| @ MOTOROLA M68LLD(D4)

MDOS

LINKING LOADER
REFERENCE MANUAL

MICROSYSTEMS

M68LLD (D4)
SEPTEMBER 1979

MDOS LINKING LOADER
REFERENCE MANUAL

The information in this document has been carefully checked and is believed to
be entirely reliable. However, no responsibility is assumed for inaccuracies.
Furthermore, Motorola reserves the right to make changes to any products herein
to 1improve reliability, function, or design. Motorola does not assume any
liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights nor
the rights of others.

EXORciser®, EXORdisk, and EXbug are trademarks of Motorola Inc.

Fourth Edition
©Copyright 1979 by Motorola Inc.
Third Edition March 1978

CHAPTER 1

e
L]
nNY O~NOY OB W =

o e e e o
. e o L] e e o * e

PPN AN MNP MNP NN NN MNP NN N
L L] L . L] ° L] L] L] . . L]
NNNNNNNOOOOO GO Tt oSS wnN

APPENDIX A
APPENDIX B

O oONOYOTPWMNF —

N =

TABLE OF CONTENTS
GENERAL INFORMATION

INTRODUCTION

OPERATING ENVIRONMENT

ADVANTAGES OF THE LINKING LOADER
RELOCATION

LINKING

MODULE LIBRARIES

MEMORY ASSIGNMENT

LOAD MAPS

LINKING LOADER COMMANDS

INVOKING THE LINKING LOADER
LOADER INPUT
COMMAND FORMAT
LOADER COMMANDS

Command Nomenclature
CONTROL COMMANDS

EXIT

IDOF - Suppress Printing of Module ID

IDON - Print Module ID
IF - Intermediate File
IFOF - Intermediate File Mode Off
IFON - Intermediate file Mode On
INIT - Initialize Loader
MO - Map Output
OBJ - Produces Load Module
LOAD DIRECTIVES
LIB - Library Search
LOAD - Load a File
STATE COMMANDS

BASE - Initialize Minimum Load Address
CUR - Set Current Location Counter

DEF - Loader Symbol Definition
END - Ending Address
MAP - Prints Load Maps

STR - Starting Address

SAMPLE OPERATIONS WITH THE LINKING LOADER

INTRODUCTION
SIMPLIFIED LOADER OPERATION

LOADER OPERATIONS USING INTERMEDIATE FILES
LOADER OPERATIONS USING A LIBRARY FILE/CREATING AN

MDOS COMMAND

LOADER OPERATIONS USING A CHAIN FILE

A SUMMARY OF LINKING LOADER COMMANDS

LINKING LOADER ERROR MESSAGES

O
l.g
(]

T T Y S gy S U
1 11
(oo ey IR e sl e o

PR PPN PN NN PPN NN PN NN PN NN NN
1
SS&O&O(D\I\J\IO\O\U‘IU‘I-h-h-h-bwwwwr\)l\)i—‘*—"—‘

LIST OF ILLUSTRATIONS

Load Maps - Example 1

lLoad Map - Example 2
Loader-Produced Memory Map
Message Program 1 (PGl)
Message Program 2 (PG2)
Message Program 3 (PG3)
Basic Loader Operation

Using an Intermediate File
Using a Library File

Listing of Chain File Invoking RLOAD
Using a Chain File and RLOAD
Map Output File Listing

ii

]
Qv
trab

w W
~N O

WWWWWWWwoONH =

| I R B D Y B N N |
PP FEPRPOO0OWWNOTW

~NOoOYOT W

CHAPTER 1
GENERAL INFORMATION

1.1 INTRODUCTION

The MDOS Linking Loader combines relocatable object modules produced by the
Resident M6800 and Macro Assemblers, M6800 Resident FORTRAN Compiler, or
Resident MPL Compiler into an absolute load module. This resultant ioad module
is in a format suitable for loading by either the EXORciser loader or disk
operating system loader.

The Linking Loader is a two-pass loader requiring each input module to be read

twice. During Pass 1, a global symbol table is constructed describing the

attributes of the various global symbols. During Pass 2, the input modules are
read again and assigned absolute memory addresses. Module relocation and

linking is performed during the second pass, and an absolute load module is
produced.
1.2 OPERATING ENVIRONMENT
The minimum equipment required to use the Linking Loader is:
a. An EXORciser system
b. An EXORdisk II or EXORdisk III floppy disk drive system
c. An EXORciser-compatible terminal
d. 24K of Random Access Memory
e. Motorola Disk Operating System software (MDOS).
1.3 ADVANTAGES OF THE LINKING LOADER

In conjunction with the Resident M6800 Assembler, Macro Assembler, MPL Compiler,
and FORTRAN Compiler, the Linking Loader permits the user to:

. Segment source programs and data

. Relocate object modules

. Link modules via global symbols

. Search user created libraries to satisfy unresolved global symbols
. Dynamically assign memory

. Create a memory map describing the Tocation of each object module
and data block loaded

. Create a Tlarger system than possible without 1linking by making smaller
assembly modules.

1-1

ASCT - Absolute Section (non-relocatable)
There may be an unlimited number of absolute sections in a user's
program. These sections are used to allocate/load/initialize memory
locations assigned by the programmer rather than the Tloader; for
example, addresses assigned to ACIA's and PIA's.

BSCT - Base Section (direct addressing)
There 1is only one base section. The Linking Loader allocates
portions of this section to each module that needs space in BSCT.
BSCT 1is generally used for variables that will be referenced via
direct addressing. BSCT s 1limited to Tlocations within the
addressing range of @ through 255 ($@ through $@@FF).

CSCT - Blank Common (uninitialized)
There 1is only one CSCT. This section 1is used for blank common
(similar to FORTRAN blank common). This section cannot be
initialized.

DSCT - Data Section
There 1is only one data section. The Linking Loader allocates
portions of this section to each module that needs a part of DSCT.
DSCT is generally used for variables (RAM) which are to be accessed
via extended mode addressing ($100-$FFFF).

PSCT - Program Section

PSCT 1is similar to DSCT except that it is intended to be used for
instructions. The PSCT/DSCT division was made to facilitate a
RAM/ROM dichotomy.

This section concept is preserved by the Loader during the load process. As a
module is being loaded, each of its sections is combined with the corresponding
sections of previously-loaded modules. As a result, the absolute load module
produced by the Loader will contain one continuous memory area for each section
type encountered during the load operation.

In addition to the program segmentation provided by the section concept, the
relocation and linking scheme supports named common. The named common concept
provides the function of initialization common areas within BSCT, DSCT, and
PSCT. In processing named common definitions, the Loader will:

. Assign to each named common area a size equal to the largest size defined
for the named common during the load process.

. Allocate memory at the end of each section for the named common blocks
defined within that section.

The load maps shown in Figure 1-1 describe the load process with regard to
sections and named common. The module EX1 requires memory to be reserved in
BSCT, CSCT, DSCT, and PSCT, although the only space necessary in DSCT is for the
named common NCOMl. The module EX2 requires that memory be allocated in BSCT,
CSCT, DSCT, and PSCT. Neither module defines any ASCT blocks.

1-2

LENGTH
3

30
20

50

10

EX1 EX2
LENGTH
BSCT 10 BSCT
CSCT 35 CSCT
NCOM1(DSCT) 20 DSCT
10 NCOM1(DSCT)
PSCT
60 PSCT
NCOM2(PSCT)
NCOM3(PSCT) 15 NCOM3(PSCT)
5 NCOM2(PSCT)
DECIMAL
ADDRESS LOAD MODULE
0
SYSTEM AREA
32
35 BSCT PGM1
45 BSCT PGM2
CSCT
80
DSCT PGM2
100
NCOM1
120
PSCT PGM1
170
PSCT PGM2
230
235 NCOM?2
250 NCOM3
FIGURE 1-1. Load Maps - Example 1

1-3

The load module map illustrates a typical memory map that might be produced by
loading EX1 and EX2. The BSCT for both EX1 and EX2 are allocated memory within
the first 256 bytes of memory. As shown, the first 32 ($20 hex) bytes of BSCT
are reserved by the Loader for use by the disk operating system, unless
otherwise directed. After BSCT, space for blank common is allocated, followed
by space for the EX2 DSCT. Since EX1 requires no DSCT for its exclusive use,
none will be allocated. The named common block NCOM1 within DSCT 1is assigned
memory at the end of DSCT. Finally, the PSCT's for EX1 and EX2 are allocated
along with the PSCT common blocks NCOM2 and NCOM3.

The Loader assigns memory within sections in the order in which the modules are
specified. Named common blocks are allocated memory at the end of their
corresponding section, in the order in which they are defined. Figure 1-2
illustrates a load module map produced by loading EX2, followed by EX1l. This
load module map is slightly different from the map in Figure 1-1 where EX1 was
loaded first.

1.4 RELOCATION

Relocation allows the user to assemble/compile a source program without
assigning absolute addresses at the time of assembly or compilation. Instead,
absolute memory assignment is performed at load time. In order to relocate a
program (within memory), the source program must be assembled with the
Assembler, using the OPT REL directive, or compiled with the M6800 Resident
FORTRAN Compiler. The assembler or compiler will produce a relocatable object
module. These relocatable object modules contain information describing the
size of each section (ASCT, BSCT, CSCT, and DSCT) and named common area, as well
as the relocation data.

In order to load any relocatable object module, the MDOS Linking Loader must be
used. The Loader assigns addresses and produces an absolute object module
compatible with the system loader.

The advantages of using relocation are:

. Re-assembly is not required for each new absolute load address
. Relocation via the Linking Loader is faster than re-assembly
. Dynamic memory assignment of modules is possible

. Larger programs can be written than was possible before.
1.5 LINKING

Linking allows instructions in one program to refer to instructions or data
which reside within other programs. If all programs are assigned absolute
addresses during assembly time, it is possible to directly reference another
program via absolute addresses. However, when using relocatable programs,
absolute load addresses are not generally known until load time. In order to
access other relocatable programs or data blocks, external reference symbols
must be used. These external symbols are commonly called global symbols since
they may be referenced by any module at load time. Although global symbols are
used to link modules at load time, they must be explicitly defined and referencd
at assembly time. This is accomplished by the Assembler directives, XDEF and
XREF. The XDEF directive indicates which Tabels defined within a module can be
referenced by other modules. The XREF directive indicates that the Tabel being
referenced is defined outside the module. For FORTRAN programs, the compiler

will generate an XDEF and XREF for each SUBROUTINE and CALL statement,
respectively.

1-4

DECIMAL LOAD MODULE
ADDRESS

0
SYSTEM AREA
32
BSCT PGM2
42
BSCT PGM1
45
CSCT
80
DSCT PGM2
100
NCOM1
120
PSCT PGM2
180
PSCT PGM1
230
NCOM3
245
NCOM2
250 o

FIGURE 1-2. Load Map - Example 2

1-5

At Toad time, global references are matched with their corresponding global
definitions. Any reference within a module to a global symbol is updated with
the load address of the global symbol. If the loader detects a global reference
without an associated global definition, an undefined global error will be
printed and a load address of zero will be assigned to the reference.

1.6 MODULE LIBRARIES

The Linking Loader can automatically search a file for modules which contain
definitions satisfying any unresolved global symbols. Such a file is called a
library file and is composed of one or more object modules merged together. The
Loader sequentially searches the Tlibrary file. If a module is found that
contains a symbol definition satisfying an unresolved global symbol, that module
will be loaded. Only those modules which can satisfy an unresolved reference
will be loaded. Since a library file 1is searched only once, modules which
reference other modules within the 1ibrary file should occur within the library
file before the referenced module. Otherwise, the user must direct the Loader
to search the library again.

1.7 MEMORY ASSIGNMENT

During the load process, absolute addresses are assigned to the program sections
within the specified modules. Normally, the loader will automatically perform
this assignment by allocating memory by sections in the order: ASCT, BSCT,
CSCT, DSCT, and PSCT. However, the user may define the starting and/or ending
address of any non-ASCT section. In this case, the Loader will first reserve
memory for those sections with defined load addresses before allocating space
for any other section. The Loader also permits a user to specify the relative
section offset of a module within a section. However, a section of a module is
always Tloaded in the associated load section in the order in which the module
was specified. Named common blocks are always assigned memory at the end of the
associated load section.

1.8 LOAD MAPS

The Loader will optionally produce a load map describing the memory Tlayout
resulting from the loading of the specified modules. Figure 1-3 is an example
of some of the features included in a typical load map. In addition to this
full Tload map, the Loader may be directed to product partial load maps listing
only the undefined global symbols or section load addresses.

1-6

NO UNDEFINED SYMBOLS

MEMGCRY MAP

SIZE
0006
0006
CC1lA
0030
0042
0088

VOO ®EPDPDP W0V

STR E
4510 45
4406 44
0000 00
0020 00
0400 04
1000 10

MODULE NAME BSCT

P51
PG3
PG2

0000
0005
0005

COMMON SECTIONS

NA ME
ODCOMM
DCOMM2

S SIZE
D 0008
D 0018

DEFINED SYMBOLS

MODULE NAME: PGl

CR
MSG1
START

A 000D
P 1000
P 1C0A

MODULE NAME: PG3

ATEST

A 4406

MODULE NAME: PG2
EXBENT A F564

STACK

8 0019

FIGURE 1-3.

ND COMN
15

08

19 0000
4F 0030
41 0020
87 0000

DSCT PSCT
0400 1000
040E 1060
040E 1070

STR
0422
042A

EOT
MSG2

POWERS

MSG3

o »

00C4
0400

1060

040E

1-7

EXBPRT A FO24
MSGSIZ B 0000

MSG4

D 0418

Loader-Produced Memory Map

LF
PGINE

PGM2

A 000A
P 1016

P 1070

CHAPTER 2

LINKING LOADER COMMANDS

2.1 INVOKING THE LINKING LOADER

The Linking Loader must be called while under the control of the MDOS disk
operating system. When the user types the command:

=RLOAD <c/r>
the disk executive will load the Linking Loader. Upon entry, the loader prints:

M6800 LINKING LOADER REV n.m
? . ..
¢ (where n.m is the revision number)

The character ? is the Loader prompt, and is printed whenever the Loader has
completed the lTast command and is ready for another.

2.2 LOADER INPUT

The input to the Loader is in one of two forms -- commands or object modules.
The Loader commands control the relocation and 1linking of desired object
modules. Object modules are produced by the MPL Compiler, or Assembler, or
Resident FORTRAN Compiler. Each source program assembled or compiled creates a
single relocatable cbject module on a disk file. These disk files, or those
files created by merging one or more of these files, are used as the input to
the Loader. The Loader command structure provides for the loading of an entire

file or selected modules within a file. In addition, a disk file may be used as
a library file. The Loader may also be run under the MDOS CHAIN command.

2.3 COMMAND FORMAT

Each Loader command 1line consists of a sequence of commands and comments,
followed by a carriage return. The first space in a command line terminates the
command portion of the 1line, and the remainder is assumed to be comments.
Multiple commands may appear on a line by using a semicolon (;) as a command
separator. The format of a command line may thus be defined as:

9
[<command>[;<command>]90] [<space>[<comments>]] <c/r>

EXAMPLE: STRB=@;STRD=$1000;STRP=$4000
IDON
LOAD=PG1

The commands in a command line are executed only after the Loader detects a
carriage return.

If a command line is entered incorrectly, the Tine may be corrected in either of
two manners. First, the command line may be deleted completely by typing CTRL X
(the CTRL and X keys typed simultaneously). This causes the Loader to ignore
the current command line, and issue a CR, LF, and await a new command input
line. However, instead of deleting the entire command 1ine, it may be corrected
by deleting the character(s) in error. This is accomplished by typing a RUBOUT
to delete the last character typed. The typing of a RUBOUT also causes the last
character entered to be printed. After deleting the character(s) in error, the

2-1

corrected version of the command line may be entered. The (MDOS) CTRL D key
allows the operator to redisplay the line to show a "clean" copy of the 1ine for
operator inspection. Thus, full compatibility is maintained with the normal
MDOS .KEYIN special character functions.

The Loader will execute all the commands in a command line before another prompt
is issued. If an error is detected while attempting to process a command, that
command will be terminated. The remaining commands in the command line will be
ignored.

When using multiple commands per 1ine, it should be noted that selected commands
require that they are the last command on a line, and include:

. INIT

. all intermediate file commands (IF, IFOF, IFON)

. OBJ
2.4 LOADER COMMANDS
The Loader commands are divided into three classes:

1. control commands

2. load directives

3. state directives.
The control commands are used to initiate Passes 1 and 2 of the Loader, as well
as to return to EXbug or the disk operating system. The load directives are
used to identify the modules to be loaded. Finally, the state directives direct
the assignment of memory to the various program sections and the production of a

load map.

2.4.1 Command Nomenclature

<f-name> Used to indicate the name of a disk file to be used by the
Loader. Unless specified, the file is assumed to have a suffix
of "RO" and drive number of @. For the format of the file

name, consult the MDOS Manual. (Example: PG1.RO:1)

Used to indicate a decimal or hexadecimal number. Unless
preceded by a $ character (which is wused to denote
hexadecimal), the number will be interpreted as decimal.

Un}?sg explicitly stated otherwise, the allowable number range
Wi e:

<number>

@ - 65,535 (decimal)
$0 - $FFFF (hexadecimal)

[] - Used to indicate that the enclosed directive(s) is optional.
[] - Used to indicate that the enclosed directive may be
0 repeated from @ to 99 times, up to a total of 79 characters
maximum.

{ } - Indicates that one of the enclosed options must be used.
2-2

2.5 CONTROL COMMANDS

2.5.1 EXIT

number)
FORMAT: EXIT [: {<name1> :l

DESCRIPTION:

2.5.2 IDOF -
FORMAT: IDOF
DESCRIPTION:

2.5.3 IDON -
FORMAT: IDON
DESCRIPTION:

The EXIT command causes control to be returned to the disk
operating system after all Loader files have been closed.

The MDOS version of the Loader allows the user to define the
starting execution address of the object program. If the <number>
option is specified, the given absolute number will be used as the
starting execution address. This address must be a valid address
within the program. The <namel> option is similar to the <number>
option except that <name> must be a valid global symbol. If
neither option is used, the starting address defaults to the
address associated with the label appearing in the operand field
of the END statement in the assembled program. If two or more
modules have END statements with operands, the operand associated
with the first module loaded will be used as the starting address.

Suppress Printing of Module ID

This command suppresses the printing of the name and printable
information associated with each object module Tloaded or
encountered in a library file. For assembly language programs,
this information is specified via the NAM and IDNT directives.

Print Module ID

This command causes the name and printable information associated
with each object module loaded or encountered in a library file to
be printed at the console device. For assembly language programs,
this information is specified via the NAM and IDNT directives.

2-3

2.5.4 IF - Intermediate File

FORMAT: IF=<f-name>

DESCRIPTION:

EXAMPLE:

2.5.5 IFOF -
FORMAT: IFOF
DESCRIPTION:

2.5.6 IFON -
FORMAT: IFON

DESCRIPTION:

2.5.7 INIT -
FORMAT: INIT
DESCRIPTION:

The IF command defines a file to be used as an intermediate file.
An intermediate file is a copy of all Pass 1 Loader commands and
object modules. It is used to direct the load operation during
Pass 2, instead of requiring the user to retype the Pass 1 command
sequence during Pass 2. The IF command also automatically places
the Loader in intermediate file mode similar to the IFON command.
Like the IFON command, the IF command must be the last command in
a command line.

The IF file name must be a valid disk file name and may not be the
name of an existing file on the specified diskette. Upon proper
exiting from the Loader, the IF file is deleted.

IF=IFILE Defines IFILE on drive @ as the intermediate file.
Default suffix is "IF".

Intermediate File Mode Off

IFOF temporarily suppresses the creation of the intermediate file

until an IFON directive is encountered. This command must be the
last command in a command Tine.

Intermediate File Mode On

This command directs the Loader to write all further commands and
object modules onto the intermediate file. This directive remains
in effect until an IFOF or Pass 2 command is detected. The IFON
command must be the last command on a command Tine. IFON is
implied when the intermediate file is defined by the IF command.
If an intermediate file is to be used during Pass 2, the IFON
directive must be in effect.

Initialize Loader

INIT initializes the Loader for Pass 1. This command is performed
automatically when the Loader is first initiated. The use of this
command permits the user to restart the Loader when entry errors
are made, without having to exit back to MDOS. Any previously
created object and/or intermediate files will be deleted. The
INIT comand must be the last command in a command line.

2-4

2.5.8 MO - Map Output

. _ [<f=name>
FORMAT: MO= [<dev1'ce>]

DESCRIPTION: The MO command is used to specify the media on which the map
output is to be produced. The MAP output will default to the
console printer.

If a file name is specified, it must not be the name of an
existing disk file. The map cannot be directed to a file during
Pass 2 or whenever an intermediate file is being used.

A map can be produced on the console printer or line printer by
specifying the mnemonic #CN or #LP, respectively.

EXAMPLE : MO=MAPFL A11 output generated by the MAP command will be
written on file MAPFL on drive (.
MO=#LP The Tline printer will be used for all future map
output.

2.5.9 O0BJ - Produces Load Module

FORMAT: OBJA=<file-name>
0BJX=<file-name>[,printed information]

DESCRIPTION: This loader command is used with the MDOS Loader to initiate the
second pass of the Loader. During this pass, an object file is
created on disk with the name <file-name>. This file may not be
the name of an existing file on the specified disk. The file will
be created on disk @ unless disk 1 is specified in <file-name>.
The type of object file produced by the Loader is determined by
the command form as follows:

0BJA - This format creates an absolute memory image file suitable
for loading via the MDOS LOAD command. A default file
suffix of 'LO' and drive @ will be used if none are
specified.

OBJX - An object file in EXORciser loadable format (S@, S1, and
S9 records) is created via this command form. This file
may not be loaded via the MDOS LOAD command without first
using the MDOS EXBIN command. However, files created in
EXORciser Tloadable format may be copied to cassette or
paper tape and loaded via EXbug. A default suffix of 'LX'
and drive @ will be used if none are specified with the
file name.

If an intermediate file (IF) was generated during the first pass of the Loader,
the second pass automatically processes the commands entered during the first

pass. In the event that an intermediate file was not created, the same sequence
of commands used during the first pass must be repeated. Regardless of the use
of an intermediate file, the OBJA or OBJX command must be the last command on
the command Tine.

2-5

EXAMPLES:

OBJX=SORT,BINARY SORT PROGRAM

This command initiates the second pass of the Loader,
which will create an EXORciser loadable file on disk
file 'SORT.LX:0'. The SO record will contain the file
named SORT and the ASCII character string 'BINARY SORT
PROGRAM' .

OBJA=REPORT:1

The Loader will create the absolute object file on file
'REPORT.LO' on drive 1.

2.6 LOAD DIRECTIVES

2.6.1 LIB - Library Search

99
FORMAT: LIB=<f—name>l:,[<f-name>:[| 0

DESCRIPTION:

EXAMPLE:

The LIB command instructs the Loader to search the specified file
name(s) for those modules which satisfy any undefined global
references. Any module that satisfies an unresolved global
reference will be loaded. A suffix of .RO and logical drive of
:p are assumed for <f-name>.

A library file is a collection of individual relocatable object
modules which were merged into a single file.

Modules loaded via the LIB command may also reference global
symbols that are not defined. Since a library file is searched
only once for each LIB command, it should be made with care so
that no module has any reference to a prior (higher level) module,
or multiple passes of the same library must be done.

It should be noted that the Macro Assembler and certain compilers
(FORTRAN) produce a single relocatable object module in a file.
Since these single object module files can be merged together into
other (library) files, the terms "object file" and "object module"
are not necessarily equivalent.

LIB=MLIB:1 The modules on file MLIB.RO on drive 1 will be
searched to resolve any unsatisfied global
references.

2-6

2.6.2 LOAD - Load a File
FORMAT: LOAD=<f-name) [, [<f-name> :E' 93

DESCRIPTION:

EXAMPLE :

The LOAD command directs the Loader to load the specified object
files.

The LOAD command directs the Loader to load all object modules
found in the specified file name(s). The file name could be a
library file, but the LOAD command, unlike the LIB command, will
load each object module found, irregardless of whether or not it
is needed.

A suffix of RO and logical drive :0 are assumed.

LOAD=PGM1:1 Loads all modules within file PGM1.RO on disk
drive 1

LOAD=PGM1,RAM:1,PGM2,PGM3 Loads all modules within files PGM1.R0O
on drive @, RAM.RO on drive 1,

PGM2.RO on drive @, and PGM3.RO on
drive @.

2.7 STATE COMMANDS

2.7.1 BASE - Initialize Minimum Load Address

FORMAT: BASE [=<number>]

DESCRIPTION:

EXAMPLE :

The BASE command allows the user to specify an address above which
his program will load. The BASE command affects only the memory
assignment of CSCT, DSCT, and PSCT. Memory assignments related to
BSCT, ASCT, and those sections with defined starting/ending
addresses (via commands STR or END) are not affected by this
command .

The use of the <number> option is used to define the lowest
address which may be assigned to CSCT, DSCT, or PSCT. If the
<{number> option is not specified, the lowest assignable address
will default to the next modulo 8 address following MDOS. This
format of BASE allows the user to load his program above MDOS
without having to know where MDOS ends. If the BASE command is
not specified, a default address of $20 (32 decimal) will be used
as the Towest load address during memory assignment.

BASE Unassigned CSCT, DSCT, and PSCT will be assigned 1load
addresses above MDOS.

2.7.2 CUR - Set Current Location Counter

B

FORMAT: CURKLD =|}:| <{number>

DESCRIPTION:

EXAMPLE :

EXAMPLE:

P

The CUR command is used to modify the Loader's current relative
loading address of the specified section (BSCT, DSCT, or PSCT).
The CUR command must be used prior to the LOAD or LIB command so
as to update the loading address first. If the '\' option is not
specified, the relative load address for the appropriate section
will be set equal to the given <number> starting section plus its
value (see STR command). This <number> must be equal to or
greater than the section's current relative load address. This
form of the CUR command allows the user to start a module section
at a defined address. For PSCT, the <number> entered is added to
the absolute value for STRP to obtain the new PSCT load address
value. The following example loads four 1K EPROM's at $4400,
$4800, $5000, and $8C00 from multiple files. Each LOAD command
utilizes less than $400 bytes in PSCT (starting PSCT=$4400).

?STRP=$4400

?LOAD=FILE11l, FILE12,FILE13 EPROM at $4400

?CURP=$400

?LOAD=FILE21,FILE22,FILE23 EPROM at $4800 ($4400 + $400)
?CURP=$C00

?LOAD=FILE31,FILE32 EPROM at $5000 ($4400 + $C00)

?CURP=$4800
?LOAD=FILE41,FILE42,FILEA3,FILE44 EPROM at $8COC ($4400 + $4800)

The '\' option affects the section's relative load address in a
different manner. This option causes all future modules to be
loaded at an address which is a power of two relative to the start
of the section (2,4,8, etc.). The specified <number> defines the
given power of two. This option remains in effect until the
option is specified again or until the current pass of the Loader
is complete. If the '\' option is in effect when memory is
assigned to the starting section addresses, the starting address
of the section will also be assigned a load address which is a

power of two. This option does not apply to named common blocks
within the specified section.

If the CUR directive is not used, each module will normally be

loaded at the next Tload address in the appropriate section
(contiguously loaded modules). However, modules created via the

FORTRAN Compiler will be loaded at the next even address.

CURP=$100 Sets the relative PSCT 1location counter to $100
plus STRP value.

CURP=\16 Causes the Loader to load all future PSCT sections
at a relative address within PSCT which is modulo 16
plus the STRP value.

NOTE

When using the CUR command within an MDOS chain
file, the '\' option must use '\\' instead of '\'.
(See CHAIN command description in the MDOS Manual.)

2-8

EXAMPLE :

STRP=$4001
CURP= $400
LOAD=PG1,PG2,PG3

If each file is a single module with less than 1K of PSCT in each
one, then each module's starting PSCT address would be assigned as
follows:

PG1=$4001
PG2=$4401
PG3=$4801

2.7.3 DEF - Loader Symbol Definition

FORMAT: DEF: <namel>= {

DESCRIPTION:

EXAMPLE:

ASCT
<number>| | BSCT
>DSCT
PSCT

<name2>

The DEF command is used to define a global symbol and enter it in
the global symbol table. The symbol to be defined is given by
namel and must be a valid Macro Assembler variable name. The
symbol may not currently be defined. If the <number> option is
used, the symbol will be defined with the given number as the
relatived address within the specified section. The DEF command
may be used to provide another name for a previously defined
symbol by using the <name2> option. <name2> must be a currently
defined global symbol. The section options -- ASCT, BSCT, DSCT,
PSCT -- are used to define the section associated with the defined
section. ASCT is the default section.

DEF:ACIA1=$EC10,ASCT Defines symbol ACIAl as an ASCT symbol
with absolute address $EC10 (hexadecimal).

2.7.4 END - Ending Address

B

FORMAT: END<C)=<number>

DESCRIPTION:

EXAMPLE:

D
P

The END commands are used to set the absolute ending address of
the associated section (BSCT, CSCT, DSCT, PSCT). If both an
ending and starting address are defined, the size described by
these boundaries must be equal to or greater than the size of the
associated section.

NOTE

An ending address of $0000 will reset any previous
END directive for the corresponding section.

ENDB=255 BSCT will be allocated such that the Tlast address
reserved is 255 (decimal).

2-9

2.7.5 MAP - Prints Load Maps

*

FORMAT: MAPJF

DESCRIPTION:

S
U

The MAP commands are used to display the current state of the
modules loaded or the Loader's state directives.

MAPC -

MAPF

MAPS

MAPU

Prints the current size, user defined starting address, and
user defined ending address for each of the sections, as
well as the size, starting address, and ending address for
each ASCT defined.

A full map of the state of the loaded modules is produced
after the Loader assigns memory. This map includes a list
of any undefined symbols, a section load map, a load map
for each defined module and named common, and a defined
global symbol map. If a user assignment error (UAE)
exists, this command cannot be completed. Use the MAPC
command to determine the cause of the error.

The Loader assigns memory to those sections not defined by
a user supplied starting and/or ending address. A memory
load map, which defines the size, starting address and
ending address for each section, is printed. If a user
assignment error (UAE) exists, this command cannot be
completed. Use the MAPC command to determine the cause of
the error.

Prints a list of all global references which currently
remain undefined.

2.7.6 STR - Starting Address

B
FORMAT: STR}JC\=

D

P

DESCRIPTION:

EXAMPLE:

<number>
<global ASCT symbol>

The STR commands set the absolute starting address of the
associated section (BSCT, CSCT, DSCT, PSCT). Those sections whose
starting address is not defined by the user will be assigned a
starting address by the loader.

NOTE
A starting address of $FFFF will reset any previous
STR directive for the corresponding section. This

will allow the Loader to define the starting address.

STRP=$1000 PSCT will be allocated memory starting at $1000.

2-10

CHAPTER 3
SAMPLE OPERATIONS WITH THE LINKING LOADER

3.1 INTRODUCTION

This chapter provides a description of the operation of the Loader in typical
applications. To demonstrate the use of the Loader, a simple message printing
program will be used. This program consists of three modules which reference
instruction sequences or data within each other. As assembly listing of each
module is shown in Figures 3-1, 3-2, and 3-3.

3.2 SIMPLIFIED LOADER OPERATION

The simplest form of the Loader's operation is shown in Figure 3-4. In this
example, all three files -- PGl, PG2, and PG3 -- are loaded, and the object file
PG123 is created. The sequence of steps shown in Figure 3-4 is as follows:

1. The LOAD command 1loads the first file, PGl.RO:0. During all Tload
operations, a global symbol table of all external definitions and
references is built.

2. The LOAD command loads the next two files, PG2 and PG3. Notice the
default suffix 'RO' and drive number '@' are assumed.

3. The OBJA command starts pass 2 of the load function, which will create an
absolute memory image object file named PG123 on drive @ with the suffix
'L0'. This command also assigns memory addresses to the various program
sections. The use of the OBJX command, instead of OBJA, would have a
similar effect, except an EXORciser load image would be produced.

4, Since an intermediate file was not created in pass 1, all commands
entered in pass 1, with the exception of MAP commands, must be repeated.
In pass 2, the LOAD command generates the absolute code for the object
file. Notice that all three files are loaded with one load command this
time.

5. The MAPU command is not really necessary here, but was entered to verify
that no undefined symbols exist.

6. A complete memory map is produced by the MAPF command. In the first part
of the map (6a), any undefined external references are listed. In the
next part (6b), the section type, the size, starting address, ending
address, and size of the section's common block are listed for each
program section. For example, PG123's DSCT area will have a size of 42
(hex) bytes, of which 20 (hex) bytes are in common. The DSCT area will
start at address $6A and end at $AB. The starting address of the various
sections for each program module is given in the next map part (6¢c). As
seen from the map, PG2 PSCT starts at address $FD, which corresponds to
the PG2 instruction:

PGM2 CLRA

3-1

PAGE

00001
00002
00003
00004

00006
00007
00008
00009
00010

00012

00014
00015
00016
00017
00018

00020
00021
00022
00023
00024

00026
00027
00028
00029

001

PGl

F024

0004
000A
000D

eSA:

> P D>

1

3¢ 3 3 3 St

€

o
=&

e

E
L
C

3¢ 3¢

PG1 PROGRAM TO PRINT OUT MESSAGES (MAIN)
NAM PG1
oPT RELyCREF+NOG
TTL PROGRAM TO PRINT OUT MESSAGES (MAIN)
IDNT 08/710/79 MAIN MESG PROGRAM - MODULE #1
ASSEMBLY PROCEDURE: RASM 3.00 MDOS 3.00
=RASM PGLl;LN=T76
PROGRAM PARTS: PGly PG2s PG3

COMPUTER: M6800

XBPRT EQU

$F024 EXBUG PRINT ROUTINE

ASCIT CHARACTER EQUATES

oY EQU
F EQU
R EQU

4 END OF TEXT
$A LINE FEED
$D CARRTIAGE RETURN

EXTERNAL REFERENCES

XREF
XREF
XREF

ATEST
DSCT:MSG3yMSG4 9 ANYSSTACK
EXBENTPGM2

EXTERNAL DEFINITIONS

XDEF
XDEF

FIGURE 3-1.

MSG2+MSG1 +EXBPRTySTART«PGLNE
MSGSTIZ+EOTsLFsCR

Message Program 1 (PGl)

3-2

PAGE

00031
00032
00033
00034N
00035N
00036N
00037N
00038N

00040
00041
00042
00043N
00044N
00045N

00047C
00048C

0005CD
000510
00052D

00054P
00055P
00CcseP

000583
000598

002

0000
0600
0002
0004
0006

0000

0000
0001

0000
0000

0000
0000
0009

0000
0000
Q009

0000
0000

«SA:1 PG1 PROGRAM TO PRINT QOUT MESSAGES (MAIN)
* COMMON MESSAGE AREA
% (NAMED COMMON "DCOMM™ IN DSCT)
DCOMM COMM DSCT
0000 P MSG1P FDB MSG1 PTR TO MESG 1 (IM PSCT)
0000 D MSG2P FDB MSG2 PTR TO MESG 2 (IN DSCT)
0000 A MSG3P FDB MSG3 PTR TO MESG 3 (XREF IN DSCT)
0000 A M5G4P FDB MSG4 PTR TO MESG 4 (XREF IN CSCT)
* MESSAGES 1 AND 2
% (NEW NAMED COMMON "DCOMM2" IN DSCT)
P
DCOMM2 COMM DSCT
0001 A CMSGCT RMB 1 COMMON MESSAGE COUNT
0014 A CMSG RMB 20 COMMON MESSAGE
cscT 3LANK COMMON SECTION
0010 A MSGCST RMB l6 RESERVE 16 BYTES
bSCT DATA SECTION
4D A MSG2 FCC \MESSAGE 2\
04 A FCB EOT DELINEATE END OF MESSAGE
PSCT PROGRAM SECTION
4D A MSG1 FCC \MESSAGE I\
04 A FCB EOT
BSCT BASE SECTION
0001 A MSGSIZ RMB 1§ MESG SIZE STORAGE
FIGURE 3-1. Message Program 1 (PGl) (cont'd)

3-3

PAGE

00061
00062
00063
00064P

00066P
0nos67P
00C68P
00069P
00070

00071

00072

00073°P
00074P
00075°P
0007¢P
00077P
ooorT8P
00079

00C80

00081

00082?P
0ng33°P
00084P
00035p
00086P
000387P
c0088P
000389P
00090°
c0091pP
0ngo92P
00093P
00094P
00095¥P
00096P
000979
00098P

001008
00101
00102
00103
00104
001058
001068

00108D
00109D
00110D

00112
00113

003

PGl

000A

000A
000D
0010
0013

8E
FE
BD
TE

0016
0019
001C FE
001F 3D
0022 Ct
0025 8D

CE
8D

0028
0028
C02E
0031
0034
0037
0039
003C
003E
003F
0042
0045
0047
0048
ooe4B
004C
004E

CE
FF
o
FF
£
D7
FE
A6
03
FF
FE
A7
08
B
S5A
26
TE

0001

0001

0003

000A
000A 96
000C DE

0000
00cCoO
F024
0000

0000
F024
0004
F024
0000
F024

0000
0003
0001
0001
00090
00

0001
00

0001
0003
00

0003

EB O
0000

0002
0002

01
03

qc0A

P> ZbD> > p Z P

PoOomz2EO

® ®

A

)

039
A

P

:t1 PGl

* PROGRAM SECTION
% EXECUTION STARTS AT "START"®

PSCT
START LOS
LDX
JSR
JMp

T 3¢ 3k 3¢

GINE LOX
JSR
LOX
JSR
LDX
JSR

3 3k 5

LDX
STX
LDX
STX
LDASB
STAB
LDX
LDAA
INX
STX
LDX
STAA
INX
STX
DECSB
BNE
JMP

LOOP1

BSCT
NOTE:

L I+

3

FROMPT RMB
TOPNTR RM8

DSCT
LDAA
LDX

TTL
END

TOTAL ERRORS 00000--00000

FIGURE 3-1.

#STACK
MSG1P
EXBPRT
PGM2

PROGRAM 2 RETURNS TO

#MSG3
EXBPRT
MSG3P
EXBPRT
#MSG4
EXBPRT

#MSGCST
TOPNTR
#CMSG
FROMPT
CMSGCT
MSGSIZ
FROMPT
Oy X

FROMPT
TOPNTR
0e¢X

TOPNTR

LOOP1
ATEST

IF FORWARD REFERENCED,
THEREFORE ALL BSCT VARIABLES SHOULD BE
DEFINED BEFGRE REFERENCED.

2
2

FROMPT
TOPNTR

PROGRAM TO PRINT OUT MESSAGES (MAIN)

PROGRAM SECTION

SET UP STACK REGISTER
GET MESSAGE 1 POINTER
PRINT MESSAGE 1

GO TO PROGRAM 2 (XREF)

(XREF)

THIS POINT (XDEF)

GET MESSAGE 3 ADDRESS
PRINT MESSAGE 3
GET MESSAGE 3 POINTER
PRINT MESSAGE 3 AGAIN
PRINT MESSAGE 4

MOVE MESSAGE FROM CMSG IN DCOMM2 TO BLANK COMMDN

MESSAGE DESTINATION ADDRESS

MESSAGE ADDRESS (FROM)

MESSAGE LENGTH

SAVE MESG LENGTH

GET SOURCE POINTER
GET BYTE

UPDATE SOURCE POINTER

GET DESTINATION POINTER
SAVE BYTE
UPDATE DESTINATION PCINTER

UPDATE CHARACTER COUNTER
Looe
GOTO PROGRAM W/ASCT REGIONS

DIRECT ADDRESSING SECTION
EXTENDED ADOR IS USED.

FROM POINTER
TO POINTER

DATA SECTION
%%DIRECT ADDRESSING USED¥=%
(EXAMPLES ONLY - NOT EXECUTED)

CROSS REFERENCE TABLE

START

3-4

Message Program 1 (PGl) (cont'd)

PAGE 004 PG1 «SA:1 PGl CROSS REFERENCE TABLE

R ATEST 00022%*00098

ND 0001 CMSG 00C45%00084

ND 0000 CMSGCT 00044%*00086

b 000D CR 00018%*00G29

ND DCOMM 00034%*

ND DCCMM2 00043

D 000« ECT N0016#*%00029 00052 00056

R EXBRENT 00024%

D FO024 EXB8PRT 00012%00028 00068 00074 00076 00078
B 0001 FRCMPT 20085 00088 00091 00105%00109
D OO0ODA LF 00017%&00029

P 0N39 LONP1 0008B8%00CI7

DP 0000 MSG1 00028 00035 00055%*

ND 0000 MSGL1lP 00035x%00067

0D 0000 MSG2 00028 00036 000S51%*

ND 0002 MSG2P 00036%*

D MSG3 00023%00037 00073
ND 0004 MSG3P 00037%*00075
RD MSG 4 0002300038 00C77

ND 0006 MSG4P 00038%
C N000 MSGCST 00048%00082
N3 0000 MSGSIZ 00029 00059%00087
0P 0016 PGINE 00028 00073%
R PGM2 00024%00069
R STACK D00023%*00066
DP 00D0A START 00028 00066%00113
R 0003 TCPNTR 00033 00092 00095 00106%00110

FIGURE 3-1. Message Program 1 (PGl) (cont'd)

3-5

PAGE

00001
00002
00003
00004

00006
00007
00008
00009
00010

00012

00014
00015
00016
00017
00018
00019
0n020

00022

00023

00024N
00025N
00026N
00027N
00028N

00030N
00031N
00032N
00033 N
00034

02036

00037

000380
000390
000400
00041D
000420

001

000¢C
0000
0002
0004
0006

0000
0000
0001
0014

0000
0000
0009
000A
0013

PG2

F564

0002
0002
0002
0002

17
43
0oC
0018

4D
00
40
00

«SA:

A

> P> P> P>

Z > P >

> D> > P>

1 PG2

36 3 3k 3 db

EXBENT

Ie 3

MESSAGE PRINTER SUBPROGRAM

NAM
oPT
TTL
IONT

PG2

CREF+RELyNOG

MESSAGE PRINTER SUBPROGRAM

08/10/79 MESG PRNTR SUBPROG — MODULE #2

ASSEMBLY PROCEDURE: RASM 3,00 MDOS 3.00
=RASM PG23LN=76

PROGRAM PARTS: PGle. PG2y PG3

COMPUTER: M6800

EQU

XDEF
XREF
XREF
XREF

$F564 EXBUG ENTRY POINT

XDEFS AND XREFS

MSG3+MSG4+STACK EXBENT «PGM2
8SCT:MSGS1Z
EXBPRT«PGINEsMSGLyMSG2
FOTWCRoLF

¥ MESSAGE POINTER AREA (DCOMM)

DCOMM

MSG1PT
MSG2PT
MSG3PT
MSG4PT

DCOMM2
CMSGCT
CMSG

CMSGE

e
b
o
>

COMM
RMB
RMB
RMB
RMB

COMM
FC8
FEC
FCB
EQU

DSCT

MSG3 FCC
FCB

MSG4 FCC
FCB

FIGURE 3-2.

DSCT
2

2
2
2

DSCT

CMSGE-CMSG « COMMON MESSAGE CHAR COUNT!
\COMMON TEST PROGRAM\

CRoLF4LF,EOT

* END OF MESSAGFE

MESSAGES 3 AND 4

\MESSAGE 3\
EQT
\MESSAGE 4\
EOT

Message Program 2 (PG2)

3-6

PAGE 002 PG2
00044

00045

00046P
00047P
00048P
00049P
00050P
n00s51°P
00052°p
£NO53p
0N054P
000s55pP

0000
0000
0001
0003
0006
2009
000C
O0CF
0012
0015

4F
97
FE
30
CF
BD
FE
BD
7€

000578
000588
000598

0000
0000
0014

00061

MESSAGE PRINTER SUBPROGRAM

«SA:1 PG2
%* START OF PROGRAM 2
PSCT
PGM2 CLRA
00 A STAA MSGS1IzZ
0000 N LDX MSGL1PT
o000C A JSR EXBPRT
0000 A LDX #MSG2
0en0 A JSR EXBPRT
0002 N LDX MSG2PT
0000 A JSR EXBPRT
0000 A JMP PGINE
BSCTY
0014 A RM38 20
0001 A STACK RMB 1
END

TOTAL ERRDORS 00000--00000

0001 CMSG
0000 CMSGCT
0018 CMSGE
R CR
DCOMM
DCOMM2
R EOT
D F564 EXBENT
R EXBPRT
R LF
R MSG1
ND 0000 MSG1PT
R MSG2
D002 MSG2PT
0000 MSG3
0004 MSG3PT
000A MSG4
D006 MSG4PT
MSGSIZ
R PGINE
0000 PGM2
0014 STACK

00031 00032
00031*

00031 00034=*
00020%00033
00024
00030%

00020%00033 00040 00042

00012%*00017
00019%00050
00020%*00033
00019%
00025400049
00019%00051
00026%*00053
00017 00039=
00027%*

00017 00041
00028%
00018%00048
00019%00055
00017 00047
00017 00059%*

00033

FIGURE 3-2.

3-7

00052 00054

INITe MESG LENGTH
PRINT MESSAGE 1

PRINT MESSAGE 2
PRINT MESSAGE 2 AGAIN

RETURN TO PROGRAM ONE

DIRECT ADDRESSING SECTION

STACK STORAGE AREA

Message Program 2 (PG2) (cont'd)

PAGE 001

00001
00002

00003
00004

00006
00007
00008
00009
00010

00012
00013

00015
00016
00017C
00018C

00020A
00021A
00022A
000234

00025A
00026A
00027A

00029P
00030P
00031P
noo3zp
00033pP
00034°P

00036

0000
0000

0000
4406
4406
4409

4510
4510
4513

0000
0000
0002
0004
0006
0008

PG3

TE

3D
TE

«SA:1 PG3

3 3¢ 36 % 3

TOTAL ERRORS 00000--00000

D 4406

4510
C 0000

DP 0000

ATE
ATE

ST
ST2

CMSG

EXB
EXB
POwW

ENT
PRT
ERS

*%%PROGRAM TO ILLUSTRATE USE OF ASCT

NAM
I
oPT
IDNT

PG3

*%¥¥PROGRAM TO ILLUSTRATE USE OF ASCT
REL,CREF

08/10/79 ASCT ILLUSTRATION - MODULE #3

ASSEMBLY PROCEDURE:
=RASM PG3:13LN=T6

PROGRAM PARTS:

RASM 3,00 MDOS 3,00

PGle PG2ys PG3

COMPUTER: M6800
XDEF ATEST,POWERS
XREF EXBPRToEXBENT
BLANK COMMON

ESCY
0030 A CMSG RMB $30

ASCT UNNECESSARY!

ORG $4406 « ORG CAUSES ASCT!
0000 C ATEST LDX #CMSG START OF COMMON MESSAGE
4510 A JMP ATEST2

ORG $4510
0000 A ATEST2 JSR EXBPRT PRINT MESSAGE
0000 A JMp EXBENT GOTC EXBUG/DON'T STOP

PSCT PROGRAM SECTION
0001 A POWERS FDR 1 POWERS OF TEN TABLE
DOOA A FDB 10
0064 A FDB 100
03E8 A FDB 1000
2710 A FDB 10000

END
00012 00022%*
00023 00026%
00018%00022
00013%00027
00013%00026
00012 00030%

FIGURE 3-3. Message Program 3 (PG3)

3-8

=RLOAD

MDO= LINKIMNG LORDER REN 032,00
COPYRIGHT EY MOTOROLA 1977
1IPL R TSPEY L FER) =orssmommmmmminimsess s oo LOAD FIRST FILE
R LOAD OTHER THO FILES
1 7L OA=PF1 Y T p———— 1|1 U LR TN
AL - T Rttt S —— PRINT UNDEFINED SYMBOLS MAP
MO UMDEFIMED =YMEOLE
(0 a1 el ot S —— PRINT FULL MEMORY/SYMBOL MAP
MO UMTEFIMNED =YMEDOL = 6a

MEMORY MAF

ZIZE =TR EMD COMH

nnoe 4510 4515

nooe 4408 440F

Q01A o020 0n=2 noonn 6b
Nnozn No%A 003 0020

nogz ooeR DOAE Q020

noN72 00AC D11E o000

L s o B o e €)
—
I

MOTDULE NAMEF BECT DECT FPECT
P51 noEn Nnas NNAe e
Fiz2 O02s 0072 00FD
FiR= OO2AR N0sc 011s

COMMON ZECTIONE

MAME = ZIZE STR
TeaMM T nnnE no2c 6d
oCcOoMMe L0 o012 o0s4
DEFIMED ZYMEDOLE
MODLILE HAME: Pl o o
CF Hoonon ED Ao ooong EXBFRT R FOZ24 LF A o0oA 6
MEG1 P OnALc MZiae I D0EA HZEZIZ B o0z FRINME F O0OCE e

ZTART P DOEE

m
Il
]

MO IRME : i
néE%EN%HQEF564 MEEE T 00vE M4 D oose FEMZ F 0OFD 6f
STACE. B 0039

MODLLE MAME: PR3

ATEST A 4405 FOMERE P 0115 69
(7)7E':IT --_--_-::-I- ----------------------------- RETURN TO MDOS
=L0OAD PE1EEs Y m e e e e e LOAD OBJECT PROGRAM FILE
OF P e START PROGRAM EXECUTIONM

MEZZRGE
EEAGE

Fa L0 TN =

FHNMDH TEET PROGFAM

EXBLUG 2.1
*E

FIGURE 3-4. Basic Loader Operation
3-9

The fourth area of the map (6d) defines the size and starting address of
any named common blocks. Thus, the PGl variable CMSGST, which 1is the
first variable in the DCOMM2 common block, will be located at address
$8C. The final map feature provides an alphatized list of all global
symbols by modules (6e, 6f, 6g). The modules are listed in the order
that they were loaded. Thus, the PGl variable START has an absolute
address of $B6.

. To return to MDOS, the EXIT command is used. This command may, in

addition, be used to assign a starting execution address. In this
example, PG123's starting address will be at address $B6, since the
variable START appears as the operand on PGl's END statement. Two
alternate methods of defining the execution address are:

EXIT=START
or EXIT=$B6

3.3 LOADER OPERATIONS USING INTERMEDIATE FILES

As shown in the previous example, most commands must be re-entered during pass 2
of the Loader. The use of an intermediate file eliminates the need to retype
Loader commands. Figure 3-5 is an example of the use of intermediate files.
Commands used in the sequence are explained below, with the exception of those

commands previously discussed.

1.

5.

6.

7.

The intermediate file feature is invoked by defining a new file for use
as the intermediate file.

. The IDON command turns the identifier option on to allow printing of the

IDNT assembly directive as entered in the files.

. This command 1ine shows how more than one command may be specified on the

same line by using the ';' feature. The STR command is used to define
the starting section addresses of $400 and $1000 for DSCT and PCST,
respectively. These starting addresses are reflected in the map
generated in pass 2.

The CUR command with the '\' option causes the PSCT section of each
module to start at an address which is modulo $10 from the start of PSCT.
This feature permits the user to easily debug relocatable programs, since
modules start at convenient addresses. Thus, in the example of Figure
3-5, the first PSCT code for module PG2 will start at $1070.

Notice that the 1loading order 1is different from the example in
Eigyre 3-4. As each file/module is loaded, its identifier is printed
5a).

As in the previous example, the OBJA command initiates pass 2 of the
Loader. However, since the intermediate file feature is being used, the
second pass 2 is automatically performed without the user re-entering the
commands. Notice the identifiers are also printed here as each
file/module is loaded (6a).

The Loader has completed processing all commands entered in pass 1; the
user may now enter any non-load command such as a MAP command or EXIT.

In this case, all map output is directed to the line printer with the
MO=#LP command.

3-10

=RLORD

INOS LINKING LORTER FEY 03.00
COEYRIEHT BY MOTORMLA 1577
T} TERSTBRR o oo $EEGT8NI¥EERMEDIATE FILE = TEMP
FETRO=%400: =TREP=%1 000 = TRE=0 ________ DEFI E STARTING SECTION ADDRESS
4 FEORP=NE1 D —ooeeoomooo o TTTTTTI ¥ P§E ON HonoLd b ?H BOUNDARIES
5) TLDRD=P&1, PR3 PBE _____________________ FILES
Fia1 =1 0. MAIM MEZR PROGFAM - Ml’.I ILILE =71
52) P53 0Bt 0era AECT ILLUSTRATION - MODULE 3
6) =0 BBl G PR TR P R TART PASS 2 » CONTROLLED BY INTERMEDIATE FILE
| BAOE —— e s e e .
B A=P513 IS wATh WESe PrOGRAM L HoBNE 21

(=]

s73 AZCT ILLUSTRATION - MODULE 3
191079 MFER FRMTR SUEBPRDGS — MNODLLE #¢
--------------------------------- ASSIGN MAP OUTPUT TO LINE

TN N N N T
A
~

FULL HEHORY 2SYMBOL AP 10 LTNE PRINTER
T -:;:;;;;::::::::::::::Z::::::::::::: RETURN T8 M685 ' '
1 =F I T-7 1V P ——————— LOAD OBJECT PROGRAM FILE
------------------------------------ START PROGRAM EXECUTION

B D T T e s

IE S S ARE
FOMMON TEST PROGRAM

EXBUG 2.1
+E

FIGURE 3-5. Using an Intermediate File

3-11

8. A full map is sent to the line printer to produce a hard copy with the
MAPF command. The line printer map output is shown in Figure 1-3.

9. The object file is closed and control is returned to MDOS via the EXIT
command.

3.4 LOADER OPERATIONS USING A LIBRARY FILE/CREATING AN MDOS COMMAND

The previous examples have described the loading procedure performed via the
LOAD command. In these examples, the user was aware of each module that had to
be loaded. However, in other cases, the user may be aware of only the entry
point name required to perform a desired function. In such instances, the user
can create a file which contains a collection of utility modules. The Loader
may be used to extract only the required modules from this library file. The
use of a library file is shown in Figure 3-6, and a description of the various
steps is explained below:

1. The MDOS MERGE command is used to build a library file PGLIB. This file
contains the modules in files PGl, PG2, and PG3.

2. The use of the BASE command directs the Loader to assign memory for CSCT,

DSCT, and PSCT above the MDOS system area. As a result, the user program
may be invoked directly as an MDOS command without using the LOAD
command. However, if the program has initialized BSCT, the MDOS LOAD
command must be used to execute the program. The effect of the BASE
command is shown in the program's memory map where CSCT, DSCT, and PSCT
are assigned memory above $2000.

3. A1l currently undefined symbols are listed via the MAPU command. In this
example, the six undefined symbols correspond to the six external
references in PGl.

4, The LIB command searches the file PGLIB for any modules which satisfy the
current undefined symbols. Since PG2 and PG3 are modules in PGLIB that
satisfy these undefined symbols (i.e., PG2 and PG3 have XDEF's for
ATTEST, EXBENT MSG3, MSG4, PGM2, and STACK), they will be loaded via the
LIB command. PGl, which is also in PGLIB, will not be loaded again.

5. The second MAPU command shows that all external references have now been
satisfied.

6. The second pass of the Loader is initiated with the OBJA command, and
creates an object file with the name MESSAGE. The use of the suffix
'CM', along with the Loader's BASE command, permits the created file to
be treated as an MDOS command (see item 9).

7. Since an intermediate file was not created during pass 1, all commands
entered in pass 1 must be repeated in pass 2. The MAP, END, and STR
commands are the only exceptions to this rule.

8. The EXIT command completes pass 2 of the Loader and returns to MDOS.

9. The file created by the Loader 1is treated as an MDOS command and,
therefore, is loaded and executed automatically.

3-12

(1)=MERGE PG1.ROsPG2.RO:PG2.ROsPGLIE.RO -------- BUILD LIBRARY FILE
=RLOARD
MUO% LINMKING LOADER REY 03,00
COPYRIGHT BY MOTOROLA 1977

[2JFREGE " et i s b i 5 LOCATE _PROGRAM
FLOADSPE] === == == == mm oo m o oo e oo LOAD FIRST FiLE COVE MDOS
(3) FMAPL — oo oo o e oo e e oo PRINT UNDEFINED SYMBOLS

ATEST EXBENT MSG2 MIR4 PGEM2 STACK
AMfE UNDEFINED SYMBOLE

e P L e T B LR NLD SHRELS
MO LUMDEFIHED =YMEOLE
B I I I I I T AT pags 1 commanpe e FILE
'DHU Fir1sI_TE=FELIE
v IﬂEFHﬁiﬁﬁsfﬁEﬁi_:§iﬁﬂﬁ[: -------------------------- PRINT FULL MEMORY/SYMBOL MAP

MEMORY MAP

ZIZE =TR END CDOMM
none 4510 4515

NNneE 4406 440F

NoiA 0020 0023 0000
No20 2000 202F 0020
nn42 2030 2N71 nogZn
NN732 2072 20E4 0o0o

MOTDLLE MAME EBZCT DECT PICT

AT D I

xch nozn gnzn 20ve
P62 nnes 2Nz SN2
Fiz2 nNzR 2nS2 20NE

COMMOM ZECTIONE
MAME = ZIFE E=TFR
nCcoMM ooonnE 205
nCOoMME T nnis SN5SA

UEFINED =YMEOLZE

MOTIULE MAME: Pi1

[4 A Onnm FOT Ao oonond EXEPRET A FiD24 LF H Quﬂﬁ
M=l P 207ve MEiRe o 2oz MZEZIZ B O0z0 FRIME F Zo&2

ZTART P 20VC

MODLULE MAME: FiZ _ o
EXEENT A FSe4 MEEE I 203E MIZing I =nds F
?THFK B nnz=2

MO MAME: FG3Z2

0 EFT 44 e FOWERE P Z0DE

-- RETURN TO MDOS
-- LOAD AND EXECUTE NEW MDOS COMMAMD

203

iy}
=
N
m

B 00 00 T T e

STAGE
ME £ AGE
COMMOM TE*T FREOGRAM

EXBLG 2.1
*E

FIGURE 3-6. Using a Library File
3-13

3.5 LOADER OPERATIONS USING A CHAIN FILE

For programs requiring more than a few modules, the use of the MDOS CHAIN
command to 1link them becomes a virtual necessity. It also provides a
self-documenting 1listing of how to link the program. A sample chain file is
shown in Figure 3-7. The use of this chain file is shown in Figure 3-8, and a
description of the various steps is explained below.

1. The chain file (LINK.CF) is invoked using the MDOS CHAIN command. There
are five option parameters which will be passed on to the chain file.
This is the only line entered by the operator until (7).

2. The chain file pauses here to give the operator a chance to abort, if so
desired, without destroying anything.

3. The previous map and object file are deleted.

4. The Linking Loader is invoked via the RLOAD command. The parameters from
the command line (1) are substituted to define the section values.

5. Map output is directed to an output file called PG321.MO. This provides
a permanent listing of the map output which can be listed at any time.

6. The MDOS LIST command is invoked to produce a hard copy of the map file
on the line printer. Note the header option is used and the DATE command
line parameter 1is substituted. The 1line printer listing of the map
output files is shown in Figure 3-9.

7. The chain file processing ends and the input stream returns to the
keyboard for operator input.

3-14

PAGE 001 LINK «CF:0

/%

/% Ee R o2 223 22 2 2 2 2 8 2 2 2 2 2 22 % 2.2 3 8 2 2 2 322 2 3 3 21 22]
/% %% LINK MESSAGE PROGRAMS CHAIN PROCESSOR *%
1% * 08/10/79 *%
/% L33 3332322 232 F 3223222222223 222222323
V&

ax

a* WARNING! GOING TO DELETE THE FOLLOWING FILES:
P m— PG321.L0:0 (OLD OBJECT)

A% PG321.M0:0 (OLD RLOAD MAP)
A=

A% ABORT WITH *BREAK® KEY OR

de STRIKE "RETURN® TO CONTINUEeee

a%

ASET,M 8

DEL PG321.L0+PG321.M0

ASET,M 0

RLOAD

1DON

STRD=$2DZ:STRP=$XPLSTRB=$IBY

/IFS CP

CURP=\\$ZCPZ

IXIF

LOAD=PG3,PG2+PG1

MAPU

0BJA=PG321

STRD=$%D%Z;STRP=$%P%;STRB=$%BY

/1FS CP

CURP=\\$ZCPZ

/XIF

LOAD=PG3,PG2+PG1

MAPU

MO=PG321.MO

MAPF

EXIT

P g

LIST PG321.MO5LH
MESSAGE PROGRAM TEST RLOAD MAP - 2ZDATEZ

PR

/IFC BesDyPsDATE

/%

/% COCKPIT ERROR DETECTED!

/%

/= MUST SPECIFY THE FOLLOWING OPTIONS:

IR —mmreermcc e e e — e ————————

/% B = START BASE SEGMENT ADDRESS (HEXe NO $)
/= D = " DATA " v {HEXs NO $)
/% P = " PROGRAM ® " (HEXs NO $)
/* DATE = TODAY'S DATE FOR MAP LISTING

/7%

/% OPTIONAL

/% CP = HEX VALUE (NO $) FOR "CURP=\\" COMMAND
/%

/% %%x% CHAIN ABORTED *=**

/%

/ABORT

/XIF

FIGURE 3-7. Listing of Chain File Invoking RLOAD
3-15

(1) =cHATM LINKSDRTEX10 AUG. 1979% BEONDNG00X PRI 000N CPX100%

PLPPPPPPPPPPPPPLPPPPPPIPPPEPPPPPPLPPPPP P20
+¢ | TNK MFEZZAGE FPROGRAME CHAIN FROCESSOR e
® P NE-10-72 >
PLPPIPPDPPIPODLPEPPEPPPLLPLPPLLPLIPPLPPP20P0 S

Je
3¢ WARMNIMNG! GOIMG TO TELETE THE FOLLOWING FILES:
Tl e FEZ21.L0:0 ¢OLD ORIFCTY
e FE=21.M0:0 «OLD PLOAD MAF)
I 3
I+ AEBORT WITH “BRERK‘ KEY OF
(2) 3. STRIKE “RETURN- TO COMTIMUE. ..
e

FTET FOFF 0800
(3) PEL PRE=221.LO«PE221.MO
PRI .LO:N DELETED
PRIE1 .MO: 0 DELETED
FTET FOFF 0000
&L DA
MUO= L IMKTME LOADER REY 03,00
g?§EﬁIGHT EY MOTOROLA 1977
35 n
TETRDI=$4005 STRP=%1 0003 STRB=%1
TULURP=~%1101N
ZLOAD=PG2«PR2 PR

(4

~

Fiz= 021079 RECT ILLUETEARTION - MODULE #3
Fix2 021073 MEZR PRENTR EUEPREDOG — MODLLE @2
MPEH 021079 MARIM MEZ: PROGEAM - MODLLE =1
FMAP
MO LUMDEFIMED =YMEOLE
OB JRA=FPEZZ1
TETRD=%4NN5 =TRP=F1 0005 ZTRE=%0
FCURP=~%100
FLOARD=PGE:FPERZsPE1
Pz 21079 RECT ILLUETRATION - MODULE #32
Fizc n2-10-73 MEZE PREMTR ZUEPREOG - MODULE 2
Fiz1 NE-1N-73 MAITN MEZE PROGRAM - MOTILLE 1
THMAPL

MO UMDEFINED SYMEDLS
(5) *MO=F=z21.MD
TMAPF
TERIT
e
(6) LIST PR221.MOSLH

EQTEE HEARDIMNG: MEZEZAGE PROGRAM TEET RLOAD MAP - 10 AUG.
¥

END CHHRINM

(7)) SLE6D PEIOLIY —resmmmmmmmmmn o LOAD OBJECT PROGRAM
(8) 8E 3P —mmmmmmm e
b 00} START PROGRAM EXECUTION

1
MEZZAGE 1
MEZERGE 2
MEZEZRGE 2
MEZERGE 2
MEEEAGE R
MEEEHGE E

COMMON TEST FPROGRAM

EXBUG 2.1
+E

FIGURE 3-8. Using a Chain file and RLOAD
3-16

1979

PAGE 001 PG321 «MD:0 MESSAGE PROGRAM TEST RLOAD MAP - 10 AUG. 1979
NO UNDEFINED SYMBOLS
MEMORY MAP

SIZE STR END COMN
0006 4510 4515

0006 4406 4408

001A 0000 0019 0000
0030 0020 004F 0030
0042 0400 0441 0020
0251 1000 1250 0000

VOO®PWV

MODULE NAME BSCT DSCT PSCT
PG3 0000 0400 1000
PG2 0000 0400 1100
PGl 0015 0414 1200

COMMON SECTIONS
NAME S SIZE STR
DCOMM D 0008 0422
DCOMM2 D 0018 042A
DEFINED SYMBOLS
MODULE NAME: PG3
ATEST A 4406 POWERS P 1000
MODULE NAME: PG2
EXBENT A F564 MSG3 D 0400 MSG4 D 040A PGM2 P 1100
STACK B 0014
MODULE NAME: PG1
CR A 000D EOT A 0004 EXBPRT A FO24 LF A 000A

MS5G1 P 1200 MSG2 D 0414 MSGSIZ B 0015 PGINE P 1216
START P 120A

FIGURE 3-9. Map Output File Listing

3-17

COMMAND
CONTROL COMANDS

BASE[=<number>]

curr 5ol)
IDOF

IDON
IF=<f-name>
IFOF

IFON

INIT

0BJ I:Q]=<f-name>

APPENDIX A
A SUMMARY OF LINKING LOADER COMMANDS

FUNCTION

LOAD CSCT, DSCT, and PSCT above defined address
(default=MDOS compatible)

Give control to the disk operating system
Suppress identification printing

Print module identification information
Specify the intermediate file
Intermediate file mode off

Intermediate file mode on

Initialize the Loader

Initiates Pass 2

_J<device>
MO'{(f-name>} MAP output
LOAD DIRECTIVES
99 .
LIB=<f-name>I}[<f-name>é] 0 Enter file mode

LOAD=<f-name>[}[(f-name>i]9§ Load the indicated file(s)/module(s)

A-1

COMMAND

STATE COMMANDS

B
CUR{D»=[\ J<number>
p

ASCT
<number%} BSCT

DEF: <namel>={<name2> sDSCT
PSCT

B

ENDJ C {=<number>
D
p

MAPC
MAPF
MAPS

MAPU

B
STR} C\=<number>

D
i

FUNCTION

Set current location counter

Define a symbol

Set section ending address

List user assigned section sizes and addresses
List full load map

List loader assigned section sizes and
addresses
List undefined symbols

Set section starting address

A-2

APPENDIX B
LINKING LOADER ERROR MESSAGES

Errors detected by the Linking Loader, while processing a command or loading a
module, will result in an error message being printed at the user terminal.
These errors are divided into two classifications: fatal errors and non-fatal
(warning) errors. When the Loader detects a non-recoverable error, a fatal
error message will be printed. Any commands not processed on the last command
line will be ignored and a new prompt printed. If the Loader can recover from
an error, only a warning message will be printed. '

FATAL
ERROR MESSAGES
MESSAGE

BAE BSCT Assignment Error - the combined size of BSCT is greater
than the amount that can be allocated in the defined BSCT area.

cov Common Overflow - the size of a section's common is greater
than 65,535,

GAE General Assignment Error - the Loader cannot assign absolute
memory addresses. This may result from:

. address conflicts associated with ASCT's

. user assignment of section addresses

. the combined length of all sections exceeding 65,535
. the order in which the Loader assigns memory.

ICM I11egal Command

IOR ITTegal Object Record - the input module is not a valid
relocatable object module.

ISA ITTegal Stream Assignment - this error occurs when an invalid
I/0 device is assigned to a Loader I/0 stream.

ISY IT1egal Syntax - error in the option or specification field of
a command. This error may also occur when a command is not
terminated by a semicolon, space, or carriage return.

LOV Local Symbol Table Overflow - not enough memory for all the
local (external) symbols defined by the current object module.
Check for contiguous memory from location @.

GOV Global Symbol Table Overflow - not enough memory for all the
global (external) symbols defined by the object modules. Check
for contiguous memory from location Q.

PHS Phase Error - the absolute address assigned to a global symbol
at the end of Pass 1 does not agree with the address computed
during Pass 2.

SOV Section Overflow - the size of a section is greater than

65,535,
B-1

FATAL
ERROR”MESSAGES

MESSAGE
UAE

UIF
uoI

WARNING MESSAGES

User Assignment Error - the user has incorrectly defined Toad
addresses. Use the MAPC command to produce a map for
determining the cause of this error. The UAE error occurs
when:

. the user defined end address is Tless than the user
defined start address

. the space allocated by the user defined start and end
addresses is less than that required for the section.

. the user has defined 1load section addresses which
overlap

. the user defined execution address is out of range
. the user has defined ASCT below $20

. the user has initialized locations in BSCT which are
assigned below $20

Undefined IF File
Undefined Object Input File

IAM - <address> - Illegal Address Mode - a global symbol is referenced as

a one-byte operand, and the most significant byte of the global
symbo] address is non-zero. One byte relocation is performed,

using only the least significant byte of the global symbol
address. The warning message indicates the absolute address of
such a reference.

MDS - <symbol> - Multiply Defined Symbol - the Loader has encountered

another definition for the previously defined global symbol.
Only the first definition will be valid. This can also be
caused by section conflicts for the symbol -- i.e., defined via
an EQU directive (ASCT) and referenced in another module as
BSCT.

UDS - <symbol> - Undefined Symbol - the symbol was not defined during

Pass 1. A load address of zero will be assumed.

B-2

SUGGESTION/PROBLEM REPORT

Motorola welcomes your comments on its products and publications. Please use this form.

To: Motorola Microsystems
P.O. Box 20912
Attention: Publications Manager
Mail Drop M374
Phoenix, Az. 85036

Comments
Product: Manual:

Please Print

Name Title

Company Division

Street Mail Drop Phone Number
City State Zip

HARDWARE SUPPORT: §8003 528-1908
SOFTWARE SUPPORT: (602) 831-4108

