

M6800

RESIDENT COBOL
LANGUAGE REFERENCE MANUAL

This manual describes the programming language features of the Mo-
torola Resident COBOL compiler. An associated manual—RESIDENT COBOL OPER-
ATIONS REFERENCE MANUAL—describes the use and operation of both the
compiler and the operating system.

The information in this document has been carefully checked and is be-
lieved to be entirely reliable. However, no responsibility is assumed for inaccuracies.
Furthermore, such information does not convey to the purchaser of the product
described any license under the patent rights of Motorola Inc. or others.

Motorola reserves the right to change specifications without notice.

Second Edition
Copyright 1978 by Motorola Inc.
First Edition January 1978

PREFACE

M6800 COBOL is based on the specification of the COBOL standard published by
the American National Standards Institute (formerly known as the United States of America
Standards Institute) and contained in the publication USA Standard COBOL X3.23—1974.

As its name implies, COBOL (COmmon Business Oriented Language) is especially
efficient in the processing of business problems. Such problems typically involve relatively
little algebraic or logical processing; instead, they most often manipulate large files of basically
similar records in a relatively simple way. This means that COBOL emphasizes mainly the
description and handling of data items and input/output records.

This publication explains Motorola M6800 ANS COBOL, which is a compatible
subset of American National Standard COBOL and includes a number of extensions to it as
well. The compiler supports the processing modules defined in the standard. These processing
modules include the following:

NUCLEUS defines the permissible character set and the basic elements of the language in
each of the four COBOL divisions: IDENTIFICATION DIVISION, ENVIRONMENT
DIVISION, DATA DIVISION, PROCEDURE DIVISION.

TABLE HANDLING allows the definition of tables of contiguous data items and accessing
these items through subscripts.

SEQUENTIAL ACCESS allows the records of a file to be accessed in an established sequence.
It also provides for the specification of rerun points and the sharing of
memory area among files.

RANDOM ACCESS allows the records of a mass storage file to be accessed in a random
manner specified by the programmer. Specifically defined keys, supplied
by the programmer, control successive references to the file. It also pro-
vides for the specification of rerun points and the sharing of memory area
among files.

LIBRARY allows the programmer to specify text that is to be copied from a library. This
supports the retrieval and updating of prewritten source program entries from a
user’s library, for inclusion in a COBOL program at compile time. The effect of the
compilation of library text is as though the text were actually written as part of the
source program.

PRINCIPLES OF COBOL

COBOL is one of a group of high-level computer languages. Such languages are
problem oriented and relatively machine independent, thus freeing the programmer from many
of the restrictions of assembler language and allowing him to concentrate upon the logical
aspects of his problem.

COBOL looks and reads much like ordinary business English. The programmer can
use English words and conventional arithmetic symbols to direct and control the computer
operations. A few typical COBOL sentences follow:

ADD NEW-PURCHASES TO TOTAL-CHARGES.
MULTIPLY QUANTITY BY UNIT-PRICE GIVING INVENTORY-VALUE.

PERFORM FEDERAL-TAX-CALCULATIONS.
IF ITEM-CODE IS NUMERIC GO TO CHECK-ACCOUNT-NUMBER.

Such COBOL sentences are easily understandable, but they must be translated into
machine language—the internal instruction codes—before they can actually be used.

A special systems program, known as a compiler, is first entered into the computer.
The COBOL program (referred to as the source program) is then entered into the machine,
where the compiler reads it and analyzes it. The COBOL language contains a basic set of
reserved words and symbols. Each combination of reserved words and symbols is transformed
by the compiler into a definite set of machine instructions. In effect, the programmer has at his
disposal a whole series of “prefabricated” portions of the machine-language program he
wishes the compiler to construct.

When the programmer writes a COBOL program, he is actually directing the com-
piler to bring together, in the desired sequence, the groups of machine instructions necessary
to achieve the desired result. From the programmer’s instructions, the compiler creates a new
program in machine language. This program is known as an object program.

ORGANIZATION OF MANUAL

A COBOL source program consists of information in four divisions: the IDENTIFICA-
TION DIVISION, ENVIRONMENT DIVISION, DATA DIVISION, and PROCEDURE DIVISION.
Taken together, these divisions constitute the total program (including a description of the
configuration needed, the forms of various data files, and the programming steps necessary to
perform these procedures), and are presented to the processor for compilation into a corre-
sponding object program.
In this manual, M6800 ANS COBOL is described as follows:
e Chapter 1describes the COBOL language structure. It presents the COBOL theory
behind word formation, the use of words to name elements in a program, and a
discussion of the syntax of the language.
e Chapter 2 contains a discussion of the format and organization of data in files,
together with methods used to remove data from, or place data into, such files.
e Chapters 3 through 6 present a detailed description of the IDENTIFICATION,
ENVIRONMENT, DATA, and PROCEDURE DIVISIONs, respectively.
e Chapter 7 contains a description of the statements that affect the COBOL library.
e The appendixes contain supplementary information: a list of ANS COBOL re-
served words; a sample M6800 ANS COBOL problem; and a list of M6800 ANS
COBOL data types.

M6800 Extensions to the ANS COBOL Standard

Listed below are M6800 extensions to the ANS COBOL standard. Although these
extensions do not comform to the ANS Standard, they may be compatible with language forms
used by other manufacturers. Wherever possible an attempt has been made to keep all
extensions in conformance with the generally accepted industry usage.

LANGUAGE CONCEPTS
Apostrophe is used as a default value for quotation mark.
Hexadecimal constants.

IDENTIFICATION DIVISION
None.

ENVIRONMENT DIVISION
None.

DATA DIVISION
LINE and COLUMN clauses for CRT formatting.

PROCEDURE DIVISION
@(row, column) clause on DISPLAY statement.
ON SIZE ERROR clause on MOVE statement.
De-edit action for move of picture X to picture 9.
The word THEN may be used to separate statements.

Vi

ACKNOWLEDGMENT

In compliance with the request of the Executive Committee of the Conference on
Data System Languages (CODASYL), and specifically the CODASYL COBOL Committee, the
following acknowledgment is extracted from that contained in the publication COBOL, Edition
1974.

“Any organization interested in reproducing the COBOL report and specificationst,
in whole or in part, using ideas taken from this report as the basis for an instruction manual or
for any other purpose is free to do so. However, all such organizations are requested to
reproduce this section as part of the introduction to the document. Those using a short
passage, as in a book review, are requested to mention COBOL in acknowledgment of the
source, but need not quote this entire section.

“COBOL is an industry language and is not the property of any company or group of
companies, or of any organization or group of organizations.

“No warranty, expressed or implied, is made by any contributor or by the COBOL
Committee as to the accuracy and functioning of the programming system and language.
Moreover, no responsibility is assumed by any contributor, or by the Committee, in connection
therewith.

“Procedures have been established for the maintenance of COBOL. Inquiries con-
cerning the procedures for proposing changes should be directed to the Executive Committee
of the Conference on Data Systems Languages (CODASYL).

“The authors and copyright holders of the copyrighted material used herein have
specifically authorized the use of this material, in whole or in part, in the COBOL specifications.
Such authorization extends to the reproduction and use of COBOL specifications in program-
ming manuals or similar publications.”

tCOBOL, Edition 1965, produced by joint efforts of the CODASYL COBOL Committee
and the European Computer Manufacturers Association (ECMA).

FLOW-MATIC (Trademark of Sperry Rand Corporation), Programming for the Univac
(R) I and Il, Data Automation Systems copyrighted 1958, 1959 by Sperry Rand
Corporation; IBM Commercial Translator Form No. F 28-8013, copyrighted 1959 by
IBM; FACT, DSI 27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell.

Vii

COMMAND SYNTAX NOTATION

Notation conventions used in command specifications and examples throughout
this manual are listed below.

Notation

Description

lowercase letters

CAPITAL LETTERS

[]

Numbers and special
characters

Subscripts

lowercase letters identify an element that must be replaced with a
user-selected value.
CRndd could be entered as CRAOS.

Capital letters must be entered as shown for input, and will be
printed as shown in output.
DPndd means “enter DP followed by the values for ndd.”

An element inside brackets is optional. Several elements placed
one-under the other inside a pair of brackets means that the user
may select any one or none of those elements.

[KEYM] means the term “KEYM’ may be entered.

Elements placed one under the other inside a pair of braces iden-
tify a required choice.
A
id means that either the letter A or the value of id must be
entered.

The horizontal ellipsis indicates that a previous bracketed element
may be repeated, or that elements have been omitted.
name[,name] ... means that one or more name values may be
entered, with a comma inserted between each name
value.

The vertical ellipsis indicates that commands or instructions have
been omitted.
OPEN MASTER-FILE.
X means that there are one or more
statements omitted between

CLOSE MASTER-FILE. the two commands.

Numbers that appear on the line (i.e., not subscripts),

special symbols, and punctuation marks other than dotted lines,

brackets, braces, and underlines appear as shown in output mes-

sages and must be entered as shown when input.

(value) means that the proper value must be entered enclosed in
parentheses; e.g., (234).

Subscripts indicate a first, second, etc., representation of a param-
eter that has a different value for each occurrence.
names, namez, names means that three successive values for
name should be entered, separated by commas.

Viii

CONTENTS

ACKNOWLEDGMENT vii
PREFACE iii
COMMAND SYNTAX NOTATION viii
CHAPTER 1. COBOL LANGUAGE STRUCTUREcciiiiieninnn.. 1-1
IPRBEEIEEIIIR 5ot smmmiin ey s B SR BT & SRS S K S SN 0 o oy 1-1
CHATEGION SO »ocvrrinsvesanrusms ssorens noments sl 5 d e s § SRS E 00 5o 80ELEE 9T TN 1-2
VOOTEIR. o oot B RASR o 605 5 KE NS B Kl OEE SR GED L SR QRS 5 908 Eh e e 28k AT %I 1-3
Definition and Application it 1-3
Reserved Wordsoiiiiiiiiii i e et 1-6
Concept of Computer-Independent Data Description 1-7
BUGODITIC SHONE 5owns s vamsss s pmEsss gammsm s CaBmss s s« o5 & a5 6 0 e 5 S0 0 1-8
Uniqueness of Data Referencec.coiiiiiiiiiiiiiniineennnn. 1-9

Format NOBION ... suwerrsnmnerrommanis imsnnss dnsnar ieannns ensnnrs cunns 1-10
Reference Formatcoiiiiii i e e 1-11
CHAPTER 2. COBOL INPUT/OUTPUT PROCESSING 2-1
COBOL FIEE . .zussiosssansssnsrnesnsenyseninbld Syaes FEeRbEtsTiss s ammnns s 2-1
File Organizationoiiiiiiiii i et e s 2-1

PUG BBEBEE .uvucissasnnsssnnsis aasamey s smmis s e s sms s 5w s w5 s e s s R0 2-1
FiloeHandling Methotscocoiscennsnssmomsnsssnanssvmsswesmmmn s 2-2
Input/Output Processing Summaryuuuuiiiiiiienennnneeenn.. 2-2
CHAPTER 3. IDENTIFICATION DIVISIONcccciiiiinmnnnnnencerioannosnsnnns 3-1
Gonera]l DOSEHDEIGN .- x i impe s 5655 50 100 EFEE 5 4B ESES 5 035 EE § 8 05 5505 805000 208 Fomrs bt B § 3-1
COGBIIERIIBIT - cos amesns o5@mss s Aa0 @R # 0@ FBEH FDEEREE 3TEFEES 0605 @055 05 48 86 7 VBESHA 3-1
PROGRAM-ID Paragraphc..uuu i iiei it eeeens 3-1
DATE-CONPILED PRIoIaIH : conws s suusss sommms s om mmb s 6 68 s o 8o w1 gms 3-1
CHAPTER 4. ENVIRONMENT DIVISION i 4-1
General DesCriptiont 4-1
Configuration SeCtion ...ttt e 4-1
SOURCE-COMPUTER Paragraph«.c...ccosesssosenisssnanssanmisies 4-1
OBJECT-COMPUTER Paragraphciiiimiiiii i 4-2
INPUT-OUTPUT SeCtioNttt ettt eeas 4-2
FILE-CONTROL PRSI o ms o mmmn ol mson oo o0 mm 5 & 9 656§ 0 60 6 66950855 4-2
SELEGT SOMBNEOE .. ocssinanas dassanmssenamss 5 6o s owan n s amoshs 58 4-2

ASOIGN TUBUHBE . v cocmmr o sl 08 10 1% 5 b 8 5 38 B 5 10 i 4-2

ACCESS TS vuwvnssvomssrensatossas ks nsvsssdsensss wyes e s 4-3

RECORD KEY ClaUuSeovtiiiiiietiiie e iiie i einaneans 4-3
FO-CONTREOL. PHERGIAPH « ouswwssossens suas orss oo i sae s oo =56 a0 26 0n Raesas o 4-4
SAME AREA Clause ...ttt iiiiiaaa e eieiaaannns 4-4

CHAPTER 5. DATA DIVISION ... e et 51
General DesCription 5-1
Physical and Logical Aspects of Data Descriptioncoiiunn. 5-1

DATA DIVISION Organizationiiiiiiiiii i 51
DATA DIVISION Structure ... i 51
File Section e 5-1
Working-Storage Sectioni i 53
File Description—Complete Entry Skeleton i 53
RECORD CONTAINS ClauSeoiuiiitteit it i i i eiaaes 54
LABEL RECORDS ClausSecouiiiiiitiiiiie ittt e 54
DATA RECORDS ClauSettt it it eens 5-4
Data Description Entriesottt 55
REDEFINES Clause ...ttt ettt 58
COPY Statement e 59
PICTURE ClaUSe ...ttt ittt et e et e e ettt 59
USAGE CIBUSE «vuusssomani s sonmbas anmmnis s smmsnms § snsans s sbawss sosanns 515
BLANK WHEN ZERO ClauSec.oiuuiiiiiiieiinet i 515
JUSTIFIED ClaUSe ...ttt ittt et ettt e e e 515
VALUE ClausSe ...ttt et et ettt 516
QOCURS ClaUSE o isninissonnnisinnnni s ivaens s (aRaas s inanui ianasnss 516
CRT Form DescCriptionsiiiiiiiiiiii it eaeenns 517

CHAPTER 6. PROCEDURE DIVISIONt 6-1

General DOSEIIPHON .uusswmsns s namanss chmwnni s 5s@mns s msnns oasmoss s asss §emns 6-1
PROCEDURE DIVISION Elementscciiiiiiiiiiiiiiieiiiaaennnn. 6-1
PROCEDURE DIVISION Structurec.c.oiiiiiiiiiiiieeeannnnnnn 6-2

Arithmetic EXPressionsttt e 6-2

Order of Computation in Compound EXpressionsccevvvuinnnn.. 6-3

Conditional Statementsc..iiiiiiii e 6-4
RelatioNS ... o e 6-4
Logical Operators (AND, OR, and NOT) ...ttt 6-4
Comparison of Numeric [tems ...t 6-5
Comparison of Non-Numeric Items ...ttt 6-5
Conditional Statements with Exception Branches 6-7
Nested Conditional Statementsccuiuuriiiiinnnnnn. 6-7

Input/Output Statementso ittt 6-7
OPEN Statement 6-7
START Statement 6-8
READ Statement i 6-9
WRITE Statement e 6-10
CLOSE Statement ...ttt e 6-11
ACCEPT Statement i e 6-11
DISPLAY Statementttt 6-11

Arithmetic Statements i 6-12
Rules for Arithmetic Verbs ...ttt 6-12
ADD Statement 6-14
SUBTRACT Statement ...ttt e 6-15
MULTIPLY Statement ...ttt 6-16

COMPUTE SEBIOMEREcounmmmnssomsmnss s essssnssass s kossas s seasss 6-18

Data Manipulation Statements i 6-18
MOVE Statement 6-18
INSPECAT BRRIBOIMTIE 5.0 000 0 005 5 5w b 5 XM ees 450 s & e @58 b m 6 »'ews 2 6-23
Sequence Control Statements i 6-24
Normal Sequence Controlco ittt 6-25

Gl TE SHEIOMBIE connsscssamar snenim i issons §olies g §48hnne 2 g « sasnss & 6-25
PERFORM Statement ittt nns 6-26

STOP Statement ... e 6-30

EXIT DIIRINENIE s anwams s comnms & sa0mne 3 Xanss 2 52050) VERBRES FRRED IS FEEANSH 6-30

IE" \STABIBIE ..o e comesmsees o wospmnins = swivdling & S EOHE & s REUAS --3REREs & SREDEE famls & 6-30

Table Handling Statements ...ttt 6-31
SERARCH SIBMEINEIE oo omss s oms o smonon s s o s a6n s 60 o5 5mn e me 56 mm e 6-32

BEL DHIEMBIE . .. covomen vomnoss vown o s FERLEE & SIS S0E BB DWE ¥ S Bad 398 R 6-33
Compiler-Directing Statements i 6-34
COPY Statement ... e e 6-34
CHAPTER 7. COBOL LIBRARYotiitti et e ettt 7-1
IDIFOAUCTION .o mmmmons wmesm s e i s e st e winsis 26w ot sisnmtin sl 3 Sspia iRk SEHH TS & LD E SRS & St & 7-1
COPY Statement e e 7-1
CHAPTER 8. DEBUGGING ittt 81
EXHIBIT Statementc.oiiiniiiiiit ittt naneans 81

APPENDIXES

APPENDIX A. ANS COBOL RESERVED WORDS ...ttt A-1
APPENDIX B. SAMPLE M6800 COBOL PROGRAMc.ciiiiiiiniinnnnn. B-1
APPENDIX C. INTERNAL DATA TYPEScoiiiiiiiiiiiinnnn. e SR C-1

Xi

Xii

CHAPTER 1
COBOL LANGUAGE STRUCTURE

INTRODUCTION

COBOL (the COmmon Business Oriented Programming Language) consists of se-
lected English words that impart key meanings to the COBOL compiler. The language is
arranged into statements, sentences, and paragraphs in a manner similar to written English.
The words of this language are selected English words (called “‘reserved words” because they
cannot be used in any other context), names of data and procedures, and numeric or non-
numeric “literals.” Punctuation is permitted, but the only meaningful punctuation is the period.

COBOL words are arranged into statements using the formats described in this
manual in the separate discussion of each statement. One or more statements compose a
sentence, which is terminated by a period. One or more sentences, in turn, constitute a
paragraph, which can be given a name so that control can pass to the paragraph by referencing
its name elsewhere in the program. Similarly, several paragraphs make up a section that can
also have a name and, in addition, can be loaded as an “overlay.” Several sections constitute a
division. There are four divisions in a COBOL program, each describing a different, important
part of the program.

Structural hierarchy of the COBOL programming language and the purpose of each
level therein are:

e The COBOL Program Contains all the information required to perform a given
task on the computer.

e Division Describes a specific category of information essential to
the compiler or, in the case of the PROCEDURE DIVISION,
specifies processing steps.

e Section Inthe PROCEDURE DIVISION, defines the smallest block of
the program that can be loaded at one time or as an overlay,
in other divisions, groups a particular type of information
within a division.

e Paragraph Comprises one or more sentences forming the smallest
block of the program that can be referenced by name.

e Sentence Consists of one or more statements terminated by a period.
e Statement Consists of a group of words that perform only one oper-
ation or function in the program.

e Word Consists of a group of characters and/or symbols that pro-

vide the structural basis of a statement.

In addition, another type of structure is permitted and fits into the hierarchy in place
of “word.” This is the structure of mathematical notation and is discussed in detail in “Arith-
metic-Expressions’” in Chapter 6.

i1

CHARACTER SET

The complete character set for M6800 ANS COBOL consists of the 51 characters
listed below.

Character Meaning

0-9 digits
A-Z letters

space (blank)

plus sign
— minus sign (hyphen)
asterisk
stroke (virgule, slash)
equals sign
currency sign
comma (decimal point)
semicolon
period (decimal point)
double quotation mark

©® |

(left parenthesis

) right parenthesis
> greater than sign
< less than sign

single quotation mark

Characters Used for Punctuation

The following characters are used for punctuation:
Character Meaning

space
’ comma

; semicolon
period

quotation mark

(left parenthesis

) right parenthesis

The following general rules of punctuation apply in writing a COBOL source
program:

1. When any punctuation mark is indicated in a format in this publication, it is
required in the program.

2. At least one space must appear between two successive words and/or parenthe-
tical expressions and/or literals. Two or more successive spaces are treated as a
single space, except within non-numeric literals.

3. An arithmetic operator or an equal sign must be preceded by a space and followed
by a space. A unary operator may be preceded by a left parenthesis.

1-2

4. A comma may be used as a separator between successive operands of a state-
ment. An operand of a statement is shown in a format as a lower-case word.

5. Acomma orasemicolon may be used to separate a series of clauses. For example,
DATA RECORD IS TRANSACTION, RECORD CONTAINS 80 CHARACTERS.

6. A semicolon may be used to separate a series of statements. For example, ADD A
TO B; SUBTRACT B FROM C.

7. The word THEN may be used to separate a series of statements. For example, IF A
= B THEN SUBTRACT B FROM C.

Characters Used for Editing

Editing characters are single characters or specific two-character combinations

belonging to the following set:

Character

B
0
+
CR

DB
Z

*

$

Meaning

space
zero

plus

minus

credit

debit

zero suppression
check protection
currency sign

comma

period (decimal point)

(For applications, see the discussion of alphanumeric edited and numeric edited data items in

“Data Division.”)

Characters Used for Relation Conditions

A relation character is a character that belongs to the following set:

Character

v A

Meaning

greater than
less than
equal to

Relation characters are used in relation conditions (discussed in “Procedure Di-
vision’’). The word NOT may precede the relation character.

WORDS

Definition and Application

The character set for words comprises 37 characters: the letters A through Z, the
digits 0 through 9, and the hyphen. A word is composed of a combination of not more than 30
such characters chosen from this set with the following exceptions:

1-3

1. A word cannot begin or end with a hyphen.

2. The space (blank) is not an allowable character in a word and is used as a word
separator. Where a space (blank) is required, more than one may be used except
for the restrictions stated in this chapter (see “Reference Format”). A word is
ended by a space, period, right parenthesis, comma, or semicolon.

Rules for using punctuation characters in connection with words are:

1. If ANS-68 compatibility is desired, a space should follow a period, comma, or
semicolon when one of these punctuation characters is used to terminate a word,
and a space should not immediately follow a left parenthesis or immediately
precede a right parenthesis.

2. A space must not immediately follow a beginning quotation mark or precede an

- ending quotation mark, unless a space is desired in the literal (which is enclosed
in quotation marks).

Data-Name

A data-name is a word with at least one non-numeric character that names a data
item in the DATA DIVISION. A space (blank) is not allowed within a data-name, and ANS COBOL
reserved words must not be used. (See appendix A, ‘‘M6800 ANS COBOL Reserved Words.”)

Procedure-Name

A procedure-name is either a paragraph-name or a section-name. A procedure name
may be composed solely of numeric characters. However, two numeric procedure-names are
equivalent only when they are composed of the same number ofdigits and have the same value:
for example, 0023 is not equivalent to 23.

Literal

A literal is a string of characters whose value is defined by the set of characters
composing the literal. Every literal is one of two types: non-numeric or numeric.

A non-numeric literal is a string of any allowable ASCII characters (including re-
served words but excluding the quotation mark character) up to 255 characters in length,
bounded by quotation marks. The single quotation mark (‘) is normally used by default, but the
double quotation mark (“‘) may be specified if conformance with the ANS character set is
desired. The value of a non-numeric literal is the string of characters itself, excluding the
quotation marks. Any spaces enclosed in the quotation marks are part of the literal and
therefore part of the value. All non-numeric literals are classed as alphanumeric.

A numeric literal is a string of characters selected from digits 0 through 9 (to a
maximum of 15 digits), the plus sign, minus sign, and decimal point. The value of a numeric
literal is the algebraic quantity represented by the characters in the literal. Every numeric literal
is classed as numeric.

Rules for the formation of numeric literals are:

1. The literal must contain at least one digit.

2. The literal must not contain more than one sign character. If a sign is used, it must
appear as the leftmost character of the literal. If the literal is unsigned, it is
positive.

3. The literal must not contain more than one decimal point. The decimal point is
treated as an assumed decimal point, and may appear anywhere within the literal

except as the rightmost character. If the literal contains no decimal point, it is an
integer.

1-4

If a literal conforms to the rules for formation of numeric literals but is enclosed in
quotation marks, it is a non-numeric literal, i.e., alphanumeric, and is treated as such by the
compiler.

Figurative-Constants

Figurative-constants are certain constants to which fixed data-names are assigned.
Such data-names must not be bounded by quotation marks when used as figurative-constants.
Singular and plural forms of figurative-constants are equivalent and may be used
interchangeably.

Fixed data-names and their meanings:

ZERO Represents the value 0, or one or more of the
ZEROS character 0, depending on context.

ZEROES

SPACE Represents one or more blanks or spaces.
SPACES

HIGH-VALUE Represents one or more characters that have the

HIGH-VALUES highest value in the ASCII collating sequence.

LOW-VALUE Represents one or more characters that have the

LOW-VALUES lowest value in the ASCII collating sequence.

QUOTE Represents one or more occurrences of the quotation

QUOTES mark character. The word QUOTE cannot be used in place of
a quotation mark in a source program to bound a non-nu-
meric literal.

ALL literal Represents one or more of the string of characters com-

prising the literals. The literal must be either a non-numeric
literal or a figurative-constant other than ALL literal. When a

- figurative-constant is used, the word ALL is redundant and is
used for readability only.

When a figurative-constant represents a string of one or more characters, the
compiler determines the length of the string from context in accordance with the following
rules:

1. When a figurative-constant is associated with another data item, that is, when the
figurative-constant is moved to or compared with another data item, the string of
characters specified by the figurative-constant is repeated—character by char-
acter on the right—until the size of the resultant string is equal to the size (in
characters) of the associated data item.

2. When a figurative-constant is not associated with another data item, that is, when
the figurative-constant appears in aDISPLAY or STOP statement, the length of the
string is one character. The figurative-constant ALL literal may not be used with
DISPLAY or STOP.

A figurative-constant can be used wherever a literal appears in the format, except
that whenever the literal is restricted to having only numeric characters.

1-5

Special Registers

COBOL has several built-in registers that provide an interface to the operating
system. These register names may be used in IF and MOVE statements in the procedure
division. They may be read by the program, but may not be altered by the program. The special
registers are:

e DATE. Yields a 6-character date in the form MMDDYY.

77 TODAY PIC 99/99/99.
MOVE DATE TO TODAY.

e BREAK-KEY. Yields a one-character code to indicate whether or not the break key
has been depressed on the CRT. BREAK-KEY will return “Y” if a break has
occurred and an ‘‘N” if a break has not occurred.

IF BREAK-KEY EQUALS 'Y’ THEN STOP RUN.

e LINAGE-COUNTER. Yields the current printer line number. The value does not

include “TOP” lines specified by the printer FD clause “TOP IS.”
IF LINAGE-COUNTER EQUALS 60 THEN PERFORM TOP-PAGE.

Hexadecimal Constants

A hexadecimal constant is a string of hexadecimal digits preceded by a dollar sign.
Each pair of digits represents the contents of one M6800 byte. All hexadecimal constants are
considered non-numeric literals and may be used in any context where an alphanumeric literal
is allowed.

Examples:

77 FLD-MARK PIC X VALUE $FF.
MOVE $30313233 TO DATA.
DISPLAY $8386.

Reserved Words

Reserved words are used for syntactical purposes and cannot appear as user-
defined words. (See Appendix A, “M6800 ANS COBOL Reserved Words.”)
The three types of reserved words are key words, optional words, and connectives.

Key Words

A key word is required when the format in which the word appears is used in a source
program. Within each format such words are uppercase and underlined.

The three types of key words are

1. Verbs such as ADD, READ, PERFORM.

2. Required words (in statement and entry formats) such as TO and GIVING.

3. Words that have a specific functional meaning such as NUMERIC, SECTION, etc.

Optional Words

Within each format, uppercase words that are not underlined are called optional
words and can appear at userdiscretion. The presence or absence of each optional word within
aformat does not alter compiler translation. Misspelling an optional word or its replacement by
another word of any kind is not allowed.

Connectives

The two types of connectives are:

1-6

1. Qualifier connectives (used to associate a date-name or a paragraph-name with
its qualifier) such as OF and IN.

2. Logical connectives (used in the formation of conditions) such as AND, OR, AND
NOT, OR NOT.

Concept of Computer-Independent Data Description

To make data as computer-independent as possible, characteristics or properties of
the data are described in relation to a standard data format rather than an equipment-oriented
format. This standard data format is oriented to general data processing applications; it uses
the decimal system to represent numbers (regardless of the radix used by the computer) and
the remaining characters in the COBOL character set to describe non-numeric data items.

Logical Record and File Concept

The following discussion defines file information by distinguishing between the
physical aspects of the file and the conceptual characteristics of the data contained within the
file.

Physical Aspects of a File. The physical aspects of a file describe data as it appears on the
input or output media and include such features as:

1. The mode in which the data file is recorded on the external medium.
2. The groupingoflogical records within the physical limitations of the file medium.
3. Means by which the file can be identified.

Conceptual Characteristics of a File. The conceptual characteristics of a file are the explicit
definition of each logical entity within the file itself. In a COBOL program, the input or output
statements refer to one logical record.

It is important to distinguish between a logical record and a physical record. A
COBOL logical record is a group of related information, uniquely identifiable and treated as a
unit. A physical record is a physical unit of information whose size and recording mode is
convenient to a particular computer for the storage of data on an input or output device. The
size of a physical record is hardware-dependent and bears no direct relationship to the size of
the file contained on a device.

Alogical record can be contained within a single physical unit or it may require more
than one physical unit to contain it. There are several source language methods available for
describing the relationship between logical records and physical units. Once the relationship is
established, control of accessibility of logical records as related to the physical unit is the
responsibility of the object program. In this manual, references to records are to logical records
unless the term “physical record” is specified.

The concept of a logical record is not restricted to file data but applies also to the
definition of working-storage and linkage section. Thus, working-storage and linkage section
items may be grouped into logical records and defined by a series of Record Description
entries.

Record Concepts

The Record Description entry consists of a set of Data Description entries that
describe the characteristics of a particular record. Each Data Description entry comprises a
level-number followed by a data-name (if required) and a series of independent clauses (as
required).

Concept of Levels

A level concept is inherent in the structure of a logical record. This concept arises
from the need to specify subdivisions of a record for the purpose of data reference. Once a
subdivision is specified, it may be subdivided further to permit more detailed data referencing.

The most basic subdivisions of a record—that is, those not further subdivided—are
called elementary items; consequently, a record consists of a sequence of elementary items, or
the record itself may be an elementary item.

For ease of reference, a set of elementary items is combined into a group. Each
group consists of a named sequence of one or more elementary items. These groups, in turn,
may be combined into multiples of two or more; thus, an elementary item may belong to more
than one group.

Level-Numbers

A system of level-numbers shows the organization of elementary items and group
items. Since records are the most inclusive data items, level-numbers for records start at 1 or
01. Less inclusive data items are assigned higher (not necessarily successive) level-numbers to
a maximum of 15. Special level-number 77 is an exception to this rule (see below). Separate
entries are written in the source program for each level-number used.

A group includes all group and elementary items following it until a level-number
less than orequal to the level-number of that group is encountered. The level-number of an item
(either an elementary or a group item) immediately following the last elementary item of the
previous group must be the same as that of one of the groups to which the prior elementary item
belongs.

Noncontiguous working-storage and linkage section items that are not subdivisions
of other items and are not themselves subdivided are assigned the special level-number 77.

Initial Values of Tables

In the WORKING-STORAGE SECTION, initial values of elements within tables are
specified in the following way:

The table may be described as a record by a set of contiguous Data Description
entries, each of which specifies the ‘“value” of an element, or part of,an element, of
the table. In defining the record and its element any Data Description clause (US-
AGE, PICTURE, etc.) may be used to complete the definition, where required. This
form is necessary when the elements of the table require separate handling. The
hierarchical structure of the table is then shown by the use of the REDEFINES entry
and its associated subordinate entries; these subordinate entries, which are re-
peated due to OCCURS clauses, must not contain VALUE clauses.

Algebraic Signs

Algebraic signs are used (1) to show whether the value of an item involved in an
operation is positive or negative, and (2) to identify the value of an item as positive or negative
on an edited report for external use.

Most forms of representation have a standard or normal manner of depicting an
operational sign. Thus, an indication that an operational sign is associated with an item is
usually sufficient. Since some forms of representation allow alternative methods for depicting
operational signs, it is possible to describe certain types of operational signs that deviate from

1-8

the normal method. Editing sign control characters are used to display the sign of an item and
are not operational signs. These editing characters are available only through the use of the
PICTURE clause.

Uniqueness of Data Reference

Every name used ina COBOL source program must be unique, that is, no other name
may have the identical spelling.

Subscripting

Subscripts can be used only when reference is made to an individual element within
a list or table of like elements that are not assigned individual data-names. (See “OCCURS
Clause” under “Physical and Logical Aspects of Data Description” in Chapter 5).

The subscript can be represented by a numeric literal that is an integer, or by a data-
name, or by a combination of data-name and numeric literal. The data-name must be a numeric
elementary item that represents an integer. When the subscript is represented by a data-name,
the data-name can not be subscript.

The subscript may contain a sign, but the lowest permissible subscript valueis 1. The
highest permissible subscript value in any particular case is the number of maximum oc-
currences of the item as specified in the OCCURS clause.

The subscript, or set of subscripts, that identifies the table element is enclosed in
parentheses immediately following the table element data-name. The table element data-name
appended with a subscript is called a subscripted data-name or an identifier. When more than
one subscript appears within a pair of parentheses, the subscripts must be separated by
commas.

The composite format of a subscribed data-name is:

data-name (subscript-1 [,subscript-2 [,subscript-S]])
The composite format of a subscript is:

[integer -1

4
data-name - 1 H } integer - 1]]
Indexing

References can be made to individual elements within a table of like elements by
specifying indexing for that reference. Anindex is assigned to that level of the table by using the
INDEXED BY clause in the definition of a table. A name given by the INDEXED BY clause is
known as an index-name and is used to refer to the assigned index. An index-name must be
initialized by a SET statement before it is used as a table reference. (See “SET Statement”
under “Table-Handling Statements’ in Chapter 6.)

Direct indexing is specified by using an index-name in the form of a subscript.
Relative indexing is specified when the index-name is followed by the operator + or — followed
by an unsigned, integral numeric literal, and all are enclosed in parentheses immediately after
the terminal space of the data-name.

1-9

The composite format is

"
data-name (index-name-1 H_} <integer-1]

rsrans [}] [rmermes [}]

Restrictions on Indexing and Subscripting

Tables may have one, two, or three dimensions. Therefore, references to an element
in a table may require up to three subscripts or indexes.

A data-name cannot be subscripted or indexed when it is used in table-element
references as an index subscript.

Subscripting and indexing must not be used together in a single reference. Where
subscripting is not permitted, indexing is also not permitted.

An index can be modified only by the SET, SEARCH, and PERFORM statements.
Data items described by the USAGE IS INDEX clause permit storage of the values of the index-
names as data without conversion; such data items are called index data items.

Format Notation

The format of a COBOL statement is described in this manual using the uniform
notations itemized below. See also COMMAND SYNTAX NOTATION.

1. A COBOL reserved word, printed entirely in capital letters, is a word that is
assigned specific meaning in the COBOL system. It must not be used in any
context or position other than that shown in the format description. SUBTRACT,
FROM and ROUNDED in the example below are reserved words.

2. One or more COBOL elements vertically stacked and enclosed in a set of square
brackets indicate that this portion of the syntax is optional and may be included
or omitted at the discretion of the programmer.

3. Apairofbracesis used to enclose vertically stacked COBOL elements when one,
and only one, of the elements is required; the others are to be omitted. Refer to
the example below.

4. Theellipsis . . . denotes a succession of operands or repeated COBOL elements
that may be used in the same particular statement, even though the operands or
elements are omitted in the text. An ellipsis is associated with the last complete
element preceding it, i.e., if a group of operands and key words are enclosed
within brackets and the right bracket is followed by the ellipsis, the group (and
not merely the last operand) may be repeated in its entirety.

5. An underlined word is required unless the part of the format containing it is itself
optional (enclosed in brackets). If a required word is omitted or incorrectly
spelled, it causes an error in the interpretation of the program.

6. All COBOL words that are optional words (not underlined) may be included or
omitted at the option of the programmer. These words are used only for the sake
of readability; misspelling, however, constitutes an error.

7. Lowercase words represent information that is supplied by the programmer. The
nature of the information required is indicated in each case. In most instances
the programmer is required to provide an appropriate data-name, procedure-
name, literal, etc. Refer to the example below.

1-10

10.
1l
b

13.
The following example shows a typical COBOL statement and use of the notation

. The period is the only required punctuation. Other punctuation, where shown, is

optional.

. Special characters (such as the equal sign) are essential where shown, although

they may not be underlined.

The notation A indicates the position of an assumed decimal point in an item.
A numeric character with a plus or minus sign above it (n) indicates that the value
of the item has an operational sign that is stored in combination with the numeric
character. :

Character positions in storage are shown by boxes |A [B|C| D] .An empty
box means an unpredictable result.

The symbol/\ indicates a space (blank).

described above.

SUBTRACT [

identifier-1 ,identifier-2
.. .FROM Identifier-m

literal-1 Jiteral-2

[ROUNDED]

Reference Format

General Description

The reference format, which provides a method for describing COBOL source

programs, is described in terms of character positions or columns on a CRT line. The line may
be up to 80 characters in length. Rules for spacing given in the discussion of the reference
format take precedence over all other rules for spacing. Division of a source program is ordered
as follows: the IDENTIFICATION DIVISION, then the ENVIRONMENT DIVISION, then the DATA
DIVISION, then the PROCEDURE DIVISION. Each division must be written according to the
rules for the reference format.

used:

The standard COBOL line format is as follows:

Columns 1-6 six-digit sequence number
Column 7 continuation area
Columns 8-11 area A

Columns 12-72 area B

Columns 73-80 identification area

Since the M6800 COBOL programs are maintained by the M6800 EDITOR, a slightly
more compact format is used:

Columns 1-4 four-digit line number
Column 6 continuation area
Columns 6-7 area A

Columns 8-80 area B

The sample program shown in Appendix B is an example of the compressed format.
If line format compatability with the COBOL standard is desired, the following format should be

1-11

Columns 1-4 four-digit line number

Column 6 continuation area
Columns 7-10 area A
Columns 11-71 area B

The line numbers may then be easily expanded to six digits with the EDITOR prior to
writing the source program to external media.

Reference Format Representation

Margin L designates the line number area consisting of four digits
followed by a space.

Margin C represents the continuation column — column 6.

An * (asterisk) in margin C causes the compiler to treat the entire
line as a comment line.

A / (slash) in Margin C will cause the compiler to start printing
the source program on the top of a new page. The remainder of
the line is treated as a comment.

A - (hyphen) in margin C is used to continue a non-numeric
literal from one line to the next.

Margin A represents the first column in the coding area. Normally, this will
be the same column as margin C (column 6). However, column 7
may be used if desired.

Margin B represents the second area in coding portion of the line.
Normally, column 8 is used. However, column 11 may be used if
compatability with the standard COBOL line format is desired.

Continuation of Non-Numeric Literals. When a non-numeric literal is continued from one line
to another, a hyphen is placed in Margin C of the continuation line and a quotation mark is
placed in Area B following the hyphen. All spaces at the end of the continued line and any
spaces following the quotation mark of the continuation line and preceding the final quotation
mark of the literal are considered part of the literal. Note that each line in this system is
terminated by a carriage return. If it is desired that additional spaces are to be included at the
end of the continued line, they must actually be typed in.

Division, Section, and Paragraph Formats

Division Header. The division header must be the first line of a division reference format. The
division header starts in margin A with the division-name followed by a space, the word
DIVISION, and a period. No other text may appear on the same line as the division header.

Section Header. The section header begins on any line except the first line of a division
reference format. The section header starts in Area A with the section-name followed by a
space, the word SECTION, and a period followed by a space. No other text may appear on the
same line as the section header.

A section consists of paragraphs in the ENVIRONMENT and PROCEDURE DI-
VISIONs and Data Description entries in the DATA DIVISION. Paragraph-names but not section-
names are permitted in the IDENTIFICATION DIVISION.

1-12

Paragraph-Name and Paragraphs. The name of a paragraph starts in Area A of any line
following the first line of adivision reference format (or section header if sections are used) and
ends with a period followed by a space.

A paragraph consists of one or more successive sentences. The first sentence in a
paragraph begins in Area B of either the same line as the paragraph-name or the line im-
mediately following. Successive sentences begin either in Area B of the same line as the
preceding sentence or in Area B of the next line.

A sentence consists of one or more statements followed by a period and a space.
When the sentences of a paragraph require more than one line, they may be continued on
successive lines.

DATA DIVISION Entries. Each DATA DIVISION entry begins with a level indicator or a level-
number followed by at least one space, the name of a dataitem, and a sequence of independent
clauses describing the data item. Each clause, except the last clause of an entry, may be
terminated by a semicolon followed by a space; the last clause is always terminated by a period
followed by a space.

There are two types of DATA DIVISION entries: those that begin with alevel indicator
and those that begin with a level-number.

FD isalevel indicator. In DATA DIVISION entries that begin with alevel indicator, the
level indicator begins in Area A, followed by its associated file-name and appropriate descrip-
tive information in Area B.

DATA DIVISION entries that begin with level-numbers are called Data Description
entries. A level-number may be one of the following set: 1 through 15, 77. Level-numbers less
than 10 are written either as a single digit or as zero followed by a digit. At least one space must
separate a level-number from the word succeeding it. In DATA DIVISION entries that begin with
a Data Description entry, the first Data Description entry starts with a level-number in Area A,
followed by the descriptive information in Area B.

1-13

1-14

CHAPTER 2
COBOL INPUT/OUTPUT PROCESSING

COBOL FILES

M6800 ANS COBOL supports all file organizations, record formats, and access
methods provided by the file management system.

File Organization
There are two types of file organization: indexed and sequential.
Indexed File Organization

Indexed files are those in which each record is associated with an identifying key.
Indexed files may be accessed directly or sequentially; however, they must be assigned to
input/output devices capable of direct access. Indexed file organization is indicated in the
COBOL language by the statement ORGANIZATION IS INDEXED in the FILE-CONTROL para-
graph of the ENVIRONMENT DIVISION.

Sequential File Organization

A sequential file isone whose records are organized in a consecutive manner. There
is no identifying key associated with each record; therefore, records can be accessed se-
quentially only. Consecutive files may be assigned to any type of input/output device. Con-
secutive file organization is indicated when ORGANIZATION IS SEQUENTIAL is written or
when the ORGANIZATION clause is omitted altogether.

File Access
The three methods of accessing files are sequential, random, and dynamic.

Sequential Access

Sequential access is the technique of referencing records serially within a file. The
order in which records are read or written is determined implicitly by relative physical position
within the file. This access method is specified by the ACCESS MODE IS SEQUENTIAL clause
or is implied by the omission of that clause.

Random Access

Random access is the technique of reading and writing records of a file in an order
dictated by the programmer. It may only be used with ORGANIZATION IS INDEXED files. The
record to be referenced is indicated by the value of a key at the time that the input/output
command isissued. This access method is specified by the ACCESS MODE IS RANDOM clause.

“The RECORD KEY clause specifies the key.

2-1

Dynamic Access

Dynamic access mode allows the file to be accessed either sequentially or randomly
depending upon the I/O statement. It may only be used with files having ORGANIZATION
INDEXED. This access mode is specified by the ACCESS IS DYNAMIC clause. The RECORD
KEY clause is also required.

File-Handling Methods

A file-handling method is the effect of the combination of access technique, file
organization, and the manner in which the file is opened.

Sequential Access

1. OPEN OUTPUT. This combination creates a consecutive file. The new records
replace any previous contents of the file.

2. OPEN EXTEND. New records will be added to the end of a consecutive file.

3. OPEN INPUT. If the file organization is consecutive, READ statements obtained
records serially in the order in which they were originally written. If the file
organization is indexed, READ statements obtain records serially in key value
order (not necessarily in the order in which they were written).

Random Access

1. OPEN OUTPUT. This combination creates an indexed file. ARECORD KEY MUST
be specified and its contents consulted upon each WRITE statement.

2. OPEN INPUT. Organization of the file must be indexed. A RECORD KEY must be
specified and the contents consulted for each READ statement to locate the
desired record within the file.

3. OPEN INPUT-OUTPUT. The sole essential difference between OPEN INPUT and
OPEN INPUT-OUTPUT is that the /atter permits the file to be updated instead of
merely referenced; thus, WRITE statements are allowed to address the file.

Input/Output Processing Summary

Table 2-1 summarizes the COBOL language file manipulation statements. Each file
must be named in an ENVIRONMENT DIVISION SELECT sentence and defined by an FD entry
in the DATA DIVISION. Each of the language elements concerned is described fully in suc-
ceeding chapters of this manual.

TABLE 2-1. File Manipulation Statements

RECORD
File ACCESS Type of OPEN PERMISSIBLE KEY
Organization | MODE IS STATEMENT /0 Statement Required
INPUT READ ...
AT END No
Sequential SEQUENTIAL WRITE ...
(or unspeci- {BEFORE}
fied) OUTPUT AFTER ADVANCING| | No
EXTEND WRITE . .. No
START ... INVALID KEY
INPUT READ ... Yes
AT END
SEQUENTIAL
Indexed (or unspeci- OUTPUT WRITE ... INVALID KEY Yes
fied)
I-O START ... VALID KEY
READ ... AT END
WRITE . .. INVALID KEY Yes
REWRITE . .. INVALID KEY
DELETE ... INVALID KEY
INPUT READ ... INVALID KEY Yes
OUTPUT WRITE ... INVALID KEY Yes
Indexed RANDOM READ ... INVALID KEY
I-0 WRITE . .. INVALID KEY Yes
REWRITE . .. INVALID KEY
DELETE ... INVALID KEY
INPUT START ... INVALID KEY
READ ... INVALID KEY Yes
READ NEXT ... AT END
OUTPUT WRITE . .. INVALID KEY Yes
START ... INVALID KEY
Indexed READ ... INVALID KEY
DYNAMIC READ NEXT ... AT END
I-O WRITE . .. INVALID KEY Yes

REWRITE . .. INVALID KEY
DELETE ... INVALID KEY

CHAPTER 3
IDENTIFICATION DIVISION

GENERAL DESCRIPTION

The format of the IDENTIFICATION DIVISION is:

IDENTIFICATION DIVISION.
PROGRAM-ID. program-name.
[AUTHOR. comment-sentences.]
[INSTALLATION. comment-sentences.]
[DATE-WRITTEN. comment-sentences.]
[DATE-COMPILED. comment-sentences.]
[SECURITY. comment-sentences.]
[REMARKS. comment-sentences.]

The IDENTIFICATION DIVISION specifies information essential to identification such
as the name of the program, the date the program was written, programmer’s name, security,
etc. The listing contains all information specified in this division, but the specified information
in no way affects the object program. Allowable information is presented in seven separate
paragraphs: one mandatory, the others optional. If the optional paragraphs are included in the
program, they must be in the order indicated above.

ORGANIZATION

The IDENTIFICATION DIVISION header is always the first line in a source program
and appears as shown above, including the punctuation. This header and the fixed paragraph-
name(s) must conform to COBOL Coding Sheet specifications. Only the PROGRAM-ID para-
graph is mandatory; all others are optional. Comment-sentences for the optional paragraphs
consist of any sentence or group of sentences.

PROGRAM-ID Paragraph

The PROGRAM-ID paragraph must always appear as the first paragraph in the
IDENTIFICATION DIVISION. This paragraph permits the programmer to declare the name of the
source program.

DATE-COMPILED Paragraph

The DATE-COMPILED paragraph should be used to provide the compilation date in
the source program listing.

Example:

The IDENTIFICATION DIVISION of a typical program might be written
IDENTIFICATION DIVISION.

PROGRAM-ID. Inventory.

AUTHOR. John Smith.

DATE-WRITTEN. October 15, 1977.
DATE-COMPILED. November 1, 1977.
REMARKS. This program prints the inventory report.

CHAPTER 4
ENVIRONMENT DIVISION

GENERAL DESCRIPTION

The format of the ENVIRONMENT DIVISION is:

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.
SOURCE-COMPUTER. source-computer entry.
OBJECT-COMPUTER. object-computer entry.
INPUT-OUTPUT SECTION.

FILE-CONTROL. file-control entry.
[I-O-CONTROL. input/output control entry.]

The ENVIRONMENT DIVISION describes those aspects of the data processing pro-
gram that depend on the physical characteristics of a specific computer. The information
presented in this division enables the compiler to link the operations indicated in the DATA and
PROCEDURE DIVISIONs to the physical aspects of computer hardware and the executive
system that is to execute the object program. Thus, the ENVIRONMENT DIVISION is entirely
computer-oriented.

The ENVIRONMENT DIVISION is divided into the CONFIGURATION SECTION and
the INPUT-OUTPUT SECTION.

The CONFIGURATION SECTION deals with the characteristics of the computing
system on which the source program is to be compiled and on which the object program is to
operate. This section is divided into two paragraphs: the SOURCE-COMPUTER paragraph
describing the computer on which the COBOL compiler is to run and the OBJECT-COMPUTER
paragraph defining the computer on which the translated program is to run.

The INPUT-OUTPUT SECTION provides information needed to control transmission
and handling of data between external media and the object program. There are two fixed
paragraph-names in this section: the FILE-CONTROL paragraph naming and associating the
files with external media, and the I-O-CONTROL paragraph specifying certain other file
information.

CONFIGURATION SECTION

SOURCE-COMPUTER Paragraph

The formats of this paragraph are:
Format 1

SOURCE-COMPUTER. copy-statement.
Format 2

SOURCE-COMPUTER. computer-name.

The SOURCE-COMPUTER paragraph enables the programmer to describe to the
compiler the computing system on which source program translation is to take place. Format 1
is used when the COBOL library contains the entire description of the SOURCE-COMPUTER
configuration. See Chapter 7 for a complete description of the COBOL library.

4-1

OBJECT-COMPUTER Paragraph

The formats of this paragraph are:

Format 1

OBJECT-COMPUTER. copy-statement.
Format 2

OBJECT-COMPUTER

computer-name [MEMORY SIZE integer CHARACTERS]

Format 1 is used when the COBOL library contains the entire description of the
OBJECT-COMPUTER configuration.

The contents of the OBJECT-COMPUTER paragraph, as with the entire contents of
the SOURCE-COMPUTER paragraph, is not significant to the compiler and is treated as
commentary.

INPUT-OUTPUT SECTION

FILE-CONTROL Paragraph

The formats of this paragraph are:

Format 1 .
FILE-CONTROL. copy statement.

Format 2

FILE-CONTROL

SELECT file-name-1 [ASSIGN-clause] [ORGANIZATION-clause]

[ACCESS-clause] [RECORD KEY-clause].. . .

Format 1 is used when the complete FILE-CONTROL paragraph description desired
exists in an element in the current COBOL source library. For additional information see
“COBOL Library.” A discussion of format 2 follows.

SELECT Sentence

Each file defined in the FILE SECTION of the DATA DIVISION must be named once

and only once as file-name-1 in a SELECT sentence. Each select file must have a File Descrip-
tion entry in the DATA DIVISION.

The following clauses that compose the SELECT sentence are all optional; except
for the ASSIGN clause, they may be written in any order.

ASSIGN Clause.

The format of this required clause is
[ASSIGN TO implementor-name-1]

The ASSIGN clause permits a file to be associated with a particular type of hardware
device.

Acceptable implementor-names are:
PRINTER

DISK diskid:number

Where: diskid—represents an eight-character disk file identification.
number—represents the file number suffix for the diskid.

Refer to the COBOL operations reference manual for an explanation of the
meaning of diskid:number as related to different disk types.

4-2

ORGANIZATION Clause.

The format of this clause is:

SEQUENTIAL
ORGANIZATION | —
{ 2 b {INDEXED }]

SEQUENTIAL denotes that the file is a sequential file.

INDEXED denotes that the file has an indexed organization. It does not necessarily
imply that file is to be accessed randomly.

Sequential organization is implied when this clause is omitted.

ACCESS Clause.

The format of this clause is:

SEQUENTIAL
I: ACCESS MODE IS [RANDOM]]
DYNAMIC

SEQUENTIAL denotes that records are obtained or placed sequentially: that is, the
next logical record is available from the file on a READ statement execution, or a specific
logical record is placed in the next position in the file on a WRITE statement execution.

If RANDOM or DYNAMIC is specified, the RECORD KEY clause (see below) must also
be specified, and the file must be assigned to a direct-access device. In this case, the specified
logical record (located using RECORD KEY data-name contents) is made available from the file
on a READ statement execution, or is placed in a specific location on the file (located using
RECORD KEY data-name contents) on a WRITE statement execution. DYNAMIC access mode
differs from RANDOM access mode in that the file may be accessed sequentially or randomly,
depending on the I/O statement. That is, after a record is located by a random read, the records
following it can be read sequentially. Another random read can then be issued to switch back to
random access.

Sequential access is assumed when these clauses are omitted.
RECORD KEY clause.

The format of this clause is:

[RECORD KEY IS data-name [WITH DUPLICATES]]

The RECORD KEY clause must be specified if INDEXED organization is specified; it
is not meaningful to SEQUENTIAL organization. Data-name must be contained within the
record. In addition, it must conform to the rules for the file management system outlined in the
COBOL operations reference manual.

The contents of data-name are used by the READ, and WRITE statements to locate a
specific record in a mass storage file. The symbolic identity of the record to be read or written
must be placed in data-name before the appropriate input/output statement is executed.

The optional WITH DUPLICATES clause specifies that records with duplicate keys
are to be permitted in the file.

4-3

I-O-CONTROL Paragraph

The formats of this paragraph are:
Format 1
I-O-CONTROL. copy-statement.

Format 2
I-O-CONTROL. [SAME AREA-clause]

Format 1 causes the library element to be retrieved from the current COBOL source
library and inserted into the source program at this point. A discussion of Format 2 follows. For
additional information see “COBOL Library.”

SAME AREA Clause

The format of this clause is:

[SAME AREA FOR file-name-1 [,file-name-2] .]

When SAME AREA is written, the data areas for all of the files mentioned overlap.
Thus, only one of the list of files may be open at the same time. More than one SAME AREA
clause may appear in a COBOL program, but no one file-name may appear in more than one
such clause.

CHAPTER 5
DATA DIVISION

GENERAL DESCRIPTION

The DATA DIVISION describes data that the object program accepts as inputin order
to manipulate, create, or produce output. Data to be processed fall into three categories:

1. Data that is contained in files and enters or leaves the internal memory of the
computer from a specified area or areas.

2. Data that isdeveloped internally and placed into intermediate or working storage,
or into specific format for output reporting purposes.

3. Constants that are defined by the use.

PHYSICAL AND LOGICAL ASPECTS OF DATA DESCRIPTION

DATA DIVISION Organization

The DATA DIVISION is subdivided into the FILE and WORKING-STORAGE
SECTIONS.

The FILE SECTION defines the contents of data files stored on an external medium.
Each file is defined by a file description followed by a record description or a series of record
descriptions. The WORKING-STORAGE SECTION describes records and noncontiguous data
items that are not part of external data files but are developed and processed internally.

DATA DIVISION Structure

The DATA DIVISION is identified by and must begin with the header
DATA DIVISION.

Each of the sections of the DATA DIVISION (except the WORKING-STORAGE SEC-
TION) is optional and may be omitted from the source program. The fixed names of these
sections in their required order of appearance as section headers in the DATA DIVISION are

FILE SECTION.
WORKING-STORAGE SECTION.

Section headers for the FILE SECTION are followed by one or more sets of entries
composed of file clauses, followed by associated Record Description entries. WORKING-
STORAGE SECTION headers are followed by Data Description entries for noncontiguous
items, followed by Record Description entries. See Figure 1.

File Section

In a COBOL program the File Description (FD) entry represents the highest level of
organization in the FILE SECTION. The FILE SECTION is composed of the section header FILE
SECTION and a period, followed by a File Description entry consisting of a level indicator (FD),
adata-name, and a series of independent clauses. These clauses specify the size of the physical
records, and the names of the data records and reports that compose the file. The entry itself is
terminated by a period.

51

LEVELS

DATA
DIVISION

FILE
SECTION

Section

FILE
SECTION

WORKING-
STORAGE
SECTION

W-S
SECTION

File Description

\A/_A—“/JH

File
FD
Record Record
Description Description Record Description
Group Group Group Group Group
Record

Elementary

Elementary

Elementary

Elementary

Elementary

FILE SECTION

WORKING-
STORAGE
SECTION

DATA DIVISION

FILE SECTION

W-S

SECTION 44—

Sections of the DATA
DIVISION, if present,
appear in the source
program in the order
shown reading from
top to bottom.

FIGURE 1. DATA DIVISION Structure

—~—

5-2

Record Description Structure. A record description consists of a set of Data Description
entries that describe the characteristics of a particular record. Each Data Description entry
consists of a level-number followed by a data-name, followed by a series of independent
clauses, as required. A record description has a hierarchical structure; therefore, the clauses
used with an entry may vary considerably, depending upon whether or not it is followed by
subordinate entries. The structure of a record description is defined in ““Concepts of Levels” in
Chapter 1; elements allowed in a record description are specified in *‘Data Description Entries”
later in this chapter.

Working-Storage Section

The WORKING-STORAGE SECTION is composed of the section header WORKING-
STORAGE SECTION and a period, followed by Data Description entries for noncontiguous
working-storage items and Record Description entries (in that order).

Noncontiguous Working-Storage. Items in working-storage that bear no relationship to one
another need not be grouped into records provided they do not need to be further subdivided;
instead, they are classified and defined as noncontiguous elementary items. Each of these
items is defined in a separate Data Description entry that begins with the special level-number
77.

Data clauses required in each Data Description entry are

1. Level-number.

2. Data-name.

3. The PICTURE clause.

Other record description clauses are optional and can be used to complete the
description of the item if necessary.

Working-Storage Records. Dataelements in working-storage that bear a definite relationship
to one another must be grouped into records according to the rules for formation of record
description. All clauses that are used in normal input or output record descriptions can be used
in a working-storage record description.

Initial Values. The initial value of any item in the WORKING-STORAGE SECTION except an
index data item is specified by using the VALUE clause of the record description. The initial
value of any index data item is determined at compile time.

File Description—Complete Entry Skeleton

The general formats of this entry are:

Format 1
FD file-name copy-statement.

Format 2
ED file-name
[RECORD CONTAINS [integer-3 TO] integer-4 CHARACTERS]
LABEL {RECORD IS } {STANDARD}

RECORDS AREJ (OMITTED

RECORD IS
= - -7 - -8] ...
{ DATA {RECORDS ARE} data-name-7 [data-name-8] }

5-3

Format 3
FD file-name
[LINAGE IS lines-on-page]
[TOP IS top-margin]
[BOTTOM IS bottom-margin]

The File Description entry furnishes information concerning the physical structure,
identification, and record names pertaining to a given file. In Format 1 the COPY clause enables
a prewritten File Description entry to be included in the DATA DIVISION; this entry is contained
in the COBOL library. For additional information see Chapter 7, “COBOL Library.”” A descrip-
tion of Format 2 follows.

RECORD CONTAINS Clause.
The format of this clause is:

[RECORD CONTAINS [integer-3 TO] integer-4 CHARACTERS]

The RECORD CONTAINS clause specifies the size of data records. Since the size of
each data record is completely defined within the Record Description entry, this clause is not
required.

If only “integer-4" is specified, it represents the exact number of characters in the
data record. If both “‘integer-3” and ‘“‘integer-4” are specified, they refer to the minimum
number of characters in the smallest size data record and the maximum number of characters
in the largest size data record, respectively.

LABEL RECORDS Clause.

The format of this clause is:

DARD
- [RECORDIS }[STAN A }

RECORDS ARE| |OMITTED

Since all file labels are internal to the M6800 file management system, this clause is
not required in M6800 COBOL and is treated as a comment entry.

The OMITTED option specifies that no explicit labels exist for the file or the device to
which the file is assigned.

The STANDARD option specifies that standard system labels exist for the file or the
device to which the file is assigned. Such labels are written when the file is opened for output
and checked automatically by the operating system when the file is opened for input or input/
output.

DATA RECORDS Clause.

The format of this clause is

DATA RECORD IS
{R—ECORDS ARE} data-name-7 [data-name-8] . . .

The DATA RECORDS clause cross-references the description of data records with
theirassociated file description. Each logical record in the file may be named in this clause; the
order of listing the names is not significant. Since the record names are available following the
FD description, this clause is not required.

5-4

The appearance of multiple data-names means that the file contains a correspond-
ing number of different types of records. These records may be of differing sizes and formats.
The order in which they are listed in the clause is not important. It must be remembered that no
two records of the same file are available for processing at the same time; in other words, if one
record is read from a file and then another record is read from the same file, the second record
replaces the first.

Format 3 of the FD clause is used with print files.

FD file-name

[LINAGE IS lines-on-page]

[TOP IS top-margin]

[BOTTOM IS bottom-margin]

If these clauses are not specified for a print file, the default is 3 lines at the top, 69
body lines, and 3 lines at the bottom. The clauses have the following meaning:

} top-margin

lines-on-page

bottom-margin

Example:

FD PRINT-FILE
LINAGE IS 60,
TOP IS 3,
BOTTOM IS 3.

The values for top-margin and bottom-margin may be zero. The value for lines-on-
page may not be zero. The special register LINAGE-COUNTER may be used to reference the
current line number within lines-on-page during execution.

Example:

IF LINAGE-COUNTER EQUALS 60 THEN PERFORM NEW-PAGE.

Data Description Entries

General Format:

data-name
FILLER

[PICTURE-clause] [USAGE-clause]
[BLANK-clause] [JUSTIFIED-clause]
[VALUE-clause] [OCCURS-clause]

Level-number{ } [REDEFINES-clause] [COPY statement]

55

A Data Description entry (see Figure 2) describes characteristics of each item within
adatarecord. Each item isaccorded a separate entry that must appear in the order in which the
item occurs in the record, since the relative location of each entry is communicated to the
compiler by its position in the record description. Each entry consists of a level-number, data-
name, and series of clauses terminated by a period.

The reserved word FILLER may be substituted for a programmer-defined data-name
when an unused portion of a logical record or data item that is not referenced directly is
defined.

Specific formats for individual types of data items are shown below. In each of these
formats, clauses that do not appear are categorically forbidden in that data type, while clauses
that are mandatory are depicted without brackets.

Detailed Formats of Data Items:
Group Item

data-name

FILLER

[USAGE-clause]
[VALUE is non-numeric-literal].

level-number { } [REDEFINES-clause] [OCCURS-clause]

Example

01 GROUP-ITEM.
02 FIELDO1 PICTURE X.
02 FIELD-2 PICTURE X.

FIGURE 2. Various Data Description Entries Listing

01 VARIOUS-DATA-DESC.
02 ALPHABETIC-TYPES.
03 A1 PICTURE AAAAAAAA.
03 A2 REDEFINES A1 PICTURE A(8).
03 A3 PICTURE A(4) OCCURS 4 TIMES.
03 A4 PICTURE A(6) VALUE IS ‘XYZ A",
03 A5 PICTURE A(2) USAGE IS DISPLAY.
03 A6 PICTURE A(8).
03 A7 REDEFINES A6 PICTURE A(2) USAGE DISPLAY
OCCURS 4 TIMES.
02 ALPHANUMERIC-TYPES REDEFINES ALPHABETIC-TYPES.
03 AN1OCCURS 8 TIMES PICTURE IS X9A.
03 AN2PICTURE X(16) USAGE IS DISPLAY.
03 AN3 REDEFINES AN2 PICTURE X(4) OCCURS 4 TIMES.
02 ALPHA-EDITED-TYPES.
03 AE1 PICTURE XXBXXBXX.
03 AE2 PIC IS XXXXBXX99B0OOBX X X.
03 AE3 REDEFINES AE2 PIC X(10)BO9AAX DISPLAY.
02 NUMERIC-EDITED-TYPES.
03 NE1 PICTURE IS 2Z,999+.
03 NE2 REDEFINES NE1 PICTURE **,**9-
03 NE3 OCCURS 4 TIMES PICTURE 2229.
02 NUMERIC-TYPE.
03 N1 PICTURE 9999 OCCURS 5 TIMES USAGE DISPLAY.
03 N2 PIC S9999 VALUE 1S-1234.
03 N3 REDEFINES N2 PICTURE S99V 99.

Alphanumeric Elementary Item

data-name

level- - -
evel-number FILLER [REDEFINES-clause] [OCCURS-clause]

56

PICTURE
PIC

} IS on-type [USAGE IS DISPLAY]

[VALUE IS non-numeric-literal] [{MEIE—D} RIGHT}

JUST
Example:
02 CUST-NAME PICTURE X (21) DISPLAY
02 CUST-ADR PIC X (45)

Alphanumeric Edited Elementary Item

data-name
FILLER

LeveI-numberl J [REDEFINES-clause] [OCCURS-clause]

PICTUR
{i‘&] IS ae-type [USAGE IS DISPLAY]
- JUSTIFIED
[VALUE IS non-numeric-literal] {{JUST } RIGHle
Example:
02 DATE PICTURE XXBXXXBXXXX VALUE ‘15 DEC 1977'.

Numeric Edited Elementary Item

data-name

Level-number [FILLER

} [REDEFINES-clause] [OCCURS-clause]

PICTURE IS numeric-type BLANK WHEN ZERO
PIC ne-type BLANK WHEN ZERO

[USAGE IS DISPLAY].

Example:
02 DEPT-NO PIC ZZ999.
02 GROSS-SALES PICTURE $2, 2Z2Z,27Z,Z2ZZ.99-.

Alphabetic Elementary Item

Leveknumber | SBNAMe | \or e e NFS clause] [OCCURS-clause]
FILLER
PICTURE
[FTg——] IS alpha-type [USAGE IS DISPLAY]
[VALUE IS non-numeric-literal]
Example:
02 COUNTY-NAME PICTURE A(35) USAGE IS DISPLAY.

57

ASCII Decimal Elementary Item

data-name

FILLER } [REDEFINES-clause] [OCCURS-clause]

level-number {

{PICTURE

PIC } IS numeric-type [USAGE IS DISPLAY]

[VALUE IS numeric-literal].

Example:
02 COST PIC 999V99 VALUE 10.39.

Packed Decimal Elementary Item

level-number {data'"ame} [REDEFINES-clause] [OCCURS-clause]
FILLER
PICTURE . {COMPUTATIONAL}
{——PIC } IS numeric-type USAGE IS COMP

[VALUE IS numeric-literal].

Example:

02 TOTAL-RECORDS PIC 9(4) COMPUTATIONAL.
Index Item

77 index-name USAGE IS INDEX.

Example:

77 X1 INDEX

REDEFINES Clause.

The format of this clause is:

level-number data-name-1 REDEFINES data-name-2

The REDEFINES clause overlaps items in storage (allocates the same storage space
for different items at different times) or provides an alternate grouping or description of the
same data (redefines an elementary item or a group item).

The level-numbers of data-name-1 and data-name-2 must be identical.

The REDEFINES clause is not used at the record 01 level in the FILE SECTION. The
DATA RECORDS clause in the FD entry indicates the existence of more than one type of record;
thus, an implied redefinition exists at the 01 level.

Redefinition begins at data-name-2 and continues until a level-number whose value
is equal to or less than data-name-2 is encountered; therefore, between data-names-1 and -2
there must not be a level-number lower than that of data-names-1 and -2. Data-name-1 must
follow data-name-2 such that, if data-name-2 is a group entry, the entry for data-name-1 must
appearimmediately after the entries for all items in that group. However, additional entries that
redefine the same area may intervene.

Data-name-1 may be a group or an elementary item irrespective of the nature of the
data-name-2 item. If it is a group, the data-name-2 entry is followed by all the entries in that
group, since such entries are part of the redefinition; if it is an elementary item, it completely
redefines data-name-2. A REDEFINES clause may be specified for an item within the scope of

5-8

an area being redefined; that is, REDEFINES clauses may be specified for items subordinate to
items containing REDEFINES clauses.

When the REDEFINES clause is used with certain other clauses, entries (except for
condition-name entries) containing or subordinate to the REDEFINES clause must not contain
VALUE clauses. '

When an area is redefined, all descriptions of that area remain in effect for the entire
program. The one that is selected depends on the particular reference made to the area. For
example, if items A and B share the same area, MOVE X TO A moves X to the area according to
the description of A, MOVE Y TO B moves Y to the same area according to the description of B.
These statements could be executed anywhere in a program; final contents of the area depend
on the order in which they are executed. A table of constant items is redefined so that any item
in the table can be referenced by position rather than by individual name. Thisdoes not redefine
the area according to different patterns, but simply permits the same pattern of items to be
considered in a different way.

COPY Statement.
The format of this clause is:

level-number data-name-1 [REDEFINES data-name-2] copy statement.

The COPY statement enables prewritten Record Description entries to be included
in the DATA DIVISION. These entries are from the COBOL library, eliminating the need for
specifying the entries each time they are needed. Information being copied is inserted at the
point in an entry where the COPY statement appears; thus data-name-1 and its level-number
are not replaced by the information being copied, nor is the REDEFINES clause if it is present.

For additional information see Chapter 7, “COBOL Library.”

PICTURE Clause.
The format of this clause is

{M} IS character-strin
PIC °

The PICTURE clause describes the general characteristics and editing requirements
of elementary items.

The character-string consists of certain allowable combinations of characters in the
COBOL character set used as symbols. These allowable combinations determine the category
of the item. The five categories of data that can be described with a PICTURE clause are

1. Alphabetic

2. Alphanumeric

3. Numeric

4. Alphanumeric Edited

5. Numeric Edited

The following rules apply to use of the PICTURE clause.

1. GENERAL
The number of occurrences of any of the characters indicates the size of an item described
by the PICTURE clause. Size may be indicated either by repeating the character or, in a
shorthand way, by writing the character once and putting the number of its occurrences in
parentheses. Thus, Z (10)9(2) is equivalent to ZZZZ2Z777799.

59

A maximum of 30 characters is allowed in a PICTURE clause. This limit does not refer to the
number of characters in the item itself, but only to the number of characters (including
parentheses) used in the PICTURE specifying the item. For example, the same item may be
described by a PICTURE containing 12 characters, ZZZZZ2Z777799, or by a PICTURE con-
taining only 9 characters, Z(10)9(2). In either case, the actual size of the item is 12 characters.
An item containing 75 alphabetic characters may be specified by the PICTURE A(75), which
uses only 5 characters, but the same item may not be specified by a PICTURE in which A is
repeated 75 times. The size of an alphabetic or alphanumeric item described by the PICTURE
is limited to a maximum of 255 characters except for numeric display items, which are limited
to 15 digits. The size of an entire Group Item is also limited to 4095 characters.

. Categories of Data

a. Alphabetic (alpha-type)
The PICTURE of an alphabetic item contains only the character A. The number of A’sin the
character-string denotes the size of the data item, and each A represents one character
that at execution time may contain one of the twenty-six letters of the English alphabet or
the space character.

b. Alphanumeric (an-type)
The PICTURE of an alphanumeric item may contain only the Character X ora combination
of the characters X, A, and 9. An X indicates that the corresponding character position of
the data item may contain any one of the characters in the ASCII set. When the PICTURE is
described with a combination of characters, each character is treated as though it were an
X, since no examination of the data placed in the item is made at execution time. Thus, this
type of PICTURE description may have documentary significance only to the programmer.

c. Numeric (numeric-type)
The PICTURE of a numeric data item may contain only the characters 9, S, and V.
The character 9 represents adigit position containing a numeral and is counted in the size
of the item.

The character S indicates the presence of an operational sign and must be written as the
leftmost character in the PICTURE.

The character V indicates the position of the assumed decimal point and may occur only
once in the character-string. The Vdoes not represent a digit position and therefore is not
counted in the size of the item. When a V is written as the last (rightmost) character in the
PICTURE, it is redundant.

d. Alphanumeric Edited (ae-type)
The PICTURE of an alphanumeric edited item contains any combination of the characters
X, A, and 9together with one or more occurrences of the insertion characters 0 (zero) or B.
Each 0 represents a character position into which the character Ois to be inserted; each B
represents a character position into which the space character is to be inserted. Thus, an
alphanumeric edited field is one that contains certain character positions into which
insertion characters are forced whenever data is stored in the item at execution time.

e. Numeric Edited (ne-type)
Editing alters the format and punctuation ofdatain anitem; characters can be suppressed
or added. Editing is accomplished by moving a data item to an item described as con-
taining editing symbols. Movement may be direct or indirect: The programmer can specify
a MOVE statement or arithmetic statement in which the result of computation is stored in
such an item.

510

Characters that may be used in a PICTURE of a numeric edited item are
9vV$+-.,0B/CRDBZ*

The characters 9 and V are discussed above; their use is exactly the same as in numeric
items. The remainder are insertion and replacement characters (see below).

3. Insertion Characters
When an insertion character is specified in the PICTURE, it appears in the edited data item;
therefore, the size of the item must reflect these additional characters. Insertion characters
and their characteristics are:

$

-+

CR

DB

When a single dollar sign is specified as the leftmost symbol, it appears as the leftmost
character in the size of the item.

When a plus sign is specified as the first or last symbol, a plus sign is inserted in the
indicated character position of the edited data item provided the data is positive
(contains a positive operational sign) or is unsigned. If the data is negative, a minus sign
isinserted in the indicated character position. This sign is counted in the size of the item.

When a minus sign is specified as the first or last symbol, a minus sign is inserted in the
indicated character position of the edited data item provided the data is negative
(contains a negative operational sign). If the data is not negative, a blank is inserted in
the indicated character position. This sign or blank is counted in the size of the item.

The period character represents an actual decimal point as differentiated from an
assumed decimal point. When used, adecimal point appears in the edited dataitem as a
character in the indicated character position; therefore, the decimal point is counted in
the size of the item. A PICTURE can never contain more than one decimal point, actual
or assumed.

When a comma is used, acomma is inserted in the corresponding character position of
the edited data item. It is counted in the size of the item.

When a zero is used, a zero is inserted in the corresponding character position in the
edited data item. It is counted in the size of the item.

When a character B is used, a space is inserted in the corresponding character position
in the edited data item. It is counted in the size of the item.

When the slash character is used, a slash character is inserted in the corresponding
character position in the edited data item. It is counted in the size of the item.

The credit symbol CR may be specified only at the right end of the PICTURE character-
string. It is inserted in the last two character positions of the edited data item provided
the value of the data is negative; if the data is positive or unsigned, these last two
character positions are set to spaces. Since this symbol always results in two characters
(CR or spaces), it is included as two characters in the size of the item.

The debit symbol DB may be specified only at the right end of the PICTURE. It functions
in the same manner as the credit symbol.

511

Examples of Insertion Characters:

Source Data Editing PICTURE Edited Item
48 $99 $48

48 434 $99.99 $48.34
4834 9,999 4,834

292 +999 +292

293 +999 +292

292 +999 -292

292 999- 292 -

292 -999 -292

292 999— 292/
243421 $BB999.99 $AN243.21
243421 $00999.99 $00243.21
11434 99.99CR 11.34CR
11434 99.99CR 11.340N0
23476 99.99DB 23.76DB
23478 99.99DB 23.76 AN
123456 99/99/99 12/34/56

4. Replacement Characters

A replacement character suppresses leading zeros in data and replaces them with other
characters in the edited data item. Only one replacement character may be used in a
PICTURE, although Z or * may be used with any one of the insertion characters. Replacement

characters and their characteristics are:

Z One character Z is specified at the left end of the PICTURE character string for each
leading zero that is to be suppressed and replaced by blanks in the edited data item. Z's
may be preceded by one of the insertion characters $ + or — and interspersed with any of

the ., 0 or B insertion characters.

Only the leading zeros that occupy a position specified by Z are suppressed and replaced
with blanks. No zeros are suppressed to the right of the first non zero digit whetheror nota
Z is present, nor are any zeros to the right of an assumed or actual decimal point
suppressed unless the value of the data is zero and all the character positions in the item
are described by a Z. In this special case, even an actual decimal point is suppressed and

the edited item consists of all blanks.

512

If a$ + or — is present preceding the Z’s, it is inserted in the far left character position of
the item even if succeeding zeros in the item are suppressed. In the special case where the
value of the data is zero and all the character positions following the $ + or — are specified
by Z's, the $ + or — is replaced by a blank.

If an 0 or B or, in the PICTURE is encountered before zero suppression terminates, the
character is not inserted in the edited data item but is suppressed, and a blank inserted in
its place.

The asterisk replaces the leading zeros it edits by an asterisk instead of a blank. It is
specified in the same way as the editing character Z and follows the same rules, except
that an actual decimal point is never replaced.

$ When the dollar sign is used as a replacement character to suppress leading zeros, it acts
as a floating dollar sign and is inserted directly preceding the first nonsuppressed char-
acter. One more dollar sign must be specified than the number of zeros to be suppressed.
This dollar sign is always present in the edited data whether or not any zero suppression
occurs. The remaining dollar signs act in the same way as Z to effect the suppression of
leading zeros. No other editing character may precede the initial dollar sign. Each dollar
sign specified in a PICTURE is counted in determining the size of the report item.

+ When a plus sign is used as a replacement character, it is a floating plus sign. The plus sign
is specified one more time than the number of leading zeros to be suppressed. It functions
in the same way as the floating dollar sign: a plus sign is placed directly preceding the first
nonsuppressed character if the edited data is positive or unsigned, and a minus sign is
placed in this position if the edited data is negative.

— When a minus sign is used as a replacement character, it is a floating minus sign. The
minus sign is specified one more time than the number of leading zeros to be suppressed.
It functions in the same way as the floating plus sign, except that a blank is placed directly
preceding the first nonsuppressed character if the edited data is positive or unsigned.

Examples of Replacement Characters:

Source Data Editing PICTURE Edited Item
00923 ZZ999 AN923
00923 27299 AN923
0000&00 2227Z.99 JAYAVAVARR o 4]
009623 $**.99 $**9.23
0008A24 $$$$9.99 AALS 8. 24
005A26 - - —-9.99 AN-5.26
32A65 $$$.99 $32.65

513

Examples of PICTURE Editing:

PICTURE of
DATA to be Edited Report Item Edited Item
012345 Z77,999.99 n12,345.00
001234 Z99,999.99 n00,012.34
000123 $22z,779.99 $annonnt1.23
000012 $227,72727.99 $annnnnn .12
001234 $*****9.99 $**1,234.00
123456 $** .99 $123,456.00
123456 $+r* .99 § +rr*errq.23
000012 +999,999 +000,012
000012 -272,222 6000012
123456 $222,7729.99CR $123,456.00CR
+
000123 $2727,279.99DB $noonnn1.23
001234 $(4),$$9.99 0000$123.40
000000 $(4),$$%$.99 DALDLOLS .00
000012 ————,———.99 DLLODLL—.12
000015 ————,—-—=.99 AdLLLLLD. 12
000001 $$$$,$22.99 lllegal PICTURE
5. Summary

a. Only one of the characters of the set Z* $ + and — can be used within a single PICTURE as
a replacement character, although it may be specified more than once.

b. If one of the replacement characters Z or * is used with one of the insertion characters $ +
or —, the plus or minus signs may be specified as either the leftmost or rightmost character
in the PICTURE. .

c. A plus sign and a minus sign may not be included in the same PICTURE.

d. A leftmost plus sign and a dollar sign may not be included in the same PICTURE.

e. A leftmost minus sign and a dollar sign may not be included in the same PICTURE.

f. The character 9 may not be specified to the left of a replacement character.

g. Symbols that may appear only once are VS . CR and DB.

h. The decimal point may not be the rightmost character in a PICTURE.

5-14

USAGE Clause

The format of this clause is:

DISPLAY
COMPUTATIONAL
COMP]
INDEX

USAGE IS [

The USAGE clause specifies the form in which data is represented in the computer. It
can be written at any level. If the USAGE clause is written at a group level, it applies to each
elementary item in the group; in addition, the USAGE clause of an elementary item cannot
contradict the USAGE clause of a group to which the item belongs.

This clause specifies the mannerin which adata item is represented in the storage of
the computer. It does not affect the use of the data item, although the specifications for some
statements in the PROCEDURE DIVISION may restrict the USAGE clause of the referent
operands.

DISPLAY denotes that the item is carried in the ASCIl format. DISPLAY mode is
assumed when a USAGE clause is not written. One character is stored in each byte of the item; if
the item is numeric, the leftmost byte can contain an operational sign in addition to a digit.

COMPUTATIONAL defines a packed decimal data item whose length is specified by
the accompanying PICTURE clause.

INDEX defines an item that is called an index data item and will contain a value that
corresponds to an occurrence number of a table element. Index data items must be elementary
data items. Since USAGE IS INDEX totally defines the internal representation of the data, a
PICTURE clause is not used with an index data item.

BLANK WHEN ZERO Clause.

The format of this clause is:
BLANK WHEN ZERO
The BLANK WHEN ZERO clause may be supplied only in conjunction with a numeric

edited item. It specifies that when the source item has a value of zero, the edited data item is to
contain all spaces.

JUSTIFIED Clause.

The format of this clause is:

JUSTIFIED :
—_— RIGHT
{wsr | o

This clause is applicable only to alphabetic or alphanumeric items. Normally, when
data is moved into an alphabetic or alphanumeric field, the source data is aligned at the
leftmost character position of the receiving data item and moved with space fill or truncation on
the right.

515

When the receiving data item is described with the JUSTIFIED clause and the
sending data item is larger than the receiving data item, the leftmost characters are truncated.

When the receiving data item is described with the JUSTIFIED clause and is larger than the
sending data item, the data are aligned at the rightmost character position in the data item with
other characters space-filled.

VALUE Clause.

The format of this clause is:
Value IS literal

The VALUE clause defines the value of constants, or the initial value of working-
storage items. This clause must not conflict with other clauses in the data description of the
item or in the data description within the hierarchy of the form. The following rules apply:

1. General

a. If the category of the item is numeric, the literal in the VALUE clause must be a numeric
literal. The literal is aligned according to the alignment rules except that the literal must
not have a value requiring truncation of digits.

b. If the category of the item is alphabetic or alphanumeric the literal in the VALUE clause
must be a nonnumeric literal. The literal is aligned according to the alignment rules except
that the number of characters in the literal must not exceed the size of the item.

c. The numeric literal in a VALUE clause of an item must have a value within the range of
values indicated by the USAGE or PICTURE clause.

d. The function of any editing clauses or editing characters in a PICTURE clause isignored in
determining the initial appearance of the item described. However, editing characters are
included in determining the size of the item.

2. Data Description Entries

a. Rules governing the use of the VALUE clause differ with the respective section of the

DATA DIVISION:

(1) In the FILE SECTION, the VALUE clause is not allowed.

(2) In the WORKING-STORAGE the VALUE clause may be used to specify the initial value
of any data item. It causes the item to assume the specified value at the start of the
object program. If the VALUE clause is not used in an item description, the initial value
may be unpredictable.

b. The VALUE clause must not be stated in a Record Description entry containing an

OCCURS clause or in an entry subordinate to an entry containing an OCCURS clause.

c. The VALUE clause must not be stated in a Record Description entry containing a REDE-

FINES clause or in an entry subordinate to an entry containing a REDEFINES clause. This

rule does not apply to condition-name entries.

d. The VALUE clause may not be used in an entry at the group level.

OCCURS Clause.

The format of this clause is:

OCCURS integer-1 TIMES
[INDEXED BY index-name-1 [,index-name-2] ...]

The OCCURS clause eliminates the need for separate entries of repeated data and
supplies information required for the application of subscripts.

516

The OCCURS clause is used in defining tables and other homogeneous sets of
repeated data; when it is used, the data-name that is the subject of this entry must either be
subscripted whenever it is referenced in a statement. Furthermore, if the subject of this entry is
thename ofagroupitem, alldata-names belonging to the group must be subscripted whenever
they are used as operands.

The data description clauses associated with an item whose description includes an
OCCURS clause apply to each repetition of the item described. Also the VALUE clause must not
be stated in a data description entry that contains an OCCURS clause or in an entry that is
subordinate to an entry containing an OCCURS clause.

An INDEXED BY clause is required if the subject of this entry, or anitem withinitif itis
a group item, is to be referenced by indexing. The index-name identified by this clause is not
defined elsewhere; the compiler allocates storage for it unassociated with any data hierarchy.

CRT Form Descriptions

In order to facilitate form layout for the CRT, two special clauses, “LINE” and
“COLUMN,” have been provided for use with CRT data description sentences. These clauses
are allowed only with CRT data description sentences and are written between the “PICTURE"
and ““VALUE" clauses of the CRT data description sentence. The “LINE’ and “COLUMN”
clauses are entirely optional. However, if they are not used, the programmer must provide all
necessary CRT control codes using hexadecimal constants when writing to the CRT.

LINE IS clause

The format of this clause is:

integer-1
;LINE is
NEXT PAGE

The “LINE” clause indicates the line number on which the data item is to be -

displayed.
When the LINE clause specifies integer-1, the data item will be displayed on the
specified CRT line. All previous information displayed on the CRT will not be affected.

When the LINE clause specifies NEXT PAGE, the CRT will be cleared prior to writing
the new data lines at the top of the display. The NEXT PAGE option may be used only at the 01
level.

COLUMN IS clause
The format of this clause is:

[;COLUMN IS integer - 1]

The COLUMN clause specifies the column number of the CRT in which the leftmost
character of the data item is to be displayed.

A group defined by the 01 level becomes a CRT form description group by the
occurence of one or more LINE or COLUMN clauses. The firstoccurrence of a LINE or COLUMN
clause must appear prior to any VALUE clauses or the group will not be considered a CRT form
description. However, once a LINE or COLUMN clause has been specified, the entire group
becomes a CRT form description and subsequent data description sentences do not have to
specify LINE or COLUMN clauses unless they are needed to position the data item. If the LINE

517

clause is omitted, the data will be displayed on the same line as the previous data item if the new
column is greater than the column of the previous data item. Otherwise, if the new column is
less than the column number of the previous data item, the new data item will be displayed on
the following line. If the COLUMN clause is omitted, the data will be displayed starting in
column two of the line. If both the LINE and COLUMN clauses are omitted, the new data will be
displayed one column after the end of the previous data item.

When specifying a line and column position for adataitem, at least one column must
be reserved preceding the data item to allow for CRT control attributes.

Video Attributes

Video attributes are automatically generated for CRT data descriptions based upon
the type of the literal used in the VALUE clause.

e numeric or nonnumeric literal—the data item will be protected, normal video.

e figurative constant—the data item will be unprotected and underlined.

e hexadecimal constant—the data item is considered to be composed entirely of
video control codes. No other attributes will be added by the COBOL compiler. In
addition, the default line and column positions are not changed. It is assumed that
the screen is left protected by the programmer.

The compiler generates the equivalent of a FILLER data description entry preceding
the CRT data description sentence. This “FILLER” contains CRT control codes. Thus, CRT
control cannot be specified on a level 77 data description and the size of groups are automat-
ically increased to include the internally generated codes.

Examples

01 INVENTORY-RECORD, LINE IS NEXT PAGE.
02 FILLER PIC X(11) LINE 3, COLUMN 5 VALUE ‘DESCRIPTION.’
02 FILLER PIC X(15) VALUE SPACES.

01 EMPLOYEE-RECORD.
02 FILLER PIC X(8) LINE 2; VALUE '‘EMP-NAME".’
02 NAME PIC X(10) VALUE SPACES.
02 FILLER PIC X(3) COLUMN 35; VALUE ‘AGE.’
02 AGE PIC ZZ COLUMN 45; VALUE SPACES.

01 BLINK-HELLO, LINE IS NEXT PAGE.
02 FILLER PIC X LINE 5, COLUMN 35 VALUE $EO.
02 FILLER PIC X(5) VALUE ‘““HELLO.”

518

CHAPTER 6
PROCEDURE DIVISION

GENERAL DESCRIPTION

The PROCEDURE DIVISION of a COBOL source program specifies the procedures—
the precise sequence of processing operations—needed to solve a given problem. These

operations (computations, logical decisions, input/output, etc.) are expressed in meaningful
statements, similar to English.

PROCEDURE DIVISION Elements

Statements

A statement consists of a COBOL verb followed by appropriate operands (data-
names or literals) and reserved words. The three types of statements are

1. Compiler directing
2. Imperative
3. Conditional

Compiler Directing Statement. A compiler directing statement directs the compiler to take
certain actions at compilation time. Compiler directing statements are: COPY.

Imperative Statement. An imperative statement specifies an action to be taken uncon-

ditionally by the object program. An imperative statement may consist of a series of imperative
statements.

Conditional Statement. A conditional statement describes a condition that is tested to deter-

mine which of alternate paths of programmed processing flow is to be taken. Conditional
statements are:

1. READ and RETURN statements that have the AT END or INVALID KEY options.
2. WRITE statements with the INVALID KEY option.

3. Arithmetic statements with the SIZE ERROR option.

4. IF statements.

Sentences

A sentence is a single statement or series of statements terminated by a period. A
single semicolon may be used as a separator between statements within a sentence.

Paragraphs

. Aparagraph consists of one or more sentences identified by a beginning paragraph-
name.

Sections

A section comprises one or more successive paragraphs, and must begin with a
section header. A section header consists of a section-name followed by the word SECTION
and a period.

6-1

Paragraph and Section Naming

Every paragraph or section has a programmer-supplied name that is given in the
header entry. This name is used for reference (as, for example, when specifying a GO TO
paragraph-name or GO TO section-name).

PROCEDURE DIVISION Structure

The formats of the PROCEDURE DIVISION are:
Format 1
PROCEDURE DIVISION

{section-name SECTION.}
{paragraph-name. {sentence.} C } .. } e

Format 2
PROCEDURE DIVISION

{paragraph-name. sentence.}. : } -

Execution of the program begins at the first statement of the first section.

ARITHMETIC-EXPRESSIONS

An arithmetic-expression is a combination of numeric literals and data item iden-
tifiers (data-names) joined by one or more arithmetic operators in such a way that the entire
expression can be reduced to a single numeric value. An arithmetic operator is a symbol
representing addition, subtraction, etc. Spaces must be left on either side of an operator
included in an arithmetic-expression. The operators are:

+ Addition

— Subtraction

* Multiplication

/ Division

Also, the operator ‘—" may be used as a unary — to indicate logical negation.
The following are examples of arithmetic-expressions:

RATE * TIME
GROSS — DEDUCTIONS
OVERTIME * 1.5 + REGULAR-TIME

Note that each of the above expressions is a combination of identifiers or literals
joined by arithmetic operators. At object time each identifier represents a value and, in each of
the above examples, one numeric value results from the specified computation. An arithmetic-
expression may be used in the COMPUTE statement or in conditional expressions. It is
therefore possible to test a given arithmetic-expression to see whether it reduces to a specific
value.

6-2

ORDER OF COMPUTATION IN COMPOUND CONDITIONS

The method of evaluation of an arithmetic-expression can be specified by parenthe-
ses. Thus the expression A* B + C might be considered ambiguous, because (A*B) + CorA* (B
+ C) are possible. If parentheses are not written to specify the order of computation, COBOL
evaluates an arithmetic-expression using the following rules:

1.

2.
3.
4.

The unary — is performed first.

Then, multiplication and division are performed.
Finally, addition and subtraction are performed.
In each of the three steps above, computation starts at the left of the expression
and proceeds to the right. Thus A*B/Cis computedas (A*B)/Cand A/B*Cis

computed as (A/ B) * C.
. When parentheses are present, computation begins with the innermost set and

proceeds to the outermost. Items grouped in parentheses are evaluated in ac-
cordance with the above rules, and the result is then treated as if the parentheses

were removed.

Rules for specifying operators, left and right parentheses, and a variable (data-name,
literal, figurative-constant) are given in Table 6-1.

TABLE 6-1. Rules for Constructing Arithmetic-Expressions

First
Symbol

Second Symbol

Variable

or/

)or End of

- or + unary — Expression

—

Variable
*or/

— or +
unary —

ning or

)

(or Begin-

Expression

U U U |

—L—\.'U
v U
TUoToN
|

1. This is permitted when — indicates the sign of a numeric literal.
2. Parentheses immediately following a data-name indicate the presence of a sub-

script. The subscript is considered part of the variable.

P. A specified pair of symbols is permitted.
— A specified pair of symbols is not permitted.

Note that the use of a complex arithmetic-expression may require the computer to compute
intermediate results that overflow on the high-order end or truncate on the low-order end.

6-3

CONDITIONAL STATEMENTS

A conditional statementdescribes a condition that is tested to determine selection of
alternate paths of programmed processing flow. The programmer can accomplish this branch-
ing using the following types of statements:

1. The GOTO...DEPENDINGON. .., which branches to one of several procedure-

names.

2. Statements with exception branches: AT END, INVALID KEY, and ON SIZE
ERROR.

3. The IF, and PERFORM, in which the condition is explicitly stated.

Relations

Relational-operators in the COBOL language are

IS [NOT] {GREATERTHAN}
>

IS [NOT] {LESSTHAN}
=

IS [NOT] {ECUALTO}

EQUALS

Underlined words in the above list must be present when the relational-operator is
used. Words not underlined may be omitted if the programmer desires, with no effect on the
meaning of the relational-operator.

Relational-operators are combined with identifiers or literals to create relation
conditions. The general format is

identifier-1 identifier-2
literal-1 {relational-operator} literal-2

arithmetic- arithmetic-
expression expression

Logical Operators (AND, OR, and NOT)

The three logical operators are AND, OR, and NOT. AND and OR are used to create a
“compound condition” when two or more tests are specified in the same expression. NOT is
used to specify the negation of a condition.

Consider the following example:
IF CODE IS ZERO AND AGE NOT GREATER THAN 21 ADD A TO B.

Notice how AND and NOT are used to augment the two basic tests. Because the tests
are connected by AND, they both must be true for A to be added to B.

Consider the following:
IF CODE IS NOT ZERO OR AGE GREATER THAN 21 ADD C TO D.

This time the logical operator OR specifies that C is to be added to D if either or both
conditions are fulfilled.

6-4

NOT can be used in two ways with a simple relational condition: in the relational-
operator as in AGE NOT GREATER THAN 21, or preceding the entire condition as in NOT AGE
GREATER THAN 21. AGE NOT GREATER THAN 21 and NOT AGE GREATER THAN 21 are
exactly equivalent in meaning. If NOT precedes a simple relational condition that contains NOT
in the relational-operator, a double negative results and causes an error.

Other Condition Tests

Sign Test
The format of this test is

data-name POSITIVE
IF IS [NOT] [ZERO }

arithmetic-expression NEGATIVE

The sign test is also effectively a special case of relation testing equivalent to testing
whether an expression is GREATER THAN, LESS THAN, or EQUAL TO ZERO. The data-name
must be a numeric value that, if unsigned and not equal to zero, is assumed to be positive. The
value zero is considered neither positive nor negative. The statement GROSS IS NEGATIVE is
equivalent to GROSS IS LESS THAN 0; GROSS IS POSITIVE is equivalent to GROSS IS
GREATER THAN 0. Any condition that can be expressed as a sign condition can be expressed
as a simple relational condition; the sign condition is merely a convenient way of expressing
certain situations.

Class Test
The format of this test is

NUMERIC
IF data-name IS [NOT] []

ALPHABETIC

The data-name must be defined in the DATA DIVISION as USAGE DISPLAY. Table 6-2
lists cases where the class test is valid and meaning of the results.

Comparison of Numeric Iltems

For numeric items a relation test determines that the value of one of several items is
less than, equal to, or greater than the others, regardless of the length. Numeric items are
compared algebraically after alignment of decimal points. Zero is considered a unique value
regardless of length, sign, or implied decimal-point location of an item.

Comparison of Non-Numeric Items

For nonnumeric items a comparison determines that one of the items is less than,
equalto, or greater than the other with respect to the binary collating sequence of characters in
the ASCII character set. If the nonnumeric items are of equal length, the comparison proceeds
by comparing characters in corresponding character positions starting from the high-order
position and continuing until either a pair of unequal characters or the low order position of the

6-5

item is compared. If the non-numeric items are of unequal length, comparison proceeds as
described for items of equal length. If this process exhausts the characters of the shorter item,
the shorteritem is less than the longer unless the remainder of the longer item consists solely of
spaces, in which case the items are equal.

Table 6-3 indicates characteristics of the compared items and the type of compar-

ison made.

TABLE 6-2. Valid Class Tests

PICTURE
Must May
Contain Contain Allowable Characters | Valid Tests Meaning
A B Alphabetic (A-Z [NOT]ALPHA- (Not) only
and space) BETIC characters A-Z
and space
appear
(INOT]ALPHA- (Not) only
BETIC characters A-Z
. and space
A9 XBO Alphanumeric (any) appear
] character) <
X A9BO
[NOT] NUMER- | (Not) only
\JC characters 0-9
appear
S9 OVP Zoned decimal with [NOT] NUMER- | (Not) only
operational sign IC characters
0-9 appear
in all posi-
tion, which
can contain
zone bit.
9 OVP Zoned decimal with- [NOT] NUMER- | (Not) only
out sign IC characters
0-9 appear.

6-6

TABLE 6-3. Permissible Comparisons

Item Characteristics GR X ND
Group Item GR A A A
Alphabetic, Alpha-

numeric, and Edited X A A A
Numeric Display ND A A 9

A. Alphanumeric or byte comparison, byte-by-byte from left to right
9. Numeric comparison

Conditional Statements with Exception Branches

The format of these statements is

AT END
INVALID KEY {imperative—statements . }
ON SIZE ERROR

The READ, RETURN, WRITE, REWRITE, DELETE, ADD, SUBTRACT, MULTIPLY, and
DIVIDE verbs specify the exception branch as either an optional or a required part of the
statement. When the exception branch is present, the verb in whose format it is written is
considered to be a conditional statement. Normally, control bypasses the exception branch to
the first statement in the next sentence or the first statement beyond the next ELSE (within an IF
statement), but when the exception condition is met, control is given to the imperative-
statement following the AT END, INVALID KEY, or SIZE ERROR. None of the statements up to
the next period or ELSE (within an IF statement) may be a conditional statement: thus “nest-
ing”’ of exception branches is not allowed.

Nested Conditional Statements

The IF statement may have conditional statements in either of the branches taken
because of the outcome of the condition test. Furthermore, the conditional statement can be
another IF, thus it is possible to “‘nest” IFs (in other words, IFs may be contained within IFs).
Refer to the “IF Statement” discussion later in this chapter.

INPUT/OUTPUT STATEMENTS

OPEN Statement

The general format of this statement is:
OPEN [INPUT [file-name] . . .]

6-7

[OUTPUT [file-name] .. .]
[EXTEND [file-name] . . .]
[I-O [file-name] .. .]
The OPEN statement initiates processing of the files named in the statement.

One of the INPUT, OUTPUT, EXTEND or I-O options must be specified. The I-O option
pertains only to files on direct access media used when ACCESS IS RANDOM is specified.

The EXTEND option means that the file is to be opened for output and that new
records are to be added after the last record currently in the file.

An OPEN statement must be executed prior to any other input/output statement. A
second OPEN statement for a given file cannot be executed prior to the execution of a CLOSE
statement for that file. The OPEN statement itself does not obtain or dispatch data; a READ or
WRITE statement must execute to obtain or release, respectively, the first data record.

START Statement

The START statement provides a means for logical positioning within an indexed file
for subsequent sequential retrieval of records.

Format:

/
EQUAL TO

START file-name [KEY IS < GREATER THAN data—name]>

>
NOT{LESS}THAN
\ < J

[INVALID KEY imperative-statement

When the START statement is executed, the associated file must be open in INPUT or
I-O mode.

File-name must name an indexed file with sequential or dynamic access. File-name
must be defined in an FD entry in the Data Division.

When the KEY option is not specified, the EQUAL TO relational operator is implied.
When the START statement is executed, the EQUAL TO comparison is made between the
current value in the RECORD KEY and the corresponding key field in the file’s records. The
Current Record pointer is positioned to the logical record in the file whose key field satisfies the
comparison.

When the KEY option is specified, data-name may be either

e The RECORD KEY for this file, or

e Any alphanumeric data item subordinate to the RECORD KEY whose leftmost
character position corresponds to the leftmost character position of the RECORD
KEY (that is, a generic key).

When the START statement is executed, the comparison specified in the KEY
relational operator is made between data-name and the key field in the file’s records. The
Current Record Pointer is positioned to the first logical record in the file whose key field
satisfies the comparison.

If the comparison is not satisfied by any record in the file, an INVALID KEY condition
exists, and the position of the Current Record Pointer is undefined.

6-8

READ Statement

For sequential access, the READ statement makes available the next logical record
from file. For random access, the READ statement makes available a specified record from a
file.

The formats of this statement are:

Format 1
READ file-name [NEXT] RECORD [INTO identifier]
[AT END imperative-statement]

Format 2
READ file-name RECORD [INTO identifier]; INVALID KEY imperative-statement

Functions of the READ verb are:

1. Sequential file processing (Format 1) makes available the next logical record from
an input file and allows execution of a specified series of imperative-statements
when the end-of-file is detected.

2. Random file processing (Format 2) makes available a specific record from an
indexed file and allows execution of a specified series of imperative-statements if
the contents of the associated RECORD KEY data item are found to invalid.

When the READ statement is executed, the associated file must be open in INPUT or
I-O mode.

File-name must be defined in an FD entry in the Data Division.

Format 1: When ACCESS MODE SEQUENTIAL is specified or assumed for a file, this
format must be used. For such files the statement makes available the next logical record from
the file. For indexed files, the NEXT option need not be specified; for sequential files, the NEXT
option must not be specified.

When ACCESS MODE DYNAMIC is specified for indexed files, the NEXT option must
be specified for sequential retrieval. For such files, the READ NEXT statement makes available
the next logical record from the file.

Before a Format 1 READ statement is executed, the Current Record Pointer must be
positioned by the successful prior execution of an OPEN START, or READ statement. When the
Format 1 READ statement is executed the record indicated by the Current Record Pointer is
made available. For sequential files, the next record is the succeeding record in logical
sequence. For a sequentially accessed indexed file, the next record is that one having the next
higher RECORD KEY in collating sequence.

Format 2: This format must be used for indexed files in random access mode, and for
random record retrieval in the dynamic access mode.

Execution of a Format 2 READ statement causes the value in the RECORD KEY to be
compared with the values contained in the corresponding key field in the file’'s records until a
record having an equal value is found. The Current Record Pointer is positioned to this record,
which is then made available.

If no record can be so identified, an INVALID KEY condition exists, and execution of
the READ statement is unsuccessful.

Immediately following execution of a READ statement, the next logical record in the
file is accessible in the logical record area associated with the file as defined by the Record
Description entry. When multiple record descriptions follow a File Description (FD) entry, it is
the responsibility of the programmer to recognize which record is present in the area at any

6-9

given time. The record is available in the logical record area until another READ statement or a
CLOSE statement for that file is executed.

The INTO option is equivalent to a READ statement followed by a MOVE, and results
in the record obtained by execution of the READ becoming available in both the record area for
the file and in the location indicated by the identifier. The record is moved from the record area
into the identifier in accordance with the rules for the MOVE statement.

In the case where the file contains records of varying lengths, the size of the longest
record is assumed for the input record for the purpose of executing the MOVE.

The AT END clause is required for files that are accessed sequentially. The state-
ments introduced by this clause are executed when end-of-file is encountered.

For files with SEQUENTIAL organization, when the AT END condition has been
recognized, a READ statement for this file must not be executed until a successful CLOSE
statement followed by a successful OPEN statement have been executed for this file.

For files with INDEXED organization, when the AT END condition is recognized, a
Format 1 READ statement for this file must not be executed until one of the following has been
successfully executed:

e A CLOSE statement followed by an OPEN statement

e A Format 2 READ statement (dynamic access)

e A START statement

The INVALID KEY clause must be written for files for which ACCESS IS RANDOM is
specified. The imperative-statements are executed if a record corresponding to the contents of
the RECORD KEY cannot be located in the file.

The contents of the RECORD KEY data item must be appropriately established prior
to execution of the READ statement itself.

WRITE Statement

The formats of this statement are:

Format 1
BEFORE
WRITE record-name [FROM identifier-1] {{ } ADVANCING
, AFTER
identifier-2 LINES
{integer LINES]}
PAGE
Format 2

WRITE record-name [FROM identifier-1]; INVALID KEY imperative statement

The WRITE statement releases a logical record to an output file. For random access
files the statement also allows execution of a specified series of imperative-statements if the
contents of the associated RECORD KEY data item are found invalid.

An OPEN OUTPUT, OPEN EXTEND, or OPEN INPUT-OUTPUT must be executed
before a WRITE statement can be executed for a file. Once the WRITE is executed there is no
guarantee that the logical record released thereby still exists in the logical record area for the
file.

AWRITE statement bearing the FROM option is equivalent to a MOVE identifier-1 TO
record-name statement followed by WRITE record-name. Moving takes place in accordance
with rules for the MOVE statement.

6-10

Format 1 relates to files opened for sequential access. The ADVANCING option
applies to files containing output destined to be printed. Integer should be an unsigned integer,
and identifier-2, similarly, should contain a nonnegative integer. The line is printed BEFORE or
AFTER the specified number of lines is spaced.

Format 2 is used for mass storage files. Statements following the INVALID KEY
clause are executed when:
1. No space exists on the file media to accommodate the record.
2. The file is open for OUTPUT or I-O and a record corresponding to the contents of
the RECORD KEY already exists in the file.

REWRITE Statement

The format of this statement is:
REWRITE record-name [FROM identifier-1]; INVALID KEY imperative-statement.

The REWRITE statement rewrites a previously read logical record to the output file.
The statement also allows execution of a specified series of imperative-statements if the
contents of the associated RECORD KEY data item are found invalid.

An OPEN I-O must be executed before a REWRITE statement can be executed for a
file. Once the REWRITE is executed there is no guarantee that the logical record rewritten still
exists in the logical record area for the file.

The statements following the INVALID KEY clause are executed when the record
corresponding to the contents of the RECORD KEY clause was not previously read.

DELETE Statement

The format of this statement is

DELETE file-name; INVALID KEY imperative-statement

The DELETE statement deletes a logical record from the output file. The statement
also allows execution of a specified series of imperative-statements if the contents of the
associated RECORD KEY data item are found invalid.

An OPEN I-O must be executed before a DELETE statement can be executed for a
file.

The statements following the INVALID KEY clause are executed when the record
corresponding to the contents of the RECORD KEY clause is not found in the file.

CLOSE Statement

The format of this statement is:
CLOSE [file-name] [WITH DELETE] ...

The CLOSE statement terminates the processing of files. Execution of a CLOSE
statement causes the standard closing procedures to be carried out on the file named. An
OPEN statement must be executed before a CLOSE can be honored for afile; once closed, afile
may not be referenced again until another OPEN statement is executed for that file.

If the DELETE option is specified, all records in the file will be deleted.

ACCEPT Statement

The format of this statement is:
ACCEPT identifier-1 [, identifier-2] . . .

6-11

The ACCEPT statement specifies acceptance of data from the CRT. It is normally
used to read unprotected CRT fields.

The identifier must be an unedited DISPLAY data item or a group item. Refer to the
operations manual for additional information on reading unprotected fields from the CRT.

DISPLAY Statement

The format of this statement is:

@(row, column) @(row, column)
DISPLAY {identifier-1 , {identifier-2 5 0§

literal-1 literal-2

The DISPLAY statement enables data to be written to the CRT. The clause, @(row,
column), allows the cursor to be positioned to any location on the CRT screen. The identifiers
“row’” and ‘“column” may be either a numeric literal or a numeric data item. The cursor
positioning clause may appear alone or in conjunction with other operands in the DISPLAY
statement. If the cursor positioning clause is not present, a carriage return/line feed pair is sent
to the display station. When a DISPLAY statement contains more than one operand, the
characters comprising the items named and any literals specified in the statement are dis-
played consecutively, with no spaces between characters unless specified.

Any remaining positions on a line at the end of the data transfer are left unchanged.
Any number of literals or data names may be specified. The data-name may be that of agroup or
an elementary item and may also be subscripted. A literal in a DISPLAY statement may be
numeric or nonnumeric and may be a hexadecimal constant to specify CRT or field attributes.

Example:
DISPLAY @(3,25), $8085, DATA-1, $84F3.
Refer to the operations manual for additional information on CRT control.

ARITHMETIC STATEMENTS

The basic arithmetic operations are specified by the four verbs ADD, SUBTRACT,
MULTIPLY, and DIVIDE.

Rules for Arithmetic Verbs
The following general rules apply to all arithmetic verbs:

1. All literals specified in arithmetic statements must be numeric.

Anidentifier used in an arithmetic statement must be an elementary item and must
be numeric.

2. The maximum size of an operand is 15decimal digits. If the entry for an operand in
the DATA DIVISION specifies a size greater than 15 digits or if a literal contains
more than 15 digits, an error is indicated at compilation time.

3. The items in an arithmetic statement may be mixed sizes as long as they are all
numeric. Any necessary decimal-point alignment is supplied automatically
throughout computations. ,

4. No item used in computations may contain editing symbols. If such an item is
used, a compilation-time diagnostic results. Operational signs and assumed
decimal points are not editing symbols. An item used to receive results may

6-12

contain editing symbols if it is not used in subsequent computations as an

operant. When an item used to receive results contains editing symbols, the result

is edited according to editing specifications before it is moved to the item.
ROUNDED, GIVING and SIZE ERROR options apply to all arithmetic statements.

GIVING Option

If the GIVING option is written, the value the identifier that follows the word GIVING is
made equal to the calculated result of the arithmetic operation.

If the GIVING option is not written, each operand following the words TO, FROM, BY,
and INTO in the ADD, SUBTRACT, MULTIPLY, and DIVIDE statements, respectively, must be an
identifier (not a literal). Each identifier is used in the computation, and also receives the result.

ROUNDED Option

If the ROUNDED option is not specified, truncation occurs when the number of
places calculated (after decimal-point alignment) for the result is greater than the number of
places in the data item that is to be set equal to the calculated result. When the ROUNDED
option is specified, the least significant digit of the resultant data-name increases in value by 1
whenever the most significant digit of the excess is greater than or equal to 5.

Rounding of a computed negative result is performed by rounding the absolute
value of the computed result and then making the final result negative.

Table 6-4 illustrates the relationship between a calculated result and the value stored
in an item that is to receive the calculated result.

TABLE 6-4. Rounding or Truncation of Calculations

Item to Receive Calculated Result
Calculated Value After Value After
Result PICTURE Rounding Truncating
—-12.36 S99V9 —-12.4 -12.3
8.432 9V9 8.4 8.4
35.6 99V9 35.6 35.6
65.6 99V 66 65
0.0055 V999 0.006 0.005

SIZE ERROR Option

An arithmetic statement, if written with a SIZE ERROR option, is not an imperative-
statement. Rather, it is a conditional statement and is prohibited in contexts where only
imperative-statements are allowed.

Whenever the number of integer places in the calculated result exceeds the number

of integer places specified for the resultant item, a size error condition arises. If the SIZE
ERROR option is specified and a size error condition arises, the value of the resultant itemis not
altered and the series of imperative-statements specified for the condition is executed.

If the SIZE ERROR option is not specified and a size error condition arises, no
assumption should be made about the correctness of the final result even though the program
flow is not interrupted.

ADD Statement

The formats of this statement are:
Format 1
. n— . itiar.0
ADD {lf:ientmer 1} [,lfjentlfler
— lliteral-1 Jiteral-2
[ROUNDED] [; ON SIZE ERROR imperative-statement]

] ..., identifier-n

Format 2

ADD {lfientlf|er-1} [|fjent|f|er-2
— lliteral-1 , literal-2
[ROUNDED] [; ON SIZE ERROR imperative-statement]

} ... TO identifier-m

Format 3

identifier-1 identifier-2 , identifier-3
ADD | .] { . [.
— Lliteral-1 literal-2 Jliteral-3

GIVING identifier-m [ROUNDED] [; ON SIZE ERROR imperative-statement]

The ADD statement sums the values of two or more numeric items and/or literals and
sets one or several items equal to the resultant value. Operands used in an ADD statement must
conform to ‘‘Rules for Arithmetic Verbs” above in addition to specific rules applying to this
individual statement. Use of the SIZE ERROR and ROUNDED options is also discussed in the
referenced paragraph.

When Format 1 is used the values of all the operands including identifier-n are added
together and the result is stored as the new value of identifier-n, the resultant-identifier.

Example:
Given the statement ADD A, B, C, the values of A, B, and C before and after execution

are
A B C
Before 5 6 8
After 5 6 19

Note that the values of A and B do not change as a result of the addition.

Format 2 adds the values of the operands (identifier-1 or literal-1 and identifier-2 or
literal-2) preceding the reserved word TO, and this intermediate result is added to the data
items specified by identifier-m, identifier-n, etc.

Example:

Given the statement ADD W, X, Y TO Z, the values of W, X, Y and Z before and after
execution are:

6-14

w X Y Z
Before 2 7 8 12
After 2 7 8 29

Note that the value of all operands participates in the addition.

Format 3 adds the values of the operands (identifier-1 or literal-1 and identifier-2 or
literal-2, etc.) preceding the reserved word GIVING, and this intermediate result is placed in
identifier-m, identifier-n, etc.

Example:

Given the statement ADD A, B, C, GIVING D, the values of A, B, C and D before and
after execution are:

A B G D
Before 1 2 3 5
After 1 2 3 6

Note that the intermediate result replaces the value of D and is not added to D.

SUBTRACT Statement

The formats of this statement are:
Format 1

SUBTRACT {ndentlfler-1} [, ldentlfier-2]

literal-1 , literal-2

FROM identifier-m [ROUNDED] [; ON SIZE ERROR imperative-statement]

Format 2

. FROM

' —_— ’ ifier-2
SUBTRACT {ldentlfler 1} [identifier]

literal-1 , literal-2

{'de"“f'er'm} GIVING identifier-n [ROUNDED]

literal-m

[; ON SIZE ERROR imperative-statement]

The SUBTRACT statement subtracts the value of a numeric item from another item
and stores the result in a third item.

Format 1 subtracts the operands preceding the word FROM from identifier-m plac-
ing the result in identifier-m.

Format 2 subtracts the operands preceding the word FROM from identifier-m (lit-
eral-m) without changing the contents of identifier-m, placing the result in the item following
GIVING.

Example:

Given the statement SUBTRACT A FROM B GIVING C the values of the operands
before and after execution are:

6-15

A B C
Before 10 80 90
After 10 80 70

MULTIPLY Statement

The formats of this statement are:
Format 1

identifier-1

MULTIPLY {)
T literal-1

} BY identifier-2 [ROUNDED]

[; ON SIZE ERROR imperative-statement]
Format 2

GIVING

MULTIPLY {ldentlfler-1} BY {ldentmer-z}

literal-1 literal-2

identifier-3 [ROUNDED] [;ON SIZE ERROR imperative statement]

The MULTIPLY statement can be used to multiply two items with the value of a third
item being set to the product. Operands used in a MULTIPLY statement must conform to “Rules
for Arithmetic Verbs” above, in which the SIZE ERROR and ROUNDED options are also
discussed.

Format 1 allows the multiplicand (identifier-1 or literal-1) to be multiplied by the
multiplier (identifier-2) and the value of identifier-2 to be set to the product. A literal cannot be
used in place of identifier-2.

Example:

Given the statement MULTIPLY A BY B the values of the operands before and after
execution are:

A B
Before 10 20
After 10 200

Note that the values of operand B change to reflect the multiplication.

Format 2 allows the multiplicand (identifier-1 or literal-1) to be multiplied by the
multiplier (identifier-2 or literal-2).

Example:

Given the statement MULTIPLY A BY B GIVING C the values of the operands before
and after execution are:

A B C
- Before 5 10 20
After 5 10 50

6-16

Note that the values of operands A and B remain the same, while the value of operand
C changes.

DIVIDE Statement

The formats of this statement are:
Format 1

identifier-1

DIVIDE { .
literal-1

} INTO identifier-2 [ROUNDED]

[;ON SIZE ERROR imperative-statement]
Format 2

DIVIDE {ldentlfler-‘l}

literal-1 INTO {

identifier-Z}

Vi
literal-2 GIVING

identifier-3 [ROUNDED] [;ON SIZE ERROR imperative-statement]

Format 3

DIVIDE {'de”“f'ef'1} - {Identlfler-z}

V
literal-1 literal-2 QIVING

identifier-3 [ROUNDED] [; ON SIZE ERROR imperative-statement]

The DIVIDE statement divides the value of one numeric item into the value of one or
more numeric items and sets the value of one or more items to the quotient. Operands used ina
DIVIDE statement must conform to ‘“‘Rules for Arithmetic Verbs’ above in addition to specific
rules applying only to this individual statement. Use of the SIZE ERROR and ROUNDED options
is also discussed in the reference paragraph.

Format 1 allows one division, with the quotients stored as the value of the item
following INTO. The dividend (identifier-2) divided by the divisor (identifier-1 or literal-1) and
the value of the dividend set to the value of the associated quotient. Literals cannot be used in
place of identifiers-2. The size error condition results when the divisor is zero or the quotient
contains more integer positions than are available.

Example:

Given the statement DIVIDE A INTO B the values of the operands before and after
execution are:

A B
Before 5 10
After 5 2

Format 2 allows the single quotient resulting from a division to be stored in a third
item. If Format 2 is used, the dividend (identifier-2 or literal-2) is divided by the divisor
(identifier-1 or literal-1), and the value of the resultant quotient becomes the new value of
identifiers-3.

6-17

Example:

Given the statement DIVIDE A INTO B GIVING C the values of the operands before
and after execution are:

A B C
Before 5 10 15
After 5 10 2

COMPUTE Statement

The format of this statement is:

identifier-n
COMPUTE identifier-1 [ROUNDED] = literal-1
arithmetic-expression

[; ON SIZE ERROR imperative-statement]

The COMPUTE statement specifies computation that combines the individual pro-
cessing of the ADD, SUBTRACT, MULTIPLY, and DIVIDE statements by the use of an arithmetic-
expression and stores the results in one or more items. This statement can also duplicate a
MOVE statement when the arithmetic-expression is replaced by a literal or identifier.

The arithmetic-expression can consist of any meaningful combination of data-
names, numeric literals, and the figurative-constant ZERO, joined by the arithmetic operators.
The arithmetic-expression is evaluated and the resulting numeric value replaces the contents
of identifier-1. All identifiers in the statement (including those in the arithmetic-expression)
must be described in the DATA DIVISION as elementary numeric items.

The arithmetic-expression may be simple or complex. If it consists of one identifier
(an elementary numeric item), the COMPUTE statement is equivalent to a MOVE statement, and
the identifier-1 item is set to the value of this single item. Similarly, the arithmetic-expression
may consist solely of a numeric literal.

Examples:

COMPUTE PAY= HOURS * RATE.
COMPUTE NET= (HOURS * RATE)— DEDUCTIONS.

DATA MANIPULATION STATEMENTS

MOVE Statement

The format of this statement is:

identifier-1

MOVE [} TO identifier-2 [, identifier-3]

literal-1

... [ON SIZE ERROR imperative-statement]

6-18

The MOVE statement moves data from one area of main storage to another. It edits

the data (inserts, deleted, or replaces characters) if the PICTURE of the receiving item so
requires.

This statement moves data in identifier-1 (or the specified literal) to identifier-2.
Literal-1 may be a numeric literal, an alphanumeric literal, or a figurative-constant. Figurative-
constants are treated as alphanumeric items. The same information may be moved simulta-
neously to additional areas as specified by identifier-3, etc.; such movement does not destroy
the original data in identifier-1but copies it in the designated areas. Identifier-1or literal-1is the
source item; identifier-2, identifier-3, etc., are the receiving items or areas. Both the source and
receiving items can be elementary or group items. (For purposes of the MOVE statement, a
literal is considered an elementary item.) The manner in which the MOVE is performed depends
not only on the type of source and receiving items but also on their classes.

The imperative-statement of the ON SIZE ERROR clause will be executed whenever

significant characters (non-blank or non-zero) are truncated as a result of the move. This
feature facilitates editing of input data.

The types of MOVE statements are discussed in the following paragraphs.
Alphanumeric Moves

Source data is stored left-justified in the receiving area. If the receiving area is not
completely filled by data, remaining positions are filled with spaces. If the receiving item is
alphabetic, it is treated as alphanumeric.

Examples:

PICTURE of
Source Data Receiving Item Receiving ltem
A|B|C|D A(4) or X(4) A|B|C|D
A|B|C|D A(5) or X(5) A|B|C|D
A|lB|C|[D|1|2]3] X(®8) AlB|C|D|[1]|2]3]|A
1{2|3 X(8) 11 2] 3D A A NN
A|B|C D A(3) or X(3) A[B|C

If the receiving item is alphanumeric, the literal may be any literal or figurative-
constant. If the figurative-constant takes the form of ALL any-literal, the literal must be en-
closed in quotation marks and is considered an alphanumeric item. The size of an ALL any-
literal item is determined by the size of the receiving item, with characters repeated from left to
right.

Examples:

PICTURE of
Source Data Receiving Receiving Item
‘ABCD’ X(4) A(B|C|D

6-19

‘123 X(2) 12

123 X(5) 112|3(D1A

All ‘X’ X(5) XX X|X|X

Numeric Moves

When the source data is moved into the receiving area, it is aligned according to its
decimal point and the decimal point in the receiving area. If there is no decimal point in either
the source or receiving item, one is assumed of the right end of the item. Alignment by decimal
points may result in the loss of leading or trailing digits, or both.

Any positions in the receiving area not filled with data are automatically filled with
zeros. Such a situation could arise because of decimal-point alignment, difference in sizes
between source and receiving items, or both. Any necessary conversion from one USAGE to
another, together with any editing, takes place during the move.

Examples:
PICTURE of
Source Data Receiving Item Receiving Item
11213 99V9 1(2(3
112(3 999Vv99 0(112]3]0
)
1123 9999 0j|1]12]3
1
1123 9999 0(o0f1]2
'
—1. 2 3 (literal) S9Va9 1213
[
112(3 9Vv9 112
112|3 9Vv9 2|3

Editing

If the receiving item format specifies editing, the source data are edited concurrently
with data movement. Editing occurs after decimal-point alignment. Editing symbols in the
receiving item (currency signs, commas, etc.), make this item alphanumeric; if it is sub-
sequently referenced as a source item in a MOVE statement, itis moved in accordance with the
rules for alphanumeric items.

6-20

Examples:

PICTURE of
Source Data Receiving Item Receiving Item
1({2(3|4]|5 $**9.99 $11/12|8]|.|4]|5
112[3|4|5 999.9 1(2(3]. |4
ojo|o0|1|2 $9.99 $|1"1*10].]1]2

If the receiving item is numeric or numeric edited, the literal can be any numeric
literal. The point location and size of the literal are determined by the actual literal in the source
statement. Further examples of editing are given in “PICTURE Clause” under ‘DATA DIVISION
Structure” in Chapter 5.

Examples:
PICTURE of

Source Data Receiving Item Receiving Item

+1.23 S9V99 1123

+1.28 S9V9 1]2

123 9(5) 0(0|1]2]|3

+37 S999V99 o[s|[7|0]0

03737.3 $*9.9 $13|713|7].]|3
De-editing

In order to facilitate editing of CRT input fields, a de-edit is performed whenever a
move from an alphanumeric to a numeric field occurs. The following actions are performed
during a de-edit move.

1. All leading and trailing blanks of the source field are deleted.

2. Any leading sign (+ or —) is removed and added to the destination field.

3. The source and destination fields are aligned at the decimal point and the data
moved to the destination field.

4. A SIZE ERROR occurs if any non-zero digits are truncated during the move.

Examples:

6-21

PICTURE of
Source Data Receiving Item Receiving Item SIZE ERROR?

1 S99Vv99 o|1(0]|0 no
-1 S99V99 0({1[0]0 no
1.2 S99V99 o|1]12|0 no
1.23 S99Vo9 0(1]12]|3 no
12.34 S99Vv99 112|334 no
123 S99V99 2(3|0]|0 yes
1.234 S99V99 of1(12(3 yes
A.BC S99Vo9 0O(A|B|C no
162 S99V99 b|2[0]|0 yes

Sample Field Edit Program:

MOVE SOURCE TO DESTINATION; ON SIZE ERROR
DISPLAY “NUMBER TOO BIG.”

IF DESTINATION IS NOT NUMERIC;
DISPLAY “NUMBER NOT NUMERIC.”

6-22

TABLE 6-5. Permissible Moves

Receiving Field
Source Item GR X ND
Group GR A A
Alphabetic, Alphanumeric, or Edited X A o1
Numeric Display ND A Al 9
Numeric Literal A Al 9
Nonnumeric Literal A A 91

A Alphanumeric or byte move, byte-by-byte from left to right with blank fill.

A" Permissible if source is an integer. In this case the integer is converted to
numeric display, moved byte-by-byte into the field, and left justified with space
fill.

9 Numeric MOVE

9" Any nonnumeric characters in the source field cause unpredictable data. De-
editing is performed.

INSPECT Statement

The INSPECT statement provides the ability of replace occurrences of characters in
a data item.

Format
INSPECT identifier-1 REPLACING LEADING {'_de”“f'er‘z}
FIRST literal-1

By {lfjentlf|er-3}
— lliteral-2

Identifier-1 must reference either agroup item or any category of an elementary item,
described implicitly or explicitly as USAGE IS DISPLAY. Identifier-2 through identifier-3 must
reference a one-byte elementary alphabetic, alphanumeric, or numeric item described im-

6-23

plicitly or explicitly as USAGE IS DISPLAY. Literals must be nonnumeric and may be any
figurative constant except ALL.

Rules Applicable to All Formats

Inspection begins at the leftmost character position of the data referenced by
identifier-1, regardless of its class, and proceeds on a character-by-character basis to the
rightmost character position. The contents of the data item referenced by identifier-1 is treated
subject to whether the identifier is described as alphanumeric, unsigned numeric, or signed
numeric:

. Alphanumeric—identifier treated as a character string.

. Unsigned numeric—inspected as though it had been redefined as alphanumeric
and the INSPECT statement had been written to reference the redefined data.
3. Signed numeric—inspected as though the data item had been moved to an
unsigned numeric data item of the same length, subject to the rules set forth

above.

4. The rules for replacement are as follows:

a. When literal-1is a figurative constant, each character in the data referenced by
identifier-1 that is equal to the figurative constant is replaced by the single
character referenced by literal-2 or identifier-3.

b. When literal-2is a figurative constant, each character in the data referenced by
identifier-1that is equal to the character referenced by literal-1 or identifier-2 is
replaced by the character referenced by the figurative constant.

5. The required words ALL, LEADING, and FIRST are adjectives that apply to the

succeeding BY phrase:

a. If ALL identifier-2/literal-1s are to be replaced, this is done according to the
replacement rules specified in paragraph 4.

b. If the adjective LEADING is used, all occurrences of the character string
referenced by literal-1 or identifier-2 are replaced by the character string
referenced by literal-2 or identifier-3, provided that the leftmost such oc-
currence, in the data referenced by identifier-1, is at the point where re-
placement begins.

c. Ifthe adjective FIRST is used, the leftmost occurrence, to the right of the point
where replacement of the character string referenced by literal-1 or identifier-2
begins, is replaced, in the data referenced by identifier-1, by the character
string referenced by literal-2 or identifier-3.

Example:

77 SS-NUMBER PIC 9(9) VALUE 123456789.
77 EDITED-SS-NUMBER PIC 999/99/9999.
MOVE SS-NUMBER TO EDITED-SS-NUMBER.
INSPECT EDITED-SS-NUMBER REPLACING ALL ‘/ BY ‘-

N —

The new value of EDITED-SS-NUMBER will be 123-45-6789.

SEQUENCE CONTROL STATEMENTS

COBOL provides the programmer with the following commands that control the
order in which statements are executed:

6-24

1. GO TO permanently releases control to the first statement in the procedure
named.

2. PERFORM causes statements in a remote procedure to be executed and control

return to the statement following the PERFORM.

. STOP allows the program to terminate in an orderly manner.

4. IF causes control to branch into either a “‘true” or ‘‘false’”” path, depending on the
outcome of a condition test written in the program. The paths rejoin at the
beginning of the next sentence unless a GO TO branch is used in one or both
paths.

5. EXIT merely declares that the paragraph in which it is contained is a transfer point
that may be referenced by other sequence control statements.

w

Normal Sequence Control

The starting location for the program is at the first statement of the PROCEDURE
DIVISION. Control then proceeds to subsequent -successive statements until the end of para-
graph or section is reached. Unless the paragraph or section is executed under control of a
PERFORM statement, control then passes to the first statement in the next paragraph or
section. Execution of a sequence control statement, of course, alters the normal sequence of
control.

GO TO Statement

The format of this statement is:

Fofmat 1
GO TO [procedure-name-1]
Format 2

GO TO procedure-name-1 [, procedure-name-2] . . . ,
procedure-name-n DEPENDING ON identifier-1

The GO TO statement permanently transfers control, conditionally or uncon-
ditionally, to another point in a program.

Format 1 represents the unconditional GO TO statement: control is transferred to
another paragraph or section of the PROCEDURE DIVISION as specified by procedure-name-1.
GO TO can appear as the last of several statements in a series of statements.

Examples:

1. GO TO TEST-ROUTINE.
2. IF A EQUALS B GO TO SINE-ROUTINE ELSE ADD A TO B GO TO START-
ROUTINE.

Format 2, referred to as the conditional GO TO, can constitute a multiple branch
point. These branch points may be paragraphs or sections as specified by procedure-name-1, -
2, etc. Since the branch is predicated on certain conditions, the value of a particular data item,
identifier-1, is tested at the time the statement is executed to determine which branch point to
take.

When the GO TO statement is executed, control is transferred to the paragraph or
section specified by procedure-name-1, -2, or -n, depending on whether the data item value is
equal to 1, 2, or n. Identifier-1 must be an elementary integral numeric item. Identifier-1 can be
subscripted if necessary. If the value of identifier-1 is not within the range 1 through n, no
transfer transpires; control passes to the next statement following the GO TO statement. A
maximum of 16 procedure-names may be used in one GO TO statement.

6-25

Example:
GO TO FEDERAL-TAX, STATE-TAX, LOCAL-TAX DEPENDING ON GROSS-SALARY

CODE.

PERFORM Statement

The formats of this statement are:
Format 1
PERFORM precedure-name-1 [THRU procedure-name-2]

Format 2
PERFORM procedure-name-1 [THRU procedure-name-2]

{udentlfler-1} TIMES

integer-1

Format 3
PERFORM procedure-name-1 [THRU procedure-name-2] UNTIL condition-1
Format 4

PERFORM procedure-name-1 [THRU procedure-name-2] VARYING

BY

{identifier-S}

index-name-2
literal-3

{llnde)f-.nameJ} FROM identifier-2
identifier-1 :
literal-2

UNTIL condition-1

index-name-S]

AFTER { f"dex_'f'ame"‘} FROM { identifier-5
- identifier-4 ===)
literal-5

{'f’e"t'f'er'e} UNTIL condition-2
literal-6 —_—

index-name-8

AFTER {f”dex,'f'amw} FROM | identifier-8 BY
identifier-7 E—) _—
literal-8

{identifier-Q}

. UNTIL condition-S]
literal-9 -

The PERFORM statement causes a departure and return from normal procedures
execution to another part of the program to execute one or more procedures. These pro-
cedures are executed a predetermined number of times or until a specified condition is
satisfied, after which normal procedures execution resumes. In its simplest format the PER-
FORM provides a branch, execution of the procedure, and a return; in the more complex
formats a branch is made, but the number of executions is contingent upon a condition

6-26

controlled and tested by the statement. Thus, the PERFORM statement permits repetitive
execution or looping using one statement, that is, it initializes and maintains loop criterion
(variable), tests the criterion and performs operations.

The return point for the PERFORM statement is determined by whether the pro-
cedure to which it branches is a paragraph or section. When the instructions compiled from a
PERFORM Statement are executed, they transfer control to the first statement of the specified
procedure. Instructions that provide return to the statement following PERFORM are set up as
follows:

1. If procedure-name-1 is a paragraph-name and a procedure-name-2 is not spec-
ified, control is returned after the last statement of the procedure-name-1
paragraph.

2. If procedure-name-1is a section and a procedure-name-2 is not specified, control
is returned after the last statement of the last paragraph of the procedure-name-1
section.

3. If procedure-name-2 is specified and is a paragraph-name, control is returned
after the last statement of the procedure-name-2 paragraph.

4. If procedure-name-2 is specified and is a section-name, control is returned after
the last statement of the last paragraph of the procedure-name-2 section.

Note: The ‘‘last statement’’ referenced in each of the above cases must not be an uncon-
ditional GO TO statement.

When procedure-name-2 is specified, the only required relationship between pro-
cedure-name-1and procedure-name-2 is that of logical sequence, that is, execution sequence
must proceed from procedure-name-1 to the last statement of the procedure-name-2 para-
graph or section. GO TO statements and other PERFORM statements are permitted between
procedure-name-1 and the last statement of procedure-name-2 provided that the sequence
ultimately returns to the final statement of procedure-name-2.

If the logic of a procedure requires a conditional branch prior to the final sentence,
the EXIT statement may be used to satisfy the foregoing requirements. In this case, procedure-
name-2 must be the name of a paragraph consisting solely of the EXIT statement; all paths must
eventually lead to this point. (See the “EXIT Statement’ discussion below).

Itis not necessary for procedures to be referenced by a PERFORM statement before
they can be executed. Procedures can also be executed in normal sequence from the preced-
ing statement, in which case return of control does not apply after execution of the last
sentence in a particular procedure.

“Nested” PERFORM Statements

If a sequence of statements referred to by a PERFORM statement includes another
PERFORM statement, the sequence of procedures associated with them included PERFORM
must itself be either totally included in, or totally excluded from the logical sequence referred to
by the first PERFORM. Thus, an active PERFORM statement whose execution point begins
within the range of another PERFORM must not contain within its range the exit point of the
other active PERFORM statement.

TIMES Option

In Format 2 the procedure is executed repetitively a certain number of times. The
number of executions may be specified explicitly as an integer or implicitly as the value of an
elementary data item.

6-27

If an identifier is used it may be of any numeric usage, and it may be subscripted.

When this optionisincluded, a counteris set up with avalue equal to the value of the identifier-1
item orinteger-1. Before each execution of the specified procedure, the counter is tested to see
if it is negative or zero. If it is neither negative nor zero, the procedure is executed and the value
of the counter decreased by one; when the value of the counter is negative or zero, the
procedure has been executed by the specified number of times and control transfers to the
statement following the PERFORM statement.

UNTIL Option

In Format 3, the number of times the procedure is executed is dependent on the truth
or falsity of a condition (condition-1) rather than a stated value. Condition-1 can be any simple
or compound conditional expression that is evaluated before the specified procedure is
executed. If it is found to be false, the procedure is executed and the expression is evaluated
again (values of the items may be altered by execution of the procedure) and tested for truth or
falsity; this process is repeated until the conditional expression is found to be true, at which
point control transfers to the statement following the PERFORM statement. If the conditional
expression is found to be true when the PERFORM statement is first encountered, the specified
procedure is not executed. (Refer to ‘‘Conditional Statements” at the beginning of this
chapter).

VARYING Option

In Format 4 the VARYING option makes it possible to PERFORM a procedure
repetitively, increasing or decreasing the value of one to three data items once for each
execution until one to three conditional expressions are satisfied.

The flowcharts in Figure 6-6 illustrate the logic of the PERFORM statement when
one, two, or three identifiers are varied.

Let: 1. Each d. represent an identifier or index-name.
1

2. Each I. represent a literal.
1

3. Each c. represent a condition.
1

4. Each p. represent a procedure-name.

Example:

To help clarify use of the VARYING subscript-name option, assume that arate table is
employed in a billing procedure and that the table requires periodic updating. This hypothetical
rate table is three-dimensional: divided into five regions, each of which includes ten states,
each of which contains rates for twelve cities. It is assumed further that an appropriate rate-
updating procedure is available elsewhere in the program. Such a procedure might appear as

RATE-UPDATING. MULTIPLY RATE (REGION, STATE, CITY) BY ADJUST-FACTOR
GIVING RATE (REGION, STATE, CITY).

It is desired to execute this RATE-UPDATING procedure once for each city of each
state in each region, using the current rate for a given city and producing an adjusted rate for
that city. Accordingly, the programmer employs a PERFORM statement varying these items:

PERFORM RATE-UPDATING VARYING REGION FROM 1 BY 1 UNTIL REGION IS

GREATER THAN 5 AFTER STATE FROM 1 BY 1 UNTIL STATE EQUALS 11 AFTER

6-28

PERFORM

Set
dq to dg (or 13)

YBS
no

Execute
pq through po

y

Augment
dq by dg(or 13)

PERFORM

PERFORM

Set
dq to dp (or 13)
dg to dg (or 15)

EXIT

—».

EXIT
yes

Initialize
dgq to dg (or 1g)

:

Augment
dq by d3 (or 13)

Set

dq to dp (or 13)
dg to dg (or 15)
d7 to dg (or 1g)

Execute
pq through po

Augment
dg4 by dg (or 15)

Initialize
dg4 to dg (or 15)

Augment
dq by d3 (or 13)

il

Execute
pq through pp

Augment
d7 by dg (or 1g)

Initialize
d7 to dg (or 1g)

'

Augment
dg by dg (or 1)

FIGURE 6-6.

6-29

PERFORM Statement (VARYING Option)

CITY FROM 1 BY 1 UNTIL CITY IS GREATER THAN 12.

When the PERFORM is executed at object time, the RATE-UPDATING procedure is
executed for the first city of the first state in the first region, then for the next city, etc. The
PERFORM is complete when the procedure is executed for the twelfth city of the tenth state of
the fifth region. by which time the procedure has been executed 600 times.

STOP Statement

The format of this statement is:

STOP {Ilteral}

RUN

The STOP statement permanently suspends execution of the object program. STOP
RUN generates an end-of-program exit to the Monitor that terminates program execution
permanently. If STOP is followed by a literal, the literal is typed out and execution is suspended.
Any literal may be used.

EXIT Statement
The format of this statement is:
paragraph-name. EXIT

The EXIT statement ends a procedure to be executed by a PERFORM statement.
EXIT must be the only statement in a paragraph; it is equivalent to a paragraph with no
sentences and generates no code.

IF Statement
The format of this statement is:

" statement-1 statement-2 }
IE condition THEN {NEXT SENTENCE} [E——LSE {NEXT SENTENCE }

The IF statement causes alternate sequences of operations to be followed, de-
pending on whether the description of a data condition is found to be true or false when the
data is evaluated. IF is followed by the description of the condition, then by the actions to be
taken if the description of the condition is true. The word ELSE may be used, followed by the
operations to be performed if the description of the condition is false.

The condition may be a simple condition as presented by the format below or a
compound condition as described under ‘‘Conditional Statements’ at the beginning of this
chapter. The format of a simple condition is

r 4 (" GREATER THANY))
identifier-1 > identifier-2
[IiteraH] < IS [NOT] LESS THAN > [literal-z]
formula-1 < formula-2

EQUAL TO
< N

o i
\
s %

{identifier—S}

X
POSITIVE
IS [NOT] {NEGATIVE}
L

formula-3
ZERO
o NUMERIC
identifier-4 IS [NOT
| PHERaE] [NOTI ALPHABETIC}

Evaluation of the Condition

The condition is evaluated before any action is taken. If the condition is true, either
statement-1 or NEXT SENTENCE is executed. When NEXT SENTENCE is specified, control is
transferred to the next sentence, and the ELSE part of the statement is ignored. If the condition
is false, either statement-2 or NEXT SENTENCE is executed. Control is transferred to the
succeeding sentence when NEXT SENTENCE is specified.

Statement-1 or statement-2 may be a series of statements and each may be termi-
nated by a period or ELSE.

Nested Conditional Statements

Statements-1 and -2 can be imperative-statements or imperative-statements fol-
lowed by a conditional statement. When either statement-1 or statement-2 or both contains a
conditional statement, the conditional statement becomes nested. Nested conditional state-
ments may also contain conditional statements. Nested conditional statements are analogous
to the use of parentheses for combining subordinate arithmetic-expressions so that the ex-
pressions become part of a larger arithmetic unit.

Evaluation of Nested IF Statements

Conditional statements contained within conditional statements (IFs within IFs)
must be considered as paired IF and ELSE combinations, proceeding from left to right.
Therefore, any ELSE encountered applies to the immediately preceding IF that is not already
paired with an ELSE.

In essence, the number of occurrences of ELSE in any conditional statement must
be equal to the number of occurrences of IF, regardless of the complexity caused by nesting,
with the following exception: when ELSE or NEXT SENTENCE directly precedes the terminal
period of asentence, the entire phrase may be omitted and the period specified at the end of the
previous phrase. This rule is extended to resulting sentences, etc. For each ELSE, the associ-
ated statement is executed only when the conditional expression in the corresponding IF is
found to be false. If there are more IFs than ELSES in a statement, itis assumed that ELSE NEXT
SENTENCE phrases at the end of the sentence are omitted.

Example: ’

The sentence in the following paragraph contains two independent nests of condi-
tional statements. The first nest ends after the statement PERFORM procedure-name-2; the
second nest consists of the remainder of the sentence and has an implied ELSE NEXT
SENTENCE before the period. Each upper-case letter of the alphabet corresponds to a condi-
tional expression.

IF A IF B PERFORM procedure-name-1 ELSE NEXT SENTENCE ELSE
IF C NEXT SENTENCE ELSE PERFORM

procedure-name-2 IF D PERFORM procedure-name-3 IF E PERFORM

procedure-name-4 IF F PERFORM procedure-name-5 ELSE PERFORM
procedure-name-6 ELSE STOP RUN.

TABLE-HANDLING STATEMENTS

The structure of a table is defined by the use of an OCCURS clause (refer to
“OCCURS Clause’” under ““Data Description Entries” in Chapter 5). Entries in a table may be
referenced by a subscript, which contains a number indicating a particular occurrence of the
elements within a table. Location of the particular item desired is obtained by multiplying the

6-31

value of the subscript by the length of the previous element and adding the product to the
address of the table base. The programmer provides for execution of statements ensuring that
subscripts contain the proper values to permit current table elements to be referenced.

Indexing is a technique similar to subscripting but has the advantage in efficiency
that no address computation is involved; an index contains a direct pointer to an individual
element in a table rather than a mere occurrence number. Two statements, SEARCH and SET,
facilitate the correct setting of indexes.

SEARCH Statement

The format of this statement is

SEARCH identifier-1 | VARYING {'"de" e 1} [; AT END imperative

identifier-2 statement-2]

;WHEN condition-1 {lmperatlve-statement-g}

NEXT SEQUENCE

imperative-statement-3}
NEXT SEQUENCE

[:WHEN condition-2 {

The SEARCH statement searches a table for a table element that satisfies the
specified condition and adjusts the associated index-name to indicate that table element.
Identifier-1 may not be subscripted or indexed, and its description must also contain an
OCCURS and an INDEXED BY clause. Identifier-2, when specified, must be described as -
USAGE IS INDEX or as the name of a numeric elementary item described without any positions
to the right of the assumed decimal point. Identifier-2 is incremented by the same amount and
at the same time as the occurrence number represented by the index-name associated with
identifier-1.

Condition-1, condition-2, etc., may be any condition described under “Conditional
Statements” at the beginning of this chapter.

When the SEARCH statement is executed, a serial search operation takes place
starting with the current index setting and following either of two procedures:

1. If, at the start of execution of the SEARCH statement, the index-name associated
with identifier-1 contains a value that corresponds to an occurrence number
greater than the highest permissible occurrence number for identifier-1, the
SEARCH is immediately terminated. If the AT END clause is specified, imperative-
statement-1 is executed; if not, control passes to the next sentence.

2. If, at the start of execution of the SEARCH statement, the index-name associated
with identifier-1 contains a value that corresponds to an occurrence number less
than the highest permissible occurrence number for identifier-1, the SEARCH
statement operates by evaluating the conditions sequentially as written, making
use of index settings (wherever specified) to determine the occurrence of those
items to be tested. If none of the conditions is satisfied, the index-name for
identifier-1 is incremented to obtain reference to the next occurrence. The pro-
cess is then repeated using the new index-name settings, unless the new value of
the index-name settings for identifier-1 corresponds to a table element exceeding
the last element of the table by one or more occurrences, whereby the search
terminates as indicated in 1. above. If one of the conditions is satisfied upon

6-32

evaluation, the search immediately terminates and the imperative-statement as-
sociated with that condition is executed; the index-name remains set at the
occurrence that caused the condition to be satisfied.

If any of the specified imperative-statements do not terminate with a GO TO state-
ment, control passes to the next sentence after execution of the imperative-statement.

In the VARYING option, if index-name-1 appears in the INDEXED BY clause of
identifier-1, that index-name is used for this search; otherwise, the first (or only) index-name
given in the INDEXED BY clause of identifier-1 is used. If index-name-1 appears in the INDEXED
BY clause of another table entry, the occurrence number represented by index-name-1 is
incremented by the same amount and at the same time as the occurrence number represented
by the index-name associated with identifier-1.

If identifier-1isanitemin a group ora hierarchy of groups each of whose description
contains an OCCURS clause, each of those groups must also have an index-name associated
with it; the settings of these index-names are used throughout the execution of the SEARCH
statement to refer to identifier-1 or items therein. These index settings are not modified by the
execution of the SEARCH statement (unless stated as index-name-1); only the index-name
associated with identifier-1 (and the item identifier-2 or index-name-1) is incremented by the
SEARCH.

A diagram of SEARCH operation containing two WHEN phrases is shown in Figure
6-7.

SET Statement

The formats of this statement are:

Format 1
| index-name-1 index-nems-2
SET { e } TO identifier-2
— identifier-1 .
literal-1
Format 2

SET indesnare-3 {lﬁ BY } {ldentlfler-S}

DOWN BY literal-2

The SET statement establishes reference points for table-handling operations by
setting index-names associated with table elements.

All identifiers must be either index dataitems or numeric elementary items described
without any positions to the right of the assumed decimal point, except that identifier-3 must
not be an index data item. When a literal is used, it must be a positive integer. Index-names are
considered related to agiven table and are defined by specification in the INDEXED BY clause.

In Format 1 the following action occurs:

1. Index-name-1 is set to a value corresponding to the same occurrence number to
which eitherindex-name-2, identifier-2 or literal-1 corresponds. If identifier-2 isan
indexdataitem or ifindex-name-2 is related to the same table as index-name-1, no
conversion takes place.

2. If identifier-1 is an index data item, it may be set equal to either the contents of
index-name-2 or identifier-2 where the latter is also an index data item; literal-1
cannot be used.

6-33

3. If identifier-1is not an index data item, it may be set only to an occurrence number

corresponding to the value of index-name-2; neither identifier-2 nor literal-1 can
be used.

In Format 2 the value of index-name-3 is incremented (UP BY) or decremented

(DOWN BY) by avalue corresponding to the number of occurrences represented by the value of
literal-2 or identifier-3.

FIGURE 6-7

SEARCH

Setting: Highest
Permissible Occur-
rence Number?

AT END*
Imperative |—

Statement-1

Condition-1?

Imperative .
yes ’- Statement-2

Imperative
Condition-2? 1 P

Statement-3 —>

ves

Increment Index-name for /
Identifier-1 (Index-name-1
if applicable.)

¢

Increment Index-name-2
for a different table or
Identifier-2

* These operations are only included if called for in the
statement.

**Each of these operations transfers control to the next sentence
unless the statement ends with a GO TO statement.

6-34

COMPILER-DIRECTING STATEMENTS

COPY Statement

The format of this statement is:

{parag raph-name

. } SECTION copy-statement.
section-name =

The COPY statement incorporates library routines into the PROCEDURE DIVISION
of the source program. A library routine, composed of either one paragraph or one section, isa
procedure that is stored in a library. The routine is copied from the library during compilation,
and the result is the same as if the routine were actually a part of the source program. See
Chapter 7, ““COBOL Library,” for a more detailed description.

When the library routine is composed of one paragraph it is copied into the source
program in place of the COPY statement, with the procedure-name of the routine.

When the library routine is composed of one section it is copied into the source
program in place of the COPY section, with the section-name of the COPY section automat-
ically replacing the section-name of the section beig copied from the library.

6-35

6-36

CHAPTER 7
COBOL LIBRARY

INTRODUCTION

The COBOL library contains groups of source program card images that are avail-
able for inclusion in a COBOL program at compile time. The effect of the compilation of library
text is the same as if the text were actually written as part of the source program. The library
facility enables standard files, record descriptions, and procedures to be created and made
readily accessible to multiple users, thus avoiding duplication of effort and possibilities of
error.

Each group of lines, or elements, in the library is afile (in the MDOS sense rather than
in COBOL terms) residing onin the user diskette. A library elementisincorporated into asource
program by the compiler in response to a COPY statement.

The COPY statement causes a search of the same disk containing the COBOL
program for a file named “‘library-name.” The file is expected to contain a series of card images
that are inserted into the input stream to the compilerimmediately following the line containing
the COPY request.

The text contained on the library must not contain any COPY statements.

COPY Statement

The format of this statement is:
COPY library-name

The COPY statement may be written in any of the following forms:
1. In the ENVIRONMENT DIVISION
SOURCE-COMPUTER. Copy-statement.
OBJECT-COMPUTER. Copy-statement.
FILE-CONTROL. Copy-statement.
I-O-CONTROL. Copy-statement.
2. In the FILE SECTION
FD file-name copy-statement.
- 01 data-name copy-statement.
01 data-name copy-statement.
3. In the WORKING-STORAGE SECTION
01 data-name copy-statement.
4. In the PROCEDURE DIVISION
paragraph-name.
section-name

SECTION COPY-STATEMENT.

In case 1 above, the COPY statement is replaced by the information identified by
library-name. This information should constitute the entire contents of the appropriate para-
graph. In the remaining cases, the entire entry is replaced by the source lines identified by
library-name, except that information preceding the COPY statement is not overridden. Thus
the original level indicator and (when applicable) data-name, CODE and REDEFINES informa-
tion are retained.

Examples:

1. FD MASTER-FILE COPY FILEA.
FILEA is the library-name of the COBOL source library element containing a
complete File Description entry to be copied into the source program as the
description of the file named MASTER-FILE.

2. 01 SUM-DATA COPY SUMMARY-A.
If SUMMARY-A is the name of a library element whose sole contents is a Record
Description entry of the form

02 COUNT PICTURE 9(3).

02 G-TOTAL PICTURE 9(5)V99.
02 O-TOTAL PICTURE 9(6)V99.
02 G-DEVIATION PICTURE 9(4)V99.
02 O-DEVIATION PICTURE 9(4)V99.

then the data description copied into the source program in place of the line
bearing the COPY clause is
01 SUM-DATA.

02 COUNT PICTURE 9(3).

02 G-TOTAL PICTURE 9(5)V99.
02 O-TOTAL PICTURE 9(6)V99.
02 G-DEVIATION PICTURE 9(4)V99.
02 O-DEVIATION PICTURE 9(4)V99.

CHAPTER 8
DEBUGGING

M6800 COBOL supports two debugging features: a paragraph name trace and the
EXHIBIT statement. The paragraph name trace is enabled by compiling the program with the
trace option. The trace option is described along with the other compiler options in the M6800
COBOL-Operations Reference Manual.

EXHIBIT Statement

The format of this statement is:
i ifier-1 identifier-2

EXHIBIT [NAMED] {lgentn ier } |:I. entifier § }
literal-1 literal-2

The execution of the EXHIBIT statement causes the data or literals to be displayed on
the printer. The items in the EXHIBIT statement will be separated by blanks when printed. If the
NAMED option is used, the data for identifier-n will be preceded by the name of the identifier.

Examples:
EXHIBIT VALUE-A, VALUE-B.
EXHIBIT NAMED VALUE-A, VALUE-B.

EXHIBIT ‘VALUES ARE,” VALUE-A, VALUE-B.
EXHIBIT NAMED ‘VALUES ARE,” VALUE-A, VALUE-B.

Assuming that VALUE-A contains 123 and VALUE-B contains ‘XYZ,” then the data
printed by the above statements will be:

123 XYZ VALUE-A 123 VALUE-B XYZ
VALUES ARE 123 XYZ
VALUES ARE VALUE-A 123 VALUE-B XYZ

81

82

APPENDIX A. ANS COBOL RESERVED WORDS

ACCEPT
ACCESS
ACTUAL
ADD
ADDRESS
ADVANCING
AFTER

ALL
ALPHABETIC
ALTER
ALTERNATE
AND

ARE

AREA
AREAS
ASCENDING
ASSIGN

AT
AUTHOR

BEFORE
BEGINNING
BLANK
BLOCK
BOTTOM
BREAK-KEY
BY

CALL

CANCEL

CF

CH

CHARACTERS
CLOCK-UNITS
CLOSE

COBOL

CODE

COLUMN

COMMA

COMP

COMP-1

COMP-2

COMP-3
COMPUTATIONAL
COMPUTATIONAL-1
COMPUTATIONAL-2

COMPUTATIONAL-3
COMPUTE
CONFIGURATION
CONTAINS
CONTROL
CONTROLS

COPY

CORR
CORRESPONDING
COUNT
CURRENCY

DATA
DATA-COMPILED
DATE
DATE-WRITTEN
DE
DEBUG-CONTENTS
DEBUG-ITEM
DEBUG-LINE
DEBUG-NAME
DEBUG-SUB1
DEBUG-SUBS3
DEBUGGING
DECIMAL-POINT
DECLARATIVES
DELIMITED
DELIMITER
DEPENDING
DESCENDING
DETAIL
DISPLAY

DIVIDE

DIVISION

DOWN
DUPLICATES
DYNAMIC

ELSE

END

ENDING

ENTER
ENVIRONMENT
EQUAL
EQUALS
ERROR

A-1

EVERY
EXHIBIT
EXIT
EXTEND

FD

FILE
FILE-CONTROL
FILE-LIMIT
FILE-LIMITS
FILLER
FINAL
FIRST
FOOTING
FOR

FROM

GENERATE
GIVING

GO
GREATER
GROUP

HEADING
HIGH-VALUE
HIGH-VALUES

I-O
I-O-CONTROL
IDENTIFICATION
IF

IN

INDEX
INDEXED
INDICATE
INITIAL
INITIATE

INPUT
INPUT-OUTPUT
INSPECT
INSTALLATION
INTO

INVALID

IS

JUST

JUSTIFIED

KEY
KEYS

LABEL

LAST

LEADING

LEFT

LESS

LIBRARY

LIMIT

LIMITS

LINAGE
LINAGE-COUNTER
LINE
LINE-COUNTER
LINES

LINKAGE

LOCK
LOW-VALUE
LOW-VALUES

MEMORY
MODE
MODULES
MOVE
MULTIPLE
MULTIPLY

NAMED
NEGATIVE
NEXT

NO

NOT
NUMBER
NUMERIC

OBJECT-COMPUTER
OCCURS
OF

OFF

OH
OMITTED
ON

OPEN
OPTIONAL
OR
OUTPUT

ov
OVERFLOW

PAGE
PAGE-COUNTER
PERFORM

PF

PH

PIC

PICTURE

PLUS

POINTER
POSITION
POSITIVE
PROCEDURE
PROCEDURES
PROCEED
PROCESSING
PROGRAM
PROGRAM-ID

QUOTE
QUOTES

RANDOM
RD

READ
RECORD
RECORDS
REDEFINES
REEL
REFERENCES
RELEASE
REMAINDER
REMARKS
RENAMES
REPLACING
REPORT
REPORTING
REPORTS
RERUN
RESERVE
RESET
RETURN
REVERSED
REWIND
REWRITE
RF

RH

RIGHT
ROUNDED
RUN

SAME

SD

SEARCH
SECTION
SECURITY

SEEK
SEGMENT-LIMIT
SELECT
SELECTED
SENTENCE
SEQUENTIAL
SET

SIGN

SIZE

SORT

SOURCE
SOURCE-COMPUTER
SPACE

SPACES
SPECIAL-NAMES
STANDARD
STATUS

STOP

STRING
SUBTRACT

SUM

SYNC
SYNCHRONIZED

TALLY
TALLYING
TAPE
TERMINAGE
THAN
THEN
THROUGH
THRU
TIMES

TO

TOP

TYPE

UNIT
UNSTRING
UNTIL

UP
UPON
USAGE
USE
USING

VALUE

VALUES
VARYING

WHEN

WITH

WORDS
WORKING-STORAGE

WRITE

ZERO
ZEROES
ZEROS

APPENDIX B. SAMPLE M6800 COBOL PROGRAM

FAGE 881 ADD C5FEB AFFEMDIY B - SAMFLE MeSHd COBOL PROGRAM.
BE1E I[EHTIFIFHTIWH DIVISION.

BE2E

BEEE FFHuPHM IL. AL

BE4E ALUTHOR. MOTOROLA MICROSYSTEMS.
BEEE8 DATE-MWRITTEM. BES18.78

HEed DRTE-COMFILED. BESZ8S7TE

BETE EEMARES. THIZ IS THE ADRD TO IMVEMTORY MASTER FILE COMMAND.
BHESE o+

BE3E ENVIROMMEMT DIVISION

HLEE o+

A118 COMFIGURATION SECTION.

8128 SOURCE-COMPLUTER. MeZBE

B1EE OBJECT-CZOMPUTER. MESEE,

Bl4E IMFLUT-0UTRLUT SECTION.

B1E6H FILE-CONTREOL.

Blea SELECT DATAFILE

BV ASSIGH TO DISE IMWE L

@16 ORGAMIZATION IS IMDESED

Bl SE ACCESS IS RANCOM

HZ2EE RECORD EEY IS FART-MLUMEBER

,_
L3

[

CATA DINMISION.

i

FILE SECTICN

F» DATAFILE
LAEBEL RECORDES ARE COMITTED
DATA RECORD IS MASTER-REELC

COFY MASEEL.

B

WORE ITHG=STORAGE SECTIOM.

Do R B I
Vo[U T

77 ERRCE FIC 3 WALLE ZERD
¥r E FIC 22 VALLE ZERO
b FIC 23 WALLIE ZERD
Y FIC 8%
R FPIC: 99,
me FIC 239,
TRE FIC ¥ ”HLHE FE3

WORE=-S PIC S99

; -]
Bz A1 FLMMSSE LIME IS HE T FRGE.
B B2 FILLER FIC #OXx COLUMM ZEF: WALUE “ADDC.
Ed18 o+
B2 LISPLAY ITEM HUMEBER REQUEST 0OM LIME 2 OF SCREEM
K 1 ITEM-MUM-LINE.
5] @z FILLER FPIC Woddl> LIWE 20 WALUE “ITEM MUMEER "

& B2 FILLER FPIC ®o8 COLUMN 15 VYALUE SPACES
Bl AME
B2 ANS-ITEM FIC Ho8,

+ ERRREOMW & ERRCOL ARE TABLE FOS OF ROM & COL FOR
+ CURSOR FOR ERRORS
&1 EFEPUN

B Gt 0 J i b

D B ot O ey X B I B o0 B AU U St B oy By Bt B By v
MUK

FILLER PIC YALLIE 8&
FILLER FPIC VALLE &2
FILLER PIC VALLUE B2

FILLER PIC
FILLER PIC
FILLER PIC
FILLER PILC
FILLER FIC

VALLUE B8z,
WALUE 18
WALUE 18
VALLE 18
VALLE 12.

ot b bbb L L

L B R I R I U o B A ot B Y

WD MDD D AD LD D
TRV R IR U Ly Y s IRV AN ¥]

0~ T B A R
om Do Do
o Fa R Fd R3R3 P2 R

FAGE B8z ALD CSAGE AFFENMDINE B - SAMFLE Mez@s COpol. PROGREAM

FILLER FILC
FILLER PIC =
FILLER FIC 23 WALLUE 14

FILLER FIC 33 VALLUE 14,

g1 RO REDEFINES ERRROM FIC 3% OCCURS 12 TIMES
(SN 8 EPFIHL
FILLER FIC
FILLER PIC

VALLUE 1:2.
VALLIE 12

l"{l [P P2

RO Y I v

Lot

)

e T T
L 0D T T T

|
!

e
Tt

2 VALUE 7=
39 WRALLUE 1é.
2
=1

=i
ot 1

FILLER PIC @ VALLIE <41,
VALLIE 7.

L

=

=3

=

FILLER FIC 2

FILLER FIC 33 WALLE 12

FILLER FIC 29 VALUE 4Z
-
o
o)
a
1
=

(R R

T
A%

-~
ha?

=

=

FILLER FIC 23 VALLE 72
FILLER FIC 23 WALUE 18,
FILLER FIC 25 VALUE 4Z
FILLER PIC 8% YALUE 7.
FILLER FIC 23 WALUE 2
FILLER FIZ 33 WALLE 4Z.
:DL REDEFIMES ERRCOL FIC 33 OCCURS 12 TIMES.
ERFE-TRELE

2 FILLER PIC
> FILLER PIC

— - -
R IS I o N o B B I n By

O O OIS O ORI NN 6 N (00 DR (R O

ARy

o
at

= WALLIE CIWVALID EMTREY

S WALLIE “ITEM ALEEARDY ESISTS
A2 FILLER FILC WALLE SLICCESSFIL.
32 FILLER PILC WHLLIE < DISE IS0 ERRORS.
ERR-MZG FEEEFIHE_ ERE-TARAELE FIC =C263 QCCURS 4 TIMES.
HH"TEF RAT-SCREEHN.
Az FILLER FIC = L. IMHE

FILLER PIC ¥

FILLER FIL
FILLER PFIC
FILLEE FPIC 3
FILLER FIL
FILLER PFILC
FILLER PIC §
FILLER PIC i
FILLER FILC :

N,
-t

EONIN O R ORI O O OO O B O O B O O T O O O O I OO (6 O L (6

2o C0LUMM 14 VALLE FERA.
1 LIME & VALLE TDESCRIFPTIONS.
COLUMM 120 WALUE SPACES.
COLUMM 57 VALUE “LOCATIOMASBIMS.
YALUE =FACES.
VALLE “COST .
: YALUE SFRACES
I VYALUE © LIST PRICE-.
P WALLIE SFACES.
u . YALLE © TRARE FRICES.
FILLER PIC E VALLE SFACES.
FILLER FIC #olsr LIME 18; VALLE CRTY OM HAMD.
FILLER PLC B{S3 WALLIE SFACES
FILLER FIC #=ol8 VALLIE 0 aTY oM ORDERS
FILLER FIC #Ed5: “YALUE SFPRACES
FILLER FPIZ Hodldd VALUE © DATE ORDEREDS.
FILLER FIL VALLE 7 CMMDDYY
FILLER PIC VALLE SFACES.
FILLER FIC 2 LIME 12 WALLUE “REORDER FOIMTS
FILLER FIC = VALUE SFACES
FILLER PIC YALLLIE © STOCEIMG QT4
FILLER PIC ¥ YALUE SFACES
FILLER FIC X< VALLE ¢ BTYSPEG FOR
FILLER PIZ HOF2 YALUE “REORDER-.
FILLER FIC H&s VMALLIE SFACES
FILLER FIC Hod2r LIME 14 VALLUE CWENDORSTYFE CODE
FILLER PIC ®Hx VMALLIE SPARCES
FILLER FPIC Hddso YALLUE < LERD TIME-
FILLER PIC Hxx VALLIE SFRCES
FILLER PIC Ho23E» COLLIMMH 525 VALLE “BACE ORDER FLAGY
FILLER PIC ¥ WALUE =FACE
FILLER FPIC ¥<42) LINE 47; YALUE “COMMENT .

Fice)
L%

3y
Y,

Y
LU

-
fx]

145 LINE

>,
!

2 Y
(LY

SR i R

ot (0t
i

T T i

T

facr B ot B n BT o T s o B o O ot O B B o B o T it B B oy B i B B

N O ONTN CV R N SO (SO (NI NI N OO O T CR O O

Fclix]

B-2

FRGE &z ADD SR8 AFPFEMDIN B — SAMFLE MEZEE COROL FPROGRAM.

1178 B2 FILLER FPIC Hogh YALLE SFARCES
1188 + DATA FROM SCREEM
1128 81 DATAIN.
) 42 SDESC PIC)
SLo FILC
SCAST PIG
SLIST PIC
STERADE FPIC HO7F,
SETY—HARKD FIL HUED,
SOTY-0RDER FPIC #0S
SDARTE. '
SDATE=MO PIC |
SDATE-DAY FIC M
SDATE-YR FIC WA,
FEORDER FIC Heha,
ESTOCEIMG PIC
SHTY-PER-FE PIC
ME M FIC
SLERAD FIL
EBRCK~-0-FLLAG FIC ¥
2 SCOMMEMT FIC Sosh

ELIME-OFF.

Loz

82 FILLER FIC = LIME &, COLLMM 72 WALLE $EZ.
#* COsT

Bz FILLER FIC LIME = COLUMM 1s: MWALUE $EX
* LIST PRICE

B2 FILLER PID COLUMH 94 WALLE $ET
TRAME FREICE
B FILLER FIC COLUMM Tl WALUE $E3.
GTY OM HAMD
82 FILLER FIC LIME
GTY OM ORMER
B2 FILLER FIC = CoLLMe 4% WALLE $EX

DATE

B2 FILLER FIC ¥ COLUMM P2 WALLE $FEZ
g aTY FOR EE-ORDER

He FILLER PIC & LIME 12, COLUMM 182 VALUE $#EZ
STOCEIMNG QT4

Bz FILLER FIC ¥ LI
LTY FER FRCE
A2 FILLER FIC 4 COL LI
42 FILLER FIC ¥ LIME 14 COLLIFH
H2 FILLER FIC ¥ COL MM
EFRAZE LIME =4
B2 FILLER FIC ¥ LIME 24 COLUMM 2 VWALUE $D45.
2 2 SR SR N SR SR SR B R SR S B BN Y S B0 SR TEY NS B B B BE SRS B SR AR SR N SR R S R R B TS R B 350 B SRR SR SR SR SR AR
FROCEDURE DIVISION.
AF~DRIVER-SECTION.

| ol el

P Tod

{0 ol

Bt B % By SR
T

l—n.
el
e B
[y X
s

LIRS B
AN KRN]
]

1
1
i 4
1
1
1
1.

S ded Led P3PPI [[

LR SN I O It B ROCRE oUR N O I U3 DR O3 I D0 I o

T T T T T
o IO o I R X R Y

=1~
* E;:
oY

T

ot il el il e

O e e} PO A0
RO 0 B B B A O U A O X

[N
i

SCOLUMKN 135 WALLE $EZ

kY

[
LI | L | QS N R A RN R i R Y DU R
o

|’l| O W I X O 5
AN

,.
=

,.
)
%

".

.
X

A=,
]
fed

YHLLUE #EZ.

JARRA
X
X

VALLIE $EZ.
YALLIE $EZ.
WALLIE *$EZ.

L 25)

B (N R |

D I A O v
XA

i

THIS SECTIOM MWILL [0 IWITALIZATIONASOFEMACLOSE
FERFORM FROZESSING ROUTIMES & WREAF LIF

* ¥ X %

OFEM I-0 DATAFILE.
FUNCTION TYFE HMSG

DISFLAY FUMMSG.

* GET FART MLIM

GET-ITEM.

B R R B b e e R B b e b b e
*

fo bed PO S0 00] T O B Led POOR S N0 00) T O f L

0 e e B e 0 T T SO O 8 SR SR SR RN SR O R R R R

DO ot A S I o T T e B O ot oy B ot o T e

B-3

FRGE ©84 RADD LSR8 ARPFEMDINY B - SAMFLE MESEE COROL FROGRARM.

MOVE ZERO TO ERRCE Y.
DISPLAY ITEM-NUM-LINE.
RACCERT AME.

FERFORM BA-REARD-RECORD THRU BR-READ-RECORD-ESIT
IF ERRCE ERUAL 1 GO TO GET-ITEM
LDISFLAY BUILD REC SCREEM
l DISFLAY MASTER-AT-SCREEM
FERFORM BE-DATA-ELIT THRU BE-DATA-ELIT-EXIT

o
*

[

Nl

IR
+

LK}
X

i AT
oo
¥

FERFORM BC-DATA-UFDATE THRU BC-DATA-UFDATE-ESIT.

-
Y

CLOSE DRTAFILE.
STOF RUM
| AR-DRIVER-ESIT, EXIT

THIZ ROUTIME WILL WALIDATE THAT THE FART IS IW THE FILE

DIZFLAY Eozd, 20 FDE
MOVE AMS-ITEM TO FRARET-HLUMEER
FEAD DATAFILE
IMVALID EEY G0 TO BRA-READ-RECORD~ESIT.

FECORD ALREARDY FEESENT
MOVE 2 T E.
MOVE 1 TO ERRCE
’ FERFORM MSG-FRET THRLU MSG-FRT-ESIT.
B ER-READ-RECORD-ESTIT. EXIT.

K
E 3
EE-DATA-EDIT
B
THIS ROUTIME WILL READ SCREEM & WALIDATE DATA FIELDS
B

T
tt

i
17
17
17
17
12
1- 0]
1
1
1.
4
1
1=
1-‘-
.-L
11
1.3
it
4
Al
A
1!
1:
4
1

ACCEPT DATAIM

LISFLAY BLIME-OFF.

MOYWE ZERD TO ERRCE Y.
EDIT LOCATIOM

MOYWE 4 T s

MOVE SLOC TO MORK-5 O SIZE ERREOR

FERFORM ERR-ELINE THREL ERRE-BELIME-E®IT

FERFORM EDRIT-CE THRU ERIT-CE-~EXIT.
* EDIT CoOsT
CE-COST.

MOVE SC0ST TO COsT

OM SIZE ERROR GO TO COST—-ERR

IF COST IS NUMERIC GO TO CK-LIST.
COsT-ERK

MOWE 2 TO .

FERFORM ERR-ELIME THRL ERR-BLIMKE-EXIT.
CE-LIST.
(S VHL.IDATE LIST FRICE

MOWE SLIST TO LIST-PRICE

OM SIZE ERROR GO TO LIST-ERR

IF LIST-FRICE IS MUMERIC G0 TO CE-TRADE
LIST-ERE.

MOYE = TO .

=
ARSI
fx]

o

(5

B
I
foy}
m
=

AL SR8 APFEMDINY B — SAMFLE MeS8d COBOL PROGRAM.

FERFOREM ERE-BLINE THRL ERR-BLIWNKE-EXIT.
CE~-TRADE.
#* WALIDATE TRADE FRICE
MOWE STREADE T TRADE~FRICE
oM SIZE ERROR GO TO TRADE-ERE.
IF TRADE~FRICE IS MUMERIC GO TO CE-2TY-HAMD
TRADE~-ERF.
MOYE 4 TO =,
FEREFOREM ERRE-ELINE THEL EERE-BELIME-E=IT.
CE-0TY-HAMD
YALIDATE 2TY O HAMD
MOVE S TO k.
MOYE SERTY-HAKD TO WORE-S 0OM SIZE ERROR
FERFORM ERFE-BLIME THRL ERE-BLIME-E=IT.
FERFORM EDIT-CE THRU ERIT-CE-EXIT
SH o+ MALIDATE OTY-0M-0RDER
24538 Ch-0RD.
=T MOWE & T -
MOVE SATY-0RDER TO WORE-S 0OM SIZE ERROR
FERFOREM ERE-ELIME THEL ERR-EBLIME-ESIT
FERFOREM EDIT-CE THREU EDIT-CK-EXIT.
DHTE ERIT
CE-[ATE.
IF SDATE EGUJAL SFACES
MOWE ZERD TO ORDER-MOWMTH QORDER-[DAY ORDMER-YEAR
GOOTO CE-REQRD.
IF SDATE IS MOT MUMERIC GO TO DATE-EEREE
MOYE SDATE TO ORDER-DATE.
IF ORDER-MOWTH GREATER THAM 12 OFR LEZZ THAM ZERD
G0 TO DATE-ERE.
IF ORDERE-DAY IS GREATER THAMW Z1 GO TO DATE-ERR
IF ORDER-YEAR IS GREATER THAM F& G0 TO CE-REORD
i DATE-ERE
MOVE & TO =,
FERFORM ERR-ELINE THRL ERRE-BLIHE-ESIT.
CE-REQRD.
+# EDRIT REORDER FOIMT
MIWVE & TO ¥
MIVE SEEODRDER TO WORE-S OM SIZE ERREOR
FERFOREM EERE-ELIME THEL ERERE-BLIME-ESIT
FERFORM EDRIT-CE THEL ELIT-CE-ESIT.
EDIT STOCEIMG 2TY
ChE—=STOCK.,
MIVE 2 TO -,
MOYE SSTOCKING TO MORE-S OM SIZE ERROE
FERFIOREM ERE-ELIME THEL ERE-ELIME-E=IT.
FERFORM ERIT-CE THRU EDRIT-CE-EXIT.
+ QTY FER FRCEAGE
CE-FARCE.
MOVE 18 T =,
MOVE SOTY-FER-FE TO WORE~-ZS OM SIZE ERROR
FERFORM ERRE-ELIME THREL ERE-BELIMNE-EIT.
FERFORM EDIT-CK THRL EDIT-CE-EXIT.
* EDIT WENDOR CODE
Ch=-%ERD.
MOVE 114 TO =
MOVE SVYENWD TO WORE-ZS OW SIZE ERROR
FERFOREM ERE-ELIMNE THRU ERRE-BLIME-EXIT

B-5

k

m
I
7
m
1l

as AbD .SA:E AFFEMDIN B — SAMPLE Mez@d COBOL PROGRAM.

FERFORM EDIT-CE THRU ERIT-CE-ESIT.
* EDIT LEAD TIME
CE-LERD
MOWE 12 TO =
MOVE SLEAD TO MWORE-S 0OM SIZE ERROR
FERFORM. ERRE-BLIMNE THRL ERR-BLINK-EXIT.
FERFORM EDIT-CE THRU ERIT-CE-ESIT

2
=
9
2
9
b
=

K3
CE-AMNY-ERE.
IF ERRCE EGUAL 1
MOVME 4 TO E
FERFOREM MZ5-FRET THRELL MSG-FRT-ERIT
FERFORM TAE-IT THRLU TAE-IT-EXIT % TIMES
ELSE
MOYE SO TO LOCAT ION-EIM
MOVE SETY-HAMD TO 2TY-0N-HAMD
MOVE SOTY-0RDER TO @TY-0OH-0RDER
MOVE SREQRDER TO REORDER-FPOIMT
MOWE SSTOZEIMG TO STOCKING-2TY
MOVE SATY-FER-FE TO OTY-FER-FACE
MOWE SVEND TO WERDOR-CODE
MOWE SLERD TO LEARL-TIME
MOWE SDESC TO DESCRIPTION
MOWE SEACE-0-FLAG TO BACK-O0RDER-IND
MOVE ZERD TO ISS-MOMTH-1 ISS—-MONTH-2 ISS-MONTH-Z
MOYWE ZERO TO ISS-QUARTER-1 ISS-QUARTER-2 ISS-0URARTER-Z
MOVE SCOMMEMT TO COMMEMNT
EE-DRTA-ELIT-EXIT. EXIT.
B
EDIT=CEK.
IF WORE-ZS EQUAL ZERD GO TO EDIT-CE-ESRIT.
IF WORE-S MHOT MUMERIZ G0 TO ERIT-ERR
IF WORE-S FPOSITIVE GO TO ELIT-CE-ERIT.
EDIT-ERR
FERFORM ERRE-ELIME THREL ERR-BELIMK-ESIT.
EDIT-CE-EXIT. EXIT.
“+
ERR-ELIMNE.
* FOUTINE TO ELIMK FIELD IN ERROR
*

DISFLAY BEOROMOSY, COLCWY) $E2.
IF % EQUAL ZERD MOYWE = TO Y.
MOVE 4 TO EERCE.
ERR-BLINE-EXIT. EWIT.
E
E
BC-DATA-UPDHATE.
E
THIS ROUTINE MWILL WRITE THE MASTER TO DISE
#
MRITE MASTER-REC INVALID EEY
MOVYE 4 TD E
PERFORM MZG-FRT THRU MSG-FRT-EXIT
GO TO BC-DATA-UFDATE-EXIT

*

SUCCESSFUL MSG
MOVE = TOD E.
FERFORM MSG-FRT THREU MSG-FRT-EXIT.
3 BC—-DATA-UFDATE-EXIT. EXIT.

FHRGE

3438
a5 5
=518
=528

FAGE

Q010
OO1LE
O0ZF0
slncis]
D040
DOSE0
OOED
OO70
OO0
D00
0100
0110
O120
0130
140
D150
0140
D170
l=0
0190

00

OFE10

AFFEM OIs B

in
I
=

SAMFLE MeSBE COBOL PROGEAM.
MZG-FRT.

E
+

E

ROUTIME TO FRINT MESSAGES OM SCREEM

DISFLAY ®Bo24, 42 $EREACY ERR-MSGCED.
MEG-FPRT-EXIT. EXIT.
*
TRE-IT.
DISPLAY THE
TRAB-IT-EXIT. EXIT.

001 MASRED | S5A: 0 APFENDIX B - SAMFLE MAS0O COROL PROGRAM.

01 MASTER-REL.

0Z FART-NLMEER FIC X (=)
0Z DESCRIFTION FIC X(14)
OZ LOCATION-EIN FIC 2(5).
0Z DIOET FIZ 2(4)Ve2

LIST-FRICE
TRADE-FRICE

0z
0Z

FIC
FIC

F(4IVID
AT D RVAAS

CF ATY-0ON-HAND FIC 2(5).
OZ RTY-ON-DOROER FIC 2¢3),
DZ ATY-FPER-FPACE FPIC 999

0Z REORDER-FOINT PIC 2(3).
0F STOCKING-GTY PIC 95,

02 VENDOR-ZODE F o

OF

0

Oz

LEAD-TIME
OROER-DATE.
02 OROER-MONTH
OROER-DAY
OROER-YEAR
SEUE-CIOUNT.
PE—MONTH-1

=

~MONTH=

~ORDER-TND
COMMENT

-HIARTER-2 FIC
~HUARTER=Z

FIZ @

FIC =
FIc
FILC o

FIC 2(5).
FID 2(4)

2(4)

2(4).
X.
X,

FIi
FI
FIC

B-7

—COEDL. SO0OFTHARE FROELEM FREFORT —

DATE. :
MAME: :

ADDREESS

FHOME MUMEEFR

FROELEM DESCRIFTION:

FETLREM THI= FORM TO MOTOROLA MICROSYSTEMS: FPHOEMIF. ARIZOMA

THCLUDE A LLISTING OF THE FROGRAM CZ OR L OFTION?
ALOMNG MITH A DUMF OF THE GEMERATEDR OBJECT (LO FILE) MODLULE

ALSO THCLUDE AMY OTHER IMNFORMATION THAT MAY EBE AFFROFPRIATE
TO THE SOLUTIOM OF THE FROEBLEM

B-9

APPENDIX C. INTERNAL DATA TYPES

1. PICTURE X—data is stored as a series of 8-bit ASCIl coded: bytes. Normally, the most
significantis zero, but the full 8 bits may contain information when the data is initialized with
a hexidecimal constant.

2. PICTURE 9 USAGE DISPLAY—data is stored as a series of ASCll coded numbers up to a
maximum of 15digits. A negative value will have the sign bit (most significant bit) set on the
left-most digit. A

3. PICTURE 9 USAGE COMPUTATIONAL—data is stored in packed decimal; two digits per
byte. A signed number will have a sign as the first half byte. A zero represents a positive
number and a hexadecimal “F”’ represents a negative number. If necessary, the number of
digits specified by the picture clause will be increased by one to force an integral number of
bytes to be allocated for the data.

C-1

