CPU16RM/AD
:Rev 1

M68HC16 Family

CPUl6

CENTRAL PROCESSOR UNIT

REFERENCE
MANUAL

@ MOTOROLA

OVERVIEW

NOTATION

SYSTEM RESOURCES

DATA TYPES AND
ADDRESSING MODES

INSTRUCTION SET
INSTRUCTION GLOSSARY
INSTRUCTION PROCESS
INSTRUCTION TIMING
EXCEPTION PROCESSING
DEVELOPMENT SUPPORT

DIGITAL SIGNAL PROCESSING

A COMPARISON OF CPU16 AND
HC11 CPU ASSEMBLY LANGUAGE

MOTOROLA ASSEMBLER SYNTAX

INDEX

_ o010zl 0=0-~00c0-0-0~0-

OVERVIEW

NOTATION

SYSTEM RESOURCES

DATA TYPES AND
ADDRESSING MODES

INSTRUCTION SET
INSTRUCTION GLOSSARY
INSTRUCTION PROCESS
INSTRUCTION TIMING

EXCEPTION PROCESSING

DEVELOPMENT SUPPORT

DIGITAL SIGNAL PROCESSING

A COMPARISON OF CPU16 AND
HC11 CPU ASSEMBLY LANGUAGE

MOTOROLA ASSEMBLER SYNTAX

INDEX

©MOTOROLA INC., 1991

CPU16
REFERENCE MANUAL

Motorola reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Motorola does not assume any liability arising out of the application or
use of any product or circuit described herein; neither does it convey any license under its patent
rights nor the rights of others. Motorola products are not designed, intended, or authorized for use
as components in systems intended for surgical implant into the body, or other applications, intended
to support or sustain life, or for any other appiication in which the failure of the Motorola product
could create a situation where personal injury or death may occur. Should Buyer purchase or use
Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and
hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against
all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or
indirectly, any claim of personal injury or death associated with such unintended or unauthorized use,
even if such claim alleges that Motorola was negligent regarding the design or manufacture of the
part. Motorola and) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.

Paragraph Title Page
Number Number
Section 1
Overview
OVBIVIBW. ...ttt ettt ettt ettt es s s et e b et es et et et asane s s saasaseneasenan 1-1
Section 2
Notation
2.1 Register NOtation ... 2-1
2.2 Condition Code Register BitScccoeiciiinirnerncee e 2-2
2.3 Condition Code Register ACHVITY ..o 2-2
2.4 Condition Code EXPresSSioNS......ccurveeieiririreeie et 2-2
2.5 MemMOry AdAreSSiNgc.cerriiuiiieeirerire ettt s n e enenes 2-2
2.6 AJAresSiNg MOGES.......cccouiririiriiinieee ettt e 2-3
2.7 INSEUCHON FOMMAL 1.cviiieiieiee ettt 2-3
2.8 Symbols and OPeratOrS.........ccvevevecieieeee ettt 2-4
2.9 CONVENTIONS. ..ttt ettt ettt ettt seeb e eee e saeae s 2-5
Section 3
System Resources
3.1 GIONEIAL.oi ettt ettt bbbt et er et 3-1
3.2 ReQiSter MO ..ottt e 3-1
3.2.1 ACCUMUIAIONS ...ttt et 3-3
3.2.2 Index RegiSters......cciininieeeeis e RSSO 3-3
3.2.3 STACK POINTET ettt 3-4
3.2.4 Program COUNTET ..ottt e 3-4
3.25 Condition Code RegiSter ... e 3-4
3.2.6 Address Extension Register and Address Extension Fields............ 3-6
3.2.7 Multiply and Accumulate Registers ... 3-6
3.3 Memory Management.........o.covcuereeeeeee oo S 3-6
3.3.1 AdAress EXLENSION.veiiii et 3-7
3.3.2 EXtension FieldS.. ..o 3-7
3.3.2.1 Using Accumulator B to Modify Extension Fields.................... 3-7
3.322 Using Stack Pointer Transfer to Modify Extension Fields....... 3-7
CPU16 REFERENCE MANUAL MOTOROLA
LI}

TABLE OF CONTENTS

TABLE OF CONTENTS (Continued)

Paragraph Title Page
Number Number
3.3.2.3 Using Index Register Exchange to Modify Extension Fields ..3-7
3.32.4 Stacking Extension Field Values.......ccccoceevnneieinenecccnes 3-8
3.3.2.5 Adding Immediate Data to Registers..........cccooiiicniiiiiin, 3-8
3.33 Program Counter Address EXtensionc..cccecveineneenns et 3-8
3.3.3.1 Effect of Jump Instructions on PK : PC...ccooiiinivicicinee 3-8
3.3.3.2 Effect of Branch Instructions on PK : PC....cocooiiiiiiiincciees 3-9
3.34 Effective Addresses and Extension Fields........cccoveveinnnccinne. 3-9
3.4 ANtErMOdUIE BUS....cveiiiect e e 3-10
3.5 External Bus Interface (EBI) ..o 3-10
3.5.1 Bus Control Signals ... 3-10
3.5.1.1 FUNCHON COTES ...t 3-11
3.5.1.2 SIZE SIGNAIS .t e 3-11
3.5.1.3 Read/Write Signal.......cccccemriineirincieecenerese e 3-11
3.5.2 AAAreSS BUS....o.coueiiiiierces e e 3-12
3.5.3 Data@ BUS ...t e 3-12
3.5.4 Bus Cycle Termination Signals.........c.ccooeeievieinininiccncnee e 3-12
3.5.5 Data Transfer MeChanisSmc.ccovvneencnninencee e 3-13
3.5.5.1 Dynamic Bus Sizing.....cccveeerinineirreci e 3-13
3.5.5.2 Operand AlIGNMENt ..o 3-14
3.5.5.3 Misaligned Operands..........ccocvereveeeeriiinie e 3-15

Section 4
Data Types and Addressing Modes

4.1 Data TYPES ..o e 4-1
4.2 MemMOTry OrganizZation.........cccvverreeieiee e tee ettt sreeesresessesbeeaanas 4-2
4.3 AdAressiNg MOES.coceereircieteere ettt 4-4
4.3.1 Immediate Addressing MOdEsS.........ccoeviiierere e 4-5
4.3.2 Extended Addressing Modesccoccvvecinncnnieenee e 4-5
4.3.3 Indexed Addressing ModES ... s 4-5
4.3.4 Inherent Addressing MOE.....c.covviirieiriieeece e 4-5
435 Accumulator Offset Addressing Mode........c.ccoevevieieiineiieiiienenen, 4-6
4.3.6 Relative Addressing MOAEsS ... 4-6
4.3.7 Post-Modified Index Addressing Mode.........ccvvveeinieniciinee i 4-6
4.3.8 Use of HC16 Indexed Mode to Replace HC11 Direct Mode............ 4-6
MOTOROLA CPU16 REFERENCE MANUAL

v

TABLE OF CONTENTS (Continued)

Paragraph Title Page
Number Number
Section 5
Instruction Set
5.1 LCT=T 0= = FO OO U U U 5-1
5.2 Data Movement INStrUCHIONSoouiiiiii e 5-2
5.21 Load INSMUCHONS. ... e 5-2
5.2.2 MOVE INSITUCHONS ... 5-2
5.2.3 StOre INSIIUCHIONS .. e 5-3
5.2.4 Transfer INSTrUCHONS ..o e 5-3
5.25 Exchange INStrUCHONS. ..ot e 5-4
5.3 Mathematic INSTrUCHONSoiviiiiic e 5-4
5.3.1 Addition and Subtraction INStructions.......c..cccoeevviieiennvicneneinees 5-4
5.3.2 Binary Coded Decimal INStruCtions........ccccvvvveeicinenececnccneereneens 5-7
5.3.3 Compare and Test INStrUCHONSc.euvivereciiccc s 5-8
534 Multiplication and Division INStructionsccocvvieninciciecccnnes 5-8
5.3.5 Decrement and Increment INStruCtionS ... 5-9
5.3.6 Clear, Complement and Negate InStructionscccccevvvencecennnene 5-10
5.3.7 Boolean LogiC INStrUCHONS.cc.veviriririrees e 5-10
54 Bit Test and Manipulation INStruCtionS.......c.ccceeieeieveneceeee e, 5-11
5.5 Shift and Rotate INSIIUCHONSeeeveeeeeeeeeeeeeeee e eeeeee e seeeeeseeenee 5-12
5.6 Program Control INStrUCHONSc.eoviiie et 5-15
5.6.1 Short Branch INStructions ..o 5-15
5.6.2 Long Branch INStruCtionS........cocvveieeiiie e 5-17
5.6.3 Bit Condition Branch INStruCtionS........cooveeiviriiiie e 5-19
5.6.4 JUMP INSEHUCHON ettt 5-20
5.6.5 Subrouting INStIUCHIONS.......oveieeieirieeiee e s 5-20
5.6.6 INterrupt INSIIUCHIONScvviiicitce e 5-22
5.7 Indexing and Address Extension Instructions ..., 5-23
5.7.1 INAEXING INSIIUCHIONS ..ottt 5-23
5.7.2 Address Extension INStrUCHIONSccoviiriicere e 5-25
5.8 Stacking INStrUCHONS ...coviiivici e 5-25
5.9 Condition Code INStrUCHONSccvieiirrcec e 5-27
5.10 Digital Signal Processing INStruCtionscvcvecierevienecinenccene e 5-27
5.11 Stop and Waiit INStrUCHONS ..o 5-29
5.12 Background Mode and Null Operations.......c.ccccreveeinnvvcncneneninenns 5-30
5.13 Comparison of CPU16 and MC68HC11 Instruction Sets.........cccceeueee. 5-31
CPU16 REFERENCE MANUAL MOTOROLA

\

TABLE OF CONTENTS (Continued)

Paragraph Title Page
Number Number
Section 6
Instruction Glossary
6.1 Instruction Glossary EXample.....cooiicirinnieierecr e 6-01
6.2 INSIUCHIONS ..ttt 6-01
6.3 Condition Code Evaluation............cceiieieiiniiiiie e 6-267
6.4 INstruction Set SUMMAIY ... 6-275
Section 7
Instruction Process
7.1 INSIrUCHON FOIrMAL ... e e 7-1
7.2 EXECULION MOTE! ...ttt s 7-3
7.2.1 MICIOSEQUENCET ...ttt ettt 7-3
7.2.2 PIPEIINE. .. e 7-4
7.2.3 EXeCUtiON UNit ..o 7-4
7.3 EXECULION PrOCESS ...t 7-4
7.3.1 ~ Detailed ProCess......cccouiiciiece e, 7-4
7.3.2 Changes in Program FIOW ... s 7-6
7.3.2.1 JUMPS. e s 7-6
7.3.2.2 BranChes ..o 7-7
7.3.2.3 SUDTOULINES ..t 7-8
7.3.2.4 NEEITUDES. ettt et sttt 7-9
Section 8
Instruction Timing
8.1 Execution Time COMPONENLS ...t s 8-1
8.2 Program and Operand AcCesS TiMeccoeueireiriririieirienire et 8-2
8.2.1 Program ACCESSES.......oviiiie et e 8-2
8.2.2 Operand ACCESSESiiiirieitireee ettt ettt 8-3
8.2.2.1 Regular INStruCtions. ... 8-3
8.2.2.2 Read-Modify-Write INStruCtionsc.ocoteeieenie e 8-3
8.2.2.3 Change-of-Flow INStructions.........ccecvvviieieiciiie e 8-3
8.2.2.4 Stack Manipulation INStruCtions........ccecvveenvnierecreccnn 8-5
8.2.2.5 Stop and Wait INStrUCHIONS ..ceeveiiieeecee e 8-5
8.2.2.6 MOVE INSITUCTIONSoeice i 8-6
8.2.2.7 Multiply and Accumulate Instructlons .. 8-6
MOTOROLA CPU16 REFERENCE MANUAL

Vi

TABLE OF CONTENTS (Continued)

Paragraph Title Page
Number Number
8.3 Internal Operation TiME ...t 8-7
8.4 Calculating Execution Times for Slower ACCESSES......ovvrrinrienereriririeens 8-7
8.5 EXAMPIES. ...t e 8-7
8.5.1 LDD (Load D) INSTUCHON.cc.eiiiiiiiciece e 8-8
8.5.1.1 LDD INDBS, X ..ottt st ceer et sttt eret et er s er e snenas 8-8
8.5.1.2 LDD INDBS, X ..oiieiiiiictesireceetetcctete st eter et eres e e ees 8-8
8.5.1.3 LDD INDB8, X ..octieieiriiieierereerereteetreetet st sttt iesesenen e ne e 8-8
8.5.2 NEG (Negate) INStrUCHONc.ceeviiiieit s 8-9
8.5.2.1 NEG EXT .ottt ettt ns et e 8-9
8.5.2.2 NEG EXT .ottt et e 8-9
8.5.2.3 NEG EXT oottt et 8-9
8.5.3 STED (Store Accumulators E and D) Instruction..........cccccceceneeneen. 8-10
8.5.3.1 STED EXT oot 8-10
8.5.3.2 STED EXT oottt sttt e s e 8-10
Section 9
Exception Processing

9.1 Definition of EXCEPHON oot e 9-1
9.2 EXCEPHON VECIOIS ...ttt 9-1
9.3 Types Of EXCEPLIONS ..cviiiictere ettt e 9-2
9.4 ExXCeption Stack Frame.......cooiiiiiiiciiiiceeee s 9-3
9.5 Exception Processing SEQUENCEcoeiirirrriiiiiciiiieice e 9-3
9.6 MUItIPlE EXCEPHONS ..o 9-9
9.7 Processing of Specific EXCEPIONScovoviviiiiiiii e 9-9
9.71 ASYNChronous EXCEPLIONS. ..coviiieiiiieeic e 9-9
9.7.1.1 Processor Reset (RESET) ..o 9-10
9.7.1.2 BuUS Error (BERRY) ..o 9-12
9.7.1.3 Breakpoint Exception (BKPT) ..o 9-14
9.7.1.4 INERITUPES. .ot e 9-14
9.7.2 Synchronous EXCEPHONS ..o 9-16
9.7.2.1 legal INSIrUCHIONS ..o 9-16
9.7.2.2 DiviSiON BY ZEr0 ..ot 9-16
9.7.2.3 BGND INStIUCHION «oeieceie e 9-16
9.7.2.4 SWI INSIIUCHON 1. 9-17
9.8 Return from Interrupt (RT1) .o 9-17

CPU16 REFERENCE MANUAL MOTOROLA

Vil

TABLE OF CONTENTS (Continued)

Paragraph Title
Number
Section 10
Development Support
10.1 Deterministic Opcode Trackingc.coovvereiirniiennereeere e
10.1.1 INSEIUCHON PIPEIINE .ot
10.1.2 IPIPEO/IPIPET MURIPIEXING covvivivieeeieire sttt
10.1.3 Pipeline State Signals ... e
10.1.3.1 NULL — No Instruction Pipeline ACtivityc...ccccoeerennices
10.1.3.2 START — INStruction Startccccevererrcnesieeecse s .
10.1.3.3 ADVANCE — Instruction Pipeline Advance........cc........
10.1.3.4 FETCH — Instruction Fetch...........cooooiii
10.1.3.5 EXCEPTION — Exception Processing in Progress.............
10.1.3.6 INVALID — PHASE1/PHASE?2 Signal Invalid.......c.cccccoeeenes
10.1.4 Combining Opcode Tracking with Other Capabilities..................
10.1.5 CPU16 Instruction Pipeling FIOWccc.coovvereeereeeeeeeseeeseee s

10.2 Breakpoints
10.3 Opcode Tracking and Breakpoints
10.4 Background Debugging Mode

10.4.1
10.4.2
10.4.21
10.4.2.2
10.4.2.3
10.4.2.4
10.4.3
10.4.4
10.4.5
10.4.6
10.4.7
10.4.7 1
10.4.7.2
10.4.8
10.4.9
10.4.10
10.4.10.1
10.4.11

MOTOROLA

Enabling BDM
BDIM SOUICES ..ieiieiiiieietirtee ettt ee ettt et neeeane
BKPT Signal .o
BGND INStrUCHON ..ot
Microcontroller Module Breakpoints ..o
Double Bus Fault ..o
BDIM SIgNalS.....coeeieiiiieie ittt
Entering BDM ..ot
Command EXECULION. ..o
Returning from BDM ...
Serial INtErfacecoooieiice e
CPU Serial LOGICciiriiiiiiieeieeceiieeeseer e
Development System Serial LOGIC.........coccvvievriininciinneiine,
BDM Command FOrmat......coeeeeeieioieiieeiee e
Command Sequence Diagram.......ccooeooiieenenne e
BDM Command Set ..o
BDM Memory Commands and Bus Errors........ccceeecenan.
Future Commands

CPU16 REFERENCE

Page
Number

MANUAL
viii

TABLE OF CONTENTS (Continued)

Paragraph Title Page

Number

11

Section 11
Digital Signal Processing

[CT=T aT=1 = LTRSS 1

A 1-1
11.2 Digital Signal Processing Hardware..........ccocecoiiiiiiiiniiiciceenrcc e, 11-2
11.3 MOAUIO AQArESSING ...cveeit ittt e 11-2
11.4 MAC DAt TYPES ..o vttt et e 11-3
11.5 MAC Accumulator OVerfloW ..o e 11-4
11.5.1 Extension Bit OVerflow ... 11-4
11.5.2 Sign Bit OVErfIOW ..o 11-5
11.6 Data SatUration ...ccoociieee e 11-5
11.7 DSP INSTIUCHONS ..ot 11-6
11.71 Initialization INStrUCHONS ..o e 11-6
11.7.11 LDHI — Load Registers Hand L., 11-6
11.7.1.2 TDMSK — Transfer D to XMSK:YMSK......cccoviiiriiiiicieies 11-6
11.71.3 TEDM — Transfer Eand D t0 AM ..o 11-6
11.71.4 TEM — Transfer E10 AM oo, 11-6
11.7.2 Transfer INSTIUCHIONS ..o e 11-7
11.7.21 TMER — Transfer AM to E Rounded.......ccccooiiininiincee 11-7
11.7.2.2 TMET — Transfer AMto E Truncated...........ccocvvvieiciencencnne 11-7
11.7.2.3 TMXED — Transfer AMtO IX 1 E i Dot 11-8
11.7.2.4 LDED/STED — Long Word Load and Store Instructions..... 11-8
11.7.3 Multiplication and Accumulation Instructions ..o, 11-8
11.7.3.1 MAC — Multiply and Accumulate ... 11-8
11.7.3.2 RMAC — Repeating Multiply and Accumulate..........ccccceeee. 11-9
11.7.3.3 FMULS — Signed Fractional Multiplyccccccceoncicnnnn 11-10
11.7.3.4 ACED — Add E : D10 AM..iiiiiiccce s 11-10
11.7.3.5 ACE — Add E 10 AM .. 11-10
11.7.4 Bit Manipulation INStruCtionS........covieiierie e 11-11
11.7.4.1 ASLM — Arithmetic Shift Left AM ..o 11-11
11.7.4.2 ASRM — Arithmetic Shift Right AM ... 11-11
11.7.4.3 CLRM — Clear AM ... 11-11
11.7.5 Stacking INStrUCIONSoiiiii e 11-12
11.7.5.1 PSHMAC — Push MAC RegiSters........ccceveiininiencneennn, 11-12
11.7.5.2 PULMAC — Pull MAC RegiSters.......cccoiiiiiineeeeeeeennnn 11-12
11.7.6 Branch INStruCtioNScc.ciiii i 11-13
11.7.6.1 LBEV — Long Branch if EV Set ..., 11-13
11.7.6.2 LBMV — Long Branch if MV Set......ccccocerviincniniciice, 11-13

CPU16 REFERENCE MANUAL MOTOROLA

Number

TABLE OF CONTENTS (Continued)

Paragraph . Title Page
Number Number

Appendix A
Comparison of CPU16/HC11 CPU
Assembly Language

A1 [T} { oo (S]] (o} o IR TR PRSPRR A-1

A2 RegiSter MOdeIS ..ol e e e A-1
A3 CPU16 Instruction Formats and Pipelining Mechanism.............ccoceevee. A-3
A.3.1 INStrUCHON FOrmMal ..o A-3
A.3.2 EXecution MOdEl ...t A-3
A3.21 MiCTOSEQUENCET ...ttt A-3
A3.2.2 INStruction Pipeling ... A-4
A.3.2.3 Execution Unit ..o et A-4
A.3.3 EXECULION PrOCESS ..ot e A-4
A.3.4 Changes in Program FIOW ... A-4
A.3.41 JUIMIPS ..ottt bt bbb e A-5
A.3.4.2 BranChes ... A-5
A.3.43 SUDIOULINGES .o A-5
A3.4.4 INEEITUPES .. A-6
A.3.4.41 INtErTUPt PriOTiY o A-6
A35 SEACK FTamMe.. .ottt A-6
A4 Functionally Equivalent INnStructions...........cooveeeeiiiiiiiceeeee e A-7
A.4A1 BH S e et A-7
A.4.2 BLO e ettt eaerer s A-7
A.4.3 O ettt et ens A-7
A4.4 Ll ettt e ens A-7
A45 CLV.oiniennn ettt et ee e R b et et en e et A-8
A4.6 DE S e e A-8
A47 DIEX ettt ettt A-8
A48 DY bttt A-8
A.4.9 INS..oieee ettt e a ettt er et ettt st a e A-9
A.4.10 NDX e bbbt e A-9
A4.11 INY e e et A-9
A4.12 PSOHX e s e A-9
A.4.13 PSHY i, e e A-10
A4.14 PULX ettt et A-10
A4.15 PULY ettt ettt et ettt A-10
A.4.16 S C b bbb e renas A-11
MOTOROLA CPU16 REFERENCE MANUAL

X

TABLE OF CONTENTS (Concluded)

Paragraph Title Page
Number Number
A4.17 S et n s e A-11
A.4.18 SV s A-11
A.4.19 STOP (LPSTOP) ...ttt e A-11
A5 Instructions that Operate Differently ..o A-12
A.51 B O R e e A-12
A5.2 UG R e e A-12
A.5.3 PSHA, PSHB.....ooooiiirrreeiemmnseesesseiss e ssssessssssesesssssssssessssssseesesssnns LA-12
A5.4 PULA, PULB oot e A-12
A.5.5 BT L et et e e A-12
A5.6 SV et et e A-13
A5.7 T AP e e A-13
A5.71 HC11 CPU Implementationcccccvereeeiiinenceecre e A-13
AB.7.2 CPU16 Implementation ... e A-13
A5.8 TP A ettt bbb et A-13
A.5.8.1 HC11 CPU Implementationcccccvvreeeinenceeciree e A-13
A.5.8.2 CPU16 Implementation ... e A-14
A5.9 WAL ettt ettt e A-14
A6 Instructions With Transparent Changesc.cccvverrreneeincce e A-14
A.6.1 R S e et bbb e A-14
AB.2 LS5 SO OSSOSO A-14
AB.3 IS) SO OSSOSO A-14
A6.4 1065 T STV A-14
A.6.5 Y St et et A-14
A7 Unimplemented INStruCtionS ..o e A-15
A71 . T ST bt e ettt A-15
A8 Addressing Mode DifferenCes ... e A-15
A.8.1 Extended Addressing MOEcociiviniinie e A-15
A.8.2 Indexed Addressing MOde ... A-15
A.8.3 Post-Modified Index Addressing Mode.........coocovveviniiecininiceen. A-15
A.8.4 Use of CPU16 Indexed Mode to Replace HC11 CPU
DireCt MOE. ...ttt A-15

Appendix B
Motorola Assembler Syntax

Index

CPU16 REFERENCE MANUAL MOTOROLA

XI

MOTOROLA CPU16 REFERENCE MANUAL
Xii

LIST OF ILLUSTRATIONS

Figure Title Page
Number Number
3-1 CPU16 Register Model ...t e 3-2
3-2 Condition Code REQISIN ...t 3-5
3-3 Operand Byte Order ... s 3-14
4-1 Data Types and Memory Organization.........c.cocovverernenercrnieniesieeeens 4-3
6-1 Typical Instruction GloSSary ENtry......cccciiivieiiiiciiiie e 6-2
7-1 Instruction Execution Model...........ccccoiiiiiii 7-3
9-1 Exception Stack Frame Format.......cccooeoiiiiiicee e 9-3
9-2 Exception Processing Flow Diagram ... 9-4
9-3 RESET VECION .ttt e e 9-10
10-1 Instruction Execution Model..........ooooiiiiiiiniiiiee e 10-2
10-2 IPIPE DEMUX LOGIC ittt sttt eses e 10-4
10-3 Instruction Pipeling FIOW ..ot 10-7
10-4 In-Circuit Emulator Configurationcccoeeieonnceeecss e 10-10
10-5 Bus State Analyzer Configuration ... 10-10
10-6 Sample BDM Enable CirCuUit.........ccooiiiieiiiiiiieieeie e 10-12
10-7 BDM Enable Waveforms ... 10-12
10-8 BDM Command FIOW Diggramc..c.cccovveiviemieciiee e 10-15
10-9 BDM Serial 1/0 Block Diagramccccceeeiiieieiieieeiee e e 10-16
10-10 Serial Data Word FOrMat.......cccooiiiriiiiiiiicee e 10-17
10-11 Serial Interface Timing Diagram ... iiieieininceececr e 10-18
10-12 BKPT Timing for Single Bus CyCle ..ot 10-20
10-13 BKPT Timing for Forcing BDM.......cccooiiiiieiiie e 10-20
10-14 BKPT/DSCLK Logic Diagram.......... ettt 10-20
10-15 Command Sequence Diagram Example.......ocociiniinnnccnenennes 10-22
11-1 MAC Unit Register Model ..o 11-2
11-2 MAGC Data TYPES ottt et e 11-3
CPU16 REFERENCE MANUAL MOTOROLA

xiii

Figure Title Page

Number Number
A-1 HC11 CPU REGISIEIS .ot A-1
A-2 HC11 CPU Condition Code Register...........cccooorieiiiiiicii e A-1
A-3 CPUTB REGISIEIS ittt e e e A-2
A-4 CPU16 Condition Code RegISter.......cccoiiiiiiiiiiiiiiiee e A-2
A-5 CPU16 Stack Frame FOrmMat........cooviiniiic e A-6

MOTOROLA CPU16 REFERENCE MANUAL

XV

LIST OF ILLUSTRATIONS (Concluded)

LIST OF TABLES

Table Title Page
Number Number
3-1 Operations That Cross Bank Boundaries...........ccccoociiiiiiiiiiiiicieceene 3-9
3-2 Address Space ENCOTING ..ot e 3-11
3-3 Size Signal ENCOAING ..o e 3-11
3-4 Effect of DSACK SigNalS ..ot 3-13
3-5 Operand AlIGNMENToovveooeeeeeeeeeeeeeeeee e 3-15
4-1 AJAresSiNG MOAES......c.veueeiriieete ettt e 4-4
5-1 oY= o S TUT 0910 F= o TSP 5-2
5-2 MOVE SUMMEATY ..ottt et 5-2
5-3 STOrE SUMMEATY .ot 5-3
5-4 Transfer SUMMIEAIY ...ooioviiee ettt et s 5-3
5-5 EXChange SUMMEYc.cccoiiiiiiieieetsee et 5-4
5-6 AAITION SUMMATY ..ot 5-5
5-7 Subtraction SUMMANYooiiiiicc s 5-5
5-8 Arithmetic OPerationS........c et e 5-6
5-9 BCD SUMMAIY oottt sttt ee e bttt es e es st e seenan 5-7
5-10 DAA FUNCHON SUMMANY ..ottt 5-7
5-11 Compare and Test SUMMATY ...t 5-8
5-12 Multiplication and Division SUMMArYcccccoiiriiiniiiiine 5-9
5-13 Decrement and Increment SUMMATYccoceivriceie et 5-9
5-14 Clear, Complement and Negate SUMMaryc.cccoeviirnnncrencn e 5-10
5-15 Boolean LOGIiC SUMMANY.....cciiiiiiiiiiiiiieiie ettt e 5-11
5-16 Bit Test and Manipulation SUMMArYccooioeriric e 5-11
5-17 LOQIC Shift SUMMEAIY....coi i 5-12
5-18 Arithmetic Shift SUMMANY....c.cooiiiiic s 5-13
5-19 Rotate SUMMAIY ..ot e e 5-14
5-20 Short BranCh SUMMANYccooiiiiinieecire e 5-16
5-21 Long Branch INSIUCHONScooieiiiieeie et 5-18
5-22 Bit Condition Branch SUMMANY.......cccoeviiuiiinniiicene s 5-19
5-23 JUMP SUMMEATY ..ottt et e 5-20
5-24 SUDIOUNNE SUMMANY.....ciiiiiiiieie ettt ettt sre e eeeer e rseae s 5-21
5-25 INtErrupt SUMMATY ..ot e 5-22
CPU16 REFERENCE MANUAL MOTOROLA

XV

LIST OF TABLES (Concluded)

Table Title Page
Number Number
5-26 INAEXiNG SUMMAIY ...oociviiiiieiiiiireereeee ettt e e e 5-23
5-27 Address EXtENSION SUMMATY ...ttt e s 5-25
5-28 Stacking SUMMATYccouiveieieiiseete ettt e 5-26
5-29 Condition Code SUMMANYcooeueiiriieieiiereee s 5-27
5-30 DSP Summarycccceeiiricenneee bbb e 5-27
'5-31 Stop and Wait SUMMAIY ..o 5-29
5-32 Background Mode and Null Operations...........cccoeveeeieririsiessiienennnenns 5-30
5-33 HC16 Implementation of HC11 Instructions ..., 5-32
6-1 Standard Assembler FOrmats........ccooeiiiieieieeeee e e 6-1
6-2 Condition Code Evaluation..............cviririiiiininieecren e 6-267
6-3 INStruction Set SUMMATY ... s 6-276
7-1 Basic Instruction Formats......c.coevevenineccienne ettt et 7-2
7-2 Page 0 OPCOUESc.ociririicee sttt et e e 7-10
7-3 Page 1 OPCOUABS ..ottt ettt e en e 7-14
7-4 Page 2 OPCOAES ...ttt ettt s ee e eae s ese s 7-18
7-5 Page 3 OPCOUES ...ttt et er e 7-22

8-1 ACCESS BUS CYCIES ..ottt
8-2 Change-of-Flow Instruction Timing

8-3 Stack Manipulation TimMiNgGcooevveeriiiiiieeee et s
8-4 Stop and Wait TimMiNG.....cceverriieere et sre e s ae e e
8-5 Move Timing sttt e et r e e et E e e e b bt s st er e e nes
8-6 MAC TIMING ottt st st e e s
9-1 Exception Vector Table........cccveereieercerce e s 9-2
10-1 IPIPEOQ/IPIPET ENCOQING. ...t ittt s 10-3
10-2 BDM SOUrCE SUMMANY....c.oiiirieiriiieieese e e 10-13
10-3 BDM SIgNalS...coiceiiieieeciiceeiee et e e 10-14
10-4 CPU Generated Message Encoding........... ettt s .10-17
10-5 Command SUMMAIYccovrieuriririeceeeeseee et 10-23
11-1 AM Values and Effect on EV ... 11-4
11-2 Saturation ValUeS.......ieiriiiicieseecce et 11-5
A-1 HC16 Implementation of HC11 INStructionscccccovvimecinnnercninnne A-16

MOTOROLA CPU16 REFERENCE MANUAL

XVI

SECTION 1
OVERVIEW

The CPU16 is a high-speed 16-bit device. It gives M68BHC11 users a path to
higher performance while maintaining compatibility with existing systems.

CPU16 architecture is a superset of M68HC11 architecture. All MEB8HC11
resources are available in the HC16. There are two 16-bit general-purpose
accumulators and three 16-bit index registers. The CPU16 supports 8-bit (byte),
16-bit (word), and 32-bit (long-word) load and store operations, as well as 16-
and 32-bit signed fractional operations. Program diagnosis is enhanced by a
background debugging mode.

CPU16 memory space includes a 1 Mbyte data space and a 1 Mbyte program
space. Twenty-bit addressing and transparent bank switching are used to
implement extended memory. In addition, most instructions automatically
handle bank boundaries..

The CPU16 also has new and enhanced addressing modes. M68HC11 direct
mode addressing has been replaced by a special form of indexed addressing
that uses the new IZ register and a reset vector to provide greater flexibility.

The CPU16 instruction set is optimized for high performance. M68HC11
instructions are either directly implemented in the HC16, or have been replaced
by instructions with an equivalent form. The instruction sets are source code
compatible, although most instructions are executed differently in the HC16.

The CPU16 includes instructions and hardware to implement control-oriented
digital signal processing functions with a minimum of interfacing. A multiply and
accumulate unit provides the capability to multiply signed 16-bit fractional
numbers and store the resulting 32-bit fixed point product in a 36-bit
accumulator. Modulo addressing supports finite impulse response filters.

Use of high-level languages is increasing as controller applications become
more complex and control programs become larger. High-level language aids
rapid development of software, with less error, and is readily portable. The
CPU16 instruction set supports high-level languages.

CPU16 REFERENCE MANUAL OVERVIEW MOTOROLA

MOTOROLA OVERVIEW CPU16 REFERENCE MANUAL
12

SECTION 2
NOTATION

The following notation, symbols, and conventions are used throughout the manual.

2.1 Register Notation

A — Accumulator A
AM — Accumulator M
B — Accumulator B
CCR — Condition code register
D — Accumulator D
E — Accumulator E
EK — Extended addressing extension field
IR — Multiply and accumulate multiplicand register
HR — Multiply and accumulate multiplier register
IX — Index register X
IY — Index register Y
IZ — Index register Z
K — Address extension register
PC — Program counter
PK — Program counter extension field
SK — Stack pointer extension field
SL — Multiply and accumulate sign latch
SP — Stack pointer
XK — Index register X extension field
YK — Index register Y extension field
ZK — Index register Z extension field
XMSK — Modulo addressing index register X mask
YMSK — Modulo addressing index register X mask
CPU16 REFERENCE MANUAL NOTATION MOTOROLA

2-1

2.2 Condition Code Register Bits
S — Stop disable control bit

MV — AM overflow indicator
H — Half carry indicator
EV — AM extended overflow indicator

N — Negative indicator
Z — Zero indicator
V — Twos complement overflow indicator
C — Carry/borrow indicator
IP — Interrupt priority field
SM — Saturation mode control bit
PK — Program counter extension field

2.3 Condition Code Register Activity

— — Bit not affected

A — Bit changes according to specified conditions
0 — Bit cleared

1 — Bitset

2.4 Condition Code Expressions
M — Memory location used in operation
R — Result of operation
S — Source data
X — Register used in operation

2.5 Memory Addressing

M — Address of one memory byte

M+ 1 — Address of byte at M + $0001

M:M+1 — Address of one memory word
(...)x — Contents of address pointed to by IX
(...)y — Contents of address pointed to by IY
(...)z — Contents of address pointed to by IZ

MOTOROLA NOTATION CPU16 REFERENCE MANUAL
2-2

2.6 Addressing Modes

E, X — IX with E offset
E,Y — Y with E offset
E,Z — 1Z with E offset
EXT — Extended
EXT20 — 20-bit extended
IMM8 — 8-bit immediate
IMM16 — 16-bit immediate
IND8, X — IX with unsigned 8-bit offset
IND8, Y — 1Y with unsigned 8-bit offset
IND8, Z — IZ with unsigned 8-bit offset
IND16, X — IX with signed 16-bit offset
IND16, Y — 1Y with signed 16-bit offset
IND16, Z — 1Z with signed 16-bit offset
IND20, X — X with signed 20-bit offset
IND20, Y — 1Y with signed 20-bit offset
IND20, Z — 1Z with signed 20-bit offset
INH — Inherent
IXP — Post-modified indexed
REL8 — 8-bit relative
REL16 — 16-bit relative

2.7 Instruction Format

b — 4-bit address extension
ii — 8-bit immediate data sign-extended to 16 bits
jj — High-order byte of 16-bit immediate data
kk — Low-order byte of 16-bit immediate data
hh — High-order byte of 16-bit extended address
Il — Low-order byte of 16-bit extended address
gggg — 16-bit signed offset
ff — 8-bit unsigned offset
mm — 8-bit mask
mmmm — 16-bit mask
rr — 8-bit unsigned relative offset
rrrr — 16-bit signed relative offset
x0 — MAC index register X offset
yo — MAC index register Y offset
z — 4-bit zero extension

CPU16 REFERENCE MANUAL NOTATION MOTOROLA
2-3

‘@+oﬂ~l/\lvn/\v*l

2.8 Symbois and Operators

+

=z
O
=3

PORTEE || A

o
©®»

MOTOROLA
2-4

Addition

Subtraction or negation (twos complement)

Multiplication
Division
Greater

Less

Equal

Equal or greater
Equal or less

Not equal
AND

Inclusive OR (OR)
Exclusive OR (EOR)

Complementation
Concatenation

Transferred
Exchanged

Sign bit; also used to show tolerance

Sign extension
Binary value
Hexadecimal value

NOTATION

CPU16 REFERENCE MANUAL

2.9 Conventions
Logic level one is the voltage that corresponds to Boolean true (1) state.

Logic level zero is the voltage that corresponds to Boolean false (0) state. n
Set refers specifically to establishing logic level one on a bit or bits.
Cleared refers specifically to establishing logic level zero on a bit or bits.

Asserted means that a signal is in active logic state. An active low signal
changes from logic level one to logic level zero when asserted, and an active
high signal changes from logic level zero to logic level one.

Negated means that an asserted signal changes logic state. An active low
signal changes from logic level zero to logic level one when negated, and an
active high signal changes from logic level one to logic level zero.

ADDR is the mnemonic for address bus. DATA is the mnemonic for data bus.

LSB means least significant bit or bits. MSB means most significant bit or bits.
References to low and high bytes are spelled out.

LSW means least significant word or words. MSW means most significant
word or words.

A specific bit or signal within a range is referred to by mnemonic and
number. A35 is bit 35 of accumulator A; ADDR[7:0] form the low byte of the
address bus. A range of bits or signals is referred to by mnemonic and the
numbers that define the range. AM[35:30] are bits 35 to 30 of accumulator M;
DATA[15:8] form the high byte of the data bus.

Parentheses are used to indicate the content of a register or memory location,
rather than the register or memory location itself. (A) is the content of
accumulator A. (M : M + 1) is the content of the word at address M.

CPU16 REFERENCE MANUAL NOTATION MOTOROLA
25

MOTOROLA NOTATION CPU16 REFERENCE MANUAL
26 :

SECTION 3
SYSTEM RESOURCES

This section provides information concerning CPU16 register organization,
memory management, and bus interfacing. The CPU16 is a subcomponent of a
modular microcontroller. Due to diversity of modular microcontrollers, detailed
information concerning interaction with other modules and external devices is
contained in the microcontroller user's manual.

3.1 General

The CPU16 was designed to provide compatibility with the MC68HC11 and to
provide additional capabilities associated with 16- and 32-bit data sizes, 20-bit
addressing, and digital signal processing. CPU16 registers are an integral part
of the CPU and are not addressed as memory locations. The CPU16 register
model contains all the resources of the MC68HC11, plus additional resources.

The CPU16 treats all peripheral, 1/0, and memory locations as parts of a
pseudolinear 1 Megabyte address space. There are no special instructions for
I/O that are separate from instructions for addressing memory. Address space is
made up of 16 64-kilobyte banks. Specialized bank addressing techniques and
support registers provide transparent access across bank boundaries.

The CPU16 interacts with external devices and with other modules within the
microcontroller via a standardized bus and bus interface. There are bus
protocols for memory and peripheral accesses, as well as for managing an
hierarchy of interrupt priorities.

3.2 Register Model

Figure 3-1 shows the CPU16 register model. Registers are discussed in detall
in the following paragraphs.

CPU16 REFERENCE MANUAL SYSTEM RESOURCES MOTOROLA
31

| 20 8|7 0] BIT POSITION
A] B ACCUMULATORS A AND B
D ACCUMULATORD (A : B)
E | ACCUMULATOR E
XK IX | INDEX REGISTER X
YK Iy | INDEX REGISTER Y

L Iz | INDEX REGISTER Z

sk SP | STACK POINTER

PUPK PC | PROGRAM COUNTER

CCR | PK | CONDITION CODE REGISTER/
PC EXTENSION REGISTER
EK [XK YK | 7k | ADDRESS EXTENSION REGISTER
STACK EXTENSION REGISTER
HR | MAC MULTIPLIER REGISTER
IR | MAC MULTIPLICAND REGISTER
AM MAC ACCUMULATOR MSB [35:16]
AM MAC ACCUMULATOR LSB [15:0]
XMSK] YMSK | MAC XY MASK REGISTER
Figure 3-1. CPU16 Register Model
MOTOROLA SYSTEM RESOURCES CPU16 REFERENCE MANUAL

3-2

3.2.1

3.2.2

Accumulators

The CPU16 has two 8-bit accumulators (A and B) and one 16-bit accumulator
(E). In addition, accumulators A and B can be concatenated into a second
16-bit "double" accumulator (D).

Accumulators A, B, and D are general-purpose registers used to hold operands
and results during mathematic and data manipulation operations.

Accumulator E can be used in the same way as Accumulator D, and also
extends CPU16 capabilities. It allows more data to be held within the CPU16
during operations, simplifies 32-bit arithmetic and digital signal processing, and

provides a practical 16-bit accumulator offset indexed addressing mode.

CPU16 accumulators can perform the same operations as MC68HC11
accumulators of the same names, but the CPU16 instruction set provides
additional 8-bit, 16-bit, and 32-bit accumulator operations. See SECTION 5
INSTRUCTION SET for more information.

Index Registers

The CPU16 has three 16-bit index registers (IX, IY, and 1Z). Each index register
has an associated 4-bit extension field (XK, YK, and ZK).

Concatenated registers and extension fields provide 20-bit indexed addressing
and support data structure functions anywhere in the CPU16 address space.

IX and 1Y can perform the same operations as MC68HC11 registers of the same
names, but the CPU16 instruction set provides additional indexed operations.

IZ can perform the same operations as IX and 1Y, and also provides an
additional indexed addressing capability that replaces MC68HC11 direct
addressing mode. Initial I1Z and ZK extension field values are included in the
RESET exception vector, so that ZK : IZ can be used as a direct page pointer out
of reset. See SECTION 4 DATA TYPES AND ADDRESSING MODES
and SECTION 9 EXCEPTION PROCESSING for more information.

CPU16 REFERENCE MANUAL SYSTEM RESOURCES MOTOROLA

33

3.2.3

3.2.4

3.2.5

Stack Pointer

The CPU16 stack pointer (SP) is 16 bits wide. An associated 4-bit extension
field (SK) provides 20-bit stack addressing.

Stack implementation in the CPU16 is from high to low memory. The stack
grows downward as it is filled. SK : SP are decremented each time data is
pushed on the stack, and incremented each time data is pulled from the stack.

SK : SP point to the next available stack address, rather than to the address of
the latest stack entry. Although the stack pointer is normally incremented or
decremented by word address, it is possible to push and pull byte-sized data;
however, setting the stack pointer to an odd value causes misalignment, which
affects performance. See SECTION 4 DATA TYPES AND ADDRESSING
MODES and SECTION 5 INSTRUCTION SET for more information.

Program Counter

The CPU16 program counter (PC) is 16 bits wide. An associated 4-bit
extension field (PK) provides 20-bit program addressing.

CPU16 instructions are fetched from even word boundaries. Bit 0 of the PC
always has a value of zero, to assure that instruction fetches are made from
word-aligned addresses. See SECTION 7 INSTRUCTION PROCESS for
more information.

Condition Code Register

The 16-bit condition code register can be divided into two functional blocks.
The 8 MSB, which correspond to the CCR in the MC68HC11, contain the low-
power stop control bit and processor status flags. The 8 LSB contain the
interrupt priority field, the DSP saturation mode control bit, and the program
counter address extension field.

Management of interrupt priority in the CPU16 differs considerably from that of
the MC68HC11. See SECTION 9 EXCEPTION PROCESSING for
complete information.

Figure 3-2 shows the condition code register. Detailed descriptions of each
status indicator and field in the register follow the figure.

MOTOROLA SYSTEM RESOURCES CPU16 REFERENCE MANUAL

34

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o0
(s Im][H]ev][N[zZ]V]c] IP | sm | PK

Figure 3-2. Condition Code Register

S — STOP Enable
0 = Stop clock when LPSTOP instruction is executed
1 = Perform NOP when LPSTOP instruction is executed

MV — Accumulator M Overflow Flag
Set when overflow into AM35 has occurred.

H — Half Carry Flag :
Set when a carry from bit 3 in A or B occurs during BCD addition.

EV — Extension Bit Overflow Flag
Set when an overflow into AM31 has occurred.

N — Negative Flag
Set when the MSB of a result register is set.

Z — Zero Flag
Set when all bits of a result register are zero.

V — Overflow Flag
Set when twos complement overflow occurs as the result of an operation.

C — Carry Flag
Set when carry or borrow occurs during arithmetic operation. Also.used
during shift and rotate to facilitate multiple word operations.

IP[2:0] — Interrupt Priority Field
The priority value in this field (0 to 7) is used to mask interrupts.

SM — Saturate Mode Bit
When SM is set, if either EV or MV is set, data read from AM using TMER
or TMET will be given maximum positive or negative value, depending
on the state of the AM sign bit before overflow.

PK[3:0] — Program Counter Address Extension Field
This field is concatenated with the program counter to form a 20-bit
address.

CPU16 REFERENCE MANUAL SYSTEM RESOURCES MOTOROLA
35

3.2.6 Address Extension Register and Address Extension Fields

3.2.7

There are six 4-bit address extension fields. EK, XK, YK, and ZK are contained
by the address extension register, PK is part of the CCR, and SK stands alone.

Extension fields are the bank portions of 20-bit concatenated bank : byte
addresses used in the CPU16 pseudolinear memory management scheme.

All extension fields except EK correspond directly to a register. XK, YK, and ZK
extend registers IX, IY, and 1Z; PK extends the PC; and SK extends the SP.
EK holds the 4 MSB of the 20-bit address used by extended addressing mode.

The function of extension fields is discussed in 3.3 Memory Management.

Multiply and Accumulate Registers

The multiply and accumulate (MAC) registers are part of a CPU submodule that
performs repetitive signed fractional multiplication and stores the cumulative
result. These operations are part of control-oriented digital signal processing.

There are four MAC registers. Register H contains the 16-bit signed fractional
multiplier. Register | contains the 16-bit signed fractional multiplicand.
Accumulator M is a specialized 36-bit product accumulation register. XMSK
and YMSK contain 8-bit mask values used in modulo addressing. '

The CPU16 has a special subset of signal processing instructions that
manipulate the MAC registers and perform signal processing calculation. See
SECTION 5 INSTRUCTION SET and SECTION 11 DIGITAL SIGNAL

PROCESSING for more information.

3.3 Memory Management

The CPU16 uses bank switching to provide a 1 Megabyte address space.
There are 16 banks within the address space. Each bank is made up of 64
kilobytes addressed from $0000 to $FFFF. Banks are selected by means of
address extension fields associated with individual CPU16 registers.

In addition, address space can be split into discrete 1 Megabyte program and
data spaces by externally decoding the outputs described in 3.5.1.1 Function
Codes. When this technique is used, instruction fetches and RESET vector
fetches access program space, while exception vector fetches (other than
RESET), data accesses, and stack accesses are made in data space.

MOTOROLA SYSTEM RESOURCES CPU16 REFERENCE MANUAL
3-6

3.3.1

3.3.2

Address Extension

All CPU16 resources that are used to generate addresses are effectively 20 bits
wide. These resources include extended index registers, program counter, and
stack pointer. All addressing modes use 20-bit addresses.

20-bit addresses are formed from a 16-bit byte address generated by an
individual CPU16 register and a 4-bit bank address contained in an associated
extension field. The byte address corresponds to ADDR[15:0] and the bank
address corresponds to ADDR[19:16].

Extension Fields

The six address extension fields are each used in a different type of access. As
shown in 3.2 Register Model, all but EK are associated with particular
CPU16 registers. There are a number of ways to manipulate extension fields
and the address map.

3.3.2.1 Using Accumulator B to Modify Extension Fields

EK, XK, YK, ZK, and SK can be examined and modified by using the Transfer
Extension Field to B and Transfer B to Extension Field instructions.

Transfer Extension Field to B instructions (TEKB, TXKB, TYKB, TZKB, and
TSKB) copy the designated extension field into the four LSB of Accumulator B,
where it can be modified. Transfer B to Extension Field instructions (TBEK,
TBXK, TBYK, TBZK, and TBSK) replace the designated extension field with the
contents of the four LSB of Accumulator B.

3.3.2.2 Using Stack Pointer Transfer to Modify Extension Fields

XK, YK, ZK, and SK can be modified by using the Transfer Index Register to
Stack Pointer and Transfer Stack Pointer to Index Register instructions.

When the SP is transferred to (TSX, TSY, and TSZ) or from (TXS, TYS, and
TZS) an index register, the corresponding address extension field is also
transferred. Before the extension field is transferred, it is incremented or
decremented if bank overflow occurred as a result of the instruction.

3.3.2.3 Using Index Register Exchange to Modify Extension Fields

XK, YK, and ZK can be modified by using the Transfer Index Register to Index
Register instructions.

When index registers are exchanged (TXY, TXZ, TYX, TYZ, TZX, and TZY), the
corresponding address extension field is also exchanged.

CPU16 REFERENCE MANUAL SYSTEM RESOURCES MOTOROLA

37

3.3.2.4 Stacking Extension Field Values

The Push Multiple Registers (PSHM) instruction can be used to store alternate
extension field values on the stack. When bit 5 of the PSHM mask operand is
set, the entire address extension register (EK, XK, YK, and ZK values) is pushed
onto the stack.

The Pull Multiple Registers (PULM) instruction can be used to replace extension
field values. When bit 1 of the PULM mask operand is set, the entire address
extension register (EK, XK, YK, and ZK) will be replaced with stacked values.

3.3.2.5 Adding Immediate Data to Registers

3.3.3

XK, YK, ZK, and SK are automatically modified when an AlX, AlY, AlZ, or AIS
instruction causes an overflow from the corresponding register. The byte
addresses contained in the registers have a range of $0000 to $FFFF. If the
operation results in a value below $0000 or above $FFFF, the associated
extension field is decremented or incremented by the amount of overflow.

Program Counter Address Extension

The PK field cannot be altered by direct transfer or exchange like other address
extension fields, but a number of instructions and addressing modes affect the
program counter and its associated extension field.

PK is automatically modified when an operation causes an overflow from the
PC. The PC has a range of $0000 to $FFFF. If it is decremented below $0000
or incremented above $FFFF, PK is also incremented or decremented.

3.3.3.1 Effect of Jump Instructions on PK : PC

There are two forms of jump instruction in the CPU16 instruction set. Both use
special addressing modes that replace PK : PC with a 20-bit effective address,
but do not affect other address extension fields.

JMP causes an unconditional change in program execution. The effective
address is placed in PK : PC and execution continues at the new address.

JSR causes a branch to a subroutine. After the contents of the program counter
and the condition code register are stacked, the effective address is placed in
PK : PC and execution continues at the new address.

See SECTION 5 INSTRUCTION SET for detailed information about jump
instructions.

MOTOROLA SYSTEM RESOURCES CPU16 REFERENCE MANUAL

38

3.3.3.2 Effect of Branch Instructions on PK : PC

The CPU16 instruction set includes a number of branch instructions. All add an
offset to the program counter when a branch is taken. The size of offset differs,
but in all cases, PK is automatically modified when addition of the offset causes
PC overflow. The PC has a range of $0000 to $FFFF. If it is decremented
below $0000 or incremented above $FFFF, PK is also decremented or
incremented. Pipelining affects the actual offset from the instruction. See
SECTION 5 INSTRUCTION SET for detailed information about branch
instructions.

3.3.4 Effective Addresses and Extension Fields

It is important to distinguish address extension field values from effective
address values. Effective address calculation is a part of addressing mode
operation. Indexed and accumulator offset addressing modes can generate
effective addresses that cross bank boundaries — ADDR[19:16] are changed to
make an access, but extension field values do not change as a result of the
operation. See SECTION 4 DATA TYPES AND ADDRESSING MODES
for more information. Table 3-1 summarizes the effects of various operations on
address lines and address extension fields.

Table 3-1. Operations That Cross Bank Boundaries

Type of Extension Field | Extension Field Effect on

Operation Used Affected ADDR[19:16]
Normal PC Increments PK PK Equals new PK
Operand Read Using XK, YK, ZK None Used for
Indexed Addressing Mode Effective Address
Operand Write Using XK, YK, ZK None Used for
Indexed Addressing Mode Effective Address
Operand Read Using EK None Used for
Extended Addressing Mode Effective Address
Operand Write Using EK None Used for
Extended Addressing Mode Effective Address
Post-modified Indexed Addressing XK XK Used for
(XK is modified after use as effective address) Effective Address
JMP, JSR Instruction None PK Equals new PK
Branch Instructions PK PK Equals new PK
(Including BSR and LBSR)
Stack Access SK SK Stack at new SK
AIX, AlY, AlZ, or AIS Instruction XK, YK, ZK, or SK | XK, YK, ZK, or SK None
TSX, TSY, or TSZ Instruction SK XK, YK, or ZK ~ None
TXS, TYS, or TZS Instruction XK, YK, or ZK SK None
TXY or TXZ Instruction XK YK, ZK None
TYX or TYZ Instruction YK XK, ZK None
TZX or TZY Instruction ZK XK, YK None

CPU16 REFERENCE MANUAL SYSTEM RESOURCES MOTOROLA

39

3.4 Intermodule Bus

The intermodule bus is a standardized bus developed to facilitate design of
modular microcontrollers. Bus protocols are based on the MC68020 bus. The
IMB contains circuitry to support exception processing, address space
partitioning, multiple interrupt levels, and vectored interrupts.

Modular Microcontroller Family modules communicate with one another via the
IMB. Although the full IMB supports 24 address and 16 data lines, CPU16 uses
only 16 data lines and 20 address lines — ADDRJ[23:20] are tied to ADDR19
when processor driven.

3.5 External Bus Interface

3.5.1

The external bus interface (EBI) is contained in the system integration module of
the modular microcontroller. This section provides a general discussion of EBI
capabilities. Refer to the appropriate microcontroller user's manual for detailed
information about the bus interface.

The external bus is essentially an extension of the IMB. There are 24 address
lines and 16 data lines. ADDR[19:0] are normal address outputs, ADDR[23:20]
follow the output state of ADDR19. It provides dynamic sizing between 8- and
16-bit data accesses. A three-line handshaking interface performs bus
arbitration.

The EBI transfers information between the MCU and external devices. It
supports byte, word, and long-word transfers. Data ports of 8 and 16-bits can
be accessed through the use of asynchronous cycles controlled by the data
transfer (S1Z1 and SIZ0) and data size acknowledge pins (DSACK1 and
DSACKO). Multiple bus cycles may be required for an operand transfer to an

8-bit port, due to misalignment or to port width smaller than the operand size.

Port width is defined as the maximum number of bits accepted or provided
during a bus transfer. External devices must follow the handshake protocol
described below.

Bus Control Signals

Control signals indicate the beginning of the cycle, the address space and size
of the transfer, and the type of cycle. The selected device controls the length of
the cycle. Strobe signals, one for the address bus and another for the data bus,
indicate the validity of an address and provide timing information for data. The
EBI operates asynchronously for all port widths. A bus cycle is initiated by
driving the address, size, function code, and read/write outputs.

MOTOROLA SYSTEM RESOURCES CPU16 REFERENCE MANUAL

3-10

3.5.1.1 Function Codes

Function codes are automatically generated by the CPU16. Since the CPU16
always operates in supervisor mode (FC2 = 1) FC1 and FCO are encoded to
select one of four address spaces. One encoding (%00) is reserved. The
remaining three spaces are called program space, data space and CPU space.
Program and data space are used for instruction and operand accesses. CPU
space is used for control information not normally associated with read or write
bus cycles, such as interrupt acknowledge cycles, breakpoint acknowledge
cycles, and low power stop broadcast cycles. Function codes are valid while
address strobe AS is asserted. The following table shows address space
encoding.

Table 3-2. Address Space Encoding

FC2 FC1 FCoO Address Space
1 0 0 Reserved
1 0 1 Data Space
1 1 0 Program Space
1 1 1 CPU Space

3.5.1.2 Size Signals

SIZ0 and SIZ1 indicate the number of bytes remaining to be transferred during
an operand cycle. They are valid while the AS is asserted. The following table
shows S1Z0 and SIZ1 encoding.

Table 3-3. Size Signal

Encoding
SI1Z1 Slizo Transfer Size
0 1 Byte
1 0 Word
1 1 3 Byte
0 0 Long Word

3.5.1.3 Read/Write Signal

RW determines the direction of the transfer during a bus cycle. This signal
changes state, when required, at the beginning of a bus cycle, and is valid while
AS is asserted. The signal may remain low for two consecutive write cycles.

CPU16 REFERENCE MANUAL SYSTEM RESOURCES MOTOROLA
3-11

3.5.2 Address Bus

3.5.3

3.5.4

Bus signals ADDR[19:0] define the address of the byte (or the most significant
byte) to be transferred during a bus cycle. The MCU places the address on the
bus at the beginning of a bus cycle. The address is valid while address strobe
(AS) is asserted.

AS is a timing signal that indicates the validity of an address on the address bus
and of many control signals. It is asserted one-half clock after the beginning of
a bus cycle.

Data Bus

Bus signals DATA[15:0] comprise a bidirectional, nonmultiplexed parallel bus
that transfers data to or from the MCU. A read or write operation can transfer 8
or 16 bits of data in one bus cycle. During a read cycle, the data is latched by
the MCU on the last falling edge of the clock for that bus cycle. For a write cycle,
all 16 bits of the data bus are driven, regardless of the port width or operand
size. The EBI places the data on the data bus one-half clock cycle after AS is
asserted in a write cycle.

Data strobe (DS) is a timing signal. For a read cycle, the MCU asserts DS to
signal an external device to place data on the bus. DS is asserted at the same
time as AS during a read cycle. For a write cycle, DS signals an external device
that data on the bus is valid. The EBI asserts DS one full clock cycle after the
assertion of AS during a write cycle.

Bus Cycle Termination Signals

During bus cycles, external devices assert the data transfer and size
acknowledge signals (DSACK1 and/or DSACKO0). During a read cycle, the
signals tell the EBI to terminate the bus cycle and to latch data. During a write
cycle, the signals indicate that an external device has successfully stored data
and that the cycle may terminate. These signals also indicate to the EBI the size
of the port for the bus cycle just completed.

The bus error signal (BERR) is also a bus cycle termination indicator and can be
used in the absence of DSACKXx to indicate a bus error condition. It can also be
asserted in conjunction with DSACKXx to indicate a bus error condition, provided
it meets the appropriate timing requirements. Simultaneous assertion of BERR
and HALT is treated in the same way as assertion of BERR alone.

MOTOROLA SYSTEM RESOURCES CPU16 REFERENCE MANUAL

3-12

An internal bus monitor can be used to generate the BERR signal for internal
and internal-to-external transfers. An external bus master must provide its own
BERR generation and drive the BERR pin, since the internal BERR monitor has
no information about transfers initiated by an external bus master.

Finally, autovector signal (AVEC) can be used to terminate external IRQ pin
interrupt acknowledge cycles. AVEC indicates to the EBI that it must internally
generate a vector number to locate an interrupt handler routine. If AVEC is
continuously asserted, autovectors will be generated for all external interrupt
requests. AVEC is ignored during all other bus cycles.

3.5.5 Data Transfer Mechanism

EBI architecture supports byte, word, and long-word operands, allowing access
to 8- and 16-bit data ports through the use of asynchronous cycles controlled by
the data transfer and size acknowledge inputs (DSACK1 and DSACKO).

3.5.5.1 Dynamic Bus Sizing

The EBI dynamically interprets the port size of the addressed device during
each bus cycle, allowing operand transfers to or from 8- and 16-bit ports.
During an operand transfer cycle, the slave device signals its port size and
indicates completion of the bus cycle to the EBI through the use of the DSACKXx
inputs, as shown in the following table.

Table 3-4. Effect of DSACK Signals

DSACK1 DSACKoO Result

Insert Wait States in Current Bus Cycle

1 1

1 0 Complete Cycle — Data Bus Port Size is 8 Bits
0 1 Complete Cycle — Data Bus Port Size is 16 Bits
0 (o] Reserved

For example, if the CPU16 is executing an instruction that reads a long-word
operand from a 16-bit port, the EBI latches the 16 bits of valid data and runs
another bus cycle to obtain the other 16 bits. The operation for an 8-bit port is
similar, but requires four read cycles. The addressed device uses the DSACKx
signals to indicate the port width. For instance, a 16-bit device always returns
DSACKXx for a 16-bit port (regardless of whether the bus cycle is a byte or word
operation).

CPU16 REFERENCE MANUAL SYSTEM RESOURCES MOTOROLA
3-13

Dynamic bus sizing requires that the portion of the data bus used for a transfer
to or from a particular port size be fixed. A 16-bit port must reside on data bus
bits [15:0], and an 8-bit port must reside on data bus bits [15:8]. This minimizes
the number of bus cycles needed to transfer data and ensures that the EBI
transfers valid data.

The EBI always attempts to transfer a maximum amount of data during each bus
cycle. For a word operation, it is assumed that the port is 16 bits wide when the
bus cycle begins. Operand bytes are designated as shown in Figure 3-2. OP0Q
is the most significant byte of a long-word operand, and OP3 is the least
significant byte. The two bytes of a word-length operand are OPO (most
significant) and OP1. The single byte of a byte-length operand is OPQ.

Operand Byte Order
31 24 23 1615 87 0
Long Word OPO OP1 oP2 OP3
Three Byte OPO OP1 oP2
Word OPO OP1
Byte OPO

Figure 3-3. Operand Byte Order

3.5.5.2 Operand Alignment

Refer to Table 3-5 for required organization of 8- and 16-bit data ports. A data
multiplexer establishes the necessary connections for different combinations of
address and data sizes. The multiplexer takes the two bytes of the 16-bit bus
and routes them to their required positions. Positioning of bytes is determined
by the size and address outputs. SlIZ1 and SI1Z0 indicate the remaining number
of bytes to be transferred during the current bus cycle. The number of bytes
transferred is equal to or less than the size indicated by SIZ1 and SIZ0,
depending on port width.

ADDRO also affects data multiplexer operation. During an operand transfer,
ADDRJ[23:1] indicate the word base address of the portion of the operand to be
accessed, and ADDRO indicates the byte offset from the base. Table 3-5 shows
the number of bytes required on the data bus for read cycles. OPn entries are
portions of the requested operand that are read or written during a bus cycle
and are defined by SIZ1, S1Z0, and ADDRO for that bus cycle.

MOTOROLA SYSTEM RESOURCES CPU16 REFERENCE MANUAL
3-14

Table 3-5. Operand Alignment

Transfer Case S1Z1| SI1Z0| ADDR | DSACK1| DSACKo| DATA DATA
0 15 8| 7 0
Byte to Byte 0 1 X 1 0 OPO (OP0)
Byte to Word (Even) 0 1 0 0 X OPO (OPO)
Byte to Word (Odd) 0 1 1 0 X (OPO) OPO
Word to Byte (Aligned) 1 0 0 1 0 OPO (OP1)
Word to Byte (Misaligned) 1 o] 1 1 0 OPO (OPO)
Word to Word (Aligned) 1 0 0 0 X OPoO OP1
Word to Word (Misaligned) 1 0 1 0 X (OPO) OPO
3 Byte to Byte (Aligned)t 1 1 0 1 0 OPO (OP1)
3 Byte to Byte (Misaligned)t 1 1 1 1 0 OPO (OPO)
3 Byte to Word (Aligned)t 1 1 0 0 X OPO OP1
3 Byte to Word (Misaligned)t 1 1 1 0 X (OPO) OPO
Long Word to Byte (Aligned) 0 0 0 1 0 OPO (OP1)
Long Word to Byte (Misaligned)* 1 0 1 1 0 OPoO (OP0)
Long Word to Word (Aligned) 0 0 0 0 X OPO OP1
Long Word to Word (Misaligned)* 1 0 1 0 X (OPO) OPO

NOTES:
Operands in parentheses are ignored by the CPU16 during read cycles.
*The CPU16 treats misaligned long-word transfers as two misaligned word transfers.
tThree-byte transfer cases occur only as a result of a long word to byte transfer.

3.5.5.3 Misaligned Operands

The value of ADDRO determines alignment. When ADDRO = 0, the address is a
word and byte boundary. When ADDRO = 1, the address is a byte boundary
only. A byte operand is properly aligned at any address; a word or long-word
operand is misaligned at an odd address.

The basic CPU16 operand size is a 16-bit word. The CPU16 fetches instruction
words and operands from word boundaries only. The CPU16 performs
misaligned data word and long-word transfers. This capability is provided in
order to make the CPU16 compatible with the MC68HC11.

At most, a bus cycle can transfer a word of data aligned on a word boundary. If
data words are misaligned, each byte of the misaligned word is treated as a
separate word transfer. If a long-word operand is transferred via a 16-bit port,
the most significant operand word is transferred on the first bus cycle and the
least significant operand word on a following bus cycle.

CPU16 REFERENCE MANUAL SYSTEM RESOURCES MOTOROLA
3-15

MOTOROLA SYSTEM RESOURCES CPU16 REFERENCE MANUAL
3-16

SECTION 4
DATA TYPES AND ADDRESSING MODES

This section contains information about CPU16 data types and addressing
modes. It is intended to familiarize users with basic processor capabilities.

4.1 Data Types n

The CPU16 uses the following types of data:

Bits

4-bit signed integers

8-bit (byte) signed and unsigned integers

8-bit, 2-digit binary coded decimal numbers
16-bit (word) signed and unsigned integers
32-bit (long word) signed and unsigned integers
16-bit signed fractions

32-bit signed fractions

36-bit signed fixed-point numbers

20-bit effective address consisting of 16-bit byte address and 4-bit
extension

e o6 o © ¢ ¢ o o o o

There are 8 bits in a byte, 16 bits in a word. Bit set and clear instructions use
both byte and word operands. Bit test instructions use byte operands.

Negative integers are represented in twos-complement form. Four-bit signed
integers, packed two to a byte, are used only as X and Y offsets in MAC and
RMAC operations. Integers of 32 bits are used only by extended multiply and
divide instructions, and by the associated LDED and STED instructions.

Binary coded decimal numbers are packed, two digits per byte. BCD
operations use byte operands.

16-bit fractions are used in both fractional multiplication and division, and as
multiplicand and multiplier operands in the MAC unit. Bit 15 is the sign bit. An
implied radix point lies between bits 15 and 14. There are 15 bits of magnitude
— the range of values is —1 ($8000) to 1 — 2-15 ($7FFF).

CPU16 REFERENCE MANUAL DATA TYPES MOTOROLA
AND ADDRESSING MODES 41

Signed 32-bit fractions are used only by fractional multiplication and division
instructions. Bit 31 is the sign bit. An implied radix point lies between bits 31
and 30. There are 31 bits of magnitude — the range of values is —1
($80000000) to 1 — 2-31 ($7FFFFFFF).

Signed 36-bit fixed-point numbers are used only by the MAC unit. Bit 35 is the
sign bit. Bits [34:31] are sign extension bits. There is an implied radix point
between bits 31 and 30. There are 31 bits of magnitude, but use of the
extension bits allows representation of numbers in the range —16 ($800000000)
to 15.999969482 ($7FFFFFFFF).

Addresses of 20-bits are formed by combining a 16-bit byte address with a 4-bit
address extension. See 4.3 Addressing Modes for more information.

4.2 Memory Organization

Both program and data memory are divided into 16 64-kilobyte banks.
Addressing is pseudolinear — a 20-bit extended address can access any byte
location in the appropriate address space.

A word is composed of two consecutive bytes. A word address is normally an
even byte address. Byte 0 of a word has a lower 16-bit address than byte 1.
Long words and 32-bit signed fractions consist of two consecutive words, and
are normally accessed at the address of byte 0 in the word 0.

Instruction fetches always access word addresses. Word operands are
normally accessed at even byte addresses, but may be accessed at odd byte
addresses, with a substantial performance penalty.

To be compatible with the MC68HC11, misaligned word transfers and
misaligned stack accesses are allowed. Transferring a misaligned word
requires two successive byte transfer operations.

Figure 4-1 shows shows how each CPU16 data type is organized in memory.
Consecutive even addresses show size and alignment.

MOTOROLA DATA TYPES CPU16 REFERENCE MANUAL

42

AND ADDRESSING MODES

Memory/Register Data Types

Address Type
$0000 BIT | BIT|BIT| BIT|BIT| BIT|BIT|BIT| BIT|BIT| BIT|BIT|BIT| BIT|BIT| BIT
15| 14) 13 | 12| 11 10 9 8 7 6 5 4 3 2 1 0
$0002 BYTEO BYTE1
$0004 + X OFFSET + Y OFFSET + X OFFSET + Y OFFSET
$0006 BCD1 BCDO BCD1 BCDO
$0008 WORD 0
$000A WORD1
$000C MSW LONG WORD 0
$000E LSW LONG WORD 0
$0010 MSW LONG WORD 1
$0012 LSW LONG WORD 1
$0014 + |<= (Radix Point) 16-BIT SIGNED FRACTION 0
$0016 * | (Radix Point) 16-BIT SIGNED FRACTION 1
$0018 + | (Radix Point) MSW 32-BIT SIGNED FRACTION 0
$001A LSW 32-BIT SIGNED FRACTION 0 l 0
$001C * | (Radix Point) MSW 32-BIT SIGNED FRACTION 1
$001E LSW 32-BIT SIGNED FRACTION 1] 0
MAC Data Types
35 32 | 31 16 '
+ ‘ « ‘ «—[« « '<= (Radix Point) MSW 32-BIT SIGNED FRACTION
15 0
LSW 32-BIT SIGNED FRACTION
+)<= (Radix Point) 16-BIT SIGNED FRACTION
Address Data Type
19 16 | 15 0
4-Bit Extension 16-Bit Address
Figure 4-1. Data Types and Memory Organization
CPU16 REFERENCE MANUAL DATA TYPES MOTOROLA

AND ADDRESSING MODES

43

4.3 Addressing Modes

The CPU16 uses 10 basic types of addressing. There are one or more
addressing modes within each type. Table 4-1 shows the addressing modes.

Table 4-1. Addressing Modes

Mode Mnemonic Description
Accumulator Offset E, X Index Register X with Accumulator E offset
E,Y Index Register Y with Accumulator E offset
E,Z Index Register Z with Accumulator E offset
Extended EXT Extended
EXT20 20-bit Extended
Immediate IMM8 8-bit Inmediate
IMM16 16-bit Immediate
Indexed 8-Bit INDS8, X Index Register X with unsigned 8-bit offset
INDS, Y Index Register Y with unsigned 8-bit offset
. IND8, Z Index Register Z with unsigned 8-bit offset
Indexed 16-Bit IND16, X Index Register X with signed 16-bit offset

IND16, Y Index Register Y with signed 16-bit offset
IND16, Z Index Register Z with signed 16-bit offset
Indexed 20-Bit IND20, X Index Register X with signed 20-bit offset
IND20, Y Index Register Y with signed 20-bit offset
IND20, Z Index Register Z with signed 20-bit offset

Inherent INH Inherent
Post-modified Index IXP Signed 8-bit offset added to Index Register X
after effective address is used
Relative RELS8 8-bit relative
REL16 16-bit relative

All modes generate ADDR[15:0]. This address is combined with ADDR[19:16]
from an operand or an extension field to form a 20-bit effective address.

Note

Bank switching is transparent to most instructions. ADDR[19:16] of
the effective address are changed to make an access across a
page boundary. However, extension field values do not change
as a result of effective address computation.

MOTOROLA DATA TYPES CPU16 REFERENCE MANUAL
44 AND ADDRESSING MODES

4.3.1

4.3.2

4.3.3

Immediate Addressing Modes

In the immediate modes, an argument is contained in a byte or word
immediately following the instruction. For IMM8 and IMM16 modes, the effective
address is the address of the argument.

There are three specialized forms of IMM8 addressing.

The AIS, AIX/Y/Z, ADDD and ADDE instructions decrease execution time by
sign-extending the 8-bit immediate operand to 16 bits, then adding it to an
appropriate register.

The MAC and RMAC instructions use an 8-bit immediate operand to specify
two signed 4-bit index register offsets.

The PSHM and PULM instructions use an 8-bit immediate operand to
indicate which registers must be pushed to or pulled from the stack.

Extended Addressing Modes

Regular extended mode instructions contain ADDR[15:0] in the word following
the opcode. The effective address is formed by concatenating the EK field and
the 16-bit byte address. EXT20 mode is used only by JMP and JSR
instructions. JMP and JSR instructions contain a complete 20-bit effective
address — the operand is zero-extended to 24 bits so that the instruction has an
even number of bytes.

Indexed Addressing Modes

In the indexed modes, registers 1X, IY, and 1Z, together with their associated
extension fields, are used to calculate the effective address.

For 8-bit indexed modes an 8-bit unsigned offset contained in the instruction
is added to the value contained in an index register and its extension field.

For 16-bit modes, a 16-bit signed offset contained in the instruction is added
to the value contained in an index register and its extension field.

For 20-bit modes, a 20-bit signed offset (zero-extended to 24 bits) is added
to the value contained in an index register. These modes are used for JMP
and JSR instructions only.

CPU16 REFERENCE MANUAL DATA TYPES MOTOROLA

AND ADDRESSING MODES 45

4.3.4

4.3.5

n 4.3.6

4.3.7

4.3.8

Inherent Addressing Mode

Inherent mode instructions use information directly available to the processor to
determine the effective address. Operands (if any) are system resources and
are thus not fetched from memory.

Accumulator Offset Addressing Mode

Accumulator offset modes form an effective address by sign-extending the
content accumulator E to 20 bits, then adding the result to an index register and
its associated extension field. This mode allows use of an index register and an
accumulator within a loop without corrupting accumulator D.

Relative Addressing Modes

Relative modes are used for branch and long branch instructions. If a branch
condition is satisfied, a byte or word signed twos complement offset is added to
the concatenated PK field and program counter. The new PK : PC value is the
effective address.

Post-Modified Index Addressing Mode

Post-modified index mode is used only by the MOVB and MOVW instructions. A
signed 8-bit offset is added to index register X after the effective address formed
by XK : IX is used. Post-modified mode provides enhanced block-move
capabilities — programmers should carefully consider its effect on pointers.

Use of HC16 Indexed Mode to Replace HC11 Direct Mode

In MC68HC11 systems, the direct addressing mode can be used to perform
rapid accesses to RAM or I/O mapped into bank 0 ($0000 to $00FF), but the
CPU16 uses the first 512 bytes of bank 0 for exception vectors. To provide an
enhanced replacement for direct mode, the ZK field and index register Z have
been assigned reset initialization vectors — by resetting the ZK field to a chosen
page, and using indexed mode addressing, a programmer can access useful
data structures anywhere in the address map.

MOTOROLA - DATA TYPES CPU16 REFERENCE MANUAL

46

AND ADDRESSING MODES

SECTION 5
INSTRUCTION SET

This section contains general information about the instruction set. It is
organized into instruction summaries grouped by function. If an instruction has
a special purpose, such as aiding indexed operations, it appears in the
summary for that function, rather than in a general summary. An instruction that
is used for more than one purpose appears in more than one summary.
SECTION 6 INSTRUCTION GLOSSARY contains detailed information
about individual instructions.

5.1 General

The instruction set is based upon that of the MC68HC11, but the opcode map
has been rearranged to maximize performance with a 16-bit data bus. Most
MC68HC11 instructions are supported by the CPU16, although they may be
executed differently. Much MC88HC11 code will run on the CPU16 following
reassembly. The user must take into account changed instruction times, the
interrupt mask, and the new interrupt stack frame. See 5.13 Comparison of
CPU16 and MC68HC11 Instruction Sets for more information.

The CPU16 has a full range of 16-bit arithmetic and logic instructions, including
signed and unsigned multiplication and division. A number of instructions
support extended addressing and expanded memory space. In addition, there
are special instructions related to digital signal processing.

CPU16 REFERENCE MANUAL INSTRUCTION SET MOTOROLA
5-1

5.2 Data Movement Instructions

The CPU16 has a complete set of 8- and 16-bit data movement instructions, as
well as instructions to support 32-bit intermodule bus (IMB) operations.
General-purpose load, store, transfer and move instructions facilitate movement
of data to and from memory and peripherals. Special purpose instructions
enhance indexing, extended addressing, stacking, and digital signal
processing.

5.2.1 Load Instructions

Load instructions copy memory content into an accumulator or register.
Memory content is not changed by the operation.

There are specialized load instructions for stacking, indexing, extended
addressing, and digital signal processing. Refer to the appropriate summary for
more information.

Table 5-1. Load Summary

Mnemonic Function Operation
LDAA Load A M)y=A
LDAB Load B M)=B
LDD Load D M:M+1)=D
LDE Load E M:M+1)=E
LDED Load Concatenated E and D (M:M+1)=>E

M+2:M+3)=D

5.2.2 Move Instructions
These instructions move data bytes or words from one location to another in

memory.
Table 5-2. Move Summary
Mnemonic Function Operation
MOVB Move Byte (M1) = Mo
MOVW Move Word M:M+1)=>M:M+12
MOTOROLA INSTRUCTION SET CPU16 REFERENCE MANUAL

52

5.2.3 Store Instructions

Store instructions copy the content of an accumulator or register to memory.
Register/accumulator content is not changed by the operation.

There are specialized store instructions for indexing, extended addressing, and
CCR manipulation. Refer to the appropriate summary for more information.

Table 5-3. Store Summary

Mnemonic Function Operation
STAA Store A (A)=M
STAB Store B (B) =M
STO Store D D) =>M:M+1
STE Store E E)=>M:M+1
STED Store Concatenated D and E (E)=>M:M+1

D)y=>M+2:M+3

5.2.4 Transfer Instructions

These instructions transfer the content of a register or accumulator to another
register or accumulator. Content of the source is not changed by the operation.

There are specialized transfer instructions for stacking, indexing, extended
addressing, CCR manipulation, and digital signal processing. Refer to the
appropriate summary for more information.

Table 5-4. Transfer Summary

Mnemonic Function Operation
TAB Transfer Ato B (A)=>B
TBA Transfer Bto A (B)y=A
TDE TransferDto E (D)= E
TED TransferEto D (Ey=D
CPU16 REFERENCE MANUAL INSTRUCTION SET MOTOROLA

53

5.2.5

Exchange Instructions

These instructions exchange the contents of pairs of registers or accumulators.
There are specialized exchange instructions for indexing. Refer to the
appropriate summary for more information.

Table 5-5. Exchange Summary

Mnemonic Function Operation
XGAB Exchange A with B (A) & (B)
XGDE Exchange D with E (D) & (E)

H 5.3 Mathematic Instructions

5.3.1

The CPU16 has a full set of 8- and 16-bit mathematic instructions. There are
instructions for signed and unsigned arithmetic, division and multiplication, as
well as a complete set of 8- and 16-bit Boolean operators.

Special arithmetic and logic instructions aid stacking operations, indexing,
extended addressing, BCD -calculation, and condition code register
manipulation. There are also dedicated multiply and accumulate unit
instructions. Refer to the appropriate instruction summary for more information.

Addition and Subtraction Instructions

Signed and unsigned 8- and 16-bit arithmetic instructions can be performed
between registers or between registers and memory. Instructions that also add
or subtract the value of the CCR carry bit facilitate multiple precision
computation.

MOTOROLA) INSTRUCTION SET CPU16 REFERENCE MANUAL

54

Table 5-6. Addition Summary

Mnemonic Function Operation
ABA Add Bto A (A)+ (B)=>A
ADCA Add with Carry to A (A)+(M)+C =A
ADCB Add with Carry to B B)+(M)+C =B
ADCD Add with Carry to D D)+ M:M+1)+C=D
ADCE Add with Carry to E EY+M:M+1)+CE
ADDA Addto A A+ (M) = A
ADDB Add to B (B)+M)=B
ADDD Addto D D)+ (M:M+1)=D
ADDE Addto E (E)+ M:M+1)=>E
ADE AddDto E (E)+(D)=>E

Table 5-7. Subtraction Summary
SBA Subtract B from A (A)-(B)=A
SBCA Subtract with Carry from A (A)-(M)-C=A
SBCB Subtract with Carry from B (B)-(M)-C =B
SBCD Subtract with Carry from D D)-M:M+1)-C=D
SBCE Subtract with Carry from E (E)-M:M+1)-CE
SDE Subtract D from E (E)-(D)=E
SUBA Subtract from A (A)— (M) = A
SUBB Subtract from B (B)-(M)=B
SUBD Subtract from D (D)-M:M+1)=D
SUBE Subtract from E (E)-M:M+1)=E
CPU16 REFERENCE MANUAL INSTRUCTION SET MOTOROLA

55

The following table shows the type of arithmetic operation performed by each

addition and subtraction instruction.

Table 5-8. Arithmetic Operations

Mnemonic

8-bit

16-bit

X+ X

X+ M

X+tMzC

ABA

0

ADCA

ADCB

ADCD

ADCE

Slo|olo

ADDA

ADDB

ADDD

ADDE

SiIo|lo |

ADE

SBA

SBCA

SBCB

SBCD

SBCE

Slolo |

SDE

SUBA

SuUBB

SUBD

SUBE

Slo ||

MOTOROLA

56

INSTRUCTION SET

CPU16 REFERENCE MANUAL

5.3.2 Binary Coded Decimal Instructions

To add binary coded decimal operands, use addition instructions that set the
half-carry bit in the CCR, then adjust the result with the DAA instruction.

Table 5-9. BCD Summary

ABA AddBto A (A)+ (B)=> A
ADCA Add with Carry to A (A)+(M)+C=A
ADCB Add with Carry to B (B)+(M)+C=B
ADDA) Add to A (A + (M) = A
ADDB Add to B (B)+M)=B

DAA Decimal Adjust A (A)10

SXT Sign Extend B into A If B7 =1

then A = $FF
else A =$00

The following table shows DAA operation for all legal combinations of input
operands. Columns 1 through 4 represent the results of addition operations on
BCD operands. The correction factor in column 5 is added to the accumulator
to restore the result of an operation on two BCD operands to a valid BCD value,
and to set or clear the C bit. All values are hexadecimal.

Table 5-10. DAA Function Summary

1 2 3 4 5 6
Initial Value of Initial Value of Correction Corrected
C Bit Value A[7:4] H Bit Value A[3:0] Factor C Bit Value

0 0—9 0 0—9 00 0

0 0—8 0 A—F 06 0

0 0—9 1 0—3 06 0

0 A—F 0 0—9 60 1

0 9—F 0 A—F 66 1

0 A—F 1 0—3 66 1

1 0—2 0 0—9 60 1

1 0—2 0 A—F 66 1

1 0—3 1 0—3 66 1

CPU16 REFERENCE MANUAL INSTRUCTION SET MOTOROLA
' 57

5.3.3 Compare and Test Instructions

Compare and test instructions perform subtraction between a pair of registers or
between a register and memory. The result is not stored, but condition codes
are set by the operation. These instructions are generally used to establish
conditions for branch instructions.

Table 5-11. Compare and Test Summary

CBA Compare Ato B (A)~(B)
CMPA Compare A to Memory (A) = (M)
CMPB Compare B to Memory (B)= (M)
CPD Compare D to Memory D)-(M:M +1)
CPE Compare E to Memory (E)y—=(M:M +1)
TST Test for Zero or Minus (M) - $00
TSTA Test A for Zero or Minus - (A)-$%00
TSTB Test B for Zero or Minus (B) — $00
TSTD Test D for Zero or Minus (D) — $0000
TSTE Test E for Zero or Minus (E) - $0000
TSTW Test for Zero or Minus Word . M:M+1)- $0000
5.3.4 Multiplication and Division Instructions
There are instructions for signed and unsigned 8- and 16-bit multiplication, as
well as for signed 16-bit fractional multiplication. Eight-bit multiplication
operations have a 16-bit product. Sixteen-bit multiplication operations can
have either 16- or 32-bit products.
All division operations have 16-bit divisors, but dividends can be. either 16- or
32-bit numbers. Quotients and remainders of all division operations are 16-bit
numbers. There are instructions for signed and unsigned division, as well as for
fractional division.
Fractional multiplication and division use 16-bit operands. Bit 15 is the sign bit.
There is an implied radix point between bits 15 and 14. The range of values is
-1 ($8000) to 0.999969482 ($7FFF). The MSB of the result is its sign bit, and
there is an implied radix point between the sign bit and the rest of the result.
There are special 36-bit signed fractional multiply and accumulate unit
instructions to support digital signal processing operations. Refer to the
appropriate summary for more information.
MOTOROLA INSTRUCTION SET CPU16 REFERENCE MANUAL

58

Table 5-12. Multiplication and Division Summary

EDIV Extended Unsigned Divide (E : D)/ (IX)
Quotient = IX
Remainder = D
EDIVS Extended Signed Divide (E : D)/ (IX)
Quotient = IX
Remainder = D
EMUL Extended Unsigned Multiply (E)*(D)=>E:D
EMULS Extended Signed Multiply (E)*(D)=>E:D
FDIV Fractional Divide (D) / (IX) = IX
remainder = D
FMULS Fractional Signed Multiply (E)y* (D)=E:D
IDIV Integer Divide (D) / (IX) = IX
remainder = D
MUL Multiply (A)*(B)=>D

5.3.5 Decrement and Increment Instructions

These instructions are optimized 8- and 16-bit addition and subtraction
operations. They are generally used to implement counters. Because they do
not affect the carry bit in the CCR, they are particularly well suited for loop

counters in multiple-precision computation routines.

Table 5-13. Decrement and Increment Summary

DEC Decrement Memory (M) -$01 =M
DECA Decrement A (A)-$01 = A
DECB Decrement B (B)-$01 =B
DECW Decrement Memory Word (M:M+1)-$0001 =>M:M+1
INC Increment Memory (M) +3$01 =M
INCA Increment A (A)+$01 = A
INCB Increment B (B)+$01 =B
INCW Increment Memory Word (M:M+1)+$0001 =>M:M+1
CPU16 REFERENCE MANUAL INSTRUCTION SET MOTOROLA

59

5.3.6 Clear, Complement, and Negate Instructions

Each of these instructions performs a specific binary operation on a value in an
accumulator or in memory. Clear operations set the value to 0, complement
operations replace the value with its ones complement, and negate operations

replace the value with its twos complement.

Table 5-14. Clear, Complement, and Negate Summary

CLR Clear Memory $00 =M
CLRA Clear A $00 = A
CLRB Clear B $00 = B
CLRD ClearD $0000 = D
CLRE Clear E $0000 = E
CLRW Clear Memory Word $0000 =>M:M+1
COM Ones Complement Byte $FF— (M) =M
COMA Ones Complement A $FF—(A) > A
COoMB Ones Complement B $FF—(B)=B
COMD Ones Complement D $FFFF— (D) =D
COME Ones Complement E $FFFF - (E) =E
COMW Ones Complement Word $SFFFF-M:M+1=M:M4+1
NEG Twos Complement Byte $00 — (M) =>M
NEGA Twos Complement A $00 - (A) = A
NEGB Twos Complement B $00—-(B) =B
NEGD Twos Complement D $0000 — (D) =D
NEGE Twos Complement E $0000 — (E) = E
NEGW Twos Complement Word $0000—(M:M+1) =>M:M+1

5.3.7 Boolean Logic Instructions

Each of these instructions performs the Boolean logic operation represented by
the mnemonic. There are 8- and 16-bit versions of each instruction.

There are special forms of logic instructions for stack pointer, program counter,
index register, and address extension field manipulation. Refer to the
appropriate summary for more information.

MOTOROLA INSTRUCTION SET
5-10

CPU16 REFERENCE MANUAL

Table 5-15. Boolean Logic Summary

Mnemonic Function Operation
ANDA AND A (A) s (M)= A
ANDB AND B (B)+ (M)=B
ANDD AND D D)+ M:M+1)=D
ANDE AND E (E)+(M:M+1)=E
EORA Exclusive OR A (A)@® (M) = A
EORB Exclusive OR B (B)y® (M)=B
EORD Exclusive OR D D)®M:M+1)=D
EORE Exclusive OR E (Eyd(M:M+1)=E
ORAA ORA (A)+ (M) = A
ORAB ORB B)+(M)=B
ORD ORD D)+M:M+1)=D
ORE ORE (E)y+(M:M+1)=>E

5.4 Bit Test and Manipulation Instructions

These operations use a mask value to test or change the value of individual bits
in an accumulator or in memory. BITA and BITB provide a convenient means of
setting condition codes without altering the value of either operand.

Table 5-16. Bit Test and Manipulation Summary

Mnemonic Function Operation

BITA Bit Test A (A) - (M)
BITB Bit Test B (B)+ (M)
BCLR Clear Bit(s) (M) * (Mask) =M

BCLRW Clear Bit(s) Word (M: M+ 1)« (Mask) =>M:M+1
BSET Set Bit(s) (M) + (Mask) => M

BSETW Set Bit(s) Word (M:M+1)+ (Mask) > M : M+ 1

CPU16 REFERENCE MANUAL INSTRUCTION SET MOTOROLA

5-11

5.5 Shift and Rotate Instructions

There are shift and rotate commands for all accumuiators, for memory bytes,
and for memory words. All shift and rotate operations pass the shifted-out bit
through the carry bit in the CCR in order to facilitate multiple-byte and multiple-
word operations. There are no separate logical left shift operations.. Use
arithmetic shift left (ASL) for logic shift left (LSL) functions — LSL mnemonics
will be assembled as ASL operations.

Special shift commands move multiply and accumulate unit accumulator bits.
See 5.10 Digital Signal Processing Instructions for more information.

Table 5-17. Logic Shift Summary

LSR Logic Shift Right _—
o> [T T T 1T
b7 bo
LSRA Logic Shift Right A _
o> [T[T T[]
b7 bo
LSRB Logic Shift Right B B —— Y
o> [T T T T]1
b7 b0
LSRD Logic Shift Right D _—>
o> | | ---_11
b15 b0
LSRE Logic Shift Right E E——
o> [[---_TT]
b15 b0
LSRW Logic Shift Right Word S —
o> [| ---_T1
b15 b0
MOTOROLA INSTRUCTION SET CPU16 REFERENCE MANUAL

5-12

Table 5-18. Arithmetic Shift Summary

Mnemonic Function Operation
ASL Arithmetic Shift Left e
(LS CHTTTTTITT ko
b7 b0
ASLA Arithmetic Shift Left A ——
(LSLA) CMH T TTTITT ko
b7 b0
ASLB Arithmetic Shift Left B e
(LSLB) C{TTTTTTT ko
b7 b0
ASLD Arithmetic Shift Left D —
(SL0) C{T T ---TT1ko
b15 b0
ASLE Arithmetic Shift Left E —
(LSL8) {1 ---TTko
b15 b0
ASLW Arithmetic Shift Left Word —— e
(LSLW) C{TT---TTo
b15 b0
ASR Arithmetic Shift Right _—
I—Tlll HEEEN
b7 b0
ASRA Arithmetic Shift Right A —_—
Lt
b7 b0
ASRB Arithmetic Shift Right B —_—
HREEEE
b0
ASRD Arithmetic Shift Right D _—
|——>|1| [---_11
b15 b0
ASRE Arithmetic Shift Right E _—
b15 b0
ASRW Arithmetic Shift Right Word _
[l ---_11
b15 b0
CPU16 REFERENCE MANUAL INSTRUCTION SET MOTOROLA

5-13

Table 5-19. Rotate Summary

"ROL : Rotate Left
Lee T ™
b7 b0
ROLA Rotate Left A -
Lok T
b7 b0
ROLB Rotate Left B
Lew T
b7 b0
ROLD Rotate Left D - k—|
' [T ---11
b15 b0
ROLE Rotate Left E
Lew 11 - -T17%
b15 b0
ROLW Rotate Left Word
Lok 1T - - T
bi5 b0
ROR Rotate Right L_)I
HERRER
b7 b0
RORA Rotate Right A L>[
LT T T T
b7 b0
RORB Rotate Right B
Lo
b7 b0
" RORD Rotate Right D
b -
b15 b0
RORE Rotate Right E l_>l
[[---_11
b15 b0
RORW Rotate Right Word L)l
[T ---_11
b15 b0
MOTOROLA INSTRUCTION SET CPU16 REFERENCE MANUAL

5-14

5.6 Program Control Instructions

5.6.1

Program control instructions affect the sequence of instruction execution.

Branch instructions cause sequence to change when specific conditions exist.
The CPU16 has short, long, and bit-condition branches.

Jump instructions cause immediate changes in sequence. The CPU16 has a
true 20-bit address jump instruction.

Subroutine instructions optimize the process of temporarily transferring control
to a segment of code that performs a particular task. The CPU16 can branch or
jump to subroutines.

Interrupt instructions handle immediate transfer of control to a routine that
performs a critical task. Software interrupts are a type of exception. SECTION
9 EXCEPTION PROCESSING covers interrupt exception processing in
detail.

Short Branch Instructions

Short branch instructions operate as follows. When a specified condition is met,
a signed 8-bit offset is added to the value in the program counter. If addition
causes the value in the PC to be greater than $FFFF or less than $0000, the PK
extension field is incremented or decremented. Program execution continues at
the new extended address.

Short branch instructions can be classified by the type of condition that must be
satisfied in order for a branch to be taken. Some instructions belong to more
than one classification.

Unary branch instructions always execute.

Simple branches are taken when a specific bit in the condition code register
is in a specific state as a result of a previous operation.

Unsigned conditional branches are taken when comparison or test of
unsigned quantities results in"a specific combination of condition code
register bits.

Signed branches are taken when comparison or test of signed quantities
results in a specific combination of condition code register bits.

CPU16 REFERENCE MANUAL INSTRUCTION SET MOTOROLA

5-15

Table 5-20. Short Branch Summary

Unary Branches

MOTOROLA
5-16

Mnemonic Opcode Equation Condition
BRA BO 1=1 True
BRN B1 1=0 False

Simple Branches

Mnemonic Opcode Equation Condition
BCC B4 C=0 Equation
BCS B5 C=1 Equation
BEQ B7 Z=1 Equation
BMI BB N=1 Equation
BNE B6 Z=0 Equation
BPL BA N=0 Equation
BVC B8 V=0 Equation
BVS B9 V=1 Equation

Unsigned Branches

Mnemonic Opcode Equation Condition
BCC B4 C=0 (X)= (M)
BCS B5 C=1 (X) < (M)
BEQ B7 Z=1 (X) = (M)
BHI B2 C+Z=0 (X)> (M)
BLS B3 C+2Z=1 (X) < (M)
BNE B6 Z=0 (X) = (M)

Signed Branches

Mnemonic Opcode Equation Condition
BEQ B7 Z=1 X)=M)
BGE BC NeV=0 (X) = (M)
BGT BE Z+(NeV)=0 (X)> (M)
BLE BF Z+(N®V)=1 (X) < (M)
BLT BD NeVv=1 X) < (M)
BNE B6 Z=0 (X) = (M)

INSTRUCTION SET CPU16 REFERENCE MANUAL

Note

The numeric range of short branch offset values is $80 (-128) to
$7F (127), but actual displacement from the instruction differs from
the range for two reasons.

First, PC values are automatically aligned to word boundaries.
Only even offsets are valid — an odd offset value is rounded
down. Maximum positive offset is $7E.

Second, instruction pipelining affects the value in the PC at the
time an instruction executes. The value to which the offset is
added is the address of the instruction plus $0006. At maximum
positive offset ($7E), displacement from the branch instruction is
132. At maximum negative offset ($80), displacement is —122.

5.6.2 Long Branch Instructions B

Long branch instructions operate as follows. When a specified condition is met,
a signed 16-bit offset is added to the value in the program counter. If addition
causes the value in the PC to be greater than $FFFF or less than $0000, the PK
extension field is incremented or decremented. Program execution continues at
the new extended address. Long branches are used when large displacements
between decision-making steps are necessary.

Long branch instructions can be classified by the type of condition that must be
satisfied in order for a branch to be taken. Some instructions belong to more
than one classification.

Unary branch instructions always execute.

Simple branches are taken when a specific bit in the condition code register
is in a specific state as a result of a previous operation.

Unsigned branches are taken when comparison or test of unsigned
quantities results in a specific combination of condition code register bits.

Signed branches are taken when comparison or test of signed quantities
results in a specific combination of condition code register bits.

CPU16 REFERENCE MANUAL INSTRUCTION SET MOTOROLA
517

Table 5-21. Long Branch Instructions

Unary Branches

MOTOROLA
5-18

Mnemonic Opcode Equation Condition
LBRA 3780 1=1 True
LBRN 3781 1=0 False

Simple Branches

Mnemonic Opcode Equation Condition
LBCC 3784 C=0 Equation
LBCS 3785 C=1 Equation
LBEQ 3787 Z=1 Equation
LBEV 3791 EV=1 Equation
LBMI 378B N= Equation
LBMV 3790 MV =1 Equation
LBNE 3786 Z=0 Equation
LBPL © 378A N=0 Equation
LBVC 3788 V=0 Equation
LBVS 3789 V=1 Equation

Unsigned Branches

Mnemonic Opcode Equation Condition
LBCC 3784 C=0 (X) = (M)
LBCS 3785 C=1 (X) < (M)
LBEQ 3787 Z=1 (X) = (M)
LBHI 3782 C+Z=0 (X)> (M)
LBLS 3783 C+2Z=1 X) < (M)
LBNE 3786 Z=0 (X) % (M)

Signed Branches

Mnemonic Opcode Equation Condition
LBEQ 3787 Z=1 (X) = (M)
LBGE 378C NeV=0 (X) = (M)
LBGT 378E Z+(NeV)=0 (X) > (M)
LBLE 378F Z+(NoV)=1 (X) < (M)
LBLT 378D NeV=1 (X) < (M)
LBNE 3786 Z=0 X) = (M)

INSTRUCTION SET CPU16 REFERENCE MANUAL

Note

The numeric range of long branch offset values is $8000
(-32768) to $7FFF (32767), but actual displacement from the

instruction differs from the range for two reasons.

First, PC values are automatically aligned to word boundaries.
Only even offsets are valid — an odd offset value will be rounded
down. Maximum positive offset is $7FFE.

Second, instruction pipelining affects the value in the PC at the

time an instruction executes.

The value to which the offset is

added is the address of the instruction plus $0006. At maximum
positive offset ($7FFE), displacement from the instruction is 32772.
At maximum negative offset ($8000), displacement is —32762.

5.6.3 Bit Condition Branch Instructions

Bit condition branches are taken when specific bits in a memory byte are in a
specific state. A mask operand is used to test a memory location pointed to by a
20-bit indexed or extended effective address.
mask, an 8- or 16-bit signed relative offset is added to the current value of the

program counter.

If the bits in memory match the

If addition causes the value in the PC to be greater than

$FFFF or less than $0000, the PK extension field is incremented or
decremented. Program execution continues at the new extended address.

Table 5-22. Bit Condition Branch Summary

Mnemonic Addressing Mode Opcode Equation

BRCLR IND8, X cB (M) « (Mask) = 0
INDS, Y DB
IND8, Z EB
IND16, X 0A
IND16, Y 1A
IND16, Z 2A
EXT 3A

BRSET IND8, X 8B (M) + (Mask) = 0
IND8, Y 9B
IND8, Z AB
IND16, X 0B
IND16, Y 1B
IND16, Z 2B
EXT 3B

CPU16 REFERENCE MANUAL INSTRUCTION SET MOTOROLA

5-19

Note

The numeric range of 8-bit offset values is $80 (-128) to $7F
(127), and the numeric range of 16-bit offset values is $8000
(-32768) to $7FFF (32767), but actual displacement from the
branch instruction differs from the range, for two reasons.)

First, PC values are automatically aligned to word boundaries.
Only even offsets are valid — an odd offset value is rounded
down. Maximum positive 8-bit offset is $7E; maximum positive
16-bit offset is $7FFE.

Second, instruction pipelining affects the value in the PC at the
time an instruction executes. The value to which the offset is
added is the address of the instruction plus $0006. Maximum
positive ($7E) and negative ($80) 8-bit offsets correspond to
displacements of 132 and —122 from the branch instruction.
Maximum positive ($7FFE) and negative ($8000) 16-bit offsets
correspond to displacements of 32772 and —-32762.

5.6.4 Jump Instruction

The CPU16 JMP instruction uses 20-bit addressing, so that control can be
passed to any address in the memory map. It should be noted that BRA and
LBRA execute in fewer cycles than the indexed forms of JMP.

Table 5-23. Jump Summary

Mnemonic Function Operation

JMP Jump 20-bit Address = PK : PC

5.6.5 Subroutine Instructions

Subroutines can be called by short (BSR) or long (LBSR) branches, or by a
jump (JSR). A single instruction, RTS returns control to the calling routine.

All three types of calling instructions stack return PC and CCR values prior to
transferring control to a subroutine. Stacking the CCR also saves the PK
extension field. Other resources can be saved by means of the PSHM
instruction, if necessary.

MOTOROLA INSTRUCTION SET CPU16 REFERENCE MANUAL
5-20

Table 5-24. Subroutine

Summary

Mnemonic

Function

Operation

BSR

Branch to Subroutine

(PK:PC)-2=PK:PC
Push (PC)
(SK:SP)-2=SK:SP
Push (CCR)
(SK:SP)-2=SK:SP
(PK : PC) + Offset = PK : PC

JSR

Jump to Subroutine

Push (PC)
(SK:SP)-2=SK:SP
Push (CCR)
(SK:SP)-2=SK:SP
20-bit Address = PK : PC

LBSR

Long Branch to Subroutine |

Push (PC)
(SK:SP)-2=SK:SP
Push (CCR)
(SK:SP)-2=SK:SP
(PK : PC) + Offset = PK : PC

RTS

Return from Subroutine

(SK:SP)+2=SK:SP
Pull PK

(SK:SP)+ 2 = SK: SP
Pull PC

(PK :PC)-2 = PK: PC

Note

Instruction pipelining affects the operation of BSR. When a
subroutine is called, PK : PC contain the address of the calling
instruction plus $0006. LBSR and JSR stack this value, but BSR
must adjust it prior to stacking.

LBSR and JSR are 4-byte instructions. For program execution to
resume at the instruction immediately following them, RTS must
subtract $0002 from the stacked PK : PC value.

BSR is a 2-byte instruction. BSR subtracts $0002 from the stacked
value prior to stacking so that RTS will work correctly.

CPU16 REFERENCE MANUAL

INSTRUCTION SET

MOTOROLA

5-21

5.6.6 Interrupt Instructions

The SWi instruction initiates synchronous exception processing. First, return
PC and CCR values are stacked (stacking the CCR saves the PK extension
field). After return values are stacked, the PK field is cleared, and the PC is
loaded with exception vector 6 (content of address $000C).

The RTI instruction is used to terminate all exception handlers, including
interrupt service routines. It causes normal execution to resume with the
instruction following the last instruction that executed prior to interrupt. See
SECTION 9 EXCEPTION PROCESSING for more information.

Table 5-25. Interrupt Summary

Mnemonic : Function Operation

RTI Return from Interrupt (SK:SP)+2=SK:SP
Pull CCR
(SK:SP)+2 = SK:SP
Pull PC
(PK:PC)~6=PK:PC

SWI Software Interrupt (PK:PC)+2=PK:PC
Push (PC)
(SK:SP)-2=SK:SP
Push (CCR)
(SK:SP)-2=SK:SP
$0 = PK
SWI Vector = PC

Note

Instruction pipelining affects the operation of SWI. When an
interrupt occurs, PK : PC contain the address of the interrupted
instruction plus $0006. This value is stacked during asynchronous
exception processing, but synchronous exceptions, such as SWI,
must adjust the stacked value so that RTI can work correctly.

For program execution to resume with the interrupted instruction
following an asynchronous interrupt, RTI must subtract $0006 from
the stacked PK : PC value.

Synchronous interrupts allow an interrupted instruction to finish
execution before exception processing begins. The SWI
instruction must add $0002 prior to stacking in order for execution
to resume correctly.

MOTOROLA INSTRUCTION SET CPU16 REFERENCE MANUAL

5-22

5.7 Indexing and Address Extension Instructions

The CPU16 has a complete set of instructions that enable a user to take full

advantage of 20-bit pseudolinear addressing.

These instructions use

specialized forms of mathematic and data transfer instructions to perform index
register manipulation and extension field manipulation.

5.7.1 Indexing Instructions
Indexing instructions perform 8- and 16-bit operations on the three index
registers and accumulators, other registers, or memory. Index addition and
transfer instructions also affect the associated extension field.
Table 5-26. Indexing Summary
Addition Instructions
Mnemonic Function Operation
ABX Add B to IX (XK : 1X) + (000 : B) = XK : IX
ABY AddBto IY (YK :1Y) + (000 : B) = YK : IY
ABZ Add Bto IZ (ZK:2) + (000 :B) = ZK: 1Z
ADX Add D to IX (XK : IX) + (« D) = XK : IX
ADY Add Dto IY (YK:IY) + (« D)= YK:IY
ADZ AddDto IZ (ZK:1Z)+ (« D)= ZK: 1Z
AEX Add E to IX (XK : 1X) + (« D)= XK : IX
AEY AddEtolY (YK IY) + (« E) = YK: 1Y
AEZ Add Eto IZ (ZK:1Z2)+ («E)=>2ZK:1Z
AIX Add Immediate Value to IX XK 2 IX + ((« IMM8/16) = XK : IX
AlY Add Immediate Value to IY YK 1Y + (« IMM8/16) = YK : IY
AlZ Add Immediate Value to 1Z ZK 2 1Z + (« IMM8/16) = ZK : I1Z
Compare Instructions
Mnemonic Function Operation
CPX Compare IX to Memory (IX)-(M:M+1)
CPY Compare 1Y to Memory (Y)-(M:M+1)
CPz Compare IZ to Memory (1Z)-(M:M+1)
Load Instructions
Mnemonic Function Operation
LDX Load IX M:M+1)=IX
LDY Load IY M:M+1)=1Y
LDZ Load 1Z M:M+1)=1Z
CPU16 REFERENCE MANUAL INSTRUCTION SET MOTOROLA

5-23

Table 5-26. Indexing Summary (Continued)

Store Instructions
Mnemonic Function Operation
STX Store IX (IX)=>M:M+1
STY Store IY Yy=>M:M+1
STZ Store IZ (IZy=>M:M+1
Transfer Instructions
Mnemonic Function Operation
TSX Transfer SP to IX (SK:SP)+2=XK:IX
TSY Transfer SP to IY (SK:SP)+2=YK:IY
TSz Transfer SP to IZ (SK:SP)+2=2ZK:IZ
TXS Transfer IX to SP (XK :IX)-2=SK:SP
TXY Transter IXto 1Y (XK :IX) = YK: 1Y
™@Z Transfer IX to IZ XK:IX)=2ZK:1Z
TYS Transfer IY to SP (YK:1IY)-2=8K:SP
TYX Transfer IY to IX (YK : 1Y) = XK : IX
TYZ Transfer IY to 1Z (YK:1Y)=>2ZK:1Z
TZS Transfer IZ to SP (ZK:1Z)-2 = SK: SP
TZX Transfer IZ to IX (ZK :1Z2) = XK : IX
TZY Transfer IZto IY (ZK:12) = ZK: IY
Exchange Instructions
Mnemonic Function Operation
XGDX Exchange D with X (D) & (IX)
XGDY Exchange D with 1Y (D) & (1Y)
XGDZ Exchange D with I1Z (D) & (12)
XGEX Exchange E with IX (E) & (IX)
XGEY Exchange E with IY (E) & (1Y)
XGEZ Exchange E with IZ (E) = (12)
MOTOROLA INSTRUCTION SET CPU16 REFERENCE MANUAL

5-24

5.7.2 Address Extension Instructions

Address extension instructions transfer extension field contents to or from
accumulator B. Other types of operations can be performed on the extension
field value while it is in the accumulator.

Table 5-27. Address Extension Summary

Mnemonic Function Operation
TBEK Transfer B to EK (B) = EK
TBSK Transfer B to SK (B) = SK
TBXK Transfer B to XK (B) = XK
TBYK Transfer B to YK (B) = YK
TBZK Transfer B to ZK (B) = ZK
TEKB Transfer EKto B $0 = B[7:4]
(EK) = B[3:0]
TSKB Transfer SK to B (SK) = B[3:0]
$0 = B[7:4]

TXKB Transfer XK to B $0 = B[7:4]
(XK) = B[3:0]

TYKB Transfer YK to B $0 = B[7:4]
(YK) = B[3:0]

TZKB Transfer ZK to B $0 = B[7:4]
(ZK) = B[3:0]

5.8 Stacking Instructions

There are two types of stacking instructions. Stack pointer instructions use
specialized forms of mathematic and data transfer instructions to perform stack
pointer manipulation. Stack operation instructions save information on and
retrieve information from the system stack.

CPU16 REFERENCE MANUAL INSTRUCTION SET MOTOROLA
5-25

Stack Pointer Instructions
Mnemonic Function Operation
Als Add Immediate Data to SP SK:SP + (« IMM16) = SK: SP
CPS Compare SP to Memory (SP)-(M:M+1)
LDS Load SP M:M+1)=SP
STS Store SP (SP)=>M:M+1
TSX Transfer SP to IX (8K :SP)+2 = XK: IX
TSY Transfer SP to Y (SK:SP)+2= YK:IY
TSz Transfer SP 1o IZ (SK:SP)+2=2ZK:1Z
TXS Transfer IX to SP (XK :IX) -2 = SK:SP
TYS Transfer IY to SP (YK:1lY)-2=SK:SP
TZS Transfer IZ to SP (ZK:1Z)-2=SK:SP
Stack Operation Instructions
Mnemonic Function Operation
PSHA Push A (SK:SP)+1=SK:SP
Push (A)
(SK:SP)-2=SK:SP
PSHB Push B (SK:SP)+1=S8K:SP
Push (B)
(SK:SP)-2 = SK:SP
PSHM Push Multiple Registers For mask bits 0to 6 :
Mask bits:
0=D 1=E If mask bit set
2=1X 3=1Y Push register
4=1Z 5=K (SK:SP)—-2 = SK:SP
6=CCR 7 = (reserved)
PULA Pull A (SK:SP)+2 = SK:SP
‘ Pull (A)
(SK:SP)—1=SK:SP
PULB PullB (SK:SP)+2=SK:SP
Pull (B)
(SK:SP)-1=SK:SP
PULM Pull Multiple Registers For mask bits 0 to 7:
Mask bits:
0=CCR[154] 1=K If mask bit set
2=1Z 3=1Y (SK:SP)+2=SK:SP
4=IX 5=E) Pull register
6=D 7 = (reserved)
MOTOROLA INSTRUCTION SET CPU16 REFERENCE MANUAL

5-26

Table 5-28. Stacking Summary

5.9 Condition Code Instructions

Condition code instructions use specialized forms of mathematic and data
transfer instructions to perform condition code register manipulation. Interrupts
are not acknowledged until after the instruction following ANDP, ORP, TAP, and
TDP has executed. Refer to 5.11 Stop and Wait Instructions for more

information.
Table 5-29. Condition Code Summary

Mnemonic Function Operation
ANDP AND CCR (CCR) * IMM16 = CCR[15:4]
ORP OR CCR (CCR) + IMM16 = CCR[15:4]
TAP Transfer Ato CCR (A[7:0]) = CCR[15:8]
TDP Transfer D to CCR (D) = CCR[15:4]
TPA Transfer CCR MSB to A (CCR[15:8])) = A
TPD Transfer CCRto D (CCR)=D

5.10 Digital Signal Processing Instructions

DSP instructions use the CPU16 multiply and accumulate unit to implement
digital filters and other signal processing functions. Other instructions, notably
those that operate on concatenated E and D accumulators, are also used. See
SECTION 11 DIGITAL SIGNAL PROCESSING for more information.

Table 5-30. DSP Summary

Mnemonic Function Operation
ACE Add E to AM[31:15] (AM[31:15]) + (E) = AM
ACED Add concatenated E and D to AM (E : D) + (AM) = AM
ASLM Arithmetic Shift Left AM —_—
e TT---TTko
b35 b0
ASRM Arithmetic Shift Right AM _—
|:|| [[---_[1
b35 b0
CLRM Clear AM $000000000 = AM[35:0]
LDHI Initialize HR and IR M:M+1)x =HR
M:M+1)y=IR

- CPU16 REFERENCE MANUAL INSTRUCTION SET MOTOROLA
5-27

Table 5-30. DSP Summary (Continued)

MAC Multiply and Accumulate (HRy* (IRy=E:D
' Signed 16-Bit Fractions (AM) + (E : D) = AM
Qualified (IX) = IX
Qualified (IY) = IY
(HR)= 1Z
M:M+1)x=HR
(M:M+1)y=IR
PSHMAC Push MAC State MAC Registers = Stack
PULMAC Pull MAC State Stack = MAC Registers
RMAC Muttiol Repﬁing t Repeat until (E) < 0
ultiply and Accumulate
Signed 16-Bit Fractions (AM) ’_k_(H) * () =AM
Qualified (IX) = IX;
Qualified (1Y) = IY;
(M:M+1)x=H;
M:M+1)y=1
(E)-1=E
TDMSK Transfer D to XMSK : YMSK (D[15:8]) = X MASK
(D[7:0]) = Y MASK
TEDM Transfer E and D to AM[31:0] (D) = AM[15:0]
Sign Extend AM (E) = AM[31:16]
AM[32:35] = AM31
TEM Transfer E to AM[31:16] (E) = AM[31:16]
Sign Extend AM $00 = AM[15:0]
ear AMLS AM[32:35] = AM31
TMER Transfer AM to E Rounded Rounded (AM) = Temp
If (SM e (EV + MV))
then Saturation = E
else Temp[31:16] = E
TMET Transfer AM to E Truncated If (SM e (EV + MV))
then Saturation = E
else AM[31:16] = E
TMXED Transfer AMto IX:E : D AM[35:32] = IX[3:0]
AM35 = IX[15:4]
AM[31:16] = E
AM[15:0] = D
MOTOROLA SET CPU16 REFERENCE MANUAL

5-28

INSTRUCTION

5.11 Stop and Wait Instructions

There are two instructions that put the CPU16 in an inactive state. Both require
that either an interrupt or a reset exception occurs before normal execution of
instructions resumes. However, each operates differently.

LPSTOP minimizes microcontroller power consumption. The CPU16 initiates a
stop, but it and other controller modules are deactivated by the microcontroller
system integration module. Reactivation is also handled by the integration
module. The interrupt priority field from the CPU16 condition code register is
copied into the integration module external bus interface, then the system clock
to the processor is stopped. When a reset or an interrupt of higher priority than
the IP value occurs, the integration module activates the CPU16, and the
appropriate exception processing sequence begins.

WAL idles the CPU16, but does not affect operation of other microcontroller
modules. The IP field is not copied to the integration module. System clocks
continue to run. The processor waits until a reset or an interrupt of higher
priority than the IP value occurs, then begins the appropriate exception
processing sequence.

Because the system integration module does not restart the CPU16, interrupts
are acknowledged more quickly following WAI than following LPSTOP. See
SECTION 9 EXCEPTION PROCESSING for more information.

To make certain that conditions for termination of LPSTOP and WAI are correct,
interrupts are not recognized until after the instruction following ANDP, ORP,
TAP, and TDP executes. This prevents interrupt exception processing during
the period after the mask changes but before the following instruction executes.

Table 5-31. Stop and Wait Summary

Mnemonic Function Operation
LPSTOP Low Power Stop IfS
then STOP
else NOP
WAI Wait for Interrupt WAIT
CPU16 REFERENCE MANUAL INSTRUCTION SET MOTOROLA

5-29

5.12 Background Mode and Null Operations

Background debugging mode is a special CPU16 operating mode that is used
for system development and debugging. Executing BGND when BDM is
enabled puts the CPU16 in this mode. For complete information refer to
SECTION 10 DEVELOPMENT SUPPORT.

Null operations are often used to replace other instructions during software
debugging. Replacing conditional branch instructions with BRN, for instance,
permits testing a decision-making routine without actually taking the branches.

Table 5-32. Background Mode and Null Operations

BGND Enter Background Debugging Mode If BDM enabled
enter BDM;
else, illegal instruction
BRN . Branch Never If 1 =0, branch
LBRN Long Branch Never If 1 =0, branch
NOP Null operation —
MOTOROLA INSTRUCTION SET CPU16 REFERENCE MANUAL‘

5-30

5.13 Comparison of CPU16 and MC68HC11 Instruction Sets

Most HC11 instructions are a source-code compatible subset of the CPU16
instruction set. However, certain HC11 instructions have been replaced by
functionally equivalent HC16 instructions, and some HC11 instructions operate
differently in the CPU16. APPENDIX A COMPARISON OF CPU16/HC11
CPU ASSEMBLY LANGUAGE gives detailed information.

Table 5-33 shows HC11 instructions that have either been replaced by CPU16
instructions or that operate differently in the CPU16. Replacement instructions
are not identical to HC11 instructions — HC11 code must be altered to establish
proper preconditions.

All CPU16 instruction cycle counts and execution times differ from those of the
HC11. SECTION 6 INSTRUCTION GLOSSARY gives information on
instruction cycles. See SECTION 8 INSTRUCTION TIMING for information
regarding calculation of instruction cycle times.

CPU16 REFERENCE MANUAL INSTRUCTION SET MOTOROLA
5-31

Table 5-33. HC16 Implementation of HC11 Instructions

HC11 Instruction HC16 Implementation
BHS Replaced by BCC
BLO Replaced by BCS
BSR Generates a different stack frame
CLC Replaced by ANDP
CLI Replaced by ANDP
CLV Replaced by ANDP
DES Replaced by AIS
DEX Replaced by AIX
DEY Replaced by AlY
INS Replaced by AIS
INX Replaced by AIX
INY Replaced by AlY
JMP IND8 addressing modes replaced by IND20 and EXT modes
JSR IND8 addressing modes replaced by IND20 and EXT modes
Generates a different stack frame
LSL, LSLD Use ASL instructions*®
PSHX Replaced by PSHM
PSHY Replaced by PSHM
PULX Replaced by PULM
PULY Replaced by PULM
RTI Reloads PC and CCR only
RTS Uses two-word stack frame
SEC Replaced by ORP
SEI Replaced by ORP
SEV Replaced by ORP
STOP Replaced by LPSTOP
TAP CPU16 CCR bits differ from HC11
CPU16 interrupt priority scheme differs from HC11
TPA CPU16 CCR bits differ from HC11
CPU16 interrupt priority scheme differs from HC11
TSX Adds 2 to SK : SP before transfer to XK : IX
TSY Adds 2 to SK : SP before transfer to YK : 1Y
TXS Subtracts 2 from XK : IX before transfer to SK : SP
XY Transfers XK field to YK field
TYS i Subtracts 2 from YK : IY before transfer to SK : SP
TYX Transfers YK field to XK field
WAI Waits indefinitely for interrupt or reset
Generates a different stack frame

*Motorola assemblers will automatically translate LSL mnemonics

MOTOROLA INSTRUCTION SET CPU16 REFERENCE MANUAL
5-32

SECTION 6
INSTRUCTION GLOSSARY

The instruction glossary presents detailed information concerning each CPU16
instruction in concise form. 6.1 Assembler Syntax shows standard
assembler syntax formats. 6.2 Instructions contains the glossary pages. 6.3
Condition Code Evaluation lists Boolean expressions used to determine
the effect of instructions on condition codes. 6.4 Instruction Set Summary
is a quick reference to the instruction set.

6.1 Assembler Syntax

Addressing mode determines standard assembler syntax. Table 6-1 shows the
standard formats. Bit set and clear instructions, bit condition branch
instructions, jump instructions, multiply and accumulate instructions, move
instructions and register stacking instructions have special syntax. Information
on syntax is given on the appropriate glossary page. APPENDIX B
MOTOROLA ASSEMBLER SYNTAX is a detailed syntax reference.

Table 6-1. Standard Assembler Formats

Addressing Mode Format
Accumulator Offset Instruction Mnemonic E,Index Register Symbol
Extended Instruction Mnemonic Address Extension Operand
Immediate Instruction Mnemonic ~ #Operand
Indexed Instruction Mnemonic Offset Operand,Index Register Symbol
Inherent Instruction Mnemonic
_ Relative Instruction Mnemonic Displacement

6.2 Instructions

Each instruction is listed alphabetically by mnemonic. Each listing contains
complete information about instruction format, operation, and the effect an
operation has on the condition code register.

The number of cycles required to execute each instruction is also shown. Times
are based on two-clock bus cycles, a 16-bit data bus, and aligned access —
times include clock periods required for prefetch, operand access, and internal
operation. See SECTION 8 INSTRUCTION TIMING for more information.

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA
6-1

Mnemonic —

Symbolic Description/

of Operation

=—LDZ

—Operation:

Load

M:M+1) = 1Z

Detailed explanation i>-Description: Loads the content of a
of operation content is not chang
Syntax: Standard
Assembler/r y
Syntax Condition Code Register:
15 14 13 12 11 10 9
s [Mv] H]EV] N z v I/
>
— — — — A A 0
CCR — |
Diagram S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.
N Setif 1215 = 1 as a result of operation; else cleare
> Z: Setif (1Z) = $0000 as a result of operation; else clea
CCR Bit — | V: Cleared.
Description C: Not affected.
IP: Not affected.
SM: Not affected.
PK: Not affected.

Detailed Instruction _ 4+
format description

MOTOROLA
62

Instruction Format:

Addressing Mode Opcode \
INDS, X CE)
IND8, Y DE |
IND8, Z EE \
IMM16 37BE___)
IND16, X 17CE &
IND16, Y 17DE S
IND16, Z 17EE /

EXT 17FE '\/

Figure 6-1. Typical Instruction Glossary Entry

INSTRUCTION GLOSSARY

CPU16 REFERENCE MANUAL

ABA
Opetration:

Description:

Syntax:

(A) + (B) = A

Add B to A

ABA

Adds the content of accumulator B to the content of accumulator A,
then places the result in accumulator A. Content of accumulator B
does not change. ABA operation affects the CCR H bit, which
makes it useful for BCD arithmetic (see DAA for more information).

Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 5 4 0
MV H EV N z C 1P SM PK
—_ —_ A — A A A A —_ — —_
S: Not affected.
MV: Not affected.
H: Set if there is a carry from bit 3 during addition; else cleared.
EV: Not affected.
N: Set if A7 is set by operation; else cleared.
Z: Setif (A) = $00 as a result of operation; else cleared.
V: Set if twos complement overflow occurs as a result of the operation; else cleared.
C: Setif there is a carry from A during operation; else cleared.
IP: Not affected.
SM: Not affected.
PK: Not affected.
Instruction Format:
Addressing Mode Opcode Operand Cycles
INH 370B — 2
CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

63

ABX Add B to IX ABX

Operation: (XK : IX) + (000 : B) = XK : IX

Description: Adds the zero-extended content of accumulator B to the content of
index register X, then places the result in index register X. Content
of accumulator B does not change. If IX overflows as a result of
the operation, the XK is incremented or decremented.

Syntax: Standard
Condition Code Register:
5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o0

S Mv H EV N z \ C IP SM PK

S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.
N: Not affected.
Z: Not affected.
V: Not affected.
C: Not affected.
IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode Opcode . Operand Cycles
INH 374F — 2

MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL
6_4 .

ABY

Operation:

Description:

Syntax:

Condition Code Register:

Add B to 1Y

(YK : 1Y) + (000 : B) = YK : IY

ABY

Adds the zero-extended content of accumulator B to the content of
index register Y, then places the result in index register Y. Content
of accumulator B does not change. If IY overflows as a result of
the operation, the YK is incremented or decremented.

Standard

Instruction Format:

Not affected.

Addressing Mode Opcode Operand Cycles
INH 375F — 2
CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

65

ABZ

Operation:

Description:

(ZK :1Z) + (000 :B) = ZK : IZ

Add B to IZ

ABZ

Adds the zero-extended content of accumulator B to the content of
index register Z, then places the result in index register Z. Content
of accumulator B does not change. If IZ overflows as a result of the
operation, the ZK is incremented or decremented.

Syntax: Standard
Condition Code Register: Not affected.
Instruction Format:
Addressing Mode Opcode Operand Cycles
INH 376F — 2
MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

66

ACE Add E to AM ACE

Operation: (AM[31:16]) + (E) => AM

Description: Adds the content of accumulator E to bits 31 to 16 of accumulator
M, then places the result in accumulator M. Bits 15 to 0 of
accumulator M are not affected. The value in E is assumed to be a
16-bit signed fraction. See SECTION 11 DIGITAL SIGNAL
PROCESSING for more information.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MV H EV N z " C P SM PK

— A —_ A — — — — — — —

S: Not affected.
MV: Set if overflow into AM35 occurs during addition; else not affected.
H: Not affected.
EV: Set if overflow into AM[34:31] occurs during addition; else cleared.
N: Not affected.
Z: Not affected.
V: Not affected.
C: Not affected.
IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 3722 — 2
CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

67

ACED

Operation:

Description:

ACED

Add E : D to AM

(AM) + (E : D) = AM

The concatenated contents of accumulators E and D are added to
accumulator M. The value in the concatenated registers s
assumed to be a 32-bit signed fraction. See SECTION 11
DIGITAL SIGNAL PROCESSING for more information.

Syntax: Standard

Condition Code Register:

15 14 13 12

11

10 9

MV H EV

N

z

SM

PK

— | a |l =1 a

S: Not affected.

MV: Set if overflow into AM35 occurs as a result of addition; else cleared.

H: Not affected.

EV: Set if overflow into AM[34:31] occurs as a result of addition; else cleared.

N: Not affected.
Z: Not affected.
V: Not affected.
C: Not affected.
IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode

Opcode

Operand

Cycles

INH

3723

MOTOROLA
68

INSTRUCTION GLOSSARY

CPU16 REFERENCE MANUAL

ADCA Add with Carry to A ADCA

Operation: A+ (M)+C=A

Description: Adds the value of the CCR Carry bit to the sum of the content of
accumulator A and a memory byte, then places the result in
accumulator A. Memory content is not affected. ADCA operation
affects the CCR H bit, which makes it useful for BCD arithmetic.

Syntax: Standard
Condition Code Register:
15 14 13 12 11 10 9

S MV H EV N Z \ C IP SM PK
— | — | A — | A A A A - - —

®
~
o
n
~
w
N
-
o

S: Not affected.
MV: Not affected.

H: Set if there is a carry from bit 3 during addition; else cleared.
EV: Not affected.

N: Set if A7 is set by operation; else cleared.

Z: Setif (A) = $00 as a result of operation; else cleared.
V: Set if twos complement overflow occurs as a result of the operation; else cleared.
C: Set if there is a carry from A during operation; else cleared.
IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
IND8, X 43 ff 6
IND8, Y 53 ff 6
IND8, Z 63 ff 6
IMM8 73 ii 2
IND16, X 1743 felele]e] 6
IND16, Y 1753 9999 6
IND16, Z 1763 9999 6
EXT 1773 hhll 6
E, X 2743 — 6
E, Y 2753 — 6
E,Z 2763 — 6
CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

69

ADCB Add with Carry to B ADCB

Operation: B)+(My+C =B

Description: Adds the value of the CCR Carry bit to the sum of the content of
: accumulator B and. a memory byte, then places the result in
accumulator B. Memory content is not affected. ADCB operation

affects the CCR H bit, which makes it useful for BCD arithmetic.

Syntax: Standard
Condition Code Register:
%5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N z \" C P SM PK
— | — | A | =] & A A A — — —

S: Not affected.
MV: Not affected.
H: Set if there is a carry from bit 3 during addition; else cleared.
EV: Not affected.
N: Set if B7 is set by operation; else cleared.
Z: Setif B =$00 as a result of operation; else cleared.
V: Set if twos complement overflow occurs as a result of the operation; else cleared.
C: Set if there is a carry from B during operation; else cleared.
IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
IND8, X C3 ff 6
INDS8, Y D3 ff 6
IND8, Z E3 ff 6
IMM8 F3 ii 2
IND16, X 17C3 felefle] 6
IND16, Y 17D3 9999 6
IND16, Z 17E3 9999 6
EXT 17F3 hhil 6
E, X 27C3 — 6
E, Y 27D3 e 6
E Z 27E3 — 6
MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-10

ADCD

Operation:

Description:

Syntax:

Add with Carry to D

Dy+M:M+1)+C=D

ADCD

Adds the value of the CCR Carry bit to the sum of the content of
accumulator D and a memory word, then places the result in

accumulator D. Memory content is not affected.

Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 2 1 0
MV H EV N P SM PK
- = - - A A A A — — —
S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.
N: Setif D15 is set by operation; else cleared.
Z: Setif (D) =$0000 as a result of operation; else cleared.
V: Set if twos complement overflow occurs as a result of the operation; else cleared.
C: Set if there is a carry from D during operation; else cleared.
IP: Not affected.
SM: Not affected.
PK: Not affected.
Instruction Format:
Addressing Mode Opcode Operand Cycles
IND8, X 83 ff 6
INDS8, Y 93 ft 6
IND8, Z A3 ff 6
IMM16 37B3 jikk 4
IND16, X 37C3 9999 6
IND16, Y 37D3 fefels]e} 6
IND16, Z 37E3 9999 6
EXT 37F3 hhil 6
E, X 2783 — 6
E Y 2793 e 6
E Z 27A3 — 6
CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-11

ADCE

Operation:

Description:

Syntax: Standard

Add with Carry to E

(E)+M:M+1)+C=>E

Condition Code Register:

ADCE

Adds the value of the CCR Carry bit to the sum of the content of
accumulator E and a memory word, then places the result in
accumulator E. Memory content is not affected.

15 14 13 12 11 10 9 8 7 6 5 4 2 1
S MV | H EV N Z IP SM PK
— — — —_ A A A A — — —_
S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.
N: Set if E15 is set by operation; else cleared.
Z: Setif (E) = $0000 as a result of operation; else cleared.
V: Set if twos complement overflow occurs as a result of the operation; else cleared.
C: Set if there is a carry from E during operation; else cleared.
IP: Not affected.
SM: Not affected.
PK: Not affected.
Instruction Format:
Addressing Mode Opcode : Operand Cycles
IMM16 3733 jikk 4
IND18, X 3743 foleloe] 6
IND186, Y 3753 [eelels] 6
IND16, Z 3763 felelels] 6
EXT 3773 hhll 6
MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-12

ADDA

Operation:

Description:

(A) + (M) = A

Add to A

ADDA

Adds a memory byte to the content of accumulator A, then places

the result in accumulator A. Memory content is not affected.
ADDA affects the CCR H bit — it is used for BCD arithmetic.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 2 1 0
MV H EV N z [¢] IP SM PK
— — A — A A A A — —_ —
S: Not affected.
MV: Not affected.
H: Set if operation requires a carry from A3; else cleared.
EV: Not affected.
N: Set if A7 is set by operation; else cleared.
Z: Setif (A) = $00 as a result of operation; else cleared.
V: Set if twos complement overflow occurs as a result of the operation; else cleared.
C: Setif there is a carry from A during operation; else cleared.
IP: Not affected.
SM: Not affected.
PK: Not affected.
Instruction Format:
Addressing Mode Opcode Operand Cycles
IND8, X 41 ff 6
INDS8, Y 51 ff 6
INDS8, Z 61 tf 6
IMM8 71 ii 2
IND16, X 1741 9999 6
IND16, Y 1751 fele]e]s] 6
IND16, Z 1761 9999 6
EXT 1771 hhll 6
E, X 2741 — 6
E, Y 2751 e 6
E Z 2761 — 6
CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-13

ADDB | Add to B ADDB

Operation: B)+(M)=B
Description: Adds a memory byte to the content of accumulator B, then places
the result in accumulator B. Memory content is not affected.
ADDB affects the CCR H bit — it is used for BCD arithmetic.
Syntax: Standard
Condition Code Register:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

s|Mv| H|EV|N]|] Z]| V]| C IP SM PK
— | —] a | =] a | a]a]|a — — —

S: Not aﬁectéd.
MV: Not affected.
H: Set if operation requires a carry from B3; else cleared.
EV: Not affected.
N: Set if B7 is set by operation; else cleared.
Z: Setif (B) = $00 as a result of operation; else cleared.
V: Set if twos complement overflow occurs as a result of the operation; else cleared.
C: Set if there is a carry from B during operation; else cleared.
IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
IND8, X C1 ff 6
INDS8, Y D1 ft 6
IND8, Z E1 ff 6
IMM8 F1 ii 2
IND16, X 17C1 felele[s] 6
IND186, Y 17D1 g99g 6
IND16, Z 17E1 9999 6
EXT 17F1 hhll [§
E, X 27CH1 — 6
E, Y , 27D1 — 6
EZ 27E1 — 6
MOTOROLA INSTRUCTION: GLOSSARY CPU16 REFERENCE MANUAL

6-14

ADDD

Operation:

Description:

Add to D

(D)+(M:M+1) =D

ADDD

Adds a memory word to the content of accumulator D, then places

the result in accumulator D. Memory content is not affected.

Syntax:

Standard

Condition Code Register:

15 14 13 12 11 10 9 8 6 5 4 1 0
S MV H EV N [¢] P SM PK
— -— — —_ A A A — — —
S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.
N: Setif D15 is set by operation; else cleared.
Z: Setif (D)= $0000 as a result of operation; else cleared.
V: Set if twos complement overflow occurs as a result of the operation; else cleared.
C: Setif there is a carry from D during operation; else cleared.
IP: Not affected.
SM: Not affected.
PK: Not affected.
Instruction Format:
Addressing Mode Opcode Operand Cycles
IND8, X 81 ff 6
IND8, Y 91 tf 6
IND8, Z A1 ff 6
IMM8 FC ii 2
IMM16 37B1 jjkk 4
IND16, X 37CH 9999 6
IND18, Y 37D1 9999 6
IND16, Z 37E1 9999 6
EXT 37F1 hhl 6
E, X 2781 — 6
E Y 2791 — 6
EZ 27A1 — 6
CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-15

ADDE Add to E ADDE

Operation: E)Y+(M:M+1)=>E

Description: Adds a memory word to the content of accumulator E, then places

the result in accumulator E. Memory content is not affected.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S MV H EV N p4 Vv C P SM PK
— —_ _ — A A A A —_ — —_
S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.

N: Set if E15 is set by operation; else cleared.

Z: Setif (E) = $0000 as a result of operation; else cleared.

V:
C:
IP:
SM:
PK:

Set if twos complement overflow occurs as a result of the operation; else cleared.
Set if there is a carry from E during operation; else cleared.

Not affected.

Not affected.

Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles

IMM8 7C ii 2

IMM16 3731 jikk 4

IND16, X 3741 [ele]els] 6

IND16, Y) 3751 9999 6

IND16, Z 3761 felele]¢] 6

EXT 3771 hhll 6

MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-16

ADE

Operation:

Description:

Syntax:

Add D to E ADE

(E)+(D)=>E
Adds the content of accumulator D to the content of accumulator E,
then places the result in accumulator E. Content of accumulator D

is not affected.

Standard

Condition Code Register:

15 14 13 12 1 10 9 8 7 5 4 3 0

MV H EV N z \ C IP SM PK

— | = — | = a | a]| al]a — — —

S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.

N: Set if E15 is set by operation; else cleared.

Z: Setif (E) = $0000 as a result of operation; else cleared.

V: Set if twos complement overflow occurs as a result of the operation; else cleared.
C: Setif there is a carry from E during operation; else cleared.

IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 2778 — 2
CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-17

ADX

Operation:

Description:

Syntax:

Add D to IX ADX

(XK : IX) + (20 « D) = XK : IX

Sign-extends the content of accumulator D to 20 bits, then adds it
to the content of concatenated XK and IX. Content of accumulator
D does not change.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 37CD — 2
MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-18

ADY

Operation:

Description:

Syntax:

Add D to 1Y ADY

(YK 1Y)+ (20 « D) = YK : IY

Sign-extends the content of accumulator D to 20 bits, then adds it
to the content of concatenated YK and IY. Content of accumulator
D does not change.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 37DbD — 2
CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-19

ADZ pddD 1012 ADZ

Operation: (ZK:1Z)+ (20 « D) = ZK : IZ

Description: Sign-extends the content of accumulator D to 20 bits, then adds it
to the content of concatenated ZK and IZ. Content of accumulator
D does not change.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 37ED ‘ — 2
MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-20

AEX Add E to IX AEX

Operation: (XK :1X) + (20 « E) = XK : IX

Description: Sign-extends the content of accumulator E to 20 bits, then adds it
to the content of concatenated XK and IX. Content of accumulator
E does not change.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 374D — 2
CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-21

A

EY

Operation:

Description:

Syntax:

Condition Code Register:

Add E to 1Y

(YK : 1Y) + (20 « E) = YK : IY

AEY

Sign-extends the content of accumulator E to 20 bits, then adds it
to the content of concatenated YK and IY. Content of accumulator

E does not change.

Standard

Instruction Format:

Not affected.

Addressing Mode Opcode Operand Cycles
INH 375D — 2
MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-22

AEZ Add E to IZ AEZ

Operation: (ZK:12)+ (20« E) = ZK : 1Z

Description: Sign-extends the content of accumulator E to 20 bits, then adds it
to the content of concatenated ZK and IZ. Content of accumulator
E does not change.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 376D —_ 2
CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-23

AlIS

Operation:

Description:

Syntax:

Condition Code Register:

Add Immediate Value to Stack Pointer AIS

(SK : SP) + (20 « IMM)=> SK : SP

Adds a 20-bit value to concatenated SK and SP. The 20-bit value
is formed by sign-extending an 8-bit or 16-bit signed immediate

operand.

Standard

Instruction Format:

Not affected.

Addressing Mode Opcode Operand Cycles
IMM8 3F ii 2
IMM16 373F jikk 4
MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-24

AlX

Add Immediate Value to IX

AlX

Adds a 20-bit value to the concatenated XK and IX. The 20-bit

value is formed by sign-extending an 8-bit or 16-bit signed

Operation: (XK 1 IX) + (20 « IMM) = XK : IX
Description:

immediate operand.
Syntax: Standard

Condition Code Register:

15 14 13 12

11

10 9

MV H EV

N

SM

PK

S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.
N: Not affected.

Z: Setif (IX) = $0000 as a result of operation; else cleared.

V: Not affected.
C: Not affected.
IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode

Opcode

Operand

Cycles

IMM8

3C

IMM16

373C

jikk

CPU16 REFERENCE MANUAL

INSTRUCTION GLOSSARY

MOTOROLA
6-25

AlY

Operation:

Description:

Syntax:

Add Immediate Value to IY) AIY

(YK 1Y) + (20 « IMM) = YK : IY

Adds a 20-bit value to the concatenated YK and IY. The 20-bit
value is formed by sign-extending an 8-bit or 16-bit signed
immediate operand.

Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S MV H EV N z \ C 1P SM PK
— —_ — — — A — — — — —_

S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.
N: Not affected.

Z: Setif (IY) = $0000 as a result of operation; else cleared.

V: Not affected.
C: Not affected.
IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
IMM8 3D ii 2
IMM16 373D jikk 4
MOTOROLA

6-26

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

AlZ

Operation:

Description:

Add Immediate Value to 1Z

(ZK : 12) + (20 « IMM) = ZK : IZ

AlZ

Adds a 20-bit value to the concatenated ZK and 1Z. The 20-bit

value is formed by sign-extending an 8-bit or 16-bit signed

immediate operand.

Syntax: Standard

Condition Code Register:

15 14 13 12

11

10 9

S MV H EV

N

SM

PK

S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.
N: Not affected.

Z: Setif (IZ) = $0000 as a result of operation; else cleared.

V: Not affected.
C: Not affected.
IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode

Opcode

Operand

Cycles

IMM8

3E

i

IMM16

373E

jikk

CPU16 REFERENCE MANUAL

INSTRUCTION GLOSSARY

MOTOROLA
6-27

ANDA AND A ANDA

Operation: (A)ye(M)=> A
Description: Performs AND between the content of accumulator A and a
memory byte, then places the result in accumulator A. Memory
content is not affected.
Syntax: Standard
Condition Code Register:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z \" C IP SM PK
— | -] —] — | A A o | — — - —

S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.
N: Set if A7 is set by operation; else cleared.
Z: Setif (A) = $00 as a result of operation; else cleared.
V: Cleared.
C: Not affected.
IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
IND8, X 46 ft 6
IND8, Y 56 ff 6
IND8, Z 66 ff 6
IMM8 76 ii 2
IND16, X 1746 9999 6
IND186, Y 1756 9999 6
IND16, Z 1766 gg9g9g 6
EXT 1776 hhll 6
E, X 2746 — 6
E, Y 2756 — 6
E Z 2766 —_ 6
MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-28

ANDB

Operation:

Description:

(B)e(M)=B

AND B

ANDB

Performs AND between the content of accumulator B and a

memory byte, then places the result in accumulator B. Memory.

content is not affected.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 7 6 5 4 2 1 0
MV H EV N z P SM PK
— | - =] =] A A 0 —_ — —
S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.
N: Set if B7 is set by operation; else cleared.
Z: Setif (B) = $00 as a result of operation; else cleared.
V: Cleared.
C: Not affected.
IP: Not affected.
SM: Not affected.
PK: Not affected.
Instruction Format:
Addressing Mode Opcode Operand Cycles
IND8, X Cé ff 6
INDS8, Y D6 ff 6
IND8, Z E6 ff 6
IMM8 F6 ii 2
IND16, X 17C8é 9999 6
IND16, Y 17D6 9999 6
IND16, Z 17E6 gggg 6
EXT 17F6 hhll 6
E, X 27C6 — 6
E, Y 27D6 — 6
EZ 27E6 — 6
CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-29

ANDD

Operation:

Description:

Syntax:

AND D ANDD

(Dye(M:M+1)=D

Performs AND between the content of accumulator D and a
memory word, then places the result in accumulator D. Memory
content is not affected.

Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S MV H EV N z \' C IP SM PK
— — — — A 0 — — — —

S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.

N: Set if D is set by operation; else cleared.

Z: Setif (D)= $0000 as a result of operation; else cleared.

V: Cleared.

C: Not affected.
IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles

IND8, X 86 ff 6

IND8, Y 96 ff 6

INDS8, Z A6 ff 6
IMM16 37B6 jikk 4
IND16, X 37C6 9999 6
IND16, Y 37D6 9999 6
IND16, Z 37E6 9999 6

EXT 37F6 hhll 6

E, X 2786 —_ 6

E, Y 2796 — 6

E Z 27A6 — 6

MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-30

ANDE

Operation:

Description:

Syntax:

AND E ANDE

(EYe(M:M+1)=E
Performs AND between the content of accumulator E and a
memory word, then places the result in accumulator E. Memory

content is not affected.

Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MV H EV N z \ C P SM PK

— | = = =] A] a | 0| = — —_ —

S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.

N: Set if E15 is set by operation; else cleared.

Z: Setif (E) = $0000 as a result of operation; else cleared.

V: Cleared.

C: Not affected.
IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
IMM16 3736 jikk 4
IND16, X 3746 gg9g9g 6
IND16, Y 3756 9999 6
IND16, Z 3766 fele]e]s] 6
EXT 3776 hhll 6
CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-31

ANDP

Operation:

Description:

Syntax:

AND Condition Code Register AN DP

(CCR) « IMM16 = CCR

Performs AND between the content of the condition code register
and an unsigned immediate operand, then replaces the content of
the CCR with the result.

To make certain that conditions for termination of LPSTOP and
WAI are correct, interrupts are not recognized until after the
instruction following ANDP executes. This prevents interrupt
exception processing during the period after the mask changes
but before the following instruction executes.

Standard

Condition Code Register:

15

14

13

12 11 10 9 8 7 6 5 4 3 2 1 0

S

MV

H

EV N z \Y C IP SM PK

A

A

A

A A A A A A A —

Cleared if bit 15 of operand = 0; else unchanged.

: Cleared if bit 14 of operand = 0; else unchanged.

Cleared if bit 13 of operand = 0; else unchanged.
Cleared if bit 12 of operand = 0; else unchanged.
Cleared if bit 11 of operand = 0; else unchanged.
Cleared if bit 10 of operand = 0; else unchanged.
Cleared if bit 9 of operand = 0; else unchanged.
Cleared if bit 8 of operand = 0; else unchanged.

. Each bit in field cleared if corresponding bit [7:5] of operand = 0; else unchanged.
1 Cleared if bit 4 of operand = 0; else unchanged.
1 Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
IMM16 373A jikk 4
MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-32

ASL

Operation:

Description:

Syntax:

Arithmetic Shift Left

—

IIIIII 0
b7 0

ASL

Shifts all 8 bits of a memory byte one place to the left. Bit 7 is
transferred to the CCR C bit. Bit 0 is loaded with a zero.

Standard

Condition Code Register:

15

14 13 12 11 10 9 6 5 4 2 1 0
S MV EV N z P SM PK
S: Not affected.
MV: Not affected.
H: Not affected. '
EV: Not affected.
N: Set if M7 =1 as a result of operation; else cleared.
Z: Set if (M) = $00 as a result of operation; else cleared.
V: Setif (Nis set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.
C: Set if M7 = 1 before operation; else cleared.
IP: Not affected.
SM: Not affected.
PK: Not affected.
Instruction Format:
Addressing Mode Opcode Operand Cycles
IND8, X 04 - ft 8
IND8, Y 14 ff 8
IND8, Z 24 ff 8
IND16, X 1704 9999 8
IND16, Y 1714 9999 8
IND16, Z 1724 9999 8
EXT 1734 hhll 8
CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-33

ASLA

Operation:

Description:

Arithmetic Shift Left A

e

IIIIII 0
b7 0

ASLA

Shifts all 8 bits of accumulator A one place to the left. Bit 7 is

transferred to the CCR C bit. Bit 0 is loaded with a zero.

Syntax: Standard

Condition Code Register:

15 14 13 12

11

10 9

S MV H EV

N

[@RK]

SM PK

S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.

N: Setif A7 =1 as a result of operation; else cleared.

SN

C: Setif A7 = 1 before operation; else cleared.

IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Set if (A) = $00 as a result of operation; else cleared.
Set if (N is set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.

Addressing Mode Opcode Operand Cycles
INH 3704 — 2
MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-34

AS L B Arithmetic Shift Left B A S L B

<__.—__—
Operation: [T T T T T ko
b7 b0
Description: Shifts all 8 bits of accumulator B one place to the left. Bit 7 is

transferred to the CCR C bit. Bit 0 is loaded with a zero.
Syntax: Standard
Condition Code Register:
15 14 13 12 11 10 9

S MV H EV N A \% C IP SM PK
—| - —| = | a A A A — — —

©
~
o
o
IN
w
n
-
o

S: Not affected.

MV: Not affected.
H: Not affected.

EV: Not affected.
N: Setif B7 =1 as a result of operation; else cleared.
Z: Setif (B) = $00 as a result of operation; else cleared.
V: Setif (Nis set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.
C: Set if B7 = 1 before operation; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 3714 — 2
CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-35

AS L D Arithmetic Shift Left D AS L D

(_.__...—.._.
Operation: CHTT---TTko
b15 b0
Description: Shifts all 16 bits of accumulator D one place to the left. Bit 15 is

transferred to the CCR C bit. Bit 0 is loaded with a zero.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S MV H EV N A \" (o} 1P SM PK
— - — —— A A A A — —_ —
S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.
, N: Setif D15 =1 as a result of operation; else cleared.
Z: Setif (D) = $0000 as a result of operation; else cleared.
V: Setif (Nis set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.
C: Setif D15 = 1 before operation; else cleared.
IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 27F4 — 2
MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-36

AS L E Arithmetic Shift Left E A S L E

(____
Operation: [[---_11 ko
b15 b0
Description: Shifts all 16 bits of accumulator E one place to the left. Bit 15 is

transferred to the CCR C bit. Bit 0 is loaded with a zero.
Syntax: Standard
Condition Code Register:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S |MV|{ H|EV| N| Z]| V]C P SM PK
U [R e N - - - A — — -

S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.
N: Setif E15 =1 as a result of operation; else cleared.
Z: Setif (E) = $0000 as a result of operation; else cleared.
V: Setif (Nis set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.
C: Setif E15 = 1 before operation; else cleared.
IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 2774 — 2
CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-37

ASLM Arithmetic Shift Left AM

ASLM

é___________.
Operation: CkH TT ---T1TTKko
b35 b0
Description: Shifts all 36 bits of accumulator M one place to the left. Bit 35 is

transferred to the CCR C bit. Bit 0 is loaded with a zero. See
SECTION 11 DIGITAL SIGNAL PROCESSING for more

information.
Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 2 1 0
MV H EV N Z Vv C P SM PK
— A — A A — —_— A — — —
S: Not affected.
MV: Set if AM[35] has changed state as a result of operation; else unchanged.
H: Not affected.
EV: Cleared if AM[34:31] = 0000 or 1111 as a result of operation; else set.
N: Setif M35 = 1 as a result of operation; else cleared.
Z: Not affected.
V: Not affected.
C: Setif AM35 = 1 before operation; else cleared.
IP: Not affected.
SM: Not affected.
PK: Not affected.
Instruction Format:
Addressing Mode Opcode Operand Cycles
INH 27B6 — 4
MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-38

AS LW Arithr;'netic Shift Left Word AS LW

é_._-________
Operation: [---11 o
b15 b0
Description: Shifts all 16 bits of memory word one place to the left. Bit 15 is

transferred to the CCR C bit. Bit 0 is loaded with a zero.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S MV H EV N z \ C P SM PK
— —_ — — A A A A -_ — —
S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.
N: Setif M: M+ 1[15] = 1 as a result of operation; else cleared.
Z: Setif (M: M+ 1) =3%0000 as a result of operation; else cleared.
V: Setif (Nis set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.
C: Setif M: M+ 1[15] = 1 before operation; else cleared.
IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
IND16, X 2704 9999 8
IND16, Y 2714 fele]els] 8
IND16, Z 2724 9999 8
EXT 2734 hhll 8
CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-39

A S R Arithmetic Shift Right A S R
L 5
Operation:-l

b7

Description: Shifts all 8 bits of a memory byté one place to the right. Bit 7 is
held constant. Bit O is transferred to the CCR C bit.

Syntax: Standard
Condition Code Register:
5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

s | M| H]|EV| N| z]| V]eC IP SM PK
— | = —| =] A | a]| a]|a — — —

S: Not affected.

MV: Not affected.
H: Not affected.

EV: Not affected.
N: Set if M7 set as a result of operation; else cleared.
Z: Setif (M) = $00 as a result of operation; else cleared.
V: Setif (Nis set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.
C: Setif MO = 1 before operation; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles

IND8, X oD ff 8
INDS8, Y 1D ff 8
INDS8, Z 2D ft 8
IND16, X 170D 9999 8
IND16, Y 171D 9999 8
IND16, Z 172D [eeles] 8

EXT 173D hhll 8

MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-40

ASRA

Operation:

Description:

Syntax:

Arithmetic Shift Right A ASRA
L
lllll

Shifts all 8 bits of accumulator A one place to the right. Bit 7 is
held constant. Bit 0 is transferred to the CCR C bit.

Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S MV H EV N z \" C 1P SM PK
- - -] = A A A A — — —
S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.
N: Setif A7 = 1 as a result of operation; else cleared.
Z: Setif (A) = $00; else cleared.
V: Setif (Nis set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.
C: Setif A0 = 1 before operation; else cleared.
IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 370D — 2
CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-41

ASRB

Operation:

Arithmetic Shift Right B

Ly
Illll

Description: Shifts all 8 bits of accumulator B one place to the right. Bit 7 is
held constant. Bit 0 is transferred to the CCR C bit.

Syntax: Standard

Condition Code Register:

ASRB

5 14 13 12 11 10 9 6 5 4 3 2 1 0
MV | H | EV| N z P SM PK
— | — | =] =1 a A A — — —

S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.

N: Setif B7 = 1 as a result of operation; else cleared.
Z: Setif (B) = $00 as a result of operation; else cleared.

V: Setif (Nis set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.

C: Setif BO = 1 before operation; else cleared.

IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 371D — 2
MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-42

A S R D Arithmetic Shift Right D A S R D

_
Operation: gml [-- —
Description: Shifts all 16 bits of accumulator D one place to the right. Bit 15 is

held constant. Bit 0 is transferred to the CCR C bit.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S MV H EV N z \" Cc 1P SM PK
—_ —_ —_ —_ A A A A — — —
S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.
N: Setif D15 = 1 as a result of operation; else cleared.
Z: Setif (D) = $0000 as a result of operation; else cleared.
V: Setif (Nis setand C is clear) or (N is clear and C is set) as a result of operation; else cleared.
C: Setif DO = 1 before operation; else cleared.
IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 27FD — 2
CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-43

A S R E Arithmetic Shift Right E A S R E

by

Operation: [---_11
b15 b0
Description: Shifts all 16 bits of accumulator E one place to the right. Bit 15 is
held constant. Bit 0 is transferred to the CCR C bit.
Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MV H EV N 4 \" (o} IP SM PK
— | = =1 =1 a A A A ‘ — —

S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.
N: Setif E15 = 1 as a result of operation; else cleared.
Z: Setif (E) = $0000 as a result of operation; else cleared.
V: Setif (Nis set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.
C: Setif EO = 1 before operation; else cleared.
IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 277D — 2
MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-44

A S R M | Arithmetic Shift Right AM A S R M

—_—>
Operation: |:>| [T ---TT1 el

b35 b0

Description: Shifts all 36 bits of accumulator M one place to the right. Bit 35 is
held constant. Bit 0 is transferred to the CCR C bit. See

SECTION 11 DIGITAL SIGNAL PROCESSING for more
information.

Syntax: Standard
Condition Code Register:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S|MV| H|EV|N| Z]|V|C P SM PK
— | - — | a | a| -] =]~ — — —

S: Not affected.

MV: Not affected.
H: Not affected.

EV: Cleared if AM[34:31] = 0000 or 1111 as a result of operation; else set.
N: Set if AM35 = 1 as a result of operation; else cleared.
Z: Not affected.

V: Not affected.
C: Set if AMO = 1 before operation; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 27BA — 4
CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-45

ASRW

Operation:

Description:

Syntax:

ASRW

Arithmetic Shift Right Word

-

b15

l HI

Shifts all 16 bits of a memory word one place to the right. Bit 15 is
held constant. Bit 0 is transferred to the CCR C bit.

Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Y4 \ C IP SM PK

S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.

N: Setif M: M+ 1[15] = 1 as a result of operation; else cleared.

< N

: Setif (M: M+ 1) =$0000 as a result of operation; else cleared.

Set if (N is set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.

C: Setif M: M+ 1[0] = 1 before operation; else cleared.

IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
IND16, X 270D foeels] 8
IND16, Y 271D feelee] 8
IND16, Z 272D 9999 8
EXT 273D hhll 8
MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-46

BCC

Operation:

Description:

Syntax:

Branch If Carry Clear BCC

If C =0, then (PK : PC) + Offset = PK : PC

Causes a program branch if the CCR Carry bit has a value of 0.
An 8-bit signed relative offset is added to the current value of the
program counter. When the operation causes PC overflow, the PK
field is incremented or decremepnted. Used to implement simple or
unsigned conditional branches.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL8 B4 r 6,2
Branch Instruction Summary (8-Bit Offset)

Mnemonic Opcode Equation Type Complement
BCC B4 C=0 Simple, Unsigned BCS
BCS B5 c=1 Simple, Unsigned BCC
BEQ B7 Z=1 Simple, Unsigned, Signed BNE
BGE BC NeV=0 Signed BLT
BGT BE Z+(NeV)=0 Signed BLE
BHI B2 C+Z=0 Unsigned BLS
BLE BF Z+(NoV)=1 Signed BGT
BLS B3 C+2Z=1 Unsigned BHI
BLT BD NeV=1 Signed BGE
BMI BB N=1 Simple BPL
BNE B6 Z=0 Simple, Unsigned, Signed BEQ
BPL BA N=0 Simple BMI
BRA BO 1 Unary BRN
BRN B1 0 Unary BRA
BVC B8 V=0 Simple BVS
BVS B9) V=1 Simple BvVC

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-47

BCLR

Operation:

Description:

Syntax:

Clear Bits BC LR

(M) o (Mask) > M

Performs AND between a memory byte and the complement of a
mask byte. Bits in the mask are set to clear corresponding bits in
memory. Other bits in the memory byte are unchanged. The
location of the mask differs for 8- and 16-bit addressing modes.

BCLR address operand, [register symbol,] #mask

Condition Code Register:

15 14 13

12 11 10 9 8 7 6 5 4 3 2 1 0

MV H

EV N z \ C P SM PK

— | A A o | — — — —

S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.

N: Setif M7 = 1 as a result of operation; else cleared.

Z: Setif (M) = $00 as a result of operation; else cleared.

V: Cleared.

C: Not affected.
IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode Opcode Mask Operand Cycles

IND8, X 1708 mm t 8
IND8, Y 1718 mm ft 8
INDS8, Z 1728 mm ff 8
IND16, X 08 mm 9999 8
IND16, Y 18 mm 9999 8
IND16, Z 28 mm 0999 8

EXT 38 mm hhil 8

MOTOROLA

6-48

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

BC LRW Clear Bits in a Word

Operation: M:M+1)e(Mask) > M : M+ 1"

BCLRW

Description: Performs AND between a memory word and the complement of a
mask word. Bits in the mask are set to clear corresponding bits in
memory. Other bits in the memory word are unchanged.

Syntax: BCLRW Address Operand, [Index Register Symbol,] #Mask

Condition Code Register:

15 14 13 12 11 10 9 8 7 6

4 3 1 0
S MV H EV N 4 v C IP SM PK
—_ —_ — —_ A A 0 - —_ — —
S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.
N: Setif M15 = 1 as a result of operation; else cleared.
Z: Setif (M:M+ 1) =$0000 as a result of operation; else cleared.
V: Cleared.
C: Not affected.
IP: Not affected.
SM: Not affected.
PK: Not affected.
Instruction Format:

Addressing Mode Opcode Operand Mask Cycles
IND16, X 2708 9999 mmmm 10
IND16, Y 2718 fels]els] mmmm 10
IND16, Z 2728 feelels] mmmm 10

EXT 2738 hhll mmmm 10
CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-49

B C S Branch If Carry Set B C S

Operation: If C =1, then (PK : PC) + Offset = PK : PC

Description: Causes a program branch if the CCR Carry bit has a value of 1.
An 8-bit signed relative offset is added to the current value of the
program counter. When the operation causes PC overflow, the PK
field is incremented or decremented. Used to implement simple or
unsigned conditional branches.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
RELS8 B5 r 6,2

Branch Instruction Summary (8-Bit Offset)

Mnemonic Opcode Equation Type Complement
BCC B4 C=0 Simple, Unsigned BCS
BCS - B5 C=1 Simple, Unsigned BCC
BEQ B7 Z=1 Simple, Unsigned, Signed BNE
BGE BC NeV=0 Signed BLT
BGT BE Z+(NOV)=0 Signed BLE
BHI B2 C+Z=0 Unsigned BLS
BLE BF Z+(NoV)=1 Signed BGT
BLS B3 C+272=1 Unsigned BHI
BLT ~ BD NeV=1 Signed BGE
BMI BB N=1 Simple BPL
BNE B6 Z=0 Simple, Unsigned, Signed BEQ
BPL BA N=0 Simple BMI
BRA BO 1 Unary BRN
BRN B1 0 Unary BRA
BVC B8 V=0 Simple BVS
BVS B9 V=1 Simple BVC
MOTOROLA / INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-50

B EQ Branch If Equal to Zero B EQ

Operation: If Z =1, then (PK : PC) + Offset = PK : PC

Description: Causes a program branch if the CCR Zero bit has a value of 1. An
8-bit signed relative offset is added to the current value of the
program counter. When the operation causes PC overflow, the PK
field is incremented or decremented. Used to implement simple,
signed, or unsigned conditional branches.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL8 B7 (4 6,2
Branch Instruction Summary (8-Bit Offset)

Mnemonic Opcode Equation Type Complement
BCC B4 Cc=0 Simple, Unsigned BCS
BCS B5 Cc=1 Simple, Unsigned BCC
BEQ B7 Z=1 Simple, Unsigned, Signed BNE
BGE BC . N®eV=0 Signed BLT
BGT BE Z+(NeV)=0 Signed BLE
BHI B2 C+Z=0 Unsigned BLS
BLE BF Z+(NaoV)=1 Signed BGT
BLS B3 C+2Z=1 Unsigned BHI
BLT BD NeV=1 Signed BGE
BMI BB N=1 Simple BPL
BNE B6 Z=0 Simple, Unsigned, Signed BEQ
BPL BA N=0 Simple BMI
BRA BO 1 Unary BRN
BRN B1 0 Unary BRA
BVC B8 =0 Simple BVS
BVS B9 V=1 Simple BvVC

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-51

BGE

Operation:

Description:

Syntax:

Branch If Greater than or Equal to Zero B G E

lfN® V=0, then (PK : PC) + Offset = PK : PC

Causes a program branch if the CCR Negative and Overflow bits
both have a value of 0 or both have a value of 1. An 8-bit signed
relative offset is added to the current value of the program counter.
When the operation causes PC overflow, the PK field is
incremented or decremented. Used to implement signed
conditional branches.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL8 BC m 6,2
Branch Instruction Summary (8-Bit Offset) \
Mnemonic Opcode Equation Type Complement
BCC B4 C=0 Simple, Unsigned BCS
BCS B5 C=1 Simple, Unsigned BCC
BEQ B7 Z=1 Simple, Unsigned, Signed BNE
BGE BC NeV=0 Signed BLT
BGT BE Z+(N@V)=0 Signed BLE
BHI B2 C+Z=0 Unsigned BLS
BLE BF Z+(NoV)=1 Signed BGT
BLS B3 C+Z=1 Unsigned BHI
BLT BD NoV=1 Signed BGE
BMI BB . N=1 Simple BPL
BNE B6 Z=0 Simple, Unsigned, Signed BEQ
BPL BA N=0 Simple v BMI
BRA BO 1 Unary BRN
BRN B1 0 Unary BRA
BVC B8 V=0 Simple BVS
BVS B9 V=1 Simple BVC
MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-52

BGND

Operation:

Description:

Syntax:

Enter Background Debug Mode BG N D

If Background Debug Mode is enabled, begin debug;
else, illegal instruction trap

Background Debug Mode is an operating mode in which CPU16
microcode performs debugging functions. To prevent accidental
entry, a specific method of enabling BDM is used. |f BDM has
been correctly enabled, executing BGND will cause the CPU16 to
suspend normal operation. |f BDM has not been correctly
enabled, an illegal instruction exception is generated. See
SECTION 9 EXCEPTION PROCESSING for more
information.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 37A6 — N/A
CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-53

B G T Branch If Greater than Zero B G T

Operation: fZ 4+ (N®V)=0,then (PK: PC) + Offset = PK : PC

Description: Causes a program branch if the CCR Negative and Overflow bits
both have a value of 0 or both have a value of 1, and the CCR
Zero bit has a value of 0. An 8-bit signed relative offset is added to
the current value of the program counter. When the operation
causes PC overflow, the PK field is incremented or decremented.
Used to implement signed conditional branches.

Syntax: Standard
Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand ‘ Cycles
REL8 BE (4 6,2
Branch Instruction Summary (8-Bit Offset)

Mnemonic Opcode Equation Type Complement
BCC B4 - C=0 Simple, Unsigned BCS
BCS B5 C=1 Simple, Unsigned BCC
BEQ B7 Z=1 Simple, Unsigned, Signed BNE
BGE BC N®V=0 Signed BLT
BGT BE Z+(N@oV)=0 Signed BLE
BHI B2 C+Z=0 Unsigned BLS
BLE BF Z+(NoV)=1 Signed BGT
BLS B3 C+2Z=1 Unsigned BHI
BLT BD NoV=1 Signed BGE
BMI BB N=1 Simple BPL
BNE B6 Z=0 Simple, Unsigned, Signed BEQ
BPL BA N=0 Simple BMI
BRA BO 1 Unary BRN
BRN B1 0 Unary BRA
BVC B8 V=0 Simple BVS
BVS B9 V=1 Simple BVC

MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-54

B H I Branch If Higher B H l

Operation: If C4+Z=0,then (PK: PC) + Offset = PK : PC

Description: Causes a program branch if the CCR Carry and Zero bits both
have a value of 0. An 8-bit signed relative offset is added to the
current value of the program counter. When the operation causes
PC overflow, the PK field is incremented or decremented. Used to
implement unsigned conditional branches.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL8 B2 oo 6,2
Branch Instruction Summary (8-Bit Offset)

Mnemonic Opcode Equation Type Complement
BCC B4 C=0 Simple, Unsigned BCS
BCS B5 C=1 Simple, Unsigned BCC
BEQ B7 Z=1 Simple, Unsigned, Signed BNE
BGE BC N®V=0 Signed BLT
BGT BE Z+(NeV)=0 Signed BLE
BHI B2 C+2Z2=0 Unsigned BLS
BLE BF Z+(NoV)=1 Signed BGT
BLS B3 C+Z=1 Unsigned BHI
BLT BD NoV=1 Signed BGE
BMI BB N=1 Simple BPL
BNE B6 Z=0 Simple, Unsigned, Signed BEQ
BPL BA N=0 Simple BMI
BRA BoO 1 Unary BRN
BRN B1 0 Unary BRA
BVC B8 =0 Simple BVS
BVS B9 V=1 Simple BVC

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-55

BITA

Operation:

Description:

Syntax:

Bit Test A BITA

(A) * (M)

Performs AND between the content of accumulator A and
corresponding bits in a memory byte. Condition codes are set, but
neither accumulator content nor memory content is changed.

Standard

Condition Code Register:

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
S MV H EV N p4 \' C IP SM PK
— | =1 =] =1 a1l a o | — — — —
S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.

N: Setif A7 ¢ M7 = 1; else cleared.
Z: Setif (A) o (M) = $00; else cleared.

V:
C:
IP:
SM:
PK:

Cleared.

Not affected.
Not affected.
Not affected.
Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles

IND8, X 49 ff 6
INDS8, Y 59 ff 6
IND8, Z 69 ff 6
IMM8 79 ii 2
IND16, X 1749 9999 6
IND16, Y 1759 felefele] 6
IND16, Z 1769 [ele]e]e] 6
EXT 1779 hhll 6
E, X 2749 — 6
E, Y 2759 _ 6
EZ 2769 —_ 6
MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-56

BITB

Operation: (B) o (M)

Bit Test B

BITB

Description: Performs AND between the content of accumulator B and
corresponding bits in a memory byte. Condition codes are set, but

neither accumulator content nor memory content is changed.

Syntax: Standard

Condition Code Register:

15 14 13 12 1 10 9 8 7 6 5 4 2 1 0
S MV H EV N \Y IP SM PK
—_ — — — A A 0 — — — —
S: Not affected.
" MV: Not affected.
H: Not affected.
EV: Not affected.
N: Setif B7 « M7 =1, else cleared.
Z: Setif (B) o (M) =$00; else cleared.
V: Cleared.
C: Not affected.
IP: Not affected.
SM: Not affected.
PK: Not affected.
Instruction Format:
Addressing Mode Opcode Operand Cycles
IND8, X Cc9 ff 6
INDS8, Y D9 tf 6
IND8, Z E9 tf 6
IMM8 F9 ii 2
IND16, X 17C9 gggg 6
IND16, Y 17D9 9999 6
IND16, Z 17E9 9999 6
EXT 17F9 hhll 6
E, X 27C9 — 6
E, Y 27D9 — 6
E, Z 27E9 — 6
GLOSSARY MOTOROLA

CPU16 REFERENCE MANUAL

INSTRUCTION

6-57

BLE Branch If Less than or Equal to Zero B LE

Operation: IfZ+ (N @ V) =1, then (PK : PC) + Offset = PK : PC

Description: Causes a program branch if either the CCR Negative bit or
Overflow bit has a value of 1, or the CCR Zero bit has a value of 1.
An 8-bit signed relative offset is added to the current value of the
program counter. When the operation causes PC overflow, the PK
field is incremented or decremented. Used to implement signed
conditional branches.

Syntax: Standard
Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
RELS BF m 6,2
Branch Instruction Summary (8-Bit Offset)

Mnemonic Opcode Equation Type Complement
BCC B4 C=0 Simple, Unsigned BCS
BCS BS C=1 Simple, Unsigned BCC
BEQ B7 Z=1 Simple, Unsigned, Signed BNE
BGE BC N@&V=0 Signed BLT
BGT BE Z+(NoV)=0 Signed BLE
BHI B2 C+Z=0 Unsigned BLS
BLE) BF Z+(NoV)=1 Signed BGT
BLS B3 C+7Z=1 Unsigned - BHI
BLT BD NeV=1 Signed BGE
BMI BB N=1 Simple BPL
BNE B6 Z=0 Simple, Unsigned, Signed BEQ
BPL BA N=0 Simple BMI
BRA BO 1 Unary BRN
BRN B1 0 Unary BRA
BVC B8 V=0 Simple BVS
BVS B9 V=1 Simple BvVC

MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-58

BLS

Operation:

BLS

Branch If Lower or Same

If C+2Z=1,then (PK:PC) + Offset = PK : PC
Description: Causes a program branch if either or both the CCR Carry and Zero
bits have a value of 1. An 8-bit signed relative offset is added to
the current value of the program counter. When the operation
causes PC overflow, the PK field is incremented or decremented.
Used to implement unsigned conditional branches.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL8 B3 m 6,2
Branch Instruction Summary (8-Bit Offset)

Mnemonic Opcode Equation Type Complement
BCC B4 Cc=0 Simple, Unsigned BCS
BCS B5 c=1 Simple, Unsigned BCC
BEQ B7 Z=1 Simple, Unsigned, Signed BNE
BGE BC N@&V=0 Signed BLT
BGT BE Z+(N®V)=0 Signed BLE
BHI B2 C+272=0 Unsigned BLS
BLE BF Z+(NeV)=1 Signed BGT
BLS B3 C+Z=1 Unsigned BHI
BLT BD NeV=1 Signed BGE
BMI BB N=1 Simple BPL
BNE B6 Z=0 Simple, Unsigned, Signed BEQ
BPL BA N=0 Simple BMI
BRA BO 1 Unary BRN
BRN B1 0 Unary BRA
BVC B8 =0 Simple BVS
BVS B9 =1 Simple BVC

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-59

BLT

Operation:

Description:

Branch If Less than Zero

fN@®V=1,then (PK:PC)+ Offset = PK : PC

BLT

Causes a program branch if either of the CCR Negative or

Overflow bits has a value of 1. An 8-bit signed relative offset is

added to the current value of the program counter.

When the

operation causes PC overflow, the PK field is incremented or
decremented. Used to implement signed conditional branches.

Syntax:

Condition Code Register:

Instruction Format:

Standard

Not affected.

Addressing Mode Opcode Operand Cycles
RELS BD m 6,2
Branch Instruction Summary (8-Bit Offset)

Mnemonic Opcode Equation Type Complement
BCC B4 C=0 Simple, Unsigned BCS
BCS) B5 C=1 Simple, Unsigned BCC
BEQ B7 Z=1 Simple, Unsigned, Signed BNE
BGE BC N®eV=0 Signed BLT
BGT BE Z+(N@eV)=0 Signed BLE
BHI B2 C+Z=0 Unsigned BLS
BLE BF Z+(NaV)=1 Signed BGT
BLS B3 C+Z=1 Unsigned BHI
BLT BD NOV=1 Signed BGE
BMI BB N=1 Simple BPL
BNE B6 Z=0 Simple, Unsigned, Signed BEQ
BPL BA N=0 Simple BMI
BRA BO 1 Unary BRN
BRN B1 0 Unary BRA
BVC B8 V=0 Simple BVS
BVS B9 =1 Simple BvVC

MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-60

B M I Branch If Minus B M I

Operation: If N =1, then (PK : PC) + Offset = PK : PC

Description: Causes a program branch if the CCR Negative bit has a value of 1.
An 8-bit signed relative offset is added to the current value of the
program counter. When the operation causes PC overflow, the PK
field is incremented or decremented. Used to implement simple
conditional branches.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL8 BB (g 6,2
Branch Instruction Summary (8-Bit Offset)

Mnemonic Opcode Equation Type Complement
BCC B4 Cc=0 Simple, Unsigned BCS
BCS ‘ B5 Cc=1 Simple, Unsigned BCC
BEQ B7 Z=1 Simple, Unsigned, Signed BNE
BGE BC N@aV=0 Signed BLT
BGT BE Z+(NoV)=0 Signed BLE
BHI B2 C+7Z=0 Unsigned BLS
BLE BF Z+(NoV)=1 Signed BGT
BLS B3 C+7Z=1 Unsigned BHI
BLT BD NoV=1 Signed BGE
BMI BB N=1 Simple BPL
BNE B6 Z=0 Simple, Unsigned, Signed BEQ
BPL BA N=0 Simple BMI
BRA BO 1 Unary BRN
BRN B1 0 Unary BRA
BVC B8 V=0 Simple BVS
BVS B9 V=1 Simple BVC

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-61

BNE

Operation:

Description:

Branch If Not Equal to Zero

If Z=0, then (PK : PC) + Offset = PK : PC

BNE

Causes a program branch if the CCR Zero bit has a value of 0. An

8-bit signed relative offset is added to the current value of the
program counter. When the operation causes PC overflow, the PK
field is incremented or decremented. Used to implement simple,
signed, and unsigned conditional branches.

Syntax:

Condition Code Register:

Instruction Format:

Standard

Not affected.

Addressing Mode Opcode Operand Cycles
RELS B6 rr 6,2
Branch Instruction Summary (8-Bit Offset)

Mnemonic Opcode Equation Type Complement
BCC B4 C=0 Simple, Unsigned BCS
BCS B5 C=1 Simple, Unsigned BCC
BEQ B7 Z=1 Simple, Unsigned, Signed BNE
BGE BC N®V=0 Signed BLT
BGT BE . Z+(NeV)=0 Signed BLE
BHI B2 C+7=0 Unsigned BLS
BLE BF Z+(NoV)=1 Signed BGT
BLS B3 C+7Z=1 Unsigned BHI
BLT BD NeV=1 Signed BGE
BMI BB N=1 Simple BPL
BNE B6 Z=0 Simple, Unsigned, Signed BEQ
BPL BA N=0 Simple BMI
BRA BO 1 Unary BRN
BRN B1 0 Unary BRA
BVC B8 V=0 Simple BVS
BVS B9 V=1 Simple BVC

MOTOROLA INSTRUCTION . GLOSSARY CPU16 REFERENCE MANUAL

6-62

BPL

Operation:

Description:

Syntax:

Condition Code Register:

Branch If Plus

If N=0, then (PK : PC) + Offset = PK : PC

BPL

Causes a program branch if the CCR Negative bit has a value of 0.
An 8-bit signed relative offset is added to the current value of the
program counter. When the operation causes PC overflow, the PK
field is incremented or decremented. Used to implement simple

conditional branches.

Standard

Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL8 BA 118 6,2
Branch Instruction Summary (8-Bit Offset)

Mnemonic Opcode Equation Type Complement
BCC B4 C=0 Simple, Unsigned BCS
BCS B5 C=1 Simple, Unsigned BCC
BEQ B7 Z=1 Simple, Unsigned, Signed BNE
BGE BC NeV=0 Signed BLT
BGT BE Z+(N®V)=0 Signed BLE
BHI B2 C+Z=0 Unsigned BLS
BLE BF Z+(Nov)=1 Signed BGT
BLS B3 C+Z=1 Unsigned BHI
BLT BD NoV=1 Signed BGE
BMI BB N=1 Simple BPL
BNE B6 Z=0 Simple, Unsigned, Signed BEQ
BPL BA N=0 Simple BMI
BRA BO 1 Unary BRN
BRN B1 0 Unary BRA
BVC B8 =0 Simple BVS
BVS B9 =1 Simple BVC

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-63

BRA

Operation:

Description:

Branch Always

(PK : PC) + Offset = PK : PC

BRA

Always branches. An 8-bit signed relative offset is added to the

current value of the program counter. When the operation causes
PC overflow, the PK field is incremented or decremented.

Syntax:

Condition Code Register:

Instruction Format:

Standard

Not affected.

Addressing Mode Opcode Operand Cycles
REL8 BO rr 6
Branch Instruction Summary (8-Bit Offset)

Mnemonic Opcode Equation Type Complement
BCC B4 Cc=0 Simple, Unsigned BCS
BCS B5 C=1 Simple, Unsigned BCC
BEQ B7 Z=1 Simple, Unsigned, Signed %BNE
BGE BC N®V=0 Signed lBLT
BGT BE Z+(N®V)=0 Signed BLE
BHI B2 C+7=0 Unsigned BLS
BLE BF Z+(NoV)=1 Signed BGT
BLS B3 C+Z= 1‘ Unsigned BHI
BLT BD NeV=1 Signed BGE
BMI BB N=1 Simple BPL
BNE B6 Z=0 Simple, Unsigned, Signed BEQ
BPL BA N=0 Simple BMI
BRA BO 1 Unary BRN
BRN B1 0 Unary BRA
BVC B8 V=0 Simple BVS
BVS B9 =1 Simple BVC

MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-64

BRCLR

Operation:

Description:

Syntax:

Condition Code Register:

Branch if Bits Clear

BRCLR

If (M) » (Mask) = 0, (PK : PC) + Offset = PK : PC

Causes a program branch when specified bits in memory have
values of 0. Performs AND between a memory byte and a mask

byte. The memory byte is pointed to by a 20-bit indexed or

extended effective address.

If a mask bit has a value of 1, the corresponding memory bit must

have a value of 0. When the result of the operation is 0, an 8- or

16-bit signed relative offset is added to the current value of the
program counter. When the operation causes PC overflow, the PK
field is incremented or decremented.

BRCLR address operand, [register symbol,] #mask, displacement

Instruction Format:

Not affected.

Addressing Mode Opcode Mask Addr Operand Branch Offset Cycles
INDS, X CB, mm ff rr 10, 12

INDS, Y DB mm ff rr 10, 12

INDS, Z EB mm ff m 10, 12

IND16, X 0A mm 9999 rere 10, 14

IND16, Y 1A mm 9999 rrre 10, 14

IND16, Z 2A mm 9999 reer 10, 14

EXT 3A mm hhli rre 10, 14

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-65

BRN : Branch Never BRN

Operation: (PK:PC)+2=PK:PC

Description: Never branches. This instruction is effectively a NOP that requires
two cycles to execute. When the operation causes PC overflow,
the PK field is incremented or decremented.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL8 B1 r 2

Branch Instruction Summary (8-Bit ‘Offset)

Mnemonic Opcode Equation Type Complement
BCC B4 C=0 Simple, Unsigned BCS
BCS B5 C=1 Simple, Unsigned BCC
BEQ B7 Z=1 Simple, Unsigned, Signed BNE
BGE BC NoV=0 Signed BLT
BGT BE Z+(N®V)=0 Signed BLE
BHI B2 C+272=0 Unsigned BLS
BLE BF Z+(NoV)=1 Signed BGT
BLS B3 C+Z=1 Unsigned BHI
BLT BD NoeV=1 Signed BGE
BMI BB N=1 Simple BPL
BNE B6 Z=0 Simple, Unsigned, Signed BEQ
BPL BA N=0 Simple BMI
BRA BO 1 Unary BRN
BRN B1 0 Unary BRA
BVC B8 V=0 Simple BVS
BVS B9 V=1 Simple BVC
MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-66

B RSET Branch if Bits Set B RSET

Operation: If (M) e (Mask) =0, (PC) + Offset = PK : PC

Description: Causes a program branch when specified bits in memory have
values of 1. Performs AND between the complement of memory
byte and a mask byte. The memory byte is pointed to by a 20-bit
indexed or extended effective address.

If a mask bit has a value of 1, the corresponding
(uncomplemented) memory bit must have a value of 1. When the
result of the operation is 0, an 8- or 16-bit signed relative offset is
added to the current value of the program counter. When the
operation causes PC overflow, the PK field is incremented or
decremented.

Syntax: BRSET address operand, [register symbol,] #mask, displacement n
Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Mask Addr Operand Branch Offset Cycles
IND8, X 8B mm ff m 10, 12

INDS8, Y 9B mm ff r 10, 12

INDS8, Z AB mm tf " 10, 12

IND16, X 0B mm 9999 reer 10, 14

IND18, Y 1B mm 9999 reee 10, 14

IND16, Z 2B mm felele]e] reee 10, 14

EXT 3B mm hhll reer 10, 14

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-67

BSET Set Bits in a Byte BSET

Operation: (M) + (MASK) => M

Description: Performs OR between a memory byte and a mask byte. Bits in the
mask are set to set corresponding bits in memory. Other bits in the
memory word are unchanged. The location of the mask differs for

, 8- and 16-bit addressing modes.

Syntax: BSET address operand, [register symbol,] #mask
Condition Code Register:
15 14 13 12 11 10

S |M| H|EBV| N| Z]|V]|eC P SM PK
— | =] =] = a|a]| o] — — — —

©
<)
~
o
[¢)]
I
w
(M)
-
o

S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.
N: Setif M7 = 1 as a result of operation; else cleared.
Z: Setif (M) = $00 as a result of operation; else cleared.
V: Cleared.
C: Not affected.
IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode Opcode Mask Operand Cycles

INDS, X 1709 mm ff 8

INDS8, Y 1719 mm ff 8

IND8, Z 1729 mm ff 8

IND16, X 09 mm gggg 8

IND16, Y 19 mm 9999 8

IND16, Z 29 mm 9999 8

EXT 39 mm hhll 8

MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-68

B S ETW Set Bits in a Word

Operation: (M:M+1)+ (Mask) > M: M+ 1

BSETW

Description: Performs OR between a memory word and a mask word. Set bits
in the mask to set corresponding bits in memory. Other bits in the

memory word are unchanged.

Syntax: BSETW address operand, [register symbol,] #mask

Condition Code Register:

15 14 13 12 11 10 9 8 7 6

4 3 1 0
S MV H EV N z \ Cc IP SM PK
— | —| =] = | a A 0 — — —_ —
S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.
N: Setif M15 = 1 as a result of operation; else cleared.
Z: Setif (M: M+ 1) =$0000 as a result of operation; else cleared.
V: Cleared.
C: Not affected.
IP: Not affected.
SM: Not affected.
PK: Not affected.
Instruction Format:

Addressing Mode Opcode Operand Mask Cycles
IND16, X 2709 9999 mmmm 10
IND16, Y 2719 9999 mmmm 10
IND16, Z 2729 9999 mmmm 10

EXT - 2739 hhll mmmm 10
CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-69

BSR

Operation:

Description:

Syntax:

Condition Code

Branch to Subroutine

(PK : PC) — $0002 = PK : PC

Push (PC)

(SK : SP) - $0002 = SK : SP

Push (CCR)

(SK : SP) — $0002 = SK : SP
(PK : PC) + Offset = PK : PC

BSR

Saves current program address and status, then branches to a
subroutine. PK : PC are adjusted so that program execution will
resume correctly after return from subroutine.

The program counter is stacked, then the condition code register is
stacked (PK field as well as condition code bits and interrupt

priority mask).

An 8-bit signed relative offset is added to the

current value of the program counter. When the operation causes
PC overflow, the PK field is incremented or decremented.

Standard

Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL8 36 (4 10
MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-70

BVC

Operation:

Description:

Syntax:

Condition Code Register:

BVC

Branch If Overflow Clear

If V =0, then (PK : PC) + Offset = PK : PC

Causes a program branch if the CCR Overflow bit has a value of 0.
An 8-bit signed relative offset is added to the current value of the
program counter. When the operation causes PC overflow, the PK
field is incremented or decremented. Used to implement simple,
signed, and unsigned conditional branches.

Standard

Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
RELS8 B8 (s 6,2
Branch Instruction Summary (8-Bit Offset)

Mnemonic Opcode Equation Type Complement
BCC B4 C=0 Simple, Unsigned BCS
BCS B5 C=1 Simple, Unsigned BCC
BEQ B7 Z=1 Simple, Unsigned, Signed BNE
BGE BC N®V=0 Signed BLT
BGT BE Z+(N®V)=0 Signed BLE
BHI B2 C+Z=0 Unsigned BLS
BLE BF Z+(NeV)=1 Signed BGT
BLS B3 C+7Z=1 Unsigned BHI
BLT BD NoV=1 Signed BGE
BMI BB N=1 Simple BPL
BNE B6 Z=0 Simple, Unsigned, Signed BEQ
BPL BA N=0 Simple BMI
BRA BO 1 Unary BRN
BRN B1 0 Unary BRA
BVC B8 V=0 Simple BVS
BVS B9 =1 Simple BVC

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-71

BVS

Operation:

Description:

Syntax:

Condition Code Register:

Branch If Overflow Set

If V=1, then (PK : PC) + Offset = PK : PC

BVS

Causes a program branch if the CCR Overflow bit has a value of 1.
An 8-bit signed relative offset is added to the current value of the
program counter. When the operation causes PC overflow, the PK
field is incremented or decremented. Used to implement simple,
signed, and unsigned conditional branches.

Standard

Instruction Format:

Not affected.

Addressing Mode Opcode Operand Cycles
RELS B9 rr 6,2
Branch Instruction Summary (8-Bit Offset)

Mnemonic Opcode Equation Type Complement
BCC B4 C=0 Simple, Unsigned BCS
BCS B5 C=1 Simple, Unsigned BCC
BEQ B7 Z=1 Simple, Unsigned, Signed BNE
BGE BC NeV=0 Signed BLT
BGT BE Z+(N®V)=0 Signed BLE
BHI B2 C+Z=0 Unsigned BLS
BLE BF Z+(NoV)=1 Signed BGT
BLS B3 C+Zo1 Unsigned BHI
BLT BD NeV=1 Signed BGE
BMI BB N=1 Simple BPL
BNE B6 Z=0 Simple, Unsigned, Signed BEQ
BPL BA N=0 Simple BMI
BRA BO 1 Unary BRN
BRN B1 0 Unary BRA
BVC B8 =0 Simple BVS
BVS B9 V=1 Simple BVC

MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-72

CBA

Operation: (A) - (B)

Compare B to A

CBA

Description: Subtracts the content of accumulator B from the content of
accumulator A and sets appropriate condition code register bits.
The contents of the accumulators are not changed by the
operation, and no result is stored.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 2 1 0
S MV H EV N 4 " C IP SM PK
—_ —_ _ —_ A A A A — — —
S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.
N: Setif R7=1 as a result of operation; else cleared.
Z: Setif (A) — (B) = $00; else cleared.
V: Set if operation causes twos complement overflow; else cleared.
C: Set if operation requires a borrow; else cleared.
IP: Not affected.
SM: Not affected.
PK: Not affected.
Instruction Format:
Addressing Mode Opcode Operand Cycles
INH 371B — 2
CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-73

CLR

Operation:

Description:

Syntax:

Clear a Byte in Memory C L R

$00 = M

Content of a memory byte is cleared to zero.

Standard

Condition Code Register:

15

14 13

12 11 10 9 8 7 6 5 4 3 2 1 0

S

MV H

EV N z \ C] IP SM PK

— 0 1 0 0 — — —

. Not affected.
: Not affected.
Not affected.
: Not affected.

Cleared.
Set.

Cleared.
Cleared.

: Not affected.
: Not affected.
: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles

IND8, X 05 ff 4
IND8, Y 15 ff 4
IND8, Z 25 ff 4
IND16, X 1705 gggg 6
IND16, Y 1715 9999 6
IND16, Z 1725 9999 6

EXT 1735) hhlil 6

MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-74

CLRA Clear A CLRA

Operation: $00=> A
Description: Content of accumulator A is cleared to zero.
Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S | MV| H|EV| N Z | v c P SM PK
— | — | —]| =10 1 0 0 — — —

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Cleared.

Z: Set.

V: Cleared.

C: Cleared.

IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 3705 - 2
CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-75

CL R B Clear B C L R B
Operation: $00 = B

Description: Content of accumulator B is cleared to zero.

Syntax: Standard

Condition Code Register:

15 14 13 12

11

Mv H EV

SM PK

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Cleared.

Z: Set.

V: Cleared.

C: Cleared.

IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode

Opcode Operand

Cycles

INH

3715 —

MOTOROLA
6-76

INSTRUCTION GLOSSARY

CPU16 REFERENCE MANUAL

CLRD Clear D CLRD

Operation: $0000 = D
Description: Content of accumulator D is cleared to zero.
Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
s {Mmv| H|EV|N]|] zZz]|]V]eC IP SM PK
—] = =] =1 o 1 o | o — — —

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Cleared.

Z: Set.

V: Cleared.

C: Cleared.

IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 27F5 — 2
CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-77

CLRE

CLRE

Clear E
Operation: $0000 = E
Description: Content of accumulator E is cleared to zero.
Syntax: Standard

Condition Code Register:

15 14 13 12

11

10 9 8 7 6 5

S MV H EV

SM PK

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Cleared.

Z: Set.

V: Cleared.

C: Cleared.

IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode

Opcode Operand

Cycles

INH

2775 —

MOTOROLA
6-78

INSTRUCTION GLOSSARY

CPU16 REFERENCE MANUAL

CLRM Clear AM CLRM

Operation: $000000000 = AM[35:0]

Description: Content of MAC accumulator is cleared to zero. See SECTION
11 DIGITAL SIGNAL PROCESSING for more information.

Syntax: Standard
Condition Code Register:

15 14 13 12 11 10 9
S MV H EV N 4 \ C P SM PK

— 0 —_ 0 — — — — — —_ —_

©
~
o
4
I
w
N
-
o

S: Not affected.
MV: Cleared.

H: Not affected.
EV: Cleared.

N: Not affected.

Z: Not affected.

V: Not affected.

C: Not affected.
IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 27B7 — 2
CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-79

C L RW Clear a Word in Memory C L RW

Operation: $0000 > M : M+ 1
Desctription: Content of a memory word is cleared to zero.
Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MV H EV N V4 \ C IP SM PK
— | =] =] =1 o 1 0 0 — — —

S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.
N: Cleared.

Z: Set.

V: Cleared.

C: Cleared.
IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
IND16, X 2705 9999 6
IND16, Y 2715 9999 6
IND16, Z 2725 9999 6
EXT 2735 hhll 6
MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-80

CMPA

Operation:

Description:

Syntax:

Compare A | C M P A

(A) - (M)
Subtracts content of a memory byte from content of accumulator A
and sets condition code register bits. Accumulator and memory

contents are not changed, and no result is stored.

Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N z \ C IP SM PK

— | — | = = a] a]| s]| a —_ — —

S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.

Set if R7 = 1 as a result of operation; else cleared.
Z: Setif (A) — (M) = $00; else cleared.

V: Set if operation causes twos complement overflow; else cleared.

C: Set if operation requires a borrow; else cleared.

IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
IND8, X 48 ff 6
INDS8, Y 58 tf 6
IND8, Z 68 ff 6
IMM8 78 ii 2
IND16, X 1748 9999 6
IND16, Y 1758 9999 6
IND16, Z 1768 9999 6
EXT 1778 hhll 6
E, X 2748 —_ 6
E, Y 2758 -— 6
E Z 2768 — 6
CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-81

CMPB Compare B CMPB

Operation: (B) — (M)

Description: Subtracts content of a memory byte from content of accumulator B
and sets condition code register bits. Accumulator and memory
contents are not changed, and no result is stored.

Syntax: ~ Standard
Condition Code Register:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S |MV| H|EV| N| Z| V] C 1P SM PK
— | — | =1 = a | a] a]| A — — —

S: Not affected.
MV: Not affected.
H: Not affected. ‘
EV: Not affected.
N: Setif R7 =1 as a result of operation; else cleared.
Z: Setif (B) — (M) = $00; else cleared.
V: Set if operation causes twos complement overflow; else cleared.
C: Set if operation requires a borrow; else cleared.
IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
IND8, X cs8 ff 6
INDS8, Y D8 ff 6
IND8, Z E8 ff 6
IMM8 F8 ii 2
IND16, X 17C8 9999 6
IND16, Y 17D8 9999 6
IND16, Z 17E8 9999 6
EXT 17F8 hhll 6
E, X 27C8 — 6
E, Y 27D8 — 6
E,Z 27E8 — 6
MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-82

COM

Operation:

Description:

Syntax:

Ones Complement Byte C O M

$FF — (M) => M, or
M=M

Replaces content of a memory byte with its ones complement.
Only BEQ and BNE branches will perform consistently
immediately after COM on unsigned values. All signed branches
are available after COM on twos complement values.

Standard

Condition Code Register:

15

14 13

12 1 10 9

©
~
o
wn
IN
w
N
-

o

S

MV H

EV N 4 \ C P SM PK

— | a | a 0 1 — — —

Not affected.
: Not affected.
: Not affected.
: Not affected.

Set if M7 is set; else cleared.

Set if (M) = $00 as a result of operation; else cleared.

Cleared.
Set.

: Not affected.
Not affected.
. Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles

IND8, X 00 ff 8
IND8, Y 10 ff 8
IND8, Z 20 ff 8
IND16, X 1700 9999 8
IND16, Y 1710 9999 8
IND16, Z 1720 9999 8

EXT 1730 hhll 8

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY . MOTOROLA

6-83

COMA

Operation:

Description:

Ones Complement A

SFF - (A)= A, or
M= A

Only BEQ and BNE branches will

immediately after COMA on an unsigned value.
branches are available after COMA on a twos complement value.

Syntax:

Standard

Condition Code Register:

15 14 13 12

11

COMA

Replaces content of accumulator A with its ones complement.
perform - consistently
All signed

10 9 6 5 4 2 1
S MV H EV N z IP SM PK
—_ = =] = A A 0 — — —
S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.
N: Setif A7 = 1 as a result of operation; else cleared.
Z:, Setif (A) = $00 as a result of operation; else cleared.
V: Cleared.
C: Set.
IP: Not affected.
SM: Not affected.
PK: Not affected.
Instruction Format:
Addressing Mode Opcode Operand Cycles
INH 3700 — 2
MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-84

COMB

Ones Complement B

Only BEQ and BNE branches will

COMB

Replaces content of accumulator B with its ones complement:.

perform consistently
immediately after COMB on an unsigned value.

All signed

branches are available after COMB on a twos complement value.

Operation: $FF - (B) = B, or
B=B

Description:

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 6 5 4 2 1 0
S MV H EV N z IP SM PK
— - = = A A 0 — — —
S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.
N: Setif B7 = 1 as a result of operation; else cleared.
Z: Setif (B) = $00 as a result of operation; else cleared.
V: Cleared.
C: Set.
IP: Not affected.
SM: Not affected.
PK: Not affected.
Instruction Format:
Addressing Mode Opcode Operand Cycles
INH 3710 — 2
CPU16 REFERENCE MANUAL MOTOROLA

INSTRUCTION GLOSSARY

6-85

C O M D Ones Complement D

Operation: $FFFF - (D) = D, or

Description:

D=D

Syntax: Standard

Condition Code Register:

15

14 13 12 1 10 9 8 7 6 5

COMD

Replaces content of accumulator D with its ones complement.
Only BEQ and BNE branches will perform consistently
immediately after COMD on an unsigned value.
branches are available after COMD on a twos complement value.

S

MV H EV N z \ C P

SM

— — — A A 0 1 —

IP:
SM:
PK:

Not affected.

: Not affected.
. Not affected.
: Not affected.

Set if D15 = 1 as a result of operation; else cleared.
Set if (D) = $0000 as a result of operation; else cleared.
Cleared. '

Set.

Not affected.

Not affected.

Not affected.

Instruction Format:

Addressing Mode Opcode Operand

Cycles

INH 27F0 —

MOTOROLA INSTRUCTION GLOSSARY

6-86

CPU16 REFERENCE MANUAL

All signed

C O M E Ones Complement E

Operation: $FFFF - (E) = E, or

Description:

E=>E

Only BEQ and BNE branches will

COME

Replaces content of accumulator E with its ones complement:

perform consistently
immediately after COME on an unsigned value.

All signed

branches are available after COME on a twos complement value.

Syntax: Standard

Condition Code Register:

15

14 13 12 11 10 9

foe]
~
(2]
o

S

MV H EV N z \ C P

SM

PK

— | = = A] A 0] 1 —

: Not affected.
: Not affected.
: Not affected.
. Not affected.

Set if E15 = 1 as a result of operation; else cleared.
Set if (E) = $0000 as a result of operation; else cleared.
Cleared.

Set.

. Not affected.
. Not affected.
: Not affected.

Instruction Format:

Addressing Mode Opcode Operand

Cycles

INH 2770 —

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY

MOTOROLA
6-87

cComMmw

Operation:

Description:

Syntax:

Ones Complement Word

Standard

Condition Code Register:

$FFFF-(M:M+1)=>M:M+1,0r
M:M+ 1)=>M:M+1

COMW

Replaces content of a memory word with its ones complement.
Only BEQ and BNE branches will perform consistently
immediately after COMW on unsigned values.

All signed
branches are available after COMW on twos complement values.

15 14 13 12 11 10 9 6 5 4 2 1
S MV H EV N V4 IP SM PK
—_ — — — A A 0 —_ — —_
S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.
N: Set if M15 is set; else cleared.
Z: Setif (M: M+ 1) =3$0000 as a result of operation; else cleared.
V: Cleared.
C: Set.
IP: Not affected.
SM: Not affected.
PK: Not affected.
Instruction Format:
Addressing Mode Opcode Operand Cycles
IND18, X 2700 9999 8
IND16, Y 2710 gggg 8
IND16, Z 2720 9999 8
EXT 2730 hhil 8
MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-88

CPD

Operation:

Description:

Syntax:

Compare D C P D

D)-(M:M+1)
Subtracts content of a memory word from content of accumulator D
and sets condition code register bits. Accumulator and memory

contents are not changed, and no result is stored.

Standard

Condition Code Register:

15 14 13 12 11 10 9

©
~
2}
4]
IN
w
N
-
o

MV H EV N z \ C 1P SM PK

— | — | =] = A | a]| A]| a — — —

S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.

N: Setif R15 =1 as a result of operation; else cleared.
Z: Setif (D) — (M) =$0000; else cleared.

V: Set if operation causes twos complement overflow; else cleared.

C: Set if operation requires a borrow; else cleared.

IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles

IND8, X 88 ff 6

IND8, Y 98 ff 6

IND8, Z A8 ff 6
IMM16 3788 jikk 4
IND16, X 37C8 9999 6
IND16, Y 37D8 9999 6
IND16, Z 37E8 9999 6

EXT 37F8 hhll 6

E, X 2788 — 6

E, Y 2798 — 6

E Z 27A8 — 6

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-89

CPE

Operation:

Description:

Syntax:

CPE

Compare E

(E)-(M:M+1)

Subtracts content of a memory word from content of accumulator E
and sets condition code register bits. Accumulator and memory
contents are not changed, and no result is stored.

Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z \ C 1P SM PK

S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.

N: Setif R15=1 as a result of operation; else cleared.
Z: Setif (E) - (M) = $0000; else cleared.

V: Set if operation causes twos complement overflow; else cleared.
C: Set if operation requires a borrow; else cleared.

IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode

Opcode Operand Cycles
IMM16 3738 jikk 4
IND16, X 3748 9999 6
IND16, Y 3758 gggg 6
IND16, Z 3768 9999 6
EXT 3778 hhil 6
MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-90

CPS

Operation:

Description:

Syntax:

Compare Stack Pointer C P S

(SP)-(M:M+1)
Subtracts content of a memory word from content of the stack
pointer and sets condition code register bits. SP and memory

contents are not changed, and no result is stored.

Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z Vv C P SM PK

— | = =] =1 a | a | ala — — —

S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.

N: Set if R15 =1 as a result of operation; else cleared.

Z: Setif (SP)- (M) =

$0000; else cleared.

V: Set if operation causes twos complement overflow; else cleared.
C: Set if operation requires a borrow; else cleared.

IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles

IND8, X 4F ff 6

INDS8, Y 5F tf 6

INDS8, Z 6F ft 6

IMM16 377F jikk 4

IND16, X 174F 99ag 6

IND16, Y 175F gggg 6

IND16, Z 176F fele]ele] 6

EXT 177F hhll 6

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-91

C P X ' Compare IX C P X

Operation: (IX)-(M:M+1)
Description: Subtracts content of a memory word from content of index register
X and sets condition code register bits. 1X and memory contents
are not changed, and no result is stored.
Syntax: Standard
Condition Code Register:
15 14 13 12 11 10 9

MV| H|EBV| N| Z]|] V]| C P SM PK
— | = =] =7 al a|a]a — — —

©
~
o
0
I
w
o
.
o

S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.
N: Setif R15=1 as a result of operation; else cleared.
Z: Set if (IX) — (M) = $0000; else cleared.
V: Set if operation causes twos complement overflow; else cleared.
C: Set if operation requires a borrow; else cleared.
IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles

IND8, X 4C ff 6

IND8, Y ' 5C ff 6

IND8, Z 6C ft 6

IMM16 377C jikk 4

IND16, X 174C 9999 6

IND186, Y 175C 9999 6

IND16,Z 176C 9999 6

EXT 177C hhll 6

MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-92

CPY

Operation:

Description:

Syntax:

Compare 1Y

1Y) = (M : M+ 1)

CPY

Subtracts content of a memory word from content of index register
- Y and sets condition code register bits. 1Y and memory contents

are not changed, and no result is stored.

Standard

Condition Code Register:

15 14 13 12 11 10 9 6 5 4 2 1 0
S MV H EV N 4 P SM PK
— —_ —_ —_ A A A — — —
S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.
N: Setif R15=1 as a result of operation; else cleared.
Z: Setif (IY) - (M) = $0000; else cleared.
V: Set if operation causes twos complement overflow; else cleared.
C: Set if operation requires a borrow; else cleared.
IP: Not affected.
SM: Not affected.
PK: Not affected.
Instruction Format:
Addressing Mode Opcode Operand Cycles
IND8, X 4D ff 6
INDS8, Y 5D ff 6
INDS8, Z 6D ff 6
IMM16 377D jikk 4
IND16, X 174D 9999 6
IND16, Y 175D 9999 6
IND16, Z 176D fofofele] 6
EXT 177D hhil 6
CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-93

CPZ

Operation:

Description:

Syntax:

Compare 1Z C PZ

(1Z)-(M:M+1)
Subtracts content of a memory word from content of index register
Z and sets condition code register bits. 1Z and memory contents
are not changed, and no result is stored.

Standard

Condition Code Register:

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
S MV H EV N z \Y C 1P SM PK
— — —_ — A A A A — —_ —
S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.

N: Setif R15 =1 as a result of operation; else cleared.
Z: Setif (1Z) — (M) = $0000; else cleared.

V:
C:
IP:
SM:
PK:

Set if operation causes twos complement overflow; else cleared.
Set if operation requires a borrow; else cleared.

Not affected.
Not affected.
Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles

IND8, X 4E ff 6

IND8, Y 5E ff 6

IND8, Z 6E ft 6

IMM16 377E jikk 4

IND16, X 174E 9999 6

IND16, Y 175E 9999 6

IND16, Z 176E [ele]es] 6

EXT 177E . hhll 6

MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-94

DAA Decimal Adjust A DAA

Operation: (A)10

Description: Adjusts the content of accumulator A and the state of the CCR
Carry bit after binary-coded decimal operations, so that there is a
correct BCD sum and an accurate carry indication. The state of
the CCR Half Carry bit affects operation. The Function Summary
table shows details of operation.

Syntax: Standard
Condition Code Register:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MV H EV N V4 \" C IP SM PK
— | - =] =] a A u A — — —

S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.
N: Setif A7 = 1 as a result of operation; else cleared.
Z: Setif (A) = $00 as a result of operation; else cleared.
V: Undefined.
C: See DAA Function Summary table.
IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 3721 — 2
CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-95

DAA Decimal Adjust A DAA

DAA Function Summary

1 2 3 4 5 6
Initial Value of Initial Value of Correction Corrected
C Bit Value A[7:4] H Bit Value A[3:0] Factor C Bit Value

0 0—9 0 0—9 00 0

0 0—8 0 A—F 06 0

0 S 0—9 1 0—3 06 0

0 A—F 0 0—9 60 1

0 9—F 0 A—F 66 1

0 A—F 1 0—3 66 1

1 0—2 0 0—9 60 1

1 0—2 0 A—F 66 1

1 0—3 1 0—3 66 1

The table shows DAA operation for all legal combinations of input operands. Columns
1 through 4 represent the results of ABA, ADC, or ADD operations on BCD operands.
The correction factor in column 5 is added to the accumulator to restore the result of an
operation on two BCD operands to a valid BCD value, and to set or clear the C bit. All
values are in hexadecimal.

MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL
6-96

D E C Decrement Byte D E C

Operation: (M)-$01 =M

Description: Subtracts $01 from the content of a memory byte. Only BEQ and
BNE branches will perform consistently immediately after DEC on
unsigned values. All signed branches are available after DEC on
twos complement values. Because DEC does not affect the C bit
in thé Condition Code Register, it can be used to implement a loop
counter in multiple-precision computation.

Syntax: Standard
Condition Code Register:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N 4 \ C IP SM PK
— | - =] - a A A | — - — —

S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.
N: Set if M7 =1 as a result of operation; else cleared.

Z: Setif (M)=$00 as a result of operation; else cleared.

V: Set if (M) = $80 before operation (operation causes twos complement overflow); else cleared.
C: Not affected.

IP: Noi affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles

IND8, X 01 ff 8
IND8, Y 11 ft 8
IND8, Z 21 ff 8
IND16, X 1701 0999 8
IND16, Y 1711 9999 8
IND16, Z 1721 9999 8

EXT 1731 hhll 8

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-97

DECA

Operation:

Description:

Syntax:

Decrement A D E C A

(A) - $01 = A

Subtracts $01 from the content of accumulator A. Only BEQ and
BNE branches will perform consistently immediately after DECA
on unsigned values. All signed branches are available after
DECA on twos complement values. Because DECA does not
affect the C bit in the Condition Code Register, it can be used to
implement a loop counter in multiple-precision computation.

Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N z \" C IP SM PK

— | = =1 =1 a | a | s = — — —

S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.

N: Setif A7 =1 as a result of operation; else cleared.

Z: Setif (A)=$00 as a result of operation; else cleared.

V: Setif (A) = $80 before operation (operation causes twos complement overflow); else cleared.

C: Not affected.
IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 3701 — 2
MOTOROLA

6-98

INSTRUCTION. GLOSSARY CPU16 REFERENCE MANUAL

D E C B Decrement B D E C B

Operation: (B)-$01 =B

Description: Subtracts $01 from the content of accumulator B. Only BEQ and
BNE branches will perform consistently immediately after DECB
on unsigned values. All signed branches are available after
DECB on twos complement values. Because DECB does not
affect the C bit in the Condition Code Register, it can be used to
implement a loop counter in multiple-precision computation.

Syntax: Standard
Condition Code Register:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S (M| HI|EBV N| Z| V]oC P SM PK
— | = =1 =1 a | a]| a]—= — — —

S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.

N: Setif B7 =1 as aresult of operation; else cleared.
Z: Setif (B) = $00 as a result of operation; else cleared.

V: Setif (B) = $80 before operation (operation causes twos complement overflow); else cleared.
C: Not affected.
IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode Opcode : Operand Cycles
INH 3711 — 2
CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-99

DECW

Decrement Word

DECW

Subtracts $0001 from the content of a memory word. Only BEQ
and BNE branches will perform consistently immediately after
All signed branches are available
Because DECW does
not affect the C bit in the Condition Code Register, it can be used

to implement a loop counter in multiple-precision computation.

Operation: (M:M+1)-$0001 > M:M+1
Description:

DECW on unsigned values.

after DECW on twos complement values.
Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 2 1
S MV H EV N \Y P SM PK
— | — 1 =1 =1 a A A | — — - —

S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.

N: Setif M: M+ 1[15] =1 as a result of operation; else cleared.

Z: Setif (M:M+ 1) =$0000 as a result of operation; else cleared.

V: Setif (M: M+ 1)=$8000 before operation (operation causes twos complement overflow); else cleared.

C: Not affected.
IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
IND186, X 2701 9999 8
IND186, Y 2711 9999 8
IND16, Z 2721 9999 8
EXT 2731 hhil 8
MOTOROLA GLOSSARY CPU16 REFERENCE MANUAL

6-100

INSTRUCTION

E D I V Extended Unsigned Integer Divide E D I V

Operation: (E:D)/(IX)=IX

Remainder = D

Description: Divides a 32-bit unsigned dividend contained in concatenated

accumulators E and D by a 16-bit divisor contained in index
register X. The quotient is placed in IX and the remainder in D.
There is an implied radix point to the right of the quotient (IX0). An
implied radix point is assumed to occupy the same position in both
dividend and divisor.

The states of condition code register bits N, Z, V, and C are
undefined after division by zero, but accumulator contents are not
changed. Division by zero causes an exception. See SECTION
9 EXCEPTION PROCESSING for more information. The
states of the N, Z, and C bits are also undefined after overflow.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S MV H EV N 4 \Y C P SM PK
— — — — A A A A —_ — —_
S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.

N: Setif IX15 =1 as a result of operation; else cleared. Undefined after overflow or division by zero.

Z: Set if (IX) =$0000 as a result of operation; else cleared. Undefined after overflow or division by zero.

V: Setif (IX) > $FFFF as a result of operation; else cleared. Undefined after division by zero.

C: Setif 2 * Remainder > Divisor; else cleared. Undefined after overflow or division by zero.

IP:
SM:
PK:

Not affected.
Not affected.
Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 3728 — 24
CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-101

E D I V S Extended Signed Integer Divide E D I V S

Operation: (E:D)/(IX) = IX
Remainder = D

Description: Divides a 32-bit signed dividend contained in concatenated
accumulators E and D by a 16-bit divisor contained in index
register X. The quotient is placed in IX and the remainder in D.
There is an implied radix point to the right of the quotient (IX0). An
implied radix point is assumed to occupy the same position in both
dividend and divisor.

The states of condition code register bits N, Z, V, and C are
undefined after division by zero, but accumulator contents are not
changed. Division by zero causes an exception. See SECTION
9 EXCEPTION PROCESSING for more information. The
states of the N, Z, and C bits are also undefined after overflow.

Syntax: Standard
Condition Code Register:
5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S|MV| H|EV| N| Z]|V]|C IP SM PK
— | =] =] =] a | a] a]| a — — —

S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.

N: Setif IX15=1 as aresult of operation; else cleared. Undefined after overflow or division by zero.
Z: Setif (IX) = $0000 as a result of operation; else cleared. Undefined after overflow or division by zero.
V: Setif (IX) > $FFFF as a result of operation; else cleared. Undefined after division by zero.

C: Setif |2 * Remainder| > | Divisor| ; else cleared. Undefined after overflow or division by zero.
IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 3729 —_ 38
MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-102

EMUL

Extended Unsigned Multiply

— execute EMUL, then ADCE #0.

Operation: (E)*(D)=E:D
Description:
Syntax: Standard

Condition Code Register:

15 14 13 12 11

EMUL

Multiplies a 16-bit unsigned multiplicand contained in accumulator
E by a 16-bit unsigned multiplier contained in accumulator D, then
places the product in concatenated accumulators E and D. The
CCR Carry bit can be used to round the high word of the product

10 9 6 5 4 2 1 0
S MV H EV N 4 IP SM PK
S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.
N: Setif E15=1 as a result of operation; else cleared.
Z: Setif (E : D) = $00000000 as a result of operation; else cleared.
V: Not affected.
C: Setif D15 =1 as a result of operation; else cleared.
IP: Not affected.
SM: Not affected.
PK: Not affected.
Instruction Format:
Addressing Mode Opcode Operand Cycles
INH 3725 — 10
CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-103

E M U L S Extended Signed Multiply

Operation: (E)*(D)=>E:D

EMULS

Description: Multiplies a 16-bit signed multiplicand contained in accumulator E
by a 16-bit signed multiplier contained in accumulator D, then
places the product in concatenated accumulators E and D. The
CCR Carry bit can be used to round the high word of the product

— execute EMULS, then ADCE #0.
Syntax: Standard

Condition Code Register:

’

15 14 13 12 11 10 9 8 7 6 5 4 2 1 0
S MV H EV N 4 vV | C P SM PK
— | = — | =1 A A — | a — — —
S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.
N: Setif E15 =1 as a result of operation; else cleared.
Z: Setif (E: D)= $00000000 as a result of operation; else cleared.
V: Not affected.
C: Setif D15 =1 as a result of operation; else cleared.
IP: Not affected.
SM: Not affected.
PK: Not affected.
Instruction Format:
Addressing Mode Opcode Operand Cycles
INH 3726 — 8
MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-104

EORA

Operation:

Description:

Syntax:

EOR A EORA

(A)® (M) = A

Performs EOR between the content of accumulator A and a
memory byte, then places the result in accumulator A. Memory
content is not affected.

Standard

Condition Code Register:

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N z \ C P SM PK

— =] =l =] Al Aa]| o] — — — —

S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.

N: Set if A7 is set by operation; else cleared.
Z: Setif (A) = $00 as a result of operation; else cleared.

V: Cleared.

C: Not affected.
IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
IND8, X 44 ft 6
INDS8, Y 54 ft 6
INDS8, Z 64 ff 6
IMM8 74 ii 2
IND16, X 1744 9999 6
IND16, Y 1754 felelels] 6
IND16, Z 1764 9999 6
EXT 1774 hhll 6
E, X 2744 — 6
E, Y 2754 = 6
E Z 2764 — 6
CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-105

EORB

Operation:

Description:

Syntax:

EOR B EORB

(By®(M)=>B

Performs EOR between the content of accumulator B and a
memory byte, then places the result in accumulator B. Memory
content is not affected.

Standard

Condition Code Register:

15

14 13

12 1 10 9 8 7 6 5 4 3 2 1 0

S

MV H

EV N 4 \' C IP SM PK

— 1 A | A 0o | — — — -

: Not affected.
Not affected.
: Not affected.
: Not affected.

Set if B7 is set by operation; else cleared.
Set if (B) = $00 as a result of operation; else cleared.

Cleared.

Not affected.
Not affected.
Not affected.
Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
IND8, X Cc4 ff 6
INDS8, Y D4 ff 6
IND8, Z E4 ff 6
IMM8 F4 ii 2
IND16, X 17C4 felelels] 6
IND16, Y 17D4 9999 6
IND16, Z 17E4 9999 6
EXT 17F4 hhll 6
E, X 27C4 — 6
E, Y 27D4 — 6
E Z 27E4 — 6
MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-106

EORD

Operation:

Description:

EOR D

(D)®(M:M+1)=D

EORD

Performs EOR between the content of accumulator D and a

memory word, then places the result in accumulator D. Memory
content is not affected.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 6 5 4 2 1 0
MV H EV N 4 C P SM PK
— — — — A A 0 —_ — — —_
S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.
N: Setif D15 is set by operation; else cleared.
Z: Setif (D) = $0000 as a result of operation; else cleared.
V: Cleared.
C: Not affected.
IP: Not affected.
SM: Not affected.
PK: Not affected.
Instruction Format:
Addressing Mode Opcode Operand Cycles
IND8, X 84 ff 6
IND8, Y 94 tf 6
IND8, Z A4 tf 6
IMM16 37B4 jikk 4
IND16, X 37C4 9999 6
IND18, Y 37D4 9999 6
IND16, Z 37E4 9999 6
EXT 37F4 hhil 6
E, X 2784 — 6
E, Y 2794 —_ 6
E, Z 27A4 —_— 6
CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-107

EORE EOR E EORE

Operation: (E)e(M:M+1)=E
Description: Performs EOR between the content of accumulator E and a
memory word, then places the result in accumulator E. Memory
content is not affected. '
Syntax: Standard
Condition Code Register:
15 14 13 12 11 10 9 8 7 & 5 4 3 2 1 0

S |MV| H|EV|N]|] Z| V]| C P SM PK
— | = =] — | A | A]| 0| — _ — —

S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.
N: Set if E15 is set by operation; else cleared.

Z: Setif (E) = $0000 as a result of operation; else cleared.
V: Cleared.
C: Not affected.
IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
IMM16 . 3734 jikk 4
IND16, X 3744 9999 6
IND16, Y 3754 fele]els] 6
IND16, Z 3764 fole]els) 6
EXT 3774 hhll 6
MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-108

F D I V Fractional Divide F D I V

Operation: (D)7 (IX) = IX
Remainder = D

Description: Divides a 16-bit unsigned dividend contained in accumulator D by
a 16-bit unsigned divisor contained in index register X. The
quotient is placed in IX and the remainder is placed in D.

There is an implied radix point to the left of the quotient (IX15). An
implied radix point is assumed to occupy the same position in both
dividend and divisor. [f the dividend is greater than or equal to the
divisor, or if the divisor is equal to zero, (IX) is set to $FFFF and (D)
is indeterminate. To maintain compatibility with the MC68HC11,
no exception is generated on overflow or division by zero.

Syntax: Standard

Condition Code Register:

5 14 13 12 11 10 9
S |Mv| H|EV]| N z| v]| c IP SM PK
— | = | =] =] =] A | a]| a — — —

©
~
o
n
»
w
N
-

o

S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.
N: Not affected.

Z: Setif (IX) = $0000 as a result of operation; else cleared.
V: Setif (IX) < (D) before operation; else cleared.

C: Setif (IX) = $0000 before operation; else cleared.
IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 372B — 22
CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-109

F M U L S Signed Fractional Multiply F M U L S

Operation: (E) * (D) = E : D[31:1]
0= E :D[0]
Description: Multiplies a 16-bit signed fractional multiplicand contained in

accumulator E by a 16-bit signed fractional multiplier contained in
accumulator D. The implied radix points are between bits 15 and
14 of the accumulators. The product is left-shifted one place to
align the radix point between bits 31 and 30, then placed in bits 31
to 1 of concatenated accumulators E and D. DO is cleared. The
CCR Carry bit can be used to round the high word of the product
— execute FMULS, then ADCE #0.

When both accumulators contain $8000 (-1), the product is

n $80000000 (—1.0) and the CCR V bit is set.
Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S MV H EV N Z \ C IP SM PK
— —_ — —_ A A A A — — —
S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.

N: Setif E15=1 as a result of operation; else cleared.

Z: Setif (E : D)= $00000000 as a result of operation; else cleared.

V:
C:
IP:
SM:
PK:

Set when operation is (—1)2; else cleared.

Set if D15 =1 as a result of operation; else cleared.
Not affected.

Not affected.

Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 3727 — 8
MOTOROLA) INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-110

I D I V Integer Divide I D I V

Operation: (D) 7 (IX) = IX
Remainder = D

Description: Divides a 16-bit unsigned dividend contained in accumulator D by
a 16-bit unsigned divisor contained in index register X. The
quotient is placed in IX and the remainder is placed in D.

There is an implied radix point to the right of the quotient (IX0). An
implied radix point is assumed to occupy the same position in both
dividend and divisor. If the divisor is equal to zero, (IX) is set to
$FFFF and (D) is indeterminate. To maintain compatibility with the
MC68HC11, no exception is generated on division by zero.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S MV H EV N z \ C IP SM PK
| = -l =1 —=]1—-1a 0 A — — -

S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.
N: Not affected.
Z: Setif (IX) = $0000 as a result of operation; else cleared.
V: Cleared.
C: Setif (IX) = $0000 before operation; else cleared.
IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 372A — 22
CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-111

l N C Increment Byte I N C

Operation: (M) +$01 =M

Description: Adds $01 to the content of a memory byte. Only BEQ and BNE
branches will perform consistently immediately after INC on
unsigned values. All signed branches are available after INC on
twos complement values. Because INC does not affect the C bit in
the Condition Code Register, it can be used to implement a loop
counter in multiple-precision computation.

Syntax: Standard
Condition Code Register:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N z \ (o} 1P SM PK
— | -] =] = A A A | = — _ —

S: Not affected.

MV: Not affected.
H: Not affected.

EV: Not affected.
N: Setif M7 = 1 as a result of operation; else cleared.
Z: Setif (M) = $00 as a result of operation; else cleared.
V: Setif (M) = $7F before operation (operation causes twos complement overflow); else cleared.
C: Not affected.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles

IND8, X 03 ff 8
IND8, Y 13 ff 8
IND8, Z 23 tf 8
IND16, X 1703 9999 8
IND16, Y 1713 9999 8
IND16, Z ' 1723 gggg 8

EXT 1733 hhll 8

MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-112

I N C A Increment A I N C A

Operation: (A)+$01 = A

Description: Adds $01 to the content of accumulator A. Only BEQ and BNE
branches will perform consistently immediately after INCA on
unsigned values. All signed branches are available after INCA on
twos complement values. Because INCA does not affect the C bit
in the Condition Code Register, it can be used to implement a loop
counter in multiple-precision computation.

Syntax: Standard
Condition Code Register:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S |{M| HI|EV| N| Z]| V]| C P SM PK
— | =1 =] =1 a | a]| a]| —= — — —

S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.
N: Setif A7 = 1 as a result of operation; else cleared.
Z: Setif (A) = $00 as a result of operation; else cleared.
V: Setif (A) = $7F before operation (operation causes twos complement overflow); else cleared.
C: Not affected.
IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 3703 — 2
CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-113

INCB

Operation:

Descriptioh:

Syntax:

Increment B I N C B

(B) +$01 = B

Adds $01 to the content of accumulator B. Only BEQ and BNE
branches will perform consistently immediately after INCB on
unsigned values. All signed branches are available after INCB on
twos complement values. Because INCB does not affect the C bit
in the Condition Code Register, it can be used to implement a loop
counter in multiple-precision computation.

Standard

Condition Code Register:

15 14 13 12 1" 10 9 8 7 6 5 4 3 2 1 0

Mv H EV N z \ c IP SM PK

— | — | = | = a | al| a]| - - — —

S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.

N: Set if B7 = 1 as a result of operation; else cleared.
Z: Setif (B) = $00 as a result of operation; else cleared.

V: Setif (B) = $7F before operation (operation causes twos complement overflow); else cleared.

C: Not affected.
IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 3713 — 2
MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-114

I N CW Increment Word I N CW

Operation: (M:M+1)+$0001 =>M: M+1

Description: Adds $0001 to the content of a memory word. Only BEQ and BNE
branches will perform consistently immediately after INCW on
unsigned values. All signed branches are available after INCW on
twos complement values. Because INCW does not affect the C bit
in the Condition Code Register, it can be used to implement a loop
counter in multiple-precision computation.

Syntax: Standard
Condition Code Register:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S|M| H|EV|N| Z]| V]C P SM PK
— | = =] =1 a | a]|a]| = — — —

S: Not affected.

MV: Not affected.
H: Not affected.

EV: Not affected.
N: Setif M: M+ 1[15] = 1 as a result of operation; else cleared.
Z: Setif (M: M+ 1) =$0000 as a result of operation; else cleared.
V: Setif (M: M+ 1) = $7FFF before operation (operation causes twos complement overflow); else cleared.
C: Not affected.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
IND16, X 2703 9999 8
IND16, Y 2713 gogg 8
IND16, Z 2723 felels]s] 8
EXT 2733 hhll 8
CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-115

JMP

Operation:

Description:

Syntax:

sump JMP

Effective Address = PK : PC

Causes an unconditional change in program execution. A 20-bit
effective address is placed in the concatenated program counter
extension field and program counter. The next instruction is
fetched from the new address. The effective address can be
generated in two ways:

A. Effective Address = Extension : 16-bit Extended Address

When extended addressing mode is employed, the effective
address is formed by a zero-extended 4-bit right-justified
address extension and a 16-bit byte address that are both
contained in the instruction. The EK field is not changed.

B. Effective Address = $0 : (index register) + 20-bit Offset

When indexed addressing mode is employed, the effective
address is calculated by adding a zero-extended 20-bit signed
offset to the zero-extended content of an index register. The
associated extension field is not changed.

JMP (effecﬁve address)
JMP (offset)

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
EXT20 7A zb hhll 6
IND20, X 4B Z9 9999 8
IND20, Y 5B Zg 9999 8
IND20, Z 6B Zg 9999 8
MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-116

JSR

Operation:

Description:

Syntax:

Condition Code Register:

JSR

Jump to Subroutine

Push (PC)

(SK : SP) — $0002 = SK : SP
Push (CCR)

(SK : SP) — $0002 = SK : SP
Effective Address = PK : PC

Causes a branch to a subroutine. After the current content of the
program counter and the condition code register are stacked, a
20-bit effective address is placed in the concatenated program
counter extension field and program counter. The next instruction
is fetched from the new address. The effective address can be
generated in two ways:

A. Effective Address = Extension : 16-bit Extended Address

When extended addressing mode is employed, the effective
address is formed by a zero-extended 4-bit right-justified
address extension and a 16-bit extended address that are both
contained in the instruction. The EK field is not changed.

B. Effective Address = $0 : (index register) + 0 : 20-bit Offset

When indexed addressing mode is employed, the effective
address is calculated by adding a zero-extended 20-bit signed
offset to the zero-extended content of an index register. The
associated extension field is not changed.

JSR (effective address)
JSR (offset)

Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
EXT20 FA zb hhll 10
IND20, X 89 pZcRelelele] 12
IND20, Y 99 29 ggg9 12
IND20, Z A9 zg gggg 12
CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-117

LBCC

Operation:

Description:

Syntax:

Condition Code Register:

LBCC

Long Branch If Carry Clear

If C =0, then (PK : PC) + Offset = PK : PC

Causes a long program branch if the CCR Carry bit has a value of
0. A 16-bit signed relative offset is added to the current value of
the program counter. When the operation causes PC overflow, the
PK field is incremented or decremented. Used to implement
simple or unsigned conditional branches.

Standard

Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL16 3784 rerr 6,4
Branch Instruction Summary (16-Bit Offset)

Mnemonic Opcode Equation Type Complement
LBCC 3784 Cc=0 Simple, Unsigned LBCS
LBCS 3785 C=1 Simple, Unsigned LBCC
LBEQ 3787 Z=1 Simple, Unsigned, Signed LBNE
LBGE 378C NeV=0 Signed LBLT
LBGT 378E Z+(N®V)=0 Signed LBLE
LBHI 3782 C+7=0 Unsigned LBLS
LBLE 378F Z+(NoV)=1 Signed LBGT
LBLS 3783 C+Z=1 Unsigned LBHI
LBLT 378D NoV=1 Signed LBGE
LBMI 378B N=1 Simple LBPL
LBNE 3786 Z=0 Simple, Unsigned, Signed LBEQ
LBPL 378A N=0 Simple LBMI
LBRA 3780 1 Unary LBRN
LBRN 3781 0 Unary LBRA
LBVC 3788 =0 Simple LBVS
LBVS 3789 V=1 Simple LBVC

MOTOROLA INSTRUCTIbN GLOSSARY CPU16 REFERENCE MANUAL

6-118

LBCS

Operation:

Description:

Syntax:

Long Branch If Carry Set LBCS

If C=1, then (PK: PC) + Offset = PK : PC

Causes a long program branch if the CCR Carry bit has a value of
1. A 16-bit signed relative offset is added to the current value of
the program counter. When the operation causes PC overflow, the
PK field is incremented or decremented. Used to implement
simple or unsigned conditional branches.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL16 3785 reer 6,4
Branch Instruction Summary (16-Bit Offset)

Mnemonic Opcode Equation Type Complement
LBCC 3784 C=0 Simple, Unsigned LBCS
LBCS 3785 C=1 Simple, Unsigned LBCC
LBEQ 3787 Z=1 Simple, Unsigned, Signed LBNE
LBGE 378C N@®eV=0 Signed LBLT
LBGT 378E Z+(N@V)=0 Signed LBLE
LBHI 3782 C+272=0 Unsigned LBLS
LBLE 378F Z+(N®V)=1 Signed LBGT
LBLS 3783 C+Z=1 Unsigned LBHI
LBLT 378D NoV=1 Signed LBGE
LBMI 378B N=1 Simple LBPL
LBNE 3786 Z=0 Simple, Unsigned, Signed LBEQ
LBPL 378A N=0 Simple LBMI
LBRA 3780 1 Unary LBRN
LBRN 3781 0 Unary LBRA
LBVC 3788 V=0 Simple LBVS
LBVS 3789 V=1 Simple LBVC

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-119

L B EQ » Long Branch If Equal to Zero L B EQ

Operation: If Z=1, then (PK: PC) + Offset = PK : PC

Description: Causes a long program branch if the CCR Zero bit has a value of
1. A 16-bit signed relative offset is added to the current value of
the program counter. When the operation causes PC overflow, the
PK field is incremented or decremented. Used to implement
simple, signed, or unsigned conditional branches.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL16 3787 rrre 6,4
Branch Instruction Summary (16-Bit Offset)
Mnemonic Opcode Equation Type Complement
LBCC 3784 C=0 Simple, Unsigned LBCS
LBCS 3785 C=1 Simple, Unsigned LBCC
LBEQ 3787 Z=1 Simple, Unsigned, Signed LBNE
LBGE 378C N@aV=0 Signed LBLT
LBGT 378E Z+(N®V)=0 Signed LBLE
LBHI 3782 C+272=0 Unsigned LBLS
LBLE 378F Z+(NoV)=1 Signed LBGT
LBLS 3783 C+Z=1 Unsigned LBHI
LBLT 378D NeV=1 Signed LBGE
LBMI 378B N=1 Simple LBPL
LBNE 3786 Z=0 Simple, Unsigned, Signed LBEQ
LBPL 378A N=0 Simple LBMI
LBRA 3780 1 Unary LBRN
LBRN 3781 0 Unary LBRA
LBVC 3788 V=0 Simple LBVS
LBVS 3789 V=1 Simple LBVC
MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-120

LBEV

Long Branch If EV Set

LBEV

Operation: If EV =1, then (PK : PC) + Offset = PK : PC

Description: Causes a long program branch if the EV bit in the condition code
register has a value of 1. A 16-bit signed relative offset is added to
the current value of the program counter. When the operation
causes PC overflow, the PK field is incremented or decremented.
See SECTION 11 DIGITAL SIGNAL PROCESSING for more
information.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL16 3791 reer 6,4
CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-121

LBGE

Operation:

Description:

Syntax:

Long Branch If Greater than or Equal to Zero LBG E

IfN@ V=0,then (PK:PC) + Offset = PK : PC

Causes a long program branch if the CCR Negative and Overflow
bits both have a value of 0 or both have a value of 1. A 16-bit
signed relative offset is added to the current value of the program
counter. When the operation causes PC overflow, the PK field is
incremented or decremented. Used to implement signed
conditional branches.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL16 378C reer 6,4
Branch Instruction Summary (16-Bit Offset)

Mnemonic Opcode Equation Type Complement
LBCC 3784 C=0 Simple, Unsigned LBCS
LBCS 3785 C=1 Simple, Unsigned LBCC
LBEQ 3787 Z=1 Simple, Unsigned, Signed LBNE
LBGE 378C N@&V=0 Signed LBLT
LBGT . 378E Z+(N®V)=0 Signed LBLE
LBHI 3782 C+7Z=0 Unsigned LBLS
LBLE 378F Z+(NoV)=1 Signed LBGT
LBLS 3783 C+Z=1 Unsigned LBHI
LBLT 378D N®V=1 Signed LBGE
LBMI 378B N=1 Simple LBPL
LBNE 3786 Z=0 Simple, Unsigned, Signed LBEQ
LBPL 378A N=0 Simple LBMI
LBRA 3780 1 Unary LBRN
LBRN 3781 0 Unary LBRA
LBVC 3788 V=0 Simple LBVS
LBVS 3789 V=1 Simple LBVC

MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-122

LBGT

Operation:

Description:

Syntax:

Long Branch If Greater than Zero L BGT

fZ <4+ (N®V)=0, then (PK : PC) + Offset = PK : PC

Causes a long program branch if the CCR Negative and Overflow
bits both have a value of 0 or both have a value of 1, and the CCR
Zero bit has a value of 0. A 16-bit signed relative offset is added to
the current value of the program counter. When the operation
causes PC overflow, the PK field is incremented or decremented.
Used to implement signed conditional branches.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL16 378E reer 6,4
Branch Instruction Summary (16-Bit Offset)

Mnemonic Opcode Equation Type Complement
LBCC 3784 Cc=0 Simple, Unsigned LBCS
LBCS 3785 C=1 Simple, Unsigned LBCC
LBEQ 3787 Z=1 Simple, Unsigned, Signed LBNE
LBGE 378C N®eV=0 Signed LBLT
LBGT 378E Z+(NeV)=0 Signed LBLE
LBHI 3782 C+Z=0 Unsigned LBLS
LBLE 378F Z+(NoV)=1 Signed LBGT
LBLS 3783 C+Z=1 Unsigned LBHI
LBLT 378D N®V=1 Signed LBGE
LBMI 378B N=1 Simple LBPL
LBNE 3786 Z=0 Simple, Unsigned, Signed LBEQ
LBPL 378A N=0 Simple LBMI
LBRA 3780 1 Unary LBRN
LBRN 3781 0 Unary LBRA
LBVC 3788 V=0 Simple LBVS
LBVS 3789 =1 Simple LBVC

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-123

L B HI Long Branch If Higher L B H I

Operation: If C 4+ Z =0, then (PK: PC) + Offset = PK : PC

Description: Causes a long program branch if the CCR Carry and Zero bits
both have a value of 0. A 16-bit signed relative offset is added to
the current value of the program counter. When the operation
causes PC overflow, the PK field is incremented or decremented.
Used to implement unsigned conditional branches.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL16 3782 rerr 6,4
Branch Instruction Summary (16-Bit Offset)

Mnemonic Opcode Equation Type Complement
LBCC 3784 C=0 Simple, Unsigned LBCS
LBCS . 3785 Cc=1 Simple, Unsigned LBCC
LBEQ 3787 Z=1 Simple, Unsigned, Signed LBNE
LBGE 378C NeoV=0 Signed LBLT
LBGT 378E Z+(N@V)=0) Signed LBLE
LBHI 3782 C+Z=0 Unsigned LBLS
LBLE 378F Z+(NaV)=1 Signed LBGT
LBLS 3783 C+Z=1 Unsigned LBHI
LBLT 378D NeV=1 Signed LBGE
LBMI 378B N=1 Simple LBPL
LBNE 3786 Z=0 Simple, Unsigned, Signed LBEQ
LBPL 378A N=0 Simple LBMI
LBRA 3780 1 Unary LBRN
LBRN 3781 0 Unary LBRA
LBVC 3788 V=0 Simple LBVS
LBVS 3789 V=1 Simple LBVC

MOTOROLA / INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-124

LB LE Long Branch If Less than or Equal to Zero LB LE

Operation: IfZ4 (N ®V)=1,then (PK: PC) + Offset = PK : PC

Description: Causes a long program branch if either the CCR Negative bit or
Overflow bit has a value of 1, or the CCR Zero bit has a value of 1.
A 16-bit signed relative offset is added to the current value of the
program counter. When the operation causes PC overflow, the PK
field is incremented or decremented. Used to implement signed
conditional branches.

Syntax: Standard
Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL16 378F (i 6, 4
Branch Instruction Summary (16-Bit Offset)

Mnemonic Opcode Equation Type Complement
LBCC 3784 Cc=0 Simple, Unsigned LBCS
LBCS 3785 c=1 Simple, Unsigned LBCC
LBEQ 3787 Z=1 Simple, Unsigned, Signed LBNE
LBGE 378C N®eV=0 Signed LBLT
LBGT 378E Z+(N®V)=0 Signed LBLE
LBHI 3782 C+Z=0 Unsigned LBLS
LBLE 378F Z+(N®V)=1 Signed LBGT
LBLS 3783 C+Z=1 Unsigned LBHI
LBLT 378D NeV=1 Signed LBGE
LBMI 378B N=1 Simple LBPL
LBNE 3786 Z=0 Simple, Unsigned, Signed LBEQ
LBPL 378A N=0 Simple LBMI
LBRA 3780 1 Unary LBRN
LBRN 3781 0 Unary LBRA
LBVC 3788 =0 Simple LBVS
LBVS 3789 =1 Simple LBVC

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-125

LBLS

Operation:

Description:

Long Branch If Lower or Same

IfC+Z=1,then (PK:PC) + Offset = PK : PC

LBLS

Causes a long program branch if either or both the CCR Carry and
Zero bits have a value of 1. A 16-bit signed relative offset is added
to the current value of the program counter. When the operation
causes PC overflow, the PK field is incremented or decremented.

Used to implement unsigned conditional branches.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL16 3783 rrer 6,4
Branch Instruction Summary (16-Bit Offset)
Mnemonic Opcode Equation Type Complement

LBCC 3784 Cc=0 Simple, Unsigned LBCS
LBCS 3785 C=1 Simple, Unsigned LBCC
LBEQ 3787 Z=1 Simple, Unsigned, Signed LBNE
LBGE 378C N®V=0 Signed LBLT
LBGT 378E Z+(N®V)=0 Signed LBLE
LBHI 3782 C+2Z=0 Unsigned LBLS
LBLE 378F Z+(NoVv)=1 Signed LBGT
LBLS 3783 C+Z=1 Unsigned LBHI
LBLT 378D NoV=1 Signed LBGE
LBMI 378B N=1 Simple LBPL
LBNE 3786 Z=0 Simple, Unsigned, Signed LBEQ
LBPL 378A N=0 Simple LBMI
LBRA 3780 1 Unary LBRN
LBRN 3781 0 Unary LBRA
LBVC 3788 =0 Simple LBVS
LBVS 3789 V=1 Simple LBVC

MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-126

LB LT Long Branch If Less than Zero LBLT

Operation: IfN @V =1,then (PK: PC) + Offset = PK : PC

Description: Causes a long program branch if either the CCR Negative or
Overflow bits has a value of 1. A 16-bit signed relative offset is
added to the current value of the program counter. When the
operation causes PC overflow, the PK field is incremented or
decremented. Used to implement signed conditional branches.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL16 378D reer 6,4
Branch Instruction Summary (16-Bit Offset)

Mnemonic Opcode Equation Type Complement
LBCC 3784 Cc=0 Simple, Unsigned LBCS
LBCS 3785 C=1 Simple, Unsigned LBCC
LBEQ 3787 Z=1 Simple, Unsigned, Signed LBNE
LBGE 378C N@®V=0 Signed LBLT
LBGT 378E Z+(N®V)=0 Signed LBLE
LBHI 3782 C+Z=0 Unsigned LBLS
LBLE 378F Z+(NoV)=1 Signed LBGT
LBLS 3783 C+Z=1 Unsigned LBHI
LBLT 378D NeVvV=1) Signed LBGE
LBMI 378B N=1 Simple LBPL
LBNE 3786 Z=0 Simple, Unsigned, Signed LBEQ
LBPL 378A N=0 Simple LBMI
LBRA 3780 1 Unary LBRN
LBRN 3781 0 Unary LBRA
LBvVC 3788 V=0 Simple LBVS
LBVS 3789 V=1 Simple LBVC

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-127

LBMI

Operation:

Description:

Syntax:

Long Branch If Minus L B MI

If N =1, then (PK : PC) + Offset = PK : PC

Causes a long program branch if the CCR Negative bit has a
value of 1. A 16-bit signed relative offset is added to the current
value of the program counter. When the operation causes PC
overflow, the PK field is incremented or decremented. Used to
implement simple conditional branches.

Standard

Condition Code Register: Not affected.

Instruction \ Format:

Addressing Mode Opcode Operand Cycles

REL16

378B rrrr 6,4

Branch Instruction Summary (16-Bit Offset)

Mnemonic Opcode Equation Type Complement
LBCC 3784 c=0 Simple, Unsigned LBCS
LBCS 3785 C=1 Simple, Unsigned LBCC
LBEQ 3787 Z=1 Simple, Unsigned, Signed LBNE
LBGE 378C N®V=0 Signed LBLT
LBGT 378E Z+(NeV)=0 Signed LBLE
LBHI 3782 C+2Z=0 Unsigned LBLS
LBLE 378F Z+NOV)-1 Signed LBGT
LBLS 3783 C+Z=1 Unsigned LBHI
LBLT 378D NoV=1 ’ Signed LBGE
LBMI 378B N=1 Simple LBPL
LBNE 3786 Z=0 Simple, Unsigned, Signed LBEQ
LBPL 378A N=0 ‘ Simple LBMI
LBRA 3780 1 Unary . LBRN
LBRN 3781 0) Unary LBRA
LBVC 3788 V=0 Simple LBVS
LBVS 3789 V=1 Simple LBVC

MOTOROLA

6-128

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

L B M V Long Branch If MV Set L B M V

Operation: If MV =1, then (PK : PC) + Offset = PK : PC

Description: Causes a long program branch if the MV bit in the condition code
register has a value of 1. A 16-bit signed relative offset is added to
the current value of the program counter. When the operation
causes PC overflow, the PK field is incremented or decremented.
See SECTION 11 DIGITAL SIGNAL PROCESSING for more
information.

Syntax: Standard
Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL16 3790 rrer 6,4
CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-129

LBNE

Operation:

Description:

Syntax:

Long Branch If Not Equal to Zero LB N E

If Z=0, then (PK : PC) + Offset = PK : PC

Causes a long program branch if the CCR Zero bit has a value of
0. A 16-bit signed relative offset is added to the current value of
the program counter. When the operation causes PC overflow, the
PK field is incremented or decremented. Used to implement
simple, signed, and unsigned conditional branches.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL16 3786 reer 6,4
Branch Instruction Summary (16-Bit Offset)
Mnemonic Opcode Equation Type Complement
LBCC 3784 C=0 Simple, Unsigned LBCS
LBCS 3785 C=1 Simple, Unsigned LBCC
LBEQ 3787 Z=1 Simple, Unsigned, Signed LBNE
LBGE 378C NeV=0 Signed LBLT
LBGT 378E Z+(NoV)=0 Signed LBLE
LBHI 3782 C+Z=0 Unsigned LBLS
LBLE 378F Z+(NoV)=1 Signed LBGT
LBLS 3783 C+Z=1 Unsigned LBHI
LBLT 378D N@eV=1 Signed LBGE
LBMI 378B N=1 Simple LBPL
LBNE 3786 Z=0 Simple, Unsigned, Signed LBEQ
LBPL 378A N=0 Simple LBMI
LBRA 3780 1 Unary LBRN
LBRN 3781 0 Unary LBRA
LBVC 3788 V=0 Simple LBVS
LBVS 3789 V=1 Simple LBVC
MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-130

LBPL Long Branch If Plus LBPL

Operation: If N =0, then (PK : PC) + Offset = PK : PC

Description: Causes a long program branch if the CCR Negative bit has a
value of 0. A 16-bit signed relative offset is added to the current
value of the program counter. When the operation causes PC
overflow, the PK field is incremented or decremented. Used to
implement simple conditional branches.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL16 378A reer 6,4
Branch Instruction Summary (16-Bit Offset)

Mnemonic Opcode Equation Type Complement
LBCC 3784 C=0 Simple, Unsigned LBCS
LBCS 3785 C=1 Simple, Unsigned LBCC
LBEQ 3787 Z=1 Simple, Unsigned, Signed LBNE
LBGE 378C N@&V=0 Signed LBLT
LBGT 378E Z+(N®V)=0 Signed "LBLE
LBHI 3782 C+2Z=0 Unsigned LBLS
LBLE 378F Z+(NeV)=1 Signed LBGT
LBLS 3783 C+Z=1 Unsigned LBHI
LBLT 378D N@®V=1 Signed LBGE
LBMI 378B N=1 Simple LBPL
LBNE 3786 Z=0 Simple, Unsigned, Signed LBEQ
LBPL 378A N=0 Simple LBMI
LBRA 3780 1 Unary LBRN
LBRN 3781 0 Unary LBRA
LBVC 3788 V=0 Simple LBVS
LBVS 3789 V=1 Simple LBVC

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-131

LBRA

Operation:

Description:

Long Branch Always

(PK : PC) + Offset = PK : PC

LBRA

Causes a long program branch. A 16-bit signed relative offset is
added to the current value of the program counter. When the
operation causes PC overflow, the PK field is incremented or

decremented.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL16 3780 reer 6
Branch Instruction Summary (16-Bit Offset)
Mnemonic Opcode Equation Type Complement

LBCC 3784 C=0 Simple, Unsigned LBCS
LBCS 3785 C=1 Simple, Unsigned LBCC
LBEQ 3787 Z=1 Simple, Unsigned, Signed LBNE
LBGE 378C NeV=0 Signed LBLT
LBGT 378E Z+(NeV)=0 Signed LBLE
LBHI 3782 C+Z=0 Unsigned LBLS
LBLE 378F Z+(NOV)=1 Signed LBGT
LBLS 3783 C+7Z=1 Unsigned LBHI
LBLT 378D NOV=1 Signed LBGE
LBMI 378B N=1 Simple LBPL
LBNE 3786 Z=0 Simple, Unsigned, Signed LBEQ
LBPL 378A N=0 Simple LBMI
LBRA 3780 1 Unary LBRN
LBRN 3781 0 Unary LBRA
LBVC 3788 V=0 Simple LBVS
LBVS 3789 V=1 Simple LBVC

MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-132

LBRN LBRN

Long Branch Never

Operation: (PK:PC)+4=>PK:PC
Desctiption: Never branches. This instruction is effectively a NOP that requires
three cycles to execute. When the operation causes PC overflow;
the PK field is incremented or decremented.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL16 3781 rrrr 6
Branch Instruction Summary (16-Bit Offset)
Mnemonic Opcode Equation Type Complement

LBCC 3784 C=0 Simple, Unsigned LBCS
LBCS 3785 C=1 Simple, Unsigned LBCC
LBEQ 3787 Z=1 Simple, Unsigned, Signed LBNE
LBGE 378C N®V=0 Signed LBLT
LBGT 378E Z+(N®V)=0 Signed LBLE
LBHI 3782 C+2Z=0 Unsigned LBLS
LBLE 378F Z+NoV)=1 Signed LBGT
LBLS 3783 C+2Z=1 Unsigned LBHI
LBLT 378D NeV=1 Signed LBGE
LBMI 378B N=1 Simple LBPL
LBNE 3786 Z=0 Simple, Unsigned, Signed LBEQ
LBPL 378A N=0 Simple LBMI
LBRA 3780 1 Unary LBRN
LBRN 3781 0 Unary LBRA
LBVC 3788 V=0 Simple LBVS
LBVS 3789 V=1 Simple LBVC

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-133

LBSR

Operation:

Description:

Syntax:

Long Branch to Subroutine L B S R

Push (PC) ,

(SK : SP) — $0002 = SK : SP
Push (CCR)

(SK : SP) — $0002 = SK : SP
(PK : PC) + Offset = PK : PC

Saves current address and flags, then branches to a subroutine.
The current value of the program counter is stacked, then the
condition code register is stacked (which preserves the PK field as
well as condition code bits and the interrupt priority mask). A
16-bit signed relative offset is added to the current value of the
program counter. When the operation causes PC overflow, the PK
field is incremented or decremented.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL16 27F9 reer 10
MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-134

LBVC Long Branch If Overflow Clear LBVC

Operation: If V=0, then (PK : PC) + Offset = PK : PC

Description: Causes a long program branch if the CCR Overflow bit has a value
of 0. A 16-bit signed relative offset is added to the current value of
the program counter. When the operation causes PC overflow, the
PK field is incremented or decremented. Used to implement
simple, signed, and unsigned conditional branches.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL16 3788 reer 6,4
Branch Instruction Summary (16-Bit Offset)

Mnemonic Opcode Equation Type Complement
LBCC 3784 C=0 Simple, Unsigned LBCS
LBCS 3785 C=1 Simple, Unsigned LBCC
LBEQ 3787 Z=1 Simple, Unsigned, Signed LBNE
LBGE 378C N®V=0 Signed LBLT
LBGT 378E Z+(N®V)=0 Signed LBLE
LBHI 3782 C+Z=0 Unsigned LBLS
LBLE 378F Z+(NoV)=1 Signed LBGT
LBLS 3783 C+7Z=1 Unsigned LBHI
LBLT 378D NeV=1) Signed LBGE
LBMI © 378B N=1 Simple LBPL
LBNE 3786 Z=0 Simple, Unsigned, Signed LBEQ
LBPL 378A N=0 Simple LBMI
LBRA 3780 1 Unary LBRN
LBRN 3781 0 Unary LBRA
LBVC 3788 V=0 Simple LBVS
LBVS 3789 V=1 Simple LBVC

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-135

L BVS Long Branch If Overflow Set L BVS

Operation: If V=1, then (PK: PC) + Offset = PK : PC

Description: Causes a long program branch if the CCR Overflow bit has a value
of 1. A 16-bit signed relative offset is added to the current value of
the program counter. When the operation causes PC overflow, the
PK field is incremented or decremented. Used to implement
simple, signed, and unsigned conditional branches.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL16 3789 rerr 6,4

Branch Instruction Summary (16-Bit Offset)

Mnemonic Opcode Equation Type Complement
LBCC 3784 Cc=0 Simple, Unsigned LBCS
LBCS 3785 C=1 Simple, Unsigned LBCC
LBEQ 3787 Z=1 Simple, Unsigned, Signed LBNE
LBGE 378C N®V=0 Signed LBLT
LBGT 378E Z+(N®V)=0 Signed LBLE
LBHI 3782 C+7Z=0 Unsigned LBLS
LBLE 378F Z+(N@V)=1 Signed LBGT
LBLS 3783 C+7Z=1 Unsigned LBH!
LBLT 378D N@eV=1 Signed LBGE
LBMI 378B N=1 Simple LBPL
LBNE 3786 Z=0 Simple, Unsigned, Signed LBEQ
LBPL 378A N=0 Simple LBMI
LBRA 3780 1 Unary LBRN
LBRN 3781 0 Unary LBRA
LBVC 3788 V=0 Simple LBVS
LBVS 3789 V=1 Simple LBVC

MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-136

LDAA

Operation:

Description:

Syntax:

Load A LDAA

(M) = A

Loads the content of a memory byte into accumulator A. Memory
content is not changed by the operation.

Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N z \" C P SM PK

— | =] =] =1 A] a}] o} — — — —

S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.

N: Setif A7 = 1 as a result of operation; else cleared.
Z: Setif (A) = $00 as a result of operation; else cleared.

V: Cleared.

C: Not affected.
IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles

IND8, X 45 ff 6

IND8, Y 55 ff 6

INDS8, Z 65 ff 6

IMM8 75 ii 2

IND16, X 1745 gggg 6
IND16, Y 1755 felelo]e] 6
IND16, Z 1765 9999 6

EXT 1775 hhll 6

E, X 2745 — 6

E Y 2755 — 6

E Z 2765 —_ 6

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-137

LDAB Load B LDAB

Operation: (M)=>B

Description: Loads the content of a memory byte into accumulator B. Memory
content is not changed by the operation.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S MV H EV N 4 \ C IP SM PK

— — — — A 0 — — — —

S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.
N: Setif B7 = 1 as a result of operation; else cleared.
Z: Setif (B) = $00 as a result of operation; else cleared.
V: Cleared.
C: Not affected.
IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
IND8, X C5 ft 6
INDS8, Y D5 ff 6
IND8, Z ES ff 6
IMM8 F5 ii 2
IND16, X 17C5 9999 6
IND16, Y 17D5 9999 6
IND16, Z 17E5 fefe]ee] 6
EXT 17F5 hhll 6
E, X 27C5 — 6
E, Y 27D5 — 6
E Z 27E5 —_ 6
MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-138

LDD Load D LDD

Operation: M:M+1)=D

Description: Loads the content of a memory word into accumulator D. Memory
content is not changed by the operation.

Syntax: Standard
Condition Code Register:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S | MV| H | EV| N Z | V (o} IP SM PK
— | = =] =1 a A 0o | — — — —

S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.
N: Setif D15 = 1 as a result of operation; else cleared.
Z: Setif (D) = $0000 as a result of operation; else cleared.
V: Cleared.
C: Not affected.
IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles

IND8, X 85 ff 6

INDS8, Y 95 ff 6

IND8, Z A5 ft 6
IMM16 37B5 jjkk 4

IND16, X 37C5 9999 6
IND16, Y 37D5 9999 6
IND16,Z 37E5 [elelo]e] 6

EXT 37F5 hhll 6

E, X 1 2785 — 6

E, Y 2795 — 6

E Z 27A5 — 6

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-139

LDE

Operation:

Description:

Syntax:

Load E LDE

M:M+1)=>E

Loads the content of a memory word into accumulator E. Memory
content is not changed by the operation.

Standard

Condition Code Register:

15

14 13

12 11 10 9 8 7 6 5 4 3 2 1 0

S

MV H

EV N V4 \ C IP SM PK

— | A A o | — — — —

SM:
PK:

T

Not affected.
. Not affected.
Not affected.
Not affected.

Set if E15 = 1 as a result of operation; else cleared.
Set if (E) = $0000 as a result of operation; else cleared.

Cleared.

Not affected.
Not affected.
Not affected.
Not affected.

Instruction Format:

Addressing Mode Opcode Operand) Cycles
IMM16 3735 jikk 4
IND16, X 3745 felele]s] 6
IND16, Y 3755 9999 6
IND16, Z 3765 9999 [
EXT 3775) hhll 6
MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-140

L D E D Load Concatenated E and D L D E D

Operation: M:M+1)=E
M+2:M+3)=D

Description: Loads four successive bytes of memory into concatenated
accumulators E and D. Used to transfer long word operands and
32-bit signed fractions from memory. Can also be used to transfer
32-bit words from IMB peripherals. Misaligned long transfers are
converted into two misaligned word transfers.

Syntax: Standard
Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
EXT 2771 hhll 8
CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-141

LDHI

Operation:

Description:

Syntax:

Condition Code Register:

Load MAC Registers H and |

(M:M+1)x=HR
M:M+1)y=IR

Initializes MAC registers H and |
word located at address (XK : IX).

LDHI

HR is loaded with a memory
IR is loaded with a memory

word located at address (YK : IY). Memory content is not changed

by the operation.

PROCESSING for more information.

Standard

Instruction Format:

Not affected.

See SECTION 11 DIGITAL SIGNAL

Addressing Mode Opcode Operand Cycles
EXT 27B0 — 8
MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-142

LDS LDS

Load Stack Pointer

Operation: (M:M+1)=SP

Description: Loads the content of a memory word into the stack pointer.
Memory content is not changed by the operation.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9
S | M| H|EV]| N zZ | v c P SM PK
— | = = =] a A o | — — — —

©
~
o
0
IS
w
N
-
o

S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.
N: Setif SP15 =1 as a result of operation; else cleared.
Z: Setif (SP) = $0000 as a result of operation; else cleared.
V: Cleared.
C: Not affected.
IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles

IND8, X CF ff 6

IND8, Y DF ff 6

IND8, Z EF ff 6

IMM16 37BF jikk 4

IND16, X 17CF felefels] 6

IND16, Y 17DF [ele]els] 6

IND16, Z 17EF 9999 6

EXT 17FF hhll 6

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-143

LDX

Operation:

Description:

Syntax:

Load IX L D X

(M:M+1) = IX

Loads the content of a memory word into index reglster X.
Memory content is not changed by the operation.

Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MV H EV N z \ C P SM PK

— | - =] =] a|a]of — — — —

S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.

N: Setif IX15 = 1 as a result of operation; else cleared.
Z: Setif (IX) = $0000 as a result of operation; else cleared.

V: Cleared.

C: Not affected.
IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles

IND8, X cCc ff 6

INDS, Y DC ff 6

IND8, Z EC ff 6

IMM16 37BC jikk 4

IND16, X 17CC 99g9 6

IND16, Y 17DC gggg 6

IND16, Z 17EC 9999 6

EXT 17FC hhll 6

MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-144

LDY

Operation:

LDY

Load 1Y

(M:M+1)= 1Y

Description: Loads the content of a memory word into index register Y.

Memory content is not changed by the operation.
Syntax: Standard

Condition Code Register:

15

14

13

12 11

10 9 6 5 4 2 1 0
S MV H EV N z IP SM PK
— _ —_ — A A 0 —_ — —
S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.
N: Set if IY15 = 1 as a result of operation; else cleared.
Z: Setif (IY) = $0000 as a result of operation; else cleared.
V: Cleared.
C: Not affected.
IP: Not affected.
SM: Not affected.
PK: Not affected.
Instruction Format:
Addressing Mode Opcode Operand Cycles
IND8, X cD ff 6
INDS8, Y DD ff 6
INDS, Z ED ff 6
IMM16 37BD jikk 4
IND16, X 17CD 9999 6
IND16, Y 170D folefels] 6
IND16, Z 17ED 9999 6
EXT 17FD hhll 6
CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-145

LDZ

Operation:

Description:

Syntax:

Load 1 LDZ

M:M+1)=1Z

Loads the content of a memory word into index register Z. Memory
content is not changed by the operation.

Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 -

S MV H EV N z \% C IP SM PK

— | — | =] = A | a]| 0| — — — —

S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.

N: Setif IZ15 = 1 as a result of operation; else cleared.
Z: Setif (1Z) = $0000 as a result of operation; else cleared.

V: Cleared.

C: Not affected.
IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles

IND8, X CE ff 6

IND8, Y DE ff 6

IND8, Z EE ff 6

IMM16 37BE jikk 4

IND16, X 17CE 9999 6

IND16, Y 17DE [eelels] 6

IND16,Z 17EE 9999 6

EXT 17FE hhll 6

MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-146

LPSTOP

Operation:

Description:

Syntax:

Low Power Stop L P ST O P

If S, then enter low-power mode
Else NOP

Operation is controlled by the S bit in the CCR. If S = 0 when
LPSTOP is executed, the IP field from the condition code register
is copied into an external bus interface, and the system clock input
to the CPU is disabled. If S = 1, LPSTOP operates in the same
way as a 4-cycle NOP.

Normal execution of instructions can resume in one of two ways. If
a reset occurs, a reset exception is generated. If an interrupt
request of higher priority than the copied IP value is received, an
interrupt exception is generated. See SECTION 9 EXCEPTION
PROCESSING for more information.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode

Opcode Operand Cycles

INH

27F1 —_ 4,20

Cycle times are for S = 1

, S = 0 respectively.

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-147

L S R Logic Shift Right L S R

R

Operation: 0-

Description: Shifts all 8 bits of a memory byte one place to the right. Bit 7 is
cleared. Bit 0 is transferred to the CCR C bit.

Syntax: Standard
Condition Code Register:
5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S {MV| H|EBV| N| Z]| V]|C IP SM PK
— | = = =] o] a]| A]| A — — —

S: Not affected.

MV: Not affected.
H: Not affected.

EV: Not affected.
N: Cleared.
Z: Setif (M) = $00 as a result of operation; else cleared.
V: Setif (Nis set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.
C: Set if MO = 1 before operation; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles

IND8, X OF ff 8
IND8, Y 1F ff 8
IND8, Z 2F ff 8
IND16, X 170F gggg 8
IND16, Y 171F 9999 8
IND16, Z 172F 9999 8

EXT 173F hhll 8

MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-148

LSRA

Operation:

Description:

Syntax:

Standard

Logic Shift Right A

—_—

0 IIIII
7 0

Condition Code Register:

LSRA

Shifts all 8 bits of accumulator A one place to the right. Bit 7 is
cleared. Bit 0 is transferred to the CCR C bit.

15 14 13 12 11 10 9 6 5 4 2 1 0
S MV H EV N V4 P SM PK
- = = = 0 A A — — —
S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.
N: Cleared.
Z: Setif (A) = $00; else cleared.
V: Setif (Nis set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.
C: Setif A0 = 1 before operation; else cleared.
IP: Not affected.
SM: Not affected.
PK: Not affected.
Instruction Format:
Addressing Mode Opcode Operand Cycles
INH 370F — 2
CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-149

LSRB

Operation:

Description:

Syntax:

Logic Shift Right B LSRB

_—

0 IIIII C]

Shifts all 8 bits of accumulator B one place to the right. Bit 7 is
cleared. Bit 0 is transferred to the CCR C bit.

Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S MV H EV N z v o] 1P SM PK
— — — —_ 0 A A A —_ —_ —_
S: Not affected.
MV: Not affected.
H: Not affected.
| EV: Not affected.
‘ N: Cleared.
s Z: Setif (B) = $00 as a result of operation; else cleared.
‘ V: Setif (Nis set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.
C: Setif BO = 1 before operation; else cleared.
IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 371F _ 2
MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-150

LSRD

Logic Shift Right D

LSRD

_—
Operation: o> T ---_11
b15 b0
Description: Shifts all 16 bits of accumulator D one place to the right. Bit 15 is

cleared. Bit 0 is transferred to the CCR C bit.

Syntax: Standard

Condition Code Register:

15 14 13 12

11

10 9 8 7 6 5 4 2 1 0
S MV H EV N V4 Vv IP SM PK
— | — | — | —] o] a| a]| a — — —

S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.
N: Cleared.

Z: Setif (D) = $0000 as a result of operation; else cleared.
V: Setif (Nis set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.
C: Setif DO = 1 before operation; else cleared.

IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addréssing Mode Opcode Operand Cycles
INH 27FF — 2
CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-151

LSRE

Operation:

Description:

Syntax:

Logic Shift Right E

_—
o1 T ---T17
b15)

LSRE

Shifts all 16 bits of accumulator E one place to the right. Bit 15 is
cleared. Bit 0 is transferred to the CCR C bit.

Standard

~ Condition Code Register:

15 14 13

12 11 10 9 8 7 6 5

S MV H

EV N Y4 \ C P

SM PK

— 0 A A A —

S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected. .

N: Cleared.

Z: Set if (E) = $0000 as a result of operation; else cleared.
V: Setif (Nis set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.
C: Setif EO = 1 before operation; else cleared.

IP: Not affected.
SM: Not affected.
PK: Not affected.

“Instruction Format:

Addresslng Mode

Opcode Operand Cycles
INH 277F — 2
MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-152

LSRW

Operation:

Description:

Syntax:

Logic Shift Right Word LS RW

T

o> [[---_1 lb0

b15

Shifts all 16 bits of a memory word one place to the right. Bit 15is
cleared. Bit 0 is transferred to the CCR C bit.

Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S MV H EV N z \ C IP SM PK
— — — — 0 A A A — —_ —_
S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.
N: Cleared.
Z: Setif (M: M+ 1) =$0000 as a result of operation; else cleared.
V: Setif (Nis set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.
C: Setif M: M+ 1[0] = 1 before operation; else cleared.
IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
IND16, X 270F 9999 8
IND16, Y 271F 9999 8
IND18, Z 272F 9999 8
EXT 273F hhil 8
CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-153

MAC

Operation:

Description:

MOTOROLA
6-154

Multiply and Accumulate MAC

(HR)*(IRy=E:D
(AM) + (E : D) > AM
((IX) X MASK) + ((IX) + x0) « X MASK)= IX
(1Y) Y MASK) + ((IY) +yo0) Y MASK)= IY
(HR) = 1Z

(M:M+1)x=>HR

(M:M+1)y=IR

Multiplies a 16-bit signed fractional multiplicand in MAC Register |
by a 16-bit signed fractional multiplier in MAC Register H. There
are implied radix points between bits 15 and 14 of the registers.
The product is left-shifted one place to align the radix point
between bits 31 and 30, then placed in bits 31:1 of concatenated
accumulators E and D. DO is cleared. The aligned product is then
added to the content of AM.

As multiply and accumulate operations take place, 4-bit offsets
xo and yo are sign-extended to 16 bits and used with X and Y
masks to qualify the X and Y index registers.

Writing a non-zero value into a mask register prior to MAC
execution enables modulo addressing. The TDMSK instruction
writes mask values. When a mask contains $0, modulo
addressing is disabled, and the sign-extended offset is added to
the content of the corresponding index register.

After accumulation, the content of HR is transferred to 1Z, then a
word at the address pointed to by XK : IX is loaded into HR, and a
word at the address pointed to by YK : IY is loaded into IR. The
fractional product remains in concatenated E and D.

When both registers contain $8000 (1), a value of $80000000
(1.0 in 36-bit format) is accumulated, (E : D) is $80000000 (-1 in
32-bit format), and the V bit in the condition code register is set.
See SECTION 11 DIGITAL SIGNAL PROCESSING for more
information. \

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

M A C Multiply and Accumulate M A C

Syntax: MAC xo, yo
Condition Code Register:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MV| H|EV| N]|] Z]| V]| C P SM PK
— A |l = a | =] =] a]| = — —

S: Not affected.
MV: Set if overflow into AM35 occurs as a result of addition; else not affected.
H: Not affected.
EV: Set if overflow into AM[34:31] occurs as a result of addition; else cleared.
N: Not affected.
Z: Not affected.
V: Set if operation is (-1)2; else cleared.
C: Not affected.
IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode Opcode Offset Cycles
IMM8 7B X0yo 12
CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-155

MOVB

Operation:

Description:

Syntax:

MOVB

Move Byte

(M1) = Mg

Moves a byte of data from a source address to a destination
address. Data is examined as it is moved, and condition codes
are set. Source data is not changed. A combination of source and
destination addressing modes is used. Extended addressing can
be used to specify source, destination, or both. A special form of
indexed addressing, in which an 8-bit signed offset is added to the
content of index register X after the move is complete, can be used
to specify source or destination. If addition causes IX to overflow,
the XK field is incremented or decremented.

MOVB Source Offset Operand, X, Destination Address Operand
MOVB Source Address Operand, Destination Offset Operand, X
MOVB Source Address Operand, Destination Address Operand

Condition Code Register:

15 14 13

12 1 10 9 8 7 6 5 4 3 2 1 0

S MV H

EV N z " C IP SM PK

— | a A 0o | — - — —

S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.

N: Set if MSB of source data = 1; else cleared.
Z: Set if source data = $00; else cleared.

V: Cleared.

C: Not affected.
IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode Opcode Offset Addr Operand Cycles
' IXP to EXT 30 i hh i 8
EXT to IXP 32 ff hhll 8
EXT to EXT 37FE — hhlil hhll 10
MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-156

MOVW Move Word MOVW

Operation: M:M+1{)=>M: M+ 12

Description: Moves a data word from a source address to a destination
address. Data is examined as it is moved, and condition codes
are set. Source data is not changed. A combination of source and
destination addressing modes is used. Extended addressing can
be used to specify source, destination, or both. A special form of
indexed addressing, in which an 8-bit signed offset is added to the
content of index register X after the move is complete, can be used
to specify source or destination only. If addition causes IX to
overflow, the XK field is incremented or decremented.

Syntax: MOVB Source Offset Operand, X, Destination Address Operand
MOVB Source Address Operand, Destination Offset Operand, X
MOVB Source Address Operand, Destination Address Operand H

Condition Code Register:

%5 14 13 12 11 106 9 8 7 6 5 4 3 2 1 0
s {Mw|H|EBV|N]|] Z| V]C 1P SM PK
— | —| = =l A | A] o] — — — —

S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.
N: Set if MSB of source data = 1; else cleared.
Z: Setif source data = $0000; else cleared.
V: Cleared.
C: Not affected.
IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode Opcode Offset Operand Cycles
IXP to EXT 31 ff hhll 8
EXT to IXP 33 ff hhit 8
EXT to EXT 37FF —_ hhil hhll 10
CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-157

MUL

Operation:

Description:

Syntax:

Unsigned Multiply M U L

(A)¥(B)=>D

Multiplies an 8-bit unsigned multiplicand contained in accumulator
A by an 8-bit unsigned multiplier contained in accumulator B, then
places the product in accumulator D. Unsigned multiply can be
used to perform multiple-precision operations. The CCR Carry bit
can be used to round the high byte of the product — execute MUL,
then ADCA #0.

Standard

Condition Code Register:

15

14 13

12 11 10 9 8 7 6 5 4 3 2 1 .0

S

MV H

EV N Z SM PK

(@]
T

— — — — A — —_ —

SM:
PK:

. Not affected.
: Not affected.
: Not affected.
. Not affected.
Not affected.
Not affected.
Not affected.

Set if D7 = 1 as a result of operation; else cleared.

: Not affected.

Not affected.
Not affected.

Instruction Format:

Addressing Mode Opcode Operand

Cycles

INH 3724 —

10

MOTOROLA INSTRUCTION GLOSSARY

6-158

CPU16 REFERENCE MANUAL

N E G Negate Byte N E G

Operation: $00-(M) =M

Description: Replaces the content of a memory byte with its twos complement.
A value of $80 will not be changed.

Syntax: Standard
Condition Code Register:
15 14 13 12 11 10 9

S MV H EV N z Vv C IP SM PK
— | = =] =] a A A A — — -

©
~
o
(&)
H
w

n

-
o

S: Not affected.

MV: Not affected.
H: Not affected.

EV: Not affected.
N: Set if M7 = 1 as a result of operation; else cleared.
Z: Setif (M) = $00 as a result of operation; else cleared.
V: Setif (M) = $80 after operation (twos complement overflow); else cleared.
C: Cleared if (M) = $00 before operation; else set.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles

IND8, X 02 ff 8
INDS8, Y 12 ft 8
INDS8, Z 22 ft 8
IND16, X 1702 9999 8
IND16, Y 1712 9999 8
IND16, Z 1722 9999 8

EXT 1732 hhll 8

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-159

N E G A Negate A

Operation: $00-(A) = A

Description:

A value of $80 will not be changed.

Syntax: Standard

Condition Code Register:

NEGA

Replaces the content of accumulator A with its twos complement.

15 14 13 12 11 10 9 8 7 6 5 4 2 1
S MV H EV N 4 " C P SM PK
— | - - =] a A A A — — —
S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.
N: Setif A7 = 1 as a result of operation; else cleared.
Z: Setif (A) = $00 as a result of operation; else cleared.
V: Setif (A) = $80 after operation (twos complement overflow); else cleared.
C: Cleared if (A) = $00 before operation; else set.
IP: Not affected.
SM: Not affected.
PK: Not affected.
Instruction Format:
Addressing Mode Opcode Operand Cycles
INH 3702 — 2
MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-160

NEGB

Negate B

Operation: $00-(B) =B

NEGB

Description: Replaces the content of accumulator B with its twos complement.
A value of $80 will not be changed.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 2 1 0
S MV H EV N \" P SM PK
—_— -_ —_ —_ A A A A —_ —_ —
S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.
N: Setif B7 = 1 as a result of operation; else cleared.
Z: Setif (B) = $00 as a result of operation; else cleared.
V: Setif (B) = $80 after operation (twos complement overflow); else cleared.
C: Cleared if (B) = $00 before operation; else set.
IP: Not affected.
SM: Not affected.
PK: Not affected.
Instruction Format:
Addressing Mode Opcode Operand Cycles
INH 3712 — 2
CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-161

NEGD

Operation:

Description:

Syntax:

Negate D N E G D

$0000 - (D) = D

Replaces the content of accumulator D with its twos complement.
A value of $8000 will not be changed.

Standard

Condition Code Register:

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N z Vv C P SM PK

— | — | = — | Al A Al a — — —

-S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Setif D15 =1 as a result of operation; else cleared.

Z: Setif (D) = $0000 as a result of operation; else cleared.

V: Setif (D) = $8000 after operation (twos complement overflow); else cleared.
C: Cleared if (D) = $0000 before operation; else set.

IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode

Opcode Operand Cycles

INH

27F2 — 2

MOTOROLA
6-162

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

NEGE

Operation:

Description:

Syntax:

Negate E

$0000 - (E) = E

NEGE

Replaces the content of accumulator E with its twos complement.
A value of $8000 will not be changed.

Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 2 1 0
S MV H EV N z P SM PK
— | = | =] = | A A A A — — —
S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.
N: Setif E15 = 1 as a result of operation; else cleared.
Z: Setif (E) = $0000 as a result of operation; else cleared.
V: Setif (E) = $8000 after operation (twos complement overflow); else cleared.
C: Cleared if (E) = $0000 before operation; else set.
IP: Not affected.
SM: Not affected.
PK: Not affected.
Instruction Format:
Addressing Mode Opcode Operand Cycles
INH 2772 — 2
CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-163

NEGW
Operation:

Description:

Syntax:

Negate Word ' N E G W

$0000-(M:M+1)=>M M+ 1

‘Replaces the content of a memory word with its twos complement.

A value of $8000 will not be changed.

Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z \" C 1P SM PK

— |l =] =1 =1a]ala]a — — —

S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.

N: Setif M: M + 1[15] = 1 as a result of operation; else cleared.

Z: Setif (M: M+ 1) =30000 as a result of operation; else cleared.

= $8000 after operation (twos complement overflow); else cleared.

V: Setif(M:M+1)

C: Cleared if (M : M + 1) = $0000 before operation; else set.

IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
IND16, X 2702 9999 -8
IND16, Y 2712 9999 8
IND16, Z 2722 fele]el¢] 8
EXT 2732 hhill 8
MOTOROLA

6-164

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

N O P Null Operation N 0 P

Operation: None

Description: Causes program counter to be incremented, but has no other
effect. Often used to temporarily replace other instructions during
debug, so that execution continues with a routine disabled. Can
be used to produce a time delay based on CPU clock frequency,
although this practice makes programs system-specific.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 274C — 2
CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-165

ORAA

Operation:

Description:

Syntax:

OR A ORAA

A+ M)A

Performs inclusive OR between the content of accumulator A and
a memory byte, then places the result in accumulator A. Memory
content is not affected.

Standard

Condition Code Register:

15

14 13

12 11 10 9 8 7 6 5 4 3 2 1 0

MV H

EV N y4 \' C IP SM PK

— | Al a| o] — — — —

: Not affected.
Not affected.
. Not affected.
. Not affected.

Set if A7 is set by operation; else cleared.
Set if (A) = $00 as a result of operation; else cleared.

Cleared.

Not affected.
: Not affected.
. Not affected.
: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
IND8, X 47 ff 6
INDS8, Y 57 ff 6
IND8, Z 67 ff 6
IMM8 77 ii 2
IND16, X 1747 9999 6
IND16, Y 1757 99g9 6
IND16, Z 1767 9999 6
EXT 1777 hhil 6
E, X 2747 — 6
E, Y 2757 — 6
EZ 2767 — 6
MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-166

ORAB

Operation:

Description:

Syntax:

OR B

B)+ (M) =B

ORAB

Performs inclusive OR between the content of accumulator B and
a memory byte, then places the result in accumulator B. Memory
content is not affected.

Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 2 1 0
S MV H EV N Z IP SM PK
—_ — _— —_ A A 0 —_ — — —
S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.
N: Set if B7 is set by operation; else cleared.
Z: Setif (B) = $00 as a result of operation; else cleared.
V: Cleared.
C: Not affected.
IP: Not affected.
SM: Not affected.
PK: Not affected.
Instruction Format:
Addressing Mode Opcode Operand Cycles
IND8, X c7 ff 6
INDS8, Y D7 ff 6
INDS8, Z E7 tf 6
IMM8 F7 ii 2
IND16, X 17C7 9999 6
IND16, Y 1707 9999 6
IND16, Z 17E7 [e]e]els] 6
EXT 17F7 hhll 6
E, X 27C7 — 6
E Y 2707 — 6
E Z 27E7 — 6
CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-167

ORD ~ ORD ORD

Operation: D)y+M:M+1)=D
Description: Performs inclusive OR between the content of accumulator D and
a memory word, then places the result in accumulator D. Memory
content is not affected.
Syntax: Standard
Condition Code Register:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S| M| H|EV|N]| Z]| V]|cC P SM PK
— | — | —| = A]| a]| o] — — — —

S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.
N: Setif D is set by operation; else cleared.
Z: Setif (D) = $0000 as a result of operation; else cleared.
V: Cleared.
C: Not affected.
IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles

IND8, X 87 tf 6

IND8, Y 97 ff 6

IND8, Z A7 ff 6
IMM16 3787 jikk 4
IND16, X 37C7 gggg 6
IND16, Y 37D7 feeles] 6
IND16, Z 37E7 9999 6

EXT 37F7 hhll 6

E, X 2787 — 6

E, Y 2797 — 6

E, Z 27A7 — 6

MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-168

ORE

Operation:

Description:

Syntax:

OR E ORE

(E)+M:M+1)=>E
Performs inclusive OR between the content of accumulator E and
a memory word, then places the result in accumulator E. Memory
content is not affected.

Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MV H EV N V4 \ C IP SM PK

— | — | = —{ a{aAa]| 0] — — — —

S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.

N: Set if E15 is set by operation; else cleared.
Z: Setif (E) = $0000 as a result of operation; else cleared.

V: Cleared.

C: Not affected.
IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
IMM16 3737 jjkk 4
IND16, X 3747 gggg 6
IND16, Y 3757 9999 6
IND16, Z 3767 9999 6
EXT 3777 hhill 6
CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-169

ORP

Operation:

Description:

Syntax:

OR Condition Code Register O R P

(CCR) + IMM16 = CCR

Performs inclusive OR between the content of the condition code
register and a 16-bit unsigned immediate operand, then replaces
the content of the CCR with the result.

To make certain that conditions for termination of LPSTOP and
WAL are correct, interrupts are not recognized until after the
instruction following ORP executes. This prevents interrupt
exception processing during the period after the mask changes
but before the following instruction executes.

Standard

Condition Code Register:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N z \ C IP SM PK

A A A A

A A A A A A —

S: Setif bit 15 of operand = 1; else unchanged.
MV: Set if bit 14 of operand = 1; else unchanged.

H: Set if bit 13 of operand = 1; else unchanged.
EV: Set if bit 12 of operand = 1; else unchanged.

N: Set if bit 11 of operand = 1; else unchanged.

Z: Set if bit 10 of operand = 1; else unchanged.

V: Set if bit 9 of operand = 1; else unchanged.

C: Set if bit 8 of operand = 1; else unchanged.

IP: Each bit in field set if corresponding bit [7:5] of operand = 1; else unchanged.
SM: Set if bit 4 of operand = 1; else unchanged.

PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
IMM16 373B jjkk 4
MOTOROLA

6-170

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

PSHA

Operation:

Description:

Syntax:

Push A PSHA

(SK : SP) + $0001 = SK : SP
Push (A)
(SK : SP) — $0002 = SK : SP

Increments (SK : SP) by one, stores the content of accumulator A
at that address, then decrements (SK : SP) by two. If the SP
overflows as a result of the operation, the SK field is incremented
or decremented.

Pushing byte data to the stack can misalign the stack pointer and
degrade performance. See SECTION 8 INSTRUCTION
TIMING for more information.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 3708 — 4
CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-171

PSHB

Operation:

Description:

Syntax:

Push B PSHB

(SK : SP) + $0001 = SK : SP
Push (B)
(SK : SP) — $0002 => SK : SP

Increments (SK : SP) by one, stores the content of accumulator B
at that address, then decrements (SK : SP) by two. If the SP
overflows as a result of the operation, the SK field is incremented
or decremented.

Pushing byte data to the stack can misalign the stack pointer and
degrade performance. See SECTION 8 INSTRUCTION
TIMING for more information.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 3718 — 4
MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-172

PSHM

Operation:

Description:

Syntax:

Push Multiple Registers P S H M

For mask bits 0 to 7
If bit set
push corresponding register
(SK : SP) — $0002 = SK : SP
Next

Mask bits:
0 = accumulator D
1 = accumulator E
2 = index register X
3 =index register Y
4 = index register Z
5 = extension register
6 = condition code register
7 = (Reserved)

Stores contents of selected registers on the system stack.
Registers are designated by setting bits in a mask byte. The
PULM instruction restores registers from the stack. PUSHM mask
order is the reverse of PULM mask order. If SP overflow occurs as
a result of operation, the SK field is decremented.

Stacking into the highest available memory address causes the
PULM instruction to attempt a prefetch from inaccessible memory.
Pushing to an odd SK : SP can degrade performance. See
SECTION 8 INSTRUCTION TIMING for more information.

PSHM (mask)

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode

Opcode Mask Cycles

IMM8

34 ii 44 2N*

*N = Number of registers to be pushed.

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-173

PSH MAC Push MAC Registers PSH MAC

Operation: Stack registers in sequence shown, beginning at address pointed
to by stack pointer.

15 14 8 7 3 0
Start (SP) H REGISTER

(SP) — $0002 | REGISTER

(SP) - $0004 ACCUMULATOR M[15:0]

(SP) - $0006 ACCUMULATOR M[31:16]

(SP) - $0008 | SL| RESERVED | AM[35:32]
End (SP)-$000A| IXADDRESSMASK | IY ADDRESS MASK

Description: Stores Multiply and Accumulate Unit internal state on the system
stack. The SP is decremented after each save operation (stack
grows downward in memory). If SP overflow occurs as a result of

u operation, the SK field is decremented. See SECTION 11

DIGITAL SIGNAL PROCESSING for more information.
Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 2788 — 14
MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-174

PULA

Operation:

Description:

Syntax:

Condition Code

Pull A PULA

(SK : SP) + $0002 = SK : SP
Pull (A)
(SK : SP) — $0001 = SK : SP

Increments (SK : SP) by two, restores the content of accumulator A
from that address, then decrements (SK : SP) by one. If the SP
overflows as a result of the operation, the SK field is incremented
or decremented.

Pulling byte data from the stack can misalign the stack pointer and
degrade performance. See SECTION 8 INSTRUCTION
TIMING for more information.

Standard

Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 3709 — 6
CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-175

PULB

Operation:

Description:

S'yntax:

Pull B PULB

(SK : SP) + $0002 = SK : SP
Pull (B)
(SK : SP) — $0001 = SK : SP

Increments (SK : SP) by two, restores the content of accumulator B
from that address, then decrements (SK : SP) by one. If the SP
overflows as a result of the operation, the SK field is incremented
or decremented.

Pulling byte data from the stack can misalign the stack pointer and
degrade performance. See SECTION 8 INSTRUCTION
TIMING for more information.

Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 3719 — 6
MOTOROLA

6-176

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

PULM Pull Multiple Registers PULM

Operation: For mask bits 0to 7
If bit set
(SK : SP) + $0002 = SK : SP
Pull corresponding register
Next

Mask bits:

0 = condition code register
1 = extension register

2 = index register Z

3 = index register Y

4 = index register X

5 = accumulator E

6 = accumulator D

7 = (Reserved)

Description: Restores contents of registers stacked by a PSHM instruction.
Registers are designated by setting bits in a mask byte. PULM
mask order is the reverse of PSHM mask order. If SP overflow
occurs as a result of operation, the SK field is incremented.

PULM prefetches a stacked word on each iteration. If SP points to
the highest available stack address after the last register has been
restored, the prefetch will attempt to read inaccessible memory.
Pulling from an odd SK : SP can degrade performance. See
SECTION 8 INSTRUCTION TIMING for more information.

Syntax: PULM (mask)

Condition Code Register: Set according to CCR pulled from stack —
Not affected unless CCR is pulled.

Instruction Format:

Addressing Mode Opcode Mask Cycles
IMM8 35 ii 4+2 (N+ 1)

*N = Number of registers to be pulled.

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA
6-177

PULMAC

Pull MAC Registers P U L M A C

Operation: Restore registers in sequence shown, beginning at address

pointed to by stack pointer.
15 14 8 7 3 0
End (SP) + $000C IX ADDRESS MASK | IY ADDRESS MASK
(SP) + $000A | SL| RESERVED | Am35:32]
(SP) + $0008 ACCUMULATOR M[31:16]
(SP) + $0006 ACCUMULATOR M[15:0]
(SP) + $0004 I REGISTER
(SP) + $0002 H REGISTER
Start (SP) (Top of Stack)

Description: Restores Multiply and Accumulate Unit internal state from the
system stack. The SP is incremented after each restoration (stack
shrinks upward in memory). If SP overflow occurs as a result of
operation, the SK field is incremented. See SECTION 11
DIGITAL SIGNAL PROCESSING for more information.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 2789 — 16
MOTOROLA

6-178

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

RMAC

Operation:

Description:

Repeating Multiply and Accumulate RMAC

Repeat:
(AM) + ((HR) * (IR)) = AM
((IX) & X MASK) + ((IX) + x0) ® X MASK) = IX
((IY) ¢ Y MASK) + ((IY) + yo) » Y MASK) = IY
(M:M+1)x = HR
M:M+1)y=1IR
(E) — $0001 = E

Until (E) < $0000

Performs repeated multiplication of 16-bit signed fractional
multiplicands in MAC register | by 16-bit signed fractional
multipliers in MAC register H. Each product is added to the
content of accumulator M. Accumulator D is used for temporary
storage during multiplication. A 16-bit signed integer in
accumulator E determines the number of repetitions.

There are implied radix points between bits 15 and 14 of HR and
IR. Each product is left-shifted one place to align the radix point
between bits 31 and 30 before addition to AM.

As multiply and accumulate operations take place, 4-bit offsets
x0 and yo are sign-extended to 16 bits and used with X and Y
masks to qualify the X and Y index registers.

Writing a non-zero value into a mask register prior to RMAC
execution enables modulo addressing. The TDMSK instruction
writes mask values. When a mask contains $0, modulo
addressing is disabled, and the sign-extended offset is added to
the content of the corresponding index register.

After accumulation, a word pointed to by XK : IX is loaded into HR,
and a word pointed to by YK : 1Y is loaded into IR, then the value in
E is decremented and tested. After execution, content of E is
indeterminate.

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-179

RMAC

Syntax:

Repeating Multiply and Accumulate RMAC

RMAC always iterates at least once, even when executed with a
zero or negative value in E. Since the value in E is decremented,
then tested, loading E with $8000 results in 32,769 iterations.

If HR and IR both contain $8000 (-1), a value of '$80000000
(1.0 in 36-bit format) is accumulated, but no condition code is set.

RMAC execution is suspended during asynchronous exceptions.
Operation resumes when RTI is executed. All registers used by
RMAC must be restored prior to RTI. See SECTION 11
DIGITAL SIGNAL PROCESSING for more information.

RMAC xo, yo

Condition Code Register:

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N z Y 0] P SM PK

— A — A

S: Not affected.

MV: Set if overflow into AM35 occurs as a result of addition; else not affected.

H: Not affected.

EV: Set if overflow into AM[34:31] occurs as a result of addition; else cleared.

N: Not affected.
Z: Not affected.
V: Not affected.
C: Not affected.
IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode

Opcode Offset Cycles

IMM8

FB X0yo 6 + 12 per iteration

MOTOROLA
6-180

INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

ROL

Operation:

Description:

Syntax:

Rotate Left Byte RO L
LI LT T TT]
b7 b0

Rotates all 8 bits of a memory byte one place to the left. Bit O is
loaded from the CCR Carry bit. Bit 7 is transferred to the C bit.

Rotation through the C bit aids shifting and rotating multiple bytes.
For example, use the sequence ASL Byte0, ROL Byte1, ROL Byte2
to shift a 24-bit value contained in bytes 0 to 2 left one bit.

Standard

Condition Code Register:

12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13
S MV H EV N Z " C IP SM PK
— | = — | =1 a A A A — — —
S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.
N: Setif M7 = 1 as a result of operation; else cleared.
Z: Setif (M) = $00 as a result of operation; else cleared.
V: Setif (Nis set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.
C: Setif M7 = 1 before operation; else cleared.
IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles

IND8, X oC ff 8
INDS, Y 1C ff 8
IND8, Z 2C ff 8
IND16, X 170C 9999 8
IND16, Y 171C 9999 8
IND16, Z 172C 9999 8

EXT 173C hhll 8

CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-181

ROLA Rotate Left A ROLA
Operation:

Description: Rotates all 8 bits of accumulator A one place to the left. Bit 0 is:
loaded from the CCR Carry bit. Bit 7 is transferred to the C bit.

Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9
S MV H EV N Z Vv C IP SM PK
— | - =] =] a A A A — — —

©
~
)
4
IN
w
N
o
o

S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.
N: Setif A7 = 1 as a result of operation; else cleared.
Z: Setif (A) = $00 as a result of operation; else cleared.
V: Setif (Nis set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.
C: Setif A7 = 1 before operation; else cleared.
IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 370C — 2
MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-182

ROLB Rotate Left B ROLB
Operation:

Description: Rotates all 8 bits of accumulator B one place to the left. Bit O is
loaded from the CCR Carry bit. Bit 7 is transferred to the C bit.

Syntax: Standard
Condition Code Register:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S |{MV| H|EBV|N] Z]|V]C IP SM PK
— | — | =] =] A | A]| Aa| A — — —

S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.
N: Setif B7 = 1 as a result of operation; else cleared.
Z: Setif (B) = $00 as a result of operation; else cleared.

V: Setif (Nis set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.
C: Set if B7 = 1 before operation; else cleared.

IP: Not affected.

SM: Not affected.

PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 371C — 2
CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-183

ROLD Rotate Left D ROLD

Operation: C [| ---11 l<—|

bi15 b0

Description: Rotates all 16 bits of accumulator D one place to the left. Bit 0 is

loaded from the CCR Carry bit. Bit 15 is transferred to the C bit.

Syntax: Standard

Condition Code Register:‘

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S MV H EV N z \" (o} IP SM PK
— | — | = = | A A A A — — —
S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.
N: Setif D15 =1 as a result of operation; else cleared.
Z: Setif (D) = $0000 as a result of operation; else cleared.
V: Setif (Nis set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.
C: Setif D15 = 1 before operation; else cleared.
IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 27FC — 2
MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-184

ROLE

Operation:

Description:

Rotate Left E

[T- - -

b15

b0

ROLE

Rotates all 16 bits of accumulator E one place to the left. Bit 0 is

loaded from the CCR Carry bit. Bit 15 is transferred to the C bit.

Syntax: Standard

Condition Code Register:

15 14 13 12

11

10 9 6 5 4 2 1 0
S MV H EV N z P SM PK
S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.
N: Setif E15 =1 as a result of operation; else cleared.
Z: Setif (E) = $0000 as a result of operation; else cleared.
V: Setif (Nis set and Cis clear) or (N is clear and C is set) as a result of operation; else cleared.
C: Setif E15 = 1 before operation; else cleared.
IP: Not affected.
SM: Not affected.
PK: Not affected.
Instruction Format:
Addressing Mode Opcode Operand Cycles
INH 277C — 2
CPU16 REFERENCE MANUAL INSTRUCTION GLOSSARY MOTOROLA

6-185

ROLW

Operation:

Description:

Rotate Left Word R O L W

b15 b0

Rotates all 16 bits of 2 memory word one place to the left. Bit 0 is
loaded from the CCR Carry bit. Bit 15 is transferred to the C bit.

Rotation through the C bit aids shifting and rotating multiple words.
For example, use the sequence ASLW Word0, ROLW Word1,
ROLW Word?2 to shift a 48-bit value contained in words 0 to 2 left

one bit.
Syntax: Standard

Condition Code Register:

15 14 13 12 11 10 9

(@R K]

S MV H EV N z

SM

PK

— — — — A A A A

S: Not affected.
MV: Not affected.
H: Not affected.
EV: Not affected.

N: Setif M:M + 1[15] = 1 as a result of operation; else cleared.

Z: Setif (M: M+ 1)=$0000 as a result of operation; else cleared.
V: Setif (Nis set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.
C: Setif M: M+ 1[15] = 1 before operation; else cleared.

IP: Not affected.
SM: Not affected.
PK: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
IND16, X 270C 9999 8
IND186, Y 271C 9999 8
IND16, Z 272C 9999 8
EXT 273C hhil 8
MOTOROLA INSTRUCTION GLOSSARY CPU16 REFERENCE MANUAL

6-186

ROR

Operation:

Description:

Rotate Right Byte

b7

Illlll

ROR

loaded from the CCR C bit. Bit 0 is transferred to the C bit.

Rotates all 8 bits of a memory byte one pla<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>