1. Register X0 is added to the register A and the result is stored in the A accumulator.

2. Thecontents of the Y O register are moved into the X datamemory at the location contained
in the R1 register.

3. After completing the memory move, the R1 register is post-updated with the contents of the
N register.

The dua paralel read allows an arithmetic operation to occur and two valuesto be read from X data
memory with one instruction in one instruction cycle. For example, it is possible to execute in the same
instruction a multiplication of two numbers, with or without rounding of the result, while reading two
values from X data memory to two of the data ALU registers.

6-2 DSP56800 Family Manual @ mororoLa

Instruction Formats

Figure 6-2 illustrates a double parallel move, which uses one program word and executesin oneinstruction
cycle.

MACR X0, YO, A X: (RO) +N, YO X (R3)-, X0
| |
|
Opcode and Operands Primary Read Secondary Read
(Uses XAB1 and CGDB) (Uses XAB2 and XDB2)

Figure 6-2. Dual Parallel Move

In the dual parallel move, the following occurs.

1. The contents of the X0 and YO registers are multiplied, this result is added to the A
accumulator, and the final result is stored in the A accumulator.

2. Thecontents of the X data memory location pointed to with the RO register are moved into
the YO register.

3. Thecontentsof the X datamemory location pointed to with the R3 register are moved into
the X0 register.

4. After completing the memory moves, the RO register is post-updated with the contents of
the N register, and the R3 register is decremented by one.

Both types of parallel moves use a subset of available DSP56800 addressing modes, and the registers
available for the move portion of the instruction are also a subset of the total set of DSP core registers.
These subsets include the registers and addressing modes most frequently found in high-performance
numeric computation and DSP algorithms. Also, the parallel moves allow amove to occur only with an
arithmetic operation in the data ALU. A parallel moveis not permitted, for example, with aJMP, LEA, or
BFSET instruction.

6.2 Instruction Formats

Instructions are one, two, or three words in length. The instruction is specified by the first word of the
instruction. The additional words may contain information about the instruction itself or may contain an
operand for the instruction. Samples of assembly language source code for several instructions are shown
in Table 6-2.

From theinstruction formatslisted in Table 6-2, it can be seen that the DSP offers parallel processing using
thedataALU, AGU, program controller, and bit-manipulation unit. In the parallel move example, the DSP
can perform a designated ALU operation (data ALU) and up to two data transfers specified with address
register updates (AGU), and will also decode the next instruction and fetch an instruction from program
memory (program controller), al in one instruction cycle. When an instruction is more than one word in
length, an additional instruction-execution cycleisrequired. Most instructions involving the data ALU are
register based (that is, operands arein data AL U registers) and allow the programmer to keep each parallel
processing unit busy. Instructions that are memory oriented (for example, a bit-manipulation instruction),
al logical instructions, or instructions that cause a control flow change (such as ajump) prevent the use of
al parallel processing resources during their execution.

0 MOTOROLA Instruction Set Introduction 6-3

Instruction Set Introduction

Table 6-2. Instruction Formats
Opcode? Operands? cebs 3 xbB2 4 P8 5 Comments
Transfer Transfer Transfer
ADD #$1234,Y1 No parallel move
ANDC #$7C, X:$E27 No parallel move
ENDDO No parallel move
TSTW X:(SP-9) No parallel move
MAC Al1,Y0,B No parallel move
LEA (R2)- No parallel move
MOVE RO,YO No parallel move
CMP X0,B Y0,X:(R2)+ Single parallel move
NEG A X:(R1)+N,X0 Single parallel move
SUB Y1,A X:(RO)+,YO X:(R3)+,X0 Dual parallel read
MPY X1,Y0,B X:(R1)+N,Y1 X:(R3)+,X0 Dual parallel read
MACR X0,Y0,A X:(R1)+N,Y0 X:(R3)-,X0 Dual parallel read
MOVE X0,P:(R1)+ | Program memory move
JMP $3C10 16-bit jump address
1. Indicates data ALU, AGU, program controller, or bit-manipulation operation to be performed.
2. Specifies the operands used by the opcode.
3. Specifies optional data transfers over the CGDB bus.
4. Specifies optional data transfers over the XDB2 bus.
5. Specifies optional data transfers over the PDB bus.

DSP56800 Family Manual

@ MOTOROLA

Programming Model

6.3 Programming Model

The registers in the DSP56800 core programming model are shown in Figure 6-3.

Data Arithmetic Logic Unit
Data ALU Input Registers
31 16 15 0
X0 Y Y1 YO

15 0 15 0 15 0

Accumulator Registers

35 3231 16 15 0
A A2 Al AO

3 0 15 015 0

35 3231 16 15 0
B B2 B1 BO

3 0 15 0 15 0

Address Generation Unit
15 0 15 0 15 0

RO N MO1

R1

R2

R3

SP

Pointer Offset Modifier
Registers Register Register

Program Controller Unit

15 0 15 8 7 0 15 0
PC MR CCR OMR
Program Status Operating Mode
Counter Register (SR) Register
15 0 12 0 15 0
LC LA
Hardware Stack (HWS) Loop Counter Loop Address

AA0007

Figure 6-3. DSP56800 Core Programming Model

0 MOTOROLA Instruction Set Introduction 6-5

Instruction Set Introduction

6.4 Instruction Groups

Theinstruction set is divided into the following groups:

e Arithmetic

e Logical

e Bit manipulation
e Looping

* Move

e Program control

Each instruction group is described in the following subsections. In addition, Section 6.5.2, “LSLL Alias,”
includes a useful summary for every instruction and the addressing modes and operand registers allowed
for each instruction. Detailed information on each instruction is given in Appendix A, “Instruction Set
Details.”

6.4.1 Arithmetic Instructions

The arithmetic instructions perform al of the arithmetic operations within the data ALU. They may affect
asubset or all of the condition code register bits. Arithmetic instructions are typically register based
(register-direct addressing modes are used for operands) so that the data ALU operation indicated by the
instruction does not use the CGDB or the XDB2, athough some instructions can also operate on
immediate data or operands in memory.

Optional data transfers (parallel moves) may be specified with many arithmetic instructions. This allows
for parallel data movement over the CGDB and over the XDB2 during adata ALU operation. This allows
new datato be pre-fetched for use in following instructions and results calculated by previous instructions
to be stored. Arithmetic instructions typically execute in one instruction cycle, although some of the
operations may take additional cycles with different operand addressing modes. The arithmetic
instructions are the only class of instructions that allow parallel moves.

In addition to the arithmetic shifts presented here, other types of shifts are also available in the logical
instruction group. See Section 6.4.2, “Logical Instructions.” Table 6-3 lists the arithmetic instructions.

Table 6-3. Arithmetic Instructions List

Instruction Description
ABS Absolute value
ADC Add long with carry®
ADD Add
ASL Arithmetic shift left (36-bit)
ASLL Arithmetic multi-bit shift left*
ASR Arithmetic shift right (36-bit)
ASRAC Arithmetic multi-bit shift right with accumulate®
ASRR Arithmetic multi-bit shift right®

6-6 DSP56800 Family Manual @ mororoLa

Instruction Groups

Table 6-3. Arithmetic Instructions List (Continued)

Instruction Description
CLR Clear
CMP Compare
DEC(W) Decrement upper word of accumulator
DIV Divide iteration®
IMPY(16) Integer multiply®
INC(W) Increment upper word of accumulator
MAC Signed multiply-accumulate
MACR Signed multiply-accumulate and round
MACSU Signed/unsigned multiply-accumulate®
MPY Signed multiply
MPYR Signed multiply and round
MPYSU Signed/unsigned multiply®
NEG Negate
NORM Normalizel
RND Round
SBC Subtract long with carry®
SuUB Subtract
Tee Transfer conditionally!
TFR Transfer data ALU register to an accumulator
TST Test a 36-bit accumulator
TSTW Test a 16-bit register or memory location®

1. These instructions do not allow parallel data moves.

6.4.2 Logical Instructions

Thelogical instructions perform all of the logical operations within the data ALU. They also affect the
condition code register bits. Logical instructions are register based. So are the arithmetic instructionsin
Table 6-3, and, again, some can also operate on operands in memory. Optional data transfers are not
permitted with logical instructions. These instructions execute in one instruction cycle.

Table 6-4 lists the logical instructions.

0 MOTOROLA Instruction Set Introduction 6-7

Instruction Set Introduction

Table 6-4. Logical Instructions List

Instruction Description

AND Logical AND
EOR Logical exclusive OR
LSL Logical shift left

LSLL Multi-bit logical shift left

LSRAC Logical right shift with accumulate
LSR Logical shift right

LSRR Multi-bit logical shift right
NOT Logical complement
OR Logical inclusive OR
ROL Rotate left

ROR Rotate right

6.4.3 Bit-Manipulation Instructions

The bit-manipulation instructions perform one of three tasks:
« Testing afield of bits within aword

e Testing and modifying afield of bitsin aword
e Conditionally branching based on atest of bits within the upper or lower byte of aword

Bit-field instructions can operate on any X memory location, peripheral, or DSP core register. BFTSTH
and BFTSTL can test any field of the bitswithin a 16-bit word. BFSET, BFCLR, and BFCHG can test any
field of the bits within a 16-bit word and then set, clear, or invert bitsin this word, respectively. BRSET
and BRCLR can only test an 8-bit field in the upper or lower byte of the word, and then conditionally
branch based on the result of the test. The carry bit of the condition code register contains the result of the
bit test for each instruction. These instructions are operations of the read-modify-write type. The BFTSTH,
BFTSTL, BFSET, BFCLR, and BFCHG instructions execute in two or three instruction cycles. The
BRCLR and BRSET instructions execute in four to six instruction cycles.

Table 6-5 lists the bit-manipulation instructions.

Table 6-5. Bit-Field Instruction List

Instruction Description
ANDC Logical AND with immediate data
BFCLR Bit-field test and clear
BFSET Bit-field test and set
BFCHG Bit-field test and change

BFTSTL Bit-field test low

6-8 DSP56800 Family Manual @ mororoLa

Instruction Groups

Table 6-5. Bit-Field Instruction List (Continued)

Instruction Description

BFTSTH Bit-field test high

BRSET Branch if selected bits are set

BRCLR Branch if selected bits are clear
EORC Logical exclusive OR with immediate data
NOTC Logical complement on memory location and registers
ORC Logical inclusive OR with immediate data

NOTE:

Due to instruction pipelining, if an AGU register (Rn, N, SP, or M01) is
directly changed with a bit-field instruction, the new contents may not be
availablefor use until the second following instruction (see the restrictions
discussed in Section 4.4, “Pipeline Dependencies,” on page 4-33).

See Section 8.1.1, “Jumps and Branches,” on page 8-2 for other instructions that can be synthesi zed.

6.4.4 Looping Instructions

The looping instructions establish looping parameters and initiate zero-overhead program looping. They
alow looping on asingle instruction (REP) or ablock of instructions (DO). For DO looping, the address of
the first instruction in the program loop is saved on the hardware stack to allow no-overhead looping. The
last address of the DO loop is specified as a 16-bit absolute address. No locationsin the hardware stack are
required for the REP instruction. The ENDDO instruction is used only when breaking out of the loop;
otherwise, it is better to use MOVE #1, LC. Thisis discussed in more detail in Section 8.6.6, “Early
Termination of aDO Loop,” on page 8-25.

Table 6-6 lists the loop instructions.

Table 6-6. Loop Instruction List

Instruction Description
DO Start hardware loop
ENDDO Disable current loop and unstack parameters
REP Repeat next instruction

6.4.5 Move Instructions

The move instructions move data over the various data buses: CGDB, PGDB, XDB2, and PDB. Move
instructions do not affect the condition code register, except for the limit bit if limiting is performed when
reading adata ALU accumulator register. These instructions do not allow optional data transfers. In
addition to the following move instructions, there are parallel moves that can be used simultaneously with
many of the arithmetic instructions. The parallel moves are shown in Table 6-34 on page 6-29 and

0 MOTOROLA Instruction Set Introduction 6-9

Instruction Set Introduction
Table 6-35 on page 6-30 and are discussed in detail in Section 6.1, “Introduction to Moves and Parallel

Moves,” and Appendix A, “Instruction Set Details.” The LEA instruction isalso included in this
instruction group.

6-10 DSP56800 Family Manual @ MOTOROLA

Instruction Groups

NOTE:

There is a PUSH instruction macro, described in Section 8.5, “Multiple
Value Pushes,” on page 8-19, that can be used with the POP instruction
presented here.

Table 6-7 lists the move instructions.

Table 6-7. Move Instruction List

Instruction Description
LEA Load effective address
POP Pop a register from the software stack
MOVE Move data

MOVE(C) Move control register

MOVE() Move immediate

MOVE(M) Move program memory

MOVE(P) Move peripheral data

MOVE(S) Move absolute short

NOTE:

Due to instruction pipelining, if an AGU register (Rn, SP, or M01) is
directly changed with a move ingtruction, the new contents may not be
availablefor use until the second following instruction. See therestrictions
discussed in Section 4.4, “Pipeline Dependencies,” on page 4-33.

6.4.6 Program Control Instructions

The program control instructions include branches, jumps, conditiona branches, conditiona jumps, and
other instructions that affect the program counter and software stack. Program control instructions may
affect the status register bits as specified in the instruction. Also included in thisinstruction group are the
STOP and WAIT instructions that can place the DSP chip in alow-power state. See Section 8.1.1, “ Jumps
and Branches,” on page 8-2 and Section 8.11, “Jumps and JSRs Using a Register Value,” on page 8-33 for
additional jump and branch instructions that can be synthesized from existing DSP56800 instructions.

Table 6-8 lists the program control instructions.

Table 6-8. Program Control Instruction List

Instruction Description
Bcc Branch conditionally
BRA Branch
DEBUG Enter debug mode
Jcc Jump conditionally

0 MOTOROLA Instruction Set Introduction 6-11

Instruction Set Introduction

Table 6-8. Program Control Instruction List (Continued)

Instruction Description
JMP Jump
JSR Jump to subroutine
NOP No operation
RTI Return from interrupt
RTS Return from subroutine
STOP Stop processing (lowest power standby)
SWI Software interrupt
WAIT Wait for interrupt (low power standby)

6.5 Instruction Aliases

The DSP56800 assembler provides a number of additional useful instruction mnemonics that are actually
aliases to other instructions. Each of these instructions is mapped to one of the core instructions and
disassembl es as such.

6.5.1 ANDC, EORC, ORC, and NOTC Aliases

The DSP56800 instruction set does not support logical operations using 16-bit immediate data. It is
possible to achieve the same result, however, using the bit-manipul ation instructions. To simplify
implementing these operations, the DSP56800 assembler provides the following operations:

« ANDC—logicaly AND a 16-bit immediate value with a destination

« EORC—logicaly exclusive OR a 16-bit immediate value with a destination
ORC—logicdly OR a16-bit immediate value with a destination

« NOTC—logical one's-complement of a 16-bit destination

These operations are not new instructions, but aliases to existing bit-manipulation instructions. They are
mapped as shown in Table 6-9.

Table 6-9. Aliases for Logical Instructions with Immediate Data

netruction | Operands || [EERRS | oeranas
ANDC #xxxx,DST BFCLR #xxxx,DST
ORC #xxxx,DST BFSET #xxxx,DST
EORC #xxxX,DST BFCHG #xxxX,DST
NOTC DST BFCHG #$FFFF,DST

6-12 DSP56800 Family Manual @ MOTOROLA

Instruction Aliases

Note that for the ANDC instruction, a one’' s-complement of the mask value is used when remapping to the
BFCLR instruction. For the NOTC instruction, all bitsin the 16-bit mask are set to one.

In Example 6-2, an immediate vaueislogically ORed with alocation in memory.

Example 6-2. Logical OR with a Data Memory Location
ORC #$00FF, X $400; Set all bits of lower byte in X $400

The assembler translates this instruction into BFSET #$00FF, X: $400, which performsthe same
operation. If the assembled code is later disassembled, it will appear as aBFSET instruction.

6.5.2 LSLL Alias

Because the LSLL instruction operates identically to an arithmetic left shift, thisinstruction is actually
assembled as an ASLL instruction. When the assembler encounters the LSLL mnemonic, an ASLL
instruction is assembled. See Table 6-10.

Table 6-10. LSLL Instruction Alias

Operation Operands Comments
LSLL Y1,X0,DD Multi-bit logical left shift.
Y0,X0,DD

Y1,Y0,DD First register is the value to be shifted, second register is
Y0,Y0,DD the shift amount (uses 4 LSBs).

Al1,Y0,DD
B1,Y1,DD Use ASLL when left shifting is desired on one of the two
accumulators.

6.5.3 ASL Alias

Because the ASL instruction operates similarly to alogical left shift when executed onthe Y1, YO, and X0
registers, thisinstruction is actually assembled as an LSL instruction. Note that while the result in the
destination register will be the same as if an arithmetic shift had been performed, condition codes are
calculated based on alogic shift and might differ from the expected result. See Table 6-11.

The ASL instructionis not aliased to LSL when the register specified is one of the accumulator registers.
Table 6-11. ASL Instruction Remapping

Operation Operands Comments

ASL X0, YO, Y1 Arithmetic left shift

6.5.4 CLR Alias

Because CLR operatesidentically to aMOVE instruction with an immediate value of zero, aMOVE
instruction is used to implement CL R when the specified register is a 16-bit register. When the assembler
encounters the CLR mnemonic in aprogram, it assemblesa MOVE #0, <r egi st er > instruction in its
place. See Table 6-12.

NOTE:

This operation does not apply to the CLR instruction when it is performed
onthe A or B accumulators.

0 MOTOROLA Instruction Set Introduction 6-13

Instruction Set Introduction

Table 6-12. Clear Instruction Alias

Operation Destination Comments
CLR X0, Y1, YO, Identical to MOVE #0, <r egi st er >; does not set condition
Al, B1, codes
RO-R3, N

6.5.5 POP Alias

The POP instruction operates identically to a move from the stack with post-decrement. When the
assembler encounters the POP instruction in a program, it assemblesaMOVE (SP) -, <r egi st er >
instruction in its place. If POP does not specify a destination register, it is assembled asLEA (SP) -.

Table 6-13. Move Word Instruction Alias—Data Memory

Operation Source Destination Comments

POP (Any register) Pop a single stack location

(None specified) | Simply decrements the SP

6.6 DSP56800 Instruction Set Summary

This section presents the entire DSP56800 instruction set in tabular form. The tables provide a quick
reference to the entire instruction set because they show not only the instructions themselves, but also the
registers, addressing modes, cycle counts, and program words required for each instruction. From these
tables, it isvery easy to determineif a particular operation can be performed with a desired register or
addressing mode.

The summary, found in Section 6.6.3, “Instruction Summary Tables,” is based on logical groupings of
instructions, listing the instructions al phabetically within each grouping. This summary also contains the
number of program words required by the instruction as well as the number of cycles required for
execution.

This section contains the following information:
e Usage of theinstruction summary tables
e Addressing mode notation
» Register field notation
e Theinstruction summary tables

6.6.1 Register Field Notation

There are many different register fields used within the instruction summary tables. These will be grouped
into sets that are more easily understood.

Table 6-14 shows the register set available for the most important move instructions. Sometimes the
register field is broken into two different fields—one where the register is used as a source (src), and the
other where it is used as a destination (dst). Thisisimportant because a different notation is used when an
accumulator is being stored without saturation. Also see theregister fields in Table 6-15, which are also
used in move instructions as sources and destinations within the AGU.

6-14 DSP56800 Family Manual @ MOTOROLA

DSP56800 Instruction Set Summary

In some cases, the notation used when specifying an accumulator determines whether or not saturation is
enabled when the accumulator is being used as a source in amove or parallel move instruction. Refer to
Section 3.4.1, “Data Limiter,” on page 3-26 and Section 3.2, “Accessing the Accumulator Registers,” on

page 3-7 for information.

Table 6-14. Register Fields for General-Purpose Writes and Reads

Register Field

Registers in This Field

Comments

HHH

A, B, Al, Bl
X0, YO, Y1

Seven data ALU registers—two accumulators, two 16-bit MSP
portions of the accumulators, and three 16-bit data registers

HHHH

A, B, Al, Bl
X0, YO, Y1
RO-R3, N

Seven data ALU and five AGU registers

DDDDD

A, A2, Al, AO
B, B2, B1, BO

Y1, YO, X0

RO, R1, R2, R3
N, SP
MO1

OMR, SR
LA, LC
HWS

All CPU registers

Table 6-15 shows the register set available for use as pointers in address-register-indirect addressing
modes. This table also shows the notation used for AGU registersin AGU arithmetic operations.

Table 6-15. Address Generation Unit (AGU) Registers

Register Field Reglste_rs in This Comments
Field
Rn RO-R3 Five AGU registers available as pointers for addressing and as
SP sources and destinations for move instructions
Rj RO, R1, R2, R3 Four pointer registers available as pointers for addressing
N N One index register available only for indexed addressing modes
MO1 MO1 One modifier register

Table 6-16 shows the register set available for use in data ALU arithmetic operations. The most common

field used in thistable is FDD.

0 MOTOROLA

Instruction Set Introduction

Instruction Set Introduction

Table 6-16. Data ALU Registers

Register Field | Registers in This Field Comments
FDD A, B Five data ALU registers—two 36-bit accumulators and three 16-bit
X0, YO, Y1 data registers accessible during data ALU operations

Contains the contents of the F and DD register fields

F1DD Al, B1 Five data ALU registers—two 16-bit MSP portions of the
X0, YO, Y1 accumulators and three 16-bit data registers accessible during data
ALU operations

DD X0, YO, Y1 Three 16-bit data registers

F A B Two 36-bit accumulators accessible during parallel move instruc-
tions and some data ALU operations

F1 Al, Bl The 16-bit MSP portion of two accumulators accessible as source
operands in parallel move instructions

6.6.2 Using the Instruction Summary Tables

This section contains helpful information on using the summary tables. It contains some notation used
within the tables.

The register field notation isfound in Section 6.6.1, “ Register Field Notation.”

Some additional notation to be considered is found in the instruction summary tables when allowed
registers for multiplications are specified (Table 6-22 on page 6-20). In these tables, the following entry is
found:

(+)YO,X0,FDD

The notation (+) in this entry indicates that an optional + or - sign can be specified before the input register
combination. If a- is specified, the multiplication result isinverted. This allows each of the following
examplesto be valid DSP56800 instructions:

MC X0, Y0O,A A+ XO*Y0 -> A

MC +X0,Y0,A A+ XO0*Y0 -> A
MC -X0,Y0,A A- (X0*YD) -> A

As an example, Table 6-35 on page 6-30 shows all registers and addressing modes that are allowed when
performing a dua read instruction, one of the DSP56800' s parallel move instructions. The instructions
shown in Example 6-3 are alowed.

Example 6-3. Valid Instructions

MOVE X (RO)+ YO X (R3)+ X0
MACR X0, Y1, A X (R)+N YL X (R3)-,X0
ADD YO, B X (RU)+N YO X (R3)+ X0

Theinstruction in Example 6-4 is not allowed:

Example 6-4. Invalid Instruction
ADD X0, VY1, A X (R)-,X0 X (R3)+N YO

6-16 DSP56800 Family Manual @ MOTOROLA

DSP56800 Instruction Set Summary

Consulting the information in Table 6-35 on page 6-30 shows that thisinstruction is not valid for each of
the following reasons:

e Theonly operands accepted for ADD or SUB are XO,F, Y1,F, YO,F, A,B, or B,A, where Fiseither
the A or B accumulator register. Thus, X0, Y1, Aisaninvalid entry.

e The pointer R2 isnot allowed for the first memory read.
e The post-decrement addressing mode is not available for the first memory read.

e The X0 register may not be a destination for the first memory read becauseit is not listed in the
Destination 1 column.

e The post-update by N addressing mode is not allowed for the second memory read. The second
memory read is always identified as the memory move that uses R3 in instructions with two
memory moves. For the second memory read, only the post-increment and post-decrement
addressing modes are allowed.

e The YO register may not be a destination for the second memory read becauseit isnot listed in the
Destination 2 column.

6.6.3 Instruction Summary Tables

A summary of the entire DSP56800 instruction set is presented in this section in tabular form. In these
tables, Table 6-17 on page 6-18 through Table 6-35 on page 6-30, the instructions are broken into several
different categories and then listed alphabetically.

The tables specify the operation, operands, and any relevant comments. There are separate fields for
sources and destinations of move instructions. There are also two additional fields:

« C—Time required to execute the instruction
W—Number of program words occupied by the instruction

Instruction execution times are measured in oscillator clock cycles. This should not be confused with
instruction cycles, which comprise the timing granularity of the DSP56800 execution units. Each
instruction cycleis equivalent to two oscillator clock cycles. The numbers given for instruction times
assume that internal memory—or external memory that requires no wait states—is used.

All parallel move instructions are located in the last two tables in this section:
e Table 6-34 on page 6-29
e Table 6-35 on page 6-30

0 MOTOROLA Instruction Set Introduction 6-17

Instruction Set Introduction

Table 6-17. Move Word Instructions

Operation Source Destination Comments
MOVE X:(Rn) DDDDD Move signed 16-bit integer word from
or X:(Rn)+ memory
MOVEC X:(Rn)-
X:(Rn+N) DDDDD Address = Rn + N
X:(Rn)+N DDDDD Post-update of Rn register
X:(R2+xx) HHHH xx: offset ranging from 0 to 63
X:(Rn+xxxx) DDDDD Signed 16-bit offset
X:(SP-xx) HHHH Unsigned 6-bit offset
XEXXXX DDDDD Unsigned 16-bit address
MOVE X:pp HHHH X:pp represents a 6-bit absolute 1/0
or or address. Refer to I/O Short Address
MOVEP X:<<pp (Direct Addressing): <pp> on page 4-23
MOVE X:aa HHHH X:aa represents a 6-bit absolute address.
or or Refer to Absolute Short Address (Direct
MOVES X:<aa Addressing): <aa> on page 4-22
MOVE DDDDD X:(Rn) Move signed 16-bit integer word to memory
or X:(Rn)+
MOVEC X:(Rn)-
DDDDD X:(Rn+N) Address =Rn + N
DDDDD X:(Rn)+N Post-update of Rn register
HHHH X:(R2+xx) xx: offset ranging from O to 63
DDDDD X:(RN+XxxX) Signed 16-bit offset
HHHH X:(SP-xx) Unsigned 6-bit offset
DDDDD XiXXXX Unsigned 16-bit address
MOVE HHHH X:pp X:pp represents a 6-bit absolute I/O
or or address. Refer to /O Short Address
MOVEP X:<<pp (Direct Addressing): <pp> on page 4-23
MOVE HHHH X:aa X:aa represents a 6-bit absolute address.
or or Refer to Absolute Short Address (Direct
MOVES X:<aa Addressing): <aa> on page 4-22
6-18 DSP56800 Family Manual Q mororoLa

DSP56800 Instruction Set Summary

Table 6-18. Immediate Move Instructions
Operation Source Destination W Comments
MOVE #XX HHHH 1 | Signed 7-bit integer data (data is put in the lowest 7
or bits of the word portion of any accumulator, upper 8
MOVEI bits and extension reg are sign extended, LSP por-
tion is set to “0”)
HXXXX DDDDD 2 | Signed 16-bitimmediate data. When LC is the desti-
nation, use 13-bit values only.
X:(R2+xx) 2
X:(SP-xx) 2
XIXXXX 3
MOVE HXXXX X:pp 2 | Move 16-bit immediate data to the last 64 locations
or or of X data memory-peripheral registers.
MOVEP X:<<pp X:pp represents a 6-bit absolute 1/0 address.
MOVE HXXXX X:aa 2 | Move 16-bit immediate data to the first 64 locations
or or of X data memory.
MOVES X:<aa X:aa represents a 6-bit absolute address.
Table 6-19. Register-to-Register Move Instructions
Operation Source Destination C W Comments
MOVE DDDDD DDDDD 2 1 | Move signed word to register
or
MOVEC
Table 6-20. Move Word Instructions—Program Memory
Operation Source Destination cC | W Comments
MOVE P:(Rj)+ HHHH 8 | 1 | Read signed word from program memory
or P:(Rj)+N
MOVEM
HHHH P:(Rj)+ 8 | 1 | Write word to program memory
P:(Rj)*+N

0 MOTOROLA

Instruction Set Introduction

6-19

Instruction Set Introduction

Table 6-21. Conditional Register Transfer Instructions

Data ALU Transfer AGU Transfer
Operation C | W Comments
Source | Destination || Source | Destination
Tcc DD F (No transfer) 2 1 | Conditionally transfer one
register
A B (No transfer) 2 1
B A (No transfer) 2 1
DD F RO R1 2 1 | Conditionally transfer one
data ALU register and one
AGU register
A B RO R1 2 1
B A RO R1 2 1
Note: The Tcc instruction does not allow the following condition codes: HI, LS, NN, and NR.

Table 6-22. Data ALU Multiply Instructions

Operation Operands C w Comments
IMPY(16) Y1,X0,FDD 2 1 | Integer 16x16 multiply with 16-bit result
Y0,X0,FDD
Y1,YO,FDD When the destination is an accumulator F, the
Y0,Y0,FDD FO portion is unchanged by the instruction
A1,Y0,FDD
B1,Y1,FDD Note: Assembler also accepts first two oper-
ands when they are specified in opposite order
MAC (£)Y1,X0,FDD 2 1 | Fractional multiply accumulate; multiplication
(£)YO,X0,FDD result optionally negated before accumulation
(#)Y1,YO,FDD
(#)YO,YO,FDD
(£)A1,YO,FDD Note: Assembler also accepts first two oper-
(+)B1,Y1,FDD ands when they are specified in opposite orde
MACR (£)Y1,X0,FDD 2 1 | Fractional MAC with round, multiplication result
(£)YO0,X0,FDD optionally negated before addition
(#)Y1,YO,FDD
(#)YO,YO,FDD
(£)A1,YO,FDD Note: Assembler also accepts first two oper-
(+)B1,Y1,FDD ands when they are specified in opposite orde
MPY (£)Y1,X0,FDD 2 1 | Fractional multiply where one operand is
(£)YO,X0,FDD optionally negated before multiplication
(#)Y1,YO,FDD
(¥)Y0,YO,FDD
(£)A1,YO,FDD Note: Assembler also accepts first two oper-
(+)B1,Y1,FDD ands when they are specified in opposite order

6-20

DSP56800 Family Manual

@ MOTOROLA

DSP56800 Instruction Set Summary

Table 6-22. Data ALU Multiply Instructions (Continued)

Operation

Operands

C

W Comments

MPYR

(+)Y1,X0,FDD
(+)Y0,X0,FDD
(+)Y1,YO,FDD
(+)YO0,Y0,FDD
(+)A1,Y0,FDD
(+)B1,Y1,FDD

1 | Fractional multiply where one operand is
optionally negated before multiplication. Result
is rounded

Note: Assembler also accepts first two oper-
ands when they are specified in opposite order

Table 6-23. Data ALU Extended Prec

ision Multiplication Instructions

Operation Operands C w Comments
MACSU X0,Y1,FDD 2 1 |Signed or unsigned 16x16 fractional MAC with
X0,Y0,FDD 32-bit result.
Y0,Y1,FDD
Y0,Y0,FDD The first operand is treated as signed and the
Y0,A1,FDD second as unsigned.
Y1,B1,FDD
MPYSU X0,Y1,FDD 2 1 |Signed or unsigned 16x16 fractional multiply
X0,Y0,FDD with 32-bit result.
Y0,Y1,FDD
Y0,Y0,FDD The first operand is treated as signed and the
Y0,A1,FDD second as unsigned.
Y1,B1,FDD
Table 6-24. Data ALU Arithmetic Instructions
Operation Operands C W Comments
ABS F 2 1 |Absolute value.
ADC Y.F 2 1 | Add with carry (sets C bit also).
ADD DD,FDD 2 1 |36-bit addition of two registers.
F1,DD
~F,F
Y,F
X:(SP-xx),FDD 6 Add memory word to register.
X:.aa,FDD .
X:aa represents a 6-hit absolute address. Refer to
X:xxxx,FDD 6 2 | Absolute Short Address (Direct Addressing): <aa>
on page 4-22
FDD,X:(SP-xx) 8 2 | Add register to memory word, storing the result back to
FDD, X:XXXX g | 2 |memory.
FDD,X:aa 6 2
#xx,FDD 4 1 |Add an immediate integer 0-31.
#xxxx,FDD 6 2 | Add a signed 16-bit immediate.
CLR F 2 1 |Clear 36-bit accumulator and set condition codes.
F1DD 2 1 |ldentical to move #0,<reg>; does not set condition
Rj codes.
N

0 MOTOROLA

Instruction Set Introduction

6-21

Instruction Set Introduction

Table 6-24. Data ALU Arithmetic Instructions (Continued)

Operation Operands C w Comments
CMP DD,FDD 2 1 | 36-bit compare of two accumulators or data registers.
F1,DD
~F,F
X:(SP-xx),FDD 1 | Compare memory word with 36-bit accumulator.
X:aa,FDD .
X:aa represents a 6-hit absolute address. Refer to
Xoxooxx,FDD 6 Absolute Short Address (Direct Addressing): <aa>
on page 4-22
Note: Condition codes set based on 36-bit result
#xx,FDD 4 1 | Compare accumulator with an immediate integer 0-31.
#xxxx,FDD 6 2 | Compare accumulator with a signed 16-bit immediate.
DEC(W) FDD 2 1 |Decrement word.
X:(SP-xx) 8 1 | Decrement word in memory using appropriate
X-aa 6 1 addressing mode.
XIXXXX 8 2
DIv DD,F 2 1 |Divide iteration.
INC(W) FDD 2 1 |Increment word.
X:(SP-xx) 8 1 |Increment word in memory using appropriate address-
Xaa 6 1 ing mode.
XIXXXX 8 2
NEG F 2 1 | Two’s-complement negation.
RND F 2 1 |Round.
SBC Y,F 2 1 | Subtract with carry (set C bit also).
SUB DD,FDD 2 1 |36-bit subtract of two registers. 16-hit source registers
F1.DD are first sign extended internally and concatenated
I; = with 16 zero bits to form a 36-bit operand.
Y,F
X:(SP-xx),FDD 6 1 | Subtract memory word from register.
X-aa FDD 4 1 | Xaarepresents a 6-bit absolute address. Refer to
— Absolute Short Address (Direct Addressing): <aa>
X:xxxx,FDD 6 2 |on page 4-22
#xx,FDD 4 1 |Subtract an immediate value 0-31.
#xxxx,FDD 6 2 | Subtract a signed 16-bit immediate.
TFR DD,F 2 1 |Transfer register to register.
AB 2 1 |Transfer one accumulator to another (36-bits).
B,A 2 1 |Transfer one accumulator to another (36-bits).
TST F 2 1 |Test 36-bit accumulator.

6-22

DSP56800 Family Manual

@ MOTOROLA

DSP56800 Instruction Set Summary

Table 6-24. Data ALU Arithmetic Instructions (Continued)

Operation Operands C w Comments
TSTW DDDDD 2 1 |Test 16-bit word in register. All registers allowed
(except HWS) except HWS. Limiting is not performed if an accumula-
tor is specified.
X:(Rn) 2 1 |Testa word in memory using appropriate addressing
X:(Rn)+ 2 | 1 |mode.
X:(Rn)- 2 1 IX:aa represents a 6-bit absolute address. Refer to
X:(Rn+N) 4 1 |Absolute Short Address (Direct Addressing): <aa>
X:(Rn)+N 2 | 1 |°onpage4-22
X:(RN+xxxx) 6 2
X:(R2+xx) 4 1
X:(SP-xx) 4 1
X:aa 2 1
X:pp 2 1
XIXXXX 4 2
Table 6-25. Data ALU Miscellaneous Instructions
Operation Operands C W Comments
NORM RO,F 2 1 Normalization iteration instruction for normalizing
the F accumulator
Table 6-26. Data ALU Logical Instructions
Operation Operands C w Comments
AND DD,FDD 2 1 | 16-bit logical AND
F1,DD
EOR DD,FDD 2 1 16-bit exclusive OR (XOR)
F1,DD
NOT FDD 2 1 | One’s-complement (bit-wise negation)
OR DD,FDD 2 1 16-hit logical OR
F1,DD

The ANDC, EORC, ORC, and NOTC can also be used to perform logical operations on registers and data
memory locations. ANDC, EORC, and ORC allow logical operations with 16-bit immediate data. See
Section 6.5.1, “ANDC, EORC, ORC, and NOTC Aliases,” for additional information.

0 MOTOROLA

Instruction Set Introduction

6-23

Instruction Set Introduction

Table 6-27. Data ALU Shifting Instructions

Operation Operands W Comments
ASL FDD 1 |Arithmetic shift left entire register by 1 bit
ASLL Y1,X0,FDD 1 |Arithmetic shift left of the first operand by value
YO0,X0,FDD specified in four LSBs of the second operand;
Y1,YO,FDD places result in FDD
Y0,YO,FDD
A1,Y0,FDD
B1,Y1,FDD
ASR FDD 1 |Arithmetic shift right entire register by 1 bit
ASRR Y1,X0,FDD 1 | Arithmetic shift right of the first operand by
YO0,X0,FDD value specified in four LSBs of the second
Y1,YO,FDD operand; places result in FDD
Y0,Y0,FDD
A1,Y0,FDD
B1,Y1,FDD
ASRAC Y1,X0,F 1 |Arithmetic word shifting with accumulation
YO0,X0,F
Y1,YO,F
YO0,YO,F
A1,YO,F
B1,Y1,F
LSL FDD 1-bit logical shift left of word
LSR FDD 1 |1-bit logical shift right of word
LSRR Y1,X0,FDD 1 |Logical shift right of the first operand by value
Y0,X0,FDD specified in four LSBs of the second operand;
Y1,YO,FDD places result in FDD (when result is to an accu-
YO0,Y0,FDD mulator F, zero extends into F2)
A1,Y0,FDD
B1,Y1,FDD
LSRAC Y1,X0,F 1 |Logical word shifting with accumulation
Y0,X0,F
Y1,YO,F
YO0,YO,F
A1,YO,F
B1,Y1,F
ROL FDD 1 |Rotate 16-bit register left by 1 bit through the
carry bit
ROR FDD 1 |Rotate 16-hit register right by 1 bit through the

carry bit

6-24

DSP56800 Family Manual

@ MOTOROLA

DSP56800 Instruction Set Summary

Table 6-28. AGU Arithmetic Instructions
Operation Operands cC | W Comments
LEA (Rn)+ 2 1 | Increment the Rn pointer register
(Rn)- 2 1 | Decrement the Rn pointer register
(Rn)+N 2 1 | Add N index register to the Rn register and store the
result in the Rn register
(R2+xx) 2 1 | Add a 6-bit unsigned immediate value to R2 and store
in the R2 pointer
(SP-xx) 2 1 | Subtract a 6-bit unsigned immediate value from SP and
store in the SP register
(RN+xxxx) 4 2 | Add a 16-bit signed immediate value to the specified
source register
TSTW (Rn)- 2 1 | Testand decrement AGU register. Refer to Table 6-24
for other forms of TSTW that are executed in the Data
ALU.
Table 6-29. Bit-Manipulation Instructions
Operation Operands C W Comments
BFTSTH #xxxx,DDDDD 4 2 BFTSTH tests all bits selected by the 16-bit
immediate mask. If all selected bits are set,
#xxxx, X:(R2+xx) 6 2 | then the C bit is set. Otherwise it is cleared.
HXXXX, X:(SP-xx) 6 2 | Allregisters in DDDDD are permitted except
HWS.
oo, X aa 4 2 | X:aa represents a 6-bit absolute address.
. Refer to Absolute Short Address (Direct
XXX, X:pp 4 2 | Addressing): <aa> on page 4-22
00X X0 6 3 X:pp represents a 6-hit absolute I/O address.
BFTSTL #xxxx,DDDDD 4 2 BFTSTL tests all bits selected by the 16-bit
immediate mask. If all selected bits are clear,
#xxxx, X:(R2+xx) 6 2 | then the C bit is set. Otherwise it is cleared.
HXxXX, X:(SP-xx) 6 2 | Allregisters in DDDDD are permitted except
HWS.
oo, X aa 4 2 | X:aa represents a 6-bit absolute address.
. Refer to Absolute Short Address (Direct
XXX, X:pp 4 2 | Addressing): <aa> on page 4-22
B0 X 00X 6 3 X:pp represents a 6-hit absolute I/O address.

0 MOTOROLA

Instruction Set Introduction

6-25

Instruction Set Introduction

Table 6-29. Bit-Manipulation Instructions (Continued)

Operation Operands C W Comments
BFCHG #xxxx,DDDDD 4 2 BFCHG tests all bits selected by the 16-bit
immediate mask. If all selected bits are set,
#xxxx, X:(R2+xx) 6 2 | then the C bit is set. Otherwise it is cleared.
Then it inverts all selected bits.
#xXXX, X: (SP-xx) 6 2
All registers in DDDDD are permitted except
#XXXX, X:aa 4 2 HWS.
. X:aa represents a 6-bit absolute address.
XXX, X:pp 4 2 | Refer to Absolute Short Address (Direct
) Addressing): <aa> on page 4-22
OO X000 6 s X:pp represents a 6-bit absolute 1/O address.
BFCLR #xxxx,DDDDD 4 2 BFCLR tests all bits selected by the 16-bit
immediate mask. If all selected bits are set,
#XXXX, X (R2+XX) 6 2 | then the C bit is set. Otherwise it is cleared.
Then it clears all selected bits.
HXXXX, X: (SP-XX) 6 2
All registers in DDDDD are permitted except
#Xxxx,X:aa 4 2 HWS.
_ X.aa represents a 6-bit absolute address.
#OXX,X:pp 4 2 | Refer to Absolute Short Address (Direct
] Addressing): <aa> on page 4-22
000G X300 6 3 X:pp represents a 6-bit absolute 1/O address.
BFSET #xxxx,DDDDD 4 2 BFSET tests all bits selected by the 16-bit
immediate mask. If all selected bits are clear,
#XXXX, X (R2+XX) 6 2 | then the C bit is set. Otherwise it is cleared.
Then it sets all selected bits.
H#XXXX, X: (SP-XX) 6 2
All registers in DDDDD are permitted except
#XxXxx,X:aa 4 2 HWS.
_ X.aa represents a 6-bit absolute address.
#OXX,X:pp 4 2 | Refer to Absolute Short Address (Direct
] Addressing): <aa> on page 4-22
000G X300 6 3 X:pp represents a 6-bit absolute 1/O address.
Table 6-30. Branch on Bit-Manipulation Instructions
Operation Operands cl W Comments
BRCLR #MASKS8,DDDDD,AA 10/8 2 |BRCLR tests all bits selected by the immediate
#MASKS, X:(R2+xx),AA 12/10| 2 ma;k. If all selected bits_ are clear, then the carry
bit is set and a PC relative branch occurs. Other-
#MASKS, X:(SP-xx),AA 12/10| 2 |wiseitis cleared and no branch occurs.
#MASKS, X:aa,AA 10/8 | 2
HMASKS,X:pp.AA 10/8 | 2 ﬁl\llvrgglsters in DDDDD are permitted except
#MASKS, X:xxxx,AA 12/10| 3 '
MASKS specifies a 16-bit immediate value where
either the upper or lower 8 bits contains all zeros.
AA specifies a 7-bit PC relative offset.
X:aa represents a 6-bit absolute address.
X:pp represents a 6-bit absolute I/O address.
6-26 DSP56800 Family Manual Q mororoLa

DSP56800 Instruction Set Summary

Table 6-30. Branch on Bit-Manipulation Instructions (Continued)

Operation Operands cl W Comments
BRSET #MASKS8,DDDDD,AA 10/8 | 2 |BRSET tests all bits selected by the immediate
#MASKS,X:(R2+xx),AA 12/10| 2 mask. If all selected _bits are set, then the carry_bit
is set and a PC relative branch occurs. Otherwise

#MASKS,X:(SP-xx),AA 12/10 | 2 |itis cleared and no branch occurs.
#MASKS8,X:aa,AA 10/8 2
AMASKB,X:pp.AA 08 | 2 ,:I\INrgglsters in DDDDD are permitted except

#MASKS8, X:xxxx,AA 12/10| 3 '

MASKS specifies a 16-bit immediate value where
either the upper or lower 8 bits contains all zeros.

AA specifies a 7-bit PC relative offset.
X:aa represents a 6-bit absolute address.
X:pp represents a 6-bit absolute 1/0 address.

1. First cycle count is if branch is taken (condition is true); second is if branch is not taken.

Table 6-31. Change of Flow Instructions

Operation Operands cl | w Comments
Bcc XX 6/4 1 | 7-bit signed PC relative offset. (xx <=> <OFFSET7>)
BRA XX 6 1 | 7-bit signed PC relative offset. (xx <=> <OFFSET7>)
Jec XXXX 6/4 | 2 | 16-bit absolute address
JMP XXXX 6 2 | 16-hit absolute address
JSR XXXX 8 2 | Push 16-bit return address and jump to 16-bit target address
RTI 10 1 | Return from interrupt, restoring 16-bit PC and SR from the
stack
RTS 10 1 Return from subroutine, restoring 16-bit PC from the stack

1. First cycle count is if branch is taken (condition is true); second is if branch is not taken.

Table 6-32. Looping Instructions

Operation

Operands C

w

Comments

DO

HXX,XXXX 6

Load LC register with unsigned value and start hardware
DO loop with 6-bit immediate loop count. The last address
is 16-bit absolute. #xx = 0 not allowed by assembler.

DDDDD,xxxx 6

Load LC register with unsigned value. If LC is not equal to
zero, start hardware DO loop with 16-bit loop count in regis-
ter. Otherwise, skip body of loop (adds three additional
cycles). The last address is 16-bit absolute.

Any register allowed except: SP, M01, SR, OMR, and HWS.

0 MOTOROLA

Instruction Set Introduction 6-27

Instruction Set Introduction

Table 6-32. Looping Instructions (Continued)

Operation Operands C W Comments
ENDDO 2 1 | Remove one value from the hardware stack and update the
NL and LF bits appropriately.
Note: Does not branch to the end of the loop.
REP #XX 6 1 | Hardware repeat of a one-word instruction with immediate
loop count.
DDDDD 6 1 | Hardware repeat of a one-word instruction with loop count
specified in register.
Any register allowed except: SP, M01, SR, OMR, and HWS.
Table 6-33. Control Instructions
Operation Operands C w Comments

DEBUG 4 1 | Generate a debug event.

ILLEGAL 4 1 | Execute the illegal instruction exception. This instruction is made
available so that code may be written to test and verify interrupt
handlers for illegal instructions.

NOP 2 1 | No operation.
STOP n/a 1 | Enter STOP low-power mode.
SWiI 8 1 | Execute the trap exception at the highest interrupt priority level,
level 1 (non-maskable).
WAIT n/a 1 | Enter WAIT low-power mode.
6-28 DSP56800 Family Manual Q mororoLa

DSP56800 Instruction Set Summary

Table 6-34. Data ALU Instructions—Single Parallel Move

Data ALU Operation Parallel Memory Move
Operation Operands Source Destination
MAC Y1,X0,F X:(R))+ X0
MPY Y0,X0,F X:(Rj)+N Y1
MACR Y1,YO,F YO
MPYR YO0,YO,F
A
Al,YO,F B
B1,Y1,F Al
Bl
ADD XO0,F X0 X:(Rj)+
SUB Y1,F Y1 X:(Rj)+N
CMP YO,F YO
TFR A,B A
B,A B
Al
ABS F Bl
ASL
ASR
CLR
RND
TST
INC or INCW
DEC or DECW
NEG

Each instruction in Table 6-34 requires one program word and executes in one cycle. The data type
accessed by the single memory movein all single parallel move instructionsis signed word.

The solid double line running down the center of the table indicates that the data ALU operation is
independent from the parallel memory move. Asaresult, any valid operation can be combined with any
valid memory move. Example 6-5 lists examples of valid single parallel move instructions.

Example 6-5. Examples of Single Parallel Moves

MAC Y1, X0, A X: (RO) +, X0
MAC Y1, X0, A X0, X: (R0) +
ASL B X: (RO) + Y1
ASL B Y1, X: (RO) +

It is not permitted to perform MAC A, B X: (RO) +, X0 because the MAC instruction requires three
operands, as shown in Table 6-34. The operands are not independent of the operation performed. Thisis
why asingleline is used to separate the operation from the operands instead of a double line.

0 MOTOROLA Instruction Set Introduction 6-29

Instruction Set Introduction

For the MAC, MPY, MACR, and MPY R instructions, the assembler accepts the two source operandsin
any order.

Table 6-35. Data ALU Instructions—Dual Parallel Read

Data ALU First Memory Second Memory
Operation Read Read
Operation Operands Source 1 Destination 1 Source 2 Destination 2
MAC Y1,X0,F X:(RO)+ YO X:(R3)+ X0
MPY Y1,YO,F X:(RO)+N Y1 X:(R3)-
MACR Y0,X0,F X:(R1)+
MPYR X:(R1)+N
ADD XO0,F
SUB Y1,F
YO,F
MOVE

Each instruction in Table 6-35 requires one program word and executes in one cycle.
The data types accessed by the two memory movesin al dual parallel read instructions are signed words.

6.7 The Instruction Pipeline

Instruction execution is pipelined to allow most instructions to execute at arate of one instruction every
two clock cycles. However, certain instructions require additional time to execute, including instructions
with the following properties:

« Exceed length of oneword
e Usean addressing mode that requires more than one cycle
e Access the program memory
e Causeacontrol flow change
In the case of a control flow change, a cycle is heeded to clear the pipeline.

6.7.1 Instruction Processing

Pipelining allows the fetch-decode-execute operations of an instruction to occur during the
fetch-decode-execute operations of other instructions. While an instruction is executed, the next instruction
to be executed is decoded, and the instruction to follow the instruction being decoded is fetched from
program memory. If an instruction is two wordsin length, the additional word will be fetched before the
next instruction is fetched.

Figure 6-4 demonstrates pipelining; F1, D1, and E1 refer to the fetch, decode, and execute operations,
respectively, of the first instruction. Note that the third instruction contains an instruction extension word
and takes two cycles to execute.

6-30 DSP56800 Family Manual @ MOTOROLA

The Instruction Pipeline

Fetch F1 F2 F3 | F3e | F4 F5 F6
Decode D1 D2 D3 | D3e | D4 D5
Execute El E2 E3 | E3e | E4
Instruction Cycle 1 2 3 4 5 6 7

Figure 6-4. Pipelining

Each instruction requires a minimum of three instruction cycles (six machine cycles) to be fetched,
decoded, and executed. A new instruction may be started after two machine cycles, making the throughput
rate to be one instruction executed every instruction cycle for single-cycle instructions. Two-word
instructions require a minimum of eight machine cyclesto execute, and a new instruction may start after
four machine cycles.

6.7.2 Memory Access Processing

One or more of the DSP memory sources (X data memory and program memory) may be accessed during
the execution of an instruction. Three address buses (XAB1, XAB2, and PAB) and three data buses
(CGDB, XDB2, and PDB) are available for internal memory accesses during one instruction cycle, but
only one address bus and one data bus are available for external memory accesses (when the external busis
available). If all memory sources are interna to the DSP, one or more of the two memory sources may be
accessed in one instruction cycle (that is, program memory access, or program memory access plus an X
memory reference, or program memory access with two X memory references).

NOTE:

For instructionsthat contain two X memory references, the second transfer
using XAB2 and XDB2 may not access externa memory. All accesses
across these buses must access internal memory only.

See Section 7.2.2, “Instruction Pipeline with Off-Chip Memory Accesses,” on page 7-3 for adiscussion of
off-chip memory accesses.

0 MOTOROLA Instruction Set Introduction 6-31

Instruction Set Introduction

6-32 DSP56800 Family Manual @ MOTOROLA

Chapter 7
Interrupts and the Processing States

The DSP56800 Family processors have six processing states and are always in one of these states (see
Table 7-1). Each processing state is described in detail in the following sections except the debug
processing state, which is discussed in Section 9.3, “OnCE Port,” on page 9-4. In addition, special cases of
interrupt pipelines are discussed at the end of the section. Section 8.10, “Interrupts,” on page 8-30
discusses software techniques for interrupt processing.

Table 7-1. Processing States

State Description

Reset The state where the DSP core is forced into a known reset state. Typically, the first
program instruction is fetched upon exiting this state.

Normal The state of the DSP core where instructions are normally executed.

Exception | The state of interrupt processing, where the DSP core transfers program control from its
current location to an interrupt service routine using the interrupt vector table.

Wait A low-power state where the DSP core is shut down but the peripherals and interrupt
machine remain active.

Stop A low-power state where the DSP core, the interrupt machine, and most (if not all) of the
peripherals are shut down.

Debug The state where the DSP core is halted and all registers in the On-Chip Emulation
(OnCE) port of the processor are accessible for program debug.

7.1 Reset Processing State

The processor enters the reset processing state when the external RESET pin is asserted and a hardware
reset occurs. On devices with a computer operating properly (COP) timer, it is also possible to enter the
reset processing state when this timer reaches zero. The DSP istypically held in reset during the power-up
process through assertion of the RESET pin, making thisthefirst processing state entered by the DSP. The
reset state performs the following:

Resets internal peripheral devices
Sets the M01 modifier register to $FFFF
Clears the interrupt priority register (IPR)

Setsthewait state fields in the bus control register (BCR) to their maximum value, thereby
inserting the maximum number of wait states for all external memory accesses

A wDd P

Q mororoLa Interrupts and the Processing States 7-1

Interrupts and the Processing States

5. Clearsthe status register’s (SR) loop flag and condition code bits and sets the interrupt
mask bits

6. Clearsthe following bitsin the operating mode register: nested looping, condition codes,
stop delay, rounding, and external X memory

The DSPremainsin the reset state until the RESET pin is deasserted. When hardware deassertsthe RESET
pin, the following occur:

1. Thechip operating mode bitsin the OMR are loaded from an external source, typically mode
select pins; see the appropriate device manual for details.

2. A delay of 16 instruction cycles (NOPs) occursto sync the local clock generator and state
machine.

3. Thechip begins program execution at the program memory address defined by the state of
the MA and MB bitsin the OMR and the type of reset (hardware or COP time-out). The
first instruction must be fetched and then decoded before execution. Therefore, the first
instruction execution is two instruction cycles after the first instruction fetch.

After thislast step, the DSP enters the normal processing state upon exiting reset. It is also possible for the
DSP to enter the debug processing state upon exiting reset when system debug is underway.

7.2 Normal Processing State

The normal processing state isthe typical state of the processor where it executesinstructionsin a
three-stage pipeline. Thisincludes the execution of simple instructions such as moves or ALU operations
aswell as jumps, hardware looping, bit-field instructions, instructions with parallel moves, and so on.
Details about the execution of the individual instructions can be found in Appendix A, “Instruction Set
Details.” The chip must be reset before it can enter the normal processing state.

7.2.1 Instruction Pipeline Description

The instruction-execution pipeline is a three-stage pipeline, which allows most instructions to execute at a
rate of oneinstruction per instruction cycle. For the case where there are no off-chip memory accesses, or
for the case of asingle off-chip access with no wait states, one instruction cycle is equivalent to two
machine cycles. A machine cycle is defined as one cycle of the clock provided to the DSP core. Certain
instructions, however, require more than one instruction cycle to execute. These instructions include the
following:

e Instructions longer than one word
» Instructions using an addressing mode that requires more than one cycle
e Instructionsthat cause a control-flow change

Pipelining allows instruction executions to overlap so that the fetch-decode-execute operations of a given
instruction occur concurrently with the fetch-decode-execute operations of other instructions. Specifically,
while the processor is executing one instruction, it is decoding the next instruction and fetching a third
instruction from program memory. The processor fetches only one instruction word per instruction cycle;
if aninstruction istwo words in length, it fetches the additional word with an additional cycle before it
fetches the next instruction.

7-2 DSP56800 Family Manual @ mororoLa

Normal Processing State

Table 7-2. Instruction Pipelining

Instruction Cycle
Operation
1 2 3 4 5 6 7 . . .
Fetch F1 F2 F3 | F3e | F4 F5 F6 . . .
Decode D1 D2 D3 | D3e | D4 D5 . . .
Execute El E2 E3 | E3e | E4 . . .

Table 7-2 demonstrates pipelining. “F1,” “D1,” and “E1” refer to the fetch, decode, and execute operations
of the first instruction, respectively. The third instruction, which contains an instruction extension word,
takes two instruction cyclesto execute. Although it takes three instruction cycles (six machine cycles) for
the pipelineto fill and the first instruction to execute, an instruction usually executes on each instruction
cycle thereafter (two machine cycles).

7.2.2 Instruction Pipeline with Off-Chip Memory Accesses

The three sets of internal on-chip address and data buses (XABL/CGDB, XAB2/XDB2, PAB/PDB) allow
for fast memory access when memories are being accessed on-chip. The DSP can perform memory
accesses on al three bus pairs in asingle instruction cycle, permitting the fetch of an instruction
concurrently with up to two accesses to the X data memory. Thus, for applications where all program and
dataislocated in on-chip memory, thereis no speed penalty when performing up to three memory accesses
in asingleinstruction.

Similarly, the external address and data bus also allows for fast program execution. For the case where
only program memory is external to the chip or only X data memory is external (XAB1/CDGB bus pair),
the DSP chip will still execute programs at full speed if there are no wait states programmed on the
external bus by the user. For the case where an instruction requires an external program fetch and an
external X data memory access simultaneously, the instruction will still operate correctly. The instruction
is automatically stretched an additional instruction cycle so that the two external accesses may be
performed correctly, and wait states are inserted accordingly. All this occurs transparently to the user to
alow for easier program devel opment.

Thisinformation is summarized in Table 7-3, which shows how the chip automatically inserts instruction
cycles and wait states for an instruction that is simultaneously accessing program and data memory. For
dual parallel read instructions, the second X memory access that uses XAB2/XDB2 must always be done
to on-chip memory. This second access may never access external off-chip memory.

Q mororoLa Interrupts and the Processing States 7-3

Interrupts and the Processing States

Table 7-3. Additional Cycles for Off-Chip Memory Accesses

Memory Space

Number of

. Comments
Program X Memory X Memory Additional Cycles

Fetch First Access Second Access

On-chip On-chip On-chip 0 All accesses internal
External On-chip On-chip 0+ mvm One external access
On-chip External On-chip 0+ mv One external access
External External On-chip 1+ mv+mvm Two external accesses

Note: The ‘mv’ and ‘mvm’ cycle time values reflect the additional time required for all MOVE instructions and for
MOVEM instructions, respectively.

7.2.3 Instruction Pipeline Dependencies and Interlocks

The pipeline is normally transparent to the user. However, there are certain instruction-sequence
combinations where the pipeline will affect the program execution. Such situations are best described by
case studies. Most of these restricted sequences occur because either al addresses are formed during
instruction decode or they are the result of contention for an internal resource such as the SR.

If the execution of an instruction depends on the relative location of the instruction in a sequence of
instructions, there is a pipeline effect.

It is possible to seeif thereis a pipeline dependency. To test for a suspected pipeline effect, compare the
execution of the suspect instruction when it directly follows the previous instruction and when four NOPs
are inserted between the two. If there is a difference, it is caused by a pipeline effect. The assembler flags
instruction sequences with potential pipeline effects so that the user can determine if the operation will
execute as expected.

Example 7-1. Pipeline Dependencies in Similar Code Sequences

No Pipeline Effect

CRC #$0001, SR ; Changes carry bit at the end of execution time slot
JCS LABEL ; Reads condition codes in SRinits
; execution tine slot

The JCS instruction will test the carry bit modified by the ORC without any pipeline effect in this code segment.
Pipeline Effect

CRC #$0008, OWR ; Sets EX bit at execution time slot
MOVE X $17, A ; Reads internal nenory instead of external
; menory

A pipeline effect occurs because the address of the MOVE is formed at its decode time before the ORC changes the
EX bit (which changes the memory map) in the ORC’s execution time slot. The following code produces the expected
results of reading the external ROM:

ORC #$0008, OVR ; Sets EX bit at execution time slot
NCP ; Delays the MOVE so it will read the updated nemory nap
MOVE X $17, A ; Reads external nenory

7-4 DSP56800 Family Manual @ mororoLa

Exception Processing State

Example 7-2. Common Pipeline Dependency Code Sequence

MOVE X0, R2 ; Move a value into register R2

MOVE X (R2), A ; Uses the LD contents of R2 to address menory.
In this case, before the first MOVE instruction has written R2 during its execution cycle, the second MOVE has
accessed the old R2, using the old contents of R2. This is because the address for indirect moves is formed during
the decode cycle. This overlapping instruction execution in the pipeline causes the pipeline effect.
After an address register has been written by a MOVE instruction, one instruction cycle should be allowed before the
new contents are available for use as an address register by another MOVE instruction. The proper instruction
sequence follows:

MOVE X0, R2 ; Moves a nunber into register R

NCP ; Executes any instruction or instruction sequence not
; using the R2 register witten in the previous
; instruction

MOE X (R2), A ; Uses the new contents of R2

Section 4.4, “Pipeline Dependencies,” on page 4-33 contains more details on interlocks caused during
address generation.

7.3 EXxception Processing State

The exception processing state is the state where the DSP core recognizes and processes interrupts that can
be generated by conditions inside the DSP or from external sources. Upon the occurrence of an event,
interrupt processing transfers control from the currently executing program to an interrupt service routine,
with the ability to later return to the current program upon completion of the interrupt service routine. In
digital signal processing, some of the main uses of interrupts are to transfer data between DSP memory and
aperipheral device or to begin execution of a DSP algorithm upon reception of a new sample. An interrupt
can aso be used to exit the DSP’ s low-power wait processing state.

Aninterrupt will cause the processor to enter the exception processing state. Upon entering this state, the
current instruction in decode executes normally. The next fetch address is supplied by the interrupt
controller and pointsinto the interrupt vector table (Table 7-4 on page 7-7). During this fetch the PC is not
updated. The instruction located at these two addresses in the interrupt vector table must always be a
two-word, unconditional jump-to-subroutine instruction (JSR). Note that the interrupt controller only
fetches the second word of the JSR instruction. Thisresultsin the program changing flow to an interrupt
routine, and a context switch is performed.

There are many sources for interrupts on the DSP56800 Family of chips, and some of these sources can
generate more than oneinterrupt. Interrupt requests can be generated from conditions within the DSP core,
from the DSP peripherals, or from external pins. The DSP core features a prioritized interrupt vector
scheme with up to 64 vectors to provide faster interrupt servicing. The interrupt priority structureis
discussed in Section 7.3.3, “Interrupt Priority Structure.”

7.3.1 Sequence of Events in the Exception Processing State

The following steps occur in exception processing:

1. A request for aninterrupt is generated either on a pin, from the DSP core, from a peripheral
on the DSP chip, or from an instruction executed by the DSP core. Any hardware interrupt
request from a pinisfirst synchronized with the DSP clock.

Q mororoLa Interrupts and the Processing States 7-5

Interrupts and the Processing States

The exception processing state is completed when the processor executes the JSR instruction located in the
interrupt vector table and the chip enters the normal processing state. Asit enters the normal processing
state, it begins executing thefirst instruction in the interrupt service routine. Each interrupt service routine

2.

Therequest for an interrupt by aparticular sourceis latched in an interrupt-pending flag if
it isan edge or non-maskableinterrupt (all other interrupts are not latched and must remain
asserted in order to be serviced). For peripheralsthat can generate more than one interrupt
request and have more than one interrupt vector, the interrupt arbiter only sees one request
from the peripheral active at atime.

All pending interrupt requests are arbitrated to sel ect which interrupt will be processed. The
arbiter automatically ignoresany interruptswith aninterrupt priority level (IPL) lower than
the interrupt mask level specified in the SR. If there are any remaining requests, the arbiter
selects the remaining interrupt with the highest IPL, and the chip enters the exception
processing state (see Figure 7-1).

The interrupt controller then freezes the program counter (PC) and fetches the JSR
instruction located at the two interrupt vector addresses associated with the selected
interrupt. It isrequired that the instruction located at the interrupt vector address must be a
two-word JSR instruction. Note that only the second word of the JSR instruction isfetched;
the first word of the JSR is provided by the interrupt controller.

The interrupt controller places this JSR instruction into the instruction stream and then
releases the PC, which is used for the next instruction fetch. Arbitration among the
remaining interrupt requests is allowed to resume. The next interrupt arbitration then
begins.

The execution of the JSR instruction stacks the PC and the SR asit transfers control to the
first instruction in the interrupt service routine. These two stacked registers contain the
16-hit return address that will later be used to return to the interrupted code, as well asthe
condition code state. In addition, the IPL israised to level 1 to disallow any level O
interrupts. Note that the OnCE trap, stack error, illegal instruction, and SWI can still
generate interrupts because these are level 1 interrupts and are non-maskable.

should return to the main program by executing an RTI instruction.

Interrupt routines for level O interrupts are interruptible by higher priority interrupts. Figure 7-1 shows an

example of processing an interrupt.

Interrupt Service Routine

7-6

Main
Program SSI Receive Data
with Exception Status
$0100 — Interrupt
Recognized ‘
$0101 MACR JSR Instruction
$0102 | MOVE $000E JSR | in Vector Table to
$0103 | MAC | $OOOF | $0300 | poorupeservice
$0104 | REP Y
$0105 MAC $0300 ADD
$0106 — $0301 ASL
Explicit Return
from Interrupt $0302 MOVE
Recognized $0303 RTI

AAQ0056

Figure 7-1. Interrupt Processing

DSP56800 Family Manual @ MOTOROLA

Exception Processing State

Steps 1 through 3 listed on page page 7-5 require two additional instruction cycles, effectively making the
interrupt pipeline five levels deep.

7.3.2 Reset and Interrupt Vector Table

The interrupt vector table specifies the addresses that the processor accesses once it recognizes an interrupt
and begins exception processing. Since peripherals can also generate interrupts, the interrupt vector map
for agiven chip is specified by al sources on the DSP core as well as all peripherals that can generate an
interrupt. Table 7-4 lists the reset and interrupt vectors available on DSP56800-based DSP chips. The
interrupt vectors used by on-chip peripherals, or by additional device-specific interrupt will be listed in the
user’s manua for that chip.

Table 7-4. DSP56800 Core Reset and Interrupt Vector Table

Interr_upt Interrupt

Starting Priority Level Interrupt Source

Address
$0000 - Hardware Reset
$0002 - COP Watchdog Reset
$0004 - (Reserved)
$0006 1 lllegal Instruction Trap
$0008 1 Swi
$000A 1 Hardware Stack Overflow
$000C 1 OnCE Trap
$O00E 1 (Reserved)
$0010 0 IRQA
$0012 0 IRQB
$0014 0 (Vector Available for On-Chip Peripherals)
$0016 0 (Vector Available for On-Chip Peripherals)
$0018 0 (Vector Available for On-Chip Peripherals)
$001A 0 (Vector Available for On-Chip Peripherals)
$001C 0 (Vector Available for On-Chip Peripherals)
$001E 0 (Vector Available for On-Chip Peripherals)
$0020 0 (Vector Available for On-Chip Peripherals)
$007C 0 (Vector Available for On-Chip Peripherals)
$007E 0 (Vector Available for On-Chip Peripherals)

Q mororoLa Interrupts and the Processing States 7-7

Interrupts and the Processing States

Itisrequired that atwo-word JSR instruction is present in any interrupt vector location that may be fetched
during exception processing. If an interrupt vector location is unused, then the JSR instruction is not
required.

The hardware reset and COP reset are special cases because they are reset vectors, not interrupt vectors.
Thereisno IPL specified for these two because these conditions reset the chip and reset takes precedence
over any interrupt. Typically atwo-word JMP instruction is used in the reset vectors. The hardware reset
vector will either be at address $0000 or $E000 and the COP reset vector will either be at $0002 or $E002
depending on the operating mode of the chip. The different operating modes are discussed in

Section 5.1.9.1, “ Operating Mode Bits (MB and MA)—Bits 1-0,” on page 5-10.

7.3.3 Interrupt Priority Structure

Interrupts are organized in asimple priority structure. Each interrupt source has an associated IPL: Level O
or Level 1. Level O, the lowest level, ismaskable, and Level 1 is non-maskable. Table 7-5 summarizesthe
priority levels and their associated interrupt sources.

Table 7-5. Interrupt Priority Level Summary

IPL Description Interrupt Sources
0 Maskable On-chip peripherals,
IRQA and IRQB
1 Non-maskable lllegal instruction, OnCE trap,
HWS overflow, SWI

The interrupt mask bits (11, 10) in the SR reflect the current priority level and indicate the |PL needed for
an interrupt source to interrupt the processor (see Table 7-6). Interrupts are inhibited for al priority levels
below the current processor priority level. Level 1 interrupts, however, are not maskable and, therefore,
can aways interrupt the processor.

Table 7-6. Interrupt Mask Bit Definition in the Status Register

11 10 Exceptions Permitted Exceptions Masked
0 0 (Reserved) (Reserved)

0 1 IPLO, 1 None

1 0 (Reserved) (Reserved)

1 1 IPL 1 IPLO

7.3.4 Configuring Interrupt Sources

The interrupt unit in the DSP56800 core supports seven interrupt channels for use by on-chip peripherals,
in addition to the IRQ interrupts and interrupts generated by the DSP core. Each maskable interrupt source
can individually be enabled or disabled as required by the application. The exact method for doing so is
dependant on the particular DSP56800-based device, as some of the interrupt handling logic is
implemented as an on-chip peripheral.

One example of how interrupts can be enabled and disabled, and their priority level established, iswith an
interrupt priority register (IPR).

7-8 DSP56800 Family Manual @ mororoLa

Exception Processing State

cho |cni [ch2 |cha [cha |cns [che | + |+ | + "B BE] o« [!AL AL .

| | IRQA Mode

IRQB Mode

(Reserved)

Channel 6 IPL
Channel 5 IPL
Channel 4 IPL
Channel 3 IPL
Channel 2 IPL
Channel 1 IPL
Channel O IPL

* Indicates reserved bits, read as zero and should be written with zero for future compatibility
AA0057

Figure 7-2. Example Interrupt Priority Register

In the example interrupt priority register (IPR), shown in Figure 7-2, the interrupt for each on-chip
peripheral device (channels 0—6) and for each external interrupt source (IRQA, IRQB), can be enabled or
disabled under software control. The IPR also specifies the trigger mode of the external interrupt sources.
Figure 7-3 shows how it might be programmed for different interrupts.

Chx Enabled? IPL
0 No —
1 Yes 0
IBL1 .
:itg Enabled? IPL IALL Trigger Mode
0 Level sensitive
0 No o 1 Edge sensitive
1 Yes 0
AA0058

Figure 7-3. Example On-Chip Peripheral and IRQ Interrupt Programming

7.3.5 Interrupt Sources

Aninterrupt request isarequest to break out of currently executing code to enter an interrupt service
routine. Interrupt requests in the DSP are generated from one of three sources: external hardware, internal
hardware, and internal software. The interna hardware interrupt sources include all of the on-chip
peripheral devices.

Each interrupt source has at |east one associated interrupt vector, and some sources may have severa
interrupt vectors. The interrupt vector addresses for each interrupt source are listed in the interrupt vector
table (Table 7-4). These addresses are usually located in either the first 64 or 128 locations of program
memory. For further information on a device's on-chip peripheral interrupt sources, seethe device's
individual user’s manual.

Q mororoLa Interrupts and the Processing States 7-9

Interrupts and the Processing States

When an interrupt request is recognized and accepted by the DSP core, atwo-word JSR instruction is
fetched from the interrupt vector table. Because the program flow is directed to a different starting address
within the table for each different interrupt, the interrupt structure can be described as “vectored.” A
vectored interrupt structure has low execution overhead. If it is known beforehand that certain interrupts
will not be used or enabled, those locations within the table can instead be used for program or data
storage.

7.3.5.1 External Hardware Interrupt Sources

The external hardware interrupt sources are listed below:

« RESET pin

« IRQA pin—priority level 0

« IRQB pin—priority level 0
An assertion of the RESET is not truly an interrupt, but rather it forces the chip into the reset processing
state. Likewise, for any DSP chip that contains a COP timer, atime-out on this timer can also place the

chip into the reset processing state. The reset processing state is at the highest priority and takes
precedence over any interrupt, including an interrupt in progress.

Assertions on the IRQA and IRQB pins generate IRQA and IRQB interrupts, which are priority level O
interrupts and are individually maskable. The IRQA and IRQB interrupt pins are internally synchronized
with the processor’ sinternal clock and can be programmed as level-sensitive or edge-sensitive.

Edge-sensitive interrupts are latched as pending when afalling edge is detected on an IRQ pin. The IRQ
pin’s interrupt-pending bit remains set until its associated interrupt is recognized and serviced by the DSP
core. Edge-sensitive interrupts are automatically cleared when the interrupt is recognized and serviced by
the DSP core. In an edge-sensitive interrupt the interrupt-pending bit is automatically cleared when the
second vector location is fetched.

Level-sensitive interrupts, on the other hand, are never latched but go directly into the interrupt controller.
A level-sensitive interrupt is examined and processed when the IRQ pin is low and the interrupt arbiter
alows thisinterrupt to be recognized. Since thereis no interrupt-pending bit associated with
level-sensitive interrupts, the interrupt cannot not be cleared automatically when serviced; instead, it must
be explicitly cleared by other meansto prevent multiple interrupts.

NOTE:

On al level-sensitive interrupts, the interrupt must be externally released
before interrupts are internally re-enabled. Otherwise, the processor will
be interrupted repeatedly until the release of the level-sensitive interrupt.

When either the IRQA or IRQB pinisdisabled in the IPR, any interrupt request on its associated pinis
ignored, regardless of whether the input was defined as level-sensitive or edge-sensitive. If the interrupt
input is defined as edge-sensitive, its interrupt-pending bit will remain in the reset state for aslong asthe
interrupt pinisdisabled. If theinterrupt is defined aslevel-sensitive, its edge-detection latch will stay inthe
reset state. If the level-sensitive interrupt is disabled whileit is pending, it will be cancelled. However, if
the interrupt has been fetched, it normally will not be cancelled.

Thelevel-sensitive interrupt capability is useful for the case where there is more than one external interrupt
source, yet only one IRQ pin is available. In this case the interrupts are wire ORed onto asingle IRQ pin
with aresistor pull-up, and any one of these can assert an interrupt. It isimportant that the interrupt service
routine poll each device, and, after finding the source of the interrupt, it must clear the conditions causing
the interrupt request.

7-10 DSP56800 Family Manual @ MOTOROLA

Exception Processing State

7.3.5.2 DSP Core Hardware Interrupt Sources

Other interrupt sources include the following:
e Stack error interrupt—priority level 1
e OnCE trap—ypriority level 1
e All on-chip peripherals (such as timers and serial ports)—priority level O

An overflow of the hardware stack (HWS) causes a stack overflow interrupt that is vectored to P.$000A
(see Section 5.1.7, “Hardware Stack,” on page 5-6). Encountering the stack overflow condition means that
too many DO loop addresses have been stacked and that the ol dest top-of-loop address has been lost. The
stack error is non-recoverable. The stack error condition refers to hardware stack overflow and does not
affect the software stack pointed to by the stack pointer (SP) register in any manner.

The OnCE trap interrupt is an interrupt that can be setup in the OnNCE debug port accessible through the
JTAG pins. This gives the debug port the capability to generate an interrupt on atrigger condition such as
the matching of an addressin the OnCE port (see Section 9.3, “OnCE Port,” on page 9-4 for more
information).

In addition to these sources there are seven general-purpose interrupt channels, Ch0 through Ch6, available
for use by on-chip peripherals such astimers and serial ports. Each channel can independently generate an
interrupt request, each can be individually masked, and each channel can have one or more dedicated
locations in the interrupt vector table. Typically, one channel is assigned to each on-chip peripheral, but, in
cases where there are more than seven peripherals that can generate interrupts, it is possible to put more
than one peripheral on asingle interrupt channel.

7.3.5.3 DSP Core Software Interrupt Sources

The two software interrupt sources are listed below:
« Softwareinterrupt (SWI)—rpriority level 1
« lllega ingtruction interrupt (111)— priority level 1

A SWI isanon-maskable interrupt that is serviced immediately following the SWI instruction execution
(that is, no other instructions are executed between the SWI instruction and the JSR instruction found in
the interrupt vector table). The difference between an SWI and a JSR instruction is that the SWI setsthe
interrupt mask to prevent level 0—maskable interrupts from being serviced. The SWI’s ability to mask out
lower-leve interrupts makes it very useful for setting breakpoints in monitor programs or for making a
system call in asimple operating system. The JSR instruction does not affect the interrupt mask.

Theillegal instruction interrupt is aso a non-maskable interrupt (priority level 1). It is serviced
immediately following the execution or attempted execution of an illegal instruction (an undefined
operation code). lllegal exceptions are fatal errors. The JSR located in theillegal instruction interrupt
vector will stack the address of the instruction immediately after the illegal instruction.

Q mororoLa Interrupts and the Processing States 7-11

Interrupts and the Processing States

Main Interrupt
Program Service Routine
Fetches Fetches
Il (NOP) l

n6
No Fetch 11
No Fetch 12
I3
14
15

(a) Instruction Fetches from Memory

Illegal Instruction Interrupt
Recognized as Pending

Interrupt Control Cycle 1 i

Interrupt Control Cycle 2 i

Fetch nl n2 n3 n4 Il n6 — — i1 i2 i3 ii4 ii5
Decode nl n2 n3 n4 I — — — i1 ii2 i3 ii4
Execute nl n2 n3 n4 |NOP| — — — il i2 i3
Instruction Cycle Count 1 2 3 4 5 6 7 8 9 10 11 12 13 14
i = Interrupt

ii = Interrupt Instruction Word
Il = lllegal Instruction
n = Normal Instruction Word

(b) Program Controller Pipeline AA0059
Figure 7-4. lllegal Instruction Interrupt Servicing

Thisinterrupt can be used as a diagnostic tool to allow the programmer to examine the stack and locate the
illegal instruction, or the application program can be restarted with the hope that the failure was a soft
error. The ILLEGAL instruction, found in Appendix A, “Instruction Set Details,” is useful for testing the
illegal interrupt service routine to verify that it can recover correctly from an illegal instruction. Note that
theillegal instruction trap does not fire for al invalid opcodes.

7.3.6 Interrupt Arbitration

Interrupt arbitration and control, which occurs concurrently with the fetch-decode-execute cycle, takestwo
instruction cycles. External interrupts are internally synchronized with the processor clock before their

interrupt-pending flags are set. Each external and internal interrupt hasits own flag. After each instruction
is executed, the DSP arbitrates all interrupts. During arbitration, each pending interrupt’s IPL is compared
with theinterrupt mask in the SR, and the interrupt is either allowed or disallowed. The remaining pending

7-12 DSP56800 Family Manual @ MOTOROLA

Exception Processing State

interrupts are prioritized according to the IPLs shown in Table 7-7, and the interrupt source with the
highest priority is selected. The interrupt vector corresponding to that source is then placed on the program
address bus so that the program controller can fetch the interrupt instruction.

Table 7-7. Fixed Priority Structure Within an IPL

Priority Exception Enabled By

Level 1 (Non-maskable)

Highest Hardware RESET —

Watchdog timer reset —

lllegal instruction —

HWS overflow —

OnCE trap —

Lower SWI —

Level 0 (Maskable)

Higher IRQA (external interrupt) IPR bit 1
IROB (external interrupt) IPR bit 4
Channel 6 peripheral interrupt IPR bit 9
Channel 5 peripheral interrupt IPR bit 10
Channel 4 peripheral interrupt IPR bit 11
Channel 3 peripheral interrupt IPR bit 12
Channel 2 peripheral interrupt IPR bit 13
Channel 1 peripheral interrupt IPR bit 14
Lowest Channel 0 peripheral interrupt IPR bit 15

Interrupts from a given source are not buffered. The processor will not arbitrate a new interrupt from the
same source until after it fetches the second word of the interrupt vector of the current interrupt.

Aninternal interrupt-acknowledge signal clears the appropriate interrupt-pending flag for DSP core
interrupts. Some peripheral interrupts may also be cleared by theinternal interrupt-acknowledge signal, as
defined in their specifications. Periphera interrupt requests that need a read/write action to some register
do not receive the internal interrupt-acknowledge signal, and their interrupt request will remain pending
until their registers are read/written. Further, if the interrupt comes from an IRQ pin and is programmed as
level triggered, the interrupt request will not be cleared. The acknowledge signal will be generated after the
interrupt vectors have been generated, not before.

If more than oneinterrupt is pending when an instruction is executed, the processor will first service the
interrupt with the highest priority level. When multiple interrupt requests with the same IPL are pending, a
second fixed-priority structure within that IPL determines which interrupt the processor will service. For

Q mororoLa Interrupts and the Processing States 7-13

Interrupts and the Processing States

two interrupts programmed at the same priority level (non-maskable or level 0), Table 7-7 shows the
exception priorities within the same priority level. The information in this table only applies when two
interrupts arrive simultaneously or where two interrupts are simultaneously pending.

Whenever alevel 0 interrupt has been recognized and exception processing begins, the DSP56800
interrupt controller changes the interrupt mask bits in the program controller’s SR to allow only level 1
interrupts to be recognized. This prevents another level 0 interrupt from interrupting the interrupt service
routine in progress. If an application requires that alevel 0 interrupt can interrupt the current interrupt
serviceroutine, it is necessary to use one of the technigques discussed in Section 8.10.1, “ Setting Interrupt
Prioritiesin Software,” on page 8-30.

7.3.7 The Interrupt Pipeline

The interrupt controller generates an interrupt instruction fetch address, which points to the second
instruction word of atwo-word JSR instruction located in the interrupt vector table. This addressis used
instead of the PC for the next instruction fetch. While the interrupt instructions are being fetched, the PC is
loaded with the address of the interrupt service routine contained within the JSR instruction. After the
interrupt vector has been fetched, the PC is used for any subsequent instruction fetches and the interrupt is
guaranteed to be executed.

Upon executing the JSR instruction fetched from the interrupt vector table, the processor enters the
appropriate interrupt service routine and exits the exception processing state. The instructions of the
interrupt service routine are executed in the normal processing state and the routine is terminated with an
RTI ingtruction. The RTI instruction restores the PC to the program originally interrupted and the SR to its
contents before the interrupt occurred. Then program execution resumes. Figure 7-5 shows the interrupt
service routine. The interrupt service routine must be told to return to the main program by executing an
RTI instruction.

The execution of an interrupt service routine always conforms to the following rules:

1. A JSRto the starting address of the interrupt service routine is located at the first of two
interrupt vector addresses.

2. Theinterrupt mask bits of the SR are updated to mask level O interrupts.

Thefirst instruction word of the next interrupt service (of higher IPL) will reach the decoder
only after the decoding of at least four instructions following the decoding of the first
instruction of the previous interrupt.

4. Theinterrupt service routine can be interrupted (that is, nested interrupts are supported).

5. Theinterrupt routine, which can be any length, should be terminated by an RTI, which
restores the PC and SR from the stack.

7-14 DSP56800 Family Manual @ MOTOROLA

Exception Processing State

Interrupt Interrupt
) Vector Table Subroutine
Main
Program
Interrupt — «-PC Resumes
Synchronized JSR ii2 Operation
and Jump Address i3 -
Recognized7 nl ii4 g;ir:;gfe d
as Pending n2
L ———
Interrupt
Routine
Explicit in
Return From RTI
Interrupt
(Should Be RTI)

(a) Instruction Fetches from Memory

Interrupt Synchronized and
Recognized as Pending

—— Interrupts Re-enabled

Y

Interrupt Control Cycle 1| i

Interrupt Control Cycle 2 i

Fetch nl|{n2| — | Adr| — ii2 i3 [ii4 |i5|in|RTI| — | —|—|—|DN2|—|—
Decode nl |JSR|JSR|[JSR [JSR| ii2 | ii3 | ii4 | ii5 | iin | RTI|RTI|RTI|RTI|RTI| n2 | —
Execute nl [JSR|[JSR|JSR|JSR|ii2 | ii3 | ii4 | ii5 | iin |RTI|RTI|RTI|RTI|RTI| n2

Instruction Cycle Count 1|2 3 4 5 6 7 891011 |12 |13 |14 | 15| 16 | 17 | 18

i = Interrupt
ii = Interrupt Instruction Word
n = Normal Instruction Word

(b) Program Controller Pipeline AA0OBS

Figure 7-5. Interrupt Service Routine

Figure 7-5 demonstrates the interrupt pipeline. The point at which interrupts are re-enabled and subsequent
interrupts are allowed is shown to illustrate the non-interruptible nature of the early instructionsin the long

interrupt service routine.

Reset is a specia exception, which will normally contain only a IMP instruction at the exception start
address.

There isonly one case in which the stacked address will not point to theillegal instruction. If theillegal
instruction follows an REP instruction (see Figure 7-6), the processor will effectively execute the illegal
instruction as a repeated NOP, and the interrupt vector will then be inserted in the pipeline. The next
instruction will be fetched, decoded, and executed normally.

Q mororoLa Interrupts and the Processing States 7-15

Interrupts and the Processing States

lllegal Instruction Interrupt
Recognized as Pending

Interrupt Control Cycle 1 i

Interrupt Control Cycle 2 i

Fetch nl | n2|n3|n4d|REP| n6 n7 — — | — |l |ii2 | n8

Decode nl|n2|n3| nd |[REP| I — — | — | — |1]ii2 | n8
Execute nl|n2 | n3 nd |REP|REP|REP| Il | — | — [i1 | ii2 | n8
Instruction Cycle Count 1 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13 | 14 | 15 | 16
i = Interrupt

ii = Interrupt Instruction Word
I = lllegal Instruction
n = Normal Instruction Word AA0070

Figure 7-6. Repeated lllegal Instruction

In DO loops, if theillega instruction isin the loop address (LA) location and the instruction preceding it
(that is, at LA-1) is being interrupted, the loop counter (LC) will be decremented asif the loop had reached
the LA instruction. When the interrupt service ends and the instruction flow returns to the loop, the
instruction after theillegal instruction will be fetched (since it isthe next sequential instruction in the
flow).

7.3.8 Interrupt Latency

Interrupt latency represents the time between when an interrupt regquest first appears and when the first
instruction in an interrupt service routine is actually executed. The interrupt can only take place on
instruction boundaries, and so the length of execution of an instruction affects interrupt latency.

There are some special casesto consider. The SWI, STOP, and WAIT instructions are not interruptible.
Likewise, the REP instruction and the instruction it repeats are not interruptible.

A REP instruction and the instruction that followsit are treated as a single two-word instruction, regardless
of how many times it repeats the second instruction of the pair. Instruction fetches are suspended and will
be reactivated only after the LC is decremented to one (see Figure 7-7). During the execution of n2in
Figure 7-7, no interrupts will be serviced. When LC finally decrementsto one, the fetches are re-initiated,
and pending interrupts can be serviced.

7-16 DSP56800 Family Manual @ MOTOROLA

Wait Processing State

Interrupt Main
Synchronized .and Program
Recognized
as Pending Fetches
n2
n2
n2
nl REP m n2
n2 Times | Instruction N2
/_> n3 Replaced Per
enapts na The REP Instruction
Re-enabled ns
n6 i1
i2
Interrupt
Service Routine Fetches
(From Between P:$0000 And

. . P:$003F)
i= Interrupt Instruction

n= Normal Instruction

(a) Instruction Fetches from Memory

___Interrupt Synchronized and
Recognized as Pending

— Interrupts Re-enabled

Y Y
Interrupt Control Cycle 1 i i
Interrupt Control Cycle 2 i% i
Fetch REP n2 n3 i1 ii2 n5 n6
Decode REP | REP | REP n2 n2 n2 n2 JSR | JSR | JSR | JSR
Execute REP | REP | REP n2 n2 n2 n2 JSR | JSR | JSR
Instruction Cycle Count 1 2 3 4 5 6 7 8 9 10 11 12
i = Interrupt

ii = Interrupt Instruction Word
n = Normal Instruction Word
i% = Interrupt Rejected

(b) Program Controller Pipeline AA0071

Figure 7-7. Interrupting a REP Instruction

7.4 Wait Processing State

The WAIT instruction brings the processor into the wait processing state, which is one of two low
power-consumption states. Asserting any valid interrupt request higher than the current processing level
(asdefined by the 11 and 10 bits in the status register) rel eases the DSP from the wait state. In the wait state
theinternal clock is disabled from all internal circuitry except the internal peripherals. All interna
processing is halted until an unmasked interrupt occurs or until the DSP is reset.

Q mororoLa Interrupts and the Processing States 7-17

Interrupts and the Processing States

Figure 7-8 shows a wait instruction being fetched, decoded, and executed. It is fetched asn3 in this
example and, during decode, is recognized as await instruction. The following instruction (n4) is aborted,
and the internal clock is disabled from all internal circuitry except the internal peripherals. The processor
staysin this state until an interrupt or reset isrecognized. The response timeis variable due to the timing of
the interrupt with respect to the internal clock.

Interrupt Synchronized and

| Recognized as Pending

Interrupt Control Cycle 1 \f i

Interrupt Control Cycle 2 \f i

Fetch n3 n4 — \' i1 | ii2 | i3 | ii4 | ii5 | i6 | n4

Decode n2 |WAIT| — \f i1 i2 i3 ii4 ii5 ii6 n4
Execute nl n2 | WAIT \f i1 ii2 i3 ii4 ii5 ii6 n4
Instruction Cycle Count 1 2 3 '}' 5 6 7 8 9 10 11 12 13 14 15
i = Interrupt A

ii = Interrupt Instruction Word

n = Normal Instruction Word Only Internal Peripherals

— Receive Clock
eceive Cloc AA0O74

Figure 7-8. Wait Instruction Timing

Figure 7-8 shows the result of aninterrupt bringing the processor out of the wait state. The two appropriate
interrupt vectors are fetched and put in the instruction pipe. The next instruction fetched is n4, which had
been aborted earlier. Instruction execution proceeds normally from this point.

Figure 7-9 shows an example of the wait instruction being executed at the same time that an interrupt is
pending. Instruction n4 is aborted, asin the preceding example. The wait instruction causes a
five-instruction-cycle delay from the time it is decoded, after which the interrupt is processed normally.
Theinternal clocks are not turned off, and the net effect isthat of executing eight NOP instructions
between the execution of n2 and iil.

Interrupt Synchronized and

‘ Recognized as Pending

Interrupt Control Cycle 1 i

Interrupt Control Cycle 2 i

Fetch n3 n4 — — — — — — i1 ii2 i3
Decode n2 WAIT — — — — — — — il i2
Execute nl n2 WAIT — — — — — — — il
Instruction Cycle Count 1 2 3 4 5 6 7 8 9 10 11

i= Interrupt N— -

ii= Interrupt Instruction Word o~

n= Normal Instruction Word Equivalent to Eight NOPs AA0075

Figure 7-9. Simultaneous Wait Instruction and Interrupt

7-18 DSP56800 Family Manual @ MOTOROLA

Stop Processing State

7.5 Stop Processing State

The STOP instruction brings the processor into the stop processing state, which is the lowest
power-consumption state. In the stop state the clock oscillator is gated off, whereas in the wait state the
clock oscillator remains active. The chip clears all peripheral interrupts and external interrupts (IRQA,
IRQB, and NMI) when it enters the stop state. Stack errors that were pending remain pending. The priority
levels of the peripherals remain as they were before the STOP instruction was executed. The on-chip
peripherals are held in their respective, individual reset states while the processor isin the stop state.

The stop processing state halts al activity in the processor until one of the following actions occurs:
« Alow level isapplied to the IRQA pin
« Alow level isapplied to the RESET pin
e Anon-chip timer reaches zero

Any of these actions will activate the oscillator, and after a clock stabilization delay, clocks to the
processor and peripherals will be re-enabled. The clock-stabilization delay period is equal to either 16 (T)
cyclesor 131,072 T cycles as determined by the stop delay (SD) bit in the OMR. One T cycleisequal to
one half of aclock cycle. For example, according to Table 6-33 on page 6-28, one NOP instruction
executesin 2 clock cycles; therefore, one NOP instruction executesin 4T cycles, i.e., 1 instruction cycle
eguals 2 clock cyclesand is equal to 4T cycles.

The stop sequence is composed of eight instruction cycles called stop cycles. They are differentiated from
normal instruction cycles because the fourth cycleis stretched for an indeterminate period of time while
the four-phase clock isturned off.

Asshownin Figure 7-10, the STOP instruction isfetched in stop cycle 1, decoded in stop cycle 2 (whichis
where it isfirst recognized as a stop command), and executed in stop cycle 3. The next instruction (n4) is
fetched during stop cycle 2 but is not decoded in stop cycle 3 because, by that time, the STOP instruction
prevents the decode. The processor stops the clock and enters the stop mode. The processor will stay in the
stop mode until it is restarted.

IRQA

[

Fetch n3 n4 — — — — '\f n4
Decode n2 |STOP| — — — — \f

Execute nl n2 |STOP |STOP|STOP| — \f
Stop Cycle Count 1 2 3 4 5 6 \‘ 7 8 9 10 11 12 (13)
IRQA = Interrupt Request A Signal '\]

n = Normal Instruction Word Resume Stop Cycle Count 4,

STOP = Interrupt Instruction Word Interrupts Enabled

131,072Tor1l6 T

Clock Stopped Cycle Count Started

AA0076

Figure 7-10. STOP Instruction Sequence

Figure 7-11 shows the system being restarted through asserting the IRQA signal. If the exit from the stop
state was caused by alow level on the IRQA pin, then the processor will service the highest priority
pending interrupt. If no interrupt is pending, then the processor resumes at the instruction following the
STOP instruction that brought the processor into the stop state.

Q mororoLa Interrupts and the Processing States 7-19

Interrupts and the Processing States

IRQA [

Fetch n3 n4 — — — — il
Decode n2 |STOP| — — — —

Execute nl n2 |STOP|STOP|STOP| —

Stop Cycle Count 1 2 3 4 5 6 7 8 9 10 11 12 (23)

131,072 Tor16T

IRQA = Interrupt Request A Signal
n = Normal Instruction Word Resume Stop Cycle Count 4,
STOP = Interrupt Instruction Word Interrupts Enabled

Clock Stopped Cycle Count Started

AAQ077

Figure 7-11. STOP Instruction Sequence

An IRQA deasserted before the end of the stop cycle count will not be recognized as pending. If IRQA is
asserted when the stop cycle count completes, then an IRQA interrupt will be recognized as pending and
will be arbitrated with any other interrupts.

Specifically, when IRQA is asserted, theinternal clock generator is started and begins a delay determined
by the SD bit of the OMR. When the chip usesthe internal clock oscillator, the SD bit should be set to zero
to allow alonger delay time of 128K T cycles (131,072 T cycles), so that the clock oscillator may stabilize.
When the chip uses a stable external clock, the SD bit may be set to one to alow a shorter (16 T cycle)
delay time and afaster startup of the chip.

For example, assume that the SD equals 0 so that the 128K T counter isused. During the 128K T count the
processor ignores interrupts until the last few counts and, at that time, begins to synchronize them. At the
end of the 128K T cycle delay period, the chip restarts instruction processing, completes stop cycle 4
(interrupt arbitration occurs at thistime), and executes stop cycles5, 6, 7, and 8. (It takes 17 T from the end
of the 128K T delay to the first instruction fetch.) If the IRQA signal isreleased (pulled high) after a
minimum of 4T but after fewer than 128K T cycles, no IRQA interrupt will occur, and the instruction
fetched after stop cycle 8 will be the next sequential instruction (n4 in Figure 7-10). An IRQA interrupt
will be serviced as shown in Figure 7-11 if the following conditions are true:

1. ThelRQA signal had previously beeninitialized as leve sensitive.

2. IRQA isheld low from the end of the 128K T cycle delay counter to the end of stop cycle
count 8.

3. Nointerrupt with a higher interrupt level is pending.

If IRQA is not asserted during the last part of the STOP instruction sequence (6, 7, and 8) and if no
interrupts are pending, the processor will refetch the next sequential instruction (n4). Since the IRQA
signal is asserted, the processor will recognize the interrupt and fetch and execute the JSR instruction
located at P:$0010 and P:$0011 (the IRQA interrupt vector locations).

To ensure servicing IRQA immediately after leaving the stop state, the following steps must be taken
before the execution of the STOP instruction:

Define IRQA as level sensitive; an edge-triggered interrupt will not be serviced.

2. Ensure that no stack error is pending.
3. Execute the STOP instruction and enter the stop state.
4. Recover from the stop state by asserting the IRQA pin and holding it asserted for the entire

clock recovery time. If it islow, the IRQA vector will be fetched.

7-20 DSP56800 Family Manual @ MOTOROLA

Stop Processing State

5. Theexact elapsed time for clock recovery is unpredictable. The external devicethat asserts
IRQA must wait for some positive feedback, such as specific memory access or a change
in some predetermined 1/O pin, before deasserting IRQA.

The STOP sequencetotals 131,104 T cycles (if the SD equals 0) or 48 T cycles (if the SD equals 1) in
addition to the period with no clocks from the stop fetch to the IRQA vector fetch (or next instruction).
However, there is an additional delay if the internal oscillator is used. An indeterminate period of timeis
needed for the oscillator to begin oscillating and then stabilize its amplitude. The processor will still count
131,072 T cycles (or 16 T cycles), but the period of the first oscillator cycles will be irregular; thus, an
additional period of 19,000 T cycles should be allowed for oscillator irregularity (the specification
recommends a total minimum period of 150,000 T cyclesfor oscillator stabilization). If an external
oscillator is used that is already stabilized, no additional time is needed.

The PLL may or may not be disabled when the chip enters the stop state. If it is disabled and will not be
re-enabled when the chip leaves the stop state, the number of T cycles will be much greater because the
PLL must regain lock.

If the STOP instruction is executed when the IRQA signal is asserted, the clock generator will not be
stopped, but the four-phase clock will be disabled for the duration of the 128K T cycle (or 16 T cycle)
delay count. In this case the STOP instruction looks likea 131,072 T + 35 T cycle (or 51 T cycle) NOP,
since the STOP instruction itself is eight instruction cycleslong (32 T) and synchronization of IRQA is 3
T, totaling 35 T.

A stack error interrupt that is pending before the processor enters the stop state is not cleared and will
remain pending. During the clock-stabilization delay in stop mode, any edge-triggered IRQ interrupts are
cleared and ignored.

If RESET isused to restart the processor (see Figure 7-12), the 128K T cycle delay counter would not be
used, all pending interrupts would be discarded, and the processor would immediately enter the reset
processing state as described in Section 7.1, “Reset Processing State.” For example, the stabilization time
recommended in DSP56824 Technical Data for the clock (RESET should be asserted for thistime) isonly
50T for astabilized external clock, but isthe same 150,000 T for the internal oscillator. These stabilization
times are recommended and are not imposed by internal timers or time delays. The DSP fetches
instructionsimmediately after exiting reset. If the user wishesto usethe 128K T (or 16 T) delay counter, it
can be started by asserting IRQA for a short time (about two clock cycles).

RESET AI\IJ
Processor Enters
Reset State — — Processor Leaves Reset State
Y \
Interrupt Control Cycle 1 \f
Interrupt Control Cycle 2 \f
Fetch n3 n4 — — \1 nop nA nB nC nD nE
Decode n2 STOP — — \f nop nop nA nB nC nD
Execute nl n2 STOP — \f nop nop nop nA nB nC
Stop Cycle Count 1 2 3 4 \1
RESET= Interrupt T_ ’\]
n = Normal Instruction qud _ Clock Stopped
nA, nB, nC = Instructions in Reset Routine
STOP = Interrupt Instruction Word AA0078

Figure 7-12. STOP Instruction Sequence Recovering with RESET

Q mororoLa Interrupts and the Processing States 7-21

Interrupts and the Processing States

7.6 Debug Processing State

The debug processing state is a state where the DSP core is halted and under the control of the OnCE
debug port. Serial datais shifted in and out of this port, and it is possible to execute single instructions
from this processing state. The debug processing state and the operation of the OnCE port is covered in
more detail in Chapter 9, “JTAG and On-Chip Emulation (OnCE™).”

7-22 DSP56800 Family Manual @ MOTOROLA

Chapter 8

Software Technigques

Different software technigues can be used to fully exploit the DSP56800 architecture’ s resources and
enhance its features. For example, small sequences of DSP56800 instructions can emul ate more powerful
instructions. This chapter discusses how better performance can be obtained from the DSP56800
architecture using software techniques. The following topics are covered:

e Synthesizing useful new instructions

e Techniquesfor shifting 16- and 32-bit values

e Incrementing and decrementing

« Division techniques

e Pushing variables onto the software stack

« Different looping and nested-looping techniques

» Different techniques for array indexing

e Parameter passing and local variables

* Freeing up registers for time-critical loops

e Interrupt programming

e Jumpsand JSRs using aregister value

* Freeing one hardware stack (HWS) location

e Multi-tasking and the HWS

8.1 Useful Instruction Operations

The flexible instruction set of the DSP56800 architecture allows new instructions to be synthesized from
existing DSP56800 instructions. This section presents some of these useful operations that are not directly
supported by the DSP56800 instruction set, but can be efficiently synthesized. Table 8-1 lists operations
that can be synthesized using DSP56800 instructions.

Table 8-1. Operations Synthesized Using DSP56800 Instructions

Operation

Description

JRSET, JRCLR

Jumps if all selected bits in bit field is set or clear

BR1SET, BR1CLR

Branches if at least one selected bit in bit field is set or clear

JR1SET, JR1CLR

Jumps if at least one selected bit in bit field is set or clear

0 MOTOROLA

Software Techniques 8-1

Software Techniques

Table 8-1. Operations Synthesized Using DSP56800 Instructions (Continued)

Operation Description

JVS, JVC, BVS, BVC Jumps or branches if the overflow bit is set or clear

JPL, JMI, JES, JEC, JLMS, JLMC, Jumps or branches on other condition codes
BPL, BMI, BES, BEC, BLMS, BLMC

NEGW Negates of upper two registers of an accumulator

NEG Negates another data ALU register, an AGU register, or a memory location
XCHG Exchanges any two registers

MAX Returns the maximum of two registers

MIN Returns the minimum of two registers

Accumulator sign extend Sign extends the accumulator into the A2 or B2 portion

Accumulator unsigned load Zeros the accumulator LSP and extension register

8.1.1 Jumps and Branches

Several operations for jumping and branching can be emulated, depending on selected bitsin a bit field,
overflows, or other condition codes.

8.1.1.1 JRSET and JRCLR Operations

The JRSET and JRCLR operations are very similar to the BRSET and BRCLR instructions. They still test
abit field and go to another address if all masked bits are either set or cleared. The BRSET and BRCLR
instructions only alow branches of 64 locations away from the current instruction and can only test an
8-hit field; however, JRSET and JRCLR operations allow jumps to anywhere in the 64K-word program
address space, and can specify a 16-bit mask. The following code shows that these two operations allow
the same addressing modes as the BFTSTH and BFTSTL instructions.

Example 8-1. JRSET and JRCLR

; JRSET (peration
; Erulated in 5 1cyc (4 lcyc if false), 4 Instruction Wrds
BFTSTH #XXXX, X <ea> ; 16-bit mask al | oned
JCs | abel ; 16-bit junp address all owed

; JROLR Qperation
; Erulated in 5 1cyc (4 lcyc if false), 4 Instruction Wrds
BFTSTL H#XXXX, X <ea> ; 16-bit mask al | owed
JCS | abel ; 16-bit junp address al |l owed

8-2 DSP56800 Family Manual @ mororoLa

Useful Instruction Operations

8.1.1.2 BRI1SET and BR1CLR Operations

The BR1SET and BR1CLR operations are very similar to the BRSET and BRCLR instructions. They still
test a bit field and branch to another address based on the result of some test. The differenceisthat for
BRSET and BRCLR the conditionistrueif all selected bits in the bit field are 1s or 0s, respectively,
whereas for BR1SET and BR1CLR the condition istrue if at least one of the selected bitsin the bit field is
alorO, respectively. BRISET and BR1CLR operations can also specify a 16-bit mask, compared to an
8-bit mask for BRSET and BRCLR. The following code shows that these two operations allow the same
addressing modes as the BFTSTH and BFTSTL instructions.

Example 8-2. BR1SET and BR1CLR

; BRLSET (peration
; Erulated in 5 1cyc (4 lcyc if false), 3 Instruction Wrds
BFTSTL #XXXX, X <ea> ; 16-bit mask al | oned
BCC | abel ; 7-bit signed PCrelative offset allowed

; BRLCLR (peration
; BErulated in 5 1cyc (4 lcyc if false), 3 Instruction Wrds
BFTSTH #XXXX, X <ea> ; 16-bit nmask al | oned
BCC | abel ; 7-bit signed PCrelative offset allowed

8.1.1.3 JRI1SET and JR1CLR Operations

The JR1ISET and JR1CLR operations are very similar to the JRSET and JRCLR instructions. They till test
abit field and jump to another address based on the result of some test. The differenceisthat for JRSET
and JRCLR the conditionistrueif all selected bitsin the bit field are 1s or Os, respectively, whereas for
JR1SET and JR1CLR the condition istrueif at least one of the selected bitsin the bit fieldisa 1 or 0,
respectively. JRISET and JR1CLR operations allow jumpsto anywhere in the 64K -word program address
space, and can specify a 16-bit mask. The following code shows that these two operations allow the same
addressing modes as the BFTSTH and BFTSTL instructions.

Example 8-3. JR1SET and JR1CLR

; JRLSET (peration
; Erulated in 5 1cyc (4 lcyc if false), 4 Instruction Wrds
BFTSTL H#XXXX, X <ea> ; 16-bit mask al | owed
JcC | abel ; 16-bit junp address al |l owed

; JRLCOLR (peration
; BErulated in 5 1cyc (4 lcyc if false), 4 Instruction Wrds
BFTSTH H#XXXX, X <ea> ; 16-bit mask al | owed
JcC | abel ; 16-bit junp address all owed

Q mororoLa Software Techniques 8-3

Software Techniques

8.1.1.4 JVS, JVC, BVS, and BVC Operations

Although there is no instruction for jumping or branching on overflow, such an operation can be emulated
as shown in the following code. Note that the carry bit will be destroyed by this operation since it receives
the result of the BFTSTH ingtruction. The following code shows VS and BV C.

Example 8-4. JVS, JVC, BVS and BVC

; JVS (peration
; Erulated in 5 1cyc (4 lcyc if false), 4 Instruction Wrds
BFTSTH #$0002, SR ; Test Vbit in SR
JCs | abel ; 16-bit junp address all owed

; BVC Q(peration
Enulated in 5 Icyc (4 Icyc if false), 3 Instruction Wrds
BFTSTH #$0002, SR ; Test Vbit in SR
BCC | abel ; 7-bit signed PCrelative offset allowed

8.1.1.5 Other Jumps and Branches on Condition Codes

Jumping and branching using some of the other condition codes (PL, M1, EC, ES, LC, LS) can be
accomplished in the same manner as for overflow; see Section 8.1.1.4, “JVS, JVC, BVS, and BVC
Operations.” Remember that this technique destroys the value in the carry bit. The following code shows
JPL and BES.

Example 8-5. JPL and BES

; JPL Q(peration
; Erulated in 5 1cyc (4 lcyc if false), 4 Instruction Wrds
BFTSTH #$0008, SR ; Test the Nbit in SR
JcC | abel ; 16-bit junp address all owed

BES (peration
Enulated in 5 Icyc (4 Icyc if false), 3 Instruction Wrds
BFTSTH #%$0020, SR ; Test Ebit in SR
BCS | abel ; 7-bit signed PCrelative offset allowed

Similar code can be written for M1, JEC, JES, JLMC, JLMS, BPL, BMI, BEC, BLMC, and BLMS. The
JLMS and JLMC are used for “jump if limit set” and “jump if limit clear,” respectively; thisis doneto
avoid any confusion with the JLS (“jump if lower or same”) instruction.

8.1.2 Negation Operations

The NEGW operation can be used to negate the upper two registers of the accumulator. The NEG
operation can be used to negate the X0, YO, or Y 1 data ALU registers, negate an AGU register, or negate a
memory location.

8.1.2.1 NEGW Operation

The NEGW operation can be emulated as shown in the following code:

20-bit NEGN (peration
; Qperates on EXT: M5P, dears LSP, 3 lcyc

MOVE #0, AO ; Qear LSP
NEG A ; Now negat es upper 20 bits of accumul ator
; since AD =0

This correctly negates the upper 20 bits of the accumulator, but also destroys the AO register.

8-4 DSP56800 Family Manual @ mororoLa

Useful Instruction Operations

The NEG instruction can be used directly, executing in one instruction cycle, in caseswhereit is already
known that the least significant portion (LSP) of an accumulator is $0000. Thisistrue immediately after a
value is moved to the A or B accumulator from memory or aregister, as shown in the following code:

; Exanpl e of 1 Icyc NEGN (peration
; Works because AD is already equal to $0000

MOVE X (RJ),A ; Move a 16-bit value to an accunul ator,
clearing AO register
NEG A ; Now negates upper 20 bits of accumul ator
; since AO =0

The technique shown in the following code can be used for cases when 16-bit datais being processed and
when it can be guaranteed that the L SP or extension register of the accumulator contains no required
information:

16-bit NEGN (peration
Qperates on MSP, Forces EXT to sign extension, LSP to $0, 2 Icyc
MOVE

Al, A ; Force A2 to sign extension,
; force AD cleared
NEG A ; Now negates upper 20 bits of accumul ator
; since AO =0

The following technique may be used for the case where the CC bitinthe SR is set to a 1, the LSP may not
be $0000, and the user is not interested in the values in the accumulator extension registers:
; 16-bit NEGN Qperati on
; OC bit nmust be set, operates on MBP, doesn't affect AO0, 2 Icyc
NOT A ; ne’ s-conpl enent of Al, A2 unchanged

I NCW A ; Increnent to get two' s-conpl enent,
; A2 may be incorrect

8.1.2.2 Negating the X0, YO, or Y1 Data ALU registers

Although the NEG instruction is supported on accumulators only, NEG can be emulated to perform a
negation of the data ALU’s X0, YO, or Y 1 registers, as shown in the following code:

NEG (per ati on

Enul ated at 2 Icyc
NOT YO
| NCW YO

8.1.2.3 Negating an AGU register

It is possibleto negate one of the AGU registers (Rn) without destroying any other register, as shown in the
following code:

NEG (per ati on

Enul ated at 3 Icyc
NOTC RO
LEA (RO) +

8.1.2.4 Negating a Memory Location

It is possible to negate a memory location, as shown in the following code:

; NEG (peration
; BErulated at 5 Icyc
NOTC X $19
I NCW X $19
When an accumulator is available, it may be faster to do this operation simply by moving the value to an
accumulator, performing the operation there, and moving the result back to memory.

Q mororoLa Software Techniques 8-5

Software Techniques

8.1.3 Register Exchanges

The XCHG operation can be emulated as shown in the following code:

; XCHG (perati on
; BErulated at 4 Icyc

PUSH X0
MOVE A X0
PCP A

If aregister isavailable, the exchange of any two registers can be emulated as shown in the following code:

; XCHG (perati on
Enul ated at 3 Icyc

MOVE X0, N
MOVE A X0
MOVE N A

A faster exchange of any two registers can be emulated using one address register when N equals 0, as
shown in the following code:

; XCHG perati on

; Nregister is 0, Enulated at 2 Icyc
MOVE A X (RO)
TFR X0,A X (RO)+N X0

8.1.4 Minimum and Maximum Values

The MAX operation returns the maximum of two values; the MIN operation return the minimum.

8.1.4.1 MAX Operation

The MAX operation can be emulated as shown in the following code:

MAX Qper ati on
VAX X0, A

------ becormes ------

; MAX operation
Enul ated at 4 Icyc

TGT X0, A ; (can also use TGE if desired)

8-6 DSP56800 Family Manual @ mororoLa

Useful Instruction Operations

8.1.4.2 MIN Operation

The MIN operation can be emulated as shown in the following code:

; MN Qperation
M N Y0, A

e becones ------

; M N (peration
; BErulated at 4 Icyc
aw YO, A
TLT YO, A ; (can al so use TLE if desired)

8.1.5 Accumulator Sign Extend

There are two versions of this operation. In the first, the accumulator only contains 16 bits of useful
information in Al or B1, and it is necessary to sign extend into A2 or B2. In the second version, both A1
and AO or B1 and BO contain useful information. The following code shows both versions:

Si gn-Extensi on (peration of 16-bit Accumul ator Data
Enulated in 1 Icyc, 1 Instruction Wrds
MOVE Al A ; Sign extend into A2, clear AD register

Sign-Extensi on (peration of 32-bit Accumul ator Data
; Eulated in 4 lcyc, 4 Instruction Wrds

PUSH A0 ; Save AO register
MOVE Al A ; Sign extend into A2, clear AD register
PCP A0 ; Restore AD register to correct contents

8.1.6 Unsigned Load of an Accumulator

The unsigned load of an accumulator, which zeros the L SP and extension register, can be exactly emulated
as shown in the following code:

; DSP56100 Fanmily Unsigned Load
Enul ated at 2 Icyc
MOVE x: (RD), A
ZERO A

------ becormes ------

DSP56800 Fam |y Unsi gned Load
Enul ated at 2 Icyc
CR A
MOVE x: (R0), A1
This operation isimportant for processing unsigned numbers when the CC bit in the operating mode
register (OMR) register isa0, so that the condition codes are set using information at bit 35. This operation
is useful for performing unsigned additions and subtractions on 36-bit values.

Q) mororoLa Software Techniques 8-7

Software Techniques

8.2 16- and 32-Bit Shift Operations

This technique presents many different methods for performing shift operations on the DSP56800
architecture. Different techniques offer different advantages. Some techniques require several registers,
while others can be performed only on the register to be shifted. It is even possible to shift the value in one
register but place the result in a different register. Techniques are also presented for shifting 36-bit values
by large immediate values.

8.2.1 Small Immediate 16- or 32-Bit Shifts

If itisonly necessary to shift aregister or accumulator by a small amount, one of the two techniques shown
in the following code may be adequate. These techniques may also be appropriate if there are no registers
available for use in the shifting operation, since more than one register is required with the multi-bit
shifting instructions. For cases where the amount of bit positions to shift islarger than three for 16-bit
registers or five for a 32-bit value, then it may be appropriate to use another technique.

; First Technique - Shift an Accunulator by 3 Bits - UWse Inline Code
A

ASL
ASL A
ASL A
; Second Techni que - Shift an Accurul ator by 6 Bits - Use REP Loop
REP #6
ASL A

For placesin a program that are executed infrequently, the second technique of using a REP (or DO) loop
results in the smallest code size.

8.2.2 General 16-Bit Shifts

For fast 16-bit shifting, the ASLL, ASRR, LSLL, and LSRR alow for single-cycle shifting of a 16-bit
value where the shift count is specified by aregister. If it is desired to shift by an immediate value, the
immediate value must first be loaded into a register as shown in the following code:

; Shifting a 16-Bit Value by an | nmredi ate Val ue
Executes in 2 lcyc, 2 Instruction Wrds
MOVE #7, X0 ; Load shift count into the X0 register
ASLL YO, X0, YO ; Arithnetically shift the contents of YO
; 7 bits to the left

Note that these instructions clear the L SP of an accumulator. It is possible to perform aright shift where
the bits shifted into the L SP of the accumulator are not lost. Instead of using the ASRR or LSRR
instructions, a CLR instruction isfirst used to clear the accumulator, and then an ASRAC or LSRAC
instruction is performed. This technique allows a 16-bit value to be right shifted into a 32-bit field, as
shown in the following code:

; Shifting a 16-bit Value into a 32-bit field
Executes in 2 lcyc, 2 Instruction Wrds
AR A ; O ear accunul ator
ASRAC YO, X0, A ; Arithnetically shift into a 32-bit field

8-8 DSP56800 Family Manual @ mororoLa

16- and 32-Bit Shift Operations

8.2.3 General 32-Bit Arithmetic Right Shifts

It is possible to perform right shifting of up to 15 bits on 32-bit values using the techniques presented in
this section.

The following example shows how to arithmetically shift the 32-bit contents of the Y 1.Y 0 registers,
storing the results into the A accumulator. Note that this technique uses many of the data ALU registers:
Y 1 and YO to hold the value to be shifted, X0 to hold the amount to be shifted, and the A accumulator to
store the result. The following code allows shifts of 0 to 15 bits and executes in five instruction cycles.

; Arithnetically Shift Y1: YO Register Conbination by 8 bits
Enulated in 5 Icyc, 5 Instruction Wrds

MOVE #8, X0

LSRR YO, X0, A ; Logically shift |ower word

MOVE Al, AO ; 16-bit arithmetic right shift

MOVE A2, Al

ASRAC Y1, X0, A ; Arithnetically shift upper word and

conbine with | oner word

If it is necessary to shift by more than 15 bits, then the following code should be preceded by a shift of 16
bits, as documented later in this section.

Similar code that follows shows how to arithmetically shift the 32-bit value in the A accumulator. Again,
this technique takes several registers: Y 1 to hold the most significant word (M SW) to be shifted and Y0 to
hold the amount to be shifted. This, perhaps, is only useful when the amount to be shifted isa variable
amount or when the amount to be shifted is eight or more and the Y1 and Y O registers are available. Note
that the extension register (A2) is not shifted in this case.

; Arithnetically Shift Al: AO Accunul ator by 11 bits
Enulated in 7 lcyc, 7 Instruction Wrds

MOVE #11, YO

MOVE Al, Y1 ; Save copy of Al register (upper word
; to be shifted)

MOVE A0, A1

LSRR Al, YO, A ; Logically shift |ower word

MOVE Al, AO ; 16-bit arithmetic right shift

MOVE A2, Al

ASRAC Y1, YO, A ; Arithnetically shift upper word and

conbine with | oner word

8.2.4 General 32-Bit Logical Right Shifts

Right shifting logically isidentical to right shifting arithmetically except for the final shift instruction. For
arithmetic shifts of 32-bit valuesthe final instruction isan ASRAC instruction, and for logical shifts of
32-bit values the final instruction isa LSRAC instruction. Thisis shown in the following code:

Logically Shift Y1: YO Register Conbination by 8 bits
Enulated in 5 Icyc, 5 Instruction Wrds

MOVE #8, X0

LSRR YO, X0, A ; Logically shift |ower word
MOVE Al, AO ; 16-bit arithmetic right shift
MOVE A2, Al

LSRAC Y1, X0, A ; Logically shift upper word and

conbine with | oner word

Q mororoLa Software Techniques 8-9

Software Techniques

8.2.5 Arithmetic Shifts by a Fixed Amount

Arithmetic shifts (left or right) by afixed amount can be emulated with the ASRxx operations.

8.2.5.1 Right Shifts (ASR12—-ASR20)

For arithmetic right shiftsthere is afaster way to shift an accumulator for large shift counts. The following
code shows how to perform arithmetic right shifts of 12 through 20 bits on an accumulator. Thisemulation
works without destroying any registers on the chip. If desired, it is possible to use this technique for bit
shifts greater than 20, but it is not possible to use thistechnique for shifts of 11 or fewer bits without losing
information.

8-10 DSP56800 Family Manual @ MOTOROLA

16- and 32-Bit Shift Operations

; ASRL2 (peration
; BEulated in 8 Icyc
ASL
ASL
ASL
ASL
PUSH
MOVE
PCP

8 Instructi on Wrds

(PUSH is a 2-word, 2 lcyc nacro)

EZR>>>>
>

; ASRL3 (peration
; BEulated in 7 lcyc, 7 Instruction Wrds
ASL
ASL
ASL
PUSH
MOVE
PCP

; (PUSHis a 2-word, 2 lcyc nacro)

BRE>>>
>

; ASRL4 Cperation
; Erulated in 6 lcyc, 6 Instruction Wrds
ASL
ASL
PUSH
MOVE
PCP

; (PUSHis a 2-word, 2 lcyc macro)

BHE>>
>

; ASRL5 (peration
; Erulated in 5 lcyc, 5 Instruction Wrds
ASL
PUSH
MOVE
PCP

; (PUSHis a 2-word, 2 lcyc macro)
A

BBR>

; ASRL6 Cperation

; Erulated in 2 lcyc, 2 Instruction Wrds
MOVE , AD ; (Assunes EXT contains sign extension)
MOVE , Al

Q&

; ASRL7 Cperation
; BErulated in 3 lcyc, 3 Instruction Wrds
ASR A

MOVE Al, AQ ; (Assunes EXT contains sign extension)
MOVE A2, Al

; ASRI8 (peration
; Erulated in 4 lcyc, 4 Instruction Wrds
ASR
ASR
MOVE
MOVE

Se>>

, AO ; (Assunes EXT contains sign extension)
Al

; ASRL9 (peration
; Erulated in 5 lcyc, 5 Instruction Wrds
ASR
ASR
ASR
MOVE
MOVE

> > >

, AO ; (Assunes EXT contains sign extension)
Al

; ASR20 (peration
; Erulated in 6 lcyc, 6 Instruction Wrds
ASR

ASR
ASR
ASR

>>r>

Q mororoLa Software Techniques 8-11

Software Techniques

MOVE Al, A0 ; (Assunes EXT contains sign extension)
MOVE A2, Al

8.2.5.2 Left Shifts (ASL16-ASL19)

For arithmetic left shiftsthereis afaster way to shift an accumulator for large shift counts. The following
code shows how to perform arithmetic left shifts of 16 through 19 bits on an accumulator. This emulation
works without destroying any registers on the chip. If desired, it is possible to use this technique for bit
shifts greater than 19, but it is not possible for shifts of 15 or fewer bits without losing information.
; ASL16 Cperation
; Erulated in 4 lcyc, 4 Instruction Wrds

PUSH ; (PUSHis a 2-word, 2 lcyc macro)

MOVE
PCP

A

RBR

; ASL17 Cperation
; Erulated in 5 lcyc, 5 Instruction Wrds
ASL
PUSH
MOVE
PCP

; (PUSHis a 2-word, 2 lcyc nacro)
A

RBR>

; ASL18 (peration
; Erulated in 6 lcyc, 6 Instruction Wrds
ASL
ASL

PUSH
MOVE
PCP

(PUSH is a 2-word,

BEE>>
>

2 lcyc macro)

; ASL19 (peration
; Eulated in 7 lcyc, 7 Instruction Wrds
ASL
ASL
ASL
PUSH
MOVE
PCP

(PUSH is a 2-word, 2 lcyc macro)

XBER>>>
>

8-12 DSP56800 Family Manual @ MOTOROLA

Incrementing and Decrementing Operations

8.3 Incrementing and Decrementing Operations

Almost any piece of data can be incremented or decremented. This section summari zes the different
increments and decrements available to both registers and memory locations. It isimportant to note the
LEA instruction, which isused to increment or decrement AGU pointer registers. The TSTW instructionis
also used for decrementing AGU pointer registers. Thisinstruction issimilar to LEA but also setsthe
condition codes, making it useful for program |ooping and other tasks. The LEA and TSTW instructions do
not cause a pipeline dependency in the AGU (see Section 4.4, “Pipeline Dependencies,” on page 4-33).
The TSTW instruction is not available for incrementing an AGU pointer or for decrementing the SP
register.

D fferent ways to increnment on the DSP56800 core

| NCW A ; on a Data ALU Accunul at or

I NCW X0 ; on a Data ALU I nput Register

LEA (Rn) + ; on an AQJ pointer register (RO-R3 or SP)

I NCW X $0 ; on anywhere within the first 64 |ocations
; of X data nenory

I NCW X $C200 ; on anywhere within the entire 64K | ocations
; of X data nenory

I NCW X (SP-37) ; on a value |ocated on the stack

D fferent ways to decrenent on the DSP56800 core

DECW A ; on a Data ALU Accunul at or

DECW X0 ; on a Data ALU I nput Register

LEA (Rn) - ; on an AQJ pointer register (RO-R3 or SP)

TSTW (Rn) - ; on an AQJ pointer register (R0O-R3)

DECW X $0 ; on anywhere within the first 64 |ocations
; of X data nenory

DECW X: $C200 ; on anywhere within the entire 64K | ocations
; of X data nenory

DECW X (SP-37) ; on a value |ocated on the stack

The many different techniques available help to prevent registers from being destroyed. Otherwise, as
found on other architectures, it is necessary to first move data to an accumulator to perform an increment.

8.4 Division

It ispossibleto perform fractional or integer division on the DSP56800 core. There are several questionsto
consider when implementing division on the DSP core:

« Areboth operands always guaranteed to be positive?
e Areoperands fractional or integer?
* Isonly the quotient needed, or is the remainder needed as well?
« Will the calculated quotient fit in 16 bitsin integer division?
« Arethe operands signed or unsigned?
« How many bits of precision are in the dividend?
e What about overflow in fractional and integer division?
e Will there be “integer division” effects?
NOTE:

In adivision equation, the “dividend” isthe numerator, the “divisor” isthe
denominator, and the “quotient” is the result.

Q mororoLa Software Techniques 8-13

Software Techniques

Once all these questions have been answered, it is possible to select the appropriate division algorithm. The
fractional agorithms support a 32-bit signed dividend, and the integer algorithms support a 31-bit signed
dividend. All algorithms support a 16-bit divisor.

Note that the most general division algorithms are the fractional and integer algorithms for four-quadrant
division that generate both a quotient and a remainder. These take the largest number of instruction cycles
to complete and use the most registers.

For extended precision division, where the number of quotient bits required is more than 16, the DIV
instruction and routines presented in this section are no longer applicable. For further information on
division algorithms, consult the following references (or others as required):

Theory and Application of Digital Sgnal Processing, Lawrence R. Rabiner and Bernard Gold
(Prentice-Hall: 1975), pages 524-530.

Computer Architecture and Organization, John Hayes (McGraw-Hill: 1978), pages 190-199.

8.4.1 Positive Dividend and Divisor with Remainder

The agorithmsin the following code are the fastest and take the least amount of program memory. In order
to use these algorithms, it must be guaranteed that both the dividend and divisor are both positive, signed,
two’ s-complement numbers. One algorithm is presented for the division of fractional numbers and a
second is presented for the division of integer numbers. Both algorithms generate the correct positive
quotient and positive remainder.

; Dvision of Fractional, Positive Data (B1:B0 / X0)

BFCLR #$0001, SR ; Oear carry bit: required for first DV
REP 16

DV X0, B ; Formpositive quotient in BO

ADD X0, B ; Restore remai nder in Bl

; (At this point, the positive quotient is
; in B0 and the positive renainder is in Bl)

; Dvision of Integer, Positive Data (Bl:B0O / X0)

ASL B ;Shift of dividend required for integer
; division
BFCLR #$0001, SR ;Aear carry bit: required for first DV
REP 16
DV X0, B ; Formpositive quotient in BO
MOVE BO, Y1 ; Save quotient in Yl

; (At this point, the positive quotient is in
BO but the remainder is not yet correct)
ADD X0, B ; Restore renai nder in Bl
ASR B ; Required for correct integer renai nder
; (At this point, the correct positive
; remainder is in Bl)

8-14 DSP56800 Family Manual @ MOTOROLA

Division

8.4.2 Signed Dividend and Divisor with No Remainder

The agorithmsin the following code provide fast ways to divide two signed, two’ s-complement numbers.
These algorithms are faster because they generate the quotient only; they do not generate a correct
remainder. The algorithms are referred to as four-quadrant division because they allow any combination of
positive or negative operands for the dividend and divisor. One algorithm is presented for the division of
fractional numbers, and a second is presented for the division of integer numbers.

; 4 Quadrant Dvision of Fractional, Signed Data (B1:B0 / X0)
CGenerates signed quotient only, no remai nder

7 Setup
MOVE B, Y1 ;Save Sign Bit of dividend (Bl) in MSB of Y1
ABS B ; Force dividend positive
ECR X0, Y1 ;Save sign bit of quotient in Nbit of SR
BFCLR #$0001, SR ;Aear carry bit: required for 1st DV instr
D vi si on
REP 16
DV X0, B ; Formpositive quotient in BO
Correct quotient
B&E DONE ;If correct result is positive, then done
NEG B ;El se negate to get correct negative result
DONE

; (At this point, the correctly signed
; quotient is in but the renai nder is not
correct)

; 4 Quadrant Dvision of Integer, Signed Data (B1l: B0 / X0)
Cenerates signed quotient only, no remai nder

7 Setup
ASL B ;Shift of dividend required for integer
; division
MOVE B, Y1 ;Save Sign Bit of dividend (Bl) in MSB of Y1
ABS B ; Force dividend positive
ECR X0, Y1 ;Save sign bit of quotient in Nbit of SR
BFCLR #$0001, SR ;Aear carry bit: required for 1st DV instr
; Division
REP 16
DV X0, B ; Formpositive quotient in BO
; Correct quotient
B&GE DONE ;If correct result is positive, then done
NEG B ;Else negate to get correct negative result
DCONE

(At this point, the correctly signed
; quotient is in but the renai nder is not
; correct)

Q mororoLa Software Techniques 8-15

Software Techniques

8.4.3 Signed Dividend and Divisor with Remainder

The algorithmsin the following code are another way to divide two signed numbers, where both the
dividend or the divisor are signed two’ s-complement numbers (positive or negative). These algorithms are
the most general because they generate both a correct quotient and a correct remainder. The algorithms are
referred to as 4 quadrant division because these algorithms allow any combination of positive or negative
operands for the dividend and divisor. One algorithm is presented for division of fractional numbersand a
second is presented for the division of integer numbers.

8-16 DSP56800 Family Manual @ MOTOROLA

Division

Four-Quadrant D vision of Fractional, Signed Data (B1: B0 / X0)
CGenerates signed quotient and remai nder

Set up
MOVE
MOVE
ABS
ECR
BFCLR

D vi sion
REP
DV

Correct quotient
TFR
BCE
NEG

B1, A ; Save sign bit of dividend (Bl) in MSB of Al
B1, N ;Save sign bit of dividend (Bl) in MSB of N
B ; Force dividend positive

X0, Y1 ;Save sign bit of quotient in Nbit of SR
#$0001, SR ;Aear carry bit: required for first DIV instruction
16

X0, B

B A

DOONE ;If correct result is positive, then done

B ; Else negate to get correct negative result
A0, Y1 ;YL <- True quotient

X0, A ;A <- Signed divisor

A ;A < Absol ute val ue of divisor

B A ; Al <- Restored renai nder

#$8000, N, DONE

#0, AD

A

(At this point, the correctly signed
; quotient is in Yl and the correct
; remainder in Al)

Four-Quadrant D vision of Integer, Signed Data (Bl:B0 / X0)
CGenerat es signed quotient and remai nder

Set up
ASL

MOVE
MOVE
ABS
ECR
BFCLR

;D vision

REP
DV
Correct quotient
TFR
BCE
NEG

0 MOTOROLA

B ;Shift of dividend required for integer
; division
Bl, A ; Save sign bit of dividend (Bl) in MSB of Al
B1, N ;Save sign bit of dividend (Bl) in MSB of N
B ; Force dividend positive
X0, Y1 ;Save sign bit of quotient in Nbit of SR
#$0001, SR ;Aear carry bit: required for first DIV instruction
16
X0, B
B A
DOONE ;If correct result is positive, then done
B ; Else negate to get correct negative result
A0, Y1 ;YL <- True quotient
X0, A ;A <- Signed divisor
A ;A <- Absolute Value of divisor
B A ; Al <- Restored renai nder
#$8000, N, DONE
#0, AD
A
B ;Shift required for correct integer renai nder

; (At this point, signed quotient in Y1, correct
; remainder in Al)

Software Techniques 8-17

Software Techniques

8.4.4 Algorithm Examples
This subsection provides examples of values calculated with the division algorithms in this section.

Example 8-6. Simple Fractional Division

A simple example of fractional division is the following case:
0.125/0.5=0.25

For this case a positive fractional algorithm can be selected. Converting the fractional numbers into hex gives the fol-
lowing division:

$10000000 / $4000
This gives the following results:

quotient = $2000 = 0.25
remainder = 0

Example 8-7. Signed Fractional Division

Another example of fractional division is the following case:
-0.2628712165169417858123779297 / 0.39035034179687500 = -0.6734008789062500

For this case a four-quadrant fractional algorithm can be selected. Converting the fractional numbers into hex gives
the following division:

$de5a3c69 / $31f7
This gives the following results:
quotient = $a9ce = -0.6734008789062500

Example 8-8. Simple Integer Division

A simple example of integer division is the following case:
64 /9 =7 (remainder = 1)
For this case a positive integer algorithm can be selected. Converting the integer numbers into hex gives the follow-
ing division:
$00000040 / $0009
This gives the following results:

quotient = $0007 = 7
remainder = 1

Example 8-9. Signed Integer Division

Another example of integer division is the following case:
-492789125 / -15896 = 31000

For this case a four-quadrant integer algorithm can be selected. Converting the integer numbers into hex gives the
following division:

$e2a0a27b / $cle8
This gives the following results:
quotient = $7918 = 31000

The results can be easily checked by multiplying the quotient by the divisor and adding the remainder to
this product. The final answer should be the same as the original dividend.

8-18 DSP56800 Family Manual @ MOTOROLA

Multiple Value Pushes

8.4.5 Overflow Cases

Both integer and fractional division are subject to division overflow. Overflow is the case where the
correct value of the quotient will not fit into the destination available to store it.

For division of fractional numbers, the result must be a 16-bit, signed fractional value greater than or equal
to -1.0 and lessthan 1.0 - 2IN-1 1n other words, it must satisfy the following:

-1.0 < quotient < +1.0 - 2-[N-1]

For the case where the magnitude of the dividend islarger than the magnitude of the divisor, thisinequality
will not be true because any result generated will be larger in magnitude than 1.0. Thus, division overflow
occurs with fractional numbers for the case where the absolute value of the divisor is less than or equal to
the absol ute value of the dividend:

|divisor| < |dividend|

If this condition can be true when dividing fractional numbers, it must be prevented from occurring by first
scaling the dividend.

For the division of integer numbers, the result must be a 16-bit, signed integer value greater than or equal
to -2 N1 and less than or equal to [2[N-1 -1], where N isequal to 16. In other words:

-2 N1 < quotient < [2INY -1], where N = 16

When integer numbers are being divided, it must be guaranteed that the final result can fit into a signed,
16-hit integer value. Otherwise, to prevent this from occurring, it is first necessary to scale the numerator.

8.5 Multiple Value Pushes

The DSP56800 core currently supports a one-word, one-instruction-cycle POP instruction for removing
information from the stack. The PUSH operation, however, is atwo-word, two-instruction-cycle macro,
which expands to the following code. (This instruction macro works quite well when pushing asingle
variable.)

Expansi on of the PUSH I nstruction Macro
Enulated in 2 lcyc, 2 Instruction Wrds
LEA (SP) + ; Increnent the SP (1 lcyc, 1 Wrd)
MOVE <register>, X (SP) ; Place value onto the stack
7 (1 lcye, 1 Wrd)

However, there is a better technique when it is necessary to push more than one value onto the software

stack. Instead of using consecutive PUSH instruction macros, it is more efficient and saves more
instruction words by expanding out the PUSH operation:

; Faster technique for pushing multiple values onto the stack
; Finishes in 5 lcyc, 5 Instruction Wrds
LEA (SP) + ; Increment SP
MOVE X0, X (SP)+
MOVE YO, X (SP) +
MOVE RO, X (SP)+
MOVE RIL, X (SP) ; No post-increment SP on [ast MOVE

In this case five instruction cycles and five words are used to push four values onto the software stack. If
the PUSH instruction macro had been used instead, it would have performed the same function in eight
instruction cycles with eight words.

Q mororoLa Software Techniques 8-19

Software Techniques

Another use of the PUSH instruction isfor temporary storage. Sometimes atemporary variable isrequired,
such as in swapping two registers. There are two techniques for doing this, the first using an unused
register and the second using alocation on the stack. The second technique uses the PUSH instruction
macro and works whenever there are no other registers available. The two techniques are shown in the
following code:

; Swapping two registers (X0, R0O) using an Avail abl e Register (N
; 3 lcyc, 3 Instruction Wrds

MOVE XO,N ; X0 -> TEMP
MOVE RO, X0 ; RO -> X0
MOVE NRO ; TEMP -> RO

; Swapping two registers (X0, R0O) using a Stack Location
; 4 lcyc, 4 Instruction Wrds

PUSH X0 ;X0 -> TEMWP
MOVE RO, X0 ;RO -> X0
PCP RO . TEMP -> RO

The operation is faster using an unused register if one is available. Often, the N register is agood choice
for temporary storage, as in the preceding example.

8.6 Loops

The DSP56800 core contains a powerful and flexible hardware DO loop mechanism. It allows for loop
countsup to 8,192, it allows alarge number of instructions (maximum of 64K) to reside within the body of
the loop, and hardware DO loops can be interrupted. In addition, loops execute correctly from both on-chip
and off-chip program memory, and it is possible to single step through the instructionsin the loop using the
OnCE port for emulation.

The DSP56800 core also contains a useful hardware REP loop mechanism, which isvery useful for very
simple, fast looping on asingle instruction. It is very useful for simple nesting when the inner loop only
contains asingle instruction. For a REP loop, the instruction to be repeated is only fetched once from
program memory, reducing activity on the buses. Thisis very useful when executing code from off-chip
program memory. However, REP loops are not interruptible.

8.6.1 Large Loops (Count Greater Than 63)

Currently, the DO instruction allows an immediate value up to the value 63 to be specified for the loop
count. When necessary, specifying an immediate value larger than 63 is done using one of the registers on
the DSP56800 core to specify the loop count. Since registers are a precious resource, it is desirable not to
use any important registers that may contain valid data. The following code shows a technique for
specifying loop counts greater than 63 without destroying any register values.

MOVE #2048, LC ; Specify a loop count greater than 63
; using the LC register
DO LC LABEL ; (LCregister used to avoid destroying

; anot her register)
; (instructions)
LABEL
Since the LC register is already a dedicated register used for looping and is always loaded by the DO
instruction, no information is lost when this register is used to specify alarger [oop count. Note that this
technique will also work with the LC register for nested loops, as long as the loading of the LC register
with immediate data occurs after the LC register is pushed for nested loops.

8-20 DSP56800 Family Manual @ MOTOROLA

Loops

NOTE:

This technique should not be used for the REP instruction because it will
destroy the vaue of the LC register if done by a REP instruction nested
within a hardware DO loop.

8.6.2 Variable Count Loops

There are cases where it is useful to loop for a variable number of timesinstead of a constant number of
times. For these cases the loop count is specified using aregister. This allows a variable number of loop
iterations from 1 to 2% times (where k isthe number of bitsin the LC register, or 13). It isimportant to
consider what takes placeif this variable is zero or negative. Whenever aDO loop is executed and the loop
count is zero, the loop will execute 213 times. For the case where the number of iterationsis negative, the
number will simply beinterpreted as an unsigned positive number and the loop will be entered. If thereisa
possibility that a register value may be less than or equal to zero, then it is necessary to insert extra code
outside of the loop to detect this and branch over the loop. Thisis demonstrated in the following code.

Har dwar e | oopi ng when the | oop count can be negative or zero

TSTW X0 ; Skip over loop if loop count <= 0
BLE LABEL

DO X0, LABEL

ASL A

LABEL

For the case of REP looping on aregister value when the register contains the value 0, the instruction to be
repeated is simply skipped as desired; no extracode isrequired. Thisis also true when an immediate value
of 0is specified. For the case where the number of iterations can be negative, the response is the same as
for the DO loop and can be solved using the preceding technique presented for DO looping.

8.6.3 Software Loops

The DSP56800 provides the capability for implementing loops in either hardware or software. For
non-nested loopsin critical code sections, the hardware looping mechanism is always the fastest. However,
there is alimitation when the hardware looping mechanism is used. The DSP56800 allows a maximum of
two nested hardware DO loops. Any looping beyond this generates a HWS overflow interrupt.

Software looping techniques are also efficiently implemented on the DSP core. Software looping simply
uses a register or memory location and decrements this value until it reaches zero. A branch instruction
conditionally branches to the top of the loop.

There are three different techniques for implementing aloop in software: one using a data ALU register,
one using an AGU register, and one using amemory location to hold the loop count. Each of theseis
shown in the following code.

Q mororoLa Software Techniques 8-21

Software Techniques

; Software Loopi ng
; Data ALU Regi ster Used for Loop Count

MOVE #3, X0 ; Load | oop count to execute the |oop three tines
LABEL ; Enters loop at |east once
; (instructions)

DECW X0

BGT LABEL ; Back to top-of-loop if positive and not 0

; Software Loopi ng
; AQU Register UWsed for Loop Count

MOVE #3-1,R0 ; Load | oop count to execute the |oop three tines
LABEL ; Enters loop at |east once
; (instructions)

TSTW (RO)-

BGT LABEL ; Back to top-of-loop if positive and not 0

; Software Loopi ng
Menory Location (one of first 64 XRAMI ocations) Used for Loop Count

MOVE #3, X $7 ; Load | oop count to execute the |oop three tines
LABEL ; Enters loop at |east once
; (i nstructions)

DECW X $7

BGT LABEL ; Back to top-of-loop if positive and not 0

8.6.4 Nested Loops

This section gives recommendations for and a detailed discussion of nested loops.

8.6.4.1 Recommendations

For nested looping it is recommended that the innermost loop be a hardware DO loop when appropriate
and that all outer loops be implemented as software loops. Even though it is possible to nest hardware DO
loops, it is better to implement all outer loops using software looping techniques for two reasons:

1. The DSP56800 allows only two nested hardware DO loops.

2. The execution time of an outer hardware loop is comparable to the execution time of a
software loop.

Likewise, thereislittle difference in code size between a software loop and an outer loop implemented
using the hardware DO mechanism.

The hardware nesting capability of DO loops should instead be used for efficient interrupt servicing. Itis
recommended that the main program and all subroutines use no nested hardware DO loops. It isaso
recommended that software looping be used whenever there is a JSR instruction within aloop and the
called subroutine requires the hardware DO loop mechanism. If these two rules are followed, then it can be
guaranteed that no more than one hardware DO loop is active at atime. If thisis the case, then the second
HWS location is always available to ISRs for faster interrupt processing. This significantly reduces the
amount of code required to free up and restore the hardware looping resources such as the HWS when
entering and exiting an ISR, since it is aready known upon entering the ISR that a HWS location is
available.

If this technique is used, the ISRs should not themselves be interruptible, or, if they can be interrupted,
then any ISR that can interrupt an ISR aready in progress must save off one HWS location. See
Section 8.12, “Freeing One Hardware Stack Location.”

The following code shows the recommended nesting technique:

8-22 DSP56800 Family Manual @ MOTOROLA

Loops

; Nesting Loops Reconmended Techni que

MOVE #3, X $0003 ; Set up loop count for outer |oop
; (software | oop)
QUTER
; (instructions)
DO X0, | NNER ; DOloop is inner |oop (hardware | oop)
ASL A
MOVE A X (RO)+
I NNER
; (instructions)
DECW X $0003 ; Decrenent outer |oop count
BGT QUTER ; Branch to top of outer loop if not done

It would also be possible to use adata ALU or AGU register if more speed is heeded.

An exception to the preceding recommendation for nesting loops is for the unique case where the
innermost loop executes a single-word instruction. In this caseit is possible to use a REP loop for the
innermost loop and a hardware DO loop for the outermost loop. This is demonstrated in the following
code:

; Nesting Loops Reconmended Techni que for Special Case of REP Loop Nested
; Wthin a Hardware DO Loop

INOW A

DO X0, LABEL ; DOloop is outer loop (interruptible)
MOVE B, Y1

(i nstructions)

REP #4 ; REP loop is inner loop (non-interruptible)
ASL A ; (Must be a one-word instruction)

(instructions)

MOVE A X (RO)+
LABEL
The REP loop may not be interrupted, however, so this technigue may not be useful for large loop counts
on the innermost loop if there are tight requirements for interrupt latency in an application. If thisisthe
case, then the first example with a software outer loop and an inner DO loop may be appropriate.

8.6.4.2 Nested Hardware DO and REP Loops

Nesting of hardware DO loops is permitted on the DSP56800 architecture. However, it is not
recommended that this technique be used for nesting loops within a program. Rather, it is recommended
that the hardware nesting of DO loops be used to provide more efficient interrupt processing, as described
in Section 8.6.4.1, “Recommendations.”

Since the HWS istwo locations deep, it is possible to nest one DO loop within another DO loop.
Furthermore, since the REP instruction does not use the HWS, it is possible to place a REP instruction
within these two nested DO loops. The following code shows the maximum nesting of hardware loops
alowed on the DSP56800 processor:

Q mororoLa Software Techniques 8-23

Software Techniques

; Hardware Nested Loopi ng Exanpl e of the NMaxi num Depth Al | owed
DO #3, CLABEL
PUSH LC
PUSH LA
DO X0, | LABEL
; (instructions)

Begi nni ng of outer |oop

Begi nni ng of inner |oop

REP YO ; Skips ASLif yo =0
ASL A
; (instructions)
| LABEL ; End of inner |oop
PCP LA
PCP LC
NCP ; three instructions required after PCP
NCP ; three instructions required after PCP
NCP ; three instructions required after PCP
CQLABEL ; End of outer |oop

The HWS's current depth can be determined by the NL and LF bits, as shown in Table 5-3, “Program
RAM Operating Modes,” on page 5-11. From these hitsit is possible to determine whether there are no
loops currently in progress, a single loop, or two nested loops. Refer to Section 5.1.9.8, “ Reserved OMR
Bits—Bits 2, 7 and 9-14,” on page 5-13 for the values of these bitsin these different conditions.

For nested DO loops, it is required that there be at least three instructions after the POP of the LA and LC
registers and before the label of any outer loop. This requirement shows up in the preceding example as
three NOPs but can be fulfilled by any other instructions.

Further hardware nesting is possible by saving the contents of the HWS and later restoring the stack on
completion, as described in Section 8.13, “Multitasking and the Hardware Stack.”

8.6.4.3 Comparison of Outer Looping Techniques

A comparison of the execution overhead and extra code size of software and hardware outer loops shows
that for loop nesting, it isjust as efficient to nest in software (see Table 8-1). If adata ALU register or
AGU register isavailable for use as the loop count, each loop executes one cycle faster than nesting loops
in hardware. If there are no on-chip registers available for the loop counter, then the third technique can be
used that uses one of thefirst 64 locations of X data memory. Thistechnique executes one cycle slower per
loop than nesting loops in hardware. Each of the software techniques also uses fewer instruction words.

Table 8-1 Outer Loop Performance Comparison

Additional
Total Number of
. Number of Icyc Number of Icyc -
Loop Technique Instruction
to Set Up Loop Executed
Words
Each Loop
Hardware nested DO loops 3 5 7
Software using data ALU register 1 4 3
Software using AGU register 1 4 3
Software using memory location 2 6 4

It is recommended that the nesting of hardware DO loops not be used for implementing nested loops.
Instead, it is recommended that all outer loops in a nested |ooping scheme be implemented using software
looping techniques. Likewise, it is recommended that software |ooping techniques be used when aloop
contains a JSR and the called routine contains many instructions or contains a hardware DO loop.

8-24 DSP56800 Family Manual @ MOTOROLA

Loops

8.6.5 Hardware DO Looping in Interrupt Service Routines

Upon entering an ISR, it is possible that one or two hardware DO loops are currently in progress. This
means that the hardware looping resources (the LA and L C registers and the HWS) are currently in use and
may need to be freed up if hardware looping is required within the ISR.

If the recommendations presented in Section 8.6.4, “Nested Loops,” are followed, then it may be possible
to guarantee that a maximum of one DO loop is active. In this case the HWS is guaranteed to have at least
one open location, and the LF and NL bitswill correctly indicate the looping status. In this case an ISR
simply pushesthe LA and LC registers upon entering the routine and pops them upon exit. Thisis very
efficient, as demonstrated in the following code:

; Exanpl e of an | SR That Uses the Hardware DO Loopi ng Mechani sm

; Assunes that at |east one W5 location is free
; Overhead is 5 instruction cycles, 5 instruction words

I SR
LEA (SP) + ; Save Hardware Loopi ng Resources
MOVE LC X (SP)+
MOVE LA X (SP)

; (instructions)
DO #7, LABEL ; Exanple of a DOloop within an ISR
INC A

LABEL

; (i nstructions)
PCP LA ; Restore Hardware Loopi ng Resources
PCP LC
RTI

Note that this five-cycle, five-word overhead is not required if the hardware DO loop is not required by the
interrupt service routine. Also note that this overhead is not required if only the hardware REP loop is used
by the ISR.

If thistechnique isused, it isimportant that any ISR that uses hardware DO looping cannot be interrupted
by a maskable interrupt and that any non-maskable | SRs save one location of the HWS if they require
hardware looping.

For ISRswhereit is possible that there are two DO loops currently in progress upon entering the routine, it
is necessary to free up one HWS location as well. This is accomplished using the technique described in
Section 8.12, “Freeing One Hardware Stack Location.”

8.6.6 Early Termination of a DO Loop

There are two techniques that can be used to terminate aDO loop early. In the first technique the loop is
terminated such that it continues executing the remainder of the instructions in the loop but will not return
to the top of the loop. In this caseit is best to use the following instruction instead of ENDDO:

MOVE #1, LC

Thisway, the HWS will purge its value at the correct time, as if there is anesting of hardware DO loops;
the LC and LA registers will be popped correctly in software.

There is also the case where it is desirable to conditionally break out of the loop immediately without
executing any more instructions in the loop. In this case it is recommended to use the technique shown in
the following code:

Q mororoLa Software Techniques 8-25

Software Techniques

PUSH LC ; Save outer |loop registers if nested | oop

PUSH LA

DO #N, LABEL

(instructions in |oop)

Bcc EX TLP ; 2 lcyc for each iteration

3 lcyc if loop termnates when true

; (instructions)
LABEL

BRA OVER ; 3 additional Icyc for BRA when exiting | oop
; if normal exit
EXI TLP ENDDO ; 1 additional |cyc for ENDDO when exiting
; loop if exit via Bcc
O/ER
PCP LA ; Restore outer loop registers if nested | oop
PCP LC
N or with another technique ------
PUSH LC ; Save outer |loop registers if nested | oop
PUSH LA
DO #N, LABEL
(i nstructions)
Bcc OVER ; 3 lcyc for each iteration
ENDDO ; 6 lcyc if loop terninates when true
BRA LABEL
O/ER
(i nstructions)
LABEL
PCP LA ; Restore outer loop registers if nested | oop
PCP LC

8.7 Array Indexes

The flexible set of addressing modes on the DSP56800 architecture allow for several different waysto
index into arrays. Array indexing usually involves a base address and an offset from this base. The base
addressisthe address of thefirst location in the array, and the offset indicates the location of the datain the
array. For example, thefirst value in the array typically has an offset of 0, whereas the fourth element has
an offset of 3. The nM element is always accessed with an offset of n- 1.

There are two types of arraystypically implemented: global arrays (whose base addressisfixed and known
at assembly time) and local arrays (whose base address may vary asthe program is running). Global arrays
that are small in size can benefit from the single-word instruction that directly accesses the first 128
locations of the X data memory, as well as the indexed with short displacement addressing mode.

8.7.1 Global or Fixed Array with a Constant

Thistype of array indexing is performed with the X:#xxxx or X:<aa> addressing mode, where the
assembler adds the base address to the constant offset into the array. Arraysthat are small in size can be
indexed using the X:<aa> addressing mode, saving one program word and one instruction cycle. It isalso
possible to use the X:(Rn+xxxx) or X:(R2+xx) addressing modes if the base address of the array is stored
inaRn register.

8-26 DSP56800 Family Manual @ MOTOROLA

Array Indexes

8.7.2 Global or Fixed Array with a Variable

Thistype of array indexing is performed with the X:(Rn+xxxx), X:(R2+xx), or X:(Rn+N) addressing
mode.

In the first two addressing modes—X:(Rn+xxxx) and X:(R2+xx)—the constant value specifies the base
address of the array, and Rn or R2 specifies the offset into the array. These first two are similar to the
method used by microcontrollers and are useful when only one or two accesses are performed with a
particular base address, because it is not hecessary to load a register with the base address. The X:(R2+xx)
addressing mode executes in one fewer instruction cycle and uses one fewer instruction word than the
X:(Rn+xxxx) addressing mode. It is useful for arrays whose base addressis located in the first few
locationsin X data memory.

In the last addressing mode—X:(Rn+N)—Rn is the base address of the array, and N specifies the offset.
This addressing mode is best for the case where many accesses are to be performed into an array. In this
case the base address is only loaded once into the Rn register and then many accesses can be performed
using the X:(Rn+N) addressing mode. This addressing mode uses a single program word and executesin
two instruction cycles.

8.7.3 Local Array with a Constant

Thistype of array indexing is done with the X:(Rn+xxxx) or X:(R2+xx) addressing mode, where Rn holds
the base address of the array and the constant value specifies the constant offset into the array. (It can also
be done with the X:(SP+#xxxx) or X:(SP-#xx) addressing mode, but thisis not as straightforward.) In this
case SP holds the address of the end of the stack frame, and the base address of the array islocated using a
constant offset value from the stack pointer. The constant used to index into thislocal array is added to the
offset of the base address from the stack pointer to access the desired location of an array stored within the
stack frame. Stack frames are discussed in Section 8.8, “Parameters and Local Variables.”

8.7.4 Local Array with a Variable

Thistype of array indexing is done with the X:(Rn+N) or X:(SP+N) addressing mode. It is similar to the
technique described in Section 8.7.3, “Local Array with aConstant,” but, instead of using a constant index,
theregister N holds the variable offset into the array. For the case of X:(SP+N), the N register contains the
sum of the index into the array and the offset of the array’ s base address from the stack pointer.

8.7.5 Array with an Incrementing Pointer

Often it isdesired to sequentially accessthe elementsin an array. Thistype of array indexing is most often
done with the X:(Rn)+ addressing mode, where Rn isinitialized to the first element of the array of interest
and sequentially advances to each next element in the array by the automatic post-incrementing address
mode. In special casesit isalso possible to use X:(Rn+N), where N holds the base address and Rn is the
incrementing array index that is advanced using an LEA (Rn)+ instruction. The latter is useful whereit is
aso necessary to have access to the variable that holds the index into the array, which is held in the Rn
register.

Q mororoLa Software Techniques 8-27

Software Techniques

8.8 Parameters and Local Variables

The DSP56800 software stack supports structured programming techniques, such as parameter passing to
subroutines and local variables. These techniques can be used for both assembly language programming
and high-level language compilers.

Parameters can be passed to a subroutine by placing these variables on the software stack immediately
before performing a JSR to the subroutine. Placing these variables on the stack is referred to as building a
“stack frame.” These passed parameters are then accessed in the called subroutines using the stack
addressing modes available on the DSP56800. Thisis demonstrated in the following example (which
destroys the x0 register):

Exanpl e of Subroutine Call Wth Passed Parareters

MOVE X $35, X0 ; Pointer variable to be passed to subroutine
LEA (SP) + ; Push variabl es onto stack
MOVE X0, X (SP)+
MOVE X $21, X0 ; First data variable to be passed to subroutine
MOVE X0, X (SP)+ ; Push onto stack
MOVE X $47, X0 ; Second data variable to be passed to
; subroutine
MOVE X0, X (SP) ; Push onto stack
JSR RAUTINEL
PCP ; Remove the three passed paraneters from
; stack when done
PCP
PCP
RCUTI NEL
MOVE #5,N ; Allocate roomfor |ocal variables
LEA (SP)+N

(i nstructions)

MOWVE X (SP-9),r0 ; Get pointer variable
MOWVE X (SP-7),B ; Get second data variable
MOVE

X (R0), X0 ; Get data pointed to by pointer variable
ADD X0,B
MOVE B, X (SP-8) ; Store sumin first data variable
(i nstructions)
MOVE #-5,N
LEA (SP)+N
RTS

In asimilar manner it is also possible to allocate space and to access variables that are locally used by a
subroutine, referred to as local variables. This is done by reserving stack locations above the location that
stores the return address stacked by the JSR instruction. These locations are then accessed using the
DSP56800's stack addressing modes. For the case of local variables, the value of the stack pointer is
updated to accommaodate the local variables. For example, if five local variables are to be alocated, then
the stack pointer isincreased by the value of fiveto allocate space on the stack for these local variables.
When large numbers of variables are allocated on the stack, it is often more efficient to use the (SP)+N
addressing mode.

It is possible to support passed parameters and local variables for a subroutine at the sametime. In this case
the program first pushes all passed parameters onto the stack (see Figure 8-1) using the technique outlined
in Section 8.5, “Multiple Vaue Pushes.” Then the JSR instruction is executed, which pushes the return
address and the SR onto the stack. Upon being entered, the subroutine first allocates space for local
variables by updating the SP. Then, both passed parameters and local variables can be accessed with the
stack addressing modes.

8-28 DSP56800 Family Manual @ MOTOROLA

SP

X Data Memory

\/\/

Fifth Local Variable

Fourth Local Variable

Third Local Variable

Second Local Variable

First Local Variable

Status Register

Return Address

Third Passed Parameter

Second Passed Parameter

First Passed Parameter

N

Figure 8-1. Example of a DSP56800 Stack Frame

8.9 Time-Critical DO Loops

Often, aprogram spends most of itstimein time-critical loops. For the efficient execution of these loops, it
isimportant to have an adequate number of registers. However, sometimes the registers already contain
datathat is not necessary for the critical loop but must not be lost. In this case the DSP56800 architecture
provides a convenient mechanism for freeing up these registers using the software stack. The programmer
pushes any registers containing values not required in the tight loop, freeing up these registers for use.
After completion of the loop, these registers are popped. An example is shown in the following code.

0 MOTOROLA

Software Techniques

Time-Critical DO Loops

AA0092

8-29

Software Techniques

MOVE #$1234, R3 ; Contents of this register not
; required in tight |oop
MOVE #%$5aa, A ; Contents of this register not

; required in tight |oop

PUSH R3 ; Prepare for tight loop: X0, YO are
; unused and avail abl e, and RO al ready
; points to that required for |oop

PUSH A0
PUSH Al
PUSH A2

; Enter Section with Tight Loop - R3 and A can now be used by tight |oop
MOVE $Q000, R3

R A

MOVE X (RO)+ Y0 X (R3)+ X0

REP #32

MAC X0, YO, A X(R)+ Y0 X (R3)+ X0

MOVE A X (R2)+ ; store result

PCP A2 ; tight loop conpleted, restore
borrowed registers

PGP Al

PCP AO

PCP R3

In the preceding example there are four PUSH instruction macrosin arow. For more efficient and compact
code, use the technique outlined in Section 8.5, “Multiple Value Pushes.” In certain cases it may also be
possibleto store critical information within the first 64 locations of X datamemory, on the top of the stack,
or in an unused register such as N when an extralocation is required within atight loop itself.

8.10 Interrupts

The interrupt mechanism on the DSP56800 is simple, yet flexible. There aretwo levels of interrupts:
maskable and non-maskable. All maskable interrupts on the chip can be masked at one spot in the SR.
Likewise, individual peripherals can be individually masked within one register, within the interrupt
priority register (IPR), or at the peripheral itself. It is beneficial to have a single register in which all
maskabl e interrupts can be individually masked. This gives the user the capability to set up interrupt
priorities within software.

When programming interrupts, it is necessary to correctly set up the following tasks:
1. Initialize and program the peripheral, enabling interrupts within the peripheral.
2. Program the IPR to enable interrupts on that particular interrupt channel.
3. Enableinterruptsin the SR.

8.10.1 Setting Interrupt Priorities in Software

This section demonstrates several different styles of coding possible for ISRs on the DSP56800 core. In
counting the number of overhead instruction cycles, it is important to remember that the JSR instruction
executes in four instruction cycles when entering an interrupt, and that the RTI instruction now takes five
instruction cycles to complete.

8-30 DSP56800 Family Manual @ MOTOROLA

Interrupts

8.10.1.1 High Priority or a Small Number of Instructions

During ISRsthat are short, it isrecommended that level O interrupts remain disabled. Sincethe routines are
short, it is not nearly so important to interrupt them, because they are guaranteed to complete execution
quickly. Thisis also recommended for | SRs with a very high priority, which should not be interrupted by
some other source.

Interrupt Service Routine
DSP56800 core (Interrupts Renain Masked, 9 Overhead Cycl es)

JSR I SR ; located in interrupt vector table
I SR ; Long I SR
; (interrupt code)

RTI

8.10.1.2 Many Instructions of Equal Priority

For ISRs that require a significant number of instruction cyclesto complete, it is possible to reduce the
interrupt servicing overhead if all interrupts can be considered to have the same priority. Thisisshownin
the following generic ISR.

; Interrupt Service Routine for Long Interrupt
DSP56800 core (Interrupts Renain Masked, 11 Overhead Cycl es)
JSR I SR ; located in interrupt vector table
I SR ; Long I SR
BFCLR #$0200,SR re-enable interrupts wth new nask
; (interrupt code)
RTI

Q mororoLa Software Techniques 8-31

Software Techniques

8.10.1.3 Many Instructions and Programmable Priorities

For ISRs that require a significant number of instruction cyclesto complete, it is possible for the user to
still program interrupt priorities in software. Thisis shown in the following generic ISR.

; Generic | SR - DSP56800 core (20 Overhead Cycl es)

JSR I SR ; Instr located in Interrupt Vector Table
; (instructions)
I SR ; ISR
LEA (SP)+
MOVE N X (SP)+ ; Save “N' register for usage by ISR
MOVE XIPRN ; Save interrupted task’s IPR

MOVE N X (SP)
MOVE #xxxx, X I PR ; Load new mask - defines which can interrupt

; this ISR
BFCLR #$0200, SR ; Re-enable interrupts with new mask
(interrupt code)
PCP N ; Restore interrupted task’s | PR
MOVE N XIPR
PCP N ; Restore saved register used by ISR
RTI

8.10.2 Hardware Looping in Interrupt Routines

Since an interrupt can occur at any location in a program, it is possible that the HWS used by hardware DO
loops may aready befull. If an ISR needs to use the DO looping mechanism, it may be necessary to free
up one location in the HWS. This can be done using the technique outline in Section 8.12, “Freeing One
Hardware Stack Location.” Alternatively, if it can be guaranteed that the main program will never use
more than one DO loop at atime (that is, no nested loops), it may then be possible for an ISR to simply use
hardware DO loops without using this technique to free up a stack location.

8.10.3 ldentifying System Calls by a Number

In operating systems, system calls are often made by using an SWI instruction when a user’ s task needs
assistance from the operating system. Usually, it is useful to have several different types of system calls,
each identified with anumber. The following code shows how system calls can have an associated number
when an SWI instruction is executed.

MOVE #xx, N ; Put nunber associated with systemcall in Nreg
PUSH N ; Push this value on the stack so accessible by QS
SW ; CGenerate interrupt to returnto QS

8-32 DSP56800 Family Manual @ MOTOROLA

Jumps and JSRs Using a Register Value

8.11 Jumps and JSRs Using a Register Value

Sometimes it is necessary to perform ajump or a jump to subroutine using the value stored in an on-chip
register instead of using an absolute address. The RTS instruction is used to perform this task because it
takes the value on the software stack and loads it into the program counter, effectively performing ajump.
The register used for the jJump can be any register on the DSP core.

; JMP <register> (peration

; 8 lcyc
LEA

MOVE
MOVE
RTS

(SP)+

; Note: Can use any core register
<register> X (SP) +
SR X (SP)

Jcc <register> (peration

5 10 Icyc (3
Bce~

LEA

MOVE

MOVE

RTS
O/ER

Icyc if condition fal se)

OVER ; (cc~is the condition exactly opposite the
desired cc)

(SP) +

<register> X (SP) +

SR X (SP)

JSR <register> (peration - destroys one register, N

; 11 lcyc
MOVE
LEA
MOVE
MOVE
MOVE

MOVE
RTS

0 MOTOROLA

#NEXT, N

(SP)+

N X (SP) + ; Push return address onto stack
SR X (SP) ; Push SR onto stack

<register>, X (SP) +

; Push address of subroutine onto stack
SR X (SP) ; Push SR onto stack

; Co to address in top two val ues on stack

Software Techniques 8-33

Software Techniques

8.12 Freeing One Hardware Stack Location

There are certain cases where a section of code should use DO looping, but it is not clear whether the HWS
isfull or not. An exampleis an ISR, which may be called when two nested DO loops are in progress. In
these cases it may be desirable to free asingle location on the HWS for use by a section of code such as an
ISR. The following code shows how to free one location for an ISR:

; Interrupt Service Routine - Frees Up Ohe HM6 Locati on
; 14 extra lcyc, 12 extra words

I SR
LEA (SP) + ; Push four registers onto the stack
MOVE LA X (SP)+ ; Save LA register in case already in |oop
MOVE SR X (SP)+ ; Save LF bit in SRregister...
MOWVE LC X (SP)+ ; Save LCregister...
MOVE HWG X (SP) ; Save HW register. ..
; (instructions)
DO #3, LABEL
INOW A
LABEL
; (instructions)
PCP LA ; Conditionally restore HAS
BRCLR #$8000, X: (SP-1), _OVER
MOVE LA HWB
_O/ER
PCP LC ; Restore LC register from stack
PCP ; Toss SR register fromstack
PCP LA ; Restore LA register from stack
RTI

For ISRs that are maskable, it is better to follow the recommendations outlined in Section 8.6.4, “Nested
Loops,” to reduce the overhead needed for freeing up one HWS location. This greatly simplifies the setup
code required when entering and exiting the I SR.

8.13 Multitasking and the Hardware Stack

For multitasking, it is important to be able to save and later restore the hardware DO loop stack (HWS).
This section shows code that will perform the save and restore operations. When reading the HWS, two
locations of the stack are read as well as the current state of the HWS, contained in the NL and LF bits of
the OMR and SR, respectively. Each read of the HWS register pops the HWS one value, and each write of
the HWS register pushes the HWS one value.

8-34 DSP56800 Family Manual @ MOTOROLA

Multitasking and the Hardware Stack

8.13.1 Saving the Hardware Stack

An example of reading the entire contents of the HWS to X memory is shown in the following code:

; Save HWG
; 4 lcyc, 4 words
MOWVE SR X (R)+ ; Read HW6 pointer’s LSB (LF) and
; save to nenory
MOVE HW5 X (R)+ ; Read first stack | ocation and
; save in X nenory
MOWVE SR X (R)+ ; Read HW& pointer’s MSB (NL) and
; save to nenory
MOVE HWE X (R2)+ ; Read second stack | ocation and
; save in X nenory

8.13.2 Restoring the Hardware Stack

When restoring the HWS, it isfirst necessary that the HWS be empty. If thisis unclear, performing two
reads from the HWS will ensure that the stack is empty. Once thisistrue, then the HWS can be restored.
An example of restoring the contents of the HWS from X data memory follows:

; Restore WM, 10 words, 14 lcyc worst case
; Assunes R2 points to “stored” HAS
; Destroys R2 register

MOVE HWG LA ; First read of HW6 ensures NL bit is cleared
MOVE HW, LA ; Second read of HW5 ensures LF bit is cleared
BRCLR #$8000, X (R2), OVER

; If LF bit set, then push a val ue onto H\&
LEA (R2)+
MOWVE X (R2)+ HA ; Puts one value onto stack and sets LF bit
BRCLR #$8000, X: (R2), OVER

; If NL bit set, then push a val ue onto H\&
LEA (R2) +
MOVE X (R2)+ HW\B

Q mororoLa Software Techniques 8-35

Software Techniques

8-36 DSP56800 Family Manual 0 MOTOROLA

Chapter 9
JTAG and On-Chip Emulation (OnCE™)

The DSP56800 family includes extensive integrated test and debug support. Two modules, the On-Chip
Emulation (OnCE) modul e and the test access port (TAP, commonly called the JTAG port) provide board-
and chip-level testing and software debugging capability. Both are accessed through a common
JTAG/ONCE interface. Using these modules alows the user to insert the DSP chip into atarget system
while retaining debug control. This capability is especially important for devices without an externa bus,
since it eliminates the need for a costly cable to bring out the footprint of the chip, as required by a
traditional emulator system.

The OnCE port is a Motorola-designed modul e used to debug application software used with the chip. The
port is a separate on-chip block that allows non-intrusive interaction with the DSP and is accessible
through the pins of the JTAG interface. The OnCE port makes it possible to examine contents of registers,
memory, or on-chip peripheralsin a special debug environment. No user-accessible resources need be
sacrificed to perform debugging operations.

The JTAG port conforms to the IEEE Standard Test Access Port and Boundary-Scan Architecture
specification (IEEE 1149.1a-1993) as defined by the Joint Test Action Group (JTAG). The JTAG module
uses a boundary scan technique to test the interconnections between integrated circuits after they are
assembled onto a printed circuit board. Using a boundary scan allows atester to observe and control signa
levels at each component pin through a special register coupled to each pin, called a boundary scan cell.
Thisisimportant for testing continuity and determining if pins are stuck at a one or zero level.

This chapter presents an overview of the capabilities of the JTAG and OnCE modules. Since their
operation is highly dependent upon the architecture of a specific DSP56800 device, the exact
implementation is necessarily device dependant. For more complete information on interfacing, the debug
and test commands available, and other implementation details, consult the appropriate device' suser's
manual .

9.1 Combined JTAG and OnCE Interface

The JTAG and OnCE modules aretightly coupled. The JTAG port provides the interface for both modules
and handles communications with host development and test systems. Figure 9-1 on page 9-2 shows a
block diagram of the JTAG/OnCE modules and external host interface.

@ MoTOROLA JTAG and On-Chip Emulation (OnCE™) 9-1

JTAG and On-Chip Emulation (OnCE™)

OnCE

JTAG
Test
External o | Access
Interface Port
Controller

OnCE Command,
Status & Control

Y

A

YV |

Breakpoint Logic

Figure 9-1. JTAG/OnCE Interface Block Diagram

Trace Logic

Event Counter

Y {
Pipeline
Registers
*_
FIFO
History
Buffer

XAB1
PAB

PDB
PGDB

PAB

AA0093

As aready noted, the JTAG module is the master. It enables interaction with the debug services provided
by the OnCE, and its external serial interface is used by the OnCE port for sending and receiving

debugging commands and data.

9.2 JTAG Port

Problems associated with testing high-density circuit boards have led to the devel opment of a proposed
standard under the sponsorship of the Test Technology Committee of IEEE and the Joint Test Action
Group (JTAG). The resulting standard, called the IEEE Sandard Test Access Port and Boundary-Scan
Architecture, specifies industry-standard, in-circuit device testing and diagnosis. The DSP56800 family
provides a dedicated test access port (TAP) that is fully compatible with this standard, commonly referred

to asthe “JTAG port.”

This section provides an overview of the capabilities of the JTAG port as implemented on the DSP56800.
Information provided hereisintended to supplement the supporting |EEE 1149.1a-1993 document, which
outlines the internal details, applications, and overall methodology of the standard. Specific details on the
implementation of the JTAG port for a given DSP56800-based device are provided in that device' s user's

manual.

9-2

DSP56800 Family Manual

0 MOTOROLA

JTAG Port

9.2.1 JTAG Capabilities
The DSP56800 JTAG port has the following capabilities:

Performing boundary scan operations to test circuit-board electrical continuity

Sampling the DSP56800-based device system pins during operation and transparently shifting out
the result in the boundary scan register; preloading values to output pins prior to performing a
boundary scan operation

Querying identification information (manufacturer, part number, and version) from a
DSP56800-based device

Adding aweak pull-up device on all input signalsto cause all open inputsto report alogic 1 and to
force a predictable interna state while performing external boundary scan operations

Disabling the output drive to pins during circuit-board testing

Forcing test data onto the outputs of a DSP56800-based device

Providing a means of accessing the OnCE controller and circuitsto control atarget system
Providing a means of entering the debug mode of operation

Bypassing the DSP56800 core for a given circuit-board test by effectively reducing the boundary
scan register to asingle cell

Section 9.2.2, “JTAG Port Architecture,” provides an overview of the port’s architecture and commands.
For additional information on the JTAG port’s implementation and command set, see the appropriate
DSP56800-based device' s user’s manual.

9.2.2 JTAG Port Architecture

The JTAG module consists of the logic necessary to support boundary scan testing as defined in the IEEE
specification. Although tightly coupled to the DSP56800's core logic, it is an independent module, and,
when disabled, it is guaranteed to have no impact on the function of the core.

The JTAG port consists of the following components:

Serial communicationsinterface
Command decoder and interpreter
Boundary scan register

ID register

These units, and the overall once port architecture, are shown in Figure 9-2 on page 9-4.

@ MoTOROLA JTAG and On-Chip Emulation (OnCE™) 9-3

JTAG and On-Chip Emulation (OnCE™)

D: P To OnCE Port
TDI —

Instruction Register

L]

Decode

YYYYYy e

——»1 Boundary Scan Register ——

ID Register —>

—> Bypass Register ——

o : ~

TAP
Controller

From ONCE Port

vy

TCK

Y

JTAG Reset

AA0119

Figure 9-2. JTAG Block Diagram

The serial interface supports communications with the host development or test system. It isimplemented
as aseria interface to occupy as few external pins on the device as possible. Consult the device’ s user’'s
manual for afull description of the interface signals. All JTAG and OnCE commands and data are sent
over this interface from the host system. The JTAG interface is also used by the OnCE port when it is
active. In this mode, the JTAG acts as the OnCE port’ s interface controller, and transparently passes all
communications through to the OnCE port.

Commands sent to the JTAG module are decoded and processed by the command decoder. Commands for
the JTAG port are completely independent from the DSP56800 instruction set, and are executed in parallel
by the JTAG logic.

Registersin the JTAG module hold chip identification information and the information gathered by
boundary scan operations. The ID register contains the industry-standard Motorola identification
information, which is unique for each Motorola DSP. The boundary scan register holds a snapshot of the
device' s pins when sampled by the JTAG port.

9.3 OnCE Port

The OnCE port provides emulation and debug capability directly on the chip, eiminating the need for
expensive and complicated stand-alone in-circuit emulators (ICEs). The OnCE port permits full-speed,
non-intrusive emulation on auser’ starget system. This section describes the OnCE emulation environment
for use in debugging real-time embedded applications.

The OnCE port has an associated interrupt vector in the DSP56800 interrupt vector table. The OnCE
exception trap is avail able to the user so that when a debug event (breakpoint or trace occurrence) is
detected, alevel 1 non-maskable interrupt can be generated and the program can initiate the appropriate
handler routine.

9-4 DSP56800 Family Manual @ mororoLa

OnCE Port

As emulation capabilities are necessarily tied to the particular implementation of a DSP56800-based
device, the appropriate device' s user’ s manual should be consulted for compl ete details on implementation
and supported functions.

9.3.1 OnCE Port Capabilities

The capahilities of the OnCE port include the following:
« Interrupting and breaking into debug mode on a program memory address
» Interrupting and breaking into debug mode on a data memory address (read, write, or access)
e Interrupting and breaking into debug mode on an on-chip peripheral register access
» Entering debug mode using a microprocessor instruction
« Examining or maodifying the contents of any core or memory-mapped peripheral register
e Examining or modifying any desired sections of program or data memory
e Full-speed stepping on one or more instructions (up to 256)
e Tracing one or more instructions
e Saving or restoring the current state of the chip’s pipeline
< Displaying the contents of the real-time instruction trace buffer
e Returning to user mode from debug mode

Depending on the implementation for a particular DSP56800-based device, additional debugging and
emulation capabilities may be provided. Consult the user’s manual for the device in question for more
information.

9.3.2 OnCE Port Architecture

The OnCE port module is composed of four different sub-modules, each of which performs a different
task:

« Command, status, and control
e Breakpoint and trace
« Pipeline save and restore
e FIFO history buffer
These units, and the overall once port architecture, are shown in Figure 9-3 on page 9-6.

@ MoTOROLA JTAG and On-Chip Emulation (OnCE™) 9-5

JTAG and On-Chip Emulation (OnCE™)

TDI/TDO = »Cmd. Reg. \
OnCE
Command
Decoder OnCE Command,
| OnCE Status, and Control
State
Machine
and Control
<—» Control Register j
A
< Stat. Reg
» Breakpoint Register Y
\
XAB1L — | Breakpoint
MUX >
PAB —> and Trace Breakpoint
Logic q
an
Trace
A
Y
< »t Count Reg. j
+—> PDB w
> PDB Register Pipeline
i PGDB } Registers
- PGDB Register X:$FFFF
J
v PAB \
- PAB Fetch Register FIFO
< PAB Decode Register } History
< PAB Execute Register Buffer
Address
FIFO
] AA0096

Figure 9-3. OnCE Block Diagram

Together, these sub-modules provide a full-featured emulation and debug environment. Communication
with the OnCE port module is handled viathe JTAG port and thus may be considered the primary
communications sub-module for the OnCE port, although it operates independently. The operations of the
OnCE port occur independently of the main DSP56800 core logic, and require no core resources.

9-6 DSP56800 Family Manual @ mororoLa

OnCE Port

9.3.2.1 Command, Status, and Control

The command, status and control portion of the OnCE port module handles the processing of emulation
and debugging commands from a host development system. Communications with a host system are
provided by the JTAG port module, and are passed transparently through to thislogic, which isresponsible
for coordinating all emulation and debugging activity.

Aspreviously noted, all emulation and debug processing takes place independently of the main DSP56800
processor core. This alows for instructions to be executed in debug mode at full speed, without any
overhead introduced by the debugging logic.

9.3.2.2 Breakpoint and Trace

The OnCE port module includes address-comparison hardware for setting breakpoints on program or data
memory accesses. This allows breakpoints to be set on program ROM as well as program RAM locations.
Breakpoints can be programmed for reads, writes, program fetches, or memory accesses. Breakpoints are

also possible during on-chip peripheral register accesses, since these are implemented as memory-mapped
registersin the X data space.

Full-speed instruction stepping capability is also provided. Up to 256 instructions can be executed at full
speed before the processor core is halted and the debug processing state is re-entered. This allows the user
to single step through a program or execute whole functions at atime.

9.3.2.3 Pipeline Save and Restore

To resume normal chip activity when the chip is returning from the debug mode, the previous chip pipeline
state must be reconstructed. The OnCE port module provides logic to correctly save and restore the
pipeline state when entering and exiting debug mode. Pipeline saves and restores operate transparently to
the user, although the pipeline state may be examined while in debug mode if desired.

9.3.2.4 FIFO History Buffer

To ease debugging activity and to help keep track of program flow, a read-only FIFO buffer is provided
that tracks the execution history of an application. It stores the address of the instruction currently being
executed by the processor core, as well as the addresses of the last five execution flow instructions.

The FIFO history buffer isintended to provide a snapshot of the recent execution history of the processor
core. To give alarger picture of instruction flow, not al instructions are recorded in the buffer. Only the
addresses of the following execution flow instructions are stored:

BRA JMP
JSR Bcc (with condition true)

Jcc (with condition true)

Sequential program flow can be assumed between recorded instructions, so it is possible for the user to
reconstruct the program flow extending back through quite alarge number of instructions. To complete the
execution history, the first location of the FIFO always holds the address of the last executed instruction,
regardless of whether or not it caused a change of program flow.

@ MoTOROLA JTAG and On-Chip Emulation (OnCE™) 9-7

JTAG and On-Chip Emulation (OnCE™)

9-8 DSP56800 Family Manual @ mororoLa

Appendix A
Instruction Set Detalls

This appendix contains detailed information about each instruction of the DSP56800 instruction set. It
contains sections on notation, addressing modes, and condition codes. Also included is a section on
instruction timing, which shows the number of program words and execution time of each instruction.
Finally, the instruction set summary, which shows the syntax of al allowed DSP56800 instructions, is
presented.

A.1 Notation

Each instruction description contains notation used to abbreviate certain operands and operations. The
symbols and their respective descriptions are listed in Table A-1 through Table A-7 on page A-4.

Table A-1 shows the register set available for the most important move instructions. Sometimes the
register field is broken into two different fields—one where the register is used as a source and the other
where it is used as a destination. Thisisimportant because a different notation is used when an
accumulator is being stored without saturation. In addition, see the register fieldsin Table A-2 on

page A-2, which are also used in move instructions as sources and destinations within the AGU.

Table A-1. Register Fields for General-Purpose Writes and Reads

Register Field | Registers in This Field Comments

HHH A, B, Al, B1 Seven data ALU registers — two accumulators, two 16-bit MSP por-
X0, YO, Y1 tions of the accumulators and three 16-bit data registers

HHHH A, B, Al, B1 Seven data ALU and five AGU registers
X0, YO, Y1
RO-R3, N

DDDDD A, A2, Al, A0 All CPU registers
B, B2, B1, BO

Y1, YO, X0

RO, R1, R2, R3
N, SP
M01

OMR, SR
LA, LC
HWS

0 MOTOROLA Instruction Set Details A-1

Table A-2 shows the register set available for use as pointers in address-register-indirect addressing
modes. The most common fields used in this table are Rn and Rj. This table a so shows the notation used
for AGU registersin AGU arithmetic operations.

Table A-2. Address Generation Unit (AGU) Registers

Register Field

Registers in This Field

Comments

Rn RO-R3 Five AGU registers available as pointers for addressing and as
SP sources and destinations for move instructions
Rj RO, R1, R2, R3 Four pointer registers available as pointers for addressing
N N One index register available only for indexed addressing modes
MO1 MO1 One modifier register

Table A-3 shows the register set available for use in data ALU arithmetic operations. The most common
field used in thistable is FDD.

Table A-3. Data ALU Registers

Register Field | Registers in This Field Comments
FDD A, B Five data ALU registers—two 36-bit accumulators and three 16-bit
X0, YO, Y1 data registers accessible during data ALU operations
Contains the contents of the F and DD register fields
F1DD Al, B1 Five data ALU registers—two 16-bit MSP portions of the
X0, YO, Y1 accumulators and three 16-bit data registers accessible during data
ALU operations
DD X0, YO, Y1 Three 16-bit data registers
F A B Two 36-bit accumulators accessible during parallel move instruc-
tions and some data ALU operations
F1 Al, Bl The 16-bit MSP portion of two accumulators accessible as source
operands in parallel move instructions

Address operands used in the instruction field sections of the instruction descriptions are given in
Table A-4. Addressing mode operators that are accepted by the assembler for specifying a specific

addressing mode are shown in Table A-5.

DSP56800 Family Manual

0 MOTOROLA

Table A-4. Address Operands

Symbol Description
ea Effective address
eax Effective address for X bus
XXXX Absolute address (16 bits)
pp 1/0O short address (6 bits, one-extended)
aa Absolute address (6 bits, zero-extended)
<.> Specifies the contents of the specified address
X: X memory reference
P: Program memory reference
Table A-5. Addressing Mode Operators
Symbol Description
<< 1/0 short or absolute short addressing mode force operator
> Long addressing mode force operator
Immediate addressing mode operator
#> Immediate long addressing mode force operator
#< Immediate short addressing mode force operator

Miscellaneous operand notation, including generic source and destination operands and immediate data
specifiers, are summarized in Table A-6.

Table A-6. Miscellaneous Operands

Symbol Description
S, Sn Source operand register
D, Dn Destination operand register
#XX Immediate short data (7 bits for MOVE(]), 6 bits for DO/REP)
FXXXX Immediate data (16 bits)
#ii00 8-bit immediate data mask in the upper byte
#00ii 8-bit immediate data mask in the lower byte
<OFFSET7> 7-bit signed PC relative offset

0 MOTOROLA

Instruction Set Details

Table A-7. Other Symbols

Symbol Description
() Optional letter, operand, or operation1
(..)) Any arithmetic or logical instruction that allows parallel moves
EXT Extension register portion of an accumulator (A2 or B2)
LSB Least significant bit
LSP Least significant portion of an accumulator (AO or BO)
LSW Least significant word
MSB Most significant bit
MSP Most significant portion of an accumulator (Al or B1)
MSW Most significant word
r Rounding constant
LIM Limiting when reading a data ALU accumulator
<op> Generic instruction (specifically defined within each section)

1. Forinstruction names that contain parentheses, such as DEC(W) or IMPY(16), the
portion within the parentheses is optional.

DSP56800 Family Manual @ MOTOROLA

A.2 Programming

Model

The registers in the DSP56800 core programming model are shown in Figure A-1.

Data Arithmetic Logic Unit
Data ALU Input Registers
31 16 15 0
X0 Y Y1 YO
15 0 15 0 15 0
Accumulator Registers
35 3231 16 15 0
A A2 Al A0
3 0 15 0 15 0
35 3231 16 15 0
B B2 Bl BO
3 0 15 015 0
Address Generation Unit
15 0 15 0 15
RO N MO1
R1
R2
R3
SP
Pointer Offset Modifier
Registers Register Register
Program Controller Unit
15 0 15 8 7 0 15
PC MR CCR OMR
Program Status Operating Mode
Counter Register (SR) Register
15 0 15 0 15
LA
Hardware Stack (HWS) Loop Address
Software Stack 12
(Located in X Memory)
LC
Loop Counter

Figure A-1.

0 MOTOROLA

DSP56800 Core Programming Model

Instruction Set Details

AA0007

A-5

A.3 Addressing Modes

The addressing modes are grouped into three categories:
* Register direct—directly references the registers on the chip
e Addressregister indirect—uses an address register as a pointer to reference alocation in memory
e Specid—includes direct addressing, extended addressing, and immediate data

These addressing modes are described in the following discussion and summarized in Table 4-5 on
page 4-9.

All address calculations are performed in the address ALU to minimize execution time and loop overhead.
Addressing modes specify whether the operands are in registers, in memory, or in the instruction itself
(such asimmediate data) and provide the specific address of the operands.

The register-direct addressing mode can be subclassified according to the specific register addressed. The
dataregistersinclude X0, Y1, YO, Y, A2, Al, A0, B2, B1, BO, A, and B. The control registersinclude
HWS, LA, LC, OMR, SR, CCR, and MR. The address registersinclude RO, R1, R2, R3, SP, N, and M01.

Address-register-indirect modes use an address register Rn (RO-R3) or the stack pointer (SP) to point to
locationsin X and P memory. The contents of the Rnis the effective address (ea) of the specified operand,
except in the indexed-by-offset or indexed-by-displacement mode, where the effective address (ea) is
(Rn+Nn) or (Rn+xxxx), respectively. Address-register-indirect modes use an address modifier register
MOL1 to specify the type of arithmetic to be used to update the address register RO and optionally R1. R2
and R3 always use linear arithmetic. If an addressing mode specifies the address offset register (N), itis
used to update the corresponding Rn. This unique implementation is extremely powerful and allows the
user to easily address awide variety of DSP-oriented data structures. All address-register-indirect modes
use at least one Rn and sometimes N and the modifier register (M01), and the double X memory read uses
two address registers, one for thefirst X memory read and one for the second X memory read. Only R3 can
be used for this second X memory read, and R3 is aways updated using linear arithmetic.

The special addressing modes include immediate and absolute addressing modes as well asimplied
references to the program counter (PC), the software stack, the hardware stack (HWS), and the program
(P) memory.

The addressing mode selected in the instruction word is further specified by the contents of the address
modifier register MO1. The modifier selects whether linear or modulo arithmetic is performed. The
programming of thisregister is summarized in Table 4-9 on page 4-27.

A.4 Condition Code Computation

The bitsin the Condition Code Register (CCR) are set to reflect the status of the processor after certain
instructions are executed. The CCR hits are affected by data ALU operations, bit-field manipulation
instructions, the TSTW instruction, parallel move operations, and by instructionsthat directly reference the
CCR register.

In addition, the computation of some condition code bitsis affected by the OMR’s Saturation (SA) and
condition code (CC) bits. The SA bit enables the MAC Output Limiter, which can ater the results of
computations and thus the condition code bits affected. The CC bit specifies whether condition codes are
generated using the information in the extension register. See Section A.4.2, “Effects of the Operating
Mode Register’'s SA Bit,” and Section A.4.3, “Effects of the OMR’s CC Bit,” for more information.

A-6 DSP56800 Family Manual @ mororoLa

A.4.1 The Condition Code Bits

The DSP56800 family defines eight condition code bits, which are contained in the lower-order 8 bits of
the Status Register (SR) as follows:

) MR) CCR '
SR 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Status Register
Reset = $0300 LF| « | « | « |« «|nn]w|fsz]L|E]JU|N]|]Z]|]V]|C
Read/Write

LF—Loop Flag

11,10—Interrupt Mask

SZ—Size

L—Limit

E—Extension
U—Unnormalized
N—Negative
Z—Zero
V—Overflow
C—Carry

* Indicates reserved bits, read as zero and should be written with zero for future compatibility

Figure A-2. Status Register (SR)

TheC,V, Z, N, U, and E bits are true condition code bits that reflect the condition of the result of a data
ALU operation. These condition code bits are not affected by address ALU calculations or by data
transfers over the CGDB. The N, Z, and V condition code bits are updated by the TSTW instruction, which
can operate on both memory and registers. The L bit is alatching overflow bit that indicates that an
overflow has occurred in the data ALU or that limiting has occurred when moving an accumul ator register
to memory. The SZ bit is alatching bit that indicates the size of an accumulator when it is moved to data
memory.

A.4.1.1 Size (SZ)—Bit 7

The SZ bit is set only when moving one of the two accumulators (A or B) to data memory. It is set if,
during this move, bits 30 and 29 of the specified accumulator are not the same—that is, not 00 or 11—as
follows:

SZ = SZ | (Bit 30 O Bit 29)

SZ is not affected otherwise. Note that the SZ bit islatched once it is set—it isonly cleared by a processor
reset or an instruction that explicitly clearsit.

SZ isnot affected by the OMR’s CC or SA hits.

0 MOTOROLA Instruction Set Details A-7

A.4.1.2 Limit (L)—Bit 6

The L bit isset to indicate that one of two conditions has occurred: an overflow has occurred inadata ALU
operation (see Section A.4.1.7, “Overflow (V)—Bit 1,” on page A-10), or limiting has occurred when
moving one of the two accumulators (A or B) with amove or parallel moveinstruction. L is not affected
otherwise.

TheL bhitislatched onceit is set; itis cleared only by a processor reset or an instruction that explicitly
clearsit. The complete formulafor calculating L isthe following:

L =L |V | (limiting due to amove)

L isnot affected by the OMR’s CC or SA bits. Note, however, that the V bit is affected by both the CC and
SA bits. Asaresult, the L bit can be indirectly affected by these two control bits.

NOTE:

The TFR instructions performs a register-to-register transfer and is not
considered a“move’ instruction in terms of the preceding discussion. The
L bit will therefore not be set due to the register-to-register move, even if
SA is set and saturation occurs. The TFR instruction can set the L bit if it
has a parallel move and if limiting occursin that parallel move.

A.4.1.3 Extension in Use (E)—Bit 5

The E bit is updated based on the result of adata ALU operation to indicate whether the MSP and L SP of
the result contain all of the significant bits, or if the extension bits are needed to express the result. If the E
bit is clear, the MSP and L SP contain all the significant bits—the high-order bits represent only sign
extension.

Based on the size of the result or destination, the E bit is calculated as follows:
For 20- and 36-bit resultsor destinations:

E is cleared if the upper 5 bits of the result are 00000 or 11111. E is set otherwise.
For 16-bit resultsor destinations:

If one of the operandsislocated in X0, YO, or Y1, or comes from memory, the valueisfirst sign
extended. Sign extension is also performed when the source operand is located in an accumulator.
If one of the operandsis 5-bit immediate data, that value isfirst zero extended. A 20-bit arithmetic
operation is then performed, where the result is located in the lowest 16 bits. E is cleared if all of
the upper 5 bits of the 20-bit result are 00000 or 11111, and is set otherwise.

For 32-bit resultsor destinations:

If one of the operands comes from memory or the Y register, or is 16-bit immediate data, it isfirst
sign extended. Sign extension is also performed when the source operand islocated in an
accumulator. If one of the operands is 5-bit immediate data, it isfirst zero extended. A 36-bit
arithmetic operation is then performed, where the long result islocated in the lowest 32 bits. E is
cleared if all of the upper 5 bits of the result are 00000 or 11111 and is set otherwise.

E is not affected by the OMR’s CC hit.

A-8 DSP56800 Family Manual @ mororoLa

NOTE:

When the SA bit inthe OMR register is set to one, the E bit is set based on
the result before passing through the MAC Output Limiter. If SA issetto
one and saturation does occur in the MAC Output Limiter, this can result
in the E bit being set, even though the result is saturated to a value where
the extension portion is not in use.

A.4.1.4 Unnormalized (U)—Bit 4

The U bit is updated under the following conditions. If the SA bit in the OMR is set to one, thishit is
cleared if saturation occursin the MAC Output Limiter. If the SA hbit is zero or no saturation occurs, U is
set if the two M SBs of the M SP of the result are the same following adata ALU operation; it is cleared
otherwise. The computation of U varies depending on the size of the operation’ s destination or result.

For 20-, 32-, and 36-hit destinations or results, U is computed according to the following formula (32-bit
destinations are first extended as described for the E bit):

U = ~(Bit 31 O Bit 30)

Sixteen-bit destinations are first extended as described for the E bit. Then U is computed as follows:
U =~(Bit 15 O Bit 14)

The U bit is not affected by the OMR's CC hit.

A.4.1.5 Negative (N)—Bit 3

The N bit is updated based on the result of adata ALU operation. In generdl, it reflects the sign bit (MSB)
of the result, according to the following rules:

For 20- or 36-bit results:

N = bit 35for A or B (bit 31 if the OMR’s CC bit is set to one)
N =bhit 15for Y1, YO, or X0

For 32-bit results:;

N =hit 31 for A, B, or Y (the OMR’s CC hit has ho effect)
N =bit 15for Y1, YO, or X0

For 16-bit results:;

N =hit 31 for A, B, or Y (the OMR’s CC hit has ho effect)
N = bit 15 for 16-bit destination

When the SA hit in the OMR register is set to one, the N hit is set based on the result before passing
through the MAC Output Limiter.

For the ASRAC and LSRAC instructions, the N bit is calculated differently based on the SA bit in the
OMR register. When the SA hit is zero and the destination is one of the accumulators, the N bit is obtained
from bit 35. When SA is one and the destination is one of the accumulators, the N bit is set based on hit 31
of the result before passing through the MAC output limiter.

For the IMPY instruction, a 31-hit integer product is calculated internally to the data ALU, and the lowest
16 bits of this product are stored in the destination register. When SA isone or CCisone, the N bitisset to
thevaluein bit 30 of thisinternally computed result. When SA is zero and CC is zero, the N bit is set to the
value in bit 15 of thisinternally computed result. These two values are identical except in the case where
overflow occurs (that is, the result is larger than and will not fit in 16 bits).

0 MOTOROLA Instruction Set Details A-9

For the ASLL instruction, if the CC bit is set, the N bit isalways cleared. If CCis0, the N bit is set
according to the standard definition outlined in the preceding discussion.

A.4.1.6 Zero (Z2)—Bit 2

The Z bit is updated based on the result of adata ALU operation. Z is set if the result of an operation is
zero—that is, all significant bits are set to zero. It is cleared otherwise.

The number of bits used to compute the value for Z is determined by the size of the result and whether or
not the OMR’s CC hit is set:

For 36-bit results:;
Z isset if bits 35to 0 of the result are al zero, or bits 31 to 0 if the OMR’s CC bhit is set.
For 32-bit results:;

Zissetif bits31to 0 of theresult are all zero. It is set using bits 15 to 0 of theresult if Y1, YO, or
X0 is the destination.

For 20-bit results:
Z issetif bits 35 to 16 of theresult are all zero, or bits 31 to 16 if the OMR’s CC bit is set.
For 16-bit results:

Z issetif bits 31 to 16 of theresult are all zero for A, B, Y; itisset if bits 15 to O of the result are
al zero for 16-bit destinations.

Z is not affected by the OMR’s SA hit.

A.4.1.7 Overflow (V)—Bit 1

TheV bit is updated under the following conditions. If the SA bit in the OMR is set to one, V is set when
saturation occursin the MAC Output Limiter. If the SA bit is zero or no saturation occurs, it is set when an
arithmetic overflow occurs as the result of adata ALU operation. Overflow occurs when the carry into the
result’ sMSB is not equal to the carry out of the MSB, thus changing the sign of the value. The result of the
ALU operation is therefore not representabl e in the destination—the result has overflowed. V is cleared
when overflow does not occur.

In general, overflow is calculated based on the size of the result or destination of the operation. When the
CC bit inthe OMR is set, however, overflow is determined based on the 32-bit result for what would
otherwise be 36-bit results. The sameis true for 20-bit results; when the CC hit is set, overflow is
determined based on the 16-bit result.

For the IMPY instruction, V is set if the computed result does not fit in 16 bits and is cleared otherwise.
The SA bit has no effect in this case.

A.4.1.8 Carry (C)—Bit0

The C hit is updated based on the result of a data ALU operation. C is set either if acarry is generated out
of the most significant bit (M SB) of the result for an addition, or if aborrow is generated in a subtraction.
Ciscleared otherwise.

For 20- or 36-hit results, the carry or borrow is generated out of bit 35. For 32-bit results, the carry or
borrow is generated out of bit 31. The carry or borrow is generated out of bit 15 for 16-bit results.

C isnot affected by the OMR’s CC or SA hits.

A-10 DSP56800 Family Manual @ MOTOROLA

A.4.2 Effects of the Operating Mode Register’s SA Bit

The SA bit in the Operating Mode Register (OMR) can affect the computation of certain condition code
bits. This bit enables the MAC Output Limiter within the data ALU. When enabled, the results of many
operations are limited to fit with 32 bits, the extension portion containing only sign information. This
limiting operation has both direct and indirect effects on the way condition codes are computed.

The SA hit directly affects the following condition code bits:
e U—cleared if saturation occursin the MAC Output Limiter
e V—set when saturation occurs in the MAC Output Limiter

The remaining bits in the Condition Code Register are not affected by the SA bit, with the following
exceptions:

e L—may beindirectly affected through effects on the V bit
» N—affected only by the ASRAC, LSRAC, and IMPY instructions
o C—affected only by the ASL instruction

The vaue of the SA bit is designed not to affect condition code computation for the TSTW instructions.
Only the U condition code hit is affected by the SA bit for the CMP instruction. These instructions operate
independently of the CC bit and correctly generate both signed and unsigned condition codes.

The SA hit only affects operations in the data ALU, not operations performed in other blocks. These
include move instructions, bit-manipulation instructions, and address cal culations performed by the AGU.

NOTE:

When SA is set to one for an application, condition codes are not always
set in an intuitive manner. It is best to examine the instruction details to
determine the effect on condition codes when SA is one. See Section A.7,
“Instruction Descriptions.”

A.4.3 Effects of the OMR’s CC Bit

The CC hit inthe OMR may affect the computation of the condition code bits. The CC bit establishes how
many of the bits of an arithmetic or logic operation result are used when calculating condition codes.
Specifically:

e When CC =0, theresult isinterpreted as 36 bits with avalid extension portion.
* When CC =1, theresult isinterpreted as 32 bits with the extension portion ignored.

Signed values can be computed in both cases, but computation of unsigned values must be performed with
the CC hit set to one. Without setting CC to one prior to executing the TST and CMP instructions, the HI,
HS, LO, and LS branch/jump conditions cannot be used.

When the CC hit is set, the following condition code bits are affected:
e V—set based on the MSB of the result’'s M SP portion
e Z—set using only the MSP and L SP portions of the result

The remaining bits in the Condition Code Register are not affected by the CC bit, with the following
exceptions:

e L—may beindirectly affected through effects on the V bit
» N—affected only by the ASRAC, LSRAC, IMPY, and ASLL instructions
o C—affected only by the ASL instruction

0 MOTOROLA Instruction Set Details A-11

The value of the CC bit does not affect condition code computation for the TSTW instructions. These
instructions operate independently of the CC bit and correctly generate both signhed and unsigned condition
codes.

The CC bit only affects operationsin the data ALU, not operations performed in other blocks. These
include move instructions, bit-manipulation instructions, and address cal culations performed by the AGU.

A.4.4 Condition Code Summary by Instruction

Table A-9 provides adetailed view of the condition codes affected by each instruction, and the
circumstances under which each condition code is set or cleared. Table A-8 describes the notation used.
Itemsin the “Notes’ column of Table A-9 are explained immediately following the table on page A-15.

Table A-8. Notation Used for the Condition Code Summary Table

Notation Description

* Set by the result of the operation according to the standard definition.

— Not affected by the operation.

*16 Set according to the standard definition for 16-bit results.
*32 Set according to the standard definition for 32-bit results.
*36 Set according to the standard definition for 36-bit results.
*A Set by the result of the operation according to the size of destination.
*B Set by the result of the operation according to the size of destination.
=0 Cleared.
=1 Set.
? Set according to the special computation defined for the operation.
(number) Set according to the special computation defined by the note with the corresponding number.

The notes may be found immediately after Table A-9.

C L bit can be set if overflow has occurred in result.

T L bit can be set if limiting occurs when reading an accumulator during a parallel move or by the
instruction itself. An example of the latter case is BFCHG #$8000, A, which must first read the
A accumulator before performing the bit-manipulation operation.

CT L bit can be set if overflow has occurred in the result or if limiting occurs when an accumulator is
being read.

The condition code computation shown in Table A-9 may differ from that defined in the opcode
descriptions; see Section A.7, “Instruction Descriptions.” Thisindicatesthat the standard definition may be
used to generate the specific condition code result. For example, the Z flag computation for the CLR
instruction is shown as the standard definition, while the opcode description indicates that the Z flag is
aways set. Table A-9 gives the chip implementation viewpoint, while the opcode descriptions give the
user viewpoint.

A-12 DSP56800 Family Manual @ MOTOROLA

The“Comments’ column in the tableis also used to report if any of the upper bitsin the status register are
modified. These are not status bits because they do not lie in the status portion of the status register, but

rather in the control portion. Sometimes these bits are also affected by instructions. Examples include the
interrupt mask bits, 11 and 10, and the looping bits, LF and NL (NL liesin the OMR register).

Thefollowing instruction mnemonics are not found in Table A-9: ANDC, EORC, NOTC and ORC. Thisis

because each of theseis an alias for another instruction and not an instruction in its own right. To
determine condition code calculation for each of these, determine the instructions to which these

mnemonics are mapped (see Section 6.5.1, “ANDC, EORC, ORC, and NOTC Aliases,” on page 6-12) and
look at the condition code information for the corresponding real instructions.

Table A-9. Condition Code Summary

Instruction SZ L E U N Z \% C Comments
ABS * CT *36 *36 *36 *36 *36 —
ADC — C *36 | *36 | *36 | *36 | *36 *36
ADD * CT *A *A *A *A *A *A
AND — — — — *16 *16 =0 —
ASL * CT | *A | *A | *A Al @ | @
ASLL — — — — (18) | *32 — —
ASR * T *A *A *A *A =0 3

ASRAC — — — — (16) | *36 — —
ASRR — — — — *32 *32 — —
Bcc — — — — — — — —
BFCHG — T — | - | =] =] ®
BFCLR — T — | - = =] = | ®
BFSET — T — | - - | =] =] ®
BFTSTH — T| — | =] =] —1]—1®
BFTSTL — T — | = | = — — (5)
BRA — — | - = = | =] = —
BRCLR — T — | = | = — — (5)
BRSET — T — — — — — @)
CLR * CT *36 *36 *36 *36 *36 — Never overflows
CMP * CT *A *A *A *A *A *A
DEBUG — — | = | = | = — — —
DEC(W) * CcT| *8 | * | *B | *B | *B | *B
DIV — C — | = | = — @ | ()

0 MOTOROLA Instruction Set Details

A-13

Table A-9. Condition Code Summary (Continued)

Instruction SZ L E U N Z \% C Comments
DO — T — — — — — — Affects LF, NL bits
ENDDO — — — — — — — — Condition code not affected
EOR — — — — *16 *16 =0 —
ILLEGAL — — — — — — — — Sets 11, 10 bits in SR
IMPY (16) — C — — | @an | =16 | 15) | —
INC(W) * CT *B *B *B *B *B *B
Jcc — — — — — — — —
JMP — — — — — — — —
JSR — — | = — — — — —
LEA — — | - | - | — — — —
LSL — — | = — | 16 | *16 | =0 7
LSLL — — — — *32 | *32 — —
LSR — — | = — | 16 | *16 | =0 (8)
LSRAC — — — — (16) | *36 — —
LSRR — — — — *32 *32 — —
MAC * CT *A *A *A *A *A —
MACR * CT *A *A *A *A *A —
MACSU — C *A *A *A *A *A —
MOVE * T — — — — — —
(10) (10) | (10) | (A0) | (10) | (10) | (10) | (10) | NA unless SR is the desti-
nation in the instruction
MPY * CT *A *A *A *A *A — V cleared
MPYR * CT *A *A *A *A *A — V cleared
MPYSU — C *A *A *A *A *A — V cleared
NEG * CT *A *A *A *A *A *A
NOP — — | = — — — — —
NORM — C *36 | *36 | *36 | *36 (1) —
NOT — — — — *16 *16 =0 —
OR — — — — *16 | *16 =0 —
POP — — | = — — — — —

A-14

DSP56800 Family Manual

@ MOTOROLA

Table A-9. Condition Code Summary (Continued)

Instruction SZ L E U N Z \% C Comments

REP — T - | = | = — — —

RND * CT | *36 | *36 | *36 | *36 | *36 —

ROL — — | — | — | *16 | *16 | =0 @)

ROR — — — — *16 | *16 =0 (8)

RTI Restored — (9)

RTS — — — — — — — —

SBC — C *36 *36 *36 *36 *36 *36
STOP — — — — — — — —

suB * CT | *A | *A | *A | *A | *A | *A

SWi — — — — — — — — | Affects I1, 10 bits in SR

Tcc — — — — — — — —

TFR — T — — — — — —

TST * CT *36 *36 *36 *36 0 0 Never overflows
TSTW * — — — *36 *36 0 0 Never overflows
WAIT — — | = | = | = — — —

NOTES:

V issetif the MSB of the destination operand (bit 35 for an accumulator or bit 31 for the Y
register) is changed as aresult of the left shift; V is cleared otherwise.

Cissetif the MSB of the source operand (bit 35 for an accumulator or bit 31 for the Y
register) is set and is cleared otherwise.

Cissetif bit 0 of the source operand is set and is cleared otherwise.

Cissetif adl bits specified by the mask are set and is cleared otherwise. Bitsthat are not set
in the mask should be ignored. If abit-field instruction is performed on the status register,
al bitsin this register selected by the bit field's mask can be affected.

Cissetif al bits specified by the mask are cleared and is cleared otherwise. Ignore bitsthat
are not setinthemask. Notethat if abit-field instruction is performed on the status register,
al bitsin this register selected by the bit field's mask can be affected.

Cissetif the MSB of theresult is cleared (bit 35 for an accumulator or bit 31 for the Y
register). The C bitis cleared if the MSB of the result is set.

For the accumulators, Cis set if bit 31 of the source operand is set and is cleared otherwise.
FortheY1, YO, and X0 registers, Cissetif bit 15 of the source operand is set and is cleared
otherwise.

For the accumulators, Cisset if bit 16 of the source operand is set and is cleared otherwise.
FortheY1, YO, and X0 registers, Cissetif bit O of the source operand is set and is cleared
otherwise.

0 MOTOROLA Instruction Set Details

A-15

9. The“? bitisset according to value pulled from stack.

10. If the SR is specified as a destination operand (for example, MOVE X: (R0) , SR), each bit
is set according to the corresponding bit of the source operand. If SR is not specified asa
destination operand, none of the status bits are affected.

11. Cissetif bit 0 of the SP register is set and is cleared otherwise.
12. N issetif bit 15 of the HWS register is set before the ENDDO and is cleared otherwise.

13. Zisset if bits 15-0 of the HWSregister are zero before the ENDDO and is cleared
otherwise.

14. The lowest eight condition code bits in the status register are loaded with the value in the
8-hit FISR register.

15. TheV bit for the IMPY instruction is set if the calculated integer product does not fitin 16
bits.

16. The setting of the N hit for the ASRAC and L SRAC instructions depends on the OMR'’s
SA hit. If SA isone, thenthe N bit is equal to bit 31 of theresult. If SA is zero, then N is
equal to bit 35 of the result.

17. When SA iszero and CCiszero for the IMPY instruction, the N bit is set using * 16. When
SA isone or CCisset to one, this bit is set as described in Section A.4.1.5, “ Negative
(N)—BIt 3.

18. When CCisonefor the ASLL instruction, the N bit is cleared. When CC is zero, thisbit is
set as described under Section A.4.1.5, “Negative (N)—Bit 3.”

See Section 3.6, “Condition Code Generation,” on page 3-33 for additional information on condition
codes.

A.5 Instruction Timing

This section describes how to cal culate the DSP56800 instruction timing manually using the provided
tables. Three complete examples are presented to illustrate the use of the tables. Alternatively, the user can
obtain the number of instruction program words and the number of oscillator clock cycles required for a
given instruction by using the simulator; thisis a simple and fast method of determining instruction timing
information.

The number of words for an instruction depends on the instruction operation and its addressing mode. The
symbols used in one table may reference subsequent tables to compl ete the instruction word count.

The number of oscillator clock cycles per instruction is dependent on many factors, including the number
of words per instruction, the addressing mode, whether the instruction fetch pipeisfull or not, the number
of external bus accesses, and the number of wait states inserted in each external access. The symbols used
in one table may reference subsequent tables to complete the execution clock-cycle count.

The tables in this section present the following information:

e Table A-11 on page A-18 gives the number of instruction program words and the number of
machine clock cycles for each instruction mnemonic.

e Table A-12 on page A-19 gives the number of additional instruction words (if any) and additional
clock cycles (if any) for each type of parallel move operation.

» Table A-13 on page A-20 gives the number of additional (if any) clock cycles for each type of
MOVEC operation.

A-16 DSP56800 Family Manual @ MOTOROLA

Table A-14 on page A-20 gives the number of additional (if any) clock cycles for each type of
MOVEM operation.

Table A-15 on page A-20 gives the number of additional (if any) clock cycles for each type of
bit-field manipulation (BFCHG, BFCLR, BFSET, BFTSTH, BFTSTL, BRCLR, and BRSET)
operation.

Table A-16 on page A-20 gives the number of additional clock cycles (if any) for each type of
branch or jump (Bcc, Jec, and JSR) operation.

Table A-17 on page A-21 gives the number of additional clock cycles (if any) for the RTS or RTI
instruction.

Table A-18 on page A-21 gives the number of additional clock cycles (if any) for the TSTW
instruction.

Table A-19 on page A-21 gives the number of additional instruction words (if any) and additional
clock cycles (if any) for each effective addressing mode.

Table A-20 on page A-22 gives the number of additional clock cycles (if any) for external data,
external program, and external 1/0 memory accesses.

The symbols used in the tables are summarized in Table A-10.

Table A-10. Instruction Timing Symbols

Symbol Description
aio Time required to access an I/O operand
ap Time required to access a P memory operand
ax Time required to access an X memory operand
axx Time required to access X memory operands for double read
ea Time or number of words required for an effective address
X Time required to execute part of a jump-type instruction
mv Time or number of words required for a move-type operation
mvb Time required to execute part of a bit-manipulation instruction
mvc Time required to execute part of a MOVEC instruction
mvm Time required to execute part of a MOVEM instruction
mvp Time required to execute part of a MOVEP instruction
mvs Time required to execute part of a MOVES instruction
rx Time required to execute part of an RTS instruction
wp Number of wait states used in accessing external P memory
WX Number of wait states used in accessing external X memory

The assumptions for calculating execution time are the following:

All instruction cycles are counted in oscillator clock cycles. Two oscillator clock cycles are
equivalent to one instruction cycle.

0 MOTOROLA Instruction Set Details A-17

e Theinstruction fetch pipelineisfull.

» Thereisno contention for instruction fetches. Thus, external program instruction fetches are
assumed not to have to contend with external data memory accesses.

» Thereare no wait states for instruction fetches done sequentialy (as for non-change-of-flow
instructions), but they are taken into account for change-of-flow instructionsthat flush the pipeline,
such as IMP, Jec, RTS, and so on.

In order to better understand and use the following tables, examine the three examples for computing an
instruction’ s execution time that are presented at the end of this section: Example A-1 on page A-22,
Example A-2 on page A-23, and Example A-3 on page A-25.

Table A-11. Instruction Timing Summary
Mnemonic Ins\}t/r;rc(:jtison Clock Cycles Mnemonic Ins\,,t/rcl:rc(:jtison Clock Cycles

ABS 1 2+mv LSRAC 1 2

ADC 1 2 LSRR 1 2

ADD 1+mva 2+(ea or mv) MAC 1 2+mv
AND 1 2 MACR 1 2+mv
ANDC 2+ea 4+mvb MACSU 1 2

ASL 1 2+mv MOVE? 1 2+mv
ASLL 1 2 MOVE(C) 1l+ea 2+mvc
ASR 1 2+mv MOVE(l) l+ea 2+ea
ASRAC 1 2 MOVE(M) 1 8+mvm
ASRR 1 2 MOVE(P) 1+ea 2+ea
Bcc 1 4+jx MOVE(S) 1l+ea 2+ea
BFCHG 2+ea 4+mvb MPY 1 2+mv
BFCLR 2+ea 4+mvb MPYR 1 2+mv
BFSET 2+ea 4+mvb MPYSU 1 2
BFTSTH 2+ea 4+mvb NEG 1 2+mv
BFTSTL 2+ea 4+mvb NOP 1 2

BRA 1 6+jx NORM 1 2
BRCLR 2+ea 8+mvb+jx NOT 1 2
BRSET 2+ea 8+mvb+jx NOTC 2+ea 4+mvb
CLR 1 2+mv OR 1 2

CMP 1+mva 2+(ea or mv) ORC 2+ea 4+mvb
DEBUG 1 4 POP 1 2+ea

A-18 DSP56800 Family Manual Q mororoLa

Table A-11. Instruction Timing Summary (Continued)

Mnemonic In?Ntr:rcdtison Clock Cycles Mnemonic In?Ntr(;Jrcdtison Clock Cycles
DEC(W) 1l+ea 2+(ea or mv) REP 1 6
DIV 1 2 RND 1 2+mv
DO 2 6 ROL 1 2
ENDDO 1 2 ROR 1 2
EOR 1 2 RTI 1 10+rx
EORC 2+ea 4+mvb RTS 1 10+rx
ILLEGAL 1 4 SBC 1 2
IMPY (16) 1 2 STOP? 1 n/a
INC(W) 1l+ea 2+(ea or mv) SUB 1l+ea 2+(ea or mv)
Jcc 2 4+jx SWwi 1 8
JMP 2 6+jx Tcc 1 2
JSR 2 8+jx TFR 1 2+mv
LEA l+ea 2+ea TST 1 2+mv
LSL 1 2 TSTW 1 2+tst
LSLL 1 2 WAIT3 1 n/a
LSR 1 2

1. This MOVE applies only to the case where two reads are performed in parallel from the X memory.

2. The STOP instruction disables the internal clock oscillator. After the clock is turned on, an internal
counter counts 65,536 cycles before enabling the clock to the internal DSP circuits.

3. The WAIT instruction takes a minimum of 16 cycles to execute when an internal interrupt is pending at
the time the WAIT instruction is executed.

Table A-12. Parallel Move Timing

Parallel Move Operation + mv Words +mv Cycles
No parallel data move 0 0
X: (X memory move) 0 ax
X: X: (XX memory move) 0 axx

0 MOTOROLA

Instruction Set Details

A-19

Table A-13. MOVEC Timing Summary

MOVEC Operation + mvc Cycles
16-bit immediate — register 2
Register — register 0
X memory ~ register ea + ax

Table A-14. MOVEM Timing Summary

MOVEM + mvm Cycles

Register -~ P memory ap

Note: The “ap” term represents the wait states spent when accessing the program memory
during DATA read or write operations and does not refer to instruction fetches.

Table A-15. Bit-Field Manipulation Timing Summary

Bit-Field Manipulation Operation + mvb Cycles
BFCHG, BFCLR, or BFSET on X memory ea+ (2*ax)
BFTSTH or BFTSTL on X memory ea + ax
BFTSTH, BFTSTL, BFCHG, BFCLR, or BFSET on register 0
BRSET or BRCLR with condition true 2+ea+ (2*ax)
BRSET or BRCLR with condition false ea+ (2 *ax)

Table A-16. Branch/Jump Instruction Timing Summary

Branch/Jump Instruction Operation +jx Cycles
Jcc, Bcc—condition true 2+ (2*ap)
Jcc, Bcc—condition false (2*ap)
JMP, JSR (2*ap)
NOTE:

All two-word jumps execute three program memory fetches to refill the
pipeling, one of them being the instruction word located at the jump
instruction’s second-word address + 1. If the jJump instruction was fetched
from a program memory segment with wait states, another “ap” should be
added to account for that third fetch.

A-20 DSP56800 Family Manual @ MOTOROLA

0 MOTOROLA

Table A-17. RTS Timing Summary

Operation +rx Cycles

RTI, RTS 2*ap+2*ax

NOTE:

The term “2 * ap” represents the two instruction fetches done by the
RTI/RTS instruction to refill the pipeline. The ax term represents fetching
the return address from the software stack when the stack pointer points to
external X memory, and the 2 * ax term includes both this fetch and the
fetch of the SR as performed by the RTI and RTS instructions.

Table A-18. TSTW Timing Summary

TSTW Operation +tst Cycles
Register 0
X memory ea + ax

Table A-19. Addressing Mode Timing Summary

Effective Addressing Mode + ea Words + ea Cycles

Address Register Indirect

No update 0 0
Post-increment by 1 0 0
Post-decrement by 1 0 0
Post addition by offset Nn 0 0
Indexed by offset Nn 0 2
Special

Immediate data 1 2
Immediate short data 0 0
Absolute address 1 2
Absolute short address 0 0
I/O short address 0 0
Implicit 0 0
Indexed by short displacement 0 2
Indexed by long displacement 1 4

Instruction Set Details

A-21

Table A-20. Memory Access Timing Summary

Access X Memory P Memory /O Access + ax +ap +aio + axx
Type Access Access Access | Cycle | Cycle | Cycle
X: Int — — 0 — — —
X: Ext — — wxt — — —
P: — Int — — 0 — —
P: — Ext — — sz — —
10: — — Int — — 0 —
X:X: Int:Ext — — — — — 0
X:X: Ext:Int — — — — — WX
X:X: I/O:Int — — — — — 0

1. wx—external X memory access wait states

2. wp—external P memory access wait states

Three examples using the preceding tables follow.

Example A-1. Arithmetic Instruction with Two Parallel Reads

Problem

Calculate the number of DSP56800 instruction program words and the number of oscillator clock cycles
required for the following instruction:

MACR X0, YO, A
Where the following conditions are true:

» Operating mode register (OMR) = $02 (normal expanded memory map).

X: (RO) +, YO

X: (R3) +, X0

e External X memory accesses require zero wait state, (assume external mem requires no wait state
and BCR contains the value $00).

e RO address register = $C000 (external X memory).
* R3addressregister = $0052 (internal X memory).

Solution

To determine the number of instruction program words and the number of oscillator clock cyclesrequired
for the given instruction, the user should perform the following steps:

1. Look upthe number of instruction program words and the number of oscillator clock cycles
required for the opcode-operand portion of the instruction inTable A-11 on page A-18.

According to Table A-11 on page A-18, the MACR instruction will require one instruction
program word and will execute in (2 + mv) oscillator clock cycles. The term “mv”
represents the additional instruction program words (if any) and the additional oscillator
clock cycles (if any) that may be required over and above those needed for thebasic MACR
instruction due to the parallel move portion of the instruction.

A-22

DSP56800 Family Manual

0 MOTOROLA

Example A-1. Arithmetic Instruction with Two Parallel Reads (Continued)

2. Evauatethe“mv” term using Table A-12 on page A-19.

The parallel move portion of the MACR instruction consists of an XX memory read.
According to Table A-12 on page A-19, the parallel move portion of the instruction will
requiremyv = axx additional oscillator clock cycles. Theterm “axx” representsthe number
of additional oscillator clock cycles (if any) that are required to accesstwo operandsinthe
X memory.

3. Evauate the “axx” term using Table A-20 on page A-22.

The parallel move portion of the MACR instruction consists of an XX Memory Read.
According to Table A-20 on page A-22, theterm “axx” depends upon where the
referenced X memory locations are located in the DSP56800 memory space. External X
memory accesses may require additional oscillator clock cycles depending on the memory
device's speed. Here we assume externa X memory accesses require wx = 0 wait state or
additional oscillator clock cycles. For this example, the second X memory referenceis
assumed to be an internal reference, while the first X memory referenceis assumed to be
an external reference. Thus, according to Table A-20 on page A-22, the XX memory
referencein the parallel move portion of the MACR instruction will requireaxx = wx =0
additional oscillator clock cycle.

4. Compute the final results.
Thus, based upon the assumptions given for Table A-11 on page A-18, the instruction
MACR X0, YO, A X:(RO)+, YO X: (R3)+, X

will require 1 instruction program word and will execute in
(2+ mv) = (2+ axx) = (2 +wx) = (2 + 0) = 2 oscillator clock cycles.

NOTE:

If asimilar calculation were made for aM OV EC, MOV EM, or one of the
bit-field manipulation instructions (BFCHG, BFCLR, BFSET or
BFTST), using Table A-12 on page A-19 would no longer be appropriate.
The user would refer to Table A-13 on page A-20, Table A-14 on
page A-20, or Table A-15 on page A-20, respectively.

Example A-2. Jump Instruction

Problem

Calculate the number of DSP56800 instruction program words and the number of oscillator clock cycles
required for the following instruction:

JEQ $2000
Where the following conditions are true:
*+ OMR =$02 (normal expanded memory map).

» External P memory accesses require four wait states (assume external memory access requires 4
wait statesin this example).

0 MOTOROLA Instruction Set Details A-23

Example A-2. Jump Instruction (Continued)

Solution

To determine the number of instruction program words and the number of oscillator clock cyclesrequired
for the given instruction, the user should perform the following steps:

1. Look upthe number of instruction program words and the number of oscillator clock cycles
required for the opcode-operand portion of the instruction in Table A-11 on page A-18.

According to Table A-11 on page A-18, the Jcc instruction will require two instruction
programwords and will executein (4 + jx) oscillator clock cycles. Theterm “jx” represents
the number of additional oscillator clock cycles (if any) required for ajump-type
instruction.

2. Evauatethe“jx” term using Table A-16 on page A-20.

According to Table A-16 on page A-20, the Jcc instruction will require 2 + jx additional
oscillator clock cycles. If the“ea’ conditionistrue, jx =2+ 2* ap, whereasjx = 2 * apif
the condition isfalse. Theterm “ap” represents the number of additional oscillator clock
cycles(if any) that are required to access a P memory operand. Note that the“+ (2 * ap)”
term represents the two program memory instruction fetches executed at the end of a
one-word jump instruction to refill the instruction pipeline.

3. Evauatethe“ap” term using Table A-20 on page A-22.

According to Table A-20 on page A-22, theterm “ap” depends upon wherethereferenced
P memory location islocated in the 16-bit DSP memory space. External memory accesses
require additional oscillator clock cycles according to the number of wait states required.
Here we assume that external P memory accesses require wp = 4 wait states or additional
oscillator clock cycles. For this example the P memory reference is assumed to be an
external reference. Thus, according to Table A-20 on page A-22, the Jcc instruction will
use the value ap = wp = 4 oscillator clock cycles.

4, Compute thefinal results.
Thus, based upon the assumptions given for Table A-11 on page A-18, theinstruction
JEQ $2000

will require (1 + 1) = (1 + 1) = 2 instruction program word and will executein (4 + jx) =
(4+ea+(2*ap)=(4+ea+(2* wp)) =(4+2+(2* 4)) = 14 oscillator clock cycles.

A-24 DSP56800 Family Manual @ MOTOROLA

Example A-3. RTS Instruction

Problem

Calculate the number of DSP56800 instruction program words and the number of oscillator clock cycles
required for the following instruction:

RTS

Where the following conditions are true:

*+ OMR =$02 (normal expanded memory map).

» External P memory accesses require four wait state.

* Return Address (on the stack) = $0100 (internal P memory).
Solution

To determine the number of instruction program words and the number of oscillator clock cyclesrequired
for the given instruction, the user should perform the following steps:

1. Look upthe number of instruction program words and the number of oscillator clock cycles
required for the opcode-operand portion of the instruction in Table A-11 on page A-18.

According to Table A-11 on page A-18, the RTS instruction will require one instruction
programword and will executein (10 + rx) oscillator clock cycles. Theterm “rx” represents
the number of additional oscillator clock cycles (if any) required for an RTS instruction.

2. Evauatethe“rx” term using Table A-17 on page A-21.

According to Table A-17 on page A-21, the RTS instruction will require rx = (2 * ap)
additional oscillator clock cycles. Theterm “ap” represents the number of additional
oscillator clock cycles (if any) that are required to access a P memory operand. Theterm
“(2* ap)” represents the two program memory instruction fetches executed at the end of
an RTS instruction to refill the instruction pipeline.

3. Evauatethe“ap” term using Table A-20 on page A-22.

According to Table A-20 on page A-22, theterm “ap” depends upon wherethereferenced
P memory location islocated in the 16-bit DSP memory space. External memory accesses
may require additional oscillator clock cycles, according to the memory device's speed.
Here we assume that external P memory accesses require wp = 4 wait state or additional
oscillator clock cycles. For this example the P memory reference is assumed to be an
internal reference. This means that the return address ($0100) pulled from the system
stack by the RTS instruction isin internal P memory. Thus, according to Table A-20 on
page A-22, the RTSinstruction will usethe value ap = 0 additional oscillator clock cycles.

4. Compute the final results.
Thus, based upon the assumptions given for Table A-11 on page A-18, the instruction
RTS

will require one instruction program word and will executein (10 + rx) = (10 + (2 * ap))
= (10 + (2* 0)) = 10 oscillator clock cycles.

0 MOTOROLA Instruction Set Details A-25

A.6

Instruction Set Restrictions

These items are restrictions on the DSP56800 instruction set:

A-26

A NORM instruction cannot be immediately followed by an instruction that accesses X memory
using the RO pointer. In addition, NORM can only use the RO address register.

No bit-field operation (ANDC, ORC, NOTC, EORC, BFCHG, BFCLR, BFSET, BFTSTH,
BFTSTL, BRCLR, or BRSET) can be performed on the HWS register.

Only positive immediate values less than 8,192 can be moved to the L C register (13 bits).

The following registers cannot be specified as the loop count for the DO or REP instruction: HWS,
SR, OMR, or M0O1. Similarly, the immediate value of $0 is not allowed for the loop count of aDO
instruction.

Any jump, branch, or branch on bit field may not specify the instructionsat LA or LA-1 of a
hardware DO loop as their target addresses. Similarly, these instructions may not be located in the
last two locations of ahardware DO loop (that is, at LA or at LA-1).

A REP instruction cannot repeat on an instruction that accesses the P memory or on any multiword
instruction.

TheHI, HS, LO, and LS condition code expressions can only be used when the CC bit isset in the
OMR register.

The access performed using R3 and XAB2/XDB2 cannot reference external memory. This access
must always be made to internal memory.

If aMOVE instruction changes the value in one of the address registers (R0—R3), then the contents
of the register are not available for use until the second following instruction (that is, the
immediately following instruction should not use the modified register to access X memory or
update an address). This also appliesto the SP register and the MOL1 register. In addition, it applies
if a16-hit immediate value is moved to the N register.

If abit-field instruction changes the valuein one of the address registers (R0-R3), then the contents
of the register are not available for use until the second following instruction (that is, the
immediately following instruction should not use the modified register to access X memory or
update an address). This also appliesto the SP, the N, and the MOL registers.

For the case of nested hardware DO loops, it is required that there be at least two instructions after
the pop of the LA and LC registers before the instruction at the last address of the outer loop.

DSP56800 Family Manual @ MOTOROLA

A.7 Instruction Descriptions

This section describes in complete detail each instruction in the DSP56800 Family instruction set. The
format of each instruction description is given in Section A.1, “Notation,” at the beginning of this
appendix. Instructions that allow parallel moves include the notation “(parallel move)” in both the
“Assembler Syntax” and the “Operation” fields. The example given with each instruction discusses the
contents of all the registers and memory locations referenced by the opcode-operand portion of that
instruction, though not those referenced by the parallel move portion of that instruction.

The “Parallel Move Descriptions” section that follows the MOV E instruction description give a complete
discussion of parallel moves, including examples that discuss the contents of all the registers and memory
locations referenced by the parallel move portion of aninstruction.

Whenever an instruction uses an accumulator as both a destination operand for a data ALU operation and
asasourcefor aparallel move operation, the parallel move operation will use the value in the accumulator
prior to the execution of any data ALU operation.

Whenever abit in the condition code register is defined according to the standard definition as givenin
Section A .4, “Condition Code Computation,” abrief definition will be givenin normal text in the
“Condition Code” section of that instruction description. Whenever a bit in the condition code register is
defined according to a special definition for some particular instruction, the complete special definition of
that bit is given in the “Condition Code” section of that instruction in bold text to aert the user to any
specia conditions concerning its use.

0 MOTOROLA Instruction Set Details A-27

ABS Absolute Value ABS

Operation: Assembler Syntax:
[D]-D (parallel move) ABS D (parallel move)
Description: Take the absolute value of the destination operand (D) and store the result in the destination accumu-
lator.
Example:
ABS A X:(RO)+, YO ; take ABS value, nobve data into YO,
; update RO
A Before Execution A After Execution
F FFFF FFF2 0 0000 000E
A2 Al A0 A2 Al A0

Explanation of Example:
Prior to execution, the 36-bit A accumulator containsthe value $F:FFFF:FFF2. Since thisisanegative
number, the execution of the ABS instruction takes the two’s-complement of that value and returns
$0:0000:000E.

Note: When the D operand equal s $8:0000:0000 (-16.0 when interpreted as a decimal fraction), the ABSin-
struction will cause an overflow to occur since the result cannot be correctly expressed using the stan-
dard 36-hit, fixed-point, two's-complement data representation. Data limiting does not occur (that is,
A isnot set to the limiting value of $7:FFFF:FFFF) but remains unchanged.

Condition Codes Affected:

< MR > < CCR >
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF| | | *|=*]|=*|n11|wo|SZ|IL|E|JU|N|Z|V]|C

— Set according to the standard definition of the SZ bit (parallel move)
— Setif limiting (parallel move) or overflow has occurred in result

— Setif the signed integer portion of A or B result isin use

Set according to the standard definition of the U bit

— Setif bit 35 of A or B result is set except during saturation.

— Setif A or B result equals zero

— Setif overflow hasoccurred in A or B result

<Nzcmr @
|

A-28 DSP56800 Family Manual @ MOTOROLA

ABS

Instruction Fields:

Absolute Value

ABS

Operation Operands C W Comments
ABS F 2 1 Absolute value.
Data ALU Operation Parallel Memory Read or Write
Operation Registers Memory Access Source or Destination

ABS A X:(Rn)+ X0

B X:(Rn)+N Y1

YO

A

B

Al

B1

Timing: 2 + mv oscillator clock cycles

Memory:

0 MOTOROLA

1 program word

Instruction Set Details

A-29

ADC Add Long with Carry ADC

Operation: Assembler Syntax:
S+C+D -D (no parallel move) ADC SD (no parallel move)

Description: Add the source operand (S) and C to the destination operand (D) and store the result in the destination
accumulator. Long words (32 bits) may be added to the (36-bit) destination accumulator.

Usage: Thisinstruction istypically used in multi-precision addition operations (see Section 3.3.8, “Multi-Pre-
cision Operations,” on page 3-23) when it is necessary to add together two numbersthat are larger than
32 hits (such as 64-bit or 96-bit addition).

Example:
ADC Y, A
Before Execution After Execution

0 2000 8000 0 4001 0001

A2 Al A0 A2 Al A0
Y 2000 8000 Y 2000 8000

Y1 YO Y1 YO
SR 0301 SR 0300

Explanation of Example:
Prior to execution, the 32-bit Y register, comprised of the Y1 and YO registers, contains the value
$2000:8000, and the 36-bit accumulator contains the val ue $0:2000:8000. In addition, C is set to one.
The ADC instruction automatically sign extends the 32-bit Y registersto 36 bits and addsthisvaueto
the 36-bit accumulator. In addition, C is added into the LSB of this 36-bit addition. The 36-bit result
is stored back in the A accumulator, and the condition codes are set correctly. The Y 1:Y O register pair
is not affected by thisinstruction.

Note: C is set correctly for multi-precision arithmetic, using long word operands only when the extension
register of the destination accumulator (A2 or B2) contains sign extension of bit 31 of the destination
accumulator (A or B).

A-30 DSP56800 Family Manual @ MOTOROLA

ADC Add Long with Carry ADC

Condition Codes Affected:

< MR < CCR g
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF| = | || || n|lwo|sz|L|E|JU|N|Z|V|C

— Setif overflow has occurred in result

— Setif the signed integer portion of A or B result isin use
— Set according to the standard definition of the U bit

Set if bit 35 of A or B result is set except during saturation
— Setif A or B result is zero; cleared otherwise

— Setif overflow has occurred in A or B result

— Setif acarry (or borrow) occurs from bit 35 of A or B result

o<Nzcmr
|

See Section 3.6.5, “16-Bit Destinations,” on page 3-35 for cases with X0, YO, or Y1 asD.
See Section 3.6.2, “36-Bit Destinations—CC Bit Set,” on page 3-34 and Section 3.6.4, “20-Bit Desti-
nations—CC Bit Set,” on page 3-34 for the case when the CC hit is set.

Instruction Fields:

Operation Operands C W Comments
ADC Y,F 2 1 Add with carry (sets C bit also)
Timing: 2 oscillator clock cycles
Memory: 1 program word

0 MOTOROLA Instruction Set Details A-31

ADD Add ADD

Operation: Assembler Syntax:
S+D - D (parallel move) ADD SD (parallel move)

Description: Add the source operand (S) to the destination operand (D) and store the result in the destination accu-
mulator. Words (16 bits), long words (32 bits), and accumulators (36 bits) may be added to the desti-

nation.
Usage: This instruction can be used for both integer and fractional two’s-complement data.
Example:
ADD X0, A X: (RO) +, YOX: (R3) +, X0 ; 16-bit add, update
; Y0, X0, RO, R3
Before Execution After Execution
0 0100 0000 0 OOFF 0000
A2 Al A0 A2 Al A0
X0 FFFF X0 FFFF

Explanation of Example:

Prior to execution, thel6-bit X0 register contains the value $FFFF, and the 36-bit A accumulator con-
tains the value $0:0100:0000. The ADD instruction automatically appends the 16-bit value in the X0
register with 16 LS zeros, sign extends the resulting 32-bit long word to 36 bits, and adds the result to
the 36-bit A accumulator. Thus, 16-bit operands are always added to the MSP of A or B (Al or B1),
with the result correctly extending into the extension register (A2 or B2). Operands of 16 bits can be
added to the LSP of A or B (AO or BO) by loading the 16-bit operand into Y O; this forms a 32-bit word
by loading Y 1 with the sign extension of YO and executing an ADD Y, A or ADD Y, B instruction.
Similarly, the second accumulator can also be used as the source operand.

Note: Cisset correctly using word or long word source operands if the extension register of the destination
accumulator (A2 or B2) contains sign extension from bit 31 of the destination accumulator (A or B).
Cisaways set correctly by using accumulator source operands.

A-32 DSP56800 Family Manual @ MOTOROLA

ADD

ADD Add
Condition Codes Affected:
< MR >« CCR >
15 14 13 12 11 10 9 8|7 6 5 4 3 2 1 0
LF| | *|*|*|*|n1|w0o|SZ|[L|E|J|U|IN|]Z]|V]|C
SZ — Set according to the standard definition of the S bit (parallel move)
L — Setif limiting (parallel move) or overflow has occurred in result
E — Setif thesignedinteger portion of A or B resultisin use
U — Setaccording to the standard definition of the U bit
N — Setif bit 35 0f A or B result is set except during saturation
Z — Setif A or B result equalszero
V — Setif overflow hasoccurred in A or B result
C — Setif acarry (or borrow) occurs from bit 35 of A or B result
Instruction Fields:
Data ALU Operation Parallel Memory Read or Write
Operation Registers Memory Access Source or Destination
ADD XO0,F X:(Rn)+ X0
Y1,F X:(Rn)+N Y1
YO,F YO
A
AB B
B,A Al
Bl
(F=AorB)
Data ALU First and Second Memory Destinations for Memory
Operation Reads Reads
Operation Registers Read1 Read?2 Destinationl Destination2
ADD X0,A X:(RO)+ X:(R3)+ YO X0
Y1,A X:(RO)+N X:(R3)-
YOA Y1 X0
X:(R1)+) .
Valid Valid
X0,B X(RL+N destinations destinations
Y1,B
YOB for Readl for Read2

0 MOTOROLA

Instruction Set Details

A-33

ADD Add ADD
Instruction Fields:
Operation Operands W Comments
ADD DD,FDD 1 36-bit addition of two registers
F1,DD
~F,F
Y,F
X:(SP-xx),FDD 1 Add memory word to register.
X:aa,FDD 1 X:aa represents a 6-bit absolute address. Refer to
Absolute Short Address (Direct Addressing):
X:xxxx,FDD 2 <aa> on page 4-22.
FDD,X:(SP-xx) 2 Add register to memory word, storing the result back
to memory
FDD,X:XXXX 2
FDD,X:aa 2
#xx,FDD 1 Add an immediate integer 0-31
#xxxx,FDD 2 Add a signed 16-bit immediate
Timing: 2 + mv oscillator clock cycles for ADD instructions with asingle or dual parallel move.

Refer to previous tables for ADD instructions without a parallel move.

Memory:

1 program word for ADD instructions with asingle or dual parallel move.

Refer to previous tables for ADD instructions without a parallel move.

A-34

DSP56800 Family Manual

@ MOTOROLA

AND Logical AND AND

Operation: Assembler Syntax:
SD - D (no parallel move) AND SD (no parallel move)
SD[31:16] - D[31:16] (no parallel move) AND SD (no parallel move)

where « denotes the logical AND operator

Description: Logically AND the source operand (S) with the destination operand (D) and store the result in the des-
tination. Thisinstruction is a 16-hit operation. If the destination is a 36-bit accumulator, the sourceis
ANDed with bits 31-16 of the accumulator. The remaining bits of the destination accumulator are not

affected.
Usage: Thisinstruction is used for the logical AND of two registers; the ANDC instruction is appropriate to
AND a 16-bit immediate value with aregister or memory location.
Example:
AND X0, A ; AND X0 with Al
Before Execution After Execution
6 1234 5678 6 1200 5678
A2 Al A0 A2 Al A0
X0 7F00 X0 7F00

Explanation of Example:
Prior to execution, the 16-bit X0 register contains the value $7F00, and the 36-bit A accumulator con-
tains the value $6:1234:5678. The AND X0, A instruction logically ANDs the 16-bit value in the X0
register with bits 31-16 of the A accumulator (A1) and stores the 36-bit result in the A accumulator.
Bits 35-32 in the A2 register and bits 15-0 in the AO register are not affected by thisinstruction.

Condition Codes Affected:

< MR > < CCR >
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF| * | | *|*] *|nn|lo|sz|]L|E|U|IN|Z]|V]|C

N — Setif bit 31 of A or B result is set
Z — Setif bits31-16 of A or B result are zero
V — Alwayscleared

See Section 3.6.5, “16-Bit Destinations,” on page 3-35 for caseswith X0, YO, or Y1 asD.
See Section 3.6.2, “36-Bit Destinations—CC Bit Set,” on page 3-34 and Section 3.6.4, “20-Bit Desti-
nations—CC Bit Set,” on page 3-34 for the case when the CC bit is set.

Instruction Fields:

Operation Operands C W Comments
AND DD,FDD 2 1 16-bit logical AND
F1,DD
Timing: 2 oscillator clock cycles
Memory: 1 program word

0 MOTOROLA Instruction Set Details A-35

ANDC Logical AND, Immediate ANDC

Operation: Assembler Syntax:
#XXxxeX:<ea> - X:<ea> ANDC #iiii X :<ea>
#xxxxsD - D ANDC #iiii,D

where ¢ denotes the logical AND operator

Implementation Note:
Thisinstruction is an alias to the BFCLR instruction, and assembles as BFCLR with the 16-bit imme-
diate value inverted (one’' s-complement) and used as the bit mask. It will disassemble asaBFCLR in-
struction.

Description: Logicaly AND a 16-hit immediate data value with the destination operand, and store the results back
into the destination. C is also modified as described in the following discussion. This instruction per-
forms a read-modify-write operation on the destination and requires two destination accesses.

Example:
ANDC #$5555, X: <<$A000; AND with i medi ate dat a
Before Execution After Execution
X:$A000 C3FF X:$A000 4155
SR 0301 SR 0300

Explanation of Example:
Prior to execution, the 16-bit X memory location X:$A000 contains the value $C3FF. Execution of the
instruction tests the state of the bits4, 8, and 9in X:$FFE2, clears C (because not all the CCR bhitswere
set), and then clears the bits.

Condition Codes Affected:

< MR g
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A
9]
@]
Py
v

LF | * * * * * 1110 |SZ]| L E U N z \% C

For destination operand SR:

? — Cleared asdefined in the field and if specified in the field
For other destination operands:

L — Setif datalimiting occurred during 36-bit source move

C — Setif al bits specified by the mask are set

Clear if not al bits specified by the mask are set

A-36 DSP56800 Family Manual @ MOTOROLA

ANDC

Instruction Fields:

Logical AND, Immediate ANDC

Operation Operands C W Comments
BFCLR #xxxx,DDDDD 4 2 Absolute value.
All registers in DDDDD are permitted except HWS.
#xxxx, X:(R2+xx) 6 2
X:aa represents a 6-bit absolute address. Refer to
HXXXX, X:(SP-XX) 6 2 | Absolute Short Address (Direct Addressing):
<aa> on page 4-22.
#xxxx,X:aa 4 2
_ X:pp represents a 6-bit absolute I/O address. Refer
X0, X:pp 4 2 | to 1/O Short Address (Direct Addressing): <pp>
FXXXX, XIXXXX 6 3 on page 4-23.
Timing: Refer to the preceding Instruction Fields table
Memory: Refer to the preceding Instruction Fields table
@ mororoLa Instruction Set Details A-37

ASL

Operation:

(seefollowing f

igure)

Arithmetic Shift Left

Assembler Syntax:

ASL

Ce— |+

<—

<—

D2

D1

DO

D

<+“—0

ASL

(parallel move)

(parallel move)

Description: Arithmetically shift the destination operand (D) 1 bit to the left and store the result in the destination
accumulator. The MSB of the destination prior to the execution of the instruction is shifted into C, and
azero is shifted into the LSB of the destination.

Implementation Note:
When a 16-bit register is specified asthe operand for ASL, thisinstruction is actually assembled asan

Example:

L SL with the same register argument.

ASL

Before Execution

X:(R3)+N, YO; multiply A by 2,

A 0123 0123
A2 Al AO
SR 0300

Explanation of Example:
Prior to execution, the 36-bit A accumulator contains the value $A:0123:0123. Execution of the
ASL A instruction shifts the 36-bit value in the A accumulator 1 bit to the left and stores the result
back in the A accumulator. C is set by the operation because bit 35 of A was set prior to the execution
of theinstruction. The V bit of CCR (bit 1) is also set because bit 35 of A has changed during the ex-
ecution of theinstruction. The U bit of CCR (bit 4) is set because the result is not normalized, the E bit
of CCR (bit 5) is set because the signed integer portion of the result isin use, and the L bit of CCR (bit
6) is set because an overflow has occurred.

A-38

update R3, YO
After Execution
4 0246 0246
A2 Al AO
SR 0373

DSP56800 Family Manual

0 MOTOROLA

ASL

Condition Codes Affected:

Arithmetic Shift Left

ASL

< MR >« CCR >
15 14 13 12 11 10 9 8|7 6 5 4 3 2 1 0
LF| | *|*|*|*|n1|w0o|SZ|[L|E|J|U|IN|]Z]|V]|C

SZ — Set according to the standard definition of the S bit (parallel move)

L — Setif limiting (parallel move) or overflow has occurred in result

E — Setif thesignedinteger portion of A or B resultisin use

U — Setaccording to the standard definition of the U bit

N — Setif bit 35 0f A or B result is set except during saturation

Z — Setif A or B result equalszero

V — Setif bit 35 of A or B result is changed due to left shift

C — Setif bit 35 of A or B was set prior to the execution of the instruction

See Section 3.6.5, “16-Bit Destinations,” on page 3-35 for cases with X0, YO, or Y1 asD.
See Section 3.6.2, “36-Bit Destinations—CC Bit Set,” on page 3-34 and Section 3.6.4, “20-Bit Desti-
nations—CC Bit Set,” on page 3-34 for the case when the CC bit is set.

Instruction Fields:

Operation Operands C W Comments
ASL FDD 2 1 Arithmetic shift left entire register by 1 bit
Data ALU Operation Parallel Memory Read or Write
Operation Registers Memory Access Source or Destination
ASL A X:(Rn)+ X0
B X:(Rn)+N Y1
YO
Al
B1
A
B
Timing: 2 + mv oscillator clock cycles
Memory: 1 program word

0 MOTOROLA

Instruction Set Details

A-39

ASLL Multi-Bit Arithmetic Left Shift ASLL

Operation: Assembler Syntax:
S1<<S2 - D (no parallel move) ASLL S1,82,D (no parallel move)

Description: Arithmetically shift the first 16-bit source operand (S1) to the left by the value contained in the lowest
4 bits of the second source operand (S2) and store the result in the destination register. If the destination
isa36-bit accumulator, correctly sign extend into the extension register (A2 or B2), and place zeroin

the LSP (A0 or BO).
Example:
ASLL Y1, X0, A
Before Execution After Execution
0 3456 3456 F AAAO 0000
A2 Al A0 A2 Al A0
Y1 AAAA Y1 AAAA
X0 0004 X0 0004

Explanation of Example:

Prior to execution, the Y 1 register contains the value to be shifted (SAAAA) and the X0 register con-
tains the amount by which to shift ($0004). The contents of the destination register are not important
prior to execution because they have no effect on the calculated value. The ASLL instruction arithmet-
ically shifts the vaue $AAAA four bits to the left and places the result in the destination register A.

Since the destination is an accumulator, the extension word (A2) isfilled with sign extension, and the
LSP (AOQ) is set to zero.

Condition Codes Affected:

< MR »><¢ CCR >
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF| * | | *|*] *|n|lO|sz|]L|E|U|[N|Z]|V]|C

N — Setif bit 35 0f A or B result is set except during saturation
Z — Setif A or B result equalszero
Note: If the CC bit isset, N is undefined and Z is set if the LSBs 31-0 are zero.

A-40 DSP56800 Family Manual @ MOTOROLA

ASLL

Instruction Fields:

Multi-Bit Arithmetic Left Shift ASLL

Operation

Operands

C W Comments

ASLL

Y1,X0,FDD
Y0,X0,FDD
Y1,YO,FDD
Y0,YO,FDD
A1,Y0,FDD
B1,Y1,FDD

2 1 Arithmetic shift left of the first operand by value
specified in four LSBs of the second operand,;

places result in FDD

Timing: 2 oscillator clock cycles

Memory: 1 program word

0 MOTOROLA

Instruction Set Details A-41

ASR Arithmetic Shift Right ASR
Operation: Assembler Syntax:
(see following figure) ASR D (parallel move)
> —> —> —> —»C (parallel move)
D2 D1 DO

Description: Arithmetically shift the destination operand (D) 1 bit to the right and store the result in the destination
accumulator. The LSB of the destination prior to the execution of the instruction is shifted into C and
the MSB of the destination is held constant.

Example:
ASR

Before Execution

X:(R2) +,YO; divide B by 2, update R3, load R3

A A864 A865
B2 Bl BO
SR 0300

Explanation of Example:

After Execution

D 5432 5432
B2 Bl BO
SR 0329

Prior to execution, the 36-bit B accumulator contains the value $A:A864:A865. Execution of the
ASR B ingtruction shifts the 36-bit value in the B accumulator 1 bit to the right and stores the result
back in the B accumulator. C is set by the operation because hit 0 of A was set prior to the execution
of theinstruction. The N bit of CCR (bit 3) is also set because bit 35 of the result in A isset. The E bit
of CCR (bit 5) is set because the signed integer portion of B is used by the result.

A-42

DSP56800 Family Manual @ MOTOROLA

ASR

Condition Codes Affected:

Arithmetic Shift Right ASR

MR

»

N

15 14 13

12

11 10

9

)l

8 7 6 5

0O
@
Py}
v

LF | *

*

*

* *

11

o |SZ|L |E

U[N|Z |V]|C

O<NZCI'I'II_K}

Set according to the standard definition of the S bit (parallel move)
Set if datalimiting has occurred during parallel move

Set if the signed integer portion of A or B resultisin use

Set according to the standard definition of the U bit

Set if bit 35 of A or B result is set except during saturation

Set if A or B result equals zero
Always cleared
Set if bit 0 of A or B was set prior to the execution of the instruction

See Section 3.6.5, “16-Bit Destinations,” on page 3-35 for cases with X0, YO, or Y1 asD.
See Section 3.6.2, “36-Bit Destinations—CC Bit Set,” on page 3-34 and Section 3.6.4, “20-Bit Desti-
nations—CC Bit Set,” on page 3-34 for the case when the CC bit is set.

Instruction Fields:

Operation Operands C W Comments
ASR FDD 2 1 Arithmetic shift right entire register by 1 bit
Data ALU Operation Parallel Memory Read or Write
Operation Registers Memory Access Source or Destination

ASR A X:(Rn)+ X0

B X:(Rn)+N Y1

YO

Al

Bl

A

B
Timing: 2 + mv oscillator clock cycles

Memory: 1 program word

0 MOTOROLA

Instruction Set Details

A-43

ASRAC Arithmetic Right shift with Accumulate ASRAC

Operation:

Assembler Syntax:

S1>>S2+D - D (noparalel move) ASRAC S1,82,D (no parallel move)
Description: Arithmetically shift thefirst 16-bit source operand (S1) to theright by the value contained in the lowest

4 bits of the second source operand (S2) and accumulate the result with the value in the destination
register. If the destination is a 36-bit accumulator, correctly sign extend into the extension register (A2
or B2).

Usage: Thisinstruction istypically used for multi-precision arithmetic right shifts.
Example:
ASRAC Y1, X0, A ; 16-bit add, update X1, X0, RO, R3
Before Execution After Execution
0 0000 0099 F FCO00 3099
A2 Al A0 A2 Al A0
Y1 C003 Y1 Co03
X0 0004 X0 0004

Explanation of Example:

Prior to execution, the Y1 register contains the value to be shifted ($C003), the X0 register contains
the amount by which to shift ($0004), and the destination accumulator contains $0:0000:0099. The
ASRAC instruction arithmetically shifts the value $C003 four bits to the right and accumulates this
result with the value already in the destination register A. Since the destination is an accumulator, the
extension word (A2) isfilled with sign extension.

Condition Codes Affected:

A-44

< MR < CCR >
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF| * | = | *|*] *|nn|lo|sz|]L|E|U|IN|Z]|V]|C

N — Setif bit 35 0f A or B result is set except during saturation
Z — Setif A or B result equalszero

See Section 3.6.2, “36-Bit Destinations—CC Bit Set,” on page 3-34 and Section 3.6.4, “20-Bit Desti-
nations—CC Bit Set,” on page 3-34 for the case when the CC bit is set.

DSP56800 Family Manual @ MOTOROLA

ASRAC Arithmetic Right Shift with Accumulate

Instruction Fields:

ASRAC

Operation Operands C W Comments
ASRAC Y1,X0,F 2 1 Arithmetic word shifting with accumulation

YO0,X0,F
Y1,YO,F
YO,YO,F
Al,YO,F
B1,Y1l,F

Timing: 2 oscillator clock cycles

Memory: 1 program word

0 MOTOROLA

Instruction Set Details

A-45

ASRR Multi-Bit Arithmetic Right Shift ASRR

Operation: Assembler Syntax:
S1>>S2 - D (no parallel move) ASRR S1,82,D (no parallel move)

Description: Arithmetically shift thefirst 16-bit source operand (S1) to theright by the value contained in the lowest
4 bits of the second source operand (S2) and store the result in the destination register. If the destination
isa36-bit accumulator, correctly sign extend into the extension register (A2 or B2), and place zeroin

the LSP (A0 or BO).
Example:
ASRR Y1, X0, A ; right shift of 16-bit Y1 by XO
Before Execution After Execution
0 1234 5678 F FAAA 0000
A2 Al A0 A2 Al A0
Y1 AAAA Y1 AAAA
X0 0004 X0 0004

Explanation of Example:

Prior to execution, the Y 1 register contains the value to be shifted (SAAAA) and the X0 register con-
tains the amount by which to shift ($0004). The contents of the destination register are not important
prior to execution because they have no effect on the cal culated value. The ASRR instruction arithmet-
ically shiftsthe value SAAAA four hits to the right and places the result in the destination register A.

Since the destination is an accumulator, the extension word (A2) isfilled with sign extension, and the
LSP (AOQ) is set to zero.

Condition Codes Affected:

< MR »><¢ CCR >
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF| * | | *|*] *|n|lO|sz|]L|E|U|[N|Z]|V]|C

N — Setif bit 35 0f A or B result is set except during saturation
Z — Setif A or B result equalszero

A-46 DSP56800 Family Manual @ MOTOROLA

ASRR

Instruction Fields:

Multi-Bit Arithmetic Right Shift ASRR

Operation

Operands

C W Comments

ASRR

Y1,X0,FDD
Y0,X0,FDD
Y1,YO,FDD
Y0,YO,FDD
A1,Y0,FDD
B1,Y1,FDD

2 1 Arithmetic shift right of the first operand by value
specified in four LSBs of the second operand,;
places result in FDD

Timing: 2 oscillator clock cycles

Memory: 1 program word

0 MOTOROLA

Instruction Set Details A-47

Bcc

Operation:
If cc, then PC + label - PC Bcc
gsePC+1 - PC

Branch Conditionally

Assembler Syntax:

<OFFSET7>

Bcc

Description: If the specified condition is true, program execution continues at location PC + displacement. The PC
contains the address of the next instruction. If the specified condition is false, the PC isincremented,
and program execution continues sequentially. The offset isa 7-bit-sized value that is sign extended to
16 bits. Thisinstruction is more compact than the Jcc instruction, but can only be used to branch within

asmall address range

Theterm “cc” specifies the following:

“cc” Mnemonic Condition
CC (HS*)— carry clear (higher or same) C=0
CS (LO*)— carry set (lower) c=1
EQ — equal Z=1
GE — greater than or equal N O V=0
GT — greater than Z+(N O V)=0
HI* — higher Cez=1
LE — less than or equal Z+(N O V)=1
LS* — lower or same C+z=1
LT —less than NOV=1
NE — not equal Z=0
NN — not normalized Z+(UE)=0
NR — normalized Z+({UsE)=1

* Only available when CC bit set in the OMR

denotes the logical complement of X
denotesthe logical OR operator

denotes the logical AND operator
denotes the logical exclusive OR operator

O °* + X

Example:

BNE LABEL ; branch to | abel

INCW A

INCW A
LABEL

ADD B, A

Explanation of Example:

if Z condition clear

In this example, if the Z bit is zero when executing the BNE instruction, program execution skips the
two INCW instructions and continues with the ADD instruction. If the specified condition is not true,
no branch istaken, the program counter isincremented by one, and program execution continues with
the first INCW instruction. The Bcec instruction uses a PC-relative offset of two for this example.

Restrictions:

A Bcc instruction used within a DO loop cannot begin at the LA or LA-1 within that DO loop.
A Bcc instruction cannot be repeated using the REP instruction.

A-48 DSP56800 Family Manual

0 MOTOROLA

Bcc Branch Conditionally Bcc

Condition Codes Affected:
The condition codes are tested but not modified by this instruction.

Instruction Fields:

Operation Operands C W Comments
Bcc <OFFSET7> 6/4 1 7-bit signed PC relative offset
Timing: 4 + jx oscillator clock cycles
Memory: 1 program word

0 MOTOROLA Instruction Set Details A-49

B FCHG Test Bit Field and Change B FCHG

Operation: Assembler Syntax:

(<bit field> of destination) - (<bit field> of destination)BFCHG #iiii X :<ea>
(<bit field> of destination) - (<bit field> of destination)BFCHG #iiii,D

Description: Test al selected bits of the destination operand. If al selected bits are set, C is set; otherwise, C is
cleared. Then complement the selected bits and store the result in the destination memory location. The
bits to be tested are selected by a 16-bit immediate value in which every bit set is to be tested and
changed. Thisinstruction performs a read-modify-write operation on the destination memory location
or register and reguires two destination accesses.

Usage: Thisinstruction is very useful in performing I/O and flag bit manipulation.
Example:
BFCHG #$0310, X: <<$FFE2 ;test and change bits 4, 8, and 9
;in a peripheral register
Before Execution After Execution
X:$FFE2 0010 X:$FFE2 0300
SR 0001 SR 0000

Explanation of Example:
Prior to execution, the 16-bit X memory location X :$FFE2 contains the value $0010. Execution of the
instruction tests the state of the bits 4, 8, and 9 in X:$FFE2; does not set C (because all of the CCR bits
were not set); and then complements the bits.

Condition Codes Affected:

A
9]
@]
Py
v

< MR >
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF| * | | *|*|*|nn|lo|sz|]L|E|JU|IN]|]Z]|V]|C

For destination operand SR:

? — Changed if specified in thefield
For other destination operands:
L — Setif datalimiting occurred during 36-bit source move

C — Setif al hits specified by the mask are set
Clear if not al bits specified by the mask are set

Note: If al bitsin the mask are set to zero, the destination is unchanged, and the C bit is set.

A-50 DSP56800 Family Manual @ MOTOROLA

BFCHG

Instruction Fields:

Test Bit Field and Change B FCHG

Operation Operands Comments
BFCHG #xxxx,DDDDD BFCHG tests all bits selected by the 16-bit immedi-
ate mask. If all selected bits are set, then the C bit is
#xxxx, X:(R2+xx) set. Otherwise it is cleared. Then it inverts all
selected bits.
XXX, X: (SP-xx)
All registers in DDDDD are permitted except HWS.
#xxxx,X:aa
_ X:aa represents a 6-bit absolute address. Refer to
R0, X:pp Absolute Short Address (Direct Addressing):
<aa> -22.
FHXXXX, X XXXX aa> on page 4-22
X:pp represents a 6-bit absolute /O address. Refer
to 1/0 Short Address (Direct Addressing): <pp>
on page 4-23.
Timing: Refer to the preceding Instruction Fields table

Memory: Refer to the preceding Instruction Fields table

0 MOTOROLA

Instruction Set Details A-51

B FCLR Test Bit Field and Clear B FCLR

Operation: Assembler Syntax:
0 - (<bit field> of destination) BFCLR #iiii X :<ea>
0 - (<bit field> of destination) BFCLR #iiii,D

Description: Test al selected bits of the destination operand. If al selected bits are set, C is set; otherwise, C is
cleared. Then clear the selected bits and store the result in the destination memory location. The bits
to be tested are selected by a 16-bit immediate value in which every bit set is to be tested and cleared.
Thisinstruction performs aread-modify-write operation on the destination memory location or register
and requires two destination accesses.

Usage: Thisinstruction is very useful in performing I/O and flag bit manipulation.
Example:
BFCLR #$0310, X: <<$FFE2 ; test and clear bits 4, 8, and 9 in
; an on-chi p peripheral register
Before Execution After Execution
X:$FFE2 7F95 X:$FFE2 7C85
SR 0001 SR 0000

Explanation of Example:
Prior to execution, the 16-bit X memory location X:$FFE2 contains the value $7F95. Execution of the
instruction teststhe state of the bits 4, 8, and 9 in X:$FFE2; clears C (because not al the CCR hitswere

clear); and then clears the bits.

Condition Codes Affected:

< MR >« CCR >
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF | * * * * * i1 |10 |sz|L E U N z|v|C

For destination operand SR:

? — Cleared asdefined inthefield and if specified in thefield
For other destination operands:
L — Setif datalimiting occurred during 36-bit source move

C — Setif al hits specified by the mask are set
Clear if not al bits specified by the mask are set

Note: If al bitsin the mask are set to zero, the destination is unchanged, and the C bit is set.

A-52 DSP56800 Family Manual @ MOTOROLA

BFCLR

Instruction Fields:

Test Bit Field and Clear B FCLR

Operation Operands Comments
BFCLR #xxxx,DDDDD BFCLR tests all bits selected by the 16-bit immedi-
ate mask. If all selected bits are set, then the C bit is
#xxxx, X:(R2+xx) set. Otherwise it is cleared. Then it clears all
selected bits.
#xxxX, X: (SP-xx)
All registers in DDDDD are permitted except HWS.
#xxxx,X:aa
_ X:aa represents a 6-bit absolute address. Refer to
R0, X:pp Absolute Short Address (Direct Addressing):
<aa> -22.
FHXXXX, X XXXX aa> on page 4-22
X:pp represents a 6-hit absolute /O address. Refer
to 1/0 Short Address (Direct Addressing): <pp>
on page 4-23.
Timing: Refer to the preceding Instruction Fields table

Memory: Refer to the preceding Instruction Fields table

0 MOTOROLA

Instruction Set Details A-53

B FSET Test Bit Field and Set B FSET

Operation: Assembler Syntax:
1 - (<bit field> of destination) BFSET #iiii X :<ea>
1 - (<bit field> of destination) BFSET #iiii,D

Description: Test al selected bits of the destination operand. If al selected bits are set, C is set; otherwise, C is
cleared. Then set the selected bits, and store the result in the destination memory location. The bitsto
be tested are selected by a 16-bit immediate value in which every bit set is to be tested and set. This
instruction performs a read-modify-write operation on the destination memory location or register and
requires two destination accesses.

Usage: Thisinstruction is very useful in performing I/O and flag bit manipulation.
Example:
BFSET #$F400, X: <<$FFE2
Before Execution After Execution
X:$FFE2 8921 X:$FFE2 FD21
SR 0000 SR 0000

Explanation of Example:
Prior to execution, the 16-bit X memory location X:$FFE2 contains the value $8921. Execution of the
instruction teststhe state of bits 10, 12, 13, 14, and 15 in X:$FFE2; does not set C (because al the CCR
bits were not set); and then sets the bits.

Condition Codes Affected:

< MR >« CCR >
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF | * * * * * i1 |10 |sz|L E U N z|v|C

For destination operand SR:

? — Setasdefinedinthefield and if specified in thefield
For other destination operands:
L — Setif datalimiting occurred during 36-bit source move

C — Setif al hits specified by the mask are set
Clear if not al bits specified by the mask are set

Note: If al bitsin the mask are set to zero, the destination is unchanged, and the C bit is set.

A-54 DSP56800 Family Manual @ MOTOROLA

BFSET

Instruction Fields:

Test Bit Field and Set B FSET

Operation Operands C W Comments
BFSET #xxxx,DDDDD 4 2 BFSET tests all bits selected by the 16-bit immedi-
ate mask. If all selected bits are clear, then the C bit
#XXXX, X:(R2+XX) 6 2 is set. Otherwise it is cleared. Then it sets all
selected bits.
#xxxX, X: (SP-xx) 6 2
All registers in DDDDD are permitted except HWS.
#xxxx,X:aa 4 2
_ X:aa represents a 6-bit absolute address. Refer to
R0, X:pp 4 2 | Absolute Short Address (Direct Addressing):
FXXXX, X XXXX 6 3 <aa>on page 4-22.
X:pp represents a 6-hit absolute /O address. Refer
to 1/0 Short Address (Direct Addressing): <pp>
on page 4-23.
Timing: Refer to the preceding Instruction Fields table
Memory: Refer to the preceding Instruction Fields table
@ mororora Instruction Set Details A-55

BFTSTH Test Bit Field High BFTSTH

Operation: Assembler Syntax:
Test <bit field> of destination for ones BFTSTH #iiii X :<ea>
Test <bit field> of destination for ones BFTSTH #iii,D

Description: Test al selected bits of the destination operand. If al selected bits are set, C is set; otherwise, C is
cleared. The bits to be tested are selected by a 16-bit immediate value in which every bit set isto be

tested. Thisinstruction performs two destination accesses.

Usage: Thisinstruction is very useful for testing 1/0 and flag bits.
Example:
BFTSTH #$0310, X: <<$FFE2 ; test high bits 4, 8, and 9 in
; an on-chi p peripheral register
Before Execution After Execution
X:$FFE2 OFFO X:$FFE2 OFFO
SR 0000 SR 0001

Explanation of Example:
Prior to execution, the 16-bit X memory location X :$FFE2 contains the value $0FFO. Execution of the

instruction tests the state of bits 4, 8, and 9 in X:$FFE2 and sets C (because all the CCR bits were set).

Condition Codes Affected:

< MR > CCR >
15 14 13 12 11 10 9 8|7 6 5 4 3 2 1 0
LF | * * * * *lm|jwow|sz|L|E|J]U|N|Z|V]|C

L — Setif datalimiting occurred during 36-bit source move
C — Setif al hits specified by the mask are set
Clear if not al bits specified by the mask are set

Note: If al bitsin the mask are set to zero, the destination is unchanged, and the C bit is set.

A-56 DSP56800 Family Manual @ MOTOROLA

BFTSTH

Instruction Fields:

Test Bit Field High BFTSTH

Operation Operands Comments
BFTSTH #xxxx,DDDDD BFTSTH tests all bits selected by the 16-bit immedi-
ate mask. If all selected bits are set, then the C bit is
#xxxx, X:(R2+xx) set. Otherwise it is cleared.
HXXXX, X:(SP-XX) All registers in DDDDD are permitted except HWS.
#Hoox,X:aa X:aa represents a 6-bit absolute address. Refer to
_ Absolute Short Address (Direct Addressing):
#XXXX, X:pp <aa> on page 4-22.
OO, X XXX X:pp represents a 6-hit absolute /O address. Refer
to /0 Short Address (Direct Addressing): <pp>
on page 4-23.
Timing: Refer to the preceding Instruction Fields table

Memory: Refer to the preceding Instruction Fields table

0 MOTOROLA

Instruction Set Details A-57

B FTSTL Test Bit Field Low B FTSTL

Operation: Assembler Syntax:
Test <bit field> of destination for zeros BFTSTL #Hiiii X:<ea>
Test <bit field> of destination for zeros BFTSTL #iii,D

Description: Test al selected bits of the destination operand. If all selected bits are clear, C is set; otherwise, Cis
cleared. The bits to be tested are selected by a 16-bit immediate value in which every bit set isto be
tested. Thisinstruction performs two destination accesses.

Usage: Thisinstruction is very useful for testing 1/0 and flag bits.
Example:
BFTSTL #$0310, X: <<$FFE2 ; test lowbits 4, 8, and 9 in
; an on-chi p peripheral register
Before Execution After Execution
X:$FFE2 18EC X:$FFE2 18EC
SR 0000 SR 0001

Explanation of Example:
Prior to execution, the 16-bit X memory location X:$FFE2 contains the val ue $18EC. Execution of the
instruction tests the state of bits 4, 8, and 9 in X:$FFE2 and sets C (because al the CCR bits were

cleared).
Condition Codes Affected:

< MR >« CCR >
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF | * * * * * i1 |10 |sz|L E U N z|v|C

L — Setif datalimiting occurred during 36-bit source move
C — Setif all bits specified by the mask are cleared
Clear if not all bits specified by the mask are cleared

Note: If al bitsin the mask are set to zero, the destination is unchanged, and the C bit is set.

Instruction Fields:

Operation Operands C W Comments
BFTSTL #xxxx,DDDDD 4 2 BFTSTL tests all bits selected by the 16-bit immedi-
ate mask. If all selected bits are clear, then the C bit
#xxxx, X:(R2+xx) 6 2 is set. Otherwise it is cleared.
All registers in DDDDD are permitted except HWS.
#xXXX, X: (SP-xx) 6 2
X:aa represents a 6-bit absolute address. Refer to
oo, X aa 4 2 | Absolute Short Address (Direct Addressing):
) <aa> on page 4-22.
00, X:pp 4 2 X:pp represents a 6-bit absolute I1/0O address. Refer
) to /0 Short Address (Direct Addressing): <pp>
FXXXX, X XXXX 6 3 on page 4-23.
Timing: Refer to the preceding Instruction Fields table

Memory: Refer to the preceding Instruction Fields table

A-58 DSP56800 Family Manual @ MOTOROLA

B RA Branch B RA

Operation: Assembler Syntax:
PC+label - PC BRA <OFFSET7>

Description: Branch to the location in program memory at PC + displacement. The PC contains the address of the
next instruction. The displacement is a 7-bit signed value that is sign extended to form the PC-relative

offset.
Example:
BRA LABEL
INCW A
INCW A
LABEL
ADD B, A

Explanation of Example:
In this example, program execution skips the two INCW instructions and continues with the ADD in-
struction. The BRA instruction uses a PC-relative offset of two for this example.

Condition Codes Affected:
The condition codes are not affected by thisinstruction.

Restrictions:
A BRA instruction used within a DO loop cannot begin at the LA or LA-1 within that DO loop.
A BRA instruction cannot be repeated using the REP instruction.

Instruction Fields:

Operation Operands C W Comments
BRA <OFFSET7> 6 1 7-bit signed PC relative offset
Timing: 6+jx oscillator clock cycles
Memory: 1 program word

0 MOTOROLA Instruction Set Details A-59

B RCLR Branch if Bits Clear B RCLR

Operation: Assembler Syntax:
Branch if <bit field> of destination is all zeros BRCLR #iiii X :<ea>,aa
Branch if <bit field> of destination is all zeros BRCLR #iiii,D,aa

Description: Test al selected bits of the destination operand. If al the selected bits are clear, C is set, and program
execution continues at the location in program memory at PC + displacement. Otherwise, C is cleared
and execution continues with the next sequential instruction. The bits to be tested are selected by an
8-bit immediate value in which every bit set is to be tested.

Usage: Thisinstruction is useful in performing 1/0 flag polling.
Example:
BRCLR #$0013, X: <<$FFE2, LABEL
INCW A
INCW A
LABEL
ADD B, A
Before Execution After Execution
X:$FFE2 18EC X:$FFE2 18EC
SR 0000 SR 0001

Explanation of Example:
Prior to execution, the 16-bit X memory location X:$FFE2 contains the value $18EC. Execution of the
instruction teststhe state of bits4, 1, and 0in X:$FFE2 and sets C (because all the CCR bitswere clear).
Since C is set, program execution is transferred to the address offset from the current program counter
by the displacement specified in the instruction, (the two INCW instructions are not executed).

Condition Codes Affected:

< MR < CCR >
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF| * | | *|*|*|nn|lo|sz|]L|E|JU|IN]|]Z]|V]|C

L — Setif datalimiting occurred during 36-bit source move
C — Setif all bits specified by the mask are cleared
Clear if not all bits specified by the mask are cleared

Note: If all bitsin the mask are set to zero, C is set, and the branch is taken.

A-60 DSP56800 Family Manual @ MOTOROLA

BRCLR

Instruction Fields:

Branch if Bits Clear

BRCLR

Operation Operands C Comments
BRCLR #MASK8,DDDDD,AA 10/8 BRCLR tests all bits selected by the immediate
mask. If all selected bits are clear, then the carry
#MASKS,X:(R2+xx),AA 12/10 bit is set and a PC relative branch occurs. Other-
wise it is cleared and no branch occurs.
#MASKS,X:(SP-xx),AA 12/10
All registers in DDDDD are permitted except
#MASKS,X:aa,AA 10/8 HWS.
#MASKS, X:pp.AA 10/8 MASKS specifies a 16-bit immediate value where
HMASKS, X:30000 AA 12/10 either the upper or lower 8 bits contains all zeros.
AA specifies a 7-bit PC relative offset.
X:aa represents a 6-bit absolute address. Refer
to Absolute Short Address (Direct Address-
ing): <aa> on page 4-22.
X:pp represents a 6-hit absolute I/0O address.
Refer to 1/0 Short Address (Direct Address-
ing): <pp> on page 4-23.
Timing: Refer to the preceding Instruction Fields table

Memory: Refer to the preceding Instruction Fields table

0 MOTOROLA

Instruction Set Details

A-61

B RSET Branch if Bits Set B RSET

Operation: Assembler Syntax:
Branch if <bit field> of destination is all ones BRSET #iiii X:<ea>,aa
Branch if <bit field> of destination isall ones BRSET #iiii,D,aa

Description: Test all selected bits of the destination operand. If al the selected bits are set, C is set, and program
execution continues at the location in program memory at PC + displacement. Otherwise, Cis cleared,
and execution continues with the next sequential instruction. The bits to be tested are selected by an
8-bit immediate value in which every bit set is to be tested.

Usage: Thisinstruction is useful in performing 1/0 flag polling.
Example:
BRSET #$00F0, X: <<$FFE2, LABEL
INCW A
INCW A
LABEL
ADD B, A
Before Execution After Execution
X:$FFE2 OFFO X:$FFE2 OFFO
SR 0000 SR 0001

Explanation of Example:
Prior to execution, the 16-bit X memory location X:$FFE2 contains the val ue $0FFO. Execution of the
instruction tests the state of bits 4, 5, 6, and 7 in X:$FFE2 and sets C (because all the CCR bits were
set). Since C is set, program execution is transferred to the address offset from the current program
counter by the displacement specified in the instruction, (the two INCW instructions are not executed)

Condition Codes Affected:

< MR < CCR >
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF| * | | *|*|*|nn|lo|sz|]L|E|JU|IN]|]Z]|V]|C

L — Setif datalimiting occurred during 36-bit source move
C — Setif al hits specified by the mask are set
Clear if not al bits specified by the mask are set

Note: If all bitsin the mask are set to zero, C is set and the branch is taken.

A-62 DSP56800 Family Manual @ MOTOROLA

BRSET

Instruction Fields:

Branch if Bits Set B RSET

Comments

BRSET tests all bits selected by the immediate
mask. If all selected bits are set, then the carry bit
is set and a PC relative branch occurs. Otherwise
it is cleared and no branch occurs.

All registers in DDDDD are permitted except
HWS.

MASKS specifies a 16-bit immediate value where
either the upper or lower 8 bits contains all zeros.

AA specifies a 7-bit PC relative offset.

X:aa represents a 6-bit absolute address. Refer to
Absolute Short Address (Direct Addressing):
<aa> on page 4-22.

X:pp represents a 6-bit absolute 1/0 address.
Refer to I/0 Short Address (Direct Addressing):
<pp> on page 4-23.

Operation Operands C

BRSET #MASKS8,DDDDD,AA 10/8
#MASKS8,X:(R2+xx),AA 12/10
#MASKS,X:(SP-xx),AA | 12/10
#MASKS,X:aa,AA 10/8
#MASKS,X:pp,AA 10/8
H#MASKS8, X:xxxx,AA 12/10

Timing: Refer to the preceding Instruction Fields table

Memory: Refer to the preceding Instruction Fields table

0 MOTOROLA

Instruction Set Details A-63

CLR Clear Accumulator CLR

Operation: Assembler Syntax:

0 -D (parallel move) CLR D (parallel move)
Description: Clear the destination register.

Implementation Note:

When a 16-hit register is used as the operand for CLR, this instruction is actually assembled as a
MOVE #0, <r egi st er > instruction. It will disassemble as MOVE.

Example:
CLR A A X (RO) + ; save A into X data nenory before
; clearing it
A Before Execution A After Execution
2 3456 789A 0 0000 0000
A2 Al A0 A2 Al A0

Explanation of Example:
Prior to execution, the 36-bit A accumulator contains the value $2:3456:789A. Execution of the
CLR Ainstruction clears the 36-bit A accumulator to zero.

Condition Codes Affected:

< MR »><¢ CCR >
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF| | | *|=*]|=*|n11|wo|SZ|IL|E|JU|N|Z|V]|C

SZ — Set according to the standard definition of the SZ bit (parallel move)
L — Setif datalimiting has occurred during parallel move
E — Alwaysclearedif destination is a36-bit accumulator
U — Alwayssetif destination isa 36-bit accumulator
N — Alwaysclearedif destination is a 36-bit accumulator
Z — Alwayssetif destination is a 36-bit accumulator
V — Alwayscleared if destination is a 36-bit accumulator
Note: The condition codes are only affected if the destination of the CLR instruction is one of the two 36-bit

accumulators (A or B).

A-64 DSP56800 Family Manual @ MOTOROLA

CLR Clear Accumulator CLR

Instruction Fields:

Operation Operands C W Comments
CLR F 2 1 Clear 36-bit accumulator and set condition codes.
F1DD 2 1 Identical to move #0,<reg>; does not set condition
codes.
Rj
N
Data ALU Operation Parallel Memory Read or Write
Operation Registers Memory Access Source or Destination
CLR A X:(Rn)+ X0
B X:(Rn)+N Y1
YO
A
B
Al
B1
Timing: 2 + mv oscillator clock cycles
Memory: 1 program word

0 MOTOROLA Instruction Set Details A-65

CMP Compare CMP

Operation: Assembler Syntax:
D-S (parallel move) CMP SD (parallel move)
Description: Subtract the two operands and update the CCR. The result of the subtraction operation is not stored.

Usage: This instruction can be used for both integer and fractional two’s-complement data.

Note: This instruction subtracts 36-bit operands. When aword is specified as the source, it is sign extended
and zero filled to form avalid 36-bit operand. In order for C to be set correctly as aresult of the sub-
traction, the destination must be properly sign extended. The destination can be improperly sign ex-
tended by writing A1 or B1 explicitly prior to executing the compare, so that A2 or B2, respectively,
may not represent the correct sign extension. This note particularly applies to the case in which the
source is extended to compare 16-bit operands, such as X0 with A1.

Example:
CwP YO0, A X0, X: (R1) +N ; conpare YO and A, save X0,
; update Rl

Before Execution After Execution
0 0020 0000 0 0020 0000
A2 Al A0 A2 Al A0
YO 0024 YO 0024
SR 0300 SR 0319

Explanation of Example:
Prior to execution, the 36-bit A accumulator contains the value $0:0020:0000, and the 16-bit YO reg-
ister contains the value $0024. Execution of the CMP YO, A instruction automatically appends the
16-bit valuein the Y O register with 16 LS zeros, sigh extends the resulting 32-bit long word to 36 hits,
subtracts the result from the 36-bit A accumulator, and updates the CCR (leaving the A accumulator
unchanged).

A-66 DSP56800 Family Manual @ MOTOROLA

CMP

Condition Codes Affected:

Compare

»

CMP

N

15

14

MR

13 12 11

10

9

8

)l

7

0O
@
Py}
v

6 5 4 3 2 1 0

LF

*

* * *

*

11

10

SZ

L{IE|JU[N|Z |V]|C

O<NZCI'I'II_K3

Set according to the standard definition of the SZ bit (parallel move)
Set if limiting (parallel move) or overflow has occurred in result

Set if the signed integer portion of the resultisin use

Set if result is not normalized

Set if bit 35 of the result is set except during saturation

Set if result equals zero
Set if overflow has occurred in result

Set if acarry (or borrow) occurs from bit 35 of the result

See Section 3.6.5, “16-Bit Destinations,” on page 3-35 for cases with X0, YO, or Y1 asD.
See Section 3.6.2, “36-Bit Destinations—CC Bit Set,” on page 3-34 and Section 3.6.4, “20-Bit Desti-
nations—CC Bit Set,” on page 3-34 for the case when the CC bit is set.

Instruction Fields:

Operation Operands C W Comments
CMP DD,FDD 2 1 36-bit compare of two accumulators or data reg
F1,DD
~F,F
X:(SP-xx),FDD 6 1 Compare memory word with 36 bit accumulator.
X:aa,FDD 4 1 X:aa represents a 6-bit absolute address. Refer to
Absolute Short Address (Direct Addressing):
X:xxxx,FDD 6 2 <aa> on page 4-22.
Note: Condition codes set based on 36-bit result
#xx,FDD 4 1 Compare acc with an immediate integer 0-31
#xxxx,FDD 6 2 Compare acc with a signed 16-bit immediate
Data ALU Operation Parallel Memory Read or Write
Operation Registers Memory Access Source or Destination
CMP XO0,F X:(Rn)+ X0
Y1,F X:(Rn)+N Y1
YO,F YO
A
AB B
B,A Al
B1
(F=AorB)
Timing: Refer to the preceding Instruction Fields table

Memory:

0 MOTOROLA

Refer to the preceding Instruction Fields table

Instruction Set Details

A-67

DEB UG Enter Debug Mode DEB UG

Operation: Assembler Syntax:
Enter the debug processing state DEBUG

Description: Enter the debug processing state if the PWD bit is clear in the OnCE port’s OCR register, and wait for
OnCE commands. If this bit is not clear, then the processor simply executes two NOPs and continues
program execution.

Condition Codes Affected:

No condition codes are affected.
Instruction Fields:

Operation Operands C W Comments
DEBUG 4 1 Generate a debug event
Timing: 4 oscillator clock cycles
Memory: 1 program word

A-68 DSP56800 Family Manual @ MOTOROLA

DEC(W) Decrement Word DEC(W)

Operation: Assembler Syntax:
D2:D1-1 - D2:D1 (parallel move) DECW D (parallel move)

Description: Decrement a 16-bit destination or the two upper portions (A2:A1 or B2:B1) of a 36-bit accumulator.
If the destination is a 36-bit accumulator, leave the LSP (A0 or BO) unchanged.

Usage: Thisinstruction istypically used when processing integer data.
Example:
DECW A X:(R2)+, X0 ; Decrenent the 20 MSBs of A and then
; update R2, X0
A Before Execution A After Execution
0 0001 0033 0 0000 0033
A2 Al A0 A2 Al A0

Explanation of Example:
Prior to execution, the 36-bit A accumulator contains the value $0:0001:0033. Execution of the
DECW A instruction decrements by one the upper 20 bits of the A accumulator.

Condition Codes Affected:

< MR »><¢ CCR >
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF|* | | *|*|=*|11|wo|SZIL|E|JU|IN|]Z]|V|C

— Set according to the standard definition of the SZ bit (parallel move)
— Setif limiting (parallel move) or overflow has occurred in result

— Setif the signed integer portion of theresult isin use

Set if result is unnormalized

— Setif bit 35 of the result is set except during saturation

— Setif the20 MSBs of theresult are al zeros

— Setif overflow has occurred in result

— Setif acarry (or borrow) occurs from bit 35 of the result

See Section 3.6.5, “16-Bit Destinations,” on page 3-35 for cases with X0, YO, or Y1 asD.
See Section 3.6.2, “36-Bit Destinations—CC Bit Set,” on page 3-34 and Section 3.6.4, “20-Bit Desti-
nations—CC Bit Set,” on page 3-34 for the case when the CC hit is set.

Instruction Fields:

o<Nzcmr @
|

Operation Operands C W Comments
DEC(W) FDD 2 1 Decrement word
X:(SP-xx) 8 1 Decrement word in memory using appropriate

addressing mode.
X:aa 6 1

X:aa represents a 6-bit absolute address. Refer to
XIXXXX 8 2 | Absolute Short Address (Direct Addressing):
<aa> on page 4-22.

0 MOTOROLA Instruction Set Details A-69

DEC(W)

Timing:

Memory:

A-70

Decrement Word

DEC(W)

Data ALU Operation

Parallel Memory Read or Write

Operation

Registers

Memory Access

Source or Destination

DEC(W)

A
B

X:(Rn)+
X:(Rn)+N

X0
Y1
YO
Al
Bl
A
B

Refer to the preceding Instruction Fields table

Refer to the preceding Instruction Fields table

DSP56800 Family Manual

0 MOTOROLA

DIV

Operation:

Divide Iteration DlV

Assembler Syntax:

(see following figure) DIV SD (no parallel move)

If D[35] O S[15] =1

Description:

Then
<“— “— «— <+—C; D1+S—» D1
D2 D1 DO
Else
<« «— «— <+«—C; D1-S — D1
D2 D1 DO

Thisinstruction isadivideiteration used to calculate 1 bit of the result of adivision. After the correct
number of iterations, this will divide the destination operand (D)—dividend or numerator—by the
source operand (S)—divisor or denominator—and store the result in the destination accumulator. The
32-hit dividend must be a positive value that is correctly sign extended to 36 bits and is stored in the
full 36-bit destination accumulator. The 16-bit divisor isa signed value and is stored in the source op-
erand. (Division of signed numbersis handled using thetechniquesin Section 8.4, “Division,” on page
8-13.) Thisinstruction can be used for both integer and fractional division. Each DIV iteration calcu-
lates one quotient bit using a non-restoring division algorithm (see the description that follows). After
execution of thefirst DIV instruction, the destination operand hol ds both the partial remainder and the
formed quotient. The partial remainder occupies the high-order portion of the destination accumulator
D and is asigned fraction. The formed quotient occupies the low-order portion of the destination ac-
cumulator D (A0 or B0) and is a positive fraction. One bit of the formed quotient is shifted into the
L SB of the destination accumulator at the start of each DIV iteration. The formed quotient is the true
quotient if the true quotient is positive. If the true quotient is negative, the formed quotient must be
negated. For fractional division, valid results are obtained only when |D| < |§. This condition ensures
that the magnitude of the quotient isless than one (is fractional) and precludes division by zero.

The DIV instruction cal cul ates one quotient bit based on the divisor and the previous partial remainder.

To produce an N-bit quotient, the DIV instruction is executed N times, where N is the number of bits
of precision desired in the quotient (1 < N < 16). Thus, for a full precision (16-bit) quotient, 16 DIV

iterations are required. In general, executing the DIV instruction N times produces an N-bit quotient
and a 32-bit remainder, which has (32 - N) bits of precision and whose N M SBs are zeros. The partial

remainder isnot atrue remainder and must be corrected (due to the non-restoring nature of the division
algorithm) before it may be used. Therefore, once the divide is complete, it is necessary to reverse the
last DIV operation and restore the remainder to obtain the true remainder. The DIV instruction uses a
non-restoring division algorithm that consists of the following operations:

1) Compare the source and destination operand sign bits. An exclusive OR operation is performed on
bit 35 of the destination operand and bit 15 of the source operand.

2) Shift the partial remainder and the quotient. The 36-bit destination accumulator is shifted 1 bit to
the left. C is moved into the LSB (bit 0) of the accumulator.

3) Calculate the next quotient bit and the new partial remainder. The 16-bit source operand (signed di-
visor) iseither added to or subtracted from the M SP of the destination accumulator (A1 or B1), and the
result is stored back into the M SP of the destination accumulator. If the result of the exclusive OR op-
eration described previously was one (that is, the sign bits were different), the source operand Sis add-
ed to the accumulator. If the result of the exclusive OR operation was zero (that is, the sign bits were
the same), the source operand S is subtracted from the accumulator. Due to the automatic sign exten-
sion of the 16-bit signed divisor, the addition or subtraction operation correctly sets C with the next
quotient bit.

0 MOTOROLA Instruction Set Details A-71

D|V Divide Iteration DlV

Explanation of Example:
The DIV iteration instruction can be used in one of several different division algorithms, depending on
the needs of an application. Section 8.4, “Division,” on page 8-13 shows the correct usage of thisin-
struction for fractional and integer division routines, discusses in detail issues related to division, and
provides several examples. The division routine is greatly simplified if both operands are positive, or
if it is not necessary to also calculate aremainder.

Condition Codes Affected:

< MR >« CCR >
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF| * | | *|*|*|nn|lo|sz|L|E|JU|IN|]Z]|V]|C

L — Setif overflow bitV isset
V — Setif the MSB of the destination operand is changed as aresult of the
instruction’ s left shift operation

C — Setif bit 35 of theresultis cleared

Instruction Fields:

Operation Operands C W Comments
DIV DD,F 2 1 Divide iteration
Timing: 2 oscillator clock cycles
Memory: 1 program word

A-72 DSP56800 Family Manual @ MOTOROLA

DO Start Hardware Do Loop

Operation upon Executing DO Instruction: Assembler Syntax:
HWS0] - HWS[1]; #xx - LC DO #XX,expr
PC -~ HWS[Q]; LF - NL; expr - LA

1. LF

HWS0] - HWS[1]; S- LC DO S,expr

PC -~ HWS[O]; LF - NL; expr - LA

1. LF

Operation When Loop Completes (End-of-Loop Processing):

NL = LF
HWS[1] - HWS[0]; 0 - NL

DO

Description: Begin a hardware DO loop that is to be repeated the number of times specified in the instruction’s

source operand, and whose range of execution is terminated by the destination operand (shown previ-
ously as“expr”). No overhead other than the execution of this DO instruction isrequired to set up this
loop. DO loops can receive their loop count as an immediate value or as avariable stored in an on-chip
register. When executing a DO loop, the instructions are actually fetched each time through the loop.
Therefore, a DO loop can be interrupted.

During thefirst instruction cycle, the DO instruction’ s source operand isloaded into the 13-bit LC reg-
ister, and the second location in the HWS receives the contents of the first location. The LC register
stores the remaining number of times the DO loop will be executed and can be accessed from inside
the DO loop as aloop count variable subject to certain restrictions. The DO instruction alows all reg-
isters on the DSP core to specify the number of loop iterations, except for the following: M01, HWS,
OMR, and SR. If immediate short dataisinstead used to specify the loop count, the 6 LSBs of the LC
register are loaded from the instruction, and the upper 7 M SBs are cleared.

During the second instruction cycle, the current contents of the PC are pushed onto the HWS. The DO
instruction’ s destination address (shown as “expr”) isthen loaded into the LA register. This 16-bit op-
erand is located in the instruction’s 16-bit absolute address extension word (as shown in the opcode
section). The valuein the PC pushed onto the HWS is the address of the first instruction following the
DO instruction (that is, the first actual instruction in the DO loop). At the bottom of the loop, when it
is necessary to return to the top for another loop pass, thisvalueis read (that is, copied but not pulled)
from the top of the HWS and loaded into the PC.

During the third instruction cycle, the LF is set. The PC is repeatedly compared with LA to determine
if the last instruction in the loop has been fetched. If LA equals PC, the last instruction in the loop has
been fetched and the L Cistested. If LC isnot equal to one, it isdecremented by one, and SSH isloaded
into the PC to fetch thefirst instruction in the loop again. If LC equals one, the end-of-loop processing
begins.

During the end-of-loop processing, the NL bit is written into the LF, and the NL bit is cleared. The
contents of the second HWS location are written into the first HWS location. Instruction fetches now
continue at the address of the instruction that follows the last instruction in the DO loop.

DO loops can also be nested as shown in Section 8.6, “Loops,” on page 8-20. When DO loops are nest-
ed, the end-of-loop addresses must also be nested and are not allowed to be equal. The assembler gen-
erates an error message when DO loops are improperly nested.

0 MOTOROLA Instruction Set Details A-73

DO

Note:

Note:

Note:

Note:

Note:

Start Hardware Do Loop DO

The assembler cal culates the end-of-loop address to be loaded into LA by evaluating the end-of-loop
“expr” and subtracting one. This is done to accommodate the case in which the last word in the DO
loop is atwo-word instruction. Thus, the end-of-loop expression “expr” in the source code must rep-
resent the address of the instruction after the last instruction in the loop.

The LFis cleared by a hardware reset.

Dueto pipelining, if an addressregister (RO-R3, SP, or M0L) ischanged using amove-typeinstruction
(LEA, Tce, MOVE, MOVEC, MOVEP, or parallel move), the new contents of the destination address
register will not be available for use during the following instruction (that is, thereis asingle instruc-
tion cycle pipeline delay). This restriction also applies to the situation in which the last instruction in
aDO loop changes an address register and thefirst instruction at the top of the DO loop uses that same
address register. The top instruction becomes the following instruction due to the loop construct.

If the A or B accumulator is specified as a source operand, and the data from the accumul ator indicates
that extension is used, the value to be loaded into the LC register will be limited to a 16-bit maximum
positive or negative saturation constant. If positive saturation occurs, the limiter places $7FFF onto the
bus, and the lower 13 bits of this value are all ones. The thirteen ones are loaded into the L C register
as the maximum unsigned positive loop count allows. If negative saturation occurs, the limiter places
$8000 onto the bus, and the lower 13 hits of this value are all zeros. The thirteen zeros are loaded into
the LC register, specifying aloop count of zero. The A and B accumulators remain unchanged.

If LCiszero upon entering the DO loop, the loop is executed 213 times. To avoid this, use the software
technique outlined in Section 8.6, “Loops,” on page 8-20.

Condition Codes Affected:

A-74

< MR >« CCR >
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF| = | ||| *|1|wo|sz|L|E|J]U|N|Z|V]|C

LF — SetwhenaDO loopisin progress
L — Setif datalimiting occurred

DSP56800 Family Manual @ MOTOROLA

DO

Restrictions:

Start Hardware Do Loop DO

The end-of-loop comparison previously described occurs at instruction fetch time. That is, LA iscom-
pared with PC when the instruction at the LA-2 is being executed. Therefore, instructions that access
the program controller registers or change program flow cannot be used in locations LA-2, LA-1, or
LA.

Proper DO loop operation isnot guaranteed if an instruction starting at the LA-2, LA-1, or LA specifies
one of the program controller registers SR, SP, LA, LC, or (implicitly) PC as a destination register.
Similarly, the HWS register may not be specified as a source or destination register in an instruction
starting at the LA-2, LA-1, or LA. Additionally, the HWS register cannot be specified as a source reg-
ister inthe DO instructionitself, and LA cannot be used as atarget for jumpsto subroutine (that is, JSR
to LA). A DO instruction cannot be repeated using the REP instruction.

The following instructions cannot begin at the indicated position(s) near the end of a DO loop:

At theLA-2, LA-1, and LA:
DO
MOVEC from HWS
MOVECto LA, LC, SR, SP, or HWS
Any bit-field instruction on the Status Register (SR)
Two-word instructions that read LC, SP, or HWS

At theLA-L:
ENDDO
Single-word instructions that read LC, SP, or HWS

At theLA:
Any two-word instruction (this restriction applies to the situation in which the DSP
simulator’ s single-line assembler is used to change the last instruction in aDO loop from
aone-word instruction to a two-word instruction)

Bcc, Jcc BRSET, BRCLR
BRA, IMP REP

JSR RTI, RTS
WAIT, STOP

Similarly, since the DO instruction accesses the program controller registers, the DO instruction must
not be immediately preceded by any of the following instructions:

Immediately Before DO:
MOVEC to HWS
MOVEC from HWS

Other Restrictions:
DO HWSxxxx
JSR to (LA) whenever the LF is set
A DO instruction cannot be repeated using the REP instruction

0 MOTOROLA Instruction Set Details A-75

DO

Example:

END

Explanation of Example:

Start Hardware Do Loop DO

MOVE
REP
ASL
MOVE

#cnt 1, END
X (RO), A

A X: (RO) +

begi n DO | oop

nested REP | oop

repeat this instruction
last instruction in DO | oop
(outside DO | oop)

Thisexampleillustratesa DO loop with aREP loop nested within the DO loop. In thisexample, “cntl”
values are fetched from memory; each is | eft shifted by “cnt2” counts and is stored back in memory.
The DO loop executes “cntl” times while the ASL instruction inside the REP loop executes (“cntl” *
“cnt2”) times. The END label islocated at the first instruction past the end of the DO loop, as men-
tioned previously.

Instruction Fields:

Operation

Operands

Comments

DO

FXX,XXXX

Load LC register with unsigned value and start
hardware DO loop with 6-bit immediate loop count.
The last address is 16-bit absolute. #xx = 0 not
allowed by assembler.

DDDDD,xxxx

Load LC register with unsigned value. If LC is not
equal to zero, start hardware DO loop with 16-hit
loop count in register. Otherwise, skip body of loop
(adds three additional cycles). The last address is
16-bit absolute.

Any register allowed except: SP, M01, SR, OMR,
and HWS.

Timing: 6 oscillator clock cycles

Memory: 2 program words

A-76

DSP56800 Family Manual

0 MOTOROLA

EN DDO End Current DO Loop EN DDO

Operation:
NL - LF

Assembler Syntax:
ENDDO

HWS[1] - HWS[0]; 0 - NL

Description:

Example:

Terminate the current hardware DO loop immediately. Normally, a hardware DO loop is terminated
when the last instruction of the loop is executed and the current LC equals one, but thisinstruction can
terminate aloop before normal completion. If the value of the current DO L C isneeded, it must be read
before the execution of the ENDDO instruction. Initially, the LF is restored from the NL bit, and the
top-of-loop addressis purged from the HWS. The contents of the second HWS | ocation are written into
the first HWS location, and the NL bit is cleared.

DO YO, ENDLP ; execute |loop ending at ENDLP (YO) tines
MOVEC LC A ; get current value of |oop counter (LC)
CwP Y1, A ; compare loop counter with value in Y1
JNE CONTI NU ; go to ONVARD i f LC not equal to Y1
ENDDO ; LC equal to Y1, restore all DO registers
JMP ENDLP ; go to NEXT

CONTI NU : ; LC not equal to Y1, continue DO

(last instruction in DO | oop)

| oop
: (first instruction AFTER DO | oop)

ENDLP MOVE #$1234, X0

Explanation of Example:

Note:

Restrictions:

Thisexampleillustrates the use of the ENDDO instruction to terminate the current DO loop. The value
of theLC iscompared with thevalueinthe Y 1 register to determineif execution of the DO loop should
continue. The ENDDO instruction updates certain program controller registers but does not automat-
ically jump past the end of the DO loop. Thus, if thisaction is desired, a IMP/BRA instruction (that is,
JMP NEXT as shown previously) must be included after the ENDDO instruction to transfer program
control to the first instruction past the end of the DO loop.

The ENDDO instruction updates the program controller registers appropriately but does not automat-
ically jump past the end of the loop. If desired, this must be done explicitly by the programmer.

Due to pipelining and the fact that the ENDDO instruction accesses the program controller registers,
the ENDDO instruction must not be immediately preceded by any of the following instructions:
MOVEC to SR or HWS
MOVEC from HWS
Any bit-field instruction on the SR

Also, the ENDDO instruction cannot be the next-to-last instruction in aDO loop (at the LA-1).

0 MOTOROLA Instruction Set Details A-77

EN DDO End Current DO Loop EN DDO

Condition Codes Affected:
The condition codes are not affected by thisinstruction.

Instruction Fields:

Operation Operands C W Comments

ENDDO 2 1 Remove one value from the hardware stack and
update the NL and LF bits appropriately
Note: Does not branch to the end of the loop

Timing: 2 oscillator clock cycles

Memory: 1 program word

A-78 DSP56800 Family Manual @ MOTOROLA

EOR Logical Exclusive OR EOR

Operation: Assembler Syntax:
SOD - D (noparalel move) EOR SD (no parallel move)
SO D[31:16] - D[31:16] (no parallel move) EOR SD (no parallel move)

where [0 denotes the logical exclusive OR operator

Description: Logically exclusive OR the source operand (S) with the destination operand (D) and store the result in
the destination. This instruction is a 16-bit operation. If the destination is a 36-bit accumulator, the
source is exclusive ORed with bits 31-16 of the accumulator. The remaining bits of the destination
accumulator are not affected.

Usage: Thisinstruction is used for the logical exclusive OR of two registers. If itisdesired to exclusive OR a
16-bit immediate value with a register or memory location, then the EORC instruction is appropriate.
Example:
EOR Y1, B ; Exclusive OR Y1 with Bl
Before Execution After Execution
5 5555 6789 5 AA55 6789
B2 B1 BO B2 B1 BO
Y1 FFOO Y1 FFO0O

Explanation of Example:
Prior to execution, the 16-bit Y 1 register contains the value $FF00, and the 36-bit B accumulator con-
tains the value $5:5555:6789. The EOR Y1, B instruction logically exclusive ORs the 16-bit valuein
the Y 1 register with bits 31-16 of the B accumulator (B1) and storesthe 36-bit result in the B accumu-
lator. The lower word of the accumulator (B0O) and the extension byte (B2) are not affected by the op-
eration.

Condition Codes Affected:

< MR >« CCR >
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF| * | | *|*] *~|nn|lo|sz|]L|E|U|IN|Z]|V]|C

N — Setif bit 31 of A or B result is set
Z — Setif bits31-16 of A or B result are zero
V — Alwayscleared

0 MOTOROLA Instruction Set Details A-79

EOR

Instruction Fields:

Logical Exclusive OR

EOR

Operation Operands C W Comments
EOR DD,FDD 2 1 | 16-bit exclusive OR (XOR)
F1,DD
Timing: 2 oscillator clock cycles
Memory: 1 program word

A-80

DSP56800 Family Manual

0 MOTOROLA

EORC Logical Exclusive OR Immediate EORC

Operation: Assembler Syntax:
#xxxx 0 X:<ea> - X:<ea> EORC #iiii X :<ea>
#ooxx 0D - D EORC #iiii,D

where [0 denotes the logical exclusive OR operator

Implementation Note:
Thisinstruction is an alias to the BFCHG instruction, and assembles as BFCHG with the 16-bit imme-
diate value as the bit mask. Thisinstruction will disassemble as a BFCHG instruction.

Description: Logicaly exclusive OR a 16-bit immediate data value with the destination operand (D) and store the
results back into the destination. C is also modified as described below. This instruction performs a
read-modify-write operation on the destination and requires two destination accesses.

Example:
EORC #$0FFO, X: <<$FFEO; Exclusive OR with i medi ate data
Before Execution After Execution
X:$FFEO 5555 X:$FFEO 5AA5
SR 0000 SR 0000

Explanation of Example:
Prior to execution, the 16-bit X memory location X:$FFEO contains the value $0010. Execution of the
instruction tests the state of the bits 4, 8, and 9 in X:$FFEO; does not set C (because all of the CCR bits
were not set); and then complements the bits.

Condition Codes Affected:

< MR >
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A
9]
@]
Py
v

LF | * * * * * 11 {10 |SZ]| L E U N z v |C

For destination operand SR:

? — Changed if specified in thefield
For other destination operands:
C — Setif al bits specified by the mask are set

0 MOTOROLA Instruction Set Details A-81

EORC

Instruction Fields:

Logical

Exclusive OR Immediate EORC

Operation Operands C W Comments
EORC #xxxx,DDDDD 4 2 Implemented using the BFCHG instruction.
#XXXX,X:(R2+XX) 6 2 All registers in DDDDD are permitted except HWS.
HXXXX, X:(SP-xx) 6 2 | X:aarepresents a 6-bit absolute address. Refer to
Absolute Short Address (Direct Addressing):
#Hxxxx, X:aa 4 2| <aa> on page 4-22.
XXX, X:pp 4 2 | X:pp represents a 6-bit absolute /O address. Refer
B0 X X 6 3 z)onllp(‘?i;hiréséddress (Direct Addressing): <pp>
Timing: Refer to the preceding Instruction Fields table

Memory: Refer to the preceding Instruction Fields table

A-82

DSP56800 Family Manual @ MOTOROLA

”_LEGAL lllegal Instruction Interrupt ”_LEGAL

Operation: Assembler Syntax:
Begin illegal instruction exception routine ILLEGAL (no parallel move)
Description: Normal instruction execution is suspended and illegal instruction exception processing isinitiated. The

Usage:

Example:

interrupt priority level bits (11 and 10) are set to 11 in the status register. The purpose of theillegal in-
terrupt isto force the DSP into an illegal instruction exception for test purposes. Executing an ILLE-
GAL instruction isafatal error; the exception routine should indicate this condition and cause the sys-
tem to be restarted.

If the ILLEGAL instruction isin a DO loop at the LA and the instruction at the LA-1 is being inter-
rupted, then LC will be decremented twice due to the same mechanism that causes L C to be decrement-
ed twiceif JSR, REP,... arelocated at the LA.

Since REPisuninterruptible, repeating an ILLEGAL instruction resultsin the interrupt not being taken
until after completion of the REP. After servicing the interrupt, program control will return to the ad-
dress of the second word following the ILLEGAL instruction. Of course, the ILLEGAL interrupt ser-
vice routine should abort further processing, and the processor should be reinitialized.

ThelLLEGAL instruction provides ameansfor testing theinterrupt service routine executed upon dis-
covering an illegal instruction. This allows a user to verify that the interrupt service routine can cor-
rectly recover from an illegal instruction and restart the application. The ILLEGAL instruction is not
used in normal programming.

| LLEGAL

Explanation of Example: Seethe previous description.

Condition Codes Affected:

The condition codes are not affected by thisinstruction.

Instruction Fields:

Operation Operands C W Comments

ILLEGAL 4 1 Execute the illegal instruction exception. This

instruction is made available so that code may be
written to test and verify interrupt handlers for illegal
instructions.

Timing:

Memory:

4 oscillator clock cycles

1 program word

0 MOTOROLA Instruction Set Details A-83

|MPY(16) Integer Multiply |MPY(16)

Operation:

Assembler Syntax:

(S1*S2) - D1 IMPY 16 S1,52,D (no parallel move)
sign-extend D2; leave DO unchanged

Description:

Usage:

Note:

Example:

Perform an integer multiplication on the two 16-bit signed integer source operands (S1 and S2) and
store the lowest 16 bits of the integer product in the upper word (D1) of the destination accumulator
(D), leaving the lower word (D0O) unchanged and sign extending the extension register (D2).

This instruction is useful in general computing when it is necessary to multiply two integers and the
nature of the computation can guarantee that the result fitsin a 16-bit destination. In this case, it is bet-
ter to placetheresult inthe MSP (A1 or B1) of an accumulator, because more instructions have access
to this portion than to the other portions of the accumulator.

No overflow control or rounding is performed during integer multiply instructions. Theresult isalways
a 16-bit signed integer result that is sign extended to 24 bits.

| MPY Y0, X0, A ; form product

Before Execution After Execution

=

AAAA 789A 0 0ooC 789A

A2

Al AO A2 Al AO

X0 0003 X0 0003

YO 0004 YO 0004

Explanation of Example:

A-84

Prior to execution, the data ALU registers X0 and Y O contain, respectively, two 16-bit signed integer
values ($0003 and $0004). The contents of the destination accumulator are not important prior to ex-
ecution. Execution of thel MPY X0, YO, Ainstruction integer multiplies X0 and Y 0 and storesthere-
sult ($000C) in Al. AO remains unchanged, and A2 is sign extended.

DSP56800 Family Manual @ MOTOROLA

|MPY(16) Integer Multiply |MPY(16)

Condition Codes Affected:

15 14 13 12 11 10 9 8|7 6 5 4 3 2 1 0
LF | * | *|*|*]*]n|o|sz|L|E|JU|N|Z]|V]|C

E — Notdefined
U — Not defined
N — Setif bit 35 of the result is set except during saturation
Z — Setif the20 MSBs of the result equal zero
V — Setif overflow occursin the 16-bit result
Instruction Fields:
Operation Operands C W Comments
IMPY(16) Y1,X0,FDD 2 1 Integer 16x16 multiply with 16-bit result.
Y0,X0,FDD
Y1,YO,FDD When the destination register is F, the FO portion is
YO0,Y0,FDD unchanged by the instruction.
Al,YO,FDD
B1,Y1,FDD Note: Assembler also accepts first two operands
when they are specified in opposite order.
Timing: 2 oscillator clock cycles
Memory: 1 program word

0 MOTOROLA Instruction Set Details A-85

|NC(W) Increment Word |NC(W)

Operation: Assembler Syntax:
D2:D1+1 - D2:D1 (parallel move) INCW D (parallel move)

Description: Increment a16-bit destination (D) or the two upper portions (A2:A1 or B2:B1) of a36-bit accumulator.
If the destination is a 36-bit accumulator, leave the LSP (A0 or BO) unchanged.

Usage: Thisinstruction istypically used when processing integer data.
Example:
I NCW A X: (R0O), X0; Increnent the 20 MSBs of A, update X0
A Before Execution A After Execution
0 0001 0033 0 0002 0033
A2 Al A0 A2 Al A0

Explanation of Example:
Prior to execution, the 36-bit A accumulator contains the value $0:0001:0033. Execution of the
I NCW A instruction increments by one the upper 20 bits of the A accumulator.

Condition Codes Affected:

< MR »><¢ CCR >
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF|* | | *|*|=*|11|wo|SZIL|E|JU|IN|]Z]|V|C

— Set according to the standard definition of the SZ bit (parallel move)
— Setif limiting (parallel move) or overflow has occurred in result

— Setif the signed integer portion of theresult isin use

Set if result is unnormalized

— Setif bit 35 of the result is set except during saturation

— Setif the20 MSBs of theresult are al zeros

— Setif overflow has occurred in result

— Setif acarry (or borrow) occurs from bit 35 of the result

See Section 3.6.5, “16-Bit Destinations,” on page 3-35 for cases with X0, YO, or Y1 asD.
See Section 3.6.2, “36-Bit Destinations—CC Bit Set,” on page 3-34 and Section 3.6.4, “20-Bit Desti-
nations—CC Bit Set,” on page 3-34 for the case when the CC hit is set.

o<Nzcmr (@
|

A-86 DSP56800 Family Manual @ MOTOROLA

INC(W)

Instruction Fields:

Increment Word

INC(W)

Operation Operands W Comments
INC(W) FDD 1 Increment word
X:(SP-xx) 1 Increment word in memory using appropriate
addressing mode.
X:aa 1
X:aa represents a 6-bit absolute address. Refer to
XIXXXX 2 | Absolute Short Address (Direct Addressing):
<aa> on page 4-22.
Data ALU Operation Parallel Memory Read or Write
Operation Registers Memory Access Source or Destination
INC(W) A X:(Rn)+ X0
B X:(Rn)+N Y1
YO
Al
B1
A
B
Timing: Refer to the preceding Instruction Fields table

Memory: Refer to the preceding Instruction Fields table

0 MOTOROLA

Instruction Set Details

A-87

JCC

Operation:
If cc, then label - PC Jcc
else PC+1 - PC

Jump Conditionally

Assembler Syntax:

XXXX

Jcc

Description: If the specified condition istrue, program execution continues at the effective address specified in the
instruction. If the specified condition isfalse, the PC isincremented and program execution continues
sequentially. The effective address is a 16-bit absolute address. The Bcc instruction, which is more

compact, operates almost identically, and can be used for very short jumps.

Theterm “cc” specifies the following:

“cc” Mnemonic Condition
CC (HS*)— carry clear (higher or same) C=0
CS (LO*)— carry set (lower) c=1
EQ — equal Z=1
GE — greater than or equal N O V=0
GT — greater than Z+(N O V)=0
LE — less than or equal Z+(N O V)=1
LT —less than NOV=1
NE — not equal Z=0
NN — not normalized Z+(U * E)=0
NR — normalized Z+{U « E)=1
* Only available when CC bit set in the OMR
X denotes the logical complement of X
+ denotes the logical OR operator
« denotes the logical AND operator
Y denotes the logical exclusive OR operator
Example:
JCS LABEL ; junp to label if carry bit
I NCW A
I NCW A
LABEL
ADD B, A

Explanation of Example:

is set

In this example, if C is one when executing the JCS instruction, program execution skips the two
INCW instructions and continues with the ADD instruction. If the specified condition is not true, no
jump is taken, the program counter is incremented by one, and program execution continues with the
first INCW instruction. The Jcc instruction uses a 16-bit absolute address for this example.

Restrictions:

A Jec instruction used within a DO loop cannot begin at the LA or LA-1 within that DO loop.
A Jec instruction cannot be repeated using the REP instruction.

A-88 DSP56800 Family Manual

0 MOTOROLA

JCC

Condition Codes Affected:

Jump Conditionally

The condition codes are tested but not modified by this instruction.

Instruction Fields:

Jcc

Operation Operands C Comments
Jecc XXXX 6/4 16-bit absolute address
Timing: 4 + jx oscillator clock cycles
Memory: 2 program words

0 MOTOROLA

Instruction Set Details

A-89

JMP Jump JMP

Operation: Assembler Syntax:
label —» PC IMP XXXX

Description: Jump to program memory at thelocation given by theinstruction’ s effective address. The effective ad-
dressisa 16-bit absolute address.

Example:
JMP LABEL
Explanation of Example:

In this example, program execution is transferred to the address represented by label. The DSP core
supports up to 16-bit program addresses.

Condition Codes Affected:
The condition codes are not affected by thisinstruction.

Restrictions:
A JMP instruction used within a DO loop cannot begin at the LA within that DO loop.
A JMP instruction cannot be repeated using the REP instruction.

Instruction Fields:

Operation Operands C W Comments
JMP XXXX 6 2 16-bit absolute address
Timing: 6 + jx oscillator clock cycle
Memory: 2 program words

A-90 DSP56800 Family Manual @ MOTOROLA

JSR Jump to Subroutine JSR

Operation: Assembler Syntax:
SP+1 - SP JSR XXXX
PC - X:(SP)

SP+1 -~ SP

SR - X:(SP)

XXXX - PC

Description: Jumpto subroutinein program memory at thelocation given by theinstruction’ s effective address. The
effective address is a 16-bit absolute address.

Example:
JSR LABEL ; jump to absolute address indicated by LABEL
Explanation of Example:

In this example, program execution is transferred to the subroutine at the address represented by LA-
BEL. The DSP core supports up to 16-bit program addresses.

Condition Codes Affected:
The condition codes are not affected by thisinstruction.

Restrictions:
A JSR instruction used within a DO loop cannot begin at the LA within that DO loop.
A JSR instruction used within a DO loop cannot specify the LA asits target.
A JSR instruction cannot be repeated using the REP instruction.

Instruction Fields:

Operation Operands C W Comments

JSR XXXX 8 2 Push return address and status register and jump to
16-bit target address

Timing: 8 + jx oscillator clock cycles

Memory: 2 program word

0 MOTOROLA Instruction Set Details A-91

LEA

Operation:

ea- D

Load Effective Address L EA

(no parallel move)

Assembler Syntax:

ea

Description: The address calculation specified is executed and the resulting effective address (ea) is stored in the
destination register (D). The source address register and the update mode used to compute the updated
address are specified by the effective address. The source address register specified in the effective ad-
dressisnot updated. All update addressing modes may be used. The new register contents are available
for use by the immediately following instruction.

Example:

Explanation of Example:

LEA

(RO) +N

Before Execution

RO

MO1

8001

0CO01

1000

update RO using (RO)+N

After Execution

RO 8C02
N 0CO01
MO1 1000

Prior to execution, the 16-bit address register RO contains the value $8001, the 16-bit address register
N contains the value $0C01, and the 16-bit modulo register MO1 contains the value $1000. Execution
of the LEA (' RO) +Ninstruction adds the contents of the RO register to the contents of the N register
and stores the resulting updated address in the RO address register. The addition is performed using
modul o arithmetic sinceit isdonewith the RO register and M0O1 is not equal to $FFFF. No wraparound
occurs during the addition because the result falls within the boundaries of the modulo buffer.

Condition Codes Affected:
The condition codes are not affected by thisinstruction.

Instruction Fields:

Operation Operands Comments
LEA (Rn)+ Increment the Rn pointer register
(Rn)- Decrement the Rn pointer register

(Rn)+N Add first operand to the second and store the result
in the second operand

(R2+xx) Add a 6-bit unsigned immediate value to R2 and
store in the R2 Pointer

(SP-xx) Subtract a 6-bit unsigned immediate value from SP
and store in the SP register

(RN+xxxx) Add a 16-bit signed immediate value to the specified

source register.

Timing:

Memory:

A-92

2+ea oscillator clock cycles

1+ea program words

DSP56800 Family Manual @ MOTOROLA

LSL LSL

Logical Shift Left

Operation: Assembler Syntax:
(see following figure) LSL D
v
C<«— |Unch. +— Unchanged —0 (no parallel move)
D2 D1 DO

Description: Logicaly shift 16 bits of the destination operand (D) 1 bit to the left and store the result in the desti-
nation. If the destination isa36-bit accumulator, the result is stored in the M SP of the accumulator (A1
or B1), and the remaining portions of the accumulator (A2, B2, AO, BO) are not modified. The MSB
of the destination (bit 31 if the destination isa 36-bit accumulator) prior to the execution of theinstruc-
tion is shifted into C, and zero is shifted into the LSB of D1 (bit 16 if the destination is a 36-bit accu-
mulator).

Example:

LSL B ; multiply Bl by 2

Before Execution After Execution

6 8000 00AA 6 0000 00AA
B2 Bl BO B2 Bl BO
SR 0300 SR 0305

Explanation of Example:
Prior to execution, the 36-bit B accumulator contains the value $6:8000:00AA. Execution of the
LSL Binstruction shifts the 16-bit value in the B1 register 1 bit to the left and stores the result back
inthe B1 register. C is set by the operation because bit 31 of A1 was set prior to the execution of the
instruction. The Z bit of CCR (bit 2) isalso set because the resultin Al is zero.

0 MOTOROLA Instruction Set Details A-93

LSL Logical Shift Left LSL

Condition Codes Affected:

< MR > < CCR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

v

LF|*| | *|=*]|=*|n1n|wo|sz|L|E|J]U|IN|]Z]|V|C

L — Setif overflow hasoccurred in result
N — Setif bit31of A orBresultisset
Z — Setif AlorB1 result equals zero
V — Alwayscleared
C — Setif bit 31 of A or B was set prior to the execution of the instruction

Instruction Fields:

Operation Operands C W Comments
LSL FDD 2 1 1-bit logical shift left of word
Timing: 2 oscillator clock cycles
Memory: 1 program word

A-94 DSP56800 Family Manual @ MOTOROLA

LSLL Multi-Bit Logical Left Shift LSLL

Operation: Assembler Syntax:
S1<<S2 - D (no parallel move) LSLL S1,82,D (no parallel move)

Description: Logically shift thefirst 16-bit source operand (S1) to the |eft by the value contained in the lowest 4 bits
of the second source operand (S2) and store the result in the destination register (D). The destination
must always be a 16-bit register.

Implementation Note:
This instruction is actually implemented by the assembler using the ASLL instruction. It will disas-

sembleas ASLL.
Example:
LSLL Y1, X0, Y1 ; left shift of 16-bit Y1 by X0
Before Execution After Execution
Y1 AAAA Y1 AAAO
X0 0004 X0 0004

Explanation of Example:
Prior to execution, the Y 1 register contains the value to be shifted (SAAAA) and the X0 register con-

tains the amount to shift by ($0004). The contents of the destination register are not important prior to
execution because they have no effect on the calculated value. The LSLL instruction logically shifts
the value $AAAA four bitsto the left and places the result in the destination register Y 1.

Condition Codes Affected:

MR gh CCR g
15 14 13 12 11 10 9 8|7 6 5 4 3 2 1
*fmlrjwow|s|L|EJ]U|N|Z|V]|C

N

LF * * * *

N — Setif bit 15 of result is set except during saturation
Z — SetiftheresultinD iszero

0 MOTOROLA Instruction Set Details A-95

LSLL

Instruction Fields:

Multi-Bit Logical Left Shift LSLL

Operation

Operands

C W Comments

LSLL

Y1,X0,FDD
Y0,X0,FDD
Y1,YO,FDD
Y0,YO,FDD
A1,Y0,FDD
B1,Y1,FDD

2 1 Logical shift left of the first operand by value speci-
fied in four LSBs of the second operand; places
result in FDD

Implemented using ASLL instruction

Timing: 2 oscillator clock cycles

Memory: 1 program word

A-96

DSP56800 Family Manual @ MOTOROLA

LSR LSR

Logical Shift Right

Operation: Assembler Syntax:
(see following figure) LSR D
0
v |
Unch. —> Unchanged —»C (no parallel move)
D2 D1 DO

Description: Logicaly shift 16 bits of the destination operand (D) 1 bit to the right and store the result in the desti-
nation. If the destination isa36-bit accumulator, the result is stored in the M SP of the accumulator (A1
or B1), and the remaining portions of the accumulator (A2, B2, A0, BO) are not modified. The LSB of
the destination (bit 16 if the destination isa36-bit accumul ator) prior to the execution of the instruction
isshifted into C, and zero is shifted into the MSB of D1 (bit 31if the destination is a 36-bit accumula-
tor).

Example:

LSR B ; divide Bl by 2 (Bl considered unsigned)

Before Execution After Execution

F 0001 00AA F 0000 00AA
B2 Bl BO B2 Bl BO
SR 0300 SR 0305

Explanation of Example:
Prior to execution, the 36-bit B accumulator contains the value $F:0001:00AA. Execution of the
LSR B instruction shifts the 16-bit value in the B1 register 1 bit to the right and stores the result back
in the B1 register. C is set by the operation because bit 0 of B1 was set prior to the execution of the
instruction. The Z bit of CCR (bit 2) is also set because the result in Bl is zero.

0 MOTOROLA Instruction Set Details A-97

LSR

Condition Codes Affected:

Logical Shift Right

LSR

< MR >« CCR >
15 14 13 12 11 10 9 8|7 6 5 4 2 1 0
LF| *|*|*|*|*|n1|wo|sz|L|E|J|U|IN|]Z]|V]|C
L — Setif datalimiting has occurred during parallel move
N — Alwayscleared
Z — Setif AlorB1 result equals zero
V — Alwayscleared
C — Setif bit 16 of A or B was set prior to the execution of the instruction
Instruction Fields:
Operation Operands C W Comments
LSR FDD 2 1 1-bit logical shift right of word
Timing: 2 oscillator clock cycles
Memory: 1 program word
A-98 DSP56800 Family Manual Q mororoLa

LSRAC Logical Right Shift with Accumulate LSRAC

Operation: Assembler Syntax:
S1>>S2+D -D (noparalel move) LSRAC S1,S82,D (no parallel move)

Description: Logically shift the first 16-bit source operand (S1) to the right by the value contained in the lowest 4
bits of the second source operand (S2), and accumulate the result with the value in the destination reg-

ister (D).
Usage: Thisinstruction is used for multi-precision logical right shifts.
Example:
LSRAC Y1, X0, A ; 16-bit add
Before Execution After Execution
0 0000 0099 0 0CO00 3099
A2 Al AO A2 Al AO
Y1 C003 Y1l C003
X0 0004 X0 0004

Explanation of Example:
Prior to execution, the Y1 register contains the value to be shifted ($C003), the X0 register contains

the amount by which to shift ($0004), and the destination accumulator contains $0:000:0099. The
LSRAC instruction logically shifts the value $C003 four bits to the right and accumulates this result
with the value already in the destination register A. Since the destination is an accumulator, the exten-

sion word (A2) isfilled with sign extension.

Condition Codes Affected:

< MR < CCR >
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF| * | = | *|*] *|nn|lo|sz|]L|E|U|IN|Z]|V]|C

N — Setif bit 35 0f A or B result is set except during saturation
Z — Setif A or B result equalszero

See Section 3.6.2, “36-Bit Destinations—CC Bit Set,” on page 3-34 and Section 3.6.4, “20-Bit Desti-
nations—CC Bit Set,” on page 3-34 for the case when the CC bit is set.

0 MOTOROLA Instruction Set Details A-99

LSRAC

Instruction Fields:

Logical Right Shift with Accumulate

LSRAC

Operation Operands C W Comments
LSRAC Y1,X0,F 2 1 Logical word shifting with accumulation

YO0,X0,F
Y1,YO,F
YO,YO,F
Al,YO,F
B1,Y1l,F

Timing: 2 oscillator clock cycles

Memory: 1 program word

A-100 DSP56800 Family Manual Q mororoLa

LSRR Multi-Bit Logical Right Shift LSRR

Operation: Assembler Syntax:
S1>>S2 - D (no parallel move) LSRR S1,82,D (no parallel move)

Description: Logically shift the first 16-bit source operand (S1) to the right by the value contained in the lowest 4
bits of the second source operand (S2), and store the result in the destination register (D). If the desti-
nation is a 36-bit accumulator, correctly zero extend into the extension register (A2 or B2) and place
zero in the LSP (A0 or BO).

Example:
LSRR Y1, X0, A ; right shift of 16-bit Y1 by XO
Before Execution After Execution
0 3456 3456 0 OAAA 0000
A2 Al A0 A2 Al A0
Y1 AAAA Y1 AAAA
X0 0004 X0 0004

Explanation of Example:
Prior to execution, the Y 1 register contains the value to be shifted (SAAAA), and the X0 register con-
tains the amount by which to shift ($0004). The contents of the destination register are not important
prior to execution because they have no effect on the calculated value. The LSRR instruction logically
shiftsthe value SAAAA four bitsto the right and placesthe result in the destination register (A). Since
the destination is an accumulator, the extension word (A2) is filled with sign extension, and the LSP
(AOQ) is set to zero.

Condition Codes Affected:

< MR »><¢ CCR >
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF| * | | *|*] *|n|lO|sz|]L|E|U|[N|Z]|V]|C

N — Setif bit 35 0f A or B result is set except during saturation
Z — Setif A or B result equalszero

0 MOTOROLA Instruction Set Details A-101

LSRR

Instruction Fields:

Multi-Bit Logical Right Shift LSRR

Operation Operands C W Comments
LSRR Y1,X0,FDD 2 1 Logical shift right of the first operand by value speci-

Y0,X0,FDD fied in four LSBs of the second operand; places
Y1,YO,FDD result in FDD (when result is to an accumulator F,
YO0,Y0,FDD zero extends into F2)
A1,YO,FDD
B1,Y1,FDD

Timing: 2 oscillator clock cycles

Memory: 1 program word

A-102

DSP56800 Family Manual @ MOTOROLA

MAC

Operation:

D+S1* 82 -
D+S1* 82 -
D+S1*82 -

Description:

Multiply-Accumulate MAC

Assembler Syntax:
D (no parallel move) MAC (+)S1,52,D (no parallel move)
D (one parallel move) MAC S1,82,D (one parallel move)
D (two parallel reads) MAC S1,82,D (two parallel reads)
Multiply the two signed 16-bit source operands (S1 and S2) and add or subtract the product to or from

the specified 36-bit destination accumulator (D). The “-” sign option is used to negate the specified
product prior to accumulation. This option is not available when a single parallel move is performed
or when two parallel read operations are performed.

Usage: This instruction is used for multiplication and accumulation of fractional data or integer data when a
full 32-bit product is required (see Section 3.3.5.2, “Integer Multiplication,” on page 3-20). When the
destination is a 16-bit register, thisinstruction is useful only for fractional data.

Example:

MAC X0, Y1, A X (R1)+,Y1L X (R3)+, X0
Before Execution After Execution
0 0003 0003 0 0553 0003
A2 Al A0 A2 Al A0
X0 4000 X0 4000
Y1 0AAO Y1 0AAO

Explanation of Example:

Prior to execution, the 16-bit X0 register contains the value $4000, the 16-bit Y 1 register contains the
value $0AAQ, and the 36-bit A accumulator contains the value $0:0003:0003. Execution of the
MAC X0, Y1, Ainstruction multiplies the 16-bit signed value in the X0 register by the 16-bit signed
value in Y1, adds the resulting 32-bit product to the 36-bit A accumulator, and stores the result
($0:0553:0003) into the A accumulator. In parallel, X0 and Y 1 are updated with new values fetched
from data memory, and the two address registers (R1 and R3) are post-incremented by one.

Condition Codes Affected:

< MR >« CCR >
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF| * | | *|*]*~|n|1l0|SZ|L|E|JU|IN|Z]|V|C

— Set according to the standard definition of the SZ bit (parallel move)
— Setif limiting (parallel move) or overflow has occurred in result

— Setif the signed integer portion of A or B result isin use

Set according to the standard definition of the U bit

— Setif bit 35 of A or B result is set except during saturation

— Setif A or B result equals zero

— Setif overflow hasoccurredin A or B result

<NzcmEQ
|

See Section 3.6.5, “16-Bit Destinations,” on page 3-35 for caseswith X0, YO, or Y1 asD.
See Section 3.6.2, “36-Bit Destinations—CC Bit Set,” on page 3-34 and Section 3.6.4, “20-Bit Desti-
nations—CC Bit Set,” on page 3-34 for the case when the CC bit is set.

0 MOTOROLA Instruction Set Details A-103

MAC

Instruction Fields:

Multiply-Accumulate

MAC

Memory:

Refer to previous table for MAC instructions without a parallel move

1 program word for MAC instructions with a parallel move

Refer to previous table for MAC instructions without a parallel move

A-104

DSP56800 Family Manual

Operation Operands C w Comments
MAC (x)Y1,X0,FDD 2 1 Fractional multiply accumulate; multiplication result
(x)YO,X0,FDD optionally negated before accumulation
(¥)Y1,YO,FDD
()YO0,YO,FDD
(+)A1,YO,FDD
(+)B1,Y1,FDD
Data ALU Operation Parallel Memory Read or Write
Operation Registers Memory Access Source or Destination
MAC Y1,B1,F X:(Rn)+ X0
YO0,YO,F X:(Rn)+N Y1
Y0,A1,F YO
X0,YO,F A
X0,Y1,F B
YO,Y1,F Al
B1
(F=AorB)
Data ALU First and Second Memory Destinations for Memory
Operation Reads Reads
Operation Registers Read1l Read?2 Destinationl Destination2
MAC Y0,X0,F X:(R0O)+ X:(R3)+ YO X0
Y1,X0,F X:(RO)+N X:(R3)-
Y1,YOF Y1 X0
X:(R1)+ . .
Valid Valid
(F=AorB) X(RLN destinations destinations
for Readl for Read2
Timing: 2 + mv oscillator clock cyclesfor MAC instructions with a parallel move

@ MOTOROLA

MACR Multiply-Accumulate and Round MACR

Operation: Assembler Syntax:

D+S1* S2+r - D (no parallel move) MACR (+)S1,S2,D(no parallel move)
D+S1* S2+r - D (one paralel move) MACR S1,52,D (one parallel move)
D+S1* S2+r - D (two paralél reads) MACR S1,S2,D (two parallel reads)
Description: Multiply the two signed 16-bit source operands (S1 and S2), add or subtract the product to or from the

specified 36-bit destination accumulator (D), and round the result using the specified rounding. The
rounded result is stored in the destination accumulator. (Refer to RND for more compl ete information
on the convergent rounding process.) The “-" sign option is used to negate the specified product prior
to accumulation. This option is not available when asingle parallel move or two paralléel reads are per-
formed. The default sign option is“+".

Usage: Thisinstruction is used for the multiplication, accumulation, and rounding of fractional data.
Example:
MACR -X0, Y1, A
Before Execution After Execution
0 0003 8000 0 2004 0000
A2 Al A0 A2 Al A0
X0 4000 X0 4000
Y1 C000 Y1 C000

Explanation of Example:

Prior to execution, the 16-bit X0 register contains the value $4000, the 16-bit Y 1 register contains the
value $C000, and the 36-bit A accumulator contains the value $0:0003:8000. Execution of the
MACR - X0, Y1, A instruction multiplies the 16-bit signed value in the X0 register by the 16-bit
signed value in Y1 and subtracts the resulting 32-bit product from the 36-bit A accumulator, rounds
the result, and stores the result ($0:2004:0000) into the A accumulator. In this example, the default
rounding (convergent rounding) is performed.

0 MOTOROLA Instruction Set Details A-105

MACR

Condition Codes Affected:

Multiply-Accumulate and Round

MACR

< MR >« CCR >
15 14 13 12 11 10 9 8|7 6 5 4 3 2 1 0
LF| | * | *]*|*|1]w0o|SZ|[L|E|JU|N|Z|V]|C
Sz Set according to the standard definition of the SZ bit (parallel move)
L Set if limiting (parallel move) or overflow has occurred in result
E Set if the signed integer portion of A or B resultisin use
U Set according to the standard definition of the U bit
N Set if bit 35 of A or B result is set except during saturation
Z Set if A or B result equals zero
\% Set if overflow has occurred in A or B result

See Section 3.6.5, “16-Bit Destinations,” on page 3-35 for cases with X0, YO, or Y1 asD.
See Section 3.6.2, “36-Bit Destinations—CC Bit Set,” on page 3-34 and Section 3.6.4, “20-Bit Desti-
nations—CC Bit Set,” on page 3-34 for the case when the CC hit is set.

Instruction Fields:
Operation Operands C W Comments
MACR (x)Y1,X0,FDD 2 1 Fractional MAC with round, multiplication result
(x)YO,X0,FDD optionally negated before addition.
(#*)Y1,YO,FDD
(#)YO,YO,FDD
(¥)A1,YO,FDD
(+)B1,Y1,FDD
Data ALU Operation Parallel Memory Read or Write
Operation Registers Memory Access Source or Destination
MACR Y1,B1,F X:(Rn)+ X0
YO0,YO,F X:(Rn)+N Y1
Y0,Al,F YO
X0,YO0,F A
X0,Y1,F B
YO,Y1,F Al
B1
(F=AorB)
A-106 DSP56800 Family Manual Q mororoLa

MACR

Multiply-Accumulate and Round

MACR

Data ALU First and Second Memory Destinations for Memory
Operation Reads Reads
Operation Registers Read1 Read?2 Destinationl Destination2
MACR YO0,X0,F X:(RO)+ X:(R3)+ YO X0
Y1,X0,F X:(RO)+N X:(R3)-
Y1,YOF Y1 X0
X:(R1)+) .
Valid Valid
(F=AorB) X(RI+N destinations destinations
for Readl for Read2

Timing:

2 + mv oscillator clock cyclesfor MACR instructions with a parallel move

Refer to previous table for MACR instructions without a parallel move

Memory:

1 program word for MACR instructions with a parallel move

Refer to previous table for MACR instructions without a parallel move

0 MOTOROLA

Instruction Set Details

A-107

MACSU Multiply-Accumulate Signed x Unsigned MACSU

Operation:

Assembler Syntax:

D+S1*S2 - D (S1 signed, S2 unsigned) MACSU S1,S2,D (no parallel move)
Description: Multiply the two 16-bit source operands (S1 and S2) and add the product to the specified 36-bit desti-

Usage:

Example:

nation accumulator (D). S1 can be unsigned, but S2 is always considered unsigned. This mixed arith-
metic multiply-accumulate does not alow a parallel move and can be used for multi-precision multi-
plications.

In addition to single-precision multiplication of a signed-times-unsigned value and accumulation, this
instruction is also used for multi-precision multiplications, as shown in Section 3.3.8.2, “Multi-Preci-
sion Multiplication,” on page 3-23.

MACSU X0, YO, A
Before Execution After Execution
0000 0099 0 3456 0099
A2 Al A0 A2 Al A0
X0 3456 X0 3456
YO 8000 YO 8000

Explanation of Example:

A-108

The 16-bit X0 register contains the value $3456 and the 16-bit Y O register contains the value $3000.
Execution of the MACSU X0, YO, A instruction multiplies the 16-bit signed value in the X0 register
by the 16-bit unsigned value in Y 0, and then adds the result to the A accumulator and storesthe signed
result back into the A accumulator. If thiswere aMAC instruction, Y0 ($8000) would equal -1.0, and
the multiplication result would be $F:CBAA:0000. Since thisisa MACSU instruction, YO is consid-
ered unsigned and equals +1.0. This gives amultiplication result of $0:3456:0000.

DSP56800 Family Manual @ MOTOROLA

MACSU Multiply-Accumulate Signed x Unsigned MACSU

Condition Codes Affected:

< MR >« CCR >
15 14 13 12 11 10 9 8|7 6 5 4 3 2 1 0
LF| * | x| *|*|*|1|wo|sz|L|E|U|N|Z|V]|C
E — Setif thesigned integer portion of A or B result isin use
U — Setaccording to the standard definition of the U bit
N — Setif bit 35 0f A or B result is set except during saturation
Z — Setif A or B result equalszero
V — Setif overflow hasoccurredin A or B result

See Section 3.6.5, “16-Bit Destinations,” on page 3-35 for caseswith X0, YO, or Y1 asD.
See Section 3.6.2, “36-Bit Destinations—CC Bit Set,” on page 3-34 and Section 3.6.4, “20-Bit Desti-
nations—CC Bit Set,” on page 3-34 for the case when the CC bit is set.

Instruction Fields:
Operation Operands C W Comments
MACSU X0,Y1,FDD 2 1 Signed or unsigned 16x16 fractional MAC with

X0,Y0,FDD 32-bit result.
Y0,Y1,FDD
YO0,Y0,FDD The first operand is treated as signed and the sec-
Y0,A1,FDD ond as unsigned.
Y1,B1,FDD

Timing: 2 oscillator clock cycles

Memory: 1 program word

Q mororoLa Instruction Set Details A-109

MOVE Introduction to DSP56800 Moves MOVE

Description: The DSP56800 Family instruction set contains a powerful set of moves, resulting not only in better

A-110

DSP performance, but in simpler, more efficient general-purpose computing. The powerful set of con-
troller and DSP moves results not only in ease of programming, but in more efficient codethat, in turn,
results in reduced power consumption for an application. This description gives an introduction to all
of the different types of moves available on the DSP56800 architecture. It covers al of the variations
of the MOVE instruction, aswell asall of the parallel moves. There are e ght types of moves available
on the DSP56800:

* Any register —~ any register

¢ Any register — X datamemory

» Any register —~ on-chip peripheral register

* Immediate data — any register

e Immediate data — X data memory

* Immediate data — on-chip peripheral register

* Register « program memory

¢ One X datamemory accessin parallel with an arithmetic operand (single parallel move)

» Two X data memory readsin parallel with an arithmetic operand (dual parallel read)

» Two X data memory readsin parallel with no arithmetic operand specified (MOVE only)

¢ Conditional register transfer (transfer only if condition is true)

* Register transfer through the data ALU

The preceding move types are discussed in detail under the following DSP56800 instructions:
MOVE:
¢ One X datamemory accessin parallel with an arithmetic operand (single parallel move)
» Two X data memory readsin parallel with an arithmetic operand (dual parallel read)
» Two X data memory readsin parallel with no arithmetic operand specified (MOVE only)
MOVE(C):
o Any register - any register
* Anyregister « X datamemory
e Any register — on-chip peripheral register
MOVE(I):
e Immediate data - any register
* Immediate data — X data memory
MOVE(M):
e Two X data memory readsin parallel with no arithmetic operand specified
MOVE(P):
* Register « on-chip peripheral register
* Immediate data — on-chip peripheral register
MOVE(S):
e Register ~ first 64 locations of X data memory
* Immediate data - first 64 locations of X data memory
Tcc:
¢ Conditional register transfer (transfer only if condition is true)

TFR:
« Register transfer through the data ALU

DSP56800 Family Manual @ MOTOROLA

MOVE Introduction to DSP56800 Moves MOVE

Description: Two types of parallel moves are permitted—register-to-memory moves and dual memory-to-register
moves. Both types of parallel moves use a restricted subset of all available DSP56800 addressing
modes, and the registers avail able for the move portion of the instruction are also a subset of the total
set of DSP core registers. These subsets include the registers and addressing modes most frequently
found in high performance numeric computation and DSP agorithms. Also, the parallel moves allow
amove to occur only with an arithmetic operation in the data ALU. A parallel move is not permitted,
for example, with a JMP, LEA, or BFSET instruction.

Sincethe on-chip peripheral registersare accessed aslocationsin X datamemory, there are many move
instructions that can access these peripheral registers. Also, the case of “No Move Specified” for arith-
metic operations optionally allows a parallel move.

When a 36-bit accumulator (A or B) is specified as a source operand (S), there is a possibility that the
datamay be limited. If the data out of the accumulator indicates that the accumulator extension bitsare
inuse, and the dataisto be moved into a 16-bit destination, the value stored in the destination islimited
to amaximum positive or negative saturation constant to minimize truncation error. Limiting does not
occur if anindividual 16-bit accumulator register (A1, AQ, B1, or BO) is specified as a source operand
instead of the full 36-bit accumulator (A or B). Thislimiting feature allows block floating-point oper-
ations to be performed with error detection since the L bit in the CCR islatched (that is, sticky).

When a 36-bit accumulator (A or B) is specified as a destination operand (D), any 16-bit source data
to be moved into that accumulator is automatically extended to 36 bits by sign extending the MSB of
the source operand (bit 15) and appending the source operand with 16 LS zeros. The automatic sign
extension and zeroing features may be circumvented by specifying the destination register to be one
of the individual 16-bit accumulator registers (A1 or B1).

The MOVE, MOVE(C), MOVE(l), MOVE(M), MOVE(P), and MOV E(S) descriptions are found on

thefollowing pages. Detail ed descriptions of the two parallel movetypes are covered under the MOV E
instruction. The Tcc and TFR descriptions are covered in their respective sections.

0 MOTOROLA Instruction Set Details A-111

MOVE Parallel Move—Single Parallel Move MOVE

Operation: Assembler Syntax:
<op> X<ea> - D <op> X:<ea>D
<op> S - Xi<ea> <op> SX:<ea>

<op> refersto any arithmetic instruction that allows parallel moves. Examplesinclude ADD, DECW, MACR, NEG,
SUB, TFR, and so on.

Description: Perform adata ALU operation and, in parallel, move the specified register from or to X data memory.
Two indirect addressing modes may be used (post-increment by one and post-increment by the offset
register).

Seventeen data ALU instructions allow the capability of specifying an optional single parallel move.
Thesedata AL U instructions have been sel ected for optimal performance on thecritical sections of fre-
quently used DSP algorithms. A summary of the different data AL U instructions, registers used for the
memory move, and addressing modes available for the single paralel move is shown in Table 6-34,
“Data ALU Instructions—Single Parallel Move,” on page 6-29.

If the arithmetic operation of the instruction specifies a given source register (S) or destination register
(D), that same register or portion of that register may be used as a sourcein the parallel data bus move
operation. This alows data to be moved in the same instruction in which it is being used as a source
operand by adata ALU operation. That is, duplicate sources are allowed within the same instruction.
Examples of duplicate sources include the following:

ADD A B A X (R2) + A register allowed as source of

: paral | el rove
ADD A B X (R2)+,A ; Aregister allowed as destination
; of parallel nove

Description: If the arithmetic operation portion of the instruction specifies a given destination accumulator, that
same accumul ator or portion of that accumulator may not be specified as a destination in the parallel
data bus move operation. Thus, if the opcode-operand portion of the instruction specifies the 36-bit A
or B accumulator asits destination, the parallel data bus move portion of the instruction may not spec-
ify AO/BO, A1/B1, A2/B2, or A/B as its destination. That is, duplicate destinations are not allowed
within the same instruction. Examples of duplicate destinations include the following:

ADD B, A X:(R2)+,A ; NOT ALLONED--A register used tw ce
; as a destination
ASL A X (R2)+,A ; NOT ALLOAED--A register used tw ce

as a destination

Exceptions:
TST, CMP, and CMPM allow both the accumulator and its lower portion (A and A0, B and BO) to be
the parallel move destination even if this accumulator is used by the data ALU operation. These in-
structions do not have atrue destination.

A-112 DSP56800 Family Manual @ MOTOROLA

MOVE

Example:

ASL

Before Execution

A A X:(R3)+N ; save old value of Ain X (R3),
;O OAF2 oA

After Execution

Parallel Move—Single Parallel Move

update R3

0 5555 3333 0 AAAA ccce
A2 Al AO X Al AO

X:300FF| 1234 X:$00FF| 5555

R3| O0OFF R3| 0103

N| 0004 N| 0004

Explanation of Example:
Prior to execution, the 16-bit R3 addressregister contains the val ue $00FF, the A accumulator contains
the value $0:5555:3333, and the 16-bit X memory location X:$00FF contains the val ue $1234. Execu-
tion of the parallel move portion of theinstruction, A, X: (R3) +, usesthe R3 address register to move
the contents of the A1 register before |eft shifting into the 16-bit X memory location (X:$00FF). R3is
then updated by the valuein the N register.

Condition Codes Affected:

< MR e CCR »
15 14 13 12 1 10 9 8|7 6 5 4 3 2 1 0
LF | * * * * *lm|w|SZ|IL|E|JU|N|Z|V]|C

SZ — Set according to the standard definition of the SZ bit during parallel move

L

— Setif datalimiting has occurred during parallel move

Data ALU

Operation

Parallel Memory Read or Write

Operation

Registers

Memory Access

Source or Destination

Operation

Operands

X:(Rn)+
X:(Rn)+N

X0
Y1
YO
Al
Bl
A
B

Timing:

Memory:

2

1 program word for all instructions of thistype

0 MOTOROLA

Instruction Set Details

MOVE

A-113

MOVE Parallel Move—Dual Parallel Reads MOVE

Operation: Assembler Syntax:
<op> Xi<ea> - D1 X:<ea> - D2 <op> X:<ea>,D1X:<ea>,D2
MOVE X:<ea> - D1 X:<ea> - D2 MOVE X:<ea>D1X:<ea>,D2

where <op> refers to alimited set of arithmetic instructions which allow double parallel reads

Description: Read two 16-bit word operands from X memory. Two independent effective addresses (ea) can be
specified where one of the effective addresses uses the RO or R1 address register, while the other ef-
fective address must use address register R3. Two parallel address updates are then performed for each
effective address. The address update on R3 isonly performed using linear arithmetic, and the address
update on RO or R1 is performed using linear or modulo arithmetic.

Six data ALU instructions (ADD, MAC, MACR, MPY, MPYR, and SUB) alow the capability of
specifying an optional dual memory read. In addition, MOVE can be specified. These data ALU in-
structions have been selected for optimal performance on the critical sections of frequently used DSP
algorithms. A summary of the different data ALU instructions, registers used for the memory move,
and addressing modes available for the dual parallel read is shown in Table 6-35, “Data ALU Instruc-
tions—Dual Parallel Read,” on page 6-30. When the MOVE instruction is selected, only the dual
memory accesses occur—no arithmetic operation is performed.

Example:
MPYR X0, YO, A X: (RO) +, YOX: (R3) +, X0
Before Execution After Execution

0 1234 5678 0 2AAA 0000

A2 Al A0 A2 Al A0
X:(R3) CCCcC X:(R3) CCcCcC
X:(RO) BBBB X:(RO) BBBB
X0 4000 X0 CCcCcC
YO 5555 YO BBBB

Explanation of Example:
Prior to execution, the 16-bit X0 register contains the value $4000, and the 16-bit Y O register contains
the value $5555. Execution of the paradlel move portion of the instruction,
X: (R0O) +, YO X: (R3) +, X0, movesthe 16-bit valuein the X memory location X:(R0) into the reg-
ister YO, movesthe 16-bit X memory location X:(R3) into the register X0, and post-increments by one
the 16-bit values in the RO and R3 address registers. The multiplication is performed with the old val-
ues of X0 and YO0, and the result is convergently rounded before storing it in the accumulator.

Note: The second X datamemory parallel read using the R3 address register can never access off-chip mem-
ory or on-chip peripherals. It can only access on-chip X data memory.

A-114 DSP56800 Family Manual @ MOTOROLA

MOVE

Parallel Move—Dual Parallel Reads

Condition Codes Affected:

MOVE

< MR < CCR >
15 14 13 12 11 10 9 8 |7 6 5 3 2 1 0
LF| * | *| *|*|*]m|wo|sz|L]|E N|lz]|V]|C
L — Setif datalimiting has occurred during parallel move
Instruction Fields:
Data ALU First and Second Memory Destinations for Memory
Operation Reads Reads
Operation Registers Readl Read?2 Destinationl Destination2
Operation Operands X:(RO)+ X:(R3)+ YO X0
X:(RO)+N X:(R3)-
Y1l X0
x)f:é{Rllf’N Valid Valid
(R1) destinations destinations
for Readl for Read2
Data ALU First and Second Memory Destinations for Memory
Operation Reads Reads
Operation Read1 Read?2 Destinationl Destination2
MOVE X:(RO)+ X:(R3)+ YO X0
X:(RO)+N X:(R3)-
Y1 X0
X)f:(RRlllT\l Valid valid
(R1) destinations destinations
for Readl for Read2
Timing: 2 + mv oscillator clock cyclesfor all instructions of thistype
Memory: 1 program word for all instructions of this type

0 MOTOROLA

Instruction Set Details A-115

MOVE(C) Move Control Register MOVE(C)

Operation:

X<ea>- D
S1- X:<ea>

S-D

Assembler Syntax:

MOVE(C) X:<ea>,D
MOVE(C) S X:<ea>
MOVE(C) SD

Description: Move the contents of the specified source (control) register (S) to the specified destination, or move

Note:

Note:

A-116

the specified source to the specified destination (control) register (D). The control registers S and D
consist of the AGU registers, data AL U registers, and the program controller registers. These registers
may be moved to or from any other register or location in X data memory.

If the HWS is specified as a destination operand, the contents of the first HWS location are copied into
the second one, and the LF and NL bits are updated accordingly. If the HWS is specified as a source
operand, the contents of the second HWS location are copied into the first one, and the LF and NL bits
are updated accordingly. This allows more efficient manipulation of the HWS.

When a 36-bit accumulator (A or B) is specified as a source operand, thereisa possibility that the data
may be limited. If the data out of the shifter indicates that the accumulator extension register isin use,
and the datais to be moved into a 16-bit destination, the value stored in the destination is limited to a
maximum positive or negative saturation constant to minimize truncation error. Limiting does not oc-
cur if anindividual 16-bit accumulator register (A1, A0, B1, or BO) is specified as a source operand
instead of the full 36-bit accumulator (A or B). Thislimiting feature allows block floating-point oper-
ations to be performed with error detection since the L bit in the CCR islatched (that is, sticky).

When a 36-bit accumulator (A or B) is specified as a destination operand, any 16-bit source datato be
moved into that accumulator is automatically extended to 36 bits by sign extending the MSB of the
source operand (bit 15) and appending the source operand with 16 LS zeros. The automatic sign ex-
tension and zeroing features may be circumvented by specifying the destination register to be one of
theindividual 16-bit accumulator registers (A1 or B1).

Dueto pipelining, if an addressregister (Rn, SP, or M01) is changed withaMOVE or bit-field instruc-
tion, the new contents will not be available for use as a pointer until the second following instruction.
If the SPischanged, no PUSH or POP instructions are permitted until the second following instruction.

If the N address register is changed with aMOVE instruction, this register' s contents will be available
for use on the immediately following instruction. In this case the instruction that writes the N address
register will be stretched one additional instruction cycle. Thisistrue for the case when the N register
is used by theimmediately following instruction; if N is not used, then the instruction is not stretched
an additional cycle. If the N address register is changed with a bit-field instruction, the new contents
will not be available for use until the second following instruction.

DSP56800 Family Manual @ MOTOROLA

MOVE(C) Move Control Register MOVE(C)

Example:

MOVE(C) LC, X0 ; nove the LCregister into the X0 register
Before Execution After Execution

LC 0100 \ - 0100
X0 0123 X0 0100
Explanation of Example:

Execution of the MOV E(C) instruction moves the contents of the program controller’s 16-bit LC reg-
ister into the data ALU’ s 16-bit X0 register.

Example:
MOVE(C) X:$CCO0, N ; nove X data nenory value into the
; N register
Before Execution After Execution
X:$CCO00 0100 X:$CCO00 0100

/

N 0123 0100

Explanation of Example:
Execution of the MOVE(C) instruction moves the contents of the X data memory at location $CCO00
into the AGU’s 16-bit N register.

Example:
MOVE(C) R2, X: (R3+$3072) ; move R2 register into X data
; menory
Before Execution After Execution

X:$4072 1234 / X:$4072 | AAAA
R2 AAAA R2 AAAA
Explanation of Example:

Prior to execution, the contents of R3 is $1000. Execution of the MOVE(C) instruction moves the
AGU’s 16-hit R2 register contents into the X data memory at the location $4072.

Restrictions:
A MOVE(C) instruction used within a DO loop that specifies the HWS as the source or that specifies
the SR or HWS as the destination cannot begin at the LA-2, LA-1, or LA within that DO loop.
A MOVE(C) instruction that specifies the HWS as the source or as the destination cannot be used im-
mediately before a DO instruction.
A MOVE(C) ingtruction that specifies the HWS as the source or that specifies the SR or HWS as the
destination cannot be used immediately before an ENDDO instruction.
A MOVE(C) instruction that specifiesthe SR, HWS, or SP as the destination cannot be used immedi-
ately before an RTI or RTS instruction.
A MOVE(C) HWS,HWS instruction isillegal and cannot be used.

0 MOTOROLA Instruction Set Details A-117

MOVE(C)

Condition Codes Affected:

A-118

Move Control Register

MR >« CCR

MOVE(C)

N

15

14

13

12 11 10 9 8 7 6 5 4 3

v

LF

*

*

*

* |+~ |11l |SZ|L|E|U]|N

If Disthe SR:

O<NZCI'I'II_K}

Set according to bit 7 of the source operand
Set according to bit 6 of the source operand
Set according to bit 5 of the source operand
Set according to bit 4 of the source operand
Set according to bit 3 of the source operand
Set according to bit 2 of the source operand
Set according to bit 1 of the source operand
Set according to bit 0 of the source operand

If D1 and D2 arenot SR:

L

— Setif datalimiting has occurred during move

DSP56800 Family Manual

0 MOTOROLA

MOVE(C)

Instruction Fields:

Move Control Register

MOVE(C)

Operation Source or Source or Comments
P Destination Destination
MOVE(C) X:(Rn) Any register —
X:(Rn)+
X:(Rn)-
X:(Rn)+N
X:(SP)
X:(SP)+
X:(SP)-
X:(SP)+N
XIXXXX Any register 16-bit absolute address
X:(Rn+N) Any register —
X:(SP+N)
X:(RN+XxxX) Any register Signed 16-bit
X:(SP+xxxx) index
X:(R2+xx) X0, Y1, YO, —
X:(SP-xx) A, B, Al, Bl
RO-R3, N
Any register Any register —
Timing: 2 + mvc oscillator clock cycles
Memory: 1 + eaprogram words

0 MOTOROLA

Instruction Set Details

A-119

MOVE(') Move Immediate MOVE(')

Operation: Assembler Syntax:

#xx - D MOVE(l) #xx,D

#xXxxx - D MOVE(I) #XxXxX,D
HXXXX - X:<ea> MOVE(I) HXXXX, X <ea>

Description: The 7-bit signed immediate operand is stored in the lowest 7 bits of the destination (D), and the upper
bits are filled with sign extension. The destination can be any register, X data memory location, or
on-chip periphera register.

Example:
MOVE(1) #<$FFC7, X0 ; moves negative value into X0 since bit 6
; is 1
Before Execution After Execution
X0 1234 X0 FFC7

Explanation of Example:
Prior to execution, X0 contains the value $1234. Execution of the instruction moves the value $FFC7

into XO.
Example:
MOVE(1) #$C33C, X: $A009 ; moves 16-bit value directly into a
; menory | ocation
Before Execution After Execution
X:$A009 1234 X:$A009 C33C

Explanation of Example:
Prior to execution, the X data memory location $A009 contains the value $1234. Execution of the in-
struction moves the value $C33C into this memory location.

Note: The MOVE(P) and MOV E(S) instructions al so provide amechanism for loading 16-bit immediate val-
ues directly into the last 64 and first 64 locations, respectively, in X data memory.

Condition Codes Affected:
The condition codes are not affected by this instruction.

A-120 DSP56800 Family Manual @ MOTOROLA

MOVE(l)

Instruction Fields:

Move Immediate

MOVE(l)

Operation Source Destination Cc w Comments
MOVE #xx HHHH 2 1 Signed 7-bit integer data (data is put in the
or lowest 7 bits of the word portion of any
MOVEI accumulator, upper 8 bits and extension
reg are sign extended, LSP portion is set
to “0”)
HXXXX DDDDD 4 2 Signed 16-bitimmediate data. When LC is
the destination, use 13-bit values only.
X:(R2+xx) 6 2
X:(SP-xx) 6 2
XIXXXX 6 3
Timing: Refer to the preceding Instruction Fields table

Memory: Refer to the preceding Instruction Fields table

0 MOTOROLA

Instruction Set Details

A-121

MOVE(M) Move Program Memory MOVE(M)

Operation: Assembler Syntax:
P.<ea> - D MOVE(M) P:<ea>,D
S- P<ea> MOVE(M) SP:<ea>

Description: Move the specified register from or to the specified program memory location. The source register (S)
and destination registers (D) are data ALU registers.

When a 36-bit accumulator (A or B) is specified as a source operand, thereis a possibility that the data
may be limited. If the data out of the shifter indicates that the accumulator extension register isin use,
and the data is to be moved into a 16-bit destination, the value stored in the destination is limited to a
maximum positive or negative saturation constant to minimize truncation error. Limiting does not oc-
cur if an individual 16-bit accumulator register (A1, AO, B1, or BO) is specified as a source operand
instead of the full 36-bit accumulator (A or B). Thislimiting feature allows block floating-point oper-
ations to be performed with error detection since the L bit in the CCR islatched (that is, sticky).

When a 36-bit accumulator (A or B) is specified as a destination operand, any 16-bit source datato be
moved into that accumulator is automatically extended to 36 bits by sign extending the MSB of the
source operand (bit 15) and appending the source operand with 16 LS zeros. The automatic sign ex-
tension and zeroing features may be circumvented by specifying the destination register to be one of
the individual 16-bit accumulator registers (A1 or B1).

Example:
MOVE(M P:(R2)+N, A; move P:(R2) into A update R2 with N
Before Execution After Execution
A 1234 5678 0 0116 0000
A2 Al A0 A2 Al A0
P:$0077 0116 P:$0077 0116
R2 $0077 R2 $007A

Explanation of Example:
Prior to execution, the 36-bit A accumulator contains the value $A:1234:5678, R2 contains the value
$0077, the N register contains the value $0003, and the 16-bit program memory location P:(R2) con-
tains the value $0116. Execution of the MOV E(M) instruction moves the 16-bit program memory lo-
cation P:(R2) into the 36-bit A accumulator. R2 is then post-incremented by N.

A-122 DSP56800 Family Manual @ MOTOROLA

MOVE(M)

Condition Codes Affected:

Move Program Memory

MOVE(M)

MR > < CCR >
15 14 13 12 11 10 9 8|7 6 5 4 3 2 1 0
LF| * | x| *|*|*|1|wo|sz|L|E|J]U|N|Z|V]|C
L — Setif datalimiting has occurred during the move
Instruction Fields:
Operation Source Destination C Comments
MOVE(M) P:(Rj)+ HHHH 8 Read signed word from program
P:(Rj)+N memory
HHHH P:(Rj)+ 8 Write word to program memory
P:(Rj)+N
Timing: 8 + mvm oscillator clock cycles
Memory: 1 program word

0 MOTOROLA

Instruction Set Details

A-123

MOVE(P) Move Peripheral Data MOVE(P)

Operation: Assembler Syntax:

X:<pp> - D MOVE(P) X:<pp>,D

S - Xi<pp> MOVE(P) SX:<pp>
HXXXX - X:<pp> MOVE(P) HXXXX, X :<pp>

Description: Move the specified operand to or from alocation in the last 64 words of the X data memory map. The
6-bit short absolute address is one-extended to generate a 16-bit address.

When a 36-bit accumulator (A or B) is specified as a source operand, thereisa possibility that the data
may be limited. If the data out of the shifter indicates that the accumulator extension register isin use,
and the datais to be moved into a 16-bit destination, the value stored in the destination is limited to a
maximum positive or negative saturation constant to minimize truncation error. Limiting does not oc-
cur if an individual 16-bit accumulator register (A1, A0, B1, or BO) is specified as a source operand
instead of the full 36-bit accumulator (A or B). Thislimiting feature allows block floating-point oper-
ations to be performed with error detection since the L bit in the CCR islatched (that is, sticky).

When a 36-bit accumulator (A or B) is specified as a destination operand, any 16-bit source datato be
moved into that accumulator is automatically extended to 36 bits by sign extending the MSB of the
source operand (bit 15) and appending the source operand with 16 LS zeros. The automatic sign ex-
tension and zeroing features may be circumvented by specifying the destination register to be one of
theindividual 16-bit accumulator registers (A1 or B1).

Usage: This MOVE(P) instruction provides a more efficient way of accessing the last 64 locationsin X mem-
ory, which may be allocated to memory-mapped peripheral registers. Consult the specific
DSP56800-based device' s user manual for information on where in the memory map peripheral regis-
ters arelocated.

Example:
MOVEP RL, X:<$FFE2 ; wite to |ocation X $FFE2
Before Execution After Execution
X:$FFE2 0123 / X:$FFE2 5555
R1 5555 R1 5555

Explanation of Example:
Prior to execution, the location $FFE2 contains the value $0123. Execution of the

MOVE(P) R1, X: <$FFE2 instruction moves the value $5555 contained in the R1 register into the

location.
Example:
MOVEP #$0342, X: <$24 ; noves 16-bit value into |ocati on $FFE4
Before Execution After Execution
X:$FFE4 AAAA X:$FFE4 0342

Explanation of Example:
Prior to execution, the word a X data memory location $FFE4 contains the value $AAAA. The
MOV EP one-extends the value $24 to form the address $FFE4. Execution of the instruction movesthe
value $0342 into this location.

A-124 DSP56800 Family Manual @ MOTOROLA

MOVE(P)

Condition Codes Affected:

Move Peripheral Data

MOVE(P)

< MR > < CCR >
15 14 13 12 11 10 9 8|7 6 5 4 3 2 1 0
LF | * | *|*|*|*{n|]wo|sz|L|E|JU|N|Z]|V]|C
L — Setif datalimiting has occurred during move
Note: It is also possible to access the last 64 locations in the X data memory map using the MOVE(C) in-

struction, which can directly access these locations either using the address-register-indirect address-
ing modes or the absolute address addressing mode, which specifies a 16-bit absolute address.

Instruction Fields:

Operation Source Destination C W Comments
MOVE(P) X:pp HHHH 2 Last 64 locations in data memory.
HHHH X:pp 2 X:pp represents a 6-bit absolute I/0O
address. Refer to I/O Short
Address (Direct Addressing):
<pp> on page 4-23.
Timing: 2 + eaoscillator clock cycles
Memory: 1 + eaprogram words

0 MOTOROLA

Instruction Set Details

A-125

MOVE(S) Move Absolute Short MOVE(S)

Operation: Assembler Syntax:

X:<aa> - D MOVE(S) X:<aa>D

S - Xi<aa> MOVE(S) S X:<aa>

HXXXX - X:<aa> MOVE(S) HXXXX, X :<aa>

Description: Move the specified operand from or to the first 64 memory locationsin X data memory. The 6-bit ab-

Example:

solute short address is zero-extended to generate a 16-bit X data memory address.

When a 36-bit accumulator (A or B) is specified as a source operand, thereisa possibility that the data
may be limited. If the data out of the shifter indicates that the accumulator extension register isin use,
and the datais to be moved into a 16-bit destination, the value stored in the destination is limited to a
maximum positive or negative saturation constant to minimize truncation error. Limiting does not oc-
cur if an individual 16-bit accumulator register (A1, A0, B1, or BO) is specified as a source operand
instead of the full 36-bit accumulator (A or B). Thislimiting feature allows block floating-point oper-
ations to be performed with error detection since the L bit in the CCR islatched (that is, sticky).

When a 36-bit accumulator (A or B) is specified as a destination operand, any 16-bit source datato be
moved into that accumulator is automatically extended to 36 bits by sign extending the MSB of the
source operand (bit 15) and appending the source operand with 16 LS zeros. The automatic sign ex-
tension and zeroing features may be circumvented by specifying the destination register to be one of
theindividual 16-bit accumulator registers (A1 or B1).

MOVES X:<$0034,Y1L ; wite to X $0034

Before Execution After Execution

X:$0034 5555 \)(235(‘)034 5555
Y1 0123 Y1 5555

Explanation of Example:

Example:

Prior to execution, X:$0034 contains the value $5555 and Y 1 contains the value $0123. Execution of
theinstruction moves the value $5555 into the Y 1 register.

MOVES #$0342, X: <$24 ; noves 16-bit value directly into
; menmory | ocation
Before Execution After Execution
X:$0024 AAAA X:$0024 0342

Explanation of Example:

A-126

Prior to execution, the contents of the X datamemory location $0024 containsthe value $AAAA. The
MOVES zero-extends the value $24 to form the memory address $0024. Execution of the instruction
moves the value $0342 into this location.

DSP56800 Family Manual @ MOTOROLA

MOVE(S)

Condition Codes Affected:

Move Absolute Short

MOVE(S)

< MR >« CCR >
15 14 13 12 11 10 9 8|7 6 5 4 3 2 1 0
LF| * | * | *] *|*|11|10|SZ|[L|E|JU|N|Z]|V]|C
SZ — Set according to the standard definition of the SZ bit
L — Setif datalimiting has occurred during move
Note: Itisalso possibleto accessthefirst 64 locationsin the X datamemory using the MOV E(C) instruction,

which can directly access these locations either using the address-register-indirect addressing modes
or the absol ute address addressing mode, which specifies a 16-bit absol ute address.

Instruction Fields:
Operation Source Destination C W Comments
MOVE(S) X:aa HHHH 2 First 64 locations in data memory.
HHHH X:aa 2 X:aa represents a 6-bit absolute
address. Refer to Absolute Short
Address (Direct Addressing):
<aa> on page 4-22.
Timing: 2 + eaoscillator clock cycles
Memory: 1 + eaprogram words

0 MOTOROLA

Instruction Set Details

A-127

MPY

Signed Multiply MPY

Operation: Assembler Syntax:

+S1* S2 — D (no parallel move) MPY (+)S1,52,D (no parallel move)

S1* S2 - D (one parallel move) MPY S1,S82,D (one parallel move)

S1* S2 - D (two parallel reads) MPY S1,82,D (two parallél reads)
Description: Multiply thetwo signed 16-bit source operands (S1 and S2) and storethe product in the specified 36-bit

destination accumulator (D). The “-" sign option is used to negate the specified product. This option
is not available when a single parallel move or two parallel read operations are performed or when D
isthe 16-bit X0, Y1, or YO.

Usage: Thisinstruction is used for multiplication of fractional data or integer data when a full 32-bit product
is required (see Section 3.3.5.2, “Integer Multiplication,” on page 3-20). When the destination is a
16-bit register, thisinstruction is useful only for fractional data.

Example:

MPY X0, Y1, A ; multiply X0 by Y1
Before Execution After Execution
0 1000 0000 F FA2B 0000
A2 Al A0 A2 Al A0
X0 4000 X0 4000
Y1 F456 Y1 F456

Explanation of Example:

Condition Co

A-128

Prior to execution, the 16-bit X0 register contains the value $4000 (0.5), the 16-bit Y 1 register contains
the value $F456 (-0.0911255), and the 36-bit A accumulator contains the value $00:1000:0000
(0.125). Execution of the MPY X0, Y1, Ainstruction multipliesthe 16-bit signed valuein the X0 reg-
ister by the 16-bit signed value in Y 1 and stores the result ($F:FA2B:0000) into the A accumulator
(X0 * Y1 =-0.045562744140625).

des Affected:

< MR >« CCR >
15 14 13 12 11 10 9 8 |7 6 5 4 3 2 1 O

LF| * | * | *]*|*|11|I0|SZ|L|E|JU|N|Z|V]|C

— Set according to the standard definition of the SZ bit (parallel move)
— Setif limiting (parallel move) or overflow (result) has occurred

— Setif the signed integer portion of A or B result isin use

Set according to the standard definition of the U bit

— Setif bit 35 of A or B result is set except during saturation

— Setif A or B result equals zero

— Setif overflow has occurred in A or B result

See Section 3.6.5, “16-Bit Destinations,” on page 3-35 for caseswith X0, YO, or Y1 asD.
See Section 3.6.2, “36-Bit Destinations—CC Bit Set,” on page 3-34 and Section 3.6.4, “20-Bit Desti-
nations—CC Bit Set,” on page 3-34 for the case when the CC bit is set.

<Nzcmr (@
|

DSP56800 Family Manual @ MOTOROLA

MPY

Instruction Fields:

Signed Multiply

MPY

Memory:

Refer to previous table for MPY instructions without a parallel move

1 program word for MPY instructions with a parallel move

Refer to previous table for MPY instructions without a parallel move

0 MOTOROLA

Instruction Set Details

Operation Operands C w Comments
MPY (x)Y1,X0,FDD 2 1 Fractional multiply where one operand is optionally
(x)YO0,X0,FDD negated before multiplication
(¥)Y1,YO,FDD
(¥)YO,YO,FDD Note: Assembler also accepts first two operands
(x)AL1,YO,FDD when they are specified in opposite order
(+)B1,Y1,FDD
Data ALU Operation Parallel Memory Read or Write
Operation Registers Memory Access Source or Destination
MPY Y1,B1,F X:(Rn)+ X0
YO0,YO,F X:(Rn)+N Y1
Y0,A1,F YO
X0,Y0,F A
X0,Y1,F B
YO,Y1,F Al
B1
(F=AorB)
Data ALU First and Second Memory Destinations for Memory
Operation Reads Reads
Operation Registers Read1 Read?2 Destinationl Destination2
MPY YO0,X0,F X:(R0O)+ X:(R3)+ YO0 X0
Y1,X0,F X:(RO)+N X:(R3)-
Y1,YOF Y1 X0
X:(R1)+ . .
Valid Valid
(F=AorB) X(RL*N destinations destinations
for Readl for Read2
Timing: 2 + mv oscillator clock cyclesfor MPY instructions with a parallel move

MPYR Signed Multiply and Round MPYR

Operation: Assembler Syntax:
+S1* S2+r - D (no paralel move) MPYR (+)S1,52,D (no parallel move)
S1* S2+r - D (two paralle reads) MPYR S1,82,D (two parallel reads)

Description: Multiply thetwo signed 16-bit source operands (S1 and S2), round the result using the specified round-
ing, and store it in the specified 36-bit destination accumulator (D). (Refer to RND for more complete
information on the convergent rounding process.) The “-” sign option is used to negate the specified
product. The default sign option is“+”".

Usage: Thisinstruction is used for multiplication and rounding of fractional data.
Example:
MPYR -X0, Y1, A ; multiply X0 by Y1 and negate the product
Before Execution After Execution
0 1000 1234 F FESB 0000
A2 Al A0 A2 Al A0
X0 4000 X0 4000
Y1 F456 Y1 F456

Explanation of Example:
Prior to execution, the 16-bit X0 register contains the value $4000 (0.5), the 16-bit Y 1 register contains
the value $F456 (-0.0911255), and the 36-bit A accumulator contains the value $00:1000:1234
(0.125002169981599). Execution of the MPYR - X0, Y1, A instruction multiplies the 16-bit signed
value in the XO register by the 16-bit signed value in Y1, rounds the result, and stores the result
($FF:FE8B:0000) into the A accumulator (-X0* Y 1 =-0.011383056640625). In this example, the de-
fault rounding (convergent rounding) is performed.

Condition Codes Affected:

< MR »<t CCR g
15 14 13 12 11 10 9 8|7 6 5 4 3 2 1 O

LFE| * | *| *|*] *|n|w0o|SZ|L|E|JU|IN|Z]|V|C

— Set according to the standard definition of the SZ bit (parallel move)
— Setif limiting (parallel move) or overflow has occurred in result

— Setif the signed integer portion of A or B result isin use

Set according to the standard definition of the U bit

— Setif bit 35 of A or B result is set except during saturation

— Setif A or B result equals zero

— Setif overflow hasoccurred in A or B result

See Section 3.6.5, “16-Bit Destinations,” on page 3-35 for cases with X0, YO, or Y1 asD.
See Section 3.6.2, “36-Bit Destinations—CC Bit Set,” on page 3-34 and Section 3.6.4, “20-Bit Desti-
nations—CC Bit Set,” on page 3-34 for the case when the CC bit is set.

<NzZCmEQ
|

A-130 DSP56800 Family Manual @ MOTOROLA

MPYR Signed Multiply and Round MPYR

Instruction Fields:

Operation Operands C W Comments
MPYR (x)Y1,X0,FDD 2 1 Fractional multiply where one operand is optionally
(x)YO,X0,FDD negated before multiplication; result is rounded
(¥)Y1,YO,FDD
(¥)YO,YO,FDD Note: Assembler also accepts first two operands
(x)AL1,YO,FDD when they are specified in opposite order
(+)B1,Y1,FDD

Data ALU Operation Parallel Memory Read or Write
Operation Registers Memory Access Source or Destination

MPYR Y1,B1,F X:(Rn)+ X0

YO0,YO,F X:(Rn)+N Y1

YO0,ALF YO

X0,YO0,F A

X0,Y1,F B

YO,Y1,F Al

B1

(F=AorB)
Data ALU First and Second Memory Destinations for Memory
Operation Reads Reads
Operation Registers Read1l Read?2 Destinationl Destination2
MPYR Y0,X0,F X:(R0O)+ X:(R3)+ YO X0
Y1,X0,F X:(RO)+N X:(R3)-
Y1,YO,F Y1 X0
X:(R1)+ . .
Valid Valid
(F=AorB) X(R1N destinations destinations
for Readl for Read2
Timing: 2 + mv oscillator clock cycles for MPY R instructions with a parallel move

Refer to previous table for MPY R instructions without a parallel move

Memory: 1 program word for MPY R instructions with aparallel move
Refer to previous table for MPY R instructions without a parallel move

0 MOTOROLA Instruction Set Details A-131

MPYSU

Operation:

S1* S2 — D(S1 signed, S2 unsigned)

Signed Unsigned Multiply

Assembler Syntax:
S1,32,D

MPYSU

(no parallel move)

Description: Multiply the two 16-bit source operands (S1 and S2), and store the product in the specified 36-bit des-
tination accumulator (D). S1 can be unsigned; S2 is always considered unsigned. This mixed arith-
metic multiply does not allow a parallel move and can be used for multi-precision multiplications.

Usage:

Example:

In addition to single-precision multiplication of a signed value times unsigned value, this instruction
is also used for multi-precision multiplications, as shown in Section 3.3.8.2, “Multi-Precision Multi-

plication,” on page 3-23.

MPYSU X0, YO, A

Before Execution

0 0000 0000
A2 Al AO

X0 3456

YO 8000

Explanation of Example:
The 16-bit X0 register contains the value $3456, and the 16-hit Y 1 register contains the value $8000.
Execution of the MPYSU X0, YO, A instruction multiplies the 16-bit signed value in the X0 register
by the 16-bit unsigned value in Y0 and stores the signed result into the A accumulator. If thiswas a
MPY instruction, YO ($8000) would equal -1.0, and the multiplication result would be
$F:CBAA:0000. Since thisisaMPY SU instruction, Y0 is considered unsigned and equals +1.0. This

A-132

gives amultiplication result of $0:3456:0000.

DSP56800 Family Manual

After Execution

0 3456 0000
A2 Al AO

X0 3456

YO 8000

0 MOTOROLA

MPYSU

Condition Codes Affected:

Signed Unsigned Multiply

MPYSU

< MR >« CCR >
15 14 13 12 11 10 9 8|7 6 5 4 3 2 1 O
LF| * | * | *]|*|*|n1jwo]|sz|L|E|JU|N|Z]|V]|C
E — Setif thesigned integer portion of A or B resultisin use
U — Setaccording to the standard definition of the U bit
N — Setif bit 35 0f A or B result is set except during saturation
Z — Setif A or B result equalszero
V — Setif overflow hasoccurred in A or B result

See Section 3.6.5, “16-Bit Destinations,” on page 3-35 for cases with X0, YO, or Y1 asD.
See Section 3.6.2, “36-Bit Destinations—CC Bit Set,” on page 3-34 and Section 3.6.4, “20-Bit Desti-
nations—CC Bit Set,” on page 3-34 for the case when the CC hit is set.

Instruction Fields:
Operation Operands C W Comments
MPYSU X0,Y1,FDD 2 1 Signed or unsigned 16x16 fractional multiply with

X0,Y0,FDD 32-bit result.
Y0,Y1,FDD
Y0,Y0,FDD The first operand is treated as signed and the sec-
Y0,A1,FDD ond as unsigned.
Y1,B1,FDD

Timing: 2 oscillator clock cycles

Memory: 1 program word

@ mororora Instruction Set Details A-133

NEG Negate Accumulator NEG

Operation: Assembler Syntax:
0-D - D (parallel move) NEG D (parallel move)

Description: The destination operand (D) is subtracted from zero, and the two’ s complement result is stored in the
destination accumulator.

Usage: Thisinstruction is used for negating a 36-bit accumulator. It can also be used to negate a 16-hit value
loaded in the M SP of an accumulator if the L SP of the accumulator is $0000 (see Section 8.1.6, “Un-
signed Load of an Accumulator,” on page 8-7).

Example:
NEG B X0, X: (R3)+; 0-B - B, save X0, update R3
Before Execution After Execution
0 1234 5678 F EDCB A988
B2 B1 BO B2 B1 BO
SR 0300 SR 0309

Explanation of Example:
Prior to execution, the 36-bit B accumulator contains the value $0:1234:5678. The NEG B instruction
takes the two’ s-complement of the value in the B accumulator and stores the 36-bit result back in the
B accumulator.

Condition Codes Affected:

< MR ¢ CCR >
15 14 13 12 11 10 9 8|7 6 5 4 3 2 1 O

LF| *(* | *|*|*|11|]l0|SZ|L|E|U|IN|]Z|V]|C

— Set according to the standard definition of the SZ bit (parallel move)
— Setif limiting (parallel move) or overflow has occurred in result

— Setif the signed integer portion of A or B isin use

Set according to the standard definition of the U bit

— Setif bit 35 of A or B result is set except during saturation

— Setif A or B result equals zero

— Setif overflow hasoccurred in A or B result

— Setif aborrow is generated from the MSB of the result

See Section 3.6.2, “36-Bit Destinations—CC Bit Set,” on page 3-34 and Section 3.6.4, “20-Bit Desti-
nations—CC Bit Set,” on page 3-34 for the case when the CC hit is set.

o<NzcmEQ
|

A-134 DSP56800 Family Manual @ MOTOROLA

NEG

Instruction Fields:

Negate Accumulator

NEG

Operation Operands W Comments
NEG F 1 Two’s-complement negation
Data ALU Operation Parallel Memory Read or Write
Operation Registers Memory Access Source or Destination
NEG A X:(Rn)+ X0
B X:(Rn)+N Y1
YO
Al
Bl
A
B
Timing: 2 + mv oscillator clock cycles
Memory: 1 program word

0 MOTOROLA

Instruction Set Details

A-135

NOP No Operation NOP

Operation: Assembler Syntax:
PC+1 - PC NOP

Description: Increment the PC. Pending pipeline actions, if any, are completed. Execution continues with the in-
struction following the NOP.

Example:
NOP ; increment the program counter

Explanation of Example:
The NOP instruction increments the PC and completes any pending pipeline actions.

Condition Codes Affected:
The condition codes are not affected by thisinstruction.

Instruction Fields:

Operation Operands C W Comments
NOP 2 1 No operation
Timing: 2 oscillator clock cycles
Memory: 1 program word

A-136 DSP56800 Family Manual @ MOTOROLA

NORM Normalize Accumulator Iteration NORM

Operation: Assembler Syntax:

If (EeUez=1) NORM RO,D (no parallel move)
then ASLDandRn-1 - Rn

dseif (E=1)
then ASRDandRn+1- Rn

dse NOP

where X denotes the logical complement of X and
where « denotes the logical AND operator

Description:

Example:

Perform one normalization iteration on the specified destination operand (D), update the address reg-
ister RO based upon the results of that iteration, and store the result back in the destination accumul ator.
Thisisa36-bit operation. If the accumulator extension is not in use, the accumulator is unnormalized,
and the accumulator is not zero, then the destination operand is arithmetically shifted 1 bit to the | eft,
and the specified addressregister isdecremented by one. If the accumulator extension register isin use,
the destination operand is arithmetically shifted 1 bit to the right, and the specified address register is
incremented by one. If the accumulator is normalized or zero, a NOP is executed, and the specified
address register is not affected. Since the operation of the NORM instruction depends on the E, U, and
Z CCR hits, these bits must correctly reflect the current state of the destination accumulator prior to
executing the NORM instruction. The L and V bitsin the CCR will be cleared unless they have been
improperly set up prior to executing the NORM instruction.

TST A
REP #31 ; maxi mum nunber of iterations (31) needed
NORM RO, A ; performone nornalization iteration

Before Execution After Execution

0

0000 8000 0 4000 0000

A2 Al AO A2 Al AO

RO 0000 RO FFF1

Explanation of Example:

Prior to execution, the 36-bit A accumulator contains the value $0:0000:8000, and the 16-bit RO ad-
dress register contains the value $0000. The repetition of the NORM RO, A instruction normalizes the
valueinthe 36-bit accumulator and stores the resulting number of shifts performed during that normal-
ization processinthe RO addressregister. A negative value reflectsthe number of left shifts performed,
while a positive value reflects the number of right shifts performed during the normalization process.
In this example, 15 left shifts are required for normalization.

0 MOTOROLA Instruction Set Details A-137

NORM

Normalize Accumulator Iteration

Condition Codes Affected:

NORM

< MR > CCR >
15 14 13 12 11 10 9 8 |7 6 5 4 3 2 1 O
LF| *|(* | *|*|*|11|I0|SZ|L|E|U|IN|Z|V]|C

— Setif overflow hasoccurred in A or B result
— Setif the signed integer portion of A or B result isin use
— Set according to the standard definition of the U bit

— Setif A or B result equals zero

<NzCcmr
|

— Setif bit 35is changed as aresult of aleft shift

Set if bit 35 of A or B result is set except during saturation

See Section 3.6.2, “36-Bit Destinations—CC Bit Set,” on page 3-34 and Section 3.6.4, “20-Bit Desti-
nations—CC Bit Set,” on page 3-34 for the case when the CC hit is set.

Instruction Fields:

Operation Operands C W Comments
NORM RO,F 2 1 Normalization iteration instruction for normalizing
the F accumulator
Timing: 2 oscillator clock cycles
Memory: 1 program word
A-138 DSP56800 Family Manual Q mororoLa

NOT Logical Complement NOT

Operation: Assembler Syntax:
D-D (no parallel move) NOT D (no parallel move)
D[31:16] —» D[31:16] (no parallel move) NOT D (no parallel move)

where the bar over the D (D) denotes the logical NOT operator

Description: Takethe one' s-complement of the destination operand (D) and store the result in the destination. This
instruction is a 16-bit operation. If the destination is a 36-bit accumulator, the one’ s-complement is
performed on bits 31-16 of the accumulator. The remaining bits of the destination accumulator are not

affected.
Example:
NOT A A X (R2) + ; save Al and take the 1's conpl enment of Al
Before Execution After Execution
5 1234 5678 5 EDCB 5678
A2 Al A0 A2 Al A0
SR 0300 SR 0300

Explanation of Example:
Prior to execution, the 36-bit A accumulator contains the value $5:1234:5678. The NOT A instruction
takes the one' s-complement of bits 31-16 of the A accumulator (A1) and stores the result back in the
A1l register. The remaining A accumulator bits are not affected.

Condition Codes Affected:

< MR >« CCR >
15 14 13 12 11 10 9 8 |7 6 5 4 3 2 1 O

LF| * | *|[*|*|*|11|l0|SZ|L|E|U|N|Z|V|C

N — Setif bit 31 of A or B resultis set
Z — Setif bits31-16 of A or B result are zero
V — Alwayscleared

See Section 3.6.5, “16-Bit Destinations,” on page 3-35 for caseswith X0, YO, or Y1 asD.
See Section 3.6.2, “36-Bit Destinations—CC Bit Set,” on page 3-34 and Section 3.6.4, “20-Bit Desti-
nations—CC Bit Set,” on page 3-34 for the case when the CC bit is set.

Instruction Fields:

Operation Operands C W Comments
NOT FDD 2 1 One’s-complement (bit-wise negation)
Timing: 2 oscillator clock cycles
Memory: 1 program word

0 MOTOROLA Instruction Set Details A-139

NOTC Logical Complement with Carry NOTC

Operation: Assembler Syntax:
X:<ea> - X:(ea) NOTC X:<ea>
D-D NOTC D

Implementation Note:
Thisinstruction is an alias to the BFCHG instruction, and assembles as BFCHG with the 16-bit imme-
diate mask set to $FFFF. This instruction will disassemble as a BFCHG instruction.

Description: Takethe one's complement of the destination operand (D), and store the result in the destination. This
instruction is a 16-bit operation. If the destination is a 36-bit accumulator, the one’ s-complement is
performed on bits 31-16 of the accumulator. The remaining bits of the destination accumulator are not
affected. Cis also modified as described in following discussion.

Example:
NOTC R2
Before Execution After Execution
R2 CAA3 R2 355C
SR 3456 SR 3456

Explanation of Example:
Prior to execution, the R2 register contains the value $CAA3. Execution of the instruction comple-
ments the value in R2. C is modified as described in following discussion.

Condition Codes Affected:

< MR > CCR >
15 14 13 12 11 10 9 8 |7 6 5 4 3 2 1 O

LF| * | *|[*|*|*|11|l0|SZ|L|E|U|N|Z|V|C

For destination operand SR:

? — Changed if specified in the field
For other destination operands:
C — Setif the value equals $FFFF before the complement

A-140 DSP56800 Family Manual @ MOTOROLA

NOTC Logical Complement with Carry NOTC
Instruction Fields:
Operation Operands C W Comments
NOTC DDDDD 4 2 One’s-complement (bit-wise negation).
X:(R2+xx) 6 2 All registers in DDDDD are permitted except HWS.
X:(SP-xx) 6 2 | X:aarepresents a 6-bit absolute address. Refer to
Absolute Short Address (Direct Addressing):
X:aa 4 2 | <aa> on page 4-22.
X:pp 4 2 X:pp represents a 6-bit apsolute 110 ad(_jress. Refer
V. 6 3 Lonlé(;;hir;?ddress (Direct Addressing): <pp>
Timing: Refer to the preceding Instruction Fields table
Memory: Refer to the preceding Instruction Fields table
@ mororora Instruction Set Details A-141

OR Logical Inclusive OR OR

Operation: Assembler Syntax:
S+D - D (no parallel move) OR SD (no parallel move)
S+ D[31:16] - D[31:16] (no paralledl move) OR SD (no parallel move)

where + denotes the logical inclusive OR operator

Description: Logicaly OR the source operand (S) with the destination operand (D) and store the result in the desti-
nation. This instruction is a 16-bit operation. If the destination is a 36-bit accumulator, the source is
ORed with bits 31-16 of the accumulator. The remaining bits of the destination accumulator are not

affected.
Usage: This instruction is used for the logical OR of two registers. If it is desired to OR a 16-bit immediate
value with aregister or memory location, then the ORC instruction is appropriate.
Example:
R Y1, B 7 ORYL with B
Before Execution After Execution
0 1234 5678 0 FF34 5678
B2 Bl BO B2 Bl BO
Y1 FFOO Y1 FFOO0

Explanation of Example:
Prior to execution, the 16-bit Y 1 register contains the value $FF00, and the 36-bit B accumulator con-
tains the value $0:1234:5678. The OR Y1, Binstruction logically ORs the 16-bit valuein the Y 1 reg-
ister with B1 and stores the 36-bit result in the B accumul ator.

Condition Codes Affected:

< MR >« CCR >
15 14 13 12 11 10 9 8 |7 6 5 4 3 2 1 O

LF| *(* | *|*|*|11|]l0|SZ|L|E|J|U|IN|]Z|V]|C

N — Setif bit 31 of A or B result is set
Z — Setif bits31-16 of A or B result are zero
V — Alwayscleared

A-142 DSP56800 Family Manual @ MOTOROLA

OR

Instruction Fields:

Logical Inclusive OR

OR

Operation Operands C W Comments
OR DD,FDD 2 1 16-hbit logical OR
F1,DD
Timing: 2 oscillator clock cycles
Memory: 1 program word

0 MOTOROLA

Instruction Set Details

A-143

ORC Logical Inclusive OR Immediate ORC

Operation: Assembler Syntax:
#HXXXX + X:<ea> — X:<ea> ORC #iiii X :<ea>
#txxxx+D - D ORC #iiii,D

where + denotes the logical inclusive OR operator

Implementation Note:
Thisinstruction is an alias to the BFSET instruction, and assembles as BFSET with the 16-bit imme-
diate value used as the bit mask. This instruction will disassemble as a BFSET instruction.

Description: Logicaly OR a16-bit immediate datavalue with the destination operand (D) and store the results back
into the destination. C is also modified as described in following discussion. Thisinstruction performs
aread-modify-write operation on the destination and requires two destination accesses.

Example:
ORC #$5050, X: <<$7C30; OR with i nmmedi ate data
Before Execution After Execution
X:$7C30 00AA X:$7C30 50FA
SR 0300 SR 0300

Explanation of Example:
Prior to execution, the 16-bit X memory location X:$7C30 containsthe value $00AA. Execution of the
instruction teststhe state of bits 14, 12, 6, and 4 in X:$7C30; does not set C (because all these bitswere
not set); and then sets the bits.

Condition Codes Affected:

< MR >
15 14 13 12 11 10 9 8 |7 6 5 4 3 2 1 O
LF| *(* | *|*|*|11|]l0|SZ|L|E|J|U|IN|Z]|V]|C

A
9]
@]
Py
v

For destination operand SR:

? — Setasdefinedinthefield and if specified in the field
For other destination operands:
C — Setif al bits specified by the mask are set

A-144 DSP56800 Family Manual @ MOTOROLA

ORC

Instruction Fields:

Logical Inclusive OR Immediate ORC

Operation Operands C W Comments
ORC #xxxx,DDDDD 4 2 16-hit logical OR of immediate data.
#xxxx,X:(R2+xx) 6 2 All registers in DDDDD are permitted except HWS.
HXXXX, X (SP-XX) 6 2 | X:aarepresents a 6-bit absolute address. Refer to
Absolute Short Address (Direct Addressing):
#XXXX, X:aa 4 2 <aa> on page 4-22.
X0, X:pp 4 2| X:pp represents a 6-bit absolute 1/O address. Refer
00X, X300 6 3 Lonlé(;;hir;?ddress (Direct Addressing): <pp>
Timing: Refer to the preceding Instruction Fields table
Memory: Refer to the preceding Instruction Fields table
@ mororora Instruction Set Details A-145

POP Pop from Stack POP

Operation: Assembler Syntax:
X:(SP) -~ D POP D
SP-1 - SP

Description: Read one location from the software stack into a destination register (D) and post-decrement the SP.

Implementation Note:
Thisinstruction isimplemented by the assembler using either aMOVE or LEA instruction, depending
on the form. When a destination register is specified, aMOVE (SP) -, <r egi st er > instruction is
assembled. When no destination register is specified, POP assemblesasLEA (SP) - . Theinstruction
will always disassemble as either MOVE or LEA.

Example:
POP LC
Before Execution After Execution
X:$0100 AAAA X:$0100 AAAA
LC 0099 LC AAAA
SP 0100 SP O0OFF

Explanation of Example:
Prior to execution, the L C register contains the value $0099, and the SP contains the value $0100. The
POP instruction reads from the location in X data memory pointed to by the SP and places this value
in the LC register. The SP isthen decremented after the read from memory.

Condition Codes Affected:

The condition codes are not affected by this instruction.

Instruction Fields:

Operation Operands C W Comments
POP Any register 2 1 Pop a single stack location
(No register 2 1 Simply decrements the SP
specified)
Timing: 2 oscillator clock cycles
Memory: 1 program word

A-146 DSP56800 Family Manual @ MOTOROLA

REP Repeat Next Instruction REP

Operation: Assembler Syntax:

LC - TEMP;, #xx - LC REP #XX
Repeat next instruction until LC =1
TEMP - LC

LC - TEMP, S- LC REP S
Repeat next instruction until LC =1
TEMP - LC

Description: Repeat the single word instruction immediately following the REP instruction the specified number of
times. The value specifying the number of times the given instruction is to be repeated is loaded into
the 13-bit LC register. The contents of the 13-bit LC register are treated as unsigned (that is, aways
positive). The single word instruction is then executed the specified number of times, decrementing
the LC after each execution until LC equals one. When the REP instruction is in effect, the repeated
instruction is fetched only one time, and it remains in the instruction register for the duration of the
loop count. Thus, the REPinstructionisnot interruptible. The contents of the L C register upon entering
the REP instruction are stored in an internal temporary register and are restored into the L C register
upon exiting the REP loop. If LC is set equal to zero, the instruction isnot repeated and execution con-
tinues with the instruction immediately following the instruction that was to be repeated. The instruc-
tion’s effective address specifies the address of the value that is to be loaded into the LC.

TheREPinstruction allowsall registers onthe DSP coreto specify the number of |oop iterations except
for the following: M01, HWS, OMR, and SR. If immediate short datais instead used to specify the
loop count, the 6 LSBs of the LC register are loaded from the instruction and the upper 7 MSBs are
cleared.

Note: If the A or B accumulator is specified asasource operand, and the data out of the accumul ator indicates
that extension isin use, the value to be loaded into the L C register will belimited to a 16-bit maximum
positive or negative saturation constant. If positive saturation occurs, the limiter places $7FFF onto the
bus, and the lower 13 bits of thisvalue are al ones. The 13 ones are loaded into the L C register as the
maximum unsigned positive loop count allowed. If negative saturation occurs, the limiter places $8000
onto the bus, and the lower 13 bits of thisvalue are all zeros. The 13 zeros are loaded into the LC reg-
ister, specifying aloop count of zero. The A and B accumulators remain unchanged.

Note: Oncein progress, the REP instruction and the REP loop may not be interrupted until completion of the
REP |oop.

Restrictions:
The REP instruction can repeat any single word instruction except the REP instruction itself and any
instruction that changes program flow. The following instructions are not allowed to follow aREPin-

struction:
Any instruction that occupies multiple words
DO Bcc, Jec
BRCLR, BRSET BRA, IMP
MOVEM JSR
REP RTI
RTS STOP, WAIT

SWI, DEBUG Tcc
Also, a REP instruction cannot be the last instruction in a DO loop (at the LA). The assembler will

generate an error if any of the preceding instructions are found immediately following a REP instruc-
tion.

0 MOTOROLA Instruction Set Details A-147

REP Repeat Next Instruction REP

Example:
REP X0 ; repeat (X0) tines
| NCW Y1 ; increment the Y1 register
Before Execution After Execution
X0 0003 X0 0003
Y1 0000 Y1 0003
LC 00A5 LC 00A5

Explanation of Example:
Prior to execution, the 16-bit X0 register contains the value $0003, and the 16-bit L C register contains
the value $00AS5. Execution of the REP X0 instruction takes the lower 13 bits of the value in the X0
register and stores it in the 13-bit LC register. Then, the single word INCW instruction immediately
following the REP ingtruction is repeated $0003 times. The contents of the LC register before the REP
loop are restored upon exiting the REP |oop.

Example:

REP X0 ; repeat (X0) tines

| NCW Y1 ; increment the Y1 register

ASL Y1 ; multiply the Y1 register by 2

Before Execution After Execution

X0 0000 X0 0000
Y1 0005 Y1 000A
LC 00A5 LC 00A5

Explanation of Example:
Prior to execution, the 16-bit X0 register contains the value $0000, and the 16-bit L C register contains
the value $00A5. Execution of the REP X0 instruction takes the lower 13 bits of the value in the X0
register and stores it in the 13-bit LC register. Since the loop count is zero, the single word INCW in-
struction immediately following the REP instruction is skipped and execution continues with the ASL
instruction. The contents of the LC register before the REP loop are restored upon exiting the REP
loop.

A-148 DSP56800 Family Manual @ MOTOROLA

REP Repeat Next Instruction REP

Condition Codes Affected:

< MR e CCR >
15 14 13 12 11 10 9 8|7 6 5 4 3 2 1 0
LF| *|(* | *|*|*|11|I0|SZ|L|E|U|IN|Z|V]|C
L — Setif datalimiting occurred using A or B as source operands
Instruction Fields:
Operation Operands C W Comments
REP #XX 6 1 Hardware repeat of a one-word instruction with
immediate loop count
DDDDD 6 1 Hardware repeat of a one-word instruction with loop
count specified in register
Any register allowed except: SP, M01, SR, OMR,
and HWS
Timing: 6 oscillator clock cycles
Memory: 1 program word

0 MOTOROLA Instruction Set Details A-149

RND Round Accumulator RND

Operation: Assembler Syntax:
D+r - D (parallel move) RND D (parallel move)

Description: Round the 36-bit value in the specified destination operand (D), store the result in the EXT and MSPs
of the destination accumulator (A2:A1 or B2:B1), and clear the L SP of the accumulator. Thisinstruc-
tion uses the rounding technique selected by the R bit in the OMR. When the R bit in OMR iscleared
(default mode), convergent rounding is sel ected; when the R bit is set, two’ s-complement rounding is
selected. The rounding constant is added into bit 15 of the destination. Refer to Section 3.5, “Round-
ing,” on page 3-30 for more information about the rounding modes.

Example:
RND A ; round A accumul ator into A2: Al, zero AO
Before Execution After Execution
I 5 1236 789A 5 1236 0000
A2 Al A0 A2 Al AO
Before Execution After Execution
Il 0 1236 8000 0 1236 0000
A2 Al A0 A2 Al A0
Before Execution After Execution
1 0 1235 8000 0 1236 0000
A2 Al AO A2 Al A0

Explanation of Example:
Prior to execution, the 36-bit A accumulator contains the value $5:1236:789A for Case |, the value
$0:1236:8000 for Case Il and the value $0:1235:8000 for Case | 11. Execution of the RND A instruction
rounds the valuein the A accumulator into the M SP of the A accumulator (A1) and then zerosthe L SP
of the A accumulator (A0). The example is given assuming that the convergent rounding is selected.
Case Il isthe special case that distinguishes convergent rounding from the two’ s-complement round-
ing, since it clears the LSB of the M SP after the rounding operation is performed.

A-150 DSP56800 Family Manual @ MOTOROLA

RND

Round Accumulator

Condition Codes Affected:

RND

< MR >« CCR >
15 14 13 12 11 10 9 8|7 6 5 4 3 2 1 O
LF| * | *|*|*|*|11|]l0|SZ|L|E|U|N|Z|V]|C
SZ — Set according to the standard definition of the SZ bit (parallel move)
L — Setif limiting (parallel move) or overflow has occurred in result
E — Setif thesignedinteger portion of A or B resultisin use
U — Setaccording to the standard definition of the U bit
N — Setif bit 35 0of A or B result is set except during saturation
Z — Setif A or B result equalszero
V — Setif overflow hasoccurred in A or B result
Note: If the CC bit is set and bit 31 of the result is set, then N is set. If the CC bit is set and bits 31-0 of the

result equal zero, then Z is set. The rest of the bits are unaffected by the setting of the CC hit.

Instruction Fields:

Operation Operands C W Comments
RND F 2 1 Round
Data ALU Operation Parallel Memory Read or Write
Operation Registers Memory Access Source or Destination

RND A X:(Rn)+ X0

B X:(Rn)+N Y1

YO

Al

B1

A

B
Timing: 2 + mv oscillator clock cycles

Memory: 1 program word

0 MOTOROLA

Instruction Set Details

A-151

ROL

Rotate Left

ROL

Operation: Assembler Syntax:
(see following figure) ROL
]
C<+— |Unch. “— Unchanged (parallel move)
l D2 D1 DO

Description: Logicaly shift 16 bits of the destination operand (D) 1 bit to the |eft, and store the result in the desti-
nation. If the destination isa36-bit accumulator, the result is stored in the M SP of the accumulator (A1
or B1), and the remaining portions of the accumulator (A2, B2, AO, and BO) are not modified. The
MSB of the destination (bit 31 if the destination is a 36-bit accumulator) prior to the execution of the
instruction is shifted into C, and the previous value of C is shifted into the LSB of the destination (bit
16 if the destination is a 36-bit accumulator).

Example:
ROL A ; rotate Al left 1 bit
Before Execution After Execution
F 0000 00AA F 0001 00AA
B2 Bl BO B2 Bl BO
SR 0001 SR 0000

Explanation of Example:

Prior to execution, the 36-bit A accumulator contains the value $F:0001:00AA. Execution of the
RCOL Aingtruction shifts the 16-bit value in the A1 register 1 bit to the left, shifting bit 31 into C, ro-
tating C into bit 16, and storing the result back in the A1 register.

A-152 DSP56800 Family Manual @ MOTOROLA

ROL

Condition Codes Affected:

Rotate Left

ROL

< MR >« CCR >
15 14 13 12 11 10 9 8|7 6 5 4 2 1 0
LF| *|(* | *|*|*|I11|I0|SZ|L|E|U|IN|Z|V]|C
N — Setif bit 31 of A or B result is set
Z — Setif bits 31-16 of A or B result are zero
V — Alwayscleared
C — Setif bit 31 of A or B was set prior to the execution of the instruction
Instruction Fields:
Operation Operands C W Comments
ROL FDD 2 1 Rotate 16-bit register left by 1 bit through the carry
bit
Timing: 2 oscillator clock cycles
Memory: 1 program word

0 MOTOROLA

Instruction Set Details

A-153

ROR

Operation:

(seefollowing f

Description:

Example:

igure)

C—>»

1

Rotate Right

Assembler Syntax:

ROR
[f
Unch. —> Unchanged
D2 D1 DO

D

ROR

(parallel move)

Logically shift 16 bits of the destination operand (D) 1 hit to the right and store the result in the desti-
nation. If the destination isa36-bit accumulator, the result is stored in the M SP of the accumulator (A1
or B1), and the remaining portions of the accumulator (A2, B2, A0, and BO) are not modified. The LSB
of the destination (bit 16 if the destination isa 36-bit accumulator) prior to the execution of theinstruc-
tion is shifted into C, and the previous value of C is shifted into the MSB of the destination (bit 31 if
the destination is a 36-bit accumulator).

ROR

Before Execution

; rotate Bl right 1 bit

After Execution

F 0001 00AA
B2 Bl BO
SR 0000

Explanation of Example:
Prior to execution, the 36-bit B accumulator contains the value $F:0001:00AA. Execution of the
ROR B instruction shifts the 16-bit value in the B1 register 1 bit to the right, shifting bit 16 into C,

A-154

rotating C into bit 31, and storing the result back in the B1 register.

DSP56800 Family Manual

F 0000 00AA
B2 Bl BO
SR 0005

0 MOTOROLA

ROR

Condition Codes Affected:

Rotate Right

ROR

< MR >« CCR >
15 14 13 12 11 10 9 8|7 6 5 4 2 1 0
LF| *|(* | *|*|*|I11|I0|SZ|L|E|U|IN|Z|V]|C
N — Setif bit 31 of A or B result is set
Z — Setif bits 31-16 of A or B result are zero
V — Alwayscleared
C — Setif bit 16 of A or B was set prior to the execution of the instruction
Instruction Fields:
Operation Operands C W Comments
ROR FDD 2 1 Rotate 16-bit register right by 1 bit through the carry
bit
Timing: 2 oscillator clock cycles
Memory: 1 program word

0 MOTOROLA

Instruction Set Details

A-155

RTI

Operation:

X:(SP) - SR; SP-1- SP
X:(SP) - PC; SP-1- SP

Return from Interrupt

Assembler Syntax:

RTI

Description: Pull the SR and the PC from the software stack. The previous PC is lost.

Example:
RTI

Before Execution

X:$0100
X:$00FF

SR

SP

Explanation of Example:

RTI

; pull the SR and PC registers fromthe stack

After Execution

$1300 X:$0100
$754C X:$00FF
$0309 SR
$0100 SP

$1300

$754C

1300

$O0FE

The RTI instruction pulls the 16-bit PC and the 16-bit SR from the stack and updates the system SP.
Program execution continues at $754C.

Restrictions:

Due to pipelining in the program controller and the fact that the RTI instruction accesses certain pro-
gram controller registers, the RTI instruction must not be immediately preceded by any of the follow-

ing instructions:

MOVE(C) to the SP
Any bit-field instruction performed on the SR

An RTI instruction cannot be the last instruction in aDO loop (at the LA).

An RTI instruction cannot be repeated using the REP instruction.

A-156

DSP56800 Family Manual

0 MOTOROLA

RTI

Condition Codes Affected:

Return from Interrupt

MR >« CCR

N

15 14 13 12 11 10 9 8 |7 6 5 4 3

v

LF

* *

*

**|11|I0|SZ|L|E|U|N

Instruction Fields:

LF
11
10
SZ
L
E
U
N
Z
Vv
C

Set according to the value pulled from the stack
Set according to the value pulled from the stack
Set according to the value pulled from the stack
Set according to the value pulled from the stack
Set according to the value pulled from the stack
Set according to the value pulled from the stack
Set according to the value pulled from the stack
Set according to the value pulled from the stack
Set according to the value pulled from the stack
Set according to the value pulled from the stack
Set according to the value pulled from the stack

RTI

Operation

Operands C W

Comments

RTI

from the stack

10 1 Return from interrupt, restoring 16-bit PC and SR

Timing: 10 + rx oscillator clock cycles

Memory: 1 program word

0 MOTOROLA

Instruction Set Details

A-157

RTS

Return from Subroutine RTS

Operation: Assembler Syntax:

X:(SP) - SR (bits10-14); SP-1-. SP RTS

X:(SP) - PC; SP-1- SP

Description: Returnfromacall toasubroutine. To perform thereturn, RTS pullsand discardsthe previously pushed

Example:

SR (except bits 10-14); the remaining SR bits are unaffected. It then pops the PC from the software
stack. The previous PC islost. At the end of the execution, SP points to the previoudly used location
before entering the subroutine.

RTS ; pull SR (bits 10-14) and PC fromthe stack
Before Execution After Execution
X:$0100 $8000 X:$0100 $8000
X:$00FF $754C X:$00FF $754C
SR $8009 SR 8009
SP $0100 SP $00FE

Explanation of Example:

Restrictions:

The example makes the assumption that during entry of the subroutine, only the LF bit (SR bit 15) is
on. During execution of the subroutine, the C and N bits were set. To perform the return, RTS restores
bits 10-14 of the SR and pops the 16-bit PC from the software stack, and updates the SP. Program ex-
ecution continues at $754C.

Due to pipelining in the program controller and the fact that the RTS instruction accesses certain pro-
gram controller registers, the RTS instruction must not be immediately preceded by any of the follow-
ing instructions:

MOVE(C) to the SP

An RTS instruction cannot be the last instruction in aDO loop (at the LA).
An RTS instruction cannot be repeated using the REP instruction.

Mani pulation of bits 10-14 in the stack | ocation corresponding to the SR register may generate unwant-
ed behavior. These bitswill read as zero during DSP read operations and should be written as zero to
ensure future compatibility.

Condition Codes Affected:

The condition codes are not affected by thisinstruction.

Instruction Fields:

Operation Operands C W Comments

RTS

10 1 Return from subroutine, restoring 16-bit PC from the
stack

Timing:

Memory:

A-158

10 + rx oscillator clock cycles

1 program word

DSP56800 Family Manual @ MOTOROLA

SBC Subtract Long with Carry SBC

Operation: Assembler Syntax:
D-S-C- D (no parallel move) SBC SD (no parallel move)

Description: Subtract the source operand (S) and C of the CCR from the destination operand (D) and store the result
in the destination accumulator. Long words (32 bits) are subtracted from the 36-bit destination accu-
mulator.

Usage: This instruction is typically used in multi-precision subtraction operations (see Section 3.3.8.1,
“Multi-Precision Addition and Subtraction,” on page 3-23) when it is hecessary to subtract two num-
bers that are larger than 32 hits, such as 64-bit or 96-bit subtraction.

Example:
SBC Y, A
Before Execution After Execution

0 4000 0000 0 0000 0001

A2 Al A0 A2 Al A0
Y 3FFF FFFE Y 3FFF FFFE

Y1 YO Y1 YO
SR 0301 SR 0310

Explanation of Example:
Prior to execution, the 32-bit Y register (comprised of the Y1 and YO registers) contains the value
$3FFF:FFFE, and the 36-bit accumulator contains the value $0:4000:0000. In addition, C is set to one.
The SBC instruction automatically sign extends the 32-bit Y registersto 36-bits and subtractsthisval-
ue from the 36-bit accumulator. In addition, C is subtracted from the LSB of this 36-bit addition. The
36-bit result is stored back in the A accumulator, and the conditions codes are set correctly. TheY1:YO
register pair is not affected by this instruction.

Note: Cisset correctly for multi-precision arithmetic using long-word operands only when the extension reg-
ister of the destination accumulator (A2 or B2) contains sign extension of bit 31 of the destination ac-
cumulator (A or B).

0 MOTOROLA Instruction Set Details A-159

SBC

Subtract Long with Carry

Condition Codes Affected:

< MR

»

15 14 13 12 11 10

9

8

)l

7

0O
@
Py}
v

LF * * * * *

11

10

SZ

L{IE|JU[N|Z |V]|C

SBC

L — Setif overflow hasoccurred in result
E — Setif thesignedinteger portion of A or B resultisin use
U — Setaccording to the standard definition of the U bit
N — Setif bit 35 0of A or B result is set except during saturation
Z — Setif A or B result equals zero; cleared otherwise
V — Setif overflow hasoccurredin A or B result
C — Setif acarry (or borrow) occurs from bit 35 of A or B result
Instruction Fields:
Operation Operands C W Comments
SBC Y,F 2 1 Subtract with carry (set C bit also)
Timing: 2 oscillator clock cycles
Memory: 1 program word
A-160 DSP56800 Family Manual Q mororoLa

STOP Stop Instruction Processing STOP

Operation: Assembler Syntax:
Enter the stop processing state STOP

Description: Enter the stop processing state. All activity in the processor is suspended until the RESET pin is as-
serted, the IRQA pin is asserted, or an on-chip peripheral asserts a signal to exit the stop processing
state. The stop processing state is a very low-power standby mode where all clocks to the DSP core,
as well as the clocks to many of the on-chip peripherals such as seria ports, are gated off. It is still
possiblefor timersto continueto runin stop state. In these casesthetimers can beindividually powered
down at the peripheral itself for lower power consumption. The clock oscillator can also be disabled
for lowest power consumption.

When the exit from the stop state is caused by alow level on the RESET pin, then the processor enters
the reset processing state. The timeto recover from the stop state using RESET will depend on a clock
stabilization delay controlled by the stop delay (SD) bit in the OMR.

When the exit from the stop state is caused by alow level on the IRQA pin, then the processor will
servicethe highest priority pending interrupt and will not servicethe IRQA interrupt unlessit ishighest
priority. Theinterrupt will be serviced after aninternal delay counter counts 524,284 clock phases (that
is, [21%-4]T) or 28 clock phases (that is, [25-4]T) of delay if the SD bit is set to one. During this clock
stabilization count delay, all peripherals and external interrupts are cleared and re-enabled/arbitrated
at the start of the 17T period following the count interval. The processor will resume program execu-
tion at the instruction following the STOP instruction (the one that caused the entry into the stop state)
after the interrupts have been serviced or, if no interrupt was pending, immediately after the delay
count plus 17T. If the IRQA pin is asserted when the STOP instruction is executed, the internal delay
counter will be started. Refer to Section 7.5, “ Stop Processing State,” on page 7-19 for details on the
stop mode.

Restrictions:
A STOP instruction cannot be repeated using the REP instruction.
A STOP instruction cannot be the last instruction in aDO loop (that is, at the LA).

Example:
STOP ; enter |ow power standby node

Explanation of Example:
The STOP instruction suspends all processor activity until the processor is reset or interrupted as pre-
viously described. The STOP instruction puts the processor in alow-power standby mode. No new in-
structions are fetched until the processor exits the STOP processing state.

Condition Codes Affected:
The condition codes are not affected by thisinstruction.

Instruction Fields:

Operation Operands C W Comments
STOP N/A 1 Enter STOP low-power mode
Timing: The STOP instruction disablesinternal distribution of the clock. Thetimeto exit the stop state depends

on the value of the SD bit.

Memory: 1 program word

0 MOTOROLA Instruction Set Details A-161

SUB Subtract SUB

Operation: Assembler Syntax:
D-S- D (parallel move) SUB SD (parallel move)
D-S- D (two parallel reads) SUB SD (two parallel reads)

Description: Subtract the source operand (S) from the destination operand (D), and store the result in the destination
operand. Words (16 bits), long words (32 bits), and accumulators (36 bits) may be subtracted from the

destination.
Usage: Thisinstruction can be used for both integer and fractional two’ s-complement data.
Example:
SUB X0, A X: (R2) +N, X0; 16-bit subtract, |oad X0, update R2
Before Execution After Execution
0 0058 1234 0 0055 1234
A2 Al A0 A2 Al A0
X0 0003 X0 3456

Explanation of Example:
Prior to execution, the 16-bit X0 register contains the value $0003 and the 36-bit A accumulator con-
tains the value $0:0058:1234. The SUB instruction automatically appends the 16-bit value in the X0
register with 16 LS zeros, sign extends the resulting 32-bit long word to 36 bits, and subtractsthe result
from the 36-bit A accumulator. Thus, 16-bit operands are always subtracted from the MSP of A or B
(A1 or B1) with the results correctly extending into the extension register (A2 or B2).

Operands of 16 bits can be subtracted from the LSP of A or B (A0 or B0). This can be achieved using
the Y register. When loading the 16-bit operand into Y0 and loading Y 1 with the sign extension of YO,
a 32-bit word isformed. ExecutingaSUB Y, A or SUB Y, B instruction generates the desired opera-
tion. Similarly, the second accumulator can aso be used for the source operand.

Note: Bit Cisset correctly using word or long word source operands if the extension register of the destina-
tion accumulator (A2 or B2) contains sign extension from bit 31 of the destination accumulator (A or
B). Cisaways set correctly using accumulator source operands.

A-162 DSP56800 Family Manual @ MOTOROLA

SUB

Condition Codes Affected:

Subtract
< MR >« CCR »
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
LF| * * * * *111|10|SZ|{L|E|JU|N|Z|V|C

— Set according to the standard definition of the SZ bit (parallel move)
— Setif limiting (parallel move) or overflow has occurred in result

— Setif the signed integer portion of A or B result isin use

Set according to the standard definition of the U bit

— Setif bit 35 of A or B result is set except during saturation
— Setif A or B result equals zero
— Setif overflow has occurred in A or B result

— Setif acarry (or borrow) occurs from bit 35 of A or B result

o<NzcmEQ
|

SUB

See Section 3.6.5, “16-Bit Destinations,” on page 3-35 for cases with X0, YO, or Y1 asD.
See Section 3.6.2, “36-Bit Destinations—CC Bit Set,” on page 3-34 and Section 3.6.4, “20-Bit Desti-
nations—CC Bit Set,” on page 3-34 for the case when the CC bit is set.

Instruction Fields:

Operation Operands C W Comments
SuUB DD,FDD 2 1 36-bit subtract of two registers. 16-bit source regis-
ters are first sign extended internally and concate-
F1,DD nated with 16 zero bits to form a 36-bit operand.
~F,F
Y,F
X:(SP-xx),FDD 6 1 Subtract memory word from register.
X:aa,FDD 4 1 X:aa represents a 6-bit absolute address. Refer to
Absolute Short Address (Direct Addressing):
X:xxxx,FDD 6 2 <aa> on page 4-22.
#xx,FDD 4 1 Subtract an immediate value 0-31
#xxxx,FDD 6 2 Subtract a signed 16-bit immediate

Data ALU Operation

Parallel Memory Read or Write

Operation Registers Memory Access Source or Destination

SuB XO0,F X:(Rn)+ X0
Y1,F X:(Rn)+N Y1

YO,F YO

A

AB B

B,A Al

B1

(F=AorB)

0 MOTOROLA

Instruction Set Details

A-163

SUB

Subtract

SUB

Data ALU First and Second Memory Destinations for Memory
Operation Reads
Operation Registers Read1 Read?2 Destinationl Destination2
SuB X0,A X:(RO)+ X:(R3)+ YO X0
Y1,A X:(RO)+N X:(R3)-
YOA Y1 X0
X:(R1)+) .
Valid Valid
)\522 X(RI+N destinations destinations
YOlB for Readl for Read2

Timing:

Memory:

A-164

2 + mv oscillator clock cyclesfor SUB instructions with aparallel move

Refer to previous tables for SUB instructions without a parallel move

1 program word for SUB instructions with a parallel move

Refer to previous tables for SUB instructions without a parallel move

DSP56800 Family Manual

@ MOTOROLA

SW' Software Interrupt SW'

Operation: Assembler Syntax:

Begin SWI exception processing SWI

Description: Suspend normal instruction execution and begin SWI exception processing. The interrupt priority lev-
el, specified by the 11 and 10 bitsin the SR, is set to the highest interrupt priority level upon entering
the interrupt service routine.

Example:
SW ; begin SW exception processing

Explanation of Example:
The SWI instruction suspends normal instruction execution and initiates SWI exception processing.

Restrictions:
A SWI instruction cannot be repeated using the REP instruction.

Condition Codes Affected:
The condition codes are not affected by thisinstruction.

Instruction Fields:

Operation Operands C W Comments

SWI 8 1 Execute the trap exception at the highest interrupt
priority level, level 1 (non-maskable)

Timing: 8 oscillator clock cycles

Memory: 1 program word

0 MOTOROLA Instruction Set Details A-165

Tcc Transfer Conditionally Tcc

Operation: Assembler Syntax:
If cc,then S - D Tcc SD
If cc,thenS -~ Dand RO - R1 Tce SD RO,R1

Description: Transfer data from the specified source register (S) to the specified destination accumulator (D) if the
specified condition istrue. If a second source register RO and a second destination register R1 are also
specified, transfer datafrom addressregister RO to address register R1 if the specified conditionistrue.
If the specified condition isfalse, aNOP is executed.

Usage: When used after the CMP instruction, the Tcc instruction can perform many useful functions such as
a“maximum value” or “minimum value” function. The desired value is stored in the destination accu-
mulator. If address register RO is used as an address pointer into an array of data, the address of the
desired valueis stored in the addressregister R1. The Tcc instruction may be used after any instruction
and allows efficient searching and sorting algorithms.

Theterm “cc” specifies the following:

“cc” Mnemonic Condition
CC (HS*)— carry clear (higher or same) C=0
CS (LO*)— carry set (lower) Cc=1
EQ — equal Z=1
GE — greater than or equal N O V=0
GT — greater than Z+(N O V)=0
LE — less than or equal Z+(NOV)=1
LT —less than N O V=1
NE — not equal Z=0
* Only available when CC bit set in the OMR
+ denotesthelogical OR operator,
O denotesthelogical exclusive OR operator

Note: This instruction is considered to be a move-type instruction. Due to pipelining, if an address register
(RO or R1 for the Tcc instruction) is changed using a move-type instruction, the new contents of the
destination address register will not be available for use during the following instruction (that is, there
isasingle-instruction-cycle pipeline delay).

A-166 DSP56800 Family Manual @ MOTOROLA

Tcc Transfer Conditionally Tcc

Example:

CwP X0, A ; conpare X0 and A (sort for m ninun
TGT X0, A RO, Rl; transfer XO - Aand RO - RLif X0 < A

Explanation of Example:
In this example, the contents of the 16-bit X0 register are transferred to the 36-bit A accumulator, and
the contents of the 16-bit RO address register are transferred to the 16-bit R1 address register if the
specified condition istrue. If the specified condition is not true, a NOP is executed.

Condition Codes Affected:
The condition codes are tested but not modified by this instruction.

Instruction Fields:

Data ALU Transfer AGU Transfer
Operation C | W Comments
Source Destination Source | Destination

Tcc DD F (No transfer) 2 1 | Conditionally transfer one
register
A B (No transfer) 2 1
B A (No transfer) 2 1
DD F RO R1 2 1 | Conditionally transfer one

data ALU register and one
AGU register

A B RO R1 2 1

B A RO R1 2 1

Note: The Tcc instruction does not allow the following condition codes: HI, LS, NN, and NR.

Timing: 2 oscillator clock cycles

Memory: 1 program word

0 MOTOROLA Instruction Set Details A-167

TFR Transfer Data ALU Register TFR

Operation: Assembler Syntax:
S-D (parallel move) TFR SD (parallel move)

Description: Transfer data from the specified source data ALU register (S) to the specified destination data ALU
accumulator (D). The TFR instruction can be used to move the full 36-bit contents of one accumulator
totheother. Thistransfer occurswith saturation when the saturation bit, SA, isset. The TFR instruction
only affects bits L and SZ bits in the CCR (which can be set by data movement associated with the
instruction’s parallel operations).

Usage: Thisinstructionisvery similar to aMOVE instruction but has two uses. First, it can be used to perform
a 36-bit transfer of one accumulator to another. Second, when used with a parallel move, thisinstruc-
tion allows a register move and a memory move to occur simultaneously in 1 instruction that executes
in 1instruction cycle.

Example:
TFR B, A X:(RO)+,YL ; nove Bto A and update Y1, RO
Before Execution After Execution
3 0123 0123 A CCcCcC EEEE
A2 Al A0 A2 Al A0
A CCcCcC EEEE A CCcCcC EEEE
B2 Bl BO B2 Bl BO

Explanation of Example:
Prior to execution, the 36-bit A accumulator contains the value $3:0123:0123 and the 36-bit B accu-
mulator contains the value $A:CCCC:EEEE. Execution of the TFR B, Ainstruction moves the 36-bit
valuein B into the 36-bit A accumulator.

Condition Codes Affected:

< MR >« CCR >
15 14 13 12 11 10 9 8|7 6 5 4 3 2 1 O

LF| * | *|[*|*|*|11|l0|SZ|L|E|U|N|Z]|V|C

SZ — Set according to the standard definition of the SZ bit (parallel move)
L — Setif datalimiting has occurred during parallel move

A-168 DSP56800 Family Manual @ MOTOROLA

TF R Transfer Data ALU Register TF R

Instruction Fields:

Operation Operands C W Comments
TFR DD,F 2 1 Transfer register to register
AB Transfer one accumulator to another (36-bits)
B,A
Data ALU Operation Parallel Memory Read or Write
Operation Registers Memory Access Source or Destination
TFR XO0,F X:(Rn)+ X0
Y1,F X:(Rn)+N Y1
YO,F YO
Al
AB Bl
B,A A
B
F=AB
Timing: 2 + mv oscillator clock cycles
Memory: 1 program word

0 MOTOROLA Instruction Set Details A-169

TST Test Accumulator TST

Operation: Assembler Syntax:
S-0 (parallel move) TST S (parallel move)

Description: Compare the specified source accumulator (S) with zero, and set the condition codes accordingly. No
result is stored, although the condition codes are updated.

Example:
TST A X:(RO)+N,B ; set condition codes for the value
; in A update B and RO
Before Execution After Execution
8 0203 0000 8 0203 0000
A2 Al AO A2 Al AO
SR 0300 SR 0338

Explanation of Example:
Prior to execution, the 36-bit A accumulator contains the value $8:0203:0000, and the 16-bit SR con-
tains the value $0300. Execution of the TST A instruction compares the value in the A register with
zero and updates the CCR accordingly. The contents of the A accumulator are not affected.

Condition Codes Affected:

< MR >« CCR >
15 14 13 12 11 10 9 8|7 6 5 4 3 2 1 O

LF| * | *|[*|*|*|11|l0|SZ|L|E|U|N|Z]|V|C

— Set according to the standard definition of the SZ bit (parallel move)
— Setif datalimiting has occurred during parallel move

— Setif the signed integer portion of A or B result isin use

Set according to the standard definition of the U bit

— Setif bit 35 of A or B result is set except during saturation

— Setif A or B result equals zero

— Alwayscleared

— Alwayscleared

See Section 3.6.2, “36-Bit Destinations—CC Bit Set,” on page 3-34 and Section 3.6.4, “20-Bit Desti-
nations—CC Bit Set,” on page 3-34 for the case when the CC hit is set.

o<NzcmEQ
|

A-170 DSP56800 Family Manual @ MOTOROLA

TST

Instruction Fields:

Test Accumulator

TST

Operation Operands C W Comments
TST F 2 1 Test 36-bit accumulator
Data ALU Operation Parallel Memory Read or Write
Operation Registers Memory Access Source or Destination
TST A X:(Rn)+ X0
B X:(Rn)+N Y1
YO
Al
Bl
A
B
Timing: 2 + mv oscillator clock cycles
Memory: 1 program word

0 MOTOROLA

Instruction Set Details

A-171

TSTW Test Register or Memory TSTW

Operation: Assembler Syntax:
S-0 (no parallel move) TSTW S (no parallel move)

Description: Compare 16 bits of the specified source register or memory location with zero, and set the condition
codes accordingly. No result is stored, although the condition codes are updated.

Example:
TSTW X: $0007 ; set condition codes using X $0007
Before Execution After Execution
X:$0007 FCO00 X:$0007 FCO00
SR 0300 SR 0308

Explanation of Example:
Prior to execution, location X:$0007contains the value $FC00 and the 16-bit SR contains the value
$0300. Execution of theinstruction comparesthe valuein memory location X:$0007 with zero and up-
dates the CCR accordingly. The value of location X:$0007 is not affected.

Note: This instruction does not set the same set of condition codes that the TST instruction does. Both in-
structions correctly set the V, N, Z, and C bits, but TST sets the E bit and TSTW does not. Thisisa
16-hit test operation when done on an accumulator (A or B), wherelimiting is performed if appropriate
when reading the accumulator.

Condition Codes Affected:

< MR > CCR >
15 14 13 12 11 10 9 8 |7 6 5 4 3 2 1 O

LF| * | *|[*|*|*|11|l0|SZ|L|E|U|N|Z|V|C

N — Setif bit 15 (bit 31 of A or B) of result is set
Z — Setif result equalszero

V — Alwayscleared

C — Alwayscleared

A-172 DSP56800 Family Manual @ MOTOROLA

TSTW Test Register or Memory TSTW

Instruction Fields:

Operation Operands C W Comments
TSTW DDDDD 2 1 Test 16-bit word in register. All registers allowed
(except HWS) except HWS. Limiting is not performed if an accu-

mulator is specified.

X:(Rn) 2 1 Test a word in memory using appropriate address-
ing mode.

X:(Rn)+ 2 1
X:(Rn)- 2 1
X:(Rn+N) 4 1
X:(Rn)+N 2 1
X:(Rn+xxxxX) 6 2
X:(R2+xx) 4 1
X:(SP-xx) 4 1

X:aa represents a 6-bit absolute address. Refer to
X:aa 2 1 Absolute Short Address (Direct Addressing):
<aa> on page 4-22.

X:pp 2 1
X:pp represents a 6-bit absolute /O address. Refer
XIXXXX 4 2 to I/0 Short Address (Direct Addressing): <pp>
on page 4-23.
(Rn)- 2 1 | Test and decrement AGU register
Timing: Refer to the preceding Instruction Fields table

Memory: Refer to the preceding Instruction Fields table

0 MOTOROLA Instruction Set Details A-173

WA |T Wait for Interrupt WA |T

Operation: Assembler Syntax:

Disable clocks to the processor core WAIT
and enter the wait processing state.

Description: Enter the wait processing state. The internal clocksto the processor core and memories are gated off,
and all activity in the processor is suspended until an unmasked interrupt occurs. The clock oscillator
and theinternal 1/0 peripheral clocks remain active.

When an unmasked interrupt or external (hardware) processor reset occurs, the processor leaves the
wait state and begins exception processing of the unmasked interrupt or reset condition.

Restrictions:
A WAIT instruction cannot be the last instruction in aDO loop (at the LA).
A WAIT instruction cannot be repeated using the REP instruction.
Example:

VWAI' T ; enter |ow power node, wait for interrupt
Explanation of Example:
The WAIT instruction suspends normal instruction execution and waits for an unmasked interrupt or

external reset to occur. No new instructions are fetched until the processor exits the wait processing
state.

Condition Codes Affected:
The condition codes are not affected by thisinstruction.

Instruction Fields:

Operation Operands C W Comments
WAIT n/a 1 Enter WAIT low-power mode
Timing: If an internal interrupt is pending during the execution of the WAIT instruction, the WAIT instruction

takes a minimum of 32T cyclesto execute.

If nointernal interrupt is pending when the WAIT instruction is executed, the period that the DSP is

in the wait state equals the sum of the period before the interrupt or reset causing the DSP to exit the
wait state and a minimum of 28T cyclesto amaximum of 31T cycles (see the appropriate data sheet).

Memory: 1 program word

A-174 DSP56800 Family Manual @ MOTOROLA

Appendix B
DSP Benchmarks

The following benchmarks illustrate source code syntax and programming techniques for the DSP56800.

The assembly language source is organized into five columns, as shown in Example B-1.

Example B-1. Source Code Layout

Labell Opcode? Operands® Data bus*

FIR MAC YO, X0, A X: (RO) +, Y X: (R3) +, X0

1.Used for program entry points and end-of-loop indication.

2.Indicates the data ALU, address ALU, or program-controller operation to be performed. This column must

also be included in the source code.

3.Specifies the operands to be used by the opcode.

4.Specifies an optional data transfer over the data bus and the addressing mode to be used.

Comment®

; Do each tap

5.Used for documentation purposes and does not affect the assembled code.

In each code example, the number of program words and that each instruction occupies, and the execution

time for each, is listed in the comments and summed at the end.

Table B-1 shows the number of program words and instruction cycles for each benchmark.

Table B-1. Benchmark Summary

Benchmark Exec(;tlig;c;l'ime Pl_rgr?gr;?r:n

(# Words)
Real Correlation or Convolution (FIR Filter) 1N 9
N Complex Multiplies 6N 15
Complex Correlation or Convolution (Complex FIR) 5N 15
Nth Order Power Series (Real, Fractional Data) IN 13
N Cascaded Real Biquad IIR Filters (Direct Form II) 6N 16
N Radix 2 FFT Butterflies 13N 17
LMS Adaptive Filter: Single Precision 3N 18
LMS Adaptive Filter: Double Precision 6N 21
LMS Adaptive Filter: Double Precision Delayed 5N 27

Q) mororoLa DSP Benchmarks

B-1

Table B-1.

Benchmark Summary (Continued)

. . Program
Benchmark Execz;tllé)nc;l'lme Length

y (# Words)
Vector Multiply-Accumulate 2N 12
Energy in a Signal 1N 7
[3x3][1x3] Matrix Multiply 20 20
[NXN][NxN] Matrix Multiply N3 + 8N2 30
N Point 3x3 2-D FIR Convolution 13N2 + 11N 41
Sine Wave Generation: Double Integration Technique 2N 13
Sine Wave Generation: Second Order Oscillator 5N 16
Array Search: Index of the Highest Signed Value 4N 10
Array Search: Index of the Highest Positive Value 2N 10
Proportional Integrator Differentiator (PID) Algorithm 6N 6
Autocorrelation Algorithm (P+1)2(N-p/2) 23

B.1 Benchmark Code

The following source code lists all the “ defines’ for the benchmarks.

; define section

Z%ZUOOE%B

QUTPUT
out put
I NPUT
i nput

B-2

page 132
opt cc
EQU O

EQU $100
EQU $100
EQU $200
EQU $200
EQU $300
EQU 100
EQU $300
EQU $400
EQU $500
EQU $FFF1
EQU $501
EQU $FFF1
EQU O

DSP56800 Family Manual

@ MOTOROLA

state

nt aps

k

n

p

mask

i mage

di vi dend
di vi sor
paddr
gaddr

wl

w2

S

t abl ebase
| pc
frame
cor
shift
tabl e

EQU
EQU
EQU
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
org

o O O o

$10

32
10
10
$40
.25

0

$100

$80 ; shift constant

$180 ; base address of a-law table
p: $40

B.1.1 Real Correlation or Convolution (FIR Filter)

; c(n) = SMI=0,...,N1) { a(l) * b(n-1) }

opt cc

MOVE #AD, RO ;2 2
MOVE #BD, R3 2 2
R A X (RO)+, YO ;1 1
MOVE X (R3) +, X0 ;1 1
REP #N 1 3
MMC Y0, X0,A X (RO)+ YO X (R3)+ X0 ; 1 1
RD A ;1 1

0 MOTOROLA

Tot al : 9 IN+H11

DSP Benchmarks

B-3

B.1.2 N Complex Multiplies

;er(l)
;oer(l)
; ci(l)

opt

MACR
MACR

END_DO8

cc
#AD, RO
#G 1, R2
#BD, R3
X (R2), B
#NUM END_DCB
X: (RO) +, Y1
Y1, X0, A B, X (R2)+
X: (RO) +, YO
YO, X0, B X: (R3) +, X0
- YO0, X0, A
Y1, X0, B A X (R2)+
B X (R2)+

Yl=ar
YO=ai

X (R3) +, X0

Tot al :

jei(l)y = (Car(l) +jai(l)) * (br(l) +jbi(l)),
ar(1) * br(1) - ai(1) * bi(l)
ar(1) * bi(1) +ai(l1) * br(l)

I=1,...,
X0=br, bi
2
1
1
11
15 6N+11

N

dummy rnove!
get ar, br
ar*br,

store i mag
get ai

ai *br, get bi
get bi
ar*br-ai *bi

ar *bi +ai *br,
store real

B.1.3 Complex Correlation Or Convolution (Complex FIR)

; cr(n) +jci(n) = SWMI=0,..., N-1)

c{ Car(l) +jai(l)) *

; cr(n) = SUMI=0,..., N 1)

; {ar(l) * br(n-1) - ai(l) * bi(n-1) }

; ci(n) = I=0,..., N 1)

; {ar(l) * bi(n-1) +ai(l) * br(n-1) }
opt cc
MOVE #AD, RO
MOVE #BD, R3
R A X (RO) + YO
CR B X (R3)+ VY1
DO #N END DCB
MAC YO, VY1 A X (R3)+, X0
MAC YO, X0, B X (RO)+, YO
MC Y0,Y1,B X (R3)+ VY1
MAC -Y0, X0, A
MOVE X (RO)+ YO

B-4

(br(n-1) + jbi(n-1)) }

P P P PP NPFPPNN

DSP56800 Family Manual

YO=ar

YO=ai

N A = = = I =N S R N}

Y1=br

X0=bi

ar
br

ar*br ,ai, bi
ar *bi
ar *bi +ai *br, ar

ar*br-ai *bi

0 MOTOROLA

Tot al : 15 5N+11

B.1.4 Nth Order Power Series (Real, Fractional Data)

; ¢ =SWMI=0,..., N { a(l) * b**I
i = [[[a(n) *b+a(n-1)] *b+a(n-2)]*b+a(n-3)].....
opt cc
MOVE #BD RL ;2 2
MOVE #AD RO ;20 2
MOVE X (R1), Y0 ;11 b
MOVE YO, Y1 ;11 b
MOVE X (RO)+ A N get a(n)
MOVE X (R0)+, B ;101 get a(n-1)
DO #NUM 2, END_DOC ;23
MAC AL YO, B X (RO)+ A S get a(n-2), and
SO on
MAC Bl Y1, A X (R0)+, B 1 1 get a(n-3), and
SO on
END DCOC
RD A 1 1

Total : 13 IN+12

B.1.5 N Cascaded Real Biquad IIR Filters (Direct Form II)

Many digital-filter design packages generate coefficients for direct form Il 1IR filters. Often, these
coefficients are greater in magnitude than 1.0. Thisimplementation is suitable for IR filters with
coefficients greater in magnitude than 1.0 because it alows the user to simply divide all coefficients
generated by 2.

; W(n)/2 =x(n)/2 - (al/2) * w(n-1) - (a2/2) * wn-2)

; y(n)/2 =wn)/2 + (b1/2) * w(n-1) + (b2/2) * wWn-2)

; DHgh Menory Oder - w(n-2)1,wn-1)1,wWn-2)2,Wn-1)2,...

; DLow Menory Oder - (a2/2)1,(al/2)1,(b2/2)1,(bl/2)1, (a2/2)2,...
; This version uses two pointers.

opt cc

MOVE #WRO 2 2
MOVE #C R3 2 2
MOVE #-1,N 1 1
MOVE X:input, A 1 1

@ MOTOROLA DSP Benchmarks B-5

END_DCE

ASR A

#N, END_DCE
YO, X0, A
Y1, X0, A

YO, X0, A
Y1, X0, A

X(R3)+X0 ;1 1 X0=a2/ 2

X (RO)+, YO ;1 1 YO=wn- 2
;2 3

X(RO+N YL X (R3)+ X0 ; 1 1 yl=wn-1
Y1, X (RO) + ;11

X(R3)+ X0 ; 1 1 X0= b2/ 2
A X (RO) + ;11 X0=b1/ 2

X(RB)+ X0 ; 1 1
X(RO)+ Y0 X(R3)+ X0 ; 1 1

Tot al : 16 6N+11

B.1.6 N Radix 2 FFT Butterflies

Thisisadecimation in time (DIT), in-place algorithm. Figure B-1 gives a graphic overview and memory

map.

K (0,12 X memory
A X=A+BW — arfxr
ai/xi
r3,rl
e briyr
bilyi
T o | cos(2mk/N)
K -sin(21k/N)
w
N\ X0 YO Y1
bi br wr -wi
k A B
B Y=A-BW —
yifailyr/ar Xxifai/xr/ar
AA0079
Figure B-1. N Radix 2 FFT Butterflies Memory Map
; Twiddle Factor W= w + jwi = cos(2rk/N + sin(2rk/N) pointed by Rl
; - saved on each pass
;o Xr =ar +w * br - w * bi
;o Xi = a +wW * br +w * bi
;yr =ar - w *br +w * bi =2* ar - xr
;yio o =a - wW *br - w*b =2%*a - xi
opt cc
B-6 DSP56800 Family Manual Q mororoLa

nove x:(r1)+,y0 x:(r3)+x0 ; yOo=wr ; xO=br
nove x:(r0),b ; b=ar
nove x:(rl)+n,yl ;o yl=wi
save rl, update rl to point |ast bi/yi
nove #0, n ; emulate X (Rn) adr node
do #n, end_bfly ;2 3
push x0 i1 1 push br
nac y0, x0, b x: (r3)+ x0 i1 1 b=ar +wr br
nacr -y1,x0,b o 1 b=xr
nove a, x: (rl)+ i1 1
nove x:(r0)+ a i1 1 a=ar
asl a b, x: (r2)+ o 1 a=2ar - Xr =yr
sub b, a X:(rQ)+n, b o 1
nove ax: (rl)+ i1 1 b=ai
nac y0, x0, b X:(rQ)+ a o 1 b=ai +wr bi
pop x0 o 1 pop br
nmacr y1,x0,b x: (r3)+ x0 i1 1 b=xi ;a=ai
asl a b, x: (r2) + o 1 a=2ai - xi =yi
sub b, a x:(rQ)+n, b o 1 b=ar
end _bfly
nove #XX, n i1 1
nove b, x: (r1)+n o save | ast vyi
; save rl,
; update rl to point twiddle factors
; Tot al : 17 13N+9

B.1.7 LMS Adaptive Filter

Figure B-2 gives a graphical representation of thisimplementation of the LM S adaptive filter.

x(n) x(n-1) x(n-K)

y(n)

x(n-N+1)

\
an AN e(n)
N

Figure B-2. LMS Adaptive Filter Graphic Representation

Q) mororoLa DSP Benchmarks

AA0080

B-7

The following three LM S adaptive filter benchmarks are provided:
e Single precision
e Double precision
» Double precision delayed

; Notation and synbol s:

; X(n) - Input sanple at tine n.

; d(n) - Desired signal at time n.

; y(n) - FIRfilter output at tine n.

; Hn) - Filter coefficient vector at tine n.
; He{cO,c1,c2,,...,¢ck,...,c(N1)}

; X(n) - Filter state variable vector at tine N
; X={x(n), x(n-1),....,x(n-N+1)}

Mi - Adaptation gain.
; N - Nunber of coefficient taps in the filter.

; True LMS Al gorithm Del ayed LM5S Al gorithm

; Get input sanple Get input sanple

; Save input sanple Save input sanple

; Do FIR Do FIR

; Get d(n), find e(n) Updat e coefficients

; Update coefficients Get d(n), find e(n)

; Qutput y(n) Qut put y(n)

; Shift vector X Shift vector X

; System equati ons:

;e(n)=d(n)-Hn)X(n) e(n)=d(n)-H n)X(n) (FIRfilter and error)
H n+1) =H(n) +uX(n) e(n) H n+1) =H(n) +uX(n- 1) e(n-1) (Coefficient update)

The references for this code include the following:
» Adaptive Digital Filtersand Sgnal Analysis, Maurice G. Bellanger (Marcel Dekker: 1987)

e “The DLMS Algorithm Suitable for the Pipelined Realization of Adaptive Filters,” Proc. |IEEE
ASSP Workshop, Academia Sinica, Beijing (IEEE: 1986)

NOTE:

The sections of code shown describe how to initialize all registers, filter an
input sample, and perform the coefficient update. Only the instructions
relating to the filtering and coefficient update are shown as part of the
benchmark. Instructions executed only once (for initialization) or
instructions that may be user application dependent are not included inthe
benchmark.

B-8 DSP56800 Family Manual @ mororoLa

B.1.7.1 Single Precision

Figure B-3 shows a memory map for this implementation of the single-precision LM S adaptive filter.

X memory

0 —> x(n)
x(n-1)

X(n-N+1)
r3rl ——» c0

cl
cl

c(N-1) AAQ081

Figure B-3. LMS Adaptive Filter—Single Precision Memory Map

opt cc

nmove #XMrO0 ; start of X

nmove #N1,n0 ; nmodul o N

nmove #-2,n ; adjustrment for filtering

novep X:input,y0 ; get input sanple

nmove #Hr3 ;2 2 coefficients

clr a y0, x: (r0) + 1 1 save x(n)

nove X:(r3)+,x0 ; 1 1 get cO

rep #N- 1 ;1 3 do fir

nac y0,x0,a x:(r0)+y0 x:(r3)+x0 1 1

nacr y0, X0, a ;1 1 last tap

novep a, x;output ; 1 1 output fir if desired
(Get d(n), subtract fir output, multiply by “u”, put the result in yl.

; This section is application dependent.)

nmove #Hr3 ;2 2 coefficients

nove r3,rl 1 1 coefficients

nove x:(rQ)+y0 ;1 1 get x(n)

nove x:(r3)+a ; 1 1 a=c0

do #ntaps, coefupdate ;2 3 updat e coef.

nacr yl,y0,a x:(r0)+y0 x:(r3)+x0 ; 1 1

tfr X0, a a, x:(rl)+ ;1 1 copy c,
_coef updat e

nove x: (rQ)+n,y0 ;1 1 update r0

Tot al : 18 3N+18

@ MOTOROLA DSP Benchmarks B-9

B.1.7.2 Double Precision

Figure B-4 shows a memory map for this implementation of the double-precision LM S adaptive filter.

Figure B-4.

opt cc

move #XMr0
nmove #N1,n0
nmove #2,n

novep X:input,y0

move #Hr3
clr a
nove

rep #N- 1

nac x0, y0, a
nacr x0, y0, a
novep

X memory

0 — x(n)

x(n-1)

x(n-N+1)

L3 —» cOh

y0, x: (rQ) +

x: (r0)+ y0

a, X: out put

; (Get d(n), subtract fir output,
; This section is application dependent.)

B-10

nmove #Hr3

move r3,rl

nmove x: (r0)+,y0
nove

nove

do #nt aps, _coef updat e
nac X0, y0, a x: (r0)+ y0
nmove a, x: (rl)+
nove a0, x: (rl1)+
nove X:(r3)+ a

DSP56800 Family Manual

col
clh
cll

x: (r3)+n, x0

x: (r3)+n, x0

mul tiply by “u”

X:(r3)+ a
x:(r3)+, a0

AA0082

LMS Adaptive Filter—Double Precision Memory Map

start of X
nodul o N

get input sanple

1 1 ; coefficients
1 1 ; save x(n)

1 1 ; get cO

1 3 do fir

1 1 ; mac; next x
1 1 ; last tap

output fir if desired

put the result in x0.

; coefficients
; coefficients
get x(n)
al=cOh

; a0=col
updat e coef.

L R N = = = Y
P W R P R RPN

u e(n) x(n)+c; fetch
x(n)

=
=

save updated c()h

=

; save updated c()I
; fetch next c()h

=

0 MOTOROLA

nove x: (r3)+, a0 ;1 1 ; fetch next c()lI
_coef updat e

nove #-2,n ;o1 1 ; adjustnent for
; filtering
nove x: (rQ)+n, yo ;1 1 ; update rO
Tot al : 21 6N+18

B.1.7.3 Double Precision Delayed

X memory
o —» X(n)
x(n-1)
x(n—N+1)
cOh
rL,r3 — col
clh
cll
Figure B-5. LMS Adaptive Filter—Double Precision Delayed Memory Map
Del ayed LM5 al gorithmwith natched coefficient and data vectors
; Algorithmruns in 5N (2 coeffs processed in each 10 cycl e | oop)
Data Sanple is stored in YO and Y1.
Coefficient is stored in X0
Loop Gain * Error is stored in X (R2) (wll be placed in X0).
FIR operation done in B
Coef f update operation done in A
; FIRsum=a = a +c(k) *x(n-k)
. c(K) =b=c(k) Olfhre *x(n-k-1)
opt"®W ¢c ol d ol d
nove #state, r0 2 2
nove #nt aps, nO ;2 2
nove #c,r3 2 2
nove #c-2,r1 2 2
nove #0, n ;11 emul ate (Rn) adr
node
clr b x: (r0)+,y0 ;101 y0 = x(n)
nove X: (rQ)+ vyl X:(r3)+,x0 ; 1 1 yl= x(n-1), x0=cOh
@ MOTOROLA DSP Benchmarks

Figure B-5 shows a memory map for this implementation of the double-precision delayed LM S adaptive
filter.

AA0083

B-11

do

nove
tfr
nove
nacr
nac
nove
tfr
nove
nacr

end_| ns2
nove
nove
| ea
| ea

B.1.8 Vector Multiply-Accumulate

#nt aps/ 2, end_| ns2

y0, X0, b

X0, a

x0,vy1, a
x0,y1, b

X0, a

x0, y0, a

a, x: (rl)+
a0, x: (r1)+
x: (r2)+n, x0

x: (r0)+,y0
a, x: (rl)+

a0, x: (r1)+
X: (r2) +n, x0

x: (r0)+, vyl

a, x:(rl)+
a0, x: (r1)+
(r0)-
(r0)-

x: (r3)+, a0
x: (r3)+, x0

x: (r3)+, a0
x: (r3)+, x0

Tot al :

27

T S T) = = N

T S Y

N T e = T = T S V)

N

SN+18

a0=ckl
x0=c(k+1) h

This code multiples avector by a scalar and adds the result to another vector. The Y O register holds the
scalar value. Figure B-6 gives a graphical overview and memory map for the vector multiply-accumulate

code.

opt

move
move
move

B-12

cl
c2
c3

cc
#ad, r0
#bd, r3
#cd, rl

- [9] x| b

b3

r0

—_— al

r3

— bl

rl

—_— cl

X memory

a2
a3

b2
b3

c2
c3

Figure B-6. Vector Multiply-Accumulate

DSP56800 Family Manual

AA0084

point to vec a

point to vec b

point to vec c

0 MOTOROLA

clr a x: (r3)+, x0 1 1
nove x:(rQ)+, a ;1 1
do #NUM _vrmac ;2 3
nac y0, X0, a X:(r0)+,yl x:(r3)+ x0 1 1
tfr yl,a a, x:(rl)+ 1 1
_vnac
Tot al : 12 2N+11

B.1.9 Energy in a Signal

This code calculates the energy in asignal by summing together the square of each sample.

opt cc
nove #ad, r0 2 2 point to signal a
nop ;11
clr a x:(r0)+ a 1 1
do #NUM _ener gy 2 3
nac y0,y0,a x:(rQ)+y0 ;11
_energy

; Tot al : 7 IN+7

0 MOTOROLA DSP Benchmarks B-13

B.1.10 [3x3][1x3] Matrix Multiply

Figure B-7 gives agraphical overview and memory map for a[3x3][1x3] matrix multiply.

X memory
L83 5 | all
al2
al3
a2l
a22
a23
a3l
a32
a33

cl all al2 al3 bl
c2 =] a21 a22 a23 | x | b2
c3 a3l a32 a33 b3

10, bl
b2
b3

2 5 cl
c2
c3

AAQ0085

Figure B-7. [3x3][1x3] Matrix Multiply

opt cc
nove #AD,r3 2 2 point to nat a
nove #bd, r0 ;2 2 point to vec b
nove #2,n0 1 1 addrb nod 3
nmove #c,r2 2 2 point to vec c
nove x: (r0)+ y0 x: (r3)+, x0 1 1 yO=all; x0=bl
npy y0, X0, a x: (r0)+ y0 x: (r3)+, x0 1 1 all*bl
nac y0, X0, a x: (r0)+ y0 x: (r3)+, x0 1 1 +al2*b2
nacr y0, X0, a x: (r0)+ y0 x: (r3)+, x0 1 1 +al3*b3
nove a,x (r2)+ 1 1 store cl
npy y0, X0, a x: (r0)+,y0 x: (r3)+, x0 1 1 a21*bl
nac y0, X0, a x: (r0)+ y0 x: (r3)+, x0 1 1 +a22* b2
nmacr y0, X0, a x: (r0)+, y0 x: (r3)+, x0 1 1 +a23*b3
nove a,x: (r2)+ 1 1 store c2
npy y0, X0, a x: (r0)+ y0 X: (r3)+, x0 1 1 a3l*bl
nac y0, x0, a x: (r0)+, y0 x: (r3)+, x0 1 1 +a32* b2
nmacr y0, X0, a 1 1 +a33*b3->c3
nove a, x:(r2)+ ;1 1 store c3

Tot al : 20 20

B-14 DSP56800 Family Manual @ MOTOROLA

B.1.11

[NXN][NxN] Matrix Multiply

The matrix multiplications are for square NxN matrices (all elements arein row-major format). Figure B-8
gives agraphical overview and memory map of an [NXN][NXN] matrix multiply.

all

akl

aNl .

opt
nove
nove
nove
nove
nove
nove
push
push
do
push
push
do
nove
nove
clr
nove
rep

nacr
nove

0 MOTOROLA

alk alN
akk akN X
aNk .. aNN
cll clk
ckl ckk
ch cNk ..
Figure B-8.
(o]0
#ad, r0
ro,yl
#bd, r 3
#e,r2
#N b
b, n
I c
| a
n, er ows
I c
| a
n, ecol s
y1,r0
ri,r3
a X: (r0)+,y0
#N- 1
y0, X0, a X: (r0)+,y0
y0, x0, a
ax:(r2)+

bll .. blk
bkl .. bkk
bNL .. bNK ..

cIN

ckN

cNN

X memory
bIN By | all
bkN alk
bNN akl

aNl
0, | b1l
b1k
2 5 | cl11

[NxN][NxN] Matrix Multiply

x: (r3)+n, x0

X: (r3)+n, x0
x: (r3)+,y0

DSP Benchmarks

point to A

point to B
output mat C
array size

do rows

do col umms

copy
copy col B

row A

clr sum & pi pe

sum

finish,

P P P PP PPRPNPPNPEPRPPEPNNDNIEN
P P P WPRFE P PP OPRPPEP®PEPRPRPEPNNNIEN

save out put

next col

AA0086

point to current col um

B-15

ecol s

er ows

B-16

pop
pop
add
nove
nove

pop
pop

la

lc

yl, b
b, y1
#bd, r1

| a
I c

Tot al :

Wr ds:
30

11
101
101 next row A
101
;2 2 first element B
101
1
Cycl es: 3 2

((9+(N-1)) N¥10) N+12) = N +8N +10N+17

DSP56800 Family Manual

0 MOTOROLA

B.1.12 N Point 3x3 2-D FIR Convolution

The two-dimensional FIR uses a 3x3 coefficient mask as shown in Figure B-9.

cll cl2 cl13
c21l c22 c23
c31l c32 ¢33
AA0087

Figure B-9. 3x3 Coefficient Mask
Theimageisan array of 512 pixels x 512 pixels. To provide boundary conditions for the FIR filtering, the

image is surrounded by a set of zeros such that the image is actually stored as a 514x514 array (see
Figure B-10).

- 514 >
0 0 0 A
A
0 512 0
514
0 Image 0
Area
\
0 0 0 \ /
AA0088

Figure B-10. Image Stored as 514x514 Array

The image (with boundary) is stored in row-major storage. The first element of the array image is
image(1,1) followed by image(1,2). The last element of the first row isimage(1,514) followed by the
beginning of the next columnimage(2,1). These are stored sequentially inthearray “im” ind memory. For
example:

* Image(1,1) mapsto index O.
* Image(1,514) maps to index 513.
* Image(2,1) mapsto index 514.
See Table B-2 for the definitions of r0, r2, and r3.

Although many other implementations are possible, thisis arealistic type of image environment where the
actual size of the image may not be an exact power of two. Other possibilitiesinclude storing a 512x512
image but computing only a511x511 result, computing a 512x512 result without boundary conditions but
throwing away the pixels on the border, and so on.

Table B-2. Variable Descriptions

Variable Description
r0 image(n,m) image(n,m+1) image(n,m+2)
image(n+514,m) image(n+514,m+1) image(n+514,m+2)
image(n+2*514,m) image(n+2*514,m+1) image(n+2*514,m+2)
r2 output image
r3 FIR coefficients

0 MOTOROLA DSP Benchmarks B-17

opt cc

nove #coeffs, r3 pt to coef.
nove #i mage, r 0 ;
nove #512,y1 ;
nove #-1029,r1

nove #out put , r 2

top boundary

out put i mage

P NN DN DNDN
P NN DN DNDN

nove X:(r0)+,y0 x:(r3)+ x0 ; yo=inm(1,1),
x0=c11
nove yl,n ;1 1 rowi to i+l
adj ust
push lc 1 1
push la ;1 1
do y1, rows ;2 3
push lc 1 1
push la ;1 1
do y1, col s ;2 3
npy y0, X0, a X:(r0)+,y0 x:(r3)+,x0 ; 1 1 in(1,1)*cl1
nac y0, X0, a X:(r0)+n,y0 x:(r3)+,x0 ; 1 1 + 1, 2)*cl2
nac y0, X0, a X:(rQ)+,y0 x:(r3)+x0 ; 1 1 + (1, 3)*cl3
nac y0, X0, a X:(r0)+,y0 x:(r3)+,x0 ; 1 1 + nm(2,1)*c21
nac y0, X0, a X:(r0)+n,y0 x:(r3)+,x0 ; 1 1 + (2, 2)*c22
nove ri,n - 1 rowi toi-2
adj ust
nac y0, X0, a X:(r0)+,y0 x:(r3)+x0 ; 1 1 + (2, 3)*c23
nac y0, X0, a X:(r0)+,y0 x:(r3)+x0 ; 1 1 + n(3,1)*c31
nac y0, X0, a X: (r0)+n,y0 x:(r3)+ x0 1 1 + (3, 2)*c32
nove #0,r3 ;1 1 back to first
coef f
nove yl,n ;1 1 rowi to i+l
adj ust
nacr y0, X0, a X:(r0)+,y0 x:(r3)+x0 ; 1 1 + (3, 3)*c33
nove a, x (r2)+ ;
col s
pop la ;
pop lc ;1 1
; adjust pointers for frane boundary
| ea (r0)+ ;1 1 adjust r0
| ea (r0)+ 1 1
| ea (r2)+ ;1 1 adj ust r2
| ea (r2)+ ;1 1
rows

B-18 DSP56800 Family Manual @ MOTOROLA

pop la ;

pop lc ;
)
; Tot al : 41 13N +11N+16
; Kernel : 13

0 MOTOROLA DSP Benchmarks B-19

B.1.13 Sine-Wave Generation

The following two sine-wave generation benchmarks are provided:
« Doubleintegration technique

* Second order oscillator

B.1.13.1 Double Integration Technique

Figure B-11 gives a graphical overview of the double integration technique.

a = Stored initial value which is the

desired tone amplitude

N

|
- - - ™
— D1+~ X——D !
sin(w t)
- L 50

y1 = 2*sin(miFs/F0)
FO = Oscillation Frequency
Fs = Sampling Frequency

Figure B-11. Sine Wave Generator—Double Integration Technique

opt cc
clr b
nove #$4000, a
nove #0, n
nmove #$4532, y1
nove #$1,r1
nove yl,y0
do X0, | oopl
nac yl,bl, a b, x: (rl1)+n
nac -y0,al, b
| oopl
nove b, x: (r1)

B-20

DSP56800 Family Manual

Tot al :

2N+H12

AA0089

0 MOTOROLA

B.1.13.2 Second Order Oscillator

Figure B-12 gives a graphical overview of a second order oscillator.

a = Stored initial value which
is the desired tone amplitude

x0
f——

sin(w t)
(0]

.
' o

a\f
T EZ\J//

X0 = 2*cos(21Fs/F0)
FO = Oscillation Frequency
Fs = Sampling Frequency

— T

Y
\

Figure B-12. Sine Wave Generator—Second Order Oscillator

opt cc
clr a
nmove #$4000, y1
nove #$6d4b, yo
nmove #$1,r1
nove #np, r0
nmove #0,n
do X0, | oop2
nac -y1,y0, a
neg a
nac y1,vy0, a
nove
tfr yl, a

| oop2
nove

0 MOTOROLA

y1,x:(rl)+n

a, x: (r0)+n
x: (r0)+n,yl

y1, x:(r1)

Tot al :

P PP R R NRE R RPRNNPRE

16

1

2

2

1

1

1

3

1

1

1

1 tenp storage for swap
1

1
S5N+12

DSP Benchmarks

AA0090

B-21

B.1.14 Array Search

The following two array search benchmarks are provided:
» Index of the highest signed value
e Index of the highest positive value

B.1.14.1 Index of the Highest Signed Value

opt cc
nove #AD, r0 2
clr a x:(r0)+ b ;1

do #N end_| p3

;2 3
abs b ;1 1
cnp b, a ;1 1
tle b, a ro,ri 1 1
nmove Xx:(r0)+b ;1 1

end_| p3

| ea (rl)- ;1 1
| ea (rl)- ;

Total: 10 AN+8 (worst case)

B.1.14.2 Index of the Highest Positive Value

opt cc
move #AD r0
clr a x: (r0)+, x0 1 1
do #N 2, end_| p3 2 3
cnp x0, a x: (r0)+,y0 1 1
tle x0, a ro,ril ;1 1
cnp y0, a x: (r0)+, x0 1 1
tle y0, a ro,ri 1 1
end | p3
| ea (rl)- 1 1
| ea (rl)-
; Total: 10 2Nt8 (worst case)

B-22 DSP56800 Family Manual @ MOTOROLA

B.1.15 Proportional Integrator Differentiator (PID) Algorithm

The proportional integrator differentiator (PID) algorithm is the most commonly used algorithm in control
applications. Figure B-13 gives a graphical overview and memory map of thisimplementation of a
proportional integrator differentiator.

X(n)

D

y(n)

!
k2

Y
N
\JV

Y

A

y(n)=y(n-1) + k0O x(n) + k1 x(n-1) + k2 x(n-2)

X memory
NG kO
k1
k2
x(n-1)
x(n-2)
10 x(n)

Figure B-13. Proportional Integrator Differentiator Algorithm

; y(n) =vy(n-1) + k0 x(n) + k1 x(n-1) + k2 x(n-2)

opt

nmove
nmove
nove

0 MOTOROLA

cc
#s+2,r0
#2, n0
#k,r3

x0,y0, b
y0, x0, b

y0, x0, b

X:(r0)+ b
x: (r0)+ y0
x: (r0)+ y0

X:input, b

b, x: (r0)
b, x: out put

x: (r3)+,y0
X: (r3)+,y0
X: (r3)+, x0

Tot al :

DSP Benchmarks

ro nod 3

e T R S e e N
e I R S N N T

get y(n-1)
x(n-2), k2
x(n-1), k1
kO

x(n)

get
get
get
get

save y(n)
y(n) inb

AA0091

B-23

A faster version of the PID
y(n) =y(n-1) + kO x(n) + k1 x(n-1) + k2 x(n-2)

opt
nmove
nmove

nove

cc
#s+2,r0
#2, nD
#k, r3

ro nod 3

B accunul ator holds y(n-1), Y1 holds the KO coefficient

nove

B.1.16

nove
nove
do
nove
clr
nove
| ea
nove
nove
add
rep

nove

nove

_loopl

B-24

x0, y0, b
y0, x0, b

y0, x0, b

x:(r0)+,y0 x:(r3)+,y0 ; 1
x:(r0)+,y0 x:(r3)-,x0

X:input,b
b, x: (r0) +
b, x: out put ;

T N S S

Autocorrelation Algorithm

#cor,rl

#rane, r2
#l pc+1, | oopl ;

r2,r3
b

#frame, r0

(r2)+
lc,yl

#>N-(ptl), a

yl, a
a
y0, x0, b

bo, x: (r1)+
bl, x:(rl)+

x:(r0)+,y0 x:(r3)+, x0

X:(r0)+,y0 x:(r3)+ x0 ;

P PP PR NRERPRNERNDNODDN
P PP WER NRERNRE R ®OWNODN

1 get x(n-2), k2
1 get x(n-1), k1
1

1 get x(n)

1 save x(n)
1y(n) inb

2

23 (p+1) (N-p/2)+15(p+l) +6

DSP56800 Family Manual

0 MOTOROLA

Glossary

See Section A.1, “Notation,” on page A-1 for notations and symbols not listed here.

A/D

ADM

ADS

AGU

ALU

AS

BCR

BE1-BEO

BK4-BKO

BS1-BSO

0 MOTOROLA

analog-to-digital

application development module

application development system

address generation unit

arithmetic logic unit

accumulator shifter

bus control register

breakpoint enable bits

breakpoint configuration bits

breakpoint selection bits

Glossary

G-1

CcC

CCR

CID

CGDB

CMOS

COFF

COP

COPDIS

CPU

CS

D/A

DAC

DRM

G-2

carry bit

condition code bit

condition code register

chip identification register

core global data bus

complementary metal oxide semiconductor

common object file format

computer operating properly

COP timer disable

central processing unit

carry bit set

digital-to-analog

digital-to-analog converter

debug request mask bit

DSP56800 Family Manual

0 MOTOROLA

DSP

EM1-EMO

EX

EXT

FH

FIFO

GE

GPIO

GT

GUI

HBO

HI

HS

0 MOTOROLA

digital signal processor

extension bit

event modifier bits

external X memory bit

extension register

FIFO halt bit

first-in-last-out

greater than or equal to

general-purpose i nput/output

greater than

graphical user interface

hardware breakpoint occurrence

high

high or same

Glossary

G-3

HWS

11, 10

JTAG

/O

IPL

IPR

K&R

LA

LC

LE

LF

LIFO

G-4

hardware stack

interrupt mask bits

integrated circuit

Joint Test Access Group

input/output

interrupt priority level

interrupt priority register

Kernighan and Ritchie

limit bit

loop address register

loop counter register

less than or equal to

loop flag bit

|ast-in-first-out

DSP56800 Family Manual

0 MOTOROLA

LO

LS

LSB

LSP

LT

MA, MB

MAC

MCU

MIPS

MO1

MR

MS

MSB

MSP

0 MOTOROLA

low

least significant; low or same

least significant bit

least significant portion

less than

operating modes

multiply-accumul ate

microcontroller unit

million instructions per second

modifier register

mode register

most significant

most significant bit

most significant portion

Glossary

G-5

NL

OBAR

OCMDR

OCNTR

ODEC

OISR

OMAC

OMAL

OMR

OPABDR

OPABER

OPABFR

G-6

offset register

negative bit in condition code register

nested looping bit

OnCE breakpoint address register

OnCE command register

ONnCE breakpoint counter

ONCE decoder

OnCE input shift register

OnCE memory address comparator

ONCE breakpoint address latch

operating mode register

OnCE PAB decode register

OnCE PAB execute register

OnCE PAB fetch register

DSP56800 Family Manual

0 MOTOROLA

OPDBR

OPGDBR

0OS1, 0S0

OSR

OnCE™

P2-P0

PAB

PC

PGDB

PWD

PLL

Rn

SA

0 MOTOROLA

OnCE PDB register

Once PGDB register

ONCE status bits

OnCE status register

On-Chip Emulation (unit)

program counter extension

program address bus

program counter

peripheral globa data bus

power-down mode bit

phase-locked loop

rounding bit

address registers (RO-R3)

saturation bit

Glossary

G-7

SBO

SD

SP

SPI

SR

SSI

SZ

TAP

TO

WWW

XAB1

G-8

software breakpoint occurrence

stop delay bit

stack pointer

serial peripheral interface

status register

synchronous serial interface

size hit

test access port

trace occurrence

unnormalized bit

overflow bit

World Wide Web

externa

X memory address bus one

DSP56800 Family Manual

0 MOTOROLA

XAB2

XDB2

XP

0 MOTOROLA

X memory address bus two

X memory data bus two

X/P memory bit

zero hit

Glossary

G-9

G-10 DSP56800 Family Manual 0 MOTOROLA

Index

A

A accumulator 3-2, 3-4
A0, see A accumulator
A1, see A accumulator
A2 accumul ator extension register 3-2
ABS A-28
Absolute Value ABS A-28
accumulator extension register (A2 or B2) 3-4
accumulator extension registers 3-2
accumulator registers 3-2, 3-4
accumul ator shifter 3-2, 3-6
accumulator sign-extend 8-7
ADC A-30
ADD A-32
Add ADD A-32
Add Long with Carry ADC A-30
addition
fractional 3-18
multi-precision 3-23
unsigned 3-22
Address Generation Unit (AGU) 2-3, 4-1
address registers (RO-R3) 4-4
incrementer/decrementer unit 4-5
Modifier Register (M01) 4-5
modulo arithmetic unit 4-5
Offset Register (N) 4-4
Stack Pointer Register (SP) 4-4
address register indirect modes 4-7
addressing modes 4-1, 4-6, A-6
addressing modes summary 4-23

AGU, see Address Generation Unit (AGU) 4-1

ALU, see Data Arithmetic Logic Unit (ALU)
analog signal processing 1-5
anal og-to-digital 1-6
AND A-35
ANDC A-36
arithmetic
division 3-21
multiplication 3-19
unsigned 3-22, 3-36
arithmetic instructions 6-6

Arithmetic Right Shift with Accumulate ASRAC A-44

Arithmetic Shift Left ASL A-38
Arithmetic Shift Right ASR A-42
array indexes 8-26

ASL A-38

ASLL A-40

0 MOTOROLA

ASR A-42
ASRAC A-44
ASRR A-46

B

B accumulator 3-2, 3-4

BO, see B accumulator

B1, see B accumulator

B2 accumulator extension register 3-2
barrel shifter 3-2, 3-5

Bcc A-48

BEC 8-4

benchmarks B-1

BES 8-4

BFCHG A-50

BFCLR A-52

BFSET A-54

BFTSTH A-56

BFTSTL A-58

bit-manipulation instructions 6-8
bit-manipulation unit 2-5

BLC 84

BLS 8-4

BMI 8-4

bootstrap memory 2-8

boundary scan cell 9-1

BPL 8-4

BR1CLR operation 8-3

BR1SET operation 8-3

BRA A-59

Branch BRA A-59

Branch Conditionally Bcc A-48
Branch if Bits Clear BRCLR A-60
Branch if Bits Set BRSET A-62
branching techniques, software 8-2
BRCLR A-60

BRSET A-62

bus unit 2-5

BVC 8-4

BVS 84

C

C condition bit 5-7, A-10

CC, see condition code (CC) hit

CCR, see Condition Code Register (CCR)
CGDB, see core global data bus (CGDB)
Clear Accumulator CLR A-64

Index

Index-i

CLR A-64
CMP A-66
Compare CMP A-66
comparing 3-18
condition code (CC) bit 3-33, 3-34, 3-35, 3-36, 5-12
condition code computation A-7
condition code generation 3-33
Condition Code Register (CCR) 5-6
Condition Codes
carry (C) condition 5-7, A-10
effect of CC bit A-11
effect of SA bit A-11
extension in use (E) condition 5-8, A-8
limit (L) condition 5-8, A-8
negative (N) condition 5-7, A-9
overflow (V) condition 5-7, A-10
size (SZ) condition 5-8, A-7
unnormalized (U) condition 5-8, A-9
zero (Z) condition 5-7, A-10
convergent rounding 3-30
core global data bus (CGDB) 2-5

D

data ALU input registers (X0, Y1, and YO0) 3-4
Data ALU, see Data Arithmetic Logic Unit (ALU)
Data Arithmetic Logic Unit (ALU) 2-3, 3-1
accumulator registers (A and B) 3-4
accumulator shifter 3-6
barrel shifter 3-5
DataLimiter 3-6, 3-26
input registers (X0, Y1, and YO0) 3-4
logic unit 3-5
MAC Output Limiter 3-6, 3-28
multiply-accumulator (MAC) 3-5
Data Limiter 3-2, 3-6, 3-26
DEBUG A-68
debug processing state 7-1, 7-22
DEC(W) A-69
Decrement Word DEC(W) A-69
digital signal processing 1-6
digital-to-analog 1-6
DIV A-71
Divide Iteration DIV A-71
divison 3-21, 8-13
fractional 3-21, 8-13
integer 3-21, 8-13
DO A-73
DO looping 5-15
DO loops 8-20
DSP56800 1-1
DSP56800 core 1-2

Index-ii

DSP56800 Family Manual

E

E condition bit 5-8, A-8

End Current DO Loop ENDDO A-77
ENDDO A-77

Enter Debug Mode DEBUG A-68
EOR A-79

EORC A-81

EX, see external X memory (EX)
exception processing state 7-1, 7-5
extension register (A2 or B2) 3-4
external data memory 2-7

external X memory (EX) 5-11

F

fractional arithmetic 3-14
fractional division 3-21, 8-13
fractional multiplication 3-19

H

hardware interrupt sources 7-10
Hardware Stack (HWS) 5-6

[1 and 10 interrupt mask bits 5-8
ILLEGAL A-83

[llegal Instruction Interrupt ILLEGAL A-83
IMPY (16) A-84

INC(W) A-86

Increment Word INC(W) A-86
incrementer/decrementer unit 4-5
indexes 8-26

instruction decoder 5-3

instruction execution pipelining 6-30
instruction formats 6-3

instruction groups 6-6

instruction latch 5-3

Instruction Processing 6-30
instruction set restrictions A-26
instruction set summary 6-17
instruction timing A-16

integer arithmetic 3-14, 3-20
integer division 3-21, 8-13

integer multiplication 3-20

Integer Multiply IMPY (16) A-84
interrupt arbitration 7-12

interrupt control unit 5-3

interrupt latency 7-16

interrupt mask (11 and 10) 5-8
interrupt pipeline 7-14

interrupt priority level (IPL) 5-3
Interrupt Priority Register (IPR) 7-9
interrupt priority structure 7-8
interrupt sources 7-9

0 MOTOROLA

hardware 7-10
other 7-11
software 7-11
interrupt vector table 7-7
interrupts 8-30
IPL, seeinterrupt priority level (IPL)
IPR, see Interrupt Priority Register (IPR)

J

Jcc A-88

JEC 8-4

JES 8-4

JLC 84

JLS8-4

JMI 8-4

JMP A-90

Joint Test Action Group (JTAG), see JTAG
JPL 8-4

JR1CLR operation 8-3

JR1SET operation 8-3

JRCLR operation 8-2

JRSET operation 8-2

JSR A-91

JTAG 9-2

JTAG port 9-2

Jump Conditionally Jcc A-88
Jump IMP A-90

Jump to Subroutine JSR A-91
jump with register argument 8-33
jumping techniques, software 8-2
JvVC8-4

VS84

L

L condition bit 5-8, A-8

LEA A-92

LF, seeloop flag (LF)

Load Effective Address LEA A-92

local variables 8-28

logic unit 3-5

Logical AND A-35

Logical AND, Immediate ANDC A-36
Logical Complement NOT A-139

Logical Complement with Carry NOTC A-140
Logica Exclusive OR EOR A-79

Logical Exclusive OR Immediate EORC A-81
Logical Inclusive OR Immediate ORC A-144
Logical Inclusive OR OR A-142

logical instructions 6-7

logical operations 3-19

Logical Right Shift with Accumulate LSRAC A-99
Logical Shift Left LSL A-93

Logical Shift Right LSR A-97

0 MOTOROLA

Loop Address Register (LA) 5-5
Loop Count Register (LC) 5-4
loop flag (LF) 5-9

looping control unit 5-4
looping instructions 6-9
looping termination 5-15
loops 5-14, 8-20

LSL A-93

LSLL A-95

LSR A-97

LSRAC A-99

LSRR A-101

M

MO01, see Modifier Register (M01)
MAC 3-2, A-103
MAC Output Limiter 3-6, 3-28
MAC, see multiply-accumulator (MAC)
MACR A-105
MACSU A-108
MAX operation 8-6
MB and MA, see operating mode (MB and MA)
memory access processing 6-31
MIN operation 8-7
Mode Register (MR) 5-6
Modifier Register (M01) 4-5
modulo arithmetic unit 4-5
MOVE A-110, A-112, A-114
Move Absolute Short MOV E(S) A-126
Move Control Register MOVE(C) A-116
Move Immediate MOV E(l) A-120
move instructions 6-9
Move Peripheral Data MOVE(P) A-124
Move Program Memory MOVE(M) A-122
MOVE(C) A-116
MOVE(l) A-120
MOVE(M) A-122
MOVE(P) A-124
MOVE(S) A-126
MPY A-128
MPYR A-130
MPYSU A-132
MR, see Mode Register (MR)
Multi-Bit Arithmetic Left Shift ASLL A-40
Multi-Bit Arithmetic Right Shift ASRR A-46
Multi-Bit Logical Left Shift LSLL A-95
Multi-Bit Logical Right Shift LSRR A-101
multiplication 3-19

fractional 3-19

integer 3-20

multi-precision 3-23

unsigned 3-22
Multiply Accumulate and Round MACR A-105
Multiply-Accumulate MAC A-103

DSP56800 Family Manual Index-iii

Multiply-Accumulate Signed x Unsigned

MACSU A-108
multiply-accumulator (MAC) 3-2, 3-5
multi-tasking 8-34

N

N condition bit 5-7, A-9

N, see Offset Register (N)

NEG A-134

Negate Accumulator NEG A-134
NEGW 8-4

nested looping 5-15

nested looping bit (NL) 5-13

NL, see nested looping bit (NL)
No Operation NOP A-136

NOP A-136

NORM A-137

normal processing state 7-1, 7-2
Normalize Accumulator Iteration NORM A-137
NOT A-139

notations A-1

NOTC A-140

O

Offset Register (N) 4-4
OMR, see Operating Mode Register (OMR)
OnCE 2-5
ONCE pipeline 9-7
OnCE port
FIFO history buffer 9-7
overview 9-4
PAB FIFO 9-7
ONCE port architecture 9-5
On-Chip Emulation (OnCE) 2-5
operating mode (MB and MA) 5-10
Operating Mode Register (OMR) 5-9
Condition Code bit (CC) 5-12, A-11
External X memory bit (EX) 5-11
Nested Looping bit (NL) 5-13
Operating Mode bits (MB and MA) 5-10
Rounding bit (R) 5-12
Saturation bit (SA) 5-11, A-11
Stop Delay hit (SD) 5-12
OR A-142
ORC A-144

P

Parallel Move—Dual Parallel Reads A-114
parallel moves 6-1

Parallel Move—Single Parallel Move A-112
parameters, passing subroutine 8-28

PC, see Program Counter (PC)

PDB, see program data bus (PDB)

Index-iv

peripheral blocks 1-3
peripheral data bus 2-5

PGDB, see peripheral global data bus (PGDB)

phase-locked loop (PLL) 2-8
pipeline dependencies 4-33
pipelining 6-30
PLL, see phase-locked loop (PLL)
POP A-146
Pop from Stack POP A-146
power consumption 7-19
processing states 7-1

debug 7-1, 7-22

exception 7-1, 7-5

normal 7-1, 7-2

reset 7-1

stop 7-1, 7-19

wait 7-1, 7-17
program control instructions 6-11
Program Controller 2-4
Program Counter (PC) 5-3
program data bus (PDB) 2-5
program memory 2-8
programming model 2-8, 6-5
PUSH operation 8-19

R

R rounding bit 5-12
RO-R3 4-4
register direct addressing modes 4-7
REP A-147
repeat looping 5-14
Repeat Next Instruction REP A-147
reset processing state 7-1
entering 7-1
leaving 7-2
restrictions, instruction set A-26
Return from Interrupt RTI A-156
Return from Subroutine RTS A-158
RND A-150
ROL A-152
ROR A-154
Rotate Left ROL A-152
Rotate Right ROR A-154
Round Accumulator RND A-150
rounding 3-30
convergent 3-30
two’s-complement 3-31
Rounding bit (R) 5-12
RTI A-156
RTS A-158

S
saturation 3-26

DSP56800 Family Manual

0 MOTOROLA

Saturation bit (SA) 5-11
SBC A-159
SD stop delay bit 5-12
shift operations 8-8
Signed Multiply and Round MPYR A-130
Signed Multiply MPY A-128
Signed Unsigned Multiply MPY SU A-132
software interrupt sources
illegal instruction (111) 7-11
software interrupt (SWI) 7-11
Software Interrupt SWI A-165
software stack 5-13
SP, see Stack Pointer Register (SP)
SR, see Status Register (SR)
Stack Pointer Register (SP) 4-4
Start Hardware Do Loop DO A-73
Status Register (SR) 5-6
carry bit (C) 5-7
extension bit (E) 5-8
interrupt mask bits (11 and 10) 5-8
limit bit (L) 5-8
loop flag bit (LF) 5-9
negative bit (N) 5-7
overflow bit (V) 5-7
reserved bits 5-9
size bit (S2) 5-8
unnormalized bit (U) 5-8
zero bit (Z2) 5-7
STOP A-161
stop delay (SD) 5-12
STOP instruction 7-19
Stop Instruction Processing STOP A-161
stop processing state 7-1, 7-19
SUB A-162
Subtract Long with Carry SBC A-159
Subtract SUB A-162
subtraction
fractional 3-18
multi-precision 3-23
SWI A-165
SZ condition bit 5-8, A-7

T

TAP, see test access port (TAP)

Tcc A-166

test access port (TAP) 9-2

Test Accumulator TST A-170

Test Bitfield and Change BFCHG A-50
Test Bitfield and Clear BFCLR A-52
Test Bitfield and Set BFSET A-54
Test Bitfield High BFTSTH A-56

Test Bitfield Low BFTSTL A-58

Test Register or Memory TSTW A-172
TFR A-168

0 MOTOROLA

time-critical loops 8-29

Transfer Conditionally Tcc A-166
Transfer Data ALU Register TFR A-168
TST A-170

TSTW A-172

two’ s-complement rounding 3-31

U

U condition bit 5-8, A-9
unsigned arithmetic 3-22
addition 3-22
condition code computation 3-22
multiplication 3-22
subtraction 3-22
unsigned load of an accumulator 8-7

Vv
V condition bit 5-7, A-10
w

WAIT A-174
Wait for interrupt WAIT A-174
walit processing state 7-1, 7-17

X

X0 input register 3-2, 3-4

XAB12-5

XAB22-5

XCHG register exchange operation 8-6
XDB2 2-5

Y

YO input register 3-2, 3-4
Y 1linput register 3-2, 3-4

Z
Z condition bit 5-7, A-10

DSP56800 Family Manual

Index-v

Index-vi DSP56800 Family Manual 0 MOTOROLA

	About This Book
	Chapter�1 Introduction
	1.1 DSP56800 Family Architecture
	1.1.1 Core Overview
	1.1.2 Peripheral Blocks
	1.1.3 Family Members

	1.2 Introduction to Digital Signal Processing
	1.3 Summary of Features
	1.4 For the Latest Information

	Chapter�2 Core Architecture Overview
	2.1 Core Block Diagram
	2.1.1 Data Arithmetic Logic Unit (ALU)
	2.1.2 Address Generation Unit (AGU)
	2.1.3 Program Controller and Hardware Looping Unit
	2.1.4 Bus and Bit-Manipulation Unit
	2.1.5 On-Chip Emulation (OnCE) Unit
	2.1.6 Address Buses
	2.1.7 Data Buses

	2.2 Memory Architecture
	2.3 Blocks Outside the DSP56800 Core
	2.3.1 External Data Memory
	2.3.2 Program Memory
	2.3.3 Bootstrap Memory
	2.3.4 IP-BUS Bridge
	2.3.5 Phase Lock Loop (PLL)

	2.4 DSP56800 Core Programming Model

	Chapter�3 Data Arithmetic Logic Unit
	3.1 Overview and Architecture
	3.1.1 Data ALU Input Registers (X0, Y1, and Y0)
	3.1.2 Data ALU Accumulator Registers
	3.1.3 Multiply-Accumulator (MAC) and Logic Unit
	3.1.4 Barrel Shifter
	3.1.5 Accumulator Shifter
	3.1.6 Data Limiter and MAC Output Limiter

	3.2 Accessing the Accumulator Registers
	3.2.1 Accessing an Accumulator by Its Individual Portions
	3.2.2 Accessing an Entire Accumulator
	3.2.2.1 Accessing for Data ALU Operations
	3.2.2.2 Writing an Accumulator with a Small Operand
	3.2.2.3 Extension Registers as Protection Against Overflow
	3.2.2.4 Examples of Writing the Entire Accumulator

	3.2.3 General Integer Processing
	3.2.3.1 Writing Integer Data to an Accumulator
	3.2.3.2 Reading Integer Data from an Accumulator

	3.2.4 Using 16-Bit Results of DSP Algorithms
	3.2.5 Saving and Restoring Accumulators
	3.2.6 Bit-Field Operations on Integers in Accumulators
	3.2.7 Converting from 36-Bit Accumulator to 16-Bit Portion

	3.3 Fractional and Integer Data ALU Arithmetic
	3.3.1 Interpreting Data
	3.3.2 Data Formats
	3.3.2.1 Signed Fractional
	3.3.2.2 Unsigned Fractional
	3.3.2.3 Signed Integer
	3.3.2.4 Unsigned Integer

	3.3.3 Addition and Subtraction
	3.3.4 Logical Operations
	3.3.5 Multiplication
	3.3.5.1 Fractional Multiplication
	3.3.5.2 Integer Multiplication

	3.3.6 Division
	3.3.7 Unsigned Arithmetic
	3.3.7.1 Conditional Branch Instructions for Unsigned Operations
	3.3.7.2 Unsigned Multiplication

	3.3.8 Multi-Precision Operations
	3.3.8.1 Multi-Precision Addition and Subtraction
	3.3.8.2 Multi-Precision Multiplication

	3.4 Saturation and Data Limiting
	3.4.1 Data Limiter
	3.4.2 MAC Output Limiter
	3.4.3 Instructions Not Affected by the MAC Output Limiter

	3.5 Rounding
	3.5.1 Convergent Rounding
	3.5.2 Two’s-Complement Rounding

	3.6 Condition Code Generation
	3.6.1 36-Bit Destinations—CC Bit Cleared
	3.6.2 36-Bit Destinations—CC Bit Set
	3.6.3 20-Bit Destinations—CC Bit Cleared
	3.6.4 20-Bit Destinations—CC Bit Set
	3.6.5 16-Bit Destinations
	3.6.6 Special Instruction Types
	3.6.7 TST and TSTW Instructions
	3.6.8 Unsigned Arithmetic

	Chapter�4 Address Generation Unit
	4.1 Architecture and Programming Model
	4.1.1 Address Registers (R0-R3)
	4.1.2 Stack Pointer Register (SP)
	4.1.3 Offset Register (N)
	4.1.4 Modifier Register (M01)
	4.1.5 Modulo Arithmetic Unit
	4.1.6 Incrementer/Decrementer Unit

	4.2 Addressing Modes
	4.2.1 Register-Direct Modes
	4.2.1.1 Data or Control Register Direct
	4.2.1.2 Address Register Direct

	4.2.2 Address-Register-Indirect Modes
	4.2.2.1 No Update: (Rn), (SP)
	4.2.2.2 Post-Increment by 1: (Rn)+, (SP)+
	4.2.2.3 Post-Decrement by 1: (Rn)-, (SP)-
	4.2.2.4 Post-Update by Offset N: (Rn)+N, (SP)+N
	4.2.2.5 Index by Offset N: (Rn+N), (SP+N)
	4.2.2.6 Index by Short Displacement: (SP-xx), (R2+xx)
	4.2.2.7 Index by Long Displacement: (Rn+xxxx), (SP+xxxx)

	4.2.3 Immediate Data Modes
	4.2.3.1 Immediate Data: #xxxx
	4.2.3.2 Immediate Short Data: #xx

	4.2.4 Absolute Addressing Modes
	4.2.4.1 Absolute Address (Extended Addressing): xxxx
	4.2.4.2 Absolute Short Address (Direct Addressing): <aa>
	4.2.4.3 I/O Short Address (Direct Addressing): <pp>

	4.2.5 Implicit Reference
	4.2.6 Addressing Modes Summary

	4.3 AGU Address Arithmetic
	4.3.1 Linear Arithmetic
	4.3.2 Modulo Arithmetic
	4.3.2.1 Modulo Arithmetic Overview
	4.3.2.2 Configuring Modulo Arithmetic
	4.3.2.3 Supported Memory Access Instructions
	4.3.2.4 Simple Circular Buffer Example
	4.3.2.5 Setting Up a Modulo Buffer
	4.3.2.6 Wrapping to a Different Bank
	4.3.2.7 Side Effects of Modulo Arithmetic
	4.3.2.7.1 When a Pointer Lies Outside a Modulo Buffer
	4.3.2.7.2 Restrictions on the Offset Register
	4.3.2.7.3 Memory Locations Not Available for Modulo Buffers

	4.4 Pipeline Dependencies

	Chapter�5 Program Controller
	5.1 Architecture and Programming Model
	5.1.1 Program Counter
	5.1.2 Instruction Latch and Instruction Decoder
	5.1.3 Interrupt Control Unit
	5.1.4 Looping Control Unit
	5.1.5 Loop Counter
	5.1.6 Loop Address
	5.1.7 Hardware Stack
	5.1.8 Status Register
	5.1.8.1 Carry (C)—Bit 0
	5.1.8.2 Overflow (V)—Bit 1
	5.1.8.3 Zero (Z)—Bit 2
	5.1.8.4 Negative (N)—Bit 3
	5.1.8.5 Unnormalized (U)—Bit 4
	5.1.8.6 Extension (E)—Bit 5
	5.1.8.7 Limit (L)—Bit 6
	5.1.8.8 Size (SZ)—Bit 7
	5.1.8.9 Interrupt Mask (I1 and I0)—Bits 8–9
	5.1.8.10 Reserved SR Bits— Bits 10–14
	5.1.8.11 Loop Flag (LF)—Bit 15

	5.1.9 Operating Mode Register
	5.1.9.1 Operating Mode Bits (MB and MA)—Bits 1–0
	5.1.9.2 External X Memory Bit (EX)—Bit 3
	5.1.9.3 Saturation (SA)—Bit 4
	5.1.9.4 Rounding Bit (R)—Bit 5
	5.1.9.5 Stop Delay Bit (SD)—Bit 6
	5.1.9.6 Condition Code Bit (CC)—Bit 8
	5.1.9.7 Nested Looping Bit (NL)—Bit 15
	5.1.9.8 Reserved OMR Bits—Bits 2, 7 and 9–14

	5.2 Software Stack Operation
	5.3 Program Looping
	5.3.1 Repeat (REP) Looping
	5.3.2 DO Looping
	5.3.3 Nested Hardware DO and REP Looping
	5.3.4 Terminating a DO Loop

	Chapter�6 Instruction Set Introduction
	6.1 Introduction to Moves and Parallel Moves
	6.2 Instruction Formats
	6.3 Programming Model
	6.4 Instruction Groups
	6.4.1 Arithmetic Instructions
	6.4.2 Logical Instructions
	6.4.3 Bit-Manipulation Instructions
	6.4.4 Looping Instructions
	6.4.5 Move Instructions
	6.4.6 Program Control Instructions

	6.5 Instruction Aliases
	6.5.1 ANDC, EORC, ORC, and NOTC Aliases
	6.5.2 LSLL Alias
	6.5.3 ASL Alias
	6.5.4 CLR Alias
	6.5.5 POP Alias

	6.6 DSP56800 Instruction Set Summary
	6.6.1 Register Field Notation
	6.6.2 Using the Instruction Summary Tables
	6.6.3 Instruction Summary Tables

	6.7 The Instruction Pipeline
	6.7.1 Instruction Processing
	6.7.2 Memory Access Processing

	Chapter�7 Interrupts and the Processing States
	7.1 Reset Processing State
	7.2 Normal Processing State
	7.2.1 Instruction Pipeline Description
	7.2.2 Instruction Pipeline with Off-Chip Memory Accesses
	7.2.3 Instruction Pipeline Dependencies and Interlocks

	7.3 Exception Processing State
	7.3.1 Sequence of Events in the Exception Processing State
	7.3.2 Reset and Interrupt Vector Table
	7.3.3 Interrupt Priority Structure
	7.3.4 Configuring Interrupt Sources
	7.3.5 Interrupt Sources
	7.3.5.1 External Hardware Interrupt Sources
	7.3.5.2 DSP Core Hardware Interrupt Sources
	7.3.5.3 DSP Core Software Interrupt Sources

	7.3.6 Interrupt Arbitration
	7.3.7 The Interrupt Pipeline
	7.3.8 Interrupt Latency

	7.4 Wait Processing State
	7.5 Stop Processing State
	7.6 Debug Processing State

	Chapter�8 Software Techniques
	8.1 Useful Instruction Operations
	8.1.1 Jumps and Branches
	8.1.1.1 JRSET and JRCLR Operations
	8.1.1.2 BR1SET and BR1CLR Operations
	8.1.1.3 JR1SET and JR1CLR Operations
	8.1.1.4 JVS, JVC, BVS, and BVC Operations
	8.1.1.5 Other Jumps and Branches on Condition Codes

	8.1.2 Negation Operations
	8.1.2.1 NEGW Operation
	8.1.2.2 Negating the X0, Y0, or Y1 Data ALU registers
	8.1.2.3 Negating an AGU register
	8.1.2.4 Negating a Memory Location

	8.1.3 Register Exchanges
	8.1.4 Minimum and Maximum Values
	8.1.4.1 MAX Operation
	8.1.4.2 MIN Operation

	8.1.5 Accumulator Sign Extend
	8.1.6 Unsigned Load of an Accumulator

	8.2 16- and 32-Bit Shift Operations
	8.2.1 Small Immediate 16- or 32-Bit Shifts
	8.2.2 General 16-Bit Shifts
	8.2.3 General 32-Bit Arithmetic Right Shifts
	8.2.4 General 32-Bit Logical Right Shifts
	8.2.5 Arithmetic Shifts by a Fixed Amount
	8.2.5.1 Right Shifts (ASR12–ASR20)
	8.2.5.2 Left Shifts (ASL16–ASL19)

	8.3 Incrementing and Decrementing Operations
	8.4 Division
	8.4.1 Positive Dividend and Divisor with Remainder
	8.4.2 Signed Dividend and Divisor with No Remainder
	8.4.3 Signed Dividend and Divisor with Remainder
	8.4.4 Algorithm Examples
	8.4.5 Overflow Cases

	8.5 Multiple Value Pushes
	8.6 Loops
	8.6.1 Large Loops (Count Greater Than 63)
	8.6.2 Variable Count Loops
	8.6.3 Software Loops
	8.6.4 Nested Loops
	8.6.4.1 Recommendations
	8.6.4.2 Nested Hardware DO and REP Loops
	8.6.4.3 Comparison of Outer Looping Techniques

	8.6.5 Hardware DO Looping in Interrupt Service Routines
	8.6.6 Early Termination of a DO Loop

	8.7 Array Indexes
	8.7.1 Global or Fixed Array with a Constant
	8.7.2 Global or Fixed Array with a Variable
	8.7.3 Local Array with a Constant
	8.7.4 Local Array with a Variable
	8.7.5 Array with an Incrementing Pointer

	8.8 Parameters and Local Variables
	8.9 Time-Critical DO Loops
	8.10 Interrupts
	8.10.1 Setting Interrupt Priorities in Software
	8.10.1.1 High Priority or a Small Number of Instructions
	8.10.1.2 Many Instructions of Equal Priority
	8.10.1.3 Many Instructions and Programmable Priorities

	8.10.2 Hardware Looping in Interrupt Routines
	8.10.3 Identifying System Calls by a Number

	8.11 Jumps and JSRs Using a Register Value
	8.12 Freeing One Hardware Stack Location
	8.13 Multitasking and the Hardware Stack
	8.13.1 Saving the Hardware Stack
	8.13.2 Restoring the Hardware Stack

	Chapter�9 JTAG and On-Chip Emulation (OnCE™)
	9.1 Combined JTAG and OnCE Interface
	9.2 JTAG Port
	9.2.1 JTAG Capabilities
	9.2.2 JTAG Port Architecture

	9.3 OnCE Port
	9.3.1 OnCE Port Capabilities
	9.3.2 OnCE Port Architecture
	9.3.2.1 Command, Status, and Control
	9.3.2.2 Breakpoint and Trace
	9.3.2.3 Pipeline Save and Restore
	9.3.2.4 FIFO History Buffer

	Appendix�A Instruction Set Details
	A.1 Notation
	A.2 Programming Model
	A.3 Addressing Modes
	A.4 Condition Code Computation
	A.4.1 The Condition Code Bits
	A.4.1.1 Size (SZ)—Bit 7
	A.4.1.2 Limit (L)—Bit 6
	A.4.1.3 Extension in Use (E)—Bit 5
	A.4.1.4 Unnormalized (U)—Bit 4
	A.4.1.5 Negative (N)—Bit 3
	A.4.1.6 Zero (Z)—Bit 2
	A.4.1.7 Overflow (V)—Bit 1
	A.4.1.8 Carry (C)—Bit 0

	A.4.2 Effects of the Operating Mode Register’s SA Bit
	A.4.3 Effects of the OMR’s CC Bit
	A.4.4 Condition Code Summary by Instruction

	A.5 Instruction Timing
	A.6 Instruction Set Restrictions
	A.7 Instruction Descriptions

	Appendix�B DSP Benchmarks
	B.1 Benchmark Code
	B.1.1 Real Correlation or Convolution (FIR Filter)
	B.1.2 N Complex Multiplies
	B.1.3 Complex Correlation Or Convolution (Complex FIR)
	B.1.4 Nth Order Power Series (Real, Fractional Data)
	B.1.5 N Cascaded Real Biquad IIR Filters (Direct Form II)
	B.1.6 N Radix 2 FFT Butterflies
	B.1.7 LMS Adaptive Filter
	B.1.7.1 Single Precision
	B.1.7.2 Double Precision
	B.1.7.3 Double Precision Delayed

	B.1.8 Vector Multiply-Accumulate
	B.1.9 Energy in a Signal
	B.1.10 [3x3][1x3] Matrix Multiply
	B.1.11 [NxN][NxN] Matrix Multiply
	B.1.12 N Point 3x3 2-D FIR Convolution
	B.1.13 Sine-Wave Generation
	B.1.13.1 Double Integration Technique
	B.1.13.2 Second Order Oscillator

	B.1.14 Array Search
	B.1.14.1 Index of the Highest Signed Value
	B.1.14.2 Index of the Highest Positive Value

	B.1.15 Proportional Integrator Differentiator (PID) Algorithm
	B.1.16 Autocorrelation Algorithm

