
2000

~TEXAS
INSTRUMENTS

MSP430x3xx Family

July 2000 Mixed Signal Products
-====================

MSP430x3xx Family
User's Guide

Literature Number: SLAU012

July 2000

• TEXAS
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those
pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the speCifications applicable at the time of sale in
accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. Tl's publication of information regarding any third
party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated

Printed in U.S.A by
Sandford Press, Inc.

Dallas, Texas

Preface

Read This First
~~~~~~i{.~~~~~~t\~~\1.~W~~~~~~JJ4fj£W.·~'@iRmMi!iOO!wWl5;w..;,i".M!MJh@W~~ 

!.';,.,""C>,~\ttt;"·;~,'0.~'.~"\1~·';;'t.I.!.uf.·~~~'.'I-\~~)3"~twi!'f:VA(,:;t)f~~1<~i1;'''4, .. 'q1iif.:',~':,.~~?n1':~~~~~M~tl~~~~iIAtn~~~~~ 

About This Manual 

The MSP430x3xx User's Guide is intended to assist the development of 
MSP430x3xx family products by assembling together and presenting 
hardware and software information in a manner that is easy for engineers and 
programmers to use. 

This manual discusses modules and peripherals of the MSP430x3xx family of 
devices. Each discussion presents the module or peripheral in a general 
sense. Not all features and functions of all modules or peripherals are present 
on all devices. In addition, modules or peripherals may differ in their exact 
implementation between device families, or may not be fully implemented on 
an individual device or device family. Therefore, a user must always consult 
the data sheet of any device of interest to determine what peripherals and 
modules are implemented, and exactly how they are implemented on that 
particular device. 

How to Use This Manual 

This document contains the following chapters and appendixes: 

Chapter 1. Introduction 

Chapter 2. Architectural Overview 

Chapter 3. System Resets, Interrupts, and Operating Modes 

Chapter 4. Memory 

Chapter 5. 16-Bit CPU 

Chapter 6. Hardware Multiplier 

Chapter 7. FLL Clock Module 

Chapter 8. Digital I/O Configuration 

Chapter 9. Universal Timer/Port Module 

iii 



Related Documentation From Texas Instruments 

Chapter 10. Timers 

Chapter 11. Timer_A 

Chapter 12. USART Peripheral Interface, UART Mode 

Chapter 13. USART Peripheral Interface, SPI Mode 

Chapter 14. Liquid Crystal Display Drive 

Chapter 15. ADC12+2 A-to-D Converter 

Appendix A. Peripheral File Map 

Appendix B. Instruction Set Description 

Appendix C. EPROM Programming 

Notational Conventions 

This document uses the following conventions. 

o Program listings, program examples, and interactive displays are shown 
in a special typeface similar to a typewriter's. 

Here is a sample program listing: 

0011 0005 0001 .field 1, 2 
0012 0005 0003 .field 3, 4 
0013 0005 0006 .fie1d 6, 3 
0014 0006 . even 

Related Documentation From Texas Instruments 

FCC Warning 

iv 

For related documentation see the web site http://www.ti.com/sc/msp430. 

This equipment is intended for use in a laboratory test environment only. It gen
erates, uses, and can radiate radio frequency energy and has not been tested 
for compliance with the limits of computing devices pursuant to subpart J of 
part 15 of FCC rules, which are designed to provide reasonable protection 
against radio frequency interference. Operation of this equipment in other en
vironments may cause interference with radio communications, in which case 
the user at his own expense will be required to take whatever measures may 
be required to correct this interference. 



Contents 
~~~~~lI~~~~;fi~~:f,~.t1b.;~'.lr~"M.~~;~~J:f..\'aJ~Y~~..'S'}'\~~~~~~~~ 

~wt:.Utt'$.;.:.:iV~~!ID't"lMS'i~~~~fi~~""ie~'i);\'a~WQ\~~~iii!l\tWiK.~~t*-~~iMli\

1 Introduction ... 1-1
1.1 Features and Capabilities .. 1-2
1.2 31 x Devices. .. 1-3
1.3 32x Devices. .. 1-3
1 .4 33x Devices. .. 1-4

2 Architectural Overview ... 2-1
2.1 Introduction. .. 2-2
2.2 Central Processing Unit ... 2-2
2.3 Program Memory .. 2-3
2.4 Data Memory .. 2-3
2.5 Operation Control ... 2-3
2.6 Peripherals. .. 2-4
2.7 Oscillator and Clock Generator ... 2-4

3 System Resets, Interrupts, and Operating Modes 3-1
3.1 System Reset and Initialization ... 3-2

3.1.1 Introduction. .. 3-2
3.1.2 Device Initialization after System Reset 3-4

3.2 Global Interrupt Structure .. 3-5
3.3 MSP430 Interrupt-Priority Scheme 3-6

3.3.1 Operation of Globallnterrupt-ResetlNMI 3-8
3.3.2 Operation of Global Interrupt-Oscillator Fault Control 3-8

3.4 Interrupt Processing .. 3-9
3.4.1 Interrupt Control Bits in Special-Function Registers (SFRs) 3-11
3.4.2 Interrupt Vector Addresses ... 3-14

3.5 Operating Modes .. 3-14
3.5.1 Low-Power Modes 0 and 1 (LPMO and LPM1) 3-18
3.5.2 Low-Power Modes 2 and 3 (LPM2 and LPM3) 3-19
3.5.3 Low-Power Mode 4 (LPM4) .. 3-19

3.6 Basic Hints for Low-Power Applications. .. 3-20

4 Memory. • • .. 4-1
4.1 Introduction .. 4-2
4.2 Data in the Memory .. 4-3
4.3 Internal ROM Organization. .. 4-4

4.3.1 Processing of ROM Tables. .. 4-4
4.3.2 Computed Branches and Calls .. 4-5

4.4 RAM and Peripheral Organization .. 4-6

v

Contents

4.4.1 Random Access Memory .. 4-6
4.4.2 Peripheral Modules-Address Allocation 4-8
4.4.3 Peripheral Modules-Special Function Registers (SFRs) 4-10

5 16-Bit CPU .. 5-1
5.1 CPU Registers ... 5-2

5.1.1 The Program Counter (PC) ... 5-2
5.1.2 The System Stack Pointer (SP) .. 5-2
5.1.3 The Status Register (SR) .. 5-4
5.1.4 The Constant Generator Registers CG1 and CG2 5-5

5.2 Addressing Modes .. 5-7
5.2.1 Register Mode .. 5-8
5.2.2 Indexed Mode. .. 5-9
5.2.3 Symbolic Mode ... 5-10
5.2.4 Absolute Mode .. 5-11
5.2.5 Indirect Mode ... '" 5-12
5.2.6 Indirect Autoincrement Mode ... 5-13
5.2.7 Immediate Mode ... 5-14
5.2.8 Clock Cycles, Length of Instruction 5-15

5.3 Instruction Set Overview .. 5-17
5.3.1 Double-Operand Instructions. .. 5-18
5.3.2 Single-Operand Instructions ... 5-19
5.3.3 Conditional Jumps .. 5-20
5.3.4 Short Form of Emulated Instructions 5-21
5.3.5 Miscellaneous. .. 5-22

5.4 Instruction Map .. 5-23

6 Hardware Multiplier 6-1
6.1 Hardware Multiplier Module Support .. 6-2
6.2 Hardware Multiplier Operation .. 6-3

6.2.1 Multiply Unsigned, 16x 16 bit, 16x 8 bit, 8x 16 bit, 8x 8 bit 6-5
6.2.2 Multiply Signed, 16x16 bit, 16x8 bit, 8x16 bit, 8x8 bit 6-6
6.2.3 Multiply Unsigned and Accumulate, 16x16bit, 16x8bit, 8x16bit, 8x8bit 6-7
6.2.4 Multiply Signed and Accumulate, 16x16bit, 16x8bit, 8x16bit, 8x8bit 6-8

6.3 Hardware Multiplier Registers .. 6-9
6.4 Hardware Multiplier Special Function Bits 6-10
6.5 Hardware Multiplier Software Restrictions. .. 6-10

6.5.1 Hardware Multiplier Software Restrictions-Address Mode. 6-10
6.5.2 Hardware Multiplier Software Restrictions-Interrupt Routines 6-11
6.5.3 Hardware Multiplier Software Restrictions-MACS .. 6-12

7 FLL Clock Module ... 7-1
7.1 The FLL Clock Module .. 7-2
7.2 Crystal Oscillator ... 7-3
7.3 Digitally-Controlled Oscillator (DCO) and Frequency-Locked Loop 7-4

7.3.1 FLL Operation .. 7-4
7.3.2 Modulator Operation ... 7-5
7.3.3 DCO Frequency Range .. 7-5
7.3.4 Disabling the FLL .. 7-6
7.3.5 MCLK Stability .. 7-6
7.3.6 Oscillator Fault Detection ... 7-6

vi

Contents

7.4 Fll Operating Modes ... 7-7
7.4.1 Starting From Power Up Clear (PUC) 7-7
7.4.2 Adjusting the Fll Frequency .. 7-7
7.4.3 Fll Features for low-Power Applications 7-7

7.5 Buffered Clock Output ... 7-8
7.6 Fll Module Control Registers .. 7-9

7.6.1 MCLK Frequency Control .. , 7-9
7.6.2 Special-Function Register Bits 7-10

8 Digital I/O Configuration ... 8-1
8.1 Introduction. .. 8-2
8.2 Port PO .. 8-3

8.2.1 Port PO Control Registers. .. 8-3
8.2.2 Port PO Schematic .. , 8-6
8.2.3 Port PO Interrupt Control Functions 8-9

8.3 Ports P1, P2 .. 8-11
8.3.1 Port P1, Port P2 Control Registers .. 8-12
8.3.2 Port P1, Port P2 Schematic .. 8-15
8.3.3 Port P1, P2 Interrupt Control Functions .. 8-16

8.4 Ports P3, P4 .. 8-17
8.4.1 Port P3, P4 Control Registers .. 8-17
8.4.2 Port P3, P4 Schematic .. 8-19

9 Universal Timer/Port Module•................................ 9-1
9.1 Timer/Port Configuration. .. 9-2
9.2 Timer/Port Module Operation. .. 9-3

9.2.1 Timer/Port Counter TPCNT1, 8-Bit Operation 9-3
9.2.2 Timer/Port Counter TPCNT2, 8-Bit Operation 9-4
9.2.3 Timer/Port Counter, 16-Bit Operation .. 9-4
9.2.4 Enable Control .. 9-6
9.2.5 Comparator Input. .. 9-6

9.3 Timer/Port Registers .. 9-7
9.4 Timer/Port Interrupts ... 9-11
9.5 Timer/Port in an ADC Application .. 9-12

10 Timers ... 10-1
10.1 . Basic Timer1 .. 10-2

10.1.1 Basic Timer1 Registers. .. 10-3
10.1.2 Special Function Register Bits. .. 10-5
10.1.3 Basic Timer1 Operation ... 10-5
10.1.4 Basic Timer1 Operation: Signal flCD 10-6

10.2 8-Bit Interval Timer/Counter .. 10-7
10.2.1 Operation of 8-Bit Timer/Counter 10-8
10.2.2 8-Bit Timer/Counter Registers .. 10-9
10.2.3 Special Function Register Bits, 8-Bit Timer/Counter Related 10-11
10.2.4 Implementing a UART With the 8-Bit Timer/Counter 10-11

10.3 The Watchdog Timer .. 10-13
10.3.1 Watchdog Timer Register ... 10-14
10.3.2 Watchdog Timer Interrupt Control Functions 10-16
10.3.3 Watchdog Timer Operation ... 10-16

11 Timer_A ...•...........•............... 11-1
11.1 Introduction. .. 11-2

vii

Contents

11 .2 TimecA Operation .. 11-4
11.2.1 Timer Mode Control. .. 11-4
11.2.2 Clock Source Select and Divider. .. 11-5
11.2.3 Starting the Timer .. 11-6

11.3 Timer Modes .. 11-6
11 .3.1 Timer - Stop Mode ... 11-6
11.3.2 Timer - Up Mode .. 11-6
11 .3.3 Timer - Continuous Mode ... 11-9
11.3.4 Timer - Up/Down Mode .. 11-10

11.4 Capture/Compare Blocks .. 11-13
11.4.1 Capture/Compare Block - Capture Mode .. 11-14
11.4.2 Capture/Compare Block - Compare Mode .. 11-18

11.5 The Output Unit .. 11-19
11 .5.1 Output Unit - Output Modes .. 11-20
11.5.2 Output Control Block. .. 11-21
11.5.3 Output Examples .. 11-22

11.6 Timer_A Registers .. 11-25
11.6.1 Timer_A Control Register TACTL 11-25
11.6.2 TimecA Register TAR ... 11-27
11.6.3 Capture/Compare Control Register CCTLx 11-27
11.6.4 TimecA Interrupt Vector Register 11-30

11.7 Timer_A UART ... 11-34

12 USART Peripheral Interface, UART Mode ... 12-1

viii

12.1 USART Peripheral Interface. .. 12-2
12.2 USART Peripheral Interface, UART Mode. .. 12-3

12.2.1 UART Serial Asynchronous Communication Features 12-3
12.3 Asynchronous Operation ... 12-4

12.3.1 Asynchronous Frame Format .. 12-4
12.3.2 Baud Rate Generation in Asynchronous Communication Format. 12-5
12.3.3 Asynchronous Communication Formats 12-7
12.3.4 Idle-Line Multiprocessor Format 12-7
12.3.5 Address-Bit Multiprocessor Format 12-9

12.4 Interrupt and Enable Functions ... 12-11
12.4.1 USART Receive Enable Bit 12-11
12.4.2 USART Transmit Enable Bit ... 12-12
12.4.3 USART Receive Interrupt Operation 12-13
12.4.4 USART Transmit Interrupt Operation 12-14

12.5 Control and Status Registers .. 12-15
12.5.1 USART Control Register UCTL .. 12-15
12.5.2 Transmit Control Register UTCTL 12-17
12.5.3 Receiver Control Register URCTL 12-18
12.5.4 Baud Rate Select and Modulation Control Registers 12-20
12.5.5 Receive-Data Buffer URXBUF 12-21
12.5.6 Transmit Data Buffer UTXBUF 12-22

12.6 Utilizing Features of Low-Power Modes. .. 12-23
12.6.1 Receive-Start Operation From UART Frame 12-23
12.6.2 Maximum Utilization of Clock Frequency vs Baud Rate UART Mode 12-25
12.6.3 Support of Multiprocessor Modes for Reduced

Use of MSP430 Resources ... 12-26
12.7 Baud Rate Considerations ... 12-26

Contents

12.7.1 Bit Timing in Transmit Operation .. 12-27
12.7.2 Typical Baud Rates and Errors 12-29
12.7.3 Synchronization Error .. 12-30

13 USART Peripheral Interface, SPI Mode•..... 13-1
13.1 USART Peripheral Interface .. 13-2
13.2 USART Peripheral Interface, SPI Mode .. 13-3

13.2.1 SPI Mode Features 13-3
13.3 Synchronous Operation .. 13-4

13.3.1 Master SPI Mode .. 13-7
13.3.2 Slave SPI Mode 13-8

13.4 Interrupt and Control Functions .. 13-9
13.4.1 USART ReceiverTransmit Enable Bit, Receive Operation 13-9
13.4.2 USART ReceiverTransmit Enable Bit, Transmit Operation 13-11
13.4.3 USART Receive-Interrupt Operation 13-13
13.4.4 Transmit-Interrupt Operation .. 13-14

13.5 Control and Status Registers .. 13-15
13.5.1 USART Control Register ... 13-15
13.5.2 Transmit Control Register UTCTL 13-16
13.5.3 Receive Control Register URCTL 13-18
13.5.4 Baud Rate Select and Modulation Control Registers 13-18
13.5.5 Receive Data Buffer URXBUF 13-19
13.5.6 Transmit Data Buffer UTXBUF 13-19

14 Liquid Crystal Display Drive ... 14-1
14.1 LCD Drive Basics .. 14-2
14.2 LCD Controller/Driver .. 14-7

14.2.1 LCD Controller/Driver Features. .. 14-8
14.2.2 LCD Timing Generation ... 14-8
14.2.3 LCD Voltage Generation. .. 14-9
14.2.4 LCD Outputs .. 14-10
14.2.5 LCD Control Register .. 14-14
14.2.6 LCD Memory ... 14-16

14.3 Code Examples .. 14-21
14.3.1 Example Code for Static LCD 14-21
14.3.2 Example Code for Two MUX, 1/2-Bias LCD 14-22
14.3.3 Example Code for Three MUX, 1/3-Bias LCD 14-23
14.3.4 Example Code for Four MUX, 1/3-Bias LCD 14-24

15 ADC12+2 A-to-D Converter•................•........ 15-1
15.1 Introduction. .. 15-2
15.2 Analog-to-Digital Operation ... 15-4

15.2.1 AID Conversion .. 15-4
15.2.2 AID Interrupt ... 15-7
15.2.3 AID Ranges ... 15-7
15.2.4 AID Current Source ... 15-8
15.2.5 Analog Inputs and Multiplexer .. 15-9
15.2.6 AID Grounding and Noise Considerations 15-10
15.2.7 AID Converter Input and Output Pins 15-12

15.3 ADC12+2 Control Registers. .. 15-13
15.3.1 Input RegisterAIN ... 15-13

ix

Contents

15.3.2 Input Enable Register AEN ... 15-14
15.3.3 ADC12+2 Data Register ADAT ' 15-14
15.3.4 ADC12+2 Control Register ACTL 15-15

A Peripheral File Map•........•...•..•.....•...............................•.. A-1
A.1 Overview. .. A-2
A2 Special Function Register of MSP430x3xx Family, Byte Access A-2
A3 Digital 110, Byte Access. .. A-3
A4 LCD Registers, Byte Access ... A-5
A5 8-Bit Timer/Counter, Basic limer, limer/Port, Byte Access A-6
A6 FLL Registers, Byte Access .. A-6
A.7 EPROM Control Register and Crystal Buffer, Byte Access A-7
A8 USART, UART Mode (Sync=O), Byte Access A-7
A9 USART, SPI Mode (Sync=1), Byte Access A-8
A.10 ADC12+2, Word Access .. A-9
A.11 Watchdogllimer, Word Access .. A-10
A12 Hardware Multiplier, Word Access ... A-10
A13 TimecA Registers, Word Access .. A-11

B Instruction Set Description ...•.•.•...•.••••....•.•..•...••........••........•.... B-1
B.1 Instruction Set Overview .. B-2

B.1.1 Instruction Formats .. B-4
B.1.2 Conditional and Unconditional Jumps (Core Instructions) B-5
B.1.3 Emulated Instructions .. B-6

B.2 Instruction Set Description ... B-8

C EPROM Programming .•..••......•...•..•...........•...•.....................•.• C-1
C.1 EPROM Operation .. C-2

C.1.1 Erasure .. C-2
C.1.2 Programming Methods : C-2
C.1.3 EPROM Control Register EPCTL C-3
C.1.4 EPROM Protect ... C-4

C.2 FAST Programming Algorithm .. C-4
C.3 Programming an EPROM Module Through a Serial Data Link Using the

JTAG Feature .. C-5
C.4 Programming an EPROM Module With Controller'S Software C-6
C.5 Code .. C-8

x

Fi ures

2-1 MSP430 System Configuration ... 2-2
2-2 Bus Connection of Modules/Peripherals. .. 2-4
3-1 Power-on Reset and Power-Up Clear Schematic .. 3-2
3-2 Power-On Reset Timing on Fast Vee Rise Time 3-3
3-3 Power-on Reset Timing on Slow Vee Rise Time 3-3
3-4 Interrupt Priority Scheme ... 3-6
3-5 Block Diagram of NMllnterrupt Sources ... 3-7
3-6 RST/NMI Mode Selection .. 3-7
3-7 Interrupt Processing ... 3-9
3-8 Return from Interrupt ... 3-10
3-9 Status Register (SR) ... 3-10
3-10 MSP430x3xx Family Operating Modes .. 3-17
3-11 Typical Current Consumption vs Operating Modes 3-18
4-1 Memory Map of Basic Address Space ... 4-2
4-2 Memory Data Bus .. 4-2
4-3 Bits, Bytes, and Words in a Byte-Organized Memory. .. 4-3
4-4 ROM Organization .. 4-4
4-5 Byte and Word Operation .. 4-6
4-6 Register-Byte/Byte-Register Operations .. 4-7
4-7 Example of RAM/Peripheral Organization .. 4-8
5-1 Program Counter ... 5-2
5-2 System Stack Pointer. .. 5-2
5-3 Stack Usage ... 5-3
5-4 PUSH SP and POP SP .. 5-3
5-5 Status Register Bits ... 5-4
5-6 Operand Fetch Operation ... 5-13
5-7 Double Operand Instruction Format .. 5-18
5-8 Single Operand Instruction Format ... 5-19
5-9 Conditional-Jump Instruction Format .. 5-20
5-10 Core Instruction Map ... 5-23
6-1 Connection of the Hardware Multiplier Module to the Bus System 6-2
6-2 Block Diagram of the MSP430 16x16-Bit Hardware Multiplier .. 6-3
6-3 Registers of the Hardware Multiplier .. 6-9
7-1 Frequency-Locked Loop ... 7-2
7-2 Crystal Oscillator Schematic .. 7-3
7-3 Fractional Tap Frequency Required .. 7-4
7-4 Modulator Hop Patterns .. 7-5
7-5 Schematic of Clock Buffer .. 7-8
7-6 SCFQCTL Register ... 7-9

xi

Contents

7-7
7-8
8-1
8-2
8-3
8-4
8-5
8-6
8-7
8-8
8-9
8-10
8-11
9-1
9-2
9-3
9-4
9-5
9-6
9-7
9-8
10-1
10-2
10-3
10-4
10-5
10-6
10-7
10-8
10-9
10-10
10-11
10-12
10-13
10-14
11-1
11-2
11-3
11-4
11-5
11-6
11-7
11-8
11-9
11-10
11-11
11-12
11-13
11-14
11-15

xii

SCFIO and SCFI1 Registers .. 7-9
Crystal Buffer Control Register .. 7-10
Port PO Configuration .. 8-3
Interrupt Flags Register .. 8-5
Interrupt Enable Register. .. 8-6
Schematic of Bits P07 to P03 .. 8-7
Schematic of Bit P02 .. 8-7
Schematic of Bit P01 .. 8-8
Schematic of Bit POO .. 8-8
Port P1, Port P2 Configuration ... 8-11
Schematic of One Bit in Port P1, P2 .. 8-15
Ports P3, P4 Configuration .. , ... 8-17
Schematic of Bits Pnx .. 8-19
Timer/Port Configuration ... 9-2
Timer/Port Counter, 16-Bit Operation .. 9-5
Timer/Port Comparator Input ... 9-6
Timer/Port Control Register ... 9-7
Timer/Port Counter Registers .. 9-8
Timer/Port Data Register .. 9-9
Timer/Port Enable Register .. 9-9
Timer/Port Interrupt Scheme ... 9-11
Basic Timer1 Configuration .. 10-2
Basic Timer1 Control Register ... 10-3
Basic Timer1 Control Register Function ... 10-4
Basic Timer1 Counter BTCNT1 .. 10-4
Basic Timer1 Counter BTCNT2 .. 10-5
8-Bit Timer/Counter .. 10-7
8-Bit Counter Example .. 10-8
8-Bit Timer/Counter Control Register ... 10-9
Start Bit Detection .. 1 0-12
Data Latching .. 10-12
Schematic of Watchdog Timer .. 10-13
Watchdog Timer Control Register ... 10-14
Reading WDTCTL .. 10-15
Writing to WDTCTL ... 10-15
TimecA Block Diagram .. 11-3
Mode Control .. 11-4
Schematic of 16-Bit Timer .. 11-5
Schematic of Clock Source Select and Input Divider 11-5
Timer Up Mode .. 11-7
Up Mode Flag Setting .. 11-7
New Period> Old Period .. 11-8
New Period < Old Period .. 11-8
Timer Continuous Mode. .. 11-9
Continuous Mode Flag Setting 11-9
Output Unit in Continuous Mode for Time Intervals 11-10
Timer Up/Down Mode ... 11-10
Output Unit in Up/Down Mode (II) ... 11-11
Timer Up/Down Direction Control .. 11-11
Up/Down Mode Flag Setting .. 11-12

11-16
11-17
11-18
11-19
11-20
11-21
11-22
11-23
11-24
11-25
11-26
11-27
11-28
11-29
11-30
11-31
11-32
11-33
11-34
12-1
12-2
12-3
12-4
12-5
12-6
12-7
12-8

Contents

Altering CCRO - Timer in Up/Down Mode 11-12
Capture/Compare Blocks .. 11-13
Capture Logic Input Signal ... 11-14
Capture Signal .. 11-15
Capture Cycle .. 11-16
Software Capture Example ... 11-17
Output Unit ... 11-19
Output Control Block .. 11-21
Output Examples - Timer in Up Mode ... 11-23
Output Examples - Timer in Continuous Mode .. 11-23
Output Examples - Timer in Up/Down Mode (I) 11-24
Timer_A Control Register TACTL .. 11-25
TAR Register 11-27
Capture/Compare Control Register CCTLx 11-27
Capture/Compare Interrupt Flag .. 11-30
Schematic of Capture/Compare Interrupt Vector Word 11-31
Vector Word Register. .. 11-31
UART Implementation ... 11-35
TimecA UART Timing .. 11-36
Block Diagram of USART ... 12-2
Block Diagram of USART - UART Mode .. 12-3
Asynchronous Frame Format .. 12-4
Asynchronous Bit Format Example for n or n + 1 Clock Periods 12-4
Typical Baud-Rate Generation Other Than MSP430 12-5
MSP430 Baud Rate Generation Example for n or n + 1 Clock Periods 12-6
Idle-Line Multiprocessor Format .. 12-7
USART Receiver Idle Detect .. 12-8

12-9 Double-Buffered WUT and TX Shift Register. .. 12-8
12-10 USART Transmitter Idle Generation .. 12-9
12-11 Address-Bit Multiprocessor Format .. 12-10
12-12 State Diagram of Receiver Enable ... 12-11
12-13 State Diagram of Transmitter Enable .. 12-12
12-14 Receive Interrupt Operation .. 12-13
12-15 Transmit Interrupt Operation .. 12-14
12-16 USART Control Register UCTL ... 12-15
12-17 Transmitter Control Register UTCTL .. 12-17
12-18 Receiver-Control Register URCTL ... 12-18
12-19 USART Baud Rate Select Register .. 12-20
12-20 USART Modulation Control Register ... 12-21
12-21 USART Receive Data Buffer URXBUF ... 12-21
12-22 Transmit Data Buffer UTXBUF .. 12-22
12-23 Receive-Start Conditions .. 12-23
12-24 Receive-Start Timing Using URXS Flag, Start Bit Accepted .. 12-24
12-25 Receive Start Timing Using URXS Flag, Start Bit Not Accepted 12-24
12-26 Receive Start Timing Using URXS Flag, Glitch Suppression 12-24
12-27 MSP430 Transmit Bit Timing ... 12-27
12-28 MSP430 Transmit Bit Timing Errors ... 12-27
12-29 Synchronization Error. .. 12-30
13-1 Block Diagram of USART ... 13-2
13-2 Block Diagram of USART -SPI Mode .. 13-3

xiii

Contents

13-3
13-4
13-5
13-6
13-7
13-8
13-9
13-10
13-11
13-12
13-13
13-14
13-15
13-16
13-17
13-18
13-19
13-20
13-21

MSP430 USART as Master, External Device With SPI as Slave 13-5
Serial Synchronous Data Transfer .. 13-6
Data Transfer Cycle .. 13-6
MSP430 USART as Slave in Three-Pin or Four-Pin Configuration 13-7
State Diagram of Receiver Enable Operation-MSP430 as Master 13-10
State Diagram of ReceiveITransmit Enable-MSP430 as Slave, Three-Pin Mode. . .. 13-10
State Diagram of Receive Enable-MSP430 as Slave, Four-Pin Mode 13-11
State Diagram of Transmit Enable-MSP430 as Master. .. 13-11
State Diagram of Transmit Enable-MSP430 as Slave 13-12
Receive I nterrupt Operation .. 13-13
Receive Interrupt State Diagram .. 13-13
Transmit-Interrupt Operation. .. 13-14
USART Control Register 13-15
Transmit Control Register UTCTL ... 13-16
USART Clock Phase and Polarity ... 13-17
Receive Control Register URCTL ... 13-18
USART Baud-Rate Select Register .. 13-18
USART Modulation Control Register. .. 13-19
Receive Data Buffer URXBUF .. 13-19

13-22 Transmit Data Buffer UTXBUF .. 13-19
14-1 Static Wave-Form Drive. .. 14-3
14-2
14-3
14-4
14-5
14-6
14-7
14-8
14-9
14-10
14-11
14-12
14-13
14-14
14-15
14-16
14-17
15-1
15-2
15-3
15-4
15-5
15-6
15-7
15-8
15-9
15-10
15-11
15-12
15-13

xiv

Two-MUX Wave-Form Drive .. 14-4
Three-MUX Wave-Form Drive ... 14-5
Four-MUX Wave-Form Drive .. 14-6
LCD Controller/Driver Block Diagram ... 14-7
External LCD Module Analog Voltage .. 14-9
Schematic of LCD Output .. 14-10
Segment Line or Output Line ... 14-11
Mixed LCD and Port Mode Application ... 14-12
Schematic of LCD Pin - Timer/Port Comparator. .. 14-13
LCD Control and Mode Register .. 14-14
Information Control .. 14-15
Display Memory Bits Attached to Segment Lines 14-16
Example With the Static Drive Mode .. 14-17
Example With the Two-MUX Mode .. 14-18
Example With the 3-MUX Mode ... 14-19
Example With the Four-MUX Mode .. 14-20
ADC12+2 Module Configuration ... 15-2
ADC12+2 Schematic ... 15-5
ADC12+2 Timing, 12-Bit Conversion .. 15-6
ADC12+2 Timing, 12+2-Bit Conversion ... 15-6
ADC, Input Sampling Timing ... 15-7
AID Current Source .. 15-9
Analog Multiplexer .. 15-10
AID Grounding and Noise Considerations 15-11
ADC12+2 Input Register, Input Enable Register 15-12
Input Register AIN .. 15-13
Input Enable Register AEN ... 15-14
ADC12+2 Data Register ADAT .. 15-14
ADC12+2 Control Register ACTL ... 15-15

Contents

8-1 Double-Operand Instructions ... 8-4
8-2 Single-Operand Instructions .. 8-5
8-3 Conditional and Unconditional Jump Instructions 8-5
8-4 Decrement Overlap .. 8-26
8-5 Main Program Interrupt ... 8-46
8-6 Destination Operand-Arithmetic Shift Left 8-47
8-7 Destination Operand-Carry Left Shift : 8-48
8-8 Destination Operand-Arithmetic Right Shift .. 8-49
8-9 Destination Operand-Carry Right Shift ... 8-51
8-10 Destination Operand 8yte Swap ... 8-58
8-11 Destination Operand Sign Extension. .. 8-59
C-1 EPROM Control Register EPCTL ... C-3
C-2 EPROM Programming With Serial Data Link C-5
C-3 EPROM Programming With Controller'S Software C-6

xv

Tables
1111 III J

r iU nil Jt

iill! II !1 ill III
;;;;'EU I 17JW'M

2 lill" i III! !i'!lil~
ijQI_aam

3-1 Interrupt Control Bits in SFRs .. 3-11
3-2 Interrupt Enable Registers 1 and 2 ... 3-12
3-3 Interrupt Flag Register 1 and 2 ... 3-13
3-4 Module Enable Registers 1 and 2 .. 3-13
3-5 Interrupt Sources, Flags, and Vectors of 3xx Configurations 3-14
3-6 Low-Power Mode Logic Chart ... 3-17
4-1 Peripheral File Address Map-Word Modules. .. 4-9
4-2 Peripheral File Address Map-Byte Modules 4-10
4-3 Special Function Register Address Map ... 4-11
5-1 Register by Functions ... 5-2
5-2 Description of Status Register Bits .. 5-4
5-3 Values of Constant Generators CG1, CG2 .. 5-5
5-4 Source/Destination Operand Addressing Modes 5-7
5-5 Register Mode Description ... 5-8
5-6 Indexed Mode Description. .. 5-9
5-7 Symbolic Mode Description .. 5-10
5-8 Absolute Mode Description .. 5-11
5-9 Indirect Mode Description ... 5-12
5-10 Indirect Autoincrement Mode Description .. 5-13
5-11 Immediate Mode Description .. 5-14
5-12 Instruction Format I and Addressing Modes. .. 5-15
5-13 Instruction Format-II and Addressing Modes 5-16
5-14 Miscellaneous Instructions or Operations .. 5-16
5-15 Double Operand Instruction Format Results 5-18
5-16 Single Operand Instruction Format Results 5-19
5-17 Conditional-Jump Instructions ... 5-20
5-18 Emulated Instructions ... 5-21
6-1 Sum Extension Register Contents .. 6-4
6-2 Hardware Multiplier Registers. .. 6-9
7-1 The DCO Range Control Bits , 7-5
8-1 Port PO Control Registers .. 8-4
8-2 Port P1 Registers .. 8-12
8-3 Port P2 Registers ... -: 8-12
8-4 Port P3 P4 Registers ... 8-18
9-1 Timer/Port Counter Signals, 16-Bit Operation 9-6
9-2 Timer/Port Registers. .. 9-7
9-3 Bit EN1 Level/Signal ... 9-8
9-4 Timer/Port Clock Source Selection .. 9-8
9-5 Counter TPCNT2 Clock Sources .. 9-10

xvi

Contents

10-1 Basic Timer1 Registers ... 10-3
10-2 BTCNT2 Input Frequency Sources ... 10-4
10-3 8-Bit Timer/Counter Registers ... 10-9
10-4 Clock Input Source .. 10-10
10-5 WDTCNT Taps ... 10-14
11-1 Timer Modes .. 11-4
11-2 State of OUTx at Next Rising Edge of Timer Clock 11-22
11-3 TimecA Registers .. 11-25
11-4 Mode Control .. 11-26
11-5 Input Clock Divider Control Bits ... 11-26
11-6 Clock Source Selection .. 11-26
11-7 Capture/Compare Control Register Output Mode 11-29
11-8 Capture/Compare Control Register Capture Mode 11-29
11-9 Vector RegisterTAIV Description .. 11-32
12-1 USART Interrupt Control and Enable Bits - UART Mode 12-11
12-2 Control and Status Registers ... 12-15
12-3 Interrupt Flag Set Conditions ... 12-19
12-4 Receive Data Buffer Characters .. 12-22
12-5 Commonly Used Baud Rates, Baud Rate Data, and Errors 12-29
13-1 USART Interrupt Control and Enable Bits - SPI Mode 13-9
13-2 USART Control and Status Registers 13-15
14-1 LCDM Selections ... 14-15
14-2 LCDM Signal Outputs for Port Functions 14-15
15-1 ADC12+2 Control Registers .. 15-13
15-2 AID Input Selection , .. 15-15
15-3 AID Current Source Selection. .. 15-16
15-4 Range Selection .. 15-16
15-5 ADCLK Clock Frequency ... '" , , 15-16

xvii

Examples

12-1 4800 Baud .. 12-6
12-2 19,200 Baud .. 12-6
12-3 Error Example for 2400 Baud .. 12-28
12-4 Synchronization Error-2400 Baud .. 12-31
C-1 MSP430 On-Chip Program Memory Format ... C-3
C-2 Fast Programming Subroutine .. C-4
C-3 Programming EPROM Module With Controller's Software C-7
C-4 Subroutine.. C-7

xviii

Notes, Cautions, and Warnings
~~iM!ligln~'ift £us &it

_t iJd DUeili I uri tNt

Word-Byte Operations .. 4-7
Status Register Bits V, N, Z and C 5-5
Data in Registers. .. 5-8
Instruction Format II Immediate Mode .. 5-16
Destination Address ... 5-17
Instructions CMP and SUB ... 5-18
Writing to the Read-Only Register POIN ... 8-4
Port PO Interrupt Sensitivity .. " 8-6
Writing to Read-Only Registers P1IN, P21N ... 8-12
Port P1, Port P21nterrupt Sensitivity ... 8-14
Function Select With P1SEL, P2SEL ... 8-15
Writing to Read-Only Register .. 8-18
Function Select With PnSEL Registers ... 8-19
RC1 FG and RC2FG When Software Disables the Counter 9-7
Watchdog Timer, Changing the Time Interval .. 10-17
Capture With Timer Halted .. 11-16
Changing Timer_A Control Bits .. 11-27
Modifying Timer A Register TAR. .. 11-27
Simultaneous Capture and Capture Mode Selection 11-30
Writing to Read-Only Register TAIV .. 11-32
URXE Reenabled, UART Mode .. 12-11
Writing to UTXBUF, UART Mode ... 12-12
Write to UTXBUF/Reset of Transmitter, UART Mode 12-12
Mark and Space Definitions .. 12-17
Receive Status Control Bits .. 12-20
Break Detect (BRK) Bit With Halted UART Clock 12-25
USART Synchronous Master Mode, Receive Initiation 13-7
USPIIE Re-Enabled, SPI Mode .. 13-10
Writing to UTXBUF, SPI Mode ... 13-12
Write to UTXBUF/Reset of Transmitter, SPI Mode 13-12
ADC, Start-of-Conversion .. 15-3
ADC12+2 Offset Voltage ... 15-8
Asterisked Instructions .. B-3
Operations Using the Status Register (SR) for Destination B-4
Conditional and Unconditional Jumps ... B-6
Disable Interrupt .. B-28
Enable Interrupt .. B-29
Emulating No-Operation Instruction .. B-42
The System Stack Pointer .. B-43

xix

Contents

The System Stack Pointer .. 8-44
RLA Substitution .. 8-47
RLC and RLC.8 Emulation ... 8-48
8orrow Is Treated as a .NOT .. 8-52
8orrow Is Treated as a .NOT. ... 8-56
8orrow Is Treated as a .NOT. Carry .. 8-57
EPROM Exposed to Ambient Light (1) .. C-2

xx

Chapter 1

Introduction
W"" =

This chapter outlines the features and capabilities of the Texas Instruments
(TI) MSP430x3xx family of microcontrollers.

The MSP430 employs a von-Neumann architecture, therefore, all memory
and peripherals are in one address space.

The MSP430 devices constitute a family of ultralow-power, 16-bit RISC
microcontrollers with an advanced architecture and rich peripheral set. The
architecture uses advanced timing and design features, as well as a highly
orthogonal structure to deliver a processor that is both powerful and flexible.
The MSP430 consumes less than 400 ~ in active mode operating at 1 MHz
in a typical 3-V system and can wake up from a <2-j..tA standby mode to fully
synchronized operation in less than 6 j..ts. These exceptionally low current
requirements, combined with the fast wake-up time, enable a user to build a
system with minimum current consumption and maximum battery life.

Additionally, the MSP430 family has an abundant mix of peripherals and
memory sizes enabling true system-on-a-chip designs. The peripherals
include a 14-bit AID, slope AID, multiple timers (some with capture/compare
registers and PWM output capability), LCD driver, on-chip clock generation,
HIW multiplier, USART, Watchdog Timer, GPIO, and others.

See http://www.tLcom for the latest device information and literature for the
MSP430 family.

Topic Page

1.1 Features and Capabilities.. 1-2

1.2 31x Devices .••.••...•••.••.•••.•...•.•...•....•••••.•..••..•. 1-3

1.3 32x Devices .•••••.•.••.•••••.•••.•.....•...••.•••.•.•.•....•. 1-3

1.4 33x Devices••...•..•..•...•...•.•••.••••....••.....•••.• 1-4

1-1

Features and Capabilities

1.1 Features and Capabilities

1-2

The TI MSP430x3xx family of controllers has the following features and
capabilities:

o Ultralow-power architecture:
0.1- 400 J..IA nominal operating current @1 MHz
2.5 - 5.5 V operation available
6 JlS wake-up from standby mode
Extensive interrupt capability relieves need for polling

o Flexible and powerful processing capabilities:
Seven source-address modes
Four destination-address modes
Only 27 core instructions
Prioritized, nested interrupts
No interrupt or subroutine level limits
Large register file
Ram execution capability
Efficient table processing
Fast hex-to-decimal conversion

o Extensive, memory-mapped peripheral set including:
Integrated 14-bit AID converter
Multiple timers and PWM capability
Slope AID conversion (all devices)
Integrated USART
Integrated LCD driver
Watchdog Timer
Multiple I/O with extensive interrupt capability
Integrated programmable oscillator
32-kHz crystal oscillator (all devices)

o Powerful, easy-to-use development tools including:
Simulator (including peripheral and interrupt simulation)
C compiler
Assembler
Linker
Emulators (ICE and JTAG)
Evaluation kits
Device programmer
Application notes
Example code

o Versatile ultralow-power device options including:
Masked ROM
OTP (in-system programmable)
EPROM (UV-erasable, in-system programmable)
-40°C to 85°C operating temperature range
Up to 64K addressing space
Memory mixes to support all types of applications

1.2 31x Devices

1.3 32x Devices

31x Devices

The 31x devices contain the following peripherals:

o FLL clock system (on-chip DCO + crystal oscillator)
o Watchdog Timer/General-Purpose Timer
o Timer/Port (2 8-bit or 1 16-bit timer with analog comparator, 5 outputs, and

1 I/O. Ideal for slope AID conversion)
o Basic Timer1 (2 8-bit timers or 1 16-bit timer)
o LCD Controller/Driver (up to 92 segments)
o 8-Bit Timer/Counter (8-bit counter with preload. Can be used as UART)
o I/O PortO (8 I/O's all with interrupt)

Available 31x devices are:

MSP430C311S
MSP430C312
MSP430C314
MSP430C315
MSP430P315
MSP430P315S
PMS430E315

2KB ROM, 128B RAM
4KB ROM, 256B RAM
12KB ROM, 512B RAM
16KB ROM, 512B RAM
16KB OTP, 512B RAM
16KB OTP, 512B RAM
16KB EPROM, 512B RAM

The 32x devices contain the following peripherals:

o FLL clock system (on-chip DCO + crystal oscillator)
o Watchdog Timer/General-Purpose Timer
o Timer/Port (2 8-bit or 1 16-bit timer with analog comparator, 5 outputs, and

1 I/O. Ideal for slope AID conversion)
o Basic Timer1 (2 8-bit timers or 1 16-bit timer)
o LCD Controller/Driver (up to 84 segments)
o 8-bit Timer/Counter (8-bit counter with preload. Can be used as UART)
o I/O PortO (8 I/O's all with interrupt)
o ADC12+2 (14-bit AID)

Available 32x devices are:

MSP430C323
MSP430C325
MSP430P325A
PMS430E325A

8KB ROM, 256B RAM
16KB ROM, 512B RAM
16KB OTP, 512B RAM
16KB EPROM, 512B RAM

Introduction 1-3

33xDevices

1.4 33x Devices

1-4

The 33x devices contain the following peripherals:

o FLL clock system (on-chip DCO + crystal oscillator)
o Watchdog Timer/General-Purpose Timer
o Timer/Port (2 8-bit or 1 16-bit timer with analog comparator, 5 outputs, and

1 I/O. Ideal for slope AID conversion)
o Basic Tlmer1 (2 a-bit timers or 1 16-bit timer)
o LCD Controller/Driver (up to 120 segments)
o 8-Bit Timer/Counter (8-bit counter with preload. Can be used as UART)
o I/O PortO (8 I/O's all with interrupt)
o I/O Port1,2 (8 I/O's each all with interrupt)
o I/O Port3,4 (8 I/O's each)
o Hardware Multiplier (16 x 16-bit)
o TImer _A (16-bit timer with 5 capture/compare registers and PWM output)
o USART

Available 33x devices are:

MSP430C336
MSP430C337
MSP430P337 A
PMS430E337 A

24KB ROM, 1KB RAM
32KB ROM, 1KB RAM
32KB OTP, 1 KB RAM
32KB EPROM, 1 KB RAM

~Illl!lilli

WI

Chapter 2

Architectural Overview
til ewm III "?

iIIorr

This section describes the basic functions of an MSP430-based system.

The MSP430 devices contain the following main elements:

o Central processing unit
o Program memory
o Data memory
o Operation control
o Peripheral modules
o Oscillator and clock generator

Topic Page

2.1 Introduction. • . . . • • • . . • • 2·2

2.2 Central Processing Unit ...•..••..•••••...........•........•.•. 2·2

2.3 Program Memory••••.••..•..••............•.... 2·3

2.4 Data Memory•.•.•.•.•.....•....•.•...••..••.•• 2·3

2.5 Operation Control•...••.•.....•...•...........• 2·3

2.6 Peripherals. • • • . • • 2·4

2.7 Oscillator and Clock Generator 2·4

2-1

Introduction

2.1 Introduction

The architecture of the MSP430 family is based on a memory-to-memory
architecture, a common address space for all functional blocks, and a reduced
instruction set applicable to all functional blocks as illustrated in Figure 2-1.
See specific device data sheets for complete block diagrams of individual
devices.

Figure 2-1. MSP430 System Configuration

r---------------------------------,
Oscillator ACLK
System PROGRAM DATA 1/0 Port f-- USART

-
1/0 Port

Clock MCLK f-- - f---

MAB, t6Bit J1]~ MAB,4Bit

CPU RiW
Incl. - I-- -

16 Reg. MOB, 16 Bit MOB, S Bit

-~~g > .-,---. Conv.

r- I-- - f---

ADC r- WDT Basic Timer I-- S-BitTimer - LCD
DRIVER

Random
Logic

Module Select

~---------------------------------~

2.2 Central Processing Unit

2-2

The CPU incorporates a reduced and highly transparent instruction set and a
highly orthogonal design. It consists of a 16-bit arithmetic logic unit (ALU), 16
registers, and instruction control logic. Four of these registers are used for
special purposes. These are the program counter (PC), stack pointer (SP),
status register (SR), and constant generator (CGx). All registers, except the
constant-generator registers R3/CG2 and part of R2/CG1, can be accessed
using the complete instruction set. The constant generator supplies instruction
constants, and is not used for data storage. The addressing mode used on
CG1 separates the data from the constants.

The CPU control over the program counter, the status register, and the stack
pOinter (with the reduced instruction set) allows the development of
applications with sophisticated addressing modes and software algorithms.

2.3 Program Memory

2.4 Data Memory

Instruction fetches from program memory are always 16-bit accesses,
whereas data memory can be accessed using word (16-bit) or byte (a-bit)
instructions. Any access uses the 16-bit memory data bus (MDB) and as many
of the least-significant address lines of the memory address bus (MAB) as
required to access the memory locations. Blocks of memory are automatically
selected through module-enable signals. This technique reduces overall
current consumption. Program memory is integrated as programmable or
mask-programmed memory.

In addition to program code, data may also be placed in the ROM section of
the memory map and may be accessed using word or byte instructions; this
is useful for data tables, for example. This unique feature gives the MSP430
an advantage over other microcontrollers, because the data tables do not
have to be copied to RAM for usage.

Sixteen words of memory are reserved for reset and interrupt vectors at the
top of the 64-kilobytes address space from OFFFFh down to OFFEOh.

The data memory is connected to the CPU through the same two buses as the
program memory (ROM): the memory address bus (MAB) and the memory
data bus (MDB). The data memory can be accessed with full (word) data width
or with reduced (byte) data width.

Additionally, because the RAM and ROM are connected to the CPU via the
same busses, program code can be loaded into and executed from RAM. This
is another unique feature of the MSP430 devices, and provides valuable,
easy-to-use debugging capability.

2.5 Operation Control

The operation of the different MSP430 members is controlled mainly by the
information stored in the special-function registers (SFRs). The different bits
in the SFRs enable interrupts, provide information about the status of interrupt
flags, and define the operating modes of the peripherals. By disabling
peripherals that are not needed during an operation, total current consumption
can be reduced. The individual peripherals are described later in this manual.

Architectural Overview 2-3

Peripherals

2.6 Peripherals

Peripheral modules are connected to the CPU through the MAB, MOB, and
interrupt service and request lines. The MAB is usually a 5-bit bus for most of
the peripherals. The MOB is an 8-bit or 16-bit bus. Most of the peripherals
operate in byte format. Modules with an 8-bit data bus are connected by
bus-conversion circuitry to the 16-bit CPU. The data exchange with these
modules must be handled with byte instructions. The SFRs are also handled
with byte instructions. The operation for 8-bit peripherals follows the order
described in Figure 2-2.

Figure 2-2. Bus Connection of Modules/Peripherals

MAB

MDB

Interrupt Request

Interrupt Bus Grant

It I

Interrupt Request
Module/Peripheral

Interrupt Bus Grant

PUC

2.7 Oscillator and Clock Generator

2-4

The oscillator is designed for the commonly used 32,768 Hz, low-current
consumption clock crystal. All analog components are integrated into the
MSP430x3xx; only the crystal needs to be connected with no other external
components required.

In addition to the crystal oscillator, all MSP430 devices contain a digitally
controlled RC oscillator (DCa). The DCa is different from RC oscillators found
on other microcontrollers because it is digitally controllable and tuneable.

MSP430x3xx devices contain an additional logic block called the frequency
locked loop (FLL). The FLL continuously and automatically adjusts the
frequency of the DCa relative to the 32768-Hz crystal oscillator to stabilize the
DCa over voltage and temperature. This provides an effective, stable,
ultralow-power oscillator for the CPU and peripherals.

Clock source selection for peripherals is very flexible. Most peripherals are
capable of using the 32768-Hz crystal oscillator clock or the DCa clock. The
CPU executes from the DCa clock. See Chapter 7 for details on the clock
module.

Chapter 3

System Resets, Interrupts,
and Operating Modes

This chapter discusses the MSP430x3xx system resets, interrupts, and
operating modes.

Topic Page

3.1 System Reset and Initialization 3-2

3.2 Global Interrupt Structure .••.•••...•••..••.•••.••.•••..••••••. 3-5

3.3 MSP430 Interrupt-Priority Scheme •••.•.••.•.•••..•.•.•••.•.•.•• 3-6

3.4 Interrupt Processing •....••..•••••.•..••.•••.•.•.•••......•... 3-9

3.5 Operating Modes •.••••••••••••••••••••.•...•.•.•••..••...•••• 3-14

3.6 Basic Hints for Low-Power Applications ..•••••.•••••••..•.•..• 3·20

3-1

System Reset and Initialization

3.1 System Reset and Initialization

3.1.1 Introduction

The MSP430 system reset circuitry (shown in Figure 3-1) sources two internal
reset signals: power-on reset (POR) and power-up clear (PUC). Different
events trigger these reset signals and different initial conditions exist
depending on which signal was generated.

Figure 3-1. Power-on Reset and Power-up Clear Schematic

3-2

paR
Detect

OV
RST/MNI

r ---------, paR Dela
I Vee I Y

I I
I I

I
I ~ I
I OV OV I L _________ .J

paR
Latch 1---. paR

NMI(WDTCTL.5)t)>--------1

TIMSELtt >------a-~
WDTQn ~~~~~

WDTIFGt >------.f-(_~ 1----4.-. PUC

EQUt>------L

t From watchdog timer peripheral module
MCLK

A POR is a device reset. It is only generated by the two following events:

o Powering up the device

o A low signal on the RST/NMI pin when configured in the reset mode

A PUC is always generated when a POR is generated, but a POR is not
generated by a PUC. The following events trigger a PUC:

o A POR signal

o Watchdog Timer expiration (in watchdog mode only)

o Watchdog Timer security key violation

o A low signal on the RST/NMI pin when configured in the NMI mode

Note:

If desired, software can cause a PUC by simply writing to the watchdog timer
control register with an incorrect password.

,:,vsrem Reset and Initialization

Note:

Generation of the POR/PUC signals does not necessarily generate a system
reset interrupt. Anytime a POR is activated, a system reset interrupt is
generated. However, when a PUC is activated, a system reset interrupt may
or may not be generated. Instead, a lower priority interrupt vector may be
generated, depending on what action caused the PUC. Each device data
sheet gives a detailed table of what action generates each interrupt. This
table should be consulted for the proper handling of all interrupts.

When the Vee supply provides a fast rise time as shown in Figure 3-2, the
POR delay provides enough active time on the POR signal to allow the signal
to initialize the circuitry correctly after power up. When the Vee rise time is
slow, as shown in Figure 3-3, the POR detector holds the POR signal active
until Vee has risen above the V(POR) level. This also ensures a correct
initialization.

Figure 3-2. Power-On Reset Timing on Fast Vee Rise Time

v
Vee

POR

If power to the chip is cycled, the supply voltage Vee must fall below the V (min)
(see Figure 3-3) to ensure that another POR signal occurs when Vee is
powered up again. If Vee does not fall below V(min) during a cycle or a glitch,
a POR is not generated and power-up conditions do not set correctly.

Figure 3-3. Power-on Reset Timing on Slow Vee Rise Time

v

v
(POR) - ,- - -- - --

POR

System Resets, Interrupts, and Operating Modes 3-3

System Reset and Initialization

3.1.2 Device Initialization after System Reset

3-4

After a device reset (POR/PUC combination), the initial system conditions are:

o I/O pins switched to input mode (see note below).

o I/O flags are cleared as described in the I/O chapter (see note below).

o Other peripherals and registers initialized as described in their respective
chapters.

o Status register is reset.

o Program counter is loaded with address contained at reset vector location
(OFFFEh). CPU execution begins at that address.

o FLL begins regulation of the DCO.

Note:

I/O pins and flags are only initialized after power up. After the' 430 is powered
and running, if a reset is generated with RST/NMI pin (in reset mode), the I/O
pins are unaffected.

After a system reset, the user program can evaluate the various flags to
determine the source of the reset and take appropriate action.

The initial state of registers and peripherals is discussed in each applicable
section of this manual. Each register is shown with a key indicating the
accessibility of the register and the initial condition, for example, rw-(O), or
rw-D. In these examples, the r indicates read, the w indicates write, and the
value after the dash indicates the initial condition. If the value is in parenthesis,
the initial condition takes effect only after a POR - a PUC alone will not effect
the bit(s). If the value is not in parenthesis, it takes effect after a PUC alone or
after a POR/PUC combination. Some examples follow:

Type

rw-(O)

rw-O

r-1

w

Description

Read/write, reset with POR

Read/write, reset with POR or PUC

Read only, set with POR or PUC

Read only, no initial state

Write only, no initial state

Global

3.2 Global Interrupt Structure

There are four types of interrupts:

o System reset
o Maskable
o Nonmaskable
o (Non)maskable

System reset (paR/PUC) is discussed in section 3.1.

Maskable interrupts are caused by:
o A Watchdog-Timer overflow (if timer mode is selected)
o Other modules with interrupt capability

Structure

Nonmaskable interrupts are not maskable in any way. No individual interrupt
enable bit is implemented for them, and the general interrupt enable bit (GIE)
has no effect on them.

(Non)maskable interrupts are not masked by the general interrupt enable bit
(GIE) but are individually enabled or disabled by an individual interrupt enable
bit. When a (non)maskable interrupt is accepted, the corresponding interrupt
enable bit is automatically reset, therefore disabling the interrupt for execution
of the interrupt service routine (ISR). The RETI (return from interrupt)
instruction has no effect on the individual enable bits of the (non)maskable
interrupts. So the software must set the corresponding interrupt enable bit in
the ISR before execution of the RETI instruction for the interrupt to be
re-enabled after the ISR.

A nonmaskable NMI interrupt can be generated by an edge on the RST/NMI
pin if NMI mode is selected. Additionally, a (non)maskable interrupt event can
be generated when an oscillator fault occurs, if the oscillator fault interrupt
enable bit is set.

System Resets, Interrupts, and Operating Modes 3-5

MSP430 Interrupt-Priority Scheme

3.3 MSP430 Interrupt-Priority Scheme

The interrupt priority of the modules, as shown in Figure 3-4, is defined by the
arrangement of the modules in the connection chain: the nearer a module is
to the CPU/NMIRS, the higher the priority.

Figure 3-4. Interrupt Priority Scheme

CPU

3-6

Priority High
Low

GMIRS

-0
GIE Module Module WD Module Module

NMIRS
1 2 Timer m n

1 2 1 2 1 2 2 1 .. ~ ----. r---+ ---+ r--,

~ I f f < 'f " f < ~ PUC • Bus

q Grant

PUC

Circuit
OSCfault

~ ReseVNMI

i f--
WDT Security Key

f-- r--

MAB-5LSBs

Reset and NMI, as shown in Figure 3-5, can only be used as alternative
interrupts because they use the same input pin. The associated control bits are
located. in the watchdog timer control register shown in Figure 3-6, and are
password protected.

MSP430 InT.·/Jrlnrllr" Scheme

Figure 3-5. Block Diagram of NMllnterrupt Sources

RST/NMI

<=>-~-.----------------------~

PUC

OSCFault

IFG1.1

OFIE

lEU

NMURQA
PUC

IRQA: Interrupt Request Accepted

VCC

System Reset
Generator

PUC

POR

)-t----/---t-----t----/---r---+__ NMIRS

NMIES TMSEL NMI WOTQn EQU PUC POR

r ----
I
I S

I IFG1.Q

I Clear

WOT
Counter

POR

IRQA

TIMSEL --...... ---'

WOTIE

Watchdog Timer Module PUC

----------------------~

Figure 3-6. RSTINMI Mode Selection

7 o
WDTCTL
0120h I HOLD I NMIES I NMI I TMSEL I CNTCL I SSEL

rw-O rw-O rw-O rw-O (w)·O rw-O

IS1 ISO

rw-O rw-O

BITS 0-4,7 See Timers chapter.

BIT 5: The NMI bit selects the function of the RST/NMI input pin. It is cleared after a PUC signal.

NMI = 0: The RSi/NMI input works as reset input. As long as the RSi/NMI pin is held
low, the internal PUC signal is active (level-sensitive).

NMI = 1: The RSi/NMI input works as an edge-sensitive, nonmaskable interrupt input.

BIT 6: This bit selects the activating edge of the RST/NMI input if the NMI function is selected. It is
cleared after a PUC signal.

NMIES = 0: A rising edge triggers an NMI interrupt.

NMIES = 1: A falling edge triggers an NMI interrupt.

System Resets, Interrupts, and Operating Modes 3-7

MSP430 Interrupt-Priority Scheme

3.3.1 Operation of Global Interrupt-ResetlNMI

If the RST/NMI pin is set to the reset function, the CPU is held in the reset state
as long as the RST/NMI pin is held low. After the input changes to a high state,
the CPU starts program execution at the word address stored in word location
OFFFEh (reset vector).

If the RST/NMI pin is set to the NMI function, a signal edge (selected by the
NMIES bit) will generate an unconditional interrupt. When accepted, program
execution begins at the address stored in location OFFFCh. The RST/NMI flag
in the SFR IFG1.4 is also set.

Note:

When configured in the NMI mode, a signal generating an NMI event should
not hold the RST/NMI pin low, unless it is intended to hold the processor in
reset. When an NMI event occurs on the pin, the PUC signal is activated, thus
resetting the bits in the WDTCTL register. This results in the RST/NMI pin
being configured in the reset mode. If the signal on the RST/NMI pin that
generated the NMI event remains low, the processor will be held in the reset
state.

When NMI mode is selected and the NMI edge select bit is changed, an NMI
can be generated, depending on the actual level at RST/NMI pin. When the
NMI edge select bit is changed before selecting the NMI mode, no NMI is
generated.

3.3.2 Operation of Global Interrupt-Oscillator Fault Control

The oscillator fault signal warns of a possible error condition with the crystal
oscillator. It is generated by different events in the FLL Clock and Basic Clock
systems.

3.3.2.1 Oscillator Fault Control in the FLL Clock System

3-8

The oscillator fault signal is triggered if the 5MSB (29-25) DCa control taps in
the SCFI1 register are equal to 0, or greater than or equal to 28h. The oscillator
fault signal can be enabled to generate an NMI by bit IE1.1 in the SFRs. The
interrupt flag IFG1.1 in the SFRs can then be tested by the interrupt service
routine to determine if the NMI was caused by an oscillator fault. See chapter
7 for more details on the operation of the DCa oscillator and the FLL.

Interrupt Processing

3.4 Interrupt Processing

The MSP430 programmable interrupt structure allows flexible on-chip and
external interrupt configurations to meet real-time interrupt-driven system
requirements. Interrupts may be initiated by the processor's operating
conditions such as watchdog overflow; or by peripheral modules or external
events. Each interrupt source can be disabled individually by an interrupt
enable bit, or all maskable interrupts can be disabled by the general interrupt
enable (GIE) bit in the status register.

Whenever an interrupt is requested and the appropriate interrupt enable bit
and general interrupt enable (GIE) bit are set, the interrupt service routine
becomes active as follows:

1) CPU active: The currently executing instruction is completed.

2) CPU stopped: The low-power modes are terminated.

3) The program counter pointing to the next instruction is pushed onto the
stack.

4) The status register is pushed onto the stack.

5) The interrupt with the highest priority is selected if multiple interrupts
occurred during the last instruction and are pending for service.

6) The appropriate interrupt request flag resets automatically on single
source flags. Multiple source flags remain set for servicing by software.

7) The GIE bit is reset; the CPUOff bit, the OscOff bit, and the SCG1 bit are
cleared; the status bits V, N, Z, and C are reset. SCGO is left unchanged,
and loop control remains in the previous operating condition.

8) The content of the appropriate interrupt vector is loaded into the program
counter: the program continues with the interrupt handling routine at that
address.

The interrupt latency is six cycles, starting with the acceptance of an interrupt
request, and lasting until the start of execution of the appropriate
interrupt-service routine first instruction, as shown in Figure 3-7.

Figure 3-7. Interrupt Processing

Before
Interrupt

Item1

SP ---+ Item2 TOS

SP ---+

After
Interrupt

Item1

Item2

PC

SR TOS

System Resets, Interrupts, and Operating Modes 3-9

Interrupt Processing

The interrupt handling routine terminates with the instruction:

RETI (return from an interrupt service routine)

which performs the following actions:

1) The status register with all previous settings pops from the stack. All pre
vious settings of GIE, CPUOFF, etc. are now in effect, regardless of the
settings utilized during the interrupt service routine.

2) The program counter pops from the stack and begins execution at the
point where it was interrupted.

The return from the interrupt is illustrated in Figure 3-8.

Figure 3-8. Return from Interrupt

Before After

Return From Interrupt

Item1 Item1

Item2 Item2 TOS

PC PC

SP-+ SR TOS SR

A RETI instruction takes five cycles. Interrupt nesting is activated ifthe GIE bit
is set inside the interrupt handling routine. The GIE bit is located in status
register SRlR2, which is included in the CPU as shown in Figure 3-9.

Figure 3-9. Status Register (SR)

3-10

15

Reserved For Future Enhancements

\~----------------------~v~----------------------~
rw-O

Apart from the GIE bit, other sources of interrupt requests can be enabled/
disabled individually or in groups. The interrupt enable flags are located
together within two addresses of the special-function registers (SFRs). The
program-flow conditions on interrupt requests can be easily adjusted using the
interrupt enable masks. The hardware serves the highest priority within the
empowered interrupt source.

Interrupt Processing ______ '_Ulll_'_' _~ ______________________ .. ~~ .. .,fP' ~ v.

3.4.1 Interrupt Control Bits in Special-Function Registers (SFRs)

Most of the interrupt control bits, interrupt flags, and interrupt enable bits are
collected in SFRs under a few addresses, as shown in Table 3-1. The SFRs
are located in the lower address range and are implemented in byte format.
SFRs must be accessed using byte instructions.

Table 3-1. Interrupt Control Bits in SFRs

Address

OOOFh

OOOEh

OOODh

OOOCh

OOOBh

OOOAh

0009h

0008h

0007h

0006h

0005h

0004h

0003h

0002h

0001h

OOOOh

7 o
Not yet defined or implemented

Not yet defined or implemented

Not yet defined or implemented

Not yet defined or implemented

Not yet defined or implemented

Not yet defined or implemented

Not yet defined or implemented

Not yet defined or implemented

Not yet defined or implemented

Not yet defined or implemented

Module enable 2 (ME2.x)

Module enable 1 (ME1.x)

Interrupt flag reg. 2 (IFG2.x)

Interrupt flag reg. 1 (IFG1.x)

Interrupt enable 2 (IE2.x)

Interrupt enable 1 (IE1.x)

The MSP430 family supports SFRs by applying the correct logic and functions
to each individual module. Each module interrupt source can be individually
enabled or disable using the bits described in Table 3-2.

The interrupt-flag registers are described in Table 3-3. The module-enable
bits are described in Table 3-4.

System Resets, Interrupts, and Operating Modes 3-11

Interrupt Processing

Table 3-2. Interrupt Enable Registers 1 and 2

Bit Position Short Form Initial Statet Comments

IE1.0 WDTIE Reset Watchdog Timer enable signal. Inactive if watchdog mode is
selected. Active if Watchdog Timer is configured as general-
purpose timer.

lEU OFIE Reset Oscillator fault interrupt enable

IE1.2 POIE.O Reset Dedicated I/O PO.O interrupt enable

IE1.3 POIE.1 Reset Dedicated I/O PO.1 or 8-Bit Timer/Counter interrupt enable

IE1.4 Reset Reserved

IE1.5 Reset Reserved

IE1.6 Reset Reserved

IE1.7 Reset Reserved

IE2.0 URXIE Reset USART receive interrupt enable (33x devices)

IE2.1 UTXIE Reset USART transmit interrupt enable (33x devices)

IE2.2 ADIEITPIE Reset ADC enable (32x devices), Timer/Port enable (31x devices)

IE2.3 TPIE Reset Timer/Port (32x, 33x devices)

IE2.4 Reset Reserved

IE2.5 Reset Reserved

IE2.6 Reset Reserved

IE2.7 BTIE Reset Basic timer interrupt enable signal
t The initial state is the logical state after the PUC signal.

3-12

Interrupt Processing _U. ___ . __ H_. ____________________ ._. __ ._~~~ _____ u_~ ___ , ________________________________ -m

Table 3-3. Interrupt Flag Register 1 and 2

Bit Position Short Form Initial State Comments

IFG1.0 WDTIFG Set Set on Watchdog Timer overflow in watchdog mode or security key
violation.

Or reset Reset with VCC power-up, or a reset condition at the RST/NMI pin
in reset mode.

IFG1.1 OFIFG Set Flag set on oscillator fault

IFG1.2 POIFG.O Reset Dedicated I/O PO.O

IFG1.3 POIFG.1 Reset Dedicated I/O PO.1 or 8-Bit Timer/Counter

IFG1.4 ! NMIIFG Reset Set through the RST/NMI pin

IFG1.5 Reserved

IFG1.6 Reserved

IFG1.7 Reserved

IFG2.0 URXIFG Reset USART receive flag (33x devices)

IFG2.1 UTXIFG Set USART transmitter ready (33x devices)

IFG2.2 ADIFG Reset ADC, set on end-at-conversion

IFG2.3 Reserved

IFG2.4 Reserved

IFG2.5 Reserved

IFG2.6 Reserved

IFG2.7 BTIFG Unchanged Basic timer tlag

Table 3-4. Module Enable Registers 1 and 2

Bit Position Short Form Initial State Comments

ME1.0

ME1.1

ME1.2

ME1.3

ME1.4

ME1.5

ME1.6

ME1.7

ME2.0

ME2.1

ME2.2

ME2.3

ME2.4

ME2.5

ME2.6

ME2.7

URXE
USPIIE

UTXE

Reset
Reset

Reset

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

USART receiver enable (33x devices, UART mode)
USART transmit and receive enable (33x devices, SPI mode)

USART transmit enable (33x devices, UART mode)

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

System Resets, Interrupts, and Operating Modes 3-13

Operating Modes

3.4.2 Interrupt Vector Addresses

The interrupt vectors and the power-up starting address are located in the
ROM, using the address range OFFFFh - OFFEOh as described in Table 3-5.
The vector contains the 16-bit address of the appropriate interrupt handler
instruction sequence. The interrupt vectors for 3xx devices are shown in Table
3-5 in decreasing order of priority. See device data sheet for interrupt vectors
for a specific device.

Table 3-5. Interrupt Sources, Flags, and Vectors of 3xx Configurations

Interrupt Source Interrupt Flag System Interrupt Word Address Priority

Power-up, ext. reset, watchdog WDTIFG Reset OFFFEh 15 (highest)

NMI NMIIFG See Note OFFFCh 14
OSC. fault OFIFGt (Non)maskablel1

Dedicated 1/0 POIFG.O Maskable OFFFAh 13

Dedicated 1/0 POIFG.1 Maskable OFFF8h 12

Maskable OFFF6h 11

Watchdog Timer WDTIFG Maskable OFFF4h 10

TimecA CCIFGO Maskable OFFF2h 9

Timer_A TAIFG Maskable OFFFOh 8

USART receive URXIFG Maskable OFFEEh 7

USART transmit UTXIFG Maskable OFFECh 6

ADC, Timer/Port+ ADCIFG Maskable OFFEAh 5

Timer/Port§ Maskable OFFE8h 4

Port P2 P21FG.07t Maskable OFFE6h 3

Port P1 P11FG.07t Maskable OFFE4h 2

Basic timer BTIFG Maskable OFFE2h 1

Port 0 POIFG.27t Maskable OFFEOh o (lowest)

t Multiple source flags
:j: Timer/Port vector in '31 x configuration
§ Timer/Port vector in '32x and '33x configuration
11 Interrupt can be disabled with individual interrupt enable bit, but not with the general interrupt enable bit, GIE.

3.4.2.1 Extemallnterrupts

All eight bits of ports PO, P1, and P2 are designed for interrupt processing of
external events. All individual I/O bits are independently programmable. Any
combinations of inputs, outputs, and interrupt conditions are possible. This
allows easy adaptation to different I/O configurations. See Chapter 8 for more
details on I/O ports.

3.5 Operating Modes

3-14

The MSP430 family was developed for ultra-low power applications and uses
different levels of operating modes. The MSP430 operating modes, shown in
Figure 3-10, give advanced support to various requirements for ultra-low
power and ultra-low energy consumption. This support is combined with an
intelligent management of operations during the different module and CPU
states. An interrupt event wakes the system from each of the various operating

n",or""finn Modes

modes and the RETI instruction returns operation to the mode that was
selected before the interrupt event.

The ultra-low power system design which uses complementary metal-oxide
semiconductor (CMOS) technology, takes into account three different needs:

o The desire for speed and data throughput despite conflicting needs for
ultralow-power

o Minimization of individual current consumption

o Limitation of the activity state to the minimum required by the use of
low-power modes

There are four bits that control the CPU and the system clock generator:
CPUOff, OscOff, SCGO, and SCG1. These four bits support discontinuous
active mode (AM) requests, to limit the time period of the full operating mode,
and are located in the status register. The major advantage of including the
operating mode bits in the status register is that the present state of the
operating condition is saved onto the stack during an interrupt service request.
As long as the stored status register information is not altered, the processor
continues (after RETI) with the same operating mode as before the interrupt
event. Another program flow may be selected by manipulating the data stored
on the stack or the stack pointer. Being able to access the stack and stack
pointer with the instruction set allows the program structures to be individually
optimized, as illustrated in the following program flow:

o Enter interrupt routine

The interrupt routine is entered and processed if an enabled interrupt awakens
the MSP430:

• The SR and PC are stored on the stack, with the content present at the
interrupt event.

• Subsequently, the operation mode control bits OscOff, SCG1, and
CPUOff are cleared automatically in the status register.

o Return from interrupt

Two different modes are available to return from the interrupt service routine
and continue the flow of operation:

• Return with low-power mode bits set. When returning from the
interrupt, the program counter points to the next instruction. The
instruction pointed to is not executed, since the restored low-power
mode stops CPU activity.

• Return with low-power mode bits reset. When returning from the
interrupt, the program continues at the address following the
instruction that set the OscOff or CPUOff-bit in the status register. To
use this mode, the interrupt service routine must reset the OscOff,
CPUOff, SCGO, and SCG1 bits on the stack. Then, when the SR
contents are popped from the stack upon RETI, the operating mode
will be active mode (AM).

System Resets, Interrupts, and Operating Modes 3-15

Operating Modes

3-16

The software can configure five operating modes:

o Active mode AM; SCG1 =0, SCGO=O, OscOff=O, CPUOff=O:
CPU clocks are active

o Low-power mode ° (LPMO); SCG1=0, SCGO=O, OscOff=O, CPUOff=1:
CPU is disabled
ACLK and MCLK remain active
Loop control for MCLK remains active

o Low-power mode 1 (LPM1); SCG1 =0, SCGO=1, OscOff=O, CPUOff=1:
CPU is disabled
Loop control for MCLK is disabled
ACLK and MCLK remain active

o Low-power mode 2 (LPM2); SCG1=1, SCGO=O, OscOff=O, CPUOff=1:
CPU is disabled
MCLK and loop control for MCLK are disabled
DCC's dc-generator remains enabled
ACLK remains active

o Low-power mode 3 (LPM3); SCG1 =1, SCGO=1, OscOff=O, CPUOff=1:
CPU is disabled
MCLK and loop control for MCLK are disabled
DCC oscillator is disabled
DCC's dc-generator is disabled
ACLK remains active

o Low-power mode 4 (LPM4); SCG1=X, SCGO=X, OscOff=1, CPUOff=1:

Note:

CPU is disabled
ACLK is disabled
MCLK and loop control for MCLK are disabled
DCC oscillator is disabled
DCC's dc-generator is disabled
Crystal oscillator is stopped

Peripheral operation is not halted by CPUOff. Peripherals are controlled by
their individual control registers.

Table 3-6. Low-Power Mode Logic Chart

SCG1 SCGO OscOff
LPMO 0 0 0

LPM1 0 1 0

LPM2 0 0

LPM3 1 1 0

LPM4 X X

These modes are illustrated in Figure 3-10.

Figure 3-10. MSP430x3xx Family Operating Modes

FLL is Slowed Down
WDT is Active

Operating Modes

CPUOff

DC Generator Off

System Resets, Interrupts, and Operating Modes 3-17

Operating Modes ,

Figure 3-11. Typical Current Consumption vs Operating Modes

730
700
600

« 500
~400

~ 300
200
100

o
AM LPMO LPM1 LPM2

Operating Modes

4 1.3

LPM3

• Vee=5V
Gill Vee = 3 V

0.10.1

LPM4

The low-power modes 1-4 enable or disable the CPU and the clocks. In
addition to the CPU and clocks, enabling or disabling specific peripherals may
further reduce total current consumption of the individual modes. The activity
state of each peripheral is controlled by the control registers for the individual
peripherals. An example is the enable/disable function of the segment lines of
the LCD peripheral: they can be turned on or off using a single register bit in
the LCD control and mode register. In addition, the SFRs include module
enable bits that may be used to enable or disable the operation of specific
peripheral modules (see Table 3-4).

3.5.1 Low-Power Modes 0 and 1 (LPMO and LPM1)

3-18

Low-power mode 0 or 1 is selected if bit CPUOff in the status register is set.
Immediately after the bit is set the CPU stops operation, and the normal
operation of the system core stops. The operation of the CPU halts and all
internal bus activities stop until an interrupt request or reset occurs. The
system clock generator continues operation, and the clock signals MCLK and
ACLK stay active depending on the state of the other three status register bits,
SCGO, SCG1, and OscOff.

The peripherals are enabled or disabled according with their individual control
register settings, and with the module enable registers in the SFRs. All I/O port
pins and RAM/registers are unchanged. Wake up is possible through all
enabled interrupts.

The following are examples of entering and exiting LPMO. The method shown
is applicable to all low-power modes.

The following example describes entering into low-power mode O.

;===Main program flow with switch to CPUOff Mode==============

BIB #18h,BR ;Enter LPMO + enable general interrupt GIE
; (CPUOff=l, GIE=l). The PC is incremented
;during execution of this instruction and
;points to the consecutive program step.
;The program continues here if the CPUOff
;bit is reset during the interrupt service
;routine. Otherwise, the PC retains its
;value and the processor returns to LPMO.

OOl9ral~ina Modes

The following example describes clearing low-power mode O.

;===Interrupt service routine=================================
;CPU is active while handling interrupts

BIC #10h,O(SP) ;Clears the CPUOff bit in the SR contents
;that were stored on the stack.

RETI ;RETI restores the CPU to the active state
;because the SR values that are stored on
;the stack were manipulated. This occurs
;because the SR is pushed onto the stack
;upon an interrupt, then restored from the
;stack after the RETI instruction.

3.5.2 Low-Power Modes 2 and 3 (LPM2 and LPM3)

Low-power mode 2 or 3 is selected if bits CPUOff and SCG1 in the status
register are set. Immediately after the bits are set, CPU, and MCLK operations
halt and all internal bus activities stop until an interrupt request or reset occurs.

Peripherals that operate with the MCLK signal are inactive because the clock
signal is inactive. Peripherals that operate with the ACLK signal are active or
inactive according with the individual control registers and the module enable
bits in the SFRs. All I/O port pins and the RAM/registers are unchanged. Wake
up is possible by enabled interrupts coming from active peripherals or
RST/NMI.

3.5.3 Low-Power Mode 4 (LPM4)

I n low-power mode 4 all activities cease; only the RAM contents, I/O ports, and
registers are maintained. Wake up is only possible by enabled external
interrupts.

Before activating LPM4, the software should consider the system conditions
during the low-power mode period. The two most important conditions are
environmental (that is, temperature effect on the DCO), and the clocked
operation conditions.

The environment defines whether the value of the frequency integrator should
be held or corrected. A correction should be made when ambient conditions
are anticipated to change drastically enough to increase or decrease the
system frequency while the device is in LPM4.

System Resets, Interrupts, and Operating Modes 3-19

Basic Hints for Low-Power Applications .
3.6 Basic Hints for Low-Power Applications

3-20

There are some basic practices to follow when cu rrent consumption is a critical
part of a system application:

o Switch off analog circuitry when possible.

o Select the lowest possible operating frequency for the core and the
individual peripheral module.

o Select the weakest drive capability if an LCD is used or switch the drive
off.

o Use the interrupt driven software; the program starts execution rapidly.

o Tie all unused inputs to an applicable voltage level. The list below defines
the correct termination for all unused pins.

PIN Potential Comment

0 AVec: DVee

0 AVss: DVss

0 SVcc: open May be used as a low impedance output

0 AOto A7: open Switched to analog inputs: AEN.x=O

0 Xout: open

0 XBUF: open

0 CI: VSS May be used as a digital input

0 TPO.O to TPO.5: open TP.5 switched to output direction, others to
Hi-Z

0 Px.O to Px.7: open Unused ports switched to output direction

0 R03: VSS

0 R13: VSS

0 R23: Vss

0 R33: open

0 SO to S1: open

0 S3 to S20: open Switched to output direction

0 ComO to Com3: open

0 RST/NMI: DVee resp. Pullup resistor 100k
Vee

0 TOO:

0 TOI: Refer to device specific datasheets for the correct ter-

0 TMS: mination of these pins.

0 TCK:

L U8.I 1IJt m,

Chapter 4

Memory
III! am ,

rnnnllfH UIia:1rr1W

MSP430 devices are configured as a von-Neumann architecture. It has code
memory, data memory, and peripherals in one address space. As a result, the
same instructions are used for code, data, or peripheral accesses. Also, code
may be executed from RAM.

Topic Page

4.1 Introduction. • • . • .. 4·2

4.2 Data in the Memory .•..•...••.•••...............•......•..•... 4·3

4.3 Internal ROM Organization•..•............••............. 4·4

4.4 RAM and Peripheral Organization .••.•.......•...•.....•....... 4·6

4-1

Introduction

4.1 Introduction

All of the physically separated memory areas (ROM, RAM, SFRs, and
peripheral modules) are mapped into the common address space, as shown
in Figure 4-1 forthe MSP430family. The addressable memory space is 64KB.
Future expansion is possible.

Figure 4-1. Memory Map of Basic Address Space

Address
(He

OFFF

OFFE

OFFD

x.)

Fh

Oh

Fh

+
+-

+
+-

020

01F

Oh

Fh • • •
010

OF

01
o

Oh

Fh

Oh
Fh

Oh

Interrupt Vector Table

Program Memory
Branch Control Tables

Data Tables ...

Data Memory

16-Bit Peripheral Modules

8-Bit Peripheral Modules

Special Function Registers

Function Access

ROM Word/Byte

ROM Word/Byte

RAM Word/Byte

Timer,
Word

ADC, ...

I/O, LCD Byte
8bT/C, ...

SFR Byte

The memory data bus (MOB) is 16- or 8-bits wide. For those modules that can
be accessed with word data the width is always 16 bits. For the other modules,
the width is 8 bits, and they must be accessed using byte instructions only. The
program memory (ROM) and the data memory (RAM) can be accessed with
byte or word instructions.

Figure 4-2. Memory Data Bus

4-2

Address Range OOOOh - OOFFh

8-Bit Peripheral Modules,
Byte Access

High Byte +-11-41----+--41---.... ---........ - ...
Data Bus

Low Byte

Byte/Word
Access

16-Bit Peripheral Modules,
Word Access

Data in the Memory

4.2 Data in the Memory

Bytes are located at even or odd addresses as shown in Figure 4-3. However,
words are only located at even addresses. Therefore, when using word
instructions, only even addresses may be used. The low byte of a word is
always at an even address. The high byte of a word is at the next odd address
after the address of the word. For example, if a data word is located at address
xxx2h, then the low byte of that data word is located at address xxx2h, and the
high byte of that word is located at address xxx3h.

Figure 4-3. Bits, Bytes, and Words in a Byte-Organized Memory

••• xxxAh

15 14 . . Bits .. 9 8 xxx9h

7 6 .. Bits .. 1 0 xxx8h

Byte xxx7h

Byte xxx6h

Word (High Byte) xxx5h

Word (Low Byte) xxx4h

••• xxx3h

Memory 4-3

Internal ROM Organization

4.3 Internal ROM Organization

Various sizes of ROM (OTP, masked-ROM, or EPROM) are available within
the 64-kB address space, as shown in Figure 4-4. The common address
space is shared with SFRs, peripheral module registers, data and code
memory. The SFRs and peripheral modules are mapped into the address
range, starting with 0 and ending with 01 FFh. The remaining address space,
0200h to OFFFFh, is shared by data and code memory. The start address for
ROM depends on the amount of ROM present. The interrupt vector table is
mapped into the the upper 16 words of ROM address space, with the highest
priority interrupt vector at the highest ROM word address (OFFFEh). See the
individual data sheets for specific memory maps.

Figure 4-4. ROM Organization

OFFFEh
OFFEOh •

Vectors Vectors Vectors Vectors

• •
OFOOOh
OEFFFh

• • •
ODOOOh

4k

12 k

-----------....... -_
OCFFFh

• • •
OBOOOh

32 k

---------------........ __
xxk

4.3.1 Processing of ROM Tables

4-4

The MSP430 architecture allows for the storage and usage of large tables in
ROM without the need to copy the tables to RAM before using them. This ROM
accessing of tables allows fast and clear programming in applications where
data tables are necessary. This offers the flexible advantages listed below, and
saves on ROM and RAM requirements. To access these tables, all word and
byte instructions can be used.

o ROM storage of an output programmable logic array (OPLA) for display
character conversion

o The use of as many OPLA terms as needed (no restriction on n terms)

o OTP version automatically includes OPLA programmability

o Computed table accessibility (for example, for a bar graph display)

o Table-supported program flows

Internal ROM Organization

4.3.2 Computed Branches and Calls

Computed branches and subroutine calls are possible using standard
instructions. The call and branch instructions use the same addressing modes
as the other instructions.

The addressing modes allow indirect-indirect addressing that is ideally suited
for computed branches and calls. This programming technique permits a
program structure that is different from conventional 8- and 16-bit
microcontrollers. Most of the routines can be handled easily by using software
status handling instead of flag-type program-flow control.

The computed branch and subroutine calls are valid throughout the entire
ROM space.

Merno(y 4-5

RAM and Peripheral Organization

4.4 RAM and Peripheral Organization

The entire RAM can be accessed with byte or word instructions using the
appropriate instruction suffix. The peripheral modules, however, are located
in two different address spaces and must be accessed with the appropriate
instruction length.

o The SFRs are byte-oriented and mapped into the address space from Oh
up to OFh.

o Peripheral modules that are byte-oriented are mapped into the address
space from 010h up to OFFh.

o Peripheral modules that are word-oriented are mapped into the address
space from 100h up to 01 FFh.

4.4.1 Random Access Memory

RAM can be used for both code and data memory. Code accesses are always
performed on even byte addresses.

The instruction mnemonic suffix defines the data as being word or byte data.

Example:

ADD.B

ADDC.B

ADD

AD DC

& TCDATA,TCSUM_L

TCSUM_H

;Byte access

;Byte access

ADD.w R5,SUM_A ;Word access

= ADDC.w SUM_A ;Word access

A word consists of two bytes: a high byte (bit 15 to bit 8), and a low byte
(bit 7 to bit 0) as shown in Figure 4-5. It must always align to an even address.

Figure 4-5. Byte and Word Operation

4-6

•••
Byte1: 012h

Byte2: 034h

Word1 (High Byte): 056h

Word1 (Low Byte): 078h

Word2 (High Byte): 09Ah

Word2 (Low Byte): OBCh

•••

xxxAh

ADD.B Byte 1 , Byte2:
xxx9h Byte2 = 012h + 034h = 046h

xxx8h

xxx7h

xxx6h
ADD.w Word1, Word2:

xxx5h Word2 = 05678h + 09ABCh = OF134h

xxx4h

xxx3h

All operations on the stack and PC are word operations and use even-aligned
memory addresses.

In the following examples, word-to-word and byte-to-byte operations show the
results of the operation and the status bit information.

Example Word-Word Operation

R5 = OF28Eh

EDE .EQU 0212h

Mem(OF28Eh) = OFFFEh

Mem(0212h) = 00112h

ADD @ R5,&EDE

Mem(0212h) = 00110h

C = 1, Z = 0, N = 0

Example Byte-Byte Operation

R5 = 0223h

EDE .EQU 0202h

Mem(0223h) = 05Fh

Mem(0202h) = 043h

ADD.B @R5,&EDE

Mem(0202h) = OA2h

C = 0, Z = 0, N = 1

Figure 4-6 shows the register-byte and byte-register operations.

Figure 4-6. Register-ByteIByte-Register Operations

Register-Byte Operation Byte-Register Operation

High Byte Low Byte High Byte Low Byte

Memory
r-__ O_h __ ~ ___ B~yt_e __ ~: ::::: Register

The following examples describe the register-byte and byte-register
operations.

Example Register-Byte Operation Example Byte-Register Operation

R5 = OA28Fh R5 = 01202h

R6 = 0203h

Mem(0203h) = 012h

ADD.B R5,0(R6)

08Fh

+ 012h

OA1h

Mem (0203h) = OA1h

C = 0, Z = 0, N = 1

(Low byte of register)

+ (Addressed byte)

->(Addressed byte)

Note: Word-Byte Operations

R6 = 0223h

Mem(0223h) = 05Fh

ADD.B @R6,R5

05Fh

+002h

00061h

R5 = 00061h

;Low byte of R5

;->Store into R5 -

;High byte is 0

C = 0, Z = 0, N = 0

(Addressed byte)

+ (Low byte of register)

->(Low byte of register,
zero to High byte)

Word-byte or byte-word operations on memory data are not supported. Each
register-byte or byte-register is performed as a byte operation.

AAerno~ 4-7

RAM and Peripheral Organization

4.4.2 Peripheral Modules-Address Allocation

Some peripheral modules are accessible only with byte instructions, while
others are accessible only with word instructions. The address space from
0100 to 01 FFh is reserved for word modules, and the address space from OOh
to OFFh is reserved for byte modules.

Peripheral modules that are mapped into the word address space must be
accessed using word instructions (for example, MOV R5,&WDTCTL).
Peripheral modules that are mapped into the byte address space must be
accessed with byte instructions (MOV.S #1,& TCCTL).

The addressing of both is through the absolute addressing mode or the 16-bit
working registers using the indexed, indirect, or indirect autoincrement
addressing mode. See Figure 4-7 for the RAM/peripheral organization.

Figure 4-7. Example of RAM/Peripheral Organization

Address
(Hex.)

01FF
• • •

0100

OFF

010
OF

o

h

h

h

h
h

h

7 o

16-Bit Peripheral Modules

8-Bit Peripheral Modules

Special Function Registers

Function Access

Timer,
Word

ADC, .. ,

1/0, LCD Byte
8b TIC, ...

SFR Byte

4.4.2.1 Word Modules

4-8

Word modules are peripherals that are connected to the 16-bit MDS.

Word modules can be accessed with word or byte instructions. If byte
instructions are used, only even addresses are permissible, and the high byte
of the result is always '0'.

The peripheral file address space is organized into sixteen frames with each
frame representing eight words as described in Table 4-1 .

RAM and Peripheral Organization
_______ ~= ilillll,jl'~lU..,.~'1Il~.=Il::!. ftMiaw; 'Il* 'P' "»." -u.~l~ 't'tt_I'~~ !If! #N 1 na~ilA~lIiQI1

Table 4-1. Peripheral File Address Map-Word Modules

4.4.2.2 Byte Modules

Address

1FOh -1FFh

1EOh -1EFh

1DOh -1DFH

1COh -1CFH

1BOh -1BFH

1AOh -1AFH

190h -19FH

180h -18FH

170h -17FH

160h -16FH

150h -15FH

140h -14FH

130h - 13FH

120h -12FH

110h - 11 FH

100h -10FH

Description

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

TimecA

Timer_A

Reserved

Reserved

Multiplier

Watchdog Timer

Analog-to-Digital Converter

Reserved

Byte modules are peripherals that are connected to the reduced (eight LSB)
MDB. Access to byte modules is always by byte instructions. The hardware
in the peripheral byte modules takes the low byte (the LSBs) during a write
operation.

Byte instructions operate on byte modules without any restrictions. Read
access to peripheral byte modules using word instructions results in
unpredictable data in the high byte. Word data is written into a byte module by
writing the low byte to the appropriate peripheral register and ignoring the high
byte.

The peripheral file address space is organized into sixteen frames as
described in Table 4-2.

Menno(V 4-9

RAM and Peripheral Organization

Table 4-2. Peripheral File Address Map-Byte Modules

Address

OOFOh - OOFFh

OOEOh - OOEFh

OODOh - OODFh

OOCOh - OOCFh

OOBOh - OOBFh

OOAOh - OOAFh

0090h - 009Fh

0080h - 008Fh

0070h - 007Fh

0060h - 006Fh

0050h - 005Fh

0040h - 004Fh

0030h - 003Fh

0020h - 002Fh

0010h - 001 Fh

OOOOh - OOOFh

Description

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

USART

Reserved

System clock generator, EPROM and Crystal Buffer

Basic timer, 8-Bit Timer/Counter, Timer/Port

LCD

Digital I/O port P1 and P2 control

Digital I/O port PO, P3, and P4 control

Special function

4.4.3 Peripheral Modules-Special Function Registers (SFRs)

4-10

The system configuration and the individual reaction of the peripheral modules
to the processor operation is configured in the SFRs as described in
Table 4-3. The SFRs are located in the lower address range, and are
organized by bytes. SFRs must be accessed using byte instructions only.

RAM and Peripheral Organization
~U'illf_f/I\:tli1'il!t '*"'#,¢!Ir·i8tlC'liSS"oP~"" l'!OII

Table 4-3. Special Function Register Address Map

Address Data Bus

OOOFh

OOOEh

OOODh

OOOCh

OOOBh

OOOAh

0009h

0008h

0007h

0006h

0005h

0004h

0003h

0002h

0001h

OOOOh

7 0
Not yet defined or implemented

Not yet defined or implemented

Not yet defined or implemented

Not yet defined or implemented

Not yet defined or implemented

Not yet defined or implemented

Not yet defined or implemented

Not yet defined or implemented

Not yet defined or implemented

Not yet defined or implemented

Module enable 2; ME2.2

Module enable 1; ME1.1

Interrupt flag reg. 2; IFG2.x

Interrupt flag reg.1; IFG1.x

Interrupt enable 2; IE2.x

Interrupt enable 1; IE1.x

The system power consumption is influenced by the number of enabled
modules and their functions. Disabling a module from the actual operation
mode reduces power consumption while other parts of the controller remain
fully active (unused pins must be tied appropriately or power consumption will
increase; see Basic Hints for Low Power Applications in section 3.6.

Memory 4-11

4-12

~mma
~\!nl!!i!IJ!lIf?tt17_I!!li.tfl

i 11m 11117 SiU ... ,. , IiII

Chapter 5

16-Bit CPU

The MSP430 von-Neumann architecture has RAM, ROM, and peripherals in
one address space, both using a single address and data bus. This allows
using the same instruction to access either RAM, ROM, or peripherals and
also allows code execution from RAM.

Topic Page

5.1 CPU Registers •.....•••.•.•..•.•••••....•.•.....•.•....•.....• 5-2

5.2 Addressing Modes ...•......•..•.•..••..........•.•....•..•... 5-7

5.3 Instruction Set Overview 5-17

5.4 Instruction Map .•.••.......•.•••••..••......••••..•....•..•.. 5-23

5-1

CPU Registers

5.1 CPU Registers

Sixteen 16-bit registers (RO, R1, and R4 to R15) are used for data and
addresses and are implemented in the CPU. They can address up to
64 Kbytes (ROM, RAM, peripherals, etc.) without any segmentation. The
complete CPU-register set is described in Table 5-1. Registers RO, R1, R2,
and R3 have dedicated functions, which are described in detail later.

Table 5-1. Register by Functions
Program counter (PC) RD

Stack pointer (SP) R1

Status register (SR)
R2

Constant generator (CG1)

Constant generator (CG2) R3

Working register R4 R4

Working register R5 R5

Working register R 13 R13

Working register R14 R14

Working register R15 R15

5.1.1 The Program Counter (PC)

The 16-bit program counter pOints to the next instruction to be executed. Each
instruction uses an even number of bytes (two, four, or six), and the program
counter is incremented accordingly. Instruction accesses are performed on
word boundaries, and the program counter is aligned to even addresses.
Figure 5-1 shows the program counter bits.

Figure 5-1. Program Counter

15 1 0

Program Counter Bits 15 to 1

5.1.2 The System Stack Pointer (SP)

The system stack pOinter must always be aligned to even addresses because
the stack is accessed with word data during an interrupt request service. The
system SP is used by the CPU to store the return addresses of subroutine calls
and interrupts. It uses a predecrement, postincrement scheme. The
advantage of this scheme is that the item on the top of the stack is available.
The SP can be used by the user software (PUSH and POP instructions), but
the user should remember that the CPU also uses the SP. Figure 5-2 shows
the system SP bits.

Figure 5-2. System Stack Pointer
15 1 0

System Stack Pointer Bits 15 to 1

5-2

CPU Registers

5.1.2.1 Examples for System SP Addressing (Refer to Figure 5-4)

MOV SP,R4 ; SP-> R4

MOV @SP,R5 ; Item 13 (TOS) -> R5

MOV 2(SP),R6 ; Item 12 -> R6

MOV R7,O(SP) ; Overwrite TOS with R7

MOV R8,4(SP) ; Modify item 11

PUSH R12 ; Store R12 in address Oxxxh -6; SP pOints to same address

POP R12 ; Restore R12 from address Oxxxh - 6; SP pOints to
Oxxxh - 4

MOV @SP+,R5 ; Item 13 -> R5 (popped from stack); same as POP
instruction

Figure 5-3 shows stack usage.

Figure 5-3. Stack Usage

Address

Oxxxh

Oxxxh - 2

Oxxxh - 4

Oxxxh -6

Oxxxh - 8

11

12

~i, ,'IQ'CXc,

5.1.2.2 Special Cases-PUSH SP and POP SP

~

PUSH #1 POPR8

11 11

12

SP

SP

SP

The special cases of using the SP as an argument to the PUSH and POP
instructions are described below.

Figure 5-4. PUSH SP and POP SP

PUSH SP

The stack pointer is changed after
a PUSH SP instruction.

After the sequence

POPSP

-- SP1

The stack pointer is not changed
after a POP SP instruction.

PUSH SP
I

; SP1 is stack pointer after this instruction

I

POPSP ; SP2 is stack pointer after this instruction

The stack pointer is two bytes lower than before this sequence.

16-Bit CPU 5-3

CPU Registers

5.1.3 The Status Register (SR)

The status register SR contains the following CPU status bits:

0 V Overflow bit

0 SCG1 System clock generator control bit 1

0 SCGO System clock generator control bit 0

0 OscOff Crystal oscillator off bit

0 CPUOff CPU off bit

0 GIE General interrupt enable bit

0 N Negative bit

0 Z Zero bit

0 C Carry bit

Figure 5-5 shows the SR bits.

Figure 5-5. Status Register Bits
15 9

Reserved For Future Enhancements

\~------------------------~v~------------------------~
rw-O

Table 5-2 describes the status register bits.

Table 5-2. Description of Status Register Bits

Bit

v
Description

Overflow bit. Set if the result of an arithmetic operation overflows the signed-variable range. The
bit is valid for both data formats, byte and word:

ADD(.B), ADDC(.B) Set when:
Positive + Positive = Negative
Negative + Negative = Positive, otherwise reset

SUB(.B), SUBC(.B), CMP(.B) Set when:
Positive - Negative = Negative
Negative - Positive = Positive, otherwise reset

SCG 1, SCGO These bits control four activity states of the system-clock generator and therefore influence the
operation of the processor system.

OscOFF If set, the crystal oscillator enters off mode: all activities cease; however, the RAM contents, the
port, and the registers are maintained. Wake up is possible only through enabled external
interrupts when the GIE bit is set and from the NMI.

CPU Off If set, the CPU enters off mode: program execution stops. However, the RAM, the port registers,
and especially the enabled peripherals (for example, basic timer, UART, etc.) stay active. Wake
up is possible through all enabled interrupts.

GIE If set, all enabled maskable interrupts are handled. If reset, all maskable interrupts are disabled.
The GIE bit is cleared by interrupts and restored by the RETI instruction as well as by other
appropriate instructions.

N Set if the result of an operation is negative.
Word operation: Negative bit is set to the value of bit 15 of the result
Byte operation: Negative bit is set to the value of bit 7 of the result

Z Set if the result of byte or word operation is 0; cleared if the result is not O.

C Set if the result of an operation produced a carry; cleared if no carry occurred. Some instructions
mOdify the carry bit using the inverted zero bits.

5-4

CPU Registers

Note: Status Register Bits V, N, Z and C

The status register bits V, N, Z, and C are modified only with the appropriate
instruction. For additional information, see the detailed description of the
instruction set in Appendix B.

5.1.4 The Constant Generator Registers CG1 and CG2

Commonly-used constants are generated with the constant generator
registers R2 and R3, without requiring an additional 16-bit word of program
code. The constant used for immediate values is defined by the addressing
mode bits (As) as described in Table 5-3. See Section 5.3 for a description of
the addressing mode bits (As).

Table 5-3. Values of Constant Generators CG 1, CG2

Register As Constant Remarks

R2 00 ----- Register mode

R2 01 (0) Absolute address mode

R2 10 00004h +4, bit processing

R2 11 00008h +8, bit processing

R3 00 OOOOOh 0, word processing

R3 01 00001h +1

R3 10 00002h +2, bit processing

R3 11 OFFFFh -1, word processing

The major advantages of this type of constant generation are:

o No special instructions required
o Reduced code memory requirements: no additional word for the six most

used constants
o Reduced instruction cycle time: no code memory access to retrieve the

constant

The assembler uses the constant generator automatically if one of the six
constants is used as a source operand in the immediate addressing mode.
The status register S~/R2, used as a source or destination register, can be
used in the register mode only. The remaining combinations of
addressing-mode bits are used to support absolute-address modes and bit
processing without any additional code. Registers R2 and R3, used in the
constant mode, cannot be addressed explicitly; they act like source-only
registers.

16-Bit CPU 5-5

CPU Registers

5-6

The RISC instruction set of the MSP430 only has 27 instructions. However, the
constant generator allows the MSP430 assembler to support 24 additional,
emulated instructions. For example, the single-operand instruction:

CLR dst

is emulated by the double-operand instruction with the same length:

MOV R3,dst
or the equivalent
MOV #O,dst

where #0 is replaced by the assembler, and R3 is used with As = 00, which
results in:

o One word instruction

o No additional control operation or hardware within the CPU

o Register-addressing mode for source: no extra-fetch cycle for constants
(#0)

Addressing Modes

5.2 Addressing Modes

All seven addressing modes for the source operand and all four addressing
modes for the destination operand can address the complete address space.
The bit numbers in Table 5-4 describe the contents of the As and Ad mode bits.
See Section 5.3 for a description of the source address As and the destination
address Ad bits.

Table 5-4. Source/Destination Operand Addressing Modes

As/Ad Addressing Mode

0010 Register mode

01/1 Indexed mode

01/1 Symbolic mode

01/1 Absolute mode

101- Indirect register
mode

11/- Indirect
autoincrement

11/- Immediate mode

Syntax Description

Rn Register contents are operand

X(Rn) (Rn + X) points to the operand

X is stored in the next word

ADDR (PC + X) points to the operand

X is stored in the next word.
Indexed mode X(PC) is used.

&ADDR

@Rn

@Rn+

#N

The word following the instruction
contains the absolute address.

Rn is used as a pointer to the
operand.

Rn is used as a pointer to the
operand. Rn is incremented
afterwards.

The word following the instruction
contains the immediate constant
N. Indirect autoincrement mode
@ PC+ is used.

The seven addressing modes are explained in detail in the following sections.
Most of the examples show the same addressing mode for the source and
destination, but any valid combination of source and destination addressing
modes is possible in an instruction.

16-Bit CPU 5-7

Addressing Modes

5.2.1 Register Mode

The register mode is described in Table 5-5.

Table 5-5. Register Mode Description

5-8

Assembler Code Content of ROM

MOV R10,R11 MOV R10,R11

Length: One or two words

Operation: Move the content of R10 to R11. R10 is not affected.

Comment: Valid for source and destination

Example: MOV R10,R11

Before: After:

R10 OA023h R10 OA023h

R11 OFA15h R11 OA023h

PC PCoid PC I PCoid + 2 I

Note: Data in Registers

The data in the register can be accessed using word or byte instructions. If
byte instructions are used, the high byte is always 0 in the result. The status
bits are handled according to the result of the byte instruction.

5.2.2 Indexed Mode

The indexed mode is described in Table 5-6.

Table 5-6. Indexed Mode Description

Assembler Code

MOV 2(R5),6(R6)

Length: Two or three words

Addressing Modes

Content of ROM

MOV X(R5),Y(R6)

X=2

Y=6

Operation: Move the contents of the source address (contents of R5 + 2)
to the destination address (contents of R6 + 6). The source
and destination registers (R5 and R6) are not affected. In
indexed mode, the program counter is incremented
automatically so that program execution continues with the
next instruction.

Comment:

Example:

Before:
Address
Space

OFF16h 00006h

OFF14h 00002h

OFF12h 04596h

01094h Oxxxxh

01092h 05555h

01090h Oxxxxh

01084h Oxxxxh

01082h 01234h

01 080h Oxxxxh

Valid for source and destination

MOV 2(R5),6(R6):

After:
Register

R5 01080h OFF16h

R6 0108Ch OFF14h

PC OFF12h

0108Ch
+OOO6h 01094h
01092h 01092h

01090h

01080h
+OOO2h 01084h
01082h

01082h

01080h

Address Register
Space

Oxxxxh PC
0OO06h R5 01080h

00002h R6 0108Ch

04596h

Oxxxxh

01234h

Oxxxxh

Oxxxxh

01234h

Oxxxxh

16-Bit CPU 5-9

Addressing Modes

5.2.3 Symbolic Mode

The symbolic mode is described in Table 5-7.

Table 5-7. Symbolic Mode Description

5-10

Length:

Operation:

Comment:

Example:

Before:

OFF16h

OFF14h

OFF12h

Assembler Code

MOV EDE,TONI

Two or three words

Content of ROM

MOV X(PC),Y(PC)

X= EDE- PC

Y=TONI- PC

Move the contents of the source address EDE (contents of
PC + X) to the destination address TONI (contents of PC + V).
The words after the instruction contain the differences
between the PC and the source or destination addresses.
The assembler computes and inserts offsets X and Y
automatically. With symbolic mode, the program counter (PC)
is incremented automatically so that program execution
continues with the next instruction.

Valid for source and destination

MOV EDE,TONI

Address Register
Space

011 FEh

OF102h
04090h PC

OFF14h

;Source address EDE = OF016h,
;dest. address TONI=01114h

After:
Address Register
Space

Oxxxxh PC

OFF16h 011FEh

OFF14h OF102h

OFF12h 04090h

OF018h Oxxxxh

OF016h OA123h

OF014h Oxxxxh

+OF102h
OF016h

OF018h Oxxxxh

OF016h OA123h

OF014h Oxxxxh

01116h Oxxxxh

01114h 01234h

01112h Oxxxxh

OFF16h
+011FEh

01114h
01116h Oxxxxh

01114h OA123h

01112h Oxxxxh

Addressing Modes

5.2.4 Absolute Mode

The absolute mode is described in Table 5-8.

Table 5-8. Absolute Mode Description

Assembler Code

MOV &EDE,&TONI

Length: Two or three words

Content of ROM

MOV X(O),Y(O)

X=EDE

Y=TONI

Operation: Move the contents of the source address EDE to the
destination address TONI. The words after the instruction
contain the absolute address of the source and destination
addresses. With absolute mode, the PC is incremented
automatically so that program execution continues with the
next instruction.

Comment: Valid for source and destination

Example: MOV &EDE,&TONI

Before:
Address Register
Space

OFF16h 01114h

OFF14h OF016h

OFF12h 04292h PC

OF018h Oxxxxh

OF016h OA 123h

OF014h Oxxxxh

01116h Oxxxxh

01114h 01234h

01112h Oxxxxh

;Source address EDE = OF016h,
;dest. address TONI=01114h

After:
Address Register
Space
Oxxxxh PC

OFF16h 01114h

OFF14h OF016h

OFF12h 04292h

OF018h Oxxxxh

OF016h OA123h

OF014h Oxxxxh

01116h Oxxxxh

01114h OA123h

01112h Oxxxxh

This address mode is mainly for hardware peripheral modules that are located
at an absolute, fixed address. These are addressed with absolute mode to
ensure software transportability (for example, position-independent code).

16-Bit CPU 5-11

Addressing Modes

5.2.5 Indirect Mode

The indirect mode is described in table 5-9.

Table 5-9. Indirect Mode Description

5-12

Assembler Code Content of ROM

MOV @R10,O(R11) MOV @R10,O(R11)

Length:

Operation:

Comment:

Example:

Before:
Address
Space

Oxxxxh

OFF16h OOOOh

OFF14h 04AEBh

OFF12h Oxxxxh

OFA34h Oxxxxh

OFA32h 05BC1 h

OFA30h oxxxxh

002A8h Oxxh

002A7h 012h

002A6h Oxxh

One or two words

Move the contents of the source address (contents of R1 0) to

the destination address (contents of R 11). The registers are
not modified.

Valid only for source operand. The substitute for destination
operand is O(Rd).

MOV.B @R10,O(R11)

After:
Register

R10 OFA33h

PC R11 002A7h

Address
Space
Oxxxxh

OFF16h OOOOh

OFF14h 04AEBh

OFF12h Oxxxxh

OFA34h Oxxxxh

OFA32h 05BC1 h

OFA30h Oxxxxh

002A8h Oxxh

002A7h 05Bh

002A6h Oxxh

Register

PC

R10 OFA33h

R11 002A7h

Addressing Modes

5.2.6 Indirect Autoincrement Mode

The indirect autoincrement mode is described in Table 5-10.

Table 5-1 O.lndirect Autoincrement Mode Description

Assembler Code Content of ROM

MOV @R10+,0(R11) MOV @R10+,0(R11)

Length: One or two words

Operation: Move the contents of the source address (contents of R1 0) to
the destination address (contents of R11). Register R10 is
incremented by 1 for a byte operation, or 2 for a word
operation after the fetch; it points to the next address without
any overhead. This is useful for table processing.

Comment: Valid only for source operand. The substitute for destination
operand is O(Rd) plus second instruction INCD Rd.

Example: MOV @R10+,0(R11)

Before:
Address
Space

OFF18h Oxxxxh

OFF16h OOOOOh

OFF14h 04ABBh

OFF12h Oxxxxh

OFA34h Oxxxxh

OFA32h 05BC1 h

OFA30h Oxxxxh

010AAh Oxxxxh

010A8h 01234h

010A6h Oxxxxh

Register

R10 OFA32h

PC R11 010A8h

After:
Address
Space

OFF18h Oxxxxh

OFF16h OOOOOh

OFF14h 04ABBh

OFF12h Oxxxxh

OFA34h Oxxxxh

OFA32h 05BC1 h

OFA30h Oxxxxh

010AAh Oxxxxh

010A8h 05BC1h

010A6h Oxxxxh

Register

PC

R10 OFA34h

R11 010A8h

The autoincrementing of the register contents occurs after the operand is
fetched. This is shown in Figure 5-6.

Figure 5-6. Operand Fetch Operation

Instruction Operand

16-Bit CPU 5-13

Addressing Modes

5.2.7 Immediate Mode

The immediate mode is described in Table 5-11.

Table 5-11. Immediate Mode Description

5-14

Length:

Operation:

Comment:

Example:

Before:

Assembler Code

MOV #45,TONI

Two or three words

Content of ROM

MOV @ PC+,X(PC)

45

X=TONI-PC

It is one word less if a constant of CG1 or CG2 can be used.

Move the immediate constant 45, which is contained in the
word following the instruction, to destination address TONI.
When fetching the source, the program counter points to the
word following the instruction and moves the contents to the
destination.

Valid only for a source operand.

MOV #45,TONI

Address
Space

Register
After:

Register

OFF16h 01192h

OFF14h 00045h

OFF12h 040BOh PC

OFF18h
OFF16h

OFF14h

Address
Space

Oxxxxh PC

01192h

00045h

OFF12h 040BOh

010AAh

010A8h

Oxxxxh

01234h

010A6h Oxxxxh

OFF16h
+01192h
010A8h

010AAh

010A8h

Oxxxxh

00045h

010A6h Oxxxxh

Modes

5.2.8 Clock Cycles, Length of Instruction

The operating speed of the CPU depends on the instruction format and
addressing modes. The number of clock cycles refers to the MCLK.

5.2.8.1 Format-I Instructions

Table 5-12 describes the CPU format-I instructions and addressing modes.

Table 5-12. Instruction Format I and Addressing Modes

Address Mode No. of Length of Example

As Ad Cycles Instruction

OO,Rn 0, Rm 1 MOV RS,R8
O,PC 2 BR R9

00, Rn 1, x(Rm) 4 2 ADD RS,3(R6)
1, EDE 2 XOR R8,EDE
1, &EDE 2 MOR RS,&EDE

01, x(Rn) 0, Rm 3 2 MOV 2(RS),R7
01, EDE 2 AND EDE,R6
01, &EDE 2 MOV &EDE,R8

01, x(Rn) 1, x(Rm) 6 3 ADD 3(R4),6(R9)
01, EDE 1, TONI 3 CMP EDE,TONI
01, &EDE 1, &TONI 3 MOV 2(RS),&TONI

3 ADD EDE,&TONI

10, @Rn 0, Rm 2 AND @R4,RS

10, @Rn 1, x{Rm) S 2 XOR @RS,8(R6)
1, EDE 2 MOV @RS,EDE
1, &EDE 2 XOR @RS,&EDE

11, @Rn+ 0, Rm 2 1 ADD @RS+,R6
0, PC 3 1 BR @R9+

11, #N 0, Rm 2 2 MOV #20,R9
0, PC 3 2 BR #2AEh

11, @Rn+ 1, x(Rm) S 2 MOV @R9+,2(R4)
11, #N 1, EDE 3 ADD #33,EDE
11, @Rn+ 1, &EDE 2 MOV @R9+,&EDE
11, #N 3 ADD #33;&EDE

16-Bit CPU S-1S

Addressing Modes

5.2.8.2 Format-Illnstructions

Table 5-13 describes the CPU format II instructions and addressing modes.

Table 5-13. Instruction Format-II and Addressing Modes

No. of Cycles

RRA
RRC Length of

Address Mode SWPB PUSHI Instruction
A(sld) SXT CALL (words) Example

00, Rn 3/4 1 SWPB R5

01, X(Rn) 4 5 2 CALL 2(R7)
01, EDE 4 5 2 PUSH EDE
01, &EDE SXT &EDE

10, @Rn 3 4 RRC @R9

11, @Rn+ 3 4/5 SWPB @R10+
(see Note) CALL#81H
11, #N 2

Note: Instruction Format II Immediate Mode

Do not use instructions RRA, RRC, SWPB, and SXT with the immediate
mode in the destination field. Use of these in the immediate mode will result
in an unpredictable program operation.

5.2.8.3 Format-lIIlnstructions

Format-III instructions are described as follows:

Jxx-all instructions need the same number of cycles, independent of
whether a jump is taken or not.
Clock cycle: Two cycles
Length of instruction: One word

5.2.8.4 Miscellaneous-Format Instructions

Table 5-14 describes miscellaneous-format instructions.

Table 5-14. Miscel/aneous Instructions or Operations

Activity

RETI

Interrupt

WDT reset

Reset (RST/NMI)

t Length of instruction

5-16

Clock Cycle

5 cycles
1 wordt

6 cycles

4 cycles

4 cycles

Instruction Set Overview

5.3 Instruction Set Overview

This section gives a short overview of the instruction set. The addressing
modes are described in Section 5.2.

Instructions are either single or dual operand or jump.

The source and destination parts of an instruction are defined by the following
fields:

src The source operand defined by As and S-reg

dst The destination operand defined by Ad and D-reg

As The addressing bits responsible for the addressing mode used
for the source (src)

S-reg The working register used for the source (src)

Ad The addressing bits responsible for the addressing mode used
for the destination (dst)

D-reg The working register used for the destination (dst)

BIW Byte or word operation:
0: word operation
1: byte operation

Note: Destination Address

Destination addresses are valid anywhere in the memory map. However,
when using an instruction that modifies the contents of the destination, the
user must ensure the destination address is writeable. For example, a
masked-ROM location would be a valid destination address, but the contents
are not modifiable, so the results of the instruction would be lost.

16-8it CPU 5-17

Instruction Set Overview

5.3.1 Double-Operand Instructions

Figure 5-7 illustrates the double-operand instruction format.

Figure 5-7. Double Operand Instruction Format

15 14 13 12 11 10 9 8765432 0

I Opcode I S-Reg

Table 5-15 describes the effects of an instruction on double operand
instruction status bits.

Table 5-15. Double Operand Instruction Format Results

5-18

Mnemonic S-Reg, D-Reg Operation Status Bits

MOV

ADD

ADDC

SUB

SUBC

CMP

DADD

AND

BIT

BIC

BIS

XOR

*

0

1

src,dst src -> dst

src,dst src + dst -> dst

src,dst src + dst + C -> dst

src,dst dst + .not.src + 1 -> dst

src,dst dst + .not.src + C -> dst

src,dst dst - src

src,dst src + dst + C -> dst (dec)

src,dst src .and. dst -> dst

src,dst src .and. dst

src,dst .not.src .and. dst -> dst

src,dst src .or. dst -> dst

src,dst src .xor. dst -> dst

The status bit is affected

The status bit is not affected

The status bit is cleared

The status bit is set

Note: Instructions CMP and SUB

V N Z C

* * *

* * * *

* *

* *

*

* * *

0 *

0 * *

* *

The instructions CMP and SUB are identical except for the storage of the
result. The same is true for the BIT and AND instructions.

Instruction Set Overview

5.3.2 Single-Operand Instructions

Figure 5-8 illustrates the single-operand instruction format.

Figure 5-8. Single Operand Instruction Format

15 14 13 12 11 10 9 8 765432 0

I Opcode I 81W I Ad I DIS-Reg I
Table 5-16 describes the effects of an instruction on the single operand
instruction status bits.

Table 5-16. Single Operand Instruction Format Results

Mnemonic S-Reg, O-Reg Operation Status Bits

RRC

RRA

PUSH

SWPB

CALL

RETI

SXT

*

dst C -> MSB -> LSB -> C

dst MSB -> MSB -> LSB -> C

src SP - 2 -> SP, src -> @ SP

dst swap bytes

dst SP-2-> SP

PC+2 -> stack, dst -> PC

TOS -> SR, SP <- SP + 2

TOS -> PC, SP <- SP + 2

dst Bit 7 -> Bit 8 Bit 15

The status bit is affected

The status bit is not affected

o The status bit is cleared

1 The status bit is set

V N Z C

* *

o *

x X X X

o *

All addressing modes are possible for the CALL instruction. If the symbolic
mode (ADDRESS), the immediate mode (#N), the absolute mode (&EDE) or
the indexed mode X (RN) is used, the word that follows contains the address
information.

16-Bit CPU 5-19

Instruction Set Overview

5.3.3 Conditional Jumps

Conditional jumps support program branching relative to the program counter.
The possible jump range is from -511 to +512 words relative to the program
counter state of the jump instruction. The 1 O-bit program-counter offset value
is treated as a signed 1 O-bit value that is doubled and added to the program
counter. None of the jump instructions affect the status bits.

The instruction code fetch and the program counter increment technique end
with the formula:

PCnew = PCoid + 2 + PCoffset x 2

Figure 5-9 shows the conditional-jump instruction format.

Figure 5-9. Conditional-Jump Instruction Format

15 14 13 12 11 10 9 8765432 o

I Opcode C 10-Bit PC Offset

Table 5-17 describes these conditional-jump instructions.

Table 5-17. Conditional-Jump Instructions

Mnemonic S-Reg, D-Reg Operation

JEQ/JZ Label Jump to label if zero bit is set

JNE/JNZ Label Jump to label if zero bit is reset

JC Label Jump to label if carry bit is set

JNC Label Jump to label if carry bit is reset

IN Label Jump to label if negative bit is set

JGE Label Jump to label if (N .XOR. V) = 0

JL Label Jump to label if (N .XOR. V) = 1

JMP Label Jump to label unconditionally

5-20

Instruction Set Overview

5.3.4 Short Form of Emulated Instructions

The basic instruction set, together with the register implementations of the
program counter, stack pointer, status register, and constant generator, form
the emulated instruction set; these make up the popular instruction set. The
status bits are set according to the result of the execution of the basic
instruction that replaces the emulated instruction.

Table 5-18 describes these instructions.

Table 5-18. Emulated Instructions

Mnemonic Description Status Bits Emulation

V N Z C

Arithmetic Instructions

ADC[.w] dst Add carry to destination * * · • AD DC #O,dst

ADC.B dst Add carry to destination · · · · ADDC.B #O,dst

DADC[.w] dst Add carry decimal to destination · • • · DADD #O,dst

DADC.B dst Add carry decimal to destination · · · • DADD.B #O,dst

DEC[.w] dst Decrement destination • • • · SUB #1,dst

DEC.B dst Decrement destination * * · * SUB.B #1,dst

DECD[.W] dst Double-decrement destination · * · • SUB #2,dst

DECD.B dst Double-decrement destination * * * • SUB.B #2,dst

INC[.w] dst Increment destination * * · · ADD #1,dst

INC.B dst Increment destination * * * · ADD.B #1,dst

INCD[.w] dst Increment destination · · * * ADD #2,dst

INCD.B dst Increment destination * * * * ADD.B #2,dst

SBC[.w] dst Subtract carry from destination • * * * SUBC #O,dst

SBC.B dst Subtract carry from destination · * · · SUBC.B #O,dst

Logical Instructions

I NV[.w] dst Invert destination * * * * XOR #OFFFFh,dst

INV.B dst Invert destination * * * * XOR.B #-1,dst

RLA[.w] dst Rotate left arithmetically * · * * ADD dst,dst

RLA.B dst Rotate left arithmetically * * * * ADD.B dst,dst

RLC[.w] dst Rotate left through carry * * * * ADDC dst,dst

RLC.B dst Rotate left through carry * * * * ADDC.B dst,dst

Data Instructions (common use)

CLR[.w] Clear destination - - - - MOV #O,dst

CLR.B Clear destination - - - - MOV.B #O,dst

CLRC Clear carry bit - - - ° BIC #1,SR

CLRN Clear negative bit - ° - - BIC #4,SR

CLRZ Clear zero bit - - ° - BIC #2,SR

POP dst Item from stack - - - - MOV @SP+,dst

SETC Set carry bit - - - 1 BIS #1,SR

SETN Set negative bit - 1 - - BIS #4,SR

SETZ Set zero bit - - 1 - BIS #2,SR

16-Bit CPU 5-21

Instruction Set Overview

Table 5-18. Emulated Instructions (Continued)

Mnemonic Description Status Bits Emulation

V N Z C

Data Instructions (common use) (continued)

TST[.w] dst Test destination 0 * CMP #O,dst

TST.B dst Test destination 0 * * * CMP.B #O,dst

Program Flow Instructions

BR dst Branch to ... MOV dst,PC

DINT Disable interrupt BIC #8,SR

EINT Enable interrupt BIS #8,SR

NOP No operation MOV #Oh,#Oh

RET Return from subroutine MOV @SP+,PC

5.3.5 Miscellaneous

Instructions without operands, such as CPUOff, are not provided. Their
functions are switched on or off by setting or clearing the function bits in the
status register or the appropriate I/O register. Other functions are emulated
using dual operand instructions.

Some examples are as follows:

BIS #28h,SR ; Enter OscOff mode

; + Enable general interrupt (GIE)

BIS #18h,SR ; Enter CPUOff mode

; + Enable general interrupt (GIE)

BIC #SVCC,&ACTL ; Switch SVCC off

5-22

Instruction

5.4 Instruction Map

The instruction map in Figure 5-10 is an example of how to encode
instructions. There is room for more instructions, if needed.

Figure 5-10. Core Instruction Map

Ox
04x
08x
OCx
10x
14x
18x
1Cx
20x
24x
28x
2Cx
30x
34x
38x
3Cx

40x-4Cx
SOx-SCx
60x-6Cx
70x-7Cx

80x-8Cx
90x-9Cx
AOx-ACx
BOx-BCx

COx-CCx
DOx-DCx
EOx-ECx
FOx-FCx

~ ~ ~ ~ 100 1~ 1M 1~ ~ ~ ~ ~ ~ ~ ~ ~

RRC RRC.B SWPB RRA RRA.B SXT PUSH PUSH.B CALL RETI

JNE/JNZ
JEQ/JZ
JNC
JC
IN

JGE
JL
JMP
MOV, MOV.B

ADD, ADD.B
ADDC, ADDC.B

SUBC, SUBC.B

SUB SUB.B
CMP, CMP.B
DADD, DADD.B
BIT, BIT.B

BIC BIC.B
BIS BIS.B
XOR, XOR.B
AND AND.B

16-8it CPU 5-23

5-24

Chapter 6

Hardware Multiplier

The hardware multiplier is a 16-bit peripheral module. It is not integrated into
the CPU. Therefore, it requires no special instructions and operates
independent of the CPU. To use the hardware multiplier, the operands are
loaded into registers and the results are available the next instruction-no
extra cycles are required for a multiplication.

Topic Page

6.1 Hardware Multiplier Module Support ••••. , •.•••••• , , , , ..•• , •••.. 6-2

6.2 Hardware Multiplier Operation ., •••• , •...•••••...• , •..••• , 6-3

6.3 Hardware Multiplier Registers .. , , .•.•••••..••••••.•. , .•• , •••••• 6-9

6.4 Hardware Multiplier Special Function Bits ••.•••.•••.•••...•.••• 6-10

6.5 Hardware Multiplier Software Restrictions ••.••.•.•••••••.•..•• 6·10

6-1

Hardware Multiplier Module Support

6.1 Hardware Multiplier Module Support

The hardware multiplier module expands the capabilities of the MSP430
family without changing the basic architecture. Multiplication is possible for:

o 16x16 bits
o 16x8 bits
o 8x16 bits
o 8x8 bits

The hardware multiplier module supports four types of multiplication: unsigned
multiplication (MPY), signed multiplication (MPYS), unsigned multiplication
with accumulation (MAC), and signed multiplication with accumulation
(MACS). Figure 6-1 shows how the hardware multiplier module interfaces
with the bus system to support multiplication operations.

Figure 6-1. Connection of the Hardware Multiplier Module to the Bus System

6-2

TDI

TOO

TMS

TCK

r---------------------,
I ROM RAM

I
I
I
! ~ Jl 1 I
I f-

MAB,16Bit

I I- - ,--- -

I CPU
f-

Test
l-

I Incl. 16 Reg. I- JTAG

I I-- MDB,16Bit

I f-

I
I--

I rr I v 7 ,

i MPY

I MPYS - Other

MAC '-- Modules

I MACS
I ~ _____________________ J

Hardware Multiplier Operation

6.2 Hardware Multiplier Operation

The hardware multiplier has two 16-bit registers for both operands and three
registers to store the results of the multiplication. The multiplication is
executed correctly when the first operand is written to the operand register
OP1 prior to writing the second operand to OP2. Writing the first operand to
the applicable register selects the type of multiplication. Writing the second
operand to OP2 starts the multiplication. Multiplication is completed before the
result registers are accessed using the indexed address mode for the source
operand. When indirect or indirect autoincrement address modes are used,
another instruction is needed between the writing of the second operand and
accessing the result registers. Both operands, OP1 and OP2, utilize all seven
address mode capabilities.

No instruction is necessary for the multiplication; as a result, the real-time
operation does not require additional clock cycles and the interrupt latency is
unchanged.

The multiplier architecture is illustrated in Figure 6-2.

Figure 6-2. Block Diagram of the MSP430 18><. 16-Bit Hardware Multiplier

Mode

Operand 1
(address

defines
operation)

15 rw 0

MPY 130h

MPYS 132h

MAC 134h

MACS 136h

o Accessible Register

0000

15 o

15 rw o

31 o
Product Register

15

Hardware Multiplier 6-3

Hardware Multiplier Operation

The sum extension register contents differ, depending on the operation and
on the results of the operation.

Table 6-1. Sum Extension Register Contents

Register MPY MPYS MAC MACS, see Notes

Operand1 x + - + + (OP1xOP2 + (OP1xOP2 + (OP1xOP2 + (OP1xOP2 +
ACC)::;; ACC) > ACC) > ACC) ::;;

Operand2 x + - OFFFFFFFFh OFFFFFFFFh 07FFFFFFFh 07FFFFFFFh

SumExt OOOOh OOOOh OFFFFh OOOOh 0OO1h OFFFFh OOOOh

Note: The following two overflow conditions may occur when using the MACS function and should be handled by software or
avoided.

6-4

1) The result of a MACS operation is positive and larger than 07FFF FFFFh. In this case, the Sum Ext register contains
OFFFFh and the ACC register contains a negative number (8000 OOOOh OFFFF FFFFh).

2) The result of a MACS operation is negative and less than or equal to 07FFF FFFFh. In this case, the Sum Ext register
contains OOOOh and the ACC register contains a positive number (0000 OOOOh ... 07FFF FFFFh).

Hardware Multiplier Operation

6.2.1 Multiply Unsigned, 16x16 bit, 16x8 bit, 8x16 bit, 8x8 bit

The following multiplication operation shows 32 bytes of program code and 32
execution cycles (16 x16 bit multiplication).

**

*
*
*
*

TRANSFER BOTH OPERANDS TO THE REGISTERS IN THE
HARDWARE MULTIPLIER MODULE
USE CONSTANT OPERANDi AND OPERAND2 TO IDENTIFY
BYTE DATA

*
*
*
*

**

OPERANDl . EQU 0

OPERAND2 . EQU 0

MPY .EQU 0130H
MPYS .EQU 0132H
MAC .EQU 0134H
MACS .EQU 0136H
OP2 .EQU 0138H
RESLO .EQU 013AH
RESHI .EQU O13CH
SUMEXT .EQU 013EH

.BSS OPER1,2,200H

.BSS OPER2,2

.BSS RAM,8

.IF OPERAND1=8

0: OPERANDi IS WORD (16BIT)
8: OPERANDi IS BYTE (8BIT)
0: OPERAND2 IS WORD (16BIT)
8: OPERAND2 IS BYTE (8BIT)

MOV. B &OPERi, &MPY; LOAD 1ST OPERAND,
DEFINES ADD. UNSIGNED MULTIPLY

.ELSE
MOV &OPERi,&MPY; LOAD 1ST OPERAND,

DEFINES ADD. UNSIGNED MULTIPLY

.ENDIF

.IF OPERAND1=8
MOV.B &OPER2,&OP2

.ELSE

LOAD 2ND OPERAND AND START
MULTIPLICATION

MOV &OPER2, &OP2 LOAD 2ND OPERAND AND START
MULTIPLICATION

.ENDIF

**

*
*

EXAMPLE TO ADD THE RESULT OF THE HARDWARE
MULTIPLICATION TO THE RAM DATA, 64BITS

**

ADD
ADDC
ADC
ADC

&RESLO, & RAM
&RESHI,&RAM+2
&RAM+4
&RAM+6

ADD LOW RESULT TO RAM
ADD HIGH RESULT TO RAM+2
ADD CARRY TO EXTENSION WORD
IF 64 BIT LENGTH IS USED

*
*

Hardware Multiplier 6-5

Hardware Multiplier Operation

6.2.2 Multiply Signed, 16x16 bit, 16x8 bit, 8x16 bit, 8x8 bit

6-6

The following multiplication operation shows 36 bytes of program code and 36
execution cycles (16x16 bit multiplication).

**

*
*
*
*
*

TRANSFER BOTH OPERANDS TO THE REGISTERS IN THE
HARDWARE MULTIPLIER MODULE
IF ONE OF THE OPERANDS IS 8 BIT, SIGN EXTENSION
is NEEDED. USE CONSTANT OPERANDi AND OPERAND2 TO
IDENTIFY BYTE DATA

*
*
*
*
*

**

OPERANDi . EQU 0

OPERAND2 . EQU 0

MPY .EQU 0130H
MPYS .EQU 0132H
MAC .EQU 0134H
MACS .EQU 0136H
OP2 .EQU O138H
RESLO .EQU O13AH
RESHI .EQU 013CH
SUMEXT .EQU 013EH

.BSS OPERi,2,200H

.BSS OPER2,2

.BSS RAM, 8

.IF OPERANDi=O
MOV &OPERi,&MPYS

.ELSE

0: OPERANDi IS WORD (16BIT)
8 : OPERANDi IS BYTE (8BIT)
0: OPERAND2 IS WORD (16BIT)
8: OPERAND2 IS BYTE (8BIT)

LOAD 1ST (WORD) OPERAND,
DEFINES ADD. SIGNED MULTIPLY

MOV.B &OPERi,&MPYS

SXT &MPYS
.ENDIF

LOAD 1ST (BYTE) OPERAND,
DEFINES ADD. SIGNED MULTIPLY
EXPAND BYTE TO SIGNED WORD DATA

.IF OPERAND2=0
MOV &OPER2,&OP2

.ELSE
MOV.B &OPER2,&OP2
SXT &OP2

.ENDIF

LOAD 2ND (WORD) OPERAND AND
START SIGNED MULTIPLICATION

LOAD 2ND (BYTE) OPERAND,
RE-LOAD 2ND OPERAND AND START
SIGNED 'FINAL' MULTIPLICATION

**

*
*

EXAMPLE TO ADD THE RESULT OF THE HARDWARE
MULTIPLICATION TO THE RAM DATA, 64 BITS

**

ADD LOW RESULT TO RAM
ADD HIGH RESULT TO RAM+2

*
*

ADD
ADDC
ADDC
ADDC

&RESLO,&RAM
&RESHI,&RAM+2
&SUMEXT,&RAM+4i
&SUMEXT,&RAM+6;

ADD SIGN WORD TO EXTENSION WORD
IF 64 BIT LENGTH IS USED

Hardware Multiplier Operation

6.2.3 Multiply Unsigned and Accumulate, 16x16bit, 16x8bit, 8x16bit, 8x8bit

The following multiplication operation shows 32 bytes of program code and 32
execution cycles (16X16-bit multiplication).

**
* TRANSFER BOTH OPERANDS TO THE REGISTERS IN THE *
* HARDWARE MULTIPLIER MODULE *
* THE RESULT OF THE MULTIPLICATION IS ADDED TO THE *
*
*
*

CONTENT OF BOTH RESULT REGISTERS, RESLO AND RESHI *
USE CONSTANT OPERANDi AND OPERAND2 TO IDENTIFY *
BYTE DATA *

**

OPERANDi . EQU 0 0: OPERANDi IS WORD (16BIT)
8: OPERANDi IS BYTE (8BIT)
0: OPERAND2 IS WORD (16BIT)
8: OPERAND2 IS BYTE (8BIT)

OPERAND2 . EQU 0

MPY
MPYS
MAC
MACS
OP2
RESLO
RESHI
SUMEXT

.EQU 0130H

.EQU 0132H

.EQU 0134H

.EQU 0136H

.EQU 0138H

.EQU 013AH

.EQU 013CH

.EQU 013EH

.BSS OPER1,2,200H

.BSS OPER2,2

.BSS RAM, 8

.IF OPERAND1=8
MOV. B &OPERl, &MAC LOAD 1ST OPERAND,

DEFINES ADD. UNSIGNED MULTIPLY

.ELSE
MOV &OPER1, &MAC LOAD 1ST OPERAND,

.ENDIF

.IF OPERAND1=8
MOV. B &OPER2, &OP2

.ELSE
MOV

.ENDIF

&OPER2,&OP2

DEFINES ADD. UNSIGNED MULTIPLY

LOAD 2ND OPERAND AND START
MULTIPLICATION

LOAD 2ND OPERAND AND START
MULTIPLICATION

**

* EXAMPLE TO ADD THE RESULT OF THE HARDWARE *
* MULTIPLICATION TO THE RAM DATA, 64BITS *
* THE RESULT OF THE MULTIPLICATION IS HELD IN RESLO*
* AND RESHI REGISTERS. THE UPPER TWO WORDS IN THE *
* EXAMPLE ARE FURTHER LOCATED IN THEIR RAM LOCATION*
**

ADDC &SUMEXT,&RAM+4
ADC &RAM+6

ADD SUMEXTENSTION TO RAM+4
IF 64 BIT LENGTH IS USED

Hardware Multiplier 6-7

Hardware Multiplier Operation

6.2.4 Multiply Signed and Accumulate, 16x16bit, 16x8bit, 8x16bit, 8x8bit

6-8

**

*
*
*

TRANSFER BOTH OPERANDS TO THE REGISTERS IN THE HARDWARE

MULTIPLIER MODULE

USE CONSTANT OPERANDi AND OPERAND 2 TO IDENTIFY BYTE DATA

*
*
*

**
OPERANDi .EQU 0 0: OPERANDi IS WORD (16BIT)

B: OPERANDi IS BYTE (BBIT)

OPERAND2 .EQU 0 0: OPERAND2 IS WORD (16BIT)

B: OPERAND2 IS BYTE (BBIT)

MPY .EQU 0130H

MPYS .EQU 0132H

MAC .EQU 0134H

MACS .EQU 0136H

OP2 .EQU O13BH

RESLO .EQU 013AH

RESHI .EQU 013CH

SUMEXT .EQU 013EH

MAXMACS .EQU 32H ;NUMBER OF MACS FUNCTIONS WHICH COULD

;BE EXECUTED TILL AN OVERFLOW OR UNDERFLOW

; COULD

.BSS OPER1,2,200H

.BSS OPER2, 2

.BSS RAM,S

.BSS MCOUNT,2

.IF OPERAND1=S

MOV. B &OPER1, &MACS

SXT &MACS

.ELSE

MOV &OPER1,&MACS

.ENDIF

.IF OPERAND1=B

SXT &OPER2

MOV. B &OPER2 , &OP2

.ELSE

MOV

• END IF

&OPER2,&OP2

OCCUR THE FIRST TIME

LOAD 1ST OPERAND,

DEFINES ADD. UNSIGNED MULTIPLY

EXPAND BYTE TO SIGNED WORD DATA

LOAD 1ST OPERAND,

DEFINES ADD. UNSIGNED MULTIPLY

OPER2 MEMORY LOCATION NEEDS
2 BYTES

LOAD 2ND OPERAND AND START

MULTIPLICATION

LOAD 2ND OPERAND AND START

MULTIPLICATION

**

*
*
*
*
*

EXAMPLE TO ADD THE RESULT OF THE HARDWARE MULTIPLICATION

TO THE RAM DATA IF NECESSARY

THE RESULT OF THE MULTIPLICATION IS HELD IN RESLO AND

RESHI REGISTERS. THE UPPER TWO WORDS IN THE EXAMPLE ARE

FURTHER LOCATED IN THEIR RAM LOCATION

*
*
*
*
*

**
INC MCOUNT INC MACS COUNTER

CMP #MAXMACS,MCOUNT ONLY ADD TO RAM IF NECESSARY

JNE NEXTMACS

ADDC &RESLO,&RAM+O ADD SUMEXTENSION TO RAM+O

ADDC &RESHI,&RAM+2 ADD SUMEXTENSION TO RAM+2

ADDC &SUMEXT,&RAM+4 ADD SUMEXTENSION TO RAM+4

ADDC &SUMEXT,&RAM+6 IF 64 BIT LENGTH IS USED

CLR MCOUNT

NEXTMACS

Hardware Multiplier Registers

6.3 Hardware Multiplier Registers

Hardware multiplier registers are word structured, but can be accessed using
word or byte processing instructions. Table 6-2 describes the hardware
multiplier registers.

Table 6-2. Hardware Multiplier Registers

Register Short Form Register Type Address Initial State

Multiply Unsigned (Operand 1) MPY Read/write 0130h Unchanged

Multiply Signed (Operand1) MPYS Read/write 0132h Unchanged

Multiply+Accumulate (Operand1) MAC Read/write 0134h Unchanged

Multiply Signed+Accumulate (Operand1) MACS Read/write 0136h Unchanged

Second Operand

Result Low Word

Result High Word

Sum Extend

OP2 Read/write 0138h Unchanged

ResLo Read/write 013Ah Undefined

ResHi Read/write 013Ch Undefined

SumExt Read 013Eh Undefined

Two registers are implemented for both operands, OP1 and OP2, as shown
in Figure 6-3. Operand 1 uses four different addresses to address the same
register. The different address information is decoded and defines the type of
multiplication operation used.

Figure 6-3. Registers of the Hardware Multiplier

15 o
MPY (130h),MPYS (132h)
MAC (134h), MACS(136h)

OP2 (138h)

ResLo (13Ah)

ResHi (13Ch)

SumExt (13Eh)

Operand 1, OP1

Operand 2, OP2

Result Low Word, ResLo

Result High Word, ResHi

Sum Extension Word, SumExt

The multiplication result is located in two word registers: result high (RESHI)
and result low (RESLO). The sum extend register (SumExt) holds the result
sign of a signed operation or the overflow of the multiply and accumulate
(MAC) operation. See Section 6.5.3 for a description of overflow and
underflow when using the MACS operations.

All registers have the least significant bit (LSB) at bitO and the most significant
bit (MSB) at bit? (byte data) or bit15 (word data).

Hardware Multiplier 6-9

Hardware Multiplier Special Function Bits

6.4 Hardware Multiplier Special Function Bits

Because the hardware multiplier module completes all multiplication
operations quickly, without interrupt intervention, no special function bits are
used.

6.5 Hardware Multiplier Software Restrictions

Two restrictions require attention when the hardware multiplier is used:

o The indirect or indirect autoincrement address mode used to process the
result

o The hardware multiplier used in an interrupt routine

6.5.1 Hardware Multiplier Software Restrictions-Address Mode

6-10

The result of the multiplication operation can be accessed in indexed, indirect,
or indirect autoincrement mode. The result registers may be accessed without
any restrictions if you use the indexed address mode including the symbolic
and absolute address modes. However, when you use the indirect and indirect
autoincrement address modes to access the result registers, you need at least
one instruction between loading the second operand and accessing one of the
result registers.

**
* EXAMPLE: MULTIPLY OPERANDi AND OPERAND2
**

RESLO .SET 013AH RESLO = ADDRESS OF RESLO
PUSH R5 R5 WILL HOLD THE ADDRESS OF
MOV #RESLO,R5 THE RESLO REGISTER

MOV &OPER1, &MPY ; LOAD 1ST OPERAND,
DEFINES ADD. UNSIGNED MULTIPLY

MOV &OPER2 ,&OP2 ; LOAD 2ND OPERAND AND START
MULTIPLICATION

**

*
*

EXAMPLE TO ADD THE RESULT OF THE HARDWARE
MULTIPLICATION TO THE RAM DATA, 64BITS

*
*

**

NOP

ADD @R5+,&RAM
ADDC @R5, &RAM+2
ADC &RAM+4
ADC &RAM+6

POP R5

MIN. ONE CYCLES BETWEEN MOVING
THE OPERAND2 TO HW-MULTIPLIER
AND PROCESSING THE RESULT WITH
INDIRECT ADDRESS MODE
ADD LOW RESULT TO RAM
ADD HIGH RESULT TO RAM+2
ADD CARRY TO EXTENSION WORD
IF 64 BIT LENGTH IS USED

The previous example shows that the indirect or indirect autoincrement
address modes, when used to transfer the result of a multiplication operation
to the destination, need more cycles and code than the absolute address
mode. There is no need to access the hardware multiplier using the indirect
addressing mode.

Hardware Multiplier Software Restrictions

6.5.2 Hardware Multiplier Software Restrictions-Interrupt Routines

The entire multiplication routine requires only three steps:

1) Move operand OP1 to the hardware multiplier; this defines the type of mul
tiplication.

2) Move operand OP2 to the hardware multiplier; the multiplication starts.

3) Process the result of the multiplication in the RESLO, RESHI, and
SUM EXT registers.

The following considerations describe the main routines that use hardware
multiplication. If no hardware multiplication is used in the main routine,
multiplication in an interrupt routine is protected from further interrupts,
because the GIE bit is reset after entering the interrupt service routine.
Typically, a multiplication operation that uses the entire data process occurs
outside an interrupt routine and the interrupt routines are as short as possible.

A multiplication operation in an interrupt routine has some feedback to the
multiplication operation in the main routine.

6.5.2.1 Interrupt Following an OP1 Transfer

The two LSBs of the first operand address define the type of multiplication
operation. This information cannot be recovered by any later operation.
Therefore an interrupt must not be accepted between the first two steps: move
operand OP1 and OP2 to the multiplier.

6.5.2.2 Interrupt Following an OP2 Transfer

After the first two steps, the multiplication result is in the corresponding
registers RESLO, RESHI, and SUMEXT. It can be saved on the stack (using
the PUSH instruction) and can be restored after completing another
multiplication operation (using the POP instruction). However, this operation
takes additional code and cycles in the interrupt routine. You can avoid this,
by making an entire multiplication routine uninterruptible, by disabling any
interrupt (DINT) before entering the multiplication routine, and by enabling
interrupts (EINT) after the multiplication routine is completed. The negative
aspect of this method is that the critical interrupt latency is increased drastically
for events that occur during this period.

6.5.2.3 General Recommendation

In general, one should avoid a hardware multiplication operation within an
interrupt routine when a hardware multiplication is already used in the main
program. (This will depend upon the application-specific software, applied
libraries, and other included software.) The methods previously discussed
have some negative implications; therefore, the best practice is to keep
interrupt routines as short as possible.

Hardware Multiplier 6-11

Hardware Multiplier Software Restrictions

6.5.3 Hardware Multiplier Software Restrictions-MACS

6-12

The multiplier does not automatically detect underflow or overflow in the
MACS mode. An overflow occurs when the sum of the accumulator register
and the result of the signed multiplication exceed the maximum binary range.

The binary range of the accumulator for positive numbers is 0 to 231-1
(7FFF FFFFh) and for negative numbers is -1 (OFFFF FFFFh) to -231

(8000 OOOOh). An overflow occurs when the sum of two negative numbers
yields a result that is in the range given above for a positive number. An under
flow occurs when the sum of two positive numbers yields a result that is in the
range for a negative number.

The maximum number of successive MACS instructions without underflow or
overflow is limited by the individual application and should be determined us
ing a worst-case calculation. Care should then be exercised to not exceed the
maximum number or to handle the conditions accordingly.

Chapter 7

FLL Clock Module

This chapter discusses the FLL clock module used in the MSP430x3xx
families. The FLL clock module in the MSP430x3xx includes a watch-crystal
oscillator, an RC-type digitally-controlled oscillator (DCC), and a frequency
locked-loop (FLL) to ensure the accuracy of the DCC.

Topic Page

7.1 The FLL Clock Module ... 7-2

7.2 Crystal Oscillator••........................... 7-3

7.3 Digitally-Controlled Oscillator (DCO) and
Frequency-Locked Loop•.•.••••...•.......•............•. 7-4

7.4 FLL Operating Modes•...•••..........•...•......•... 7-7

7.5 Buffered Clock Output ...•......•.••.•...•.•....•.•.•......•... 7-8

7.6 FLL Module Control Registers .•.••.......•.....•..••......••.• 7-9

7-1

7.1 The FLL Clock Module

The frequency-locked loop (FLL) clock module (shown in Figure 7-1) follows
the major design targets of low system cost and low-power consumption. The
FLL operates completely using a 3276B-Hz watch crystal. A second asynchro
nous high-speed clock signal is generated on-chip using a digitally-controlled
oscillator (DCO). The DCO frequency is stabilized to a multiple of the watch
crystal frequency by dividing the DCO frequency and digitally locking the two
frequencies. This technique is known as frequency-locked loop.

Figure 7-1. Frequency-Locked Loop

7-2

ACLK

OscOff SCGO PUC

fCrystal Enable Reset

1 D-bit Frequency Integrator

/(N+ 1) Divider

10
SCG1 FN4 FN3 FN2 M

Enable

DC Generator DCO and Modulator MCLK

fS stem

The FLL module supplies the MSP430x3xx family of devices with two clock
signals and an associated software-selectable buffered clock output.

o ACLK, a crystal oscillator signal used by peripheral modules. This signal
is identical to the frequency of the crystal oscillator input, XIN. ACLK is also

known as fcrystal.

o MCLK, the controller's main system clock used by the CPU; this clock is
software selectable for individual peripheral modules. The MCLK is
identical to the frequency generated by the DCO. MCLK is also known as

fsystem·

o XBUF, buffered output of either MCLK, ACLK, ACLKl2, ACLKl4, or off.

Oscillator

7.2 Crystal Oscillator

The crystal oscillator supports low-current consumption by using a 32,768 Hz
watch crystal. The crystal connects to XIN and XOUT without any other
external components. This oscillator generates the ACLK signal which is
available to on-chip peripherals and XBUF.

Two factors determine the choice of the watch crystal:

o Low-current consumption
o Stable time base

The oscillator operates after applying Vcc. Since the OscOff control bit in the
Status register (SR) is reset. It can be stopped by software by setting the
OscOff bit in the SR (OscOff = 1). When OscOff mode is selected (see Chapter
3) the ACLK signal is held in a high state.

All components required for crystal operation are integrated into the MSP430
as shown in Figure 7-2. No additional external components are necessary for
operation. Because the oscillator is designed for ultralow-power dissipation,
short connections between the crystal and MSP430 devices should be used
for the PWB layout.

Figure 7-2. Crystal Oscillator Schematic

r----------------,
I -12 pF

I >-------......... --1 ~ 0 v

x'Ni
ACLK

c:=J I 1 I OscOff

xou~ ~ ______ ~~
~ ~ OV

MSP430

32,768 HZI -12 pF L ________________ ~

FLL Clock Module 7-3

Digitally-Controlled Oscillator (OCO) and Frequency-Locked Loop
.1

7.3 Digitally-Controlled Oscillator (DCO) and Frequency-Locked Loop

The DCa is an integrated RC-type oscillator in the MSP430x3xx FLL clock
module. The DCa generates a clock signal called MCLK. The MCLK
generated by the DCa is used by the MSP430x3xx CPU and is available to
on-chip peripherals and XBUF. MCLK is set to an N+1 multiple of ACLK. The
N multiplier is contained in the lowest 7 bits of control register SCFOCTL
(SCFOCTL.6 ... SCFOCTL.O). N is set to 31 on PUC by default, resulting in
an effective ACLK multiplier of 32 and an MCLK of 1.048576 MHz, assuming
that ACLK is 32, 768 Hz.

The multiplier (N+ 1) sets the frequency of MCLK:

MCLK = (N + 1) x ACLK

MCLK is stabilized using a frequency-locked loop technique. When combined
with the DCa, two important benefits result:

o Fast start-up. The MSP430x3xx DCa is active in less than 6 ~s, which
supports extended sleep periods and burst performance.

o Digital control signals. The DCa starts at exactly the same setting as when
shutoff. Thus a long locking period is not required for normal operation.

User software can modify MCLK by changing the multiplier N at any time. The
exact minimum and maximum MCLK allowed is specified in the device data
sheet.

7.3.1 FLL Operation

As with any RC-type oscillator, frequency varies with temperature and voltage.
The FLL hardware automatically stabilizes MCLK. The FLL compares the
ACLK to MCLK/(N+ 1) and counts up or down a 10-bit frequency integrator.
The MCLK is constantly adjusted to one of 1024 possible settings. The output
of the frequency integrator that drives the DCa can be read in SCFI1 and
SCFIO. The count is adjusted + 1 or -1 with each crystal period (30.5 ~s using
32,768 Hz). af the 10-bits from the frequency integrator, 5-bits are used for
DCa frequency taps and 5-bits are used for a modulator. The 5-bits for the
Dca tap are contained in the SCFI1 (SCFI1.7 ... SCFI11.3). There are 29 taps
implemented in the DCa (TAPS 28,29,30, and 31 are equivalent), each being
approximately 10% higher than the previous. In most applications, a fraction
tap may be required to achieve the programmed MCLK over the full range of
system operation (see Figure 7-3).

Figure 7-3. Fractional Tap Frequency Required

fn-2 fn-1 fn fn+1 fn+2

---- I I I t I I
Required 'Fractional Tap' /

7-4

3 / Discrete DCO Taps
fn+~ I ---~

... DCO Output
Frequency Spectrum

Digitally-Controlled Oscillator (DCO) and Frequency-Locked Loop

7.3.2 Modulator Operation

The modulator overcomes relatively-large tap steps by mixing a DCO tap with
the next higher-frequency tap DCO+ 1. The DCO mixing or hop pattern is con
trolled with 5-bits; thus there are 32 possible mix patterns (see Figure 7-4).
The 5-bits for the modulator are contained in SCFI1 and SCFID
(SCFI1.2 ... SCFI1.D, SCFID.1, and SCFID.D).

Figure 7-4. Modulator Hop Patterns

NDCOmod

31tJ
I

24W
16

15

I
I

I
I

u

5t-----'
41-----1

u

3t-------~

2t-------~

u u u u u
L
L

Lower DCO Tap Frequency fn Upper DCO Tap Frequency fn+1

ot---------------------------------

I.
MCLK Cycles (1.048 MHz)

One ACLK Cycle ·1
7.3.3 DCO Frequency Range

The fundamental-frequency range of the DCO is centered based on fnominal
approximately equal to 1 MHz using bits FN_2, FN_3, and FN_ 4 in SCFIO (see
Table 7-1). The range control allows the DCO to operate near the center of the
available taps for a given MCLK.

Table 7-1. The DCa Range Control Bits

FN_4 FN_3 FN_2 MCLK FREQUENCY

0 0 0 1 x fnominal

0 0 1 2 x fnominal

0 1 X 3 x fnominal

1 X X 4 x fnominal

FLL Clock Module 7-5

Digitally-Controlled Oscillator (DCO) and Frequency-Locked Loop ..
7.3.4 Disabling the FLL

FLL loop control and modulation can be disabled independently. FLL loop con
trol can be disabled by setting the SCGO bit in the status register (SR). In this
case, the DCO runs at the previous tap-open loop. Then the MCLK is not au
tomatically stabilized to (N+ 1) x ACLK. The influence of the modulator can be
disabled by setting the modulation bit M (SCFQCTL.7). In this case the MCLK
is stabilized to (N+ 1) x ACLK every 1024 cycles to the nearest 32 DOC taps.

7.3.5 MCLK Stability

The DCO is absolutely monotonic and the 10-bits of the frequency integrator
continuously count up/down by one. The accuracy of MCLK is the same as that
of ACLK if the FLL is running continuously.

The accumulated error in MCLK tends to zero over a long period. The 10-bit
FLL integrator is automatically adjusted every period of the ACLK. Thus, a
positive frequency deviation over one ACLK period is compensated with a
negative deviation over the next ACLK period. Variation between MCLK clock
periods can be approximately 10% due to the modulator mixing of DCO taps,
while the accumulated system clock error over longer time periods is zero.

7.3.6 Oscillator Fault Detection

7-6

MSP430x3xx devices have a fail-safe mode when the external crystal fails. If
the crystal fails and no ACLK signal is generated, the FLL will continue to count
down to zero in an attempt to lock ACLK and MCLKI(N+ 1). An internal oscilla
tor fault is detected if the DCO tap moves out of the range 0<Ndco<28; that
is, an oscillator fault is signaled if the five bits SCFI1. 7 ... SCFI11 .3 contain one
the values 0, 28, 29, 30, or 31. An oscillator fault sets the oscillator-fault inter
rupt flag (OFIFG) in the interrupt flag register 1 (IFG1) permanently as long as
the fault condition is valid. If the oscillator-fault interrupt-enable bit (OFIE) is
set by user software in the interrupt enable register 1 (IE1) and an oscillator
fault occurs, a nonmaskable interrupt (NMI) is generated. When the interrupt
is granted, the OFIE is reset automatically by hardware; user software must
reset OFIFG. The NMI interrupt has two sources. User software must
interrogate the OFIFG bit to determine if the NMI was generated by an oscilla
tor fault.

Note:

MCLK is active even at the lowest DCO tap. The MCLK signal is available
for the CPU to execute code and service an NMI.

FLL Modes

7.4 FLL Operating Modes

Control bits SCGO, SCG 1, OscOff, and CPUOff in the status register configure
the MSP430x3xx operating modes as discussed in Chapter 3, System Resets,
Interrupts, and Operating Modes.

7.4.1 Starting From Power Up Clear (PUC)

On a valid PUC, SCFQCTL = 31, SCFIO and SCFI1 are cleared, and SCGO,
SCG1, OscOff, and CPUOff in the status register are reset. The FLL is fully
operational and will adjust the DCO until MCLK = (31 + 1) x ACLK. Using a
32,768-Hz watch crystal for ACLK, MCLK will stabilize to 1.048576 MHz.

Because the DCO starts at the lowest tap on PUC, enough time must be
allowed for the DCO to settle on the proper tap for normal operation. This is
necessary only after PUC, or when SCFIO and SCFI1 are cleared. 32 ACLK
cycles are required to get from one tap to another. Twenty-nine taps are
implemented, requiring 27 x 32 ACLK cycles as the worst case for the DCO
to settle on the proper tap (taps 0 and 27 are not counted since OFIFG is set
at these taps). During initialization, this time should be left prior to precise
MCLK timing. During normal operation, the FLL will constantly adjustthe DCO,
requiring no special considerations.

7.4.2 Adjusting the FLL Frequency

User software can adjust the FLL frequency at any time by changing the N
multiplier in the SCFQCTL register. Also, bits FN_2, FN_3, and FN_ 4 are
adjusted to the appropriate MCLK frequency range.

Example, MCLK = 64 x ACLK = 2097152

bic

mov.b

mov.b

bis

#GIE,SR

#(64-l),&SCFQTL

#FN_2,&SCFIO

#GIE,SR

Example, MCLK = 100 x ACLK = 3276800

bic

mov.b

mov.b

bis

#GIE,SR

#(lOO-l),&SCFQTL

#FN_3,&SCFIO

#GIE,SR

7.4.3 FLL Features for Low-Power Applications

Disable interrupts

MCLK = 64 * ACLK

DCO centered at 2 MHz

Enable interrupts

Disable interrupts

MCLK = 100 * ACLK

DCO centered at 3 MHz

Enable interrupts

Three conflicting requirements typically exist in battery-powered MSP430x3xx
real-time applications:

o Low-frequency clock for energy conseNation and time keeping

o High-frequency clock for fast reaction to events and fast burst-processing
capability

FLL Clock Module 7-7

Buffered Clock Output

o Clock stability

The MSP430x3xx Fll clock system addresses the above conflicting
requirements by providing both a low-frequency AClK with crystal stability
and a stable high-frequency MClK with near instant on-capability. The DCO,
which generates the MSP430x3xx MClK, is operation in less than 6 IlS.

The choice of a digital frequency-locked loop versus an analog-phase locked
loop enables the benefit of fast-start and stability. A phase-locked loop takes
hundreds or thousands of clock cycles to start and stabilize. The MSP430x3xx
frequency-locked-loop starts immediately at the exact setting prior to shut
down.

For minimum power consumption, the MSP430x3xx system operates for
extended periods in low-power mode 3 (lPM3) with only the AClK active for
timers and low-power peripherals. Interrupts, both from external and internal
events, drive the activation of MClK for the CPU and high-speed peripherals.
In the MSP430x3xx, any interrupt stores the SR operating modes on the stack
and then clears the SCG1 bit in the SR, automatically starting the DCO and
MClK. After the interrupt handler has completed, the saved SR is popped from
the stack with the RETI instruction, restoring the previous operating mode.

7.5 Buffered Clock Output
The clock buffer shown in Figure 7-5 allows AClK, AClKl2, AClKl4, or MClK
to be output on MSP430x3xx pin XBUF. The clock buffer is controlled using the
three bits CBE, CBSEl1, and CBSElO in control register CBCTL.

Figure 7-5. Schematic of Clock Buffer
POR

7-8

I
CL

,.-P-
aD 01

CBSEL1

I fBSELO

ACLK "- ACLK ,-,
/

00

ACLKl2,-,

ACLKl4 ~

01

10

MCLK 11
MCLK)>------------0

XBUF

CBE

CBE enables XBUF when set. CBSEl1 and CBSElO select the clock source
of an enabled XBUF. On a POR condition, CBSEl1, CBSElO, and CBE are
reset and XBUF is disabled. If either AClK or MClK is shut down (generating
no frequency) and this clock source (or fraction of) is selected for XBUF, no
frequency will be output on XBUF regardless of CBE.

Note:

Control register CBCTl is a write-only register. Only mov. B #xxh,
&CBCTL instructions should be used to access this register. Other Format 1
instructions, which are a read-then-write type, will result in incorrect setting.

FLL Module Control Rei'Jis/'ers

7.6 FLL Module Control Registers

7.6.1

The FLL module is configured using control registers SCFQCTL, SCFIO,
SCFI1, C8CTL, and four bits from the CPU status register: SCG1, SCGO,
OscOtt, and CPUOff. User software can modify these control registers from
their default condition at any time. The FLL control registers are located in the
byte-wide peripheral map and should be accessed with byte (.8) instructions.

Register Short Form Register Type Address Initial State

System clock control SCFQCTL Read/write 052h 031h

System clock SCFIO Read/write 050h Reset
frequency integrator 0

System clock SCFI1 Read/write 051h Reset
frequency integrator 1

Clock buffer CBCTL Write only 053h Reset

MClK Frequency Control

The contents of register SCFQCTL controls the multiplication of the crystal fre
quency. The contents of register SCFQCTL is shown in Figure 7-6.

Figure 7-6. SCFQCTL Register
7 o

SCF~~~~ M I 26 1 25 1 24 1 23 1 22 1 21 1 20

rw-O rw-O rw-O rw-1 rw-1 rw-1 rw-1 rw-1

The seven bits indicate a range of 1 + 1 to 127+ 1. Any value below 1 results in
unpredictable operation. The user should ensure that the value selected does
not exceed the maximum MCLK value specified in the device data sheet.

fSystem = (x·26 + x·25 + x·24 + x·23 + x·22 + x·21 + x·20 + 1) . fcrystal

The default value in SCFQCTL is 31 after a PUC Signal is active, resulting in
a factor of 32.

The output of the frequency integrator controls the DCO. This value can be
read using the SCFI1 and SCFIO addresses as shown in Figure 7-7.

Figure 7-7. SCFIO and SCFI1 Registers

If the modulation bit M is set, only the DCO taps determine the system
frequency. Adjacent DCO taps are not mixed. Note, however, that if the FLL
remains active (SCGO=O), it will continue to adjust the DCO taps. If an
application requires the system frequency to remain constant for a short period
of time, both the modulation and the FLL should be disabled (M=1, SCGO=1).

7 0

sg;~~ 1 0 1 0 1 0 IFN_4IFN_3IFN_21 21 1 20 1

rw-O rw-O rw-O rw-O rw-O

7 0

sg~1 ~ 1 29 1 28 1 27 1 26 1 25 1 24 1 23 1 22 1

rw-O rw-O rw-O rw-O rw-O rw-O rw-O rw-O

FLL Clock Module 7-9

FLL Module Control Registers ..
Figure 7-8. Crystal Buffer Control Register

C~~~~ ~1~t~ __ t~~_t~ __ t~~_t~IC_B_~_EL~I_c_B~_E_L~I_c~B~E I
t Not implemented w-(O) w-(O) w-(O)

Bit 0: Bit CBE controls the output buffer configuration.
CBE = 1 : Output buffer enabled
CBE = 0: Output buffer disabled

Bits 1,2: Bits CBSEL 1 and CBSELO select the frequency that can be
applied to output pin XBUF.

CBE CBSEL1 CBSELO XBUF

o x x Disabled

o o ACLK

o ACLKl2

o ACLKl4

MCLK

7.6.2 Special-Function Register Bits

7-10

The FLL clock module affects two bits in the special-function registers, OFIFG
and OFIE. The oscillator fault-interrupt enable bit (OFIE) is located in bit 1 of
the interrupt-enable register IE1. The oscillator fault-interrupt flag bit (OFIFG)
is located in bit 1 of the interrupt-flag register IFG1.

IE1 7 6 5 4 3

OOh

IFG1

02h

7 6 5 4 3

2 1 o -rw-o

210

rw-1

The oscillator fault signal sets the OFIFG as long as the oscillator fault condi
tion is active. The detection and effect of the oscillator fault condition is de
scribed in section 7.3.6. The oscillator fault interrupt requests a nonmaskable
interrupt if the OFIE bit is set. The oscillator interrupt-enable bit is reset auto
matically if a non-maskable interrupt is accepted. The initial state of the OFIE
bit is reset, and no oscillator fault requests an interrupt even if a fault condition
occurs.

Chapter 8

This chapter describes the digital I/O configuration.

Topic Page

8.1 Introduction .. 8-2

8.2 Port PO .. 8-3

8.3 Ports P1, P2 ... 8-11

8.4 Ports P3, P4 ... 8-17

8-1

Introduction

8.1 Introduction

8-2

The general-purpose I/O ports of the MSP430 are designed to give maximum
flexibility. Each I/O line is individually configurable, and most have interrupt
capability.

There are several different I/O port modules that function in slightly different
ways. For this reason, names have been given to each port module. For exam
ple, port PO, P1, P2, etc. These names refer to specific port modules, and apply
to all MSP430 devices. For example, port PO and P1 may be available on a
particular MSP430 device, while ports P1 and P3 may be available on another
device. It is important for the user to understand the operating differences and
which port(s) are available on the device in use.

Additionally, the I/O port pins are often multiplexed with other pin functions on
the devices to provide maximum flexibility while optimizing pin count on the
devices.

8.2 Port PO

Port PO

The general-purpose port PO contains a general-purpose I/O lines and the
required registers to control and configure them. Each I/O line is capable
of being controlled independently. In addition, each I/O line has interrupt
capability.

Six registers are used to control the port I/O pins (see Section 8.2.1).

Port PO is connected to the processor core through the a-bit memory data bus
(MOS) and the memory address bus (MAS). Port PO should be accessed using
byte instructions in the absolute address mode, such as:
MOV.S #12h,&POOUT.

Figure 8-1. Port PO Configuration

MDB

• ~
~

8

B
8

I(Input Register POIN
I

8/

010h R/W

-I Output Register POOUT 1 6/2,-

011h R/W
8 v

MSB
PO.?

I Direction Register t
~/

012h PODIR R/W

I 'otenup' A"" POIFG ~
013h 6/2,-

I Interrupt Flags IFG1.213
002h RIW •

I Interrupt Edge Select
014h POlES I RIW I 'otenupl E,sble f'{)'E ~

015h I Interrupt Enable IE1.2/3
OOOh

LSB
PO.O

8.2.1 Port PO Control Registers

Port PO has six registers to control the I/O pins. The six control registers give
maximum input/output configuration flexibility:

o All individual I/O bits are independently programmable.

o Any combination of input, output, and interrupt condition is possible.

o Interrupt processing of external events is fully implemented for all eight
bits of port PO.

Digita//fO Configuration 8-3

Port PO

The six registers are shown in Table 8-1.

Table 8-1. Port PO Control Registers

Short Register
Register Form Type Address Initial State

Input POIN Read only 010h -----
Output POOUT Read/write 011h Unchanged

Direction PODIR Read/write 012h Reset

Interrupt flags POIFG Readlwrite 013h Reset

Interrupt edge select POlES Read/write 014h Unchanged

Interrupt enable POlE Read/write 015h Reset

These registers contain eight bits except for the two LSBs in the interrupt flag
register and interrupt enable register. These two bits are included in the special
function register. The registers should be accessed using byte instructions and
absolute address mode.

8.2.1.1 Input Register POIN

The input register is a read-only register that shows the values of the signals
at the I/O pins. The direction of the pin must be selected as input.

Note: Writing to the Read-Only Register POIN

Any attempt to write to this read-only register results in increased current
consumption while the write attempt is active.

8.2.1.2 Output Register POOUT

The output register shows the information of the output buffer. The output
buffer can be modified using all instructions that write to a destination. If read,
the contents of the buffer are independent of the pin direction. A direction
change does not modify the output buffer contents.

8.2.1.3 Direction Register PODIR

8-4

The direction register contains eight bits that define the direction of each 1/0
pin. All bits are reset by the PUC signal.

When:

Bit = 0: The 1/0 pin is switched to input direction

Bit = 1: The I/O pin is switched to output direction

Port PO

8.2.1.4 Interrupt Flags POIFG

The interrupt flags register contains six flags that reflect whether or not an
interrupt is pending from the corresponding I/O pin, if the I/O pins are
interrupt-enabled.

Three interrupt vectors are implemented for port PO; one for port PO.O, one for
port PO.1, and one for interrupt events on ports PO.2 to PO.? The six flags
shown in Figure 8-2 are located in bits? to 2 and correspond to pins PO.? to
PO.2. The interrupt flags for pins PO.1 and PO.O are located in the SFRs.

Figure 8-2. Interrupt Flags Register

When:

POIFG
013h

7

rw-O rw-O rw-O rw-O rw-O rw-O rO rO

Bit = 0: No interrupt is pending

Bit = 1: An interrupt is pending due to a transition at the I/O pin or software
setting the bit. Manipulation of POOUT and PODIR can also set
the POIFG bits.

Writing a zero to an interrupt flag resets it; writing a one to an interrupt flag sets
it and generates an interrupt.

Interrupt flags POIFG.2 to POIFG.? use only one interrupt vector. These flags
are not reset automatically when any interrupt from these events is served.
The software should determine which event is served and reset the appropri
ate flag(s).

Flags POIFG.O and POIFG.1 generate individual interrupts, and are reset
automatically when serviced.

Note:

Any external interrupt event should be as long as 1.5 times MCLK or longer
to ensure that is accepted and the corresponding interrupt flag is set.

8.2.1.5 Interrupt Edge Select POlES

The interrupt edge select register contains a bit for each I/O pin, which controls
which transition triggers the interrupt flag. All eight bits corresponding to pins
PO.? to PO.O are located in this register. When:

Bit = 0: The interrupt flag is set with a low-to-high transition

Bit = 1: The interrupt flag is set with a high-to-Iow transition

Note:

Any change in the POlES bit(s) may result in setting the associated interrupt
flags.

Digita//fO Configuration 8-5

Port PO

8.2.1.6 Interrupt Enable POlE

The interrupt enable register contains bits for I/O pins PO.7 to PO.2, as shown
in Figure 8-3, which enable an interrupt request for an interrupt event on these
pins. Two interrupt enable bits for PO.O and PO.1 are located in special function
registers IE1.2 and IE1.3.

Figure 8-3. Interrupt Enable Register

7

~~~~ I POIE.7 1 POIE.61 POIE.51 POIE.4\ POIE.3\ POIE.2\ 

rw-O rw-O rw-O rw-O rw-O rw-O rO rO 

When: 

Bit = 0: The interrupt request is disabled 

Bit = 1: The interrupt request is enabled 

Note: Port PO Interrupt Sensitivity 

Only transitions, not static levels, cause interrupts. 

o 

The interrupt routine must reset the interruptflags POI FG.2 to POIFG. 7. Flags 
POIFG.O and POIFG.1 are reset automatically when these interrupts are 
serviced. 

If an interrupt flag is still set when the RETI instruction is executed (for 
example, a transition occurs during the interrupt service routine), an interrupt 
occurs again after RETI is completed. This ensures that each transition is 
acknowledged by the software. 

8.2.2 Port PO Schematic 

The pin logic of each individual port PO signal can be read from and written to 
as described in the following sections. 

8.2.2.1 Port PO, Bits PO.3 to PO.7 

8-6 

Each port PO signal's pin logic is built from five identical register bits-PODIR, 
POOUT, POIFG, POlE, POlES-and one read-only input buffer, POIN. Bits 3 
through 7 function identically as shown in Figure 8-4. 



Port PO 

Figure 8-4. Schematic of Bits PO.l to PO.3 

Request 
Interrupt • 

PO.27 

NOTE: 3 ~x~ 7 

PODIRx -------tt----------, 

POOUT.x ---.---__1 Output I---~t----f-""'-I 

POIN.x ----4------1 
Input 
MUX 

POIRQ.x POIE.x ,--_--, 
'----~---__Iinterrupt 

PnIRQ.y 

• • • 
PnIRQ.z 

POIFG.x Flag 

Interrupt 
Edge 
Select 

POIES.x 

PO.x 

8.2.2.2 Port PO, Bit PO.2 

Bit 2 is slightly different from bits 3 to 7 as shown in Figure 8-5. The output 
signal can be determined either by the port POOUT.2 bit or by the 8-Bit 
Timer/Counter signal (TXD). When the output control register bit (TXE) is set 
to a logic 1, the TXD signal is selected as the relevant output signal and the 
pad logic is switched to the output, independent of the direction control bit 
PODIR.2. 

Figure 8-5. Schematic of Bit PO.2 

Request 
Interrupt 

PO.27 

TXE ----~-------~ 
PODIR.2 --~ ___ -+--------, 

r- --, 

POOUT.2 ----...------1 Output I-------tt----f-' ..... -I ' 

TXD MUX , 

POIN.2 ----4------1 
Input 
MUX 

POIE.2....-_--. 
'----~---__Iinterrupt 

POIRQ.3 

• • • 
POIRQ.7 

POIFG.2 Flag 

POIES.2 

, , , 
L Pa~Logic _ J 

PO.2 

Digital 110 Configuration 8-7 



Port PO 

8.2.2.3 Port PO, Bit PO. 1 

Bit 1 is slightly different from bits 3 to 7 as shown in Figure 8-6. The interrupt 
signal can be sourced by the input signal at pin PO.1, or by the 8-Bit 
Timer/Counter carry signal. Whenever the interrupt source control bit (ISCTl) 
in the 8-Bit Timer/Counter control register (TCCTl) is set, the interrupt source 
is switched from pin PO.1 to the carry signal from the counter in the 8-bit 
Timer/Counter. Flag POIFG.1 is reset automatically when the interrupt is 
serviced (IRQA signal). 

Figure 8-6. Schematic of Bit PO. 1 

POOUT.1 

PODIR.1 
r--
I PO.1 

----1..-----1 Output t-------tlI-----1 ____ ---1 

I 
I 
I I 

POIN.1 --...... -----1 Input Lpa~Logic _ J 
Interrupt 

POIES.1 ----------1 Edge 
Select r-----------, 
e__-....... - PO.1D (To 8-bitT/C) I 

.---+- Carry I 
I 

ISCTL (From 8-bit T/C) I Request __ PO_I_RQ_.1-1 
Interrupt 

POIE.1 ~_--. 
t-------1 Interrupt 

PO.1 POIFG.1 Flag 
I I '------' 1... __________ -' 

IRQA 
(Interrupt request accepted) 

8.2.2.4 Port PO, Bit PO.O 

Bit 0 is identical to bits 3 to 7 as shown in Figure 8-7, but has its own interrupt 
vector. Flag POIFG.O is reset automatically when the interrupt is serviced 
(IRQA signal). 

Figure 8-7. Schematic of Bit PO. 0 

8-8 

PODIR.O ------tt------------, 

POOUT.O --....... -----1 Output I-------tt---t-..... -I 

Input 
MUX 

POIN.O ----4------1 

POIE.O 
Interrupt 

Interrupt 
Edge 

POIFG.O Flag Select 

Request 4-_P_O_IR_Q_'_0-l 
Interrupt '--~-----I 

PO.O 

POIES.O 
IRQA 

(Interrupt request accepted) 

I 
I 

I I 
L Pa~Logic _ J 

PO.O 



8.2.3 Port PO Interrupt Control Functions 

Port PO uses eight bits for interrupt flags, eight bits to enable interrupts, eight 
bits to select the effective edge of an interrupt event, and three different 
interrupt vector addresses. 

The three interrupt vector addresses are assigned to: 

o PO.O 
o PO.1/RXD 
o PO.2 to PO.7 

The two port PO signals, PO.O and PO.1/RXD, are used for dedicated signal 
processing. Four bits in the SFR address range and two bits in the portO 
address frame handle the interrupt events on PO.O and PO.1/RXD : 

o PO.O interrupt flag POIFG.O (located in IFG1.2, initial state is reset) 
o PO.1/RXD interrupt flag POIFG.1 (located in IFG1.3, initial state is reset) 
o PO.O interrupt enable POIE.O (located in IE1.2, initial state is reset) 
o PO.1/RXD interrupt enable POIE.1 (located in IE1.3, initial state is reset) 
o PO.O interrupt edge select (located in POIES.O, initial state is reset) 
o PO.1/RXD interrupt edge select (located in POIES.1, initial state is reset) 

Both interrupt flags (POIFG.O and POIFG.1/RXD) are single source flags and 
are automatically reset when the processor serves them. The enable bits and 
edge select bits remain unchanged. 

The interrupt control bits of the remaining six I/O signals, PO.2 to PO.7, are 
located in the I/O address frame. Each signal uses three bits for configuration 
and interrupt. 

o Interrupt flag, POIFG.2 to POIFG.7 
o Interrupt enable bit, POIE.2 to POIE.7 
o Interrupt edge select bit, POIES.2 to POIES.7 

The interrupt flags POIFG.2 to POIFG.7 share the same interrupt vector. An 
interrupt event on one or more pins of PO.2 to PO.7 requests an interrupt when 
two conditions are met: the appropriate individual enable bit POIE.x (2 ~ x ~ 7) 
is set and the general interrupt enable (GIE) bit is set. Since the interrupts 
share the same interrupt vector, interrupt flags PO.2 to PO.7 are not 
automatically reset and, therefore, continue to generate interrupts until reset. 
The interrupt service routine software should handle the detection of the 
source and reset the appropriate flag when it is serviced. 

Note: 

Modifying the direction control bit or interrupt edge select bit for an I/O may 
result in setting the interrupt flag for that I/O line. 

Digital 110 Configuration 8-9 



Port PO 

8.2.3.1 VO-Pin Interrupt Handler for PO.2 to PO.7: Programming Example 

8-10 

The following code describes how to set the I/O pin interrupt handler. 

The I/O-PIN interrupt handler for PO.2 to PO.7 starts here 

IOINTR PUSH R5 
MOV. B &POIFG, R5 
BIC. B R5, &POIFG 

EINT 

iSave R5 
iRead interrupt flags 
iClear status flags with the 
iread data 
i Addi tional set bi ts are not 
icleared! 
iAllow interrupt nesting 

iR5 contains information about which I/O-pin(s) cause 
iinterrupts: 

ithe processing starts here. 

POP 
RETI 

R5 iJOB done: restore R5 
iReturn from interrupt 

iDefinition of interrupt vector table 

. sect "I027_vec", OFFEOh iThe interrupt vector for 
iflags POIFG.2 and POIFG.7 
iare at memory address OFFEOh 
iin 3xx devices . 

. WORD IOINTR iI/a-pin (2 to 7) Vector in 
iRON 

. sect "RST_vec", OFFFEh 

.WORD RESET 
ilnterrupt Vectors 



Ports Pt, P2 

8.3 Ports P1, P2 

Each of the general-purpose ports P1 and P2 contain 8 general-purpose 1/0 
lines and all of the registers required to control and configure them. Each 1/0 
line is capable of being controlled independently. In addition, each 1/0 line is 
capable of producing an interrupt. 

Separate vectors are allocated to ports P1 and P2 modules. The pins for port 
P1 (P1.0-7) source one interrupt, and the pins for port P2 (P2.0-7) source 
another interrupt. 

Seven registers are used to control the port I/O pins (see Section 8.3.1). 

Ports P1 and P2 are connected to the processor core through the 8-bit MDB 
and the MAB. They should be accessed using byte instructions in the absolute 
address mode. 

Figure 8-8. Port Pt, Port P2 Configuration 

MOB 

8 R 8 

I Input Register PnlN I 8 

n=1:020h 
n = 2: 028h I Output Register PnOUT I 

~ RJW 
n - 1: 021 h I Direction Register 1 
n = 2: 029h PnDIR I. RJW 

8 

n -1: 022h I I 
n = 2: 02Ah Interrupt Flags PnlFG 

8" 

RJW 
n 1:023h 
n =2: 02Bh I Interrupt Edge Select I 

PnlES 

8 

RJW 

MSB 
Pn.7 

n 1: 024h 
n =2: 02Ch I Interrupt Enable PnlE I 

RJW 
n 1:025h 
n =2: 02Dh I Function Select PnSEL I 

n = 1: 026h 
n = 2: 02Eh 

LSB 
Pn.O 

Digita//IO Configuration 8-11 



Ports P1, P2 

8.3.1 Port P1, Port P2 Control Registers 

The seven control registers give maximum digital input/output configuration 
flexibility: 

o All individual I/O bits are independently programmable. 

o Any combination of input, output, and interrupt condition is possible. 

o Interrupt processing of external events is fully implemented for all eight 
bits of ports P1 and P2. 

The seven registers for port P1 and the seven registers for port P2 are shown 
in Table 8-2 and Table 8-3, respectively. 

Table 8-2. Port P1 Registers 

Register Short Form Register Type Address Initial State 

Input P11N Read only 020h -----
Output P10UT Read/write 021h Unchanged 

Direction P1DIR Read/write 022h Reset 

Interrupt Flags P11FG Read/write 023h Reset 

Interrupt Edge Select P11ES Read/write 024h Unchanged 

Interrupt Enable P11E Read/write 025h Reset 

Function Select P1SEL Read/write 026h Reset 

Table 8-3. Port P2 Registers 

8.3.1.1 

Register Short Form Register Type Address Initial State 

Input P21N Read only 028h -----
Output P20UT Read/write 029h Unchanged 

Direction P2DIR Read/write 02Ah Reset 

Interrupt Flags P21FG Read/write 02Bh Reset 

Interrupt Edge Select P21ES Read/write 02Ch Unchanged 

Interrupt Enable P21E Read/write 02Dh Reset 

Function Select P2SEL Read/write 02Eh Reset 

These registers contain eight bits, and should be accessed using byte 
instructions in absolute-address mode. 

Input Registers P1IN, P21N 

Both Input registers are read-only registers that reflect the signals at the I/O 
pins. 

Note: Writing to Read-Only Registers P1IN, P21N 

Writing to these read-only registers results in increased current consumption 
while the write attempt is active. 

8.3.1.2 Output Registers P10UT, P20UT 

8-12 

Each output register shows the information of the output buffer. The output 
buffer can be modified by all instructions that write to a destination. If read, the 



Ports P1, P2 . 
contents of the output buffer are independent of pin direction. A direction 
change does not modify the output buffer contents. 

8.3.1.3 Direction Registers P1 DIR, P2DIR 

The direction registers contain eight independent bits that define the direction 
of the I/O pin. All bits are reset by the PUC signal. 

When: 

Bit = 0: The port pin is switched to input direction (3-state) 

Bit = 1: The port pin is switched to output direction 

8.3.1.4 Interrupt Flags P11FG, P21FG 

Each interrupt flag register contains eight flags that reflect whether or not an 
interrupt is pending forthe corresponding I/O pin, if the I/O is interrupt-enabled. 

When: 

Bit = 0: No interrupt is pending 

Bit = 1: An interrupt is pending due to a transition at the I/O pin or from 
software setting the bit. 

Note: 

Manipulating P1 OUT and P1 DIR, as well as P20UT and P2DIR, can result 
in setting the P11FG or P21FG bits. 

Writing a zero to an interrupt flag resets it; writing a one to an interrupt flag sets 
it and generates an interrupt. 

Each group of interrupt flags P1 FLG.O to P1 FLG.7 and P2FLG.0 to P2FLG.7 
sources its own interrupt vector. Interrupt flags P1IFG.0 to P1IFG.7 and 
P2IFG.0 to P2IFG.7 are not reset automatically when an interrupt from these 
events is serviced. The software should determine the origin of the interrupt 
and reset the appropriate flag(s). 

Note: 

Any external interrupt event should be at least 1.5 times MCLK or longer, to 
ensure that it is accepted and the corresponding interrupt flag is set. 

Digita//fO Configuration 8-13 



Ports P1, P2 

8.3.1.5 Interrupt Edge Select P1IES, P21ES 

Each interrupt edge select register contains a bit for each corresponding I/O 
pin to select what type of transition triggers the interrupt flag. 

When: 

Bit = 0: The interrupt flag is set with a low-to-high transition 

Bit = 1: The interrupt flag is set with a high-to-Iow transition 

Note: 

Changing the P11ES and P21ES bits can result in setting the associated 
interrupt flags. 

PnIES.x 
0~1 

0~1 

1~0 

1~0 

PnlN.x 
o 
1 
o 
1 

PnIFG.x 
Unchanged 
May be set 
May be set 
Unchanged 

8.3.1.6 Interrupt Enable P1IE, P21E 

Each interrupt enable register contains bits to enable the interrupt flag for each 
I/O pin in the port. Each of the sixteen bits corresponding to pins P1.0 to P1.7 
and P2.0 to P2.7 is located in the P11E and P21E registers. 

When: 

Bit = 0: The interrupt request is disabled 

Bit = 1: The interrupt request is enabled 

Note: Port P1, Port P2 Interrupt Sensitivity 

Only transitions, not static levels, cause interrupts. 

If an interrupt flag is still set when the RETI instruction is executed (for 
example, a transition occurs during the interrupt service routine), an interrupt 
occurs again after RETI is completed. This ensures that each transition is 
acknowledged by the software. 

8.3.1.7 Function Select Registers P1SEL, P2SEL 

8-14 

P1 and P2 port pins are often multiplexed with other peripheral modules to 
reduce overall pin count on MSP430 devices (see the specific device data 
sheet to determine which other peripherals also use the device pins). Control 
registers P1 SEL and P2SEL are used to select the desired pin function-I/O 
port or other peripheral module. Each register contains eight bits 
corresponding to each pin, and each pin's function is individually selectable. 
All bits in these registers are reset by the PUC signal. The bit definitions are: 

Bit = 0: Port P1 or P2 function is selected for the pin 

Bit = 1: Other peripheral module function is selected for the pin 



Ports P1, P2 

Note: Function Select With P1 SEL, P2SEL 

The interrupt-edge-select circuitry is disabled if control bit PnSEL.x is set. 
Therefore, the input signal can no longer generate an interrupt. 

When a port pin is selected to be used as an input to a peripheral module other 
than the 110 port (PnSEL.x = 1), the actual input signal to the peripheral module 
is a latched representation of the signal at the device pin (see Figure 8-9 
schematic). The latch uses the PnSEL.x bit as its enable, so while PnSEL.x=1, 
the internal input signal simply follows the signal at the pin. However, if the 
PnSEL.x bit is reset, then the output of the latch (and therefore the input to the 
other peripheral module) represents the value of the signal at the device pin 
just prior to the bit being reset. 

8.3.2 Port P1, Port P2 Schematic 

The pin logiC of each individual port P1 and port P2 signal is identical. Each 
bit can be read and written to as shown in Figure 8-9. 

Figure 8-9. Schematic of One Bit in Port P1, P2 

PnSEL.x -----.... ----, 

PnDIR.x -----t-.--t Output ~~ _____ --, 

Direction Control MUX 
From Module 

r---
r---&"'---, Pad Logic 

PnOUT.x -------,1-+---1------1 
Output 1---; ...... - ...... -1 
MUX Module X OUT -------,1-+--+----1 

I 
I 
I 

I 
I 
I 
I L __ _ _______ .J 

Request 
Interrupt 

PnlN.x -~;:::=:;-.... ----1-1 
Module x IN Y 

EN 1--------' 

AI--e--------. 

PnlE.x r------, 
1--__ --1 Interrupt 

PnIRQ.y 

• • • 
PnIRQ.z 

PnIFG.x Flag 

Interrupt 
Edge 
Select 

PnIES.x 

PnSEL.x 

x = 0 to 7, according to bits 0 to 7 
n = 1 for Port P1 and 2 for Port P2 

Pn.x 

Digital If 0 Configuration 8-15 



Ports P1, P2 

8.3.3 Port P1, P2 Interrupt Control Functions 

8-16 

Ports P1 and P2 use eight bits for interrupt flags, eight bits to enable interrupts, 
eight bits to select the effective edge of an interrupt event, one interrupt vector 
address for port P1, and one interrupt vector address for port P2. 

Each signal uses three bits for configuration and interrupt: 

o Interrupt flag, P1IFG.O to P1IFG.7 and P2IFG.O to P2IFG.7 
o Interrupt enable bit, P11E.O to P11E.7 and P21E.O to P21E.7 
o Interrupt edge select bit, P1IES.O to P1IES.7 and P2IES.O to P2IES.7 

The interrupt flags P1IFG.O to P1IFG.7 source one interrupt and P2IFG.O to 
P2IFG.7 source one interrupt. Any interrupt event on one or more pins of P1.0 
to P1. 7 or P2.0 to P2.7 requests an interrupt when two conditions are met: the 
appropriate individual bit PnlE.x is set, and the GIE bit is set. Interrupt flags 
P1IFG.O to P1IFG.7 or P2IFG.O to P2IFG.7 are not automatically reset. The 
software of the interrupt service routine should handle the detection of the 
source, and reset the appropriate flag when it is serviced. 



8.4 Ports P3, P4 

Ports P3, P4 

General-purpose ports P3 and P4 function as shown in Figure 8-10. Each pin 
can be selected to operate with the 1/0 port function, or to be used with a 
different peripheral module. This multiplexing of pins allows for a reduced pin 
count on MSP430 devices. 

Four registers control each of the ports (see Section 8.4.1). 

Ports P3 and P4 are connected to the processor core through the 8-bit MDB 
and the MAB. They should be accessed with byte instructions using the 
absolute address mode. 

Figure 8-10. Ports P3, P4 Configuration 

MDB 

aT 
~ 

R a 

I Input Register PnlN I a 

RIW 
n - 3: 01ah 

loutput Register PnOUT I a 

n = 4: 01Ch 
RIW 

n - 3: 019h I Direction Register I n = 4: 01Dh PnDIR RIW 
n 3: 01Ah 

I Function Select 
n = 4: 01Eh Register PnSEL 

n = 3: 01Bh 
n = 4: 01Fh 

-------------( ) 
MSB 
Pn.7 

8.4.1 Port P3, P4 Control Registers 

v 
LSB 
Pn.O 

I 

The four control registers of each port give maximum configuration flexibility 
of digital 1/0. 

o All individual 1/0 bits are programmed independently 
o Any combination of input is possible 
o Any combination of port or module function is possible 

The four registers for each port are shown in Table 8-4. They each contain 
eight bits and should be accessed with byte instructions. 

Digita//fO Configuration 8-17 



Ports P3t P4 

Table 8-4. Port P3. P4 Registers 

8.4.1.1 

Register Short Form Address Register Type Initial State 

Input P31N 018h Read only -----
P41N 01Ch Read only -----

Output P30UT 019h Read/write Unchanged 

P40UT 01Dh Read/write Unchanged 

Direction P3DIR 01Ah Read/write Reset 

P4DIR 01Eh Read/write Reset 

Port Select P3SEL 01Bh Read/write Reset 

P4SEL 01Fh Read/write Reset 

Input Registers 

The input registers are read-only registers that reflect the signal at the I/O pins. 

Note: Writing to Read-Only Register 

Any attempt to write to these read-only registers results in an increased 
current consumption while the write attempt is active. 

8.4.1.2 Output Registers 

The output registers show the information of the output buffers. The output 
buffers can be modified by all instructions that write to a destination. If read, 
the contents of the output buffer are independent of the pin direction. A 
direction change does not modify the output buffer contents. 

8.4.1.3 Direction Registers 

8-18 

The direction registers contain eight independent bits that define the direction 
of each I/O pin. All bits are reset by the PUC signal. 

When: 

Bit = 0: The port pin is switched to input direction 

Bit = 1 : The port pin is switched to output direction 



Ports P3, P4 . 
8.4.1.4 Function Select Registers PnSEL 

Ports P3, P4 pins are often multiplexed with other peripheral modules to 
reduce overall pin count on MSP430 devices (see the specific device data 
sheet to determine which other peripherals also use the device pins). Control 
registers PnSEL are used to select the desired pin function-liD port or other 
peripheral module. Each register contains eight bits corresponding to each 
pin, and each pin's function is individually selectable. All bits in these registers 
are reset by the PUC signal. The bit definitions are: 

Bit = 0: Port function is selected for the pin 

Bit = 1: Other peripheral module function is selected for the pin 

Note: Function Select With PnSEL Registers 

The interrupt-edge-select circuitry is disabled if control bit PnSEL.x is set. 
Therefore, the input signal can no longer generate an interrupt. 

When a port pin is selected to be used as an input to a peripheral module other 
than the I/O port (PnSEL.x=1), the actual input signal to the peripheral module 
is a latched representation of the signal at the device pin (see Figure 8-11 
schematic). The latch uses the PnSEL.x bit as its enable, so while PnSEL.x=1, 
the internal input Signal simply follows the signal at the pin. However, if the 
PnSEL.x bit is reset, then the output of the latch (and therefore the input to the 
other peripheral module) represents the value of signal at the device pin, just 
prior to the bit being reset. 

8.4.2 Port P3, P4 Schematic 

The pin logic of each individual port signal is shown in Figure 8-11. 

Figure 8-11. Schematic of Bits Pn.x 

PnSEL.x --------<....-----,1 

PnDIR.x -----+-.-1 Output 1--tIf--------, 

Direction Control MUX 
From Module r----;,-------- 1---, 

J Pad Logic 1 P 
PnOUT.x ------1 ...... --1-1 --I Output 1', 1 n.x 

Module x OUT ------I ...... -+-i--t MUX ~ 1 
1 ~~ I 
I I 
1 I L ________________ ..I 

PnlN.x ---;:::=::;-~~._----I--' 
EN 1---------' 

Module x IN .-- Y 
A~~.-------~ 

n = 3 for Port3, 4 for Port P4 
x = 0 to 7, according to bits 0 to 7 

Digita//IO Configuration 8-19 



8-20 



Chapter 9 

Universal Timer/Port Module 
IIIBlHl 

The Universal Timer/Port module supports the following system features: 

o Up to six independent outputs 
o Two a-bit counters or one 16-bit counter 
o A precision comparator for slope AID conversion 

Topic Page 

9.1 Timer/Port Configuration ...................................... 9·2 

9.2 Timer/Port Module Operation ••.••••.••.•.•.••••••..•.•.•••.••• 9-3 

9.3 Timer/Port Registers .••.•.•••••••••••••••.•••••••••••••••••••. 9-7 

9.4 Timer/Port Interrupts ......................................... 9-11 

9.5 TimerlPort in an ADC Application •••.••••••••••••••••.•••.•••• 9-12 

9-1 



Timer/Port Configuration 

9.1 Timer/Port Configuration 

The Timer/Port is configured as shown in Figure 9-1. 

Figure 9-1. Timer/Port Configuration 

ENB ENA 
CPON 

CIN~ 
~ -lo-~C~M~P-..JI:--:-:"" 

SxxlOxxlCMPI ~1 
VCC/4 -

TPIN.5 

TPSSELO 

TPSSEL1 TPSSELO 

I 
CMP 

I 0 

ACLK 0 
2 

MCLK C 3 

TPSSEL3 TPSSEL2 

I I 0 
TPIN.5 -----

B16 

1 ........ --0 
ACLK 0 0 

MCLK 0 2 

TPD.O 

TPE.O 

~ ~ TPD.1 

T TPE.1 

~ ~ TPD.2 

TPE.2 

TPSSELO 

~ 

EN1 
CLK1 
RC1 

SeCEN1FG 

8-Bit Counter 
TPCNT1 

r/w 

SeCRC1FG 

8-Bit Counter 
TPCNT2 I 

rw 

Control Register 
TPCTL 

Data Register 
TPD 

EN1FG 

~ TPD.3 
TPD.5 ........................... TPD.O 

TPE.3 

~ ~ TPD.4 

TPE.4 

TPIN.5 

TPD.5 

e--\---... - TPE.5 

9-2 

CPON 

TPSSEL2 

Data Register 
TPD 



Timer/Port Module rln,cro,'ir.n 

9.2 Timer/Port Module Operation 

This section describes the Timer/Port counters. 

9.2.1 Timer/Port Counter TPCNT1, a-Bit Operation 

Refer to Figure 9-1 for the following discussion. 

The Universal Timer/Port offers much more application flexibility than other 
simple timer/counters by providing for flexible clocking and enable conditions. 

The clock input to counter TPCNT1 can be selected from three different 
sources. MCLK, ACLK, or CMP (an external signal, or the comparator output) 
can be used to increment the timer/counter. The counter increments with each 
positive edge of the CLK1 clock input when enable signal EN1 is set. When 
the counter reaches full scale (OFFh), a ripple-carry signal RC1 goes high and 
remains high as long as the counter data equals OFFh. When the counter 
increments from OFFh to OOOh, RC1 goes back low, but the negative edge of 
signal RC1 sets a ripple-carry flag bit in the TPCTL register (RC1 FG) to 
indicate that the counter has rolled over. Setting the ripple carry flag RC1 FG 
will generate a CPU interrupt if the Timer/Port interrupt enable flag (TPIE) is 
set. The RC1 FG is not automatically reset, so it must be reset by the interrupt 
service routine (ISR). 

The user has several choices to configure the enable signal EN1 (see 
Table 9-1). The counter is enabled when one or both ENA and ENB bits are 
set. Both of these bits are reset with a system reset (POR or PUC). 

Further, an external event can be used to enable or disable the timer. When 
an external event on signals CMP orTPIN.5 disables the counter, flag EN1 FG 
of the TPCTL register is set and a CPU interrupt is generated if the Timer/Port 
interrupt is enabled. The EN1 FG flag is not automatically reset, so it must be 
reset by the ISA. Note that the EN 1 FG flag is not set if the counter is disabled 
through software manipulation of the ENA or ENB bits. 

Any time the counter is disabled, the counter data is frozen, but the software 
can write a different value to the counter to change its data. Note that this write 
operation does not re-enable the counter. 

The counter can be read or written to at anytime. A timer read can occur 
asynchronously to a timer increment if the clock source for the timer is either 
the ACLK or the CMP signal. In this situation the user software should perform 
several reads of the timer and take a majority vote to determine the correct 
timer value. When MCLK is selected as the clock source, the read is performed 
synchronously to the increment, so a majority vote software routine is not 
necessary. 

Reading the timer/counter does not effect the count. The timer/counter will 
accurately increment with each clock regardless of when a read occurs. Also, 
performing a read of the counter directly after writing to it could result in reading 
different data than was written to it, depending on when the clock signal is 
applied. 

Universal Timer/Port Module 9-3 



Timer/Port Module Operation 

9.2.2 Timer/Port Counter TPCNT2, 8-Bit Operation 

Counter TPCNT2 operates similarly to TPCNT1 , with a few differences in the 
enable signal and clock source. 

The enable signal for TPCNT2 is primarily controlled with bit B 16 of the TPD 
register. Bit B 16 selects 8 or 16-bit mode for the Timer/Port. When B 16 is reset, 
the Timer/Port is in 8-bit mode and counter TPCNT2 is always enabled. 

Additionally, in 8-bit mode, counter TPCNT2 is completely independent from 
TPCNT1 and has a separate clock source. The clock source for TPCNT2 in 
8-bit mode can be selected to be ACLK, MCLK, or the TPIN.5 pin. 

Like TPCNT1, TPCNT2 has a ripple-carry output (RC2) that is high while the 
counter data is equal to OFFh and the enable signal EN2 is high. When the 
counter increments from OFFh to OOOh, RC2 goes back low. The negative 
edge of RC2 sets a ripple-carry flag in the TPCTL register (RC2FG) to indicate 
that the counter has rolled over. Setting RC2FG generates a CPU interrupt 
if the Timer/Port interrupt is enabled. RC2FG is not automatically reset and 
should be reset by the ISA. 

Any time the counter is disabled, the counter data is frozen, but the software 
can write a different value to the counter to change its data. Note that this write 
operation does not reenable the counter. 

The counter can be read or written to at any time. A timer read can occur 
asynchronously to a timer increment if the clock source for the timer is either 
ACLK or the TPIN.5 signal. In this situation, the user software should perform 
several reads of the timer and take a majority vote to determine the correct 
timervalue. When MCLK is selected as the clock source, the read is performed 
synchronously to the increment, so a majority vote software routine is not 
necessary. 

Reading the timer does not effect the count. The timer will accurately 
increment with each clock regardless of when a read occurs. Also, performing 
a read of the counter immediately after writing to it could result in reading 
different data than was written to it, depending on whether a clock signal was 
applied between the write and the read. 

9.2.3 Timer/Port Counter, 16-Bit Operation 

9-4 

In 16-bit mode (B16 = 1), counters TPCNT1 and TPCNT2 are cascaded to 
form one 16-bit timer (see Figure 9-2). In this configuration, both counters 
operate from the same clock and the ripple-carry output of TPCNT1 serves as 
the enable for TPCNT2. 

In 16-bit mode, clock source selection for the counter is made with the 
TPSSELO and TPSSEL 1 bits, and TPSSEL2 and TPSSEL3 become don't 
cares. Clock source choices are the same as those for TPCNT1 in 8-bit mode: 
ACLK, MCLK, or CMP. 



Timer/Port Module rln,or<>j'jrtn 

Figure 9-2. Timer/Port Counter, 16-8it Operation 

CPON 

CIN~ 
'--" L.J 06 -lo-~C~M~P~r:---:-~ 

ENB ENA 

Enable 
SX~OX~CMPI~1 

TPIN.5 
VCC/4 -

EN1 

TPSSEL 1 TPSSELO 

A~~:------~~ 
MCLK C ~ 

TPSSELO 

EN1 
CLK1 

EN2 8-Bit Counter 
CLK2 TPCNT2 
RC2 r/w r/w 

In 16-bit mode, the ripple carry signal is RC2 and is set when the counter value 
is equal to OFFFFh. When the counter increments to OOOOOh, the negative 
edge of RC2 sets the RC2FG flag generating a CPU interrupt, and indicating 
that the counter has rolled over. The RC2FG flag must be reset by the ISA. 
RC1 FG is not set in 16-bit mode - it remains unchanged. 

Like in the 8-bit operation of TPCNT1 , an external event can be used to enable 
or disable the timer when in 16-bit mode. When an external event on signal 
CMP or TPIN.5 disables the counter, flag EN 1 FG of the TPCTL register is set 
and a CPU interrupt is generated if the Timer/Port interrupt is enabled. The 
EN1 FG flag is not automatically reset, so it must be reset by the ISA. Note that 
the EN1 FG flag is not set if the counter is disabled through software 
manipulation of the ENA or ENS bits. 

Read and write access to the Timer/Port is always done using byte 
instructions-even when the counter is configured in 16-bit mode. This 
requires special software considerations to access the counter while it is 
running to assure that the value read is correct. If a clock edge increments the 
counter between readings of the TPCNT1 and TPCNT2 values, the counter 
data will not be correct. 

Universal Timer/Port Module 9-5 



Timer/Port Module Operation , 

9.2.4 Enable Control 

The signals ENA, ENS, TPSSELO, and TPSSEL 1 control the operation of the 
counter as described in Table 9-1. Therefore, the counter can be configured 
to run unconditionally, to run based on signals TPIN.5 or CMP, or to stop. 
Additionally, several clock choices are available within each operating mode. 

Table 9-1. Timer/Port Counter Signals, 16-Bit Operation 

ENB ENA TPSSel1 TPSSelO EN1 CLK1 

0 0 0 0 0 CMP 
0 0 0 1 0 ACLK 
0 0 1 X 0 MCLK 

0 0 0 CMP 
0 0 1 ACLK 
0 1 X MCLK 

0 0 0 TPIN.5 CMP 
0 0 1 TPIN.5 ACLK 
0 1 0 TPIN.5 MCLK 
0 1 1 TPIN.5 MCLK 

0 0 CMP CMP 
0 1 CMP ACLK 
1 0 CMP MCLK 
1 1 CMP MCLK 

9.2.5 Comparator Input 

The comparator input is typically shared with one segment line as shown in 
Figure 9-3. The LCD segment function is selected for this pin after the PUC 
signal is active. The comparator input is selected when the CPON bit is set. 
Note that once selected, the comparator input can not be deselected without 
a PUC signal. See Chapter 3 for details on the PUC signal. 

Figure 9-3. Timer/Port Comparator Input 

9-6 

r------------------------. 
I LCD Module SxxlOXxlCMPI~ I L_________________ _ _____ ~ 
r----------------- ------, 

o 

CPON ----IS 

PUC ~---tR 

CPON 

CMP 

CPON 
VCC/4 

~Vcc 

SxxlOxxlCMPI 

Vssov ~r--~~ 
Timer/Port Module - Schematic detail ""J L ________________________ ~ 



Timer/Port Rel[]ist'ers 

9.3 Timer/Port Registers 

The Timer/Port module registers listed in Table 9-2 are byte structured and 
must be accessed using byte instructions (suffix B). 

Table 9-2. Timer/Port Registers 

9.3.1 

Register Short Form Register Type Address Initial State 

TP Control TPCTL Read/write 04Bh Reset 

TP Counter 1 TPCNT1 Read/write 04Ch Unchanged 

TP Counter 2 TPCNT2 Read/write 04Dh Unchanged 

TP Data TPD Read/write 04Eh Reset 

TP Data Enable TPE Read/write 04Fh Reset 

Timer/Port Control Register 

The information stored in the control register (see Figure 9-4) determines the 
operation of the Timer/Port module. 

Figure 9-4. Timer/Port Control Register 

7 

rw-O rw-O rw-O rw-O r-O rw-O rw-O rw-O 

Bit 0: Enable flag EN1 FG is set with the negative edge of enable signal 
EN1, if an event on CMP orTPIN.5 causes EN1 to go low. Note that 
EN1 FG is not set if EN1 goes low as a result of software 
manipulation of ENA or ENB. EN1 FG must be reset by software. 

The EN1 FG bit can be used during the Timer/Port interrupt service 
routine to determine if the interrupt event came from enable EN1 
or from a ripple/carry. 

Bit 1: In 8-bit mode, bit RC1 FG indicates that counter TPCNT1 rolled 
from OFFh to Oh (overflow condition). In 16-bit mode, RC1 FG is not 
active. However, if software sets RC1 FG, an interrupt request will 
be generated (if enabled), even if the counter is in 16-bit mode. 
RC1 FG must be reset by software. 

Bit 2: In 8-bit mode, bit RC2FG indicates that counter TPCNT2 rolled 
from OFFh to Oh (overflow condition). In 16-bit mode, RC2FG 
indicates the 16-bit counter has rolled from OFFFFh to OOOOh. 
RC2FG must be reset by software. 

Note: RC1 FG and RC2FG When Software Disables the Counter 

When the counter is disabled with software via bits ENA and ENB, flag 
RC1 FG (8-bit mode), or flag RC2FG (16-bit mode) mayor may not be set 
if the counter rolls over to zero at the same time. 

Universal Timer/Port Module 9-7 



Timer/Port Registers .. 
Bit 3: Enable signal EN1. This bit represents the state of enable signal 

EN1 and can be read by software. 

The signal at TPx.S can be used in the module internally and can 
be read with bit EN1 when TPE.S is reset. 

Bits 4, S: The value of enable signal EN1 is defined by bits ENA, ENB and 
TPSSELO, as described in Table 9-3. 

Table 9-3. Bit EN1 Level/Signal 

ENB 

0 

0 

Bits 6,7: 

ENA TPSSelO EN1 

0 

1 

0 

0 

x 0 

X 1 

0 TPIN.5 

TPIN.5 

0 CMP 

CMP 

The Timer/Port clock source-select bits TPSSELO and 
TPSSEL 1 select the clock source for TPCNT1 , as described in 
Table 9-4. 

Table 9-4. Timer/Port Clock Source Selection 

TPSSel1 

o 
o 

TPSSelO 

o 
1 

X 

CLK1 

CMP 

ACLK 

MCLK 

9.3.1.1 Timer/Port Counter Registers TPCNT1 and TPCNT2 

Both counter registers are read and written independently. The counter 
registers are shown in Figure 9-S. 

Figure 9-5. Timer/Port Counter Registers 

9-8 

TPCNT1 
04Ch 

TPCNT2 
04Dh 

7 0 

I 27 I 26 I 25 24 23 22 21 I 20 I 
rw rw rw rw rw rw rw rw 

7 0 

I 27 I 26 I 25 I 24 I 23 I 22 I 21 I 20 I 
rw rw rw rw rw rw rw rw 



Timer/Port He,atSI'ers 

9.3.1.2 Timer/Port Data Register 

The data register holds the value of the six outputs, the 16-bit mode control bit, 
and the comparator control bit, as shown in Figure 9-5. 

Figure 9-6. Timer/Port Data Register 

7 o 
TPD 

04Eh ! 816 ! CPON! TPD.S! TPD.4! TPD.3! TPD.2! TPD.1 ! TPD.O I 
rw-O rw-O rw-O rw-O rw-O rw-O rw-O rw-O 

Bits Ot05: Bits TPD.O to TPD.5 hold the data for the output pins TPx.O to 
TPx.5. The values are applied to these pins when the three-state 
output is enabled by TPE.O to TPE.5. They are reset with a PUC. 

Bit 6: The comparator CPON bit enables the comparator. It is reset with 
a PUC. Current consumption is reduced by disabling the 
comparator when not in use. 

Bit 7: Control bit B16 selects 8- or 16-bit operation. 

B16 = 0: 8-bit counter mode is selected. TPCNT1 and TPCNT2 
are independent 8-bit counters. 

B 16 = 1: 16-bit counter mode is selected. TPCNT1 and TPCNT2 
form one 16-bit counter. 

9.3.1.3 Timer/Port Enable Register 

The Timer/Port enable register contains the enable bits for the six outputs and 
two bits for clock source selection for TPCNT2. 

Figure 9-7. Timer/Port Enable Register 

TPE 
04Fh 

7 

rw-1 rw-1 rw-O rw-O rw-O rw-O rw-O rw-O 

Bits a to 5: Bits TPE.O to TPE.5 are the enable bits for outputs TPx.O to TPx.5. 

Note: 

The bits are reset with a PUC, with the resulting outputs being in 
the high impedance state. 

TPE.5 must be reset to use pin TPx.5 as an input. 

Universal Timer/Port Module 9-9 



Timer/Port Registers 

Bits 6, 7: Timer/Port clock source-select bits TPSSEL2 and TPSSEL3 select 
the clock source for TPCNT2 when bit B16 is reset, as shown in 
Table 9-5. In 16-bit mode (B16 = 1) the clock source for counters 
TPCNT1 and TPCNT2 are identical and are selected by TPSSELO 
and TPSSEL 1. 

Table 9-5. Counter TPCNT2 Clock Sources 

816 TPSSel3 TPSSel2 CLK2 

0 0 0 TPIN.5 

0 0 ACLK 

0 0 MCLK 

0 1 MCLK 

X X = CLK1 

9-10 



Timer/Port 

9.4 Timer/Port Interrupts 

The Timer/Port has one interrupt vector sourced by up to three interrupt flags 
(RC1 FG, RC2FG, and EN1 FG), as shown in Figure 9-8. When in 8-bit mode, 
all three flags source the Timer/Port interrupt. When in 16-bit mode, only flags 
RC2FG and EN1 FG source the interrupt. The Timer/Port interrupt service 
routine should check the flags to determine the source of a Timer/Port interrupt 
and handle it appropriately. All three flags must be reset by software. Note that 
even though RC1 FG is inactive in 16-bit mode, an interrupt request will be 
generated (if enabled) when set by software. 

Figure 9-8. Timer/Port Interrupt Scheme 

ENB 0 Q 1-------, 

EN1 

B16 -~J'I 0 Q J------I 
RequesClnterrupCService 

RC1 

HIGH 0 Q 1-------' 

The Timer/Port interrupt is enabled by the TPIE bit located in the SFR register 
IE2. The bit must be set to enable the Timer/Port interrupt. The initial state is 
reset. See chapter 3 for a discussion of the lEx registers. 

Note: 

When software is used to stop the counter via the ENA and ENS bits, flags 
RC1 FG and RC2FG may be set (as appropriate, according to 8- or 16-bit 
mode) if the counter(s) roll over at the same time. 

Universal Timer/Port Module 9-11 



Timer/Port in an ADC Application 

9.5 Timer/Port in an ADC Application 

9-12 

In addition to supporting a variety of counting and timing applications, the Uni
versal Timer/Port also supports slope AID conversion. Slope AID conversion 
is extremely useful in sensor applications where the sensor is either resistive 
or capacitive. 

In general, slope AID conversion involves comparing the discharge times of 
two RC networks-one with a known time constant, and one with a sensor 
controlling the time constant. The value of the sensor can then be determined 
by a simple ratio of the discharge times. 

For example, to use the Universal Timer/Port to measure a resistive sensor, 
one would first charge and discharge an RC network, made up of a known 
resistor value and a known capacitor value, while measuring the discharge 
time. Next, the known resistor would be replaced in the circuit by the unknown 
sensor and the charge/discharge cycle would be repeated, again measuring 
the discharge time. The value of the sensor could then be calculated by 
dividing the discharge times and multiplying by the known resistor value. 

All of the required charging, discharging, timing, and switching of the resistors 
or capacitors can be done completely with the Universal Timer/Port, its high
impedance outputs, and its integrated comparator. 

See the MSP430 Application Report Book and other application notes for 
details and circuit diagrams on using the Universal Timer/Port in slope AID 
applications. 

Application notes may be downloaded from www.ti.com/sc/msp430. 



Chapter 10 

Timers 
I r II_BII '11!l II Him n I E I 

.. 5 HE 17 

The MSP430 microcontrollers offer a variety of very flexible timers that can be 
used to support a wide array of applications while also optimizing ultralow
power operation. 

Topic Page 

10.1 Basic Timer1 ................................................ 10-2 

10.2 8-Bit Interval Timer/Counter . .................................. 10-7 

10.3 The Watchdog Timer ........................................ 10-13 

10-1 



Basic Timer1 

10.1 Basic Timer1 

The Basic Timer1 (shown in Figure 10-1) supplies other peripheral modules 
or the software with low frequency control signals. The Basic Timer1 operation 
supports two independent a-bit timing/counting functions, or one 16-bit 
timing/counting function. 

Some uses for the Basic Timer1 include: 

o Real-time clock (RTC) 
o Debouncing keys (keyboard) 
o Software time increments 

Figure 10-1. Basic Timer1 Configuration 

10-2 

Control Register 
BTCTL 

SSEL DIV 1 0 2 1 0 
Hold FRFQ IP IP IP 

DIV 

Hold EN1 
ACLK >-~~--------------;>CLK1 

BTCNT1 

SSEL DIV 

I I 0 

Hold 

Q4Q5 Q6 Q7 

FRFQ1-

FRFQO--

EN2 BTCNT2 ACLK:256 ___ --0 

MCLK 
2--------1> 

3 

Set Interrupt 
l.......it---lt---l~ ____________ ... Flag BTIFG 



Basic Timer1 

10.1.1 Basic Timer1 Registers 

The Basic Timer1 register is byte structured, and should be accessed using 
byte processing instructions (suffix .B). Table 10-1 describes the Basic Timer1 
registers. 

Table 10-1. Basic Timer1 Registers 

Register Short Form Register-Type Address Initial State 

BT Control BTCTl Read/write 040h Unchanged 

BT Counter 1 BTCNT1 Read/write 046h Unchanged 

BT Counter 2 BTCNT2 Read/write 047h Unchanged 

Note: The user's software should configure these registers at power-up, as there is no defined 
initial state. 

10.1.1.1 Basic Timer1 Control Register 

Figure 10-2. 

The information stored in the control register determines the operation of Basic 
Timer1. The state of the different bits selects the frequency source, the 
interrupt frequency, and the framing frequency of the LCD control circuitry as 
shown in Figure 10-2. 

Basic Timer1 Control Register 

7 0 
BTCTl 

I SSEL I IFRFQ11FRFQOI 040h Hold DIV IP2 IP1 IPO 

rw rw rw rw rw rw rw rw 

Bits 0 to 2:The three least-significant bits IP2 to IPO determine the interrupt 
interval time. It is the interval of consecutive settings of the 
interrupt-request flag BTl FG, as illustrated in Figure 10-3. 

Bits 3 to 4:The two bits FRFQ1 and FRFQO select the frequency flCD as 
described in Figure 10-3. Devices with the LCD peripheral on the 
chip use this frequency to generate the timing of the common and 
select lines. 

Bit 5: See bit 7. 

Bit 6: The hold bit stops the counter operation. 
BTCNT2 is held if the hold bit is set. 
BTCNT1 is held if the hold and DIV bits are set. 

Bit 7: The SSEL and DIV bits select the frequency source for BTCNT2, 
as described in Table 10-2. 

Timers 10-3 



Basic Timer1 

Table 10-2. BTCNT2 Input Frequency Sources 

SSEL DIV CLK2 

o o ACLK 

o ACLKl256 

o MCLK 

ACLKl256 

Figure 10-3. Basic Timer1 Control Register Function 

7 o 
B~~b~ I SSEL I Hold I DIV I FRFQ1 I FRFQO IlP2 I IP1 IPO 

rw rw rw rw rw 
rw I rw I 

0 0 0 

0 0 1 

0 1 0 

0 1 1 

1 0 0 

1 0 1 

1 1 0 

1 1 1 

0 0 flCD = fACll(f32 

0 1 flCD = fACJ64 

1 0 flCD = fAClK/128 

1 1 flCD = fACll(f256 

10.1.1.2 Basic Timer1 Counter BTCNT1 

Interrupt 
F requency 

fClK2/2 

fClK2/2 

fClK2/8 

fClK2116 

fClK2/32 

fClK2/64 

fClK2/128 

fClK2/256 

The Basic Timer1 counter BTCNT1 , shown in Figure 1 D-4 divides the auxiliary 
clock ACLK. The frame frequency for the LC~-drive is selected from four 
outputs of the counter's bits. The output of the most significant bit can be used 
for the clock input to the second counter BTCNT2. The value of bits 00 to 07 
can be read, and the software can write to bits 00 to 07. 

Figure 10-4. Basic Timer1 Counter BTCNTt 

7 

10-4 

BTCNT1 
046h 

rw rw rw 

o 

rw rw rw rw rw 



Basic Timer1 

10.1.1.3 Basic Timer1 Counter BTCNT2 

The Basic Timer1 counter BTCNT2, shown in Figure 10-5, divides the input
clock frequency. The input-clock source can be MCLK, ACLK, or ACLKl256. 
The interrupt period can be selected using IPO to IP2, located in the Basic 
Timer1 control register BTCTL. It selects one of the eight bits of BTCNT2 as 
the source signal to set the Basic Timer1 interrupt flag BTIFG. The value ofthe 
counter bits can be read, as well as written. 

Figure 10-5. Basic Timer1 Counter BTCNT2 

7 
BTCNT2 

047h 

rw 

10.1.2 Special Function Register Bits 

rw rw rw rw rw 

Two SFR bits pertain to the Basic Timer1 Interrupt: 

rw 

o Basic Timer1 interrupt flag (BTIFG) (located in IFG2.7) 
o Basic Timer1 interrupt enable (BTIE) (located in IE2.7) 

o 

rw 

The BTIFG flag indicates that a Basic Timer1 interrupt is pending and is reset 
automatically when the interrupt is accepted. 

The BTIE bit enables or disables the interrupt from the Basic Timer1 and is 
reset with a PUC. The Basic Timer1 interrupt is also enabled or disabled with 
the general interrupt enable bit, GIE. 

10.1.3 Basic Timer1 Operation 

The Basic Timer1 is constantly incremented by the selected clock source. 

The hold bit inhibits all functions of the module and reduces power 
consumption. The Basic Timer1 registers may be accessed at any time, 
regardless of the state of the hold bit. 

An interrupt can be used to control system operation. The interrupt is a single 
source interrupt. 

The basic timer can operate in two different modes: 

o Two independent 8-Bit Timer/Counters 
DOne 16-bit timer/counter 

Timers 10-5 



Basic Timer1 

10.1.3.1 8-Bit Counter Mode 

In the 8-Bit Timer/Counter mode, counter BTCNT1 is incremented constantly 
with ACLK. When reading the counters, the user should be aware that the 
counter clock and CPU clock may be asynchronous. Therefore, special 
software consideration may be required to assure a correct reading. 

The BTCNT2 clock signal can be selected to be MCLK, ACLK, or AClKl256 
using the control signals SSEL and DIV. Counter BTCNT2 is incremented with 
the signal selected. 

One of the eight counter outputs can be selected to set the Basic Timer1 
interrupt flag. Read and write access can be asynchronous when AClK or 
ACLKl256 is selected. 

The hold bit stops all operations. 

10.1.3.2 16-bit Counter Mode 

The 16-bit timer/counter mode is selected when control bit DIV is set. In this 
mode, the clock source of counters BTCNT1 and BTCNT2 is the ACLK signal. 

The hold bit stops all operations. 

10.1.4 Basic Timer1 Operation: Signal flCD 

10-6 

The LCD controller uses the fleD signal from the Basic Timer1 to generate the 
timing for common and segment lines. The frequency of signal fleD is 
generated from ACLK. Using a 32,768-Hz crystal, the fleD frequency can be 
1024 Hz, 512 Hz, 256 Hz, or 128 Hz. Bits FRF01 and FRFOO allow the 
correct selection of frame frequency. The proper frequency fleD depends on 
the LCD's requirement for framing frequency and LCD multiplex rate and is 
calculated by: 

fleD = 2 x MUX rate x fFraming 

A 3 MUX example follows: 

LCD data sheet: fFraming = 100 Hz .... 30 Hz 

FRFO: fleD = 6 x fFraming 

fleD = 6 x 100 Hz = 600 Hz ... 6 x 30 Hz = 180 Hz 

Select fleD: 1024 Hz, 512 Hz, 256 Hz, or 128 Hz 

fleD = 32,768/128 = 256 Hz FRF01 = 1; FRFOO = a 

See the LCD Driver chapter for more details on the LCD driver. 



8-Bit Interval Timer/Counter 

10.2 8-Bit Interval Timer/Counter 

The 8-Bit Timer/Counter supports three major application functions: 

o Serial communication or data exchange 
o Pulse counting or pulse accumulation 
o Timing 

Figure 10-6 shows the 8-Bit Timer/Counter functions. 

Figure 10-6. 8-Bit Timer/Counter 

r----------------------, 
I Interrupt Request I 
I POIE.l IRQPO.l I 
I POIES.l I 
I PO.l I 
I 1 I 
I I 
I I 
I IRQA: Interrupt Request Accepted I 
I ISCTl Gl I 

PO.l - 8bT/C Interrupt logic L_______ _ _____________ ~ 
Carry 

+ Enable 

DetectStart 
Condo 

Write To TCDAT 

MClK>-------------+----+------~--~ __ --------~ 
AClK>-------------+----+------~--~+_--------~ 

r----------, 
I PODIR.2 I 
I I PO.2 

Ie:=> 
PUC 

Set 

8b 
Counter 

ClK 

I 
I 
I I--*-----+---I Q 0 "-------00 
L.. __________ ~ 

MOB 

8b 
Preload 

Reg. 

8 

SSEll MSB 
SSElO 

ISCTl 

TXE 

ENCNT 
8 

RXACT 

TXD 

RXD lSB 

Intervalmmer 
Control Register 

Timers 10-7 



8-Bit Interval Timer/Counter 

10.2.1 Operation of 8-Bit Timer/Counter 

The 8-Bit Timer/Counter includes the following major blocks: 

o 8-bit up-counter with a preload register 

o 8-bit control register 

o Input clock selector 

o Edge detection, (for example, a start bit of asynchronous protocols) 

o Input and output data latch, triggered by the carry-out signal from the 8-bit 
counter 

10.2.1.1 8-Bit Timer/Counter With Preload Register 

The 8-bit counter counts up with the selected input clock. Two counter inputs, 
load and enable, control the operation. 

Figure 10-7 shows the 8-bit counter functions. 

Figure 10-7. 8-Bit Counter Example 

10-8 

Counter is loaded with 037h 
each time the carry signal 
goes high. 

ClK 

07-00 

CARRY 

lOAD 

Carry Clock Selected Via 
8b Counter ClK <Je-- Input Multiplexer 

load Enable 

.- NCLK = 100h - 037h --+I 

Either of two events controls the load function: a carry from the counter or a 
write access loads the counter with the data of the preload register. Note that 
writing to the counter (TCDAT register) loads the counter with the preload 
value, not the contents of the write instruction. 

The software may write or read the preload register. The preload register acts 
as a buffer and can be written to immediately after the load of the counter is 
complete. 

When the enable signal is set high, the counter counts up each time a 
positive-clock edge is applied to the counter's clock input. 



8-Bit Interval Timer/Counter 

10.2.1.2 8-Bit Control Register 

The information stored in the 8-bit control register selects the operating mode 
of the timer/counter and controls the function. 

10.2.1.3 Input Clock Selector 

Two bits in the 8-bit control register select the source for the clock input of the 
8-bit counter. The four sources are the system clock MCLK, the auxiliary clock 
ACLK, the external signal from pin PO.1, and the signal from the logical .AND. 
of MCLK and pin PO.1. 

10.2.1.4 Edge Detection 

Serial protocols such as UART need start-bit edge detection at the receiver to 
determine the start of data transmission. This edge detection is supported by 
the 8-Bit Timer/Counter and used to implement a UART with the timer. 

10.2.1.5 Input and Output Data Latch, RXD_FF and TXD_FF 

The clock used to latch data into the input and output data latches is the carry 
signal from the 8-bit counter. Both latches are used as single-bit buffers and 
change their outputs with the predefined timing. 

10.2.2 a-Bit Timer/Counter Registers 

The timer/counter registers, described in Table 10-3, are accessed using byte 
instructions. 

Table 10-3.8-Bit Timer/Counter Registers 

Register Short Form Register Type Address Initial State 

TC Control TCCTL Read/write 042h Reset 

Preload TCPLD Read/write 043h Unchanged 

Counter TCDAT Read/(write) 044h Unchanged 

10.2.2.1 8-Bit Timer/Counter Control Register 

The information stored in the control register, as shown in Figure 10-8, 
determines the operation of the 8-Bit Timer/Counter. 

Figure 10-8. 8-Bit Timer/Counter Control Register 

7 
TCCTL 

042h 

o 

Bit 0: Bit RXD is read only. The signal from external pin PO.1 is latched 
with the carry signal of the 8-bit counter. 

Bit 1: Register bit TXD is buffered and clocked out with the carry signal 
from the 8-bit counter at pin PO.2 . 

Timers 10-9 



8-Bit Interval Timer/Counter 

Bit 2: Bit RXACT controls the edge detect logic. The edge detect logic 
needs a reset ENCNT bit (bit 3) for correct counter-enable 
operation. 

RXACT = 0: The edge-detect FF is cleared and it cannot be the 
source for enabling the counter operation. 

RXACT = 1: The edge-detect FF is enabled. A positive or 
negative edge at pin PO.1, selected by POIES.1, sets the FF, and 
the counter is prepared for count operation. Once the FF is set, it 
remains set until it is reset with RXACT = o. 

Bit 3: Bit ENCNT sets the counter-enable signal. The 8-bit counter 
increments its value with each rising edge of the clock input. 

Together with bit RXACT (bit2, 0), this bit provides start/stop 
operation. 

Bit 4: Signal TXE controls the three-state output buffer for the TXD bit: 
TXE = 0: The direction control bit PODIR.2 (see 110 chapter) 

determines if the buffer is active or in high-impedance 
state. 

TXE = 1: Output buffer active (independent of the value of 
PODIR.2) 

Bit 5: SignallSCTL controls the interrupt source between the liD pin PO.1 
and the carry signal of the 8-bit counter. 
ISCTL = 0: The liD pin PO.1 is the source of interrupt POIFG.1. 
ISCTL = 1: The carry signal from the 8-bit counter is the source 

of interrupt POIFG.1. 

Bits 6, 7: Bits SSELO and SSEL 1 select the source of the clock input. 

Table 1 Q-4 describes the clock input source. 

Table 1 ()-4. Clock Input Source 

SSEL1 SSELO Clock Source 

o 

o 

10-10 

o Signal at pin PO.1 (according to POIES.1) 

o MCLK 

ACLK 

Signal pin PO.1 (according to POIES.1) .AND. MCLK 



8-Bit Interval Timer/Counter 

10.2.2.2 8-Bit Timer/Counter Preload Register 

The information stored in the preload register, not the data included with the 
instruction, is loaded into the 8-bit counter when a write access to the counter 
(TCDAT) is performed, as shown in the following code: 

;========= Definitions ================================= 

Dummy .EQU 0 Value for dummy is not loaded into 

; counter 

TCDAT .EQU 044h ; Address of 8-Bit Timer/Counter 

;==Write pre-load register contents to 8-bitTimer/Counter= 

MOV.B #DummY,&TCDAT 

The pre-load register (TCPLD) can be accessed using the 
address 043h. 

10.2.2.3 8-Bit Counter Data 

The data of the 8-bit counter can be read using address 044h. Writing to the 
counter loads the contents of the preload register-not the data included with 
the instruction. 

10.2.3 Special Function Register Bits, a-Bit Timer/Counter Related 

The 8-Bit Timer/Counter has no individual interrupt bits; it shares the interrupt 
bits with port PO. Bit ISCTL, in control register TCCTL, selects the interrupt 
source for the interrupt flag. 

The portO signal PO.1/RXD, or the carry signal of the 8-bit counter is used for 
the interrupt source. One SFR bit and one port PO bit configure the interrupt 
events on PO.1/RXD.1 as follows: 

o PO.1/RXD interrupt enable POIE.1 (located in IE1.3, initial state is reset) 

o PO.1/RXD interrupt edge select POIES.1 (located in POlES, initial state is 
reset) 

The interrupt flag is a single-source flag that automatically resets when the 
processor system services the interrupt. The enable bit and edge select bit 
remain unchanged. 

10.2.4 Implementing a UART With the a-Bit Timer/Counter 

The 8-BitTimer/Counter is uniquely capable of implementing a UARTfunction, 
with the following features: 

o Automatic start-bit detection - even from all ultralow-power modes 

o Hardware baud-rate generation 

o Hardware latching of RXD and TXD data 

o Baud rates of 75 to 115,200 baud 

Timers 1 0-11 



8-Bit Interval Timer/Counter 

This UART implementation is different from other microcontroller 
implementations where a UART may be implemented with general-purpose 
I/O and manual bit manipulation via software polling. Those implementations 
require great CPU overhead and therefore increase power consumption and 
decrease the usability of the CPU. 

In this particular implementation, the 8-Bit Timer/Counter is configured as the 
baud clock and waits for the start bit. With the falling edge of the start bit, the 
counter begins counting (see Figure 10-9). 

Figure 10-9. Start Bit Detection 

POIES.l 

PO.l VCC 

RXACT 

ENCNT 

Enable 

8b 
Counter 

ClK 

Clock Source 

Note that no CPU overhead is required for the start-bit detection. Start-bit 
detection is automatic and occurs if the processor is in active mode, or low 
power modes 0-4. When the counter reaches full-scale, the TXD and RXD 
data is automatically latched, the baud rate is automatically preloaded into the 
counter, the counter automatically begins counting, and an interrupt is 
generated for the CPU to retrieve the RXD data or write the next TXD data. 
Software overhead is only required to read and write the RXD and TXD data. 
(see Figure 10-10). 

Figure 10-10. Data Latching 

10-12 

... ... Carry 8b 
Counter 

ClK 
A 

I 
Clock Source 

P~C 

TXD 
Set 

From PO.l --1. D - Q D r-- To POOUT.2 Q RXD 

Set 

TXD FF RXD FF I 
PUC 

A complete application note including connection diagrams and complete 
software listing, may be found at www.tLcom/sc/msp430. 



The Timer 

10.3 The Watchdog Timer 

The primary function of the watchdog-timer module (WDT) is to perform a 
controlled-system restart after a software problem occurs. If the selected time 
interval expires, a system reset is generated. If the watchdog function is not 
needed in an application, the module can work as an interval timer, to generate 
an interrupt after the selected time interval. The WDT diagram is shown in 
Figure 10-11. 

Figure 10-11. Schematic of Watchdog Timer 

See Interrupt 
Definition 

Y 

Puc>-------+-+_~ 

4 
06 

3 
09 
013 

2 
015 

WDTCNT 

16b 
Counter 

MCLK >------+-+-+-----~ T 
ACLK >-------+-+-+-----~ 

EOU 

Some features of the Watchdog Timer include: 

o Eight software-selectable time intervals 

WDTCTL MSB 

Watchdog Timer 
Control Register 

o Two operating modes: as watchdog or interval timer 

MDB 

o Expiration of the time interval in watchdog mode, which generates a 
system reset; or in timer mode, which generates an interrupt request 

o Safeguards which ensure that writing to the WDT control register is only 
possible using a password 

o Support of ultralow-power using the hold mode 

Timers 1 0-13 



The Watchdog Timer 

10.3.1 Watchdog Timer Register 

The watchdog-timer counter (WDTCNT) is a 16-bit up-counter that is not 
directly accessible by software. The WDTCNT is controlled through the 
watchdog-timer control register (WDTCTL), shown in Figure 10-12, which is 
a 16-bit read/write register located at the low byte of word address 0120h. Any 
read or write access must be done using word instructions with no suffix or . w 
suffix. In both operating modes (watchdog or timer), it is only possible to write 
to WDTCTL using the correct password. 

Figure 10-12. Watchdog Timer Control Register 

15 870 

WD~~~~ ~I __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~I_H_O_LD~I_NM_I_E'~N_M_I~IT_M_S_E~~C_N_T_C~~SS_E_L~I_I_S1~_I_So~1 
rw-O rw-{) rw-O rw-{) rO(w) rw-{) rw-{) rw-O 

WDTCTL ..... f--------- 069h ------•• 
read 

WDTCTL .... f-------- 05Ah ------•• 
write 

Bits 0, 1: Bits ISO and IS1 select one of four taps from the WDTCNT, as 
described in Table 10-5. Assuming fcrystal = 32,768 Hz and 
fSystem = 1 MHz, the following intervals are possible: 

Table 10-5. WDTCNT Taps 

10-14 

55EL 151 150 Interval [ms] 

0 1 0.064 tMCLKx 26 

0 0 0.5 tMCLKx 29 

1.9 tACLK x 26 

0 0 1 8 tMCLK x 213 

1 1 0 16.0 tACLK x 29 

0 0 0 32 tMCLK x 215 <- Value after PUC (reset) 

0 250 tACLK x 213 

0 0 1000 tACLK x 215 

Bit 2: The SSEL bit selects the clock source for WDTCNT. 
SSEL = 0: WDTCNT is clocked by MCLK. 
SSEL = 1: WDTCNT is clocked by ACLK. 

Bit 3: Counter clear bit. In both operating modes, writing a 1 to this bit 
restarts the WDTCNT at OOOOOh. The value read is not defined. 

Bit 4: The TMSEL bit selects the operating mode: watchdog or timer. 
TMSEL = 0: Watchdog mode 
TMSEL = 1: Interval-timer mode 



The Timer 

Bit S: The NMI bit selects the function of the RST/NMI input pin. It is 
cleared by the PUC signal. 
NMI = 0: The RST/NMI input works as reset input. 

As long as the RST/NMI pin is held low, the internal 
signal is active (level sensitive). 

NMI = 1: The RST/NMI input works as an edge-sensitive non
maskable interrupt input. 

Bit 6: If the NMI function is selected, this bit selects the activating edge 
of the RST/NMI input. It is cleared by the PUC signal. 
NMIES = 0: A rising edge triggers an NMI interrupt. 
NMIES = 1: A falling edge triggers an NMI interrupt. 
CAUTION: Changing the NMIES bit with software can generate 

an NMI interrupt. 

Bit 7: This bit stops the operation of the watchdog counter. The clock 
multiplexer is disabled and the counter stops incrementing. It holds 
the last value until the hold bit is reset and the operation continues. 
It is cleared by the PUC signal. 
HOLD = 0: The WDT is fully active. 
HOLD = 1: The clock multiplexer and counter are stopped. 

10.3.1.1 Accessing the WOTCTL (Watchdog Timer Control Register) 

The WDTCTL register can be read or written to. As illustrated in Figure 10-13, 
WDTCTL can be read without the use of a password. A read access is 
performed by accessing word address 0120h. The low byte contains the value 
of WDTCTL. The value of the high byte is always read as 069h. 

Figure 10-13. Reading WOTCTL 

15 8 7 0 

WDTCTL I 0 I I I 0120h ~. ___ 1 __ 1 __ 0~~1_0 __ 0 ___ 1~ _______ R_ea_d_D_rua ______ ~. 
rrrr rrrr rw-x, (w) 

6 9 

Write access to WDTCTL, illustrated in Figure 10-14, is only possible using 
the correct high-byte password. To change register WDTCTL, write to word 
address 0120h. The low byte contains the data to write to WDTCTL. The high 
byte is the password, which is OSAh. A system reset (PUC) is generated if any 
value other than OSAh is written to the high byte of address 0120h. 

Figure 10-14. Writing to WOTCTL 

15 8 7 o 
WDTCTL I 0 I o 120h. 1 0 1 1 0 1 Write Data 

(w) (w) (w) (w) (w) (w) (w) (w) rw-x, (w) 

5 A 

Timers 10-15 



The Watchdog Timer 

10.3.2 Watchdog Timer Interrupt Control Functions 

The Watchdog Timer (WDT) uses two bits in the SFRs for interrupt control. 

D The WDT interrupt flag (WDTIFG) (located in IFG1.0, initial state is reset) 
D The WDT interrupt enable (WDTIE) (located in IE1.0, initial state is reset) 

When using the watchdog mode, the WDTIFG flag is used by the reset 
interrupt service routine to determine if the watchdog caused the device to 
reset. If the flag is set, then the Watchdog Timer initiated the reset condition 
(either by timing out or by a security key violation). If the flag is cleared, then 
the PUC was caused by a different source. See chapter 3 for more details on 
the PUC and POR signals. 

When using the Watchdog Timer in interval-timer mode, the WDTIFG flag is 
set after the selected time interval and a watchdog interval-timer interrupt is 
requested. The interrupt vector address in interval-timer mode is different from 
that in watchdog mode. In interval-timer mode, the WDTIFG flag is reset 
automatically when the interrupt is serviced. 

The WDTIE bit is used to enable or disable the interrupt from the Watchdog 
Timer when it is being used in interval-timer mode. Also, the GIE bit enables 
or disables the interrupt from the Watchdog Timer when it is being used in 
interval-timer mode. 

10.3.3 Watchdog Timer Operation 

The WDT module can be configured in two modes: watchdog and the interval
timer modes. 

10.3.3.1 Watchdog Mode 

10-16 

When the WDT is configured to operate in watchdog mode, both a watchdog 
overflow and a security violation trigger the PUC signal, which automatically 
clears the appropriate system register bits. This results in a system 
configuration for the WDTCTL bits where the WDT is set into the watchdog 
mode and the RST/NMI pin is switched to the reset configuration. 

After a power-on reset or a system reset, the WDT module automatically 
enters the watchdog mode and all bits in the WDTCTL register and the 
watchdog counter (WDTCNT) are cleared. The initial conditions at register 
WDTCTL cause the WDT to start running at a relatively-low frequency, due to 
the range of the digitally-controlled oscillator (DCO) automatically being set in 
these situations. Since the WDTCNT is reset, the user software has ample 
time to set up or halt the WDT and to adjust the system frequency. 



10.3.3.2 Timer Mode 

The Timer 

When the module is used in watchdog mode, the software should periodically 
reset the WDTCNT by writing a 1 to bit CNTCL of WDTCTL to prevent 
expiration of the selected time interval. If a software problem occurs and the 
time interval expires because the counter is no longer being reset, a system 
reset is generated and a system PUC signal is activated. The system restarts 
at the same program address that follows a power up. The cause of reset can 
be determined by testing bit 0 of interrupt flag register 1 in the SFRs. The 
appropriate time interval is selected by setting bits SSEL, ISO, and IS1 
accordingly. 

Setting WDTCTL register bit TMSEL to 1 selects the timer mode. This mode 
provides periodic interrupts at the selected time interval. A time interval can 
also be initiated by writing a 1 to bit CNTCL in the WDTCTL register. 

When the WDT is configured to operate in timer mode, the WDTIFG flag is set 
after the selected time interval, and it requests a standard interrupt service. 
The WDT interrupt flag is a single-source interrupt flag and is automatically 
reset when it is serviced. The enable bit remains unchanged. In interval-timer 
mode, the WDT interrupt-enable bit and the GIE bit must be set to allow the 
WDT to request an interrupt. The interrupt vector address in timer mode is 
different from that in watchdog mode. 

Note: Watchdog Timer, Changing the Time Interval 

Changing the time interval without clearing the WDTCNT may result in an 
unexpected and immediate system reset or interrupt. The time interval must 
be changed together with a counter-clear command using a single 
instruction (for example, MOV #OSAOAh,&WDTCTL). 

Changing the clock source during normal operation may result in an incorrect 
interval. The timer should be halted before changing the clock source. 

10.3.3.3 Operation in Low-Power Modes 

The MSP430 devices have several low-power modes. Different clock Signals 
are available in different low-power modes. The requirements of the user's 
application and the type of clocking circuit on the MSP430 device determine 
how the Watchdog Timer and clocking Signals should be configured. Review 
the clock-system chapter to determine the clocking circuit, clock Signals, and 
low-power modes available. For example, the WDT should not be configured 
in watchdog mode with MCLK as its clock source if the user wants to use 
low-power mode 3 because MCLK is not active in LPM3, therefore the WDT 
would not function properly. 

The WDT hold condition can also be used to support low power operation. The 
hold condition can be used in conjunction with low-power modes when 
needed. 

Timers 1 0-17 



The Watchdog Timer 

10.3.3.4 Software Example 

10-18 

The following example illustrates the watchdog-reset operation. 

After RESET or power-up, the WDTCTL register and WDTCNT 
are cleared and the initial operating conditions are 
watchdog mode with a time interval of 32 ms. 

;Constant definitions: 

WDTCTL .EQU 0120h ; Address of Watchdog Timer 
WDTPW .EQU 05AOOh; Password 
T250MS .EQU 5 SSEL, ISO, lSi set to 250 ms 
T05MS .EQU 2 SSEL, ISO, lSi set to 0.5 ms 
CNTCL .EQU 8 Bit position to reset WDTCNT 
TMSEL .EQU 010h Bit position to select timer mode 

As long as watchdog mode is selected, watchdog reset has 
to be done periodically through an instruction e.g.: 

MOV #WDTPW+CNTCL,&WDTCTL 

To change to timer mode and a time interval of 250 ms, 
the following instruction sequence can be used: 

MOV #WDTPW+CNTCL+TMSEL+T250MS,&WDTCTL 
Clear WDTCNT and 
select 250 ms and timer 
mode 

Note: The time interval and clear of WDTCNT should be 
modified within one instruction to avoid 
unexpected reset or interrupt 

Switching back to watchdog mode and a time interval of 
0.5 ms is performed by: 

MOV #WDTPW+CNTCL,&WDTCTL 

MOV #WDTPW+T05MS,&WDTCTL 

Reset WDT counter 

Select watchdog mode 
and 0.5 ms 



Chapter 11 

Timer A 
18.. i ; l&2'Il££ aa a:aauw tillU.!1D CA,;;; 1M; Mli [I hh 

This section describes the basic functions of the MSP430 general-purpose 
16-bit Timer_A. 

Note: 

Throughout this chapter, the word count is used in the text. As used in these 
instances, it refers to the literal act of counting. It means that the counter must 
be in the process of counting for the action to take place. If a particular value 
is directly written to the counter, then the associated action will not take place. 
For example, the CCRO interrupt flag is set when the timer counts up to the 
value in CCRO. The counter must countfrom CCRO-1 to CCRO. If the CCRO 
value were simply written directly to the timer with software, the interrupt flag 
would not be set, even though the values in the timer and the CCRO registers 
are the same. 

Topic Page 

11.1 Introduction ..•......•..........•.••.•.••...•••••...•........ 11-2 

11.2 Timer_A Operation .........•.•....•....•••.••.•.•..........•. 11-4 

11.3 Timer Modes •....•.•...••..•.••.•.•••.••.••••••••.••••..•.•.• 11-6 

11.4 Capture/Compare Blocks .....•...•.•...•.••..•..•...•••.•... 11-13 

11.5 The Output Unit ............................................. 11-19 

11.6 Timer_A Registers .......••.....••••••••.•...•.•••..•••••••• 11-25 

11.7 Timer_A UART •.•.•...•.•..•....••••.....•.••.•.•.•...••..•. 11-34 

11-1 



Introduction 

11.1 Introduction 

11-2 

Timer_A is an extremely versatile timer made up of : 

o 16-bit counter with 4 operating modes 

o Selectable and configurable clock source 

o Five independently configurable capture/compare registers with 
configurable inputs 

o Five individually configurable output modules with 8 output modes 

TimecA can support multiple, simultaneous, timings; multiple capture/ 
compares; multiple output waveforms such as PWM signals; and any com
bination of these. 

Additionally, Timer_A has extensive interrupt capabilities. Interrupts may be 
generated from the counter on overflow conditions and from each of the cap
ture/compare registers on captures or compares. Each capture/compare 
block is individually configurable and can produce interrupts on compares or 
on rising, falling, or both edges of an external capture signal. 

The block diagram of TimecA is shown in Figure 11-1. 



CCI28 ~ 
GND~ 

VCC~ 

CCI38 ~ 
GND~ 

VCC~ 

CC148~ 

GND~ 

VCC~ 

Introduction 

---------..., 
Capture/Compare Register CCR21 

OM22 OM21 OM20 I 
I 
I 
I 
I 
I _________ .J 

---------..., 
Capture/Compare Register CCR31 

OM32 OM31 OM30 I 
I 
I 
I 
I 
I _________ .J 

---------..., 
Capture/Compare Register CCR41 

OM42 OM41 OM40 I 
I 

Out 4 I 
I 



Timer_A Operation 
.1 

11.2 Timer _A Operation 

The 16-bit timer has 4 modes of operation selectable with the MCa and MC1 
bits in the TACTL register. The timer increments or decrements (depending on 
mode of operation) with each rising edge of the clock signal. The timer can be 
read or written to with software. Additionally, the timer can generate an inter
rupt with its ripple-carry output when it overflows. 

11.2.1 Timer Mode Control 

The timer has four modes of operation as shown in Figure 11-2 and described 
in Table 11-1: stop, up, continuous, and up/down. The operating mode is soft
ware selectable with the MCa and MC1 bits in the TACTL register. 

Figure 11-2. Mode Control 

Data 

15 

Timer Clock 16-Bit Timer 
------t>CLK 

POR 

Table 11...;.1. Timer Modes 

Mode Control 

MC1 

a 
a 

MCO Mode 

a Stop 

1 Up 

o 

EquO 

Set_TAIFG 

a 0 Stop Mode 
a 1 Up Mode 
1 a Continuous Mode 

1 Up/Down Mode 

Description 

The timer is halted. 

The timer counts upward until value is equal to 
value of compare register CCRa. 

a Continuous The timer counts upward continuously. 

Up/Down 

11-4 

The timer counts up until the timer value is 
equal to compare register a and then it counts 
down to zero. 



Timer_A Operation 

11.2.2 Clock Source Select and Divider 

The timer clock can be sourced from internal clocks (i.e. ACLK, MCLK) or from 
an external source (TACLK) as shown in Figure 11-3. The clock source is se
lectable with the SSELO and SSEL 1 bits in the TACTL register. It is important 
to note that when changing the clock source for the timer, errant timings can 
occur. For this reason it is recommended to stop the timer before changing the 
clock source. 

The selected clock source may be passed directly to the timer or divided by 
2,4, or 8, as shown in Figure 11-4. The 100 and 101 bits in the TACTL register 
select the clock division. Note that the input divider is reset by a paR signal 
(see chapter 3, System Resets, Interrupts, and Operating Modes for more in
formation on the paR signal) or by setting the CLR bit in the TACTL register. 
Otherwise, the input divider remains unchanged when the timer is modified. 
The state of the input divider is invisible to software. 

Figure 11-3. Schematic of 16-Bit Timer 

SSEl1 SSElO Timer Clock Data 

0 0 15 
TACLK 

16-Bit Timer 
ClK 

ACLK ----0 

MCLK----o 2 

3 
POR/CLR 

INCLK --0 0 0 Pass 
0 1 1/2 
1 0 1/4 
1 1 1/8 

Figure 11-4. Schematic of Clock Source Select and Input Divider 

SSEl1 SSElO 

I I 0 
~ ~ TACLK 

1 
ACLK --0 ~ 

MCLK --0 ~ 

INCLK --0 ~ 

T 

C 

I 

I 
101 

o 
o 

Q 

Input Divider 

I-- T 

I 
100 

o 
1 
o 
1 

Q I-- T Q 

C C 

1 
T 

J 
POR CLR 

Pass 
1/2 
1/4 
1/8 

EquO 

SeCTAIFG 

0 0 Stop Mode 
0 1 Up Mode 
1 0 Continuous Mode 
1 1 Up/Down Mode 

16-Bit Timer Clock 



Timer Modes 

11.2.3 Starting the Timer 

11.3 Timer Modes 

The timer may be started or restarted in a variety of ways: 

o Release Halt Mode: The timer counts in the selected direction when a tim
er mode other than stop mode is selected with the MCx bits. 

o Halted by CCRO = 0, restarted by CCRO > 0 when the mode is either up 
or up/down: When the timer mode is selected to be either up or up/down, 
the timer may be stopped by writing 0 to capture/compare register 0 
(CCRO). The timer may then be restarted by writing a non-zero value to 
CCRO. In this scenario, the timer starts incrementing in the up direction 
from zero. 

o Setting the CLR bit in TACTL register: Setting the CLR bit in the TACTL 
register clears the timer value and input clock divider value. The timer in
crements upward from zero with the next clock cycle as long as stop-mode 
is not selected with the MCx bits. 

o TAR is loaded with 0: When the counter (TAR register) is loaded with zero 
with a software instruction the timer increments upward from zero with the 
next clock cycle as long as stop-mode is not selected with the MCx bits. 

11.3.1 Timer - Stop Mode 

Stopping and starting the timer is done simply by changing the mode control 
bits (MCx). The value of the timer is not affected. 

When the timer is stopped from up/down mode and then restarted in up/down 
mode, the timer counts in the same direction as it was counting before it was 
stopped. For example, ifthe timer is in up/down mode and counting in the down 
direction when the MCx bits are reset, when they are set back to the up/down 
direction, the timer starts counting in the down direction from its previous 
value. If this is not desired in an application, the CLR bit in the TACTL register 
can be used to clear this direction memory feature. 

11.3.2 Timer - Up Mode 

11-6 

The up mode is used if the timer period must be different from the 65,536 
(16-bit) clock cycles of the continuous mode period. The capture/compare 
register CCRO data define the timer period. 

The counter counts up to the content of compare register CCRO, as shown in 
Figure 11-5. When the timer value and the value of compare register CCRO 
are equal (or if the timer value is greater than the CCRO value), the timer 
restarts counting from zero. 



Timer Modes 

Figure 11-5. Timer Up Mode 

OFFFFh 

CCRO r---------------~--------------~w_-----

Oh--~----------------~--------------~~-----

Flag CCIFGO is set when the timer equals the CCRO value. The TAIFG flag is 
set when the timer counts from CCRO to zero. All interrupt flags are set 
independently of the corresponding interrupt enable bit, but an interrupt is 
requested only if the corresponding interrupt enable bit and the GIE bit are set. 
Figure 11-6 shows the flag set cycle. 

Figure 11-6. Up Mode Flag Setting 

Timer 
Clock 

Timer 

Set Flag 
TAIFG 

Set Flag 
CCIFGO 

11.3.2.1 Timer in Up Mode - Changing the Period Register CCRO Value 

Changing the timer period register CCRO while the timer is running can be a 
little tricky. When the new period is greater than or equal to the old period, the 
timer simply counts up to the new period and no special attention is required 
(see Figure 11-7). However, when the new period is less than the old period, 
the phase of the timer clock during the CCRO update affects how the timer 
reacts to the new period. 

If the new, smaller period is written to CCRO during a high phase of the timer 
clock, then the timer rolls to zero (or begins counting down when in the 
up/down mode) on the next rising edge of the timer clock. However, if the new, 
smaller period is written during a low phase of the timer clock, then the timer 
continues to increment with the old period for one more clock cycle before 
adopting the new period and rolling to zero (or beginning counting down). This 
is shown in Figure 11-8. 



Timer Modes 

Figure 11-7. New Period> Old Period 
Timer 

Register 
CCROold=2 
CCROnew=3 

3 ---------- ---------
2 

o 

0111210111213101112131011 

CCRot::J2[:::~~~~~::::::J3[:::::::::::::::::: 

Figure 11-8. New Period < Old Period 

11-8 

Timer 
CCROold =5 Register 
CCROnew=2 

5 
4 
3 
2 
1 
° 

°11121314151°1112131°11 ~I0111210111 
CCRO 5 2 

Timer Clock ~ 
Timer :x Ii XQQ[!l-1tX:: 

CCRO CC$<; CCRnew I 
Load New CCRO 

During High Phase of Clock 

t Up mode: 0; up/down mode: n-1 

Timer 
CCROold= 5 Register 
CCROnew=2 

5 
4 
3 
2 
1 
° 

° 11 12 13 14 15 1° 11 ~ 13 14 P r 1210 r 12 p r 1 
CCRO 5 2 

Timer Clock ~ 
Timer X ~ ~ n+1 X 

CCRO CCRoldX CCRnew 
I I 

Load New CCRO 
During Low Phase of Clock 

t Up mode: 0; up/down mode: n 

Oornf x:: 



Timer Modes 

11.3.3 Timer - Continuous Mode 

The continuous mode is used if the timer period of 65,536 clock cycles is used 
for the application. A typical application of the continuous mode is to generate 
multiple, independent timings. In continuous mode, the capture/compare 
register CCRO works in the same way as the other compare registers. 

The capture/compare registers and different output modes of each output unit 
are useful to capture timer data based on external events or to generate 
various different types of output signals. Examples of the different output 
modes used with timer-continuous mode are shown in Figure 11-25. 

In continuous mode, the timer starts counting from its present value. The 
counter counts up to OFFFFh and restarts by counting from zero as shown in 
Figure 11-9. 

Figure 11-9. Timer Continuous Mode 

OFFFFh 

Oh--~----------------~--------------~~-----

The TAIFG flag is set when the timer counts from OFFFFh to zero. The interrupt 
flag is set independently of the corresponding interrupt enable bit, as shown 
in Figure 11-10. An interrupt is requested if the corresponding interrupt enable 
bit and the GIE bit are set. 

Figure 11-10. Continuous Mode Flag Setting 

Timer 
Clock 

Timer 

Set Interrupt 
FlagTAIFG 



Timer Modes 

11.3.3.1 Timer - Use of the Continuous Mode 

The continuous mode can be used to generate time intervals for the 
application software. Each time an interval is completed, an interrupt can be 
generated. In the interrupt service routine of this event, the time until the next 
event is added to capture/compare register CCRx as shown in Figure 11-11. 
Up to five independent time events can be generated using all five 
capture/compare blocks. 

Figure 11-11. Output Unit in Continuous Mode for Time Intervals 

CCROf CCROI 
OFFFFh 

C 

CCROe V CCROk V 
CCROdV CCROj '/ 

CCROc '/ CCROi '/ 

CCROb '/ CCROh '/ 

CRoa,/ CCR09V 
CCROm .. 

./ 1/ ........ Oh 

Interrupt Events ~t ~t ~t ~t ~t ~t ~t ~t ~t ~t ~t ~t 

Time intervals can be produced with other modes as well, where CCRa is used 
as the period register. Their handling is more complex since the sum of the old 
CCRx data and the new period can be higher than the CCRa value. When the 
sum CCRxoid plus At is greater than the CCRa data, the CCRa value must be 
subtracted to obtain the correct time interval. The period is twice the value in 
the CCRa register. 

11.3.4 Timer - Up/Down Mode 

The up/down mode is used if the timer period must be different from the 65,536 
clock cycles, and if symmetrical pulse waveform generation is needed. In 
up/down mode, the timer counts up to the content of compare register CCRa, 
then back down to zero, as shown in Figure 11-12. The period is twice the 
value in the CCRa register. 

Figure 11-12. Timer Up/Down Mode 

CCRO 

Oh--~--------------~'----------------¥~-----

11-10 



Timer Modes 

The up/down mode also supports applications that require dead times 
between output signals. For example, to avoid overload conditions, two 
outputs driving an H-bridge must never be in a high state simultaneously. In 
the following example (see Figure 11-13), the tdead is: 

tdead = ttimer x (CCR1 - CCR3)= 

With: tdead Time during which both outputs need to be inactive 

ttimer Cycle time of the timer clock 

CCRx Content of capture/compare register x 

Figure 11-13. Output Unit in Up/Down Mode (/I) 

DFFFFh 

CCRD 

CCR1 
CCR3 

Dh 

/ 
i/ 

V 

r--

~ 
I' / 

"",V 
-t 

/ " '\ 
"'" ~ -t ~ Deadllm e 

Output Mode 6: PWM Toggle/Set 

Output Mode 2: PWM Toggle/Reset 

TAIFG EQU1 EQU1 TAIFG EQU1 EQU1 Interrupt Events 
EQU3 EQUD EQU3 EQU3 EQUD EQU3 

The count direction is always latched with a flip-flop (Figure 11-14). This is 
useful because it allows the userto stop the timer and then restart it in the same 
direction it was counting before it was stopped. For example, if the timer was 
counting down when the MCx bits were reset, then it will continue counting in 
the down direction if it is restarted in up/down mode. If this is not desired, the 
CLR bit in the TACTL register must be used to clear the direction. Note that the 
CLR bit affects other setup conditions of the timer. Refer to Section 11.6 for a 
discussion of the TimecA registers. 

Figure 11-14. Timer Up/Down Direction Control 

POR CLR 
inTACTL 

Set Up/Down For 
Up/Down Mode 

D Q 
16-Bit Timer TAR 

TAR=> CCRD Low: Down Direction 
High: Up Direction 

Timer Clock Reset 



Timer Modes 

In up/down mode, the interruptflags (CCIFGO and TAIFG) are set at equal time 
intervals (Figure 11-15). Each flag is set only once during the period, but they 
are separated by 1/2 the timer period. CCIFGO is set when the timer counts 
from CCR0-1 to CCRO, and TAIFG is set when the timer completes counting 
down from 0001 h to OOOOh. Each flag is capable of producing a CPU interrupt 
when enabled. 

Figure 11-15. Up/Down Mode Flag Setting 

Timer 
Clock 

Timer 

Up/Down 

Set 
CCIFGO 

Set 
TAIFG 

11.3.4.1 Timer In Up/Down Mode - Changing the Value of Period Register CCRO 

Changing the period value while the timer is running in up/down mode is even 
trickier than in up mode. Like in up mode, the phase of the timer clock when 
CCRO is changed affects the timer's behavior. Additionally, in up/down mode, 
the direction of the timer also affects the behavior. 

If the timer is counting in the up direction when the new period is written to 
CCRO, the conditions in the up/down mode are identical to those in the up 
mode. See Section 11.3.2.1 for details. However, if the timer is counting in the 
down direction when CCRO is updated, it continues its descent until it reaches 
zero. The new period takes effect only afterthe counterfinishes counting down 
to zero. See Figure 11-16. 

Figure 11-16.Altering CCRO - Timer in Up/Down Mode 

11-12 

Timer 
Register 

CCRD 1--.,;...5_1'--__ 2 __ ..J'-__ 4_--','--__ 2 __ --J'"-_~5 __ _''__2_ 



Timer Modes 

11.4 Capture/Compare Blocks 

Five identical capture/compare blocks (shown in Figure 11-17) provide 
flexible control for real-time processing. Anyone of the blocks may be used 
to capture the timer data at an applied event, or to generate time intervals. 
Each time a capture occurs or a time interval is completed, interrupts can be 
generated from the applicable capture/compare register. The mode bit CAPx, 
in control word CCTLx, selects the compare or capture operation and the 
capture mode bits CCMx1 and CCMxO in control word CCTLx define the 
conditions under which the capture function is performed. 

Both the interrupt enable bit CCIEx and the interrupt flag CCIFGx are used for 
capture and compare modes. CCIEx enables the corresponding interrupt. 
CCIFGx is set on a capture or compare event. 

The capture inputs CClxA and CClxB are connected to external pins or internal 
signals. Different MSP430 devices may have different signals connected to 
CClxA and CClxB. The data sheet should always be consulted to determine 
the Timer_A connections for a particular device. 

Figure 11-17. Capture/Compare Blocks 

CCISx1 

I 
CClxA 
CClxB --0 

GND --0 

VCC --0 

CCISxO 

I 0 

2 

3 

Overflow x 

COVx 

CAPx 
r 15 

Capture 
Mode 

I--_....! __ ..._c-a.p-tu-re-... Capture/Compare Register 
CCRx 

CCMx1 

o 
o 
1 
1 

CCMxO 

o Disabled 
1 Positive Edge 
o Negative Edge 
1 Both Edges 

Comparator x 

EQUx 

EN 

'--------------------1 A 

o 

CClx 

Timer Bus 

SeCCCIFGx 

y SCClx 



Timer Modes 

11.4.1 Capture/Compare Block - Capture Mode 

The capture mode is selected if the mode bit CAPx, located in control word 
CCTLx, is set. The capture mode is used to fix time events. It can be used for 
speed computations or time measurements. The timer value is copied into the 
capture register (CCRx) with the selected edge (positive, negative, or both) of 
the input signal. Captures may also be initiated by software as described in 
section 11 .4.1.1 . 

If a capture is performed: 

o The interrupt flag CCIFGx, located in control word CCTLx, is set. 

o An interrupt is requested if both interrupt enable bits CCIEx and GIE are 
set. 

The input signal to the capture/compare block is selected using control bits 
CCISx1 and CCISxO, as shown in Figure 11-18. The input signal can be read 
at any time by the software by reading bit CClx. The input signal may also be 
latched with compare signal EQUx (see SCClx bit below) when in compare 
mode. This feature was designed specifically to support implementing serial 
communications with Timer_A. See section 11.7 for more details on using 
Timer_A as a UART. 

Figure 11-18. Capture Logic Input Signal 

CCISx1 CCISxO 

I I 0 
CClxA --0--0--"0-, 

CClxB --0 

GND --0 

VCC --0 

CMPx 

Capture 
Mode 

Timer 

CCMx1 

o 

CCMxO Clock 

o 
1 
1 

o Disabled 
1 Positive Edge 
o Negative Edge 
1 Both Edges 

CAPx 
EQUx ~~ __ ----,-1 -0 

Synchronize 
Capture 

o 

SCSx 

EN 

o 
SeLCCIFGx 

Capture 

Y SCClx 
e------------------~A 

CClx 

11-14 

The capture signal can also be synchronized with the timer clock to avoid race 
conditions between the timer data and the capture signal. This is illustrated in 
Figure 11-19. The bit SCSx in capture/compare control register CCTLx 
selects the capture signal synchronization. 



Timer Modes 

Figure 11-19. Capture Signal 

Timer 
Clock 

Timer 

CClx 

Capture 

Set 
CCIFGx 

Applications with slow timer clocks can use the nonsynchronized capture 
signal. In this scenario the software can validate the data and correct it if 
necessary as shown in the following example: 

Software example for the handling of asynchronous 
capture signals 

The data of the capture/compare register CCRx are taken 
by the software in the according interrupt routine 
- they are taken only after a CCIFG was set. 
The timer clock is much slower than the system clock 
MCLK. 

CCRx In t_hand ... 

CMP 

JEQ 
MOV 

RETI 

&CCRx,&TAR 

Data_Valid 
&TAR,&CCRx 

Start of interrupt 
handler 

Test if the data 
CCRX = TAR 

The data in CCRx is 
wrong, use the timer data 
The data in CCRx are valid 

Overflow logic is provided with each capture/compare register to flag the user 
if a second capture is performed before data from the first capture was read 
successfully. Bit COVx in register CCTLx is set when this occurs as shown in 
Figure 11-20. 



Timer Modes 

Figure 11-20. Capture Cycle 

11-16 

Capture Capture Read 

-------t--- Capture Read and No Capture 

Clear Bit COV 

in Register CCTL 

Idle 

Overflow bit COVx is reset by the software as described in the following 
example: 

Software example for the handling of captured data 
looking for overflow condition 

The data of the capture/compare register CCRx are taken 
by the software and immediately with the next 
instruction the overflow bit is tested and a decision is 
made to proceed regularly or with an error handler 

MOV 
BIT 
JNZ 

; Start of handler Interrupt 

&CCRx,RAM_Buffer 
#COV,&CCTLx 
Overflow_Hand 

RETI 
Overflow_Hand BIC #COV,&CCTLx reset capture 

overflow flag 
get back to lost 
synchronization 

RETI 

Note: Capture With Timer Halted 

The capture should be disabled when the timer is halted. The sequence to 
follow is: stop the capture, then stop the timer. When the capture function is 
restarted, the sequence should be: start the capture, then start the timer. 



Timer Modes 

11.4.1.1 Capture/Compare Block, Capture Mode - Capture Initiated by Software 

In addition to internal and external signals, captures can be initiated by 
software. This is useful for various purposes, such as: 

o To measure time used by software routines 
o To measure time between hardware events 
o To measure the system frequency 

Two bits, CCISx1 and CCISxO, and the capture mode selected by bits CCMx1 
and CCMxO are used by the software to initiate the capture. The simplest 
realization is when the capture mode is selected to capture on both edges of 
CClx and bit CCISx1 is set. Software then toggles bit CCISxO to switch the 
capture signal between VCC and GND, initiating a capture each time the input 
is toggled, as shown in Figure 11-21. 

Figure 11-21. Software Capture Example 

CCISx1 

CCISxO ./ \'-_________ / 

~~ ./ \ / 

Capture f\'--_____ ....Jr\\... _____ ---'~ 

CCISx1 CCISxO 

I I 0 
CClxA --o--o--=-, 

CMPx 

Capture 
Mode 

CClxB --0 

GND --0 

Vcc --0 
CClx 

CCMx1 CCMxO 

Both Edges Selected 

Capture 

The following is a software example of a capture performed by software: 

The data of capture/compare register CCRx are taken 
by the software. It is assumed that CCMxl, CCMxO, and 
CCISxl bits are set. Bit CCISO selects the CCIx 
signal to be high or low. 

XOR #CCISxO, &CCTLx 



Timer Modes 

11.4.2 Capture/Compare Block - Compare Mode 

11-18 

The compare mode is selected if the CAPx bit, located in control word CCTLx, 
is reset. In compare mode all the capture hardware circuitry is inactive and the 
capture-mode overflow logic is inactive. 

The compare mode is most often used to generate interrupts at specific time 
intervals or used in conjunction with the output unit to generate output signals 
such as PWM signals. If the timer becomes equal to the value in compare 
register x, then: 

D Interrupt flag CCIFGx, located in control word CCTLx, is set. 

D An interrupt is requested if interrupt enable bits CCIEx and GIE are set. 

D Signal EQUx is output to the output unit. This signal affects the output 
OUTx, depending on the selected output mode. 

The EQUO signal is true when the timer value is greater or equal to the CCRO 
value. The EQU1 to EQU4 signals are true when the timer value is equal to 
the corresponding CCR1 to CCR4 values. 



Timer Modes 

11.5 The Output Unit 

Each capture/compare block contains an output unit shown in Figure 11-22. 
The output unit is used to generate output signals such as PWM signals. Each 
output unit has 8 operating modes that can generate a variety of signals based 
on the EQUO and EQUx signals. The output mode is selected with the OMx 
bits located in the CCTLx register. 

Figure 11-22. Output Unit 

OUTx 

EQUO>---I~ 

EQUx>----I~ 

Output 
Control 
Block 

1----------+---'10 

OMx2 OMx1 OMxO 
a a a 
a a 1 
a 1 a 
a 
1 0 0 

0 1 
0 
1 

Timer Clock --+--[> 
Reset 

OUTx 

Output mode: OUTx signal reflects the value of the OUTx bit 
Set mode: OUT x signal reflects the value of signal EQUx 
PWM toggle/reset: EQUx toggles OUTx. EQUa resets OUTx. 
PWM set/reset: EQUx sets OUTx. EQUa resets OUTx 
Toggle: EQUx toggles OUTx signal. 
Reset: EQUx resets OUTx. 
PWM toggle/set: EQUx toggles OUTx. EQUO sets OUTx. 
PWM reset/set: EQUx resets OUTx. EQUx sets OUTx. 

Note: OUTx signal updates with rising edge of timer clock for all modes except 
modea. 
Modes 2, 3, 6, 7 not useful for output unit O. 

TimecA 11-19 



Timer Modes 

11.5.1 Output Unit - Output Modes 

11-20 

The output modes are defined by the OMx bits and are discussed below. The 
OUTx signal is changed with the rising edge of the timer clock for all modes 
except mode O. Output modes 2, 3, 6, and 7 are not useful for output unit O. 

Output mode 0: Output mode: 
The output signal OUTx is defined by the OUTx bit in control 
register CCTLx. The OUTx signal updates immediately 
upon completion of writing the bit information. 

Output mode 1: Set mode: 
The output is set when the timer value becomes equal to 
capture/compare data CCRx. It remains set until a reset of 
the timer, or until another output mode is selected. 

Output mode 2: PWM toggle/reset mode: 
The output is toggled when the timer value becomes equal 
to capture/compare data CCRx. It is reset when the timer 
value becomes equal to CCRO. 

Output mode 3: PWM set/reset mode: 
The output is set when the timer value becomes equal to 
capture/compare data CCRx. It is reset when the timer value 
becomes equal to CCRO. 

Output mode 4: Toggle mode: 
The output is toggled when the timer value becomes equal 
to capture/compare data CCRx. The output period is double 
the timer period. 

Output mode 5: Reset mode: 
The output is reset when the timer value becomes equal to 
capture/compare data CCRx. It remains reset until another 
output mode is selected. 

Output mode 6: PWM toggle/set mode: 
The output is toggled when the timer value becomes equal 
to capture/compare data CCRx. It is set when the timer 
value becomes equal to CCRO. 

Output mode 7: PWM toggle/set mode: 
The output is reset when the timer value becomes equal to 
capture/compare data CCRx. It is set when the timer value 
becomes equal to CCRO. 



Timer Modes 

11.5.2 Output Control Block 

The output control block prepares the value of the OUTx signal, which is 
latched into the OUTx flip-flop with the next positive timer clock edge, as shown 
in Figure 11-23 and Table 11-2. The equal signals EQUx and EQUO are 
sampled during the negative level of the timer clock, as shown in Figure 11-23. 

Figure 11-23. Output Control Block 

EQUO>---IH 
EQUX>---IH 

Output 
Control 
Block 

OUTx 

~----------~~~D 

Timer Clock --+----[> 
Reset 

OUTx 

OMx2 OMx1 OMxO 

Timer 
Clock 

Timer 
TAR 

EQUx 

n-2 

I TAR = n I / 
I I / 
jr--___ \ I / 

____________ J ~--~I -----------r/ ----~------------
CCRx=n I / 

/ I 
______________________________ ~/ThR=O \~ ________ __ EQUO 

or 

TAR=CCRO 

I I 
EQUO, Delayed _________________ ~yr---\ ..... __ __ 

Used in Up Mode Only 

EQUO delayed is used in up mode, not EQUO. EQUO is active high when 
TAR = CCRO. EQUO delayed is active high when TAR = O. 

TimecA 11-21 



Timer Modes 

Table 11-2. State of OUTx at Next Rising Edge of Timer Clock 

Mode EQUO EQUx D 

0 x x x(OUTx bit) 

x 0 OUTx (no change) 
x 1 1 (set) 

2 0 0 OUTx (no change) 
0 1 OUTx (toggle) 
1 0 o (reset) 
1 1 1 (set) 

3 0 0 OUTx (no change) 
0 1 1 (set) 
1 0 o (reset) 
1 1 1 (set) 

4 x 0 OUTx (no change) 
x 1 OUTx (toggle) 

5 x 0 OUTx (no change) 
x 1 o (reset) 

6 0 0 OUTx (no change) 
0 1 OUTx (toggle) 
1 0 1 (set) 
1 1 o (reset) 

7 0 0 OUTx (no change) 
0 1 o (reset) 
1 0 1 (set) 
1 1 o (reset) 

11.5.3 Output Examples 

The following are some examples of possible output signals using the various 
timer and output modes. 

11.5.3.1 Output Examples - Timer in Up Mode 

11-22 

The OUTx signal is changed when the timer counts up to the CCRx value, and 
rolls from CCRD to zero, depending on the output mode, as shown in Figure 
11-24. 



Figure 11-24. Output Examples - Timer in Up Mode 

OFFFFh 

CCRO 

/' 
Example, EQU1 Used 

/' 

Timer Modes 

Oh V V V 
CCR1 

~---- Output Mode 1 : Set 

r-----
Output Mode 2: PWM Toggle/Reset -

~---- Output Mode 3: PWM Set/Reset 

1------ - 1------
Output Mode 4: Toggle 

Output Mode 5: Reset 

Output Mode 6: PWM Toggle/Set -----

~----
Output Mode 7: PWM Reset/Set 

EQUO EQU1 EQUO EQU1 EQUO Interrupt Events 

11.5.3.2 Output Examples - Timer in Continuous Mode 

The OUTx signal is changed when the timer reaches the CCRx and CCRO 
values, depending on the output mode, as shown in Figure 11-25. 

Figure 11-25. Output Examples - Timer in Continuous Mode 

OFFFFh 

CCRO 

CCR1 

Oh 

./ 

V 
----
----
----

----
--

-
----
----

/' 
./ 

V 
~ 

~ 

--
------

/' 

./ 

Output Mod e 1: Set 

Output Mod e 2: PWM Toggle/Reset 

e 3: PWM Set/Reset Output Mod 

OutpUtMod e4: Toggle 

Output Mod e 5: Reset 

Output Mod e 6: PWM Toggle/Set 

Output Mod e 7: PWM Reset/Set 

TAOV EQU1 EQUO TAOV EQU1 EQUO Interrupt Events 

Timer~ 11-23 



Timer Modes 

11.5.3.3 Output Examples - Timer in Up/Down Mode 

The OUTx signal changes when the timer equals CCRx in either count 
direction and when the timer equals CCRO, depending on the output mode, as 
shown in Figure 11-26. 

Figure 11-26. Output Examples - Timer in Up/Down Mode (I) 

OFFFFh 
CCRO 

Oh 

/ I'" / I'" V !'\V I'" 
CCR3 

r-' Output Mod e 1: Set 

r-- ,.....--, 
routPut Mod e 2: PWM Toggle/Reset 

~ 
I- ._. Output Mod e 3: PWM Set/Reset 

1-' ..-- - ~tMOd r-- '----- '------ e4: Toggle 

r-- Output Mod 
1-' 

e 5: Reset 

1-' 
"-

Output Mod e 6: PWM Toggle/Set 

1--- r--- r--- Output Mod e 7: PWM Reset/Set 

TlMOV EQU3 EQUO EQU3 TIMOV EQU3 EQUO EQU3 Interrupt Events 

11-24 



11.6 TimecA Registers 

The Timer_A registers, described in Table 11-3, are word-structured and must 
be accessed using word instructions. 

Table 11-3. Timer_A Registers 

11.6.1 

Register Short Form Register Type Address Initial State 

Timer_A control TACTl Read/write 160h paR reset 

Timer_A register TAR Read/write 170h paR reset 

Cap/com control 0 CCTlO Read/write 162h paR reset 

Capture/compare 0 CCRO Read/write 172h paR reset 

Cap/com control 1 CCTl1 Read/write 164h paR reset 

Capture/compare 1 CCR1 Read/write 174h paR reset 

Cap/com control 2 CCTl2 Read/write 166h paR reset 

Capture/compare 2 CCR2 Read/write 176h paR reset 

Cap/com control 3 CCTl3 Read/write 168h paR reset 

Capture/compare 3 CCR3 Read/write 178h paR reset 

Cap/com control 4 CCTL4 Read/write 16Ah paR reset 

Capture/compare 4 CCR4 Read/write 17Ah paR reset 

Interrupt vector TAIV Read 12Eh (paR reset) 

Timer _A Control Register TACTL 

The timer and timer operation control bits are located in the timer control 
register (TACTL) shown in Figure 11-27. All control bits are reset automati
cally by the POR signal, but are not affected by the PUC signal. The control 
register must be accessed using word instructions. 

Figure 11-27. TimecA Control Register TACTL 

TACTL 
160h 

rw- rw- rw- rw- rw- rw- rw- rw- rw- rw- rw- rw rw- w- rw- rw-
(0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) 

Bit 0: TAIFG: This flag indicates a timer overflow event. 
Up mode: TAIFG is set if the timer counts from CCRO 

value to OOOOh. 
Continuous mode: TAIFG is set if the timer counts from 

OFFFFh to OOOOh. 
Up/down mode: TAIFG is set if the timer counts down from 

0001 h to OOOOh. 

Bit 1: Timer overflow interrupt enable (TAlE) bit. An interrupt request from 
the timer overflow bit is enabled if this bit is set, and is disabled if 
reset. 



Timer_A Registers 

Bit 2: Timer clear (CLR) bit. The timer and input divider are reset with the 
POR signal, or if bit CLR is set. The CLR bit is automatically reset 
and is always read as zero. The timer starts in the upward direction 
with the next valid clock edge, unless halted by cleared mode 
control bits. 

Bit 3: Not used 

Bits 4,5: Mode control: Table 11-4 describes the mode control bits. 

Table 11-4. Mode Control 

MC1 MCO Count Mode Description 

a a Stop Timer is halted. 

a 1 Up to CCRa Timer counts up to CCRa and restarts at a. 

a Continuous up Timer counts up to aFFFFh and restarts at a. 

Up/down Timer continuously counts up to CCRa and back 
down to a. 

Bits 6, 7: Input divider control bits. Table 11-5 describes the input divider 
control bits. 

Table 11-S.lnput Clock Divider Control Bits 

101 100 Operation Description 

a a /1 Input clock source is passed to the timer. 

a 1 /2 Input clock source is divided by two. 

0 /4 Input clock source is divided by four. 

/8 Input clock source is divided by eight. 

Bits 8,9: Clock source selection bits. Table 11-6 describes the clock source 
selections. 

Table 11-6. Clock Source Selection 

11-26 

SSEL1 

a 
a 

SSELO OIP Signal 

a TACLK 

ACLK 

a MCLK 

INCLK 

Bits 10 to 15: Unused 

Comment 

See data sheet device description 

Auxiliary clock ACLK is used 

System clock MCLK 

See device description in data sheet 



Note: Changing Timer_A Control Bits 

If the timer operation is modified by the control bits in the TACTL register, the 
timer should be halted during this modification. Critical modifications are the 
input select bits, input divider bits, and the timer clear bit. Asynchronous 
clocks, input clock, and system clock can result in race conditions where the 
timer reacts unpredictably. 

The recommended instruction flow is: 

1) Modify the control register and stop the timer. 

2) Start the timer operation. 

For example: 

MOV #01C6,&TACTL ; ACLKl8, timer stopped, timer cleared 

BIS #1 Oh,& TACTL ; Start timer with up mode 

11.6.2 Timer_A Register TAR 

The TAR register is the value of the timer. 

Figure 11-28. TAR Register 

15 0 

1~~~ I : : : : : : >imer ~alue : : : : : : : I 
rw-(O) rw-(O) rw-(O) rw-(O)rw-(O) rw-(O) rw-(O)rw-(O)rw-(O)rw-(O)rw-(O) rw-(O) rw-(O)rw-(O)rw-(O) rw-(O) 

Note: Modifying Timer A Register TAR 

When ACLK or the external clock TACLK or INCLK is selected for the timer 
clock, any write to timer register TAR should occur while the timer is not oper
ating; otherwise, the results may be unpredictable. In this case, the timer 
clock is asynchronous to the CPU clock MCLK and critical race conditions 
exist. 

11.6.3 Capture/Compare Control Register CCTLx 

Each capture/compare block has its own control word CCTLx, shown in 
Figure 11-29. The POR signal resets all bits of CCTLx; the PUC signal does 
not affect these bits. 

Figure 11-29. Capture/Compare Control Register CCTLx 



Timer_A Registers 

11-28 

Bit 0: Capture/compare interrupt flag CCIFGx 
Capture mode: 

If set, it indicates that a timer value was captured in the 
CCRx register. 

Compare mode: 
If set, it indicates that a timer value was equal to the data 
in the CCRx register. 

CCIFGO flag: 
CCIFGO is automatically reset when the interrupt request 
is accepted. 

CCIFG1 to CCIFG4 flags: 
The flag that caused the interrupt is automatically reset 
after the TAIV word is accessed. If the TAIV register is not 
accessed, the flags must be reset with software. 

No interrupt is generated if the corresponding interrupt 
enable bit is reset, but the flag will be set. In this scenario, 
the flag must be reset by the software. 

Setting the CCIFGx flag with software will request an 
interrupt if the interrupt-enable bit is set. 

Bit 1: Capture overflow flag COV 
Compare mode selected, CAP = 0: 

Capture signal generation is reset. No compare event will 
set COV bit. 

Capture mode selected, CAP = 1: 
The overflow flag COV is set if a second capture is 
performed before the first capture value is read. The 
overflow flag must be reset with software. It is not reset by 
reading the capture value. 

Bit 2: The OUTx bit determines the value of the OUTx signal if the 
output mode is O. 

Bit 3: Capture/compare input signal CClx: 
The selected input signal (CClxA, CClxB, Vee. or GND) can be 
read by this bit. See Figure 11-18. 

Bit 4: Interrupt enable CCIEx: Enables or disables the interrupt 
request signal of capture/compare block x. Note that the GIE bit 
must also be set to enable the interrupt. 
0: Interrupt disabled 
1: Interrupt enabled 

Bits 5 to 7: Output mode select bits: 
Table 11-7 describes the output mode selections. 



TimecA Registers 

Table 11-7. Capture/Compare Control Register Output Mode 

Bit 
Value 

o 

2 

3 

4 

5 

6 

7 

Output Mode 

Output only 

Set 

PWM 
toggle/reset 

PWM set/reset 

Toggle 

Reset 

PWM 
toggle/set 

PWM reset/set 

Description 

The OUTx signal reflects the value of the OUTx bit 

EQUx sets OUTx 

EQUx toggles OUTx. EQUO resets OUTx. 

EQUx sets OUTx. EQUO resets OUTx 

EQUx toggles OUTx signal. 

EQUx resets OUTx. 

EQUx toggles OUTx. EQUO sets OUTx. 

EQUx resets OUTx. EQUx sets OUTx. 

Note: OUTx updates with rising edge of timer clock for all modes except mode O. 
Modes 2, 3, 6, 7 not useful for output unit O. 

Bit 8: CAP sets capture or compare mode. 
a: Compare mode 
1: Capture mode 

Bit 9: Read only, always read as a. 

Bit 1 a: SCClx bit: 

Bit 11: 

The selected input signal (CClxA, CClxB, Vcc, or GND) is 
latched with the EQUx signal into a transparent latch and can be 
read via this bit. 

SCSx bit: 
This bit is used to synchronize the capture input signal with the 
timer clock. 
a: asynchronous capture 
1: synchronous capture 

Bits 12, 13: Input select, cClsa and CCIS1: 
These two bits define the capture signal source. These bits are 
not used in compare mode. 
a Input CClxA is selected 
1 Input CClxB is selected 
2 GND 
3 VCC 

Bits 14, 15: Capture mode bits: 
Table 11-8 describes the capture mode selections. 

Table 11-8. Capture/Compare Control Register Capture Mode 

Bit 
Value Capture Mode 

o Disabled 

1 Pos. Edge 

2 Neg. Edge 

3 Both Edges 

Description 

The capture mode is disabled. 

Capture is done with rising edge. 

Capture is done with falling edge. 

Capture is done with both rising and falling edges. 



Timer_A Registers 

Note: Simultaneous Capture and Capture Mode Selection 

Captures must not be performed simultaneously with switching from 
compare to capture mode. Otherwise, the result in the capture/compare reg
ister will be unpredictable. 

The recommended instruction flow is: 

1) Modify the control register to switch from compare to capture. 

2) Capture 

For example: 

SIS #CAP,&CCTL2 

XOR #CCIS1 ,&CCTL2 

; Select capture with register CCR2 

; Software capture: CCISO=O 

Capture mode = 3 

11.6.4 Timer_A Interrupt Vector Register 

Two interrupt vectors are associated with the 16-bit TimecA module: 

o CCRO interrupt vector (highest priority) 

o TAl V interrupt vector for flags CCIFG1-CCIFGx and TAIFG. 

11.6.4.1 CCRO Interrupt Vector 

The interrupt flag associated with capture/compare register CCRO, as shown 
in Figure 11-30, is set if the timer value is equal to the compare register value. 

Figure 11-30. Capture/Compare Interrupt Flag 

Capture -------------, 

11-30 

IRQ, InterrupCService_Requested 
EQO 

CCRO = limer--+--r--~ D Set Q t---~~ 
CAP 

Timer Clock 
Reset 

IRACC, Interrupt_Request_Accepted 

Capture/compare register 0 has the highest TimecA interrupt priority, and 
uses its own interrupt vector. 



Timer_A Registers .. 
11.6.4.2 Vector Word, TAIFG, CCIFG1 to CCIFG4 Flags 

The CCIFGx (other than CCIFGO) andTAIFG interrupt flags are prioritized and 
combined to source a single interrupt as shown in Figure 11-31. The interrupt 
vector register TAIV (shown in Figure 11-32) is used to determine which flag 
requested an interrupt. 

Figure 11-31. Schematic of Capture/Compare Interrupt Vector Word 

CCI1 
EQ1 

CMP1 
Timer Clock 

CCI2 
EQ2 

CMP2 
Timer Clock 

S 

S 
Sel 

S 

S 
Sel 

R 

I 
IRACC 

R 

IRACC 

CCIFG~ 

CCIE1 

... 

CCIFG2 

cc~ 
Interrupt_Service_Re quesl 

CCI3 
EQ3 

CMP3 
Timer Clock 

S 

S 
Sel 

R 

CCIFG3 

5J- Priority and 

CCIE3 - Vector Word 
Generator 

CCI4 
EQ4 

CMP4 
Timer Clock 

Timer FFFF 
Timer=CCRO 

XXX 
Timer Clock 

S 

S 
Sel 

S 

S 
Sel 

I 
IRACC 

R 

IRACC 

R 
L 
IRACC 

... ... 
InterrupC Vector_Add ress .. 

CCIFG4 .. 

cc~ 

TAIFG 

5J-
TAlE -

... 
~ 

Figure 11-32. Vector Word Register 
15 0 

J:~~ I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I Inte;rupt v~ctor I 0 I 
rO rO rO rO rO rO rO rO rO rO rO rO r-(O) r-(O) r-(O) rO 

The flag with the highest priority generates a number from 2 to 12 in the TAIV 
register as shown in Table 11-9. (If the value of the TAl V register is 0, no 
interrupt is pending.) This number can be added to the program counter to 
automatically enter the appropriate software routine without the need for 
reading and evaluating the interrupt vector. The software example in section 
11.6.4.3 shows this technique. 

Time,-A 11-31 



TimecA Registers 

Table 11-9. Vector Register TAIV Description 

Interrupt 
Priority 

Highestt 

Interrupt Source 

Capture/compare 1 

Capture/compare 2 

Capture/compare 3 

Capture/compare 4 

Timer overflow 

Reserved 

Short Form 

CCIFG1 

CCIFG2 

CCIFG3 

CCIFG4 

TAIFG 

Vector Register 
TAIV Contents 

2 

4 

6 

8 

10 

12 

Lowest Reserved 14 

No interrupt pending 0 
t Highest pending interrupt other than CCIFGO. CCIFGO is always the highest priority limer_A 

interrupt. 

Accessing the TAIV register automatically resets the highest pending interrupt 
flag. If another interrupt flag is set, then another interrupt will be immediately 
generated after servicing the initial interrupt. For example, if both CCIFG2 and 
CCIFG3 are set, when the interrupt service routine accesses the TAIV register 
(either by reading it or by adding it directly to the PC), CCIFG2 will be reset 
automatically. After the RETI instruction of the interrupt service routine is 
executed, the CCIFG3 flag will generate another interrupt. 

Note: Writing to Read-Only Register TAIV 

Register TAIV should not be written to. If a write operation to TAIV is 
performed, the interrupt flag of the highest-pending interrupt is reset. 
Therefore, the requesting interrupt event is missed. Additionally, writing to 
this read-only register results in increased current consumption as long as 
the write operation is active. 

11.6.4.3 Timer Interrupt Vector Register, Software Example 

11-32 

The following software example describes the use of vector word TAIV and the 
handling overhead. The numbers at the right margin show the necessary 
cycles for every instruction. The example is written for continuous mode: the 
time difference to the next interrupt is added to the corresponding compare 
register. 

, 

Software example for the interrupt part 

Interrupt handler for Capture/Compare Module O. 
The interrupt flag CCIFGO is reset automatically 

Cycles 

TIMM:ODO ; Start of handler Interrupt latency 6 
5 RETI 

Interrupt handler for Capture/Compare Modules 1 to 4. 
The interrupt flags CCIFGx and TAIFG are reset by 
hardware. Only the flag with the highest priority 
responsible for the interrupt vector word is reset. 

TIM_HND $ Interrupt latency 6 
ADD &TAIV,PC Add offset to Jump table 3 
RETI Vector 0: No interrupt 5 
JMP TIMMODl Vector 2: Module 1 2 



JMP 
JMP 
JMP 

TIMMOD2 
TIMMOD3 
TIMMOD4 

Vector 4: Module 2 
Vector 6: Module 3 
Vector 8: Module 4 

2 
2 
2 

Module 5. Timer Overflow Handler: the Timer Register is 
expanded into the RAM location TIMEXT (MSBs) 

TIMOVH Vector 10: TIMOV Flag 
INC TIMEXT Handle Timer Overflow 4 
RET I 5 

; 
TIMMOD2 Vector 4: Module 2 

ADD #NN,&CCR2 Add time difference 5 
Task starts here 

RETI Back to main program 5 

; 
TIMMODI Vector 2: Module 1 

ADD #MM,&CCRI 

RETI 

Add time difference 
Task starts here 

5 

Back to main program 5 
If all five CCR registers are not implemented on a 
device, the interrupt vectors for the register that are 
present must still be handled. 

TIMMOD4 

, 

RETI ; Simply return 

The Module 3 handler shows a way to look if any other 
interrupt is pending: 5 cycles have to be spent, but 
9 cycles may be saved if another interrupt is pending 

5 

TIMMOD3 Vector 6: Module 3 
ADD #PP,&CCR3 Add time difference 5 

Task starts here 
JMP TIM_HND Look for pending interrupts 2 

.SECT "VECTORS",OFFFOh Interrupt Vectors 
The vector address may be different for different 
devices. 

Vector for Capture/Compare 
Module 1 .. 4 and timer overflow 
TAIFG 

. WORD TIMMODO Vector for Capture/Compare 
Module 0 

If the FLL is turned off, then two additional cycles need to be added for a 
synchronous start of the CPU and system clock MCLK. 

The software overhead for different interrupt sources includes interrupt 
latency and return-fram-interrupt cycles (but not the task handling itself), as 
described: 

o Capture/compare block CCRO 
o Capture/compare blocks CCR1 to CCR4 
o Timer overflow TAIFG 

11 cycles 
16 cycles 
14 cycles 

11-33 



TimecA UART 

11.6.4.4 Timing Limits 

With the TAIV register and the previous software, the shortest repetitive time 
distance tCRmin between two events using a compare register is: 

tCRmin = ttaskmax + 16 x tcycle 

With: ttaskmax Maximum (worst case) time to perform the task during the 
interrupt routine (for example, incrementing a counter) 

tcycle Cycle time of the system frequency MCLK 

The shortest repetitive time distance tCLmin between two events using a 
capture register is: 

tCLmin = ttaskmax + 16 x tcycle 

11.7 Timer _A UART 

11-34 

The Timer_A is uniquely capable of implementing a UART function, with the 
following features: 

o Automatic start-bit detection - even from ultralow-power modes 

o Hardware baud-rate generation 

o Hardware latching of RXD and TXD data 

o Baud rates of 75 to 115,200 baud 

o Full-duplex operation 

This UART implementation is different from other microcontroller implementa
tions where a UART may be implemented with general-purpose I/O and manu
al bit manipulation via software polling. Those implementations require great 
CPU overhead and therefore increase power consumption and decrease the 
usability of the CPU. 

The transmit feature uses one compare function to shift data through the 
output unit to the selected pin. The baud rate is ensured by reconfiguring the 
compare data with each interrupt. 

The receive feature uses one capture/compare function to shift pin data into 
memory through bit SCClx. The receive start time is recognized by capturing 
the timer data with the negative edge of the input signal. The same 
capture/compare block is then switched to compare mode and the receive bits 
are latched automatically with the EQUx signal. The interrupt routine collects 
the bits for later software processing. Figure 11-33 illustrates the UART 
implementation. 



Figure 11-33. UART Implementation 
-------------------------1 

r--_--.Overflow x 1 

CCISx1 CCISxO 

I I 0 
CClxA --o---o-=--, 
CClxB --0 

GND --0 

VCC --0 

L Receive Data Path 
-------

CAPx 

Capture 
Mode 

s 
Capture 

CCMx1 CCMxO 

o 
o 
1 

o Disabled 

Logic COVx 1 

,---1 
1 15 

1 

1 
1 
1 
1 
1 
1 

Timer Bus 

Comparator x 1 Positive Edge 
o Negative Edge 
1 Both Edges 

L _____ _ -----------, 
CAPx 

EQUx 0 I 

EN 
y 

e--r+-----------------------------------~A 

I 
I 

SeCCCIFGx I 

SCClx 
I 
I 
I 

CClx -----------------------------~ r---------- -----------------------------, 

Timer Clock ~-R""ler_se-tT 

Transmit Data Path 

OMx2 OMx1 OMxO 

o 0 1 Set, EQUx set OUTx signal clock synchronized with timer clock 
1 0 1 Reset, EQUx resets OUTx signal clock synchronized with 

timer clock L ________________________________________ ~ 

TimecA 11-35 



One capture/compare block is used when half-duplex communication mode 
is desired. Two capture/compare blocks are used for full-duplex mode. 
Figure 11-34 illustrates the capture/compare timing for the UART. 

Figure 11-34. TimecA UART Timing 

11-36 

URXD Signal 
L....-I --'------L..----'---~~ ;I----'-( ---1..----1..----1 

Capture ----nIiTTlIIi 
Compare LL. •• LIJ ••• L.....-________ ~)(~) ________ _ 

Receive __ --'-I---'-I __ .....&...__---''--_-'-_~) ~~----''---.....&...-----''---
Capture Compare Compare ••• Compare 

Compare Compare ••• Compare Compare 

UTXD Signal L---.I.---L.....--~~:\---L-; -.L..----L..---I 

Transmit __ --'-__ ...&.-_--L __ ....L-__ ~()(~) --'-__ .1....-_--'-__ ....... 

Compare Compare ••• Compare Compare 
Compare Compare ••• Compare Compare 

A complete application note including connection diagrams and complete soft
ware listing may be found at www.tLcom/sc/msp430. 



Chapter 12 

USART Peripheral Interface, UART Mode 
_1~1!1IIII __ .I_~~Ulliliti. _I 
1 J1 -

The universal synchronous/asynchronous receive/transmit (USART) serial
communication peripheral supports two serial modes with one hardware 
configuration. These modes shift a serial bit stream in and out of the MSP430 
at a programmed rate or at a rate defined by an external clock. The first mode 
is the universal asynchronous receive/transmit (UART) communication 
protocol; the second is the serial peripheral interface (SPI) protocol (discussed 
in Chapter 13). 

Bit SYNC in control register UCTL selects the required mode: 
SYNC = 0: UART - asynchronous mode selected 
SYNC = 1: SPI - synchronous mode selected 

This chapter addresses the UART mode. 

Topic Page 

12.1 USART Peripheral Interface .••.•.•••••.•...•..••.•..•.•.•.•.•. 12-2 

12.2 USART Peripheral Interface, UART Mode ...••••.....••........ 12-3 

12.3 Asynchronous Operation ...•.•.••••.•.......•••.....••.•..... 12-4 

12.4 Interrupt and Enable Functions •.•.••...•.•...•••.•.•.••..•.. 12-11 

12.5 Control and Status Registers ................................ 12-15 

12.6 utilizing Features of Low-Power Modes ....................•.• 12-23 

12.7 Baud Rate Considerations ................................... 12-26 

12-1 



USART Peripherallnteriace 

12.1 USART Peripheral Interface 

The USART peripheral interface connects to the CPU as a byte peripheral 
module. It connects the MSP430 to the external system environment with 
three or four external pins. Figure 12-1 shows the USART peripheral interface 
module. 

Figure 12-1. Block Diagram of USART 

12-2 

UCLKI --o----o_=_, 
ACLK ---0 

MCLK---o 

MCLK---o 

Baud Rate Register UBR 

UCLKI 

UCLKS 

MM~SYNC 
0:-----.:10 SOMI 

0--41-+--0 
a I SYNC 

I 

I 
I 

STE 
~ 

UTXD 

t-----t __ ---+-If-1-oi SIMa 
~ 

a 

CKPH SYNC CKPL 



USART Peripheral Interface, UART Mode 

12.2 USART Peripheral Interface, UART Mode 

The USART peripheral interface is a serial channel that shifts a serial bit 
stream of 7 or 8 bits in and out of the MSP430. The UART mode is chosen 
when control bit SYNC in the USART control register (UCTL) is reset. 

12.2.1 UART Serial Asynchronous Communication Features 

Some of the UART features include: 

o Asynchronous formats that include idle line/address bit-communication 
protocols 

o Two shift registers that shift a serial data stream into URXD and out of 
UTXD 

o Data that is transmitted/received with the LSB first 

o Programmable transmit and receive bit rates 

o Status flags 

Figure 12-2 shows the USART in UART mode. 

Figure 12-2. Block Diagram of USART - UART Mode 

UCLKI --o----o-_=_, 
ACLK~ 

MCLK~ 

MCLK~ 

Receive Buffer URXBUF r----., 
I SYNC =0 I 
L. ____ .J RXE 

URXD 
Receive Shift Register 

Baud Rate Generator 

Baud Rate Register UBR 

Baud Rate Generator 

LSB First 
Transmit Shift Register UTXD 

Transmit Buffer UTXBUF 
CKPL 

UCLKI ~ 
UCLKS 

* Clock Polarity ~ UCLK 

USART Peripheral Interface, UART Mode 12-3 



Asynchronous Operation 

12.3 Asynchronous Operation 

In the asynchronous mode, the receiver synchronizes itself to frames but the 
external transmitting and receiving devices do not use the same clock source; 
the baud rate is generated locally. 

12.3.1 Asynchronous Frame Format 

The asynchronous frame format, shown in Figure 12-3, consists of a start bit, 
seven or eight data bits, an even/odd/no parity bit, an address bit in address 
bit mode, and one or two stop bits. The bit period is defined by the selected 
clock source and the data in the baud rate registers. 

Figure 12-3. Asynchronous Frame Format 

lSTI DO ... D61 D71AD IpA Is~~~ ____ ~:~~e 

[Optional Bit, Condition] 

~ (2nd Stop Bit, SP = 1( 

[Parity Bit, PENA = 1] 
L-_____ [Address Bit, MM = 1] 

'--------- [8th Data Bit, CHAR = 1] 

The receive (RX) operation is initiated by the receipt of a valid start bit. It begins 
with a negative edge at URXD, followed by the taking of a majority vote from 
three samples where two of the samples must be zero. These samples occur 
at n/2-X, n/2, and n/2+X of the BRCLK periods following the negative edge. 
This sequence provides false start-bit rejection, and also locates the center of 
the bits in the frame, where the bits can be read on a majority basis. The timing 
of X is 1/32 to 1/63 times that of the BRCLK, depending on the division rate of 
the baud rate generator and provides complete coverage of at least two 
BRCLK periods. Figure 12-4 shows an asynchronous bit format. 

Figure 12-4. Asynchronous Bit Format. Example for n or n + 1 Clock Periods 

12-4 

Falling Edge 
on UEXD 

Indicates Start bit 

Majority Vote 
Taken From 

URXD Data Line 

~ / /\ \ n-1 n 2 3 
1 2 3 n/2-x n/2 n/2+x n-1 n n+1 1 2 

BRCLKt~~~~~ 
UTXD t 1 I , , 

14 I Data Bit Period = n or n+ 1 BRCLK Periods I ~ 
H I I I I 

URXD L IN'E§l I I 
I ~ Data Bit Period = n or n+ 1 BRCLK Periods I ~ 



Operation 

12.3.2 Baud Rate Generation in Asynchronous Communication Format 

Baud rate generation in the MSP430 differs from other standard 
serial-communication interface implementations. 

12.3.2.1 Typical Baud Rate Generation 

Typical baud-rate generation uses a prescaler from any clock source and a 
fixed, second-clock divider that is usually divide-by-16. Figure 12-5 shows a 
typical baud-rate generation. 

Figure 12-5. Typical Baud-Rate Generation Other Than MSP430 

Clock1 

• • • 
Clockn 

BITCLK 

Start H 
L --~-----------------------------------------------------

BRSCLK ~ 
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

I 
Take Majority Vote of Receive Bit I 

H ~~ ______________________ ~----------------------~L BITCLK L .,\_ 

Baud rate = BRCLK 
n x 16 

Typical baud-rate schemes often require specific crystal frequencies or cannot 
generate some baud rates required by some applications. For example, 
division factors of 18 are not possible, nor are non integer factors such as 
13.67. 

12.3.2.2 MSP430 Baud Rate Generation 

The MSP430 baud rate generator uses one prescaler/divider and a modulator 
as shown in Figure 12-6. This combination works with crystals whose 
frequencies are not multiples of the standard baud rates, allowing the protocol 
to run at maximum baud rate with a watch crystal (32,768 Hz). This technique 
results in power advantages because sophisticated, MSP430 low-power 
operations are possible. 

USART Peripheral Interface, UART Mode 12-5 



Asynchronous Operation 

Figure 12-6. MSP430 Baud Rate Generation. Example for nor n + 1 Clock Periods 

o 7 o 7 
S SEL1 SSELO I UBRO I UBR1 I Start 

UCLKI 
ACLK 

MCLK 

MCLK 

I I 0 1 %7 J8 15 
~ 1 

BRCLK L ---0 15-Bit Prescaler/Divider J-~ ~ 
---0 0-; [ ~rf1Sl--
~ 101 0151 ---0 ••• 

Compare 0 or 1 I 0- Toggle ,-3 I FF 
BITCl' K 

Shift Modulation Register Data I--

,..... Shift_out ShifUn 'l m 
~~ 

0 7 

I Modulation Register UMOD I 
H 

L----~----------------------------------------
Start 

BRCLK t~~~ 
Counter 1 nl21 n/2-11 n/2-2 I 1 1 0 1 n/2 1 n/2-11 1 2 1 1 1 0 1 nl2 1 

11In/21n12-1In/2-21 11101 n/21 n/2-11 
1 1 n/2 1 nl2-1 1 nl2-21 1 1 1 nl2 1 n/2-1 1 n/2-21 

BITCLK t ~'r---,-------~JbL,~-----•• ~L_-

Divide By 

I NT(n/2) , m = 0 
INT(n/2)+m(=1) ------' 

n(Even), m = 0 
n(Odd) or n(Even)+m(=1) ------' 

n(Odd)+m(=1) ----.I 

The modulation register LSB is first used for modulation, which begins with the 
start bit. A set modulation bit increases the division factor by one. 

Example 12-1. 4800 Baud 

Assuming a clock frequency of 32,768 Hz for the BRCLK signal and a required 
baud rate of 4800, the division factor is 6.83. The baud rate generation in the 
MSP430 USART uses a factor of six plus a modulation register load of 6Fh 
(0110 1111). The divider runs the following sequence: 7 - 7 - 7 - 7 -- 6 --
7 -- 7 -- 6 and so on. The sequence repeats after all eight bits of the modulator 
are used. 

Example 12-2. 19,200 Baud 

12-6 

Assuming a clock frequency of 1.04 MHz (32 x 32,768 Hz) for the BRCLK 
signal and a required baud rate of 19,200, the division factor is 54.61. The baud 
rate generation in the MSP430 USART uses a factor of 54 (36h) plus a 
modulation register load of OD5h. The divider runs the following sequence: 55 
-- 54 -- 55 -- 54 -- 55 -- 54 -- 55 -- 55, and so on. The sequence repeats after all 
eight bits of the modulator are used. 



Asynchronous Operation 

12.3.3 Asynchronous Communication Formats 

The USART module supports two multiprocessor communication formats 
when asynchronous mode is used. These formats can transfer information 
between many microcomputers on the same serial link. Information is 
transferred as a block of frames from a particular source to one or more 
destinations. The USART has features that identify the start of blocks and 
suppress interrupts and status information from the receiver until a block start 
is identified. In both multiprocessor formats, the sequence of data exchanged 
with the USART module is based on data polling, or on the use of the receive 
interrupt features. 

Both of the asynchronous multiprocessor formats-idle-line and address-bit 
-allow efficient data transfer between multiple communication systems. They 
can also minimize the activity of the system to save current consumption or 
processing resources. 

The control register bit MM defines the address bit or idle-line multiprocessor 
format. Both use the wake-up-on-transfer mode by activating the TXWake bit 
(address feature function) and RXWake bit. The URXWIE and URXIE bits 
control the transmit and receive features of these asynchronous 
communication formats. 

12.3.4 Idle-Line Multiprocessor Format 

In the idle-line multiprocessor format, shown in Figure 12-7, blocks of data are 
separated by an idle time. An idle-receive line is detected when ten or more 
1 s in a row are received after the first stop bit of a character. 

Figure 12-7. Idle-Line Multiprocessor Format 

~ BloCk~fFrames ~ 

___ -'I\. ~ 1\.'-___ ---. r \;---- ______ I . - \ 

UTXDJURXD ~LJ LJ LJ ~ LJ t LJ LJ 5 
i Idle Periods of 10 Bits or More 

I UTXD/URXD Expanded 
I 
I 
I 
I 
I 
I 

UTXD/URXD 1L,.s....JTIL....-_A_dd_re_s_s _---II spi STI Data I SP ISTI Data 

'I.....---"""Iv I\.\",---"""Iy,----....II r '\",---"""Iy...----..... I 

First Frame Within Block Frame Within Block Frame Within Block 
is Address. It Follows Idle 
Period of 1 0 Bits or More Idle Period Less Than 10 Bits 

USART Peripheral Interface, UART Mode 12-7 



Asynchronous Operation 

When two stop bits are used for the idle line, as shown in Figure 12-8, the 
second one is counted as the first mark bit of the idle period. The first character 
received after an idle period is an address character. The RXWake bit can be 
used as an address tag for the character. In the idle-line multiprocessor format, 
the RXWake bit is set when a received character is an address character and 
is transferred into the receive buffer. 

Figure 12-8. USART Receiver Idle Detect 

Example: One Stop Bit 

Mark I 

_X_X_X_X ..... ' SP Space . 

Example: Two Stop Bits 

Mark 
XXXX I SP 

Space ----'. 

SP: Stop Bit 
ST: Start Bit 

SP I 
I 

1 O-Bit Idle Period ~ 

I STI XXXXXXX 

10-Bit Idle Period ~ 

I STI XXXXXXX 

Normally, if the USART URXWIE bit is set in the receive control register, 
characters are assembled as usual by the receiver. They are not, however, 
transferred to the receiver buffer, URXBUF, nor are interrupts generated. 
When an address character is received, the receiver is temporarily activated 
to transfer the character to URXBUF and to set the URXIFG interrupt flag. 
Applicable error status flags are set. The application software can validate the 
received address. If there is a match, the application software further 
processes the data and executes the operation. If there is no match, the 
processor waits for the next address character to arrive. The URXWIE bit is 
not modified by the USART: it must be modified manually to receive 
nonaddress or address characters. 

In idle-line multiprocessor format, a precise idle period can be generated to 
create efficient address character identifiers. The wake-up temporary (WUT) 
flag is an internal flag and is double-buffered with TXWake. When the 
transmitter is loaded from UTXBUF, WUT is loaded from TXWake, and the 
TXWake bit is reset as shown in Figure 12-9. 

Figure 12-9. Double-Buffered WUT and TX Shift Register 

TX Buffer UTXBUF 

I---~--~---' TX Signal 

12-8 



Operation 

The following procedure sends out an idle frame to identify an address 
character: 

1) Set the TXWake bit and then write any word (don't care) to the UTXBUF 
(UTXIFG must be set). 

When the transmitter shift register is empty, the contents of UTXBUF are 
shifted to the transmit shift register and the TXWake value is shifted to 
WUT. 

2) Set bit WUT, which suppresses the start, data, and parity bits and 
transmits an idle period of exactly 11 bits, as shown in Figure 12-10. 

The next data word, shifted out of the serial port after the address
character identifying idle period, is the second word written to the UTXBUF 
after the TXWake bit has been set. The first data word written is 
suppressed while the address identifier is sent out and ignored thereafter. 
Writing the first don't care word to UTXBUF is necessary to shift the 
TXWAKE bit to WUT and generate an idle-line condition. 

Figure 12-10. USART Transmitter Idle Generation 

Example: One Stop Bit ,.~--- 11-Bit Idle Period ---... ~ 
Mark I 

_x_x_x_x ...... 1 SP 
Space . 

Example: Two Stop Bits 

Ma~ 
XXXX I SP SP II 

Space -----'. 

SP: Stop Bit 
ST: Start Bit 

12.3.5 Address-Bit Multiprocessor Format 

I 

~ 11-Bit Idle Period --... 

I 

STI XXXXXXX 

STI xxxxxxx 

In the address-bit multiprocessor format shown in Figure 12-11, characters 
contain an extra bit used as an address indicator. The first character in a block 
of data carries an address bit which indicates that the character is an address. 
The RXWake bit is set when a received character is an address character. It 
is transferred into the receive buffer (receive conditions are true). 

Usually, if the USART URXWIE bit is set, data characters are assembled by 
the receiver but are not transferred to the receiver buffer URXBUF, nor are 
interrupts generated. When a character that has an address bit set is received, 
the receiver is temporarily activated to transfer the character to U RXBU F and 
to set the URXIFG. Error status flags are set as applicable. The application 
software processes the succeeding operation to optimize resource handling 
or reduce current consumption. The application software can validate the 
received address. If there is a match, the processor can read the remainder 
of the data block. If there is not a match, the processor waits for the next 
address character to arrive. 

USART Peripheral Interface, UART Mode 12-9 



Asynchronous Operation 

Figure 12-11.Address-Bit Multiprocessor Format 

~ Block~fFrames ~ 

UTXDIURXD ~ LJ LJ ~ LJ t LJLJ ~ 
I Idle Periods of No Significance 

1,....----1/\ \ ~ I /\ \ 

I TXD/RXD Expanded 
I 
I 
I 
I 
I 
I 

UTXD/URXD l .... S_TI,--_A_dd_re_s_s ---J1L.....J1 I spi STI Data 101 SP .... 1 s_TI,--_D_a_ta_....I.-I 

\ 

12-10 

v,....----II \'--A-D-D-Rl-D'A~A Bl't I'S 0 I r \ ..... ------.v,....------J1 
First Frame Within Block .1. 

is an Address, The for Data Within Block, 
ADDRIDATA Bit is 1 Idle Time is of No Significance 

In the address-bit multiprocessor mode, the address bit of a character can be 
controlled by writing to the TXWake bit. The value of the TXWake bit is loaded 
into the address bit of that character each time a character is transferred from 
transmit buffer UTXBUF to the transmitter, The TXWake bit is then cleared by 
the USART, 



Interrupt and Enable Functions 

12.4 Interrupt and Enable Functions 

The USART peripheral interface serves two main interrupt sources for 
transmission and reception. Two interrupt vectors serve receive and transmit 
events. 

The interrupt control bits and flags and enable bits of the USART peripheral 
interface are located in the SFR registers. They are discussed in Table 12-1. 
See the peripheral file map in Appendix A for the exact bit locations. 

Table 12-1. USART Interrupt Control and Enable Bits - UART Mode 

Receive interrupt flag URXIFG Initial state reset (by PUC/SWRST) 

Receive interrupt enable URXIE Initial state reset (by PUC/SWRST) 

Receive enable (see note) URXE Initial state reset (by PUC) 

Transmit interrupt flag UTXIFG Initial state set (by PUC/SWRST) 

Transmit interrupt enable UTXIE Initial state reset (by PUC/SWRST) 

Transmit enable.(see note) UTXE Initial state reset (by PUC) 

Note: Different for SPI mode, see Chapter 13. 

The USART receiver and transmitter operate independently, but use the same 
baud rate. 

12.4.1 USART Receive Enable Bit 

The receive enable bit URXE, shown in Figure 12-12, enables or disables 
receipt of the bit stream on the URXD data line. Disabling the USART receiver 
stops the receive operation after completion of receiving the character, or 
stops immediately if no receive operation is active. Start-bit detection is also 
disabled. 

Figure 12-12. State Diagram of Receiver Enable 

No Valid Start Bit 

URXE = 1 
Valid Start Bit 

Note: URXE Reenabled, UART Mode 

Not Completed 

Handle Interrupt 
Conditions 

Character 
Received 

Because the receiver is completely disabled, reenabling the receiver is 
asynchronous to any data stream on the communication line. 
Synchronization can be performed by looking for an idle line condition before 
receiving a character. 

USART Peripheral Interface, UART Mode 12-11 



Interrupt and Enable Functions 
: '1 

12.4.2 USART Transmit Enable Bit 

The transmit enable bit UTXE, shown in Figure 12-13, enables or disables a 
character transmission on the serial-data line. If this bit is reset, the transmitter 
is disabled but any active transmission does not halt until the data in the 
transmit shift register and the transmit buffer are transmitted. Data written to 
the transmit buffer before UTXE has been reset may be modified or 
overwritten-even after UTXE is reset-until it is shifted to the transmit shift 
register. For example, if software writes a byte to the transmit buffer and then 
resets UTXE, the byte written to the transmit buffer will be transmitted and may 
be modified or overwritten until it is transferred into the transmit shift register. 
However, after the byte is transferred to the transmit shift register, any 
subsequent writes to UTXBUF while UTXE is reset will not result in 
transmission, but UTXBUF will be updated with the new value. 

Figure 12-13. State Diagram of Transmitter Enable 

12-12 

Entry Is Transmitted 

No Data Written 
to Transmit Buffer 

UTXE = 1 
Data Written to 
Transmit Buffer 

UTXE = 1 

Not Completed 

Handle Interrupt 
Conditions 

Character 
Transmitted 

When UTXE is reset and the current transmission is completed, new data 
written to the transmit buffer will not be transmitted. Once the UTXE bit is set, 
the data in the transmit buffer are immediately loaded into the transmit shift 
register and character transmission is started. 

Note: Writing to UTXBUF, UART Mode 

Data should never be written to transmit buffer UTXBUF when the buffer is 
not ready and when the transmitter is enabled (UTXE is set). Otherwise, the 
transmission will have errors. 

Note: Write to UTXBUF/Reset of Transmitter, UART Mode 

Disabling the transmitter should be done only if all data to be transmitted has 
been moved to the transmit shift register. 

MOV.B # .... ,&UTXBUF 
BIC.B #UTXE,&ME2 If BITCLK < MCLK then the 

transmitter might be stopped 
before the buffer is loaded 
into the transmitter shift 
register 



and Enable Functions 

12.4.3 USART Receive Interrupt Operation 

I n the receive interrupt operation, shown in Figure 12-14, the receive interrupt 
flag URXIFG is set or is unchanged each time a character is received and 
loaded into the receive buffer: 

o Erroneous characters (parity, frame, or break error) do not set interrupt 
flag URXIFG when URXEIE is reset: URXIFG is unchanged. 

o All types of characters (URXWIE = 0), or only address characters 
(URXWIE = 1), set the interrupt flag URXIFG. When URXEIE is set, 
erroneous characters can also set the interrupt flag URXIFG. 

Figure 12-14. Receive Interrupt Operation 

SYNC ---------, 
Valid Start Bit ~- r---.... URXS 

Receiver Collects Character -------' .--t.._" 
URXSE -----....... --' 

From URXD 

r--------------, 
I Erroneous Character I 

Clear 

I PE Will Not Set Flag URXIFG I 

IB~R~ I 
I ~XEIE-L./ L ___________ _ 

r------------
IURXWIE~ 
IRxwake~ 
I Each Character or Address I 
L ___ W~Set Fla.!!..URXIFG ___ -I 

Character Received 
or 

Break Detected 

(S) 
URXIFG 

Clear 

SWRST 
PUC 
URXBUF 
URXSE 

IRQA 

URXIFG is reset by a system reset PUC signal, or with a software reset 
(SWRST). URXIFG is reset automatically if the interrupt is served 
(URXSE = 0) or the receive buffer URXBUF is read. A set receive interrupt flag 
URXIFG indicates that an interrupt event is waiting to be served. A set receive 
interrupt enable bit URXIE enables serving a waiting interrupt request. Both 
the receive interrupt flag URXIFG and the receive interrupt enable bit URXIE 
are reset with the PUC signal and a SWRST. 

Signal URXIFG can be accessed by the software, whereas signal URXS 
cannot. When both interrupt events-character receive action and receive 
start detection-are enabled by the software, the flag URXIFG indicates that 
a character was received but the start-detect interrupt was not. Because the 
interrupt software handler for the receive start detection resets the U RXSE bit, 
this clears the URXS bit and prevents further interrupt requests from URXS. 
The URXIFG should already be reset since no set condition was active during 
URXIFG latch time. 

USART Peripheral Interface, UART Mode 12-13 



Interrupt and Enable Functions 

12.4.4 USART Transmit Interrupt Operation 

In the transmit interrupt operation, shown in Figure 12-15, the transmit 
interrupt flag UTXIFG is set by the transmitter to indicate that the transmitter 
buffer UTXBUF is ready to accept another character. This bit is automatically 
reset if the interrupt request service is started or a character is written into the 
UTXBUF. This flag asserts a transmitter interrupt if the local (UTXIE) and 
general interrupt enable (GIE) bits are set. The UTXIFG is set after a system 
reset PUC signal, or removal of a SWRST. 

Figure 12-15. Transmit Interrupt Operation 

12-14 

o UTXIE 

Clear 

PUC or SWRST --___. 

VCC 

Character Moved From 
Buffer to Shift Register 

Set UTXIFG o 01------1 

SWRST 
Clear 

RequesC 
InterrupCService 

'---- URXBUF Written Into Transmit Shift Register 
'---- IROA 

The transmit interrupt enable UTXIE bit controls the ability of the UTXIFG to 
request an interrupt, but does not prevent the flag UTXI FG from being set. The 
UTXIE is reset with a PUC signal or a software reset (SWRST) bit. The 
UTXIFG bit is set after a system reset PUC signal or software reset (SWRST), 
but the UTXIE bit is reset to ensure full interrupt-control capability. 



Control and Status Registers 

12.5 Control and Status Registers 

The USART control and status registers are byte structured and should be 
accessed using byte processing instructions (suffix B). Table 12-3 lists the 
registers and their access modes. 

Table 12-2. Control and Status Registers 

Short Register 
Register Form Type Address Initial State 

USART control UCTL Read/write 070h See section 12.5.1. 

Transmit control UTCTL Read/write 071h See section 12.5.2. 

Receive control URCTL Read/write 072h See section 12.5.3. 

Modulation control UMCTL Read/write 073h Unchanged 

Baud rate 0 UBRO Read/write 074h Unchanged 

Baud rate 1 UBR1 Read/write 075h Unchanged 

Receive buffer URXBUF Read/write 076h Unchanged 

Transmit buffer UTXBUF Read 077h Unchanged 

All bits are random after a PUC signal, unless otherwise noted by the detailed 
functional description. 

The reset of the USART peripheral interface is performed by a PUC signal or 
a SWRST. After a PUC Signal, the SWRST bit remains set and the USART 
interface remains in the reset condition until it is disabled by resetting the 
SWRST bit. 

The USART module operates in asynchronous or synchronous mode as 
defined by the SYNC bit. The bits in the control registers can have different 
functions in the two modes. All bits in this section are described with their 
functions in the asynchronous mode (SYNC = 0). Their functions in the 
synchronous mode are described in Chapter 13, USART Peripheral Interface, 
SPI Mode. 

12.5.1 USART Control Register UCTL 

The information stored in the USART control register (UCTL), shown in 
Figure 12-16, determines the basic operation of the USART module. The 
register bits select the communications protocol, communication format, and 
parity bit. All bits must be programmed according to the selected mode before 
resetting the SWRST bit to disable the reset. 

Figure 12-16. USART Control Register UCTL 

7 o 
UO~~~ I PENA I PEV I SP I CHAR I Listen I SYNC I MM ISWRST I 

rw-O rw-O rw-O rw-O rw-O rw-O rw-O rw-1 

USART Peripheral Interface, UART Mode 12-15 



Control and Status Registers 

12-16 

Bit 0: The USART state machines and operating flags are initialized 
to the reset condition (URXIFG = URXIE = UTXIE = 0, UTXIFG 
= 1) if the software reset bit is set. Until the SWRST bit is reset, 
all affected logic is held in the reset state. This implies that after 
a system reset the USART must be reenabled by resetting this 
bit. The receive and transmit enable flags URXE and UTXE are 
not altered by SWRST. 

The SWRST bit resets the following bits and flags: URXIE, 
UTXIE, URXIFG, RXWAKE, TXWAKE, RXERR, BRK, PE, OE, 
and FE 

The SWRST bit sets the following bits: UTXIFG, TXEPT 

Bit 1: Multiprocessor mode (address/idle-line wake up) 
Two multiprocessor protocols, idle-line and address-bit, are 
supported by the USART module. The choice of multiprocessor 
mode affects the operation of the automatic address decoding 
functions. 
MM = 0: Idle-line multiprocessor protocol 
MM = 1: Address-bit multiprocessor protocol 
The conventional asynchronous protocol uses MM-bit reset. 

Bit 2: Mode or function of USART module selected 
The SYNC bit selects the function of the USART peripheral 
interface module. Some of the USART control bits have different 
functions in UART and SPI mode. 
SYNC = 0: UART function is selected 
SYNC = 1: SPI function is selected 

Bit 3: The listen bit selects if the transmitted data is fed back internally 
to the receiver. 
Listen = 0: No feedback 
Listen = 1: Transmit signal is internally fed back to the receiver. 

This is commonly known as loopback mode. 

Bit 4: Character length 
This register bit selects the length of the character to be 
transmitted as either 7 or 8 bits. 7-bit characters do not use the 
eighth bit in URXBUF and UTXBUF. This bit is padded with O. 
CHAR = 0: 7-bit data 
CHAR = 1: 8-bit data 

Bit 5: Number of stop bits 
This bit determines the number of stop bits transmitted. The 
receiver checks for one stop bit only. 
SP = 0: one stop bit 
SP = 1: two stop bits 



Control and Status HemSlrers 

Bit 6: Parity odd/even 
If the PENA bit is set (parity bit is enabled), the PEV bit defines 
odd or even parity according to the number of odd or even 1 bits 
(in both the transmitted and received characters), the address 
bit (address-bit multiprocessor mode), and the parity bit. 
PEV = 0: odd parity 
PEV = 1: even parity 

Bit 7: Parity enable 
If parity is disabled, no parity bit is generated during 
transmission or expected during reception. A received parity bit 
is not transferred to the URXBUF with the received data as it is 
not considered one of the data bits. In address-bit mUlti
processor mode, the address bit is included in the parity 
calculation. 
PEN = 0: Parity disable 
PEN = 1: Parity enable 

Note: Mark and Space Definitions 

The mark condition is identical to the signal level in the idle state. Space is 
the opposite signal level: the start bit is always space. 

12.5.2 Transmit Control Register UTCTL 

The transmit control register (UTCTL), shown in Figure 12-17, controls the 
USART hardware associated with the transmit operation. 

Figure 12-17. Transmitter Control Register UTCTL 

7 
UTCTL 

071h 

o 

rw-O rw-O rw-o rw-o rw-o rw-O rw-o rw-1 

Bit 0: The transmitter empty (TXEPT) flag is set when the transmitter 
shift register and UTXBUF are empty, and is reset when data is 
written to UTXBUF. It is set by a SWRST. 

Bit 1 : Unused 

Bit 2: The TXWake bit controls the transmit features of the 
multiprocessor communication modes. Each transmission 
-started by loading the UTXBUF-uses the state of the 
TXWake bit to initialize the address-identification feature. It must 
not be cleared-the USART hardware clears this bit once it is 
transferred to the WUT; a SWRST also clears the TXWake bit. 

USART Peripheral Interface, UART Mode 12-17 



Control and Status Registers 

Bit 3: 

Bits 4,5: 

The receive-start edge-control bit, if set, requests a receive 
interrupt service. For a successful interrupt service, the 
corresponding enable bits URXIE and GIE must be set. The 
advantage of this bit is that it starts the controller clock system, 
including MCLK, along with the interrupt service, and keeps it 
running by modifying the mode control bits. The USART module 
works with the selected MCLK even if the system is switched to 
a low-power mode with a disabled MCLK. 

Source select 0 and 1 
The source select bit defines which clock source is used for 
baud-rate generation: 
SSEL 1, SSELO 0 External clock, UCLKI 

1 ACLK 
2,3 MCLK 

Bit 6: Clock polarity CKPL 
The CKPL bit controls the polarity of the UCLKI signal. 
CKPL = 0: The UCLKI signal has the same polarity as the 
UCLK signal. 
CKPL = 1: The UCLKI signal has an inverted polarity to the 

UCLKsignal. 

Bit 7: Unused 

12.5.3 Receiver Control Register URCTL 

The receiver-control register (URCTL), shown in Figure 12-18, controls the 
USART hardware associated with the receiver operation and holds error and 
wake-up conditions modified by the latest character written to the receive 
buffer (URXBUF). Once anyone of the bits FE, PE, OE, BRK, RXERR, or 
RXWake is set, none are reset by receiving another character. The bits are 
reset by accessing the receive buffer, by a USART software reset (SWRST), 
by a system reset PUC signal, or by an instruction. 

Figure 12-18. Receiver-Control Register URCTL 

7 o 

12-18 

URO~~~ ! FE ! PE ! OE ! BRK ! URXEIE! URXWIE! Rxwake!RXERR! 
rw-Q rw-Q rw-Q rw-Q rw-O rw-Q rw-Q rw-Q 

Bit 0: The receive error bit (RXERR) indicates that one or more error 
flags (FE, PE, OE, or BRK) is set. It is not reset when the error 
flags are cleared by instruction. 



Control and Status Registers 

Bit 1: Receiver wake-up detect 
The RXWake bit is set when a received character is an address 
character and is transferred into the receive buffer. 
Address-bit multiprocessor mode: RXWake is set when the 

Idle-line multiprocessor mode: 

address bit is set in the 
character received. 
RXWake is set if an idle 
URXD line is detected 
(11 bits of mark level) in 
front of the received 
character. 

RXWake is reset by accessing the receive buffer (URXBUF), by 
a USART software reset, or by a system-reset PUC signal. 

Bit 2: The receive wake-up interrupt-enable bit (URXWIE) selects the 
type of character to set the interrupt flag (URXIFG): 
URXWIE = 0: Each character received sets the URXIFG 
URXWIE = 1: Only characters that are marked as address 

characters set the interrupt flag URXIFG. It 
operates identically in both multiprocessor 
modes. 

The wake-up interrupt enable feature depends on the receive 
erroneous-character feature. See also Bit 3, URXEIE. 

Bit 3: The receive erroneous-character interrupt-enable bit URXEIE 
selects whether an erroneous character is to set the interrupt 
flag URXIFG. 
URXEIE = 0: Each erroneous character received does not 

alter the interrupt flag URXIFG. 
URXEIE = 1: All characters can set the interrupt flag URXIFG 

as described in Table 12-4, depending on the 
conditions set by the URXWIE bit. 

Table 12-3. Interrupt Flag Set Conditions 

Char. Char. Description Flag URXIFG 
URXEIE URXWIE wlError Address After a Character Is Received 

0 X 1 X Unchanged 

0 0 0 X Set 

0 0 0 Unchanged 

0 1 0 1 Set 

0 X X Set (Receives all characters) 

1 X 0 Unchanged 

X 1 Set 

USART Peripheral Interface, UART Mode 12-19 



Control and Status Registers _u __________________________________ .. ____ ._,_,_, _________ ~~ __ ._._~~_au_~ __ ._g __________ __ 

Bit 4: The break detect bit (BRK) is set when a break condition occurs 
and the URXEIE bit is set. The break condition is recognized if 
the RXD line remains continuously low for at least 10 bits, 
beginning after a missing first stop bit. It is not cleared by receipt 
of a character after the break is detected, but is reset by a 
SWRST, a system reset, or by reading the URXBUF. The receive 
interrupt flag URXIFG is set if a break is detected. 

Bit 5: The overrun error flag bit OE is set when a character is 
transferred into the URXBUF before the previous character is 
read out. The previous character is overwritten and lost. OE is 
reset by a SWRST, a system reset, or by reading the URXBUF. 

Bit 6: The parity error flag bit PE is set when a character is received 
with a mismatch between the number of 1 s and its parity bit, and 
is loaded into the receive buffer. The parity checker includes the 
address bit, used in the address-bit multiprocessor mode, in the 
calculation. The flag is disabled if parity generation and 
detection are not enabled. In this case the flag is read as o. It is 
reset by a SWRST, a system reset, or by reading the URXBUF. 

Bit 7: The framing error flag bit FE is set when a character is received 
with a 0 stop bit and is loaded into the receive buffer. Only the 
first stop bit is checked when more than one is used. The missing 
stop bit indicates that the start-bit synchronization is lost and the 
character is incorrectly framed. FE is reset by a SWRST, a 
system reset, or by reading the URXBUF. 

Note: Receive Status Control Bits 

The receive status control bits FE, PE, OE, BRK, and RXWake are set by the 
hardware according to the conditions of the characters received. Once the 
bits are set, they remain set until the software resets them directly, or there 
is a reading of the receive buffer. False character interpretation or missing
interrupt capability can result in uncleared error bits. 

12.5.4 Baud Rate Select and Modulation Control Registers 

Figure 12-19. 

12-20 

The baud-rate generator uses the content of the baud-rate select registers 
UBRO and UBR1 shown in Figure 12-19, with the modulation control register 
to generate the serial data-stream bit timing. 

USART Baud Rate Select Register 

7 0 
UBRO 

27 26 25 24 23 22 21 20 
074h 

rw rw rw rw rw rw rw rw 

7 0 
UBR1 

215 214 213 212 211 210 29 28 075h 

rw rw rw rw rw rw rw rw 



Figure 12-20. 

Control and Status Rel':]isl'ers 

Baud rate = n-1 

UBR + ~~ mi 
j~O 

BRCLK 
with UBR= [UBR1 ,UBRO] 

The baud-rate control register range is: 3 :::; UBR < OFFFFh 

Note: 

Unpredictable receive and transmission occur if UBR <3. 

The modulation control register, shown in Figure 12-20, ensures proper timing 
generation with the UBRO and UBR01, even with crystal frequencies that are 
not integer multiples of the required baud rate. 

USART Modulation Control Register 

7 0 
UMCTL 

I m7 I m6 I I 073h mB m4 m3 m2 m1 mO 

rw rw rw rw rw rw rw rw 

The timing of the running bit is expanded by one clock cycle of the baud-rate
divider input clock if bit mj is set. 

Each time a bit is received or transmitted, the next bit in the modulation control 
register determines the present bit timing. The first bit time in the protocol-the 
start bit time-is determined by UBR plus mO; the next bit is determined by 
USR plus m1, and so on. 

The modulation sequence is: 

mO- m1 - m2 - m3 - m4- mS- m6- m7- mO- m1 - m2 - ..... 

12.5.5 Receive-Data Buffer URXBUF 

The receive-data buffer (URXBUF), shown in Figure 12-21, contains previous 
data from the receiver shift register. Reading URXBUF resets the receive-error 
bits, the RXWake bit, and the interrupt flag (URXIFG). 

Figure 12-21. USART Receive Data Buffer URXBUF 

7 
URXBUF 

076h 

o 

In seven-bit length mode, the MSB of the URXSUF is always reset. 

The receive data buffer is loaded with the recently-received character as 
described in Table 12-4, when receive and control conditions are true. 

USART Peripheral Interface, UART Mode 12-21 



Control and Status Registers .. 
Table 12-4. Receive Data Buffer Characters 

URXEIE URXWIE Load URXBUF With: 

o Error-free address characters 

1 

o 
1 

o 
o 

All address characters 

Error-free characters 

All characters 

PE 
o 
X 

o 
X 

FE 

o 
X 

o 
X 

BRK 

o 
X 

o 
X 

12.5.6 Transmit Data Buffer UTXBUF 

The transmit data buffer (UTXBUF), shown in Figure 12-22, contains current 
data to be transmitted. 

Figure 12-22. Transmit Data Buffer UTXBUF 

7 o 

12-22 

UTXBUF 
077h 

rw rw rw rw rw rw rw rw 

The UTXIFG flag indicates that the UTXBUF buffer is ready to accept another 
character for transmission. 

The transmission is initialized by writing data to UTXBUF. The transmission of 
this data is started immediately if the transmitter shift register is empty or is 
going to be empty. 

Note: Writing to UTXBUF 

Writing data to the transmit-data buffer must only be done if buffer UTXBUF 
is empty; otherwise, an unpredictable character can be transmitted. 



Ul/I"£II'U Features of Low-Power Modes 

12.6 Utilizing Features of Low-Power Modes 

There are several functions or features of the USART that support the ultra-low 
power architecture of the MSP430. These include: 

o Support system start up from any processor mode by sensing of UART 
frame-start condition 

o Use the lowest input clock frequency for the required baud rate 

o Support multiprocessor modes to reduce use of MSP430 resources 

12.6.1 Receive-Start Operation From UART Frame 

The most effective use of start detection in the receive path is achieved when 
the baud-rate clock runs from MCLK. In this configuration, the MSP430 can 
be put into a low-power mode with MCLK disabled. The receive-start condition 
is the negative edge from the signal on pin URXD. Each time the negative edge 
triggers the interrupt flag URXS, it requests a service when enable bits URXIE 
and GIE are set. This wakes the MSP430 and the system returns to active 
mode, supporting the USART transfer. 

Figure 12-23. Receive-Start Conditions 

SYNC --------, 
Valid Start Bit ~-

Receiver Collects Character --------' r-L_'" 
URXSE ------e----' 

From URXD 

r--------------, I Erroneous Character I 
I PE,sr-'" Vt!i11 Not S?~,:lag URXIFG I 
I FE-! )}"'""'-,'t, I 

BRK "t.'" 1 ,;>-' 
~==_"-""URXEIE ~ =~_.~,_,_ 
I !'-'-( 
I URXWIE ' I 
I I 
I RXWake I 
I E8.ch Character or Address I 
I Wi,l Set Flaa URXIFG I L _______ .::.. ______ .J 

Characier Received 
or 

BreaK Detected 

~-.., URXS 
D Q 

Clear 

URXIE 

SWRST 
PUC 
URXBUF Read 

URXSE 

IRQA 

Three character streams do not set the interrupt flag (URXIFG): 

o Erroneous characters (URXEIE = 0) 
o Address characters (URXWIE = 1) 
o Invalid start-bit detection 

The interrupt software should handle these conditions. 

USART Peripheral Interface, UART Mode 12-23 



Utilizing Features of Low-Power Modes 

12.6.1.1 Start Conditions 

The URXD signal feeds into the USART module by first going into a deglitch 
circuit. Glitches cannot trigger the receive-start condition flag URXS, which 
prevents the module from being started from small glitches on the URXD line. 
Because glitches do not start the system or the USART module, current 
consumption is reduced in noisy environments. Figure 12-24 shows the 
accepted receive-start timing condition. 

Figure 12-24. Receive-Start Timing Using URXS Flag, Start Bit Accepted 

Majority Vote 

URXD !I-----------L-....L...-.L..----------lr=
URXS I 

I 
I 

-------------~--
URXS is Reset in the Interrupt 

Handler Using Control Bit URXSE 

I 
I 

The UART stops receiving a character when the URXD signal exceeds the 
deglitch time tr but the majority vote on the signal fails to detect a start bit, as 
shown in Figure 12-25. The software should handle this condition and return 
the system to the appropriate low-power mode. The interrupt flag URXIFG is 
not set. 

Figure 12-25. Receive Start Timing Using URXS Flag, Start Bit Not Accepted 

Majority Vote 

URXD !r----------' 
I 
I 

URXS 

URXS is Reset in The Interrupt 
Handler Using Control Bit URXSE 

Glitches at the URXD line are suppressed automatically and no further activity 
occurs in the MSP430 as shown in Figure 12-26. The data for the deglitch time 
t't is noted in the corresponding device speCification. 

Figure 12-26. Receive Start Timing Using URXS Flag, Glitch Suppression 

Majority Vote 

12-24 

URXD~ 
I 

URXS--~I--rl-------------------------------------------
~ ~ ~ 

The interrupt handler must reset the URXSE bit in control register UCTL to 
prevent further interrupt service requests from the U RXS signal and to enable 
the basic function of the receive interrupt flag URXIFG. 



Features of Low-Power Modes 

********************************************************** 

* 
* 

Interrupt handler for frame start condition and 
Character receive 

* 
* 

********************************************************** 

IFG2 .EQU 3 

UTCTL .EQU 71h 
UTXIFG .EQU 0 
URXSE .EQU 8 

URX_Int BIT.B #URXIFG,&IFG2 
JNE ST_COND 

ST_COND BIC. B #URXSE, &UTCTL 

BIS.B #URXSE,&UTCTI 

URXIFG and UTXIFG in 
address 3 

test URXIFG signal to 
check if frame start 
condition 

clear ff/signal URXS, 
stop further interrupt 
requests 
Prepare FF_URXS for next 
frame start bits and set 
the conditions to run the 
clock needed for UART RX 

Note: Break Detect (BRK) Bit With Halted UART Clock 

If the UART operates with the wake-up-on-start-condition mode and 
switches off the UCLK whenever a character is completely received, a com
munication line break cannot be detected automatically by the UART hard
ware. The break detection requires the baud-rate generator BRSCLK, but it 
is stopped upon the missing UCLK. 

12.6.2 Maximum Utilization of Clock Frequency vs Baud Rate UART Mode 

The current consumption increases linearly with the clock frequency. It should 
be kept to the minimum required to meet application conditions. Fast 
communication speed is needed for calibration and testing in manufacturing 
processes, alarm responses in critical applications, and response time to 
human requests for information. 

The MSP430 USART can generate baud rates up to one third of the clock 
frequency. An additional modulation of the baud-rate timing adjusts timing for 
individual bits within a frame. The timing is adjusted from bit to bit to meet 
timing requirements even when a noninteger division is needed. Baud rates 
up to 4800 baud can be generated from a 32,768 Hz crystal with maximum 
errors of 11 percent. Standard UARTs-even with the worst maximum error 
(-14.6 percent)-can obtain maximum baud rates of 75 baud. 

USART Peripheral Interface, UART Mode 12-25 



Baud Rate Considerations 

12.6.3 Support of Multiprocessor Modes for Reduced Use of MSP430 Resources 

Communication systems can use multiprocessor modes with multiple
character idle-line or address-bit protocols. The first character can be a target 
address, a message identifier, or can have another definition. This character 
is interpreted by the software and, if it is of any significance to the application, 
the succeeding characters are collected and further activities are defined. An 
insignificant first character would stop activity for the processing device. This 
application is supported by the wake-up interrupt feature in the receive 
operation, and sends wake-up conditions along with a transmission. Avoiding 
activity on insignificant characters reduces consumption of MSP430 
resources and the system can remain in the most efficient power-conserving 
mode. 

In addition to the multiprocessor modes, rejecting erroneous characters saves 
MSP430 resources. This practice prevents interrupt handling of the erroneous 
characters. The processor waits in the most efficient power-conserving mode 
until a character is processed. 

12.7 Baud Rate Considerations 

12-26 

The MSP430 baud-rate generator uses a divider and a modulator. A given 
crystal frequency and a required baud rate determines the required division 
factor N: 

N= BRCLK 
baud rate 

The required division factor N usually has an integer part and a fraction. The 
divider in the baud rate generator realizes the integer portion of the division 
factor N, and the modulator meets the fractional part as closely as possible. 
The factor N is defined as: 

1 n-1 
N = UBR + n;~omi 

Where 

N: Target division factor 
UBR: 16-bit representation of registers UBR1 and UBRO 
i: Actual bit in the frame 
n: Number of bits in the frame 
m( Data of the actual modulation bit 

Baud rate = BRCLK = BRCLK 
N n-1 

UBR + ~ L m; 
;=0 



Baud Rate Considerations 

12.7.1 Bit Timing in Transmit Operation 

The timing for each individual bit in one frame or character is the sum of the 
actual bit timings as shown in Figure 12-27. The baud-rate generation error 
shown in Figure 12-28 in relation to the required ideal timing, is calculated for 
each individual bit. The relevant error information is the error relative to the 
actual bit, not the overall relative error. 

Figure 12-27. MSP430 Transmit Bit Timing 

i i 0 i 1 i 2 i 3 i 4 i 5 i 6 i 7 : 8 i 9 i 10 i 11 i 12 i 

BRCLK lf1f umr umr umr umr umr umr umr umr umr umr umr umr ~ 
tj i to i t1 i t2 i t3 i t4 i ts i t6 i t7 i ta : tg i t10 i t11 i t12 : 

URXO "I ST 1 DO ••• 06 1 07 1 
1 1 I I - Mark 
. . -.J_.J. ______ Space 

Figure 12-28. 

L- [2nd Stop Bit, SP = 1] 

'------ [Parity Bit, PE = 1] 
L..-_____ [Address Bit, MM = 1] 

~------- [8th Data Bit, Char = 1] 

MSP430 Transmit Bit Timing Errors 

0 I I I 8 9 10 11 

ttarget I to I t1 I I ta tg I t10 I t11 I 
terror ~ ~ II 111 

URXO, ST DO I 07 PA I I I Mark 
_J.. ____ L Space 

tactual I to t1 ta tg t10 I t11 I 

Even small errors per bit (relative errors) can result in large cumulative errors. 
They must be considered to be cumulative, not relative. The error of an 
individual bit can be calculated by: 

1>-1 n-l 

1: tactual. - 1: ttarget. 
Error[%] = 1=0 1 1=0 1 X 100% 

tbaudrate 

or, 

Error [%] = {b~~~'t~e x [(i + 1) x UBR + !:mJ - (i + 1)} x 100% 

With: 

baud rate: Required baud rate 
BRCLK: Input frequency - selected for UCLK, ACLK, or MCLK 

i = 0 for the start bit, 1 for the data bit DO, and so on 
UBR: Division factor in registers UBR1 and UBRO 

USART Peripheral Interface, UART Mode 12-27 



Baud Rate Considerations 

Example 12-3. Error Example for 2400 Baud 

12-28 

The following data are assumed: 

Baud rate = 2400 
BRCLK = 32,768 Hz (ACLK) 
UBR = 13, since the ideal division factor is 13.67 
m=6Bh: m7=0, m6=1, m5=1, m4=0, m3=1, m2=0, m1=1 

and mO=1 
The LSB (mO) of the modulation register is used first. 

Start bit Error [%] = (b~~~~~e x «0 + 1) x USR + 1)-1) x 100% = 2.54% 

Data bit DO Error [%] = (b~~dc~~e x «1 + 1) x USR + 2)-2) x 100% = 5.08% 

Data bit D1 Error [%] = (b~~dc~~e x «2 + 1) x USR + 2)-3) x 100% = 0.29% 

Data bit D2 Error [%] = (b~~~~~e x «3 + 1) x USR + 3)-4) x 100% = 2.83% 

Data bit D3 Error [%] = (b~~c~~e x «4 + 1) x USR + 3)-5) x 100% = -1.95% 

Data bit D4 Error [%] = (b~~dc~~e x «5 + 1) x USR + 4)-6) x 100% = 0.59% 

Data bit D5 Error [%] = (b~~dc~~e x «6 + 1) x USR + 5)-7) x 100% = 3.13% 

Data bit D6 Error [%] = (b~~c~~e x «7 + 1) x USR + 5)-8) x 100% = -1.66% 

Data bit D7 Error [%] = (b~~c~~e x «8 + 1) x USR + 6)-9) x 100% = 0.88% 

Parity bit Error [%] = (b~~dc~~e x «9 + 1) x USR + 7)-10) x 100% = 3.42% 

Stop bit 1 Error [%] = (b~~~~~e x «10 + 1) x USR + 7)-11) x 100% = -1.37% 

Stop bit 2 Error [%] = (b~~dc~~e x «11 + 1) x USR + 8)-12) x 100% = 1.17% 



Baud Rate Considerations 

12.7.2 Typical Baud Rates and Errors 

The standard baud rate data needed for the baud rate registers and the 
modulation register are listed in Table 12-6 for the 32,768-Hz watch crystal 
(ACLK) and MCLK, assumed to be 32 times the ACLK frequency. The error 
listed is calculated for the transmit and receive paths. In addition to the error 
for the receive operation, the synchronization error must be considered. 

Table 12-5. Commonly Used Baud Rates, Baud Rate Data, and Errors 

Divide by 

Baud 
Rate ACLK MCLK 

75 436.91 13,981 

110 297.89 9532.51 

150 218.45 6990.5 

300 109.23 3495.25 

600 54.61 1747.63 

1200 27.31 873.81 

2400 13.65 436.91 

4800 6.83 218.45 

9600 3.41 109.23 

19,200 54.61 

38,400 27.31 

76,800 13.65 

115,200 9.10 

ACLK (32,768 Hz) MCLK (1,048,576 Hz) 

Max. Max. Synchr. 
TX RX RX Max. TX Max. RX 

UBR1 UBRO UMOD Error % Error % Error % UBR1 UBRO UMOD Error% Error % 

1 84 FF -0.1/0.3 -0.1/0.3 ±2 36 90 FF 010.1 ±2 

1 29 FF 010.5 010.5 ±3 25 3C FF 010.1 ±3 

0 OA 55 010.4 010.4 ±2 18 4E FF 010.1 ±2 

0 60 22 -0.3/0.7 -0.310.7 ±2 00 A7 00 -0.1/0 ±2 

0 36 05 -1/1 -1/1 ±2 06 03 FF 010.3 ±2 

0 18 03 -4/3 -4/3 ±2 03 69 FF 010.3 ±2 

0 00 68 6/3 -6/3 ±4 01 84 FF 010.3 ±2 

0 06 6F -9/11 -9/11 ±7 0 OA 55 OIDA ±2 

0 03 4A -21/12 -21112 ±15 0 60 03 -0.4/1 ±2 

0 36 68 -0.212 ±2 

0 18 03 -4/3 ±2 

0 00 68 -6/3 ±4 

0 09 08 -5/7 ±7 

The maximum error is calculated for the receive and transmit modes. The 
receive-mode error is the accumulated time versus the ideal scanning time in 
the middle of each bit. The transmit error is the accumulated timing error 
versus the ideal time of the bit period. 

The MSP430 USART peripheral interface allows baud rates nearly as high as 
the clock rate. It has a low error accumulation as a result of modulating the 
individual bit timing. In practice, an error margin of 20% to 30% supports 
standard serial communication. 

USART Peripheral Interface, UART Mode 12-29 



Baud Rate Considerations 

12.7.3 Synchronization Error 

The synchronization error, shown in Figure 12-29, results from the 
asynchronous timing between the URXD pin data signal and the internal clock 
system. The receive signal is synchronized with the BRSCLK clock. The 
BRSCLK clock is sixteen to thirty-one times faster than the bit timing, as 
described. 

BRSCLK = BRCLK for N ~1F 

BRSCLK = BRCLKl2 for 20h ~N ~ 3Fh 
BRSCLK = BRCLKl4 for 40h ~N ~7Fh 

BRSCLK = BRCLKl8 for 80h ~N ~ FFh 
BRSCLK = BRCLKl16 for 100 ~N ~ 1FF 
BRSCLK = BRCLKl32 for 200 ~N ~3FFh 

BRSCLK = BRCLKl64 for 400 ~N ~7FFh 

BRSCLK = BRCLKl128 for 800h ~N ~ FFFh 
BRSCLK = BRCLKl256 for 1000h ~N ~ 1FFFh 
BRSCLK = BRCLKl512 for 2000h ~N ~ 3FFFh 
BRSCLK = BRCLKl1 024 for 4000h ~N ~ 7FFFh 
BRSCLK = BRCLKl2048 for 8000h ~N ~ FFFFh 

Figure 12-29. Synchronization Error 

i 0 1 1 2 

ttarget 1 to 1 t1 1 

11 1213141516171819 hol11112h311411 1213141516171819 hoh 112h3h~ 11 2131 4151617 

BRSCLK 

'\\\'i 

URXD l~~ I ST DO D2 
h;d~ Ii. 

URXDS n : ST : DO D2 : 

tactual I r - - - - - -to- - - - - - - - - - - - -11- - - - - - - - - - -12-
~ 14- Synchronization, Error ± 0.5x BLSCLK I I 

I I I I 

~~~6~ : Int(UBR/2)+mO = ) I ~ UBR +m1 = 13+1 = 14 ) I ~ UBR +m2 = 13+0 = 13 ) I ~ 
lint (13/2)+1 = 6+1 L-). \ / I \ / I \
I Majority Vote Taken Majority Vote Taken Majority Vote Taken

12-30

Baud Rate Considerations

The target start-bit detection-baud-rate timing ttarget(O) is half the baud-rate
timing tbaud rate because the bit is tested in the middle of its period. The target
baud rate timing ttargetifor all ofthe other succeeding bits is the baud rate timing

tbaud rate·
n-1 n-1

o tactuala + ttargeta i~1 tactuali - i~1 ttargeti 0

Error [Yo] = 0 5 t + t x 100 Yo
. x targeta target;

OR

Error [%) ~ (b~~~~~e x {2 x lmO + int (UBR/2)] + (i x UBR + ~:m,)} - 1-i) x 100%

Where:
baud rate is the required baud rate
BRCLK is the input frequency-selected for UCLK, ACLK, or MCLK
i = 0 for the start bit, 1 for data bit DO, and so on
UBR is the division factor in registers UBR1 and BRBO

Example 12-4. Synchronization Error-2400 Baud

The following data are assumed:

Baud rate = 2400
BRCLK = 32,768 Hz (ACLK)
UBR = 13, since the ideal division factor is 13.67
m = 6Bh: m7=0, m6=1, m5=1, m4=0, m3=1, m2=0, m1 =1 and

mO=1
The LSB (mO) of the modulation register is used first.

Start bit Error [%) = (b~~dc~~e x [2x(1 + 6) + (0 x UBR + 0 -0))-1) x 100% = 2.54%

Data bit DO Error [%) = (b~~c~~e x [2x(1 + 6) + (1 x UBR + 1))-1-1) x 100% = 5.08%

Data bit D1 Error [%) = (b~~dc~~e x [2x(1 + 6) + (2 x USR + 1))-1-2) x 100% = 0.29%

Data bit D2 Error [%) = (b~~~~~e x [2x(1 + 6) + (3 x USR + 2))-1-3) x 100% = 2.83%

Data bit D3 Error [%) = (b~~dc~~e x [2x(1 + 6) + (4 x USR + 2))-1-4) x 100% = -1.95%

Data bit D4 Error [%) = (b~~dc~~e x [2x(1 + 6) + (5 x USR + 3))-1-5) x 100% = 0.59%

Data bit D5 Error [%) = (b~~dc~~e x [2x(1 + 6) + (6 x USR + 4))-1-6) x 100% = 3.13%

Data bit D6 Error [%) = (b~~~~~e x [2x(1 + 6) + (7 x USR + 4))-1-7) x 100% = -1.66%

Data bit D7 Error [%) = (b~~dc~~e x [2x(1 + 6) + (8 x USR + 5))-1-8) x 100% = 0.88%

Parity bit Error [%) = (b~~dc~~e x [2x(1 + 6) + (9 x USR + 6))-1-9) x 100% = 3.42%

Stop bit 1 Error [%) = (b~~~~~e x [2x(1 + 6) + (10 x UBR + 6))-1-10) x 100% = -1.37%

Stop bit 2 Error [%) = (b~~~~~e x [2x(1 + 6) + (11 x UBR + 7))-1-11) x 100% = -1.17%

USART Peripherallnteriace, UART Mode 12-31

12-32

Chapter 13

USART Peripheral Interface, SPI Mode
".'l!f_~'\'!itffi\ __ ifM!~_~Q~.illllallllml [__ ,"'. iOU I 11_

The universal synchronous/asynchronous receive/transmit (USART) serial
communication peripheral supports two serial modes with one hardware
configuration. These modes shift a serial-bit stream in and out of the MSP430
at a programmed rate or at a rate defined by an external clock. The first mode
is the universal asynchronous-receive/transmit (UART) communication
protocol (discussed in Chapter 12); the second is the serial peripheral
interface (SPI) protocol.

Bit SYNC in control register UCTL selects the required mode:
SYNC = 0: UART -asynchronous mode selected
SYNC = 1: . SPI-synchronous mode selected

This chapter describes the SPI mode.

Topic Page

13.1 USART Peripheral Interface •••.•...••••••••..••.•••.•.•.....•• 13-2

13.2 USART Peripheral Interface, SPI Mode •....••••..•.•.•...••.••• 13-3

13.3 Synchronous Operation 13-4

13.4 Interrupt and Control Functions .•••....•.•.•.•....•....•..•••. 13·9

1.5 Control and Status Registers 13-15

13-1

13.1 USART Peripheral Interface

The USART peripheral interface connects to the CPU as a byte-peripheral
module. It connects the MSP430 to the external system environment with
three or four external pins. Figure 13-1 shows the USART peripheral-interface
module

Figure 13-1. Block Diagram of USART

UCLKI --c>--o--=~

ACLK --0

MCLK --0

MCLK --0

13-2

Receive Buffer URXBUF

~------~------~

Receive Shift Register

Baud-Rate Generator

Baud-Rate Register UBR

Baud-Rate Generator

SYNC RXE

SYNC
UCLKS

MMI SYNC

o=-----e-:1o SOMI
~

o i SYNC

1

10
1

1

1

1

STE
-+-<J

1 UTXD
..-+-I-----D

1

1

Transmit Shift Register 1-----I.....------iII.-+-1-oi SIMa
~

Transmit Buffer UTXBUF

UCLKI

UCLKS

CKPH

o

SYNC CKPL

13.2 USART Peripheral Interface, SPI Mode

The USART peripheral interface is a serial channel that shifts a serial bit
stream of 7 or 8 bits in and out of the MSP430. The SPI mode is chosen when
control bit SYNC in the USART control register (UCTL) is set.

13.2.1 SPI Mode Features

The features of the SPI mode are:

o Supports three-pin and four-pin SPI operations via SOMI, SIMa, UCLK,
and STE

o Master or slave mode

o Separate shift registers for receive (URXBUF) and transmit (UTXBUF)

o Double buffers for receiving and transmitting

o Has clock-polarity and clock-phase control

o Has clock-frequency control in master mode

o Supports a character length of seven or eight bits per character

Figure 13-2 shows the USART module in SPI mode.

Figure 13-2. Block Diagram of USART -SPI Mode

SSEL1 SSELO

I I 0
UCLKI
ACLK ---0

MCLK---o

MCLK ---0

r----..,
I SYNC = 1 I L ____ .J

Receive Buffer URXBUF
Listen MM

Receive Shift Register
o=0~~1o I SOMI

...-...:..:M.:.::S:.=B:....:F...:..:ir..::.st=--o--- ~

~------~------~ 0 I

Baud-Rate Generator

Baud-Rate Register

Baud-Rate Generator

SYNC

SYNC
UCLKS

MSB First

I
I
I
I
I
I
I
I
I
I
I

STE
---+-<J

Transmit Shift Register ~--------~--~~I SIMa

Transmit Buffer UTXBUF

(UCLKI)

UCLKS

CKPH

----o-...... ~
o

SYNC CKPL

USART Peripheral Interface, SPI Mode 13-3

Synchronous Operation

13.3 Synchronous Operation

13-4

In USART synchronous mode, data and clock signals transmit and receive
serial data. The master supplies the clock and data. The slaves use this clock
to shift serial information in and out.

The four-pin SPI mode also uses a control line to enable a slave to receive and
transmit data. The line is controlled by the master.

Three or four signals are used for data exchange:

o SIMO Slave in, master out
The direction is defined by SIMODIR (SIMODIR=O, input
direction) SIMODIR = [SYNC .and. MM .and. (STC .or. STE)]
Output direction is selected when SPI + Master Mode is selected.
When 4-pin SPI is selected (STC=O) input direction is forced by
a low level on external STE pin.

o SOMI Slave out, master in
The direction is defined by SOMIDIR (SIMODIR=O input
direction) SOMIDIR = [SYNC .and .. not.(MM)] .or.
[STC .or .. not.(STE)]
Output direction is selected when SPI + Slave Mode is selected.
When 4-pin SPI is selected (STC=O) input direction is forced by
a low level on external STE pin.

o UCLK USART clock. The master drives this signal and the slave uses
it to receive and transmit data.
The direction is defined by UCLKDIR (UCLKDIR=O input
direction) UCLKDIR = [SYNC .and. MM .and. (STC .or. STE)]
Output direction is selected when SPI + Master Mode is selected.
When 4-pin SPI is selected (STC=O) input direction is forced by
a low level on external STE pin.

o STE Slave transmit enable. Used in four-pin mode to control more
than one slave in a multiple master and slave system.

The interconnection of the USART in synchronous mode to another device's
serial port with one common transmit/receive shift register is shown in
Figure 13-3, where MSP430 is master or slave. The operation of both devices
is identical.

Operation

Figure 13-3. MSP430 USART as Master, External Device With SPI as Slave

MASTER SIMO SIMO SLAVE ..
I Receive Buffer URXBUF I ~ Transmit Buffer UTXBUF J I SPI Receive Buffer I

Px.x STE

STE SS
Port.X

I
Receive Shift Register ~ ISOMI

~

SOMII ~ I Data Shift Register (DSR)

MSB LSB

Transmit Shift Register I
MSB LSB MSB LSB

UCLK SCLK
MSP430 USART COMMONSPI

The master initiates the transfer by sending the UCLK signal. For the master,
data is shifted out of the transmit shift register on one clock edge, and shifted
into the receive shift register on the opposite edge. For the slave, the data
shifting operation is the same and uses one common register for transmitting
and receiving data. Master and slave send and receive data at the same time.

Whether the data is meaningful or dummy data depends on the application
software:

o Master sends data and slave sends dummy data
o Master sends data and slave sends data
o Master sends dummy data and slave sends data

Figures 13-4 and 13-5 show an example of a serial synchronous data transfer
for a character length of seven bits. The initial content of the receive shift
register is 00. The following events occur in order:

A) Slave writes 98h to the data shift register (DSR) and waits for the master
to shift data out.

B) Master writes BOh to UTXBUF, which is immediately transferred to the
transmit shift register, and starts the transmission.

C) First character is finished and sets the interrupt flags.

D) Slave reads 58h from the receive buffer (right justified).

E) Slave writes 54h to the DSR and waits for the master to shift out data.

F) Master reads 4Ch from the receive buffer URXBUF (right justified).

G) Master writes E8h to the transmit buffer UTXBUF and starts the
transmission.

Note: If USART is in slave mode, no UCLK is needed after D), until G).
However, in master mode, two clocks are used internally (not on UCLK
signal) to end transmiVreceive of first character and prepare the
transmiVreceive of the next character.

USART Peripheral Interface, SPI Mode 13-5

Synchronous Operation
.

H) Second character is finished and sets the interrupt flag.

J) Master receives 2Ah and slave receives 74h (right justified).

Figure 13-4. Serial Synchronous Data Transfer

CKPL=O ,
CKPLH=O:

,
CKPL = 1 ,

CKPLH=O :

SIMO From,
Master'

SOMI From:
Slave

AB CD EF G HI

I I
I I I I I

I I I
I I I
I I I

I
STE i I I

~~~~~~~~~~ 
Master Interrupt . I -!- -+ +-

UTXIFG ' I I I I I I I I I I 
Slave Interrupt ' I I I I I I I I I I I I LI-L 

URXIFG '-+--!-+-!--+-!-+-H--!-+~-! I I I I I I I I I I I I I I I I 
Shift Data Out,...-' --'-+-'-+-'--t-'--t--'-t--'-t--'-t--+---'I'II ....... I rl ...... 1 rl 1'-t11 ....... 1 rl ...... 1 11r--"1-+II-+-i 

Shift Data In ; 
~~~~~~-L~~~ ____ ~~~~~~~~ ___ 

Figure 13-5. Data Transfer Cycle

MSB LSB MSB LSB

A: 98h> DSR S B: BOh> UTXBUF M

C,F: URXBUF M C,D: DSR S

from Initial State

E: 54h> DSR S G:E8h> UTXBUF M

M H,I: DSR S

tIn 7 bit mode, the MSB of RXBUF is always read as O.
S: Slave M: Master

13-6

Synchronous Operation

Figure 13-6 illustrates the USART module functioning as a slave in a three or
four-pin SPI configuration.

Figure 13-6. MSP430 USART as Slave in Three-Pin or Four-Pin Configuration

MASTER SIMa SIMa SLAVE ..

I SPI Receive Buffer I I Transmit Buffer UTXBUF I I Receive Buffer URXBUF I
Px.x STE

STE
SS
Port.x

i Data Shift Register DSR
ISOMI SOMII

Transmit Shift Register II Receive Shift Register ~ I I
MSB LSB MSB LSB MSB LSB

SCLK UCLK
COMMON SPI MSP430 USART

13.3.1 Master SPI Mode

The master mode is selected when the master-mode bit (MM) in control
register UCTL is set. The USART module controls the serial-communication
network by providing UCLK at the UCLK pin. Data is output on the SIMO pin
during the first UCLK period and latched from the SOMI pin in the middle of
the corresponding UCLK period.

The data written to the transmit buffer (UTXBUF) is moved to the transmit shift
register as soon as the shift register is empty. This initiates the data transfer
on the SIMO pin starting with the most-significant bit. At the same time,
received data is shifted into the receive shift register and, upon receiving the
selected number of bits, the data is transferred to the receive buffer (URXBUF)
setting the receive interrupt flag (URXIFG). Data is shifted into the receive shift
register starting with the most-significant bit. It is stored and right-justified in
the receive buffer (URXBUF). When previous data is not read from the receive
buffer (URXBUF), the overrun error bit (OE) is set.

Note: USART Synchronous Master Mode, Receive Initiation

The master writes data to the transmit buffer UTXBUF to receive a character.
The receive starts when the transmit shift register is empty and the data is
transferred to it. Receive and transmit operations always take place together,
at opposite clock edges.

The protocol can be controlled using the transmit-interrupt flag UTXI FG, or the
receive-interrupt flag URXIFG. By using UTXIFG immediately after sending
the shift-register data to the slave, the buffer data is transferred to the shift
register and the transmission starts. The slave receive timing should ensure
that there is a timely pick-up of the data. The URXIFG flag indicates when the
data shifts out and in completely. The master can use URXIFG to ensure that
the slave is ready to correctly receive the next data.

USART Peripheral Interface, SPI Mode 13-7

Synchronous Operation
$ •

13.3.1.1 Four-Pin SPI Master Mode

The signal on STE is used by the active master to prevent bus conflicts with
another master. The STE pin is an input when the corresponding PnSEL bit
(in the I/O registers) selects the module function. The master operates
normally while the STE signal is high. Whenever the STE signal is low, for
example, when another device makes a request to become master, the actual
master reacts such that:

o The pins that drive the SPI bus lines SIMa and UCLK are set to inputs.

o The error bit FE and the interrupt flag URXIFG in register URCTL are set.

The bus conflict is then removed: SIMa and UCLK do not drive the bus lines,
and the error flag indicates the system integrity violation to the software. Pins
SIMa and UCLK are forced to the input state while STE is in a low state, and
they return to the conditions defined by the corresponding control bits when
STE returns to a high state.

In the three-pin mode, the STE input signal is not relevant.

13.3.2 Slave SPI Mode

The slave mode is selected when bit MM of the control register is reset and
synchronous mode is selected.

The UCLK pin is used as the input for the serial-shift clock supplied by an
external master. The data-transfer rate is determined by this clock and not by
the internal bit-rate generator. The data, loaded into the transmit shift register
through the transmit buffer (UTXBUF) before the start of UCLK, is transmitted
on the SOMI pin using the UCLK supplied from the master. Simultaneously,
the serial data applied to the SIMa pin are shifted into the receive shift register
on the opposite edge of the clock.

The receive-interrupt flag URXIFG indicates when the data is received and
transferred into the receive buffer. The overrun-error bit is set when the
previously-received data is not read before the new data is written to the
receive buffer.

13.3.2.1 Four-Pin SPI Slave Mode

13-8

In the four-pin SPI mode, the STE signal is used by the slave to enable the
transmit and receive operations. It is applied from the SPI master. The receive
and transmit operations are disabled when the STE signal is high, and enabled
when it is low. Whenever the STE signal becomes high, any receive operation
in progress is halted and then continues when the STE signal is low again. The
STE signal enables one slave to access the data lines. The SOMI is input if
STE is set high.

and Control Functions

13.4 Interrupt and Control Functions

The USART peripheral interface serves two main interrupt sources for
transmission and reception. Two interrupt vectors serve receive and transmit
interrupt events.

The interrupt control bits and flags and enable bits of the USART peripheral
interface are located in the SFR address range. The bit functions are
described below in Table 13-1. See the peripheral-file map in Appendix A for
the exact bit locations.

Table 13-1. USART Interrupt Control and Enable Bits-SPI Mode

Receive interrupt flag URXIFG Initial state reset (by PUC/SWRST)

Receive interrupt enable URXIE Initial state reset (by PUC/SWRST)

Receive/transmit enable USPIIE Initial state reset (by PUC)
(see Note)

Transmit interrupt flag UTXIFG Initial state set (by PUC/SWRST)

Transmit interrupt enable UTXIE Initial state reset (by PUC/SWRST)

Note: Different for UART mode, see Chapter 12.

The USART receiver and transmitter operate in parallel and use the same
baud-rate generator in synchronous master mode. In synchronous slave
mode, the external clock applied to UCLK is used for the receiver and the
transmitter. The receiver and transmitter are enabled and disabled together
with the USPIIE bit.

13.4.1 USART ReceivelTransmit Enable Bit, Receive Operation

The receive/transmit enable bit (USPIIE) enables or disables collection of the
bit stream on the URXD/SOMI data line. Disabling the USART receiver
(USPIIE = 0) stops the receive operation after completion, or stops a pending
operation if no receive operation is active. In synchronous mode, UCLK does
not shift any data into the receiver shift register.

13.4.1.1 Receivenransmit Enable Bit-MSP430 as Master

The receive operation functions identically for three-pin and four-pin modes,
as shown in Figure 13-7, when the MSP430 USART is selected to be the SPI
master.

USART Peripheral Interface, SPI Mode 13-9

Interrupt and Control Functions

Figure 13-7. State Diagram of Receiver Enable Operation-MSP430 as Master

No Data Written
to UTXBUF

USPIIE = 1

USPIIE = 1

Not Completed

Handle Interrupt
Conditions

Character
Received

13.4.1.2 Receiveffransmit Enable Bit-MSP430 as Slave, Three-Pin Mode

The receive operation functions differently for three-pin and four-pin modes
when the MSP430 USART module is selected to be the SPI slave. In the
three-pin mode, shown in Figure 13-8, no external SPI receive-control signal
stops an active receive operation. A PUC signal, a software reset (SWRST),
or a receive/transmit enable (USPIIE) signal can stop a receive operation and
reset the USART.

Figure 13-8. State Diagram of Receiveffransmit Enable-MSP430 as Slave, Three-Pin
Mode

USPIIE = 0 No Clock at UCLK

USPIIE = 1

External Clock
Present

USPIIE = 1

Note: USPIIE Re-Enabled, SPI Mode

Not Completed

Handle Interrupt
Conditions

Character
Received

After the receiver is completely disabled, a reenabling of the receiver is asyn
chronous to any data stream on the communication line. Synchronization to
the data stream is handled by the software protocol in three-pin SPI mode.

13.4.1.3 Receiveffransmit Enable Bit-MSP430 as Slave, Four-Pin Mode

13-10

In the four-pin mode, shown in Figure 13-9, the external SPI receive-control
signal applied to pin STE stops a started receive operation. A PUC signal, a
software reset (SWRST), or a receive/transmit enable (USPIIE) can stop a
receive operation and reset the operation-control state machine. Whenever
the STE signal is set to high, the receive operation is halted.

Interrupt and Control Functions

Figure 13-9. State Diagram of Receive Enable-MSP430 as Slave, Four-Pin Mode

PUC

No Clock at UCLK

USPIIE = 1

External Clock
Present

USPIIE = 1

Handle Interrupt
Conditions

Character
Received

13.4.2 USART ReceivelTransmit Enable Bit, Transmit Operation

The receive/transmit enable bit USPIIE, shown in Figures 13-10 and 13-11,
enables or disables the shifting of a character on the serial data line. If this bit
is reset, the transmitter is disabled, but any active transmission does not halt
until all data previously written to the transmit buffer is transmitted. If the
transmission is completed, any further write operation to the transmitter buffer
does not transmit. When the UTXBUF is ready, any pending request for
transmission remains, which results in an immediate start of transmission
when USPIIE is set and the transmitter is empty. A low state on the STE signal
removes the active master (four-pin mode) from the bus. It also indicates that
another master is requesting the active-master function.

13.4.2.1 Receiveflransmit Enable-MSP430 as Master

Figure 13-10 shows the transmit-enable activity when the MSP430 is master.

Figure 13-10. State Diagram of Transmit Enable-MSP430 as Master

PUC

Entry Is Transmitted

No Data Written
to Transfer Buffer

USPIIE=1,
Data Written to

USPIIE = 1

Handle Interrupt
Conditions

Character
Transmitted

USART Peripheral Interface, SPI Mode 13-11

Interrupt and Control Functions

13.4.2.2 Receiveffransmit Enable, MSP430 is Slave

Figure 13-11 shows the receive/transmit-enable-bit activity when the
MSP430 is slave.

Figure 13-11. State Diagram of Transmit Enable-MSP430 as Slave

PUC

13-12

No Clock at UCLK

USPIIE = 1

External Clock
Present

USPIIE = 1

Handle Interrupt
Conditions

Character
Transmitted

When USPIIE is reset, any data can be written regularly into the transmit
buffer, but no transmission is started. Once the USPIIE bit is set, the data in
the transmit buffer are immediately loaded into the transmit shift register and
character transmission is started.

Note: Writing to UTXBUF, SPI Mode

Data should never be written to transmit buffer UTXBUF when the buffer is
not ready (UTXIFG = O) and the transmitter is enabled (USPIIE is set). If data
is written, character shifting can be random.

r--'--,
Note: Write to UTXBUF/Reset of Transmitter, SPI Mode

Disabling of the transmitter should be done only if all data to be transmitted
have been moved to the transmit shift register.

MOV.B # ,&UTXBUF
BIC.B #USPIIE,&ME2 If BITCLK < MCLK then the

transmitter might be stopped
before the buffer is loaded
into the transmitter
shift register

and Control Functions

13.4.3 USART Receive-Interrupt Operation

In the receive-interrupt operation shown in Figure 13-12, the receive-interrupt
flag URXIFG is set each time a character is received and loaded into the
receive buffer.

Figure 13-12. Receive Interrupt Operation

SYNC
Valid Start Bit

r----'
I SYNC = 1 I L.. ____ .J

Receiver Collects Character
URXSE

From URXD--.r--:-"l
.~---'

PE
FE

BRK

Character Received
or

Master Overrun

(S)

Clear

URXIFG

SWRST
PUC
URXBUF Read
USPIIE

IRQA

URXIFG is reset by a system reset PUC signal, or by a software reset
(SWRST). URXIFG is reset automatically if the interrupt is served or the
receive buffer URXBUF is read. The receive interrupt enable bit (USPIIE), if
set, enables a CPU interrupt request as shown in Figure 13-13. The receive
interrupt flag bits URXIFG and USPIIE are reset with a PUC signal or a
SWRST.

Figure 13-13. Receive Interrupt State Diagram

USPIIE = 1 and
GIE = 1 and

USART Peripheral Interface, SPI Mode 13-13

Interrupt and Control Functions

13.4.4 Transmit-Interrupt Operation

In the transmit-interrupt operation shown in Figure 13-14, the transmit
interrupt flag UTXIFG is set by the transmitter to indicate that the transmitter
buffer UTXBUF is ready to accept another character. This bit is automatically
reset if the interrupt-request service is started or a character is written to the
UTXBUF. This flag activates a transmitter interrupt if bits USPIIE and GIE are
set. The UTXIFG is set after a system reset PUC signal, or removal of SWRST.

Figure 13-14. Transmit-Interrupt Operation

13-14

o USPIIE r----'
I SYNC = 1 I I... ____ .J

Clear

PUC or SWRST --_.

VCC

Character Moved From
Buffer to Shift Register

Set UTXIFG
D 01------1

SWRST
Clear

Request_
InterrupCService

'----- UTXBUF Written Into Transmit Shift Register
'----- IROA

The transmit-interrupt enable bit UTXIE controls the ability of the UTXIFG to
request an interrupt, but does not prevent the UTXIFG flag from being set. The
USPIIE is reset with a PUC signal or a SWRST. The UTXIFG bit is set after a
system reset PUC signal or a SWRST, but the USPIIE bit is reset to ensure full
interrupt-control capability.

Control and Status Registers

13.5 Control and Status Registers

The USART registers, shown in Table 13-2, are byte structured and should be
accessed using byte instructions.

Table 13-2. USART Control and Status Registers

Register Short Register Address Initial State
Form Type

USART control UCTL Read/write 070h See Section 13.5.1

Transmit control UTCTL Read/write 071h See Section 13.5.2

Receive control URCTL Read/write 072h See Section 13.5.3

Modulation control UMCTL Read/write 073h Unchanged

Baud Rate 0 UBRO Read/write 074h Unchanged

Baud Rate 1 UBR1 Read/write 075h Unchanged

Receive buffer URXBUF Read/write 076h Unchanged

Transmit buffer UTXBUF Read 077h Unchanged

All bits are random following the PUC signal, unless otherwise noted by the
detailed functional description.

Reset of the USART module is performed by the PUC Signal or a SWRST. After
a PUC signal, the SWRST bit remains set and the USART module remains in
the reset condition. It is disabled by resetting the SWRST bit. The SPI mode
is disabled after the PUC signal.

The USART module operates in asynchronous or synchronous mode as
defined by the SYNC bit. The bits in the control registers can have different
functions in the two modes. All bits are described with their function in the
synchronous mode-SYNC = 1. Their function in the asynchronous mode is
described in Chapter 12.

13.5.1 USART Control Register

The information stored in the control register, shown in Figure 13-15,
determines the basic operation of the USART module. The register bits select
the communication mode and the number of bits per character. All bits should
be programmed to the desired mode before resetting the SWRST bit.

Figure 13-15. USART Control Register

UCTL
070h

7 o

rw-O rw-O rw-O rw-O rw-O rw-O rw-O rw-1

USART Peripheral Interface, SPI Mode 13-15

Control and Status Registers

Bit 0: The USART state machines and operating flags are initialized
to the reset condition (URXIFG=USPIIE=O, UTXIFG=1) if the
software reset bit is set. Until the SWRST bit is reset, all affected
logic is held in the reset state. This implies that after a system
reset the USART must be reenabled by resetting this bit.

Bit 1 : Master mode is selected when the MM bit is set. The USART
module slave mode is selected when the MM bit is reset.

Bit 2: Peripheral module mode select
The SYNC bit sets the function of the USART peripheral
interface module. Some of the USART control bits have different
functions in UART and SPI modes.
SYNC = 0: UART function is selected
SYNC = 1: SPI function is selected

Bit 3: The listen bit determines the transmitted data to feed back
internally to the receiver. This is commonly called loopback
mode.

Bit 4: Character length
This register bit sets the length of the character to be transmitted
as either seven or eight bits.
CHAR = 0: 7-bit data
CHAR = 1: 8-bit data

Bit 5: Unused

Bit 6: Unused

Bit 7: Unused

13.5.2 Transmit Control Register UTCTL

The transmit control register (UTCTL), shown in Figure 13-16, controls the
USART hardware associated with transmitter operations.

Figure 13-16. Transmit Control Register UTCTL

7 o

13-16

UTCTL
071h

rw-O rw-O rw-O rw-O rw-O rw-D rw-D rw-1

Bit 0: Master mode:
The transmitter-empty flag TXEPT is set when the transmitter
shift register and UTXBUF are empty, and reset when data are
written to UTXBUF. It is set again by a SWRST.

Slave mode:
The transmitter-empty flag TXEPT is not set when the trans
mitter shift register and UTXBUF are empty.

Bit 1: The slave transmit·control bit STC selects if the STE pin is used
for master and slave mode:

Bit 2:

Bit 3:

STC = 0:

STC = 1:

Unused

Unused

Control and Status Registers

The four-pin mode of SPI is selected. The STE
signal is used by the master to avoid bus conflicts,
or is used in slave mode to control transmit and
receive enable.
The three-pin SPI mode is selected. STE is not
used in master or slave mode.

Bits 4,5: Source select 0 and 1

Bits 6, 7:

The source-select bits define which clock source is used for
baud-rate generation only when master mode is selected:
SSEL 1 ,SSELO 0 External clock UCLK selected

1 Auxiliary clock ACLK selected
2,3 MCLK

In master mode (MM = 1), an external clock at UCLK cannot be
selected since the master supplies the UCLK signal for any
slave. In slave mode, bits SSEL 1 and SSELO are not relevant.
The external clock UCLK is always used.

Clock polarity CKPL and clock phase CKPH
The CKPL bit controls the polarity of the SPICLK signal.
CKPL = 0: The inactive level is low; data is output with the

rising edge of UCLK; input data is latched with
the falling edge of UCLK.

CKPL = 1: The inactive level is high; data is output with the
falling edge of UCLK; input data is latched with
the rising edge of SPICLK.

The CKPH bit controls the polarity of the SPICLK signal as
shown in Figure 13-17.
CKPH = 0: Normal UCLK clocking scheme
CKPH = 1: UCLK is delayed by one half cycle

Figure 13-17. USART Clock Phase and Polarity

C~eL,¢KPH
,0, 0

';,~?::t
,j 1

'x .0

Cycle# I 1
I

UCLK
UCLK
UCLK
UCLK

2 3 4 5 6 7 8

SIMa! ------""-;-;=,r----.,r-----,.,,------,.,,--------,,,r--~,___-',_;_c=:o'l,r
SOMI

SIMa! -:-.rT~~,,__ r--"\,,___-,,--------,,,~___,.,r--..... .I~~
SOMI

Data to
TXBUF~---------------------------------

Receive
Sample Points _----''----' __ --L __ --L __ --'-__ --'-__ --'-__ -L.. ___

'Previous Data Bit

USART Peripheral Interface, SPI Mode 13-17

Control and Status Registers

When operating with the CKPH bit set, the USART (synchronous mode)
makes the first bit of data available after the transmit shift register is loaded and
before the first edge of the UCLK. In this mode, data is latched on the first edge
of UCLK and transmitted on the second edge.

13.5.3 Receive Control Register URCTL

The receive control register (URCTL), shown in Figure 13-18, controls the
USART hardware associated with the receiver operation and holds error
conditions.

Figure 13-18. Receive Control Register URCTL

URCTL
072h

7

rw-O rw-O rw-O rw-Q rw-Q rw-O rw-Q rw-Q

Bit 0: Undefined, driven by USART hardware

Bit 1: Undefined, driven by USART hardware

Bit 2: Unused

Bit 3: Unused

Bit 4: Undefined, driven by USART hardware

Bit 5: The overrun-error-flag bit (OE) is set when a character is
transferred to URXBUF before the previous character is read.
The previous character is overwritten and lost. OE is reset by a
SWRST, a system reset, by reading the URXBUF, or by an
instruction.

Bit 6: Undefined, driven by USART hardware

Bit 7: Frame error. The FE bit is set when four-pin mode is selected
and a bus conflict stops an active master by applying a negative
transition signal to pin STE. FE is reset by a SWRST, a system
reset, by reading the URXBUF, or by an instruction.

13.5.4 Baud Rate Select and Modulation Control Registers

The baud-rate generator uses the content of baud-rate select registers UBR1
and UBRO, shown in Figure 13-19, to generate the serial-data-stream bit
timing. The smallest division factor is two.

Figure 13-19. USART Baud-Rate Select Register
7 0

UBRO
27 26 25 24 23 22 21 20 074h
rw rw rw rw rw rw rw rw

7 0
UBR1

215 214 213 212 211 210 29 28 075h
rw rw rw rw rw rw rw rw

13-18

Control and Status Registers

Baud rate = BRCL~ with UBR= [UBR1 ,UBRO]
UBR + ~2mi

The maximum baud rate that can be selected for transmission in master mode
is half of the clock-input frequency of the baud-rate generator. In slave mode,
the rate is determined by the external clock applied to UCLK.

The modulation control register, shown in Figure 13-20, is not used for serial
synchronous communication. It is best kept in reset mode (bits mO to m7 = 0).

Figure 13-20. USART Modulation Control Register

7
UMCTL

073h

13.5.5 Receive Data Buffer URXBUF

m7 mS

rw rw

m5 m4 m3

rw rw rw

o
m2 m1 mO

rw rw rw

The receive data buffer (URXBUF), shown in Figure 13-21, contains previous
data from the receiver shift register. URXBUF is cleared with a SWRST or a
PUC signal. Reading URXBUF resets the receive-error bits and the receive
interrupt flag URXIFG.

Figure 13-21. Receive Data Buffer URXBUF

7
URXBUF

076h
rw rw rw rw

o

rw rw rw rw

The MSB of the URXBUF is always reset in seven-bit-Iength mode.

13.5.6 Transmit Data Buffer UTXBUF

The transmit data buffer (UTXBUF), shown in Figure 13-22, contains current
data for the transmitter to transmit.

Figure 13-22. Transmit Data Buffer UTXBUF

7
UTXBUF

077h
rw rw rw rw

o

rw rw rw rw

The UTXIFG bit indicates that UTXBUF is ready to accept another character
for transmission. In master mode, the transmission is initialized by writing data
to UTXBUF. The transmission of this data is started immediately if the transmit
shift register is empty.

When seven-bit character-length is used, the data moved into the transmit
buffer must be left-justified since the MSB is shifted out first.

USART Peripheral Interface, SPI Mode 13-19

13-20

Chapter 14

Liquid Crystal Display Drive
hZ&

This chapter describes the MSP430x3xx liquid crystal display (LCD) driver.

Topic Page

14.1 LCD Drive Basics•........•...•...••••.••..•.•••.•••••.•• 14-2

14.2 LCD Controller/Driver•..•••••••.••••••••.•••••••••.•••••• 14-7

14.3 Code Examples ••.........•..••.•••.•••.••.•••••••••.••••••• 14-21

14-1

LCD Drive Basics

14.1 LCD Drive Basics

14-2

LCDs must be driven with ac voltages. DC voltage signals applied to LCD seg
ments can harm and even destroy an LCD. The LCD controller/driver on the
MSP430 devices simplifies the use of LCD displays by creating the ac voltage
signals automatically.

Static LCDs have one pin for each segment and one pin for the ground plane,
so one can see how the pin-counts of large LCDs with many segments could
easily become cumbersome. For example, an 80-segment, static LCD re
quires 81 pins. To reduce pin-counts, LCDs are often multiplexed. This means
the individual LCD segments are arranged in a matrix of the segment pins and
common pins, such that each LCD segment has a unique combination of a
segment pin and a common pin for activation, but each segment pin can be
used for more than one segment. For example, a 2-MUX LCD contains one
segment pin for every two segments and 2 common layers, each with a pin.
The two segments that share any pin are connected to different common lay
ers for individual control. The table below shows a possible pin configuration
for a 2-MUX, 16-segment LCD. There are 10 total pins.

Pin 1

Pin 2

Pin 3

Pin 4

Pin5

Pin 6

Pin 7

Pin 8

segment 1 segment 2

segment 3 segment 4

segment 5 segment 6

segment 7 segment 8

segment 9 segment 10

segment 11 segment 12

segment 13 segment 14

segment 15 segment 16

common pin 0 common pin 1

LCDs with more common planes realize greater pin-count reductions. For ex
ample, a possible pin configuration of a 4-MUX, 16-segment LCD is shown be
low. This LCD has 8 total pins for a reduction of 2 pins over the 2-MUX configu
ration above. 2 pins is generally not significant, however, in the case of a
132-segment LCD for example, the required pins for a 2-MUX version would
be 68 (132/2 +2), whereas the required pins for a 4-MUX version would be 37
(132/4 +4).

Pin 1

Pin 2

Pin 3

Pin 4

segment 1 segment 2

segment 5 segment 6

segment 9 segment 10

segment 13 segment 14

common pin 0 common pin 1

segment 3 segment 4

segment 7 segment 8

segment 11 segment 12

segment 15 segment 16

common pin 2 common pin 3

LCD Drive Basics

Because of the multiplexing of segments with segment pins, the required drive
signals for the segment pins and common pins can be complicated. Each seg
ment and common pin of a multiplexed LCD requires a time-division-multi
plexed signal in order to only turn on the desired segments and to avoid having
a dc voltage on any segment. Some examples of segment and common sig
nals are shown below. Fortunately for the user, the MSP430 creates all these
signals automatically.

With static LCDs, each segment pin drives one segment. Figure 14-1 shows
some example waveforms with a typical pin assignment.

Figure 14-1. Static Wave-Form Drive

COMO

Voo

COMO GND

Voo

SP1 GND

VOD

SP2 GND

Resulting Voltage for n n n n VOD

Segment a (COMO-SP1), J U U U L _OVVOO Segment Is On.

Resulting Voltage for
Segment b (COMO-SP2),-------------- 0 V
Segment Is Off.

Liquid Crystal Display Drive 14-3

LCD Drive Basics

With 2-MUX LeOs, each segment pin drives two segments (see Figure 14-2).

Figure 14-2. Two-MUX Wave-Form Drive

COM1

COMO

SP~
L9.t,h

SP3

SP = Segment Pin

14-4

COMO

COM1

SP1

SP2

Resulting Voltage for f1-l f1-l f1-l+=1
Segment h (COMD-SP2)'LJ LJ LJ LJ
Segment Is On.

Voo'
-V3= Vool2
GND
Voo
-V3 = Vool2
GND

Voo

GND

Voo

GND

Voo
Vool2
OV
Voo/2
-Voo

Voo
Resulting Voltage for n n n n Voo/2
Segment b (COM1-SP2). ~U-+--....L...-~U-+--....L...-~U-+--....L...-~U-+--....L...-- 0 V
Segment Is Off. Voo/2

-Voo

LCD Drive Basics

With three-MUX LeDs, each segment line drives three segments.

Figure 14-3. Three-MUX Wave-Form Drive

COM2 Voo

COMO

SP2

SP = Segment Pin

COMO

j4- fframe ---tj

COM1

COM2

SP1

SP2

-V2 = 213VOO
-V4= 1/3VOO
GNO
voo
-V2 = 213VOO
-V4= 1/3VOO
GNO
VOO
-V2 = 213VOO
-V4 = 1/3VOO
GNO
voo
-V2 = 2/3VOO
-V4 = 1/3VOO
GNO

VOO

GNO

I VOO

'----...... GNO

voo
Resulting Voltage for
Segment e (COMQ-SP1) -, n n n n n n ~ a v , LJLJLJLJLJLJLJ
Segment Is Off.

-VOO

VOO

Resulting Voltage for -, n n n n n n n~
Segment d (COMQ-SP2), U LJ LJ U LJ LJ U D a v
Segment Is On.

-VOO

Liquid Crystal Display Drive 14-5

LCD Drive Basics

With 4-MUX LeDs, each segment pin drives four segments.

Figure 14-4. Four-MUX Wave-Form Drive

14-6

QCOM2
/BCOM1

~
COMO

e

SP1

COMO

COM1

COM2

COM3

SP1

SP2

Voo
-V2 = 213 Voo
-V4= 1/3 Voo
GNO
Voo
-V2 =2/3 Voo
-V4= 1/3 Voo
GNO
Voo
-V2 = 213 Voo
-V4= 1/3 Voo
GNO
Voo
-V2 = 213 Voo
-V4= 1/3 Voo
GNO
Voo
-V2 = 2/3 Voo
-V4= 1/3 Voo
GNO
Voo
-V2 = 213 Voo
-V4 = 1/3 Voo
GNO

SP = Segment Pin Voo

Resulting Voltage for --, n n n n n n qJ 0 V
Segment e (COM1-SP1), LJ LJ LJ LJ LJ LJ LJ
Segment Is Off. -VOO

Resulting Voltage for n n
Segmentc(COM1-8P2) --, n I ~ n n I~ ov 'LJU L-.JLJU Segment Is On.

Voo

-Voo

LCD Controller/Driver

14.2 LCD Controller/Driver

The LCD controller/driver peripheral, shown in Figure 14-5, contains all the
functional blocks and generates the segment and common signals required
to drive an LCD.

Figure 14-5. LCD Controller/Driver Block Diagram

PUC "

fleD

OscOff

~
/

Mux -

Group 7

I
Display I

I Memory I 15x8 Bit I
Mux -

Group 1 I

Mux

Mux

ADR 31h - 3Fh

Group 1-7

LCD 7

Control LCDM2

and

"" Mode Group 1-7
Register

ADR: 30h

OM"<t
::2:::2:::2:
000
000
...J...J...J

I LCDM1

Timing Generator

~~29/029/
CMPI

DCTL r---TS28/028

I I I
I

Segment I
I Output
I Control
I

DCTL
Seg 2 ~S2/02

I

~Seg1 i
I

----C::>S1

I
~sego ----C::>SO

'4 i"4i" i"4i"
I
I ,~,

Group1-7
Common ~COM
Output ~COM2

Control ~COM1
f-c>COM

3

D

f-- -C> R33

-~ f-- -<J R23
Analog Voltage !"'"

-<J R13 Multiplexer I-

I- -<J RD3
r

f

Liquid Crystal Display Drive 14-7

LCD Controller/Driver

14.2.1 LCD Controller/Driver Features

The LCD controller/driver features are:

0 Display memory

0 Automatic signal generation

0 Support for 4 types of LCDs:

• Static

• 2 MUX, 1/2 bias

• 3 MUX, 1/3 bias

• 4 MUX, 1/3 bias

0 Multiple frame frequencies

o Unused segment outputs may be used as general-purpose outputs.

o Unused display memory may be used as normal memory

o Operates using the basic timer with the auxiliary clock (ACLK).

The LCD-line frame frequencies include:

o Static mode: fframe = ~ x fleD

o 2 MUX:

o 3 MUX:

o 4 MUX:

1
fframe = "4 x fleD

fframe = i x fleD

1
fframe = 8" x fleD

14.2.2 LCD Timing Generation

14-8

The LCD controller uses the fleD signal from the Basic Timer1 (discussed in
Chapter 10) to generate the timing for common and segment lines. The
frequency fleD of signal is generated from ACLK. Using a 32,768-Hz crystal,
the fleD frequency can be 1024 Hz, 512 Hz, 256 Hz, or 128 Hz. Bits FRFQ1
and FRFQO allow the correct selection of frame frequency. The proper
frequency fleD depends on the LCD's requirement for framing frequency and
LCD multiplex rate, and is calculated by:

fleD = 2 x MUX rate x fFraming

A 3 MUX example follows:

LCD data sheet: fFraming = 100 Hz 30 Hz

FRFQ: fleD = 6 x fFraming

fleD = 6 x 100 Hz = 600 Hz ... 6 x 30 Hz = 180 Hz

Select fleD: 1024 Hz, 512 Hz, 256 Hz, or 128 Hz

fleD = 32,768/128 = 256 Hz FRFQ1 = 1; FRFQO = 0

LCD Controller/Driver

14.2.3 LCD Voltage Generation

The voltages required for the LCD signals are supplied externally and are
applied to pins R33, R23, R13, and R03 (see Figure 14-6). Generally, the
voltages are generated with an equal-weighted resistor ladder. Note that pins
R33 and R03 are not present on all MSP430 devices. Check the datasheet for
the presence of these pins.

When pins R33 and R03 are not preset, voltage V1 is tied to VCC and voltage
V5 is tied to Vss internally. When these pins are present, they provide two
advantages to the user. First, R33 is a switched-Vcc output. This allows the
power to the resistor ladder to be turned off reducing current consumption.
Also, when these pins are present, R03 is not tied internally to V ss. This allows
the user to control the offset of the LCD voltages thereby providing for
temperature compensation or contrast adjustment. If this not desired, the user
may simply connect R03 to VSS'

Figure 14-6. External LCD Module Analog Voltage

Analog Levels

LCD Phases
LCDMa
LCDM3
LCDM4
OscOff

OscOff
X
1
a
a
a

~
~~ ~~

Segn
~~ COMn

I
VA VB VC VD Ron

Analog MUX

~

:
..
r

: ..
LCDM4 LCDM3 LCDMa VA

X X a a
X X X a
a a V5N1
a 1 V5N1

X V5N1

V 1 I--_e___--l

R23
V21----<

V3 -

R13
V4

Ra3 :I:
V5

VB VC
a a
a a

V1N5 V5N1
V1N5 V3N3
V2N4 V4N2

t Indicates the position of the Ron switch, controlled by the LCDMO bit.

Voltage Connections
For the Different Modes:

3Mux
Static 2Mux 4Mux

Vcc

Vss

R

Vss

R

Vss

VD RONt
a OFF
a OFF

V1N5 ON
V1N5 ON
V1N5 ON

:I: Supply pins for V1 and V5 are optional. Devices without R33 and RD3 pins have V1 tied to V CC and V5 tied to VSS.
In this case, the resistor ladder should also be tied to VCC and VSS.

R

R

R

Liquid Crystal Display Drive 14-9

LCD Controller/Driver

14.2.4 LCD Outputs

The LCD outputs use transmission gates to transfer the analog voltage to the
output pin where they are used to drive liquid crystal displays. Groups of LCD
outputs can be configured to operate as digital outputs as shown in
Figure 14-7.

Figure 14-7. Schematic of LCD Output

14-10

Analog Levels

VC

VD

Control
COMD-3

VA

VB

Control
SegmenVCOMD-3

VA

VB

Control
SegmenVCOMO-3

(LCDM5, 6, 7)

Data (LCD RAM,
Bit 0 to Bit 3

Bit 4 to Bit 7)

Analog Switches

r--'
1 0 1

!f!
~----------~C>

1 1

COMO
• • •

COM3

10 1
1 1

!f!
-I---------lC> SegO

Seg1

1 1
10 1
10

1
L .J

Seg2
• • • Segn

Out2
• • • Outn

S2/02
• • •

Sn/On

NOTE: The signals VA,VB,VC, and VO are from the LCD analog voltage generator.

LCD Controller/Driver

14.2.4.1 LCD Port as General-Purpose Outputs

The logic level of an Oxx output is defined by the 4 display memory bits
assigned to the pin (see Figure 14-8). All 4 bits must have the same value or
the output will not be static. For example, if pin 810/010 is used as a general
purpose output, Its state is defined by bits 0-3 at memory address 036h and
the bits must have the same value.

Figure 14-8. Segment Line or Output Line

Segment Information
From Display Memory

Segment Information
From Display Memory

Parallel-Serial
Conversion

Analog Levels

Segn

Sxx

~
D

SXX/Oxx

o

SegmenVPort L..---ooor-----..J

Control
Oxx

~
1J'i'7I.'.' t:iJ

Sxx/Oxx

Parallel-Serial
Conversion

Analog Levels

Segn

Liquid Crystal Display Drive 14-11

Mixed LCD and Port Mode Application

14.2.4.2 Mixed LCD and Port Mode Application

Figure 14-9 illustrates the mixed mode using a four-MUX LCD drive for 13
digits and one port group as digital outputs. In the example below, digital
outputs 026 - 029 are defined to be general-purpose outputs by bits LCDM5,
LCDM6, and LCDM7 in the LCDCTL register. In this example, the value of the
LCDMx bits is 06h.

Figure 14-9. Mixed LCD and Port Mode Application

14-12

MDB 825 66 824 ••• 81 66 80

BIT I 7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 I
COM I 3 I 2 I 1 I 0 I 3 I 2 I 1 I 0 I

0OO3Fh 029 029 029 029 028 028 028 028

0003Eh 027 027 027 027 026 026 026 026

0003Dh h 9 fed c b a r= Digit13

0003Ch h 9 fed c b a Digit 12

0003Bh h 9 fed c b a Digit 11

0003Ah h 9

00039h h 9

00038h h 9

00037h h 9

00036h h 9

00035h h 9

0OO34h h 9

00033h h 9

00032h h 9
00031h h 9

00030h 1 1

MAB

fed c b a Digit 10

Digit 9

Digit 8

Digit 7

Digit 6

fed c b a

fed c b a

fed c b a

fed c b a

f e
f e
f e
f e
f e

o 1

deb

deb

deb

deb

deb

1 1 X

a Digit 5

a Digit 4

a Digit 3

a Digit 2

a ~ Digit 1

1 LCDCTL

029

028

'-c>

027

---C>

026

-C>

LCD Port-Timer/Port Comparator Input

14.2.4.3 LCD Port-Timer/Port Comparator Input

The comparator input associated with the Timer/Port module is typically
shared with one segment line as shown in Figure 14-10. The LCD segment
function is selected for this pin after the PUC signal is active. The comparator
input is selected once the CPON bit-located in the Timer/Port module-has
been set. Once the CPON bit is set, the comparator input remains selected for
the pin until it is deselected by a PUC signal. Therefore, this pin is not available
for the LCD function if it is used for the comparator function. Additionally, once
selected for the CMPI function, it can not be switched back to the LCD function
without a PUC (power-up clear).

Figure 14-10. Schematic of LCD Pin - Timer/Port Comparator

r------------------------,
I LCD Module sxx/oxx~ I L_________________ _ _____ ~
r----------------- ------,

° I Sxx/OxxlCMPI

CPON ------I

PUC >------1

CPON

CMP~f-1_-<
,0

Vss

CMPI

CPON

VCC/4
~VCC

I VSS ~ CIN

Timer/Port Mod'-u-Ie---SC-h-e-m-a-ti-c -de-t-a-iI ---<~ I C]

~------------------------~
NOTE: The comparator is selected with the CPON bit. It remains selected, consumes current,

and the comparator reference consumes current as long as the CPON bit is set.

Liquid Crystal Display Drive 14-13

LCD Port-Timer/Port Comparator Input

14.2.5 LCD Control Register

The LCD control register contents define the mode and operating conditions.
The LCD module is byte structured and should be accessed using byte
instructions (suffix .8). All LCD control register bits are reset with a PUC signal.

Figure 14-11.LCD Control and Mode Register

7 o

14-14

LCDCTL
030h

rw-O rw-O

LCOMO:

LCOM1:

LCOM2 to 4:

rw-O rw-O rw-O rw-O rw-O rw-O

LCOMO = 0: The timing generator is switched off.
Common and segment lines are low.
Ron is off.
Outputs selected as port output lines are not
affected.

LCOMO = 1: Common and segment lines active.

Not used

Ron is on.
Outputs selected as port output lines are not
affected.

These three bits select the display mode as described in
Table 14-1.

LCD Port-Timer/Port Comparator Input

Table 14-1. LCOM Selections

LCDM4 LCDM3 LCDM2 Display Mode

X X 0 All segments are deselected. The port outputs
remain stable. This supports flashing LCD
applications.

0 0 1 Static mode

0 1 1 2 MUXmode

1 0 1 3 MUX mode

1 1 1 4 MUXmode

The primary function of the LCDM2 bit is to support flashing or blinking the
LCD. The LCDM2 bit is logically AN Oed with each segment's display memory
value to turn each LCD segment on or off (see Figure 14-12). When
LCDM2=1, each LCD segment is on or off according to the LCD display
memory. When LCDM2=O, each LCD segment is off, therefore blanking the
LCD.

Figure 14-12. Information Control

SO.S1: Segment ---------10
Information 1-----.. To Output Control

LCDM2-----1

S2 -S29: Segment
Information ~----------1 f----•• To Output Control

LCDM2

Groupn (1-7)

LCDM5 to 7: These three bits select groups of outputs to be used for LCD
segment drive or as general-purpose outputs, as described
in Table 14-2. The pins selected as general-purpose outputs
reflect the state of the corresponding display memory bits and
no longer function as part of the LCD segment lines

Table 14-2. LCOM Signal Outputs for Port Functions

LCOM7 LCOM6 LCOM5

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

5 = LCD segment function
o = GP output function

GroupO Group1 Group2 Group3

50-51 02-05 06-09 010-
013

50-51 52-55 06-09 010-
013

50-51 52-55 56-59 010-
013

50-51 52-55 56-59 510-
513

50-51 52-55 56-59 510-
513

50-51 52-85 86-89 510-
513

50-81 82-85 86-59 810-
813

50-81 52-55 56-59 810-
813

Group4 Group5

014- 018-
017 021

014- 018-
017 021

014- 018-
017 021

014- 018-
017 021

514- 018-
517 021

514- 818-
517 521

814- 518-
817 821

514- 518-
517 521

Group6

022-
025

022-
025

022-
025

022-
025

022-
025

022-
025

822-
825

822-
525

Group7

026-
029

026-
029

026-
029

026-
029

026-
029

026-
029

026-
029

826-
529

(-reset
condition

Liquid Crystal Display Drive 14-15

LCD Port-Timer/Port Comparator Input

14.2.6 LCD Memory

The LCD memory map is shown in Figure 14-13. Each individual memory bit
corresponds to one LCD segment. To turn on an LCD segment the memory
bit is simply set. To turn off an LCD segment, the memory is reset.

The mapping of each LCD segment in an application depends on the
connections between the '430 and the LCD and on the LCD pin-out. Examples
for each of the four modes follow including an LCD with pin out, the
'430-to-LCD connections, and the resulting data mapping.

Figure 14-13. Display Memory Bits Attached to Segment Lines

Associated
Common Pin

Address

03Fh
03Eh
03Dh
03Ch
03Bh
03Ah
039h
038h
037h
036h
035h
034h
033h
032h
031h

7

I 0 I Associated '430
o n Segment Pin

r-~~~-r--~~--~~--'

-- 28 29,28
~~~~~--~-+--+-~~ -- 26 27,26 

-- 24 25,24 
-- 22 23,22 
-- 20 21,20 
-- 18 19, 18 
-- 16 17, 16 
-- 14 15, 14 
-- 12 13, 12 
-- 10 11, 10 

8 9,8 
6 7,6 
4 5,4 

-- 2 3,2 
0 1,0 

/ ''------,v,....-~/ '\....------,v.....---' 
Sn+1 Sn 

14.2.6.1 Example Using the Static Drive Mode 

14-16 

The static drive mode uses one common line, COMO. In this mode, only bit 0 
and bit 4 are used for segment information. The other bits can be used like any 
other memory. 

Figure 14-14 shows an example static LCD, pin-out, LCD-to-'430 
connections, and the resulting data mapping. Note this is only an example. 
Segment mapping in a user's application completely depends on the LCD 
pin-out and on the '430-to-LCD connections. 



LCD Port-Timer/Port Comparator Input 

Figure 14-14. Example With the Static Drive Mode 

LCD 

Pinout and Connections Display Memory 

Connections COM I 3 I 2 I 1 I 0 I 3 I 2 I 1 I 0 I 
1'430 Pins 1 1 LCD Pinout 1 

MA B 03Fh -- -- -- f -- -- -- e n =28 
PIN COMO 

SO ...... 1 1a 
S1 ...... 2 1b 

03Eh -- -- --
03Dh -- -- --

S2 ...... 3 1c 03Ch -- -- --
S3 ...... 4 1d 03Bh -- -- --
S4 ...... 5 1e 
S5 ...... 6 1f 03Ah -- -- --
S6 ...... 7 19 039h -- -- --
S7 ...... 8 1h 038h -- -- --
S8 ...... 9 2a 
S9 ...... 10 2b 

037h .. -- --
S10 ...... 11 2c 036h -- -- .. 
S11 ...... 12 2d 035h ._- -. --
S12 ...... 13 2e 034h .. -. .. 
S13 ...... 14 2f 
S14 ...... 15 29 033h -- -- --
S15 ...... 16 2h 032h . - _ .. .. 
S16 ...... 17 3a 031h - .- ~."" 

S17 ...... 18 3b I I .... j 

S18 ...... 19 3c 
S19 ...... 20 3d 
S20 ...... 21 3e 
S21 ...... 22 3f 
S22 ...... 23 39 
S23 ...... 24 3h 

r 3 2 1 
GO 

U 
~ 

S24 ...... 25 4a Sn+1 
S25 ...... 26 4b 
S26 ...... 27 4c 
S27 ...... 28 4d 
S28 ...... 29 4e 
S29 ...... 30 4f 
NC ...... 31 4g 
NC ...... 32 4h 

COMO ...... 33 COMO 
COM1 NC 
COM2 NC 
COM3 NC 

d -- -- --
b -- -- --
h -- -- --
f -- -- --
d .- -- --
b -- -- --
h -- .. --
f -- .- --
d .- -- --
b . _- -. 
h ' --' ..- -
f ..,. .- .. 

.-' 

d -- ,~. .,': .... , .. 
. , 

b 
.1"" 

:.:. ~"": ,~- (--
I .•. 1 ",,1 , (: 

0 ';1.'2,' 

~ 
Sn 

c 

a 
g 
e 
c 

a 
g 
e 
c 
a 
g 
e 
C 

a 
I 
0 

26 

24 
22 
20 

18 
16 

14 
12 
10 

8 
6 
4 

2 
0 

~ sG B 
~ 

Digit 4 

Digit 3 

Digit 2 

Digit 1 

Parallel-Serial 
Conversion 

14.2.6.2 Example Using Two-MUX, 112-8ias Drive Mode 

The two-MUX drive mode uses COMO and COM1. In this mode, bits 0, 1,4, 
and 5 are used for segment information. The other bits can be used like any 
other memory. 

Uquid Crystal Display Drive 14-17 



LCD Port-Timer/Port Comparator Input 

Figure 14-15 shows an example two-MUX LCD, pin-out, LCD-to-'430 
connections, and the resulting data mapping. Note this is only an example. 
Segment mapping in a user's application completely depends on the LCD 
pin-out and on the '430-to-LCD connections. 

Figure 14-15. Example With the Two-MUX Mode 

LCD 

e 

d 

DIGIT8 ----------------- DIGIT1 

Pinout and Connections 

Connections 

1'430 Pins 1 1 LCD Pinout 1 

80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
810 
811 
812 
813 
814 
815 
816 
817 
818 
819 
820 
821 
822 
823 
824 
825 
826 
827 
828 
829 
NC 
NC 

COMO 
COM1 
COM2 
COM3 

14-18 

PIN COMO COM1 

++ 1 
++ 2 
++ 3 
++ 4 
++ 5 
++ 6 
++ 7 
++ 8 
++ 9 
++ 10 
++ 11 
++ 12 
++ 13 
++ 14 
++ 15 
++ 16 
++ 17 
++ 18 
++ 19 
++ 20 
++ 21 
++ 22 
++ 23 
++ 24 
++ 25 
++ 26 
++ 27 
++ 28 
++ 29 
++ 30 
++ 31 
++ 32 
++ 33 
++ 34 
NC 
NC 

1f 1a 
1h 1b 
1d 1c 
1e 19 
2f 2a 
2h 2b 
2d 2c 
2e 2g 
3f 3a 
3h 3b 
3d 3c 
3e 3g 
4f 4a 
4h 4b 
4d 4c 
4e 4g 
5f 5a 
5h 5b 
5d 5c 
5e 5g 
6f 6a 
6h 6b 
6d 6c 
6e 6g 
7f 7a 
7h 7b 
7d 7c 
7e 7g 
8f 8a 
8h 8b 
8d 8c 
8e 8g 

COMO 
COM1 

Display Memory 

MAB 03Fh 111~l:~lll~rD 

Sn+1 

n=28 
1/2 Digit 8 

26 
Digit? 

24 
22 

Digit 6 
20 

18 
16 

Digit 5 

14 Digit 4 
12 
10 

8 
Digit 3 

6 
Digit 2 

4 

2 
Digit 1 

0 



LCD Port-Timer/Port Comparator Input 

14.2.6.3 Example Using Three-MUX, 1/3-Bias Drive Mode 

The three-MUX drive mode uses COMO, COM 1, and COM2. In this mode, bits 
0, 1,2, 4, 5, and 6 are used for segment information. The other bits can be used 
like any other memory. 

Figure 14-16 shows an example three-MUX LCD, pin-out, LCD-to-'430 
connections, and the resulting data mapping. Note this is only an example. 
Segment mapping in a user's application completely depends on the LCD 
pin-out and on the '430-to-LCD connections. 

Figure 14-16. Example With the 3-MUX Mode 

LCD 

DIGIT10 ---------------- DIGIT1 

Pinout and Connections 

Connections 

1'430 Pins 1 1 LCD Pinout 1 

80 
81 
82 
83 
84 
85 
86 
87 
88 
89 

810 
811 
812 
813 
814 
815 
816 
817 
818 
819 
820 
821 
822 
823 
824 
825 
826 
827 
828 
829 

COMO 
COM1 
COM2 
COM3 

PIN COMO COM1 COM2 

...... 1 

...... 2 

...... 3 

...... 4 

...... 5 

...... 6 

...... 7 

...... 8 

...... 9 

...... 10 

...... 11 

...... 12 

...... 13 

...... 14 

...... 15 

...... 16 

...... 17 

...... 18 

...... 19 

...... 20 

...... 21 

...... 22 

...... 23 

...... 24 

...... 25 

...... 26 

...... 27 

...... 28 

...... 29 

...... 30 

...... 31 
...... 32 
...... 33 
NC 

1e 1f 1y 
1d 19 1a 
1h 1c 1b 
2e 2f 2y 
2d 2g 2a 
2h 2c 2b 
3e 3f 3y 
3d 3g 3a 
3h 3c 3b 
4e 4f 4y 
4d 4g 4a 
4h 4c 4b 
5e 5f 5y 
5d 5g 5a 
5h 5c 5b 
6e 6f 6y 
6d 6g 6a 
6h 6c 6b 
7e 7f 7y 
7d 7g 7a 
7h 7c 7b 
8e 8f 8y 
8d 8g 8a 
8h 8c 8b 
ge 9f 9y 
9d 9g 9a 
9h 9c 9b 
10e 10f 10y 
10d 10g 10a 
10h 10c 10b 

COMO 
COM1 

COM2 

Display Memory 

COM f· 31 2 I 1 I 0 1,.3\1 2 I 1 I 0 I 

MAB 03Fh . ,~- b c h I:'~', a 9 d 
~~~~~--~~~~~~ 

03Eh ...• :".. Y f e;':1':; b c h

03Dh.',,;-, a 9 d h;£\,. y f e
03Ch,,~,' b c h f"'?t;', a 9 d

03Bh :17 y f e l" it b c h

03Ah \§\::\ a 9 d i'; y f e

039h)::\~:{,; b c h ~~ a 9 d

038h :t~:~ y f e [;:~~ b c h

037h;~~ a 9 d I~'\i"~ y f e
036h i'~l; b c h i'lV~' a 9 d

035h ~.±. y f e t':';';" b c h

034h ~:;f'; a 9 d ~,H y f e
033h :.'l} b c h c::;liii\ a 9 d

032h i:, y f e [i:~, b c h

031h,,,\i a 9 d t!8d y f e
,,':,t;· I I I'\\il,\ 1 1 1

n = 28 Digit 10
26
24 Digit 9

22 Digit 8
20
18 Digit 7

16 Digit 6
14
12 Digit 5

10
Digit 4

8 Digit 3
6
4 Digit 2
2

Digit 1 o

~? 0 X~\\ 2 1 0'$'" 2 1 0 I-f""""7.~A Parallel-
G QG 8erial

B _3 3 B
Conversion

~'-----~~--'-------r~-------'~
8n+1 8n

Liquid Crystal Display Drive 14-19

LCD Port-Timer/Port Comparator Input

14.2.6.4 Example Using Four-MUX, 1/3-Bias Drive Mode

The four-MUX drive mode uses all four common lines. In this mode, bits 0
through 7 are used for segment information.

Figure 14-17 shows an example four-MUX LCD, pin-out, LCD-to-'430
connections, and the resulting data mapping. Note this is only an example.
Segment mapping in a user's application completely depends on the LCD
pin-out and on the '430-to-LCD connections.

Figure 14-17. Example With the Four-MUX Mode

LCD

DIGIT15 ---------------- DIGIT1

Pinout and Connections Display Memory

Connections
1'430 Pinsl I LCD Pinout I

PIN COMOCOM1COM2COM3
M

COM I 3 I 2 I 1 I 0 I 3 I 2 I 1 I 0 I

AB 03Fh a b c h f 9 e d

SO +-+ 1 ld le 19 11
51 +-+ 2 lh lc lb la

03Eh a b c h f 9 e d

03Dh a b c h f 9 e d
52 +-+ 3 2d 2e 2g 21 03Ch a b c h f 9 e d
53 +-+ 4 2h 2c 2b 2a
54 +-+ 5 3d 3e 3g 31
55 +-+ 6 3h 3c 3b 3a

03Bh a b c h f 9 e d

03Ah a b c h f 9 e d

56 +-+ 7 4d 4e 4g 41 039h a b c h f 9 e d
57 +-+ 8 4h 4c 4b 4a
58 +-+ 9 5d 5e 5g 51
59 +-+ 10 5h 5c 5b 5a

038h a b c h f 9 e d

037h a b c h f 9 e d
510 +-+ 11 6d 6e 6g 61 036h a b c h f 9 e d
511 +-+ 12 6h 6c 6b 6a
512 +-+ 13 7d 7e 7g 71
513 +-+ 14 7h 7c 7b 7a

035h a b c h f 9 e d

034h a b c h f 9 e d
514 +-+ 15 8d 8e 8g 81
515 +-+ 16 8h 8c 8b 8a
516 +-+17 9d ge 9g 91

033h a b c h f 9 e d

032h a b c h f 9 e d

517 +-+ 18 9h 9c 9b 9a 031h a b c h f 9 e d
518 +-+ 19 10d 10e 109 101
519 +-+20 10h 10c lOb lOa
520 +-+ 21 lld lle 11g 111
521 +-+22 l1h llc l1b lla
522 +-+23 12d 12e 12g 121
523 +-+24 12h 12c 12b 12a
524 +-+25 13d 13e 13g 131
525 +-+26 13h 13c 13b 13a
826 +-+27 14d 14e 14g 141

~
I I I I I I I I
3 2 1 0 3 2 1 0

U
~ ~

Sn+1 Sn

827 +-+28 14h 14c 14b 14a
828 +-+29 15d 15e 15g 151
829 +-+30 15h 15c 15b 15a

COMO +-+ 31 COMO
COMl +-+32 COMl
COM2 +-+33 COM2
COM3 +-+34 COM3

14-20

n =28

26

24

22

20

18

16

14

12

10

8

6

4

2

0

q 3 B
L.......::::...

Digit 15

Digit 14

Digit 13

Digit 12

Digit 11

Digit 10

Digit 9

Digit 8

Digit 7

Digit 6

DigitS

Digit 4

Digit 3

Digit 2

Digit 1

Parallel-
Serial
Conversion

Code t-"X,f'lmOlB'S

14.3 Code Examples

Code examples for the four modes follow.

14.3.1 Example Code for Static LCD

a
b
c
d
e
f
g
h

.sect "lcd1mux",OfOOOh
All eight segments of a digit are often located in four
display memory bytes with the static display method.

.EQU 001h

.EQU 010h

.EQU 002h

.EQU 020h

.EQU 004h

.EQU 040h

.EQU OOSh

.EQU 080h
The register content of Rx should be displayed.
The Table represents the 'on'-segments according to the
content of Rx.

LCD1 .EQU 00031h

LCD15 .EQU 0003Fh

MOV. B Table (Rx), RY

MOV. B Ry, &LCDn

RRA Ry
MOV.B Ry,&LCDn+1

RRA Ry
MOV. B Ry, &LCDn+2

RRA Ry
MOV. B Ry, &LCDn+3

Table .BYTE a+b+c+d+e+f
.BYTE b+c;

. BYTE

Load segment information
into temporary memory.
(Ry) = 0000 0000 hfdb geca
Note:
All bits of an LCD memory

, byte are written
(Ry) = 0000 0000 Ohfd bgec
Note:
All bits of an LCD memory
byte are written
(Ry) = 0000 0000 OOhf dbge
Note:
All bits of an LCD memory

, byte are written
(Ry) = 0000 0000 OOOh fdbg
Note:
All bits of an LCD memory

, byte are written

displays "0"
displays "1"

Uquid Crystal Display Drive 14-21

Code Examples

14.3.2 Example Code for Two MUX, 1/2·Bias LCD

14-22

.sect "lcd2mux",OfOOOh
All eight segments of a digit are often located in two
display memory bytes with the 2MUX display rate

a .EQU 002h
b .EQU 020h
c .EQU 008h
d .EQU 004h
e .EQU 040h
f .EQU OOlh
g .EQU 080h
h .EQU OlOh

The register content of Rx should be displayed.
The Table represents the 'on'-segments according to the
content of Rx.

LCDl .EQU 0003lh

LCD15 .EQU 0003Fh

MOV.B Table(Rx),Ry; Load segment information into
temporary memory.

MOV. B Ry, &LCDn (Ry) = 0000 0000 gebh cdaf
Note:

RRA Ry
RRA Ry
MOV. B Ry, &LCDn +l

Table .BYTE a+b+c+d+e+f

All bits of an LCD memory byte
are written
(Ry) = 0000
(Ry) = 0000
Note:

0000
0000

Ogeb
OOge

hcda
bhcd

All bits of an LCD memory byte
are written

displays "0"

.BYTE a+b+c+d+e+f+g+h displays "8"

. BYTE

Code Examples

14.3.3 Example Code for Three MUX, 1/3-Bias LCD

.sect "lcd3mux",OfOOOh
The 3MUX rate can easily support nine segments for each
digit. The nine segments of a digit are located in
1 1/2 display memory bytes.

a .EQU 0040h
b .EQU 0400h
c .EQU 0200h
d .EQU 0010h
e .EQU 0001h
f .EQU 0002h
g .EQU 0020h
h .EQU 0100h
Y .EQU 0004h

The LSDigit of register Rx should be displayed.
The Table represents the 'on'-segments according to the
LSDigit of register of Rx.
The register Ry is used for temporary memory

LCD1 .EQU 00031h

LCD15 .EQU 0003Fh

ODDDIGRLA Rx LCD in 3MUX has 9 segments per
digit; word table required for
displayed characters.

MOV Table(Rx),Ry; Load segment information to

MOV. B Ry, &LCDn

SWPB Ry
BIC. B #07h, &LCDn +l

BIS. B Ry, &LCDn +l

temporary memo
(Ry) = 0000 Obch
write 'a, g, d, y,
Digit n (LowByte)
(Ry) = Oagd Oyfe
write 'b, c, h' of
(HighByte)

Oagd Oyfe
f, e' of

0000 Obch
Digit n

EVNDIGRLA Rx LCD in 3MUX has 9 segments per
digit; word table required for
displayed characters.

MOV Table(Rx),Ry; Load segment information to

RLA Ry
RLA Ry
RLA Ry
RLA Ry
BIC.B #070h, &LCDn +l

BIS.B Ry, &LCDn +l

SWPB Ry
MOV.B Ry, &LCDn +2

Table .WORD a+b+c+d+e+f
.WORD b+c

. WORD a+e+f+g

temporary memo
(Ry) 0000 Obch
(Ry) 0000 bchO
(Ry) OOOb chOa
(Ry) OObc hOag
(Ry) Obch Oagd

Oagd
agdO
gdOy
dOyf
Oyfe

Oyfe
yfeO
feOO
eOOO
0000

write 'y, f, e' of Digit n+1
(LowByte)
(Ry) = Oyfe 0000 Obch Oagd
write 'b, c, h, a, g, d' of
Digit n+1 (HighByte)

displays "0"
displays "1"

displays "F"

Liquid Crystal Display Drive 14-23

Code Examples

14.3.4 Example Code for Four MUX, 1/3-Bias LCD

14-24

a
b
c
d
e
f
g
h

.sect "lcd4mux",OfOOOh
The 4MUX rate is the most easy-to-handle display rate.
All eight segments of a digit can often be located in
one display memory byte

.EQU 080h

.EQU 040h

.EQU 020h

.EQU 00lh

.EQU 002h

.EQU 008h

.EQU 004h

.EQU 010h

The LSDigit of register Rx should be displayed.
The Table represents the 'on'-segments according to the
content of Rx.

LCDl .EQU 00031h Address of LC Display Memory

LCD15 .EQU 0003Fh

MOV.B Table(Rx),&LCDn

......................

.................... ..

Table . BYTE a+b+c+d+e+f
. BYTE b+c
......................
.................... ..
. BYTE b+c+d+e+g
. BYTE a+d+e+f+g
. BYTE a+e+f+g

n = 1 15
all eight segments are
written to the display
memory

displays "0"
displays "1"

displays "d"
displays "E"
displays "F"

Chapter 15

ADC12+2 A-to-D Converter

The ADC12+2 features include:

o Eight analog or digital input channels

o A programmable current source on four analog pins

o Ratiometric or absolute measurement

o Built-in sample-and-hold

o End-of-conversion interrupt flag

o ADAT register that holds conversion results until the next start of
conversion

o Low-power consumption

o Stand-alone conversion without CPU processing overhead

o Programmable 12-bit or 14-bit resolution

o Four programmable ranges that give 14-bit dynamic range

o Fast-conversion time

o Large supply-voltage range

o Monotonic conversion

Topic Page

15.1 Introduction ... 15-2

15.2 Analog-to-Digital Operation 15-4

15.3 ADC12+2 Control Registers 15-13

15-1

Introduction

15.1 Introduction

The 12+2-bit ADC is a peripheral module accessed using word instructions.
Conversion results are contained in the ADAT register. The converted bits are
visible during a conversion and are immediately available to be read at the end
of conversion in the ADAT register. The conversion result is not cleared until
the next conversion is initiated by setting the SOC bit in the ACTL register. The
SOC bit clears the ADAT register for the new result and starts the ADC12+2
clock for another conversion. Figure 15-1 shows the ADC12+2 module
configuration.

Figure 15-1. ADC12+2 Module Configuration

1S-2

SV ACTL.1, ACTL.12
cc

>--,------~~----------~< AVec
ACTL.2-S

AIN Register

AO
MOB.O

A1
MOB.1

A2
MOB.2

AEN.O

A3
MOB.3

>-------------Mr-.! AEN
A4

AS

AS

A7

Rext

AGND

AEN.x

MOB.4

MOB.S

MOB.S

MOB.7

I MOB.S To MOB.1S

GNO

Analog-To-Digital Converter
RC-Type

r--,
I I
I I
I I

AEN.7

ACTL.O

AOAT 1---l1i4-1" ACTL
I I
I I
I I L __ .l

ACTL.14

MOB, 16 Bit

Introduction

The ADC12+2 module has eight individually-configurable input channels. A
conversion can be made on anyone of these channels at any time. Four of the
channels, AO, A 1, A2, and A3, may also be configured as current source
outputs whose values can be programmed by external resistor Rext. Any of the
current source outputs can be turned on (one at a time) to drive external
sensors in order to make ratiometric measurements. Absolute measurements
can also be made by applying an external reference to pins SVCC or AVoo.

Additionally, the eight channels can be configured as digital inputs. Each input
channel is individually configurable, so each input may be either an analog or
a digital input. The selection is made with the bits in the AEN register. When
used as digital inputs, the values of the digital input signals are read from the
AIN register.

Note:

When sensitive analog conversion takes place, any digital activity on adja
cent channels may cause crosstalk and interference, giving noisy or incor
rect conversion results.

The converter has two modes of operation: 12-bit, and 12+2-bit conversion,
depending on the status of ACTL register bit 11. When the range of the input
signal is known the input range may be preselected and the converter can be
used in 12-bit mode. The converter samples the input and then converts it to
12 bits of resolution within anyone of the four ranges (see subsection 15.2.3).

In 12+2-bit mode (setting ACTL register bit 11), the range is automatically
selected by the converter to resolve to 14 bits. The input is sampled twice: once
for the 2-bit range selection, and once again for the remaining 12-bits of the
conversion, to give a 12+2-bit result.

In both modes, when a conversion is completed, the interrupt flag (EOC) is set
automatically. The EOC signal disables the ADC clock to conserve power until
the SOC bit is set again.

Note: ADC, Start-of-Conversion

A conversion must always be completed before the next conversion is
initiated. Otherwise, unpredictable conversion data will result.

When powered-down (Pd bit in ACTL register), the ADC current consumption
is stopped. This is valid while SV CC is not externally driven. Upon a conversion
start-up or a power-up signal the converter wakes up, but it can take up to 6 Ils
to reach steady-state conditions.

ADC12+2 A-to-D Converter 15-3

Analog-to-Digital Operation

15.2 Analog-to-Digital Operation

The following sections describe the ADC12+2 and operation.

15.2.1 AID Conversion

15-4

After power-up, the ACTL register must be programmed to make a ratiometric
or absolute measurement and to manually or automatically select a range. In
manual (12-bit) mode, once the range bits are selected they cannot be
changed during the conversion, as this invalidates the results.

Setting the SOC bit in the ACTL register activates the ADC clock to begin a
new conversion. The conversion is based on a successive approximation
technique that uses a resistor array to resolve the M MSBs first, and uses a
switched capacitor array to resolve the remaining L LSBs.

The resistor array, consisting of 2M individually and equally weighted resistors,
forms a DAC; the capacitor array, conSisting of L capacitors, forms an AID
charge redistribution. The capacitors are binary-weighted. The number of
capacitors corresponds to the converter range, or to the digital-output code
L bits.

The sequence, shown in Figure 15-2, starts by selecting the applicable analog
channel and sampling the analog-input voltage onto the top plates of the
capacitor array. The analog multiplexer is then disconnected from the ADC
and the analog input does not need to be present after this sample period.

A successive approximation is performed on the resistor string to find the tap
that corresponds to a voltage within 2L LSBs of VIN. This yields the VH and
VL voltages across one element of the resistor array, and resolves the M
MSBs. The capacitor array then resolves the difference voltage (VH-VL) to L
bits of resolution using a similar successive approximation search on the
capacitor array, starting with the MSB capacitor.

This switching procedure continues with the MSB or largest capacitor to the
smallest (LSB) capacitor in the capacitor array, whereby the initial charge is
redistributed among the capacitors. The particular setting of the switches (both
in the resistor array and in those connected to the bottom plates of the
capacitors) has then induced a change on the top plate that is as close to the
input voltage (VIN) as possible. The switch settings then correspond to the
binary code [12-bit or 12+2-bit] that represents the fraction VINNREF.

The top plate voltage is monitored by a comparator with built-in input-offset
cancellation circuitry that senses whether the input voltage is less or greater
than the voltage on the top plate. It generates a digital output that determines
the direction of the successive approximation search.

When this sequence is completed, the top plate voltage is as close to zero as
the converter resolution allows, and the LSB is determined. An EOC Signal is
then sent to indicate that the conversion result is available from the ADAT
register.

Figure 15-2. ADC12+2 Schematic

~ ACTL.1 (SVccon)

-c--:>.-----I~ ACTL.12(Pd)

Rex! <=><---+-1
2M D<:+ __ ,......--I

0.75 SVCC

C 5+--,......--1 Resistor

B 5+--+--1 Decoder

A~+--+--I

Range
MUX

Analog-to-Digital Operation

AGND <=:>L-t-+--1H-.
ACTL.9,10 ----t---....

ACTL.11

ACTL.O AO<=>-+-~~-~
A1 <=>-+-14--+-1 8:1
A2 -C->-+-<_--t-I Input
~ ~ ~~-----~~++~~~++~--~~-~
MC>-----1-1
A51>-----~
A6L>-----~
A7L>-.----~

15.2.1.1 AID Conversion Timing

Input
MUX

ACTL 2.4

ACTL .5

ACTL.14 ACTL.O

MDB,16Bit

After the ADC12+2 module is activated (Pd bit is reset), at least 6 Ils must
elapse before a new conversion is attempted in order to allow the correct
internal biases to be established.

The ADC always runs at one-twelfth the clock rate of the ADCLK. ADCLK is
always MCLK divided by 1, 2, 3, or 4. The ADCLK frequency must be chosen
to meet the conversion time defined in the electrical characteristics (see
device's data sheet). The ADCLK frequency is selected with two bits (ADCLK)
in control register ACTL. If the ADCLK is too fast, an accurate conversion to
12 bits cannot be guaranteed due to the internal time constants associated
with analog input sampling and the conversion network. Also, if the ADCLK is
too slow, an accurate conversion to 12 bits cannot be guaranteed, due to
charge loss within the ADC-capacitor array, even if the input signal is valid and
steady for the required acquisition time.

Sampling the analog input signal takes 12 ADCLK pulses, and the 12-bit
conversion takes 84 (12 x 7) additional ADCLK cycles. Therefore, a 12-bit
conversion with a preselected range takes 96 ADCLK cycles. This is illustrated
in Figure 15-3.

ADC12+2 A-to-D Converter 15-5

Analog-to-Digital Operation

Figure 15-3. ADC12+2 Timing, 12-BitConversion

ADCLKl12

SOC
-----':

Sample ----I

EOC

I

1RXX50

End Of Conversion
I
I

SAR.~11---{:====~========~Co~n~w~rt~in~N~B~im~================t-~~~
~ ~ I •

A2D Mode, Rangel Input Data Valid I New
Channel Selected Valid and Latched I Conversion

In 12+2-bit mode, the analog input signal is sampled twice, each sampling
taking twelve ADCLK clock pulses. After the first sampling of the input signal,
the range conversion occurs and takes 24 ADCLK clocks. After the second
sampling of the input signal (the second sampling occurs automatically), the
12-bit conversion occurs and takes 84 (12 x 7) additional ADCLK clock cycles.
Altogether, the 12+2-bit conversion takes 132 ADCLK cycles as illustrated in
Figure 15-4.

Figure 15-4. ADC12+2 Timing, 12+2-Bit Conversion

15-6

_----..- Power-Up Time

ADCLKl12

PD

SOC __ ---'

Sample
----1

EOC

Start Of Conversion

I
I I

I I~
I I

~--~v--i------------------------~1~6OOC~~ 1 r I
I I End Of Conversion

~ ~ A2D Mode, Range, Input ~ Data Valid
and Latched

Channel Selected Valid
Input
Valid

The input signal must be valid and steady during the sampling period for an
accurate conversion (Figure 15-5). To ensure that supply glitching and ground
bounce errors or crosstalk interferences do not corrupt the results, avoid digital
activity on channels adjacent to the analog input during the conversion.

Analog-to-Digital Operation

Figure 15-5. ADC, Input Sampling Timing

ADCLK

I Start Of Conversion
SOC r
--~ ~---------------------------

ADCLKl12 ___ --+-1 _________ ---', ,'-___ _

Ir---------------------------------, Sample ----fV Sampling Input ,,'-___ _

--~~ I
I I

EOC

SAR.D-13 (I Converting N Bits -----1+ ___ ------- Input Valid ----------.. ..
A2D Mode, Range, -I
Channel Selected

INPUT

15.2.2 AID Interrupt

15.2.3 AID Ranges

____ ------~sa~m~p~lin~g~lnp~u~t-------------~1-------
l---
The ADC12+2 uses the charge redistribution method and thus the internal
switching of the inputs for sampling causes displacement currents to flow in
and out of the analog inputs. These current spikes or transients occur at the
leading and falling edges of the internal sample pulse. They quickly decay and
settle before causing any problems, because the time constant is less than
that of the effective internal RC. Internally, the analog inputs see a nominal RC
consisting of a nominal40-pF (C-array) capacitor in series with a nominaI2-i<n
resistor (Ron of switches). However, if the external dynamic-source impedance
is large, these transients might not settle within the allocated sampling time to
within 12 or 12+2 bits of accuracy.

When an AID conversion is complete, the EOC signal goes high, setting the
interrupt flag ADIFG. The ADIFG flag is located in the SFR registers in IFG2.2.
The flag is automatically reset when the interrupt is serviced.

Two additional bits control the generation of a CPU interrupt: The ADIE bit in
the SFR register (IE2.2) and the GIE bit. The ADIE bit is an individual bit to
enable or disable the AID interrupt-its initial state is reset. The GIE bit is the
global interrupt enable bit. When both bits are set, a CPU interrupt is generated
at the end of an AID conversion.

One of four ranges can be selected manually to yield 12 bits of resolution within
any given range. The range is defined with bits ACTL.9 and ACTL.1 0 prior to
conversion. The converter can also find the appropriate range automatically,
resulting in an overall 12+2-bit conversion.

ADC12+2 A-to-D Converter 15-7

Analog-to-Digital Operation

The ranges are:

0.00 x VREF ::; VIN < 0.25 x VREF

0.25 x VREF ::; VIN < 0.50 x VREF

0.50 x VREF ::; VIN < 0.75 x VREF

0.75 x VREF::; VIN < 1.00 x VREF

Where:

Range A

Range B

Range C

Range D

VREF is the voltage at the SV cc pin, either applied externally or derived by
closing the SVcc switch with bit 12 of the ACTL register.

After the proper range is selected, the input channel, selected by the
applicable bits in the control register, is connected to the converter input. The
ADC processes the signal at the selected input channel, and the software can
then access the conversion result through the AD AT register.

The digital code (decimal) expected within anyone range is:

N = INT \ VIN x 214 _ 213 x ACTL.10 - 212 x ACTL.9\
tyP VREF

Where:

ACTL.10 and ACTL.9 are bits 10 and 9 (respectively) in the ACTL register.

Thus, for a 12-bit conversion, the ranges are:

OOQOh ::; N ::; OFFFh

OOOOh ::; N ::; OFFFh

OOOOh ::; N ::; OFFFh

OOOOh ::; N ::; OFFFh

and for a 12+2-bit conversion:

OOOOh ::; N ::; 3FFFh

Note: ADC12+2 Offset Voltage

Range A

Range B

Range C

Range D

Any offset voltage (Vio) due to voltage drops at the bottom or top of the
resistor array, caused by parasitic impedances to the SV cc pin or the ground
AGND pin, distorts the digital code output and formula.

15.2.4 AID Current Source

15-8

When the ADC12+2 is used in sensor applications in conjunction with resistive
elements, current sources may be required so that the input signal can be
referred back to the supply voltage or voltage reference. This allows a
ratiometric measurement independent of the accuracy of the reference.

One of four analog channels can be used for the current-source output, as
shown in Figure 15-6. The current-source (Isource) output can be
programmed by an external resistor (Rext) and is then available on pins AO,
A 1, A2, and A3, with the value:

Isource = (0.25 x SVCc)/Rext

Analog-to-Digital Operation .
Where:

SV CC is the voltage at pin SV CC, and Rext is the external resistor between
pins SV CC and Rext.

Therefore, for ratiometric measurements, the voltage (Vin), developed across
the channel input with the resistive elements (channels AO, A1, A2, and A3
only) is:

Yin = (0.25 x sv cd x (Rsens/Rext)

Where:

Rsens is the external resistive element.

Figure 15-6. AID Current Source

~ ACTL.1 (SVccon)

<=~--j~ ACTL.12(Pd)

0
Rext

0.75 SVcc

Rsens [AGNO

M<->-~r+~---;

C

B

A

2M

2M
Resistor

2M
Decode

2M

A1 <=>-+-~-----j 8:1
A2 ~>-+-i~-------J Input
A3 cY"O 1--"-----------
MC>-----------j
A51>-------------J
MLY-----------;
A7L>-----------;

15.2.5 Analog Inputs and Multiplexer

ACTL2.4

Input

The analog inputs and the multiplexer are described in the following sections.

15.2.5.1 Analog Inputs

The analog-input signal is sampled onto an internal capacitor and held during
conversion. The charge is supplied by the input source, and the charging time
is defined to be twelve ADCLK clocks. Therefore, the external source
resistances and dynamic impedances must be limited so that the RC time
constant is short enough to allow the analog inputs to completely settle to
12-bit accuracy within the allocated sampling time. This time constant is
typically less than 0.8/fADCLK.

High source impedances have an adverse affect on the accuracy of the
converter, not only due to RC-settling behavior, but also due to input voltage
drops as a result of leakage current or averaged dc-input currents (input

ADC12+2 A-to-D Converter 15-9

Analog-to-Digital Operation

switching currents}. Typically, for a 12-bit converter, the error in LSBs due to
leakage current is:

Error (LSBs) = 4 x (IlA of leakage current) x (kQ of source resistance}/(volt
of VREF).

Example: 50-nA leakage, 10-kQ source resistance, 3-V VREF results in
0.7 LSBs of error.

This also applies to the output impedance of the voltage-reference source
VREF. The impedance must be low enough to enable the transients to settle
within (0.2/ ADCLK) seconds and to generate leakage-current-induced errors of
« 1LSB.

15.2.5.2 Analog Multiplexer

The analog multiplexer selects one of eight single-ended input channels, as
determined by the ACTL register bits. It is based on a T-switch to minimize the
coupling between channels, which corrupts the analog input. Channels that
are not selected are isolated from the ADC and the intermediate node
connected to the analog ground (AGND) so that the stray capacitance is
grounded to eliminate crosstalk.

Figure 15-7. Analog Multiplexer

R-100 Q ,...----.-....--- ACTL.9,1 0

Input

ESD Protection

OV

Crosstalk exists because there is always parasitic coupling capacitance
across and between switches. This can take several forms, such as coupling
from the input to the output of an off switch, or coupling from an off-analog input
channel to the output of an adjacent on output channel, causing errors. Thus,
for high-accuracy conversions, crosstalk interference must be minimized
through shielding and other well-known printed-circuit board (PCB) layout
techniques.

15.2.6 AID Grounding and Noise Considerations

15-10

As with any high-resolution converter (~ 12 bits), care and special attention
must be given to the printed-circuit board layout and the grounding scheme to
eliminate ground loops and any unwanted parasitic components/effects and
noise. Many common techniques are documented in application notes that
address these issues.

Ground loops can be formed when the ADC12+2 resistor-divider return
current flows through traces that are common to other analog or digital

Analog-to-Digital Operation ___________________________ '_._I1_'_.n_~l __________ w_~!_, ___________________________ _

circuitry. This current can generate small unwanted offset voltages that can
add to or subtract from the ADC reference or input voltages. One way to avoid
ground loops is to use a star-connection scheme forthe AGND; in this way, the
ground or reference currents do not flow through any common input leads,
eliminating any voltage errors (see Figure 15-8).

Figure 15-8. AID Grounding and Noise Considerations

VREF +
-

AID AVec

$O.'"F SVCC Tantalum Ceramic

RTOP (Internal)
-=

RBOT (Internal)

DVCC
AO. . . 7 7 O.'"F Tantalum Ceramic

AGND

DGND

The digital ground (DGND) and the analog ground (AGND) can also be star
connected together. However, if separate supplies are used, two reverse
biased diodes limit the voltage difference to less than ± 700 mV (see
Figure 15-8).

Power-supply rippling and noise spikes from digital switching or switching
power supplies can cause conversion errors. Normally, the internal ADC noise
is very small and the total input-referred noise is far less than one LSB, so the
output code is fairly stable. However, as noise couples into the device through
the supply and ground, the noise margin is reduced, and code uncertainty and
jitter can result. Several readings might be required to average out the noise
effects.

Another consequence of noise is that, as one of the reference voltages SVCC
or VREF is reduced, the absolute value of the LSB is also reduced. Therefore,
the noise becomes even more dominant. Thus, a clean, noise-free design
becomes even more important to achieve the desired accuracy.

In addition to physical layout techniques, adding carefully-placed bypass
capacitors returned to the respective ground planes helps to stabilize the
supply current and minimize the noise.

ADC12+2 A-to-D Converter 15-11

Analog-to-Digital Operation

15.2.7 AID Converter Input and Output Pins

15.2.7.1 Input Pins

The following sections describe the various ADC12+2 pins.

There are two different types of input signals: analog signals AO through A7,
and signals ISOURCE and SVcc. The input signals coming from channels AO
to A7 are configurable as ADC analog signals or as digital inputs (see
Figure 15-9). Pin SVCC is used as an output or input. It is an input when the
internal SVcc switch is off and the VREF is applied externally. It is an output
when the internal SVcc switch is on.

Figure 15-9. ADC12+2lnput Register, Input Enable Register

ACTL.2-S

AO

A1

A2

A3

A4

AS

A6

A?

Fromffo AOC

lS-12

AOx
1+---. MOB.O

A1x
1+----" MOB.1

•
•
• A2x 1+---. MOB.2 -----.1

A3x
1+----" MOB.3 -----.1

A4x
1+----. MOB.4

ASx 1+---. MOB.S

A6x
1+----. MOB.6

A?x

•
•
•
• 1+---. MOB.? -----.1

AIN 1- MOB.S To MOB.1S

Register

16

MOB

AEN REG

AEN.O

AEN.1

AEN.2

AEN.3

AEN.S

AEN.6

AEN.?

15.2.7.2 Output Pins

15.2.7.3 Supply Pins

ADC12+2 Control Registers

There are two different types of output signals: outputs AO, A 1, A2, A3, and
output SVcc. Current flows out of one of the analog pins AO, A1, A2, A3 if the
current source function is selected. An external resistor between Rext and
SV CC determines the amount of current. The SV CC pin outputs a voltage just
below AVcc when the SVcc switch is on.

There are four supply pins to split the digital and analog current paths: AVcc,
DV cc' AGND, and DGND. Some of the MSP430 family members may have all
four supply pins bonded out, while others may have analog and digital Vcc
and/or GND rails internally connected. Check the specific device's data sheet
for configuration.

15.3 ADC12+2 Control Registers

The four ADC12+2 control registers are described in Table 15-1.

Table 15-1. ADC 12+2 Control Registers

15.3.1

Register Short Form Register Type Address Initial State

Input AIN Read only 0110h

Input enable AEN Read/write 0112h Reset

ADC control ACTL Read/write 0114h See Figure 15-13

Reserved 0116h

ADC Data ADAT Read 0118h

Input Register AIN

When any of the inputs AO to A7 are configured as digital inputs, the digital
values are read from the AIN register.

Input register AIN is a read-only register connected to the 16-bit MDB;
however, only the register low byte is implemented. MDB.O to MDB.7
correspond to AO to A7 as shown in Figure 15-10. The register high byte is
read as OOh.

Figure 15-10. Input Register AIN

AIN
110h

MOB. 15
MOB. 8

MOB. 7 MOB. 0

A7x A6x A5x A4x A3x A2x A1x AOx

The signal at the corresponding input is logically ANDed with the applicable
enable Signal (see Figure 15-9). Unselected (disabled) bits are read as O.

ADC12+2 A-to-D Converter 15-13

ADC12+2 Control Registers

15.3.2 Input Enable Register AEN

Input enable register AEN, shown in Figure 15-11, is a read/write register
connected to the 16-bit MDB; however, only the register low byte is
implemented. MDB.O to MDB.7 correspond to AO to A7. The register high byte
is read as OOh.

Figure 15-11. Input Enable Register AEN

AIN
112h

MOB. 15
MOB. 8

MOB. 7 MOB. 0

rO rO rO rO rO rO rO rO rw-O rw-O rw-O rw-O rw-O rw-O rw-O rw-O

The input enable register bits control the definition of the individual bit:

AEN.x = 0: Analog input. The bit read while accessing the AIN register is O.

AEN.x = 1: Digital input. The bit read while accessing the AIN register
represents the logic level at the applicable pin.

The initial state of all AEN bits is reset.

15.3.3 ADC12+2 Data Register ADAT

The ADC data register (ADAT), shown in Figure 15-12, holds the result of the
analog-to-digital conversion. The register data at the end of a conversion are
correct until another conversion begins by setting the SOC bit.

Figure 15-12. ADC12+2 Data Register ADAT

MOB. 15 MOB. 0

t t t t t t t ttl 1 1 t ttl
AOAT I
0118h 0 I 0 10 I 0 I MSB I I I I I I I I I I I LSB I

rO rO rO rO

MOB. 15 MOB. 0

t ! t t t t t ttl 1 1 t ttl
AOAT I
0118h

15-14

o I 0 I RA 1 I RAO IMSB I I I I I I I I I I I LSB I
rO rO

ACTL.11 = 0

ACTL.11 = 1

AOC12+2 Contro/I-l&>,,,,<:j'&>r<:

15.3.4 ADC12+2 Control Register ACTL

The ADC12+2 control register (ACTL) is illustrated in Figure 15-13.

Figure 15-13. AOC12+2 Control Register ACTL

ACTL
0114h

MDB.15 MDB.O

rO rw-O rw-O rw-1 rw-O rw-O rw-O rw-O rw-O rw-O rw-O rw-O rw-O rw-O rw-O (w)r-O

Bit 0: Start of conversion
Setting this bit starts the ADC conversion. It is automatically reset.

Bit 1: Source of VREF
ACTL.1 = 0: Switch SVee is off. The ADC reference voltage

must be supplied from an external source.
ACTL.1 = 1: Switch SVee is on. The SVee pin is connected to

Vee internally and configured as an output. The
ADC reference voltage must not be supplied from
an external source.

Bits 2-5: AID input selection
These bits select the channel for conversion as described in
Table 15-2. Channels should be changed only after completing a
conversion. Changing the channel while a conversion is active
invalidates the conversion in progress.

Table 15-2.AlO Input Selection

ACTL.5 ACTL.4 ACTL.3 ACTL.2 Channel

0 0 0 0 AO

0 0 0 A1

0 0 0 A2

0 0 A3

0 0 0 A4

0 0 1 A5

0 0 A6

0 1 1 1 A7

X X X NONE

Bits 6-8: AID current source output selection
These bits select the channel for current source output as
described in Table 15-3. Channels should be changed only after
completing a conversion. Changing the channel while a conversion
is active invalidates the conversion in progress.

ADC12+2 A-to-O Converter 15-15

ADC12+2 Control Registers

Table 15-3. AID Current Source Selection

ACTL.8 ACTL.7 ACTL.6 Channel

0 0 0 AO

0 0 A1

0 0 A2

0 A3

X X NONE

Bits 9-11 : Range selection
These bits select the range for 12-bit mode conversion as
described in Table 15-4. They must not be changed after a
conversion starts. Any manipulation of these bits during
conversion results in incorrect conversion data. Their states are
ignored when 12+2-bit mode is selected.

Table 15-4. Range Selection

ACTL.11 ACTL.10 ACTL.9 Range

0 0 0 A

0 0 B

0 0 C

0 1 D

X X Auto

Bit 11: Conversion mode

Bit 12:

ACTL.11 = 0: 12-bit mode selected. The range selection bits
ACTL.9 and ACTL.1 0 must be used for manual
range selection.

ACTL.11 = 1: 12+2-bit mode selected. The automatic range
selection is active. The state of the range
selection bits ACTL.9 and ACTL.1 0 is don't care.

Power down (Pd)
ACTL.12 = 0: ADC12+2 is powered. Note, the ADC12+2

needs about 611S to stabilize after bit Pd is reset.
ACTL.12 = 1: SV CC switch is off.

Comparator is powered down.
Current source is off.

Bit 13, 14: ADCLK
The ADC12+2 clock is selected as described in Table 15-5.

Table 15-5.ADCLK Clock Frequency

Bit 15:

15-16

ACTL.14 ACTL.13

Reserved

o 0

o 1

o

ADCLK

MCLK

MCLKl2

MCLKl3

MCLKl4

lUI III

Appendix A

Peripheral File Map
1111

This appendix summarizes the MSP430x3xx peripheral file (PF) and control
bit information into a single location for reference.

Each PF register is presented as a row of boxes containing the control or status
bits belonging to the register. The register symbol (e.g. POIN) and the PF hex
address are to the left of each register.

Topic Page

A.1 Overview•..•.....•......••....•••.....••.••.•............ A-2

A.2 Special Function Register of MSP430x3xx Family, Byte Access ... A-2

A.3 Digital va, Byte Access•.••.••.•.•..•.••••..•..••.....•.•• A-3

A.4 LCD Registers, Byte Access A-5

A.S 8-Bit Timer/Counter, Basic Timer, Timer/Port, Byte Access ..••••• A-6

A.6 FLL Registers, Byte Access A-6

A.7 EPROM Control Register and Crystal Buffer, Byte Access ..•.•... A-7

A.S USART, UART Mode (Sync::O), Byte Access ...•................• A-7

A.9 USART SPI Mode (Sync::1), Byte Access A-8

A.10 ADC12+2, Word Access•....•.•.•...•••••..••..•••....••• A·9

A.11 Watchdog/Timer, Word Access A-10

A.12 Hardware Multiplier, Word Access ...••..•.•.•••............••. A-10

A.13 TimecA Registers, Word Access A-11

A-1

Overview

A.1 Overview

Bit accessibility and/or hardware definitions are indicated following each bit
symbol:

0 rw: Read/write

0 r: Read only

0 rO: Read as 0

0 r1 : Read as 1

0 w: Write only

0 wo: Write as 0

0 w1: Write as 1

0 (w): No register bit implemented; writing a 1 results in a
pulse. The register bit is always read as O.

0 hO: Cleared by hardware

0 h1 : Set by hardware

0 -0,-1: Condition after PUC signal active

0 -(0),-(1): Condition after POR signal active

The tables in the following sections describe byte access to each peripheral
file according to the previously-described definitions.

A.2 Special Function Register of MSP430x3xx Family, Byte Access

OOOFhrl ____ -; ______ +-____ _;------+-----~r_----_;------_;------_;

Module enable 2, ME2
0005h

Module enable 1, ME1
0004h

Interrupt flag 2, IFG2
0003h

Interrupt flag 1, IFG1
0002h

Interrupt enable 2, IE2
0001h

Interrupt enable 1, IE1
OOOOh

I

BTIFG
rw

BTIE
rw-O

t ADIE - ADC12+2 interrupt enable (32x devices)
TPIE - Timer/Port interrupt enable (31x devices)

:j:TPIE - Timer/Port interrupt enable (32x, 33x devices)

NMIIFG
rw-O

ADIFG
rw-O

POIFG.1 POIFG.O
rw-O rw-O

TPIE:j: ADIEt

rw-O TPIEt
rw-O

POIE.1 POIE.O
rw-O rw-O

Note: SFR bits are not implemented on devices without the corresponding peripheral.

A-2

UTXE
URXE

rw-O
USPIIE

rw-O

UTXIFG URXIFG
rw-O rw-O

OFIFG WDTIFG
rw-1 rw-O

UTXIE URXIE
rw-O rw-O

OFIE WDTIE
rw-O rw-O

A.3 Digital 110, Byte Access

Bit# -

Function select, P4SEL
001Fh

Direction register, P4DIR
001Eh

Output register, P40UT
001Dh

Input register, P41N
001Ch

Function select, P3SEL
001Bh

Direction register, P3DIR
001Ah

Output register, P30UT
0019h

Input register, P31N
0018h

0017h

0016h

Interrupt enable, POlE
0015h

Interrupt edge select, POlES
0014h

Interrupt flags, POIFG
0013h

Direction register, PODIR
0012h

Output register, POOUT
0011h

Input register, POIN
0010h

7

P4SEL.7
rw-O

P4DIR.7
rw-O

P40UT.7
rw

P41N.7
r

P3SEL.7
rw-O

P3DIR.7
rw-O

P30UT.7
rw

P31N.7
r

POIE.7
rw-O

POIES.7
rw

POIFG.7
rw-O

PODIR.7
rw-O

POOUT.7
rw

POIN.7
r

6

P4SEL.6
rw-O

P4DIR.6
rw-O

P40UT.6
rw

P41N.6
r

P3SEL.6
rw-O

P3DIR.6
rw-O

P30UT.6
rw

P31N.6
r

POIE.6
rw-O

POIES.6
rw

POIFG.6
rw-O

PODIR.6
rw-O

POOUT.6
rw

POIN.6
r

5 4

P4SEL.5 P4SEL.4
rw-O rw-O

P4DIR.5 P4DIRA
rw-O rw-O

P40UT.5 P40UTA
rw rw

P41N.5 P41NA
r r

P3SEL.5 P3SEL.4
rw-O rw-O

P3DIR.5 P3DIRA
rw-O rw-O

P30UT.5 P30UTA
rw rw

P31N.5 P31N.4
r r

POIE.5 POIEA
rw-O rw-O

POIES.5 POIESA
rw rw

POIFG.5 POIFGA
rw-O rw-O

PODIR.5 PODIR.4
rw-O rw-O

POOUT.5 POOUTA
rw rw

POIN.5 POINA
r r

Access

3 2 o
P4SEL.3 P4SEL.2 P4SEL.1 P4SEL.O

rw-O rw-O rw-O rw-O

P4DIR.3 P4DIR.2 P4DIR.1 P4DIR.O
rw-O rw-O rw-O rw-O

P40UT.3 P40UT.2 P40UT.1 P40UT.O
rw rw rw rw

P41N.3 P41N.2 P41N.1 P4IN.O
r r r r

P3SEL.3 P3SEL.2 P3SEL.1 P3SEL.O
rw-O rw-O rw-O rw-O

P3DIR.3 P3DIR.2 P3DIR.1 P3DIR.O
rw-O rw-O rw-O rw-O

P30UT.3 P30UT.2 P30UT.1 P30UT.O
rw rw rw rw

P31N.3 P31N.2 P31N.1 P3IN.O
r r r r

POIE.3 POIE.2 t t
rw-O rw-O rO rO

POIES.3 POIES.2 POIES.1 POIES.O
rw rw rw rw

POIFG.3 POIFG.2 t t
rw-O rw-O rO rO

PODIR.3 PODIR.2 PODIR.1 PODIR.O
rw-O rw-O rw-O rw-O

POOUT.3 POOUT.2 POOUT.1 POOUT.O
rw rw rw rw

POIN.3 POIN.2 POIN.1 POIN.O
r r r r

t These interrupt enable bits and flags are included in the SFR frame.

Peripheral File Map A-3

Digita//IQ, Byte Access (Continued)

A.3 Digital 110, Byte Access (Continued)

Bit #-

002Fh

Function select, P2SEL
002Eh

Interrupt enable, P21E
002Dh

Interrupt edge select, P21ES
002Ch

Interrupt flags, P21FG
002Bh

Direction register, P2DIR
002Ah

Output register, P20UT
0029h

Input register, P21N
0028h

0027h

Function select, P1 SEL
0026h

Interrupt enable, P11E
0025h

Interrupt edge select, P11ES
0024h

A-4

Interrupt flags, P11FG
0023h

Direction register, P1DIR
0022h

Output register, P10UT
0021h

Input register, P11N
0020h

7

P2SEL.7
rw-O

P21E.7
rw-O

P2IES.7
rw

P2IFG.7
rw-O

P2DIR.7
rw-O

P20UT.7
rw

P21N.7
r

P1SEL.7
rw-O

P11E.7
rw-O

P1IES.7
rw

P1IFG.7
rw-O

P1DIR.7
rw-O

P10UT.7
rw

P11N.7
r

6 5

P2SEL.6 P2SEL.5
rw-O rw-O

P21E.6 P21E.5
rw-O rw-O

P2IES.6 P2IES.5
rw rw

P2IFG.6 P2IFG.5
rw-O rw-O

P2DIR.6 P2DIR.5
rw-O rw-O

P20UT.6 P20UT.5
rw rw

P21N.6 P21N.5
r r

P1SEL.6 P1SEL.5
rw-O rw-O

P11E.6 P11E.5
rw-O rw-O

P1IES.6 P1IES.5
rw rw

P1IFG.6 P1IFG.5
rw-O rw-O

P1DIR.6 P1DIR.5
rw-O rw-O

P10UT.6 P10UT.5
rw rw

P11N.6 P11N.5
r r

4

P2SEL.4
rw-O

P21E.4
rw-O

P2IES.4
rw

P2IFG.4
rw-O

P2DIR.4
rw-O

P20UT.4
rw

P2IN.4
r

P1SEL.4
rw-O

P1IE.4
rw-O

P1IES.4
rw

P1IFG.4
rw-O

P1DIR.4
rw-O

P10UT.4
rw

P1IN.4
r

3 2 o

P2SEL.3 P2SEL.2 P2SEL.1 P2SEL.O
rw-O rw-O rw-O rw-O

P21E.3 P21E.2 P21E.1 P21E.O
rw-O rw-O rw-O rw-O

P2IES.3 P2IES.2 P2IES.1 P2IES.O
rw rw rw rw

P2IFG.3 P2IFG.2 P2IFG.1 P2IFG.O
rw-O rw-O rw-O rw-O

P2DIR.3 P2DIR.2 P2DIR.1 P2DIR.O
rw-O rw-O rw-O rw-O

P20UT.3 P20UT.2 P20UT.1 P20UT.O
rw rw rw rw

P21N.3 P21N.2 P21N.1 P2IN.O
r r r r

P1SEL.3 P1SEL.2 P1SEL.1 P1SEL.O
rw-O rw-O rw-O rw-O

P11E.3 P11E.2 P11E.1 P1IE.O
rw-O rw-O rw-O rw-O

P1IES.3 P1IES.2 P1IES.1 P1IES.O
rw rw rw rw

P1IFG.3 P1IFG.2 P1IFG.1 P1IFG.O
rw-O rw-O rw-O rw-O

P1DIR.3 P1DIR.2 P1DIR.1 P1DIR.O
rw-O rw-O rw-O rw-O

P10UT.3 P10UT.2 P10UT.1 PlOUT.O
rw rw rw rw

P11N.3 P11N.2 P11N.1 P1IN.O
r r r r

A.4 LCD Registers, Byte Access

Bit#

LCD memory 15
003Fh

LCD memory 14
003Eh

LCD memory 13
003Dh

LCD memory 12
003Ch

LCD memory 11
003Bh

LCD memory 10
003Ah

LCD memory 9
0039h

LCD memory 8
0038h

LCD memory 7
0037h

LCD memory 6
0036h

LCD memory 5
0035h

LCD memory 4
0034h

LCD memory 3
0033h

LCD memory 2
0032h

LCD memory 1
0031h

LCD control & mode, LCDC
0030h

7

S29C3
rw

S27C3
rw

S25C3
rw

S23C3
rw

S21C3
rw

S19C3
rw

S17C3
rw

S15C3
rw

S13C3
rw

S11C3
rw

S9C3
rw

S7C3
rw

S5C3
rw

S3C3
rw

S1C3
rw

LCDM7
rw-O

6

S29C2
rw

S27C2
rw

S25C2
rw

S23C2
rw

S21C2
rw

S19C2
rw

S17C2
rw

S15C2
rw

S13C2
rw

S11C2
rw

S9C2
rw

S7C2
rw

S5C2
rw

S3C2
rw

S1C2
rw

LCDM6
rw-O

5

S29C1
rw

S27C1
rw

S25C1
rw

S23C1
rw

S21C1
rw

S19C1
rw

S17C1
rw

S15C1
rw

S13C1
rw

S11C1
rw

S9C1
rw

S7C1
rw

S5C1
rw

S3C1
rw

S1C1
rw

LCDM5
rw-O

LCD Registers, Byte Access

4 3 2 o
S29CO S28C3 S28C2 S28C1 S28CO

rw rw rw rw rw

S27CO S26C3 S26C2 S26C1 S26CO
rw rw rw rw rw

S25CO S24C3 S24C2 S24C1 S24CO
rw rw rw rw rw

S23CO S22C3 S22C2 S22C1 S22CO
rw rw rw rw rw

S21CO S20C3 S20C2 S20C1 S20CO
rw rw rw rw rw

S19CO S18C3 S18C2 S18C1 S18CO
rw rw rw rw rw

S17CO S16C3 S16C2 S16C1 S16CO
rw rw rw rw rw

S15CO S14C3 S14C2 S14C1 S14CO
rw rw rw rw rw

S13CO S12C3 S12C2 S12C1 S12CO
rw rw rw rw rw

S11CO S10C3 S10C2 S10C1 S10CO
rw rw rw rw rw

S9CO S8C3 S8C2 S8C1 S8CO
rw rw rw rw rw

S7CO S6C3 S6C2 S6C1 S6CO
rw rw rw rw rw

S5CO S4C3 S4C2 S4C1 S4CO
rw rw rw rw rw

S3CO S2C3 S2C2 S2C1 S2CO
rw rw rw rw rw

S1CO SOC3 SOC2 SOC1 SOCO
rw rw rw rw rw

LCDM4 LCDM3 LCDM2 LCDM1 LCDMO
rw-O rw-O rw-O rw-O rw-O

Note: The LCD memory bits are named with the MSP430 convention. The first part of the bit name indicates the corresponding
segment line and the second indicates the corresponding common line.
Example for a segment using S4 and Com3: S4C3

Peripheral File Map A-5

a-Bit Timer/Counter, Basic Timer, Timer/Port, Byte Access

A.S 8-Bit Timer/Counter, Basic Timer, Timer/Port, Byte Access

Bit#

Timer/Port enable reg.,
TPE

04Fh

7

TPSSEL3
rw-O

6

TPSSEL2
rw-O

Timer/Port data reg., TPD
04Eh

B16
rw-O

CPON
rw-O

Timer/Port counter1 ,
TPCNT2

04Dh

Timer/Port counter1 ,
TPCNT1

04Ch

Timer/Port control reg.,
TPCTL

04Bh

Counter data, 8-Bit
Basic Timer, BTCNT2

0047h

Counter data, 8-Bit
Basic Timer, BTCNT1

0046h

0045h

Counter data, 8-Bit
Timer/Counter, TCDAT

0044h

Preload register, 8-Bit
Timer/Counter, TCPLD

0043h

Control register, 8-Bit
Timer/Counter, TCCTL

0042h

0041h

Basic Timer, BTCTL
0040h

27
rw

27
rw

TPSSEL1
rw-O

27
rw

27
rw

TCDAT.7
rw

TCPLD.7
rw

SSEL1
rw-O

SSEL
rw

26
rw

26
rw

TPSSELO
rw-O

26
rw

26
rw

TCDAT.6
rw

TCPLD.6
rw

SSELO
rw-O

Hold
rw

A.6 FLL Registers, Byte Access

A-6

Bit#

Frequency control, SCFQCTL
0052h

Frequency integrator, SCFI1
0051h

Frequency integrator, SCFIO
0050h

7

M
rw-O

29
rw-O

0
r

6

26
rw-O

28
rw-O

0
r

5

TPE.5
rw-O

TPD.5
rw-O

25
rw

25
rw

ENB
rw-O

25
rw

25
rw

TCDAT.5
rw

TCPLD.5
rw

ISCTL
rw-O

DIV
rw

5

25
rw-O

27
rw-O

0
r

4 3 2

TPEA TPE.3 TPE.2 TPE.1
rw-O rw-O rw-O rw-O

TPDA TPD.3 TPD.2 TPD.1
rw-O rw-O rw-O rw-O

24 23 22 21
rw rw rw rw

24 23 22 21
rw rw rw rw

ENA EN1 RC2FG RC1FG
rw-O r-O rw-O rw-O

24 23 22 21
rw rw rw rw

24 23 22 21
rw rw rw rw

TCDATA TCDAT.3 TCDAT.2 TCDAT.1
rw rw rw rw

TCPLD.4 TCPLD.3 TCPLD.2 TCPLD.1
rw rw rw rw

TXEN ENCNT RXACT TXD
rw-O rw-O rw-O rw-O

FRFQ1 FRFQO IP2 IP1
rw rw rw rw

4 3 2

24 23 22 21
rw-1 rw-1 rw-1 rw-1

26 25 24 23
rw-O rw-O rw-O rw-O

FN_4 FN_3 FN_2 21
rw-O rw-O rw-O rw-O

o

TPE.O
rw-O

TPD.O
rw-O

20
rw

20
rw

EN1FG
rw-O

20
rw

20
rw

TCDAT.O
rw

TCPLD.O
rw

RXD
r(-1)

IPO
rw

o
20

rw-1

22
rw-O

20
rw-O

EPROM Control Register and Crystal Buffer, Byte Access
J ,

A.7 EPROM Control Register and Crystal Buffer, Byte Access

Bit#

EPROM control registert
EPCTL
0054h

Crystal buffer control register+
CBCTL
0053h

7

r-O

6

r-O

5 4

r-O r-O

t NonEPROM devices may use this register for other control purposes.
+ Devices without XBUF may use this register for other control purposes.

3

r-O

A.8 USART, UART Mode (Sync=O), Byte Access

Bit #

USART
Transmit buffer UTXBUF

077h

USART
Receive buffer URXBUF

076h

USART
Baud rate UBR1

075h

USART
Baud rate UBRO

074h

USART
Modulation control

UMCTL073h

USART
Receive control URCTL

072h

USART
Transmit control UTCTL

071h

USART
USART control UCTL

070h

7

27
rw

27
r

215
rw

27
rw

m7
rw

FE
rw-O

Unused
rw-O

PENA
rw-O

6

26
rw

26
r

214
rw

26
rw

m6
rw

PE
rw-O

CKPL
rw-O

PEV
rw-O

5 4 3

25 24 23
rw rw rw

25 24 23
r r r

213 212 211
rw rw rw

25 24 23
rw rw rw

m5 m4 m3
rw rw rw

OE BRK URXEIE
rw-O rw-O rw-O

SSEL1 SSELO URXSE
rw-O rw-O rw-O

SP CHAR Listen
rw-O rw-O rw-O

2

r-O

CBSEL1
w-(O)

2

22
rw

22
r

210
rw

22
rw

m2
rw

URXWIE
rw-O

TXWAKE
rw-O

SYNC
rw-O

o

VPPS EXE
rw-O rw-O

CBSELO CBE
w-(O) w-(O)

o

21 20
rw rw

21 20
r r

29 28
rw rw

21 20
rw rw

m1 mO
rw rw

RXWake RXERR
rw-O rw-O

Unused TXEPT
rw-O rw-1

MM SWRST
rw-O rw-1

Peripheral File Map A-7

USART, SPI Mode (Sync=1), 8yteAccess

A.9 USART, SPI Mode (Sync=1), Byte Access

Bit#

USART
Transmit buffer UTXBUF

077h

USART
Receive buffer URXBUF

076h

USART
Baud rate UBR1

075h

USART
Baud rate UBRO

074h

USART
Modulation control

UMCTL073h

USART
Receive control URCTL

072h

USART
Transmit control UTCTL

071h

A-a

USART
USART control UCTL

070h

7

27
rw

27
r

215
rw

27
rw

m7
rw

FE
rw-O

CKPH
rw-O

Unused
rw-O

6

26
rw

26
r

214
rw

26
rw

m6
rw

Undef.
rw-O

CKPL
rw-O

Unused
rw-O

5 4

25 24
rw rw

25 24
r r

213 212
rw rw

25 24
rw rw

m5 m4
rw rw

OE Undef.
rw-O rw-O

SSEL1 SSELO
rw-O rw-O

Unused CHAR
rw-O rw-O

3 2 o

23 22 21 20
rw rw rw rw

23 22 21 20
r r r r

211 210 29 28
rw rw rw rw

23 22 21 20
rw rw rw rw

m3 m2 m1 mO
rw rw rw rw

Unused Unused Undef. Undef.
rw-O rw-O rw-O rw-O

Unused Unused STC TXEPT
rw-O rw-O rw-O rw-1

Listen SYNC MM SWRST
rw-O rw-O rw-O rw-1

ADC12+2, Word Access ________ ._I~_. __ '_tn_~w_lI_nA_.1_~Q ___ • ___ U_.~ ___ . ______ "" _______ '_'_~~ ___ ~ __ %W_'_I~_B1_n_'_._' _____________ __

A.10 ADC12+2, Word Access

Bit#- 15 14 13 12 11 10 9 8
11Fhrl------.-----~------,-----~r------r------,-------r-------,

ADC12+2.
Data register ADAT

118h

Reserved
116h

ADC12+2,
Control register ACTL

114h

ADC12+2.
Input enable register AEN

112h

ADC12+2.
Input data register AIN

110h

rO rO

ACTL.15 ACTL.14
rO rw-O

rO rO

rO rO

R1t ROt
rO rO

ACTL.13 ACTL.12
rw-O rw-1

rO rO

rO rO

211 210 29 28
r r r r

ACTL.11 ACTL.10 ACTL.9 ACTL.8
rw-O rw-O rw-O rw-O

rO rO rO rO

rO rO rO rO

tThe bits ADAT.12 and ADAT.13 are read as 0 when ACTL.11 = 0; otherwise, signals RO and R1 are read.

Bit#-
11Ehl~------T-----~------~----~r------r------~------r------,

7 6 5 4 3 2 o

ADC12+2,
Data register ADAT

118h

Reserved
116h

ADC12+2,
Control register ACTL

114h

ADC12+2,
Input enable register AEN

112h

ADC12+2,
Input data register AIN

110h

I

27
r

ACTL.7
rw-O

AEN.7
rw-O

AIN.7
r

26
r

ACTL.6
rw-O

AEN.6
rw-O

AIN.6
r

25 24
r r

ACTL.5 ACTL.4
rw-O rw-O

AEN.5 AEN.4
rw-O rw-O

AIN.5 AIN.4
r r

23 22 21 20
r r r r

ACTL.3 ACTL.2 ACTL.1 ACTL.O
rw-O rw-O rw-O (w)rO

AEN.3 AEN.2 AEN.1 AEN.O
rw-O rw-O rw-O rw-O

AIN.3 AIN.2 AIN.1 AIN.O
r r r r

Peripheral File Map A-9

Watchdog/Timer, Word Access

A.11 WatchdoglTimer, Word Access

Bit# 15 8
Watchdog Timer, r"1-<-------------R-e-a-d-a-s-0-6-9-h --_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_->:>---,1

Control register WDTCTL <:----------- Written as 05Ah
120h

~--~

Bit#

Watchdog Timer,
Control register WDTCTL

120h

7

HOLD
rw-O

6 5

NMIES NMI
rw-O rw-O

A.12 Hardware Multiplier, Word Access

Bit#

Sum extend, Sum Ext
013Eh

Result-high word ResHI
013Ch

Result-low word ResLO
013Ah

Second operand OP2
0138h

MPYS+ACC MACS
0136h

MPY+ACCMAC
0134h

Multiply signed MPYS
0132h

Multiply unsigned MPY
0130h

Bit#

Sum extend, Sum Ext
013Eh

Result-high word ResHI
013Ch

Result-low word ResLO
013Ah

Second operand OP2
0138h

MPYS+ACC MACS
0136h

MPY+ACCMAC
0134h

Multiply signed MPYS
0132h

Multiply unsigned MPY
0130h

15

t
r

215
rw

215
rw

215
rw

215
rw

215
rw

215
rw

215
rw

7

t
r

27
rw

27
rw

27
rw

27
rw

27
rw

27
rw

27
rw

14 13

t t
r r

214 213
rw rw

214 213
rw rw

214 213
rw rw

214 213
rw rw

214 213
rw rw

214 213
rw rw

214 213
rw rw

6 5

t t
r r

26 25
rw rw

26 25
rw rw

26 25
rw rw

26 25
rw rw

26 25
rw rw

26 25
rw rw

26 25
rw rw

4

TMSEL
rw-O

12

t
r

212
rw

212
rw

212
rw

212
rw

212
rw

212
rw

212
rw

4

t
r

24
rw

24
rw
24
rw

24
rw

24
rw

24
rw

24
rw

3 2 o

CNTCL SSEL IS1 ISO
(w),rO rw-O rw-O rw-O

11 10 9 8

t t t t
r r r r

211 210 29 28
rw rw rw rw

211 210 29 28
rw rw rw rw

211 210 29 28
rw rw rw rw

211 210 29 28
rw rw rw rw

211 210 29 28
rw rw rw rw

211 210 29 28
rw rw rw rw

211 210 29 28
rw rw rw rw

3 2 o
t t t t
r r r r

23 22 21 20
rw rw rw rw

23 22 21 20
rw rw rw rw

23 22 21 20
rw rw rw rw

23 22 21 20
rw rw rw rw

23 22 21 20
rw rw rw rw

23 22 21 20
rw rw rw rw

23 22 21 20
rw rw rw rw

t The Sum Extend register SumExt holds a 16x16-bit multiplication (MPYS) sign result, or the overflow of the multiply and accu
mulate (MAC) operation, or the sign of the signed multiply and accumulate (MACS) operation. Overflow and underflow of the
MACS operation must be handled by software.

A-10

A.13 Timer _A Registers, Word Access

Bit#-

017Eh

017Ch

Cap/com register CCR4t
017Ah

Cap/com register CCR3t
0178h

Cap/com register CCR2
0176h

Cap/com register CCR1
0174h

Cap/com register CCRO
0172h

Timer_A register TAR
0170h

016Eh

016Ch

Cap/com control CCTL4t,
016Ah

Cap/com control CCTL3t,
0168h

Cap/com control CCTl2,
0166h

Cap/com control CCTL 1 ,
0164h

Cap/com control CCTLO,
0162h

limecA control TACTL
0160h

15 14

215 214
rw-(O) rw-(O)

215 214
rw-(O) rw-(O)

215 214
rw-(O) rw-(O)

215 214
rw-(O) rw-(O)

215 214
rw-(O) rw-(O)

215 214
rw-(O) rw-(O)

CM41 CM40
rw-(O) rw-(O)

CM31 CM30
rw-(O) rw-(O)

CM21 CM20
rw-(O) rw-(O)

CM11 CM10
rw-(O) rw-(O)

CM01 CMOO
rw-(O) rw-(O)

Unused Unused
rw-(O) rw-(O)

t Registers are reserved on devices with Timer_A3.

13

213
rw-(O)

213
rw-(O)

213
rw-(O)

213
rw-(O)

213
rw-(O)

213
rw-(O)

CCIS41
rw-(O)

CCIS31
rw-(O)

CCIS21
rw-(O)

CCIS11
rw-(O)

CCIS01
rw-(O)

Unused
rw-(O)

12

212
rw-(O)

212
rw-(O)

212
rw-(O)

212
rw-(O)

212
rw-(O)

212
rw-(O)

CCIS40
rw-(O)

CCIS30
rw-(O)

CCIS20
rw-(O)

CCIS10
rw-(O)

CCISOO
rw-(O)

Unused
rw-(O)

Timer_A Registers, Word Access

11 10 9 8

211 210 29 28
rw-(O) rw-(O) rw-(O) rw-(O)

211 210 29 28
rw-(O) rw-(O) rw-(O) rw-(O)

211 210 29 28
rw-(O) rw-(O) rw-(O) rw-(O)

211 210 29 28
rw-(O) rw-(O) rw-(O) rw-(O)

211 210 29 28
rw-(O) rw-(O) rw-(O) rw-(O)

211 210 29 28
rw-(O) rw-(O) rw-(O) rw-(O)

SCS4 SCCI4 Unused CAP4
rw-(O) rw-(O) rO rw-(O)

SCS3 SCCI3 Unused CAP3
rw-(O) rw-(O) rO rw-(O)

SCS2 SCCI2 Unused CAP2
rw-(O) rw-(O) rO rw-(O)

SCS1 SCCI1 Unused CAP1
rw-(O) rw-(O) rO rw-(O)

SCSO SCCIO Unused CAPO
rw-(O) rw-(O) rO rw-(O)

Unused SSEl2 SSEL1 SSELO
rw-(O) rw-(O) rw-(O) rw-(O)

Peripheral File Map A-11

Tiroer_A Registers, Word Access (Continued)

A.13 Timer_A Registers, Word Access (Continued)

Bit#-

017Eh

017Ch

Cap/com register CCR4t
017Ah

Cap/com register CCR3t
0178h

Cap/com register CCR2
0176h

Cap/com register CCR1
0174h

Cap/com register CCRO
0172h

TimecA register TAR
0170h

016Eh

016Ch

Cap/com control CCTl4t ,
016Ah

Cap/com control CCTl3t ,
0168h

Cap/com control CCTL2,
0166h

Cap/com control CCTl1,
0164h

Cap/com control CCTlO,
0162h

TimecA control TACTl
0160h

7

27
rw-(O)

27
rw-(O)

27
rw-(O)

27
rw-(O)

27
rw-(O)

27
rw-(O)

OutMod42
rw-(O)

OutMod32
rw-(O)

OutMod22
rw-(O)

OutMod12
rw-(O)

OutMod02
rw-(O)

101
rw-(O)

6

26
rw-(O)

26
rw-(O)

26
rw-(O)

26
rw-(O)

26
rw-(O)

26
rw-(O)

OutMod41
rw-(O)

OutMod31
rw-(O)

OutMod21
rw-(O)

OutMod11
rw-(O)

OutMod01
rw-(O)

100
rw-(O)

t Registers are reserved on devices with Timer_A3.

Bit#- 15 14

Timer_A interrupt vector I 0 0
TAIV 12Eh rO rO

Bit#- 7 6

Timer_A interrupt vector I 0 0
rO rO TAIV 12Eh

5 4

25 24
rw-(O) rw-(O)

25 24
rw-(O) rw-(O)

25 24
rw-(O) rw-(O)

25 24
rw-(O) rw-(O)

25 24
rw-(O) rw-(O)

25 24
rw-(O) rw-(O)

OutMod40 CCIE4
rw-(O) rw-(O)

OutMod30 CCIE3
rw-(O) rw-(O)

OutMod20 CCIE2
rw-(O) rw-(O)

OutMod10 CCIE1
rw-(O) rw-(O)

OutModOO CCIEO
rw-(O) rw-(O)

MC1 MCO
rw-(O) rw-(O)

13 12

0 0
rO rO

5 4

0 0
rO rO

TAIV Vector, Timer_A5 (five capture/compare blocks integrated)
0: No interrupt pending
2: CCIFG1 flag set, interrupt flag of capture/compare block 1

3

23
rw-(O)

23
rw-(O)

23
rw-(O)

23
rw-(O)

23
rw-(O)

23
rw-(O)

CCI4
r

CCI3
r

CCI2
r

CCI1
r

CCIO
r

Unused
rw-(O)

11

0
rO

3

r-(O)

4: CCIFG2 flag set, interrupt flag of capture/compare block 2 (CCIFG1 =0)

2

22
rw-(O)

22
rw-(O)

22
rw-(O)

22
rw-(O)

22
rw-(O)

22
rw-(O)

OUT4
rw-(O)

OUT3
rw-(O)

OUT2
rw-(O)

OUT1
rw-(O)

OUTO
rw-(O)

ClR
rw-(O)

10

0
rO

2

TAIV

r-(O)

6: CCIFG3 flag set, interrupt flag of capture/compare block 3 (CCIFG1 =CCIFG2=0)

o

21 20
rw-(O) rw-(O)

21 20
rw-(O) rw-(O)

21 2°
rw-(O) rw-(O)

21 2°
rw-(O) rw-(O)

21 20
rw-(O) rw-(O)

21 20
rw-(O) rw-(O)

COV4 CCIFG4
rw-(O) rw-(O)

CaV3 CCIFG3
rw-(O) rw-(O)

COV2 CCIFG2
rw-(O) rw-(O)

COV1 CCIFG1
rw-(O) rw-(O)

COVO CCIFGO
rw-(O) rw-(O)

TAlE TAIFG
rw-(O) rw-(O)

9 8

o 0
rO rO

o
o

r-(O) rO

8: CCIFG3 flag set, interrupt flag of capture/compare block 3 (CCIFG1=CCIFG2=CCIFG3=0)
10: TAIFG flag set, interrupt flag of Timer_A register/counter (CCIFG1=CCIFG2=CCIFG3=CCIFG4=0)

TAl V Vector, Timer_A3 (three capture/compare blocks integrated)
0: No interrupt pending
2: CCIFG1 flag set, interrupt flag of capture/compare block 1
4: CCIFG2 flag set, interrupt flag of capture/compare block 2 (CCIFG1=0)
6: Reserved
8: Reserved

10: TAIFG flag set, interrupt flag of Timer_A register/counter (CCIFG1=CCIFG2=CCIFG3=CCIFG4=O)

A-12

Appendix B

Instruction Set Description
tim III 'l1li JIIII t

I I - Illt !!i U

The MSP430 core CPU architecture evolved from a reduced instruction set
with highly-transparent instruction formats. Using these formats, core
instructions are implemented into the hardware. Emulated instructions are
also supported by the assembler. Emulated instructions use the core
instructions with the built-in constant generators CG1 and CG2 and/or the
program counter (PC). The core and emulated instructions are described in
detail in this section. The emulated instruction mnemonics are listed with
examples.

Program memory words used by an instruction vary from one to three words,
depending on the combination of addressing modes.

Topic Page

8.1 Instruction Set Overview 8-2

8.2 Instruction Set Description ...••••••••••••.•.••••......•••••••. 8-8

B-1

Instruction Set Overview

B.1 Instruction Set Overview

The following list gives an overview of the instruction set.

Status Bits

V N ZC
* ADC[.W];ADC.B dst dst + C -> dst * * * *

ADD[.W];ADD.B src,dst src + dst -> dst * * * *
ADDC[.W];ADDC.B src,dst src + dst + C -> dst * * * *
AND[.W];AND.B src,dst src .and. dst -> dst 0 * * *
BIC[.W];BIC.B src,dst .not.src .and. dst -> dst
BIS[.W];BIS.B src,dst src .or. dst -> dst
BIT[.W];BIT.B src,dst src .and. dst 0 * * *

* BR dst Branch to
CALL dst PC+2 -> stack, dst -> PC

* CLR[.W];CLR.B dst Clear destination
* CLRC Clear carry bit - 0
* CLRN Clear negative bit - 0
* CLRZ Clear zero bit o -

CMP[.W];CMP.B src,dst dst - src * * * *
* DADC[.W];DADC.B dst dst + C -> dst (decimal) * * * *

DADD[.W];DADD.B src,dst src + dst + C -> dst (decimal) * * * *
* DEC[.W];DEC.B dst dst -1 -> dst * * * *
* DECD[.W];DECD.B dst dst -2 -> dst * * * *
* DINT Disable interrupt
* EINT Enable interrupt
* INC[.W];INC.B dst Increment destination,

dst +1 -> dst * * * *
* INCD[.W];INCD.B dst Double-Increment destination,

dst+2->dst * * * *
* INV[.W];INV.B dst Invert destination * * * *

JC/JHS Label Jump to Label if
Carry-bit is set

JEQ/JZ Label Jump to Label if
Zero-bit is set

JGE Label Jump to Label if
(N .XOR. V) = 0

JL Label Jump to Label if
(N .XOR. V) = 1

JMP Label Jump to Label unconditionally - -
IN Label Jump to Label if

Negative-bit is set - - - -
JNC/JLO Label Jump to Label if

Carry-bit is reset
JNE/JNZ Label Jump to Label if

Zero-bit is reset

8-2

Instruction Set Overview
Il!'aWl1ll1lll IdIIIlOIII'OItiliili

Status Bits

V N ZC
MOV[.W];MOV.B src,dst src -> dst

* NOP No operation
* POP[.W];POP.B dst Item from stack, SP+2 ~ SP

PUSH[.W];PUSH.B src SP - 2 ~ SP, src ~ @SP
RETI Return from interrupt * * * *

TOS~SR, SP+2~SP

TOS ~ PC, SP + 2 ~ SZP
* RET Return from subroutine

TOS ~ PC, SP + 2 ~ SP
* RLA[.W];RLA.B dst Rotate left arithmetically * * * *
* RLC[.W];RLC.B dst Rotate left through carry * * * *

RRA[.W];RRA.B dst MSB ~ MSB ~ LSB ~ C 0 * * *
RRC[.W];RRC.B dst C ~ MSB ~ LSB ~ C * * * *

* SBC[.W];SBC.B dst Subtract carry from destination * * * *
* SETC Set carry bit - 1
* SETN Set negative bit 1
* SETZ Set zero bit 1

SUB[.W];SUB.B src,dst dst + .not.src + 1 ~ dst * * * *
SUBC[.W];SUBC.B src,dst dst + .not.src + C ~ dst * * * *
SWPB dst swap bytes
SXT dst Bit? ~ Bit8 Bit15 0 * * *

* TST[. W];TST.B dst Test destination 0 * * 1
XOR[.W];XOR.B src,dst src .xor. dst ~ dst * * * *

Note: Asterisked Instructions

Asterisked (*) instructions are emulated. They are replaced with core
instructions by the assembler.

Instruction Set Description 8-3

Instruction Set Overview

8.1.1 Instruction Formats

The following sections describe the instruction formats.

B.1.1.1 Double-Operand Instructions (Core Instructions)

The instruction format using double operands, as shown in Figure B-1,
consists of four main fields to form a 16-bit code:

o operational code field, four bits [op-code]
o source field, six bits [source register + As]
o byte operation identifier, one bit [BW]
o destination field, five bits [dest. register + Ad]

The source field is composed of two addressing bits and a four-bit register
number (0 15). The destination field is composed of one addressing bit and
a four-bit register number (0 15). The byte identifier BIW indicates whether
the instruction is executed as a byte (BIW == 1) or as a word instruction
(BIW == 0).

Figure 8-1. Double-Operand Instructions

8-4

15

OP-Code

I Operational Code
Field

12 11

Source Register

3 o

Destination Register

Status Bits

V N ZC
ADD[.W]; ADD.B src,dst src + dst -> dst * * *
ADDC[.W]; ADDC.B src,dst src + dst + C -> dst * * *
AND[.W]; AND.B src,dst src .and. dst -> dst 0 * *
BIC[.W]; BIC.B src,dst .not.src .and. dst -> dst
BIS[.W]; BIS.B src,dst src .or. dst -> dst
BIT[.W]; BIT.B src,dst src .and. dst 0 * *
CMP[.W]; CMP.B src,dst dst - src * * *

DADD[.W]; DADD.B src,dst src + dst + C -> dst (dec) * * *
MOV[.W]; MOV.B src,dst src -> dst
SUB[.W]; SUB.B src,dst dst + .not.src + 1 -> dst * * *
SUBC[.W]; SUBC.B src,dst dst + .not.src + C -> dst * * *
XOR[.W); XOR.B src,dst src .xor. dst -> dst * * *

Note: Operations Using the Status Register (SR) for Destination

All operations using Status Register SR for destination overwrite the SR
contents with the operation result; as described in that operation, the status
bits are not affected.

Example: ADD #3,SR ; Operation: (SR) + 3 -> SR

*
*
*

*
*
*

*
*
*

Instruction Set Overview

8.1.1.2 Single Operand Instructions (Core Instructions)

The instruction format using a single operand, as shown in Figure B-2,
consists of two main fields to form a 16-bit code:

o operational code field, nine bits with four MSBs equal to 1 h
o byte operation identifier, one bit [B/w]
o destination field, six bits [destination register + Ad]

The destination field is composed of two addressing bits and the four-bit
register number (0 15). The destination field bit position is the same as that
of the two operand instructions. The byte identifier (B/w) indicates whether the
instruction is executed as a byte (B/w = 1) or as a word (B/w = 0).

Figure B-2. Single-Operand Instructions

7 6 5

Destination Field I

Status Bits

V N Z C
RRA[.W]; RRA.B dst MSB -7 MSB ... LSB -7 C o * * *
RRC[.W]; RRC.B dst C -7 MSB LSB -7 C * * * *
PUSH[.W]; PUSH.B dst SP - 2 -7 SP, src -7 @SP
SWPB dst swap bytes
CALL dst PC-72 + @SP, dst -7 PC
RETI dst TOS -7 SR, SP + 2 -7 SP * * * *

TOS -7 PC, SP + 2 -7 SP
SXT dst Bit 7 -7 Bit 8 Bit 15 o * * *

8.1.2 Conditional and Unconditional Jumps (Core Instructions)

The instruction format for conditional and unconditional jumps, as shown in
Figure B-3, consists of two main fields to form a 16-bit code:

o operational code (op-code) field, six bits
o jump offset field, ten bits

The operational-code field is composed of the op-code (three bits), and three
bits according to the following conditions.

Figure B-3. Conditional and Unconditional Jump Instructions

I
15 13 12 10 9 0

0 0 1 xxxix x x x x x x x x x I I I
OP-Code Offset I Jump-On Code I Sign I
Operational Code Field Jump Offset Field

Conditional jumps jump to addresses in the range of -511 to +512 words
relative to the current address. The assembler computes the signed offsets
and inserts them into the op-code.

Instruction Set Description 8-5

Instruction Set Overview

JC/JHS Label Jump to label if carry bit is set

JEQ/JZ Label Jump to label if zero bit is set

JGE Label Jump to label if (N .XOR. V) = 0

JL Label Jump to label if (N .XOR. V) = 1

JMP Label Jump to label unconditionally

IN Label Jump to label if negative bit is set

JNC/JLO Label Jump to label if carry bit is reset

JNE/JNZ Label Jump to label if zero bit is reset

Note: Conditional and Unconditional Jumps

Conditional and unconditional jumps do not affect the status bits.

A jump that is taken alters the PC with the offset:

PCnew = PCoid + 2 + 2*offset

A jump that is not taken continues the program with the ascending instruction.

B.1.3 Emulated Instructions

8-6

The following instructions can be emulated with the reduced instruction set
without additional code words. The assembler accepts the emulated
instruction mnemonic, and inserts the applicable core instruction op-code.

Instruction Set Overview

The following list describes the emulated instruction short form.

Mnemonic Description Status Bits Emulation
V N Z C

Arithmetical instructions
ADC[.W] dst Add carry to destination * * * * AD DC #O,dst
ADC.B dst Add carry to destination * * * * ADDC.B #O,dst
DADC[.W] dst Add carry decimal to destination * * * * DADD #O,dst
DADC.B dst Add carry decimal to destination * * * * DADD.B #O,dst
DEC[.W] dst Decrement destination * * * * SUB #1,dst
DEC.B dst Decrement destination * * * * SUB.B #1,dst
DECD[.W] dst Double-decrement destination * * * * SUB #2,dst
DECD.B dst Double-decrement destination * * * * SUB.B #2,dst
INC[.W] dst Increment destination * * * * ADD #1,dst
INC.B dst Increment destination * * * * ADD.B #1,dst
INCD[.W] dst Increment destination * * * * ADD #2,dst
INCD.B dst Increment destination * * * * ADD.B #2,dst
SBC[.W] dst Subtract carry from destination * * * * SUBC #O,dst
SBC.B dst Subtract carry from destination * * * * SUBC.B #O,dst

Logical instructions
INV[.W] dst Invert destination * * * * XOR #OFFFFh,dst
INV.B dst Invert destination * * * * XOR.B #OFFFFh,dst
RLA[.W] dst Rotate left arithmetically * * * * ADD dst,dst
RLA.B dst Rotate left arithmetically * * * * ADD.B dst,dst
RLC[.W] dst Rotate left through carry * * * * AD DC dst,dst
RLC.B dst Rotate left through carry * * * * ADDC.B dst,dst

Data instructions (common use)
CLR[.W] Clear destination MOV #O,dst
CLR.B Clear destination MOV.B #O,dst
CLRC Clear carry bit - ° BIC #1,SR
CLRN Clear negative bit - ° BIC #4,SR
CLRZ Clear zero bit ° - BIC #2,SR
POP dst Item from stack MOV @SP+,dst
SETC Set carry bit - 1 BIS #1,SR
SETN Set negative bit - 1 BIS #4,SR
SETZ Set zero bit 1 - BIS #2,SR
TST[.W] dst Test destination ° * * 1 CMP #O,dst
TST.B dst Test destination ° * * 1 CMP.B #O,dst

Program flow instructions
BR dst Branch to MOV dst,PC
DINT Disable interrupt BIC #8,SR
EINT Enable interrupt BIS #8,SR
NOP No operation MOV #Oh,#Oh
RET Return from subroutine MOV @SP+,PC

Instruction Set Description 8-7

Instruction Set Overview

B.2 Instruction Set Description

8-8

This section catalogues and describes all core and emulated instructions in
alphabetical order. Some examples serve as explanations and others as
application hints.

The suffix .W or no suffix in the instruction mnemonic results in a word
operation.

The suffix .8 at the instruction mnemonic results in a byte operation.

ADC[.W]
ADC.B

Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

Example

Add carry to destination
Add carry to destination

ADC
ADC.B

dst or ADC.W dst
dst

dst + C -> dst

AD DC #O,dst
ADDC.B #O,dst

Instruction Set Overview

The carry bit (C) is added to the destination operand. The previous contents
of the destination are lost.

N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if dst was incremented from OFFFFh to 0000, reset otherwise

Set if dst was incremented from OFFh to 00, reset otherwise
V: Set if an arithmetic overflow occurs, otherwise reset

OscOff, CPUOff, and GIE are not affected.

The 16-bit counter pointed to by R13 is added to a 32-bit counter pOinted to
by R12.
ADD
ADC

@R13,0(R12)
2(R12)

; Add LSDs
; Add carry to MSD

The 8-bit counter pointed to by R 13 is added to a 16-bit counter pointed to by
R12.
ADD.B
ADC.B

@R13,0(R12)
1 (R12)

; Add LSDs
; Add carry to MSD

Instruction Set Description 8-9

Instruction Set Overview

ADD[.W]
ADD.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

8-10

Add source to destination
Add source to destination

ADD src,dst or
ADD.B src,dst

src + dst -> dst

ADD.W src,dst

The source operand is added to the destination operand. The source operand
is not affected. The previous contents of the destination are lost.

N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the result, cleared if not
V: Set if an arithmetic overflow occurs, otherwise reset

OscOff, CPUOff, and GIE are not affected.

R5 is increased by 10. The jump to TONI is performed on a carry.

ADD
JC

#10,R5
TONI ; Carry occurred

; No carry

R5 is increased by 10. The jump to TONI is performed on a carry.

ADD.B
JC

#10,R5
TONI

; Add 10 to Lowbyte of R5
; Carry occurred, if (R5) ~ 246 [OAh+OF6h]
; No carry

ADDC[.W]
ADDC.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Instruction Set Overview

Add source and carry to destination
Add source and carry to destination

AD DC
ADDC.B

src,dst or ADDC.W src,dst
src,dst

src + dst + C -> dst

The source operand and the carry bit (C) are added to the destination operand.
The source operand is not affected. The previous contents of the destination
are lost.

N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise
V: Set if an arithmetic overflow occurs, otherwise reset

OscOff, CPUOff, and GIE are not affected.

The 32-bit counter pointed to by R13 is added to a 32-bit counter, eleven words
(20/2 + 2/2) above the pOinter in R13.

ADD
ADDC

@R13+,20(R13) ; ADD LSDs with no carry in
@R13+,20(R13) ; ADD MSDs with carry

; resulting from the LSDs

The 24-bit counter pOinted to by R13 is added to a 24-bit counter, eleven words
above the pointer in R13.

ADD.B
ADDC.B
ADDC.B

@R13+,10(R13) ; ADD LSDs with no carry in
@R13+,10(R13) ; ADD medium Bits with carry
@R13+,10(R13) ; ADD MSDs with carry

; resulting from the LSDs

Instruction Set Description 8-11

Instruction Set Overview

AND[.W]
AND.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

8-12

Source AND destination
Source AND destination

AND
AND.B

src,dst or AND.W src,dst
src,dst

src .AND. dst -> dst

The source operand and the destination operand are logically ANDed. The
result is placed into the destination.

N: Set if result MSB is set, reset if not set
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (= .NOT. Zero)
V: Reset

OscOff, CPUOff, and GIE are not affected.

The bits set in RS are used as a mask (#OAASSh) for the word addressed by
TOM. If the result is zero, a branch is taken to label TONI.

MOV
AND
JZ

#OAASSh,RS
RS,TOM
TONI

or

AND #OAASSh,TOM
JZ TONI

; Load mask into register RS
; mask word addressed by TOM with RS

; Result is not zero

The bits of mask #OASh are logically ANDed with the low byte TOM. If the result
is zero, a branch is taken to label TONI.

AND.B
JZ

#OASh,TOM
TONI

; mask Lowbyte TOM with RS

; Result is not zero

BIC[.W]
BIC.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Clear bits in destination
Clear bits in destination

Instruction Set Overview

BIC
BIC.B

src,dst or BIC.W src,dst
src,dst

.NOT.src .AND. dst -> dst

The inverted source operand and the destination operand are logically
ANDed. The result is placed into the destination. The source operand is not
affected.

N: Not affected
Z: Not affected
C: Not affected
V: Not affected

OscOff, CPUOff, and GIE are not affected.

The six MSBs of the RAM word LEO are cleared.

BIC #OFCOOh,LEO ; Clear 6 MSBs in MEM(LEO)

The five MSBs of the RAM byte LEO are cleared.

BIC.B #OF8h,LEO

The port pins PO and P1 are cleared.

POOUT
PO_O
PO_1

BIC.B

.equ 011h;

.equ

.equ

; Clear 5 MSBs in Ram location LEO

Definition of port address
01h
02h

;Set PO.O and PO.1 to low

Instruction Set Description 8-13

Instruction Set Overview

BIS[.W]
BIS.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Example

8-14

Set bits in destination
Set bits in destination

81S
81S.8

src,dst or 8IS.W
src,dst

src .OR. dst -> dst

src,dst

The source operand and the destination operand are logically ORed. The
result is placed into the destination. The source operand is not affected.

N: Not affected
Z: Not affected
C: Not affected
V: Not affected

OscOff, CPUOff, and GIE are not affected.

The six LS8s of the RAM word TOM are set.

81S #003Fh,TOM; set the six LS8s in RAM location TOM

Start an AlD- conversion

ASOC
ACTL

.equ

.equ
1 ; Start of conversion bit
114h ; ADC control register

81S #ASOC,&ACTL; Start AID-conversion

The three MS8s of RAM byte TOM are set.

81S.8 #OEOh,TOM ; set the 3 MS8s in RAM location TOM

Port pins PO and P1 are set to high.

POOUT
PO
P1

.equ

.equ

.equ

011h
01h
02h

81S.8 #PO+P1,&POOUT

BIT[.W]
BIT.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Example

Test bits in destination
Test bits in destination

Instruction Set Overview

BIT src,dst or BIT.W src,dst

src .AND. dst

The source and destination operands are logically ANDed. The result affects
only the status bits. The source and destination operands are not affected.

N: Set if MSB of result is set, reset otherwise
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (.NOT. Zero)
V: Reset

ascOtt, CPUOff, and GIE are not affected.

If bit 9 of R8 is set, a branch is taken to label TOM.

BIT
JNZ

#0200h,R8
TOM

; bit 9 of R8 set?
; Yes, branch to TOM
; No, proceed

Determine which AID channel is configured by the MUX.

ACTL
BIT
jnz

.equ
#4,&ACTL
END

114h ; ADC control register
; Is channel 0 selected?
; Yes, branch to END

If bit 3 of R8 is set, a branch is taken to label TOM.

BIT.B #8,R8
JC TOM

A serial communication receive bit (RCV) is tested. Because the carry bit is
equal to the state of the tested bit while using the BIT instruction to test a single
bit, the carry bit is used by the subsequent instruction; the read information is
shifted into register RECBUF.
,
; Serial communication with LSB is shifted first:

BIT.B
RRC

#RCV,RCCTL
RECBUF

; xxxx xxxx xxxx xxxx
; Bit info into carry
; Carry -> MSB of RECBUF
; cxxx xxxx
; repeat previous two instructions
; 8 times
; cccc CCCC
./\ /\ ,
; MSB LSB

; Serial communication with MSB is shifted first:
BIT.B #RCV,RCCTL; Bit info into carry
RLC.B RECBUF ; Carry -> LSB of RECBUF

; xxxx xxxc
; repeat previous two instructions
; 8 times
; cccc cccc
; I LSB
;MSB

Instruction Set Description 8·15

Instruction Set Overview

* BR, BRANCH

Syntax

Operation

Emulation

Description

Status Bits

Example

B-16

Branch to destination

BR dst

dst-> PC

MOV dst,PC

An unconditional branch is taken to an address anywhere in the 64K address
space. All source addressing modes can be used. The branch instruction is
a word instruction.

Status bits are not affected.

Examples for all addressing modes are given.

BR #EXEC ;Branch to label EXEC or direct branch (e.g. #OA4h)
; Core instruction MOV @PC+,PC

BR EXEC; Branch to the address contained in EXEC
; Core instruction MOV X(PC),PC
; Indirect address

BR &EXEC; Branch to the address contained in absolute
; address EXEC
; Core instruction MOV X(O),PC
; Indirect address

BR R5 ; Branch to the address contained in R5
; Core instruction MOV R5,PC
; Indirect R5

BR @ R5 ; Branch to the address contained in the word
; pOinted to by R5.
; Core instruction MOV @R5,PC
; Indirect, indirect R5

BR @ R5+ ; Branch to the address contained in the word pOinted
; to by R5 and increment pointer in R5 afterwards.

BR X(R5)

; The next time-S/W flow uses R5 pointer-it can
; alter program execution due to access to
; next address in a table pointed to by R5
; Core instruction MOV @R5,PC
; Indirect, indirect R5 with autoincrement

; Branch to the address contained in the address
; pOinted to by R5 + X (e.g. table with address
; starting at X). X can be an address or a label
; Core instruction MOV X(R5),PC
; Indirect, indirect R5 + X

CALL

Syntax

Operation

Description

Status Bits

Example

Subroutine

CALL

dst
SP-2
PC
tmp

dst

->tmp
->SP
->@SP
->PC

Instruction Set Overview

dst is evaluated and stored

PC updated to TOS
dst saved to PC

A subroutine call is made to an address anywhere in the 64K address space.
All addressing modes can be used. The return address (the address of the
following instruction) is stored on the stack. The call instruction is a word
instruction.

Status bits are not affected.

Examples for all addressing modes are given.

CALL #EXEC ; Call on label EXEC or immediate address (e.g. #OA4h)
; SP-2 ~ SP, PC+2 ~ @SP, @ PC+ ~ PC

CALL EXEC ; Call on the address contained in EXEC
; SP-2 ~ SP, PC+2 ~ @SP, X(PC) ~ PC
; Indirect address

CALL &EXEC; Call on the address contained in absolute address
; EXEC
; SP-2 ~ SP, PC+2 ~ @SP, X(PC) ~ PC
; Indirect address

CALL R5 ; Call on the address contained in R5

CALL @R5

CALL @R5+

CALL X(R5)

; SP-2 ~ SP, PC+2 ~ @SP, R5 ~ PC
; Indirect R5

; Call on the address contained in the word
; pointed to by R5
; SP-2 ~ SP, PC+2 ~ @SP, @R5 ~ PC
; Indirect, indirect R5

; Call on the address contained in the word
; pointed to by R5 and increment pointer in R5.
; The next time-SIW flow uses R5 pointer-
; it can alter the program execution due to
; access to next address in a table pointed to by R5
; SP-2 ~ SP, PC+2 ~ @SP, @R5 ~ PC
; Indirect, indirect R5 with autoincrement

; Call on the address contained in the address painted
; to by R5 + X (e.g. table with address starting at X)
; X can be an address or a label
; SP-2 ~ SP, PC+2 ~ @SP, X(R5) ~ PC
; Indirect indirect R5 + X

Instruction Set Description 8-17

Instruction Set Overview

* CLR[.W]
* CLR.B

Syntax

Operation

Emulation

Description

Status Bits

Example

Example

Example

8-18

Clear destination
Clear destination

CLR dst or CLR.W dst
CLR.B dst

0-> dst

MOV
MOV.B

#O,dst
#O,dst

The destination operand is cleared.

Status bits are not affected.

RAM word TONI is cleared.

CLR TONI ; 0-> TONI

Register R5 is cleared.

CLR R5

RAM byte TONI is cleared.

CLR.B TONI ; 0-> TONI

*CLRC

Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

Instruction Set Overview

Clear carry bit

CLRC

o->C

BIC #1,SR

The carry bit (C) is cleared. The clear carry instruction is a word instruction.

N: Not affected
Z: Not affected
C: Cleared
V: Not affected

OscOff, CPUOff, and GIE are not affected.

The 16-bit decimal counter painted to by R13 is added to a 32-bit counter
pointed to by R12.

CLRC
DADO
DADC

; C=O: defines start
@R13,O(R12) ; add 16-bit counter to low word of 32-bit counter
2(R 12) ; add carry to high word of 32-bit counter

Instruction Set Description 8-19

Instruction Set Overview

*CLRN

Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

SUBR

SUBRET

8-20

Clear negative bit

CLRN

O~N

or
(.NOT.src .AND. dst -> dst)

BIC #4,SR

The constant 04h is inverted (OFFFBh) and is logically ANDed with the
destination operand. The result is placed into the destination. The clear
negative bit instruction is a word instruction.

N: Reset to 0
Z: Not affected
C: Not affected
V: Not affected

OscOff, CPUOff, and GIE are not affected.

The Negative bit in the status register is cleared. This avoids special treatment
with negative numbers of the subroutine called.

CLRN
CALL

IN

RET

SUBR

SUBRET ; If input is negative: do nothing and return

*CLRZ

Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

Clear zero bit

CLRZ

O~Z

or
(.NOT.src .AND. dst -> dst)

BIC #2,SR

Instruction Set Overview

The constant 02h is inverted (OFFFDh) and logically ANDed with the
destination operand. The result is placed into the destination. The clear zero
bit instruction is a word instruction.

N: Not affected
Z: Reset to 0
C: Not affected
V: Not affected

OscOff, CPUOff, and GIE are not affected.

The zero bit in the status register is cleared.

CLRZ

Instruction Set Description 8-21

Instruction Set Overview

CMP[.W]
CMP.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Example

8-22

Compare source and destination
Compare source and destination

CMP
CMP.B

src,dst or
src,dst

dst + .NOT.src + 1
or
(dst - src)

CMP.W src,dst

The source operand is subtracted from the destination operand. This is
accomplished by adding the 1 s complement of the source operand plus 1. The
two operands are not affected and the result is not stored; only the status bits
are affected.

N: Set if result is negative, reset if positive (src >= dst)
Z: Set if result is zero, reset otherwise (src = dst)
C: Set if there is a carry from the MSB of the result, reset otherwise
V: Set if an arithmetic overflow occurs, otherwise reset

OscOff, CPUOff, and GIE are not affected.

RS and R6 are compared. If they are equal, the program continues at the label
EQUAL.

CMP
JEQ

RS,R6
EQUAL

; RS = R6?
; YES, JUMP

Two RAM blocks are compared. If they are not equal, the program branches
to the label ERROR.

L$1
MOV
CMP
JNZ
DEC
JNZ

#NUM,RS
&BLOCK1,&BLOCK2
ERROR
RS
L$1

; number of words to be compared
; Are Words equal?
; No, branch to ERROR
; Are all words compared?
; No, another compare

The RAM bytes addressed by EDE and TONI are compared. If they are equal,
the program continues at the label EQUAL.

CMP.B EDE,TONI
JEQ EQUAL

; MEM(EDE) = MEM(TONI)?
; YES, JUMP

Check two keys connected to port pins PO and P1. If key1 is pressed, the pro
gram branches to label MENU1; if key2 is pressed, the program branches to
MENU2.

POIN .EQU 010h
KEY1 .EQU 01h
KEY2 .EQU 02h

CMP.B #KEY1,&POIN
JEQ MENU1
CMP.B #KEY2,&POIN
JEQ MENU2

* DADC[.W]
* DADC.B

Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

Example

Add carry decimally to destination
Add carry decimally to destination

DADC
DADC.S

dst or DADC.W src,dst
dst

dst + C -> dst (decimally)

DADD
DADD.S

#O,dst
#O,dst

Instruction Set Overview

The carry bit (C) is added decimally to the destination.

N: Set if MSB is 1
Z: Set if dst is 0, reset otherwise
C: Set if destination increments from 9999 to 0000, reset otherwise

Set if destination increments from 99 to 00, reset otherwise
V: Undefined

OscOff, CPUOff, and GIE are not affected.

The four-digit decimal number contained in R5 is added to an eight-digit deci
mal number pOinted to by R8.

CLRC

DADD
DADC

R5,0(R8)
2(R8)

; Reset carry
; next instruction's start condition is defined
; Add LSDs + C
; Add carry to MSD

The two-digit decimal number contained in R5 is added to a four-digit decimal
number pOinted to by R8.

CLRC

DADD.S
DADC

R5,0(R8)
1 (R8)

; Reset carry
; next instruction's start condition is defined
; Add LSDs+ C
; Add carry to MSDs

Instruction Set Description 8-23

Instruction Set Overview

DADD[.W]
DADD.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

8-24

Source and carry added decimally to destination
Source and carry added decimally to destination

DADO
DADD.B

src,dst or DADD.W src,dst
src,dst

src + dst + C -> dst (decimally)

The source operand and the destination operand are treated as four binary
coded decimals (BCD) with positive signs. The source operand and the carry
bit (C) are added decimally to the destination operand. The source operand
is not affected. The previous contents of the destination are lost. The result is
not defined for non-BCD numbers.

N: Set if the MSB is 1, reset otherwise
Z: Set if result is zero, reset otherwise
C: Set if the result is greater than 9999

Set if the result is greater than 99
V: Undefined

OscOff, CPUOff, and GIE are not affected.

The eight-digit BCD number contained in R5 and R6 is added decimally to an
eight-digit BCD number contained in R3 and R4 (R6 and R4 contain the
MSDs).

CLRC
DADO
DADO
JC

; CLEAR CARRY
R5,R3 ; add LSDs
R6,R4 ; add MSDs with carry
OVERFLOW; If carry occurs go to error handling routine

The two-digit decimal counter in the RAM byte CNT is incremented by one.

CLRC
DADD.B

or

SETC
DADD.B

#1,CNT

#O,CNT

; clear Carry
; increment decimal counter

;=DADC.B CNT

* DEC[.W]
* DEC.B

Syntax

Operation

Emulation
Emulation

Description

Status Bits

Mode Bits

Decrement destination
Decrement destination

DEC
DEC.S

dst
dst

dst -1 -> dst

SUS
SUS.S

#1,dst
#1,dst

or DEC.W

Instruction Set Overview

dst

The destination operand is decremented by one. The original contents are
lost.

N: Set if result is negative, reset if positive
Z: Set if dst contained 1, reset otherwise
C: Reset if dst contained 0, set otherwise
V: Set if an arithmetic overflow occurs, otherwise reset.

Set if initial value of destination was 08000h, otherwise reset.
Set if initial value of destination was 080h, otherwise reset.

OscOff, CPUOff, and GIE are not affected.

Instruction Set Description 8-25

Instruction Set Overview

Example R10 is decremented by 1

DEC R10 ; Decrement R 10

; Move a block of 255 bytes from memory location starting with EDE to memory location starting with
;TONI. Tables should not overlap: start of destination address TONI must not be within the range EDE
; to EDE+OFEh

L$1

MOV
MOV
MOV.B
DEC
JNZ

#EDE,RS
#255,R10
@RS+,TONI-EDE-1 (RS)
R10
L$1

; Do not transfer tables using the routine above with the overlap shown in Figure B-4.

Figure 8-4. Decrement Overlap

EDE r-----....,

4 • r-------,
TONI

EDE+254

TONI+254 1...-___ --'

Example Memory byte at address LEO is decremented by one.

DEC.B LEO ; Decrement MEM(LEO)

; Move a block of 255 bytes from memory location starting with EDE to memory location starting with
; TONI. Tables should not overlap: start of destination address TONI must not be within the range EDE
; to EDE+OFEh

L$1

B-26

MOV
MOV.B
MOV.B
DEC.B
JNZ

#EDE,RS
#255,LEO
@RS+,TONI-EDE-1 (RS)
LEO
L$1

Instruction Set Overview _________________ _______ '_ti~ ~t A >JI. iI!'tiI ;TWtur

* DECD[.W]
* DECD.B

Syntax

Operation

Emulation
Emulation

Description

Status Bits

Mode Bits

Example

Double-decrement destination
Double-decrement destination

DECD
DECD.B

dst or DECD.W dst
dst

dst - 2 -> dst

SUB
SUB.B

#2,dst
#2,dst

The destination operand is decremented by two. The original contents are lost.

N: Set if result is negative, reset if positive
Z: Set if dst contained 2, reset otherwise
C: Reset if dst contained 0 or 1 , set otherwise
V: Set if an arithmetic overflow occurs, otherwise reset.

Set if initial value of destination was 08001 or 08000h, otherwise reset.
Set if initial value of destination was 081 or 080h, otherwise reset.

OscOff, CPUOff, and GIE are not affected.

R10 is decremented by 2.

DECD R10 ; Decrement R10 by two

; Move a block of 255 words from memory location starting with EDE to memory location
; starting with TONI
; Tables should not overlap: start of destination address TONI must not be within the
; range EDE to EDE+OFEh

Example

L$1

MOV
MOV
MOV
DECD
JNZ

#EDE,R6
#510,R10
@R6+,TONI-EDE-2(R6)
R10
L$1

Memory at location LEO is decremented by two.

DECD.B LEO ; Decrement MEM(LEO)

Decrement status byte STATUS by two.

DECD.B STATUS

Instruction Set Description 8-27

Instruction Set Overview

* DINT

Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

8-28

Disable (general) interrupts

DINT

O~GIE

or
(OFFF7h .AND. SR ~ SR / .NOT.src .AND. dst -> dst)

BIC #8,SR

All interrupts are disabled.
The constant 08h is inverted and logically ANDed with the status register (SR).
The result is placed into the SR.

N: Not affected
Z: Not affected
C: Not affected
V: Not affected

GIE is reset. OscOff and CPUOff are not affected.

The general interrupt enable (GIE) bit in the status register is cleared to allow
a nondisrupted move of a 32-bit counter. This ensures that the counter is not
modified during the move by any interrupt.

DINT ; All interrupt events using the GIE bit are disabled
NOP
MOV COUNTHI,R5; Copy counter
MOV COUNTLO,R6
EINT ; All interrupt events using the GIE bit are enabled

Note: Disable Interrupt

If any code sequence needs to be protected from interruption, the DINT
should be executed at least one instruction before the beginning of the
uninterruptible sequence, or should be followed by an NOP.

* EINT

Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

Enable (general) interrupts

EINT

1 ~GIE
or
(0008h .OR. SR -> SR I .NOT.src .OR. dst -> dst)

BIS #8,SR

All interrupts are enabled.

Instruction Set Overview

The constant #08h and the status register SR are logically ORed. The result
is placed into the SR.

N: Not affected
Z: Not affected
C: Not affected
V: Not affected

GIE is set. OscOff and CPUOff are not affected.

The general interrupt enable (GIE) bit in the status register is set.

; Interrupt routine of port PO.2 to PO.?
; The interrupt level is the lowest in the system
; POIN is the address of the register where all port bits are read. POIFG is the address of
; the register where all interrupt events are latched.

MaskOK

PUSH.B &POIN
BIC.B @SP,&POIFG ; Reset only accepted flags
EINT ; Preset port 0 interrupt flags stored on stack

; other interrupts are allowed
BIT #Mask,@SP
JEQ MaskOK ; Flags are present identically to mask: jump

BIC #Mask,@SP

INCD SP ; Housekeeping: inverse to PUSH instruction
; at the start of interrupt subroutine. Corrects
; the stack pointer.

RETI

Note: Enable Interrupt

The instruction following the enable interrupt instruction (EINT) is always
executed, even if an interrupt service request is pending when the interrupts
are enable.

Instruction Set Description 8-29

Instruction Set Overview

* INC[.W]
*INC.B

Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

Example

8-30

Increment destination
Increment destination

INC dst or INC.W dst
INC.B dst

dst + 1 -> dst

ADD #1,dst

The destination operand is incremented by one. The original contents are lost.

N: Set if result is negative, reset if positive
Z: Set if dst contained OFFFFh, reset otherwise

Set if dst contained OFFh, reset otherwise
C: Set if dst contained OFFFFh, reset otherwise

Set if dst contained OFFh, reset otherwise
V: Set if dst contained 07FFFh, reset otherwise

Set if dst contained 07Fh, reset otherwise

OscOff, CPUOff, and GIE are not affected.

The item on the top of a software stack (not the system stack) for byte data is
removed.

SSP .EQU R4

INC SSP; Remove TOSS (top of SW stack) by increment
; Do not use INC.S since SSP is a word register

The status byte of a process STATUS is incremented. When it is equal to 11,
a branch to OVFL is taken.

INC.S
CMP.S
JEQ

STATUS
#11 ,STATUS
OVFL

* INCD[.W]
* INCD.B

Syntax

Operation

Emulation
Emulation

Example

Status Bits

Mode Bits

Example

Example

Double-increment destination
Double-increment destination

INCD
INCD.B

dst or INCD.W dst
dst

dst + 2 -> dst

ADD
ADD.B

#2,dst
#2,dst

Instruction Set Overview

The destination operand is incremented by two. The original contents are lost.

N: Set if result is negative, reset if positive
Z: Set if dst contained OFFFEh, reset otherwise

Set if dst contained OFEh, reset otherwise
C: Set if dst contained OFFFEh or OFFFFh, reset otherwise

Set if dst contained OFEh or OFFh, reset otherwise
V: Set if dst contained 07FFEh or 07FFFh, reset otherwise

Set if dst contained 07Eh or 07Fh, reset otherwise

OscOff, CPUOff, and GIE are not affected.

The item on the top of the stack (TOS) is removed without using a register.

PUSH R5

INCD SP

RET

; R5 is the result of a calculation, which is stored
; in the system stack
; Remove TOS by double-increment from stack
; Do not use INCD.B, SP is a word-aligned
; register

The byte on the top of the stack is incremented by two.

INCD.B O(SP) ; Byte on TOS is increment by two

Instruction Set Description 9-31

Instruction Set Overview

* INV[.W]
*INV.B

Syntax

Operation

Emulation
Emulation

Description

Status Bits

Mode Bits

Example

Example

8-32

Invert destination
Invert destination

INV
INV.S

dst
dst

.NOT.dst -> dst

XOR
XORS

#OFFFFh,dst
#OFFh,dst

The destination operand is inverted. The original contents are lost.

N: Set if result is negative, reset if positive
Z: Set if dst contained OFFFFh, reset otherwise

Set if dst contained OFFh, reset otherwise
C: Set if result is not zero, reset otherwise (= .NOT. Zero)

Set if result is not zero, reset otherwise (= .NOT. Zero)
V: Set if initial destination operand was negative, otherwise reset

OscOff, CPUOff, and GIE are not affected.

Content of R5 is negated (twos complement).
MOV #OOAeh,R5
INV R5
INC R5

; Invert R5,
; R5 is now negated,

R5 = OOOAEh
R5 = OFF51h
R5 = OFF52h

Content of memory byte LEO is negated.

MOV.S
INV.S
INC.B

#OAEh,LEO
LEO
LEO

MEM(LEO) = OAEh
; Invert LEO, MEM(LEO) = 051h
; MEM(LEO) is negated, MEM(LEO) = 052h

JC
JHS

Syntax

Operation

Description

Status Bits

Example

Example

Jump if carry set
Jump if higher or same

JC
JHS

label
label

Instruction Set Overview

If C = 1: PC + 2 x offset -> PC
If C = 0: execute following instruction

The status register carry bit (C) is tested. If it is set, the 10-bit signed offset
contained in the instruction LSBs is added to the program counter. If C is reset,
the next instruction following the jump is executed. JC (jump if carry/higher or
same) is used for the comparison of unsigned numbers (0 to 65536).

Status bits are not affected.

The POIN.1 signal is used to define or control the program flow.

BIT
JC

#10h,&POIN
PROGA

; State of signal -> Carry
; If carry=1 then execute program routine A
; Carry=O, execute program here

R5 is compared to 15. If the content is higher or the same, branch to LABEL.

CMP
JHS

#15,R5
LABEL ; Jump is taken if R5 ~ 15

; Continue here if R5 < 15

Instruction Set Description 8-33

Instruction Set OveNiew

JEQ, JZ

Syntax

Operation

Description

Status Bits

Example

Example

Example

8-34

Jump if equal, jump if zero

JEQ label, JZ label

If Z = 1: PC + 2 x offset -> PC
If Z = 0: execute following instruction

The status register zero bit (Z) is tested. If it is set, the 10-bit signed offset
contained in the instruction LSBs is added to the program counter. If Z is not
set, the instruction following the jump is executed.

Status bits are not affected.

Jump to address TONI if R7 contains zero.

TST
JZ

R7
TONI

; Test R7
; if zero: JUMP

Jump to address LEO if R6 is equal to the table contents.

CMP R6,Table(RS); Compare content of R6 with content of
; MEM (table address + content of RS)

JEQ LEO ; Jump if both data are equal
; No, data are not equal, continue here

Branch to LABEL if RS is O.

TST RS
JZ LABEL

JGE

Syntax

Operation

Description

Status Bits

Example

Instruction Set Overview

Jump if greater or equal

JGE label

If (N .xOR. V) = 0 then jump to label: PC + 2 x offset -> PC
If (N .xOR. V) = 1 then execute the following instruction

The status register negative bit (N) and overflow bit (V) are tested. If both N
and V are set or reset, the 1 O-bit signed offset contained in the instruction LSBs
is added to the program counter. If only one is set, the instruction following the
jump is executed.

This allows comparison of signed integers.

Status bits are not affected.

When the content of R6 is greater or equal to the memory pointed to by R7,
the program continues at label EDE.

CMP
JGE

@R7,R6
EDE

; R6 ~ (R7)?, compare on signed numbers
; Yes, R6 ~ (R7)
; No, proceed

Instruction Set Description 8-35

Instruction Set Overview

JL

Syntax

Operation

Description

Status Bits

Example

8-36

Jump if less

JL label

If (N .xOR. V) = 1 then jump to label: PC + 2 x offset -> PC
If (N .xOR. V) = 0 then execute following instruction

The status register negative bit (N) and overflow bit (V) are tested. If only one
is set, the 1 O-bit signed offset contained in the instruction LSBs is added to the
program counter. If both N and V are set or reset, the instruction following the
jump is executed.

This allows comparison of signed integers.

Status bits are not affected.

When the content of R6 is less than the memory pointed to by R7, the program
continues at label EDE.

CMP
JL

@R7,R6
EDE

; R6 < (R7)?, compare on signed numbers
; Yes, R6 < (R7)
; No, proceed

JMP

Syntax

Operation

Description

Status Bits

Hint:

Instruction Set Overview

Jump unconditionally

MP label

PC + 2 x offset -> PC

The 10-bit signed offset contained in the instruction LSBs is added to the
program counter.

Status bits are not affected.

This one-word instruction replaces the BRANCH instruction in the range of
-511 to +512 words relative to the current program counter.

Instruction Set Description 8-37

Instruction Set Overview

IN

Syntax

Operation

Description

Status Bits

Example

L$1

8-38

Jump if negative

IN label

if N = 1: PC + 2 x offset -> PC
if N = 0: execute following instruction

The negative bit (N) of the status register is tested. If it is set, the 1 O-bit signed
offset contained in the instruction LSBs is added to the program counter. If N
is reset, the next instruction following the jump is executed.

Status bits are not affected.

The result of a computation in RS is to be subtracted from COUNT. If the result
is negative, COUNT is to be cleared and the program continues execution in
another path.

SUB
IN

CLR

R5,COUNT
L$1

COUNT

; COUNT - RS -> COUNT
; If negative continue with COUNT =0 at PC=L$1
; Continue with COUNT~O

JNC
JLO

Syntax

Operation

Description

Status Bits

Example

ERROR

CO NT

Example

Jump if carry not set
Jump if lower

JNC
JNC

label
label

Instruction Set Overview

if C = 0: PC + 2 x offset -> PC
if C = 1: execute following instruction

The status register carry bit (C) is tested. If it is reset, the 1 O-bit signed offset
contained in the instruction LSBs is added to the program counter. If C is set,
the next instruction following the jump is executed. JNC (jump if no carry/lower)
is used for the comparison of unsigned numbers (0 to 65536).

Status bits are not affected.

The result in R6 is added in BUFFER. If an overflow occurs, an error handling
routine at address ERROR is used.

ADD
JNC

R6,BUFFER
CO NT

; BUFFER + R6 -> BUFFER
; No carry, jump to CONT
; Error handler start

; Continue with normal program flow

Branch to STL2 if byte STATUS contains 1 or O.

CMP.B
JLO

#2,STATUS
STL2 ; STATUS < 2

; STATUS ~ 2, continue here

Instruction Set Description 8-39

Instruction Set Overview

JNE,JNZ

Syntax

Operation

Description

Status Bits

Example

8-40

Jump if not equal, jump if not zero

JNE label, JNZ label

If Z = 0: PC + 2 x offset -> PC
If Z = 1 : execute following instruction

The status register zero bit (Z) is tested. If it is reset, the 10-bit signed offset
contained in the instruction LSBs is added to the program counter. If Z is set,
the next instruction following the jump is executed.

Status bits are not affected.

Jump to address TONI if R7 and R8 have different contents.

CMP
JNE

R7,R8
TONI

; COMPARE R7 WITH R8
; if different: jump
; if equal, continue

MOV[.W]
MOV.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Loop

Example

Loop

Move source to destination
Move source to destination

Instruction Set Overview

MOV
MOV.B

src,dst or MOV.W src,dst
src,dst

src -> dst

The source operand is moved to the destination.
The source operand is not affected. The previous contents of the destination
are lost.

Status bits are not affected.

OscOff, CPUOff, and GIE are not affected.

The contents of table EDE (word data) are copied to table TOM. The length
of the tables must be 020h locations.

MOV
MOV
MOV
DEC
JNZ

#EDE,R10
#020h,R9
@R10+,TOM-EDE-2(R10)
R9
Loop

; Prepare pOinter
; Prepare counter
; Use pointer in R10 for both tables
; Decrement counter
; Counter =1= 0, continue copying
; Copying completed

The contents of table EDE (byte data) are copied to table TOM. The length of
the tables should be 020h locations

MOV #EDE,R10
MOV #020h,R9
MOV.B @R10+,TOM-EDE-1(R10)

DEC R9
JNZ Loop

; Prepare pointer
; Prepare counter
; Use pointer in R10 for
; both tables
; Decrement counter
; Counter =1= 0, continue
; copying
; Copying completed

Instruction Set Description 8-41

Instruction Set Overview

*NOP

Syntax

Operation

Emulation

Description

Status Bits

8-42

No operation

NOP

None

MOV #0,#0

No operation is performed. The instruction may be used for the elimination of
instructions during the software check or for defined waiting times.

Status bits are not affected.

The NOP instruction is mainly used for two purposes:

o To hold one, two or three memory words
o To adjust software timing

Note: Emulating No-Operation Instruction

Other instructions can emulate no-operation instruction using different
numbers of cycles and code words.

Examples:

MOV
MOV
BIC
JMP
BIC

0(R4),0(R4)
@R4,0(R4)
#0,EDE(R4)
$+2
#0,R5

; 6 cycles, 3 words
; 5 cycles, 2 words
; 4 cycles, 2 words
; 2 cycles, 1 word
; 1 cycle, 1 word

* POP[.W]
* POP.B

Syntax

Operation

Emulation
Emulation

Description

Status Bits

Example

Example

Example

Example

Instruction Set Overview

Pop word from stack to destination
Pop byte from stack to destination

POP
POP.B

dst
dst

@SP -> dst
SP + 2-> SP

MOV
MOV.B

@SP+,dst or MOV.W @SP+,dst
@SP+,dst

The stack location pointed to by the stack pointer (TOS) is moved to the
destination. The stack pointer is incremented by two afterwards.

Status bits are not affected.

The contents of R7 and the status register are restored from the stack.

POP
POP

R7
SR

; Restore R7
; Restore status register

The contents of RAM byte LEO is restored from the stack.

POP.B LEO ; The low byte of the stack is moved to LEO.

The contents of R7 is restored from the stack.

POP.B R7 ; The low byte of the stack is moved to R7,
; the high byte of R7 is OOh

The contents of the memory pOinted to by R7 and the status register are
restored from the stack.

POP.B O(R7)

POP SR

; The low byte of the stack is moved to the
; the byte which is pOinted to by R7
: Example: R7 = 203h

Mem(R7) = low byte of system stack
: Example: R7 = 20Ah

Mem(R7) = low byte of system stack

Note: The System Stack Pointer

The system stack pOinter (SP) is always incremented by two, independent
of the byte suffix.

Instruction Set Description 8-43

Instruction Set Overview

PUSH[.W]
PUSH.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

8-44

Push word onto stack
Push byte onto stack

PUSH src or PUSH. W src
PUSH.S src

SP-2 ~SP
src ~ @SP

The stack pointer is decremented by two, then the source operand is moved
to the RAM word addressed by the stack pointer (TOS).

N: Not affected
Z: Not affected
C: Not affected
V: Not affected

OscOff, CPUOff, and GIE are not affected.

The contents of the status register and R8 are saved on the stack.

PUSH
PUSH

SR
R8

; save status register
; save R8

The contents of the peripheral TCDAT is saved on the stack.

PUSH.S &TCDAT ; save data from 8-bit peripheral module,
; address TCDAT, onto stack

Note: The System Stack Pointer

The system stack pointer (SP) is always decremented by two, independent
of the byte suffix.

* RET

Syntax

Operation

Emulation

Description

Status Bits

Return from subroutine

RET

@SP~PC

SP +2 ~SP

MOV @SP+,PC

Instruction Set Overview

The return address pushed onto the stack by a CALL instruction is moved to
the program counter. The program continues at the code address following the
subroutine call.

Status bits are not affected.

Instruction Set Description 8-45

Instruction Set Overview

RETI

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Return from interrupt

RETI

TOS
SP+2
TOS
SP+2

~SR

~SP

~PC

~SP

The status register is restored to the value at the beginning of the interrupt
service routine by replacing the present SR contents with the TOS contents.
The stack pOinter (SP) is incremented by two.

The program counter is restored to the value at the beginning of interrupt
service. This is the consecutive step after the interrupted program flow.
Restoration is performed by replacing the present PC contents with the TOS
memory contents. The stack pOinter (SP) is incremented.

N: restored from system stack
Z: restored from system stack
C: restored from system stack
V: restored from system stack

OscOff, CPUOff, and GIE are restored from system stack.

Figure 8-5 illustrates the main program interrupt.

Figure 8-5. Main Program Interrupt

PC-6

PC-4

PC-2

PC

PC +2

PC +4

PC +6

PC +8

8-46

•••

Interrupt Request

/ Interrupt Accepted

PC+2 is Stored
Onto Stack

PC= PCi

PCi+2

PCi+4

PCi +n-4

PCi +n-2

PCi+n

•••

• • •

RETI

* RLA[.W]
* RLA.B

Syntax

Operation

Emulation

Description

Rotate left arithmetically
Rotate left arithmetically

RLA dst or
RLA.B dst

RLAW dst

C <- MSB <- MSB-1 LSB+ 1 <- LSB <- 0

ADD dst,dst
ADD.B dst,dst

Instruction Set Overview

The destination operand is shifted left one position as shown in Figure 8-6.
The MSB is shifted into the carry bit (C) and the LSB is filled with O. The RLA
instruction acts as a signed multiplication by 2.

An overflow occurs if dst ::::: 04000h and dst < OCOOOh before operation is
performed: the result has changed sign.

Figure 8-6. Destination Operand-Arithmetic Shift Left

Status Bits

Mode Bits

Example

Example

Word 15 0

~~4 I 1------------------ I '--r 0
8yte 7 o

An overflow occurs if dst ::::: 040h and dst < OCOh before the operation is
performed: the result has changed sign.

N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the MSB
V: Set if an arithmetic overflow occurs:

the initial value is 04000h ::;; dst < OCOOOh; otherwise it is reset
Set if an arithmetic overflow occurs:
the initial value is 040h::;; dst < OCOh; otherwise it is reset

OscOff, CPUOff, and GIE are not affected.

R? is multiplied by 4.

RLA
RLA

R?
R?

; Shift left R? (x 2) - emulated by ADD R?,R?
; Shift left R? (x 4) - emulated by ADD R?,R?

The low byte of R? is multiplied by 4.

RLAB R?

RLA.B R?

Note: RLA Substitution

; Shift left low byte of R? (x 2) - emulated by
; ADD.B R?,R?
; Shift left low byte of R? (x 4) - emulated by
; ADD.B R?,R?

The assembler does not recognize the instruction:

RLA @R5+ nor RLAB @R5+.

It must be substituted by:

ADD @R5+,-2(R5) or ADD.B @R5+,-1(R5).

Instruction Set Description 8-47

Instruction Set Overview

* RLC[.W]
* RLC.B

Syntax

Operation

Emulation

Description

Rotate left through carry
Rotate left through carry

RLC dst or
RLC.B dst

RLC.W

C <- MSB <- MSB-1 LSB+1 <- LSB <- C

ADDC dst,dst

dst

The destination operand is shifted left one position as shown in Figure B-7.
The carry bit (C) is shifted into the LSB and the MSB is shifted into the carry
bit (C).

Figure 8-7. Destination Operand-Carry Left Shift

Status Bits

Mode Bits

Example

Example

Example

Example

8-48

Word 15 0

~ Byte
17 1------------------ 1 01

N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the MSB
V: Set if arithmetic overflow occurs, reset otherwise

Set if 03FFFh < dstinitial < OCOOOh, reset otherwise
Set if 03Fh < dstinitial < OCOh, reset otherwise

OscOff, CPUOff, and GIE are not affected.

RS is shifted left one position.

RLC RS ; (RS x 2) + C -> RS

The input POIN.1 information is shifted into the LSB of RS.

BIT.B
RLC

#2,&POIN
RS

; Information -> Carry
; Carry=POin.1 -> LSB of RS

The MEM(LEO) content is shifted left one pOSition.

RLC.B LEO ; Mem(LEO) x 2 + C -> Mem(LEO)

The input POIN.1 information is to be shifted into the LSB of RS.

BIT.B
RLC.B

#2,&POIN
RS

; Information -> Carry
; Carry = POin.1 -> LSB of R5
; High byte of RS is reset

Note: RLC and RLC.B Emulation

The assembler does not recognize the instruction:

RLC @RS+.

It must be substituted by:

AD DC @RS+,-2(RS).

RRA[.W]
RRA.B

Syntax

Operation

Description

Rotate right arithmetically
Rotate right arithmetically

RRA dst or
RRA.B dst

Instruction Set Overview

RRA.W dst

MSB -> MSB, MSB -> MSB-1, ... LSB+ 1 -> LSB, LSB -> C

The destination operand is shifted right one position as shown in Figure B-8.
The MSB is shifted into the MSB, the MSB is shifted into the MSB-1 , and the
LSB+ 1 is shifted into the LSB.

Figure 8-8. Destination Operand-Arithmetic Right Shift

Status Bits

Mode Bits

Word 15 0

[t1 ~~I------------------1:J
N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the LSB
V: Reset

OscOff, CPUOff, and GIE are not affected.

Instruction Set Description 8-49

Running Title-Attribute Reference

Example

;OR

Example

;OR

8-50

R5 is shifted right one position. The MSB retains the old value. It operates
equal to an arithmetic division by 2.

RRA R5 ; R5/2-> R5

The value in R5 is multiplied by 0.75 (0.5 + 0.25).

PUSH
RRA
ADD
RRA

RRA
PUSH
RRA
ADD

R5
R5
@SP+,R5
R5

R5
R5
@SP
@SP+,R5

; hold R5 temporarily using stack
; R5xO.5 -> R5
; R5 x 0.5 + R5 = 1.5 x R5 -> R5
; (1.5 x R5) x 0.5 = 0.75 x R5 -> R5

; R5 x 0.5 -> R5
; R5xO.5 -> TOS
; TOS x 0.5 = 0.5 x R5 x 0.5 = 0.25 x R5 -> TOS
; R5 x 0.5 + R5 x 0.25 = 0.75 x R5 -> R5

The low byte of R5 is shifted right one position. The MSB retains the old value.
It operates equal to an arithmetic division by 2.

RRA.B R5 ; R5/2 -> R5: operation is on low byte only
; High byte of R5 is reset

The value in R5 (low byte only) is multiplied by 0.75 (0.5 + 0.25).

PUSH.B R5 ; hold low byte of R5 temporarily using stack
RRA.B R5 ; R5 x 0.5 -> R5
ADD.B @SP+,R5 ; R5 x 0.5 + R5 = 1.5 x R5 -> R5
RRA.B R5 ; (1.5 x R5) x 0.5 = 0.75 x R5 -> R5

RRA.B R5 ; R5 x 0.5 -> R5
PUSH.B R5 ; R5 x 0.5 -> TOS
RRA.B @SP ;TOS x 0.5 = 0.5 x R5 x 0.5 = 0.25 x R5 -> TOS
ADD.B @SP+,R5 ; R5 x 0.5 + R5 x 0.25 = 0.75 x R5 -> R5

RRC[.W]
RRC.B

Syntax

Operation

Description

Rotate right through carry
Rotate right through carry

RRC
RRC

dst
dst

or RRC.W dst

C -> MSB -> MSB-1 LSB+ 1 -> LSB -> C

Instruction Set Overview

The destination operand is shifted right one position as shown in Figure B-6.
The carry bit (C) is shifted into the MSB, the LSB is shifted into the carry bit (C).

Figure 8-9. Destination Operand-Carry Right Shift

Status Bits

Mode Bits

Example

Example

Word 15 0

rf]1----+-I·1..---r-1--------------------------,---,1 b
8yte 7

N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the LSB

o

V: Set if initial destination is positive and initial carry is set, otherwise reset

OscOff, CPUOff, and GIE are not affected.

RS is shifted right one position. The MSB is loaded with 1.

SETC
RRC RS

; Prepare carry for MSB
; RS/2 + 8000h -> RS

RS is shifted right one position. The MSB is loaded with 1.

SETC
RRC.B RS

; Prepare carry for MSB
; RS/2 + 80h -> RS; low byte of RS is used

Instruction Set Description 8-51

Instruction Set Overview

* SBC[.W]
* SBC.B

Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

Example

8-52

Subtract (borrow*) from destination
Subtract (borrow*) from destination

SBC dst or SBC.W dst
SBC.B dst

dst + OFFFFh + C -> dst
dst + OFFh + C -> dst

SUBC #O,dst
SUBC.B #O,dst

The carry bit (C) is added to the destination operand minus one. The previous
contents of the destination are lost.

N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Reset if dst was decremented from 0000 to OFFFFh, set otherwise

Reset if dst was decremented from 00 to OFFh, set otherwise
V: Set if initially C = 0 and dst = 08000h

Set if initially C = 0 and dst = 080h

OscOff, CPUOff, and GIE are not affected.

The 16-bit counter pointed to by R13 is subtracted from a 32-bit counter
painted to by R12.

SUB
SBC

@R13,0(R12)
2(R12)

; Subtract LSDs
; Subtract carry from MSD

The 8-bit counter pointed to by R13 is subtracted from a 16-bit counter pointed
to by R12.

SUB.B
SBC.B

@R13,0(R12)
1(R12)

Note: Borrow Is Treated as a .NOT.

The borrow is treated as a . NOT. carry :

; Subtract LSDs
; Subtract carry from MSD

Borrow
Yes
No

Carry bit
o
1

*SETC

Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

DSUS

Set carry bit

SETC

1->C

SIS #1,SR

The carry bit (C) is set.

N: Not affected
Z: Not affected
C: Set
V: Not affected

Instruction Set Overview

OscOff, CPUOff, and GIE are not affected.

Emulation of the decimal subtraction:
Subtract R5 from R6 decimally
Assume that R5 = 3987 and R6 = 4137

ADD

INV

SETC
DADD

#6666h,R5

R5

R5,R6

; Move content R5 from 0-9 to 6-OFh
; R5 = 03987 + 6666 = 09FEDh
; Invert this (result back to 0-9)
; R5 = .NOT. R5 = 06012h
; Prepare carry = 1
; Emulate subtraction by addition of:
; (10000 - R5 -1)
; R6 = R6 + R5 + 1
; R6 = 4137 + 06012 + 1 = 1 0150 = 0150

Instruction Set Description 8-53

Instruction Set Overview

*SETN

Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

8-54

Set negative bit

SETN

1-> N

BIS #4,SR

The negative bit (N) is set.

N: Set
Z: Not affected
C: Not affected
V: Not affected

OscOff, CPUOff, and GIE are not affected.

·SETZ

Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Set zero bit

SETZ

1 ->Z

SIS #2,SR

The zero bit (Z) is set.

N: Not affected
Z: Set
C: Not affected
V: Not affected

Instruction Set Overview

OscOff, CPUOff, and GIE are not affected.

Instruction Set Description 8-55

Instruction Set Overview

SUB[.W]
SUB.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

8-56

Subtract source from destination
Subtract source from destination

SUB
SUB.B

src,dst
src,dst

or

dst + .NOT.src + 1 -> dst
or
[(dst - src -> dst)]

SUB.W src,dst

The source operand is subtracted from the destination operand by adding the
source operand's 1 s complement and the constant 1. The source operand is
not affected. The previous contents of the destination are lost.

N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise.

Set to 1 if no borrow, reset if borrow.
V: Set if an arithmetic overflow occurs, otherwise reset

OscOff, CPUOff, and GIE are not affected.

See example at the SBC instruction.

See example at the SBC.B instruction.

Note: Borrow Is Treated as a .NOT.

The borrow is treated as a .NOT. carry : Borrow
Yes
No

Carry bit
a
1

SUBC[. W]SBB[. W]
SUBC.B,SBB.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Instruction Set Overview

Subtract source and borrow/.NOT. carry from destination
Subtract source and borrow/.NOT. carry from destination

SUBC src,dst or SUBC.W
SBB src,dst or SBB.W
SUBC.B src,dst or SBB.B

dst + .NOT.src + C -> dst
or
(dst - src - 1 + C -> dst)

src,dst or
src,dst
src,dst

The source operand is subtracted from the destination operand by adding the
source operand's 1 s complement and the carry bit (C). The source operand
is not affected. The previous contents of the destination are lost.

N: Set if result is negative, reset if positive.
Z: Set if result is zero, reset otherwise.
C: Set if there is a carry from the MSB of the result, reset otherwise.

Set to 1 if no borrow, reset if borrow.
V: Set if an arithmetic overflow occurs, reset otherwise.

OscOff, CPUOff, and GIE are not affected.

Two floating pOint mantissas (24 bits) are subtracted.
LSBs are in R13 and R10, MSBs are in R12 and R9.

SUB.W R13,R10; 16-bit part, LSBs
SUBC.B R12,R9 ; 8-bit part, MSBs

The 16-bitcounter pointed to by R13 is subtracted from a 16-bit counter in R10
and R11(MSD).

SUB.B @R13+,R10
SUBC.B @R13,R11

; Subtract LSDs without carry
; Subtract MSDs with carry
; resulting from the LSDs

Note: Borrow Is Treated as a .NOT. Carry

The borrow is treated as a .NOT. carry : Borrow
Yes
No

Carry bit
o
1

Instruction Set Description 8-57

Instruction Set Overview

SWPB

Syntax

Operation

Description

Status Bits

Mode Bits

Swap bytes

SWPB dst

Bits 15 to 8 <-> bits 7 to 0

The destination operand high and low bytes are exchanged as shown in
Figure 8-10.

N: Not affected
Z: Not affected
C: Not affected
V: Not affected

OscOtt, CPUOff, and GIE are not affected.

Figure B-10. Destination Operand Byte Swap

15 8 7 o

Example

Example

8-58

MOV
SWPB

#040BFh,R7
R7

; 0100000010111111 -> R7
; 1011111101000000 in R7

The value in R5 is multiplied by 256. The result is stored in R5,R4.

SWPB
MOV
BIC
BIC

R5
R5,R4
#OFFOOh,R5
#00FFh,R4

;Copy the swapped value to R4
;Correct the result
;Correct the result

SXT

Syntax

Operation

Description

Status Bits

Mode Bits

Instruction Set Overview

Extend Sign

SXT dst

Bit 7 -> Bit 8 Bit 15

The sign of the low byte is extended into the high byte as shown in Figu re B-11 .

N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (.NOT. Zero)
V: Reset

OscOff, CPUOff, and GIE are not affected.

Figure 8-11. Destination Operand Sign Extension

15 8 7 o

Example R7 is loaded with the Timer/Counter value. The operation of the sign-extend
instruction expands bit 8 to bit 15 with the value of bit 7.
R7 is then added to RS.

MOV.B
SXT
ADD

&TCDAT,R7
R7
R7,RS

; TCDAT = 080h: 1000 0000
; R7 = OFF80h: 11111111 10000000
; add value of EDE to 1S-bit ACCU

Instruction Set Description 8-59

Instruction Set Overview

* TST[.W]
* TST.B

Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

Example

Se60

Test destination
Test destination

TST dst or TST. W dst
TST.B dst

dst + OFFFFh + 1
dst + OFFh + 1

CMP
CMP.B

#O,dst
#O,dst

The destination operand is compared with zero. The status bits are set accord
ing to the result. The destination is not affected.

N: Set if destination is negative, reset if positive
Z: Set if destination contains zero, reset otherwise
C: Set
V: Reset

OscOff, CPUOff, and GIE are not affected.

R7 is tested. If it is negative, continue at R7NEG; if it is positive but not zero,
continue at R7POS.

R7POS
R7NEG
R7ZERO

TST
IN
JZ

R7
R7NEG
R7ZERO

; Test R7
; R7 is negative
; R7 is zero
; R7 is positive but not zero
; R7 is negative
; R7 is zero

The low byte of R7 is tested. If it is negative, continue at R7NEG; if it is positive
but not zero, continue at R7POS.

R7POS
R7NEG
R7ZERO

TST.B
IN
JZ

R7
R7NEG
R7ZERO

; Test low byte of R7
; Low byte of R7 is negative
; Low byte of R7 is zero
; Low byte of R7 is positive but not zero
; Low byte of R7 is negative
; Low byte of R7 is zero

XOR[.W]
XOR.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Instruction Set Overview

Exclusive OR of source with destination
Exclusive OR of source with destination

XOR
XOR.B

src,dst or
src,dst

src .xOR. dst -> dst

XOR.W src,dst

The source and destination operands are exclusive ORed. The result is placed
into the destination. The source operand is not affected.

N: Set if result MSB is set, reset if not set
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (= .NOT. Zero)
V: Set if both operands are negative

OscOff, CPUOff, and GIE are not affected.

The bits set in R6 toggle the bits in the RAM word TONI.

XOR R6,TONI ; Toggle bits of word TONI on the bits set in R6

The bits set in R6 toggle the bits in the RAM byte TONI.

XOR.B R6,TONI ; Toggle bits in word TONI on bits
; set in low byte of R6,

Reset to 0 those bits in low byte of R7 that are different from bits in RAM byte
EDE.

XOR.B
INV.B

EDE,R7
R7

; Set different bit to "1 s"
; Invert Lowbyte, Highbyte is Oh

Instruction Set Description 8-61

8-62

ill -

Appendix C

EPROM Programming
1~IIU~Il.~"~. 12 IlIiiJaliaMLnwA 111\ 'lt~RaI:ltb[lt~

erne m I!I~~~ L~~II!l"~I:aBl~ •• &iIi'Mt&Mi!t"'i!JJlll\~

This appendix describes the MSP430 EPROM module. The EPROM module
is erasable with ultraviolet light and electrically programmable. Devices with
an EPROM module are offered in a windowed package for multiple program
ming and in an OTP package for one-time programmable devices.

Topic Page

Co1 EPROM Operation 0 C-2

Co2 FAST Programming Algorithm 0 C-4

Co3 Programming an EPROM Module Through a Serial Data Link
Using the JTAG Feature 0 C-5

Co4 Programming an EPROM Module With Controller's Software 0 0 0 0 0 C-6

CoS Code 0 C-8

C-1

EPROM Operation

C.1 EPROM Operation

C.1.1 Erasure

The CPU acquires data and instructions from the EPROM. When the
programming voltage is applied to the TDINPP terminal, the CPU can also
write to the EPROM module. The process of reading the EPROM is identical
to the process of reading from other internal peripheral modules. Both
programming and reading can occur on byte or word boundaries.

The entire EPROM may be erased before programming begins. Erase the
EPROM module by exposing the transparent window to ultraviolet light.

Note: EPROM Exposed to Ambient Light (1)

Since normal ambient light contains the correct wavelength for erasure,
cover the transparent window with an opaque label when programming a
device. Do not remove the table until it has to be erased. Any useful data in
the EPROM module must be reprogrammed after exposure to ultraviolet
light.

The data in the EPROM module can be programmed serially through the
integrated JTAG feature, or through software included as a part of the
application software. The JTAG implementation features an internal
mechanism for security purposes provided by the implemented fuse. Once the
security fuse is activated, the device cannot be accessed through the JTAG
functions. The JTAG is permanently operating in the by-pass mode.

Refer to the appropriate data sheet for more information on the fuse imple
mentation.

C.1.2 Programming Methods

C-2

The application must provide an external voltage supply to the TDINPP
terminal to provide the necessary voltage and current for programming. The
minimum programming time is noted in the electrical characteristics of the
device data sheets.

The EPROM control register EPCTL controls the EPROM programming, once
the external voltage is supplied. The erase state is a 1. When EPROM bits are
programmed, they are read as O.

The programming of the EPROM module can be done for single bytes, words,
blocks of individual length, or the entire module. All bits that have a final level
of 0 must be erased before the EPROM module is programmed. The program
ming can be done on single devices or even in-system. The supply voltage
should be in the range required by the device data sheet but at least the maxi
mum supply voltage of the target application. The levels on the JTAG terminals
are defined in the device data sheet, and are usually CMOS levels.

EPROM Operation

Example C-1. MSP430 On-Chip Program Memory Format

xxxAh

xxxBh

xxx6h

xxx4h

Word Format

•••
DEFO

9ABC

567B

1234

•••

xxxBh

xxxAh

xxx9h

xxxBh

xxx7h

xxx6h

xxx5h

xxx4h

Byte Format

•••
DE

FO

9A

BC

56

78

12

34

•••

C.1.3 EPROM Control Register EPCTL

Figure C-1. EPROM Control Register EPCTL

7 o
EPCTL I I I

054h ~_ __~ ____ ~ __ ~ __ ~ ____ ~ __ ~_v_P_PS~_E_X_E~
r-O r-Q r-O r-Q r-O r-O rw-O rw-Q

For bit 0, the executable bit EXE initiates and ends the programming to the
EPROM module. The external voltage must be supplied to the TDINPP or
TesWPP before the EXE bit is set. The timing conditions are noted in the data
sheets.

For bit 1 , when the VPPS bit is set, the external programming voltage is con
nected to the EPROM module. The VPPS bit must be set before the EXE bit
is set. It can be reset together with the EXE bit. The VPPS bit must not be
cleared between programming operations.

Note:

Ensure that no VPP is applied to the programming voltage pin (TDINPP or
TesWPP) when the software in the device is executed or when the JTAG is
not fully controlled. Otherwise, an undesired write operation may
occur.

EPROM Programming C-3

EPROM Operation

C.1.4 EPROM Protect

The EPROM access through the serial test and programming interface JTAG
can be inhibited when the security fuse is activated. The security fuse is acti
vated by serial instructions shifted into the JTAG. Activating the fuse is not re
versible and any access to the internal system is disrupted. The by-pass func
tion described in the standard IEEE 1149.1 is active.

C.2 FAST Programming Algorithm

The FAST programming cycle is normally used to program the data into the
EPROM. A programmed logical 0 can be erased only by ultraviolet light.

Fast programming uses two types of pulses: prime and final. The length of the
prime pulse is typically 100llS (see the latest datasheet). After each prime
pulse, the programmed data are verified. If the verification fails 25 times, the
programming operation was false. If correct data are read, the final program
ming pulse is applied. The final programming pulse is 3 times the number of
prime pulses applied.

Example C-2. Fast Programming Subroutine

C-4

VPP at TDINPP is Switched to EPROM: Set VPPS Bit
Load Loop Into R_Count, Loop = 25

Write Data From BurnByte To EPROM
Program One Prime Pulse (typ. 100 Ils)

Yes

Invert Data in BurnByte
Use inv. BurnByte for

Error Indication

Final Programming Pulse
Applied:

3-Times N Prime Pulse

End Of Subroutine: RET

EPROM Operation

C.3 Programming an EPROM Module Through a Serial Data Link Using the
JTAG Feature

The hardware interconnection of the JTAG terminals is established through
four separate terminals, plus the ground or VSS reference level. The JTAG ter
minals are TMS, TCK, TOI(NPP), and TOO(fTOI).

Figure C-2. EPROM Programming With Serial Data Link

vpp§ • a-c
(12.5 V/70 mA)

TMS ---1~--I >---------------------~4TMS

TCK -'--+---1 >-----------------+-~TCK

TOI -'---+1 >-+-------..-0,.-- o-.---1TOINPpt

TOO 0----e----1 TOOITm:l:

MSP430Xxxx

TCLK -~-+-I ~----------------------~ Xout/TCLK

4---~-+~----------~~VCC/OVCC

AVCC

~~~~~----------~~VSS/OVSS 

SN74HCT125 

1 k 

27 

AVSS 

Switches shown for programming situation 

t TOI in standard mode, VPP input during programming 
:j: TOO in standard mode, data input TOI during programming 
§ See electrical characteristics in the latest data sheet 

EPROM Programming C-5 



EPROM Operation 

C.4 Programming an EPROM Module With Controller's Software 

The procedure for programming an EPROM module is as follows: 

1) Connect the required supply to the TDINPP terminal. 

2) Run the proper software algorithm. 

The software algorithm that controls the EPROM programming cycle cannot 
run in the same EPROM module to which the data are being written. It is impos
sible to read instructions from the EPROM and write data to it at the same time. 
The software needs to run from another memory such as a ROM module, a 
RAM module, or another EPROM module. 

Figure C-3. EPROM Programming With Controller's Software 

VPP§ 
(11.5 V/70 rnA) 

... .. 

.. ... 
... .. 

... 

~ 68k 

VSS 
~ 68 k 

VSS 

-L 

t Internally a pullup resistor is connected to TMS and TCK 

TMSt 

TCKt 

TDINPP:l: 

TDOITDI§ 

MSP430Xxxx 

VSS/DVSS 

AVSS 

:j: ROM devices of MSP430 have an internal pullup resistor at pin TDINPP. 
MSP430Pxxx or MSP430Exxx have no internal pullup resistor. They should be terminated 
according to the device data sheet. 

§ The TDOffDI pin should be terminated according to the device data sheet. 

C.4.1 Example 

C-6 

The software example writes one byte into the EPROM with the fast program
ming algorithm. The code is written position-independent, and will have been 
loaded to the RAM before it is used. The programming algorithm runs during 
the programming sequence in the RAM, thus avoiding conflict when the 
EPROM is written. The data (byte) that should be written is located in the RAM 
address BurnByte. The target address of the EPROM module is held in the 
register pointer defined with the set directive. The timing is adjusted to a cycle 
time of 1 Ils. When another cycle time/processor frequency is selected, the 
software should be adjusted according to the operating conditions. 



EPROM OOE!ratil~n 

Example C-3. Programming EPROM Module With Controller'S Software 

••• 
DE 

FO 

yyyy I--' 
9A 

-.... 
[)..... 

r- --- ~ ••• BC 
DE 

56 

"\. FO 
78 

R91 xxxx [ ): 9A 
--.. 

12 --BC 
34 

56 
••• 

78 

12 

34 

••• 

Example: Write data in yyyy into location xxxx 
Bum Byte = (yyyy) = (9Ah) 
R9 = xxxx 

The target EPROM module cannot execute the programming code sequence 
while the data are being written into it. In the example, a subroutine moves the 
programming code sequence into another memory, for example, into the 
RAM. 

Example C-4. Subroutine 

Start Of Subroutine: Load_Burn_Routine 

Source Start Address Of The Code Sequence»R7 
Destination Start Address Of The Code Sequence» R10 

Move One Word: (R7) » (R10) 
Increment Source and Dest. Pointer in R7 and R10 

No 

EPROM Programming C-7 



Code 

C.5 Code 
i-------------------------------------------------------------

Definitions used in Subroutine : 
; Move programming code sequence into RAM (load_burn_routine) 
; Burn a byte into the EPROM area (Burn_EPROM) 
i-------------------------------------------------------------

EPCTL .set 054h 
VPPS .set 2 
EXE .set 1 
BurnByte .set 0220h 
Burn_orig . set 0222h 

loops .set 25 
r_timer .set r8 
pointer .set r9 

.set rlO 

.set 3 

ov .set 2 

EPROM Control Register 
Program Voltage bit 
Execution bit 
address of data to be written 
Start address of burn 
program in the RAM 

lus = 1 cycle 
pointer to the EPROM address 
r9 is saved in the main routine 
before subroutine call is executed 

dec 
jnz 
mov 

r - timer : 1 cycle 
: 2 cycles 

# (lOO-ov) /lp, r_ timer 

loop_tlOO 
loop_tlOO 
2 cycles 

; Load EPROM programming sequence to another location e.g. RAM, Subroutine 

i---
;---

The address of Burn_EPROM (start of burn EPROM code) and 
the address of Burn_end (end of burn EPROM code) and 

i---
the start address of the location of the destination 
code area (RAM_Burn_EPROM) are known at assembly/linking 

RAM_Burn_EPROM . set 
load_burn_routine 

push r9 
push rlO 
mov 
mov 

load_burnl 
mov 
incd 
incd 
cmp 
jne 
pop 
pop 
ret 

#Burn_EPROM,R9 
#RAM_Burn_EPROM,R10 

@R9,O(R10) 
R10 
R9 
#Burn_end,R9 
1 o ad_burn 1 
r9 
rlO 

load pointer source 
load pointer dest. 

move a word 
dest. pointer + 2 
source pointer + 2 
compare to end_of table 

; Program one byte into EPROM, Subroutine 

i--

Burn subroutine: position independent code is needed 
since in this examples it is shifted to RAM »only 
relative addressing, relative jump instructions, is used! 
The timing is correct due to lus per cycle 

time 

Burn_EPROM 
dint 
mov.b #VPPS,&EPCTL 
push r_timer 

ensure correct burn timing 
VPPS on 

push r_count 
mov #loops,r_count 

Repeat_Burn 
mov.b &BurnByte, 0 (pointer) 

C-8 

save registers 
programming subroutine 
2 cycles = 2 us 

write to data to EPROM 



bis.b #EXE,&EPCTL 

mov #(100-ov)/lp,r_ timer 
wait 100 

dec r timer -
jnz wait - 100 
bic.b #EXE,&EPCTL 

mov #4,r_ timer 
wait 10 -

dec r timer -
jnz wait - 10 

cmp.b &BurnByte, 0 (pointer) 
jne Burn_EPROM_bad 

6 cycles 
EXE on 

6 us 

4 cycles 4 us 
total cycles VPPon to EXE 
12 cycles = 12 us (min.) 

;:programming pulse of 100us 
; :starts, actual time 102us 

;:EXE / prog. pulse off 

;:wait min. 10 us 
;:before verifying 
;:programmed EPROM 
;:location, actual 13+ us 

verify data = burned data 
data * burned data > jump 

Continue here when data correctly burned into EPROM location 
mov.b &BurnByte, ° (pointer) write to EPROM again 
bis.b #EXE,&EPCTL EXE on 
add #(Offffh-loops+1),r_count 

final""puls 
mov 

wait_300 
dec 
jnz 

#(300-ov)/lp,r_timer 

r_timer 
wait_300 

inc r_count 
jn final""puls 
clr.b &EPCTL 
jmp Burn EPROM_end 

Burn_EPROM_bad 
dec 

jnz 

inv.b &BurnByte 

Burn_EPROM_end 

Burn_end 

pop r_count 
pop r_timer 
eint 
ret 

Number of loops for 
; successful programming 

; :programming pulse of 
;:3*100us*N starts 

;:EXE off / VPPS off 

not ok : decrement 
loop counter 
loop not ended : do 
another trial 
return the inverted data 
to flag 
failing the programming 
attempt the EPROM address 
is unchanged 

Code 

EPROM Programming C-9 



C-10 



NOTES 



TI Worldwide Technical Support 

Internet 
TI Semiconductor Home Page 
www.tLcom/sc 

TI Distributors 
www.ti.com/sc/docs/general/distrib.htm 

Product Information Centers 
Americas 
Phone 
Fax 
Internet 

+ 1 (972) 644-5580 
+1(214) 480-7800 
www.tLcom/sc/ampic 

Europe, Middle East, and Africa 
Phone 

Belgium (English) 
France 
Germany 
Israel (English) 
Italy 
Netherlands (English) 
Spain 
Sweden (English) 
United Kingdom 

Fax 
Email 
Internet 

Japan 
Phone 

International 
Domestic 

Fax 
International 
Domestic 

Internet 
International 
Domestic 

+32 (0) 27 45 55 32 
+33 (0) 1 30 70 11 64 
+49 (0) 8161 803311 
1800 949 0107 
800791137 
+31 (0) 546 87 95 45 
+34 902 35 40 28 
+46 (0) 8587 555 22 
+44 (0) 1604 66 33 99 
+44 (0) 1604 66 33 34 
epic@tLcom 
www.tLcom/sc/epic 

+81-3-3344-5311 
0120-81-0026 

+81-3-3344-5317 
0120-81-0036 

www.tLcom/sc/jpic 
www.tij.co.jp/pic 

Asia 
Phone 

International +886-2-23786800 
Domestic Local Access Code 
Australia 1-800-881-011 
China 00-800-8800-6800 
Hong Kong 800-96-1111 
India 000-117 
Indonesia 001-801-10 
Korea 001-800-8800-6800 
Malaysia 1-800-800-011 
New Zealand 000-911 
Philippines 105-11 
Singapore 800-0111-111 
Taiwan 080-006800 
Thailand 0019-991-1111 

Fax 886-2-2378-6808 
Email tiasia@tLcom 
Internet www.tLcom/sc/apic 

© 2000 Texas Instruments Incorporated 
Printed in the USA 

"TEXAS 
INSTRUMENTS 

TI Number 
-800-800-1450 

-800-800-1450 
-800-800-1450 
-800-800-1450 

-800-800-1450 
-800-800-1450 
-800-800-1450 
-800-800-1450 

-800-800-1450 

A050200 



Printed in U.S.A. 
07/2000 

lf1 TEXAS 
INSTRUMENTS 

SLAU012 


