

M6800
M6801
M6805
M6809

MACRO ASSEMBLERS REFERENCE MANUAL

M68MASR(D2)

SEPTEMBER 1979

The information in this document has been carefully checked and is
believed to be entirely reliable. However, no responsibility is
assumed for inaccuracies. Furthermore, such information does not
convey to the purchaser of the product described any license under
the patent rights of Motorola Inc. or others.

Motorola reserves the right to change specifications without notice.

EXORciser, EXbug, EXORdisk, and MOOS are trademarks of Motorola Inc.

Second Edition
Copyright 1979 by Motorola Inc.

First Edition December 1978

TABLE OF CONTENTS
Page

CHAPTER 1: GENERAL INFORMATION
1.1 INTRODUCTION 1-1
1. 2 ASSEMBLY LANGUAGE 1-1
1.3 OPERATING ENVIRONMENT 1-2
1.4 ASSEMBLER PROCESSING 1-2

CHAPTER 2: CODING ASSEMBLY LANGUAGE PROGRAMS
2.1 INTRODUCTION 2-1
2.2 SOURCE STATEMENT FORMAT 2-1
2.2.1 Sequence Number 2-1
2.2.2 Label Field 2-1
2.2.3 Operation Field 2-2
2.2.4 Operand Fie 1 d 2-3
2.2.4.1 M6800/M6801 Addressing Modes 2-4
2.2.4.2 M6805 Addressing Modes 2-5
2.2.4.3 M6809 Addressing Modes 2-6
2.2.4.4 Expressions 2-10
2.2.4.5 Operators 2-11
2.2.4.6 Symbols 2-12
2.2.4.7 Constants 2-12
2.2.5 Comment Field 2-13
2.3 ASSEMBLER OUTPUT 2-13

CHAPTER 3: RELOCATION AND LINKING
3.1 INTRO DU CT ION 3-1

CHAPTER 4: ASSEMBLER DIRECTIVES
4.1 INTRODUCTION 4-1
4.2 ASCT - ABSOLUTE SECTION 4-2
4.3 BSCT - BASE SECTION 4-2
4.4 BSZ - BLOCK STORAGE OF ZEROS 4-2
4.5 COMM - NAMED COMMON SECTION 4-2
4.6 CSCT - BLANK COMMON SECTION 4-3
4.7 DSCT - DATA SECTION 4-3
4.8 END - END OF SOURCE PROGRAM 4-3
4.9 ENDC - END OF CONDITIONAL ASSEMBLY 4-4
4.10 ENDM - END OF MACRO DEFINITION 4-4
4.11 EQU - EQUATE SYMBOL TO A VALUE 4-4
4.12 FAIL - PROGRAMMER GENERATED ERROR 4-4
4.13 FCB - FORM CONSTANT BYTE 4-4
4.14 FCC - FORM CONSTANT CHARACTER STRING 4-5
4.15 FOB - FORM DOUBLE BYTE CONSTANT 4-5
4.16 IDNT - RELOCATABLE IDENTIFICATION RECORD 4-5
4.17 IFxx - CONDITIONAL ASSEMBLY DIRECTIVES 4-5
4.18 MACR - MACRO DEFINITION 4-6
4.19 NAM - ASSIGN PROGRAM NAME 4-7
4.20 OPT - ASSEMBLER OUTPUT OPTIONS 4-7
4.21 ORG - SET PROGRAM COUNTER TO ORIGIN 4-10

;

Page

4.22 PAGE - TOP OF PAGE 4-10
4.23 PSCT - PROGRAM SECTION 4-10
4.24 REG - DEFINE REGISTER LIST 4-11
4.25 RMB - RESERVE MEMORY BYTES 4-12
4.26 SET - SET SYMBOL TO A VALUE 4-12
4.27 SETDP - SET DIRECT PAGE PSEUDO REGISTER 4-12
4.28 SPC - SKIP BLANK LINES 4-13
4.29 TTL - INITIALIZE PAGE HEADING 4-13
4.30 XDEF - EXTERNAL SYMBOL DEFINITION 4-13
4.31 XREF - EXTERNAL SYMBOL REFERENCE 4-13

CHAPTER 5: MACRO OPERATIONS AND CONDITIONAL ASSEMBLY
5.1 INTRODUCTION 5-1
5.2 MACRO OPERATIONS 5-1
5.3 CONDITIONAL ASSEMBLY 5-5
5.4 EXAMPLES OF MACROS/CONDITIONAL ASSEMBLY 5-6

APPENDIX A CHARACTER SET A-1-2
APPENDIX B SUMMARY OF INSTRUCTIONS B-1-23
APPENDIX C DIRECTIVE SUMMARY C-1-3
APPENDIX D ASSEMBLER MESSAGES D-1-6
APPENDIX E ASSEMBLER OUTPUT FORMAT E-1-5
APPENDIX F M6800 MACRO ASSEMBLER/M6800 ASSEMBLER DIFFERENCES F-1
APPENDIX G USING THE MACRO ASSEMBLER G-1-7
APPENDIX H SAMPLE PROGRAMS H-1-9

ii

CHAPTER 1

GENERAL INFORMATION

1.1 INTRODUCTION

The M6800 Macro Assembler is a program that processes source program statements
written in M6800 assembly language. The Assembler translates these source state­
ments into object programs compatible with the M6800 Linking Loader or the EXbug
loader, and produces a listing of the source program. The M6800 Macro Assembler
has been designed to operate on Motorola 1 s 6800 Development System. The MOOS and
tape versions of the M6800 Macro Assembler also support the M6801 instruction set.
In addition, this manual describes the M6805 Macro Assembler and the M6809 Macro
Assembler. Unless explicitly stated otherwise, all information pertaining to
the M6800 Macro Assembler also pertains to the M6805 and M6809 Macro Assemblers.
Although the Linking Loader is referred to as the M6800 Linking Loader, it
supports M6800/6801, M6805, and M6809 programs.

The versions of the Macro Assembler described in this manual are:

RASM 3.00 (M6800/M6801 MOOS version)
RASM 2.2 (M6800 EDOS version)
RASM 2.2 (M6800/M6801 tape version)
RASM05 2.00 and 3.00 (M6805 MOOS version)
RASM09 3.01 (M6809 MOOS version)

Earlier versions of these products may not support all of the features described
in this manual.

1.2 ASSEMBLY LANGUAGE

The symbolic language used to code source programs to be processed by the
Assembler is called assembly language. The language is a collection of mnemonic
symbols representing: operations (i.e., machine instruction mnemonics, directives
to the assembler, or macro instructions), symbolic names, operators, and special
symbols.

The assembly language provides mnemonic operation codes for all machine instruc­
tions in the M6800 instruction set. The M6800 and M6801 instructions are defined
and explained in the M6800/6801 Programming Reference Manual. The M6805 instruc­
tions are defined and explained in the M6805 Programming Reference Manual. The
M6809 instructions are defined and explained in the M6809 Programming Reference
Manual. The assembly language also contains mnemonic directives which specify
auxiliary actions to be performed by the Assembler. These directives are not
always translated into machine language. The assembly language also enables
the programmer to define and use macro instructions which are used to replace a
single statement with a predefined sequence of statements found in the macro
definition.

1-1

1.3 OPERATING ENVIRONMENT

The minimum hardware requirements for the Macro Assembler include:

Motorola 6800 Development system with EXbug monitor
System console (keyboard and printer/display)
M6800 EDOS version -- EXORdisk I, 16K RAM
M6800/M6801 MOOS version -- EXORdisk II, 24K RAM
M6800/M6801 Tape version -- Console reader/punch, 16K RAM
M6805 MOOS version EXORdisk II, 24K RAM
M6809 MOOS version -- EXORdisk II, 32K RAM

1.4 ASSEMBLER PROCESSING

The Macro Assembler is a two-pass assembler. During the first pass, the source
program is read to develop the symbol and macro tables. During the second pass,
the object file is created (assembled) with reference to the tables developed
in pass one. It is during the second pass that the source program listing is
also produced.

Each source statement is processed completely before the next source statement
is read. As each statement is processed, the Assembler examines the label,
operation code, and operand fields. The operation code table is scanned for a
match with a known opcode. If there is no match, the macro definition table
is scanned.

During the processing of a standard operation code mnemonic, the standard
machine code is inserted into the object file. If a macro is being processed,
the definition is expanded one line at a time and processed as a normal assembl~
language statement as defined above. If an Assembler directive is being
processed, the proper action is taken.

Any errors that are detected by the Assembler are displayed before the actual
line containing the error is printed. Errors are accumulated, and a total numb1
of errors is printed at the end of each source listing. If no source listing
is being produced, error messages are still displayed to indicate that the
assembly process did not proceed normally.

1-2

CHAPTER 2

CODING ASSEMBLY LANGUAGE PROGRAMS

2.1 INTRODUCTION

Programs written in assembly language consist of a sequence of source statements.
Each source statement consists of a sequence of ASCII characters ending with a
carriage return. Appendix A contains a list of the supported character set.

2.2 SOURCE STATEMENT FORMAT

Each source statement may include up to 5 fields: a sequence number, a label
(or"*" for a comment line), an operation, an operand, and a comment.

2.2.1 Sequence Number

The sequence number field is an optional field provided as a programming con­
venience. The sequence number field starts at the beginning of the source line,
and consists of up to five decimal digits. The value of the number must be less
than 65536. Sequence numbers must be followed by a space. In MOOS versions of
the Macro Assembler, sequence numbers will be automatically printed on the source
listing. EDOS and tape versions of the Assembler will only print the sequence
numbers under control of the OPT directive.

Although sequence numbers are optional, they must be consistently used or not
used for an entire program. If the first source statement has a sequence number,
then every succeeding source statment must also have a sequence number. If the
first source statement does not have a sequence number, then no other source
statement may be numered.

2.2.2 Label Field

The label field occurs as the first field of a source statement. The label field
can take one of the following forms:

1. An asterisk (*) as the first character in the label field indicates
that the rest of the source statement is a comment. Comments are
ignored by the Assembler, and are printed on the source listing
only for the programmer 1 s information.

2. A space as the first character indicates that the label field is
empty. The line has no label and is not a comment.

3. A symbol character as the first character indicates that the line
has a label. Symbol characters are the upper case letters A-Z,
digits 0-9, and the special characters, period (.), dollar sign ($),
and underscore (). Symbols consist of one to six characters,
the first of which must be alphabetic or the special character,
period (.). Certain special symbols are reserved by the Assembler,
and will cause an error to be generated if they appear in a label
field. These reserved symbols are: A, B, and X. For the M6809
Macro Assembler, the following are also reserved symbols: CC, D,
DP, PC, PCR, S, U, and Y. For the M6805 Macro Assembler, only A and
X are reserved.

2-1

A symbol may occur only once in the label field unless it is used with the SET
directive. If a symbol does occur more than once in a label field, then each
reference to that symbol will be flagged with an error.

With the exception of some directives, a label is assigned the value of the
program counter of the first byte of the instruction or data being assembled.
The value assigned to the label may be either relocatable or absolute.
Chapter 3 contains a complete description of relocation in the Macro Assembler.
In case the value is ·relocatable, the label is assigned the appropriate relocatio
attribute as well. Relocatable labels will have absolute values assigned to therr
during the link/load process performed with the M6800 Linking Loader.

Each unique label, undefined symbol, and external reference symbol in a program
is allocated a ten-byte block in the symbol table. In addition, a ten-byte
block is allocated for every four references to a symbol, if the cross reference
option (paragraph 4,20) is in effect.

2.2.3 Operation Field

The operation field occurs after the label field, and must be preceded by at
least one space. The operation field must contain a symbol. Thus, the rules
governing labels apply to the operation field as well. Entries in the operation
field may be one of three types:

Opcode These correspond directly to the machine instructions.
The operation code includes the 11 A11 or 11 B11 character
for the accumulator specification. For compatibility
with other M6800 assemblers, a single space may
separate the operation code from the accumulator
designator. For example, 11 LDA A11 is the same as 11 LDAA 11 •

Although the M6809 Macro Assembler recognizes the above
instruction forms (Appendix B.6), the proper form for
the M6809 instruction "load accumulator A11 is 11 LDA 11 •

The M6805 Macro Assembler does not recognize the opcode
format that contains a space. In addition, only
accumulator 11 A11 is recognized.

Directive These are special operation codes known to the Assembler
which control the assembly process rather than being
translated into machine instructions.

Macro call These indicate the selection of a previously defined macro
which is to be inserted in place of the macro call.

The Assembler first searches for operation codes in an internal table of machine
operation codes and assembler directives. If no match is found, the macro
definition table is searched. Therefore, macros should not be given the names
of existing instruction mnemonics, root mnemonics (such as ADD, SUB, EOR, etc.),
or directives. If neither of the tables holds the specified operation code, an
error message is printed. If code is being generated, three bytes of zeros are
generated for an invalid operation code.

2-2

2.2.4 Operand Field

The operand field's interpretation is dependent on the contents of the operation
field. The operand field, if required, must follow the operation field, and must
be preceded by at least one space. The operand field may contain a symbol, an
expression, or a combination of symbols and expressions separated by commas.

The operand field of machine instructions is used to specify the addressing mode
of the instruction, as well as the operand of the instruction. The format of
the operand field for M6800 instructions is summarized in the following table:

Operand Format

no operand
<expression>
#<expression>
<expression>,X

M6800 Addressing Mode

accumulator and inherent
direct, extended, or relative
immediate
indexed

For the M6805, the following additional operand formats exist:

Operand Format

<expression>,<expression>
<expression>,<expressioh>,<expression>

M6805 Addressing Mode

bit set or clear
bit test and branch

For the M6809, the following additional operand formats exist:

Operand Format

«expression>
><expression>
[<expression>]
<expression>,R
«expression>,R
><expression>,R
[<expression>,RJ
<[<expression>,RJ
>[<expression>,R]
Q+
Q++
[Q++]
-Q
--Q
[--Q]
Wl,[W2, ... ,Hn]

M6809 Addressing Mode

direct
extended
extended indirect
indexed
8-bit offset indexed
16-bit offset indexed
indexed indirect
8-bit offset indexed indirect
16-bit offset indexed indirect
auto increment by 1
auto increment by 2
auto increment indirect
auto decrement by 1
auto decrement by 2
auto decrement indirect
immediate

where R is one of the registers PCR, S, U, X, or Y, and Q is one of the registers
S, U, X, or Y. Wi (i=l to n) is one of the symbols A, B, CC, D, DP, PC, S, U, X,
or Y.

The operand fields of assembler directives are described in Chapter 4. The
operand fields of macros (Chapter 5) depend on the definition of the macro.

2-3

2.2.4.1 M6800/M6801 Addressing Modes. The M6800 includes some instructions
which require no operands. These instructions are self-contained and employ
the inherent addressing or the accumulator addressing mode.

IMMEDIATE ADDRESSING
Immediate addressing refers to the use of one or two bytes of informa­
tion that immediately follow the operation code in memory. Immediate
addressing is indicated by preceding the operand field with the pound
sign or number sign character(#). The expression following the#
will be assigned one or two bytes of storage, depending on the
instruction.

RELATIVE ADDRESSING
Relative addressing is used by branch instructions. Branches can only
be executed within the range -126 to +129 bytes relative to the first
byte of the branch instruction. The actual branch offset is put into
the second byte of the branch instruction. The offset is the b10 1 s
complement of the difference between the location of the byte immediate·
following the branch instruction and the location of the destination of
the branch. Branches to externally referenced symbols or to symbols
residing outside of the current program section are invalid.

INDEXED ADDRESSING
Indexed addressing is relative to the index register. The address is
calculated at the time of instruction execution by adding a one-byte
displacement (in the second byte of the instruction) to the current
contents of the X register. Since no sign extension is performed on
this one-byte displacement, the offset cannot be negative. Indexed
addressing is indicated by the characters 11 ,X'' following the expression
in the operand field. Special cases of ",X" or 11 X11 alone, without a
preceding expression, are treated as 11 (J,X 11 • Since the displacement
is a one-byte quantity, external references and addresses in sections
other than BSCT and possibly ASCT are not valid.

DIRECT AND EXTENDED ADDRESSING
Direct and extended addressing utilize one (direct) or two (extended)
bytes to contain the address of the operand. Oirect addressing is
1 imi ted to the first 256 bytes of memory. Direct and extended address­
ing are indicated by only having an expression in the operand field.
Direct addressing will be used by the Macro Assembler whenever possible
References to BSCT symbols (including external references to BSCT
symbols) or to ASCT symbols with a value less than 256 will automatical
be assembled with the direct addressing mode. If a directly-addressabl
symbol is referenced before it has been defined as being in BSCT (or AS
less than 256), the instruction will be assembled with the extended
addressing mode in order to avoid phasing errors. All other cases will
result in extended addressing mode being used.

2-4

2.2.4.2 M6805 Addressing Modes. The M6805 includes some instructions which
require no operands. These instructions are self-contained, and employ the
inherent addressing or the accumulator addressing mode.

IMMEDIATE ADDRESSING
Immediate addressing refers to the use of one byte of information that
immediately follows the operation code in memory. Immediate addressing
is indicated by preceding the operand field with the pound sign or
number sign character (#). The expression following the# will be
assigned one byte of storage. Since the expression is one byte,
external references and addresses in sections other than BSCT and
possibly ASCT are not valid.

RELATIVE ADDRESSING
This addressing mode is the same as described for the M6800.

INDEXED ADDRESSING
Indexed addressing is relative to the index register. The address is
calculated at the time of instruction execution by adding a one- or
two-byte displacement to the current contents of the X register. The
displacement immediately follows the operation code in memory. If
the displacement is zero, no offset is added to the index register.
In this case, only the operation code resides in memory. Since no sign
extension is performed on a one-byte displacement, the offset cannot
be negative. Indexed addressing is indicated by the characters 11 ,X"
following the expression in the operand field. Special cases of 11 ,X"
or 11 X11 alone, without a preceding expression, are treated as 11 0,X 11 •

Some instructions do not allow a two-byte displacement. When this is
the case, external references and addresses in sections other than BSCT
and possibly ASCT are not valid.

DIRECT AND EXTENDED ADDRESSING
The addressing mode is the same as described for the M6800 with
addition. Some instructions do not allow extended addressing.
this is the case, external references and addresses in sections
than BSCT and possibly ASCT are not valid.

BIT SET OR CLEAR

one
When
other

The addressing mode used for this type of instruction is direct,
although the format of the operand field is different from the direct
addressing mode described above. The operand takes the form
<expression l>, <expression 2>. <expression l> indicate~ which bit
is to be set or cleared. It must be an absolute expression in the
range 0-7. It is used in generating the operation code, <expression 2>
is handled as a direct address, as described above.

BIT TEST AND BRANCH
This combines two addressing modes: direct and relative. The format
of the operand is: <expression l>, <expression 2>, <expression 3>.
<expression l> and <expression 2> are handled in the same manner as
described above in 11 bit set or clear". <expression 3> is used to
generate a relative address, as described above in "relative addressing 11 •

2-5

2.2.4.3 M6809 Addressing Modes. The M6809 includes some instructions which
require no operands. These instructions are self-contained, and employ the
inherent addressing or the accumulator addressing mode.

IMMEDIATE ADDRESSING
Immediate addressing refers to the use of one or two bytes of informa­
tion that immediately follow the operation code in memory. Immediate
addressing is indicated by preceding the operand field with the pound
sign or number sign(#) -- i.e., #<expression>. The expression
following the #will be assigned one or two bytes of storage, depending
on the instruction. All instructions referencing the accumulator 11 A11

or 11 811 , or the condition code register 11 CC 11 , will generate a one-byte
immediate value. Also, immediate addressing used with the PSHS, PULS,
PSHU, and PULU instructions generates a one-byte immediate value.
Immediate operands used in all other instructions generate a two-byte
value.

The register list operand does not take the form #<expression> but
still generates one byte of immediate dat~. The form of the operand is

Rl [, R2, ... , Rn]

where Ri (i=l to n) is one of the symbols A, B, CC, D, DP, PC, S, U, X
or Y. The number and type of symbols vary, depending on the specific
instruction.

For the instructions PSHS, PULS, PSHU, and PULU, any of the above
register names may be included in the register list. The only restrict
is that 11 U11 cannot be specified with PSHU or PULU, and 11 S11 cannot be
specified with PSHS or PULS. The one-byte immediate value assigned to
the operand is determined by the registers specified. Each register na
sets a bit in the immediate byte as follows:

Register Bit

PC 7
u, s 6
y 5
x 4
DP 3
B, D 2
A, D 1
cc 0

(Paragraph 4.24 contains a detailed explanation of immediate expression
with the PSH/PUL instructions.)

For the instructions EXG and TFR, exactly two of the above register
names must be included in the register list. The other restriction is
the size of the registers specified. For the EXG instruction, the two
registers must be the same size. For the TFR instruction, the two
registers must be the same size, or the first can be a 16-bit register
and the second an 8-bit register. In the case where the transfer is
from a 16-bit register to an 8-bit register, the least significant 8
bits are transferred. The 8-bit registers are A, B, CC, and DP. The
16-bit registers are D, PC, S, U, X, and Y. The one-byte immediate
value assigned to the operand is determined by the register names. The
most significant four bits of the immediate byte contain the value of
the first register name; the least significant four bits contain the
value of the second register, as shown by the following table:

2-6

RELATIVE ADDRESSING

Register

D
x
y
u
s
PC
A
B
cc
DP

Value (hex)

0
1
2
3
4
5
8
9
A
B

Relative addressing is used by branch instructions. There are two
forms of the branch instruction. The short branch can only be executed
within the range -126 to +129 bytes relative to the first byte of the
branch instruction. The actual branch offset is put into the second
byte of the branch instruction. The long branch can execute in the
full range of addressing from 0000-FFFF (hexadecimal) because a two-byte
offset is calculated and put into the operand field of the branch
instruction. The offset is the two 1 s complement of the difference
between the location of the byte immediately following the branch instruc­
tion and the location of the destination of the branch. Branches to
externally referenced symbols or to symbols residing outside of the
current program section are only valid for long branches.

DIRECT AND EXTENDED ADDRESSING

Direct and extended addressing utilize one (direct) or two (extended)
bytes to contain the address of the operand. Direct and extended
addressing are indicated by having only an expression in the operand
field (i.e., <expression>). Direct addressing will be used by the
M6809 Macro Assembler whenever possible. References to ASCT expressions
with values having the most significant byte of the expression the same
as the current value of the direct page pseudo register (Paragraph 4.27)
will automatically be assembled with the direct addressing mode.
References to BSCT symbols (including external references to BSCT symbols)
will use the direct addressing mode only if the value of the direct page
pseudo register is zero. If a symbol that follows the above rules is
referenced before it has been defined, the instruction will be assembled
with the extended addressing mode in order to avoid phasing errors. All
other cases will result in extended addressing mode being used.

Regardless of the criteria described above, it is possible to force the
Assembler to use the direct addressing mode by preceding the operand
with the 11 <11 character. Similarly, extended addressing can be forced
by preceding the operand with the 11 >11 character. These two operand
forms are: <<expression> and ><expression>. There is no restriction on
the latter form. It will always generate extended addressing. If
direct addressing is forced, the following checks are made:

1. If the expression contains an external reference to a section
other than BSCT, a relocation error will be generated.

2-7

2. If the expression contains symbols in sections other than
BSCT, the expression will not be relocated by the M6800
Linking Loader. A warning message is generated to indicate
this condition. Thus, the user must ensure that the direct
page register at execution time is set up properly to
accommodate direct addressing for such expressions.

3. If no error or warning message is generated as a result of
checks 1 and 2, the most significant byte of the expression
is compared with the direct page pseudo register. If they
are not the same, a warning message is generated. Again, the
user must ensure that the direct page register is set up at
execution time.

INDEXED ADDRESSING
Indexed addressing is relative to one of the index registers. The
general form is <expression>,R. The address is calculated at the time
of instruction execution by adding the value of <expression> to the
current contents of the index register. The other general form is
[<expression>,R]. In this indirect form, the address is calculated at
the time of instruction execution by first adding the value of
<expression> to the current contents of the index register, and then
retrieving the two bytes from the calculated address and address+!.
This two-byte value is used as the effective address of the operand.
The allowable forms of indexed addressing are described below.
Appendix B.5 describes the format of the post-byte (i.e., the byte
immediately following the opcode) for each of the indexed addressing
modes. In the description below, R refers to one of the index
registers S, U, X, or Y.

The accumulator offset mode allows one of the accumulators to be
specified instead of an <expression>. Valid forms are:

<acc>,R and [<acc>,R]

where <ace> is one of the accumulators A, B, or D. This form generat
a one-byte operand (post-byte only). When accumulator A or B is specif
sign extension occurs prior to adding the value in the accumulator to
the index register.

The valid forms for the automatic increment/decrement mode are shown
below. For each row, the three entries shown are equivalent.

R+
-R
R++
--R
[R++]
[--R]

,R+
,-R
,R++
,--R
[,R++]
[,--R]

0,R+
0,-R
0,R++
0,--R
[0,R++]
[0,--R]

In this form, the only valid expression is 0. Like the accumulator
offset mode, this form generates a one-byte operand (post-byte only).

2-8

The valid forms for the expression offset mode are:

R ,R <expression>,R
[R] ['R] [<expression>,R]
<R <,R «expression>,R
<[R] < ['RJ <[<expression>,R]
>R >,R ><expression>,R
>[R] > ['R] >[<expression>,R]

The 11 <11 and 11 >11 characters force an 8- or 16-bit offset, respectively,
and are described below. If no expression is specified, or if a non­
relocatable expression with a value of zero is specified, only the post­
byte of the operand is generated. If a non-relocatable expression with
a value in the range -16 to +15 is specified without indirection, a one­
byte operand is generated which contains the expression's value, as
well as the index register indtcator. At execution time, the expression's
value is expanded to 16 bits with sign extension before being added to
the index register.

All other forms will generate a post-byte, as well as either a one- or
two-byte offset which contains the value of the expression. The size
of the offset is determined by the type and size of the expression.
ASCT expressions with values in the range -128 to +127 generate an
8-bit offset. If an ASCT expression contains a symbol that is refer­
enced before it has been defined, the instruction will be assembled
using a 16-bit offset in order to avoid phasing errors. All other
cases will result in a 16-bit offset being generated. In the case
where an 8-bit offset is generated, the value is expanded to 16 bits
with sign extensi?n at execution time. Because of sign extention,
even BSCT expressions generate 16-bit offsets. This eliminates the
possibility of generating incorrect code in the case where a BSCT
expression has a value of $80 or greater after relocation by the
Linking Loader.

Regardless of the criteria described above, it is possible to force
the Assembler to generate an 8-bit offset by preceding the operand with
the 11 <11 character. Similarly, a 16-bit offset can be forced by preceding
the operand with the 11 >11 character. There is no restriction on the ">"
form. It always generates a post-byte followed by a 16-bit offset.
If an 8-bit offset is forced, the following checks are made:

1. If a relocatable expression contains symbols in section
other than BSCT, a relocation error is generated. The user
must beware that because of sign extension on eight bit off­
sets, a BSCT expression with a value of $80 or greater after
relocation will give incorrect results.

2. If the expression is absolute but has a value outside of the
range -128 to +127, a byte overflow error is generated.

The valid forms for the program counter relative mode are exactly the
same as the expression offset mode, with the exception that the index
register specification must be "PCR 11 • However, the manner in which
the offset is generated by the Assembler differs. The Assembler generates
a relative address which is then used as the 8- or 16-bit offset follow­
ing the post-byte. The relative address is the two's complement of the
difference between the location of the byte immediately following the
indexed instruction and the value of the expression. If the expression
contains any external references or symbols residing outside of the
current program section, a 16-bit offset is generated.

If the relative address calculated is not in the range -128 to +127, or
if the expression references a symbol that has not yet been defined,
a two-byte offset is generated after the post-byte. A one-byte offset
is generated if the relative address is in the range -128 to +127.

Like the expression offset mode, a one-byte offset can be forced by
preceding the operand with a"<". A 11 >11 forces a two-byte offset. A
byte overflow error is generated if a one-byte offset is forced when
the relative address is not in the range -128 to +127. A relocation
error is generated if a one-byte offset is forced with an external
symbol or one that contains another section reference.

The extended indirect mode has the form:

[<expression>]

Although extended indirect is a logical extension of the extended
addressing mode, this mode is implemented using an encoding of the post·
byte under the indexed addressing mode. A post-byte is generated, as
well as a two-byte offset which contains the value of the expression.

2.2.4.4 Expressions. An expression is a combination of symbols, constants,
algebraic operators, and parentheses. The expression is used to specify a value
which is to be used as an operand. Expressions follow the conventional rules
of algebra.

Expressions may contain relocatable or externally defined symbols. However, the
following rules must be followed in order for the expression to be valid.

1. Relocatable symbols or expressions cannot be multiplied, divided, or
operated on with the special two-character operators.

2. A relocation count is maintained for each program section represented
within an expression. Adding a relocatable symbol causes the relocation
count to be incremented; subtracting a relocatable symbol decrements the
relocation count. After an expression has been evaluated, the following
criteria must be met:

a. All section counts except for one must be zero.

b. The exception section must have a count of either zero or one
or minus one.

c. When an expression is used in conjunction with the one-byte
immediate addressing mode, the indexed addressing mode, or with
the FCB directive, all section counts except the BSCT count must
be zero.

3. One or more external reference symbols may be added or subtracted withou·
regard to section.

Only the least significant byte of an externally referenced symbol will be
operated on by the M6800 Linking Loader when such symbols are used in conjunctio1
with the immediate addressing mode (one byte immediate operand) or the indexed
addressing mode. In the immediate addressing mode, only one externally reference
symbol is allowed.

2-10

2.2.4.5 Operators. The precedence of the various operators is as follows.
Parenthetical expressions are evaluated first, with the innermost parentheses
being processed before the outer ones. Next, the multiplication (*), division (/),
and all two-character operators have precedence. Of lowest precedence are the
addition (+) and subtraction (-) operators. Unary minus can only occur at the
beginning of an expression or immediately before a left parenthesis. Unary minus
is equivalent in evaluation to putting a zero directly before the minus sign.
For example, the following expressions are all equivalent:

-TAG1*INDEX+3
O-TAG1*INDEX+3
-(TAG1*INDEX)+3

Operators of the same precedence are evaluated from left to right. All inter­
mediate results in the computation of an expression are truncated to a 16-bit
integer value. The result of an expression is also a 16-bit integer. Operators
can operate on numeric constants, single character ASCII literals, and symbols.

In addition to the normal operators for multiplication, division, addition
and subtraction, the Assembler recognizes certain two-character operators.'
These operators are infix operators and have the same precedence as multi­
plication or division. Each two-character operator begins with an exclamation
point(!) and takes two operands. The following two-character operators are
defined:

1 ~ - exponentiation

logical AND

!+ - inclusive OR

!X - exclusive OR

! < - shift left

!> - shift right

!L - rotate left

!R - rotate right

The left operand is raised to the power specified by the
right operand. If the right operand is zero, the resulting
value wi 11 be "l", regardless of the value of the left
operand.

Each bit in the 1 eft operand is 1 ogi ca lly "ANDed" with the
corresponding bit in the right operand.

Each bit in the left operand is inclusively "ORed" with
the corresponding bit in the right operand.

Each bit in the left operand is exclusively "ORed" with
the corresponding bit in the right operand.

The left operand is shifted to the left by the number of
bits specified by the right operand. The left operand is
zero-filled from the right.

The left operand is shifted to the right by the number of
bits specified by the right operand. The left operand is
zero-filled from the left.

The left operand is rotated left by the number of bits
specified by the right operand. The most significant bit
is rotated into the least significant bit position of the
left operand.

The left operand is rotated right by the number of bits
specified by the right operand. The least significant
bit is rotated into the most significant bit position of
the left operand.

2-11

2.2.4.6 Symbols. Each symbol is associated with a 16-bit integer value which
is used in place of the symbol during the expression evaluation. Each symbol
also has associated with it one of the following attributes:

1. Absolute attribute
2. Relocatable attribute
3. External reference (defined in another program)
4. Named Common name (cannot be used in expressions)
5. Undefined
6. SET symbol

An absolute, relocatable, or undefined symbol may also be used as an external
definition (to be referenced by another program).

Certain symbols are special to the Assembler. These special symbols can only be
used in expressions, and include the following:

*

NARG

The asterisk used in an expression as a symbol represents the
current value of the location counter (the first byte of a multi­
byte instruction).

This symbol is only valid within a macro expansion. It takes on
the value of the number of arguments that has been passed to the
current level of expansion.

2.2.4.7 Constants. Constants represent quantities of data that do not vary in
value during the execution of a program. The numeric constants can be in one
of four bases: decimal, hexadecimal, binary, or octal.

A decimal constant consists of a string of numeric digits. The value of a decim,
constant must fall in the range 0-65535, inclusive. Optionally, decimal constan
may be preceded by the ampersand character (&). The following example shows botl
valid and invalid decimal constants:

VALID

12
12345
&65201

INVALID

123456
12.3
67800

REASON INVALID

more than 5 digits
invalid character
out of range (> 65535)

A hexadecimal constant consists of a maximum of four characters from the set of
digits (0-9) and the upper case alphabetic letters (A-F), and is preceded by a
dollar sign ($). Hexadecimal constants can also be designated by being succeede1
by the letter 11 H". In this case, the first digit of the hexadecimal constant
must be a numeric so that the constant can be distinguished from a symbol name.
Hexadecimal constants must be in the range $0000 to $FFFF. The following exampl1
shows both valid and invalid hexadecimal constants:

VALID

$12
OABCDH
$001F

INVALID

ABCD
$G2A
$2F018

2-12

REASON INVALID

no preceding 11 $11

invalid character
too many digits

A binary constant consists of a maximum of 16 ones or zeros preceded by a percent
sign (%). Binary constants can also be represented by a series of ones and
zeros succeeded by the letter 11 B11 • The following example shows both valid and
invalid binary constants:

VALID

%00101
%1
10100B

INVALID

1010101
%10011000101010111
%210101

REASON INVALID

missing percent
too many digits
invalid digit

An octal constant consists of a maximum of six numeric
digits 8 and 9, preceded by a commercial at-sign (@).
also be designated by ending in the letter 11 011 or "Q 11 •

be in the ranges @0 to @177777. The following example
invalid octal constants:

digits, excluding the
Octal constants can
Octal constants must

shows both valid and

VALID

@17634
377Q
1776000

INVALID

@2317234
@277272
23914Q

REASON INVALID

too many digits
out of range
invalid character

Character constants can be used in expressions if they are single characters.
Character constants are preceded by a single quote. Any character, including
the single quote, can be used as a character constant. The following example
shows both valid and invalid character constants:

VALID

2.2.5 Comment Field

INVALID

.. VALID

REASON INVALID

too long

The last field of an Assembler source statement is the comment field. This
field is optional and is only printed on the source listing for documentation
purposes. The comment field is separated from the operand field (or from the
operation field if no operand is required) by at least one space. The comment
field can contain any printable ASCII characters.

2.3 ASSEMBLER OUTPUT

The Assembler output includes an optional listing of the source program and an
optional object file which is in one of the following two formats: EXORciser­
loadable format or relocatable format. For the MOOS versions of the Macro
Assemblers, a third object file format exists -- MOOS loadable memory image.
Appendix E contains the description of the source listing formats.

The Assembler will normally suppress the printing of the source listing, and
select the generation of an object output file. These conditions, as well as
others, can be overridden via options supplied on the command line that invoked
the Assembler.

2-13

The assembly source program listing contains the original source statements,
formatted for easier reading, as well as additional information which is
generated by the Assembler. Most lines in the listing correspond directly to
a source statement. Lines which do not correspond directly to source statements
include: page headings, error messages, expansions of macro calls, or such
directives as FCB, FCC, and FOB.

The assembly listing may optionally contain a symbol table or a cross reference
table of all symbols appearing in the program. These are always printed after
the END directive if either the symbol table or cross reference table options
(Paragraph 4.20) are in effect. The symbol table contains the name of each
symbol, along with its defined value. The cross reference table additionally
contains the assembler-maintained source line number of every reference to
every symbol. The format of the cross reference table is shown in Appendix E.3.

2-14

CHAPTER 3

RELOCATION AND LINKING

3.1 INTRODUCTION

11 Relocation 11 refers to the process of binding a program to a set of memory
locations at a time other than during the assembly process. For example, if
subroutine 11 ABC 11 is to be used by many different programs, it is desirable to
allow the subroutine to reside in any area of memory. One way of repositioning
the subroutine in memory is to change the 11 0RG 11 directive's operand field at
the beginning of the subroutine, and then to re-assemble the routine. A
disadvantage of this method is the expense of re-assembling ABC. An alternative
to multiple assemblies is to assemble ABC once, producing an object module which
contains enough information so that another program (the M6800 Linking Loader)
can easily assign a new set of memory locations to the module. This scheme offers
the advantages that re-assembly is not required, the object module is substantially
smaller than the source program, relocation is faster than re-assembly, and
relocation can be handled by the Linking Loader (rather than editing the source
program and changing the ORG directive).

I~ addition to program relocation, the Linking Loader must also resolve inter­
program references. For example, the other programs that are to use subroutine
ABC must contain a jump-to-subroutine instruction to ABC. However, since ABC
is not assembled at the same time as the calling program, the Assembler cannot
put the address of the subroutine into the operand field of the subroutine call.
The Linking Loader, however, will know where the calling program resides and,
hence, can resolve the reference to the call to ABC. This process of resolving
inter-program references is calling 11 linking 11 •

The relocation and linking scheme was developed to provide the following
capabilities:

1. Program relocation
2. Multiple program linking
3. Easy development of programs for RAM/ROM environment
4. Easy specification of any addressing mode
5. Specification of uninitialized, blank common
6. Specification of initialized, named common

Program sections provide the basis of the relocation and linking scheme. There
are five different sections. They are described below.

ASCT, or absolute section, is a non-relocatable section. There may be a limited
number of absolute sections in a user's program. These sections are used to
allocate or initialize memory locations that are assigned by the programmer
rather than by the M6800 Linking Loader. ASCT can be used to define the locations
of PIA's or ACIA's, for example.

BSCT, or base section, is a relocatable section. There is only one base section.
The M6800 Linking Loader assigns portions of the base section to each module that
requires space in BSCT. The base section is generally used for variables that
are to be accessed using the direct addressing mode. BSCT is restricted to
memory locations 0-255, inclusive (decimal).

3-1

CSCT, or blank common, is a relocatable section. There is only one blank common
section. CSCT is similar to blank common used in FORTRAN. The blank common
section cannot be initialized.

DSCT, or data section, is a relocatable section. There is only one data section.
The M6800 Linking Loader assigns portions of this section to each program that
requires space in DSCT. DSCT is generally used to contain variables which are
in RAM and are to be accessed using the extended addressing mode.

PSCT, or program section, is a relocatable section. There is only one program
section. PSCT is similar to DSCT. However, it is generally used to contain
program instructions. The use of DSCT and PSCT facilitates creation of programs
that reside in ROM but access variables in RAM.

Uninitialized, blank common is placed into CSCT as described above. At times,
however, it is convenient to have several common areas, each of which may be
initialized. Therefore, the concept of named common was included in the M6800
relocation and linking scheme. Named common can be specified in either BSCT,
DSCT, or PSCT. The size of the named common area that is allocated will be
the largest of the named common sizes from the program modules that reference it.
A named common block must reside wholly within a single section.

For a complete description of the M6800 Linking Loader, the M6800 Linking Loader
Reference Manual should be consulted.

3-2

4.1 INTRODUCTION

0
CHAPTER 4

ASSEMBLER DIRECTIVES

The Assembler directives are instructions to the Assembler, rather than
instructions to be directly translated into object code. This chapter describes
the directives that are recognized by the Macro Assembler. Detailed descrip­
tions of each directive are arranged alphabetically. The notations used in
this chapter are:

{ } Contains a list of elements, one of which must be selected.
Each choice will be separated by a vertical bar. For example,
{IFC:IFNC} indicates that either IFC or IFNC must be selected.

[] Contains an optional element. If one of a series of elements
may be selected, the available list of choices will be contained
within the brackets. Each choice will be separated by a vertical
bar. For example, [BSCT:DSCT:PSCT] indicates that either BSCT,
DSCT, or PSCT may be selected.

XYZ The names of the directives are printed in capital letters. The
required parts of directive operands will also be printed in
capital letters. All elements outside of the angle brackets (<>)
must be specified as-is. For example, the syntactical element
[<number>,] requires the comma to be specified if the optional
element <number> is selected.

< > The element names are printed in lower case and contained in angle
brackets. The following elements are used in the subsequent
descriptions:

<comment>
<label>
<expression>
<ex pr>
<number>
<string>
<delimiter>
<option>
<symbol>
<Sym>
<sect>
<reg list>
<reg exp>

A statement's comment field
A statement label
An Assembler expression
An Assembler expression
A numeric constant
A atring of ASCII characters
A string delimiter
An Assembler option
An Assembler symbol
An Assembler symbol
A relocatable program section
M6809 register list
M6809 register expression

In the following descriptions of the various directives, the syntax, or format,
of the directive is given first. This will be followed with the directive's
description.

4-1

4.2 ASCT - ABSOLUTE SECTION

ASCT [<comment>]

The ASCT directive causes the program counter to be restored to the address
following the address of the last byte previously allocated to an absolute
section (or to zero if ASCT is used for the first time). The program counter
becomes absolute, and subsequent object code will not be relocated. The ASCT
directive may only be used if a program is being assembled with the relocatable
option (OPT REL).

4.3 BSCT - BASE SECTION

BSCT [<comment>]

The BSCT directive causes the program counter to be restored to the address
following the address of the last byte previously allocated to the base section
(or to zero if BSCT is used for the first time). The program counter becomes
relocatable within the base section. All symbols that are defined in BSCT will
be accessed using the direct addressing mode if the symbols are defined prior
to being referenced. With the M6809 Macro Assembler, direct addressing in BSCT
is only used if the direct page pseudo register is set to zero (Paragraph 4.27).
BSCT cannot be larger than 256 (decimal) bytes. The BSCT directive may only be
used if the program is being assembled with the relocatable option (OPT REL).

4.4 BSZ - BLOCK STORAGE OF ZEROS

[<label>] BSZ <expression> [<comment>]

The BSZ directive causes the Assembler to allocate a block of bytes. Each byte
is assigned the initial value of zero. The number of bytes allocated is given
by the expression in the operand field. If the expression contains symbols that
are either undefined or external references or forward references, or if the
expression has a value of zero, an error will be generated.

4.5 COMM - NAMED COMMON SECTION

<label> COMM {BSCT : DSCT : PSCT} [<comment>]

The COMM directive causes the program counter to be restored to the address
following the address of the last byte previously allocated to the named common
section specified by the <label> field (or to zero if <label> is used for the
first time). The program counter becomes relocatable, and subsequent object
code will be relocated within the named common section. The COMM directive is
one of the directives that assigns a value other than the program counter to
the label.

Named common allows the definition of a group of symbols that are to occupy the
same area of memory in each of several programs that are to reside in different
areas of memory. Each symbol is defined as a relative offset from the beginning
of the named common section. When the relocatable programs are link/loaded via
the M6800 Linking Loader, each reference to a named common section is relocated
by the starting address assigned to the section by the Linking Loader. The
Linking Loader allocates enough memory to accommodate the largest named common
section defined by any of the linked programs.

4-2

The COMM directive's <label> field becomes the name of the named common section.
This symbol cannot be used in any subsequent Assembler expressions. The <label>
can only appear with other COMM directives within the program. The operand of
the COMM directive defines what addressing mode will be used to reference
symbols that are defined in the named common section. Subsequent references to
the named common section identified by <label> must have the same operand field.

The COMM directive may only be used if the program is being assembled with the
relocatable option (OPT REL).

4.6 CSCT - BLANK COMMON SECTION

CSCT [<comment>]

The CSCT directive causes the program counter to be restored to the address
following the address of the last byte previously allocated to the blank common
section (or to zero if CSCT is being used for the first time). The program
counter becomes relocatable, and subsequent memory bytes reserved will be re­
located within the blank common section. No initialization (object code) of
CSCT is allowed. Only the RMB directive can be used to allocate storage. All
symbols defined with CSCT will be accessed with the extended addressing mode.
With the M6809 Macro Assembler, direct addressing can be used to access symbols
in CSCT if the operand field in 1t1hi ch they a re referenced is preceded with a "<"
(Paragraph 2.2.4.3). The CSCT directive may only be used ff the program is
being assembled with the relocatable option (OPT REL).

4.7 DSCT - DATA SECTION

DSCT [<comment>]

The DSCT directive causes the program counter to be restored to the address
following the address of the last byte previously allocated to the data section
(or to zero if DSCT is being used for the first time). The program counter
becomes relocatable, and subsequent object code will be relocated within the
data section. All symbols defined within DSCT will be accessed with the
extended addressing mode. With the M6809 Macro Assembler, direct addressing
can be used to access symbo 1 s in DSCT if the operand fie 1 d in 1t1hi ch they a re
referenced is preceded with a"<" (Paragraph 2.2.4.3). The DSCT directive may
only be used if the program is being assembled with the relocatable option
(OPT REL).

4.8 END - END OF SOURCE PROGRAM

END [<expression> [<comment>]]

The END directive indicates that the logical end of the source program has been
encountered. Any statements following the END directive are ignored. If the
END directive is not encountered before the physical end of the source file is
found, an error will be generated. However, this error is only a warning. The
optional expression in the operand field can be used to specify the starting
execution address of the program.

4-3

4.9 ENDC - END OF CONDITIONAL ASSEMBLY

ENDC [<comment>]

The ENDC directive is used to signify the end of the current level of conditional
assembly (Paragraph 4.17). Conditiqnal assembly directives can be nested to a
depth of eight.

4.10 ENDM - END OF MACRO DEFINITION

ENDM [<comment>]

The ENDM directive is used in a macro definition (Paragraph 4.18). Its presence
indicates the end of the macro definition.

4.11 EQU - EQUATE SYMBOL TO A VALUE

<label> EQU <expression> [<comment>]

The EQU directive assigns the value of the expression in the operand field to
the label. The EQU directive is one of the directives that assigns a value
other than the program counter to the label. The label cannot be redefined
anywhere else in the program. The expression cannot contain any external
references, forward references, or undefined symbols. The expression may,
however, be relocatable.

4.12 FAIL - PROGRAMMER GENERATED ERROR

FAIL [<string>]

The FAIL directive will cause an error message to be printed by the Assembler.
The total error count will be incremented as with any other error. The FAIL
directive is normally used in conjunction with conditional assembly directives
for exceptional condition checking. The assembly proceeds normally after the
error has been printed. The <string> can be optionally specified to describe
the nature of the generated error.

4.13 FCB - FORM CONSTANT BYTE

[<label>] FCB {<expr>[,<expr>, ... ,<expr>]}[<comment>]

The FCB directive may have one or more operands separated by commas. The value
of each operand is truncated to eight bits, and is stored in a single byte of
the object program. Multiple operands are stored in successive bytes. The
operand may be a numeric constant, a character constant, a symbol, or an
expression. If multiple operands are present, one or more of them can be null
(two adjacent commas), in which case a single byte of zero will be assigned for
that operand. An error will occur if the upper eight bits of the evaluated
operands' values are not all ones or all zeros. The expressions may be relo­
catable with respect to BSCT, or may contain BSCT external references. However,
all other external references or relocatable symbol types are invalid.

4-4

4.14 FCC - FORM CONSTANT CHARACTER STRING

[<label>] FCC <number>,<string> [<comment>]
or

[<label>] FCC <delimiter><string><delimiter> [<comment>]

The FCC directive is used to store ASCII strings into consecutive bytes of
memory. Any of the printable ASCII characters can be contained in the string.
The FCC directive has two formats. The first format requires that <number> be
a decimal constant in the range 1-255. The comma is required after the decimal
constant. The <number> specifies the number of characters contained in <string>,
which begins immediately after the comma. Should <number> be greater than the
number of characters in the string (e.g., carriage return encountered in line
before specified number of characters are found}, then spaces will be inserted
to fill the remainder of the string.

The second format of the FCC directive specifies the string between two identical
delimiters. The delimiters can be any printable ASCII character. The first non­
blank character after the FCC directive will be used as the delimiter. Thus, if
the delimiter happens to be a decimal digit, the first character of the string
cannot be a comma.

4.15 FOB - FORM DOUBLE BYTE CONSTANT

[<label>] FOB {<expr>[,<expr>, ... ,<expr>]}[<comment>]

The FOB directive may have one or more operands separated by commas. The 16-bit
value corresponding to each operand is stored into two consecutive bytes of the
object program. Multiple operands are stored in successive bytes. The operand
may be a numeric constant, a character constant, a symbol, or an expression. If
multiple operands are present, one or more of them can be null (two adjacent
commas), in which case two bytes of zeros will be assigned for that operand.

4.16 IDNT - RELOCATABLE IDENTIFICATION RECORD

IDNT <String>

The IDNT directive is used to create an identification record for the relocatable
object module. The <string> can be any printable ASCII characters. The end of
<string> is the terminating carriage return. This identification record can
subsequently be displayed by the M6800 Linking Loader during the link/load
process. The IDNT directive only has meaning when the program is being assembled
with the relocatable option (OPT REL).

4.17 IFxx - CONDITIONAL ASSEMBLY DIRECTIVES

{IFC:IFNC} <String 1>,<string 2>
or

{IFEQ:IFGE:IFGT:IFLE:IFLE:IFNE} <expression> [<comment>]

The IFxx directives are used to conditionally assemble a section of a source
program. The portion of the source program following the IFxx directive up to
the next ENDC directive is conditionally assembled, depending on the result of
the string comparisons (first form) or depending on the value of the expression
in relation to the condition (the second form}.

4-5

The IFC directive will cause the subsequent statements to be assembled if the
two strings compare. The IFNC directive will cause the subsequent statements
to be assembled if the two strings do not compare. In either case, if the
condition is not met (comparison in the first case, and no comparison in the
second case), the subsequent statements will be excluded from the assembly. The
beginning of <string 1> is the first non-blank, non-comma character after the
IFxx directive. The end of <string l> is the last character before the first
comma. The beginning of <string 2> is the first character after the first comma.
The end of <string 2> is the last character before the end of the source line.
Thus, if the first form of the IFxx directive is used, no comment can appear on
the source statement. Both <string l> and <string 2> can be null. <string l>
will be null if only a comma is specified after the IFxx directive. <string 2>
will be null if only a carriage return is found after the comma.

If the second form of the IFxx directive is used, the subsequent statements will
be assembled if the expression is:

IFEQ equal to zero
IFGE greater than or equal to zero
IFGT greater than zero
IFLE less than or equal to zero
IFLT less than zero
IFNE not equal to zero

If the condition is not met, the subsequent statements will be excluded from
the assembly.

Conditional assembly directives can be nested to a depth of eight. Chapter 5
contains a complete description of the IFxx directives.

4.18 MACR - MACRO DEFINITION

<label> MACR [C] [<comment>]

The MACR directive is used to define a macro. All statements following the MACR
directive up to the next ENDM directive become a part of the macro definition.
The required label is the symbol by which the macro will subsequently be called.
The MACR directive is one of the directives that assigns a value other than the
program counter to the label. Macro names must not be names of existing instruc­
tion mnemonics, root mnemonics (e.g., SUB, EOR, ADD, etc.), or Assembler
directives. The operand field may optionally contain the letter 11 C11 • If the C
is present, then all comment lines (lines with an asterisk in column 1) will be
retained in the macro definition. If the C is not specified, then all comment
lines will be excluded from the definition. Since macro definitions are stored
in memory, ommitting the C will reduce the memory requirements of the macro
definition. Macro definitions may not be nested -- that is, another MACR directi
cannot be encountered before the ENDM directive. Chapter 5 contains a complete
description of macros.

4-6

4.19 NAM - ASSIGN PROGRAM NAME

NAM [<string> [<comment>]]

The NAM directive is generally used as the first statement of an assembly
language program. Its use, however, is optional, and more than one NAM directive
can be used in a program. The <string> specified will be printed on the heading
line of each page of the source listing. It will be used as the name in the SO
record if an absolute EXORciser-loadable program is being created; or it will be
the name of the relocatable program module (displayed by the M6800 Linking
Loader) if relocation has been specified. The <string> consists of a maximum of
six printable ASCII characters.

4.20 OPT - ASSEMBLER OUTPUT OPTIONS

OPT <option>[,<option>, ... ,<option>] [<comment>]

The OPT directive is used to control the format of the Assembler output. The
options are specified in the operand field, separated by commas. All options
have a default condition. Some options are not reset to their default conditions
at the end of pass one. Some options are allowed to have the prefix ''NO" attached
to them, which then reverses their meaning. Depending on the version of the
Macro Assembler, most options can be initialized from the command line that
invoked the Assembler. In the following descriptions, the parenthetical inserts
specify "DEFAULT", if the option is the default condition, and "RESET", if the
option is reset to its default condition at the end of pass one. The text in
the OPTION column of the following table indicates the minimum characters that
are required to identify the option. Additional characters can be appended to
the end of an option to make it more readable, depending on programmer preference.
For example, CL can be CLIST, NOG can be NOGEN, L can be LIST, U can be UNASSEMBLE,
etc.

OPTION

ABS

CL (DEFAULT, RESET)

NOCL

MEANING

Select absolute MOOS-loadable object output (non­
relocatable). All relocatable directives are invalid
if this option is specified. The "REL" and "LOAD"
options are invalid if this option is used. This option
is only supported on MOOS versions of the Macro Assemblers.

Print the conditional assembly directives.

Do not print the conditional assembly directives.

CMO Only valid with M6805 Macro Assembler. Allow CMOS
instructions STOP and WAIT.

NOCMO (DEFAULT, RESET) Only valid with M6805 Macro Assembler. Do not allow
CMOS instructions STOP and WAIT.

CRE

G

Print a cross reference table at the end of the source
listing. This option, if used, must be specified before
the first symbol in the source program is encountered.

Print the code generated for multiple operands of the
FCB, FCC, and FOB directives.

4-7

NOG (DEFAULT, RESET)

L

NOL (DEFAULT, RESET)

LLE=<number>

LOAD (DEFAULT)

M

Do not print the code generated for multiple operands
of the FCB, FCC, and FDB directives.

Print the listing from this point on. The 11 L11 option
causes an internal list counter to be incremented.
As long as the list counter is greater than zero, the
subsequent source listing will be printed. If the
source listing is not specified on the command line tha1
invoked the Assembler, the L option has no effect when
encountere~ within the source program.

Do not print the listing from this point on (including
the OPT NOL directive). The 11 NOL 11 option causes an
internal list counter to be decremented. As long as
the list counter is less than or equal to zero, the
subsequent source listing will not be printed. Thus,
the NOL and L options can be nested. For example:

OPT NOL
MACl MACR

OPT NOL
.
OPT L
ENDM
OPT L

The listing will be turned off with the first NOL option
causing the macro definition to be omitted from the
source listing. The last L option will cause the listin
to be turned on again, resuming the printing of the
source program. The NOL and L options within the body
of the macro are used to suppress printing of the macro
at expansion time, regardless of the state of the 11 MEX 11

option.

Change the number of characters to be printed per line
to the decimal number specified. The default value is 7
the minimum value is 50; and the maximum value is 120.

Select absolute EXORciser-loadable object output (non­
relocatable). All relocatable directives are invalid
if this option is specified. The 11 REL 11 and 11 ABS 11 option
are invalid if this option is used.

Direct object output into memory. This option cannot
be used in conjunction with the 11 REL" option. The
Assembler will only allow memory to be used for the obje
output that is beyond the end of the available contiguou
memory. If an error occurs while placing object code in
memory (non-existent memory or Assembler memory), an
error message wi 11 be displayed and the 11 M11 op ti on wi 11
be disabled. This option is not to be confused with 11 M"
command line option of the MOOS version of the Macro
Assembler (see Appendix G.l).

4-8

MC (DEFAULT, RESET) Print macro calls

NOMC Do not print macro calls.

MD (DEFAULT, RESET) Print macro definitions.

NOMD Do not print macro definitions.

MEX Print macro expansions

NOMEX (DEFAULT, RESET) Do not print macro expansions

0 (DEFAULT) Create output module. Since this option is normally
selected, it need not be specified. It instructs the
Assembler to create an object module (either in memory
or in a file). This option can only be used once
within a source program.

NOD Do not create object output module. This option is used
to suppress creation of an output module. This option
will suppress the creation of the object module even if
the creation of one was specified on the command line
that invoked the Assembler.

P=<number> Change the number of source statements printed per page
to the decimal number specified. The default value is 58;
the minimum value is 10; and the maximum value is 255.

NOP Suppress paging; ignore PAGE directives and do not print
headings or page numbers.

REL Select relocatable object output. This option indicates
that the assembly is to be done in the relocatable mode.
Any object code produced will be in the relocatable
record format. A 11 rel oca table di rec ti ves a re valid if
this option is specified. The 1!REL 11 option should be
placed before any statement in the source file (other
than NAM directive or comment lines). The REL option

s

SE

u

NOU (DEFAULT, RESET)

is invalid if used with the LOAD, ABS, or M options.

Print symbol table at end of source listing. This option
has no effect if the 11 CRE 11 option is used.

Print the user-supplied sequence numbers in the right
margin of the source listing. This option is ignored
in the MOOS version of the Macro Assembler which auto­
matically prints the user-supplied sequence numbers.
Only the EDDS and tape versions of the Macro Assembler
respond to this option.

Print the unassembled lines skipped due to failure to
satisfy the condition of a conditional assembly directive.

Do not print the lines excluded from the assembly due
to a conditional assembly directive.

4-9

W (DEFAULT, RESET)

NOW

Only valid with M6809 Macro Assembler. Print warning
messages.

Only valid with M6809 Macro Assembler. Do not print
warning messages.

Z01 Only valid with MOOS and tape versions of the M6800
Macro Assembler. Allow M6801 instruction mnemonics
to be assembled. This option permits the Assembler to
recognize valid M6801 instruction menmonics
{Appendix B.2). If 11 ZOl 11 is specified, the M6800
mnemonics will still be recognized and assembled
properly. In addition, the object code for any M6801
instructions will also be generated correctly. This
option can be used more than once in a program.

NOZ01 (DEFAULT, RESET) Only valid with MOOS and tape versions of the M6800
Macro Assembler. Disallow M6801 instruction mnemonics.
If this option is used in conjunction with the Z01
option, all subsequent M6801 instructions (until another
Z~l option) will cause errors to be generated.

4.21 ORG - SET PROGRAM COUMTER TO ORIGIN

ORG <expression> [<comment>]

The ORG directive changes the program counter to the value specified by the
expression in the operand field. Subsequent statements are assembled into
memory locations starting with the new program counter value. If no ORG
directive is encountered in a source program, the program counter is initialized
to zero. If the program is being assembled with the relocatable option (OPT REL),
the default program counter value is zero and in PSCT. Expressions in the
operand field can be relocatable. If they are, they may change the program
counter section, as well as the program counter's value. Expressions cannot
contain external references, forward references, or undefined symbols.

4.22 PAGE - TOP OF PAGE

PAGE

The PAGE directive causes the Assembler to advance the paper to the top of
the next page. If no source listing is being produced, the PAGE directive will
have no effect. The directive is not printed on the source listing.

4.23 PSCT - PROGRAM SECTION

PSCT [<comment>]

The PSCT directive causes the program counter to be restored to the address
following the address of the last byte previously allocated to the program
section (or to zero if PSCT is used for the first time). The program counter
becomes relocatable, and subsequent object code will be relocated within the
program section. All symbols defined within PSCT will be accessed with the
extended addressing mode. Direct addressing of PSCT symbols is not possible,
except with the M6809 Macro Assembler where direct addressing can be used to
access symbols in PSCT if the operand field in which they are referenced is
preceded with a 11 <11 (Paragraph 2.2.4.3). The PSCT directive may only be used
if the program is being assembled with the relocatable option (OPT REL).

4-10

4.24 REG - DEFINE REGISTER LIST

<label> REG <reg list> [<comment>]

The REG directive is only supported by the M6809 Macro Assembler. It assigns
a value associated with a register list to the label. The REG directive is
one of the directives that assigns a value other than the program counter to
the label. The label cannot be redefined anywhere else in the program.
<reg list> must be of the form:

Rl [,R2, ... ,Rn]

where Ri (i=l ton) is one of the symbols A, B, CC, D, DP, PC, S, U, X, or Y.
An error message is generated if both U and S are specified. A warning occurs
if the same register is specified more than once. Register D is the same as
registers A and B.

Although <label> may be used in any expression, its value is only meaningful
when used with the instructions PSHU, PULU, PSHS, and PULS. The operand for
these instructions can take one of two forms:

{PSHUiPULU:PSHS:PULS} <reg list>
or

{PSHU:PULU:PSHS:PULS} #<reg exp>

<reg list> is in the same format as defined above. An error message is
generated if the register list contains a 11 U11 , and the instruction is PSHU or
PULU. Similarly, an error occurs if the register list contains an 11 S11 , and the
instruction is PSHS or PULS. <reg exp> is of the form:

<sym l>[!+<sym 2>!+ ... !+<sym n>]

where <sym i> (i=l to n) must be defined by the REG directive. An error occurs
if a PSHU/PULU instruction is followed by a <reg exp> that contains a symbol
previously defined with the REG directive that contained a U in the register list.
A similar check is made for PSHS/PULS and S.

Valid Examples

ALLREG REG
REGXY REG
REGAB REG

A,B,CC,DP,X,Y,U,PC
X,Y

PSHS
PSHU

A,B
#ALLREG
#REGXY!+REGAB

Invalid Examples

REGUS REG
REGU REG

PSHU
REGLST REG

PSHS

u,s
u
#REGU
A,B,D
#REGU!+REGU

can 1 t specify both U and S

can 1 t push U reg. onto U reg.
duplicate reg. name warning
duplicate reg. name warning

4-11

4.25 RMB - RESERVE MEMORY BYTES

[<label>] RMB <expression> [<comment>]

The RMB directive causes the location counter to be advanced by the value of
the expression in the operand field. This directive reserves a block of memory
the length of which in bytes is equal to the value of the expression. The block
of memory reserved is not initialized to any given value. The expression cannot
contain any external references, forward references, or undefined symbols. The
value of the expression cannot be relocatable. The RMB directive is the only
storage allocation operation that is allowed in the blank common section, CSCT.

4.26 SET - SET SYMBOL TO A VALUE

<label> SET <expression> [<comment>]

The SET directive assigns the value of the expression in the operand field to
the label. The SET directive functions like the EQU directive. However, labels
defined via the SET directive can have their values redefined in another part of
the program (but only through the use of another SET directive). The SET
directive is useful in establishing temporary or re-usable counters within macros.

4.27 SETDP - SET DIRECT PAGE PSEUDO REGISTER

SETDP <expression> [<comment>]

The SETDP directive is only supported by the M6809 Macro Assembler. It is used
to assign a value to the direct page pseudo register at assembly time. The value
of the least significant byte of the expression is assigned to the direct page
pseudo register. This value is then used in determining if a particular memory
reference can use the direct mode of addressing (Paragraph 2.2.4.3). On initial­
ization, the pseudo register is assigned the value zero. Thus, in relocatable
programs, direct addressing is automatically generated for BSCT symbols unless
the direct page pseudo register has been changed with the SETDP directive. The
SETDP directive can be used any number of times in an assembly. Each occurrence
changes the value of the direct page pseudo register. The expression cannot
contain any external references, forward references, or undefined symbols. In
addition, it must be an absolute expression. If the most significant byte of
the expression is not zero, a warning occurs. However, the direct page pseudo
register is assigned the value of the least significant byte of the expression,
anyway.

It should be carefully noted that the SETDP directive does not affect the Direct
Page Register at execution time. The user must assume responsibility for
ensuring that the assembly and run-time values are compatible. In the example:

SETDP $20

the direct page pseudo register would be set to $20, causing absolute addresses
in the range $2000-$20FF to be assembled using the direct addressing mode.

4-12

4.28 SPC - SKIP BLANK LINES

SPC <expression>

The SPC directive causes blank lines to be inserted into the source listing
for formatting purposes. The SPC directive is not printed in the listing.
The number of lines skipped is determined from the expression in the operand
field. If the number of lines to be skipped would cause the listing to cross
a page boundary, then the paper will only be advanced to the top of the next
page. The expression's value must be greater than zero and less than 256.
The expression cannot contain any external references or undefined symbols.
The value of the expression cannot be relocatable. A source program line that
contains only a carriage return will have the same effect in the source listing
as the directive "SPC l".

4.29 TTL - INITIALIZE PAGE HEADING

TTL [<string>]

The TTL directive causes the heading to be initialized to the string in the
operand field. Up to 45 printable characters can be specified in the string.
If a carriage return is found before the 45th character, the heading will be
less than 45 characters. The heading will be printed on the top of all
succeeding pages until another TTL directive is encountered. The heading is
normally blank except for the Assembler-generated page number.

4.30 XDEF - EXTERNAL SYMBOL DEFINITION

XDEF <symbol>[,<symbol>, ... ,<symbol>] [<comment>]

The XDEF directive is used to specify that the list of symbols is defined within
the current source program, and that those definitions should be passed to the
M6800 Linking Loader so that other programs may reference these symbols. This
directive is only valid if the program is being assembled with the relocatable
option (OPT REL). If the symbols contained in the directive's operand field are
not defined in the program, an error will be generated.

4.31 XREF - EXTERNAL SYMBOL REFERENCE

XREF [<sect>:]<sym>[,<sym>, ...][,<sect>:<sym>[,<sym>, ...]] ...

The XREF directive is used to specify that the list of symbols is referenced
in the current source program, but is defined (via XDEF directive) in another
program. Each <sym> in the operand field of the XREF directive will be
associated with a program section, as specified by <sect>. The <sect> specifi­
cation and the addressing mode assumed for that section can be any one of the
following:

<sect>

BSCT
DSCT
PSCT
ANY

Addressing mode

direct addressing
extended addressing
extended addressing
extended addressing

4-13

For the M6809 Macro Assembler, direct addressing is only generated for BSCT
symbols if the direct page pseudo register is set to zero (Paragraph 4.27).
If <sect> is not specified for a symbol, 11 ANY 11 wi 11 be used as a default. A
symbol's section attribute is specified by placing the section name (from above
table) followed by a colon (:) in front of the symbol or list of symbols.

lf the XREF directive is not used to specify that a symbol is defined in another
program, an error will be generated, and all references within the current progra
to such a symbol will be flagged as undefined.

If, during the subsequent link/load process, the M6800 Linking Loader detects
that the section attribute specified for an external reference does not agree
with the section attribute of the external definition, an error will be generated
However, this cannot be detected during the assembly process. The use of the
ANY section (or no section specification at all) will allow the symbol to be
defined in any section.

4-14

CHAPTER 5

MACRO OPERATIONS AND CONDITIONAL ASSEMBLY

5.1 INTRODUCTION

This chapter describes the macro and the conditional assembly capabilities of
the Macro Assembler. These features can be used in any program, regardless of
whether or not the relocation feature is used.

5.2 MACRO OPERATIONS

Programming applications frequently involve the coding of a repeated pattern
of instructions that within themselves contain variable entries at each iteration
of the pattern, or basic coding patterns subject to conditional assembly at each
occurrence may be involved, In either case, macros provide a shorthand notation
for handling these patterns. Having determined the iterated pattern, the pro­
grammer can, within the macro, designate selectable fields of any statement as
variable. Thereafter, by invoking a macro, the programmer can use the entire
pattern as many times as needed, substituting different parameters for the
designated variable portions of the statements.

When the pattern is defined, it is given a name. This name becomes the mnemonic
by which the macro is subsequently invoked (called). The name of a macro
definition should not be the name of an existing instruction mnemonic, a root
mnemonic (e.g., SBC, ADD, EOR, etc.}, or an Assembler directive.

The macro call causes source statements to be generated. The generated state­
ments may contain substitutable arguments. The statements that may be generated
by a macro call are relatively unrestricted as to type. They can be any
processor instruction, almost any Assembler directive, or any previously defined
macro. Source statements generated by a macro call are subject to the same
conditions and restrictions that programmer-generated statements are subject to.

To invoke a macro, the macro name must appear in the operation code field of a
source statement, Any arguments are placed into the operand field. By suitably
selecting the arguments in relation to their use as indicated by the macro
definition, the programmer causes the assembler to produce in-line coding
variations of the macro definition.

The effect of a macro call is the same as an open subroutine in that it produces
in-line code to perform a predefined function. The in-line code is inserted
in the normal flow of the program so that the generated instructions are
executed in line with the rest of the program each time the macro is called.

An important feature in defining a macro is the use of macro calls within the
macro definition. The Assembler processes such ''nested'' macro calls at expansion
time only. The nesting of one macro definition within another definition,
however, is not permitted. If macro names are used as arguments, then they can
only be used in the operation field of a macro definition statement if they are
to be recognized by the macro processor. Thus, the macro must be defined before
its appearance in either a source statement 1 s operation field or in the operand
field of another macro call.

5-1

In the examples that follow, not all instructions used are recognized by the
M6805 Macro Assembler. There is no 11 811 accumulator, and the 11 A11 accumulator
designator is not always required. However, all of the information that
follows applies to all Macro Assemblers.

For example, if the following macros were defined in a program:

LDAX MACR
LOX \0
LDAA 0,X
ENDM

LDAXI MACR
LDAX \0
INX
STX \0
ENDM

then the statement
LDAXI VAR

would generate the code LOX VAR
LDAA o,x
INX
STX VAR

The definition of macro consists of three parts: the header, which assigns a
name to the macro; the body, which consists of prototype or skeleton source
statements; and the terminator. The header is the MACR directive and its label.
The body contains the pattern of standard source statements. The terminator
is the ENDM directive.

For example, if the following code pattern were used in a program:

ADDA LA+S
ADCB LB+5
SUBA LC
SBCB LO

.
ADDA LU
ADCB LV
SUBA ALPHA
SBCB BETA

.
ADDA LW+LX
ADCB LY+LZ
SUBA GAMMA
SBCB DELTA

then the following macro definition could be used to represent the above pattern:

LDM MACR
ADDA \0
ADCB \1
SUBA \2
SBCB \3
ENDM

5-2

Then the previous coding examples could be written using the macro LDM as
follows:

LDM LA+5,LB+5,LC,LD

LDM LU,LV,ALPHA,BETA

LDM LW+LX,LY+LZ,GAMMA,DELTA

The Assembler recognizes substitutable arguments by the presence of the back­
slash character(\). Having encountered this identifier, the Assembler examines
the next character which is used as an argument pointer. Argument pointers must
be one of the characters in the set of digits 0-9 and the upper case letters
A-Z. Thirty-six arguments are the maximum number of arguments that can be
handled by any macro definition. Macro arguments can appear anywhere within a
source statement of the macro body.

When specifying a symbol in the label field of a statement within the body of
a macro, the programmer must be aware that this macro can be used only once,
since on the second use, the same label will be redefined, causing an error.
Consequently, the user of labels within the macro definition must be approached
with caution. Alternatively, the use of Assembler-generated labels, or the
placement of substitutable arguments in the label field, is recommended.

The label field, the operation field, and the operand field may all contain
text and arguments which can be concatenated by simply placing the substitutable
argument directly in the text with no intervening blanks (e.g., AB\0$E).
Concatenation is especially useful in the operation field and in the partial sub­
fields of the operand field. As an example, consider a machine instruction such
as ADD(R), where (R) can assume the designator A or B. The following macro
definition contains a partial operation field argument, as well as a partial
operand field:

ADJ MACR
ADD \0 \ 1
AND\O #\2
ENDM

When the in-line coding is generated, the ADD\0 becomes ADDA or ADDB, as
designated by the argument passed along in the macro's argument field. The
11 AND 11 instruction is in the immediate mode with the 11 #11 included as part of the
macro definition. Thus, the call of the macro ADJ defined above with the
following arguments:

ADJ A,TAGl,INDEX

would generate the following source statements when expanded:

ADDA TAG!
ANDA #INDEX

5-3

Macro usage can be divided into two basic parts: definition and calling
(expansion). The definition of macros has been described above. The calling
of macros to expand the definition is described below.

The macro call statement is made up of two basic fields: the operation field
(contains the macro name) and the operand field (contains substitutable arguments)
Each operand of a macro call corresponds one-to-one with an argument pointer of
the macro definition. For example, the LDM macro defined earlier could be invoked
for expansion (called) by the statement:

LDM LA+5,LB+5,LC,LD

where the operand field arguments, separated by commas and taken left to right,
correspond to the argument pointers 11 \0 11 through 11 \2 11 , respectively. These
arguments are then substituted in their corresponding positions of the definition
to produce a sequence of instructions.

The maximum number of macro arguments is 36. These arguments are represented
by the argument pointer symbols \0-\9 and \A-\Z in the macro definition. An
argument can be declared null when calling a macro. However, it must be declared
ex pl i ci tly null. · Null arguments can be specified in two ways: by writing the
delimiting commas in succession with no intervening spaces, or by terminating
the argument list with a comma and omitting the rest of the argument list.
A null argument will cause no character to be substituted in the generated
statements that reference the argument. When a macro argument has multiple
parts or contains blanks, the argument must be enclosed within parentheses. The
parenthetical argument must still be delimited with the normal commas. The
parenthetical argument can c·ontain commas as in the following example:

LDM (5,X),(6,X),(LAB+l,X),(LAB+2,X COMMENT)

which would generate the following instruction$:

ADDA 5,X
ADCB 6,X
SUBA LAB+l,X
SBCB LAB+2,X COMMENT

It can happen that the argument list of a macro extends beyond the end of a
single line. In this case, a semicolon must be used in place of a comma after
the last argument to appear on the line. The next argument must then appear in
the first column of the next line. This allows for continuation lines. It is
illegal to have a semicolon embedded within the text of a parenthetical argument.

At times, labels are required within macros. Since normally a label can only
be used once in the label field, multiple macro expansions with the same label
will cause multiply defined label errors. One way to avoid this problem is to
pass the label to the macro as an argument. Each macro call can then be
parameterized with a different label. Another alternative is to use Assembler­
generated symbols in the label field. These symbols will take on the form
11 .nnnnn 11 , where 11 nnnnn 11 is a decimal number from 00000 to 65535, inclusive.
The Assembler will generate a new symbol whenever it encounters '1\.a 11 within a
macro expansion. The 11 a11 must be an alphanumeric character. Each time a new
symbol is generated in this manner, an internal counter is incremented. Thus,
subsequent symbols encountered in subsequent macro expansions will be unique.
Within the same expansion, each reference to the same 11 \.a 11 will reference the
same symbol generated for that expansion.

5-4

The symbol NARG is a special symbol when referenced within a macro expansion.
The value assigned to NARG is the number of arguments passed to the current
level of macro expansion. This symbol makes it easy to conditionally assemble
parts of a macro or to check for error conditions based on the number of passed
arguments. Paragraph 5.4 contains several examples of macro usage.

5.3 CONDITIONAL ASSEMBLY

A section of a program that is to be conditionally assembled must be bounded
by an IFxx-ENDC directive pair. The source statements following the IFxx
directive and up to the next ENDC directive will be included as a part of the
source file being assembled only if the condition specified by 11 xx 11 is satis­
fied (true) by the operand field of the IF directive. If the condition proves
false, the source file will be assembled as if those statements between the
IFxx and the ENDC directives were never encountered.

Conditional assembly allows the user to write a comprehensive source program
that can cover many conditions. Assembly conditions may be specified through
the use of arguments in the case of macros, and through definition of symbols
via the SET and EQU directives. Variations of parameters can then cause assembly
of only those parts necessary for the specified conditions.

For instance, a program may be assembled in one of two variations of a basic
form, depending on the type of environment in which it will eventually be used.
The input/output section of a program, for example, will vary if the program is
to be used in a disk environment or in a paper tape environment. Conditional
assembly directives can be used to include and to exclude those 1/0 sections
based on a flag set at the beginning of the assembly as shown in the following
illustration of a hypothetical program's structure.

* * DEVTYP = 0 MEANS DISK 1/0
* NOT= 0 MEANS TAPE 1/0
*

IFEQ DEVTYP

DISK 1/0 SOURCE STATEMENTS

ENDC
IFNE DEVTYP

TAPE 1/0 SOURCE STATEMENTS

ENDC

When the program above is assembled, one of the 1/0 sections will be included
and one will be excluded from the source file based on the assembly-time value
of the symbol 11 DEVTYP 11 • If the assembly statement:

DEVTYP EQU 0

is placed into the source file prior to any conditional directive references
to that symbol, the disk I/0 section will be included and the tape I/0 section
will be excluded. Similarly, if the statement:

5-5

DEVTYP EQU 1

is placed into the source file, the disk I/0 section will be excluded and the
tape I/0 section will be included.

Any of the conditional directives could have been used to effect such a result.
Instead of the 11 equal 11 and 11 not equal 11 conditions, the "greater than 11 and 11 less
than or equal to" conditions could have been used, etc.

Conditional directives can also be used within a macro definition to ensure at
expansion time that the required number of arguments was passed. Specific
arguments can be tested to ensure that they fall within a given range of
allowable values. In this way, macros can become self-checking and generate
error messages to any desired level of detail. The next section contains several
examples of conditional assembly directive usage.

5.4 EXAMPLES OF MACROS/CONDITIONAL ASSEMBLY

The following example illustrates the use of a macro and conditional assembly
within the macro to check for errors. The macro is used to generate a series of
equates for PIA's. The PIA's are assumed to be numbered from 1 to 48 (decimal),
inclusive. The addresses of the PIA's start at location $EEOO. PIA number 01
occupies locations $EEOO-$EE03, PIA number 02 occupies locations $EE04-$EE07,
etc. It would be cumbersome to enter all of the equates for all PIA's by hand.
Thus, the following macro can be included in a program and invoked to generate
those equates required for a given set of PIA's. Error messages are generated
via the FAIL directive. The operand field of the FAIL directive is used to
identify the error. The example contains sufficient comments to document how
the macro works. Following the macro definition are examples of the macro's
usage. The example was assembled using the options:

OPT MEX,NOCL

to show the results of the expansion (MEX) and to improve visibility by not
printing the conditional directives (NOCL).

5-6

0000:1.
~)E:1002

00003
00004
00005
00006
00007
00008
00009
000:10
000:1.:1.
000:12
000:13
000:14
000:15
000:16
000:17
00018
00E:119
00020
0E:1021
00022
0E:1023
00024
00025
00026
00027
00028
00~329

00030
0003:1.
00032
00033
0E:1034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
000!53

* * THE PIA EQUATE MACRO TAKES ONE ARGUMENT. THE
* ARGUMENT MUST BE A DECIMAL NUMBER BETWEEN 1 AND
* 48, INCLUSIVE. THE NUMBER MUST BE TWO [>I GI TS
* <I. E. , 0:1. .. 02.· 03, ... , 47 .. 48).

* * ERRORS WI LL BE GENERATED IF AF~GUMENT IS MI SS I NG
* IF TOO MANY ARGUMENTS Al":E SUPPLIED, OR IF
* THE ARGUMENT IS OUTSIDE OF THE RANGE 01-48.

* * THE MACRO WILL GENERATE FOUR EQUATES EACH
* TI ME IT IS I t-NOKED. THE GENERATED EQUATES
* WILL BE FOR THE DATA AND THE CONTROL REGISTERS
* FOR BOTH A AND B SIDES OF THE PIA.

* PIA MACR
* * IF 11 NARG-:1 11 IS ZEl":O.. ONL 'r' ONE ARGUMENT
* WAS PASSED TO THE MACRO.. AS REQU I REC>.
* 11 NARG-1 11 IS NOT ZERO, TOO FEW OR
* TOO MANY ARGUMENTS ~·JERE PASSED (El":ROR).
*

*

IFNE NARG-1
FAIL *TOO FEW OR TOO MAN'r' ARGS*

ENDC

IF

* THE FOLLOWING THREE BLOCKS OF CONDITIONALS
* ARE USEC> TO CHECK FOR OTHER ERRORS. THE'r' l.oJ I LL
* ONLY BE USED IF THE CORRECT NUMBER OF ARGUMENTS
* WERE PASSED TO THE MACRO < I. E. , 11 NARG-:1." = 0).

*
* * THE NEXT CONDITIONAL TESTS FOR AN ARGUMENT
* VALUE LESS THAN OR EG~UAL TO ZERO < I NVAL I[>).
* THE II & II Is USED TO FOF~CE CHECK I NG FOR A
* VALIC>, C>ECIMAL NUMBER
*

IFEQ NARG-1

*

IFLE &\0
FAIL *PIA <= 0*

ENC>C
ENDC

* THE NEXT CON[> IT I ONAL TESTS FOR AN ARGUMENT
* GREATER THAN 48. IF II \0-49 II Is GREATER THAN OR
* EQUAL TO ZERO, THE ARGUMENT WAS GREATER THAN 48
* <INVALID).

* IFEQ NARG-1
IFGE &\0-49

FAIL *PIA) 48*
ENDC

5-7

00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
000?7
00078
00079
00080A 0000

00081A 0000

00082

EE00
EE01
EE02
EE03

EEOC
EE0C>
EE0E
EE0F

ENDC

* * THE FOLLOWING CONDITIONALS ARE ONLY TRUE
* IF NO ERRORS WERE ENCOUNTERED ABOVE. THE
* SAME TESTS ARE USED~ BUT THE OPPOSITE CONDITION
* IN ORDER TO REVERSE THE MEANING OF THE TEST.

* IFEG! NARG-1
IFGT &\0 . ENSURE DECIMAL NUMBER > 0

IFLT &\0-49 . ENSURE DECIMAL NUMBER < 49
* * GENERATE THE ACTUAL EQUATES

* P\0AD SET $EE00+(\0-1)*4+0 . PIA \0 DATA/DD A
P\0AC SET $EE00+(\0-1)*4+1 . PIA \0 CONTROL A
P\0BD SET $EE00+ < \0-1) *4+2 . PI A \0 DATA/DC> B
P\0BC SET $EE00+(\0-1)*4+3 . PIA \0 CONTROL B
*

*

ENDC
ENDC

ENDC
ENDM

* ILLUSTRATE USE OF MACRO TO GENE.RATE EQUATES
* FOR PIA NUMBERS 01 AND 04

* PIA 01
A P01AD SET $EE00+C01-1)*4+0 PIA 01 DATA/DD A
A P01AC SET SEE00+C01-1)*4+1 . PIA ~:31 CONTROL A
A P01BC> SET $EE00+C01-1)*4+2 . PIA 01 DATA/DD 8
A P018C SET $EE00+C01-1)*4+3 . PIA 01 CONTROL B

PIA 04
A P04AD SET $EE00+<04-1)*4+0 . PIA 04 DATA/DD A
A P04AC SET $EE00+<04-1)*4+1 . PIA 04 CONTROL A
A P04BD SET $EE00+C04-1)*4+2 . PI A 04 DATA/DC> B
A P04BC SET $EE00+<04-1)*4+3 . PIA 04 CONTROL 8

*
00083 * THE FOLLOWING USE OF THE MACRO ILLUSTRATES
00084 * THE ERROR CHECK FOR NO ARGUMENTS PASSED
00085 *
00086A 0000 PIA
****ERROR 255--00000

00087
00088
00089
00090
00091A 0000
****ERROR

00092
00093
00094
00095

255--00086

FAIL *TOO FEW OR TOO MAN'T' ARGS*

* * THE FOLLOWING USE OF THE MACRO ILLUSTRATES
* THE ERROR CHECK FOR PIA NUMBER LESS THAN 01
* PIA 00

FAIL *PIA <= 0*
* * THE FOLLOWING USE OF THE MACRO ILLUSTRATES
* THE ERROR CHECK FOR PIA NUMBER GREATER THAN 48

*

5-8

00096A 0000 PIA 49
****ERROR 255--00091

FAIL *PIA) 48*
00097 *
00098 * THE LAST USE OF THE MACRO ILLUSTRATES
00099 * THE ERROR CHECK FOR TOO MANY ARGUMENTS
00100 *
00101A 0000 PIA 01,04
****ERROR 255--00096

FAIL *TOO FEW OR TOO MANY ARGS*
00102 END
TOTAL ERRORS 00004--00101

The following example illustrates the use of the Assembler-generated labels
within macros. The generated code in itself is meaningless in this example.
However, it does validly show how several invocations to the same macro cause
different labels to be created.

In this example, no error checking is performed within the macro to ensure
that an argument was passed. Thus, if the macro is called without a supplied
argument, the 11 \0 11 argument pointer will be replaced with a null string (removed)
in the generated 11 JSR 11 statement. The operand of the JSR will then become the
period symbol which was intended to be the first part of a comment. Since 11 • 11

is a valid Assembler symbol, an undefined symbol error would be generated if
the macro were called without an argument.

The following assembly was generated using the options:

OPT MEX,NOCL

to show the results of the expansion (MEX) and to improve visibility by not
printing the conditional directives (NOCL).

5-9

00001
00002
00003
00004
00005
09006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024

* * THE 11 CALL 11 MACRO IS USED TO CALL A
* SUBROUTINE FOR AN I/O FUNCTION. PRESUMABLY
* THE I/O FUNCTION RETURNS AN ERROR STATUS IN
* THE CONDITION CODE REGISTER. IF THE CARRY
* FLAG IS SET TO 1, AN ERROR IS INDICATED. IF
* THE CARRY FLAG IS RESET TO 0, A NORMAL RETURN
* IS INDICATED.
* * THIS MACRO WILL GENERATE A CALL TO THE FUNCTION
* FOLLOWED BY A JUMP INSTRUCTION TO THE ERROR
* PROCESSOR. SINCE THE ERROR PROCESSOR IS
* MOST LIKELY OUT OF RANGE FOR A BRANCH
* INSTRUCTION, AN UNCONDITIONAL JUMP MUST BE
* USED. THE MACRO WILL AUTOMATICALLY CREATE
* INTERMEDIATE LABELS TO BRANCH AROUND THE
* JUMP INSTRUCTION.

* CALL MACR
JSR \0 . PERFORM I/O
BCC \. 0 . CC => NO ERROR
JMP ERROR . CS => ERROR

\. 0 EQU * . GENERATED LABEL
ENDM

00025 *
00026 * USING THE "CALL" MACRO
00027 *
00028 *
00029 * DEFINE FICTITIOUS ENTRY POINTS TO THE
00030 * INPUT, OUTPUT, AND ERROR ROUTINES.
00031 *
00032 2000 A INPUT EQU $2000 INPUT ROUTINE
00033 3000 A OUTPUT EQLI $3000 OUTPUT ROUTINE
00034 4000 A ERROR EQU $4000 ERROR PROCESSOR
00035 *
00036A 0000 CALL INPUT

A 0000 8[) 2000 A JSR INPUT PERFORM I/O
A 0003 24 03 0008 BCC . 00000 CC => NO ERROR
A 0005 7E 4000 A JMP ERROR CS => ERROR

0008 A . 00000 EQU * GENERATED LABEL
00037A 0008 CALL OUTPUT

A 0008 BD 3000 A JSR OUTPUT PERFORM I/O
A 0008 24 03 0010 BCC . 00001 CC => NO ERROR
A 000[) 7E 4000 A JMP ERROR CS => ERROR

0010 A . 00001 EQU * GENERATED LABEL
00038A 0010 20 FE 0010 BRA * 00039 END
TOTAL ERRORS 00000--00000

5-10

The next example utilizes the string forms of the conditional assembly
directives (IFC and IFNC). Strings passed as macro arguments tend to be more
meaningful than numerical values since they can be descriptive to specify a
condition's state. The example could just as well have been written using the
value 0 instead of the string 11 RESET 11 , the value 1 instead of the string 11 SET 11 ,

and the value 2 instead of the string 11 STORE 11 • The comments in the example
explain how the macro is used. Following the macro's definition are examples
of the macro's usage.

The following example was assembled with the options:

OPT MEX,NOCL

to show the results of the expansion (MEX) and to improve visibility by not
printing the conditional directives (NOCL).

00001.
00002
00003
000(14
0(1005
00(106
00007
00008
00009
00(11.0
0001.1.
0001.2
(U301.3
(1(101.4
(1001.5
0001.6
0(1017
01:°::101.8
01:°::1l'..~19

(1(1(120
~30021

00022
0(1023
00024
00025
00026
~3(1(127

00028
~30029

00030
00031.
00€13:2
0€1033
00~~134

000::::~5

* * THE FOLLOWING MACRO ILLUSTRATES THE USE
* OF THE STRING FORM OF THE CONDITIONAL ASSEMBLY
* DI l<:ECT IVES. AN ARGUMENT IS PASSED TO THE
* MACRO AS A CHARACTER STRING. BASED ON THE
* VALUE OF THE CHARACTER STRING, THE MACRO
* ~~I LL GENERATE DI FFEl<:ENT SEQUENCES OF CODE.
* * IF THE ARGUMENT "SET" IS SPECIFIED.. THE
* INDICATED VARIABLE IN MEMORY WILL BE
:+: FILLED WITH A PATTERN OF SFF.
:+: THE VAi<: I ABLE NAME IS PASSED AS AN ARGUMENT
* TO THE MACRO ALSO.
*
:+: IF THE ARGUMENT "RESET" IS SPECIFIED.· THE
:+: INDICATED VARIABLE IN MEMORY WILL BE
* FILLED WITH A PATTERN OF s0a
:+: THE VARIABLE NAME IS PASSED AS AN ARGUMENT
* TO THE MACRO ALSO.

*
:+: IF THE ARGUMENT "STORE" IS SPECIFIED, THE
* I ND I CATE[) VAR I ABLE IN MEMOl'-<:'t' ~~I LL BE
* FILLED WITH A GIVEN VALUE OR PATTERN.
* THE NAME OF THE VARIABLE AND THE
* VALUE TO BE STORED ARE PASSED AS ARGUMENTS
* TO THE MACRO ALSO.
* * AN ERROF~ WILL BE GENERATE[) IF A STRING
* OTHER THAN "SET".. "RESET".. OR 11 STOF~E" IS
* SPECIFIED AS AN ARGUMENT.
*
B'r'TE MACR

* * CHECK FOR VALID ARGUMENT STRING
*

5-11

0003:6
0003:7
0003:8
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
0(1053
00054
00055
00056
00057
00058
00059
00060
00(161
00062
00063
00064
00065
00066
00067
0l3068
i30(169
00070A

A
A

l30071

€H:1(1(1
00(10
0003

7F 0010 A
73 €1010 A

*

IFNC \0,SET
IFNC \0,RESET

IFNC \0,STORE
FAIL *INVALID STRING ARGUMENT*

ENDC
ENDC

EN[>C

* CHECK FOR "RESET" ARGUMENT

* I FC \0 .. RESET
CLR \1 . SET BYTE TO ZERO
ENDC

*
* CHECK FOR "SET" ARUGMENT
*

*

IFC \0 .. SET
CLR \1 SET BYTE TO ZERO
COM \1 . FLIP TO ALL ONES
ENDC

* CHECK FOR "STORE" ARGUMENT

* I FC '..,0 .. STORE
PSHA . SAVE ACCUMULATOR
LDAA #\1 . GET VALUE
STAA \2 . STORE VALUE
PULA . RESTORE ACCUMULATOR
ENDC

ENDM
*
:+: USE THE MACRO TO "SET" TEMP1 TO ALL ONES

*

*

B111TE
CLR
COM

SET .. TEMP1
TEMP1 . SET BYTE TO ZERO
TEMP1 . FLIP TO ALL ONES

00072 * USE THE MACRO TO II RESET II TEMP2 TO ALL ZEROES
00073 *
00074A 0006 BYTE RESET,TEMP2

A 0006 7F 0011 A CLR TEMP2 SET BYTE TO ZERO
00075
00076
00077
~3€1078A

00079
00080

A
A
A
A

0~::n39

0~309

(1(1(1A
000C
000F

00(181
00082A 0010

3:E;
86 41
B7 (1012
32

A
A

* * USE THE MACRO TO "STORE" ASCII ·'A·' HHO TEMP3

*

*

E:'T'TE
PSHA'
LDAA
STAR
PULA

STOR:E.. ···A .. TEMPJ:

#''A
TEMP3

SAVE ACCUMULATOR
GET VALUE

. STORE VALUE

. RESTORE ACCUMULATOR

* USE AN INVALID STRING TO SHOW ERROR CHECK
*

BYTE FILL,A,B,C

5-12

00083
00084
00085
00086A 0010
~30087A 0011
00088A 0012
00089

255--00000
FAIL *INVALID STRING ARGUMENT*

0001
0001
0001

* * VARIABLES
* A TEMP1 RMB

A TEMP2 RMB
A TEMP3 RMB

END

1
1
1

TOTAL ERRORS 00001--00082

The last example illustrates macro nesting and macro recursion. Nesting refers
to calling one macro from within another macro. Recursion refers to calling
the same macro from within itself. A recursive macro must have some criterion
that can be tested by a conditional assembly directive to prevent infinite
recursion. Since macros can only be nested eight levels, the recursive macro
can only call itself a maximum of seven times.

The comments in the example will explain how the macro is used. Following the
macro definitions are examples of the macro's usage. The example was assembled
with the assembly options:

OPT MEX, NOCL

to show the results of the expansion (MEX) and to improve visibility by not
printing the conditional directives (NOCL). Within the macro itself the MEX
and NOMEX options are used to further clarify the generated expansions by
suppressing the printing of the intermediate results of decrementing the
recursion counter.

00001
00002
0~U~10J
00004
00005
00006
00007
0000:::
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020

* * THE FOLLOWING MACRO CAN BE USED TO REPEAT
* AN ASSEMBLY LANGUAGE STATEMENT A MAXIMUM
* OF 42 TIMES. THE MACRO MAY BE EASILY
* MODIFIED FOR A LARGER MAXIMU~
* * THE REPEAT MACFW INVOKES ANOTHER MACRO WHICH
* IS USED TO REPEAT THE ASSEMBLY STATEMENT
* A MAXIMUM OF 7 TIMES <HENCE THE NAME
* RPT1_7). THE REPEAT MACRO MAINTAINS A COUNTER
* WHICH IS DECREMENTED BY 7 EACH TIME THE
* INNER MACRO IS CALLED. WHEN THE COUNTER
* HAS A VALUE OF 7 OR LESS. THE
* INNER MACRO IS CALLED ONE FINAL TIME TO FINISH
* THE REPETITION OF THE REMAINING LINES.

* REPEAT MACR
OPT NOMEX
IFGT \0-42
FAIL * COUNT EXCEEDS MAXIMUM *

5-13

00€121
00~322

(10(123
00~324

0€1025
~}l;::U326

(1(1027
00028
(10029
~:1i;::n330

00~331

00E:C~2

~30~333

00034
00~33:5

(10036
~30037

0~ZU338

00039
00(14~3

~3(U341

~31.;:uz142

(:.1(1(:.143
~30~344

~X1045

~30046

00(:.147
~30~:14::;:

(n3049
~~1(10!'::1(:.1

~3~3~3!:i1

(U3(1!:;i2
0~3053

(10054
00055
~30~356

~xu357

0(H358
0(1059
0006~:1

(1(U361
(U3(162
~3(H363

(1(1064
(n3065
0~3~366

~30067

(H3068
(UZ1(:.169
~3~~H37'(1A ABCD

00072A ABCD

A ABCD

amc
. COUNT SET \0 . INITIAL VALUE OF COUNTER

IFGE . COUNT-7
. COUNT SET . COUNT-7 REDUCE BY SEVEN
RPT1_7 7, (\1) . DO 7 LINES
Er-me

* IFGE . COUNT-7
. COUNT SET . COUNT-7 REDUCE BY SEVEN MORE (14)

RPT1_7 7, (\1) . DO 7 LINES
ENDC

*
IFGE . COUNT-7

. COUNT SET . COUNT-7 REDUCE BY SEVEN MORE <21)
RPT1_7 7, (\1) . DO 7 LINES
E.NDC

*
IFGE . COUNT-7

. COUNT SET . COUNT-? REDUCE BY SEVEN MORE (28)
RPT1_7 7, C\1) . DO 7 LINES
ENDC

*
I FGE . COUNT-'?

. COUNT SET . COUNT-7 REDUCE BY SEVEN MORE (35)
RPT1_7 7, (\1) . DO 7 LINES
Et·mc

* RPT1_7 . COUNT. (\1) DO REMAINING LINES
OPT ME:X:
ENDM

* * INNER MACRO--RECURSIVE

* F<:PT1_ 7 MACF.:
. T SET \0

OPT ME:X:
\1
OPT NOMEX

. T SET . T-1
IFNE . T

*

F.:PT1_ 7 . T.. i::'-.1)
ENDC
ENN1

* USE MACRO TO GENERATE TABLE OF THE POWERS OF
:+: TWO. THE TABLE CAN BE LOCATED ANYWHERE
* SINCE THE EXPRESSION SUBTRACTS THE PROGRAM
* COUNTER FROM THE BASE ADDRESS OF THE TABLE.

*
* BASE

OF.:G ILLUSTRATE INDEPENDENCE

REPEAT 16, CFDB 2~~((:+:-BASE)/2))

OPT ME::<
2 ~ .-. ((:+:-E:A!:;E) ..-··2)

5-14

OPT MEX
A ABCF 0002 A F[)B 2!.-.((:+:-BASE)/2)

OPT MEX
A ABD1 0004 A F[)B 2 ! .-.((:+:-BASE)/2)

OPT MEX
A ABD3 (1008 A FC>B 2 ! .-.((:+:-BASE)/2)

OPT MEX
A ABC>5 001.0 A FDB 2!.-.((:+:-BASE)/2)

OPT MEX
A ABC>? 0(120 A FDB 2 ! .-.((:+:-BASE>/2)

OPT MEX
A ABD9 0040 A FDB 2 ! .-.((:+:-BASE)/2)

OPT MEX
A ABC>B 0080 A FDB 2 ! ((:+:-BASE)/2)

OPT MEX
A ABDD 0100 A FDB 2!~((:+:-BASE)/2)

OPT MEX
A ABDF 0200 A FDB 2 ! .-.((:+:-BASE)/2)

OPT MEX
A ABE1 0400 A FDB 2 ! .-.((:+:-BASE)/2)

OPT MEX
A ABE3 0800 A FDB 2 ! ·-< (:+:-BASE)/2)

OPT ME::<:
A ABE5 1000 A FDB 2 ! ((:+:-BASE>/2)

OPT MEX
A ABE? 2000 A FDB 2 ! ·-< (:+:-BASE)/2)

OPT ME::<:
A ABE9 40(10 A FDB 2 ! .-.((:+:-BASE)/2)

OPT MEX
A ABEB 8000 A FDB 2!.-.((:+:-BASE>/2)

OPT MEX
0(1073 *
~30€174 * USE MAC~:O TO GENERATE VARIABLE NUMBER OF
00€175 * SHIFT I NSTF~UCT IONS
00€176 *
0~3~377 00~35 A V1 EQU 5
00078A ABED REPEAT V1.· <ASRA>

OPT ME~<

A ABED 47 ASRA
OPT ME~<

A ABEE 47 ASRA
OPT ME::<:

A ABEF 47 ASRA
OPT MEX

A ABF0 47 ASRA
OPT MEX

A ABF1 47 ASRA
OPT MEX

0~3~379 ENC>
TOTAL EF~RORS ~:100€1(1-·-(1~:10€10

5-15

APPENDIX A

CHARACTER SET

The character set recognized by the Macro Assembler is a subset of ASCII.
The ASCII code is shown in the following figure. The following characters
are recognized by the Assembler:

1. The upper case letters A through Z.
2. The digits 0 through 9.

3. Four arithmetic operators: +, -, *,and/.
4. The special two-character operators: !A, !>, !<, !X, !., !+, !R, and !L.
5. Parentheses in expression: (,).
6. The special symbol characters: underscore (), period(.), and

dollar sign ($). Only the period may be used as the first character
of a symbol.

7. The characters used as prefixes for constants and addressing modes:
Immediate addressing
$ Hexadecimal constant
& Decimal constant
@ Octal constant
% Binary constant

ASCII character constant
8. The characters used as suffixes for constants and addressing modes:

,X Indexed addressing
H Hexadecimal constant
0 Octal constant
Q Octal constant
B Binary constant
,PCR M6809 indexed addressing
,S M6809 indexed addressing
,U M6809 indexed addressing
,Y M6809 indexed addressing

9. Three separator characters: space, carriage return, and comma.
10. The character 11 *" to indicate comments. Comments may contain any

printable characters from the ASCII set.
11. The special symbols 11 \ 11 and 11 \. 11 used ~lith the macro definitions as

argument pointers or Assembler-generated symbols, respectively.
12. For the M6800/M6801 and M6809 Macro Assemblers, the special symbols

11 A'' and 11 8 11 to specify the accumulator in the operation code. For the
M6805 Macro Assembler, the special symbols "A 11 and 11 X11 to specify the
accumulator or index register in the operation code. The special
symbol 11 X11 to indicate indexed addressing in the operand field; the
special symbol 11 * 11 to represent the value of the current program
counter; and the special symbol 11 NARG 11 to represent the number of
macro arguments passed to the current level of macro expansion. For

A-1

the M6809 Macro Assembler, the special symbols 11 PCR", 11 S", "U",
and "Y" to indicate indexed addressing in the operand field; the
special symbol "D" to specify the accumulator in the operation code;
the special symbols "A 11 , "B", "CC", "D'', "DP", "PC", 11 S11 , "U", "X",
and "Y" to indicate registers in the operand field of the TFR, EXG,
PSHU, PULU, PSHS, and PULS instructions; and the special symbols "A'',
"B", and 11 011 to indicate offsets in the indexed mode.

13. For the M6809 Macro Assembler, the characters used to indicate
indirect addressing: [,].

14. For the M6809 Macro Jl.ssembler, the character "<" preceding an
expression to indicate direct addressing mode or 8-bit offset in
indexed mode, and the character 11 > 11 preceding an expression to
indicate extended addressing mode or 16-bit offset in indexed mode.

15. For the M6809 Macro Assembler, the characters used to indicate auto
increment and auto decrement in the indexed mode: +, ++, -

ASCII CHARACTER CODES

BITS 4 to 6 0 1 2 3 4 5 6 7

0 NUL OLE SP 0 @ p p
B 1 SOH DCl 1 A Q a q
I 2 STX DC2 II 2 B R b r
T 3 ETX DC3 # 3 c s c s
s 4 EOT DC4 $ 4 D T d t

5 EMQ NAK % 5 E u e u
0 6 ACK SYN & 6 F v f v

7 BEL ETB 7 G vJ g w
T 8 BS CAN 8 H x h x
0 9 HT EM 9 I y i y

A LF SUB * J z j z
3 B VT ESC + K [k {

c FF FS < L \ 1
D CR GS = M] m }

E so RS > N n
F Sl us I ? 0 0 DEL

A-2

APPENDIX B

SUMMARY OF INSTRUCTIONS

The following table lists the special symbols used in the description of
M6800, M6801, M6805, and M6809 instructions.

Operation Functions

=
[]
()
M()
+

*
and
ef fad
or
xor
L>
L<
A>
A<
R>
R<

Left side of equal sign is replaced by right side of equal sign
Evaluate contents first; grouping
The contents of
The contents of memory specified by the parenthetical address
Arithmetic addition
Arithmetic subtraction
Arithmetic multiplication
Boolean and
M6809 effective address
Boolean inclusive or
Boolean exclusive or
Logical shift right by number of bits specified
Logical shift left by number of bits specified
Arithmetic shift right by number of bits specified
Arithmetic shift left by number of bits specified
Rotate right by number of bits specified
Rotate left by number of bits specified

Operand Sizes and Register Names

$nn The hexadecimal number "nn"
n A bit value of n (0 or 1)
nn An eight-bit value of nn (OO-$FF)
nnnn A sixteen-bit value of nnnn (OOOO-$FFFF)
aa Eight-bit address
aaaa Sixteen-bit address
A Accumulator A
B M6800/M6801/M6809 Accumulator B
C Carry condition code (Bit 0 of CC)
CC Condition code register
D M6801/M6809 dual accumulator A,B
EI M6805 external interrupt pin
F M6809 fast interrupt condition code (Bit 6 of CC)
H Half carry condition code (Bit 5 of CC; bit 4 if M6805)
I Interrupt condition code (Bit 4 of CC; bit 3 if M6805)
ii Eight-bit immediate operand
iiii Sixteen-bit immediate operand
N Sign condition code (Bit 3 of CC; bit 2 if M6805)
P Program counter register
rl M6809 register list
rr Eight-bit, relative branch address
rrrr Sixteen bit, rel~tive branch address

8-1

S Stack register
U M6809 user stack register
V M6800/M6801/M6809 overflow condition code (Bit 1 of CC)
X Index register
xx Eight-bit, indexed addressing offset
xxop M6809 indexed operation depends on index mode (see B.5)
xxO M6805 no offset indexed addressing
xxl M6805 eight-bit, indexed addressing offset
xx2 M6805 sixteen-bit, indexed addressing offset
Y M6809 index register
Z Zero condition code (Bit 2 of CC; bit 1 if M6805)

Condition code symbols

T Status bit tested and set if true; reset otherwise
0 Status bit reset by operation
1 Status bit set by operation

Status bit unaffected by operation
? Programming Reference Manual contains details on setting of

the status bit

B.1 M6800 INSTRUCTIONS

In the following tables, the "Function" column for branch instructions only
contains the test condition performed by the branch. The following function
will be performed if the result of the test is true:

P=(P)+0002+rr
If the result of the test is false, the following function will be performed:

P=(P)+0002

The functions for the instructions BSR, DAA, JSR, RTI, RTS, SWI, and WAI are
described in detail in the M6800 Programming Reference Manual.

B-2

Mne­
monic

ABA
AUCA

ADCB

ADUA

ADUB

ANDA

ANDB

ASL

ASLA
ASLB
ASR

AS~A

ASRB
BCC
BCS
BEQ
BGE
13GI
BHI
BITA

BITS

8LE
BLS
BLT

Oper­
and

11
aa
xx
aaaa
11
aa
xx
aaaa
11
aa
xx
aaaa
11
aa
xx
aaaa
11
aa
xx
aaaa
ii
aa
xx
aaaa
xx
aaaa

xx
aaaa

rr
rr
rr
rr
rr
rr
11
aa
xx
aaaa
11
aa
xx
aaaa
rr
rr
rr

Op­
code

18
89
99
A9
89
C9
09
E9
F9
88
98
AB
BB
CB
UB
EB
FB
84
94
A4
84
C4
04
E4
F4
68
78
48
58
67
77
47
57
24
25
27
2C
2E
22
85
95
A5
85
C5
05
E5
F5
2F
23
20

M6800 Instructions

Function

A= CA>+ CB>
A= (A) + 11 + (C)
A=CA>+ MCaa>+CC)
A=CA>+MACXJ+xx>+CC>
A=<A>+MCaaaa)+(C)
B= < B > + 11 + < C >
B=CB>+MCaa)+(C)
B= CB) +M.C (XJ +xx>+ (C >
B=+MCaaaa)+(C>
A=< A>+ 11
A=CA>+M(aa>
A=<A>+MCCX>+xx>
A=<A>+M(aaaa)
B=C B>+ 11
B=+M(aa>
B=+M<<X>+xx>
B=CB)+MCaaaa>
A=CA) and 11
A=< A> and M < r:ta >
A=<A> and M<<X>+xx>
A=<A> and MCaaaa>
B=C B> and 11
B= CB> and M < aa >
B= and MCCX>+xx>
B=CB> and M<aaaa>
MCCX>+xx>=M1CXl+xx> A<
MCaaaa>=M<aaaa) A< I
A=CA> A< I
B=C B > A< I
MCCX>+xx>=MCCX>+xx> A>
MCaaaa>=MCaaaa> A> I
A=< A) A> I
B= A> I
Test <C>=O
Test CC)=I
Test CZ>=I
Test C N> xor CV>=O

Status
HINZVC

T-TTTT
r - T r r r

f-TTTT

r - T I T r

T - T T T T

- - T T O -

- - T T 0 -

r r ? r

T T ? T
- - T T ? T

T T ? T

- - r r 1 r
r r ? r

Test < Z> or C 00 xor < V> J=O -
Test CC> xor <Z>=O
<A> and 11
CA> and .'ot(aa >
CA> and MCCX>+xx>
<A> and MCaaaa)
CB> and 11
(B > and ,\H aa >
CB> and MCCX>+xx>
CB> and MCaaaa>
Test CZ> or C<N> xor CV>J=I
Test CC> or CZ>=I
Test CN> xor CV>=I

B-3

- - T T 0 -

- - T T 0 -

M6800 Instructions

Mne- Op er- Op- Function Status
monic and code H I N Z v c
-----------------------~---------------------------------------

BMI rr 28 Test C N> =I ------
BNE rr 26 Test CZ>=O
BPL rr 2A Test C N>=O - - - -
BRA rr 20 Tests always true
BSH rr 80 Subroutine call
BVC rr 28 Test CV>=O - - - -
BVS rr 29 Test CV>=l - - - -
CBA I I CA)-(8) T T T r
CLC oc C=O - - - - - 0
CLI OE I=O - 0 - - - -
CLR xx 6F MC C X>+xx>=OO 0 0 0

aaaa 1F MCaaaa>=OO
CLRA 4F A=OO 0 0 0
CLR8 5F B=OO - - 0 0 0
CLV OA V=O - - - - 0 -
CMPA ii 81 CA>-11 - - T T T T

aa 91 CA>-MCaa)
xx Al CA>-MCCX>+xx>
aaaa Bl CA>-MCaaaa)

CMPB 11 Cl CB>-11 - - T T T T
aa DI CB>-M<aa>
xx El CB>-MCCXJ+xx>
aaaa Fl < B>-MC aaaa>

COM xx 63 MCCX>+xx>=MCCX>+xx> xor SFF - - T T 0
aaaa 73 MC aaaa >=MC aaaa > xor SFF

COMA 43 A=CA> xor SFF TT 0
COMB 53 B=CB> xor SFF T T 0
CPX i iii 8C <X>-1111 ? T ? -

aa 9C CX>-MCaa,aa+I)
xx AC CX>-MCCX>+xx,CX>+xx+I >
aa:::ta BC CX>-MCaaaa,aaaa+I)

DAA 19 Converts binary add of - - T T T ?
BCD into BCD

DEC xx 6A MC C XJ +xx) =M,(C X> +xx >-O I - - T T ? -
aaaa 7A MCaaaa>=MCaaaa)-01

DECA 4A A=CA>-01 - - TT ? -
DECB 5A 8=(8)-01 - - TT ? -
DES 34 S=C S >-000 I - - - - - -
DEX 09 X=CX>-0001 - - - T - -EOHA ii 88 A=C A> xor ii - - T T 0 -

aa 98 A=C A> xor MC aa >
xx A8 A= CA> xor MCCX>+xx>
aaaa 88 A=C A> xor MCaaaa>

EOHB ii C8 B=CB> xor ii - - T T 0 -
aa 08 B=C 8) xor MCaa>
xx E8 B=C B> xor MCCX>+xx>
aaaa F8 B=CB> xor MC aaaa >

INC xx 6C MCCX>+xx>=M{CX>+xx>+OI - - T T ? -
aaaa 7C MCaaaa>=MCaaaa>+OI

INCA 4C A=(A)+Ol T r ? -
B-4

M6800 Instructions

Mne- Oper- Op- Function Status
monic and code H I N Z v c

INCB 5C B= CB> +O I - - T T ? -
INS 31 5=(5)+0001 - - - - - -
INX 08 X=CX>+OOOI - - - r
JMP xx 6E P=C X> +xx - - - -

aaaa 7E P=aaaa
JSH xx AD Subroutine call - - - -

aaaa BO Subroutine call
LDAA 11 86 A=11 - - T T 0 -

aa 96 A=M (aa >
xx A6 A=M C C X >+xx>
aaaa 86 A=M<aaaa)

LDAB 11 C6 8=11 - - T T O -
aa 06 B=MCaa>
xx E6 B=M CCX> +xx>
aaaa F6 B=MCaaaa)

LOS i 11i 8E S= ii 1i - - ? T 0 -
aa 9E S=MCaa,aa+l)
xx AE S=M C C X) +xx , C X) +xx+ I >
aaaa BE S=M (aaaa, aaaa+ I)

LOX i 111 CE X= 11 ii ? T 0 -
aa DE X=MCaa,aa+l>
xx EE X=MCCX>+xx,<X>+xx+I>
aaaa FE X=MCaaaa,aaaa+I >

LSR xx 64 MC< XJ +xx> =M C < XJ +xx> L> - - 0 T ? T
aaaa 74 MC a a aa) =MC a a aa > L> I

LSRA 44 A= (A> L> I - - 0 T ? r
LSRB 54 8=(8) L> I - - 0 T ? T
NEG xx 60 MCCXJ+xx>=OO-MCCX>+xx> T T ? ?

aaaa 70 MCaaaa>=OO-MCaaaa)
NEGA 40 A=OO-C A> TT ? ?
NEGB 50 8=00-(8) T T ., ?
1~0P 01 P=CP>+OOOI - - - - - -
ORAA 11 8A A=CA> or 11 T T 0 -

aa 9A A=(A) or MCaa>
xx AA A=CA> or MCCXJ+xx>
aaaa BA A=C A) or MC aaaa >

OHAB 11 CA B=CB> or ii - - T T 0 -
aa DA B= (B) or MCaa)
xx EA B=CB> or MCCX>+xx>
aaaa FA B= or M(aaaa>

PSHA 36 MCS>=AI S=(S)-0001
PSHB 37 MCS>=BI S= < S >-0001 - - - -
PULA 32 S= C S > + 000 l I A=M (S> - - - -
PlJLB 33 S= C S > + 000 I ; B=M CS> - - - -
HOL xx 69 MCCX>+xx>=M1CX>+xx> R< TT ? T

aaaa 79 MCaaaa>=MCaaaa) R< I
ROLA 49 A=< A) R< I f T ? T
ROLB 59 B=C B> R< I T T ? r
HOH xx 66 MCCX>+xx>=M<<X>+xx> R> f T ? T

aaaa 76 MCaaaa)=MCaaaa) R> I
B-5

Mne­
monic

HORA
fWRB
fHI
HTS
SBA
S8CA

SBCB

SEC
SEI
SEV
STAA

STAB

sTs

STX

SUBA

SUBB

SWI
TAB
TAI-'
TBA
f PA
rsr
fSTA
fSTB
Tsx
rxs
~AI

Oper­
and

11
aa
xx
aaaa
11
aa
xx
aaaa

aa
xx
aaaa
aa
xx
aaaa
aa
xx
aaaa
aa
xx
aaaa
ii
aa
xx
aaaa
11
aa
xx
aaaa

xx
aaaa

Op­
code

46
56
38
39
10
82
92
A2
82
C2
02
E2
F2
OD
OF
OB
97
A7
B7
07
E7
f 7
9F
AF
BF
OF
EF
FF
80
90
AO
BO
co
DO
EO
FO
3F
16
06
17
07
60
70
40
50
30
35
3E

M6800 Instructions

Function

A=<A> R> I
B= R> I
Heturn from interrupt
Heturn from subroutine
A=< A)-C B>
A=C A>-11-CC)
A=CA>-MCria>-<C>
A=CA>-M<CX>+xx>-<C>
A=CA>-MCaaaa>-CC>
B= C B > - 11- C C >
B=-MCaa>-CC>
8=CB>-MCCX>+xx>-CC>
B=CB>-MCaaAa)-CC>
C=I
I=l
V=l
MCaa>=<A>
MCCX>+xx>=CA>
MCaaaa>=<A>
MCaa>=CB>
MCCX>+xx>=C8)
MC aaaa >=·C 8)
MC aa,aa+I >=CS>
MCCX>+xx,CX>+xx+l>=<S>
MCaaaa,aaaa+l>=<S>
MCaa,aa+I >=CX>
MCCX>+xx,CX>+xx+l>=CX>
MCaaaa,aaaa+l>=CX>
A=C A>-11
A=C A>-MC aa>
A= C A >-M C C X > +xx >
A=CA>-MC aaaa>
B=C B>-11
8=CB>-MCaa>
B= CB >-MC C X >+xx>
B=CB>-MCaaaa>
Software interrupt
B=C A>
CC=< A>
A=C B>
A=C CC>
MCC X>+xx>-OO
MC aaaa >-00
C A>-00
C8>-00
X=CS>+OOOI
S=C X>-0001
Wait for IRQ

B-6

Status
HINZVC

- - T T 1 T
- - T T 1 T
'l11111

r r T T
T T r r

- - T T r r

- 1 - - - -
- - - - I -

T T 0 -

T T o -

? T o -

1 T o

r T T r

- - T T T r

- I - - -
T T 0 -

? 1 1 ? ? 1
T T o -

- - T T o o

- - T T O 0
T T 0 0

- 1

8.2 M6801 INSTRUCTIONS

The M6801 allows all of the instructions from the preceding table. In addition,
the following instructions are valid. These instructions can only be assembled
using the MOOS or tape version of the M6800 Macro Assembler.

Mne- Oper- Op- function Status
monic and code H I N z v c

ABX 3A X=CX>+CB>
ADDO i iii CJ D= CD)+ ii ii T T T T

aa 03 O=CO>+MCaa,aa+I)
xx E3 D=CD>+MCCX>+xx,CX>+xx+I >
aaaa F3 D=<D>+M(aaaa,aaaa+I)

ASLD 05 0=(0) A< I - - T T 1 T
13H5 rr 24 Test CC)=O - - - - - -
BLO rr 25 Test CC>=I - - - -
BHN rr 21 Tests always false - - - -
JSH aa 90 Subroutine call - - - -
LOO ii ii cc D= i 1 ii TT 0 -

aa DC D=M<aa,aa+l)
xx EC D=M<<X>+xx,CX>+xx+I>
aaaa FC D=M<aaaa,aaaa+I >

LSL xx 68 MC<X>+xx>=M{CX>+xx> L< TT 1 T
aaaa 78 MCaaaa>=MCaaaa) L< I

LSLA 48 A= (A) L< I TT 1 T
LSLB 58 8=(8) L< I - - TT 1 T
LSLD 05 0=(0) A< I T T 1 T
LStW 04 0=(0) L> I - - 0 T 1 T
MUL 30 O=<A>* - - - 1
r'SHX 3C M (S , S+ I) = (X) I S=CS)-0002 - - - - - -
t'ULX 38 5=(5)+0002; X=M< S,S+l) - - - -
STD aa DD MC aa,aa+I >=<O> TT 0 -

xx ED MCCX>+xx,CX)+xx+l)=CO)
aaaa FD MCaaaa,aaaa+l>=CD>

SUBD iii! 83 D= CD>- ii ii - - T T TT
aa 93 D=<D>-MCaa,aa+I)
xx A3 U=!D>-M<<X>+xx,<X>+xx+I)
ai".taa 83 D=<D>-M<aaaa,aaaa+I)

8-7

B.3 M6805 INSTRUCTIONS

In the following tables, the ''Function'' column for branch instructions only
contains the test condition performed by the branch. The following function
will be performed if the result of the test is true:

P=(P)+0002+rr (for branch)

P=(P)+0003+rr (for bit test and branch)

If the result of the test is false, the following function will be performed:

P=(P)+0002

P=(P)+0003

(for branch)

(for bit test and branch)

The functions for the instructions BSR, JSR, RTI, RTS, STOP, SWI, and WAIT
are described in detail in the M6805 Programming Reference Manual.

B-8

Mn .3-·

m1:in:ii:·.

f~DC

{)[l[I

ASL.f.\
{~~;;:1 ... X

1~~:m1~

A::::HX
BCC
f:(:L F\

BFC!
E:HCC
BHC:3
t:l··l l
BH:;::
r::: 11:
Bii..

Opet·­
arid

i :i

:-: :-:0
:i :i

:i :i
... '") <:.i ,,

l'"t"

o, <l<l

.l, aa.

:.::, ;.:ia.

7, i'1.<>.

rr
t .. r

rr

Op­
e. o r:I ·~

DD
CB
DD
EB
FB
A4·
D4
C4
lM
El.I·
FL~

::~:·7

67
Tl
'1-7
~rl

?4
u.
.l :::
l ~~
17
l9
.l B
lD
.tF

Funi:'.ti on

f)=" < A)+ :i :i + < C >
(.'"' ((.\) +M (aa) + (C)
A=<A>+M(aaaal+(C)
fl'" (A) ·+ M ((X) + :c<2) ·+ (C)
A=(A)•M<<X)+xx.l)+(~)

('::: <A) ·+ M (X) + (C)
!)::'."! (A) + :i :i
fr:: (A) + M (.:i .:1)
f.~::-:: (f.~) +M < ;'1.<'1..3.a)

fr::< f.\) +M < (X > + :-: :-::2)
A:-::< A) +M < < X H· :o: l l
('"= < A) -1· M < X)
A:::(f~) and :i :i
(.\:·, (A) ci n d M (a a)
A=<A> and M<aaaa)
()::.·: <A) .:1 n d M < < X) + ;.: :-:2 >
A=<A> arid M<<X>+xxll
A:== < A) .:1 n d M < X)
M<<:1.a>·="M(a;;1.) A< .l
M<CX)+xxl)=M<<X> A< l
M < X > :::M < X > fK .l
A::-:< A) A< l.
X ""' < X > I~< 1
M (<1 a) ~=M < ;::; <t) 1Y> l
M<CXJ+xx.l>~M<<X)+xx.l> A> 1
M < X) :-.M < X) ff> l
A=:: CI)) f)> .l
X::.::(X) (\) l
T1:::st (C),,:0
F: i t 0 of M < a ii) :::.(l

Bit 1 of M<a~>~o
[:]. t
B:i t
r: i t
Bi t
B i t
B:i t
T es t
T "!~; t
l f:S 1'

Tic:~~ t
T (~ ::; 1'

T1:::st
1 ~=- :::. 1

T 1':S t

... .,

..:.
.... ,
..::•
4
c.:·
·.)

6 .,.
I

of M < .:1 <~) :::(l

1:i f M C ,1 <'1- > "0
of M <:::;a> :·:.(l
of MC ;i. ,1) .. ~o

of M (a a) :::(l

1:i f M C :v~. > -:0
(c) "' 1
(z) '" .l
(H) :·:.O

< H) :-:: .l
< c > :-: o t· < z > ~=o
<Cl .:::O
F:.I ::-::hi.~:ih

FI -:: l 1:11.1.•

B-9

H I N Z C

f' ··· f T T

T--· I fT

.. _ T T -

I T T

-· -- ,.
T l

r T r
T T 1·

·- f T T

T "l T

1'1 n e-­
m r.• n i c

BIT

Bl.O
BU::
BMC
F:MI
BMS:
F.:N[
BPL
F:nA
BRCLF<

BRM
E:H::::ET

Cl..C
CLI
Cl...F~

CL Rli
Cl .. F<X

Oper­
and

ii
<la
;:i.;:i.aa
~·~ ~<2

>: >: l
:< ~<(J
r r·
n·
rr
rr
rr
rr
rr
rr
o, i'i.<°lJ

1, <1n,
·2, ;:ia,

::::: ~ aa,
4, a.a,
i:;. ·-·i <:\a,
6, ;:i.;:i,
.. ,
I ; aa,
rr
(l, aa,
1, ;la,
.. ,
,,: .. I a .a,
~.

-.:•1 :.~a,

11, aa,
c:.-
··-'' ::i.a,
b, aa,
7, ;:ia,
<), <l<l

L a.a
•.. ,
... • •. J a.a
3, ;l.:~

.ll, <:~ -=~ .. ,,.
• ... •1 ;1;1

b, a.,
C•

7, ;'1·:3.

l"t"

<R ~l

~{ ~·{ l.
~-~ >~()

r·r
r r·
r· 1'·
t" ,.

r·r
t"I"

rr
n·

tT

l""r"

t" t•

rr
I" 1·

rr
r1·
rr

Op-­
cod•:!

A~5
B~:.
r·•=-........
D!:;
E5
F~'.i
.. ,c:·
:?:;;~

-;~c:

:?f~:

~m

26
?.A
20
O .L
o::~

O!'.:i
O'/
09
OB
OD
OF
21
00
02
04
06
08
OA
oc
OE
10
l .. , . ·-
14
.L6
1 , . ., . -::i

.U"i
l.C
.LE
AD
·:?J~::

9A
::3F
6F
/F
'IF
~5F

FUFH!ti on Status
H I N Z C

(A> and ii r T
(A> and M(aa)
({~) and M < i:rnaa >
<A> and 1'1 ((x) + :< :<2)
(/~) ;'ind M< <X>+:o:l)
(A) <1 nd M<X>
T•!!S't. (c) ::-:: .l -- --·

Tr.~st <C> 0 t" (Z):::t ·-· ·- -·
T•?.St. (I) :::O - -
l •:?St ("') ::: l -- _ .. --
T•?.:5 t (I) "" 1 -- ··-
T (~St (z) :-:() -- -
T•?.St < N>.,=O - ·--, r.~sts a li>J<l ys tr u~~ - - -
T•?.st. b :i t. 0 •:if M < aa) :::() - - r
lest bit l. of M<a<i>===O
r ''! ~~ t. bit, .:.. 1:if M<;1,'l> "o
lest bit :3 (If M < <la> ":(I

T •!!St. b:i t '~ r.•f M(a;i)-::0
Tr.~:; t bit ?:5 C•f l'1 (<ia) :::(l

T·?.~st. bit. 6 ·:if M (.1::i > ,,,o
T ~~st bit 7 of l'1 < a a > ==O
T •!!S ts al•.~•ays f;:ils•::

T (>::, t bit (l I) f M<a<1):::.J.• - -
T 1;!~:; t bit. 1 ·=· f MC;ia>==.l
T o:-~s t bi t .-,

·'- of M<<:<i):::J.
T•:!St. bit .·-. ._ .. (1f M < :1a > -:: 1
,. (~ ;:; t bit II· of M<<1a):·:J.
T ''!~:;. t bi t. ~i 1:if M(.~;.1) 0"l

l·~::;t bi 1' .. ~. of M<<:a):·=l
T ''!~;; t. bi t 7 i:·f M(;:;;;.3.) -:: L
Bit 0 (1 f 11 (.c;.:i): :. J. -· ... - - --·
B:i t. 1 c:if M<::i.,1)"::.l
[: i. t .-.,

"- (I f 1'1(::i<1)='=l.

13 :i t. :• ·:if t1 (:;;.:1) ., .l
r:i t I~ of l'1 (aa) :·=·1
B:i t. ~5 1)f M < ::t.1) : t
Bit 6 (If M<<1:::):::J.
13 :t t. 7 c:if M < ;i.'\ > ·' l
:::;ubri:-•uti n~> ·:~a J. J. -·-

f>::O ·- 0
T~=n "'"' 0 -
M< a.<3.)-::()() .. •r•• 0 .l
l'1 (<X>+:od.):·:.oo
M < X > ::::()()
(i:·:.(l(l 0 l. ...

X-::OO 0 .l

B-10

Mne· ...
moni~

CMP/
CMl"A

COM

COMfl
COMX
CF'):/
CMPX

lJFC

DFC!)
rw cx.1
DFX
E CH~

INC

:CNCf.)
lNCX/
:C l\IX
..JMf'

.JSR

0p(~1·­

a nd

ii

ii
a.a.

>~ ~·~()

l. i

ii <l

aa
a;ia.a

<1a
;i;'Vii'i
,,,, . .,.
,.,, t'\.tf.,.

Op--

fH
Bl.
C.l
Dl.
El
Fl.

A.-.. .::·
[•')

E::-::

I=··=-.. ··-·
[If::

BC
cc
DC
E:C
FC
BD
CD
DD
F~D

FD

Fun·~ti.on

(())·····:i:i

<A) ·--M (.;1 .:1)

<A) ···M (;l.;1:~ a)

(1"\) M < < X) + :< :-:?)
(~)) -M (< X) + ;-~ ;-: l)
((\)···M(X)
M<;i,1.) ::M(;i:'l.) :-:i:ir· '$FF
M ((X) .. 1 :-: :·: l.) ::::M (< X) ·+ :-: :·(l.)
M<X>~ M(X) xi:ir $FF
('= · < (\) :·:i:n· •.H'F
x ::: (x))·:I) I'" ':fiFF
<X>-·-i.i
()() --·M (:"- ,1.)
(X) 11 (<i <~ <I il)

< X) M < < X > ~· :-: :::? >
< X > -·M < < X) +:ed.>
(X > -·-M <)()

;-:01· $FF

11 (.aa) :·:M <.::a) -·-0 I.
M<<X>+xx.l>~M<<X>+xxl>-0.l

M (X > ":·M < X > --0 l.
{):::: (I) > --·O 1
x~:<X>·-·01

A=;. < A > ~·{ c• t· i i
(.):::: <f)) :-: or· M «1 ::i.)

A'" (n) ~-: o i- M < a .:1 a <1)
A=<A> xor M<<X>+xx2)
n~<n> XOt" M<<X>+xxl)
f)::: (f.) > :-:01-· M (X)
M < a a > :c:M < -=~ .c1) +O l.
M<<X>+xxJ>~M<<X>+xxlJ+Ol

M < X > :::1'1 < X) +O 1
/)::::<I)) +O 1
X:o: < X)+01

p::;;1;:1

p::::;:i,;1;~;1

p:·: (x) +>::-:?
P==: (X > + x }: .L
p:·: (x)

Subr-o•.1tin('· c<:ll
S1.1br··:i•.1t:i ni:! ·~·::i.11
:::; u b 1· o 1.1 t i. n e i:: <: 1. J.
S1..1br·o1.1ti n.;! .~.al 1
:::; u b 1· o •.J t i n f· i:: a l l

B-11

H I N l C

...... T T I"

r r .L

T T 1
..... f T .l

"l l ·1

..... -- T T ···

r ·r -
.... T ·1

.,. 'l

·-- -·- l T -·-

r r -
-- -·- T T ···

Mn•3-·
m•:in:i •'.';

l.DI~

l...DX

L!'.~L. A
LSLX
1 .. !:::n

U::R"
L!:::1:x
NEG

NEGA
NFGX
NCH"'
OHf)

ROI...

HOL.A
ROLX
Rm~

RORA
ROHX
!<SP
RlI
RTS

0 pet·-·
~nd

ii
a.a

xx2
X~< .l
x ~<()
ii
aa

:< ~-~~~
}{ >~ 1
}< ~<(>

xxl.
>~ ~-~ (>

x ~< l.
>~ >~()

:i :i
aa

\IV_.,..,
,.,, '"~··

>~ ~< l

}< xl.
xx()

NXl
~< ~<()

Op·-

r,; ·=· d •!!

A6
B6
C6
D6
Eh
F6
AE
F:E
CE
DE
F.E:
FF

4:3
58
:;:;4
64
/'LI
44
54
::::o
60
70
.!~()

~:;o

9D
t)n
BA
Cl)
DA
f:7:A
FA

~i9
:;)6
(:.(:.

76
46
~'6
9(:

80
8.L

Fune ti on

A.,.,=i i
A=,M< a.a)
A-::M (<:t<:t.'la)

A==M < < X > + :< x2 >
f):::M((X) 1->:xl)
A::=M (X >
X:::i i
X:::M(.01.a>
X"=M(;'aaa>
X ="-M < < X > + :< :·::? >
X ""M < < X > + :·: >: 1. >
X:c=M<X>
M<aa>~M<aa) A(.L
M < < X) + :o: 1 > ::0 1'1 < (X > + :od. > A< 1
M < X > ""M < X > IK .L
(\:·'· (()) (\< l.
X::-:=<X> fK .L
M (H <:) :::: M (<: <:)) I .. > 1
M < < X) + :o:.L) .::l"f < < X > + >::d) 1 .•) .L
M < X > :::M < X > L > 1
A:::::< i)) I...> .l
X::-=(X) L< l.
M < aa > ===00-M < ·~-'l)
M<<X>+xxl>~oo-M<<X>+xxl>

M < X > :::()0-.. M < X >
(\::-c(l()-· ((\)

X=:::OO- (X)
p::. (p) +000 l
(.)::-::<A> or :i :i
A:::< A> or M < a a>
"=·= ((.)) o r M «:1 a:~. a >
n~<n> or M<<X>+xx2>
A=<A> or M<<X>+xxl>
(\::" < A > o t" M < X)
M (;:ta) :::M (aa) R<: .L
M<<X>+xxl>~M<<X>+xxl> R< l
M (}() :::M (X) R<: .L
{\="· < A > RC l.
X:::: < X > R(.L
M<aa>=,=M<aa> FO 1
M<<X>+xx.t>~MCCX>+xx.L> R> .l
M < X > =~M < X > R> 1
f-~=== <A> R> .L
X=:-::CX) H> 1
S===7F
Return from interrupt
R·~'t.1.1rn fri:•m s1.1b1ro11ti n•::

B-12

H I N Z C

--·-·TT-

·- T T -

··- ·-· r T T

.. -- 1 T l

... ... r T r
... -- 0 T 1

0 T T
0 l ,.
r T T

·-- ·- l T l'
T T r

... -- --
T T

-·· r T T

T 1 1·
T T r
,. .,. l

r r T
-·-Tl"I

Mn~~--­

mi:in:i ·~-

SBC

SEC
:3E J
STA

:::;TOP
:3T}(

::·;~JI

Tf)X
T::n·

TST!)
·1 ::n·x
TXI\
~.J(i) T

Cl p ~~ 1·-·­

a. n d

i :i
aa

Op­
('.•:.d I'.:!

Bl
C'?
[I/

E7
F7

BF
CF
DF
ET
FF
()(l

BO
co
DO
EO
FO

')7

::m
(:.[I

7D
4[1

~~·D

9F

F•.ini:•ti on

A-,, (i\) ···· :i i ··· < C)

A= < A) ··· M < r= <= > ·· < C)
A=<A>-M<a~aa)-(CJ

A=·,.<()>···· M (< X) + :-: :<:;') ·· < C)
!)'="" J I)) ··-M C < X) + >: :-: .L) ·· (i::)
():c: <A) -11 < X) - < C >
C"' .l
I:·" 1
M (.:B.) ~= ({))
l'1 (.:i a ,::: a) ::: (A)
M < < X J + :·: :·:2) ""' < f:'!i >
M< < X >+:ed.):-"((\)
M<X>.,,=<A>
CMOS V~!rsi. (1£1 only
M < 'i <i) . .,, < X >
M<<1<1<:1a):··.(())
M< CXJ+:o:ZJ===C X>
l'1 ((x) +)·()·(l.) :·:: (x)
MCX>.,.,=<X>
A=·c < A) -· i i
f'i:::: CA> ···M < <i,'1)

(\::~ (A)-·M (aaa<~)
A=,,(())· .. MC C :< > ·t·:o:2)
f\::: < A) 1'1 C < X) -t· :~ :-: !.)
A=-:: C f.~ J -·-M C X)
Software interrupt

11 (a•~) -- 00
MC < X) +:od >---00
M<X>-OO
<A)-·00
(x) -··00
CA>·"=CX>
CMOS version only

B-13

Sta t•.Js
H:Cl\IZC

..... ···· T T r

··- ·- -· ···- l
-1--·--

T T ··

--· T T

·---TlT

-- T -··

1 1

f T ··­
l T ····

B.4 M6809 INSTRUCTIONS

In the following table, the "Function" column for branch and long branch
instructions only contains the test condition performed by the branch. The
following function will be performed if the result of the test is true:

P=(P)+0002+rr (for branch)

P=(P)+0003+rrrr (for 1-byte long branch opcode)

P=(P)+0004+rrrr (for 2-byte long branch opcode)

If the result of the test is false, the following function will be performed:

P=(P)+0002 (for branch)

P=(P)+0003 (for I-byte long branch opcode)

P=(P)+0004 (for 2-byte long branch opcode)

The functions for the instructions BSR, CWAI, DAA, EXG, JSR, LBSR, PSHS, PSHU,
PULS, PULU, RTI, RTS, SEX, SWI, SWI2, SWI3, SYNC, and TFR are described in
detail in the M6809 Programming Reference Manual.

B-14

··-'ne­
moni c

ABX
ADCA

ADCB

ADDA

ADUB

ADDO

ANDA

ANDB

AN DCC
ASL

ASLA
ASLB
ASR

ASHA
ASHB
BCC
BCS
BEQ
BOE
BOT
BHI
BHS

<>per­
and

ii
aa
xx op
aaaa
ii
aa
xx op
aaaa
ii
aa
xx op
aaaa
ii
aa
xx op
aaaa
ii ii
aa
xx op
aaaa
ii
aa
xx op
aaaa
ii
aa
xx op
aaaa
ii
aa
xx op
aaaa

aa
xx op
aaaa

rr
rr
rr
rr
rr
rr
rr

Op­
code

3A
89
99
A9
89
C9
09
E9
F9
88
9B
AB
BB
CB
UB
EB
FB
C3
03
E3
F3
84
94
A4
84
C4
04
E4
F4
IC
08
68
78
48
58
01
67
77
47
57
24
25
27
2C
2E
22
24

M6809 Instructions

function

X=<X>+
A=<A>+ii+(C)
A=<A>+ MCaa)+CC>
A=CA>+xxop+<C>
A=<A>+M(aaaa)+(C)
B=+ii+<C>
B= C B > +M C aa > + < C >
B=<En+xxop+<C>
B=CB>+M(aaaa>+<C>
A=CA>+ii
A=CA>+MCaa)
A=CA>+xxop
A=CA>+MCaaaa)
B=C 8>+11
B=CB>+M(aa)
B=C B>+xxop
B=CB)+MCaaaa)
D=C D>+ ii ii
D=CD>+MCaa,aa+I)
U=<D>+xxop
D=<U>+M(aaaa,aaaa+I >
A=<A> and ii
A= C A> and ~H aa >
A=CA> and xxop
A=CA> and MCaaaa>
B= and 11
B=C B> and M< aa>
B=< B> and xxop
B=CB> and MCaaaa)
CC=CCC> and ii
M(aa>=M(aa> A< I
xxop=xxop A< I
M<aaaa>=MCaaaa> A<
A=CA> A< I
B= A< I
M < aa >=MC aa > A> 1
xxop=xxop A> 1
M<aaaa>=MCaaaa> A>
A=C A) A> I
B=C B> A> I
Test CC>=O
Test CC>=I
Test <Z>=I
Test CN> xor CV>=O
Test CZ> or CCN> xor
Test CC> xor CZ>=O
Test CC>=O

B-15

Status
F H I N Z V C

- T - T T r r

- T - T T r r

- T - T T T T

- r - T T T r

- - - T r r r

- - - T T 0 -

- - - T T O -

'/11111'/
- ? - r T 1 r

- 1 - r r ? r
- ? - r r ? r
- ? - f T ? T

- ? - T T ? T
- ? - T T ? T

<V>J=O - - -

Mne­
monic

BITA

BITB

BLE
BLO
BLS
BLT
BM I
13NE
iWL
BRA
8RN
BSR
BVC
8VS
CLH

CLRA
CLRB
CMPA

CMt'B

CMJJO

CMPS

CMPU

CMJ->X

Oper­
and

ii
aa
xx op
aaaa
ii
aa
xx op
aaaa
rr
rr
rr
rr
rr
rr
rr
rr
rr
rr
rr
rr
aa
xx op
aaaa

i1
aa
xx op
aaaa
11
aa
xx op
aaaa
1111
aa
xx op
aaaa
i 111
aa
xx op
aaaa
1111
aa
xx op
aaaa
ii ii
aa
xx op
aaaa

Op­
code

85
95
A5
85
C5
05
E5
F5
2F
25
23
20
28
26
2A
20
21
80
28
29
OF
6F
1F
4F
5F
81
91
Al
Bl
Cl
J.) I
El
Fl
10,83
10,93
IO, A3
10,83
11 ,8C
11 ,9C
l I, AC
11,BC
l I , 83
11 ,93
11 , A3
11 , 83
BC
9C
AC
BC

M6809 Instructions

Function

<A> and ii
<A> and MC aa>
<A> and xxop
CA> and MCaaaa>
CB> and ii
< 8 > and MC aa >
(8) and xxop
CB> and MCaaaa>
fest CZ> or [(N) xor
TEST CC>=I
Test CC> or CZ>=I
Test C N> xor C V >=I
Test (N>=l
Test <Z>=O
Test C N> =O
Tests always true
rests always false
Subroutine call
fest C V>=O
Test CV>=I
MCaa>=OO
xxop=OO
MCaaaa>=OO
A=OO
8=00
CA>-ii
<A>-M<aa>
CA>-xxop
CA>-MC aaaa>
(8)-ii
C8>-MCaa>
-xxop
CB>-M<aaaa)
CD>-1111
CD>-MC aa, aa+I >
CD>-xxop
<D>-M<aaaa,aaaa+I)
(S)-iiii
C S) -M (aa , aa +I >
CS>-xxop
<S>-MCaaaa,aaaa+I)
CU>- ii ii
<U>-M< aa,aa+I >
CU>-xxop
<U>-M<aaaa,aaaa+I)
<X>-iiii
<X>-MC aa,aa+I >

.CX>-xxop
<X>-M<aaaa,aaaa+I>

B-16

Status
F H I N Z V C

- - - r r o -

- - - T T 0 -

CV>J=I

- 0 0 0

- - - 0 I 0 0
- - - 0 I 0 0
- 1 - T T T T

- ? - T T T T

- - - T T T T

- - - T T T f

- - - r r r r

- - - T T T T

Mne­
monic

CMPY

COM

COMA
COMB
CV4AI
DAA

DEC

UECA
UECB
EOHA

EOHB

EXG
I NC

INCA
INCB
JMP

JSR

LBCC
LBCS
LBEO
LBGE
LBGT
LBHI
LBHS
LBLE
LBLO
LBLS
LBLT
LBMI

Oper­
and

iiii
aa
xx op
aaaa
aa
xx op
aaaa

11

aa
xx op
aaaa

11
aa
xx op
aaaa
11
aa
xx op
aaaa
rl
aa
xx op
aaaa

aa
xxop
aaaa
aa
xx op
aaaa
rrrr
rrrr
rrrr
rrrr
rrrr
rrrr
rrrr
rrrr
rrrr
rrrr
rrrr
rrrr

Op­
code

J0,8C
J0,9C
10,AC
10,BC
03
63
73
43
53
3C
19

OA
6A
7A
4A
5A
88
98
AB
88
ca
L>B
EB
Fa
IE
oc
6C
7C
4C
5C
OE
6E
7E
90
AD
BO
10,24
J0,25
10,27
J0,2C
I 0,2E
10,22
10,2·4
I0,2r
J0,25
10,23
J0,20
I 0,2B

M6809 Instructions

Function

<Y>-iiii
(Y >-M (aa, aa +I >
< Y>-xxop
<Y>-MCaaaa,aaaa+I)
MCaa>=MCaa> xor SFF
xxop=xxop xor SFF
M<aaaa>=MCaaaa> xor SFF
A=C A> xor $FF
B=CB> xor SFF

Status
FHINZVC

- - - T T T T

r r o

- - - T T 0 I
- T T 0 I

Clear and wait for interrupt?
Converts binary add of

? ? ? ? ? ?
- r T r r

BCD into BCD
MC aa >=MC aa>-01
xxop=xxop-01
MCaaaa>=MCaaaa>-01
A=(A)-01
B=CB>-01
A=C A> xor ii
A=CA> xor MCaa>
A=CA> xor xxop
A=<A> xor M(Baaa)
B=CB> xor ii
B=< B> xor MC aa>
~= xor xxop
B=CB> xor MCaaaa>
Exchange 2 registers
MC aa>=MC aa>+OI
xxop=xxop+OI
MCaaaa>=MCaaaa>+OI
A=CA>+OI
B=CB>+OI

- - - T T ? -

- T f ? -
- - - T T ? -
- - - T T O -

- - - T T 0 -

? ? ? ? ? ? ?
- T T ? -

- T T ? -
- - - T T ? -

P=aa - - - - -
P=xxop
P=aaaa
Subroutine call - - - - - - -
Subroutine call
Subroutine call
Test CC>=O - - -
Test CC>=I - - -
Test CZ>=I - - -
Test CN> xor CV>=O - - - - - - -
Test CZ> or CCN> xor CV>l=O - - -
Test CC> xor CZ>=O - - -
Test <C>=O - - -
Test CZ> or CCN> xor CV>J=I - - - - - - -
Test CC>=I - - - - - - -
Test CC> or CZ>=I - - - - - - -
Test CN> xor CV>=I - - - - - - -
Test CN>=I - - - - - - -

B-17

Mne­
monic

LBNE
LBPL
LBHA
LBRN
LBSR
LBVC
LBVS
LOA

L08

LDD

LDS

LOU

LOX

LOY

LEAS
LEAU
LEAX
LEAY
LSL

LSLA
LSLB
LSH

Oper­
and

rrrr
rrrr
rrrr
rrrr
rrrr
rrrr
rrrr
ii
aa
xx op
aaaa
ii
aa
xx op
aaaa
iiii
aa
xx op
aaaa
1i11
aa
xx op
aaaa
i111
aa
xx op
aaaa
iii!
aa
xx op
aaaa
ii11
aa
xx op
aaaa
xx op
xx op
xx op
xx op
aa
xx op
aaaa

aa
xx op
aaaa

Op­
code

10,26
I0,2A
16
10,21
17
10,28
J0,29
86
96
A6
66
C6
06
E6
F6
cc
UC
EC
FC
10,CE
10,0E
10,EE
10,FE
CE
DE
EE
FE
8E
9E
AE
HE
I 0,8E
10,9E
10,AE
10,BE
32
33
30
31
08
68
78
48
58
04
64
74

M6809 Instructions

Function

Test CZ>=O
Test C N>=O
Tests always true
Tests always false
Subroutine call
Test C l/)=0
Test CV>=I
A=ii
A=MC aa)
A=xxop
A=MCaaaa>
13=11
B=M C aa >
B=xxop
B=MCaaaa>
D= 11 ii
O=MCaa,aa+I >
D=xxop
D=MCaaaa,aaaa+I)
S= i iii
S=M < aa, aa+ I >
S=xxop
S=MCaaaa,aaaa+I >
U=i iii
U=MC aa, aa+I >
U=xxop
U=MCaaaa,aaaa+l >
X= i iii
X=M < aa, aa+ I >
X=xxop
X=M<aaaa,aaaa+I >
'f=iiii
Y=MCaa,aa+l >
Y=xxop
Y=MCaaaa,aaaa+I >
S=e ff ad xxop
U=e ff ad xx op
X=e ff ad xx op
Y=effad xxop
MCaa>=MCr.ta> A<
xxop=xxop A< I
MCaaaa>=MCaaaa> A<
A=CA> A< I
B=C B> A< I
MCaa>=MCaa> L> I
xxop=xxop L> I
MCaaaa>=M(aaaa) L>

B-18

Status
FHINZVC

- T T O -

- - - T T O -

- - - T T 0 -

- - - T T 0 -

- - - T T O -

- - - T T 0 -

- - - T T O -

T
- - T

- 1 - T T ? T

- 1 - T T ? T
- ? - T T ? f

- 0 T - T

Mne­
monic

LSHA
LSH8
MUL
NEG

NEGA
NEGB
i"OP
ORA

ORB

ORCC
PSHS
i->SHU
PULS
i->ULU
HOL

rlOLA
1-lOLB
HOrl

RORA
RORB
HTI
HTS
S8CA

SBCB

SEX
STA

Oper­
and

aa
xx op
aaaa

ii
aa
xx op
aaaa
ii
aa
xxop
aaaa
ii
rl
rl
rl
rl
aa
xx op
aaaa

aa
xx op
aaaa

ii
aa
xx op
aaaa
ii
aa
xx op
aaaa

aa
xx op
aaaa

Op­
code

44
54
30
00
60
70
40
50
12
BA
9A
AA
BA
CA
UA
EA
FA
IA
34
36
35
37
09
69
79
49
59
06
66
76
46
56
38
39
82
92
A2
82
C2
02
E2
F2
ID
97
A7
87

M6809 Instructions

Function

A=< A> L> I
B=< B> L> I
U=<A>*CB>
MCaa>=OO-MCaa>
xxop=OO-xxop
M(aaaa>=OO-M<aaaa)
A=OO-C A>
B=OO-CB>
P=CP>+OOOI
A=< A> or ii
A= < A> or MC aa >
A=CA> or xxop
A=<A> or MCaaaa)
8=< B> or ii
B=< l:H or M< aa>
B=CB> or xxop
B=CB> or M<aaaa>
CC=C CC> or ii
Push reqisters on M<S>
Push registers on MCU>
Pull registers from M<S>
Pull reqisters from MCU>
MCaa>=MCaa> R< I
xxop=xxop R< I
M<aaaa>=MCaaaa> R<
A=CA> R< I
B= CB> R< I
MC aa>=MC aa> R> I
xxop=xxop R> I
MCaaaa>=MCaaaa> R>
A=(A> R> I
B=C B> R> I
Heturn from interrupt
Return from subroutine
A=C A>-U-CC >
A=CA>-MCaa>-<C>
A=C A>-xxop-C C>
A=CA>-MCaaaa>-CC>
B=C B>-11-C C >
B=CB>-M<aa>-<C>
B=CB>-xxop-CC>
B=-M<aaaa>-<C>
Sign extension of B into A
M·C aa>=< A>
xxop=CA>
M<aaaa>=<A>

B-19

Status
t= H I N Z V C

- - - 0 T - T
---or-r
- - - - T - f
- ? - T T ? I

- ? - T T 1 f
- 1 - r r 1 r

- - - T T 0 -

- - - T T 0 -

'1111111

11'11111
1 1 1 1 1 1 1
- - - r r 1 r

- - - f T ? T
- - - T T ? T
- - - T T ? T

- - - T T 1 T
- - - r T ? r
'/111111

- T r r r

- - - T T T f

- - - T T 0 -
- - - T T O -

Mne­
monic

STB

STD

SIS

STU

STX

ST'f

SUBA

SUBB

SU8D

SWI
SVH2
SWI3
SYNC
TFH
rsr

fSTA
ISTB

Oper­
and

aa
xx op
aaaa
aa
xx op
aaaa
aa
xx op
aaaa
aa
xx op
aaaa
aa
xx op
aaaa
aa
xx op
aaaa
ii
aa
xx op
aaaa
ii
aa
xx op
aaaa
ii ii
aa
xx op
aaaa

rl
aa
xx op
aaaa

Op­
code

07
E7
F"l
UD
ED
FD
10,DF
10,EF
10,FF
UF
EF
FF
9F
AF
BF
I0,9F
10,AF
JO,BF
80
90
AO
BO
co
uo
EO
rO
83
93
A3
B3
3F
10,3F
11 ,3F
13
IF
OD
60
70
40
50

M6809 Instructions

Function

M.C aa > = < B >
xxop=C B>
M.< aaaa >=CB>
MC aa,aa+I >=CD>
xxop=<D>
MCaaaa,aaaa+t>=<D>
MC aa,aa+I >=CS>
xxop=CS>
MCaaaa,aaaa+l>=CS>
MC aa, aa+ I >=CU>
xxop=CU>
MCaaaa,aaaa+l>=<U>
MCaa,aa+l >=CX>
xxop=<X>
MCaaaa,aaaa+l>=CX>
MCaa,aa+I >=CY>
xxop=CY>
MCaaaa,aaaa+l>=CY>
A=CA>-ii
A=C A>-MC aa>
A=C A>-xxop
A=CA>-M<aaaa>
B=C B>-11
B=CB>-MCaa>
B=CB>-xxop
B=CB>-MCaaaa)
D=C D>- ii ii
D=CD>-MCaa,aa+I>
D=<D>-xxop
D=CD>-MCAaaa,aaaa+I)
Software interrupt
Sof twar~ interrupt
Software interrupt
!::iynchron i ze
Transfer register
MCaa>-OO
xxop-00
MC aaaa >-00
C A>-00
C B>-OO

B-20

Status
F H I N l V C

- - - r r o -

- - - T T 0 -

- - - r r o -

- - - T T 0 -

- - - T T O -

- - - r r o -

- 1 - r r r r

- 1 - r r r r

- - - r r r r

'i111111
- r r o -

- T T 0 O
- T T 0 O

B.5 M6809 INDEXED ADDRESSING MODES

The value of the post-byte (the first byte following the opcode) for instruc­
tions using the indexed addressing mode is determined by the format of the
operand. Two formats exist: simple indexing and complex indexing. Simple
indexing is used when the operand is of the form:

<eXp>,R

where <exp> is an absolute expression in the range -16 to 15 but not equal to
zero, and R is one of the index registers "S", 11 U'', "X", or "Y". Al 1 other
indexed addressing modes use the complex indexing format. The two post-byte
formats are described below:

Simple Indexing Post-Byte

7 6 5 4 3 2 1 0
0 RR OFFSET

where RR=OO if x register
01 if y register
10 if u register
11 if s register

OFFSET=5-bit 2's complement

Complex Indexing -- Post-Byte

7 6 5 4 3 2 1 0
1 RR I TTTT

where RR= 00 if x or PCR
01 if y
10 if u
11 if s

I= 0 if no indirect
1 if

TTTT=OOOO
0001
0010
0011
0100
0101
0110
1000
1001
1011
1100
1101
1111

indirect

Single auto-increment (R+)
Double auto-increment (R++)
Single auto-decrement (-R)
Double auto-decrement (--R)
0 offset value or no offset
Accumulator B is offset (B,R)
Accumulator A is offset (A,R)
8-bit offset
16-bit offset
Accumulator D is offset (D,R)
8-bit offset with PCR
16-bit offset with PCR
Extended indirect

B-21

B.6 M6800/M6801 INSTRUCTIONS AND M6809 EQUIVALENTS

Not all M6800/M6801 instructions have exact equivalences recognized by the
M6809 Macro Assembler. Some translate into instructions that generate more
bytes by the M6809 Macro Assembler. However, all opcode mnemonics recognized
by the M6800/M6801 Macro Assembler are recognized by the M6809 Macro Assembler,
and are translated into equivalent M6809 code where possible. Some translations
are not equivalent, but the same function is still performed. In addition, some
11 M6800-like 11 mnemonics are recognized by the M6809 Macro Assembler and translate

M6800/M6801 Mnemonic Type of Instruction M6809 Equivalent
-------------------- ------------------- ----------------

ABA 6800 PSHS B
ADDA S+

ASLIJ 6801 ASLB
HOLA

CBA 6d00 PSHS B
CMl:'A S+

CLC 6800 AND CC #$FE
CLf 6800-like AND CC #$BF
CLI 6800 AND CC #$EF
CL If 6800-1 ike AND CC fl$Af
CLV 6800 ANDCC #$FD
Cl:'X 6800 CMPX
iJES 6800 LEAS -I ,S
OEX 6800 LEAX -I ,X
uEY 6800-like LEAY -I' y
INS 6800 LEAS I, S
INX 6800 LEAX I , X
I NY 6800-like LEAY I 'y
LOAAI LOA A 6800 LOA
LDABI LOA 8 6800 LOA
LOAD 6801 LDD
LSLD 6801 ASLB

ROLA
LSHO 6801 LSRA

RORB
ORAAI ORA A 6800 OHA
<>RABI ORA 8 6800 ORB
t>SHAI l:'SH A 6800 l:'SHS ' l:'St-rn I PSH B 6800 PSHS B
l:'SHX 6801 PSHS x
PULAI IJUL A 6800 i->ULS A
PULBI l:'UL B 6800 i'ULS B
PULX 6801 PULS X
SBA 6800 PSHS B

SUBA S+

B-22

M6800/M6801 Mnemonic

SEC
SEF
SEI
SEIF
SEV
STAAf STA A
STAIH STA B
STAU
f AB

TBA

f AP
TPA
rsx
rxs
f4AI

Type of Instruction M6809 Equivalent

6800
6800-like
6800
6800-like
6800
6800
6d00
6801
6~00

6800

6800
6800
6800
6800
6800

B-23

ORCC #$0 I
ORCC #$40
ORCC #$I 0
ORCC /1$50
ORCC #$02
STA
SIB
STD
TFR A,B
TSTA
fF R B, A
fSTA
TFR A.cc
TFR CC, A
TFR S,X
TFR X,S
Cr'lAI ISFr

APPENDIX C

DIRECTIVE SUMMARY

A complete description of all directives appears in Chapter 4.

ASSEMBLY CONTROL
END
FAIL
NAM
ORG
SETDP

SYMBOL DEFINITION
ENDM
EQU
MACR
REG
SET

Program end
Programmer generated errors
Assign program name
Origin program counter
Set direct page pseudo register (M6809 only)

Macro definition end
Assign permanent value
Macro definition start
Register list definition (M6809 only)
Assign temporary value

DATA DEFINITION/STORAGE ALLOCATION
BSZ Block storage of zero; single bytes
FCB Form constant byte
FCC Form constant character string
FOB Form constant double byte
RMB Reserve memory; single bytes

PROGRAM RELOCATION
ASCT
BSCT
COMM
CSCT
DSCT
IDMT
PSCT
OPT REL
XDEF
XREF

Absolute section
Base section
Named common section
Blank common section
Data section
Identification record
Program section
Relocatable output selected
External symbol definition
External symbol reference

C-1

CONDITIONAL ASSEMBLY
ENDC End of current level of conditional assembly
IFC Assemble if strings compare
IFEQ Assemble if expression is equal to zero
IFGE· Assemble if expression is greater than or equal to zero
IFGT Assemble if expression is greater than zero
IFLE Assemble if expression is less than or equal to zero
IFLT Assemble if expression is less than zero
IFNC Assemble if strings do not compare
IFNE Assemble if expression is not equal to zero

LISTING CONTROL
OPT ABS
OPT CL
OPT NOCL
OPT CMO
OPT NOCMO
OPT CRE
OPT G
OPT NOG
OPT L
OPT NOL
OPT LLE=n
OPT LOAD
OPT M
OPT MC
OPT NOMC
OPT MD
OPT NOMD
OPT MEX
OPT NOMEX
OPT 0
OPT NOO
OPT P=n
OPT NOP
OPT REL

Select absolute MOOS-loadable object output
Print conditional assembly directives
Don't print conditional assembly directives
Allow CMOS instructions STOP and WAIT (M6805 only)
Don't allow CMOS instructions STOP and WAIT (M6805 only)
Print cross reference talbe
Print generated lines of FCB, FCC, and FDB directives
Don't print generated lines of FOB, FCC, and FOB directives
Print source listing from this point
Inhibit printing of source listing from this point
Change line length
Select absolute EXORciser-loadable object output
Create object output in memory
Print macro calls
Don't print macro calls
Print macro definitions
Don't print macro definitions
Print macro expansions
Don't print macro expansions
Create object output file
Do not create object output file
Change page length
Inhibit paging and printing of headings
Select relocatable object output

C-2

OPT S
OPT SE

OPT U
OPT NOU
OPT W
OPT NOW
OPT Z~ll

OPT NOZ01
PAGE
SPC
TTL

Print symbol table
Print user-supplied sequence numbers
Print unassembled code from conditional directives
Don't print unassembled code from conditional directives
Print warnings (M6809 only)
Don't print warnings (M6809 only)
Allow M6801 instruction mnemonics (M6800 only)
Don't allow M6801 instruction mnemonics (M6800 only)
Print subsequent statements on top of next page
Skip lines
Initialize heading for source listing

C-3

\

APPENDIX D

ASSEMBLER MESSAGES

A description of all error and warning messages follows. Warning messages
are only supported by the M6809 Macro Assembler. Some error messages only
occur when using the M6809 Macro Assembler or the M6805 Macro Assembler.
The format of the error is:

****ERROR XXX-- YYYYY

where XXX is the error message number, and YYYYY is the line number of the
previously encountered error. If YYYYY = 00000, this indicates that there
is no previous error. The format of the warning messages is similar. The
EDDS and tape versions of the M6800 Macro Assembler do not include the line
number of the last error.

0.1 ERROR MESSAGES

169 Invalid bit number (M6805 only)
The bit number in bit set/clear and bit test and branch instructions
must be an absolute number in the range 0-7.

173 Invalid use of direct mode indicator (M6809 only)

174

175

176

177

178

The direct mode indicator, 11 < 11 , was specified in the extended indirect
addressing mode (e.g., LOA <[VAR]). The 11 < 11 is ignored.

Invalid auto increment/decrement format (M6809 only)
Single auto increment or decrement was specified in the indirect mode
(e.g., LOA [X+J) or more than two minus or plus signs detected (e.g.,
LOA ---X).

Invalid index register format (M6809 only)
One of the accumulators 11 A11 , 11 8 11 , or 11 0" was specified as the offset
in the indexed mode, but was not followed by one of the index registers
"S 11 , 11 U11 , 11 X11 , or "Y" (e.g., LOA A,PCR).

Invalid expression for PSH/PUL (M6809 only)
The immediate expression following one of the instructions PSHS, PULS,
PSHU, or PULU contained symbols defined with other than the REG
directive (Paragraph 4.27), contained an operator other than 11 !+ 11 , or
contained no symbo 1 s fo 11 owing the 11 #11 (e.g., PSHU #$FF; PSHS #REGl *REG2).

Incompatible register for PSH/PUL instruction (M6809 only)
The register list for the PSHS/PULS instructions cannot contain the
register 11 $ 11 , and the register list for the PSHU/PULU instructions
cannot contain the register "U". The register list specified with the
REG directive cannot contain both 11 U11 and 11 $ 11 • In the case with the
REG directive, the value assigned to the symbol will be the first "U 11

or "S 11 encountered (e.g., PSHS S).

Invalid register operand specification (M6809 only)
Undefined register name encountered in register list; not exa~tly two.
register names in register list specificat~on for !FR or EXG_instr~ctions;
or no register list specified for PSH/PUL instructions. VAlid register
names are: A, 8, CC, D, DP, PC, S, U, X, and Y (e.g., TFR A,B,X; PULU Q).

D-1

179 Incompatible register pair (M6809 only)
The register pair of an EXG instruction was not the same size (i.e.,
two 16-bit registers or two 8-bit registers), or the register pair
specification of a TFR instruction indicated a transfer from an 8-bit
register to a 16-bit register. The 8-bit registers are: "A", "B 11 ,

11 CC 11 , and 11 DP 11 • The 16-bit registers are: 11 011 , "PC", "S", "U", "X",
and "Y" (e.g., EXG X,A; TFR B,PC).

202 Label or opcode error
The label or opcode symbol does not begin with an alphabetic character
or a period.

205 Label error
The statement label field is not terminated with a blank. This usually
occurs if an invalid character is used in the label.

207 Undefined opcode
The symbol in the opcode field is not a valid opcode mnemonic, directive
or macro definition.

208 Branch out of range
The operand resulted in an offset greater than 129 bytes forward or
126 bytes backward from the first byte of the branch instruction. This
error may also occur if the operand is in a different program section
(relocatable) than the current program counter section.

209 Illegal addressing mode
The specified addressing mode in the operand field is not valid with
this instruction type.

210 Byte overflow -- operand too large
The operand's value exceeded 1 byte (8 bits). The most significant
eight bits of the 16-bit expression must be all zeros or all ones for
a one-byte field.

211 Undefined symbol
The symbol never appears in a label field.

212 Directive operand error
A syntax error was detected in the operand field of a directive.

214 FCB directive syntax error
The structure of the FCB directive is syntactically incorrect.

215 FOB directive operand error
The structure of the FOB directive is syntactically incorrect.

216 Directive operand error
The directive's operand field is missing, terminated by an invalid
terminator, or an expression in the operand field contains an invalid
operator.

217 Option error
An option in the operand field of the OPT directive was undefined.

D-2

219 No END statement
The END directive was not found at the end of the last source file.
The END directive is automatically supplied.

220 Phasing error
The value of the program counter during pass 1 and pass 2 for the same
instruction is different.

221 Symbol table or macro table overflow
The symbol table or macro table has overflowed. This is a fatal error,
and terminates the Assembler during pass 1.

222 Reserved symbol used
One of the reserved symbols (A, B, or X) appeared in the label field
or in the operand field of a statement. These symbols can only be
used in the operation field to modify the root mnemonic (A or B) or
in the operand field to specify indexed addressing (e.g., ,X). For
the M6809 Macro Assembler, other reserved symbols are Y, U, S, 0, CC,
DP, PC, and PCR. For the M6805 Macro Assembler, only A and X are
reserved symbols.

223 The directive must or must not have a label
Depending on the directive used, the label field must be blank or must
contain a valid symbol.

225 Named common name used in expression
A named common section name can only appear in the label field of
another COMM directive. Its use anywhere else is invalid.

226 Illegal parenthesis
The parentheses in an expression do not balance.

227 Too many digits in numeric constant
An overflow in the numeric evaluation of a constant was detected.
Also used if a sequence number is missing on a line in a file that
has sequence numbers.

228 Invalid usage of operator
The multiplication, division, and two-character operators cannot be
used in a relocatable expression or with external references.

229 Invalid starting execution address
The starting execution address specified as the expression on the END
statement is not within the range of the MOOS-loadable object file.
This can happen, since RMB's at the beginning or end of the program
are not included in the range of the program.

230 CSCT initialization error
No initialized code can be placed into CSCT.

231 Multiple relocatable section types
More than one relocatable section type occurred in the evaluation of
an expression or one relocatable symbol occurred with a unary minus
preceding it.

D-3

232 Relocation count error
The relocation count for a given section after an expression evaluation
was greater than one (e.g., adding two PSCT symbols).

233 Symbol name too large
A symbol of greater than 6 characters was encountered.

234 Multiply defined symbol
A reference was made to a multiply defined symbol.

235 Memory error
The OPT M option was used and object code was going to be written into
non-existent memory or into contiguous memory belonging to the Assemble1

236 Program counter overflow
The program counter overflowed its maximum value for a particular
section ($FF for BSCT, $FFFF for all other sections).

237 Invalid terminator for sequence number
The character following a user-supplied sequence number was not a blank.

238 Section table overflow
Too many ASCT and named common sections were specified. This is a
fatal error, and terminates the Assembler during pass 1.

239 Illegal directive in absolute mode
A relocation directive (e.g., PSCT, COMM, etc.) was used, but the
relocation option (OPT REL) was not specified.

240 Inconsistent or invalid named common operand
The operand field of the COMM directive did not contain BSCT, DSCT, or
PSCT specifications; or the operand field was different from the one
used the first time.

241 Illegal symbol used in an expression
An undefined forward reference, external reference, or relocatable
symbol was used illegally in an expression. The instruction will
not be relocated by the M6800 Linking Loader.

242 OPT directive error
The 11 LOAD 11 , 11 REL 11 , or "ABS" options were used in combination; the 11 REL 11

option was not ASCT or the program counter was not zero; or the 11 CRE 11

option ~1as used after the first symbol had already been placed into
the symbol table.

243 XREF or XDEF directive operand error
An invalid symbol or no operand was detected in the operand field of
the XDEF or XREF directive.

244 Illegal page or listing line length
A page or listing line length was not within the allowed range.

0-4

245 Invalid use of common variable
A variable in blank or named common cannot be used in the operand
field of the XDEF, XREF, or COMM directive.

247 Invalid terminator for an operand
The character following the legal part of an operand is not a valid
terminator (usually a carriage return or space). For the M6809 Macro
Assembler, this error could occur if invalid indirect pairing; i.e.,
an operand has 11 (11 but no 11] 11 •

248 Macro definition error
An attempt was made to define a macro that already existed.

249 Macro parenthesis error
Parentheses in macro call argument are not balanced.

250 Macro definition nest error
A macro directive was encountered during a macro expansion. Macro
definitions cannot be nested.

251 Macro expansion nest error
Macro calls were nested too deep, or the number of ENDM directives
does not match the number of MACR directives.

252 Invalid macro argument index
The character following a backslash (\) during macro expansion was not
an alphanumeric or a period.

253 IFC, IFNC directive syntax error
No operand was found or no comma was found to separate the two arguments.

254 Conditional directives nest error
Conditional directives were nested too deep, or the number of ENDC
directives did not match the number of IFxx directives.

255 FAIL directive warning
The FAIL directive (a planned program error) was encountered.

D-5

D.2 M6809 WARNING MESSAGES

1 Long branch not required
A long branch instruction was used to branch to an address within
the range -126 to +129. Although the long branch instruction could
be changed to a short branch, it could result in other out-of-range
short branches.

2 Extended addressing should be used
Direct addressing was forced by using the "<" indicator. However, the
direct page pseudo register assigned by the SETDP directive (Paragraph
4.27) indicated that the extended mode should have been used.

3 Duplicate register specification
The same register name was specified more than once in a register list.
Register "D" specified with either register "A" or 11 8 11 gives this
warning.

4 Possible SETDP expression error
The most significant byte of the expression in a SETDP directive was
not zero. The direct page pseudo register is assigned the value of
the least significant byte anyway.

5 Extended addressing should be used
Direct addressing was forced by using the 11 < 11 indicator with a CSCT,
DSCT, or PSCT non-external expression. The expression will not be
relocated by the M6800 Linking Loader.

6 Possible transfer error
The TFR instruction was used with a transfer from a 16-bit register
to an 8-bit register. The result of such a transfer is to move the
least significant byte of the 16-bit register to the 8-bit register.

D-6

APPENDIX E

ASSEMBLER OUTPUT FORMAT

All the numeric information printed on the source listing is in hexadecimal,
unless otherwise noted.

E.1 M6800/M6801 FORMAT

The MOOS version of the Macro Assembler will automatically print user-supplied
sequence numbers in the left margin if they appear in the source file. However,
the EDOS and tape versions of the Assembler will only print sequence numbers
under control of the OPT directive. Then the sequence numbers will be printed
in the right-most five columns of the source listing. Thus, the column titled
11 SEQ #11 in the following table does not apply to EDOS and tape versions of the
Macro Assembler.

COLUMN
SEQ # NO SEQ #

1-5

?-11

12 6

14-17 8-11

19-20 13-14

22-23 16-17
24-25 18-19
28 22

22-23 16-17
25-28 19-22

25-28 19-22

30-35 24-29

37-42 31-36

43-50 37-44

52-132 46-132

CONTENTS

USER-SUPPLIED
([)ECit1AL>

SEQUENCE NUMBER

SOURCE LI NE NUMBER.; A FIVE-DIGIT
DECIMAL COUNTER MAINTAINED BY THE
ASSEMBLER

PROGRAM COUNTER SECTION FLAG <A=ASCT,
B=BSCT, C=CSCT, D=DSCT, N=NAMED
COMMON, P=PSCT>

CURRENT PROGRAM COUNTER

MACH I NE OPE RAT I ON CO[)E

FOR NON-BRANCH INSTRUCTIONS:
FIRST BYTE OF OPERAND
SECOND B'T'TE OF OPERAN[> (IF ANY)
OPERAND SECT I ON FLAG (A, B, c.. D,
N .. P>

FOR BRANCH INSTRUCTIONS:
RELATIVE BRANCH OFFSET
ABSOLUTE ADDRESS OF DESTINATION

FOR DIRECTIVES LIKE BSZ, EQU, ORG,
ETC:
VALUE OF EXPRESSION

LABEL FIELD

OPERATION FIELD

OPERANO FIELD; LONGER OPERANDS EXTEND
INTO THE COMMENT FIELD

COMMENT FIELD

F-1

E.2 M6805 FORMAT

The M6805 Macro Assembler will automatically print user-supplied sequence
numbers in the left margin if they appear in the source file.

COLUMN
Seq # No Seq #

1-5

7-11

12

14-17

19-20

22-23
24-25
31

22-23
28-31

22-23
25-26
28-31

1-5

6

8-11

13-14

16-17
18-19
25

16-17
22-25

16-17
19-20
22-25

28-31 22-25

33-38 27-32

40-45 34-39

46-53 40-47

5~-132 49-132

CONTENTS

User-supplied sequence number Cd~cimal

Source line nu•ber• a five-diqit deci~
counter maintained by the assembler

Program counter section flaq <A=ASCT,
B=BSCT, C=CSCT, D=DSCT, N=Named Common
P=PCST>

Current program counter

Machine operation code

For non-branch instructions•
First byte of operand
Second byte of operand (if any>
Operand section flag <A,B,C,D,N,P>

For branch instruction•
Relative branch offset
Absolute address of destination

For bit test and branch instructions•
First byte of operand
Relative branch off set
Absolute address of destination

For directives like BSZ, EQU, ORG, etc
Value of expression

Label field

Operation field

Operand f ieldi lon:Jer operands extend
into the comment field

Comment field

E-2

E.3 M6809 FORMAT

The M6809 Macro Assembler will automatically print user-supplied sequence
numbers in the left margin if they appear in the source file.

COLUMN
Seq II No Seq II

1-5

7-11

12

14-1 "7

19-20
21-22

24-25
26-21
32

24-25
27-28
29-30
32

24-25

26-27
29-32

24-25

27-28

1-5

6

8-11

13-14
15-16

18-19
20-21
26

18-19
21-22
23-24
26

18-19

20-21
23-26

18-19

21-22

CONTENTS

User-supplied
<decimal>

sequence number

Source line number• a five-diqit
deci~al counter maintained by the
assembler

Program counter section flaq CA=ASCT,
B=BSCT, C=CSCT, D=DSCT, N=Named
Common, P=PSCT>

Current program counter

First byte of machine operation code
Second byte of op-code Cif any>

For non-branch, non-indexed
instructions•

For

For

For

First byte of operand
Second byte of operand Cif any>
<~eranrl section flag CA, B, C, D,
N, p >

non-branch, indexed instructions•
Index post-byte
First byte of operand
Second byte of operand Ci f any>
Operand section flag

branch instructions•
First byte of relative branch
offset
Second byte of offset (if any>
Absolute address of destination

M6800 equivalent instructions•
Second byte of translated
instruction
Third byte of instruction (if
any>

E-3

29-30 23-24

29-32 23-26

34-39 28-33

41-46 35-40

47-54 41-48

56-132 50-132

Fourth byte of instruction Cif
any>

For directives like BSZ, E~U, ORG,
etc•
Value of expression

Label field

Operation field

c~erand f ieldl longer operands extend
into the comment field

Comment field

E-4

E.4 CROSS REFERENCE FORMAT

COLUMN

1

2

4-7

9-14

16-?

CONTENTS

Symbol Type Flag:
D - External definition
N - Named common symbol
R - External reference
U - Undefined symbol
M - Multiply defined symbol
S - 11 SET'1 symbol
blank - None of the above

Symbol Section Flag
blank - ASCT
B - BSCT
C - CSCT
D - DSCT
P - PSCT

Hexadecimal value of symbol

Symbol name

Assembler-maintained source line numbers of
symbol reference. The asterisk appears
after the line number of a symbol 1 s
definition. If the symbol was undefined,
the asterisk will appear after the symbol 1 s
last reference.

E-5

APPENDIX F

M6800 MACRO ASSEMBLER/M6800 ASSEMBLER DIFFERENCES

Several differences exist between the M6800 Macro Assembler and the M6800
Co-resident Assembler. Obvious differences include such things as relocation,
external references, external definitions, conditional assembly, extended
expression evaluation (operators and parentheses), printing of titles on the
source listing, printing of sequence numbers on the left side of the listing,
macro definitions, and the M6801 instruction mnemonics.

Other differences are not attributable to major new features of the Macro
Assembler. These differences include:

1. The 11 0PT 011 option is no longer required to generate an object file.
The object file is created as a default.

2. All expressions follow the normal rules of algebra rather than the
strict left-to-right evaluation performed by the Co-resident Assembler.

3. The NAM directive is not required.

4. The symbol table space required for each symbol has changed from eight
to ten bytes. In addition, if the cross reference option is in effect,
an additional ten bytes are required for every four references to a
symbol.

5. The Macro Assembler requires more memory.

6. In certain versions of the Macro Assembler, all of the Assembler
options specified with the OPT directive can be specified on the command
line that invokes the Assembler. This feature allows various options
to be included or excluded without having to edit the source file.

7. Some versions also allow the source listing to be directed to a diskette
file and to direct the printing of error messages to the printer (no
listing being produced}.

With the exception of the M6801 option, all of the above differences also apply
to the M6805 and M6809 Macro Assemblers.

F-1

APPENDIX G

USING THE MACRO ASSEMBLER

The following paragraphs describe how to invoke the Macro Assembler from an
MDOS diskette, an EDOS diskette, or from tape. Each section also includes an
example of the command line format. After the Macro Assembler has been invoked,
it will display a message of the following format:

MOOS MACROASSEMBLER 03.00
COPYRIGHT BY MOTOROLA 1977

M6800 MACROASSEMBLER 2.2
COPYRIGHT BY MOTOROLA 1978

M6805 MACROASSEMBLER 03.00
COPYRIGHT BY MOTOROLA 1978

M6809 MACROASSEMBLER 03.01
COPYRIGHT BY MOTOROLA 1978

to indicate the version of the assembler (M6800 MDOS - first sign on display;
M6800 EDOS or tape - second sign on display; M6805 MOOS - third sign on display;
M6809 MOOS - fourth sign on display) and the current revision number of the
assembler.

G.1 M6800/M6801 MOOS MACRO ASSEMBLER

The M6800 Macro Assembler is invoked from the MOOS command line, as are other
MOOS commands. However, the M6800 Macro Assembler requires that the system has
a minimum of 24K bytes of memory. The format of the command line is:

RASM <name l>[,<name 2>, ... ,<name n>] [;<options>]

where <name i> are the names of source files. Each file name in the list of
source files is in the standard MDOS file name format:

<filename> [.<suffix>] [:<logical unit number>]

The default va 1 ues of 11 SA 11 and 11 011 are used if suffix and 1 ogi ca 1 unit number
are not explicitly entered. Up to twenty file names can be accommodated by the
Assembler. If multiple source files are specified, only the last source file
should contain the END directive. If an END directive is found in a file prior
to the last one, the assembly will exclude any files after the END directive.

The <options> may be one or more of the options listed in the following table.
All options except those that control the destination of the source listing, the
destination of the object file, and the printing of error messages on the printer
if no listing is desired, can be specified from within the source program with
the OPT directive. Certain options are automatically used as a default condition.
These conditions can be reversed or overridden by preceding the option letter with
a minus sign (-). The following options are recognized by the Assembler:

G-1

OPTION

A
c
D
E
F
G
H
L

L=#CN,
L=<name>,

M
N=ddd,

0

O=<name>,
P=dd,

R
s
u
x
z

DEFAULT

-A
c
D

-E
F

-G
-H
-L
-L
-L

-M
N=72

0

0
P=58

-R
-S
-U
-X
-Z

ATTRIBUTE CONTROLLED BY OPTION

Absolute MOOS-loadable object file output
Printing of macro calls
Printing of macro definitions
Printing of macro expansions
Printing of conditional directives
Printing of generated code from FCB, FOB, and FCC direct
Input initial heading from the console
Print source listing on line printer
Print source listing on console
Print source listing into diskette file <name> (default
suffix is 11 AL 11 ; default logical unit is zero)
Print error messages only on line printer
Set printed line length to 11 ddd 11 (deci ma 1)
Create object file with name <name l> and suffix 11 LX 11

(absolute EXORciser-loadable), suffix 11 R0 11 (relocatable}
or 11 L0 11 (absolute MOOS-loadable) on same drive as <name
of command line
Create object file with name <name>
Set number of printed lines per page to 11 dd 11 (decimal}
Relocatable object file output
Print symbol table
Print unassembled code between conditional directives
Print cross reference table
Use M6801 instruction mnemonics instead of M6800 and
create M6801 object output

Certain options (L=, N=, 0=, P=} require a terminating comma only if other
options follow. Options are normally specified without any intervening blanks
or separators. The options 11 L11 and 11 M11 are mutually exclusive, as are 11A11 and
11 R11 • The 11 A11 option is only supported by the MOOS version of the Macro Assemble

Each symbol in the symbol table requires ten bytes. Thus, if the minimum of 24K
bytes of memory is used, the Macro Assembler can accommodate about 195 (decimal}
symbols. However, if the cross reference option is specified, the symbol table
requirements differ. In this case, an additional ten bytes are required by each
symbol for every four references to that symbol. If macro definitions are
used (MACR directive}, the available symbol table space will be smaller.

Like other MOOS commands, the RASM command is sensitive to the BREAK and CTL-W
keys of the system console.

The following are examples of valid MOOS command lines that invoke the Macro
Assembler:

RASM SFILEl;LRX
This command line causes the Macro Assembler to assemble the source
file SFILE1.SA:0 in the relocatable mode (11 R11 option}. A source
listing will be directed to the system line printer (11 L11 option}.
At the end of the source listing, a cross reference table will be
printed (11 X11 option}. An object output file, SFILEl.RO:~, will also
be produced automatically.

G-2

RASM FILEA:l;O=TEMP:0
This command line causes the Macro Assembler to assemble the source
file FILEA.SA:l. No source listing will be generated, regardless
of the OPT L directives within the source file. An object file will
be created on drive zero. The suffix of the fi 1 e wi 11 be "LX 11 (if
no OPT REL or OPT ABS is contained in source file) or 11 R0 11 (if OPT
REL is contained in source file) or "LO" (if OPT ABS is contained
in source file.

RASM Fl,F2,F3:1;L-OS

RASM TEST;A

This command line causes the Macro Assembler to assemble the three
source files Fl.SA:0, F2.SA:0, and F3.SA:l as if they were one
contiguous source file. A source listing is produced on the system
line printer. No object output file will be created. A symbol
table will be printed at the end of the source listing.

This command line causes the Macro Assembler to assemble the source
file TEST.SA:~. No source listing will be generated. An object file
will be created on drive zero (0). Its name will be TEST.LO, and
it will be in a format that can be loaded by MOOS.

G.2 M6805 MACRO ASSEMBLER

The M6805 Macro Assembler only runs under MOOS. It is invoked from the MOOS
command line, as are other MOOS commands. The format of the command line is:

RASM05 <name l>[,<name 2>, ... ,<name n>] [;<options>]

With the following exceptions, the command line parameters are the same as
described for the M6800 MOOS Macro Assembler (Paragraph G.1).

1. The "Z" option does not exist.

2. With 24K bytes of memory, the M6805 Macro Assembler can accommodate
about 185 (decimal) symbols.

G.3 M6809 MACRO ASSEMBLER

The M6809 Macro Assembler only runs under MOOS. It is invoked from the MOOS
command line, as are other MOOS commands. However, the M6809 Macro Assembler
requires that the system has a minimum of 32K bytes of memory. The format of
the command line is:

RASM09 <name l>[,<name 2>, ... ,<name n>] [;<options>]

With the following exceptions, the command line parameters are the same as
described for the M6800 MOOS Macro Assembler (Paragraph G.1).

1. The 11 Z11 option does not exist.

2. The 11 W' option exists and indicates that warnings should be printed.
11 -W suppresses warnings. The default is to print warnings.

G-3

3. If the "M" command line option is specified, warnings as well as error
messages are directed to the line printer.

4. ~/ith 32K bytes of memory, the M6809 Macro Assembler can accommodate
about 740 (decimal) symbols.

G.4 M6800 EDOS MACRO ASSEMBLER

The M6800 Macro Assembler is invoked from the EDOS command line, as are other
EDOS commands. However, the RASM command requires that the system has a minimum
of 16K bytes of memory. The format of the command line is:

RASM, [<list>], [<object>] ,<name l> [,<name 2>, ... ,<name n>]

where <list> specifies whether or not a source listing is to be produced, <objeci
specifies whether or not an object file is to be produced, and <name i> (i=l to r
are the names of EDOS source files. Each file name must be a valid EDOS file
name (five characters). If multiple source files are specified, only the last
file should contain an END directive. If an END directive is encountered prior
to the last file, the assembly will not include files after the END directive.

The <list> can be either the line printer (#LP), the system console (#CN), an
EDOS file name, or null (indicated by a comma only). If no <list> is specified,
no source listing will be produced. If an EDOS file name is used to receive the
source listing, then no object file can be created on the diskette at the same
time.

The <object> can be either the line printer (#LP), the system console (#CN), an
EDOS file name, or null (indicated by a comma only). If an EDOS file name is
used to receive the object file, then no source listing can be created on the
diskette at the same time. The line printer or system console should not be
used if the program is being assembled with the relocatable option (OPT REL).

The EDOS Macro Assembler does not support the M6801 instruction set or the
printing of sequence numbers on the left. If sequence numbers are in the source
file, they will only be printed if the OPT SE option is in effect.

Each symbol in the symbol table requires ten bytes. Thus, if the minimum of
16K bytes of memory is used, the Macro Assembler can accommodate about 270
(decimal) symbols. However, if the cross reference option is used, the symbol
table requirements differ. In this case, an additional ten bytes are required
by each symbol for every four references to that symbol. If macro definitions
are used (MACR directive), the available symbol table space will be smaller.

Following are examples of valid EDOS command lines used to invoke the Macro
Assembler:

RASM,#CN,PROGO,PROGS
This command line will cause the file PROGS to be assembled. A source
listing will be produced on the system console. The object file PROGO
will also be created on the diskette. Both source and object files
are on drive zero.

G-4

RASM,,PROGO:l,PROGS
This command line will cause the file PROGS to be assembled. However,
no source listing will be produced. The object file, PROGO, will be
created on drive one.

RASM,#LP,,PROG1,PROG2,PROG3
This command line will cause the files PROGl, PROG2, and PROG3 to be
assembled as if they were one contiguous source file. A source
listing is produced on the system line printer. No object file will
be created.

G.5 M6800/M6801 TAPE MACRO ASSEMBLER

The tape version of the Macro Assembler is loaded via EXbug. When the EXbug
prompt:

EXbug V.R
is displayed, the command

LOAD

should be entered. EXbug will respond with the prompt:

SGL/CONT

to which the operator should respond with an "S". The tape should then proceed
to be loaded into memory. EXbug will display its prompt again after the load
has completed.

The Macro Assembler is given control via the command:

600;G

(either from MAID, if using EXbug version 1.1 or 1.2, or directly from EXbug, if
using version 2.0). The Macro Assembler will then display a sign-on message,
followed by the prompt:

#LIST ,#OBJECT:
?

The operator must respond with the proper device designators as follows:

Designator

#CN
#CP
#LP
null

For example, the operator response:

Device

Console printer
Console punch
Line printer
No output desired

#CN,#CP

causes the source listing to be directed to the console printer, and the object
file to be directed to the console punch. The operator response:

#LP

G-5

causes the source listing to be directed to the line printer, and no object
file to be created. The operator response:

,#CN

causes no source listing to be generated, and an object file to be displayed
on the console printer. A null response for both devices (carriage return only)
will cause neither a source listing nor an object file to be created.

Next, the Macro Assembler will display the message:

SOURCE DEVICE:
?

to which the operator must enter the device designator that contains his source
input file. The console reader (#CR) or the EXORtape (high-speed paper tape
reader) (#HR) is the only valid designator for the source device. The source
tape must be loaded and ready to be read before this response is given.

If an END directive is not encountered in the source file (i.e., a tape time-out
occurred), then the assembler will redisplay the "SOURCE DEVICE" prompt, enablin
the operator to load another source file. This process will continue until an
END directive is encountered in a source file. If no source files contain an
END directive, the operator can respond with the letter 11 E", followed by a
carriage return to the "SOURCE DEVICE" prompt. This will end pass one of the
assembler and will cause an error to be generated indicating that no END
directive was encountered.

When the END directive is encountered, or when the 11 E11 is entered by the operato
as explained above, the assembler will end pass one, and begin pass two. This
is indicated by the following display:

PASS 2
SOURCE DEVICE:
?

The operator must then reload all of the source tapes in the same sequence as
they were loaded during the first pass. The specification of the device is the
same as during pass one. The termination of pass two is also the same as during
the first pass. During pass two, the source listing and the object file, if
specified, will be produced.

After pass two is terminated, the assembler will display another question mark
prompt (?) to indicate that it is ready to assemble another program. The source
listing and object device designators should be entered at this point if another
assembly is to occur.

If the operator detects an error in an input line that he has entered prior to
depressing the terminating carriage return, the CTL-X keys can be depressed to
cancel the entire line, allowing a new line to be input~ or the CTL-H keys can
be depressed causing the previously entered character to be deleted. The
character deleted is redisplayed on the console as positive feedback that it was
removed from the input line.

G-6

Each symbol in the symbol table requires ten bytes. Thus, if the minimum of
16K bytes of memory is used, the Macro Assembler can accommodate about 360
(decimal) symbols. However, if the cross reference option is specified, the
symbol table requirements differ. In this case, an additional ten bytes are
required by each symbol for every four references to that symbol. If macro
definitions are used (MACR directive), the available symbol table space will
be smaller.

The tape version of the Macro Assembler does not support the printing of
sequence numbers on the left margin. If sequence numbers are contained in a
file, they can only be printed with the OPT SE directive; then they will be
printed in the right margin of the source listing. The tape version of the
Macro Assembler does not support the relocatable option either. Thus, all
directives dealing with program sections and relocatable features cannot be
used.

G-7

APPENDIX H

SAMPLE PROGRAMS

The following example illustrates the various Macro Assembler directives
that can be used in any program, regardless of whether or not it is assembled
with the relocatable option. An attempt has been made to show all of the
different types of constants and expression formats that can be used. Although
the listing format shown is for the M6800 Macro Assembler, that is the only
difference between that and the M6805 and M6809 Macro Assemblers for this example.

The comments contained in the example serve to document what the different
directives are used for. Chapter 4 describes all of the directives in detail,
and should be consulted for a description of each directive, if necessary.

PAGE 00 EXAMPI .SA:O

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021A 0000
00022A 0005
00023
00024
00025
00026
00027
00028
00029
00030

0005
0006

OOCJB

A

* * THIS EXAMPLE ILLUSTRATES THE USE OF TI-iE VARIOUS
* ASSEMBLEH DIRECTIVES THAT DO NOT INVOLVE
* PROGRAM RELOCATION.

*
*
* * TURN ON OPTIONS TO PRINT SYMBOL TABLE AND TO
* GENEHATE OBJECT LISTING FROM FCB, FOB, AND FCC

*
*
* USE
* FOR
*
*
* BSZ
*
*
*

OPT S,G

DEFAULT VALUE OF PROGRAM COUNTER
I NIT I AL OR I GI N

BLOCK STOHAGE OF ZEROES
FIRST FORM USES SIMPLE CONSTANT
SECOND FORM USES COMPLEX EXPRESS I ON

BSZ 5 • FIVE BYTES
A LABELO BSZ $I0*2/2-$10+@77-76Q+l01B. 6 BYTES

*
* EQU -- ASSIGN VALUE TO LABEL. FIRST FORM USES
* PHOGRAM COUNTER IN EXPRESSION. SECOND
* FOHM USES * AS BOTH PC AND MULf I PLY
* OPERATOR. THIRD AND FOURTrl FORMS USE
* SHIFT OPERATOH.

* A TAGI EQU * • USE OF PROGRAM COUNTER

H-1

00031 003C A TAG2 EQU ***12 • CALC PC*PC/2
00032 0800 A TAG3 EOU TAGI !<8 • SHIFT LSB INTO MSB
00033 OBOO A TAG4 EQU TAG I ! <(2 ! A 3) • SAIAE AS TAG3
00034 * 00035 * FCB - FORM CONSTANT BYTE
00036 * 00037A 0008 oc A TAG5 FCB 12 • FORM A SI l'.JGLE BYTE
00038A OOOC OA A FCB IO,SIO,&IO,@I0,%10,'l,~O,TAG3!>8,·

A 0000 10 A
A OOOE OA A
A OOOF 08 A
A 0010 02 A
A 0011 31 A
A 0012 30 A
A 0013 OB A
A 0014 FF A

00039A 0015 OA A FCB I 0,,, 20 • USE OF NULL OPERAN.JS
A 0016 00 A
A 0017 00 A
A 0018 14 A

00040 *
00041 * FOB -- FOHM CONSTANT DOUBLE BYTE
00042 * 00043A 0019 oooc A FDB 12 • FORM A DOUBLE BYTE
00044A OOIB OOOA A FOB 10,$10,&IO,@J0,%10,'I ,~O,TAG3!>8,·

A 0010 0010 A
A OOIF OOOA A
A 0021 0008 A
A 0023 0002 A
A 0025 0031 A
A 0027 0030 A
A 0029 0008 A
A 0028 FFFF A

00045A 0020 OOOA A FOB 10, ,.20 • USE OF NULL OPERANDS
A 002F 0000 A
A 0031 0000 A
A 0033 0014 A

00046 * 00047 * FCC -- FORM CONSTANT CHARACTER STRING
00048 * 00049A 0035 41 A FCC 5,ABCDE • STRING "ABCDE"

A 0036 42 A
A 0037 43 A
A 0038 44 A
A 0039 45 A

00050A 003A 41 A FCC 5,A • STRING "''A II

A 0038 20 A
A 003C 20 A
A 0030 20 A
A 003E 20 A

00051 *
00052 * TURN OF GENERATION OF OBJECT CODE LISTING FRm
00053 * 00054 OPT NOG •

H-2

00055 * 00056A 003F 41 A STR_2 FCC . "ABC #$%&·'() STRINGU
00057A 0051 42 A STHSI FCC ABCDEFA • STRING "BCDEF"
00058 * 00059 * REOR IG IN THE PROGHAM COUNTER
00060 * 0006.1 A 0 I 00 ORG $100 • PC=256 <DECIMAL)
00062 * 00063 * USE SPC DIRECTIVE TO SKIP 3 LINES
00064 *

00066 * 00067 * HMB -- HESEHVE MEMORY BYTES
00068 * 00069A 0100 0005 A Loe. H • ..tB 5 • FIVE BYTES
00070 * 00071 * SET -- ll'HTI ALI ZE fEMPORARY VALUE ro SYMBOL
00012 * 00073 0001 A SKIPS I SET I • CHANGEABLE SYMBOL
00074A 0105 0001 A RMB SKIPS I • ONE BYTE
00075 0002 A SKiiJSI SET SKli->Sl+I .
00076A 0106 0002 A RMB SKli->$1 . TWO BYTES
00077 0003 A SKIPS I SET SKIPSl+I •
00078A 0108 0003 A RMB SKIPSI • THREE BYTES
00079 * 00080 * END -- END OF PFHXJHAM
00081 * 00082 E1"D
f OTAL Ei-?lWRS 00000--00000

LABELO 0005 LOC. 0100 SKIPS I 0003 STHS 1 0051 SfR_2 003F
TAGI 0008 TAG2 003C TAG3 OBOO f AG4 0800 TAG5 ')008

H-3

H.1 M6800 PROGRAMS

The next two examples illustrate the use of the relocation scheme. The first
program is a 11 main 11 program that calls a subroutine which is assembled external
to the main program. The main program sets up the parameters prior to calling
the subroutine. These two examples also show the format of the program listing,
as well as the usage of the various addressing modes and relocatable directives.
First, the main program is shown.

PAGE 001 RELMAIN . SA:1

00001
00002
00003
00004
000E:15
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
000:1.6
0~3017

00018
00019
00020
00021
00022
00023 FCF4
00024
00025
00026
00027
00E:128D 0000
00029D 0000 001D
00030D 00:1.D 0001
00031D 001E 57
00032
00033D
00034
00035
00036
00037
00038P
00039
00040P

0035
0035 0050

0000
0000

0000 8E 001D

* * THIS EXAMPLE ILLUSTRATES THE USE OF THE
* RELOCATABLE DIRECTIVES.

*
*
* * TUf''.N ON RELOCATABLE AND CROSS REFEREr~CE
* TABLE OPTIONS
* OPT F~EL.. CRE

* * DEFINE THE EXTERNAL REFERENCES TO A
* MOVE CHARACTEF~ SUBROUTINE. "MOVE"
* IS THE ENTRY POINT TO
* THE ROUTINE; "FROM" IS A POINTER
* TO A SOURCE STRING.; AND "TO" IS A
* POINTER TO A DESTINATION STRING.

* XREF BSCT:FROM.TO.PSCT:MOVE

* * DEFINE ENTRY POINT INTO EXBUG

* A EXBUG EQU $FCF4

* * DEFINE A STRING. BUFFER. AND STACK
* IN THE DATA SECTION

* DSCT
A RMB
A STACK RMB
A STRING FCC
D STREN[) EG!U
A BUFFER RMB

*

29 . STACK AREA
1 . TOP OF STACK
"~~ILL BE MOVE[> TO BUFFER"
* END OF STRING
80 . DESTINATION BUFFER

* DEF I NE THE MA IN PROGF~AM IN THE
* PROGRAM SECTION

* PSCT
P START EQU
D L[>S * #STACK

H-4

INITIALIZE STACK POINTER

00041P 0003 ce: 001E D L[)X #STRING SOURCE STRING
00042P 0006 [)F 00 A STX FROM
00043P 0008 CE 0035 D L[)X #BUFFER DESTINATION AREA
00044P 000B DF 00 A STX Tb
00045P 000D C6 17 A LDAB #STREl'-K>-STRING . LENGTH TO MOVE
00046P 000F BD 0000 A .JSR MOVE ROUTINE TO MOVE
00047P 0012 7E FCF4 A .JMP EXBUG EXIT TO DEBUG MONITOR
0004E: * 00049 0001!:1 p ENC> START STARTING EXECUTION ADDRE
TOTAL El':RORS 00000--00000

D 0t135 BUFFER 00033:+:00043
FCF4 EXBUG 00023:+:00047

RB FROM 00019*00042
RP MOVE 00019*00046

D 0t11D STACK 00030:+:00041!:1
p 0000 START 01!:1039:+:00049
D 0035 ST REND 00032:+:00045
D 01!:11E STRING 00031>t:00041 00~345

l':B TO 00019:+:00044

H-5

Next, the "MOVE" subroutine is shown.

PAGE 001 MOVE .SAs I

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
000168 0000
00017B 0000
000188 0002
00019

0002
0002

00020
00021
00022
00023
00024
00025t> 0000

0000
0000 OE 00
0002 A6 00
0004 08
0005 OF 00
0007 OE 02
0009 A7 00
0008 08
OOOC OF 02
OOOE 5A

* * THIS EXAMPLE IS THE "MCJVEJ' ROUTINE
* CALLEO BY THE PREVIOUS EXAMPLE.

*
* OPT l~EL ,CRE •
* * DEFINE THE EXTERNAL SYMBOLS
* XDEF MOVE,FROM,TO

* * RESEHVE SPACE IN DIRECT ADDRESSING AREA
* FOR THE SOURCE ANIJ DESTINATION
* POINTEtlS.

*
A FROM
A TO

BSCT
RMB
RMB

2
2

• SOURCE POINTER
• DESTINATIO~ POINTER

*
* DEFINE THE JIMOVE" SUBROUTINE
* ENTEHED WITH "8 11 = NO. BYTES IN SOURCE
* STRING. 11 FROM 11 AND 11T0 11 SET UP BY
* THE CALLING iJROGHAM.
* PSCT

P MOVE
B

EQU
LOX

*
FROM

. ENTRY POINf
• l'ICK UP SOURCE ADDRESS

A

B
8
A

B

LDAA
INX
srx
LOX
STAA
INX
srx
DECB

o,x

FROM
TO
o,x
TO

• GET SOURCE BYTE
•
• SAVE INCREMENTED POINT
•
• STORE DEST I NATI ON BYTE
•
• SAVE INCREMENTED POINT
• DECREMENT COUNTER

00026
00027P
00028P
00029t>
00030iJ
00031P
00032J->
00033P
00034P
00035P
00036P
00037P
00038
00039

OOOF 26 EF 0000
0011 39

BNE
RTS

MOVE • LOOP UNTIL ZERO •
•. RETURN TO CALLER

* Er-SD
TOf AL ERRORS 00000--00000

DB 0000 fl~ OM
DP 0000 MOVE
Ut3 0002 TO

00010 00017*00027 00030
00010 00026*00036
00010 00018*00031 00034

H-6

H.2 M6805 PROGRAM

The following example illustrates the use of the bit instructions.

PAGE en:n H2 . SA:1

00010 00001 * 00(120 00002 :+:TSTBIT CHECKS AN I/O BIT AND SETS
0003(1 000(13: :+:OF~ CLEARS SOME BIT FLAGS
00040 00004 * [)EPEND I r~G ON STATE OF I/O BIT
0005(1 (10~)05 * 00060 00006 0m:M A INPUT EQU $4 INPUT DATA
~)007'0 0000r'A 0040 ORG $40
00080 00008A 0(140 0001 A FLAG1 RMB 1 BIT FLAGS
0009(1 00009A 0041 000;;-~ A FLAG2 RMB 2 BIT FLAGS
00100 00(110A 0080 ORG $80
00110 0(1011 0080 A TSTBIT EQU * 00120 00012A 0080 0? 04 06 0089 BRCLR 3 .. INPUT, OFF
0013(1 0(1013 =+=INPUT BIT IS ON -- SET SOME BIT FLAGS
0(114(1 00014A 0E:1E:]. 1A 40 A BSET 5 .. FLAG1
~)(1150 0~Z1015A 0~385 14 40 A BSET 2,FLAG1
(1016~~1 00t116A 0(18? 20 i;:i··· _t.:• 008F BRA corn
0(117(1 0(1(11? =+=INPUT BIT IS OFF -- CLEAR SOME BIT FLAG
0~318(1 0t1(118A (1(1:::9 11 41 A OFF BCLI<: 0.• FLAG2
0(1190 (U)(119A 00E:8 1D 41 A BCLR 6 .. FLAG2
00200 00020A ~308[:• 1F 41 A BCLI<'. ?,FLAG2
00210 00021 008F A CONT EGJ.U * CONTir~uE PROCESS I
0(1220 (10022 END
TOTAL ERROF.:S 00000--0E:10m3

H-7

H.3 M6809 PROGRAMS

The following example illustrates how a program can take advantage of the
direct addressing mode without being a relocatable program using BSCT.

00001
00002
00003
00004
00005
00006
00007
00008
00009

* *THIS

*
*
*
*
*
*
*

A EOL

i->R<XJRAM HANDLES AN I NTERWJPT FROM
A.N INPUT DEVICE--IT GETS CONTROL ON
AN IRQ FROM A PIA, INPUTS A. CHAR,
CLEARS THE INTERRUPT, PUTS THE CHAR
IN A BUFFER, INCHEMENfS TdE BUFFER
PTR, TESTS FOR END OF LI NE, RE STORES
REGISTERS, AND RETURNS

ORG $2000
EQU SD CR IS ENO OF LI NE I NI

000 I OA 20")0
00011
00012A 2000
00013A 2001
000 I 4A 2003
00015

0000
00
2003
0064

A MODEM
A BUFPTH
A BUF

FCB 0
FOB BUF
RMB 100

00016
00017
00018A 2067 86
00019A 2069 IF
00020A 2068 96
00021 A 2060 9E
00022A 206F A7
00023A 2071 9F
00024A 2013 81
00025A 20 75 2 7
00026A 20 17 3B

0020

20
88
00
01
80
01
OD
01

A

A
A
A
A
A
A
A

2078

*SET

*SET

00027A 2078 20 FE 2078 EOLGt'
00028
TOTAL ERRORS 00000--00000
TOTAL WAHNINGS 00000--00000

UP DP PSEUDO REG. FOH ASSE\4BLER
SETDP $20

UP OiJ REGISTER FOH EXECUTION
LOA #$20
f FR A,OP
LOA MODEM
LOX BUFPTR
STA ,X+
STX H!JFPTR
CMPA #EOL
SEO EOLGP
RTI
BRA
END

H-8

*

CLEARS PI A. I RQ
GET PTR
STOHE CHl\R
UPDATE PfR
END OF LINE?
IF YES, '.iORE TO DO
ELSE, REfURN

The following example illustrates how position independent code can be
generated by using the PCR indexing mode.

00001
00002
00003
00004
00005
00006

00008A 0000
00009A 0005
OOOIOA OOOA
00011 A OOOF
OOOl 2A 0014
00013

00015A OOIE
00016A 0021

30
31

00017A 0024 33
000 I 8A 0021 C6
000 I 9 A. 0029 dO
00020A 0028 20
00021
00022A 0020 IA
00023A 002F 34
00024A 0031 86
00025A 0033 AO
00026A 0035 35
00027A 0037 A9
00028A 0039 19
00029A OOJA 34
00030A 003C A7
00031A 003E 5A
00032A OOJF 26
00033A 0041 35
00034

99
99
01
99
000A
OOOA

ac E9
dC FO
8C F7
OA
02
FE

01
01
99
A2
01
82

01
C2

FO
81

* *SUBSEQ SUBTRACTS A SEQUENCE OF OECI MAL
* iJIGITS C IY> flWM ANOfHER SEQUENCE
* OF DECIMAL DIGITS <IX> AND STORES
* THE RESULT C US>
* ALL STRI i'KJS ARE COIJNf BYfES U>1'JG

A MINUEN FCB $99,$99,$99,$99,$99
$99,$09,$00,$00,$00
$01 ,$09,$00,$00,$30
$99, $00, $54, $32, $.l I
I()

A FCB
A
A

SUBTRA FCB

A RESULT
A COUNT

A
0020
0028

*
SUB SEQ

A
A LOOPS
A
A
A

A
A

0031
A

FCB
RMB
EQU

LEAX
LEAY
LEAU
LOB
BSR
B11A

SEC
PSHS
LOA
SUBA
PULS
AOCA
DAA
PSHS
Sf A
DECB
BNE
PULS
END

10

MINUEN+COUNT,t'CH
SUBTRA+COUNT,PCR
RESULT+COUNT,PCR
#COUNT
SUBSEO

*

cc
#$99
0,-Y
cc
o,-x

cc
o,-u

LOOPS
CC,PC

SET CARl·H
CARRY TE~P
THE TEN'S cr~PLEMENT
NO CARRY POSSIBLE
THE SAVEiJ CARRY
DO A BI NA.RY ADD
HACK TO BCD
SAVE THE CARRY
STOl-lF. THE RESULT
DONE?
IF NOT , Go AG A I N
CLEAN UP STACK AND !-?ET

Tor AL ERR ORS 00000--00000
fOf AL WARNINGS 00000--00000

H-9

