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Preface

Read This First

About This Manual

This reference guide describes the architecture, system hardware, peripher-

als, and general operation of the TMS320F243/F241/C242 digital signal proc-

essor (DSP) controllers. For a description of the CPU, assembly language in-

structions, and XDS510 emulator, refer to TMS320C24x DSP Controllers CPU

and Instruction Set Reference Guide (SPRU160). This book is intended to be

used in conjunction with SPRU160.

Notational Conventions

This document uses the following conventions:

� Program listings, program examples, and interactive displays are shown

in a special typeface similar to a typewriter’s. Examples use a bold

version of the special typeface for emphasis; interactive displays use a

bold version of the special typeface to distinguish commands that you

enter from items that the system displays (such as prompts, command

output, error messages, etc.).

Here is a sample program listing:

0011  0005  0001         .field    1, 2

0012  0005  0003         .field    3, 4

0013  0005  0006         .field    6, 3

0014  0006               .even

Here is an example of a system prompt and a command that you might

enter:

C: csr –a /user/ti/simuboard/utilities

� In syntax descriptions, the instruction, command, or directive is in a bold

typeface and parameters are in an italic typeface. Portions of a syntax that

are in bold should be entered as shown; portions of a syntax that are in

italics describe the type of information that should be entered. Here is an

example of a directive syntax:

.asect ”section name”, address

.asect is the directive. This directive has two parameters, indicated by sec-

tion name and address. When you use .asect, the first parameter must be
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an actual section name, enclosed in double quotes; the second parameter

must be an address.

� Square brackets  [  ]  identify an optional parameter. If you use an optional

parameter, you specify the information within the brackets; you don’t enter

the brackets themselves. Here’s an example of an instruction that has an

optional parameter:

LACC 16-bit constant [, shift]

The LACC instruction has two parameters. The first parameter, 16-bit con-

stant, is required. The second parameter, shift, is optional. As this syntax

shows, if you use the optional second parameter, you must precede it with

a comma.

Square brackets are also used as part of the pathname specification for

VMS pathnames; in this case, the brackets are actually part of the path-

name (they are not optional).

� Braces {  }  indicate a list. The symbol | (read as or) separates items with-

in the list. Here’s an example of a list:

{ * | *+ | *– }

This provides three choices: *, *+, or *–.

Unless the list is enclosed in square brackets, you must choose one item

from the list.

� Some directives can have a varying number of parameters. For example,

the .byte directive can have up to 100 parameters. The syntax for this di-

rective is:

.byte value1  [, ... , valuen ]

This syntax shows that .byte must have at least one value parameter, but

you have the option of supplying additional value parameters, separated

by commas.



Related Documentation From Texas Instruments

vRead This First

Information About Cautions and Warnings

This book may contain cautions.

This is an example of a caution statement.

A caution statement describes a situation that could potentially
damage your software or equipment.

Related Documentation From Texas Instruments

The following books describe the C24x and related support tools. To obtain a

copy of any of these TI documents, call the Texas Instruments Literature Re-

sponse Center at (800) 477-8924. When ordering, please identify the book by

its title and literature number. Many of these documents are located on the In-

ternet at http://www.ti.com.

TMS320C24x DSP Controllers CPU and Instruction Set Reference Guide

(literature number SPRU160) describes the TMS320C24x 16-bit

fixed-point digital signal processor controller. Covered are its

architecture, internal register structure, data and program addressing,

and instruction set. Also includes instruction set comparisons and design

considerations for using the XDS510 emulator.

TMS320C242 DSP Controller (literature number SPRS063) data sheet con-

tains the electrical and timing specifications for this device, as well as sig-

nal descriptions and pinouts for all of the available packages.

TMS320F243/F241 DSP Controllers (literature number SPRS064) data

sheet contains the electrical and timing specifications for these devices,

as well as signal descriptions and pinouts for all of the available pack-

ages.

TMS320C1x/C2x/C2xx/C5x Code Generation Tools Getting Started

Guide (literature number SPRU121) describes how to install the

TMS320C1x, TMS320C2x, TMS320C2xx, and TMS320C5x assembly

language tools and the C compiler for the ’C1x, ’C2x, ’C2xx, and ’C5x de-

vices. The installations for MS-DOS , OS/2 , SunOS , and Solaris
systems are covered.

Information About Cautions and Warnings / Related Documentation From Texas Instruments
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TMS320C1x/C2x/C2xx/C5x Assembly Language Tools User’s Guide (lit-

erature number SPRU018) describes the assembly language tools (as-

sembler, linker, and other tools used to develop assembly language

code), assembler directives, macros, common object file format, and

symbolic debugging directives for the ’C1x, ’C2x, ’C2xx, and ’C5x gen-

erations of devices.

TMS320C2x/C2xx/C5x Optimizing C Compiler User’s Guide (literature

number SPRU024) describes the ’C2x/C2xx/C5x C compiler. This C

compiler accepts ANSI standard C source code and produces TMS320

assembly language source code for the ’C2x, ’C2xx, and ’C5x genera-

tions of devices.

TMS320C2xx C Source Debugger User’s Guide (literature number

SPRU151) tells you how to invoke the ’C2xx emulator and simulator ver-

sions of the C source debugger interface. This book discusses various

aspects of the debugger interface, including window management, com-

mand entry, code execution, data management, and breakpoints. It also

includes a tutorial that introduces basic debugger functionality.

TMS320C2xx Simulator Getting Started (literature number SPRU137)

describes how to install the TMS320C2xx simulator and the C source

debugger for the ’C2xx. The installation for MS-DOS , PC-DOS ,

SunOS , Solaris , and HP-UX  systems is covered.

TMS320C2xx Emulator Getting Started Guide (literature number

SPRU209) tells you how to install the Windows  3.1 and Windows  95

versions of the ’C2xx emulator and C source debugger interface.

XDS51x Emulator Installation Guide (literature number SPNU070)

describes the installation of the XDS510 , XDS510PP , and

XDS510WS  emulator controllers. The installation of the XDS511
emulator is also described.

JTAG/MPSD Emulation Technical Reference (literature number SPDU079)

provides the design requirements of the XDS510  emulator controller,

discusses JTAG designs (based on the IEEE 1149.1 standard), and

modular port scan device (MPSD) designs.

TMS320 DSP Development Support Reference Guide (literature number

SPRU011) describes the TMS320 family of digital signal processors and

the tools that support these devices. Included are code-generation tools

(compilers, assemblers, linkers, etc.) and system integration and debug

tools (simulators, emulators, evaluation modules, etc.). Also covered are

available documentation, seminars, the university program, and factory

repair and exchange.



Trademarks

viiRead This First

TMS320 DSP Designer’s Notebook: Volume 1 (literature number

SPRT125) presents solutions to common design problems using ’C2x,

’C3x, ’C4x, ’C5x, and other TI DSPs.

TMS320 Third-Party Support Reference Guide (literature number

SPRU052) alphabetically lists over 100 third parties that provide various

products that serve the family of TMS320 digital signal processors. A

myriad of products and applications are offered—software and hardware

development tools, speech recognition, image processing, noise can-

cellation, modems, etc.

Trademarks

320 Hotline On-line is a trademark of Texas Instruments Incorporated.

cDSP is a trademark of Texas Instruments Incorporated.

VelociTI is a trademark of Texas Instruments Incorporated.

XDS510 is a trademark of Texas Instruments Incorporated.
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Introduction

The TMS320F243/F241/C242 series of devices are members of the TMS320

family of digital signal processors (DSPs) designed to meet a wide range of

digital motor control (DMC) and other embedded control applications. This se-

ries is based on the ’C2xLP 16-bit, fixed-point, low-power DSP CPU, and is

complemented with a wide range of on-chip peripherals and on-chip ROM or

flash program memory, plus on-chip dual access RAM (DARAM).

This reference guide describes the following three ’24x devices: ’F243, ’F241,

and ’C242. These low-cost DSPs are intended to enable multiple applications

for a nominal price.

This chapter provides an overview of the current TMS320 family, describes the

background and benefits of the ’24x DSP controller products, and introduces

the ’F243, ’F241, and ’C242 devices.
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1.1 TMS320 Family Overview

The TMS320 family consists of fixed- and floating-point multiprocessor digital

signal processors (DSPs), and fixed-point DSP controllers. TMS320 DSPs

have an architecture designed specifically for real-time signal processing. The

’24x series of DSP controllers combines this real-time processing capability

with controller peripherals to create an ideal solution for control system

applications. The following characteristics make the TMS320 family the right

choice for a wide range of processing applications:

� Very flexible instruction set

� Inherent operational flexibility

� High-speed performance

� Innovative parallel architecture

� Cost effectiveness

In 1982, Texas Instruments introduced the TMS32010, the first fixed-point

DSP in the TMS320 family. Before the end of the year, Electronic Products

magazine awarded the TMS32010 the title “Product of the Year”. Today, the

TMS320 family consists of these generations: ’C1x, ’C2x, ’C20x, ’C24x, ’C5x,

’C54x, and ’C6x fixed-point DSPs; ’C3x and ’C4x floating-point DSPs; and

’C8x multiprocessor DSPs. The ’F243/F241/C242 devices are considered part

of the ’24x generation of fixed-point DSPs, and members of the ’C2000 plat-

form.

Devices within a generation of a TMS320 platform have the same CPU struc-

ture but different on-chip memory and peripheral configurations. Spin-off

devices use new combinations of on-chip memory and peripherals to satisfy

a wide range of needs in the worldwide electronics market. By integrating

memory and peripherals onto a single chip, TMS320 devices reduce system

costs and save circuit board space.
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1.2 TMS320C24x Series of DSP Controllers

Designers have recognized the opportunity to redesign existing digital motor

control (DMC) systems to use advanced algorithms that yield better perfor-

mance and reduce system component count. DSPs enable:

� Design of robust controllers for a new generation of inexpensive motors,

such as AC induction, DC permanent magnet, and switched-reluctance

motors

� Full variable-speed control of brushless motor types that have lower

manufacturing cost and higher reliability

� Energy savings through variable-speed control, saving up to 25% of the

energy used by fixed-speed controllers

� Increased fuel economy, improved performance, and elimination of

hydraulic fluid in automotive electronic power steering (EPS) systems

� Reduced manufacturing and maintenance costs by eliminating hydraulic

fluid in automotive electronic braking systems

� More efficient and quieter operation due to diminished torque ripple, re-

sulting in less loss of power, lower vibration, and longer life

� Elimination or reduction of memory lookup tables through real-time poly-

nomial calculation, thereby reducing system cost

� Use of advanced algorithms that can reduce the number of sensors

required in a system

� Control of power switching inverters, along with control algorithm

processing

� Single-processor control of multimotor systems

The ’24x DSP controllers are designed to meet the needs of control-based ap-

plications. By integrating the high performance of a DSP core and the on-chip

peripherals of a microcontroller into a single-chip solution, the ’24x series

yields a device that is an affordable alternative to traditional microcontroller

units (MCUs) and expensive multichip designs. At 20 million instructions per

second (MIPS), the ’24x DSP controllers offer significant performance over

traditional 16-bit microcontrollers and microprocessors.

The 16-bit fixed-point DSP core of the ’24x devices provides analog designers

a digital solution that does not sacrifice the precision and performance of their

systems. In fact, system performance can be enhanced through the use of ad-
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vanced control algorithms for techniques such as adaptive control, Kalman fil-

tering, and state control. The ’24x DSP controllers offer reliability and program-

mability. In contrast, analog control systems are hardwired solutions and can

experience performance degradation due to aging, component tolerance, and

drift.

The high-speed central processing unit (CPU) allows the digital designer to

process algorithms in real time rather than approximate results with look-up

tables. The instruction set of these DSP controllers, which incorporates both

signal processing instructions and general-purpose control functions, coupled

with the extensive development support available for the ’24x devices,

reduces development time and provides the same ease of use as traditional

8- and 16-bit microcontrollers. The instruction set also allows you to retain your

software investment when moving from other general-purpose TMS320 fixed-

point DSPs. It is source- and object-code compatible with the other members

of the ’24x generation, source-code compatible with the ’C2x generation, and

upwardly source-code compatible with the ’C5x generation of DSPs from Tex-

as Instruments.

The ’24x architecture is also well-suited for processing control signals. It uses

a 16-bit word length along with 32-bit registers for storing intermediate results,

and it has two hardware shifters available to scale numbers independently of

the CPU. This combination minimizes quantization and truncation errors, and

increases processing power for additional functions. Such functions might in-

clude a notch filter that could cancel mechanical resonances in a system, or

an estimation technique that could eliminate state sensors in a system.

The ’24x DSP controllers take advantage of an existing set of peripheral func-

tions that allow Texas Instruments to quickly configure various series mem-

bers for different price/performance points or for application optimization. This

library of both digital- and mixed-signal peripherals includes:

� Timers

� Serial communications ports (SCI, SPI)

� Analog-to-digital converters (ADC)

� Event manager

� Safety features such as watchdog timer and power drive protection

The DSP controller peripheral library is continually growing and changing to

suit the needs of tomorrow’s embedded control marketplace.
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1.3 Peripheral Overview

The peripheral set for the ’F243/F241/C242 devices includes:

� Event Manager: Timers and PWM generators for digital motor control

� CAN Interface: Controller Area Network (CAN) 2.0b compatible, with 6

mailboxes (not available in ’C242)

� A/D: 10-bit ±1, 1-µs conversion, 8 channel, analog-to-digital converter

� SPI: Serial Peripheral Interface – synchronous serial port (not available in

’C242)

� SCI: Serial Communications Interface – asynchronous serial port (univer-

sal asynchronous receiver and transmitter – UART)

� Watchdog timer, without real timer interrupt (RTI) capability

� General purpose bi-directional digital I/O (GPIO) pins

Note:

For device pinouts, electrical characteristics, and timing specifications of
’F243/F241/C242 devices, refer to the following datasheets:

� TMS320F243, TMS320F241 DSP Controllers (SPRS064)

� TMS320C242 DSP Controllers (SPRS063)
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1.4 ’F243/F241/C242 Highlights

� The ’F243 has an external memory interface and is intended primarily for

emulation tools.

� The ’F241 is similar to the ’F243 but lacks external memory interface and

has reduced GPIO pins.

� The ’C242 is a minimum-cost motor control device.

The three device configurations available and their features are shown in

Table 1–1.

Table 1–1. ’F243/F241/C242 Device Configurations

Device Feature ’F243 ’F241 ’C242

’C2xLP CPU with 544

words DARAM + JTAG

Yes Yes Yes

5V Flash 8k x 16 8k x 16 –

ROM – – 4k x 16

Event Manager (EV2) Yes Yes Yes

CAN Yes Yes No

SPI Yes Yes No

SCI Yes Yes Yes

10 bit, 8 channel A/D

with dual conversion

Yes Yes Yes

WD (no RTI) Yes Yes Yes

General Purpose 

Digital I/O

26 – Shared with

other functions 6

dedicated to I/O�

26 – Shared

with other

functions

20 – Shared with

other functions 6

dedicated to I/O�

External Interrupts PDPINT, NMI,

XINT1, XINT2

PDPINT, NMI,

XINT1, XINT2

PDPINT, NMI,

XINT1, XINT2

External memory inter-

face

Yes No No

Package 144 TQFP 64 pin QFP or

68 pin PLCC

64 pin QFP or

68 pin PLCC

’F241 compatible

�These six dedicated I/O pins are not the same pins for ’F243 and ’C242.

Note:  The PMT pin should be connected to ground for proper operation.
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Figure 1–1 provides a graphical overview of the devices.

Figure 1–1. ’F243/F241/C242 Device Overview

VDD (8 pins)
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XINT2/IO

NMI
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R/W
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System

module
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Event manager

� 3 × Capture ip
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� 2 × GP timers/PWM
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SPI

WD

Digital I/O

(Shared With Other Pins)
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Port B – IOPBx

Port C – IOPCx

Port D – IOPDx

CAN

JTAG port

Flash (16K)/
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CPU
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Notes: 1) CAN and SPI are not available in ’C242.

2) XMIF is not available in ’F241 and ’C242.
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1.5 ’F243/F241/C242 Features

Some additional features of the ’X243/241/242 devices include:

� All peripheral registers have at least a subset of the functionality of the

’C240 peripherals and are address and bit-position compatible with the

TMS320C240.

� Many peripherals have reduced functionality relative to the ’F/C240.

� SPI functionality has been increased to allow up to 16-bit characters with

double buffering on transmit.

� All peripherals are accessed via the peripheral bus.

� All peripherals are clocked at the same rate as the CPU.

� The analog-to-digital converter has a 10-bit ±1 LSB accuracy, 1µs conver-

sion time.

� 64-pin QFP or 68-pin PLCC package (for ’F241/C242).

� 144-pin QFP package (for ’F243).

� Compared to the ’C240, the following functions are absent:

� Software Programmable PLL

� Power-On Reset (PORESET)
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Peripheral Interrupt Expansion (PIE)

This chapter describes how the peripheral interrupt expansion (PIE) is used

to increase interrupt request capacity.
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2.1 Architecture Summary

The ’F243/F241/C242 devices are implemented as ASIC customizable digital

signal processors (cDSPs�). The CPU program ROM/FLASH is implemented

as ASIC hard macros as shown in the shaded blocks in Figure 2–1. The CPU

uses the LP256 hard macro which consists of the TMS320C2xx DSP CPU

core, 544 x 16 words of dual access RAM (DARAM), the analysis/JTAG logic,

the internal memory interface, and the logic interface. The logic interface, how-

ever, is not used in the ’F243/F241/C242.

Peripherals interface to the internal memory of the CPU through the peripheral

bus (PBUS) interface. All on-chip peripherals are accessed through PBUS. At

lower frequencies, all peripheral accesses (reads and writes) are zero wait

state, single-cycle accesses. All peripherals, excluding the watchdog timer

counter, are clocked by the CPU clock. A third ASIC module is the 10-bit 850ns

A/D converter.

These devices have 26 (32 for ’F243) bit-selectable digital I/O ports. Most or

all of these I/O ports are multiplexed with other functions, such as event man-

ager signals, serial communication port signals, and interrupts. Most of these

multiplexed digital I/O pins come up in their digital I/O pin mode as an input

following a device reset. For a detailed description of the architecture and in-

struction set, refer to the TMS320C24x DSP Controllers CPU and Instruction

Set Reference Guide (SPRU160).

Figure 2–1. ’F243/F241/C242 Device Architecture
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+ 544 x 16 DARAM
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2.2 Interrupt Priority and Vectors

A centralized interrupt expansion scheme is implemented in order to accom-

modate the large number of peripheral interrupts with the six maskable inter-

rupts supported by the CPU. Table 2–1 provides the interrupt source priority

and vectors for the ’F243/F241/C242 devices.

Table 2–1. ’F243/F241/C242 Interrupt Source Priority and Vectors  

Overall

Priority

Interrupt

Name

CPU

Interrupt

Vector

Peripheral

Interrupt

Vector Maskable?
Source

Peripheral Description

1 Reset RSN

0000h

N/A N RS Pin,

Watchdog

Reset from pin,

watchdog time out

2 Reserved –

0026h

N/A N CPU Emulator trap

3 NMI NMI

0024h

N/A N Non-mask-

able interrupt

Non-maskable inter-

rupt

(a) INT1 (level 1)

Overall

Priority

Interrupt

Name

CPU

Interrupt

Vector

Peripheral

Interrupt

Vector Maskable?
Source

Peripheral Description

4 PDPINT INT1

0002h

0020h Y EV Power Drive Protec-

tion Interrupt Pin

5 ADCINT 0004h Y ADC ADC interrupt in high

priority mode

6 XINT1 0001h Y External

interrupt logic

External interrupt

pins in high priority

mode

7 XINT2 0011h Y External

interrupt logic

External interrupt

pins in high priority

mode

8 SPIINT 0005h Y SPI SPI interrupt in high

priority mode

9 RXINT 0006h Y SCI SCI receiver interrupt

in high priority mode

10 TXINT 0007h Y SCI SCI transmitter inter-

rupt in high priority

mode

11 CANMBINT 0040h Y CAN CAN mailbox inter-

rupt (high priority

mode)

12 CANERINT 0041h Y CAN CAN error interrupt

(high priority mode)
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Table 2–1. ’F243/F241/C242 Interrupt Source Priority and Vectors (Continued)

(b) INT2 (level 2)

Overall

Priority

Interrupt

Name

CPU

Interrupt

Vector

Peripheral

Interrupt

Vector Maskable?
Source

Peripheral Description

13 CMP1INT INT2 0004h 0021h Y EV Compare 1 interrupt

14 CMP2INT 0022h Y EV Compare 2 interrupt

15 CMP3INT 0023h Y EV Compare 3 interrupt

16 TPINT1 0027h Y EV Timer 1 period

interrupt

17 TCINT1 0028h Y EV Timer 1 compare

interrupt

18 TUFINT1 0029h Y EV Timer 1 underflow

interrupt

19 TOFINT1 002Ah Y EV Timer 1 overflow

interrupt

(c) INT3 (level 3)

Overall

Priority

Interrupt

Name

CPU

Interrupt

Vector

Peripheral

Interrupt

Vector Maskable?
Source

Peripheral Description

20 TPINT2 INT3

0006h

002Bh Y EV Timer 2 period

interrupt

21 TCINT2 002Ch Y EV Timer 2 compare 

interrupt

22 TUFINT2 002Dh Y EV Timer 2 underflow

interrupt

23 TOFINT2 002Eh Y EV Timer 2 overflow

interrupt

(d) INT4 (level 4)

Overall

Priority

Interrupt

Name

CPU

Interrupt

Vector

Peripheral

Interrupt

Vector Maskable?
Source

Peripheral Description

24 CAPINT1 INT4 0033h Y EV Capture 1 interrupt

25 CAPINT2 0008h 0034h Y EV Capture 2 interrupt

26 CAPINT3 0035h Y EV Capture 3 interrupt
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Table 2–1. ’F243/F241/C242 Interrupt Source Priority and Vectors (Continued)

(e) INT5 (level 5)

Overall

Priority

Interrupt

Name

CPU

Interrupt

Vector

Peripheral

Interrupt

Vector Maskable?
Source

Peripheral Description

27 SPIINT INT5

000Ah

0005h Y SPI SPI interrupt (low

priority)

28 RXINT 0006h Y SCI SCI receiver interrupt

(low priority mode)

29 TXINT 0007h Y SCI SCI transmitter

interrupt (low priority

mode)

30 CANMBINT 0040h Y CAN CAN mailbox

interrupt (low priority

mode)

31 CANERINT 0041h Y CAN CAN error interrupt

(low priority mode)

(f) INT6 (level 6)

Overall

Priority

Interrupt

Name

CPU

Interrupt

Vector

Peripheral

Interrupt

Vector Maskable?
Source

Peripheral Description

32 ADCINT INT6

000Ch

0004h Y ADC ADC interrupt (low

priority)

33 XINT1 0001h Y External 

interrupt logic

External interrupt

pins (low priority

mode)

34 XINT2 0011h Y External 

interrupt logic

External interrupt

pins (low priority

mode)

Reserved 000Eh N/A Y CPU Analysis interrupt

N/A TRAP 0022h N/A N/A CPU TRAP instruction

N/A Phantom

Interrupt

Vector

N/A 0000h N/A CPU Phantom interrupt

vector
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2.3 Peripheral Interrupt Expansion (PIE)

The ’24x CPU supports one nonmaskable interrupt (NMI) and six maskable

prioritized interrupt requests. The ’24x devices have many peripherals, and

each peripheral is capable of generating one or more interrupts in response

to many events. Because the ’C24x CPU does not have sufficient capacity to

handle all peripheral interrupt requests, a centralized interrupt controller (PIE)

is required to arbitrate the interrupt requests from all the different sources (see

Figure 2–2).
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Figure 2–2. Peripheral Interrupt Expansion Block Diagram
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2.3.1 Interrupt Hierarchy

The number of interrupt requests available is expanded by having two levels

of hierarchy in the interrupt request system. Both the interrupt request/ac-

knowledge hardware and the interrupt service routine software have two lev-

els of hierarchy.

2.3.2 Interrupt Request Structure

At the lower level of the hierarchy, the peripheral interrupt requests (PIRQ)

from several peripherals to the interrupt controller are ORed together to gener-

ate a request to the CPU. There is an interrupt flag bit and an interrupt enable

bit located in the peripheral for each event that can cause a PIRQ. There is also

one PIRQ for each event. If an interrupt causing event occurs in a peripheral

and the corresponding interrupt enable bit is set, the interrupt request from the

peripheral to the interrupt controller will be asserted. This interrupt request

simply reflects the status of the peripheral’s interrupt flag, gated with the inter-

rupt enable bit. When the interrupt flag is cleared, the interrupt request is

cleared.

Some peripherals may have the capability to make either a high-priority or a

low-priority interrupt request. If a peripheral has this capability, the value of its

interrupt priority bit is also transmitted to the interrupt controller. The interrupt

request (PIRQ) continues to be asserted until it is either automatically cleared

by an interrupt acknowledge or cleared by the software.

At the upper level of the hierarchy, the ORed PIRQs generate interrupt re-

quests (INTn) to the CPU. The request to the ’C24x CPU is a low-going pulse

of two CPU clock cycles. The PIE controller generates an INTn pulse when any

of the PIRQ’s controlling the INTn become active. If any of the PIRQ’s capable

of asserting the CPU interrupt request are still active in the cycle following an

interrupt acknowledge for the INTn, another INTn pulse is generated. An inter-

rupt acknowledge clears the highest priority pending PIRQ. Note that the inter-

rupts are automatically cleared only at the core level and not at the peripheral

level. The interrupt controller (not the peripherals) defines the following:

� Which CPU interrupt request gets asserted by which peripheral

� Relative priority of each peripheral interrupt requests

This is shown in Table 2–1, ’X243/241/242 Interrupt Source Priority and Vec-

tors, on page 2-3.
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2.3.3 Interrupt Acknowledge

The hierarchical interrupt expansion scheme requires one interrupt acknowl-

edge signal for each peripheral interrupt request to the interrupt controller.

When the CPU asserts its interrupt acknowledge, it simultaneously puts a val-

ue on the program address bus, which corresponds to the CPU interrupt being

acknowledged. (It does this to fetch the interrupt vector from program memory:

each INTn has a vector stored in a dedicated program memory address.) This

value is shown in Table 2–1, ’X243/241/242 Interrupt Source Priority and Vec-

tors, on page 2-3. The PIE controller decodes this value to determine which

of the CPU interrupt requests is being acknowledged. It then generates a pe-

ripheral interrupt acknowledge in response to the highest priority, currently as-

serted PIRQ associated with that CPU interrupt.
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2.4 Interrupt Vectors

When the CPU receives an interrupt request, it does not know which peripheral

event caused the request. To enable the CPU to distinguish between all of

these events, a unique peripheral interrupt vector is generated in response to

an active peripheral interrupt request. This vector is loaded into the peripheral

interrupt vector register (PIVR) in the PIE controller. It can then be read by the

CPU and used to generate a vector to branch to the interrupt service routine

(ISR) which corresponds to the event being acknowledged.

In effect there are two vector tables: The CPU’s vector table which is used to

get to the first, general interrupt service routine (GISR) in response to a CPU

interrupt request; and the peripheral vector table which is used to get to the

event specific interrupt service routine (SISR) corresponding to the event

which caused the PIRQ. The code in the GISR should read the PIVR, and after

saving any necessary context, use this value to generate a vector to the SISR.

Figure 2–3 shows an example of how XINT1 (external interrupt in high-priority

mode) generates an interrupt. For XINT1 in high-priority mode, a value of

0001h is loaded in the PIVR register. The CPU ascertains what value was

loaded in the PIVR register, uses this value to determine which peripheral

caused the interrupt, and then branches to the appropriate SISR. Such a

branch to the SISR could be a conditional branch (BCND) which is executed

on the condition that the PIVR register holds a particular value. An alternative

scheme would be to left-shift the PIVR register by 1 bit while loading it in the

accumulator and adding a fixed offset value. Program control could then

branch to the address value stored in the accumulator (using BACC instruc-

tion). This address would point to the SISR.
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Figure 2–3. Interrupt Requests

IMR
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IFR
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2.4.1 Phantom Interrupt Vector

The phantom interrupt vector is an interrupt system integrity feature.  If the

CPU’s interrupt acknowledge is asserted but there is no associated peripheral

interrupt request asserted, the phantom vector is used so that this fault is han-

dled in a controlled manner. The phantom interrupt vector is required when,

for example, the CPU executes a software interrupt instruction with an argu-

ment corresponding to a peripheral interrupt (usually INT1–INT6). Another ex-

ample is when a peripheral makes an interrupt request but its INTn flag was

cleared by software before the CPU acknowledged the request. In this case,

there may be no peripheral interrupt request asserted to the interrupt control-

ler; and therefore, the controller does not know which peripheral interrupt vec-

tor to load into the PIVR. In these two situations, the phantom interrupt vector

is loaded into the PIVR in lieu of a peripheral interrupt vector.
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2.4.2 Software Hierarchy

There are two levels of interrupt service routine hierarchy: the general interrupt

service routine (GISR) and the specific interrupt service routine (SISR). There

is one GISR for each maskable prioritized request (INT1–INT6) to the CPU

which performs all necessary context saves before it fetches the peripheral in-

terrupt vector from the PIVR. This vector is used to generate a branch to the

SISR. There is one SISR for every interrupt request (IRQn) from a peripheral

to the interrupt controller and this SISR performs the required actions in re-

sponse to the peripheral interrupt request.

2.4.3 Nonmaskable Interrupts

Nonmaskable interrupts such as reset and NMI are not part of PIE. The PIE

controller does not support expansion of nonmaskable interrupts. This is be-

cause an ISR must read the peripheral interrupt vector from the PIVR before

interrupts are re-enabled. (All interrupts are automatically disabled when an

interrupt is taken.) If the PIVR is not read before interrupts are re-enabled,

another interrupt is acknowledged and a new peripheral interrupt vector is

loaded into the PIVR, causing permanent loss of the original peripheral inter-

rupt vector.
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2.5 Interrupt Operation Sequence

An interrupt generating event occurs in a peripheral. Refer to Figure 2–4 for

’24x interrupt response and flow in each module of the ’24x.The interrupt flag

bit (IF) corresponding to that event is set in a register in the peripheral. If the

corresponding interrupt enable bit (IE) is set, the peripheral generates an inter-

rupt request to the PIE controller by asserting its PIRQ. If the interrupt is not

enabled, the IF remains set until cleared by software. If the interrupt is enabled

at a later time and the interrupt flag is still set, the PIRQ will immediately be

asserted.

If no unacknowledged CPU interrupt request of the same priority level (INTn)

has previously been sent, the PIRQ causes the PIE controller to generate a

CPU interrupt request (INTn). This pulse is active low for two CPU clock

cycles.

The interrupt request to the CPU sets the corresponding flag in the CPU’s in-

terrupt flag register (IFR). If the CPU interrupt has been enabled by setting the

corresponding bit in the CPU’s interrupt mask register (IMR), the CPU stops

what it is doing, masks all other maskable interrupts by setting the INTM bit,

saves some context, and starts executing the general interrupt service routine

(GISR) for that interrupt priority level (INTn). The CPU generates an interrupt

acknowledge automatically which is accompanied by a value on the program

address bus (PAB) corresponding to the interrupt priority level being re-

sponded to. For example, if INT3 is asserted, its vector 0006h is loaded in the

PAB. This is the interrupt vector corresponding to INTn (refer to Table 2–1

’X243/241/242 Interrupt Source Priority and Vectors, on page 2-3).

The PIE controller decodes the PAB value and generates a peripheral interrupt

acknowledge to clear the PIRQ bit associated with the CPU interrupt being ac-

knowledged. The PIE controller then loads the peripheral interrupt vector reg-

ister (PIVR) with the appropriate peripheral interrupt vector (or the phantom

interrupt vector), from the table stored in the PIE controller.

When the GISR has completed any necessary context saves, it reads the

PIVR and uses that interrupt vector to branch to the specific interrupt service

routine (SISR) for the interrupt event which occurred in the peripheral.

Re-enabling interrupts

Interrupts must not be re-enabled until the PIVR has been read;
otherwise, it’s contents can get overwritten by a subsequent interrupt.
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2.6 Interrupt Latency

There are three components to interrupt latency:

1) Synchronization is the time it takes for the request generated in response

to the occurrence of an interrupt generating event to be recognized by the

PIE controller and converted into a request to the CPU.

2) Core Latency is the time it takes for the CPU to recognize the enabled in-

terrupt request, clear it’s pipeline, and begin fetching the first instruction

from the CPU’s interrupt vector table. There is a minimum core latency of

four CPU cycles. If a higher priority maskable interrupt is requested during

this minimum latency period, it is masked until the ISR for the interrupt be-

ing serviced re-enables interrupt. The latency can be longer than the mini-

mum if the interrupt request occurs during an uninterruptible operation, for

example, a repeat loop, a multi-cycle instruction, or during a wait-stated

access. If a higher priority interrupt occurs during this additional latency

period, it gets serviced before the original lower priority interrupt, assum-

ing both are enabled.

3) ISR Latency is the time it takes to get to the specific interrupt service

routine (ISR) code for the event that caused the acknowledged interrupt.

ISR latency can vary depending on how much context saving is required.
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2.7 Sample ISR Code

; This sample ISR code illustrates how to branch to a SISR corresponding

; to a peripheral interrupt. No context save is done.

; Timer 1 period interrupt is assumed

                main code

                    .

        B       GISR2           ; This instruction resides at 0004h of PM

                    .

                    .

;========================================================================

; ISRs

;========================================================================

GISR2:  LDP     #PIVR >> 7h     ; Load the data page containing PIVR

        LACL    PIVR            ; Load PIVR value in the accumulator

        XOR     #0027h          ; Timer 1 period interrupt ?

        BCND    SISR27,eq       ; Branch to T1PINT if Accumulator = 0

                                ; Else reload PIVR in the accumulator and continue

                                ; checking for other peripheral interrupts

SISR27: ...........             ; Execute the ISR specific to T1PINT

       ...........              ; After executing the SISR, clear the flag bit

        LDP     #0E8h           ; that asserted the interrupt, so that future

        SPLK    #0080h, EVIFRA  ; interrupts may be recognized

EXIT_ISR

        CLRC    INTM            ; Before exiting the SISR, clear the interrupt

        RET                     ; mode bit
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2.8 CPU Interrupt Registers

The CPU interrupt registers in the upper level of heirarchy include the follow-

ing:

� The interrupt flag register (IFR)

� The interrupt mask register (IMR)

2.8.1 Interrupt Flag Register (IFR)

The interrupt flag register (IFR), a 16-bit, memory-mapped register at address

0006h in data-memory space, is used to identify and clear pending interrupts.

The IFR contains flag bits for all the maskable interrupts (INT1–INT6).

When a maskable interrupt is requested, the flag bit in the corresponding pe-

ripheral control register is set to 1. If the corresponding mask bit is also 1, the

interrupt request is sent to the CPU, setting the corresponding flag in the IFR.

This indicates that the interrupt is pending or waiting for acknowledgement.

You can read the IFR to identify pending interrupts and write to the IFR to clear

pending interrupts. To clear a single interrupt, write a 1 to the corresponding

IFR bit. All pending interrupts can be cleared by writing the current contents

of the IFR back into the IFR.

The following events also clear an IFR flag:

� The CPU acknowledges the interrupt.

� The ’24x is reset.

Notes:

1) To clear an IFR bit, you must write a 1 to it, not a 0.

2) When a maskable interrupt is acknowledged, only the IFR bit is cleared

automatically. The flag bit in the corresponding peripheral control regis-

ter is not cleared. If an application requires that the control register flag

be cleared, the bit must be cleared by software.

3) When an interrupt is requested by an INTR instruction and the corre-

sponding IFR bit is set, the CPU does not clear the bit automatically. If

an application requires that the IFR bit be cleared, the bit must be cleared

by software.

4) IMR and IFR registers pertain to core-level interrupts. All peripherals

have their own interrupt mask and flag bits in their respective control/

configuration registers. Note that several peripheral interrupts are

grouped under one core-level interrupt.
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Figure 2–5. Interrupt Flag Register (IFR) — Address 0006h

15–6 5 4 3 2 1 0

Reserved INT6 flag INT5 flag INT4 flag INT3 flag INT2 flag INT1 flag

0 RW1C–0 RW1C–0 RW1C–0 RW1C–0 RW1C–0 RW1C–0

Note: 0 = Always read as zero, R  = Read access, W1C = Write 1 to this bit to clear it, value following dash (–) = value after reset

Bits 15–6 Reserved. These bits are always read as zeros.

Bit 5 INT6. Interrupt 6 flag. This bit is the flag for interrupts connected to interrupt
level INT6.

0 No INT6 interrupt is pending

1 At least one INT6 interrupt is pending. Write a 1 to this bit to clear
it to 0 and clear the interrupt request

Bit 4 INT5. Interrupt 5 flag. This bit is the flag for interrupts connected to interrupt

level INT5.

0 No INT5 interrupt is pending

1 At least one INT5 interrupt is pending. Write a 1 to this bit to clear
it to 0 and clear the interrupt request

Bit 3 INT4. Interrupt 4 flag. This bit is the flag for interrupts connected to interrupt

level INT4.

0 No INT4 interrupt is pending

1 At least one INT4 interrupt is pending. Write a 1 to this bit to clear
it to 0 and clear the interrupt request

Bit 2 INT3. Interrupt 3 flag. This bit is the flag for interrupts connected to interrupt

level INT3.

0 No INT3 interrupt is pending

1 At least one INT3 interrupt is pending. Write a 1 to this bit to clear
it to 0 and clear the interrupt request

Bit 1 INT2. Interrupt 2 flag. This bit is the flag for interrupts connected to interrupt

level INT2.

0 No INT2 interrupt is pending

1 At least one INT2 interrupt is pending. Write a 1 to this bit to clear
it to 0 and clear the interrupt request

Bit 0 INT1. Interrupt 1 flag. This bit is the flag for interrupts connected to interrupt

level INT1.

0 No INT1 interrupt is pending

1 At least one INT1 interrupt is pending. Write a 1 to this bit to clear
it to 0 and clear the interrupt request
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2.8.2 Interrupt Mask Register (IMR)

The IMR is a 16-bit, memory-mapped register located at address 0004h in

data memory space. The IMR contains mask bits for all the maskable interrupt

levels (INT1–INT6). Neither NMI nor RS is included in the IMR; thus, IMR has

no effect on these interrupts.

You can read the IMR to identify masked or unmasked interrupt levels, and you

can write to the IMR to mask or unmask interrupt levels. To unmask an interrupt

level, set its corresponding IMR bit to 1. To mask an interrupt level, set its corre-

sponding IMR bit to 0. When an interrupt is masked, it is not acknowledged

regardless of the value of the INTM bit. When an interrupt is unmasked, it is

acknowledged if the corresponding IFR bit is 1 and the INTM bit is 0.

The IMR is shown in Figure 2–6, and descriptions of the bits follow the figure.

Figure 2–6. Interrupt Mask Register (IMR) — Address 0004h

15–6 5 4 3 2 1 0

Reserved INT6 mask INT5 mask INT4 mask INT3 mask INT2 mask INT1 mask

0 RW RW RW RW RW RW

Note: 0 = Always read as zero, R  = Read access, W = Write access, bit values are not affected by a device reset

Bits 15–6 Reserved. These bits are always read as zeros.

Bit 5 INT6. Interrupt 6 mask. This bit masks or unmasks interrupt level INT6.

0 Level INT6 is masked

1 Level INT6 is unmasked

Bit 4 INT5. Interrupt 5 mask. This bit masks or unmasks interrupt level INT5.

0 Level INT5 is masked

1 Level INT5 is unmasked

Bit 3 INT4. Interrupt 4 mask. This bit masks or unmasks interrupt level INT4.

0 Level INT4 is masked

1 Level INT4 is unmasked

Bit 2 INT3. Interrupt 3 mask. This bit masks or unmasks interrupt level INT3.

0 Level INT3 is masked

1 Level INT3 is unmasked
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Bit 1 INT2. Interrupt 2 mask. This bit masks or unmasks interrupt level INT2.

0 Level INT2 is masked

1 Level INT2 is unmasked

Bit 0 INT1. Interrupt 1 mask. This bit masks or unmasks interrupt level INT1.

0 Level INT1 is masked

1 Level INT1 is unmasked

Note: The IMR bits are not affected by a device reset.
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2.9 Peripheral Interrupt Registers

The peripheral interrupt registers include the following:

� The peripheral interrupt vector register (PIVR)

� The peripheral interrupt request register 0 (PIRQR0)

� The peripheral interrupt request register 1 (PIRQR1)

� The peripheral interrupt acknowledge register 0 (PIACKR0)

� The peripheral interrupt acknowledge register 1 (PIACKR1)

PIRQR0/1 and PIACKR0/1 are control registers internal to the PIE
module for generating interrupts (INT1 – INT6) to the CPU. While
programming, these registers can be ignored because they
monitor the internal operation of the PIE. These registers are
generally used for test purposes.

2.9.1 Peripheral Interrupt Vector Register (PIVR)

The peripheral interrupt vector register (PIVR) is a 16-bit read-only register. It

is located at address 701Eh (in data space).

During the peripheral interrupt acknowledge cycle, the PIVR is loaded with the

interrupt vector of the highest-priority pending interrupt associated with the

CPU interrupt (INTn) being acknowledged (or the phantom interrupt vector).

The PIVR is shown in Figure 2–7.

Figure 2–7. Peripheral Interrupt Vector Register (PIVR)— Address 701Eh

15 14 13 12 11 10 9 8

V15 V14 V13 V12 V11 V10 V9 V8

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

7 6 5 4 3 2 1 0

V7 V6 V5 V4 V3 V2 V1 V0

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

Note: R = Read access; value following dash (–) = value after reset

Bits 15-0 V15-V0. Interrupt vector. This register contains the peripheral inter-

rupt vector of the most recently acknowledged peripheral interrupt.
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2.9.2 Peripheral Interrupt Request Registers (PIRQR0 and PIRQR1)

The peripheral interrupt request registers (PIRQRx) enable:

� The state of the peripheral interrupt requests to be read

� A simulated assertion of a particular peripheral interrupt request

PIRQR0 is shown in Figure 2–8 and PIRQR1 is shown in Figure 2–9.

Figure 2–8. Peripheral Interrupt Request Register 0 (PIRQR0) — Address 7010h

15 14 13 12 11 10 9 8

IRQ0.15 IRQ0.14 IRQ0.13 IRQ0.12 IRQ0.11 IRQ0.10 IRQ0.9 IRQ0.8

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

7 6 5 4 3 2 1 0

IRQ0.7 IRQ0.6 IRQ0.5 IRQ0.4 IRQ0.3 IRQ0.2 IRQ0.1 IRQ0.0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Note: R = Read access, W = Write access, value following dash (–) = value after reset

Bits 15–0 IRQ0.15–IRQ0.0. Peripheral interrupt request bits. See Table 2–1,
’F243/F241/C242 Interrupt Source Priority and Vectors, on page 2-3 to see
which peripheral interrupt corresponds to each register bit.

0 Corresponding peripheral interrupt is not pending.

1 Peripheral Interrupt is pending.

Note: Writing a 1 sends IRQ to core; writing a 0 has no effect.

Table 2–2. Peripheral Interrupt Request Descriptions (PIRQR0)  

Bit position Interrupt Interrupt Description Interrupt Level

IRQ 0.0 PDPINT Power Device Protection interrupt pin INT1

IRQ 0.1 ADCINT ADC Interrupt. High priority INT1

IRQ 0.2 XINT1 External Interrupt pin 1. High priority INT1

IRQ 0.3 XINT2 External Interrupt pin 2. High priority INT1

IRQ 0.4 SPIINT SPI interrupt. High priority INT1

IRQ 0.5 RXINT SCI receiver interrupt. High priority INT1

IRQ 0.6 TXINT SCI transmitter interrupt. High priority INT1

IRQ 0.7 CANMBINT CAN mailbox interrupt. High priority INT1
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Table 2–2. Peripheral Interrupt Request Descriptions (PIRQR0) (Continued)

Bit position Interrupt LevelInterrupt DescriptionInterrupt

IRQ 0.8 CANERINT CAN error interrupt. High priority INT1

IRQ 0.9 CMP1INT Compare 1 interrupt INT2

IRQ 0.10 CMP2INT Compare 2 interrupt INT2

IRQ 0.11 CMP3INT Compare 3 interrupt INT2

IRQ 0.12 TPINT1 Timer 1 period interrupt INT2

IRQ 0.13 TCINT1 Timer 1 compare interrupt INT2

IRQ 0.14 TUFINT1 Timer 1 underflow interrupt INT2

IRQ 0.15 TOFINT1 Timer 1 overflow interrupt INT2

Figure 2–9. Peripheral Interrupt Request Register 1 (PIRQR1) — Address 7011h

15 14 13 12 11 10 9 8

Reserved IRQ1.14 IRQ1.13 IRQ1.12 IRQ1.11 IRQ1.10 IRQ1.9 IRQ1.8

R-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

7 6 5 4 3 2 1 0

IRQ1.7 IRQ1.6 IRQ1.5 IRQ1.4 IRQ1.3 IRQ1.2 IRQ1.1 IRQ1.0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Note: R = Read access, W = Write access, value following dash (–) = value after reset

Bit 15 Reserved. Reads return zero; writes have no effect.

Bits 14–0 IRQ1.14–IRQ1.0. Peripheral interrupt request bits,. See Table 2–1,

’F243/F241/C242 Interrupt Source Priority and Vectors, on page 2-3, to see
which peripheral interrupt corresponds to each register bit.

0 Corresponding peripheral interrupt is not pending

1 Peripheral Interrupt is pending

Note: Writing a 1 sends IRQ to core; writing a 0 has no effect.
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Table 2–3. Peripheral Interrupt Request Descriptions (PIRQR1)  

Bit position Interrupt Interrupt Description Interrupt Level

IRQ 1.0 TPINT2 Timer 2 period interrupt INT3

IRQ 1.1 TCINT2 Timer 2 compare interrupt INT3

IRQ 1.2 TUFINT2 Timer 2 underflow interrupt INT3

IRQ 1.3 TOFINT2 Timer 2 overflow interrupt INT3

IRQ 1.4 CAPINT1 Capture 1 interrupt INT4

IRQ 1.5 CAPINT2 Capture 2 interrupt INT4

IRQ 1.6 CAPINT3 Capture 3 interrupt INT4

IRQ 1.7 SPIINT SPI interrupt. Low priority INT5

IRQ 1.8 RXINT SCI receiver interrupt. Low priority INT5

IRQ 1.9 TXINT SCI transmitter interrupt. Low priority INT5

IRQ 1.10 CANMBINT CAN mailbox interrupt. Low priority INT5

IRQ 1.11 CANERINT CAN error interrupt. Low priority INT5

IRQ 1.12 ADCINT ADC Interrupt. Low priority INT6

IRQ 1.13 XINT1 External Interrupt pin 1. Low priority INT6

IRQ 1.14 XINT2 External Interrupt pin 2. Low priority INT6

2.9.3 Peripheral Interrupt Acknowledge Registers (PIACKR0 and PIACKR1)

The peripheral interrupt acknowledge registers (PIACKRx) are memory

mapped to enable an easy test of the peripheral interrupt acknowledges.

There are two of these 16-bit registers; and therefore, the PIE controller can

support up to 32 peripheral interrupts. These registers are generally used for

test purposes only and are not for user applications. PIACKR0 is shown in

Figure 2–10 and PIACKR1 is shown in Figure 2–11.

Figure 2–10. Peripheral Interrupt Acknowledge Register 0 (PIACKR0) — Address 7014h

15 14 13 12 11 10 9 8

IAK0.15 IAK0.14 IAK0.13 IAK0.12 IAK0.11 IAK0.10 IAK0.9 IAK0.8

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

7 6 5 4 3 2 1 0

IAK0.7 IAK0.6 IAK0.5 IAK0.4 IAK0.3 IAK0.2 IAK0.1 IAK0.0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Note: R = Read access, W = Write access, value following dash (–) = value after reset
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Bits 15–0 IACK0.15–IACK0.0. Peripheral interrupt acknowledge bits. See Table 2–1 to
see which peripheral interrupt corresponds to each register bit. Writing a 1
causes the corresponding peripheral interrupt acknowledge to be asserted,
which clears the corresponding peripheral interrupt request. Note that assert-
ing the interrupt acknowledge by writing to this register does not update the
PIVR. Reading the register always returns zeros.

Table 2–4. Peripheral Interrupt Acknowledge Descriptions (PIACKR0)  

Bit position Interrupt Interrupt Description Interrupt Level

IAK 0.0 PDPINT Power Device Protection interrupt pin INT1

IAK 0.1 ADCINT ADC Interrupt. High priority INT1

IAK 0.2 XINT1 External Interrupt pin 1. High priority INT1

IAK 0.3 XINT2 External Interrupt pin 2. High priority INT1

IAK 0.4 SPIINT SPI interrupt. High priority INT1

IAK 0.5 RXINT SCI receiver interrupt. High priority INT1

IAK 0.6 TXINT SCI transmitter interrupt. High priority INT1

IAK 0.7 CANMBINT CAN mailbox interrupt. High priority INT1

IAK 0.8 CANERINT CAN error interrupt. High priority INT1

IAK 0.9 CMP1INT Compare 1 interrupt INT2

IAK 0.10 CMP2INT Compare 2 interrupt INT2

IAK 0.11 CMP3INT Compare 3 interrupt INT2

IAK 0.12 TPINT1 Timer 1 period interrupt INT2

IAK 0.13 TCINT1 Timer 1 compare interrupt INT2

IAK 0.14 TUFINT1 Timer 1 underflow interrupt INT2

IAK 0.15 TOFINT1 Timer 1 overflow interrupt INT2

Figure 2–11.Peripheral Interrupt Acknowledge Register 1 (PIACKR1) — Address 7015h

15 14 13 12 11 10 9 8

Reserved IAK1.14 IAK1.13 IAK1.12 IAK1.11 IAK1.10 IAK1.9 IAK1.8

R-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

7 6 5 4 3 2 1 0

IAK1.7 IAK1.6 IAK1.5 IAK1.4 IAK1.3 IAK1.2 IAK1.1 IAK1.0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Note: R = Read access, W = Write access, value following dash (–) = value after reset

Bit 15 Reserved. Reads return zero; writes have no effect.

Bits 14–0 IACK1.14–IACK1.0. Bit behavior is the same as for PIACKR0.
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Table 2–5. Peripheral Interrupt Acknowledge Descriptions (PIACKR1)  

Bit position Interrupt Interrupt Description Interrupt Level

IAK 1.0 TPINT2 Timer 2 period interrupt INT3

IAK 1.1 TCINT2 Timer 2 compare interrupt INT3

IAK 1.2 TUFINT2 Timer 2 underflow interrupt INT3

IAK 1.3 TOFINT2 Timer 2 overflow interrupt INT3

IAK 1.4 CAPINT1 Capture 1 interrupt INT4

IAK 1.5 CAPINT2 Capture 2 interrupt INT4

IAK 1.6 CAPINT3 Capture 3 interrupt INT4

IAK 1.7 SPIINT SPI interrupt. Low priority INT5

IAK 1.8 RXINT SCI receiver interrupt. Low priority INT5

IAK 1.9 TXINT SCI transmitter interrupt. Low priority INT5

IAK 1.10 CANMBINT CAN mailbox interrupt. Low priority INT5

IAK 1.11 CANERINT CAN error interrupt. Low priority INT5

IAK 1.12 ADCINT ADC Interrupt. Low priority INT6

IAK 1.13 XINT1 External Interrupt pin 1. Low priority INT6

IAK 1.14 XINT2 External Interrupt pin 2. Low priority INT6
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Memory

This chapter describes the RAM, ROM, and Flash availability in the

’F243/F241/C242 devices.

In addition to dual-access RAM (DARAM – B0, B1, B2), which is part of the

CPU core, the ’24x devices include flash EPROM or ROM for additional on-

chip program memory. The ’C242 is a ROM-only device, while the ’F243/241

are flash-only devices.

The ’F243 has a 16-bit address bus that can access three individually select-

able spaces (192K words total):

� A 64K-word program space

� A 64K-word data space (32K-word local data space plus a 32K-word 

local/global data space)

� A 64K-word I/O space

This chapter shows memory maps for program, data, and I/O spaces. It also

describes available ’F243 memory configuration options.
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3.1 Factory Masked On-Chip ROM (’C242 only)

The ’C242 has a maskable 4K × 16 ROM module in program memory space

(000h–FFFh). This ROM is always enabled since the ’C242 lacks an external

memory interface. This ROM is programmed with customer-specific code.

3.2 Flash

The ’F243 and ’F241 devices have an 8K × 16 on-chip Flash EEPROM

memory module. This memory is mapped in the program space

(0000h–1FFFh).

3.2.1 Flash Control Register Access

In addition to the flash memory array, the flash module has four registers that

control operations on the flash array. At any given time, you can access the

memory array in the flash module (array-access mode) or you can access the

control registers (register-access mode) but you cannot access both simulta-

neously. The flash module has a flash-access control register that selects be-

tween the two access modes. This register is the flash control mode register

(FCMR) and is mapped at FF0Fh in I/O space. This is a special type of I/O reg-

ister that cannot be read. The register functions as follows:

� An OUT instruction, using the register address as an I/O port, places the

flash module in register-access mode. The data operand used is insignifi-

cant. For example:

OUT   dummy, 0FF0Fh; Selects register-access mode

� An IN instruction, using the register address as an I/O port, places the flash

module in array-access mode. The data operand used is insignificant. For

example:

IN   dummy, 0FF0Fh; Selects array-access mode

The flash array is not directly accessible as memory in register-access mode,

and the control registers are not directly accessible in array-access mode.

When operating as a program memory to store code, the flash module oper-

ates in array-access mode. For details on programming the flash array in

’F243/’F241, refer to the TMS320F20x/F24x DSP Embedded Flash Memory

Technical Reference (SPRU282).

Factory Masked On-Chip ROM (’C242 only) / Flash
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3.3 Overview of Memory and I/O Spaces

The ’24x design is based on an enhanced Harvard architecture. These de-

vices have multiple memory spaces accessible on three parallel buses: a pro-

gram address bus (PAB), a data-read address bus (DRAB), and a data-write

address bus (DWAB). Each of the three buses access different memory

spaces for different phases of the device’s operation. Because the bus opera-

tions are independent, it is possible to access both the program and data

spaces simultaneously. Within a given machine cycle, the CALU can execute

as many as three concurrent memory operations.

The ’F243 address map is organized into three individually selectable spaces:

� Program memory (64K words) contains the instructions to be executed,

as well as immediate data used during program execution.

� Data memory 

� Local data memory (64K words) holds data used by the instructions.

� Global data memory (32K words) shares data with other processors

or serves as additional data space.

� Input/output (I/O) space (64K words) interfaces to external peripherals

and may contain on-chip registers.

These spaces provide a total address space of 192K words. The

’F243/F241/C242 devices include on-chip memory to aid in system perfor-

mance and integration.

The advantages of operating from on-chip memory are:

� Higher performance than external memory (because the wait states re-

quired for slower external memories are avoided)

� Lower cost than external memory

� Lower power consumption than external memory

The advantage of operating from external memory is the ability to access a

larger address space. The ’F241 and ’C242 do not have external memory in-

terfaces and have only on-chip memory. Figure 3–1, Figure 3–2, and

Figure 3–3 depict the memory map of ’24x devices.

Access to an illegal address will generate an NMI.
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Figure 3–1. Memory Map for ’F243

Illegal/Reserved

ÉÉÉÉÉÉ
ÉÉÉÉÉÉ
ÉÉÉÉÉÉ
ÉÉÉÉÉÉ
ÉÉÉÉÉÉ

0000

005F
0060

01FF

02FF

0300

0200

03FF
0400

7000 Peripheral Memory-

Mapped Registers

(System,WD, ADC,

SCI, SPI, CAN, I/O,

Interrupts)
73FF
7400

743F
7440

Data
Hex

007F

0080

8000

External

FFFF

7FFF

Memory-Mapped

Registers/Reserved

Addresses

On-Chip

DARAM B2

On-Chip DARAM

(B0)‡ (CNF = 0)

Reserved (CNF = 1)

On-Chip

DARAM (B1)§

6FFF

Peripheral

Memory-Mapped

Registers

(Event Manager)

0000

003F

0040

FEFF

FDFF
FE00

Hex

1FFF
2000

External

On-Chip DARAM

(B0)† (CNF = 1)

External (CNF = 0)

Program

FF00

FFFF

Reserved†

 (CNF = 1)

External (CNF = 0)

0000

External

FF0E

I/OHex

FFFF

Wait-state Generator

Control Register

(On-Chip)

Flash Control

Mode Register

FEFF
FF00

FF10

FFFE

FF0F

ÉÉÉ
ÉÉÉ
ÉÉÉ

On-Chip FLASH memory, (8K)– if MP/MC = 0

External Program Memory – if MP/MC = 1

Interrupt

vectors

User code in

flash memory

Illegal

Reserved

Reserved

Illegal

† When CNF = 1, addresses FE00h–FEFFh and FF00h–FFFFh are mapped to the same physical block (B0) in program-memory

space. For example, a write to FE00h will have the same effect as a write to FF00h. For simplicity, addresses FE00h–FEFFh

are referred to here as reserved when CNF = 1.
‡ When CNF = 0, addresses 0100h–01FFh and 0200h–02FFh are mapped to the same physical block (B0) in data-memory

space. For example, a write to 0100h will have the same effect as a write to 0200h. For simplicity, addresses 0100h–01FFh are

referred to here as reserved. Note that addresses 0080h – 00FFh are illegal.
§ Addresses 0300h–03FFh and 0400h–04FFh are mapped to the same physical block (B1) in data-memory space. For example,

a write to 0400h has the same effect as a write to 0300h. For simplicity, addresses 0400h–04FFh are referred to here as illegal.
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Figure 3–2. Memory Map for ’F241

ÉÉÉÉÉÉ
ÉÉÉÉÉÉ
ÉÉÉÉÉÉ

ÉÉÉÉÉÉ
ÉÉÉÉÉÉ
ÉÉÉÉÉÉ

On-Chip DARAM

B0† (CNF = 1)

Reserved (CNF = 0)

0000

003F

0040

Hex
Program

1FFF
2000

0000

005F
0060

01FF

02FF

0300

0200

03FF
0400

7000 Peripheral Memory-

Mapped Registers

(System,WD, ADC,

SCI, SPI, CAN, I/O,

Interrupts)
73FF
7400

743F
7440

DataHex

007F

0080

8000

FFFF

7FFF

Memory-Mapped

Registers/Reserved

Addresses

On-Chip

DARAM B2

On-Chip DARAM

(B0)‡ (CNF = 0)

Reserved (CNF = 1)

On-Chip

DARAM (B1)§

6FFF

Peripheral

Memory-Mapped

Registers

(Event Manager)

FDFF

FE00

Reserved†

FEFF

FF00

FFFF

ÉÉÉ
ÉÉÉ

0000

FF0E

I/O
Hex

FFFF

Flash Control

Mode Register

FF10

FF0F

Reserved

Reserved

Illegal

Illegal

Illegal
Reserved

User code in

flash memory

Interrupt

vectors

Illegal/Reserved

On-chip FLASH memory, (8K)

† When CNF = 1, addresses FE00h–FEFFh and FF00h–FFFFh are mapped to the same physical block (B0) in program-memory

space. For example, a write to FE00h will have the same effect as a write to FF00h. For simplicity, addresses FE00h–FEFFh

are referred to here as reserved when CNF = 1.
‡ When CNF = 0, addresses 0100h–01FFh and 0200h–02FFh are mapped to the same physical block (B0) in data-memory

space. For example, a write to 0100h will have the same effect as a write to 0200h. For simplicity, addresses 0100h–01FFh are

referred to here as reserved. Note that addresses 0080h – through 00FFh are illegal.
§ Addresses 0300h–03FFh and 0400h–04FFh are mapped to the same physical block (B1) in data-memory space. For example,

a write to 0400h has the same effect as a write to 0300h. For simplicity, addresses 0400h–04FFh are referred to here as illegal.
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Figure 3–3. Memory Map for ’C242

Memory-Mapped

Registers/Reserved

Addresses

On-Chip

DARAM B2

Peripheral

Memory-Mapped

Registers

(Event Manager)

ÉÉÉÉÉÉ
ÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉ
ÉÉÉÉÉÉ

ÉÉÉÉÉÉ
ÉÉÉÉÉÉ
ÉÉÉÉÉÉ

On-Chip DARAM

B0† (CNF = 1)

Reserved (CNF = 0)

0000

003F

0040

Hex
Program

0FBF
0FC0

0000

005F
0060

01FF

02FF

0300

0200

03FF

0400

7000 Peripheral Memory-

Mapped Registers

(System,WD, ADC,

SCI, SPI, CAN, I/O,

Interrupts)
73FF

7400

743F

7440

DataHex

007F

0080

FFFF

On-Chip DARAM

(B0)‡ (CNF = 0)

Reserved (CNF = 1)

On-Chip

DARAM (B1)§

6FFF

FDFF

FE00

Reserved†

FEFF

FF00

FFFF

ÉÉÉ
ÉÉÉ

On-Chip ROM, (4K)

0FFF
1000

Reserved

Illegal

Illegal

Reserved

for test

User code

in ROM

Interrupt

vectors

Illegal/Reserved

† When CNF = 1, addresses FE00h–FEFFh and FF00h–FFFFh are mapped to the same physical block (B0) in program-memory

space. For example, a write to FE00h will have the same effect as a write to FF00h. For simplicity, addresses FE00h–FEFFh

are referred to as reserved when CNF = 1.
‡ When CNF = 0, addresses 0100h–01FFh and 0200h–02FFh are mapped to the same physical block (B0) in data-memory

space. For example, a write to 0100h will have the same effect as a write to 0200h. For simplicity, addresses 0100h–01FFh are

referred to as reserved. Note that addresses 0080h – through 00FFh are illegal.
§ Addresses 0300h–03FFh and 0400h–04FFh are mapped to the same physical block (B1) in data-memory space. For example,

a write to 0400h has the same effect as a write to 0300h. For simplicity, addresses 0400h–04FFh are referred to as illegal.

NOTE : There is no external memory space for program, data, or I/O in the ’C242. I/O space is reserved in ’C242. Hence, IN

and OUT instructions are not useful in ’C242.
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3.4 Program Memory

In addition to storing the user code, the program memory also stores immedi-

ate operands and table information. A maximum of 64K 16-bit words can be

addressed in the program memory for ’F243. This number includes on-chip

DARAM and flash EEPROM. Whenever an off-chip memory location needs to

be accessed, the appropriate control signals for external access (PS, DS,

STRB, etc.) are automatically generated.

Figure 3–4 shows the ’F243 program memory map.

Figure 3–4. Program Memory Map for ’F243

ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ

0000h

003Fh
0040h

FDFFh
FE00h

FFFF

0000h–0001h

0002h–0003h

0004h–0005h

0006h–0007h

0008h–0009h

000Ah–000Bh

000Ch–000Dh

000Eh–000Fh

0022h–0023h

0024h–0025h

External

Reset

Interrupt level 1

Interrupt level 2

Interrupt level 3

Interrupt level 4

Interrupt level 5

Interrupt level 6

TRAP

NMI

0010h–0021hSoftware interrupts

Reserved

Reserved 0026h–0027h

1FFFh
2000h

On-chip

FEFF
FF00

DARAM (B0)
(CNF = 1)

(External if CNF = 0)

ÉÉÉ
ÉÉÉ

8K on-chip flash (MP/MC = 0)

External (MP/MC = 1)

Software interrupts 0028h–003Fh

Reserved

(CNF = 1)

(External if CNF = 0)

User code in

flash memory

Interrupt

vectors

3.4.1 Program Memory Configuration

Two factors determine the configuration of program memory:

� CNF bit. The CNF bit (bit 12) of status register ST1 determines whether

DARAM B0 is in on-chip program space:

� CNF = 0. The 256 words are mapped as external memory.

� CNF = 1. The 256 words of DARAM B0 are configured for program

use. At reset, B0 is mapped to data space (CNF = 0).
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� MP/MC pin. The level on the MP/MC pin determines whether program

instructions are read from on-chip flash/ROM or external memory:

� MP/MC = 0. The device is configured in microcomputer mode. The on-

chip ROM/flash EEPROM is accessible. The device fetches the reset

vector from on-chip memory. Accesses to program memory

addresses 0000h–1FFFh will be made to on-chip memory.

� MP/MC = 1. The device is configured in microprocessor mode. The

device fetches the reset vector from external memory. Accesses to

program memory addresses 0000h–1FFFh will be made to off-chip

memory.

Regardless of the value of MP/MC, the ’24x fetches its reset vector at loca-

tion 0000h in program memory. Note that there is no MP/MC pin available

on the ’F241 and ’C242.
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3.5  Data Memory

Data memory space addresses up to 64K of 16-bit words. 32K words are inter-

nal memory (0000h to 7FFFh). Internal data memory includes memory-

mapped registers, DARAM, and peripheral memory-mapped registers. The

remaining 32K words of memory (8000h to FFFFh) can be configured as part

of either local data memory or global data memory, depending on the value

loaded in the global memory allocation register (GREG). Note that addresses

8000h–FFFFh are not accessible in ’F241 and ’C242.

3.5.1 Local Data Memory

Figure 3–5 shows the data memory map for the ’F243/F241/C242. Each de-

vice has three on-chip DARAM blocks: B0, B1, and B2. B0 is configurable as

data memory or program memory. It is the same memory block accessible ei-

ther as data memory or program memory, depending on the CNF bit. Blocks

B1 and B2 are available for data memory only. External data memory is avail-

able only on the ’F243.

Data memory can be addressed with either of two addressing modes: direct-

addressing or indirect-addressing.

When direct addressing is used, data memory is addressed in blocks of 128

words called data pages. Figure 3–6 shows how these blocks are addressed.

The entire 64K of data memory consists of 512 data pages labeled 0 through

511. The current data page is determined by the value in the 9-bit data page

pointer (DP) in status register ST0. Each of the 128 words on the current page

is referenced by a 7-bit offset taken from the instruction that is using direct ad-

dressing. Therefore, when an instruction uses direct addressing, you must

specify both the data page (with a preceding instruction) and the offset (in the

instruction that accesses data memory).
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Figure 3–5. ’X24x Peripheral Memory Map

Capture and QEP registers
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Figure 3–6. Local Data Memory Pages
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Data Page 0 Address Map

The local data memory also includes the device’s memory-mapped registers

(MMR), which reside at the top of data page 0 (addresses 0000h–007Fh).

Note the following:

� The three registers that can be accessed with zero wait states are:

� Interrupt mask register (IMR)

� Global memory allocation register (GREG)

� Interrupt flag register (IFR)

� The test/emulation reserved area is used by the test and emulation sys-

tems for special information transfers.

Do Not Write to Test/Emulation Addresses

Writing to the test/emulation addresses can cause the device to
change its operating mode, and therefore, affect the operation of
an application.

� The scratch-pad RAM block (B2) includes 32 words of DARAM that pro-

vide for variable storage without fragmenting the larger RAM blocks,
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whether internal or external. This RAM block supports dual-access opera-

tions and can be addressed via any data-memory addressing mode.

Table 3–1 shows the address map of data page 0.

Table 3–1. Data Page 0 Address Map

Address Name Description

0000h–0003h – Reserved

0004h IMR Interrupt mask register

0005h GREG Global memory allocation register

0006h IFR Interrupt flag register

0023h–0027h – Reserved

002Bh–002Fh – Reserved for test/emulation

0060h–007Fh B2 Scratch-pad RAM (DARAM B2)

Local Data Memory Configuration

Two factors that contribute to the configuration of data memory are:

� CNF bit. The CNF bit (bit 12) of status register ST1 determines whether

the on-chip DARAM B0 is mapped into local data space or program space.

� CNF = 1. B0 is used for program space.

� CNF = 0. B0 is used for data space.

At reset, B0 is mapped into local data space (CNF = 0).

3.5.2 Global Data Memory

Addresses in the upper 32K words (8000h–FFFFh) of local data memory can

be used for global data memory. The global memory allocation register

(GREG) determines the size of the global data-memory space, which is be-

tween 256 and 32K words. The GREG is connected to the eight LSBs of the

internal data bus and is memory-mapped to data-memory location 0005h.

Figure 3–7. Global Data Memory Configuration Register – Address 0005h

15–8 7 7–0

Reserved Global data memory configuration bits

RW–0

Note: R = read access; W = write access; value following dash (–) = value after reset
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Table 3–2 shows the allowable GREG values and shows the corresponding

address range set aside for global data memory. Any remaining addresses

within 8000h–FFFFh are available for local data memory.

Note:

Choose only the GREG values listed in Table 3–2. Other values lead to frag-
mented memory maps.

Table 3–2. Global Data Memory Configurations

GREG Value Local Memory Global Memory

High Byte Low Byte Range Words Range Words

XXXX XXXX 0000 0000 0000h–FFFFh 65�536 – 0

XXXX XXXX 1000 0000 0000h–7FFFh 32�768 8000h–FFFFh 32�768

XXXX XXXX 1100 0000 0000h–BFFFh 49�152 C000h–FFFFh 16�384

XXXX XXXX 1110 0000 0000h–DFFFh 57�344 E000h–FFFFh 8�192

XXXX XXXX 1111 0000 0000h–EFFFh 61�440 F000h–FFFFh 4�096

XXXX XXXX 1111 1000 0000h–F7FFh 63�488 F800h–FFFFh 2�048

XXXX XXXX 1111 1100 0000h–FBFFh 64�512 FC00h–FFFFh 1�024

XXXX XXXX 1111 1110 0000h–FDFFh 65�024 FE00h–FFFFh 512

XXXX XXXX 1111 1111 0000h–FEFFh 65�280 FF00h–FFFFh 256

Note: X = Don’t care

When a program accesses any external data address, the ’F243 drives the DS

signal low. If that address is within the range defined by the GREG as a global

address, BR signal is also asserted. Because BR differentiates local and glob-

al accesses, the addresses configured by the GREG value are an additional

data space. The external data-address range is extended by the selected

amount of global space (up to 32K words).

As an example of configuring global memory, suppose you want to designate

8K data-memory addresses as global addresses. To do this, you write the 8-bit

value 11100000 to the GREG (see Figure 3–8). This designates addresses

E000h–FFFFh in data memory as global data addresses (see Figure 3–9).

Figure 3–8. GREG Register Set to Configure 8K for Global Data Memory

8 MSBs 8 LSBs

X X X X X X X X 1 1 1 0 0 0 0 0

(Don’t cares) Set for 8K of global data memory



 Data Memory

3-14

Figure 3–9. Global and Local Data Memory for GREG = 11100000

Data memory map

FFFFh

8000h

0000h

Upper 32K × 16
(local and/or global)

7FFFh

Internal data memory
(always local)

GREG = 11100000

Global (8K × 16)

Local (24K × 16)

E000h

DFFFh

8000h

FFFFh

Note: Global memory space is applicable only for ’F243.  ’F241 and ’C242 do not have global

memory.
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3.6 I/O Space

The I/O-space memory addresses up to 64K 16-bit words. Figure 3–10 shows

the I/O space address map for the ’F243.

Figure 3–10. I/O Space Address Map for ’F243

0000h

External

Wait-state generator
control register

FEFF
FF00

FFFF

Flash control
mode register

FF0E

FF0F

FF10

FFFE

Reserved/Illegal

Reserved
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3.7 XMIF Qualifier Signal Description

The ’F243 can address the following memory sizes in each of the external

memory spaces:

Ext. Memory Space Size (in words) Qualifier signal (strobe)

Program space 64K PS

Data space 32K DS

Global data space 32K BR

I/O space 64K IS

The signals that define the XMIF are given in Table 3–3.

Table 3–3. XMIF Signal Descriptions

Signal/s name Signal description

A(0:15) External 16-bit unidirectional address bus.

D(0:15) External 16-bit bidirectional data bus.

PS Program space strobe

DS Data space strobe

IS I/O space strobe

STRB External memory access strobe

WE Write strobe

RD Read strobe

R/W Read / Write qualifier

BR Bus request – used to access global memory.

MP/MC MicroProcessor / MicroComputer selection pin

VIS_CLK Visibility clock – Same as CLKOUT but timing is

aligned for external buses in visibility mode.

VIS_OE Is active low whenever the external data bus is driving

as an o/p during visibility mode.  Can be used by ex-

ternal decode logic to prevent data bus contention

while running in visibility mode

ENA_144 If pulled low, the ’F243 device behaves like an

’F241/C242; that is, it has no external memory and

generates an Illegal address if any of the 3 external

spaces are accessed.

This pin has an internal pull-down resistor, so when

left disconnected, device behaves appropriately.

Note:  These signals allow external memory such as SRAM to be interfaced to the ’F243

in the conventional way.



XMIF Qualifier Signal Description

3-17Memory

Figure 3–11 and Figure 3–12 show Visibility mode timing diagrams.

Figure 3–11.Program Address/Data — Visibility Functional Timing

Op-code addr Op-code addr

Op-code Op-code

VIS_CLK

A0–A15

D0–D15

STRB

VIS_OE

FETCH
� DECODE
� OPERAND
� EXECUTE

FETCH
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Figure 3–12. Data Address/ Data — Visibility Functional Timing

Op-code addr Op-code addr

Op-code Op-code

VIS_CLK

A0–A15

D0–D15

STRB

VIS_OE

FETCH
� DECODE
� OPERAND
� EXECUTE

FETCH

R/W
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3.8 Program and Data Spaces

PS and STRB are inactive (high) for accesses to on-chip program memory and

data memory. The external data and address busses are active only when ac-

cesses are made to external memory locations, except when in bus visibility

(BVIS) mode (see section 3.10, Wait-State Generation, on page 3-20).

Two cycles are required on all external writes, including a half-cycle before WE

goes low and a half-cycle after WE goes high. This prevents data contention

on the external busses.

3.9 I/O Space

I/O space accesses are distinguished from program and data memory

accesses by IS going low.  All 64K I/O words (external I/O port and on-chip I/O

registers) are accessed via the IN and OUT instructions.

While accesses are made to the on-chip I/O mapped registers, signals IS and

STRB are made inactive, that is, driven to the high state.  The external address

and data bus is only active when accesses are made to external I/O memory

locations.

Two cycles are required on all external writes, including a half-cycle before WE

goes low and a half-cycle after WE goes high. This prevents data contention

on the external busses.

Program and Data Spaces / I/O Space
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3.10 Wait-State Generation

Wait states are necessary when you want to interface the ’F243 with slower

external logic and memory. By adding wait states, you lengthen the time the

CPU waits for external memory or an external I/O port to respond when the

CPU reads from or writes to that memory or port. Specifically, the CPU waits

one extra cycle (one CLKOUT cycle) for every wait state. The wait states oper-

ate on CLKOUT cycle boundaries.

To avoid bus conflicts, writes from the ’F243 always take at least two

CLKOUT cycles. The ’F243 offers two options for generating wait states:

� The READY signal. With the READY signal, you can externally generate

any number of wait states.

� The on-chip wait-state generator. With this generator, you can generate

zero to seven wait states.

3.10.1 Generating Wait States With the READY Signal

When READY is low, the ’F243 waits one CLKOUT cycle and checks READY

again. The ’F243 will not continue executing until READY is driven high; there-

fore, if the READY signal is not used, it should be pulled high during external

accesses.

The READY pin can be used to generate any number of wait states. However,

when the ’F243 operates at full speed, it cannot respond fast enough to provide

a READY-based wait state for the first cycle. For extended wait states using

external READY logic, the on-chip wait-state generator must be programmed

to generate at least one wait state.

Note: The READY pin has no effect on accesses to internal memory.

3.10.2 Generating Wait States With the ’F243 Wait-State Generator

The software wait-state generator can be programmed to generate zero to

seven wait states for a given off-chip memory space (program, data, or I/O),

regardless of the state of the READY signal. This wait-state generator has the

bit fields shown in Figure 3–13 and described after the figure.
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Figure 3–13. ’F243 Wait-State Generator Control Register (WSGR) —
I/O-Space Address FFFFh (’F243)

15–11 10–9 8–6 5–3 2–0

Reserved BVIS ISWS DSWS PSWS

0 W-11 W-111 W-111 W-111

Note: 0 = Always read as zeros; W = Write access; value following dash (-) = value after reset

Bits 15–11 Reserved. Bits 15–11 are reserved and always read as 0s.

Bits 10–9 Bus visibility modes. Bits 10–9 allow selection of various bus visibili-
ty modes while running from internal program and/or data memory.
These modes provide a method of tracing internal bus activity.

Bit

10 9 Visibility mode

0 0 Bus visibility OFF (reduces power and noise)

0 1 Bus visibility OFF (reduces power and noise)

1 0 Data-address bus output to external address bus
Data-data bus output to external data bus

1 1 Program-address bus output to external address bus
Program-data bus output to external data bus

Bits 8–6 ISWS — I/O-space wait-state bits. Bits 8-6 determine the number of
wait states (0–7) that are applied to reads from and writes to off-chip
I/O space. At reset, the three ISWS bits become 111, setting seven
wait states for reads from and writes to off-chip I/O space.

Bits 5–3 DSWS — Data-space wait-state bits. Bits 5–3 determine the num-
ber of wait states (0–7) that are applied to reads from and writes to
off-chip data space. At reset, the three DSWS bits become 111, set-
ting seven wait states for reads from and writes to off-chip data
space.

Bits 2–0 PSWS — Program-space wait-state bits. Bits 2-0 determine the
number of wait states (0–7) that are applied to reads from and writes
to off-chip program space. At reset, the three PSWS bits become
111, setting seven wait states for reads from and writes to off-chip
program space.

Table 3–4 shows how to set the number of wait states you want for each type

of off-chip memory.
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Table 3–4. Setting the Number of Wait States With the ’F243  WSGR Bits

ISWS Bits DSWS PSWS

8 7 6 I/O WS 5 4 3 Data WS 2 1 0 Prog WS

0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 1 1 0 0 1 1

0 1 0 2 0 1 0 2 0 1 0 2

0 1 1 3 0 1 1 3 0 1 1 3

1 0 0 4 1 0 0 4 1 0 0 4

1 0 1 5 1 0 1 5 1 0 1 5

1 1 0 6 1 1 0 6 1 1 0 6

1 1 1 7 1 1 1 7 1 1 1 7

In summary, while the READY signal remains high,the wait-state generator in-

serts from zero to seven wait states to a given memory space, depending on

the values of PSWS, DSWS, and ISWS. The READY signal may then be driv-

en low to generate additional wait states. If m is the number of CLKOUT cycles

required for a particular read or write operation and w is the number of wait

states added, the operation will take (m + w) cycles. At reset, all WSGR bits

are set to 1, making seven wait states the default for every memory space.
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Clocks

The ’F243/F241/C242 devices use the phase locked loop (PLL) circuit

embedded in the ’24x CPU core to synthesize the on-chip clocks from a lower

frequency external clock. There is no means of bypassing the PLL.

Topic Page

4.1 Pins 4-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.2 Phase Locked Loop 4-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.3 Watchdog Timer Clock 4-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.4 Low Power Modes 4-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 4
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4.1 Pins

There are three device pins associated with clocks:

� XTAL1/CLKIN – This is the clock input from the external crystal to the on-

chip oscillator. If an external oscillator is used, its output must be con-

nected to this pin.

� XTAL2 – This is the clock output from the on-chip oscillator to drive the ex-

ternal crystal.

� CLKOUT/IOPD0 – This is the clock output pin. It is multiplexed with GPIO

pin IOPD0 and can be used to output the device (CPU) clock or the watch-

dog timer clock. The clock select control bits are in the system control and

status register (SCSR), described in Section 5.3 on page 5-3. This pin is

configured to output CLKOUT from the CPU following a device reset.

4.2 Phase Locked Loop

The PLL embedded in the ’24x CPU is used in its multiply-by-four (�4) mode.

The PLL is hardwired to this multiplication factor which cannot be changed. For

20-MHz device operation, a 5-MHz input clock must be supplied.

4.3 Watchdog Timer Clock

A low frequency clock, WDCLK, is used to clock the watchdog timer. WDCLK

has a nominal frequency of 39062.5 Hz when CPUCLK = 20 MHz. WDCLK is

derived from the CLKOUT of the CPU. This ensures that the watchdog timer

continues to count when the CPU is in IDLE1 or IDLE 2 mode (see section 4.4,

Low Power Modes, on page 4-3).

The WDCLK is generated in the watchdog timer peripheral.

WDCLK CLKOUT
512

=

4.3.1 Watchdog Suspend

WDCLK is stopped when the CPU’s suspend signal goes active. This is

achieved by stopping the clock input to the clock divider which generates

WDCLK from CLKIN.

Pins / Phase-Locked Loop / Watchdog Timer Clock
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4.4 Low Power Modes

All ’24x devices have an IDLE instruction. When executed, the IDLE instruction

stops the clocks to all circuits in the CPU; however, the clock output from the

CPU continues to run. With this instruction, the CPU clocks can be shut down

to save power while the peripherals (clocked with CLKOUT) continue to run.

The CPU exits the IDLE state if reset, or if it receives an interrupt request.

4.4.1 Clock Domains

All ’24x based devices have two clock domains:

� The CPU clock domain consists of the clock for most of the CPU logic.

� The system clock domain consists of the peripheral clock (which is derived

from CLKOUT of the CPU) and the clock for the interrupt logic in the CPU.

When the CPU goes into IDLE mode, the CPU clock domain is stopped while

the system clock domain continues to run. This mode is also known as IDLE1

mode. The ’24 xCPU also contains support for a second IDLE mode, IDLE2,

implemented in external logic. By asserting the IDLE2 input to the ’24x CPU,

both the CPU clock domain and the system clock domain are stopped, allow-

ing further power savings. A third low-power mode, HALT mode, which is the

deepest mode, is possible if the oscillator and WDCLK are also shut down. In

HALT mode, the input clock to the PLL is shut off.

There are two control bits, LPM (1:0) that specify which of the three possible

low-power modes is entered when the IDLE instruction is executed. This is de-

scribed in Table 4–1. These bits are located in the system control and status

register (SCSR) described in section 5.3 on page 5-3.

Table 4–1. Low Power Modes Summary

Low-Power

Mode

LPMx Bits

SCSR[12:13]

CPU

Clock

Domain

System

Clock

Domain
WDCLK

Status

PLL

Status

OSC

Status Exit Condition

CPU running

normally
XX On On On On On —

IDLE1 – (LPM0) 00 Off On On On On

Peripheral interrupt,

external interrupt,

reset

IDLE2 – (LPM1) 01 Off Off On On On

Wakeup interrupts,

external interrupt,

reset

HALT – (LPM2)

{PLL/OSC

power down}

1X Off Off Off Off Off Reset only
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4.4.2 Wake Up from Low Power Modes

Wake up from a low-power mode is caused by one of the four events described

below.

4.4.2.1 Reset

A reset (from any source) causes the device to exit any of the IDLE modes.

If the device is halted, the reset initially starts the oscillator; however, initiation

of the CPU reset sequence may be delayed while the oscillator powers up be-

fore clocks are generated.

4.4.2.2 External interrupts

The external interrupts, XINTx, can cause the device to exit any of the low pow-

er modes except HALT. If the device is in IDLE2 mode, the synchronous logic

connected to the external interrupt pins is bypassed with combinatorial logic

that recognizes the interrupt on the pin, starts the clocks, and then allows the

clocked logic to generate an interrupt request to the PIE controller.

Note: In Table 4–1, external interrupts include PDPINT.

4.4.2.3 Wake Up Interrupts

Some peripherals have the capability to start the device clocks and then gener-

ate an interrupt in response to certain external events, such as activity on a

communication line. As an example, the CAN wake-up interrupt can assert the

CAN error interrupt request even when there are no clocks running.

4.4.2.4 Peripheral interrupts

All peripheral interrupts, if enabled locally and globally, can cause the device

to exit IDLE1 mode. INTM must be enabled for LPM operation. If the IMR bits

are not enabled, the device “wakes up” from LPM mode and executes the next

instruction. Since no ISRs are executed, the peripheral flags must be cleared.
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Reset and External Interrupts

This chapter describes the two reset sources in the ’F243/F241/C242 devices,

and shows the configuration and external interrupt control registers.

Topic Page

5.1 Reset 5-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.2 Illegal Address Detect 5-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.3 Configuration Registers 5-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.4 External Interrupt Control Registers 5-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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5.1 Reset

The ’F243/F241/C242 devices have two sources of reset:

� An external reset pin

� A watchdog timer timeout

The reset pin is an I/O pin. If there is an internal reset event (watchdog timer),

the reset pin is put into output mode and driven low to indicate to external cir-

cuits that the ’F243/F241/C242 device is resetting itself.

The external reset pin and watchdog timer reset are ORed together to drive

the reset input to the CPU. There is a watchdog timer reset flag in the watchdog

timer control register that can be used to determine if the WD was the cause

of a reset.

5.2 Illegal Address Detect

The decode logic has the capability to detect accesses to illegal addresses (all

unimplemented addresses including reserved registers in each peripheral’s

memory map). The occurrence of an illegal access sets the illegal address flag

(ILLADR) in the system control and status register (SCSR). See Figure 5–1,

System Control and Status Register, on page 5-3. The detection of an illegal

address generates a nonmaskable interrupt (NMI). The illegal address condi-

tion is asserted whenever illegal addresses are accessed. The illegal address

flag (ILLADR) remains set following an illegal address condition until it is

cleared by software.

Reset / Illegal Address Detect



Configuration Registers

5-3Reset and External Interrupts

5.3 Configuration Registers

Figure 5–1. System Control and Status Register (SCSR) — Address 7018h

15 14 13 12 11–8

ReservedÍÍÍÍ
ÍÍÍÍ

CLKSRCÍÍÍÍ
ÍÍÍÍ

LPM1ÍÍÍÍÍ
ÍÍÍÍÍ

LPM0 Reserved

R-0 RW-0 RW-0 RW-0 R-0

7–1 0

Reserved
ÍÍÍÍÍ
ÍÍÍÍÍ
ÍÍÍÍÍ

ILLADR

R-0 R/C-x

Note: R = Read access, W = Write access, C = Clear only;  value following dash (-) = value after

reset

Bit 15 Reserved. Reads return zero; writes are undefined.

Bit 14 CLKSRC. Clock out pin source select.

0 CPU Clock out (CLKOUT), 20 MHz on a 20 MHz device.

1 Watchdog Clock (WDCLK), 39062.5 Hz on a 20 MHz de-
vice

Bits 13–12 LPM(1:0). Low-power mode select.

These bits indicate which low-power mode is entered when the CPU
executes the IDLE instruction. See Table 5–1, Low-Power Modes
Summary, for a description of the low power modes.

Table 5–1. Low-Power Modes Summary

LPM(1:0) Low Power mode selected

00 IDLE1 (LPM0)

01 IDLE2 (LPM1)

1x HALT (LPM2)

Bit 11–1 Reserved. Reads return zero; writes are undefined.

Bit 0 ILLADR. Illegal address detect bit.

When an illegal address occurs, this bit is set. This bit is not cleared by
reset; it is up to software to clear this bit following an illegal address
detect. This bit is cleared by writing a 1 to it.
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Figure 5–2. Device Identification Number Register (DINR) — Address 701Ch

15 14 13 12 11 10 9 8

DIN15 DIN14 DIN13 DIN12 DIN11 DIN10 DIN9 DIN8

R-x R-x R-x R-x R-x R-x R-x R-x

7 6 5 4 3 2 1 0

DIN7 DIN6 DIN5 DIN4 DIN3 DIN2 DIN1 DIN0

R-x R-x R-x R-x R-x R-x R-x R-x

Note: R = Read access, -x = hardwired device specific DIN value

Bits 15–4 DIN15–DIN4. These bits contain the hard-wired device-specific
device identification number (DIN).

Bits 3–0 DIN3–DIN0. These bits contain the hard-wired device revision num-
ber.

Device Rev # DIN #

’F241 1 0031h

’F241 2 0032h

’F241 3 0033h

’C242 1 0051h

etc.
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5.4 External Interrupt Control Registers

The two external interrupt control registers that control and monitor XINT1 and

XINT2 pin activities are XINT1CR and XINT2CR.

5.4.1 External Interrupt 1 Control Register (XINT1CR)

Figure 5–3. External Interrupt 1 Control Register (XINT1CR) — Address 7070h

15 14–3 2 1 0

ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

XINT1

flag
Reserved ÍÍÍÍ

ÍÍÍÍ
ÍÍÍÍ

XINT1

polarity
ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

XINT1

priority
ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

XINT1

enable

RC-0 R-0 RW-0 RW-0 RW-0

Note: R = Read access; W = Write access; C = Clear by writing a 1; value following dash (-) =

value after reset

Bit 15 XINT1 Flag.

This bit indicates whether the selected transition has been detected
on the XINT1 pin and is set whether or not the interrupt is enabled.
This bit is cleared by the appropriate interrupt acknowledge, by soft-
ware writing a 1 (writing a 0 has no effect), or by a device reset.

0 No transition detected

1 Transition detected

Bits 14–3 Reserved. Reads return zero; writes have no effect.

Bit 2 XINT1 Polarity.

This read/write bit determines whether interrupts are generated on
the rising edge or the falling edge of a signal on the pin.

0 Interrupt generated on a falling edge (high to low transi-
tion)

1 Interrupt generated on a rising edge (low to high transi-
tion)

Bit 1 XINT1 Priority.

This read/write bit determines which interrupt priority is requested.
The CPU interrupt priority levels corresponding to low and high priority
are coded into the peripheral interrupt expansion controller. These
priority levels are shown in Table 2–1, ’F243/F241/C242 Interrupt
Source Priority and Vectors, in Chapter Two on page 2-3.

0 High priority

1 Low priority
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Bit 0 XINT1 Enable.

This read/write bit enables or disables external interrupt XINT1.

0 Disable Interrupt

1 Enable interrupt

5.4.2 External Interrupt 2 Control Register (XINT2CR)

Figure 5–4. External Interrupt 2 Control Register (XINT2CR) — Address 7071h

15 14–3 2 1 0

ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

XINT2

flag
Reserved

ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

XINT2

polarity

ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

XINT2

priority

ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

XINT2

enable

RC-0 R-0 RW-0 RW-0 RW-0

Note: R = Read access; W = Write access; C = Clear by writing a 1; value following dash (-) =

value after reset

Bit 15 XINT2 Flag.

This bit indicates whether the selected transition has been detected
on the XINT2 pin, and is set whether or not the interrupt is enabled.
This bit is cleared by the appropriate interrupt acknowledge, by soft-
ware writing a 1 (writing a 0 has no effect), or by a device reset.

0 No transition detected

1 Transition detected

Bits 14–3 Reserved. Reads return zero; writes have no effect.

Bit 2 XINT2 Polarity.

This read/write bit determines whether interrupts are generated on
the rising edge or the falling edge of a signal on the pin.

0 Interrupt generated on a falling edge (high to low transi-
tion)

1 Interrupt generated on a rising edge (low to high transi-
tion)
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Bit 1 XINT2 Priority.

This read/write bit determines which interrupt priority is requested.
The CPU interrupt priority levels corresponding to low and high priority
are coded into the peripheral interrupt expansion controller. These
priority levels are shown in Table 2–1, ’F243/F241/C242 Interrupt
Source Priority and Vectors, in Chapter 2 on page 2-3.

0 High priority

1 Low priority

Bit 0 XINT2 Enable.

This read/write bit enables or disables the external interrupt XINT2.

0 Disable Interrupt

1 Enable interrupt
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Digital Input/Output (I/O)

The digital I/O ports module provides a flexible method for controlling both

dedicated I/O and shared pin functions. All I/O and shared pin functions are

controlled using six 16-bit registers. These registers are divided into two types:

� Output Control registers (OCRx) – Used to control the multiplexor selec-

tion that chooses between the primary function of a pin or the general pur-

pose I/O function.

� Data and Direction Control registers (PxDATDIR) – Used to control the

data and data direction of bi-directional I/O pins.

The GPIO pins are controlled through data-memory mapped registers. There

is no relationship between the GPIO pins and the I/O space of the device.

Topic Page

6.1 Digital I/O Ports Register Implementation on ’F243/F241/C242 6-2. . . . 

6.2 I/O MUX Control Registers 6-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.3 Data and Direction Control Registers 6-8. . . . . . . . . . . . . . . . . . . . . . . . . . . 
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6.1 Digital I/O Ports Register Implementation on ’F243/F241/C242 Devices

Table 6–1 lists the registers available to the digital I/O module as implemented

on the ’F243/F241/C242 devices. These registers are memory-mapped to

data space from 7090h through 709Fh. All reserved registers and bits are

unimplemented: reads return zero and writes have no effect.

Note that when multiplexed I/O pins are configured for peripheral functions or

as GPIO outputs, the pin status can be monitored by reading the I/O data regis-

ter.

Figure 6–1. Shared Pin Configuration

Primary

Function

Pin

(Read/Write)

IOP Data Bit

In Out

0 = Input

1 = Output

0 1 MUX Control Bit

0 = I/O Function

1 = Primary Function

IOP DIR Bit

Primary Function
or I/O Pin

When the MUX control bit = 1, the primary
function is selected in all cases except
for the following pins:

1.  XF/IOPC0 (0 = Primary Function)

2.  BIO/IOPC1 (0 = Primary Function)

3.  CLKOUT/IOPD0 (0 = Primary Function)

Note:
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Table 6–1. ’F243/F241/C242 Digital I/O Port Control Register Implementation

Address Offset Register Mnemonic Description

7090h OCRA Output Control register A

7092h OCRB Output Control register B

7094h Reserved

7096h Reserved

7098h PADATDIR I/O port A Data and Direction register

709Ah PBDATDIR I/O port B Data and Direction register

709Ch PCDATDIR I/O port C Data and Direction register

709Eh PDDATDIR I/O port D Data and Direction register
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6.2 I/O MUX Control Registers

There are two I/O mux control registers: I/O mux control register A (OCRA) and

I/O mux control register B (OCRB).

6.2.1 I/O Mux Control Register A

Figure 6–2. I/O Mux Control Register A (OCRA) — Address 7090h

15 14 13 12 11 10 9 8

CRA.15 CRA.14 CRA.13 CRA.12 CRA.11 CRA.10 CRA.9 CRA.8

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

7 6 5 4 3 2 1 0

CRA.7 CRA.6 CRA.5 CRA.4 CRA.3 CRA.2 CRA.1 CRA.0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Note: R = Read access; W = Write access; value following dash (-) = value after reset
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Table 6–2. I/O Mux Control Register A (OCRA) Configuration

Pin Function Selected

Bit # Name.bit # (CRA.n = 1) (CRA.n = 0)

0 CRA.0 SCITXD IOPA0

1 CRA.1 SCIRXD IOPA1

2 CRA.2 XINT1 IOPA2

3 CRA.3 CAP1/QEP0 IOPA3

4 CRA.4 CAP2/QEP1 IOPA4

5 CRA.5 CAP3 IOPA5

6 CRA.6 CMP1 IOPA6

7 CRA.7 CMP2 IOPA7

8 CRA.8 CMP3 IOPB0

9 CRA.9 CMP4 IOPB1

10 CRA.10 CMP5 IOPB2

11 CRA.11 CMP6 IOPB3

12 CRA.12 T1CMP IOPB4

13 CRA.13 T2CMP IOPB5

14 CRA.14 TDIR IOPB6

15 CRA.15 TCLKIN IOPB7

6.2.2 I/O Mux Output Control Register B

Output control register B (OCRB) has the following two possible configurations

depending on the target device:

1) For ’F241/243, OCRB is shown in Figure 6–3 and Table 6–3.

2) For ’C242, OCRB is shown in Figure 6–4 and Table 6–4.

Note: The ’C242 does not have the SPI or CAN peripheral modules.
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Figure 6–3. Output Control Register B (OCRB) for ’F243/241 only— Address 7092h

15–10 9 8

Reserved
ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

CRB.9
ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

CRB.8

R-0 RW-0 RW-0

7 6 5 4 3 2 1 0

CRB.7� CRB.6� CRB.5� CRB.4� CRB.3� CRB.2� CRB.1 CRB.0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Note: R = Read access; W = Write access; value following dash (-) = value after reset

Note: �These bits are reserved on the ’C242.

Table 6–3. I/O Mux Control Register B (OCRB) Configuration Table for ’F243/F241 Only

Pin Function Selected

Bit # Name.bit # (CRB.n = 1) (CRB.n = 0)

0 CRB.0 IOPC0 XF

1 CRB.1 IOPC1 BIO

2 CRB.2 SPISIMO IOPC2

3 CRB.3 SPISOMI IOPC3

4 CRB.4 SPICLK IOPC4

5 CRB.5 SPISTE IOPC5

6 CRB.6 CANTX IOPC6

7 CRB.7 CANRX IOPC7

8 CRB.8 IOPD0 CLKOUT

9 CRB.9 XINT2/ADCSOC IOPD1

10 Reserved

11 Reserved

12 Reserved

13 Reserved

14 Reserved

15 Reserved
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Figure 6–4. Output Control Register B (OCRB) for ’C242 only— Address 7092h

15–10 9 8

Reserved
ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

CRB.9
ÍÍÍÍÍ
ÍÍÍÍÍ
ÍÍÍÍÍ

CRB.8

R-0 RW-0 RW-0

7–2 1 0

Reserved
ÍÍÍÍ
ÍÍÍÍ

CRB.1
ÍÍÍÍÍ
ÍÍÍÍÍ

CRB.0

R-0 RW-0 RW-0

Note: R = Read access; W = Write access; value following dash (-) = value after reset

Table 6–4. I/O Mux Control Register B (OCRB) Configuration Table for ’C242 Only

Pin Function Selected

Bit # Name.bit # (CRB.n = 1) (CRB.n = 0)

0 CRB.0 IOPC0 XF

1 CRB.1 IOPC1 BIO

2 Reserved

3 Reserved

4 Reserved

5 Reserved

6 Reserved

7 Reserved

8 CRB.8 IOPD0 CLKOUT

9 CRB.9 XINT2/ADCSOC IOPD1

10 Reserved

11 Reserved

12 Reserved

13 Reserved

14 Reserved

15 Reserved
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6.3 Data and Direction Control Registers

There are four data and direction control registers. Refer to Table 6–1,

’F243/F241/C242 Digital I/O Port Control Registers Implementation, on page

6-3 for the address locations of each register.

Figure 6–5. Port A Data and Direction Control Register (PADATDIR) — Address 7098h

15 14 13 12 11 10 9 8

A7DIR A6DIR A5DIR A4DIR A3DIR A2DIR A1DIR A0DIR

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

7 6 5 4 3 2 1 0

IOPA7 IOPA6 IOPA5 IOPA4 IOPA3 IOPA2 IOPA1 IOPA0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Note: R = Read access; W = Write access; value following dash (-) = value after reset

Bits 15–8 AnDIR

0 Configure corresponding pin as an input

1 Configure corresponding pin as an output

Bits 7–0 IOPAn

If AnDIR = 0, then:

0 Corresponding I/O pin is read as a low

1 Corresponding I/O pin is read as a high

If AnDIR = 1, then:

0 Set corresponding I/O pin low

1 Set corresponding I/O pin high
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Figure 6–6. Port B Data and Direction Control Register (PBDATDIR) — Address 709Ah

15 14 13 12 11 10 9 8

B7DIR B6DIR B5DIR B4DIR B3DIR B2DIR B1DIR B0DIR

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

7 6 5 4 3 2 1 0

IOPB7 IOPB6 IOPB5 IOPB4 IOPB3 IOPB2 IOPB1 IOPB0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Note: R = Read access; W = Write access; value following dash (-) = value after reset

Bits 15–8 BnDIR

0 Configure corresponding pin as an input

1 Configure corresponding pin as an output

Bits 7–0 IOPBn

If BnDIR = 0, then:

0 Corresponding I/O pin is read as a low

1 Corresponding I/O pin is read as a high

If BnDIR = 1, then:

0 Set corresponding I/O pin low.

1 Set corresponding I/O pin high.
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Figure 6–7. Port C Data and Direction Control Register (PCDATDIR) —Address 709Ch

15 14 13 12 11 10 9 8

C7DIR C6DIR C5DIR C4DIR C3DIR C2DIR C1DIR C0DIR

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

7 6 5 4 3 2 1 0

IOPC7 IOPC6 IOPC5 IOPC4 IOPC3 IOPC2 IOPC1 IOPC0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Note: R = Read access; W = Write access; value following dash (-) = value after reset

Bits 15–8 CnDIR

0 Configure corresponding pin as an input

1 Configure corresponding pin as an output

Bits 7–0 IOPCn

If CnDIR = 0, then:

0 Corresponding I/O pin is read as a low

1 Corresponding I/O pin is read as a high

If CnDIR = 1, then:

0 Set corresponding I/O pin low

1 Set corresponding I/O pin high
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The port D data and direction control register has the following two possible

configurations depending on the target device:

1) For ’C242, PDDATDIR is shown in Figure 6–8.

2) For ’F243 and ’F241, PDDATDIR is shown in Figure 6–9.

Figure 6–8. Port D Data and Direction Control Register (PDDATDIR) for ’C242 only —
Address 709Eh

15–10 9 8

Reserved

ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

D1DIR

ÍÍÍÍÍ
ÍÍÍÍÍ
ÍÍÍÍÍ

D0DIR

R-0 R-0 R-0 R-0 R-0 R-0 RW-0 RW-0

7–2 1 0

Reserved
ÍÍÍÍ
ÍÍÍÍ

IOPD1
ÍÍÍÍÍ
ÍÍÍÍÍ

IOPD0

R-0 RW-0 RW-0

Note: R = Read access; W = Write access; value following dash (-) = value after reset

Bits 9–8 DnDIR

0 Configure corresponding pin as an input

1 Configure corresponding pin as an output

Bits 1–0 IOPDn

If DnDIR = 0, then:

0 Corresponding I/O pin is read as a low

1 Corresponding I/O pin is read as a high

If DnDIR = 1, then:

0 Set corresponding I/O pin low

1 Set corresponding I/O pin high

Bits 15-10, 7-2 Reserved

Reads return zero; writes have no effect.
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Figure 6–9. Port D Data and Direction Control Register (PDDATDIR) for ’F243 and ’F241
— Address 709Eh

15 14 13 12 11 10 9 8

D7DIR† D6DIR† D5DIR† D4DIR† D3DIR† D2DIR† D1DIR D0DIR

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

7 6 5 4 3 2 1 0

IOPD7† IOPD6† IOPD5† IOPD4† IOPD3† IOPD2† IOPD1 IOPD0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Note: R = Read access; W = Write access; value following dash (-) = value after reset

† The I/O pins associated with these bits are only bonded out on the ’F243. Therefore, these bits

have no effect on the ’F241, even though they can be written to and read from.

Bits 15–8 DnDIR

0 Configure corresponding pin as an input

1 Configure corresponding pin as an output

Bits 7–0 IOPDn

If DnDIR = 0, then:

0 Corresponding I/O pin is read as a low

1 Corresponding I/O pin is read as a high

If DnDIR = 1, then:

0 Set corresponding I/O pin low

1 Set corresponding I/O pin high
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Event Manager (EV2)

This chapter describes the ’F243/F241/C242 Event Manager (EV2) module.

Most of the EV2 device pins are shared with general purpose digital I/O sig-

nals. This pin sharing and how it is controlled is described in Chapter 6, Digital

Input/Output (I/O).

The EV2 module provides a broad range of functions and features that are par-

ticularly useful in motion control and motor control applications. There are dif-

ferences in terms of the functionality between the EV2 module of

’F243/F241/C242 devices and the EV module of ’240 devices.
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7.1 Event Manager (EV2) Functional Blocks

The EV2 module in ’24x devices contain the following functional blocks:

� Two general purpose (GP) timers (described in section 7.3 on page 7-11).

� Three compare units (described in section 7.4 on page 7-34).

� Pulse-width modulation (PWM) circuits that include space vector PWM

circuits, dead-band generation units, and output logic (described in sec-

tion 7.5 on page 7-40, section 7.6 on page 7-48, and section 7.7 on page

7-52).

� Three capture units (described in section 7.8 on page 7-58).

� Quadrature encoder pulse (QEP) circuit (described in section 7.9, page

7-58).

� Interrupt logic (described in section 7.10 on page 7-68).

Figure 7–1 shows a block diagram of the EV2 module.
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Figure 7–1. Event Manager (EV2) Block Diagram
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7.1.1 Differences between ’C240 EV and ’24x EV2

� GP timer 3 has been removed.

� The single up-count and single up/down-count modes have been re-

moved from the remaining GP timers. Software change: The four timer

modes are now decoded with TMODE1–0. This decoding is different from

the ’C240 EV. TMODE2 is now a reserved bit.

� There is no 32-bit timer mode since GP timer 3 is not present.

� The GP Timers do not stay at the period register value, FFFFh or 0000h

when operating in directional up/down-count mode (including QEP mode).

They now reverse direction when one of these end points is reached.

� Capture 4 has been removed.

� A capture 3 event is now able to start the ADC.

� The capture units can now use GP timer 2 or GP timer 1 as a time base.

� The capture interrupt flag gets set when a capture event occurs only if

there are one or more capture events stored in the FIFO already.

� The Capture FIFO status bits are now RW. Bits 5–0 of CAPFIFO are now

unnecessary and are reserved.

� Both locations in the capture FIFO can be read individually, not just the top

location.

� The QEP logic can only clock GP timer 2.

� The three simple compare units have been removed.

� The compare mode of the (full) compare units has been removed. They

now only operate in PWM mode.

� The dead band counters have been reduced from 8 bits to 4 bits. The dead

band prescaler has been increased from 3 bits to 5 bits, adding two more

prescale values: x/16 and x/32. Software change: There are now three

DBTPSx bits. DBTPS0 moves to bit 2 of DBTCON, DBTPS1 moves to bit

3 and bit 4 becomes DBTPS2.

� Any register bits associated with the removed functions are now reserved

(not implemented).

� Most interrupt control logic has been removed from each peripheral. Each

peripheral now simply has one interrupt request signal and associated en-
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able for each interrupt flag. The peripheral interrupt vector table (contain-

ing the peripheral interrupt vectors) is now located in the peripheral inter-

rupt expansion (PIE) controller.

� Software writing a 1 to the interrupt flag, which has been identified by the

interrupt vector ID, is required to clear the flag. Reading the interrupt vec-

tor ID no longer automatically clears the associated flag.

� PDPINT is now enabled following reset.

� Only one write is required to initialize COMCON, not two as on the ’C240.

7.1.2 EV2 Pins

The EV2 module has eight device pins available for compare/PWM outputs:

� Two GP timer compare/PWM output pins:

� T1CMP/T1PWM

� T2CMP/T2PWM

� Six (full) compare/PWM output pins:

� PWM1

� PWM2

� PWM3

� PWM4

� PWM5

� PWM6

The EV2 module uses three device pins, CAP1/QEP0, CAP2/QEP1, and

CAP3, as capture or quadrature encoder pulse inputs.

The timers in the EV2 module can be programmed to operate based on an ex-

ternal clock or the internal device clock. The device pin TCLKIN supplies the

external clock input.

The device pin TDIR is used to specify the counting direction when a GP timer

is in directional up/down-counting mode.

The device pins are summarized in Table 7–1.
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Table 7–1. Event Manager Pins

Pin Name Description

CAP1/QEP0 Capture Unit 1 input, QEP circuit input 0

CAP2/QEP1 Capture Unit 2 input, QEP circuit input 1

CAP3 Capture Unit 3 input

PWM1 Compare Unit 1 output 1

PWM2 Compare Unit 1 output 2

PWM3 Compare Unit 2 output 1

PWM4 Compare Unit 2 output 2

PWM5 Compare Unit 3 output 1

PWM6 Compare Unit 3 output 2

T1CMP Timer 1 compare/PWM output

T2CMP Timer 2 compare/PWM output

TCLKIN External clock input for Timers

TDIR External timer direction input

7.1.3 Power Drive Protection

An interrupt is generated when the device pin power drive protection interrupt

(PDPINT) is pulled low. This interrupt is provided for the safe operation of sys-

tems such as power converters and motor drives. If PDPINT is unmasked, all

EV2 output pins will be put in the high-impedance state by hardware immedi-

ately after the PDPINT pin is pulled low. The interrupt flag associated with

PDPINT is also set when such an event occurs; however, it must wait until the

transition on PDPINT has been qualified and synchronized with the internal

clock. The qualification and synchronization causes a delay of 2 clock cycles.

If PDPINT is unmasked, the flag keeps the EV2 outputs in the high-impedance

state and generates a peripheral interrupt request. The setting of the flag does

not depend on whether PDPINT is masked: it happens when a qualified transi-

tion occurs on the PDPINT pin. PDPINT can be used to inform the monitoring

program of motor drive abnormalities such as over-voltage, over-current, and

excessive temperature rise.

This interrupt is enabled following reset.
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7.1.4 EV2 Registers

The Event Manager registers occupy a 64 word (16-bit) frame of address

space. The Event Manager module decodes the lower 6-bits of the address;

while the upper 10 bits of the address are decoded by the peripheral address

decode logic, which provides a module select to the Event Manager when the

peripheral address bus carries an address within the range designated for the

EV2 on that device.

On the ’F243/F241/C242 devices (as with the ’C240 device) the Event Manag-

er registers are located in the range 7400h to 743Fh.

The undefined registers and undefined bits of the EV2 registers all return zero

when read by user software. Writes have no effect. See Section 7.2, on page

7-9.

7.1.5 EV2 Interrupts

Event Manager interrupts are arranged into three groups. Each group is as-

signed one CPU interrupt (INT2, 3 or 4). Since each group has multiple inter-

rupt sources, the CPU interrupt requests are processed by the Peripheral In-

terrupt Expansion module. The ’24x interrupt requests have the following

stages of response:

� Interrupt source. If peripheral interrupt conditions occur, the respective

flag bits in registers EVIFRA, EVIFRB or EVIFRC are set. Once set, these

flags remain set until explicity cleared by the software. It is mandatory to

clear these flags in the software or future interrupts will not be recognized.

� Interrupt enable. The event manager interrupts can be individually enable-

d or disabled by interrupt mask registers EVIMRA, EVIMRB, and

EVIMRC. Each bit is set to 1 to enable/unmask the interrupt or cleared to

0 to disable/mask the interrupt.

� PIE request. If both interrupt flag bits and interrupt mask bits are set, then

the peripheral issues a peripheral interrupt request to the PIE module. The

PIE module can receive more than one interrupt from the peripheral. The

PIE logic records all the interrupt requests and generates the respective

CPU interrupt (INT2, 3, or 4) based on the preassigned priority of the re-

ceived interrupts. See Table 2–1, ’F243/F241/C242 Interrupt Source

Priority and Vectors, on page 2-3 for priority and vector values.

� CPU response. On receipt of INT2, 3, or 4 interrupt request, the respective

bit in the CPU interrupt flag register (IFR) will be set. If the corresponding

interrupt mask register (IMR) bit is set and INTM bit is cleared, then the
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CPU recognizes the interrupt and issues an acknowledgement to the PIE.

Following this, the CPU finishes executing the current instruction and

branches to the interrupt vector corresponding to  INT2, 3, or 4. At this

time, the respective IFR bit will be cleared and the INTM bit will be set dis-

abling further interrupt recognition. The interrupt vector contains a branch

instruction for the interrupt service routine. From here, the interrupt re-

sponse is controlled by the software.

� PIE response. The PIE logic uses the acknowledge signal from the core

to clear the PIRQ bit that issued the CPU interrupt. Along with this, the PIE

updates its PIVR register with the interrupt vector, unique to the peripheral

interrupt, that was just acknowledged. After this, the PIE hardware works

in parallel to the current interrupt software to generate a CPU interrupt and

other pending interrupts, if any.

� Interrupt software. The interrupt software has two levels of response.

� Level 1 (GISR). In the first level the software should do any context

save and read the PIVR register from PIE module to decide which in-

terrupt group caused the interrupt. Since the PIVR value is unique, it

can be used to branch to the interrupt service routine specific to this

interrupt condition.

� Level 2 (SISR). This level is optional and could reside as a part of level

1. However, at this stage the interrupt software has explicit responsibi-

lity to avoid improper interrupt response. After executing the interrupt

specific code, the routine should clear the interrupt flag in the EVIFRA,

EVIFRB, or EVIFRC that caused the serviced interrupt. Code will re-

turn after enabling the CPU’s global interrupt bit INTM (clear INTM bit).



Event Manager (EV2) Register Addresses

7-9Event Manager (EV2)

7.2 Event Manager (EV2) Register Addresses

Table 7–2 through Table 7–5 display the addresses of the Event Manager reg-

isters.

Table 7–2. Addresses of Timer Registers

Address Register Name

7400h GPTCON Timer control register

7401h T1CNT Timer 1 counter register

7402h T1CMPR Timer 1 compare register
Timer 1

7403h T1PR Timer 1 period register
Timer 1

7404h T1CON Timer 1 control register

7405h T2CNT Timer 2 counter register

7406h T2CMPR Timer 2 compare register
Timer 2

7407h T2PR Timer 2 period register
Timer 2

7408h T2CON Timer 2 control register

Table 7–3. Addresses of Compare Control Registers

Address Register Name

7411h COMCON Compare control register

7413h ACTR Compare action control register

7415h DBTCON Dead-band timer control register

7417h CMPR1 Compare register 1

7418h CMPR2 Compare register 2

7419h CMPR3 Compare register 3

Table 7–4. Addresses of Capture Registers

Address Register Name

7420h CAPCON Capture control register

7422h CAPFIFO Capture FIFO status register

7423h CAP1FIFO Two-level deep FIFO stacks

7424h CAP2FIFO

7425h CAP3FIFO

7427h CAP1FBOT Bottom registers of FIFO stacks, al-

l t t CAPTURE l t7428h CAP2FBOT

g

lows most recent CAPTURE value to

be read
7429h CAP3FBOT

be read.
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Table 7–5. Addresses of EV2 Interrupt Registers

Address Register Name

742Ch EVIMRA Interrupt mask register A

742Dh EVIMRB Interrupt mask register B

742Eh EVIMRC Interrupt mask register C

742Fh EVIFRA Interrupt flag register A

7430h EVIFRB Interrupt flag register B

7431h EVIFRC Interrupt flag register C
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7.3 General Purpose (GP) Timers

There are two general purpose (GP) timers in the EV2 module. These timers

can be used as independent time bases in applications such as:

� The generation of a sampling period in a control system

� Providing a time base for the operation of the quadrature encoder pulse

(QEP) circuit (GP timer 2 only) and the capture units

� Providing a time base for the operation of the compare units and

associated PWM circuits to generate PWM outputs

Timer Functional Blocks

Figure 7–2 shows a block diagram of a GP timer. Each GP timer includes:

� One readable and writeable (RW) 16-bit up- and up/down-counter register

TxCNT (x = 1, 2). This register stores the current value of the counter and

keeps incrementing or decrementing depending on the direction of count-

ing.

� One RW 16-bit timer compare register (shadowed), TxCMPR (x = 1, 2)

� One RW 16-bit timer period register (shadowed), TxPR (x = 1, 2)

� RW 16-bit individual timer control register, TxCON (x = 1, 2)

� Programmable prescaler applicable to both internal and external clock in-

puts

� Control and interrupt logic

� One GP timer compare output pin, TxCMP (x = 1, 2)

� Output conditioning logic

Another overall control register, GPTCON, specifies the action to be taken by

the timers on different timer events, and indicates the counting directions of the

GP timers. GPTCON is readable and writeable, although writing to the status

bits has no effect.

Note:

Timer 2 can select the period register of timer 1 as its period register. In
Figure 7–2, the mux is applicable only when the figure represents timer 2.
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Figure 7–2. General Purpose Timer Block Diagram (x = 1 or 2)
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GP Timer Inputs

The inputs to the GP timers are:

� The internal device (CPU) clock.

� An external clock, TCLKIN, that has a maximum frequency of one-fourth

that of the device clock.

� Direction input, TDIR, for use by the GP timers in directional up/down-

counting mode.

� Reset signal, RESET.

When a timer is used with the QEP circuit, the QEP circuit generates both the

timer’s clock and the counting direction.

GP Timer Outputs

The outputs of the timers are:

� GP timer compare outputs TxCMP, x = 1, 2

� ADC start-of-conversion signal to ADC module

� Underflow, overflow, compare match, and period match signals to its own

compare logic and to the compare units

� Counting direction indication bits

Individual GP Timer Control Register (TxCON)

T1CON and T2CON are the two individual timer control registers (in contrast

to the overall GP timer control register, GPTCON). These registers control the

operational mode of the timer. See Figure 7–11 on page 7-29.

Overall GP Timer Control Register (GPTCON)

The control register GPTCON specifies the action to be taken by the timers on

different timer events and indicates their counting directions. See Figure 7–12

on page 7-31.
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GP Timer Compare Registers (TxCMPR)

T1CMPR is the associated compare register for Timer 1 and T2CMPR is the

associated compare register for Timer 2. Both have an associated PWM out-

put pin, T1PWM and T2PWM.

Figure 7–3. GP Timer x Compare Register (TxCMPR; x = 1 or 2) — Addresses 7402h 
and 7406h

15 14 13 12 11 10 9 8

D15 D14 D13 D12 D11 D10 D9 D8

RW–0 RW–0 RW–0 RW–0 RW–0 RW–0 RW–0 RW–0

7 6 5 4 3 2 1 0

D7 D6 D5 D4 D3 D2 D1 D0

RW–0 RW–0 RW–0 RW–0 RW–0 RW–0 RW–0 RW–0

Note: R = read access; W = write access; value following dash (–) is value after reset

 The value of a GP timer counter is constantly compared to that of its associat-

ed compare register. A compare match occurs when the value of the timer

counter is the same as that of the compare register. Compare operation is en-

abled by setting bit 1 in T1CON to 1. If it is enabled, the following happens on

a compare match:

� The compare interrupt flag of the timer is set one clock cycle after the

match.

� A transition occurs on the associated PWM output according to the bit con-

figuration in GPTCON, one device clock cycle after the match.

� If the compare interrupt flag has been selected by the appropriate

GPTCON bits to start ADC, an ADC start signal is generated at the same

time the compare interrupt flag is set.

A peripheral interrupt request is generated by the compare interrupt flag if it

is unmasked.
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GP Timer Period Register (TxPR)

T1PR is the 16-bit period register for Timer 1 and T2PR is the 16-bit period reg-

ister for Timer 2. The value in the period register of a GP Timer determines the

period of the timer.

Figure 7–4. GP Timer x Period Register (TxPR; x = 1 or 2) — Addresses 7403h and 
7407h

15 14 13 12 11 10 9 8

D15 D14 D13 D12 D11 D10 D9 D8

RW–0 RW–0 RW–0 RW–0 RW–0 RW–0 RW–0 RW–0

7 6 5 4 3 2 1 0

D7 D6 D5 D4 D3 D2 D1 D0

RW–0 RW–0 RW–0 RW–0 RW–0 RW–0 RW–0 RW–0

Note: R = read access; W = write access; value following dash (–) is value after reset

The operation of a GP timer stops and holds at its current value, resets to 0,

or starts counting downward when a match occurs between the period register

and the timer counter, depending on the counting mode of the timer.

Double Buffering of GP Timer Compare and Period Registers

The compare and period registers, TxCMPR and TxPR, of a GP timer are

shadowed. A new value can be written to any of these registers at any time

during a period. However, the new value is written to the associated shadow

register. For the compare register, the content in the shadow register is loaded

into the working (active) register only when a certain timer event specified by

TxCON occurs. For the period register, the working register is reloaded with

the value in its shadow register only when the value of the counter register

TxCNT is 0. The condition on which a compare register is reloaded can be one

of the following:

� Immediately after the shadow register is written

� On underflow; that is, when the GP timer counter value is 0

� On underflow or period match; that is, when the counter value is 0 or when

the counter value equals the value of the period register

The double buffering feature of the period and compare registers allows the

application code to update the period and compare registers at any time during
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a period in order to change the timer period and the width of the PWM pulse

for the period that follows. On-the-fly change of the timer period value, in the

case of PWM generation, means on-the-fly change of PWM carrier frequency.

Caution :

The period register of a GP timer should be initialized before its counter
is initialized to a non-zero value. Otherwise, the value of the period
register will remain unchanged until the next underflow.

Note that a compare register is transparent (the newly loaded value goes di-

rectly into the active register) when the associated compare operation is dis-

abled. This applies to all Event Manager compare registers.

GP Timer Compare Output

The compare output of a GP timer can be specified active high, active low,

forced high, or forced low, depending on how the GPTCON bits are configured.

It goes from low to high (high to low) on the first compare match when it is active

high (low). It then goes from high to low (low to high) on the second compare

match if the GP timer is in an up/down-counting mode, or on period match if

the GP timer is in up-counting mode. The timer compare output becomes high

(low) right away when it is specified to be forced high (low).

Timer Counting Direction

The counting directions of the GP timers are reflected by their respective bits

in GPTCON during all timer operations as follows:

� 1 represents the up-counting direction.

� 0 represents the down-counting direction.

The input pin TDIR determines the direction of counting when a GP timer is

in directional up/down-counting mode. When TDIR is high, upward counting

is specified; when TDIR is low, downward counting is specified.

Timer Clock

The source of the GP timer clock can be the internal device clock or the exter-

nal clock input, TCLKIN. The frequency of the external clock must be less than

or equal to one-fourth of that of the device clock. GP timer 2 can be used with
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the QEP circuits, in directional up/down-counting mode. In this case, the QEP

circuits provide both the clock and direction inputs to the timer.

A wide range of prescale factors are provided for the clock input to each GP

timer.

QEP Based Clock Input

The quadrature encoder pulse (QEP) circuit, when selected, can generate the

input clock and counting direction for GP timer 2 in the directional up/down-

counting mode. This input clock cannot be scaled by GP timer prescaler cir-

cuits (that is, the prescaler of the selected GP timer is always 1 if the QEP cir-

cuit is selected as the clock source). Furthermore, the frequency of the clock

generated by the QEP circuits is four times that of the frequency of each QEP

input channel because both the rising and falling edges of both QEP input

channels are counted by the selected timer. The frequency of the QEP input

must be less than or equal to one-fourth of that of the device clock.

GP Timer Synchronization

GP timer 2 can be synchronized with GP timer 1 by proper configuration of

T2CON in the following ways:

� Set the TSWT1 bit in T2CON to start GP timer 2 counting with the tenable

bit in T1CON (thus both timer counters start simultaneously).

� Initialize the timer counters in GP timers 1 and 2 with different values be-

fore starting synchronized operation.

� Specify that GP timer 2 uses the period register of GP timer 1 as its period

register (ignoring its own period register) by setting SELT1PR in T2CON.

This allows the desired synchronization between GP timer events. Since each

GP timer starts the counting operation from its current value in the counter reg-

ister, one GP timer can be programmed to start with a known delay after the

other GP timer.

Starting the A/D Converter with a Timer Event

The bits in GPTCON can specify that an ADC start signal be generated on a

GP timer event such as underflow, compare match, or period match. This fea-

ture provides synchronization between the GP timer event and the ADC start

without any CPU intervention.

GP Timer in Emulation Suspend

The GP timer control register bits also define the operation of the GP timers

during emulation suspend. These bits can be set to allow the operation of GP
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timers to continue when an emulation interrupt occurs making in-circuit emula-

tion possible. They can also be set to specify that the operation of GP timers

stops immediately, or after completion of the current counting period, when

emulation interrupt occurs.

Emulation suspend occurs when the device clock is stopped by the emulator,

for example, when the emulator encounters a break point.

GP Timer Interrupts

There are eight interrupt flags in EVIFRA and EVIFRB for the GP timers. Each

GP timer can generate four interrupts upon the following events:

� Overflow: TxOFINT (x = 1 or 2)

� Underflow: TxUFINT (x = 1 or 2)

� Compare match: TxCINT (x = 1 or 2)

� Period match: TxPINT (x = 1 or 2)

A timer compare event (match) happens when the content of a GP timer count-

er is the same as that of the compare register. The corresponding compare

interrupt flag is set one clock cycle after the match if the compare operation

is enabled.

An overflow event occurs when the value of the timer counter reaches FFFFh.

An underflow event occurs when the timer counter reaches 0000h. Similarly,

a period event happens when the value of the timer counter is the same as that

of the period register. The overflow, underflow, and period interrupt flags of the

timer are set one clock cycle after the occurrence of each individual event.

Note that the definition of overflow and underflow is different from their conven-

tional definitions.
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7.3.1 GP Timer Counting Operation

GP Timer x Counter Register (TxCNT)

T1CNT and T2CNT are 16-bit readable and writeable up and up/down counter

registers for Timers 1 and 2. These registers store the current value of the

counter and keep incrementing or decrementing depending on the direction

of counting.

Figure 7–5. GP Timer x Counter Register (TxCNT; x = 1 or 2) — Addresses 7401h and 
7405h

15 14 13 12 11 10 9 8

D15 D14 D13 D12 D11 D10 D9 D8

RW–0 RW–0 RW–0 RW–0 RW–0 RW–0 RW–0 RW–0

7 6 5 4 3 2 1 0

D7 D6 D5 D4 D3 D2 D1 D0

RW–0 RW–0 RW–0 RW–0 RW–0 RW–0 RW–0 RW–0

Note: R = read access; W = write access; value following dash (–) is value after reset

Each GP timer has four possible modes of operation:

� Stop/Hold mode

� Continuous up-counting mode

� Directional up/down-counting mode

� Continuous up/down-counting mode

The bit pattern in the corresponding timer control register TxCON determines

the counting mode of a GP timer. The timer enabling bit, TxCON[6], enables

or disables the counting operation of a timer. When the timer is disabled, the

counting operation of the timer stops and the prescaler of the timer is reset to

x/1. When the timer is enabled, the timer starts counting according to the

counting mode specified by other bits in TxCON.

Stop/Hold Mode

In this mode the GP timer stops and holds at its current state. The timer count-

er, the compare output, and the prescale counter all remain unchanged in this

mode.
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Continuous Up-Counting Mode

The GP timer in this mode counts up according to the scaled input clock until

the value of the timer counter matches that of the period register. On the next

rising edge of the input clock after the match, the GP timer resets to 0 and starts

counting up again.

The period interrupt flag of the timer is set one clock cycle after the match be-

tween the timer counter and period register. A peripheral interrupt request is

generated if the flag is not masked. An ADC start is sent to the ADC module

at the same time the flag is set, if the period interrupt of this timer has been

selected by the appropriate bits in GPTCON to start the ADC.

One clock cycle after the GP timer becomes 0, the underflow interrupt flag of

the timer is set. A peripheral interrupt request is generated by the flag if it is

unmasked. An ADC start is sent to the ADC module at the same time if the un-

derflow interrupt flag of this timer has been selected by appropriate bits in

GPTCON to start ADC.

The overflow interrupt flag is set one clock cycle after the value in TxCNT

matches FFFFh. A peripheral interrupt request is generated by the flag if it is

unmasked.

The duration of the timer period is (TxPR) + 1 cycles of the scaled clock input

except for the first period. The duration of the first period is the same if the timer

counter is 0 when counting starts.

The initial value of the GP timer can be any value between 0h and FFFFh inclu-

sive. When the initial value is greater than the value in the period register, the

timer counts up to FFFFh, resets to 0, and continues the operation as if the

initial value was 0. When the initial value in the timer counter is the same as

that of the period register, the timer sets the period interrupt flag, resets to 0,

sets the underflow interrupt flag, and then continues the operation again as if

the initial value was 0. If the initial value of the timer is between 0 and the con-

tents of the period register, the timer counts up to the period value and continue

to finish the period as if the initial counter value was the same as that of the

period register.

The counting direction indication bit in GPTCON is 1 for the timer in this mode.

Either the external or internal device clock can be selected as the input clock

to the timer. TDIR input is ignored by the GP timer in this counting mode.

The continuous up-counting mode of the GP timer is particularly useful for the

generation of edge-triggered or asynchronous PWM waveforms and sampling

periods in many motor and motion control systems.

Figure 7–6 shows the continuous up-counting mode of the GP timer.
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Figure 7–6. GP Timer Continuous Up-Counting Mode (TxPR = 3 or 2)
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As shown in Figure 7–6, GP Timer Continuous Up-Counting Mode (TxPR =

3 or 2), no clock cycle is missed from the time the counter reaches the period

register value to the time it starts another counting cycle.

Directional Up/Down-Counting Mode

The GP timer in directional up/down-counting mode counts up or down ac-

cording to the scaled clock and TDIR inputs. The GP timer starts counting up

until its value reaches that of the period register (or FFFFh if the initial count

is greater than the period) when the TDIR pin is held high. When the timer val-

ue equals that of its period register (or FFFFh) the timer resets to zero and con-

tinues counting up to the period again. When TDIR is held low, the GP timer

counts down until its value becomes 0. When the value of the timer has

counted down to 0, the timer reloads its counter with the value in the period

register and starts counting down again.

The initial value of the timer can be any value between 0000h to FFFFh. When

the initial value of the timer counter is greater than that of the period register,

the timer counts up to FFFFh before resetting itself to 0 and counting up to the

period. If TDIR is low when the timer starts with a value greater than the period

register, it counts down to the value of the period register and continues count-

ing down to 0, at which point the timer counter gets reloaded with the value

from the period register as normal.

The period, underflow, and overflow interrupt flags, interrupts, and associated

actions are generated on respective events in the same manner as they are

generated in the continuous up-counting mode.

The latency from a change of TDIR to a change of counting direction is one

clock cycle after the end of the current count; that is, after the end of the current

prescale counter period.
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The direction of counting is indicated for the timer in this mode by the corre-

sponding direction indication bit in GPTCON: 1 means counting up; 0 means

counting down. Either the external clock from the TCLKIN pin or the internal

device clock can be used as the input clock for the timer in this mode.

Figure 7–7 shows the directional up/down-counting mode of the GP timers.

Figure 7–7. GP Timer Directional Up/Down-Counting Mode: Prescale Factor 1 and
TxPR = 3
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The directional up/down-counting mode of GP timer 2 can be used with the

quadrature encoder pulse (QEP) circuits in the EV2 module. In this case, the

QEP circuits provide both the counting clock and direction for GP timer 2. This

mode of operation can also be used to time the occurrence of external events

in motion/motor control and power electronics applications.

Continuous Up/Down-Counting Mode

This mode of operation is the same as the directional up/down-counting mode,

but the TDIR pin has no effect on the counting direction. The counting direction

only changes from up to down when the timer reaches the period value (or

FFFFh if the initial timer value is greater than the period). The timer direction

only changes from down to up when the timer reaches 0.

The period of the timer in this mode is 2 × (TxPR) cycles of the scaled clock

input except for the first period. The duration of the first counting period is the

same if the timer counter is 0 when counting starts.

The initial value of the GP timer counter can be any value between 0h and

FFFFh inclusive. When the initial value is greater than that of the period regis-

ter, the timer counts up to FFFFh, resets to 0, and continues the operation as

if the initial value was 0. When the initial value in the timer counter is the same
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as that of the period register, the timer counts down to 0 and continues again

as if the initial value was 0. If the initial value of the timer is between 0 and the

contents of the period register, the timer counts up to the period value and con-

tinues to finish the period as if the initial counter value was the same as that

of the period register.

The period, underflow, and overflow interrupt flags, interrupts, and associated

actions are generated on respective events in the same manner as they are

generated in continuous up-counting mode.

The counting direction indication bit for this timer in GPTCON is 1 when the

timer counts upward and 0 when the timer counts downward. Either the exter-

nal clock from the TCLKIN pin or the internal device clock can be selected as

the input clock. TDIR input is ignored by the timer in this mode.

Figure 7–8 shows the continuous up/down-counting mode of the GP timer.

Figure 7–8. GP Timer Continuous Up/Down-Counting Mode (TxPR = 3 or 2)
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Continuous up/down-counting mode is particularly useful in generating cen-

tered or symmetric PWM waveforms found in a broad range of motor/motion

control and power electronics applications.

7.3.2 GP Timer Compare Operation

Each GP timer has an associated compare register TxCMPR and a PWM out-

put pin TxPWM. The value of a GP timer counter is constantly compared to that

of its associated compare register. A compare match occurs when the value

of the timer counter is the same as that of the compare register. Compare op-

eration is enabled by setting TxCON[1] to 1. If it is enabled, the following hap-

pens on a compare match:
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� The compare interrupt flag of the timer is set one clock cycle after the

match.

� A transition occurs on the associated PWM output according to the bit con-

figuration in GPTCON, one device clock cycle after the match.

� If the compare interrupt flag has been selected by the appropriate

GPTCON bits to start ADC, an ADC start signal is generated at the same

time the compare interrupt flag is set.

A peripheral interrupt request is generated by the compare interrupt flag if it

is unmasked.

PWM Transition

The transition on the PWM output is controlled by an asymmetric and symmet-

ric waveform generator and the associated output logic, and depends on the

following:

� Bit definition in GPTCON

� Counting mode the timer is in

� Counting direction when the counting mode is continuous up/down mode

Asymmetric/Symmetric Waveform Generator

The asymmetric/symmetric waveform generator generates an asymmetric or

symmetric PWM waveform based on the counting mode the GP timer is in.

Asymmetric Waveform Generation

An asymmetric waveform (Figure 7–9) is generated when  the GP timer is in

continuous up-counting mode. When the GP timer is in this mode, the output

of the waveform generator changes according to the following sequence:

� 0 before the counting operation starts

� remains unchanged until the compare match happens

� toggles on compare match

� remains unchanged until the end of the period

� resets to 0 at the end of a period on period match, if the new compare value

for the following period is not 0
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The output is 1 for the whole period, if the compare value is 0 at the beginning

of a period. The output does not reset to 0 if the new compare value for the

following period is 0. This is important because it allows the generation of PWM

pulses of 0% to 100% duty cycle without glitches. The output is 0 for the whole

period if the compare value is greater than the value in the period register. The

output is 1 for one cycle of the scaled clock input if the compare value is the

same as that of the period register.

One characteristic of asymmetric PWM waveforms is that a change in the val-

ue of the compare register only affects one side of the PWM pulse.

Figure 7–9. GP Timer Compare/PWM Output in Up-Counting Mode
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Symmetric Waveform Generation

A symmetric waveform (Figure 7–10) is generated when the GP timer is in

continuous up/down-counting modes. When the GP timer is in this mode, the

state of the output of the waveform generator is determined by the following:

� 0 before the counting operation starts

� Remains unchanged until first compare match

� Toggles on the first compare match

� Remains unchanged until the second compare match

� Toggles on the second compare match

� Remains unchanged until the end of the period
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� Resets to 0 at the end of the period if there is no second compare match,

and the new compare value for the following period is not 0

The output is set to 1 at the beginning of a period and remains 1 until the sec-

ond compare match if the compare value is 0 at the beginning of a period. After

the first transition, the output remains 1 until the end of the period if the

compare value is 0 for the second half of the period. When this happens, the

output does not reset to 0 if the new compare value for the following period is

still 0. This is done again to assure the generation of PWM pulses of 0% to

100% duty cycle without any glitches. The first transition does not happen if

the compare value is greater than or equal to that of the period register for the

first half of the period. However, the output still toggles when a compare match

happens in the second half of the period. This error in output transition, often

as a result of calculation error in the application routine, is corrected at the end

of the period because the output resets to 0, unless the new compare value

for the following period is 0. In this case, the output remains 1, which again puts

the output of the waveform generator in the correct state.

Note:

The output logic determines what the active state is for all output pins.

Figure 7–10. GP Timer Compare/PWM Output in Up/Down-Counting Modes
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Output Logic

The output logic further conditions the output of the waveform generator to

form the ultimate PWM output that controls different kinds of power devices.
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The PWM output can be specified active high, active low, forced low, and

forced high by proper configuration of the appropriate GPTCON bits.

The polarity of the PWM output is the same as that of the output of the associat-

ed asymmetric/symmetric waveform generator when the PWM output is speci-

fied active high.

The polarity of the PWM output is the opposite of that of the output of the asso-

ciated asymmetric/symmetric waveform generator when the PWM output is

specified active low.

The PWM output is set to 1 (or 0) immediately after the corresponding bits in

GPTCON are set, and the bit pattern specifies that the state of PWM output

is forced high (or low).

In summary, during a normal counting mode, transitions on the GP timer PWM

outputs happen according to Table 7–6 for the continuous up-counting mode

and according to Table 7–7 for the continuous up/down-counting mode, as-

suming compare is enabled.

Setting active means setting high for active high and setting low for active low.

Setting inactive means the opposite.

The asymmetric/symmetric waveform generation, based on the timer counting

mode and the output logic, is also applicable to the compare units.

Table 7–6. GP Timer Compare Output in Continuous Up-Counting Modes

Time in a period State of Compare Output

Before compare match Inactive

On compare match Set active

On period match Set inactive

Table 7–7. GP Timer Compare Output in Continuous Up/Down-Counting Modes

Time in a period State of Compare Output

Before 1st compare match Inactive

On 1st compare match Set active

On 2nd compare match Set inactive

After 2nd compare match Inactive

All GP timer PWM outputs are put in the high impedance state when any of the

following events occurs:
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� GPTCON[6] is set to 0 by software

� PDPINT is pulled low and is not masked

� Any reset event occurs

� TxCON[1] is set to 0 by software

Active/Inactive Time Calculation

For the continuous up-counting mode, the value in the compare register repre-

sents the elapsed time between the beginning of a period and the occurrence

of the first compare match (that is, the length of the inactive phase). This

elapsed time is equal to the period of the scaled input clock multiplied by the

value of TxCMPR. Therefore, the length of the active phase (the output pulse

width) is given by (TxPR) – (TxCMPR) + 1 cycle of the scaled input clock.

For the continuous up/down-counting mode, the compare register can have

a different value while counting down from the value while counting up. The

length of the active phase (that is, the output pulse width) for up/down-counting

modes is given by (TxPR) – (TxCMPR)up + (TxPR) – (TxCMPR)dn cycles of

the scaled input clock, where (TxCMPR)up is the compare value on the way

up and (TxCMPR)dn is the compare value on the way down.

When the value in TxCMPR is 0, the GP timer compare output is active for the

whole period if the timer is in the up-counting mode. For the up/down-counting

mode, the compare output is active at the beginning of the period if

(TxCMPR)up is 0. The output remains active until the end of the period if

(TxCMPR)dn is also 0.

The length of the active phase (the output pulse width) is 0 when the value of

TxCMPR is greater than that of TxPR for up-counting modes. For the up/down-

counting mode, the first transition is lost when (TxCMPR)up is greater than or

equal to (TxPR). Similarly, the second transition is lost when (TxCMPR)dn is

greater than or equal to (TxPR). The GP timer compare output is inactive for

the entire period if both (TxCMPR)up and TxCMPR)dn are greater than or equal

to (TxPR) for the up/down-counting mode.

Figure 7–9, GP Timer Compare/PWM Output in Up-Counting Mode (page

7-25) shows the compare operation of a GP timer in the up-counting mode.

Figure 7–10, GP Timer Compare/PWM Output in Up/Down-Counting Modes

(page 7-26) shows the compare operation of a GP timer in the up/down-count-

ing mode.
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7.3.3 Timer Control Registers (TxCON and GPTCON)

The addresses of the GP timer registers are given in Table 7–2 on page 7-9.

The bit definition of the individual GP timer control registers, TxCON, is shown

in Figure 7–11. The bit definition of the overall GP timer control register,

GPTCON, is shown in Figure 7–12 on page 7-31.

Individual GP Timer Control Register (TxCON; x = 1 or 2)

T1CON and T2CON are the two individual timer control registers (in contrast

to the overall GP timer control register, GPTCON). These registers control the

operational mode of the timer.

Figure 7–11.GP Timer x Control Register (TxCON; x = 1 or 2) — Addresses 7404h and 
7408h

15 14 13 12 11 10 9 8

Free Soft Reserved TMODE1 TMODE0 TPS2 TPS1 TPS0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

7 6 5 4 3 2 1 0

T2SWT1 TENABLE TCLKS1 TCLKS0 TCLD1 TCLD0 TECMPR SELT1PR

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Note: R = Read access; W = Write access; value following dash (-) = value after reset

Bits 15–14 Free, Soft. Emulation control bits.

00 Stop immediately on emulation suspend

01 Stop after current timer period is complete on emulation
suspend

10 Operation is not affected by emulation suspend

11 Operation is not affected by emulation suspend

Bit 13 Reserved. Reads return zero; writes have no effect.
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Bits 12–11 TMODE1–TMODE0. Count Mode Selection.

00 Stop/Hold

01 Continuous up/down-count mode

10 Continuous up-count mode

11 Directional up/down-count mode

Bits 10–8 TPS2–TPS0. Input Clock Prescaler.

000 x/1 100 x/16

001 x/2 101 x/32

010 x/4 110 x/64

011 x/8 111 x/128

 x = device (CPU) clock frequency

Bit 7 T2SWT1. (GP timer 2 start with GP timer 1). Start GP timer 2 with GP
timer 1’s timer enable bit. This bit is reserved in T1CON.

0 Use own TENABLE bit

1 Use TENABLE bit of T1CON to enable and disable op-
eration ignoring own TENABLE bit

Bit 6 TENABLE. Timer enable.

0 Disable timer operation (the timer is put in hold and the
prescaler counter is reset)

1 Enable timer operations

Bits 5–4 TCLKS1, TCLKS0. Clock Source Select.

5 4 Timer 1 Timer 2

0 0 Internal Internal

0 1 External External

1 0 Reserved Reserved

1 1 Reserved QEP Circuit†

† This option is valid only if SELT1PR = 0

Bits 3–2 TCLD1, TCLD0. Timer Compare Register Reload Condition.

00 When counter is 0

01 When counter value is 0 or equals period register value

10 Immediately

11 Reserved
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Bit 1 TECMPR. Timer compare enable.

0 Disable timer compare operation

1 Enable timer compare operation

Bit 0 SELT1PR. Period register select. This bit is a reserved bit in T1CON.

0 Use own period register

1 Use T1PR as period register ignoring own period register

Overall GP Timer Control Register (GPTCON)

GPTCON provides status of GP Timers 1 and 2, and controls ADC start,

compare outputs, and their polarities.

Figure 7–12. GP Timer Control Register (GPTCON) — Address 7400h

15 14 13 12–11 10–9 8–7

Reserved T2STAT T1STAT Reserved T2TOADC T1TOADC

RW-0 R-1 R-1 RW-0 RW-0 RW-0

6 5–4 3–2 1–0

TCOMPOE Reserved T2PIN T1PIN

RW-0 RW-0 RW-0 RW-0

Note: R = Read access; W = Write access; value following dash (-) = value after reset

Bit 15 Reserved. Reads return zero; writes have no effect.

Bit 14 T2STAT. GP timer 2 Status. Read only.

0 Counting downward

1 Counting upward

Bit 13 T1STAT. GP timer 1 Status. Read only.

0 Counting downward

1 Counting upward

Bit 12–11 Reserved. Reads return zero; writes have no effect.

Bits 10–9 T2TOADC. Start ADC with timer 2 event.

00 No event starts ADC

01 Setting of underflow interrupt flag starts ADC
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10 Setting of period interrupt flag starts ADC

11 Setting of compare interrupt flag starts ADC

Bits 8–7 T1TOADC. Start ADC with timer 1 event.

00 No event starts ADC

01 Setting of underflow interrupt flag starts ADC

10 Setting of period interrupt flag starts ADC

11 Setting of compare interrupt flag starts ADC

Bit 6 TCOMPOE. Compare output enable. If PDPINT is active this bit is set
to zero.

0 Disable all GP timer compare outputs (all compare out-
puts are put in the high-impedance state)

1 Enable all GP timer compare outputs

Bit 5–4 Reserved. Reads return zero; writes have no effect.

Bits 3–2 T2PIN. Polarity of GP timer 2 compare output.

00 Forced low

01 Active low

10 Active high

11 Forced high

Bits 1–0 T1PIN. Polarity of GP timer 1 compare output.

00 Forced low

01 Active low

10 Active high

11 Forced high
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7.3.4 Generation of PWM Outputs Using the GP Timers

Each GP timer can independently be used to provide a PWM output channel.

Thus, up to two PWM outputs may be generated by the GP timers.

PWM Operation

To generate a PWM output with a GP timer, a continuous-up- or up/down-

counting mode can be selected. Edge-triggered or asymmetric PWM wave-

forms are generated when a continuous up-count mode is selected. Centered

or symmetric PWM waveforms are generated when a continuous up/down-

mode is selected. To set up the GP timer for the PWM operation, do the follow-

ing:

� Set up TxPR according to the desired PWM (carrier) period.

� Set up TxCON to specify the counting mode and clock source, and start

the operation.

� Load TxCMPR with values corresponding to the on-line calculated widths

(duty cycles) of PWM pulses.

The period value is obtained by dividing the desired PWM period by the period

of the GP timer input clock, and subtracting one from the resulting number

when the continuous up-counting mode is selected to generate asymmetric

PWM waveforms. When the continuous up/down-counting mode is selected

to generate symmetric PWM waveforms, this value is obtained by dividing the

desired PWM period by two times the period of the GP timer input clock.

The GP timer can be initialized the same way as in the previous example. Dur-

ing run time, the GP timer compare register is constantly updated with newly

determined compare values corresponding to the newly determined duty

cycles.

7.3.5 GP Timer Reset

When any RESET event occurs, the following happens:

� All GP timer register bits, except for the counting direction indication bits

in GPTCON, are reset to 0; thus, the operation of all GP timers is disabled.

The counting direction indication bits are all set to 1.

� All timer interrupt flags are reset to 0.

� All timer interrupt mask bits are reset to 0, except for PDPINT; thus, all GP

timer interrupts are masked, except for PDPINT.

� All GP timer compare outputs are put in the high-impedance state.
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7.4 Compare Units

There are three (full) compare units (compare units 1, 2, and 3) in the EV2

module. Each compare unit has two associated PWM outputs. The time base

for the  compare units is provided by GP timer 1.

The three compare units include:

� Three 16-bit compare registers (CMPRx, x = 1, 2, 3), all with an associated

shadow register, (RW)

� One 16-bit compare control register (COMCON), (RW)

� One 16-bit action control register (ACTR), with associated shadow regis-

ter, (RW)

� Six PWM (3-state) output pins, PWMy, y = 1, 2, 3, 4, 5, 6

� Control and interrupt logic

The functional block diagram of a compare unit is shown in Figure 7–13.

Figure 7–13. Compare Unit Block Diagram (x = 1, 2, 3; y = 1, 3, 5)
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The time base for the compare units and the associated PWM circuits is pro-

vided by GP timer 1, which can be in any of its counting modes when the

compare operation is enabled. Transitions occur on the compare outputs

when GP timer 1 is in any counting mode.
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Compare Inputs/Outputs

The inputs to a compare unit include:

� Control signals from control registers

� GP timer 1 (T1CNT) and its underflow and period match signals

� RESET

The output of a compare unit is a compare match signal. If the compare opera-

tion is enabled, this match signal sets the interrupt flag and causes transitions

on the two output pins associated with the compare unit.

Compare Operation Modes

The operation mode of the compare units is determined by the bits in COM-

CON. These bits determine:

� Whether the compare operation is enabled

� Whether the compare outputs are enabled

� The condition on which the compare registers are updated with the values

in their shadow registers

� Whether space vector PWM mode is enabled

Operation

The value of the GP timer 1 counter is continuously compared with that of the

compare register. When a match is made, a transition appears on the two out-

puts of the compare unit according to the bits in the action control register

(ACTR). The bits in ACTR can individually specify each output to be toggle ac-

tive high or toggle active low (if not forced high or low) on a compare match.

The compare interrupt flag associated with a compare unit is set when a

compare match is made between GP timer 1 and the compare register of this

compare unit, if compare is enabled. A peripheral interrupt request is gener-

ated by the flag if the interrupt is unmasked. The timing of output transitions,

setting of interrupt flags, and generation of interrupt requests are the same as

that of the GP timer compare operation. The outputs of the compare units in

compare mode are subject to modification by the output logic, dead band units,

and the space vector PWM logic.
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Register Setup for Compare Unit Operation

The register setup sequence for compare unit operation requires:

� Setting up T1PR

� Setting up ACTR

� Initializing CMPRx

� Setting up COMCON

� Setting up T1CON

7.4.1 Compare Units Registers

The addresses of registers associated with compare units and associated

PWM circuits are shown in Table 7–3, Addresses of Compare Control Regis-

ters (page 7-9), and further discussed in the following subsections.

Compare Control Register (COMCON)

The operation of the compare units is controlled by the compare control regis-

ter (COMCON). The bit definition of COMCON is summarized in Figure 7–14,

COMCON is readable and writeable.
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Figure 7–14. Compare Control Register (COMCON) — Address 7411h

15 14 13 12 11 10 9 8

CENABLE CLD1 CLD0 SVENABLE ACTRLD1 ACTRLD0 FCOMPOE Reserved

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

7–0

Reserved

R-0

Note: R = Read access; W = Write access; value following dash (-) = value after reset

Bit 15 CENABLE. Compare enable.

0 Disable compare operation. All shadowed registers
(CMPRx, ACTR) become transparent

1 Enable compare operation

Bits14–13 CLD1, CLD0. Compare register CMPRx reload condition.

00 When T1CNT = 0 (that is, on underflow)

01 When T1CNT = 0 or T1CNT = T1PR (that is, on underflow
or period match)

10 Immediately

11 Reserved; result is unpredictable

Bit 12 SVENABLE. Space vector PWM mode enable.

0 Disable space vector PWM mode

1 Enable space vector PWM mode

Bit 11–10 ACTRLD1, ACTRLD0. Action control register reload condition.

00 When T1CNT = 0 (on underflow)

01 When T1CNT = 0 or T1CNT = T1PR (on underflow or pe-
riod match)

10 Immediately

11 Reserved

Bit 9 FCOMPOE. Compare output enable. Active PDPINT clears this bit to
zero.

0 PWM output pins are in high-impedance state; that is,
they are disabled

1 PWM output pins are not in high-impedance state; that
is, they are enabled

Bit 8–0 Reserved. Read returns zero; writes have no effect.
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Compare Action Control Register (ACTR)

The compare action control register (ACTR) controls the action that takes

place on each of the six compare output pins (PWMx, x = 1–6) on a compare

event, if the compare operation is enabled by COMCON[15]. ACTR is double

buffered. The condition on which the ACTR is reloaded is defined by bits in

COMCON. ACTR also contains the SVRDIR, D2, D1, and D0 bits needed for

space vector PWM operation. The bit configuration of ACTR is described in

Figure 7–15.

Figure 7–15. Compare Action Control Register (ACTR) — Address 7413h

15 14 13 12 11 10 9 8

SVRDIR D2 D1 D0 CMP6ACT1 CMP6ACT0 CMP5ACT1 CMP5ACT0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

7 6 5 4 3 2 1 0

CMP4ACT1 CMP4ACT0 CMP3ACT1 CMP3ACT0 CMP2ACT1 CMP2ACT0 CMP1ACT1 CMP1ACT0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Note: R = Read access; W = Write access; value following dash (-) = value after reset

Bit 15 SVRDIR. Space vector PWM rotation direction. Used only in space
vector PWM output generation.

0 Positive (CCW)

1 Negative (CW)

Bits 14–12 D2–D0. Basic space vector bits. Used only in space vector PWM out-
put generation.

Bits 11–10 CMP6ACT1–0. Action on compare output pin 6, CMP6.

00 Forced low

01 Active low

10 Active high

11 Forced high

Bits 9–8 CMP5ACT1–0. Action on compare output pin 5, CMP5.

00 Forced low

01 Active low

10 Active high

11 Forced high
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Bits 7–6 CMP4ACT1–0. Action on compare output pin 4, CMP4.

00 Forced low

01 Active low

10 Active high

11 Forced high

Bits 5–4 CMP3ACT1–0. Action on compare output pin 3, CMP3.

00 Forced low

01 Active low

10 Active high

11 Forced high

Bits 3–2 CMP2ACT1–0. Action on compare output pin 2, CMP2.

00 Forced low

01 Active low

10 Active high

11 Forced high

Bits 1–0 CMP1ACT1–0. Action on compare output pin 1, CMP1.

00 Forced low

01 Active low

10 Active high

11 Forced high

7.4.2 Compare Unit Interrupts

There is a maskable interrupt flag in EVIFRA and EVIFRC for each compare

unit. The interrupt flag of a compare unit is set one clock cycle after a compare

match, if compare operation is enabled. A peripheral interrupt request is gen-

erated by the flag if it is unmasked.

7.4.3 Compare Unit Reset

When any reset event occurs, all register bits associated with the compare

units are reset to 0 and all compare output pins are put in the high-impedance

state.
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7.5 PWM Circuits Associated with Compare Units

The PWM circuits associated with compare units make it possible to generate

six PWM output channels with programmable dead-band and output polarity.

The PWM circuits functional block diagram is shown in Figure 7–16. It includes

the following functional units:

� Asymmetric/Symmetric Waveform Generators

� Programmable Dead-Band Unit (DBU)

� Output Logic

� Space Vector (SV) PWM State Machine

The asymmetric/symmetric waveform generators are the same as those of the

GP timers. The dead-band units and output logic are discussed in sections

7.5.2 and 7.5.3, respectively. The space vector PWM state machine and the

space vector PWM technique are described later in this chapter.

Figure 7–16. PWM Circuits Block Diagram
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The PWM circuits are designed to minimize CPU overhead and user interven-

tion when generating pulse width modulated waveforms used in motor control

and motion control applications. PWM generation with compare units and as-

sociated PWM circuits are controlled by the following control registers:

T1CON, COMCON, ACTR, and DBTCON.
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7.5.1 PWM Generation Capability of Event Manager

The PWM waveform generation capability of the event manager is summa-

rized as follows:

� Five independent PWM outputs, three of which are generated by the

compare units; the other two are generated by the GP timer compares,

plus three additional PWM outputs dependent on the three compare unit

PWM outputs

� Programmable dead-band for the PWM output pairs associated with the

compare units

� Minimum dead-band duration of one device clock cycle

� Minimum PWM pulsewidth and pulsewidth increment/decrement of one

clock cycle

� 16-bit maximum PWM resolution

� On-the-fly change of PWM carrier frequency (double-buffered period reg-

isters)

� On-the-fly change of PWM pulsewidths (double-buffered compare regis-

ters)

� Power drive protection interrupt

� Programmable generation of asymmetric, symmetric, and space vector

PWM waveforms

� Minimum CPU overhead because of the auto-reloading of the compare

and period registers

7.5.2 Programmable Dead-Band Unit

The programmable dead-band unit features:

� One 16-bit dead-band control register, DBTCON (RW)

� One input clock prescaler: x/1, x/2, x/4, etc., to x/32

� Device (CPU) clock input

� Three 4-bit down counting timers

� Control logic
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Dead-Band Timer Control Register (DBTCON)

The operation of the dead-band unit is controlled by the dead-band timer con-

trol register (DBTCON). The bit description of DBTCON is given in

Figure 7–17.

Figure 7–17. Dead-Band Timer Control Register (DBTCON) — Address xx15h

15–12 11 10 9 8

Reserved DBT3 DBT2 DBT1 DBT0

R-0 RW-0 RW-0 RW-0 RW-0

7 6 5 4 3 2 1–0

EDBT3 EDBT2 EDBT1 DBTPS2 DBTPS1 DBTPS0 Reserved

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 R-0

Note: R = Read access; W = Write access; value following dash (-) = value after reset

Bits 15–12 Reserved. Reads return zero; writes have no effect.

Bits 11–8 DBT3 (MSB)–DBT0 (LSB). Dead-band timer period. These bits de-
fine the period value of the three 4-bit dead-band timers.

Bit 7 EDBT3. Dead-band timer 3 enable (for pins PWM5 and PWM6 of
Compare Unit 3).

0 Disable

1 Enable

Bit 6 EDBT2. Dead-band timer 2 enable (for pins PWM3 and PWM4 of
Compare Unit 2).

0 Disable

1 Enable

Bit 5 EDBT1. Dead-band timer 1 enable (for pins PWM1 and PWM2 of
Compare Unit 1).

0 Disable

1 Enable
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Bits 4–2 DBTPS2 to DBTPS0. Dead-band timer prescaler.

000 x/1

001 x/2

010 x/4

011 x/8

100 x/16

101 x/32

110 x/32

111 x/32

x = Device (CPU) clock frequency

Bits 1–0 Reserved. Reads return zero; writes have no effect.

Inputs and Outputs of Dead-Band Unit

The inputs to the dead-band unit are PH1, PH2, and PH3 from the asymmetric/

symmetric waveform generators of compare units 1, 2, and 3, respectively.

The outputs of the dead-band unit are DTPH1, DTPH1_, DTPH2, DTPH2_,

DTPH3, and DTPH3_, corresponding to PH1, PH2, and PH3, respectively.

Dead Band Generation

For each input signal PHx, two output signals, DTPHx and DTPHx_, are gener-

ated. When dead-band is not enabled for the compare unit and its associated

outputs, the two signals are exactly the same. When the dead-band unit is en-

abled for the compare unit, the transition edges of the two signals are sepa-

rated by a time interval called dead-band. This time interval is determined by

the DBTCON bits. If you assume the value in DBTCON[11–8] is m, and the val-

ue in DBTCON[4–2] corresponds to prescaler x/p, then the dead-band value

is (p × m) device clock cycles.

Table 7–8 on page 7-44 shows the dead-band generated by typical bit com-

binations in DBTCON. The values are based on a 50 ns device clock.

Figure 7–18 on page 7-45 shows the block diagram of the dead-band logic for

one compare unit.
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Table 7–8. Dead-Band Generation Examples

DBTPS2–DBTPS0 (p)

(DBTCON[4–2])

DBT3–DBT0 (m)

(DBTCON[11–8])

110 and

1x1 (P=32) 100 (P=16) 011 (P=8) 010 (P=4) 001 (P=2) 000 (P=1)

0 0 0 0 0 0 0

1 1.6 0.8 0.4 0.2 0.1 0.05

2 3.2 1.6 0.8 0.4 0.2 0.1

3 4.8 2.4 1.2 0.6 0.3 0.15

4 6.4 3.2 1.6 0.8 0.4 0.2

5 8 4 2 1 0.5 0.25

6 9.6 4.8 2.4 1.2 0.6 0.3

7 11.2 5.6 2.8 1.4 0.7 0.35

8 12.8 6.4 3.2 1.6 0.8 0.4

9 14.4 7.2 3.6 1.8 0.9 0.45

A 16 8 4 2 1 0.5

B 17.6 8.8 4.4 2.2 1.1 0.55

C 19.2 9.6 4.8 2.4 1.2 0.6

D 20.8 10.4 5.2 2.6 1.3 0.65

E 22.4 11.2 5.6 2.8 1.4 0.7

F 24 12 6 3 1.5 0.75

Note: Table values are given in µs.
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Figure 7–18. Dead-Band Unit Block Diagram (x = 1, 2, or 3)
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Other Important Features of Dead-Band Units

The dead-band unit is designed to prevent an overlap under any operating sit-

uation between the turn-on period of the upper and lower devices controlled

by the two PWM outputs associated with each compare unit. This includes 

situations when the user has loaded a dead-band value greater than that of

the duty cycle, and when the duty cycle is 100% or 0%. As a result, the PWM

outputs associated with a compare unit do not reset to an inactive state at the

end of a period when dead band is enabled for the compare unit.

7.5.3 Output Logic

The output logic circuit determines the polarity and/or the action that must be

taken on a compare match for outputs PWMx, for x = 1–6. The outputs associ-

ated with each compare unit can be specified active low, active high, forced

low, or forced high. The polarity and/or the action of the PWM outputs can be

programmed by proper configuration of bits in the ACTR register. The six PWM

output pins can all be put in the high-impedance state by any of the following:

� Software clearing the COMCON[9] and COMCON[8] bits, respectively

� Hardware pulling PDPINT low when PDPINT is unmasked

� The occurrence of any reset event

Active PDPINT (when enabled) and system reset override the bits in COM-

CON and ACTR

Figure 7–19, on page 7-47, shows a block diagram of the output logic circuit

(OLC). The inputs of Output Logic for the compare units are:

� DTPH1, DTPH1_, DTPH2, DTPH2_, DTPH3, and DTPH3_ from the

dead-band unit and compare match signals

� The control bits of ACTR

� PDPINT and RESET

The outputs of the output logic for the compare units are:

� PWMx, x = 1–6
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Figure 7–19. Output Logic Block Diagram (x = 1, 2, or 3; y = 1, 2, 3, 4, 5, or 6)
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7.6 PWM Waveform Generation with Compare Units and PWM Circuits

A pulse width modulated (PWM) signal is a sequence of pulses with changing

pulse widths. The pulses are spread over a number of fixed-length periods so

that there is one pulse in each period. The fixed period is called the PWM (carri-

er) period and its inverse is called the PWM (carrier) frequency. The widths of

the PWM pulses are determined, or modulated, from pulse to pulse according

to another sequence of desired values, the modulating signal.

In a motor control system, PWM signals are used to control the on and off time

of switching power devices that deliver the desired current and energy to the

motor windings (see Figure 7–22 on page 7-52). The shape and frequency of

the phase currents and the amount of energy delivered to the motor windings

control the required speed and torque of the motor. In this case, the command

voltage or current to be applied to the motor is the modulating signal. The fre-

quency of the modulating signal is typically much lower than the PWM carrier

frequency.

PWM Signal Generation

To generate a PWM signal, an appropriate timer is needed to repeat a counting

period that is the same as the PWM period. A compare register is used to hold

the modulating values. The value of the compare register is constantly

compared with the value of the timer counter. When the values match, a transi-

tion (from low to high, or high to low) happens on the associated output. When

a second match is made between the values, or when the end of a timer period

is reached, another transition (from high to low, or low to high) happens on the

associated output. In this way, an output pulse is generated whose on (or off)

duration is proportional to the value in the compare register. This process is

repeated for each timer period with different (modulating) values in the

compare register. As a result, a PWM signal is generated at the associated out-

put.

Dead Band

In many motion/motor and power electronics applications, two power devices,

an upper and a lower, are placed in series on one power converter leg. The

turn-on periods of the two devices must not overlap with each other in order

to avoid a shoot-through fault. Thus, a pair of non-overlapping PWM outputs

is often required to properly turn on and off the two devices. A dead time (dead-

band) is often inserted between the turning-off of one transistor and the turn-

ing-on of the other transistor. This delay allows complete turning-off of one

transistor before the turning-on of the other transistor. The required time delay

is specified by the turning-on and turning-off characteristics of the power tran-

sistors and the load characteristics in a specific application.
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7.6.1 Generation of PWM Outputs with Event Manager

Each of the three compare units, together with GP timer 1, the dead-band unit,

and the output logic in the event manager module, can be used to generate

a pair of PWM outputs with programmable dead-band and output polarity on

two dedicated device pins. There are six such dedicated PWM output pins as-

sociated with the three compare units in the EV2 module. These six dedicated

output pins can be used to conveniently control 3-phase AC induction or brush-

less DC motors. The flexibility of output behavior control by the compare action

control register (ACTR) also makes it easy to control switched reluctance and

synchronous reluctance motors in a wide range of applications. The PWM cir-

cuits can also be used to conveniently control other types of motors such as

DC brush and stepper motors in single or multi-axis control applications. Each

GP timer compare unit, if desired, can also generate a PWM output based on

its own timer.

Asymmetric and Symmetric PWM Generation

Both asymmetric and symmetric PWM waveforms can be generated by every

compare unit on the EV2 module. In addition, the three compare units together

can be used to generate 3-phase symmetric space vector PWM outputs. PWM

generation with GP timer compare units has been described in the GP timer

sections. Generation of PWM outputs with the compare units is discussed in

this section.

7.6.2 Register Setup for PWM Generation

All three kinds of PWM waveform generations with compare units and associ-

ated circuits require configuration of the same Event Manager registers. The

setup process for PWM generation includes the following steps:

� Setup and load ACTR.

� Setup and load DBTCON, if dead-band is to be used.

� Initialize CMPRx.

� Setup and load COMCON.

� Setup and load T1CON to start the operation.

� Rewrite CMPRx with newly determined values.
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7.6.3 Asymmetric PWM Waveform Generation

The edge-triggered or asymmetric PWM signal is characterized by modulated

pulses which are not centered with respect to the PWM period, as shown in

Figure 7–20. The width of each pulse can only be changed from one side of

the pulse.

Figure 7–20. Asymmetric PWM waveform generation with compare unit and PWM Circuits

(x = 1, 3, or 5)
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To generate an asymmetric PWM signal, GP timer 1 is put in the continuous

up-counting mode and its period register is loaded with a value corresponding

to the desired PWM carrier period. The COMCON is configured to enable the

compare operation, set the selected output pins to be PWM outputs, and en-

able the outputs. If dead-band is enabled, the value corresponding to the re-

quired dead-band time should be written by software into the DBT(3:0) bits in

DBTCON(11:8). This is the  period for the 4-bit dead-band timers. One dead-

band value is used for all PWM output channels.

By proper configuration of ACTR with software, a normal PWM signal can be

generated on one output associated with a compare unit while the other is held

low (off) or high (on), at the beginning, middle, or end of a PWM period. Such

software controlled flexibility of PWM outputs is particularly useful in switched

reluctance motor control applications.

After GP timer 1 is started, the compare registers are rewritten every PWM pe-

riod with newly determined compare values to adjust the width (the duty cycle)

of PWM outputs that control the switch-on and off duration of the power de-

vices. Since the compare registers are shadowed, a new value can be written

to them at any time during a period. For the same reason, new values can be

written to the action and period registers at any time during a period to change

the PWM period or to force changes in PWM output definition.
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7.6.4 Symmetric PWM Waveform Generation

A centered or symmetric PWM signal is characterized by modulated pulses

which are centered with respect to each PWM period. The advantage of a sym-

metric PWM signal over an asymmetric PWM signal is that it has two inactive

zones of the same duration: at the beginning and at the end of each PWM peri-

od. This symmetry has been shown to cause less harmonics than an asym-

metric PWM signal in the phase currents of an AC motor such as induction and

DC brushless motors when sinusoidal modulation is used. Figure 7–21 shows

two examples of symmetric PWM waveforms.

Figure 7–21. Symmetric PWM waveform generation with compare units and PWM 
Circuits (x = 1, 3, or 5)
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The generation of a symmetric PWM waveform with a compare unit is similar

to the generation of an asymmetric PWM waveform. The only exception is that

GP timer 1 now needs to be put in continuous up/down-counting mode.

There are usually two compare matches in a PWM period in symmetric PWM

waveform generation, one during the upward counting before period match,

and another during downward counting after period match. A new compare

value becomes effective after the period match (reload on period) because it-

makes it possible to advance or delay the second edge of a PWM pulse. An

application of this feature is when a PWM waveform modification compen-

sates for current errors caused by the dead-band in AC motor control.

Because the compare registers are shadowed, a new value can be written to

them at any time during a period. For the same reason, new values can be writ-

ten to the action and period registers at any time during a period to change the

PWM period or to force changes in the PWM output definition.
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7.7 Space Vector PWM

Space vector PWM refers to a special switching scheme of the six power tran-

sistors of a 3-phase power converter. It generates minimum harmonic distor-

tion to the currents in the windings of a 3-phase AC motor. It also provides more

efficient use of supply voltage in comparison with the sinusoidal modulation

method.

7.7.1 3-Phase Power Inverter

The structure of a typical 3-phase power inverter is shown in Figure 7–22,

where Va, Vb, and Vc are the voltages applied to the motor windings. The six

power transistors are controlled by DTPHx and DTPHx_ (x = a, b, and c). When

an upper transistor is switched on (DTPHx = 1), the lower transistor is switched

off (DTPHx_ = 0). Thus, the on and off states of the upper transistors (Q1, Q3,

and Q5), or equivalently, the state of DTPHx (x = a, b, and c) are sufficient to

evaluate the applied motor voltage Uout.

Figure 7–22. 3-Phase Power Inverter Schematic Diagram
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Power Inverter Switching Patterns and the Basic Space Vectors

When an upper transistor of a leg is on, the voltage Vx (x = a, b, or c) applied

by the leg to the corresponding motor winding is equal to the voltage supply

Udc. When it is off, the voltage applied is zero. The on and off switching of the

upper transistors (DTPHx, x = a, b, or c) have eight possible combinations. The

eight combinations and the derived motor line-to-line and phase voltage in

terms of DC supply voltage Udc are shown in Table 7–9, on page 7-53, where

a, b, and c represent the values of DTPHa, DTPHb, and DTPHc, respectively.



Space Vector PWM

7-53Event Manager (EV2)

Table 7–9. Switching Patterns of A 3-Phase Power Inverter

a b c Va0(Udc) Vb0(Udc) Vc0(Udc) Vab(Udc) Vbc(Udc) Vca(Udc)

0 0 0 0 0 0 0 0 0

0 0 1 –1/3 –1/3 2/3 0 –1 1

0 1 0 –1/3 2/3 –1/3 –1 1 0

0 1 1 –2/3 1/3 1/3 –1 0 1

1 0 0 2/3 –1/3 –1/3 1 0 –1

1 0 1 1/3 –2/3 1/3 1 –1 0

1 1 0 1/3 1/3 –2/3 0 1 –1

1 1 1 0 0 0 0 0 0

Note:   0 = off, and 1 = on

Mapping the phase voltages corresponding to the eight combinations onto the

d-q plane by performing a d-q transformation (which is equivalent to an ortho-

gonal projection of the 3-vectors (a b c) onto the two dimensional plane per-

pendicular to the vector (1,1,1), the d-q plane), results in six non-zero vectors

and two zero vectors. The non-zero vectors form the axes of a hexagonal. The

angle between two adjacent vectors is 60 degrees. The two zero vectors are

at the origin. These eight vectors are called the basic space vectors and are

denoted by U0, U60, U120, U180, U240, U300, O000, and O111. The same trans-

formation can be applied to the demanded voltage vector Uout to be applied

to a motor. Figure 7–23 shows the projected vectors and the projected desired

motor voltage vector Uout.

The d axis and q axis of a d-q plane correspond here to the horizontal and verti-

cal geometrical axes of the stator of an AC machine.

The objective of the space vector PWM method is to approximate the motor

voltage vector Uout by a combination of these eight switching patterns of the

six power transistors.
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Figure 7–23. Basic Space Vectors and Switching Patterns
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The binary representations of two adjacent basic vectors are different in only

one bit; that is, only one of the upper transistors switches when the switching

pattern switches from Ux to Ux+60 or from Ux+60 to Ux. Also, the zero vectors

O000 and O111 apply no voltage to the motor.

Approximation of Motor Voltage with Basic Space Vectors

The projected motor voltage vector Uout, at any given time, falls in one of the

six sectors. Thus, for any PWM period, it can be approximated by the vector

sum of two vector components lying on the two adjacent basic vectors:

Uout =  T1 Ux + T2 Ux+60 + T0 (O000 or O111)

where T0 is given by Tp–T1–T2 and Tp is the PWM carrier period. The third term

on the right side of the equation above doesn’t affect the vector sum Uout. The

generation of Uout is beyond the scope of this context. For more details on

space vector PWM and motor control theory, see The Field Orientation Princi-

ple in Control of Induction Motors by Andrzej M. Trzynadlowski.

The above approximation means that the upper transistors must have the on

and off pattern corresponding to Ux and Ux+60 for the time duration of T1 and

T2, respectively, in order to apply voltage Uout to the motor. The inclusion of

zero basic vectors helps to balance the turn on and off periods of the transis-

tors, and thus their power dissipation.

7.7.2 Space Vector PWM Waveform Generation with Event Manager

The EV2 module has built-in hardware to greatly simplify the generation of

symmetric space vector PWM waveforms. Software is used to generate space

vector PWM outputs.
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Software

To generate space vector PWM outputs, the user software must:

� Configure ACTR to define the polarity of the compare output pins

� Configure COMCON to enable compare operation and space vector PWM

mode, and set the reload condition for CMPRx to be underflow

� Put GP timer 1 in continuous up/down-counting mode to start the opera-

tion

The user software then needs to determine the voltage Uout to be applied to

the motor phases in the two dimensional d-q plane, decompose Uout, and per-

form the following for each PWM period:

� Determine the two adjacent vectors, Ux and Ux+60

� Determine the parameters T1, T2, and T0

� Write the switching pattern corresponding to Ux in ACTR[14–12] and 1 in

ACTR[15], or the switching pattern of Ux+60 in ACTR[14–12] and 0 in

ACTR[15]

� Put (1/2 T1) in CMPR1 and (1/2 T1 + 1/2 T2) in CMPR2

Space Vector PWM Hardware

The space vector PWM hardware in the EV2 module does the following to

complete a space vector PWM period:

� At the beginning of each period, sets the PWM outputs to the (new) pattern

Uy defined by ACTR[14–12]

� On the first compare match during up-counting between CMPR1 and GP

timer 1 at (1/2 T1), switches the PWM outputs to the pattern of Uy+60 if

ACTR[15] is 1, or to the pattern of Uy if ACTR[15] is 0 (U0–60 = U300,

U360+60 = U60)

� On the second compare match during up-counting between CMPR2 and

GP timer 1 at (1/2 T1 + 1/2 T2), switches the PWM outputs to the pattern

(000) or (111), whichever differs from the second pattern by one bit

� On the first compare match during down-counting between CMPR2 and

GP timer 1 at (1/2 T1 + 1/2 T2), switches the PWM outputs back to the sec-

ond output pattern

� On the second compare match during down-counting between CMPR1

and GP timer 1 at (1/2 T1), switches the PWM outputs back to the first pat-

tern
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Space Vector PWM Waveforms

The space vector PWM waveforms generated are symmetric with respect to

the middle of each PWM period, and for this reason, it is called the symmetric

space vector PWM generation method. Figure 7–24 shows examples of the

symmetric space vector PWM waveforms.

The Unused Compare Register

Only two compare registers are used in space vector PWM output generation.

The third compare register, however, is still constantly compared with GP timer

1. When a compare match happens, the corresponding compare interrupt flag

remains set and a peripheral interrupt request is generated, if the flag is un-

masked. Therefore, the compare register that is not used in the space vector

PWM outputs generation can still be used to time events happening in a specif-

ic application. Also, because of the extra delay introduced by the state ma-

chine, the compare output transitions are delayed by one clock cycle in space

vector PWM mode.

7.7.3 Space Vector PWM Boundary Conditions

All three compare outputs become inactive when both compare registers

(CMPR1 and CMPR2) are loaded with a zero value in space vector PWM

mode. In general, it is the user’s responsibility to assure that (CMPR1) ≤
(CMPR2) ≤ (T1PR) in the space vector PWM mode. Otherwise, unpredictable

behavior may result.



Space Vector PWM

7-57Event Manager (EV2)

Figure 7–24. Symmetric Space Vector PWM Waveforms
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7.8 Capture Units

Capture units enable logging of transitions on capture input pins. There are

three capture units: Capture Units 1, 2, and 3 and each is associated with a

capture input pin. Each capture unit can choose GP timer 2 or 1 as its time

base. The value of GP timer 2 or 1 is captured and stored in the corresponding

2-level-deep FIFO stack when a specified transition is detected on a capture

input pin (CAPx). Figure 7–25 shows a block diagram of a capture unit.

Figure 7–25. Capture Units Block Diagram
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7.8.1 Capture Unit Features

Capture units have the following features:

� One 16-bit capture control register, CAPCON (RW)

� One 16-bit capture FIFO status register, CAPFIFO

� Selection of GP timer 1 or 2 as the time base

� Three 16-bit 2-level-deep FIFO stacks, one for each capture unit.

� Three Schmitt-triggered capture input pins, CAP1, CAP2, and CAP3, one

input pin for each capture unit. (All inputs are synchronized with the de-

vice/CPU clock: in order for a transition to be captured, the input must hold

at its current level to meet the two rising edges of the device clock. Input

pins CAP1 and CAP2 can also be used as QEP inputs to QEP circuit)

� User-specified transition (rising edge, falling edge, or both edges) detec-

tion

� Three maskable interrupt flags, one for each capture unit

7.8.2 Operation of Capture Units

After a capture unit is enabled, a specified transition on the associated input

pin causes the counter value of the selected GP timer to be loaded into the cor-

responding FIFO stack. At the same time, if there are already one or more valid

capture values stored in the FIFO stack (CAPxFIFO bits not equal to zero)  the

corresponding interrupt flag is set. If the flag is unmasked, a peripheral inter-

rupt request is generated. The corresponding status bits in CAPFIFO are ad-

justed to reflect the new status of the FIFO stack each time a new counter value

is captured in a FIFO stack. The latency from the time a transition happens in

a capture input to the time the counter value of selected GP timer is locked is

two clock cycles.

All capture unit registers are cleared to 0 by a RESET condition.

Capture Unit Time Base Selection

Capture Unit 3 has a separate time base selection bit from Capture Units 1 and

2. This allows the two GP timers to be used at the same time, one for Capture

Units 1 and 2, and the other for Capture Unit 3.

Capture operation does not affect the operation of any GP timer or the

compare/PWM operations associated with any GP timer.
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Capture Unit Setup

For a capture unit to function properly, the following register setup must be per-

formed:

1) Initialize the CAPFIFO and clear the appropriate status bits.

2) Set the selected GP timer in one of its operating modes.

3) Set the associated GP timer compare register or GP timer period register,

if necessary.

4) Set up CAPCON.

7.8.3 Capture Unit Registers

The operation of the capture units is controlled by two 16-bit control registers,

CAPCON and CAPFIFO. T1CON and T2CON registers are also used to con-

trol the operation of the capture units since the time base for capture circuits

is provided by either GP timer 1 or 2. Additionally, CAPCON is also used to con-

trol the operation of the QEP circuit. Table 7–4 on page 7-9 shows the ad-

dresses of these registers.

Capture Control Register (CAPCON)

Figure 7–26. Capture Control Register (CAPCON) — Address 7420h

15 14–13 12 11 10 9 8

CAPRES CAPQEPN CAP3EN Reserved CAP3TSEL CAP12TSEL CAP3TOADC

RW-0 RW-0 RW-0 R-0 RW-0 RW-0 RW-0

7–6 5–4 3–2 1–0

ÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍ

CAP1EDGE ÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍ

CAP2EDGE ÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍ

CAP3EDGE Reserved

RW-0 RW-0 RW-0 RW-0

Note: R = Read access; W = Write access; value following dash (-) = value after reset

Bit 15 CAPRES. Capture reset. Always reads zero.

Note: This bit is not implemented as a register bit. Writing a 0 simply
clears the capture registers.

0 Clear all registers of capture units and QEP circuit to 0

1 No action
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Bits 14–13 CAPQEPN. Capture Units 1 and 2 and QEP circuit control.

00 Disable Capture Units 1 and 2 and QEP circuit. FIFO
stacks retain their contents

01 Enable Capture Units 1 and 2, disable QEP circuit

10 Reserved

11 Enable QEP circuit. Disable Capture Units 1 and 2; bits
4-7 and 9 are ignored

Bit 12 CAP3EN. Capture Unit 3 control.

0 Disable Capture Unit 3; FIFO stack of Capture Unit 3 re-
tains its contents

1 Enable Capture Unit 3

Bit 11 Reserved. Reads return zero; writes have no effect.

Bit 10 CAP3TSEL. GP timer selection for Capture Unit 3.

0 Select GP timer 2

1 Select GP timer 1

Bit 9 CAP12TSEL. GP timer selection for Capture Units 1 and 2.

0 Select GP timer 2

1 Select GP timer 1

Bit 8 CAP3TOADC. Capture Unit 3 event starts ADC.

0 No action

1 Start ADC when the CAP3INT flag is set

Bits 7–6 CAP1EDGE. Edge detection control for Capture Unit 1.

00 No detection

 01 Detect rising edge

10 Detect falling edge

11 Detect both edges

Bits 5–4 CAP2EDGE. Edge detection control for Capture Unit 2.

00 No detection

 01 Detect rising edge

10 Detect falling edge

11 Detect both edges
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Bits 3–2 CAP3EDGE. Edge detection control for Capture Unit 3.

00 No detection

 01 Detect rising edge

10 Detect falling edge

11 Detect both edges

Bits 1–0 Reserved. Reads return zero; writes have no effect.

Capture FIFO Status Register (CAPFIFO)

CAPFIFO contains the status bits for each of the three FIFO stacks of the cap-

ture units. The bit description of CAPFIFO is given in Figure 7–27. If a write

occurs to the CAPnFIFO status bits at the same time as they are being updated

(because of a capture event), the write data takes precedence.

Figure 7–27. Capture FIFO Status Register (CAPFIFO) — Address 7422h

15–14 13–12 11–10 9–8

Reserved
ÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍ

CAP3FIFO
ÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍ

CAP2FIFO
ÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍ

CAP1FIFO

R-0 RW-0 RW-0 RW-0

7–0

Reserved

R-0

Note: R = Read access; W = Write access; value following dash (-) = value after reset

Bits 15–14 Reserved. Reads return zero; writes have no effect.

Bits 13–12 CAP3FIFO. CAP3FIFO Status.

00 Empty

01 Has one entry

10 Has two entries

11 Had two entries and captured another one; first entry
has been lost

Bits 11–10 CAP2FIFO. CAP2FIFO Status

00 Empty

01 Has one entry
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10 Has two entries

11 Had two entries and captured another one; first entry has
been lost

Bits 9–8 CAP1FIFO. CAP1FIFO Status.

00 Empty

01 Has one entry

10 Has two entries

11 Had two entries and captured another one; first entry has
been lost

Bits 7–0 Reserved. Reads return zero; writes have no effect.

7.8.4 Capture Unit FIFO Stacks

Each capture unit has a dedicated 2-level-deep FIFO stack. The top stack con-

sistes of CAP1FIFO, CAP2FIFO, and CAP3FIFO. The bottom stack consists

of CAP1FBOT, CAP2FBOT, and CAP3FBOT. The top-level register of any of

the FIFO stacks is a read-only register that always contains the oldest counter

value captured by the corresponding capture unit. Therefore, a read access

to the FIFO stack of a capture unit always returns the oldest counter value

stored in the stack. When the oldest counter value in the top register of the

FIFO stack is read, the newer counter value in the bottom register of the stack,

if any, is pushed into the top register.

If desired, the bottom register of the FIFO stack can be read. Reading the bot-

tom register of the FIFO stack causes the FIFO status bits to change to 01 (has

one entry), if they were previously 10 or 11. If the FIFO status bits were pre-

viously 01 when the bottom FIFO register is read, they will change to 00

(empty).

First Capture

The counter value of the selected GP timer (captured by a capture unit when

a specified transition happens on its input pin) is written into the top register

of the FIFO stack, if the stack is empty. At the same time, the corresponding

status bits are set to 01. The status bits are reset to 00 if a read access is made

to the FIFO stack before another capture is made.

Second Capture

If another capture occurs before the previously captured counter value is read,

the newly captured counter value goes to the bottom register. In the mean time,
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the corresponding status bits are set to (10). When the FIFO stack is read be-

fore another capture happens, the older counter value in the top register is

read out, the newer counter value in the bottom register is pushed up into the

top register, and the corresponding status bits are set to 01.

The appropriate capture interrupt flag is set by the second capture. A peripher-

al interrupt request is generated if the interrupt is not masked.

Third Capture

If a capture happens when there are already two counter values captured in

the FIFO stack, the oldest counter value in the top register of the stack is

pushed out and lost, the counter value in the bottom register of the stack is

pushed up into the top register, the newly captured counter value is written into

the bottom register, and the status bits are set to 11 to indicate one or more

older captured counter values have been lost.

The appropriate capture interrupt flag is also set by the third capture. A periph-

eral interrupt request is generated if the interrupt is not masked.

7.8.5 Capture Interrupt

When a capture is made by a capture unit and there is already at least one valid

value in the FIFO (indicated by CAPxFIFO bits not equal to zero), the corre-

sponding interrupt flag is set, and if unmasked, a peripheral interrupt request

is generated. Thus, a pair of captured counter values can be read by an inter-

rupt service routine if the interrupt is used. If an interrupt is not desired, either

the interrupt flag or the status bits can be polled to determine if two captures

have occurred allowing the captured counter values to be read.
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7.9 Quadrature Encoder Pulse (QEP) Circuit

The Event Manager module has a quadrature encoder pulse (QEP) circuit.

The QEP circuit, when enabled, decodes and counts the quadrature encoded

input pulses on pins CAP1/QEP0 and CAP2/QEP1. The QEP circuit can be

used to interface with an optical encoder to get position and speed information

from a rotating machine. When the QEP circuit is enabled, the capture function

on CAP1/CAP2 pins is disabled.

7.9.1 QEP Pins

The two QEP input pins are shared between capture units 1 and 2, and the

QEP circuit. Proper configuration of CAPCON bits is required to enable the

QEP circuit and disable capture units 1 and 2, thus assigning the two associat-

ed input pins for use by the QEP circuit.

7.9.2 QEP Circuit Time Base

The time base for the QEP circuit is provided by GP timer 2. The GP timer must

be put in directional up/down-count mode with the QEP circuit as the clock

source. Figure 7–28 shows the block diagram of the QEP circuit.

Figure 7–28. Quadrature Encoder Pulse (QEP) Circuit Block Diagram
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7.9.3 Decoding

Quadrature encoded pulses are two sequences of pulses with a variable fre-

quency and a fixed phase shift of a quarter of a period (90 degrees). When gen-

erated by an optical encoder on a motor shaft, the direction of rotation of the

motor can be determined by detecting which of the two sequences is the lead-

ing sequence. The angular position and speed can be determined by the pulse

count and pulse frequency.
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QEP Circuit

The direction detection logic of the QEP circuit in the EV2 module determines

which one of the sequences is the leading sequence. It then generates a direc-

tion signal as the direction input to GP timer 2. The timer counts up if

CAP1/QEP0 input is the leading sequence, and counts down if CAP2/QEP1

is the leading sequence.

Both edges of the pulses of the two quadrature encoded inputs are counted

by the QEP circuit. Therefore, the frequency of the clock generated by the QEP

logic to GP timer 2 is four times that of each input sequence. This quadrature-

clock is connected to the clock input of GP timer 2.

Quadrature Encoded Pulse Decoding Example

Figure 7–29 shows an example of quadrature encoded pulses and the derived

clock and counting direction.

Figure 7–29. Quadrature Encoded Pulses and Decoded Timer Clock and Direction

QEP0

QEP1

Quadrature CLK

DIR

7.9.4 QEP Counting

GP timer 2 always starts counting from its current value. A desired value can

be loaded to GP timer 2’s counter prior to enabling the QEP mode. When the

QEP circuit is selected as the clock source, the timer ignores the TDIR and

TCLKIN input pins.

GP Timer Interrupt and Associated Compare Outputs in QEP Operation

Period, underflow, overflow, and compare interrupt flags for a GP timer with

a QEP circuit clock are generated on respective matches. A peripheral inter-

rupt request can be generated by an interrupt flag, if the interrupt is unmasked.
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7.9.5 Register Setup for the QEP Circuit

To start the operation of the QEP circuit:

1) Load GP timer 2’s counter, period, and compare registers with desired val-

ues, if necessary.

2) Configure T2CON to set GP timer 2 in directional up/down-mode with the

QEP circuits as clock source, and enable the selected timer.

3) Configure CAPCON to enable the QEP circuit.
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7.10 Event Manager (EV2) Interrupts

EV2 interrupt events are organized into 3 groups: A, B, and C. Each group is

associated with a different interrupt flag and interrupt enable register. There

are several Event Manager peripheral interrupt requests in each EV2 interrupt

group. Table 7–10 shows all EV2 interrupts and their priority and grouping.

There is an interrupt flag register and an interrupt mask register for each EV2

interrupt group: EVIFRA, EVIFRB, and EVIFRC, and EVIMRA, EVIMRB, and

EVIMRC. A flag in EVIFRx (x = A, B, or C) is masked (will not generate a pe-

ripheral interrupt request) if the corresponding bit in EVIMRx is 0.

7.10.1 EV2 Interrupt Request and Service

When a peripheral interrupt request is acknowledged, the appropriate periph-

eral interrupt vector is loaded into the peripheral interrupt vector register

(PIVR) by the PIE controller. The vector loaded into the PIVR is the vector for

the highest priority pending enabled event. The vector register can be read by

the interrupt service routine (ISR).

Table 7–10. Event Manager (EV2) Interrupts

Group Interrupt
Priority

within group

Vector

(ID) Description/Source INT

PDPINT 1 (highest) 0020h Power Drive Protection Interrupt 1

A CMP1INT 2 0021h Compare Unit 1 compare interrupt

CMP2INT 3 0022h Compare Unit 2 compare interrupt

CMP3INT 4 0023h Compare Unit 3 compare interrupt

T1PINT 5 0027h GP timer 1 period interrupt 2

T1CINT 6 0028h GP timer 1 compare interrupt

T1UFINT 7 0029h GP timer 1 underflow interrupt

T1OFINT 8 (lowest) 002Ah GP timer 1 overflow interrupt

B T2PINT 1 (highest) 002Bh GP timer 2 period interrupt

T2CINT 2 002Ch GP timer 2 compare interrupt
3

T2UFINT 3 002Dh GP timer 2 underflow interrupt
3

T2OFINT 4 002Eh GP timer 2 overflow interrupt

C CAP1INT 1 (highest) 0033h Capture Unit 1 interrupt

CAP2INT 2 0034h Capture Unit 2 interrupt 4

CAP3INT 3 0035h Capture Unit 3 interrupt
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Table 7–11. Conditions For Interrupt Generation

Interrupt Condition For Generation

Underflow When the counter reaches 0000h

Overflow When the counter reaches FFFFh

Compare When the counter register contents match that of the

compare register

Period When the counter register contents match that of the period

register

Interrupt Generation

When an interrupt event occurs in the EV2 module, the corresponding inter-

rupt flag in one of the EV2 interrupt flag registers is set to 1. A peripheral inter-

rupt request is generated to the Peripheral Interrupt Expansion controller, if the

flag is locally unmasked (the corresponding bit in EVIMRx is set to 1).

Interrupt Vector

The peripheral interrupt vector corresponding to the interrupt flag that has the

highest priority among the flags that are set and enabled is loaded into the

PIVR when an interrupt request is acknowledged (this is all done in the periph-

eral interrupt controller, external to the event manager peripheral).

Failure to Clear the Interrupt Flag Bit

The interrupt flag bit in the peripheral register must be cleared by
software writing a 1 to the bit in the ISR. Failure to clear this bit will
prevent future interrupt requests by that source.

7.10.2 EV2 Interrupt Flag Registers

Addresses of EV2 interrupt registers are shown in Table 7–5 on page 7-10.

The registers are all treated as 16-bit memory mapped registers. The unused

bits all return zero when read by software. Writing to unused bits has no effect.

Since EVIFRx are readable registers, occurrence of an interrupt event can be

monitored by software polling the appropriate bit in EVIFRx when the interrupt

is masked.
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EV2 Interrupt Flag Register A (EVIFRA)

Figure 7–30. EV2 Interrupt Flag Register A (EVIFRA) — Address 742Fh

15–11 10 9 8

Reserved
ÍÍÍÍÍ
ÍÍÍÍÍ

T1OFINT
ÍÍÍÍ
ÍÍÍÍ

T1UFINT
ÍÍÍÍ
ÍÍÍÍ

T1CINT

R-0 RW-0 RW-0 RW-0

7 6–4 3 2 1 0

ÍÍÍÍÍ
ÍÍÍÍÍ

T1PINT Reserved
ÍÍÍÍ
ÍÍÍÍ

CMP3INT
ÍÍÍÍÍ
ÍÍÍÍÍ

CMP2INT
ÍÍÍÍ
ÍÍÍÍ

CMP1INT
ÍÍÍÍ
ÍÍÍÍ

PDPINT

RW-0 R-0 RW-0 RW-0 RW-0 RW-0

Note: R = Read access; W = Write access; value following dash (-) = value after reset

Bits 15–11 Reserved. Reads return zero; writes have no effect.

Bit 10 T1OFINT. GP timer 1 overflow interrupt.

Read: 0 Flag is reset

1 Flag is set

Write: 0 No effect

1 Reset flag

Bit 9 T1UFINT. GP timer 1 underflow interrupt.

Read: 0 Flag is reset

1 Flag is set

Write: 0 No effect

1 Reset flag

Bit 8 T1CINT. GP timer 1 compare interrupt.

Read: 0 Flag is reset

1 Flag is set

Write: 0 No effect

1 Reset flag
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Bit 7 T1PINT. GP timer 1 period interrupt.

Read: 0 Flag is reset

1 Flag is set

Write: 0 No effect

1 Reset flag

Bit 6–4 Reserved. Reads return zero; writes have no effect.

Bit 3 CMP3INT. Compare 3 interrupt.

Read: 0 Flag is reset

1 Flag is set

Write: 0 No effect

1 Reset flag

Bit 2 CMP2INT. Compare 2 interrupt.

Read: 0 Flag is reset

1 Flag is set

Write: 0 No effect

1 Reset flag

Bit 1 CMP1INT. Compare 1 interrupt.

Read: 0 Flag is reset

1 Flag is set

Write: 0 No effect

1 Reset flag

Bit 0 PDPINT. Power drive protection interrupt.

Read: 0 Flag is reset

1 Flag is set

Write: 0 No effect

1 Reset flag
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EV2 Interrupt Flag Register B (EVIFRB)

Figure 7–31. EV2 Interrupt Flag Register B (EVIFRB) — Address 7430h

15–4 3 2 1 0

Reserved ÍÍÍÍ
ÍÍÍÍ

T2OFINTÍÍÍÍÍ
ÍÍÍÍÍ

T2UFINTÍÍÍÍ
ÍÍÍÍ

T2CINTÍÍÍÍ
ÍÍÍÍ

T2PINT

R-0 RW-0 RW-0 RW-0 RW-0

Note: R = Read access; W = Write access; value following dash (-) = value after reset

Bits 15–4 Reserved. Reads return zero; writes have no effect.

Bit 3 T2OFINT. GP timer 2 overflow interrupt.

Read: 0 Flag is reset

1 Flag is set

Write: 0 No effect

1 Reset flag

Bit 2 T2UFINT. GP timer 2 underflow interrupt.

Read: 0 Flag is reset

1 Flag is set

Write: 0 No effect

1 Reset flag

Bit 1 T2CINT. GP timer 2 compare interrupt.

Read: 0 Flag is reset

1 Flag is set

Write: 0 No effect

1 Reset flag

Bit 0 T2PINT. GP timer 2 period interrupt.

Read: 0 Flag is reset

1 Flag is set

Write: 0 No effect

1 Reset flag
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EV2 Interrupt Flag Register C (EVIFRC)

Figure 7–32. EV2 Interrupt Flag Register C (EVIFRC) — Address 7431h

15–3 2 1 0

Reserved ÍÍÍÍ
ÍÍÍÍ

CAP3INTÍÍÍÍ
ÍÍÍÍ

CAP2INTÍÍÍÍÍ
ÍÍÍÍÍ

CAP1INT

R-0 RW-0 RW-0 RW-0

Note: R = Read access; W = Write access; value following dash (-) = value after reset

Bits 15–3 Reserved. Reads return zero; writes have no effect.

Bit 2 CAP3INT. Capture 3 interrupt.

Read: 0 Flag is reset

1 Flag is set

Write: 0 No effect

1 Reset flag

Bit 1 CAP2INT. Capture 2 interrupt.

Read: 0 Flag is reset

1 Flag is set

Write: 0 No effect

1 Reset flag

Bit 0 CAP1INT. Capture 1 interrupt.

Read: 0 Flag is reset

1 Flag is set

Write: 0 No effect

1 Reset flag
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EV2 Interrupt Mask Register A (EVIMRA)

Figure 7–33. EV2 Interrupt Mask Register A (EVIMRA) — Address 742Ch

15–11 10 9 8

Reserved ÍÍÍÍÍ
ÍÍÍÍÍ
ÍÍÍÍÍ

T1OFINT

enable
ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

T1UFINT

enable
ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

T1CINT

enable

R-0 RW-0 RW-0 RW-0

7 6–4 3 2 1 0

ÍÍÍÍÍ
ÍÍÍÍÍ
ÍÍÍÍÍ

T1PINT

enable
Reserved

ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

CMP3INT

enable

ÍÍÍÍÍ
ÍÍÍÍÍ
ÍÍÍÍÍ

CMP2INT

enable

ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

CMP1INT

enable

ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

PDPINT

enable

RW-0 R-0 RW-0 RW-0 RW-0 RW-1

Note: R = Read access; W = Write access; value following dash (-) = value after reset

Bits 15–11 Reserved. Reads return zero; writes have no effect.

Bit 10 T1OFINT ENABLE

0 Disable

1 Enable

Bit 9 T1UFINT ENABLE

0 Disable

1 Enable

Bit 8 T1CINT ENABLE

0 Disable

1 Enable

Bit 7 T1PINT ENABLE

0 Disable

1 Enable

Bit 6–4 Reserved. Reads return zero; writes have no effect.

Bit 3 CMP3INT ENABLE

0 Disable

1 Enable
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Bit 2 CMP2INT ENABLE

0 Disable

1 Enable

Bit 1 CMP1INT ENABLE

0 Disable

1 Enable

Bit 0 PDPINT ENABLE. This is enabled (set to 1) following reset.

0 Disable

1 Enable

EV2 Interrupt Mask Register B (EVIMRB) 

Figure 7–34. EV2 Interrupt Mask Register B — Address 742Dh

15–4 3 2 1 0

Reserved
ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

T2OFINT

enable

ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

T2UFINT

enable

ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

T2CINT

enable

ÍÍÍÍÍ
ÍÍÍÍÍ
ÍÍÍÍÍ

T2PINT

enable

R-0 RW-0 RW-0 RW-0 RW-0

Note: R = Read access; W = Write access; value following dash (-) = value after reset

Bits 15–4 Reserved. Reads return zero; writes have no effect.

Bit 3 T2OFINT ENABLE

0 Disable

1 Enable

Bit 2 T2UFINT ENABLE

0 Disable

1 Enable

Bit 1 T2CINT ENABLE

0 Disable

1 Enable

Bit 0 T2PINT ENABLE

0 Disable

1 Enable
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EV2 Interrupt Mask Register C (EVIMRC)

Figure 7–35. EV2 Interrupt Mask Register C — Address 742Eh

15–3 2 1 0

Reserved
ÍÍÍÍÍ
ÍÍÍÍÍ
ÍÍÍÍÍ

CAP3INT

enable

ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

CAP2INT

enable

ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

CAP1INT

enable

R-0 RW-0 RW-0 RW-0

Note: R = Read access; W = Write access; value following dash (-) = value after reset

Bits 15–3 Reserved. Reads return zero; writes have no effect.

Bit 2 CAP3INT ENABLE

0 Disable

1 Enable

Bit 1 CAP2INT ENABLE

0 Disable

1 Enable

Bit 0 CAP1INT ENABLE

0 Disable

1 Enable
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Analog-to-Digital Converter (ADC)

This chapter contains a general description of the pseudo-dual 10-bit analog-

to-digital converter (ADC) module. This peripheral has identical functionality

to the dual ADCs on the ’C240 device; however, instead of having two ADC

converters with a 6µs conversion time, it has one 600ns converter (12 × 50ns

period clocks) with control logic acting as if there are two converters: pseudo-

ADC#1 and pseudo-ADC#2. However, because of various synchronization

delays, a single conversion takes about 1µs with a 20-MHz clock and a pres-

cale of 1.

When simultaneous conversion is requested, two consecutive conversions

are performed 850ns apart for a total simultaneous dual-conversion time of

1700ns. The result for pseudo-ADC#1 is converted first. With prescale factors

greater than one, the convert-time formula becomes more complex. For more

information, see section 8.2.3, Analog Signal Sampling/Conversion, on page

8-6.

The ADC has eight analog inputs.

Apart from the fact that this ADC peripheral uses one converter to simulate the

operation of two converters, the only other difference between this module and

that on the ’C240 is the pre-scale divider values for the ADC clock.
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8.1 ADC Overview

This pseudo-dual ADC is based around a 10-bit string/capacitor converter with

the switched capacitor string providing an inherent sample-and-hold function.

(Note: There is only one converter with only one inherent sample and hold cir-

cuit). This peripheral behaves as though there are two analog converters,

ADC#1 and ADC#2, but it uses only one converter. This feature makes the

ADC software compatible with the ’C240’s ADC, and also allows two values

(ex. voltage and current) to be converted almost simultaneously with one con-

version request.)

Minimum conversion time for the ADC unit is 850ns when the converter is

clocked at 20 MHz. External high and low reference voltage must be supplied.

The upper and lower references can be set to any voltage less than or equal

to 5V by connecting VREFHI and VREFLO to external reference voltages.

The ADC module, shown in Figure 8–1, has the following features:

� 8 analog inputs, ADCIN0–ADCIN7

� Almost simultaneous measurement of two analog inputs, 800ns apart

� Single conversion and continuous conversion modes

� Conversion can be started by software, an internal event, and/or an exter-

nal event

� VREFHI and VREFLO (high- and low-voltage) reference inputs

� Two-level-deep digital result registers that contain the digital values of

completed conversions

� Two programmable ADC module control registers

� Programmable clock prescaler

� Interrupt or polled operation

� Programmable priority interrupt requests: either a high or a low priority in-

terrupt request can be generated
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Figure 8–1. TMS320C24x  Pseudo-Dual ADC Module
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8.2 ADC Operation

The digital result of the conversion process for the 10-bit ADC is approximated

by the following equation:

Digital Result � 1023 �
Input Voltage � VREFLO

VREFHI � VREFLO

8.2.1 ADC Module Pin Descriptions

Pin Description

VCCA Analog 5V supply

VSSA Analog ground

VREFHI High analog reference voltage

VREFLO Low analog reference voltage

ADCIN0–ADCIN7 Analog Inputs for conversion

ADCSOC/XINT2/IOPD1 External start-of-conversion pin

� The analog supply pins, VCCA and VSSA, are separate from any digital volt-

age supply pins. Standard isolation techniques must be used to isolate the

digital and analog supply pins.  Analog power lines connected to VCCA and

VSSA should be as short as possible with the two lines properly decoupled.

All other standard noise reduction techniques should be used to ensure

accurate conversion.

� The reference voltages for the ADC module must satisfy the following con-

dition:

0 VREFLO VREFHI 5V≤ ≤<

� The analog input voltage for conversion should be bounded by the values

VREFHI and VREFLO:

VREFLO VADCIN VREFHI≤ ≤

� When the ADCSOC/XINT2/IOPD1 pin is not used as a GPIO (that is, as

IOPD1), it can be used as XINT2 and/or ADCSOC depending on what is

enabled. (XINT2 is enabled by writing a 1 to bit 0 of XINT2CR; ADCSOC

is enabled by writing a 1 to bit 9 of ADCTRL2.) Note that while the polarity

of XINT2 is programmable, ADCSOC is recognized for a rising edge only.
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8.2.2 ADC Module Operational Modes

Functions of the ADC module include:

� Two input channels (one for each pseudo ADC unit) can be sampled and

converted almost simultaneously (850 ns apart with 20-MHz clock).

� Each pseudo-ADC unit can perform single or continuous S/H and conver-

sion operations. When in continuous dual-conversion mode, each

pseudo-ADC generates a result every 1700ns (with a 20-MHz clock and

a prescale factor of 1). When in continuous single-conversion mode, the

selected pseudo-ADC generates a result every 1 µs (under the same clock

conditions).

� ADC#1 and ADC#2 have two 2-Level-deep FIFO result registers.

� Conversion can be started by software, an external signal transition on a

device pin (ADCSOC), or by certain event manager events.

� The ADC control register is double buffered (with a shadow register) and

can be written to at any time. A new conversion can start either immediate-

ly or when the previous conversion process is completed.

� In single-conversion mode, an interrupt flag is set and the peripheral inter-

rupt request (PIRQ) is generated at the end of each conversion, if it is un-

masked/enabled.

� In dual-conversion mode, an interrupt flag is set and the peripheral inter-

rupt request (PIRQ) is generated at the end of each pair of conversions,

if it is unmasked/enabled.

� The result of previous conversions stored in data register 1 (for ADC#1)

and in data register 2 for (ADC#2) is lost when a third result is stored in the

2-word-deep data FIFO.
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8.2.3 Analog Signal Sampling/Conversion

The analog-to-digital conversion circuit requires a clock (ADCCLK) with a fre-

quency of 20 MHz or less. The analog part of the conversion itself takes about

12 ADCCLK cycles, but additional clock cycles are required for synchroniza-

tion between the analog converter and the digital control logic.

To allow this peripheral to be used in devices with clock rates other than

20MHz, there is a system clock prescaler to divide the system clock down to

an acceptable rate below 20 MHz. The prescaler allows the ADC to be used

in continuous-conversion mode at lower sample rates.

Table 8–1. Prescaler Values

Clock Prescale Bits
Prescale

Bit 2 Bit 1 Bit 0
Prescale

Value ADC Clock

0 0 0 1 CLKOUT/1

0 0 1 2 CLKOUT/2

0 1 0 4 CLKOUT/4

0 1 1 8 CLKOUT/8

1 0 0 12 CLKOUT/12

1 0 1 16 CLKOUT/16

1 1 0 24 CLKOUT/24

1 1 1 32 CLKOUT/32

8.2.4 Analog Input Selection

Input pins ADCIN0 through ADCIN7 are associated with both pseudo-ADC

modules. In this implementation, there are eight input select signals leaving

the ADC module to control up to eight analog switch inputs. The select signal

for ADC#1 input 0 is ORed with the select signal for ADC#2 input 0, etc. (See

Figure 8–2, Input Selection With Eight or Less Analog Inputs.) The digital re-

sult of any ADCINn channel selected by ADC2CHSEL bits (bits 6–4 of the

ADCTRL1 register) is stored in the ADCFIFO2 register. Similarly, the digital re-

sult of any ADCINn channel selected by ADC1CHSEL bits (bits 3–1 of the

ADCTRL1 register) is stored in the ADCFIFO1 register.
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Figure 8–2. Input Selection With Eight or Less Analog Inputs
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8.2.5 Interrupts

In single-conversion mode, the interrupt flag is set at the end of every conver-

sion. In dual-conversion mode, the interrupt flag is set at the end of every pair

of conversions. Channel 1 is converted first, and then channel 2. Hence, the

interrupt flag is set when the conversion of channel 2 is complete.

The ADC can assert one peripheral interrupt request (PIRQ) to the peripheral

interrupt expansion (PIE) controller. This can be a high priority request or a low

priority request. The priority is determined by the INTPRI bit, which is bit 11 of

the ADCTRL2 register. A 0 in INTPRI makes the interrupt request a high prior-

ity, and a 1 makes the request a low priority. The same interrupt vector is used

with either priority. The interrupt vector is discussed in Chapter 3.

There is an interrupt flag bit in ADC Control Register 1 (ADCTRL1) that gets

set at the end of an A/D conversion. If the interrupt enable bit in ADCTRL1 is

set, the peripheral asserts it’s interrupt request (PIRQ) to the PIE controller. If

the interrupt enable is not set when the conversion completes (but is set at a

later time), and if the interrupt flag has not been cleared, then PIRQ is asserted.

The peripheral interrupt request and the interrupt flag inside the PIE that gen-

erate INTx interrupts are cleared in response to a peripheral interrupt acknowl-

edge.
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8.3 ADC Registers

Table 8–2 lists the addresses of the ADC registers.

Table 8–2. Addresses of ADC Registers

Address Name Description

7032h ADCTRL1 ADC Control Register 1

7034h ADCTRL2 ADC Control Register 2

7036h ADCFIFO1 2-Level-Deep Data Register FIFO for pseudo-ADC#1

7038h ADCFIFO2 2-Level-Deep Data Register FIFO for pseudo-ADC#2

8.3.1 Shadowed Bits

Many of the control register bits are described as shadowed. This means that

changing the value of one of these bits does not take effect until the current

conversion is complete.
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8.4 ADC Control Registers

There are two ADC control registers: ADC control register 1 and ADC control

register 2.

8.4.1 ADC Control Register 1

ADC control register 1 controls the following:

� Start of conversion

� Channel selection

� ADC module enable/disable function

� Interrupt enable

� Emulation operation and end of conversion

Figure 8–3. ADC Control Register 1 (ADCTRL1) — Address 7032h

15 14 13 12 11 10 9 8

Suspend Soft Suspend Free ADCIMSTART ADC2EN ADC1EN ADCCONRUN ADCINTEN ADCINTFLAG

RW-0 RW-0 RW-0 SRW-0 SRW-0 SRW-0 SRW-0 RC-0

7 6–4 3–1 0

ADCEOC ADC2CHSEL ADC1CHSEL ADCSOC

R-0 SRW-0 SRW-0 SRW-0

Note: R = Read access; W = Write access; C = Clear by writing a 1; S = Shadowed; value following dash (-) = value after reset

Bits 15,14 Soft & Free bits

These bits determine what happens when an emulation suspend 
occurs (for example, when the debugger hits a breakpoint). The pe-
ripheral can continue whatever it is doing (free run mode), or if in stop
mode, it can either stop immediately or stop when the current opera-
tion (in this case, the current conversion) is complete.

Bit 15 Bit 14

Soft Free

0 0 Stop conversion immediately

1 0 Complete current conversion before stopping

X 1 Free run, continue operation regardless of suspend

These bits are not shadowed.
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Bit 13 ADCIMSTART.  Start ADC conversion immediately.

Writing a 1 to this bit  starts a conversion immediately (the currently
active conversion aborts). This bit is not shadowed.

0 No action

1 Immediately start conversion

Bit 12 ADC2EN. Enable/Disable bit for pseudo ADC#2

0 ADC#2 disabled (No sample/hold/conversion can take
place; data register ADCFIFO2 will not change.)

1 ADC#2 is enabled

This bit is shadowed. This bit can be written while a previous conver-
sion is still going on; however, changing this bit will not take effect until
after the current conversion is completed.

Bit 11 ADC1EN. Enable/Disable bit for pseudo-ADC#1.

0 ADC#1 disabled (No sample/hold/conversion can take
place; data register ADCFIFO1 will not change.)

1 ADC#1 is enabled

This bit is shadowed. This bit can be written while a previous conver-
sion is in progress; however, changing this bit does not take effect until
after the current conversion is complete.

Bit 10 ADCCONRUN.

This bit puts the ADC unit into continuous-conversion mode. This bit
can be written while a previous conversion is in progress; however,
changing this bit does not take effect until after the current conversion
is complete.

0 No continuous conversion

1 Continuous conversion enabled

Bit 9 ADCINTEN. Enable interrupts.

If the ADCINTEN bit is set, an interrupt is requested when the 
ADCINTFLAG is set. This bit is cleared on reset and is shadowed.
Interrupt flag ADCINTFLAG gets set at the end of a conversion to al-
low polling, regardless of the value of ADCINTEN.

0 Interrupt disabled

1 Interrupt enabled
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Bit 8 ADCINTFLAG. ADC interrupt flag bit.

This bit indicates if an interrupt event has occurred. Writing a 1 clears
this bit.

0 No interrupt event

1 An interrupt event has occurred

Bit 7 ADCEOC.

This bit is set to a one while the ADC conversion is in progress. It is
cleared when the conversion is complete; that is, at the same time the
ADCINTFLAG is set.

0 End of conversion

1 Conversion is in progress

Bits 6–4 ADC2CHSEL. Selects channels for ADC2

000 Channel 0 (ADCIN0)

001 Channel 1 (ADCIN1)

010 Channel 2 (ADCIN2)

011 Channel 3 (ADCIN3)

100 Channel 4 (ADCIN4)

101 Channel 5 (ADCIN5)

110 Channel 6 (ADCIN6)

111 Channel 7 (ADCIN7)

Bits 3–1 ADC1CHSEL. Selects channels for ADC1

000 Channel 0 (ADCIN0)

001 Channel 1 (ADCIN1)

010 Channel 2 (ADCIN2)

011 Channel 3 (ADCIN3)

100 Channel 4 (ADCIN4)

101 Channel 5 (ADCIN5)

110 Channel 6 (ADCIN6)

111 Channel 7 (ADCIN7)

Note:

When both ADC#1 and ADC#2 are enabled (dual conversion), each start-of-
conversion operation has two results (one for ADC#1 and one for ADC#2).
One result is written in ADCFIFO1 and the other in ADCFIFO2.
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Bit 0 ADCSOC. ADC start of conversion bit.

0 No action

1 Start conversion

This bit is shadowed. Writing a 1 to this bit starts a conversion as soon
as the current conversion (if one is currently active) is complete.

8.4.2 ADC Control Register 2

ADC control register 2 selects the ADC input clock prescaler and conversion

mode, and shows the ADC FIFO status.

Figure 8–4. ADC Control Register 2 (ADCTRL2) — Address 7034h

15 14 13 12 11 10 9 8

Reserved IM
ÍÍÍÍ
ÍÍÍÍ

EVSOCP
ÍÍÍÍÍ
ÍÍÍÍÍ

EXTSOCP
ÍÍÍÍÍ
ÍÍÍÍÍ

INTPRI
ÍÍÍÍ
ÍÍÍÍ
ADCEVSOC

ÍÍÍÍÍ
ÍÍÍÍÍ

ADCEXTSOC Reserved

R-0 W-0 SRC-0 SRC-0 RW-0 SRW-0 SRW-0 R-0

7–6 5 4–3 2–0

ADCFIFO2 Reserved ADCFIFO1 ADCPSCALE

R-0 R-0 R-0 SRW-0

Note: R = Read access; W = Write access; C = Clear by writing a 1; S = Shadowed; value following dash (-) = value after reset

Bits 15 Reserved. Reads return zero; writes have no effect.

Bit 14 IM. Interrupt Mode

0 Interrupt flag set when ADCFIFOn has at least one
word

1 ADC logic sets the interrupt flag only when
ADCFIFOn has two words (results) in it

Bit 13 EVSOCP. Event Manager Start Of Conversion Pending.

0 No Conversion Pending

1 Conversion Pending

This bit is shadowed. Write 1 to clear. Writing 0 has no effect.

Bit 12 EXTSOCP. External Start Of Conversion Pending.

0 No Conversion Pending

1 Conversion Pending

This bit is shadowed. Write 1 to clear; writing a 0 has no effect.
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Bit 11 INTPRI. ADC interrupt request priority.

0 High priority

1 Low Priority

This bit is not shadowed.

Bit 10 ADCEVSOC. Event Manager SOC mask bit.

0 No action

1 Causes ADC conversion to be started by an Event
Manager signal. The Event Manager can start a con-
version on a compare register match, a period regis-
ter match, or an underflow. This bit is shadowed.

Bit 9 ADCEXTSOC. External signal; start of conversion bit.

0 No action

1 Causes ADC conversion to be started by a signal
from the ADCSOC device pin. This bit is shadowed

Bit 8 Reserved. Reads return zero; writes have no effect.

Bits 7–6 ADCFIFO2. FIFO2 status.

These two bits indicate ADC#2 data register FIFO status. Two conver-
sion results can be stored before performing any READ operations.
However, after two conversions, if the third conversion is made, the
oldest result is lost. These bits are NOT shadowed.

00 FIFO2 is empty

01 FIFO2 has one result

10 FIFO2 has two results

11 FIFO2 had two results and another result was re-
ceived; first result has been lost

Bit 5 Reserved. Reads return zero; writes have no effect.

Bits 4–3 ADCFIFO1. FIFO1 status.

These two bits indicate ADC#1 data register FIFO status. Two conver-
sion results can be stored before performing any READ operations.
However, after two conversions, if the third conversion is made, the
oldest result is lost. These bits are NOT shadowed.

00 FIFO1 is empty

01 FIFO1 has one result

10 FIFO1 has two results

11 FIFO1 had two results and another result was received;
first result has been lost
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Bits 2–0 ADCPSCALE. ADC input clock prescaler.

These bits define the ADC clock prescale factor. The prescale values
are defined in Table 8–1, Prescaler Values, on page 8-6.

8.4.3 ADC Digital Result Registers

The digital result registers contain a 10-bit digital result following conversion

of the analog input. These are read only registers that are cleared on reset. The

results are stored in a two-level FIFO. This provides the flexibility of converting

two variables before reading them from the data registers. However, if a third

conversion is made when there are two unread values in the FIFO, the first

converted value is lost.

Figure 8–5. ADC Data Registers 1 and 2 (ADCFIFO1, 2) — Addresses 7036h and 7038h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 0 0

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

Note: R = Read access; value following dash (-) = value after reset

Bits 15–6 D9–D0.  10 bits of analog to digital converted data.

Bits 5–0 Reserved. Always read as 0.
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Serial Communications Interface (SCI)

This chapter describes the architecture, functions, and programming of the

serial communications interface (SCI) module. All registers in this peripheral

are eight bits wide.

The programmable SCI supports asynchronous serial (UART) digital commu-

nications between the CPU and other asynchronous peripherals that use the

standard NRZ (non-return-to-zero) format. The SCI’s receiver and transmitter

are double buffered, and each has its own separate enable and interrupt bits.

Both may be operated independently or simultaneously in the full-duplex

mode.

To ensure data integrity, the SCI checks received data for break detection, par-

ity, overrun, and framing errors. The bit rate (baud) is programmable to over

65,000 different speeds through a 16-bit baud-select register.

For convenience, references to a bit in a register are abbreviated using the

register name followed by a period and the number of the bit. For example, the

notation for bit 6 of SCI priority control register (SCIPRI) is SCIPRI.6.
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9.1 Differences vs. ’C240 SCI

Multiplexing the SCI pins with general purpose I/O is controlled by bits in the

digital I/O peripheral. As a consequence, the register SCIPC2 (705Eh) has

been removed.

The CLKENA bit in SCICTL1 (7051h) has been removed since it served no

purpose in 2-pin SCI implementations.

The function of the SCIENA bit in SCICCR (7050h) has changed and is now

a LOOP BACK ENA test mode bit. The enable function is no longer required

for correct operation of the SCI.

9.1.1 SCI Physical Description

The SCI module, shown in Figure 9–1, has the following key features:

� Two I/O pins

� SCIRXD (SCI receive data input)

� SCITXD (SCI transmit data output)

� Programmable bit rates to over 65,000 different speeds through a 16-bit

baud select register

� Range with 20-MHz CLKOUT: 38.14 bps to 1250.0 kbps

� Number of bit rates: 64K

� Programmable data word length from one to eight bits

� Programmable stop bits of either one or two bits

� Internally generated serial clock

� Four error detection flags

� Parity error

� Overrun error

� Framing error

� Break detect

� Two wake-up multiprocessor modes that can be used with either commu-

nications format

� Idle-line wake up

� Address-bit wake up
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� Half- or full-duplex operation

� Double-buffered receive and transmit functions

� Transmitter and receiver can be operated by interrupts or by polling using

status flags:

� Transmitter: TXRDY flag (transmitter buffer register is ready to re-

ceive another character from the CPU core) and TX EMPTY flag

(transmit shift register is empty)

� Receiver: RXRDY flag (receive buffer register ready to receive anoth-

er character from the external world), BRKDT flag (break condition oc-

curred), and RX ERROR monitoring four interrupt conditions

� Separate enable bits for transmitter and receiver interrupts (except break)

� NRZ (non-return-to-zero) format
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Figure 9–1.  SCI Block Diagram

SCIRXST.6

SCIRXST.5

Frame format and mode

Parity

Even/odd Enable

SCICCR.6 SCICCR.5

SCICTL1.3

WUT

1

Transmitter data
buffer register

SCITXBUF.7–0

8

SCICTL2.7

SCICTL2.6

SCICTL2.0

SCI TX interrupt
TXRDY TXINTENA

TXEMPTY

TXINT

SCIHBAUD.15–8

Baud rate
MSbyte
register

SCILBAUD.7–0

Baud rate
LSbyte
register

SCI
clock

External
connections

SCICTL1.1

TXENA
SCITXD

SCIRXD

SCI priority level

Low INT priority

High INT priority

1

0

1

0

Low INT priority

High INT priority

SCITX priority

SCIPRI.6

SCIRX priority

SCIPRI.5

RXSHF
register

8SCICTL1.0

SCIRXST.1

SCICTL1.6

RXWAKE

RXERRINTENA

RX error

SCIRXST.7 SCIRXST.4–2

RX error FE OE PE

Receiver data
buffer register

SCIRXBUF.7–0

RXENA

SCI RX interrupt
RXRDY RX/BKINTENA

BRKDT

R
X

IN
T

TXSHF
register

SCICTL2.1



Differences vs. ’C240 SCI

9-5Serial Communications Interface (SCI)

9.1.2 Architecture

The major elements used in full duplex are shown in Figure 9–1, SCI Block

Diagram and include:

� A transmitter (TX) and its major registers (upper half of Figure 9–1)

� SCITXBUF — transmitter data buffer register. Contains data (loaded

by the CPU) to be transmitted

� TXSHF register — transmitter shift register. Loads data from register

SCITXBUF and shifts data onto the SCITXD pin, one bit at a time

� A receiver (RX) and its major registers (lower half of Figure 9–1)

� RXSHF register — receiver shift register. Shifts data in from SCIRXD

pin, one bit at a time

� SCIRXBUF — receiver data buffer register. Contains data to be read

by the CPU. Data from a remote processor is loaded into register

RXSHF and then into registers SCIRXBUF and SCIRXEMU

� A programmable baud generator

� Data-memory-mapped control and status registers

The SCI receiver and transmitter can operate either independently or simulta-

neously.
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9.1.3 SCI Register Addresses

Table 9–1. Addresses of SCI Registers  

Described In

Address Symbol Name Description Section Page

7050h SCICCR SCI communication

control register

Defines the character format, pro-

tocol, and communications mode

used by the SCI.

9.6.1 9-21

7051h SCICTL1 SCI control register 1 Controls the RX/TX and receiver

error interrupt enable, TXWAKE

and SLEEP functions, and the SCI

software reset.

9.6.2 9-23

7052h SCIHBAUD SCI baud register, 

high bits

Stores the data (MSbyte) required

to generate the bit rate.

9.6.3 9-26

7053h SCILBAUD SCI baud register, 

low bits

Stores the data (LSbyte) required

to generate the bit rate.

9.6.3 9-26

7054h SCICTL2 SCI control register 2 Contains the transmitter interrupt

enable, the receiver-buffer/break

interrupt enable, the transmitter

ready flag, and the transmitter

empty flag.

9.6.4 9-27

7055h SCIRXST SCI receiver status

register

Contains seven receiver status

flags.

9.6.5 9-28

7056h SCIRXEMU SCI emulation data

buffer register

Contains data received for screen

updates, principally used by the

emulator. (Not a real register – just

an alternate address for reading

SCIRXEMU without clearing

RXRDY)

9.6.6.1 9-31

7057h SCIRXBUF SCI receiver data 

buffer register

Contains the current data from the

receiver shift register.

9.6.6.2 9-31

7058h — Reserved Reserved

7059h SCITXBUF SCI transmit data 

buffer register

Stores data bits to be transmitted

by the SCITX.

9.6.7 9-32

705Ah — Reserved Reserved

705Bh — Reserved Reserved

705Ch — Reserved Reserved

705Dh — Reserved Reserved

705Eh — Reserved Reserved

705Fh SCIPRI SCI priority control 

register

Contains the receiver and transmit-

ter interrupt priority select bits and

the emulator suspend enable bit.

9.6.8 9-32
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9.1.4 Multiprocessor and Asynchronous Communication Modes

The SCI has two multiprocessor protocols, the idle-line multiprocessor mode

(see section 9.3.1 on page 9-10) and the address-bit multiprocessor mode

(see section 9.3.2 on page 9-12). These protocols allow efficient data transfer

between multiple processors.

The SCI offers the universal asynchronous receiver/transmitter (UART)

communications mode for interfacing with many popular peripherals. The

asynchronous mode (see section 9.4, on page 9-14) requires two lines to inter-

face with many standard devices such as terminals and printers that use

RS-232-C formats. Data transmission characteristics include:

� one start bit

� one to eight data bits

� an even/odd parity bit or no parity bit

� one or two stop bits
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9.2 SCI Programmable Data Format

SCI data, both receive and transmit, is in NRZ (nonreturn-to-zero) format. The

NRZ data format, shown in Figure 9–2, consists of:

� one start bit

� one to eight data bits

� an even/odd parity bit (optional)

� one or two stop bits

� an extra bit to distinguish addresses from data (address-bit mode only)

The basic unit of data is called a character and is one to eight bits in length.

Each character of data is formatted with a start bit, one or two stop bits, and

optional parity and address bits. A character of data with its formatting informa-

tion is called a frame and is shown in Figure 9–2.

Figure 9–2. Typical SCI Data Frame Formats

Start LSB 2 3 Parity Stop4 5 6 7 MSB

Start LSB 2 3 Addr/
data

Parity4 5 6 7 MSB Stop

Idle-line mode
(Normal nonmultiprocessor communications)

Address-bit mode

Address bit

To program the data format, use the SCICCR register. The bits used to pro-

gram the data format are shown in Table 9–2.

Table 9–2. Programming the Data Format Using SCICCR

Bit Name Designation Functions

SCI CHAR2–0 SCICCR.2–0 Select the character (data) length (one to

eight bits). Bit values are shown in

Table 9–4 (page 9-22).

PARITY ENABLE SCICCR.5 Enables the parity function if set to 1, or

disables the parity function if cleared to 0.

EVEN/ODD PARITY SCICCR.6 If parity is enabled, selects odd parity if

cleared to 0 or even parity if set to 1.

STOP BITS SCICCR.7 Determines the number of stop bits trans-

mitted—one stop bit if cleared to 0 or two

stop bits if set to 1.
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9.3 SCI Multiprocessor Communication

The multiprocessor communication format allows one processor to efficiently

send blocks of data to other processors on the same serial link. On one serial

line, there should be only one transfer at a time. In other words, there can be

only one talker on a serial line at a time.

The first byte of a block of information that the talker sends contains an address

byte that is read by all listeners. Only listeners with the correct address can be

interrupted by the data bytes that follow the address byte. The listeners with

an incorrect address remain uninterrupted until the next address byte.

All processors on the serial link set their SCI’s SLEEP bit (SCICTL1.2) to 1 so

that they are interrupted only when the address byte is detected. When a proc-

essor reads a block address that corresponds to the CPU’s device address as

set by your application software, your program must clear the SLEEP bit to en-

able the SCI to generate an interrupt on receipt of each data byte.

Although the receiver still operates when the SLEEP bit is 1, it does not set

RXRDY, RXINT, or any of the receive error status bits to 1 unless the address

byte is detected and the address bit in the received frame is a 1 (applicable to

address-bit mode). The SCI does not alter the SLEEP bit; your software must

alter the SLEEP bit.

A processor recognizes an address byte differently, depending on the multi-

processor mode used. For example:

� The idle-line mode (section 9.3.1 on page 9-10) leaves a quiet space be-

fore the address byte. This mode does not have an extra address/data bit

and is more efficient than the address-bit mode for handling blocks that

contain more than ten bytes of data. The idle-line mode should be used

for typical non-multiprocessor SCI communication.

� The address-bit mode (section 9.3.2 on page 9-12) adds an extra bit (an

address bit) into every byte to distinguish addresses from data. This mode

is more efficient in handling many small blocks of data because, unlike the

idle mode, it does not have to wait between blocks of data. However at high

transmit speed, the program is not fast enough to avoid a 10-bit idle in the

transmission stream.

The multiprocessor mode is software selectable via the ADDR/IDLE MODE bit

(SCICCR.3). Both modes use the TXWAKE flag bit (SCICTL1.3), RXWAKE

flag bit (SCIRXST.1), and the SLEEP flag bits (SCICTL1.2) to control the SCI

transmitter and receiver features of these modes.
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In both multiprocessor modes, the receipt sequence is:

1) At the receipt of an address block, the SCI port wakes up and requests an

interrupt (bit RX/BK INT ENA-SCICTL2.1 must be enabled to request an

interrupt). It reads the first frame of the block which contains the destina-

tion address.

2) A software routine is entered through the interrupt and checks the incom-

ing  address. This address byte is checked against its device address byte

stored in memory.

3) If the check shows that the block is addressed to the device CPU, the CPU

clears the SLEEP bit and reads the rest of the block; if not, the software

routine exits with the SLEEP bit still set and does not receive interrupts un-

til the next block start.

9.3.1 Idle-Line Multiprocessor Mode

In the Idle-line multiprocessor protocol (ADDR/IDLE MODE bit=0), blocks are

separated by having a longer idle time between the blocks than between

frames in the blocks. An idle time of ten or more high-level bits after a frame

indicates the start of a new block. The time of a single bit is calculated directly

from the baud value (bits per second). The idle-line multiprocessor commu-

nication format is shown in Figure 9–3 (ADDR/IDLE MODE bit is SCICCR.3).

Figure 9–3. Idle-Line Multiprocessor Communication Format

Address Data Last Data

First frame within block

Is address; it follows idle

period of 10 bits or more

Frame within

block

Idle period

less than

10 bits

Idle period 

of 10 bits

or more

ÇÇÇ
ÇÇÇ
ÇÇÇ
ÇÇÇ
ÇÇÇ
ÇÇÇ

ÇÇ
ÇÇ

ÇÇ
ÇÇ
ÇÇ
ÇÇ
ÇÇ
ÇÇ

ÇÇÇ
ÇÇÇ
ÇÇ
ÇÇ

Several blocks of frames

Data format

(Pins SCIRXD, SCITXD)

Data format expanded

Idle periods of 10 bits or more

separate the blocks

S
ta

rt

S
ta

rt

S
ta

rt

 One block of frames

The steps followed by the idle-line mode:

1) SCI wakes up after receipt of the block-start signal.

2) The processor now recognizes the next SCI interrupt.

3) The service routine compares the received address (sent by a remote

transmitter) to its own.
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4) If the CPU is being addressed, the service routine clears the SLEEP bit

and receives the rest of the data block.

5) If the CPU is not being addressed, the SLEEP bit remains set. This lets

the CPU continue to execute its main program without being interrupted

by the SCI port until the next detection of a block start.

There are two ways to send a block start signal:

� Method 1: Deliberately leave an idle time of ten bits or more by delaying

the time between the transmission of the last frame of data in the previous

block and the transmission of the address frame of the new block.

� Method 2: The SCI port first sets the TXWAKE bit (SCICTL1.3) to 1 before

writing to the SCITXBUF register. This sends an idle time of exactly 11 bits.

In this method, the serial communications line is not idle any longer than

necessary. (To transmit the idle time, a “don’t care” byte has to be written

to SCITXBUF after setting TXWAKE and before sending the address.)

Associated with the TXWAKE bit is the wake-up temporary (WUT) flag. WUT

is an internal flag, double-buffered with TXWAKE. When TXSHF is loaded

from SCITXBUF, WUT is loaded from TXWAKE and the TXWAKE bit is cleared

to 0. This arrangement is shown in Figure 9–4. (Figure 9–1, SCI Block Dia-

gram on page 9-4 shows this in additional detail.)

Figure 9–4. Double-Buffered WUT and TXSHF

TXWAKE

WUT

Transmit buffer (SCITXBUF)

TXSHF

1 8

Note: WUT = wake up temporary
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To send out a block start signal of exactly one frame time during a sequence

of block transmissions:

1) Write a 1 to the TXWAKE bit.

2) Write a data word (content not important: a don’t care) to the SCITXBUF

register (transmit data buffer) to send a block-start signal. (The first data

word written is suppressed while the block-start signal is sent out and ig-

nored after that.) When the TXSHF (transmit shift register) is free again,

SCITXBUF’s contents are shifted to TXSHF, the TXWAKE value is shifted

to WUT, and then TXWAKE is cleared.

Because TXWAKE was set to 1, the start, data, and parity bits are replaced

by an idle period of 11 bits transmitted following the last stop bit of the pre-

vious frame.

3) Write a new address value to SCITXBUF.

A don’t-care data word must first be written to register SCITXBUF so that the

TXWAKE bit value can be shifted to WUT. After the don’t-care data word is

shifted to the TXSHF register, the SCITXBUF (and TXWAKE if necessary) can

be written to again because TXSHF and WUT are both double-buffered.

The receiver operates regardless of the SLEEP bit. However, the receiver nei-

ther sets RXRDY nor the error status bits, nor does it request a receive inter-

rupt until an address frame is detected.

9.3.2 Address-Bit Multiprocessor Mode

In the address-bit protocol (ADDR/IDLE MODE bit=1), frames have an extra

bit, called an address bit, that immediately follows the last data bit. The ad-

dress bit is set to 1 in the first frame of the block and to 0 in all other frames.

The idle period timing is irrelevant (see Figure 9–5, ADDR/IDLE MODE bit is

SCICCR.3).

The TXWAKE bit value is placed in the address bit. During transmission, when

the SCITXBUF register and TXWAKE are loaded into the TXSHF register and

WUT respectively, TXWAKE is reset to 0 and WUT becomes the value of the

address bit of the current frame. Thus, to send an address:

1) Set the TXWAKE bit to 1 and write the appropriate address value to the

SCITXBUF register.

2) When this address value is transferred to the TXSHF register and shifted

out, its address bit is sent as a 1 which flags the other processors on the

serial link to read the address.



SCI Multiprocessor Communication

9-13Serial Communications Interface (SCI)

3) Since TXSHF and WUT are both double-buffered, SCITXBUF and

TXWAKE can be written to immediately after TXSHF and WUT are loaded.

4) To transmit non-address frames in the block, you should leave the

TXWAKE bit set to 0.

Note: Address-bit format for transfers of 11 bytes or less

As a general rule, the address-bit format is typically used for data frames of
11 bytes or less. This format adds one bit value (1 for an address frame, 0
for a data frame) to all data bytes transmitted. The idle-line format is typically
used for data frames of 12 bytes or more.

Figure 9–5. Address-Bit Multiprocessor Communication Format

MSB Parity

01Addr Data Addr

ÉÉÉÉÉÉ
Data format

(Pins SCIRXD, SCITXD)

Data format expanded

First frame within

block Is address

(Address bit is 1)

1

ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

Idle time is of

no significance

Next frame is address

for next block

(Address bit is 1)

Start LSB Stop

Address-bit mode frame example

Address bit

Frame within block

(Address bit is 0)

1

S
ta

rt

S
ta

rt

S
ta

rt

One block

Idle periods of no significance

Blocks of frames
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9.4 SCI Communication Format

The SCI asynchronous communication format uses either single line (one-

way) or two line (two-way) communications. In this mode, the frame consists

of a start bit, one to eight data bits, an optional even/odd parity bit, and one or

two stop bits (shown in Figure 9–6). There are eight SCICLK periods per data

bit.

The receiver begins operation on receipt of a valid start bit. A valid start bit is

identified by four consecutive internal SCICLK periods of zero bits as shown

in Figure 9–6. If any bit is not zero, then the processor starts over and begins

looking for another start bit.

For the bits following the start bit, the processor determines the bit value by

making three samples in the middle of the bits. These samples occur on the

fourth, fifth, and sixth SCICLK periods, and bit-value determination is on a ma-

jority (two out of three) basis. Figure 9–6 illustrates the asynchronous commu-

nication format for this with a start bit showing how edges are found and where

a majority vote is taken.

Since the receiver synchronizes itself to frames, the external transmitting and

receiving devices do not have to use a synchronized serial clock. The clock

can be generated locally.

Figure 9–6. SCI Asynchronous Communications Format

Majority

vote

Falling edge

detected

Start bit LSB of data

SCICLK

(internal)

SCIRXD

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1

8 SCICLK periods per data bit 8 SCICLK periods per data bit

9.4.1 Receiver Signals in Communication Modes

Figure 9–7 illustrates an example of receiver signal timing that assumes the

following conditions:

� Address-bit wake-up mode (address bit does not appear in idle-line mode)

� Six bits per character
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Figure 9–7. SCI RX Signals in Communication Modes

RXENA

RXRDY

1 6

3 4
52

0 1 2 3 4 5 0 1 2Start Stop StartAd PaSCIRXD pin

Frame

Notes: 1) Flag bit RXENA (SCICTL1.0) goes high to enable the receiver.

2) Data arrives on the SCIRXD pin, start bit detected.

3) Data is shifted from RXSHF to the receive buffer register (SCIRXBUF); an interrupt is requested. Flag bit RXRDY

(SCIRXST.6) goes high to signal that a new character has been received.

4) The program reads SCIRXBUF; flag RXRDY is automatically cleared.

5) The next byte of data arrives on the SCIRXD pin; the start bit is detected, then cleared.

6) Bit RXENA is brought low to disable the receiver. Data continues to be assembled in RXSHF but is not transferred

to the receive buffer register.

9.4.2 Transmitter Signals in Communication Modes

Figure 9–8 illustrates an example of transmitter signal timing that assumes the

following conditions:

� Address-bit wake-up mode (address bit does not appear in idle-line mode)

� Three bits per character
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Figure 9–8. SCI TX Signals in Communications Modes

Ad

TXENA

SCITXD pin

1 6

3 4

5

2

0 1 2 0 1 2

TXRDY

TX EMPTY

7

Start Start StopStopAd PaPa

First Character Second Character

Frame Frame

Notes: 1) Bit TXENA (SCICTL1.1) goes high, enabling the transmitter to send data.

2) SCITXBUF is written to; thus, (1) the transmitter is no longer empty, and (2) TXRDY goes low.

3) The SCI transfers data to the shift register (TXSHF). The transmitter is ready for a second character (TXRDY goes

high), and it requests an interrupt (to enable an interrupt, bit TX INT ENA — SCICTL2.0 — must be set).

4) The program writes a second character to SCITXBUF after TXRDY goes high (item 3).  (TXRDY goes low again

after the second character is written to SCITXBUF.)

5) Transmission of the first character is complete. TX EMPTY goes high temporarily. Transfer of the second character

to shift register TXSHF begins.

6) Bit TXENA goes low to disable the transmitter; the SCI finishes transmitting the current character.

7) Transmission of the second character is complete; transmitter is empty and ready for new character.
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9.5 SCI Port Interrupts

The internally-generated serial clock is determined by the device clock fre-

quency and the baud-select registers. The SCI uses the 16-bit value of the

baud-select registers to select one of 64k different serial clock rates.

The SCI’s receiver and transmitter can be interrupt controlled. The SCICTL2

register has one flag bit (TXRDY) that indicates active interrupt conditions, and

the SCIRXST register has two interrupt flag bits (RXRDY and BRKDT), plus

the RX ERROR interrupt flag which is a logical OR of the FE, OE & PE condi-

tions. The transmitter and receiver have separate interrupt-enable bits. When

not enabled, the interrupts are not asserted; however, the condition flags re-

main active, reflecting transmission and receipt status.

The SCI has independent peripheral interrupt vectors for the receiver and

transmitter. Peripheral interrupt requests can be either high priority or low

priority. This is indicated by the priority bits that are output from the peripheral

to the PIE controller. SCI interrupts can be programmed to assert the high or

low priority levels by the SCIRX PRIORITY (SCIPRI.5) and SCITX PRIORITY

(SCIPRI.6) control bits. When both RX and TX interrupt requests are made at

the same priority level, the receiver always has higher priority than the trans-

mitter, reducing the possibility of receiver overrun.

The operation of peripheral interrupts is described in the Peripheral Interrupt

Expansion controller chapter of the device specification of which this SCI

chapter is a part.

� If the RX/BK INT ENA bit (SCICTL2.1) is set, the receiver peripheral inter-

rupt request is asserted when one of the following events occurs:

� The SCI receives a complete frame and transfers the data in the

RXSHF register to the SCIRXBUF register. This action sets the

RXRDY flag (SCIRXST.6) and initiates an interrupt.

� A break detect condition occurs (the SCIRXD is low for ten bit periods

following a missing stop bit). This action sets the BRKDT flag bit

(SCIRXST.5) and initiates an interrupt.

� If the TX INT ENA bit (SCICTL2.0) is set, the transmitter peripheral inter-

rupt request is asserted whenever the data in the SCITXBUF register is

transferred to the TXSHF register, indicating that the CPU can write to the

TXBUF; this action sets the TXRDY flag bit (SCICTL2.7) and initiates an

interrupt.
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Note: Interrupt Generation

Interrupt generation due to the RXRDY and BRKDT bits are controlled by
RX/BK_INT_ENA bit (SCICTL2.1).

Interrupt generation due to the RX_ERROR bit is controlled by
RX_ERR_INT_ENA bit (SCICTL1.6).
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9.5.1 SCI Baud Rate Calculation

The internally generated serial clock is determined by the device clock fre-

quency (CLKOUT) and the baud rate select registers. The SCI uses the 16-bit

value of the baud select registers to select one of the 64K different serial clock

rates possible for a given device clock.

See the bit descriptions in section 9.6.3, Baud-Select Registers, for the formu-

la to use to calculate the SCI asynchronous baud.

Table 9–3. Asynchronous Baud Register Values for Common SCI Bit Rates

Device Clock Frequency, 20 MHz

Ideal Baud BRR Actual Baud % Error

2400 1041 2399 –0.04

4800 520 4798 –0.04

8192 304 8197 0.06

9600 259 9615 0.16

19200 129 19231 0.16

38400 64 38461 0.16

Note: The maximum CLKOUT frequency for ’24x devices is 20MHz.
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9.6 SCI Module Registers

The functions of the SCI are software configurable. Sets of control bits, orga-

nized into dedicated bytes, are programmed to initialize the desired SCI com-

munications format. This includes operating mode and protocol, baud value,

character length, even/odd parity or no parity, number of stop bits, and inter-

rupt priorities and enables. The SCI is controlled and accessed through regis-

ters listed in Figure 9–9, and described in the sections that follow.

Figure 9–9. SCI Control Registers

Address Register ÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍBit Number
RegisterAddress

Offset

Register

Mnemonic

ÍÍÍ
ÍÍÍ7

ÍÍÍÍ
ÍÍÍÍ6

ÍÍÍÍ
ÍÍÍÍ5

ÍÍÍ
ÍÍÍ4

ÍÍÍÍ
ÍÍÍÍ3

ÍÍÍ
ÍÍÍ2

ÍÍÍÍ
ÍÍÍÍ1

ÍÍÍ
ÍÍÍ0

Register

Name

7050h SCICCR

ÍÍÍ
ÍÍÍ
ÍÍÍ
ÍÍÍ

STOP

Bits

ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

EVEN/

ODD

Parity

ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

PARITY

Enable

ÍÍÍ
ÍÍÍ
ÍÍÍ
ÍÍÍ

LOOP

BACK

ENA

ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

ADDR/

IDLE

MODE

ÍÍÍ
ÍÍÍ
ÍÍÍ
ÍÍÍ

SCI

CHAR2

ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

SCI

CHAR1

ÍÍÍ
ÍÍÍ
ÍÍÍ
ÍÍÍ

SCI

CHAR0

Commu-

nication

Control

7051h SCICTL1
ÍÍÍ
ÍÍÍ
ÍÍÍ

Reserved
ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

RX ERR

INT ENA

ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

SW

Reset
Reserved
ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

TXWAKE
ÍÍÍ
ÍÍÍ
ÍÍÍ

SLEEP
ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

TXENA
ÍÍÍ
ÍÍÍ
ÍÍÍ

RXENA
SCI Con-

trol Reg.1

7052h SCIHBAUDÍÍÍ
ÍÍÍ

BAUD15

(MSB)
ÍÍÍÍ
ÍÍÍÍ

BAUD14ÍÍÍÍ
ÍÍÍÍ

BAUD13ÍÍÍ
ÍÍÍ

BAUD12ÍÍÍÍ
ÍÍÍÍ

BAUD11ÍÍÍ
ÍÍÍ

BAUD10ÍÍÍÍ
ÍÍÍÍ

BAUD9ÍÍÍ
ÍÍÍ

BAUD8
Baud Rate

(MSbyte)

7053h SCILBAUD

ÍÍÍ
ÍÍÍ
ÍÍÍ

BAUD7

ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

BAUD6

ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

BAUD5

ÍÍÍ
ÍÍÍ
ÍÍÍ

BAUD4

ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

BAUD3

ÍÍÍ
ÍÍÍ
ÍÍÍ

BAUD2

ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

BAUD1

ÍÍÍ
ÍÍÍ
ÍÍÍ

BAUD0

(LSB)

Baud Rate

(LSbyte)

7054h SCICTL2
ÍÍÍ
ÍÍÍ
ÍÍÍ

TXRDY
ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

TX

Empty
Reserved

ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

RX/BK

INTENA

ÍÍÍ
ÍÍÍ
ÍÍÍ

TX

INTENA

SCI Con-

trol Reg.2

7055h SCIRXSTÍÍÍ
ÍÍÍ

RX

Error
ÍÍÍÍ
ÍÍÍÍ

RXRDYÍÍÍÍ
ÍÍÍÍ

BRKDTÍÍÍ
ÍÍÍ

FEÍÍÍÍ
ÍÍÍÍ

OE ÍÍÍ
ÍÍÍ

PEÍÍÍÍ
ÍÍÍÍ

RXWAKE Reserved
Receiver

Status

7056h SCIRXEMU
ÍÍÍ
ÍÍÍ
ÍÍÍ

ERXDT7
ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

ERXDT6
ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

ERXDT5
ÍÍÍ
ÍÍÍ
ÍÍÍ

ERXDT4
ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

ERXDT3
ÍÍÍ
ÍÍÍ
ÍÍÍ

ERXDT2
ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

ERXDT1
ÍÍÍ
ÍÍÍ
ÍÍÍ

ERXDT0
EMU Data

Buffer

7057h SCIRXBUF
ÍÍÍ
ÍÍÍ
ÍÍÍ

RXDT7
ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

RXDT6
ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

RXDT5
ÍÍÍ
ÍÍÍ
ÍÍÍ

RXDT4
ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

RXDT3
ÍÍÍ
ÍÍÍ
ÍÍÍ

RXDT2
ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

RXDT1
ÍÍÍ
ÍÍÍ
ÍÍÍ

RXDT0

Receiver

Data 

Buffer

7058h ––– Reserved –––

7059h SCITXBUF
ÍÍÍ
ÍÍÍ
ÍÍÍ

TXDT7
ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

TXDT7
ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

TXDT5
ÍÍÍ
ÍÍÍ
ÍÍÍ

TXDT4
ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

TXDT3
ÍÍÍ
ÍÍÍ
ÍÍÍ

TXDT2
ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

TXDT1
ÍÍÍ
ÍÍÍ
ÍÍÍ

TXDT0

Transmit

Data 

Buffer

705Ah ––– Reserved –––

705Bh ––– Reserved –––

705Ch ––– Reserved –––

705Dh ––– Reserved –––

705Eh ––– Reserved –––

705Fh SCIPRI
ÍÍÍ
ÍÍÍ
ÍÍÍ

Reserved
ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

SCITX

Priority

ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

SCIRX

Priority

ÍÍÍ
ÍÍÍ
ÍÍÍ

SCI

SUSP

Soft

ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

SCI

SUSP

Free

Reserved

Priority/

Emulation

Control
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9.6.1 SCI Communication Control Register

The SCI communication control (SCICCR) register defines the character for-

mat, protocol, and communications mode used by the SCI.

Figure 9–10. Communication Control Register (SCICCR) — Address 7050h

7 6 5 4 3 2 1 0

STOP bits
EVEN/ODD

parity

PARITY

enable

LOOPBACK

ENA

ADDR/IDLE

mode
SCICHAR2 SCICHAR1 SCICHAR0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Note: R = Read access; W = Write access; value following dash (–) = value after reset

Bit 7 STOP BITS. SCI number of stop bits.

This bit specifies the number of stop bits transmitted. The receiver
checks for only one stop bit.

0 One stop bit

1 Two stop bits

Bit 6 PARITY. SCI parity odd/even selection.

If the PARITY ENABLE bit (SCICCR.5) is set, PARITY (bit 6) desig-
nates odd or even parity (odd or even number of bits with the value of 1
in both transmitted and received characters).

0 Odd parity

1 Even parity

Bit 5 PARITY ENABLE. SCI parity enable.

This bit enables or disables the parity function. If the SCI is in the ad-
dress-bit multiprocessor mode (set using bit 3 of this register), the ad-
dress bit is included in the parity calculation (if parity is enabled). For
characters of less than eight bits, the remaining unused bits should be
masked out of the parity calculation.

0 Parity disabled; no parity bit is generated during trans-
mission or is expected during reception

1 Parity is enabled

Bit 4 LOOP BACK ENA. Loop Back test mode enable.

This bit enables the Loop Back test mode where the Tx pin is internally
connected to the Rx pin.

0 Loop Back test mode disabled

1 Loop Back test mode enabled
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Bit 3 ADDR/IDLE MODE. SCI multiprocessor mode control bit.

This bit selects one of the multiprocessor protocols

0 Idle-line mode protocol selected

1 Address-bit mode protocol selected

Multiprocessor communication is different from the other communica-
tion modes because it uses SLEEP and TXWAKE functions (bits
SCICTL1.2 and SCICTL1.3, respectively). The idle-line mode is usu-
ally used for normal communications because the address-bit mode
adds an extra bit to the frame. The Idle-line mode does not add this
extra bit and is compatible with RS-232 type communications.

Bits 2–0 SCI CHAR2–0. Character-length control bits 2 - 0.

These bits select the SCI character length from one to eight bits. Char-
acters of less than eight bits are right-justified in SCIRXBUF and
SCIRXEMU and are padded with leading zeros in SCIRXBUF.
SCITXBUF doesn’t need to be padded with leading zeros. Table 9–4
lists the bit values and character lengths for SCI CHAR2-0 bits.

Table 9–4. SCI CHAR2–0 Bit Values and Character Lengths

SCI CHAR2–0 Bit Values (Binary)

SCI CHAR2 SCI CHAR1 SCI CHAR0 Character Length (Bits)

0 0 0 1

0 0 1 2

0 1 0 3

0 1 1 4

1 0 0 5

1 0 1 6

1 1 0 7

1 1 1 8
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9.6.2 SCI Control Register 1

The SCI control register 1 controls the receiver/transmitter enable, TXWAKE

and SLEEP functions, and the SCI software reset.

Figure 9–11.SCI Control Register 1 (SCICTL1) — Address 7051h

7 6 5 4 3 2 1 0

Reserved

ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

RX ERR

INT ENA

ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

SW

reset
Reserved

ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

TXWAKE

ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

SLEEP

ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

TXENA

ÍÍÍÍÍ
ÍÍÍÍÍ
ÍÍÍÍÍ

RXENA

R-0 RW-0 RW-0 R-0 RS-0 RW-0 RW-0 RW-0

Note: R = Read access; W = Write access; S = Set only, value following dash (–) = value after reset

Bit 7 Reserved. Reads return zero; writes have no effect.

Bit 6 RX ERR INT ENA. SCI receiver enable.

Setting this bit enables an interrupt if the RX ERROR bit (SCIRXST.7)
becomes set because of errors occurring.

0 Receive error interrupt disabled

1 Receive error interrupt enabled

Bit 5 SW RESET. SCI software reset (active low).

Writing a 0 to this bit initializes the SCI state machines and operating
flags (registers SCICTL2 and SCIRXST) to the reset condition.

The SW RESET bit does not affect any of the configuration bits.

All affected logic is held in the specified reset state until a 1 is written to
SW RESET (the bit values following a reset are shown beneath each
register diagram in this section). Thus, after a system reset, re-enable
the SCI by writing a 1 to this bit.

Clear this bit after a receiver break detect (BRKDT flag, bit
SCIRXST.5).

SW RESET affects the operating flags of the SCI, but it neither affects
the configuration bits nor restores the reset values. Table 9–5 lists the
affected flags.
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Table 9–5. SW RESET-Affected Flags

SCI Flag Register, Bit Value After SW RESET

TXRDY SCICTL2.7 1

TX EMPTY SCICTL2.6 1

RXWAKE SCIRXST.1 0

PE SCIRXST.2 0

OE SCIRXST.3 0

FE SCIRXST.4 0

BRKDT SCIRXST.5 0

RXRDY SCIRXST.6 0

RX ERROR SCIRXST.7 0

Once SW RESET is asserted, the flags are frozen until the bit is de-
asserted.

Bit 4 Reserved. Reads return zero; writes have no effect.

Bit 3 TXWAKE. SCI transmitter wakeup method select.

The TXWAKE bit controls selection of the data-transmit feature, de-
pending on which transmit mode (idle line or address bit) is specified
at the ADDR/IDLE MODE bit (SCICCR.3)

0 Transmit feature is not selected

1 Transmit feature selected is dependent on the mode:
idle-line or address-bit.
In idle-line mode: write a 1 to TXWAKE, then write data
to register SCITXBUF to generate an idle period of 11
data bits.

In address-bit mode: write a 1 to TXWAKE, then write
data to SCITXBUF to set the address bit for that frame
to 1.

TXWAKE is not cleared by the SW RESET bit (SCICTL1.5); it is
cleared by a system reset or the transfer of TXWAKE to the WUT flag.
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Bit 2 SLEEP. SCI sleep.

In a multiprocessor configuration, this bit controls the receive sleep
function. Clearing this bit brings the SCI out of the sleep mode.

0 Sleep mode disabled

1 Sleep mode enabled

The receiver still operates when the SLEEP bit is set; however, opera-
tion does not update the receive buffer ready bit (SCIRXST.6,
RXRDY) or the error status bits (SCIRXST.5–2: BRKDT, FE, OE, and
PE) unless the address byte is detected. This bit is not cleared when
the address byte is detected.

Bit 1 TXENA. SCI transmitter enable.

Data is transmitted through the SCITXD pin only when TXENA is set.
If reset, transmission is halted but only after all data previously written
to SCITXBUF has been sent.

0 Transmitter disabled

1 Transmitter enabled

Bit 0 RXENA. SCI receiver enable.

Data is received on the SCIRXD pin and is sent to the receive shift reg-
ister and then the receive buffers. This bit enables or disables the re-
ceiver (transfer to the buffers).

0 Prevent received characters from transfer into the SCIR-
XEMU and SCIRXBUF receive buffers

1 Send receive characters into the SCIRXEMU and
SCIRXBUF buffers

Clearing RXENA stops received characters from being transferred
into the two receive buffers and also stops the generation of receiver
interrupts. However, the receiver shift register can continue to as-
semble characters. Thus, if RXENA is set during the reception of a
character, the complete character will be transferred into the receive
buffer registers, SCIRXEMU and SCIRXBUF.
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9.6.3 Baud-Select Registers

The values in the baud-select registers (SCIHBAUD and SCILBAUD) specify

the baud rate for the SCI.

Figure 9–12. SCI Baud-Select MSbyte Register (SCIHBAUD) — Address 7052h

15 14 13 12 11 10 9 8

BAUD15

(MSB)
BAUD14 BAUD13 BAUD12 BAUD11 BAUD10 BAUD9 BAUD8

RW-0 RW-0 RW-0 RW-0 RS-0 RW-0 RW-0 RW-0

Note: R = Read access; W = Write access; S = Set only, value following dash (–) = value after reset

Figure 9–13. SCI Baud-Select LSbyte Register (SCILBAUD) — Address 7053h

7 6 5 4 3 2 1 0

BAUD7 BAUD6 BAUD5 BAUD4 BAUD3 BAUD2 BAUD1
BAUD0

(LSB)

RW-0 RW-0 RW-0 RW-0 RS-0 RW-0 RW-0 RW-0

Note: R = Read access; W = Write access; S = Set only, value following dash (–) = value after reset

Bits 15–0 BAUD15–BAUD0. SCI 16-bit baud selection.

Registers SCIHBAUD (MSbyte) and SCILBAUD (LSbyte) concate-
nate to form a 16-bit baud value, BRR.

The internally-generated serial clock is determined by the CLKOUT
and the two baud select registers. The SCI uses the 16-bit value of
these registers to select one of 64K serial clock rates for the commu-
nication modes.

The SCI baud rate is calculated using the following equation:

SCI Asynchronous Baud CLKOUT
(BRR 1) 8

=
+ ×

Alternatively,

BRR CLKOUT
SCI Asynchronous Baud 8

1= × –

Note that the above formulas are applicable only when
1 ≤ BRR ≤ 65535. If BRR = 0, then

SCI Asynchronous Baud CLKOUT
16

=

Where: BRR = the 16-bit value (in decimal) in the baud-select
registers.
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9.6.4 SCI Control Register 2

SCI control register 2 enables the receive-ready, break-detect, and transmit-

ready interrupts as well as transmitter-ready and -empty flags.

Figure 9–14. SCI Control Register 2 (SCICTL2) — Address 7054h

7 6 5–2 1 0

ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

TXRDY
ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

TX empty Reserved
ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

RX/BK

INT ENA

ÍÍÍÍÍ
ÍÍÍÍÍ
ÍÍÍÍÍ

TX INT

ENA

R-1 R-1 R-0 RW-0 RW-0

Note: R = Read access; W = Write access; value following dash (–) = value after reset

Bit 7 TXRDY. Transmitter buffer-register ready flag.

When set, this bit indicates that the transmit buffer register, SCITX-
BUF, is ready to receive another character. Writing data to the SCITX-
BUF automatically clears this bit. When set, this flag asserts a trans-
mitter interrupt request if the interrupt-enable bit TX INT ENA
(SCICTL2.0) is also set. TXRDY is set to 1 by enabling the SW RESET
bit (SCICTL.2) or by a system reset.

0 SCITXBUF is full

1 SCITXBUF is ready to receive the next character

Bit 6 TX EMPTY. Transmitter empty flag.

This flag’s value indicates the contents of the transmitter’s buffer reg-
ister (SCITXBUF) and shift register (TXSHF). An active SW RESET
(SCICTL1.2), or a system reset, sets this bit. This bit does not cause
an interrupt request.

0 Transmitter buffer or shift register or both are loaded
with data

1 Transmitter buffer and shift registers are both empty

Bits 5–2 Reserved.

Reads return zero; writes have no effect.

Bit 1 RX/BK INT ENA. Receiver-buffer/break interrupt enable.

This bit controls the interrupt request caused by either the RXRDY flag
or the BRKDT flag (bits SCIRXST.6 and .5) being set. However, RX/
BRK INT ENA does not prevent the setting of these flags.

0 Disable RXRDY/BRKDT interrupt

1 Enable RXRDY/BRKDT interrupt
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Bit 0 TX INT ENA. SCITXBUF-register interrupt enable.

This bit controls issuing an interrupt request caused by setting the
TXRDY flag bit (SCICTL2.7). However, it doesn’t prevent the TXRDY
flag from being set (being set indicates that register SCITXBUF is
ready to receive another character).

0 Disable TXRDY interrupt

1 Enable TXRDY interrupt

9.6.5 Receiver Status Register

The receiver status (SCIRXST) register contains seven bits that are receiver

status flags (two of which can generate interrupt requests). Each time a com-

plete character is transferred to the receive buffers (SCIRXEMU and SCIRX-

BUF), the status flags are updated. Each time the buffers are read, the flags

are cleared. Figure 9–16 on page 9-30 shows the relationships between sev-

eral of the register’s bits.

Figure 9–15. Receiver Status Register (SCIRXST) — Address 7055h

7 6 5 4 3 2 1 0

ÍÍÍÍÍ
ÍÍÍÍÍ
ÍÍÍÍÍ

RX

error

ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

RXRDY
ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

BRKDT
ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

FE
ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

OE
ÍÍÍÍÍ
ÍÍÍÍÍ
ÍÍÍÍÍ

PE
ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

RXWAKE Reserved

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

Note: R = Read access; W = Write access; value following dash (–) = value after reset

Bit 7 RX ERROR. SCI receiver-error flag.

The RX ERROR flag indicates that one of the error flags in the receiver
status register is set. RX ERROR is a logical OR of the break detect,
framing error, overrun, and parity error enable flags (bits 5–2: BRKDT,
FE, OE, and PE).

0 No error flags set

1 Error flag(s) set

A 1 on this bit will cause an interrupt if the RX ERR INT ENA bit
(SCICTL1.6) is set. This bit can be used for fast error-condition check-
ing during the interrupt service routine. This error flag cannot be
cleared directly; it is cleared by an active SW RESET or by a system
reset.
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Bit 6 RXRDY. SCI receiver-ready flag.

When a new character is ready to be read into the SCIRXBUF register,
the receiver sets this bit, and a receiver interrupt is generated if the
RX/BK INT ENA bit (SCICTL2.1) is a 1. RXRDY is cleared by reading
the SCIRXBUF register, by an active SW RESET, or by a system re-
set.

0 No  new character in SCIRXBUF

1 Character ready to be read from SCIRXBUF

Bit 5 BRKDT. SCI break-detect flag.

The SCI sets this bit when a break condition occurs. A break condition
occurs when the SCI receive data line (SCIRXD) remains continuous-
ly low for at least ten bits, beginning after a missing first stop bit. The
occurrence of a break causes a receiver interrupt to be generated if
the RX/BK INT ENA bit is a 1, but it does not cause the receiver buffer
to be loaded. A BRKDT interrupt can occur, even if the receiver
SLEEP bit is set to 1. BRKDT is cleared by an active SW RESET or by
a system reset. It is not cleared by receipt of a character after the
break is detected. In order to receive more characters, the SCI must
be reset by toggling the SW RESET bit or by a system reset.

0 No break condition

1 Break condition occurred

Bit 4 FE. SCI framing-error flag.

The SCI sets this bit when an expected stop bit is not found. Only the
first stop bit is checked. The missing stop bit indicates that synchro-
nization with the start bit has been lost and that the character is incor-
rectly framed. It is reset by clearing the SW RESET bit or by a system
reset.

0 No framing error detected

1 Framing error detected

Bit 3 OE. SCI overrun-error flag.

The SCI sets this bit when a character is transferred into registers
SCIRXEMU and SCIRXBUF before the previous character is fully
read by the CPU or DMAC. The previous character is overwritten and
lost. The OE flag is reset by an active SW RESET or by a system reset.

0 No overrun error detected

1 Overrun error detected
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Bit 2 PE. SCI parity-error flag.

This flag bit is set when a character is received with a mismatch be-
tween the number of 1s and its parity bit. The address bit is included in
the calculation.  If parity generation and detection is not enabled, the
PE flag is disabled and read as 0. The PE bit is reset by an active SW
RESET or a system reset.

0 No parity error or parity is disabled

1 Parity error is detected

Bit 1 RXWAKE. Receiver wakeup-detect flag.

A value of 1 in this bit indicates detection of a receiver wakeup condi-
tion. In the address bit multiprocessor mode (SCICCR.3 = 1),
RXWAKE reflects the value of the address bit for the character con-
tained in SCIRXBUF. In the idle-line multiprocessor mode, RXWAKE
is set if the SCIRXD data line is detected as idle. RXWAKE is a read-
only flag, cleared by one of the following:

� the transfer of the first byte after the address byte to SCIRXBUF

� the reading of SCIRXBUF

� an active SW RESET

� a system reset

Bit 0 Reserved. Reads return zero; writes have no effect.

Figure 9–16. Register SCIRXST Bit Associations — Address 7055h

7 6 5 4 3 2 1 0

RX error RXRDY BRKDT FE OE PE RXWAKE Reserved

RX ERROR = 1 when any of bits 5 through 2 is a 1 value

RXRDY or BRKDT causes an interrupt 

if RX/BK INT ENA (SCICTL2.1) = 1
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9.6.6 Receiver Data Buffer Registers

Received data is transferred from RXSHF to the SCIRXEMU and SCIRXBUF

registers. When the transfer is complete, the RXRDY flag (bit SCIRXST.6) is

set, indicating that the received data is ready to be read. Both registers contain

the same data; they have separate addresses but are not physically separate

buffers. The only difference is that reading SCIRXEMU does not clear the

RXRDY flag; however, reading SCIRXBUF clears the flag.

9.6.6.1 Emulation Data Buffer

Normal SCI data receive operations read the data received from the SCIRX-

BUF register (described below). The SCIRXEMU register is used principally

by the emulator (EMU) because it can continuously read the data received for

screen updates without clearing the RXRDY flag. SCIRXEMU is cleared by a

system reset.

This is the register which should be used in an Emulator watch window to view

the contents of SCIRXBUF register.

SCIRXEMU is not physically implemented; it is just a different address location

to access the SCIRXBUF register without clearing the RXRDY flag.

Figure 9–17. SCI Emulation Data Buffer Register (SCIRXEMU) — Address 7056h

7 6 5 4 3 2 1 0

ERXDT7 ERXDT6 ERXDT5 ERXDT4 ERXDT3 ERXDT2 ERXDT1 ERXDT0

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

Note: R = Read access; value following dash (–) = value after reset (x = indeterminate)

9.6.6.2 Receiver Data Buffer

When the current data received is shifted from RXSHF to the receive buffer,

flag bit RXRDY is set and the data is ready to be read. If the RX/BK INT ENA

bit (SCICTL2.1) is set, this shift also causes an interrupt. When SCIRXBUF is

read, the RXRDY flag is reset. SCIRXBUF is cleared by a system reset.

Figure 9–18. SCI Receiver Data Buffer (SCIRXBUF) — Address 7057h

7 6 5 4 3 2 1 0

RXDT7 RXDT6 RXDT5 RXDT4 RXDT3 RXDT2 RXDT1 RXDT0

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

Note: R = Read access; value following dash (–) is value after reset (x = indeterminate)
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9.6.7 Transmit Data Buffer Register

Data bits to be transmitted are written to the transmit data buffer (SCITXBUF)

register. The transfer of data from this register to the TXSHF transmitter shift

register sets the TXRDY flag (SCICTL2.7), indicating that SCITXBUF is ready

to receive another set of data.  If bit TX INT ENA (SCICTL2.0) is set, this data

transfer also causes an interrupt. These bits must be right-justified because

the leftmost bits are ignored for characters less than eight bits long.

Figure 9–19. Transmit Data Buffer Register (SCITXBUF) — Address 7059h

7 6 5 4 3 2 1 0

TXDT7 TXDT6 TXDT5 TXDT4 TXDT3 TXDT2 TXDT1 TXDT0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Note: R = Read access; W = Write access; value following dash (–) = value after reset

9.6.8 Priority Control Register

The priority control register (SCIPRI) contains the receiver and transmitter in-

terrupt priority select bits and controls the SCT operation on the XDS emulator

during program suspends such as hitting a breakpoint.

Figure 9–20. SCI Priority Control Register (SCIPRI) — Address 705Fh

7 6 5 4 3 2–0

Reserved

ÍÍÍÍÍ
ÍÍÍÍÍ
ÍÍÍÍÍ

SCITX

priority

ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

SCIRX

priority

ÍÍÍÍÍ
ÍÍÍÍÍ
ÍÍÍÍÍ

SCI soft

ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

SCI free Reserved

R-0 RW-0 RW-0 RW-0 RW-0 R-0

Note: R = Read access; W = Write access; value following dash (–) = value after reset

Bit 7 Reserved. Reads return zero; writes have no effect.

Bit 6 SCITX PRIORITY. SCI transmitter interrupt priority select. This bit
specifies priority level of the SCI transmitter interrupts.

0 Interrupts are high priority requests

1 Interrupts are low priority requests

Bit 5 SCIRX PRIORITY. SCI receiver interrupt priority select. This bit speci-
fies the priority level to the SCI receiver interrupts.

0 Interrupts are high priority requests

1 Interrupts are low priority requests
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Bits 4,3 SCI SUSP SOFT & FREE bits. These bits determine what occurs
when an emulation suspend occurs (for example, when the debugger
hits a breakpoint). The peripheral can continue whatever it is doing
(free-run mode), or if in stop mode, it can either stop immediately or
stop when the current operation (the current receive/transmit se-
quence) is complete.

Bit 4 Bit 3

Soft Free

0 0 Immediate stop on suspend

1 0 Complete current receive/transmit sequence before
stopping

X 1 Free run, continue SCI operation regardless of suspend

Bits 2–0 Reserved. Reads return zero; writes have no effect.
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Serial Peripheral Interface (SPI)

The serial peripheral interface (SPI) is a high-speed synchronous serial input/

output (I/O) port that allows a serial bit stream of programmed length (one to

sixteen bits) to be shifted into and out of the device at a programmed bit-trans-

fer rate. The SPI is normally used for communications between the DSP con-

troller and external peripherals or another controller. Typical applications in-

clude external I/O or peripheral expansion via devices such as shift registers,

display drivers, and analog-to-digital converters (ADCs).

Most SPI registers are eight bits in width (except for the data registers), a carry-

over from the 8-bit version of the SPI on the TMS320C240 device. The upper

8 bits return zeros when read.
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10.1 Differences vs. ’C240 SPI

This SPI has 16-bit transmit and receive capability, with double-buffered trans-

mit and double-buffered receive. All data registers are 16-bits wide.

The SPI is no longer limited to a maximum transmission rate of CLKOUT / 8

in slave mode. The maximum transmission rate in both slave mode and master

mode is now CLKOUT / 4.

Note that there is a software change required since writes of transmit data to

the serial data register, SPIDAT (and the new transmit buffer, SPITXBUF),

must be left-justified. On the ’C240, these writes had to be left-justified within

an 8-bit register. Now they must be left justified within a 16-bit register.

The control and data bits for general purpose bit I/O multiplexing have been

removed from this peripheral, along with the associated registers, SPIPC1

(704Dh) and SPIPC2 (704Eh). These bits are now in the General Purpose I/O

registers.

10.1.1 SPI Physical Description

The SPI module, as shown in Figure 10–1, consists of:

� Four I/O pins:

� SPISIMO (SPI slave in, master out)

� SPISOMI (SPI slave out, master in)

� SPICLK (SPI clock)

� SPISTE (SPI slave transmit enable)

� Master and slave mode operations

� SPI serial receive buffer register (SPIRXBUF)

This buffer register contains the data that is received from the network and

that is ready for the CPU to read

� SPI serial transmit buffer register (SPITXBUF)

This buffer register contains the next character to be transmitted when the

current transmit has completed

� SPI serial data register (SPIDAT). 

This data shift register serves as the transmit/receive shift register

� SPICLK phase and polarity control

� State control logic
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� Memory-mapped control and status registers

The basic function of the strobe (SPISTE) pin is to act as a transmit enable in-

put for the SPI module in slave mode. It stops the shift register so it cannot re-

ceive data and puts the SPISOMI pin in the high-impedance state.

Figure 10–1. SPI Module Block Diagram
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† The diagram is shown in slave mode.
‡ The SPISTE pin is shown enabled, meaning the data can be transmitted or received in this mode. Note that switches SW1, SW2,

and SW3 are closed in this configuration. The “switches” are assumed to close when their “control signal” is high.
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10.2 SPI Control Registers

Nine registers inside the SPI module (listed in Table 10–1) control the SPI op-

erations:

� SPICCR (SPI configuration control register). Contains control bits used for

SPI configuration

� SPI module software reset

� SPICLK polarity selection

� Four SPI character-length control bits

� SPICTL (SPI operation control register). Contains control bits for data

transmission

� Two SPI interrupt enable bits

� SPICLK phase selection

� Operational mode (master/slave)

� Data transmission enable

� SPISTS (SPI status register). Contains two receiver buffer status bits

� RECEIVER OVERRUN

� SPI INT FLAG

� SPIBRR (SPI baud rate register). Contains seven bits that determine the

bit transfer rate

� SPIRXEMU (SPI receive emulation buffer register). Contains the received

data. This register is used for emulation purposes only. The SPIRXBUF

should be used for normal operation

� SPIRXBUF (SPI receive buffer — the serial receive buffer register). Con-

tains the received data

� SPITXBUF (SPI transmit buffer — the serial transmit buffer register). Con-

tains the next character to be transmitted

� SPIDAT (SPI data register). Contains data to be transmitted by the SPI,

acting as the transmit/receive shift register. Data written to SPIDAT is

shifted out on subsequent SPICLK cycles. For every bit shifted out of the

SPI, a bit from the receive bit stream is shifted into the other end of the shift

register

� SPIPRI (SPI priority register). Contains bits that specify interrupt priority

and determine SPI operation on the XDS emulator during program sus-

pensions
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Table 10–1. Addresses of SPI Control Registers

Address Register Name

7040h SPICCR SPI configuration control register

7041h SPICTL SPI operation control register

7042h SPISTS SPI status register

7043h Reserved

7044h SPIBRR SPI baud rate register

7045h Reserved

7046h SPIRXEMU SPI receive emulation buffer register

7047h SPIRXBUF SPI serial receive buffer register

7048h SPITXBUF SPI serial transmit buffer register

7049h SPIDAT SPI serial data register

704Ah Reserved

704Bh Reserved

704Ch Reserved

704Dh Reserved

704Eh Reserved

704Fh SPIPRI SPI priority control register
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10.3 SPI Operation

This section describes the operation of the SPI. Included are explanations of

the operation modes, interrupts, data format, clock sources, and initialization.

Typical timing diagrams for data transfers are given.

10.3.1 Introduction to Operation

Figure 10–2 shows typical connections of the SPI for communications be-

tween two controllers: a master and a slave.

The master initiates data transfer by sending the SPICLK signal. For both the

slave and the master, data is shifted out of the shift registers on one edge of

the SPICLK and latched into the shift register on the opposite SPICLK clock

edge. If the CLOCK PHASE bit (SPICTL.3) is high, data is transmitted and re-

ceived a half-cycle before the SPICLK transition (see section 10.3.2, SPI Mod-

ule Slave and Master Operation Modes, on page 10-7). As a result, both con-

trollers send and receive data simultaneously. The application software deter-

mines whether the data is meaningful or dummy data. There are three possible

methods for data transmission:

� Master sends data; slave sends dummy data.

� Master sends data; slave sends data.

� Master sends dummy data; slave sends data.

The master can initiate data transfer at any time because it controls the

SPICLK signal. The software, however, determines how the master detects

when the slave is ready to broadcast data.
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Figure 10–2. SPI Master/Slave Connection
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10.3.2 SPI Module Slave and Master Operation Modes

The SPI can operate in master or slave mode. The MASTER/SLAVE bit

(SPICTL.2) selects the operating mode and the source of the SPICLK signal.

Master Mode

In the master mode (MASTER/SLAVE = 1), the SPI provides the serial clock

on the SPICLK pin for the entire serial communications network. Data is output

on the SPISIMO pin and latched from the SPISOMI pin.

The SPIBRR determines both the transmit and receive bit transfer rate for the

network. The SPIBRR can select 126 different data transfer rates

Data written to SPIDAT or SPITXBUF initiates data transmission on the SPISI-

MO pin, MSB (most significant bit) first. Simultaneously, received data is

shifted through the SPISOMI pin into the LSB (least significant bit) of SPIDAT.

When the selected number of bits has been transmitted, the received data is

transferred to the SPIRXBUF (buffered receiver) for the CPU to read. Data is

stored right-justified in SPIRXBUF.

When the specified number of data bits has been shifted through SPIDAT, the

following events occur:

� SPIDAT contents are transferred to SPIRXBUF.

� SPI INT FLAG bit (SPISTS.6) is set to 1.
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� If there is valid data in the transmit buffer SPITXBUF, as indicated by the

TXBUF FULL bit in SPISTS, this data is transferred to SPIDAT and is

transmitted; otherwise, SPICLK stops after all bits have been shifted out

of SPIDAT.

� If the SPI_INT_ENA bit (SPICTL.0) is set to 1, an interrupt is asserted.

In a typical application, the SPISTE pin could serve as a chip enable pin for

slave SPI devices. (Drive this slave select pin low before transmitting master

data to the slave device, and drive this pin high again after transmitting the

master data.)

Slave Mode 

In the slave mode (MASTER/SLAVE = 0), data shifts out on the SPISOMI pin

and in on the SPISIMO pin. The SPICLK pin is used as the input for the serial

shift clock, which is supplied from the external network master. The transfer

rate is defined by this clock. The SPICLK input frequency should be no greater

than the CLKOUT frequency divided by 4.

Data written to SPIDAT or SPITXBUF is transmitted to the network when ap-

propriate edges of the SPICLK signal are received from the network master.

Data written to the SPITXBUF register will be transferred to the SPIDAT regis-

ter when all bits of the character to be transmitted have been shifted out of SPI-

DAT. If no character is currently being transmitted when SPITXBUF is written

to, the data will be transferred immediately to SPIDAT. To receive data, the SPI

waits for the network master to send the SPICLK signal and then shifts the data

on the SPISIMO pin into SPIDAT. If data is to be transmitted by the slave simul-

taneously, and SPITXBUF has not been previously loaded, the data must be

written to SPITXBUF or SPIDAT before the beginning of the SPICLK signal.

When the TALK bit (SPICTL.1) is cleared, data transmission is disabled, and

the output line (SPISOMI) is put into the high-impedance state. If this occurs

while a transmission is active the current character is completely transmitted

even though SPISOMI is forced into the high-impedance state. This ensures

that the SPI is still able to receive incomming data correctly. ThisTALK bit al-

lows many slave devices to be tied together on the network, but only one slave

at a time is allowed to drive the SPISOMI line.

The SPISTE pin operates as the slave select pin. An active-low signal on the

SPISTE pin allows the slave SPI to transfer data to the serial data line; an inac-

tive high signal causes the slave SPI’s serial shift register to stop and its serial

output pin to be put into the high-impedance state. This allows many slave de-

vices to be tied together on the network, although only one slave device is se-

lected at a time.
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10.4 SPI Interrupts

Five control bits are used to initialize the SPI’s interrupts:

� SPI_INT_ENA bit (SPICTL.0)

� SPI_INT_FLAG bit (SPISTS.6)

� OVERRUN_INT_ENA bit (SPICTL.4)

� RECEIVER_OVERRUN_FLAG bit (SPISTS.7)

� SPI_PRIORITY bit (SPIPRI.6)

10.4.1 SPI_INT_ ENA Bit (SPICTL.0)

When the SPI interrupt enable bit is set and an interrupt condition occurs, the

corresponding interrupt is asserted.

0 = Disable SPI interrupts

1 = Enable SPI interrupts

10.4.2 SPI_INT_FLAG Bit (SPISTS.6)

This status flag indicates that a character has been placed in the SPI receiver

buffer and is ready to be read.

When a complete character has been shifted into or out of SPIDAT, the

SPI_INT_FLAG bit (SPISTS.6) is set, and an interrupt is generated if enabled

by the SPI_INT_ENA bit. The interrupt flag remains set until it is cleared by one

of the following events:

� The interrupt is acknowledged (this is different from the ’C240).

� The CPU reads the SPIRXBUF (reading the SPIRXEMU does not clear

the SPI INT FLAG).

� The device enters IDLE2 or HALT mode with an IDLE instruction.

� Software sets the SPI_SW_RESET bit (SPICCR.7).

� A system reset occurs.

When the SPI_INT_FLAG bit is set, a character has been placed into the

SPIRXBUF and is ready to be read. If the CPU does not read the character by

the time the next complete character has been received, the new character is

written into SPIRXBUF, and the RECEIVER_OVERRUN flag bit (SPISTS.7)

is set.
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10.4.3 OVERRUN INT ENA Bit (SPICTL.4)

Setting the overrun interrupt enable bit allows the assertion of an interrupt

whenever the RECEIVER_OVERRUN_FLAG bit (SPISTS.7) is set by hard-

ware. Interrupts generated by SPISTS.7 and by the SPI_INT_FLAG

(SPISTS.6) bit share the same interrupt vector.

0 Disable RECEIVER_OVERRUN flag bit interrupts

1 Enable RECEIVER_OVERRUN flag bit interrupts

10.4.4 RECEIVER_OVERRUN_FLAG Bit (SPISTS.7)

The RECEIVER_OVERRUN_FLAG bit is set whenever a new character is re-

ceived and loaded into the SPIRXBUF before the previously received charac-

ter has been read from the SPIRXBUF. The RECEIVER_OVERRUN_FLAG

bit must be cleared by software.

10.4.5 SPI PRIORITY bit (SPIPRI.6)

The value of the SPI_PRIORITY bit determines the priority of the interrupt re-

quest from the SPI.

0 Interrupts are high priority requests

1 Interrupts are low priority requests

10.4.6 Data Format

Four bits (SPICCR.3–0) specify the number of bits (1 to 16) in the data charac-

ter. This information directs the state control logic to count the number of bits

received or transmitted to determine when a complete character has been pro-

cessed. The following statements apply to characters with fewer than 16 bits:

� Data must be left justified when written to SPIDAT and SPITXBUF.

� Data read back from SPIRXBUF is right justified.

� SPIRXBUF contains the most recently received character, right justified,

plus any bits that remain from previous transmission(s) that have been

shifted to the left (shown in Example 10–1).
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Example 10–1. Transmission of Bit from SPIRXBUF

Conditions:

1) Transmission character length = 1 bit (specified in bits SPICCR.3–0)

2) The current value of SPIDAT = 737Bh

SPIDAT (before transmission)

0 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1

SPIDAT (after transmission)

(TXed) 0 ← 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 x ← (RXed)

SPIRXBUF (after transmission)

1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 x

Note: x = 1 if SPISOMI data is high; x = 0 if SPISOMI data is low; master mode is assumed.

10.4.7 Baud Rate and Clocking Schemes

The SPI module supports 125 different baud rates and four different clock

schemes. Depending on whether the SPI clock is in slave or master mode, the

SPICLK pin can receive an external SPI clock signal or provide the SPI clock

signal, respectively.

� In the slave mode, the SPI clock is received on the SPICLK pin from the

external source, and can be no greater than the CLKOUT frequency 

divided by 4.

� In the master mode, the SPI clock is generated by the SPI and is output

on the SPICLK pin, and can be no greater than the CLKOUT frequency

divided by 4.

Baud Rate Determination

Equation 10–1 shows how to determine the SPI baud rates.

Equation 10–1. SPI Baud-Rate Calculations

� For SPIBRR = 3 to 127:

SPI Baud Rate =
CLKOUT

(SPIBRR +  1)
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� For SPIBRR = 0, 1, or 2:

SPI Baud Rate =
CLKOUT

4

where:

CLKOUT = CPU clock frequency of the device

SPIBRR = Contents of the SPIBRR in the master SPI device

To determine what value to load into SPIBRR, you must know the device sys-

tem clock (CLKOUT) frequency (which is device-specific) and the baud rate

at which you will be operating.

Example 10–2 shows how to determine the maximum baud rate at which a

’C24x can communicate. Assume that CLKOUT = 20 MHz.

Example 10–2. Maximum Baud-Rate Calculation

SPI Baud Rate =
CLKOUT

(SPIBRR +  1)

=
20  10

(3 +  1)

=  5  10  bps6

×

×

6

The maximum master baud rate would be 5.0 Mbps.

10.4.8 SPI Clocking Schemes

The CLOCK POLARITY (SPICCR.6) and CLOCK PHASE (SPICTL.3) bits

control four different clocking schemes on the SPICLK pin. The CLOCK PO-

LARITY bit selects the active edge of the clock, either rising or falling. The

CLOCK PHASE bit selects a half-cycle delay of the clock. The four different

clocking schemes are as follows:

� Falling Edge Without Delay. The SPI transmits data on the falling edge of

the SPICLK and receives data on the rising edge of the SPICLK.

� Falling Edge With Delay. The SPI transmits data one half-cycle ahead of

the falling edge of the SPICLK signal and receive data on the falling edge

of the SPICLK signal.

� Rising Edge Without Delay. The SPI transmits data on the rising edge of

the SPICLK signal and receive data on the falling edge of the SPICLK sig-

nal.
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� Rising Edge With Delay. The SPI transmits data one half-cycle ahead of

the rising edge of the SPICLK signal and receives data on the rising edge

of the SPICLK signal.

The selection procedure for the SPI clocking scheme is shown in Table 10–2.

Examples of these four clocking schemes relative to transmitted and received

data are shown in Figure 10–3.

Table 10–2. SPI Clocking Scheme Selection Guide

SPICLK Scheme
CLOCK POLARITY

(SPICCR.6)

CLOCK PHASE

(SPICTL.3)

Rising edge without delay 0 0

Rising edge with delay 0 1

Falling edge without delay 1 0

Falling edge with delay 1 1

Figure 10–3. SPICLK Signal Options

SPICLK cycle

number
1 2 3 4 5 6 7 8

SPICLK

(Falling edge

without delay)

SPICLK

(Falling edge

with delay)

SPISIMO/

SPISOMI

SPISTE

MSB LSB

Note: Previous data bit.

(Into slave)

Receive latch

 points

SPICLK

(Rising edge

without delay)

SPICLK

(Rising edge

with delay)

See note
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For the SPI, the SPICLK symmetry is retained only when the result of (SPIBRR

+ 1) is an even value. When (SPIBRR + 1) is an odd value and SPIBRR is

greater than 3, the SPICLK becomes asymmetrical. The low pulse of the

SPICLK is one CLKOUT longer than the high pulse when the CLOCK POLAR-

ITY bit is clear (0). When the CLOCK POLARITY bit is set to 1, the high pulse

of the SPICLK is one CLKOUT longer than the low pulse, as shown in

Figure 10–4.

Figure 10–4. SPI: SPICLK-CLKOUT Characteristic when (BRR + 1) is Odd, BRR > 3, and
CLOCK POLARITY = 1

CLKOUT

SPICLK

2 cycles 3 cycles 2 cycles

10.4.9 Initialization Upon Reset

A system reset forces the SPI peripheral module into the following default con-

figuration:

� The unit is configured as a slave module (MASTER/SLAVE = 0).

� The transmit capability is disabled (TALK = 0).

� Data is latched at the input on the falling edge of the SPICLK signal.

� Character length is assumed to be one bit.

� The SPI interrupts are disabled.

� Data in SPIDAT  is reset to 0000h.

� SPI module pin functions are selected as general-purpose inputs (this is

done in output control register B [OCRB]).

To change this SPI configuration:

1) Clear the SPI SW RESET bit (SPICCR.7) to 0 to force the SPI to the reset

state.

2) Initialize the SPI configuration, format, baud rate, and pin functions as de-

sired.

3) Set the SPI SW RESET bit to 1 to release the SPI from the reset state.

4) Write to SPIDAT or SPITXBUF (this initiates the communication process

in the master).

5) Read SPIRXBUF after the data transmission has completed (SPISTS.6

= 1) to determine what data was received.
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10.4.10 Proper SPI Initialization Using the SPI SW RESET Bit

To prevent unwanted and unforeseen events from occurring during or as a re-

sult of initialization changes, clear the SPI SW RESET bit (SPICCR.7) before

making initialization changes,  and then set this bit after initialization is com-

plete.

Do not change SPI configuration when communication is in
progress.

10.4.11 Data Transfer Example

The timing diagram, shown in Figure 10–5, illustrates an SPI data transfer be-

tween two devices using a character length of five bits with the SPICLK being

symmetrical.

The timing diagram with SPICLK asymmetrical (Figure 10–4, SPI: SPICLK-

CLKOUT Characteristic when (BRR + 1) is Odd, BRR > 3, and CLOCK PO-

LARITY = 1) shares similar characterizations with Figure 10–5 except that the

data transfer is one CLKOUT cycle longer per bit during the low pulse (CLOCK

POLARITY = 0) or during the high pulse (CLOCK POLARITY = 1) of the

SPICLK.

Figure 10–5, Five Bits per Character, is applicable for 8-bit SPI only and is not

for ‘24x devices that are capable of working with 16-bit data. The figure is

shown for illustrative purposes only.
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Figure 10–5. Five Bits per Character

A C D E F G H I J

7 6 5 4 3 7 6 345

7 6 5 4 3 7 6 345

Master SPI

Int flag

Slave SPI

Int flag

SPISOMI

from slave

Clock Polarity = 0

Clock Phase = 0

Clock Polarity = 1

Clock Phase = 0

SPISIMO

from master

Clock Polarity = 1

Clock Phase = 1

Clock Polarity = 0

Clock Phase = 1

B

SPISTE

K

SPICLK signal options:

A. Slave writes 0D0h to SPIDAT and waits for the master to shift out the data.

B. Master sets the slave SPISTE signal low (active).

C. Master writes 058h to SPIDAT, which starts the transmission procedure.

D. First byte is finished and sets the interrupt flags.

E. Slave reads 0Bh from its SPIRXBUF (right justified).

F Slave writes 04Ch to SPIDAT and waits for the master to shift out the data.

G. Master writes 06Ch to SPIDAT, which starts the transmission procedure.

H. Master reads 01Ah from the SPIRXBUF (right justified).

I. Second byte is finished and sets the interrupt flags.

J. Master reads 89h and the slave reads 8Dh from their respective SPIRXBUF. After the user’s software masks off the

unused bits, the master receives 09h and the slave receives 0Dh.

K. Master clears the slave SPISTE signal high (inactive).
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10.5 SPI Control Registers

The SPI is controlled and accessed through registers in the control register file.

Figure 10–6 lists the SPI control registers and bit numbers.

Figure 10–6. SPI Control Registers

Addr. Register
Bit number

Addr.

Offset

Register

Name 15–8 7 6 5 4 3 2 1 0

7040h SPICCR Reserved
SPI SW

Reset

Clock

Polarity
Reserved

SPI

CHAR3

SPI

CHAR2

SPI

CHAR1

SPI

CHAR0

7041h SPICTL Reserved Reserved

Overrun

INT

ENA

Clock

Phase

Master/

Slave
TALK

SPI INT

ENA

7042h SPISTS Reserved
Receiver

Overrun

SPI INT

Flag

TX

BUF

Full

Reserved

7043h — Reserved Reserved

7044h SPIBRR Reserved Reserved
SPI Bit

Rate 6

SPI Bit

Rate 5

SPI Bit

Rate 4

SPI Bit

Rate 3

SPI Bit

Rate 2

SPI Bit

Rate 1

SPI Bit

Rate 0

7045h — Reserved Reserved

7046h SPIRXEMU ERXB15–8 ERXB7 ERXB6 ERXB5 ERXB4 ERXB3 ERXB2 ERXB1 ERXB0

7047h SPIRXBUF RXB15–8 RXB7 RXB6 RXB5 RXB4 RXB3 RXB2 RXB1 RXB0

7048h SPITXBUF TXB15–8 TXB7 TXB6 TXB5 TXB4 TXB3 TXB2 TXB1 TXB0

7049h SPIDAT SDAT15–8 SDAT7 SDAT6 SDAT5 SDAT4 SDAT3 SDAT2 SDAT1 SDAT0

704Ah — Reserved Reserved

704Bh — Reserved Reserved

704Ch — Reserved Reserved

704Dh — Reserved Reserved

704Eh — Reserved Reserved

704Fh SPIPRI Reserved Reserved
SPI

Priority

SPI

SUSP

Soft

SPI

SUSP

Free

Reserved
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10.5.1 SPI Configuration Control Register (SPICCR)

The SPI Configuration Control Register (SPICCR) controls the setup of the

SPI for operation.

Figure 10–7. SPI Configuration Control Register (SPICCR) — Address 7040h

7 6
ÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍ

5–4 3 2 1 0

SPI SW

reset

Clock 

polarity
Reserved SPICHAR3 SPICHAR2 SPICHAR1 SPICHAR0

RW-0 RW-0

ÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍ

R-0 RW-0 RW-0 RW-0 RW-0

Note: R = Read access; W = Write access; value following dash (–) = value after reset

Bit 7 SPI_SW_RESET. SPI Software Reset. When changing configura-
tion, you should clear this bit before the changes and set this bit before
resuming operation. (See Section 10.4.10 on page 10-15.)

0 Initializes the SPI operating flags to the reset condition.

Specifically, the RECEIVER_OVERRUN flag bit
(SPISTS.7), the SPI_INT_FLAG bit (SPISTS.6), and the
TXBUF_FULL flag (SPISTS.5) are cleared. The SPI con-
figuration remains unchanged. If the module is operating
as a master, the SPICLK signal output returns to its inac-
tive level.

1 SPI is ready to transmit or receive the next character.

When the SPI SW RESET bit is a 1, a character written to
the transmitter will not be shifted out when this bit clears.
A new character must be written to the serial data register.

Bit 6 CLOCK_POLARITY. Shift Clock Polarity. This bit controls the polarity
of the SPICLK signal. CLOCK POLARITY and CLOCK PHASE
(SPICTL.3) control four clocking schemes on the SPICLK pin. See
Section 10.4.8, SPI Clocking Schemes, on page 10-12.

0 Data is output on the rising edge and input on the falling
edge. When no SPI data is sent, SPICLK is at low level.

The data input and output edges depend on the value of
the CLOCK PHASE (SPICTL.3) bit as follows:

� CLOCK PHASE = 0: Data is output on the rising edge of

the SPICLK signal; input data is latched on the falling

edge of the SPICLK signal.

� CLOCK PHASE = 1: Data is output one half-cycle before

the first rising edge of the SPICLK signal and on subse-

quent falling edges of the SPICLK signal; input data is

latched on the rising edge of the SPICLK signal.
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1 Data is output on the falling edge and input on the rising
edge. When no SPI data is sent, SPICLK is at high level.

The data input and output edges depend on the value of
the CLOCK PHASE bit (SPICTL.3) as follows:

� CLOCK PHASE = 0: Data is output on the falling edge

of the SPICLK signal; input data is latched on the rising

edge of the SPICLK signal.

� CLOCK PHASE = 1: Data is output one half-cycle before

the first falling edge of the SPICLK signal and on subse-

quent rising edges of the SPICLK signal; input data is

latched on the falling edge of the SPICLK signal.

Bits 5–4 Reserved. Reads return zero; writes have no effect.

Bits 3–0 SPI CHAR3–SPI CHAR0. Character Length Control Bits 3–0. These
four bits determine the number of bits to be shifted in or out as a single
character during one shift sequence.

Table 10–3 lists the character length selected by the bit values.

Table 10–3. Character Length Control Bit Values

SPI

CHAR3

SPI

CHAR2

SPI

CHAR1

SPI

CHAR0 Character Length

0 0 0 0 1

0 0 0 1 2

0 0 1 0 3

0 0 1 1 4

0 1 0 0 5

0 1 0 1 6

0 1 1 0 7

0 1 1 1 8

1 0 0 0 9

1 0 0 1 10

1 0 1 0 11

1 0 1 1 12

1 1 0 0 13

1 1 0 1 14

1 1 1 0 15

1 1 1 1 16
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10.5.2 SPI Operation Control Register (SPICTL)

The SPICTL operation control register controls data transmission, the SPI’s

ability to generate interrupts, the SPICLK phase, and the operational mode

(slave or master).

Figure 10–8. SPI Operation Control Register (SPICTL) — Address 7041h

7–5 4 3 2 1 0

Reserved

ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

OVERRUN

INT_ENA

ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

Clock

phase

ÍÍÍÍÍ
ÍÍÍÍÍ
ÍÍÍÍÍ

Master/

slave

ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

TALK

ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

SPI_INT

ENA

R-0 RW-0 RW-0 RW-0 RW-0 RW-0

Note: R = Read access; W = Write access; value following dash (–) = value after reset

Bits 7–5 Reserved. Reads return zero; writes have no effect.

Bit 4 OVERRUN_INT_ENA. Overrun Interrupt Enable. Setting this bit
causes an interrupt to be generated when the RECEIVER_OVER-
RUN_FLAG bit (SPISTS.7) is set by hardware. Interrupts generated
by the RECEIVER_OVERRUN_FLAG bit and the SPI_INT_FLAG bit
(SPISTS.6) share the same interrupt vector.

0 Disable RECEIVER_OVERRUN_FLAG bit (SPISTS.7)
interrupts

1 Enable RECEIVER_OVERRUN_FLAG bit (SPISTS.7)
interrupts

Bit 3 CLOCK PHASE. SPI Clock Phase Select. This bit controls the phase
of the SPICLK signal.

0 Normal SPI clocking scheme, depending on the CLOCK
POLARITY bit (SPICCR.6)

1 SPICLK signal delayed by one half-cycle; polarity deter-
mined by the CLOCK_POLARITY bit

CLOCK_PHASE and CLOCK_POLARITY (SPICCR.6) bits
make four different clocking schemes possible. (See
Figure 10–3 on page 10-13). When operating with CLOCK
PHASE high, the SPI (master or slave) makes the first bit of
data available after SPIDAT is written and before the first
edge of the SPICLK signal, regardless of which SPI mode is
being used.

Bit 2 MASTER/SLAVE. SPI Network Mode Control. This bit determines
whether the SPI is a network master or slave. During reset initializa-
tion, the SPI is automatically configured as a network slave.

0 SPI configured as a slave

1 SPI configured as a master
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Bit 1 TALK. Master/Slave Transmit Enable. The TALK bit can disable data
transmission (master or slave) by placing the serial data output in the
high-impedance state. If this bit is disabled during a transmission, the
transmit shift register continues to operate until the previous character
is shifted out. When the TALK bit is disabled, the SPI is still able to re-
ceive characters and update the status flags. TALK is cleared (dis-
abled) by a system reset.

0 Disables transmission:

� Slave mode operation: If not previously configured as a

general-purpose I/O pin, the SPISOMI pin will be put in

the high-impedance state.

� Master mode operation: If not previously configured as

a general-purpose I/O pin, the SPISIMO pin will be put

in the high-impedance state.

1 Enables transmission

For the 4-pin option, ensure to enable the receiver’s
SPISTB input pin.

Bit 0 SPI_INT_ENA. SPI Interrupt Enable. This bit controls the SPI’s ability
to generate a transmit/receive interrupt. The SPI_INT_FLAG bit
(SPISTS.6) is unaffected by this bit.

0 Disables interrupt

1 Enables interrupt
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10.5.3 SPI Status Register (SPISTS)

The SPISTS register contains the receive buffer status bits.

Figure 10–9. SPI Status Register (SPISTS) — Address 7042h

7 6 5 4–0

ÍÍÍÍÍ
ÍÍÍÍÍ
ÍÍÍÍÍ
ÍÍÍÍÍ

Receiver

Overrun

flag�

ÍÍÍÍÍ
ÍÍÍÍÍ
ÍÍÍÍÍ
ÍÍÍÍÍ

SPI INT

flag�

ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

TX BUF

Full flag
Reserved

RC-0 RC-0 RC-0 R-0

Note: R = Read access; C = Clear, value following dash (–) = value after reset

Bit 7 RECEIVER_OVERRUN_FLAG. SPI Receiver Overrun Flag. This bit
is a read/clear-only flag. The SPI hardware sets this bit when a receive
or transmit operation completes before the previous character has
been read from the buffer. The bit indicates that the last received char-
acter has been overwritten and therefore lost (when the SPIRXBUF
was overwritten by the SPI module before the previous character was
read by the user application). The SPI requests one interrupt se-
quence each time this bit is set if the OVERRUN_INT_ENA bit
(SPICTL.4) is set high. The bit is cleared in one of three ways:

� Writing a 1 to this bit�

� Writing a 0 to SPI SW RESET (SPICCR.7)

� Resetting the system

If the OVERRUN_INT_ENA bit (SPICTL.4) is set, the SPI requests
only one interrupt upon the first occurance of setting the RECEIV-
ER_OVERRUN_FLAG bit. Subsequent overruns will not request
additional interrupts if this flag bit is already set.  This means that in
order to allow new overrun interrupt requests the user must clear this
flag bit by writing a 1 to SPISTS.7 each time an overrun condition oc-
curs. In other words, if the RECEIVER_OVERRUN_FLAG bit is left
set (not cleared) by the interrupt service routine, another overrun in-
terrupt will not be immediately re-entered when the interrupt service
routine is exited.

However, the RECEIVER_OVERRUN_FLAG bit should be cleared
during the interrupt service routine because the RECEIVER_OVER-
RUN_FLAG bit and SPI_INT_FLAG bit share the same interrupt vec-
tor. This will alleviate any possible doubt as to the source of the inter-
rupt when the next byte is received.

† The RECEIVER_OVERRUN_FLAG bit and SPI_INT_FLAG bit share the same interrupt vector.
‡ Writing a 0 to bits 5, 6, and 7 has no effect.
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Bit 6 SPI_INT_FLAG. SPI Interrupt Flag. SPI_INT_FLAG is a read-only
flag. The SPI hardware sets this bit to indicate that it has completed
sending or receiving the last bit and is ready to be serviced. The re-
ceived character is placed in the receiver buffer at the same time this
bit is set. This flag causes an interrupt to be requested if the
SPI_INT_ENA bit (SPICTL.0) is set. This bit is cleared in one of three
ways:

� Reading SPIRXBUF

� Writing a 1 to SPI_SW_RESET (SPICCR.)

� Resetting the system

Bit 5 TX_BUF_FULL_FLAG. SPI Transmit Buffer full flag. This read only
bit gets set to 1 when a character is written to the SPI Transmit buffer
SPITXBUF. It is cleared when the character is automatically loaded
into SPIDAT when the shifting out of a previous character is complete.
It is cleared at reset.

Bits 4–0 Reserved. Reads return zero; writes have no effect.

10.5.4 SPI Baud Rate Register (SPIBRR)

The SPIBRR contains the bits used for baud-rate selection.

Figure 10–10. SPI Baud Rate Register (SPIBRR) — Address 7044h

7 6 5 4 3 2 1 0

Reserved
ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

SPI bit

rate 6

ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

SPI bit

rate 5

ÍÍÍÍÍ
ÍÍÍÍÍ
ÍÍÍÍÍ

SPI bit 

rate 4

ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

SPI bit 

rate 3

ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

SPI bit 

rate 2

ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

SPI bit 

rate 1

ÍÍÍÍÍ
ÍÍÍÍÍ
ÍÍÍÍÍ

SPI bit 

rate 0

R-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Note: R = Read access; W = Write access; value following dash (–) = value after reset

Bit 7 Reserved. Reads return zero; writes have no effect.

Bits 6–0 SPI BIT RATE 6–SPI BIT RATE 0. SPI Bit Rate (Baud) Control. These
bits determine the bit transfer rate if the SPI is the network master.
There are 125 data transfer rates (each a function of the CPU clock,
CLKOUT) that can be selected. One data bit is shifted per SPICLK
cycle. (SPICLK is the baud rate clock output on the SPICLK pin.)

If the SPI is a network slave, the module receives a clock on the
SPICLK pin from the network master; therefore, these bits have no ef-
fect on the SPICLK signal. The frequency of the input clock from the
master should not exceed the slave SPI’s SPICLK signal divided by 4.
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In master mode, the SPI clock is generated by the SPI and is output on
the SPICLK pin. The SPI baud rates are determined by the formula in
Equation 10–2.

Equation 10–2. SPI Baud-Rate Calculations

� For SPIBRR = 3 to 127:

SPI Baud Rate CLKOUT
(SPIBRR 1)

=
+

� For SPIBRR = 0, 1, or 2:

SPI Baud Rate CLKOUT
4

=

where: CLKOUT = CPU clock frequency of the device

SPIBRR = Contents of the SPIBRR in the master SPI device

10.5.5 SPI Emulation Buffer Register (SPIRXEMU)

The SPIRXEMU contains the received data. Reading the SPIRXEMU does not

clear the SPI INT FLAG bit (SPISTS.6). This is not a real register but a dummy

address from which the contents of SPIRXBUF can be read by the emulator

without clearing the SPI INT FLAG.

Figure 10–11. SPI Emulation Buffer Register (SPIRXEMU) — Address 7046h

15 14 13 12 11 10 9 8

ERXB15 ERXB14 ERXB13 ERXB12 ERXB11 ERXB10 ERXB9 ERXB8

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

7 6 5 4 3 2 1 0

ERXB7 ERXB6 ERXB5 ERXB4 ERXB3 ERXB2 ERXB1 ERXB0

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

Note: R = Read access; value following dash (–) = value after reset (x = indeterminate)

Bits 15–0 ERXB15–ERXB0. Emulation Buffer Received Data. The SPIRXEMU
functions almost identically to the SPIRXBUF, except that reading the
SPIRXEMU does not clear the SPI INT FLAG bit (SPISTS.6). Once
the SPIDAT has received the complete character, the character is
transferred to the SPIRXEMU and SPIRXBUF where it can be read. At
the same time, SPI INT FLAG is set.
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This mirror register was created to support emulation. Reading the
SPIRXBUF clears the SPI INT FLAG bit (SPISTS.6). In the normal
operation of the emulator, the control registers are read to continually
update the contents of these registers on the display screen. The
SPIRXEMU was created so that the emulator can read this register
and properly update the contents on the display screen. Reading
SPIRXEMU does not clear the SPI INT FLAG, but reading SPIRXBUF
clears this flag. In other words, SPIRXEMU enables the emulator to
emulate the true operation of the SPI more accurately.

It is recommended that you view SPIRXEMU in the normal emulator
run mode.

10.5.6 SPI Serial Receive Buffer Register (SPIRXBUF)

The SPIRXBUF contains the received data. Reading the SPIRXBUF clears

the SPI INT FLAG bit (SPISTS.6).

Figure 10–12. SPI Serial Receive Buffer Register (SPIRXBUF) — Address 7047h

15 14 13 12 11 10 9 8

RXB15 RXB14 RXB13 RXB12 RXB11 RXB10 RXB9 RXB8

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

7 6 5 4 3 2 1 0

RXB7 RXB6 RXB5 RXB4 RXB3 RXB2 RXB1 RXB0

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

Note: R = Read access; value following dash (–) = value after reset (x = indeterminate)

Bits 15–0 RXB15–RXB0. Received Data. Once SPIDAT has received the com-
plete character, the character is transferred to SPIRXBUF, where it
can be read. At the same time, the SPI INT FLAG bit (SPISTS.6) is set.
Since data is shifted into the SPI’s most significant bit first, it is stored
right-justified in this register.
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10.5.7 SPI Serial Transmit Buffer Register (SPITXBUF)

The SPITXBUF stores the next character to be transmitted. Writing to this reg-

ister sets the TX BUF FULL (SPISTS.5) flag. When transmission of the current

character is complete, the contents of this register are automatically loaded in

SPIDAT and the TX BUF FULL flag is cleared. If no transmission is currently

active, data written to this register falls through to the SPIDAT register and the

TX BUF FULL flag is not set.

In master mode, if no transmission is currently active, writing to this register

initiates a transmission in the same manner that writing to SPIDAT does.

Figure 10–13. SPI Serial Transmit Buffer Register (SPITXBUF) — Address 7048h

15 14 13 12 11 10 9 8

TXB15 TXB14 TXB13 TXB12 TXB11 TXB10 TXB9 TXB8

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

7 6 5 4 3 2 1 0

TXB7 TXB6 TXB5 TXB4 TXB3 TXB2 TXB1 TXB0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Notes: 1) R = Read access; value following dash (–) = value after reset (x = indeterminate)

2) Writes to SPITXBUF must be left-justified

Bits 15–0 TXB15–TXB0. Transmit Data Buffer. This is where the next character
to be transmitted is stored. When the transmission of the current char-
acter has completed, if the TX BUF FULL flag is set, the contents of
this register is automatically transferred to SPIDAT, and the TX BUF
FULL flag is cleared.
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10.5.8 SPI Serial Data Register (SPIDAT)

The SPIDAT is the transmit/receive shift register. Data written to the SPIDAT

is shifted out (MSB) on subsequent SPICLK cycles. For every bit shifted out

(MSB) of the SPI, a bit is shifted into the LSB end of the shift register.

Figure 10–14. SPI Serial Data Register (SPIDAT) — Address 7049h

15 14 13 12 11 10 9 8

SDAT15 SDAT14 SDAT13 SDAT12 SDAT11 SDAT10 SDAT9 SDAT8

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

7 6 5 4 3 2 1 0

SDAT7 SDAT6 SDAT5 SDAT4 SDAT3 SDAT2 SDAT1 SDAT0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Note: R = Read access; value following dash (–) = value after reset (x = indeterminate)

Bits 15–0 SDAT15–SDAT0. Serial Data. Writing to the SPIDAT performs two
functions:

� It provides data to be output on the serial output pin if the TALK bit

(SPICTL.1) is set.

� When the SPI is operating as a master, a data transfer is initiated.

When initiating a transfer, see the CLOCK POLARITY bit

(SPICCR.6) and the CLOCK PHASE bit (SPICTL.3) for the re-

quirements.

In master mode, writing dummy data to SPIDAT initiates a receiver se-
quence. Since the data is not hardware-justified for characters shorter
than sixteen bits, transmit data must be written in left-justified form,
and received data read in right-justified form.
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10.5.9 SPI Priority Control Register (SPIPRI)

The SPIPRI selects the interrupt priority level of the SPI interrupt and controls

the SPI operation on the XDS emulator during program suspends, such as hit-

ting a breakpoint.

Figure 10–15. SPI Priority Control Register (SPIPRI) — Address 704Fh

7 6 5 4 3–0

Reserved
ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

SPI

priority

ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

SPI_SUSP

soft

ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

SPI_SUSP

free
Reserved

R-0 RW RW RW-0 R-0

Note: R = Read access; W = Write access; value following dash (–) = value after reset

Bit 7 Reserved. Reads return zero; writes have no effect.

Bit 6 SPI_PRIORITY. Interrupt Priority Select. This bit specifies the priority
level of the SPI interrupt.

0 Interrupts are high priority requests

1 Interrupts are low priority requests

Bits 5–4 SPI_SUSP_SOFT and FREE bits. These bits determine what occurs
when an emulation suspend occurs (for example, when the debugger
hits a breakpoint). The peripheral can continue whatever it is doing
(free run mode) or, if in stop mode, it can either stop immediately or
stop when the current operation (the current receive/transmit se-
quence) is complete.

Bit 5 Bit 4

Soft Free

0 0 Immediate stop on suspend

1 0 Complete current receive/transmit sequence before
stopping

X 1 Free run, continue SPI operation regardless of suspend

Bits 3–0 Reserved. Reads return zero; writes have no effect.
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10.6 SPI Example Waveforms

Figure 10–16. CLOCK_POLARITY = 0, CLOCK_PHASE = 0 (All data transitions are
during the rising edge. Inactive level is low.)

Ch1 Period
200 ns

SPICLK

SPISIMO
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Figure 10–17. CLOCK_POLARITY = 0, CLOCK_PHASE = 1 (Add data transitions are
during the rising edge, but delayed by half clock cycle. Inactive level is low.)

Ch1 Period
200 ns

SPICLK

SPISIMO
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Figure 10–18. CLOCK_POLARITY = 1, CLOCK_PHASE = 0 (All data transitions are
during the falling edge. Inactive level is high.)

Ch1 Period
199 ns

SPICLK

SPISIMO
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Figure 10–19. CLOCK_POLARITY = 1, CLOCK_PHASE = 1 (Add data transitions are
during the falling edge, but delayed by half clock cycle. Inactive level is high.)

Ch1 Period
200 ns

SPICLK

SPISIMO
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Figure 10–20. SPISTE Behavior in Master Mode (Master lowers SPISTE during the
entire 16 bits of transmission.)

Ch1 Period
200 ns

SPICLK

SPISTE
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Figure 10–21. SPISTE Behavior in Slave Mode (Slave’s SPISTE is lowered during the
entire 16 bits of transmission.)

Ch1 Period
398 ns

SPISIMO

SPISTE
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CAN Controller Module

This chapter describes the controller area network (CAN) module available on

the ’F241 and ’F243 devices. The interface signals, configuration registers,

and mailbox RAM are described in detail; however, the CAN protocol itself is

not discussed in depth. For details on the protocol, refer to CAN Specifications,

Version 2.0, by Robert Bosch GmBH, Germany. The CAN module is a full-CAN

controller designed as a 16-bit peripheral and is fully compliant with the CAN

protocol, version 2.0B.
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11.1 Introduction

The CAN peripheral supports the following features:

� Full implementation of CAN protocol, version 2.0B

� Standard and extended identifiers

� Data and remote frames

� Six mailboxes for objects of 0- to 8-bytes data length

� Two receive mailboxes (MBOX0,1), two transmit mailboxes

(MBOX4,5)

� Two configurable transmit/receive mailboxes (MBOX2,3)

� Local acceptance mask registers (LAMn) for mailboxes 0 and 1 and mail-

boxes 2 and 3

� Programmable bit rate

� Programmable interrupt scheme

� Programmable wake up on bus activity

� Automatic reply to a remote request

� Automatic re-transmission in case of error or loss of arbitration

� Bus failure diagnostic

� Bus on/off

� Error passive/active

� Bus error warning

� Bus stuck dominant

� Frame error report

� Readable error counter

� Self-Test Mode

� The CAN peripheral operates in a loop back mode

� Receives its own transmitted message and generates its own ac-

knowledge signal

� Two-Pin Communication

� The CAN module uses two pins for communication, CANTX and

CANRX

� These two pins are connected to a CAN transceiver chip, which in turn

is connected to a CAN bus
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11.2 Overview of the CAN Network

The controller area network (CAN) uses a serial multimaster communication

protocol that efficiently supports distributed real-time control with a very high

level of data integrity, and communication speeds of up to 1 Mbps. The CAN

bus is ideal for applications operating in noisy and harsh environments, such

as in the automotive and other industrial fields that require reliable commu-

nication.

Prioritized messages of up to eight bytes in data length can be sent on a multi-

master serial bus using an arbitration protocol and an error-detection mecha-

nism for a high level of data integrity.

11.2.1 CAN Protocol Overview

The CAN protocol supports four different frame types for communication:

� Data frames that carry data from a transmitter node to receiver node(s)

� Remote frames that are transmitted by a node to request the transmis-

sion of a data frame with the same identifier

� Error frames that are transmitted by any node on a bus-error detection

� Overload frames that provide an extra delay between the preceding and

the succeeding data frames or remote frames

In addition, CAN specification version 2.0B defines two different formats that

differ in the length of the identifier field: standard frames with an 11-bit identifier

and extended frames with a 29-bit identifier.

CAN standard data frames contain from 44 to 108 bits, and CAN extended

data frames contain 64 to 128 bits. Furthermore, up to 23 stuff-bits can be in-

serted in a standard data frame and up to 28 stuff-bits in an extended data

frame, depending on the data-stream coding. The overall maximum data

frame length is 131 bits for a standard frame and 156 bits for an extended

frame.

In Figure 11–1, bit fields within the data frame identify:

� Start of the frame

� Arbitration field containing the identifier and the type of message being

sent

� Control field containing the number of data

� Up to 8 bytes of data

� Cyclic redundancy check (CRC)

� Acknowledgment

� End-of-frame bits
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Figure 11–1.CAN Data Frame

Bit length 1 12 or 32 6 0–8 bytes 16 2 7

Start bit Control bits Data field CRC bits

Acknowledge

End

Arbitration field which contains:

� 11-bit identifier + RTR bit for standard frame format

� 29-bit identifier + SRR bit + IDE bit + RTR bit for extended frame format
Where: RTR = Remote Transmission Request

SRR = Substitute Remote Request
IDE = Identifier Extension

Note: Unless otherwise noted, numbers are amount of bits in field.

11.2.2 CAN Controller Architecture

Figure 11–2 shows the basic architecture of the CAN controller.

Figure 11–2.TMS320F243/F241 CAN Module Block Diagram
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The CAN module is a 16-bit peripheral that accesses the following:

� Control/status registers

� Mailbox RAM

Control/Status Registers: The CPU performs 16-bit accesses to the control/

status registers. The CAN peripheral always presents full 16-bit data to the

CPU bus during read cycles.

Mailbox RAM: Writing/reading from the mailbox RAM is always wordwise

(16 bits) and the RAM always presents the full 16-bit word on the bus.

Table 11–1 shows the configuration details of the mailboxes.

Table 11–1. Mailbox Configuration Details

Mailbox Operating Mode LAM Used

0 Receive only LAM0

1 Receive only LAM0

2 Transmit/Receive (configurable) LAM1

3 Transmit/Receive (configurable) LAM1

4 Transmit only —

5 Transmit only —
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11.2.3 Memory Map

Figure 11–3 shows memory space, and Table 11–2 and Table 11–3 give the

register and mailbox locations in the CAN module.

Figure 11–3.TMS320F243/F241 CAN Module Memory Space

’24x Data Space
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7230
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CANRCR
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CANMCR
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CANESR CANGSR

CANCEC CAN_IFR

CAN_IMR CANLAM0H

CANLAM0L CANLAM1H

CANLAM1L Reserved
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7200
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Registers
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Mailbox 1
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Mailbox 4

Mailbox 5

Reserved
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MSG_CTRL0

MBOX0A MBOX0B
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Reserved

MSG_ID5L MSG_ID5H

MSG_CTRL5

MBOX5A MBOX5B

MBOX5C MBOX5D

Reserved

.

.

.
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Table 11–2. Register Addresses  

Address Name Description

7100h MDER Mailbox Direction/Enable Register (bits 7 to 0)

7101h TCR Transmission Control Register (bits 15 to 0)

7102h RCR Receive Control Register (bits 15 to 0)

7103h MCR Master Control Register (bits 13 to 6, 1, 0)

7104h BCR2 Bit Configuration Register 2 (bits 7 to 0)

7105h BCR1 Bit Configuration Register 1 (bits 10 to 0)

7106h ESR Error Status Register (bits 8 to 0)

7107h GSR Global Status Register (bits 5 to 0)

7108h CEC Transmit and Receive Error Counters (bits 15 to 0)

7109h CAN_IFR Interrupt Flag Register (bits 13 to 8, 6 to 0)

710Ah CAN_IMR Interrupt Mask Register (bits 15, 13 to 0)

710Bh LAM0_H Local Acceptance Mask for MBOX0 and 1 (bits 31, 28 to 16)

710Ch LAM0_L Local Acceptance Mask for MBOX0 and 1 (bits 15 to 0)

710Dh LAM1_H Local Acceptance Mask for MBOX2 and 3 (bits 31, 28 to 16)

710Eh LAM1_L Local Acceptance Mask  for MBOX2 and 3 (bits 15 to 0)

710Fh Reserved Accesses assert the CAADDRx signal from the CAN peripheral

(which will assert an Illegal Address error)

Note: All unimplemented register bits are read as zero; writes have no effect.  All register bits are initialized to zero unless other-

wise stated in the definition.
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The mailboxes are located in one 48 × 16 RAM with 16-bit access and can be

written to or read by the CPU (user) or CAN. The CAN write or read access,

as well as the CPU read access, needs one clock cycle. The CPU write access

needs two clock cycles because the CAN controller performs a read-modify-

write cycle; and therefore, inserts one wait state for the CPU.

Table 11–3 shows the mailbox locations in the RAM.

Table 11–3. Mailbox Addresses

Mailboxes

Registers MBOX_0 MBOX_1 MBOX_2 MBOX_3 MBOX_4 MBOX_5

MSG_IDnL 7200 7208 7210 7218 7220 7228

MSG_IDnH 7201 7209 7211 7219 7221 7229

MSG_CTRLn 7202 720A 7212 721A 7222 722A

Reserved

MBOXnA 7204 720C 7214 721C 7224 722C

MBOXnB 7205 720D 7215 721D 7225 722D

MBOXnC 7206 720E 7216 721E 7226 722E

MBOXnD 7207 720F 7217 721F 7227 722F
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11.3 Message Objects

CAN allows messages to be sent, received, and stored by using data frames.

Figure 11–4 illustrates the structure of the data frames with extended and

standard identifiers.

Figure 11–4.CAN Data Frame
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Data frame contains:

� SOF: Start of Frame – signifies the start of frame.

� Identifier:

� Message priority – determines the priority of the message when two or

more nodes are contending for the bus.

� Message filtering – determines if a transmitted message will be re-

ceived by CAN modules.

� RTR: Remote Transmission Request bit – differentiates a data frame from

a remote frame.

� SRR: Substitute Remote Request bit – this bit occupies the position as

RTR would in a standard frame.

� IDE: Identifier Extension bit – differentiates standard and extended

frames.

� r0, r1: reserved

� DLC: Data Length Code – denotes the number of bytes (0 to 8) in a data

frame.

� Data: Four 16-bit words are used to store the (maximum) 8-byte data field

of a CAN message.



Message Objects

 11-10

� CRC: contains a 16-bit checksum calculated on most parts of the mes-

sage. This checksum is used for error detection.

� ACK: Data Acknowledge

� EOF: End of Frame

11.3.1 Mailbox Layout

1) Mailbox RAM:
The mailbox RAM is the area where the CAN frames are stored before they are

transmitted, and after they are received. Each mailbox has four 16-bit registers
which can store a maximum of 8 bytes (MBOXnA, MBOXnB, MBOXnC, and
MBOXnD). Mailboxes that are not used for storing messages may be used as
normal memory by the CPU.

2) Message Identifiers:
Each one of the six mailboxes has its own message identifier stored in two
16-bit registers. Figure 11–5 shows the message identifier high word and
Figure 11–6 shows the message identifier low word.

Figure 11–5.Message Identifier for High Word Mailboxes 0–5 (MSGIDnH)

15 14 13 12–0

IDE AME AAM IDH[28:16]

RW RW RW RW

Note: R = Read access; W = Write access

Figure 11–6.Message Identifier for Low Word Mailboxes 0–5 (MSGIDnL)

15–0

IDL[15:0]

RW

Note: R = Read access; W = Write access

Bit 15 IDE. Identifier Extension Bit

0 The received message has a standard identifier (11 bits).†

The message to be sent has a standard identifier (11 bits).‡

1 The received message has an extended identifier (29 bits).†

The message to be sent has an extended identifier (29 bits).‡
† In case of a receive mailbox
‡ In case of a transmit mailbox
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Bit 14 AME. Acceptance Mask Enable Bit

0 No acceptance mask will be used. All identifier bits in the received
message and the receive MBOX must match in order to store the
message.

1 The corresponding acceptance mask is used.

This bit will not be affected by a reception.

This bit is relevant for receive mailboxes only. Hence, it is applicable for

MBOX0 and MBOX1 and also for MBOX2 and MBOX3, if they are configured

as receive mailboxes. It is a don’t care for mailboxes 4 and 5.

Bit 13 AAM. Auto Answer Mode Bit

0 Transmit
mailbox

The mailbox does not reply to remote requests
automatically. If a matching identifier is received, it is
not stored.

Receive
mailbox

No influence on a receive mailbox.

1 Transmit
mailbox

If a matching remote request is received, the CAN
Peripheral answers by sending the contents of the
mailbox.

Receive
mailbox

No influence on a receive mailbox.

This bit is only used for mailboxes 2 and 3.

Bits 12–0 IDH[28:16]. Upper 13 Bits of extended identifier. For a standard identifier, the
11-bit identifier will be stored in bits 12 to 2 of the MSGID’s upper word.

Bits 15–0 IDL[15:0]. The lower part of the extended identifier is stored in these bits.

3) Message Control Field:
Each one of the six mailboxes has its own “Message Control Field”.
Figure 11–7 illustrates the layout and default mode of the message control
field.

Figure 11–7.Message Control Field 0–5  (MSGCTRLn)

15–5 4 3–0

Reserved RTR DLC[3:0]

RW RW

Note: R = Read access; W = Write access

Bits 15–5 Reserved.

Bit 4 RTR. Remote Transmission Request bit

0 Data frame

1 Remote frame
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Bits 3–0 DLC. Data Length Code

This value determines how many data bytes are used for transmission or re-

ception.

0000 0 bytes

0010 2 bytes

0100 4 bytes

0110 6 bytes

1000 8 bytes

11.3.2 Message Buffers

Message storage is implemented by RAM. The contents of the storage ele-

ments are used to perform the functions of acceptance filtering, transmission,

and interrupt handling.

The mailbox module provides six mailboxes, each consisting of 8 bytes of

data, 29 identifier bits, and several control bits. Mailboxes 0 and 1 are for re-

ception; mailboxes 2 and 3 are configurable as receive or transmit; and mail-

boxes 4 and 5 are transmit mailboxes. Mailboxes 0 and 1 share one accep-

tance mask, while mailboxes 2 and 3 share a different mask.

Note: Unused Message  Mailboxes

Unused mailbox RAM may be used as normal memory. Because of this, you
must ensure that no CAN function uses the RAM area. This is usually done
by disabling the corresponding mailbox or by disabling the CAN function.

11.3.3 Write Access to Mailbox RAM

There are two different types of write accesses to the Mailbox RAM:

1) write access to the identifier of a mailbox

2) write access to the data or control field.

Note:

Write accesses to the identifier can only be accomplished when the mailbox
is disabled (MEn = 0 in MDER register).
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During accesses to the data field or control field, it is critical that the data does

not change while the CAN module is reading it. Therefore, a write access to

the data field or control field is disabled for a receive mailbox. For transmit mail-

boxes, the access is usually denied if the transmit request set (TRS) bit or the

transmit request reset (TRR) bit is set. In these cases, a write-denied interrupt

flag (WDIF) is asserted. A way to access mailboxes 2 and 3 is to set the change

data field request (CDR) bit before accessing the mailbox data.

After the CPU access is finished, the CPU must clear the CDR flag by writing

a 0 to it. The CAN module checks for that flag before and after reading the mail-

box. If the CDR flag is set during the mailbox checks, the CAN module does

not transmit the message but continues to look for other transmit requests. The

setting of the CDR flag also stops the write-denied interrupt (WDI) from being

asserted.

11.3.4 Transmit Mailbox

Mailboxes 4 and 5 are transmit mailboxes only; whereas, mailboxes 2 and 3

can be configured for reception or transmission.

The CPU stores the data to be transmitted in a mailbox that is configured as

a transmit mailbox. After writing the data and the identifier into RAM, and pro-

vided the corresponding TRS bit has been set, the message is sent.

If more than one mailbox is configured as a transmit mailbox and more than

one corresponding TRS bit is set, the messages are sent one after another,

in falling order, beginning with the highest enabled mailbox.

If a transmission fails due to a law of arbitration or an error, the message trans-

mission will be re-attempted.

11.3.5 Receive Mailbox

Mailboxes 0 and 1 are receive-only mailboxes. Mailboxes 2 and 3 can be con-

figured for reception or transmission.

The identifier of each incoming message is compared to the identifiers held in

the receive mailboxes by using the appropriate identifier mask. When equality

is detected, the received identifier, the control bits, and the data bytes are writ-

ten into the matching RAM location. At the same time, the corresponding re-

ceive message pending (RMPn) bit is set and a mailbox interrupt (MIFx) is gen-

erated if enabled. If the current identifier does not match, the message is not

stored. The RMPn bit has to be reset by the CPU after reading the data.

If a second message has been received for this mailbox and the RMP bit is

already set, the corresponding receive message lost (RML) bit is set. In this
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case, the stored message is overwritten with the new data if the overwrite

protection control (OPC) bit is cleared. Otherwise, the next mailboxes are

checked.

Note:

For the mailbox interrupt flag (MIFn) bits in the CAN_IFR register to be set,
the corresponding bits in the CAN_IMR register must be enabled. If “polling”
is desired to complete transmission or reception of messages (as opposed
to interrupts), the following bits must be used:

� For transmission: TAn bits in the TCR register

� For reception: RMPn bits in the RCR register

11.3.6 Handling of Remote Frames

Remote frame handling can only be done with mailboxes 0 to 3; mailboxes 4

and 5 cannot handle remote frames.

Receiving a Remote Request

If a remote request is received (the incoming message has the remote trans-

mission request bit [RTR] = 1), the CAN module compares the identifier to all

identifiers of the mailboxes using the appropriate masks in descending order

starting with the highest mailbox number.

In case of a matching identifier with the message object configured as a trans-

mit mailbox and the auto-answer mode bit (AAM) in the message set, the mes-

sage object is marked to be sent (TRS bit is set). See Figure 11–8 (A).

In case of a matching identifier with the message object configured as a trans-

mit mailbox and the AAM bit not set, the message is not received. See

Figure 11–8 (B).

After finding a matching identifier in a send mailbox, no further compare is

done.

In case of a matching identifier with the message object configured as a re-

ceive mailbox, the message is handled like a data frame and the RMP bit in

the receive control register (RCR) is set. The CPU then has to decide how to

handle the situation. See Figure 11–8 (E).

If the CPU wants to change the data in a message object that is configured as

a remote frame mailbox (AAM bit set), it has to set the mailbox number (MBNR)

in the master control register and the CDR in the master control register first.
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The CPU may then perform the access and clear the CDR to tell the CAN mod-

ule that the access is finished. Until the CDR is cleared, the transmission of this

mailbox is not performed. Since the TRS bit is not affected by the CDR, a pend-

ing transmission is stacked after the CDR is cleared. Thus, the newest data

will be sent.

In order to change the identifier in the mailbox, the message object must be

disabled first (ME bit in the MDER = 0).

Sending a Remote Request

If the CPU wants to request data from another node, it may configure the mes-

sage object as a receive mailbox (only mailboxes 2 and 3) and set the TRS bit.

See Figure 11–8 (F). In this case, the module sends a remote frame request

and receives the data frame in the same mailbox that sent the request. There-

fore, only one mailbox is necessary to do a remote request.

To summarize: A mailbox can be configured in four different ways:

� Transmit mailbox (mailboxes 4 and 5 or 2 and 3 configured as transmit)

can only transmit messages.

� Receive mailbox (mailboxes 0 and 1) can only receive messages.

� Mailboxes 2 and 3 configured as receive mailboxes can transmit a remote

request frame and wait for the corresponding data frame if the TRS bit is

set.

� Mailboxes 2 and 3 configured as transmit mailboxes can transmit a data

frame wherever a remote request frame is received for the corresponding

identifier, if the AAM bit is set.

Note:

After successful transmission of a remote frame, the TRS bit is reset but no
transmit acknowledge (TA) or mailbox interrupt flag is set.
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Figure 11–8.Remote Frame Requests
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11.3.7 Acceptance Filter

The identifier of the incoming message is first compared to the message identi-

fier of the receive mailbox (which is stored in the mailbox in MSGIDnH and

MSGIDnL registers). Then the appropriate acceptance mask is used to mask

out the bits of the identifier that should not be compared. The local acceptance

mask can be disabled by setting the acceptance mask enable (AME) bit to 0

in the message identifier high word (MSGIDn) field.

Local Acceptance Mask (LAM)

The local acceptance filtering allows the user to locally mask (that is, treat as

a don’t care) any identifier bit of the incoming message.

Local acceptance mask register LAM1 is used for mailboxes 2 and 3 while lo-

cal acceptance mask register LAM0 is used for mailboxes 0 and 1. During a
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reception, mailboxes 3 and 2 are checked before mailboxes 1 and 0.

Figure 11–9 illustrates the LAMn_H high word and Figure 11–10 illustrates the

LAM_H low word.

Figure 11–9.Local Acceptance Mask Register n (0, 1) High Word (LAMn_H)

15 14–13 12–0

LAMI Reserved LAMn[28:16]

RW-0 RW-0

Note: R = Read access; W = Write access; value following dash (–) = value after reset

Bit 15 LAMI. Local acceptance mask identifier extension bit.

0 The identifier extension bit stored in the mailbox determines which
messages are received (standard or extended).

1 Standard and extended frames can be received. In case of an ex-
tended frame, all 29 bits of the identifier are stored in the mailbox
and all 29 bits of the global acceptance mask register are used for
the filter. In case of a standard frame, only the first eleven bits (bits
12–2 of LAMn_H) of the identifier and the local acceptance mask
are used.

Bits 14–13 Reserved.

Bits 12–0 LAMn[28:16]. Upper 13 bits of the local acceptance mask.

0 Received identifier bit value must match the identifier bit of the re-
ceive mailbox. For example, if bit 27 of LAM is zero, then bit 27 of
the transmitted MSGID and bit 27 of the receive mailbox MSGID
must be the same.

1 Accept a 0 or a 1 (don’t care) for the corresponding bit of the re-
ceive identifier.

Figure 11–10. Local Acceptance Mask Register n (0, 1) Low Word (LAMn_L)

15–0

LAMn[15:0]

RW-0

Note: R = Read access; W = Write access; value following dash (–) = value after reset

Bits 15–0 LAMn[15:0]. Lower part of the local acceptance mask. These bits enable the
masking of any identifier bit of an incoming message.

0 Received identifier bit value must match the identifier bit of the
receive mailbox.

1 Accept a 0 or a 1 (don’t care) for the corresponding bit of the
receive identifier.



CAN Control Registers

 11-18

11.4 CAN Control Registers

The control register bits allow mailbox functions to be manipulated.  Each

register performs a specific function, such as enabling or disabling the

mailbox, controlling the transmit/receive mail function, and handling interrupts.

11.4.1 Mailbox Direction/Enable Register (MDER)

The Mailbox Direction/Enable register (MDER) consists of the Mailbox Enable

(ME) and the Mailbox Direction (MD). In addition to enabling/disabling the

mailboxes, MDER is used to select the direction (transmit/receive) for mail-

boxes 2 and 3. Mailboxes that are disabled may be used as additional memory

for the DSP. Figure 11–11 illustrates this register.

Figure 11–11.Mailbox Direction/Enable Register (MDER) — Address 7100h

15–8

Reserved

7 6 5 4 3 2 1 0

MD3 MD2 ME5 ME4 ME3 ME2 ME1 ME0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Note: R = Read access; W = Write access; value following dash (–) = value after reset

Bits 15–8 Reserved.

Bits 7–6 MDn. Mailbox direction for mailbox n. Mailboxes 2 and 3 can be configured as

a transmit or receive mailbox.

Mailbox direction bits are defined as follows:

0 Transmit mailbox

1 Receive mailbox

After power-up, all bits are cleared.

Bits 5–0 MEn. Mailbox-enable for mailbox n. Each mailbox can be enabled or disabled.
If the bit MEn is 0, the corresponding mailbox n is disabled. The mailbox must
be disabled before writing to any identifier field.

If the corresponding bit in ME is set, the write access to the identifier of a mes-

sage object is denied and the mailbox is enabled for the CAN module.

Mailboxes that are disabled may be used as additional memory for the DSP.
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Mailbox enable bits are defined as follows:

0 Disable mailbox

1 Enable mailbox

11.4.2 Transmit Control Register (TCR)

The transmit control register (TCR) contains bits that control the transmission

of messages (see Figure 11–12).

The control bits to set or reset a transmission request (TRS and TRR, respec-

tively) can be written independently. In this way, a write access to these regis-

ters does not set bits that were reset because of a completed transmission.

After power-up, all bits are cleared.

Figure 11–12. Transmission Control Register (TCR) — Address 7101h

15 14 13 12 11 10 9 8

TA5 TA4 TA3 TA2 AA5 AA4 AA3 AA2

RC-0 RC-0 RC-0 RC-0 RC-0 RC-0 RC-0 RC-0

7 6 5 4 3 2 1 0

TRS5 TRS4 TRS3 TRS2 TRR5 TRR4 TRR3 TRR2

RS-0 RS-0 RS-0 RS-0 RS-0 RS-0 RS-0 RS-0

Note: R = Read access; C = Clear; S = Set only; value following dash (–) = value after reset

TAn: Transmission Acknowledge (for mailbox n)

If the message in mailbox n was sent successfully, bit TAn is set.

Bits TAn are reset by writing a 1 from the CPU. This also clears the interrupt

if an interrupt was generated. Writing a 0 has no effect. If the CPU tries to reset

the bit while the CAN tries to set it, the bit is set.

These bits set a mailbox interrupt flag (MIFx) in the IF register. The MIFx bits

initiate a mailbox interrupt if enabled; that is, if the corresponding interrupt

mask bit in the IM register is set.

AAn: Abort Acknowledge (for mailbox n)

If transmission of the message in mailbox n is aborted, bit AAn is set and the

AAIF bit in the IF register is set. The AAIF bit generates an error interrupt if en-

abled.
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Bits AAn are reset by writing a 1 from the CPU. Writing a 0 has no effect. If the

CPU tries to reset a bit and the CAN tries to set the bit at the same time, the

bit is set.

TRSn: Transmission Request Set (for mailbox n)

If TRSn is set, write access to the corresponding mailbox is denied, and the

message in mailbox n will be transmitted. Several TRS bits can be set simulta-

neously.

TRS bits can be set by the CPU (user) or the CAN module and reset by internal

logic. If the CPU tries to set a bit while the CAN tries to clear it, the bit is set.

TRS bits are set by the user writing a 1. Writing a 0 has no effect.

In the event of a remote frame request, the TRS bits are set by the CAN module

for mailboxes 2 and 3.

The TRSn bits are reset after a successful or an aborted transmission (if an

abort is requested).

A write to a mailbox with TRS set will have no effect and will generate the WDIF

interrupt if enabled. A successful transmission initiates a mailbox interrupt, if

enabled.

TRS bits are used for mailboxes 4 and 5, and also for  2 and 3 if they are config-

ured for transmission.

TRRn: Transmission Request Reset (for mailbox n)

TRR bits can only be set by the CPU (user) and reset by internal logic. In case

the CPU tries to set a bit while the CAN module tries to clear it, the bit is set.

The TRR bits are set by the user writing a 1. Writing a 0 has no effect.

If TRRn is set, write access to the corresponding mailboxn is denied. A write

access will initiate a WDIF interrupt, if enabled. If TRRn is set and the transmis-

sion which was initiated by TRSn is not currently processed, the correspond-

ing transmission request will be cancelled. If the corresponding message is

currently processed, this bit is reset in the event of:

1) A successful transmission

2) An abort due to a lost arbitration

3) An error condition detected on the CAN bus line

If the transmission is successful, the status bit TAn is set. If the transmission

is aborted, the corresponding status bit AAn is set. In case of an error condi-

tion, an error status bit is set in the ESR.
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The status of the TRR bits can be read from the TRS bits. For example, if TRS

is set and a transmission is ongoing, TRR can only be reset by the actions de-

scribed above. If the TRS bit is reset and the TRR bit is set, no effect occurs

because the TRR bit will be immediately reset.

11.4.3 Receive Control Register (RCR)

The receive control register (RCR) contains the bits which control the recep-

tion of messages and remote frame handling.

Figure 11–13. Receive Control Register (RCR) — Address 7102h

15 14 13 12 11 10 9 8

RFP3 RFP2 RFP1 RFP0 RML3 RML2 RML1 RML0

RC-0 RC-0 RC-0 RC-0 R-0 R-0 R-0 R-0

7 6 5 4 3 2 1 0

RMP3 RMP2 RMP1 RMP0 OPC3 OPC2 OPC1 OPC0

RC-0 RC-0 RC-0 RC-0 RW-0 RW-0 RW-0 RW-0

Note: R = Read access; W = Write access; C = Clear; value following dash (–) = value after reset

RFPn: Remote Frame Pending Register (for mailbox n)

Whenever a remote frame request is received by the CAN Peripheral, the cor-

responding bit RFPn is set.

It may be cleared by the CPU if the TRSn is not  set; otherwise, it is reset auto-

matically. If the CPU tries to reset a bit and the CAN Peripheral tries to set the

bit at the same time, the bit  is cleared.

If the AAM bit in the MSGIDn register is not set (and thus no answer is sent

automatically), the CPU must clear bit RFPn after handling the event.

If the message is sent successfully, RFPn is cleared by the CAN Peripheral.

The CPU cannot interrupt an ongoing transfer.

RMLn: Receive Message Lost (for mailbox n)

If an old message is overwritten by a new one in mailbox n, bit RMLn is set.

RMLn is not set in mailboxes that have the OPCn bit set. Thus, a message may

be lost without notification.

These bits can only be reset by the CPU and can be set by the internal logic.

They can be cleared by writing a 1 to RMPn. If the CPU tries to reset a bit and

the CAN tries to set the bit at the same time, the bit is set.
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If one or more RML bits in the RCR register are set, the RMLIF in the IF register

is also set. This may initiate an interrupt if the RMLIM bit in the IM register is

set.

RMPn: Receive Message Pending (for mailbox n)

If a received message is stored in a mailbox n, the bit RMPn is set.

The RMP bits can only be reset by the CPU and are set by the CAN internal

logic. The bits RMPn and RMLn are cleared by writing a 1 to the RMPn bit at

the corresponding bit location. If the CPU tries to reset a bit and the CAN tries

to set the bit at the same time, the bit is set.

A new incoming message will overwrite the stored one if the OPCn bit is

cleared. If not, the next mailboxes are checked for a matching identifier. When

the old message is overwritten, the corresponding status bit RMLn is set.

The RMP bits in the RCR register set the mailbox interrupt flag (MIFx) bit in

the IF register if the corresponding interrupt mask bit in the IM register is set.

The MIFx flag initiates a mailbox interrupt if enabled.

OPCn: Overwrite Protection Control (for mailbox n)

If there is an overflow condition for mailbox n, the new message is stored/

ignored depending on the OPCn value. If the corresponding bit OPCn is set

to 1, the old message is protected against being overwritten by the new mes-

sage. Thus, the next mailboxes are checked for a matching identifier. If no oth-

er mailbox is found, the message is lost without further notification. If bit OPCn

is not set, the old message is overwritten by the new one.

11.4.4 Master Control Register (MCR)

The Master Control Register is used to control the behavior of the CAN core

module.

Figure 11–14. Master Control Register (MCR) — Address 7103h

15–14 13 12 11 10 9 8

Reserved SUSP CCR PDR DBO WUBA CDR

RW-0 RW-1 RW-0 RW-0 RW-0 RW-0

7 6 5–2 1–0

ABO STM Reserved MBNR[1:0]

RW-0 RW-0 RW-0

Note: R = Read access; W = Write access; value following dash (–) = value after reset
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Bits 15–14 Reserved.

Bit 13 SUSP. Action on emulator suspend. The value of SUSP bit has no effect on the
receive mailboxes.

0 Soft mode. The peripheral shuts down during suspend after the
current transmission is completed.

1 Free mode. The peripheral continues to run in suspend.

Bit 12 CCR. Change Configuration Request

0 The CPU requests normal operation. It also exits the bus-off state
after the obligatory bus-off recovery sequence.

1 The CPU requests write access to the bit configuration registers
(BCRn). Flag CCE in the GSR indicates if the access is granted. CCR
must be set while writing to bit timing registers BCR1 and BCR2. This
bit will automatically be set to 1 if the bus-off condition is valid and the
ABO is not set. Thus, it has to be reset to exit the bus-off mode.

Bit 11 PDR. Power-Down Mode Request

Before the CPU enters its IDLE mode (if IDLE  shuts off the peripheral clocks),

it must request a CAN power down by writing to the PDR bit. The CPU must

then poll the PDA bit in the GSR, and enter IDLE only after PDA is set.

0 The power-down mode is not requested (normal operation).

1 The power-down mode is requested.

Bit 10 DBO. Data Byte Order

0 The data is received or transmitted in the following order: Databyte
0,1,2,3,4,5,6,7.

1 The data is received or transmitted in the following order: Databyte
3,2,1,0,7,6,5,4.

Note:

The DBO bit is used to define the order in which the data bytes are stored
in the mailbox when received and in which the data bytes are transmitted.
Byte 0 is the first byte in the message and Byte 7 is the last one as shown
in the figure of the CAN message (Figure 11–4).

Bit 9 WUBA. Wake Up on Bus Activity

0 The module leaves the power-down mode only after the user writing a
0 to clear PDR.

1 The module leaves the power-down mode when detecting any
dominant value on the CAN bus.
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Bit 8 CDR. Change Data Field Request

The CDR bit is applicable for mailboxes 2 and 3 only and in the following situa-

tion: 1) either (or both) of these mailboxes are configured for transmission and

2) the corresponding AAM bit is set.

0 The CPU requests normal operation.

1 The CPU requests write access to the data field of the mailbox in
MBNR (located also in MCR). The CDR bit must be cleared by the
CPU after accessing the mailbox. The CAN module does not transmit
the mailbox if the CDR is set. This is checked by the state machine
before and after it reads the data from the mailbox to store it in the
transmit buffer.

Bit 7 ABO. Auto Bus On

0 The bus-off state may only be left after 128 × 11 consecutive
recessive bits on the bus and after having reset the CCR bit.

1 After the bus-off state, the module goes back to the bus-on state after
128 × 11 consecutive recessive bits.

Bit 6 STM. Self Test Mode

0 The module is in normal mode.

1 The module is in Self Test mode. In this mode, the CAN module
generates its own ACK signal. Thus, it enables operation without a
bus connected to the module. The message is not sent but read back
and stored in the appropriate mailbox. The remote frame handling
with Auto Answer mode set is not implemented in STM.

Bit 5–2 Reserved.

Bits 1–0 MBNR. Mailbox Number (for CDR bit assertion)

The CPU requests a write access to the data field for the mailbox hav-

ing this number and configured for Remote Frame Handling. These

are mailboxes 2 (10) or 3 (11), but not 0, 1, 4 or 5.

11.4.5 Bit Configuration Registers (BCRn)

The bit configuration registers (BCR1 and BCR2) are used to configure the

CAN node with the appropriate network timing parameters. These registers

must be programmed before using the CAN module and are writeable only in

configuration mode. The CCR bit must be set to put the CAN module in config-

uration mode.

Note:

To avoid unpredictable behavior, BCR1, 2 should never be programmed with
values not allowed by the CAN protocol specification.
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Figure 11–15. Bit Configuration Register 2 (BCR2) — Address 7104h

15–8

Reserved

7–0

BRP[7:0]

RW-0

Note: R = Read access; W = Write access; value following dash (–) = value after reset

Bits 15–8 Reserved.

Bits 7–0 BRP. Baud Rate Prescaler

Bits 7:0 of this field specify the duration of a time quantum (TQ) in CAN module

system clock units. The length of one TQ is defined by:

TQ
BRP 1

ICLK

=
+

where ICLK is the frequency of the CAN module system clock,which is the same

as CLKOUT.

Figure 11–16. Bit Configuration Register 1 (BCR1) — Address 7105h

15–11 10 9–8

Reserved SBG SJW[1:0]

RW-0 RW-0

7 6–3 2–0

SAM TSEG1-[3:0] TSEG2-[2:0]

RW-0 RW-0 RW-0

Note: R = Read access; W = Write access; value following dash (–) = value after reset

Bits 15–11 Reserved.

Bit 10 SBG. Synchronization on both edges

0 The CAN module resynchronizes on the falling edge only.

1 The CAN module resynchronizes on both rising and falling edges.
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Bits 9–8 SJW. Synchronization jump width

SJW indicates by how many units of TQ a bit is allowed to be lengthened or

shortened when resynchronizing with the receive data stream on the CAN bus.

The synchronization is performed either with the falling edge (SBG = 0) or with

both edges (SBG = 1) of the bus signal. SJW is programmable from 1 to 4 TQ.

Bit 7 SAM. Sample point setting

This parameter sets the number of samples used by the CAN module to deter-

mine the actual level of the CAN bus. When the SAM bit is set, the level deter-

mined by the CAN bus corresponds to the result from the majority decision of

the last three values. The sample points are at the sample point and twice be-

fore with a distance of 1/2 TQ.

0 The CAN module samples only once.

1 The CAN module samples three times and makes a majority decision.

Bits 6–3 TSEG1[3:0]. Time segment 1.

This parameter specifies the length of the TSEG1 segment in TQ units.

TSEG1 combines PROP_SEG and PHASE_SEG1 segments (CAN protocol).

TSEG = PROP_SEG + PHASE_SEG1.

The value of TSEG1 is programmable from 3 to 16 TQ and must be greater

than or equal to TSEG2.

Bits 2–0 TSEG2[2:0]. Time segment 2.

TSEG2 defines the length of PHASE_SEG2 in TQ units.

When the resynchronization on falling edge only is used (SBG = 0), the mini-

mum TSEG2 value allowed is calculated as follows:

TSEG2min 1 SJW.= +

The value of TSEG2 is programmable from 2 to 8 TQ in compliance with the

formula:

(SJW SBG 1) TSEG2 8.+ + ≤ ≤
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CAN Bit Timing

Figure 11–17. CAN Bit Timing

Nominal bit time

SYNCSEG

SJW SJW

TSEG2TSEG1

Transmit point
Sample point

Baud rate is calculated as follows (in bits per second):

Baud rate
ICLK

(BRP 1) Bit Time
=

+ ×

where, Bit Time = number of TQ per bit 

Bit Time = (TSEG1 + 1) + (TSEG2 + 1) + 1

ICLK = CAN module system clock frequency (same as CLKOUT)

BRP = Baud rate prescaler

Table 11–4. CAN Bit Timing Examples for ICLK  = 20 MHz

TSEG1 TSEG2 Bit Time BRP SJW SBG Baud Rate

4 3 10 1 1 or 2 1 1 Mbit/s

14 6 23 8 4 1 0.096 Mbit/s

3 2 8 0 1 0 2.5 Mbit/s
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11.5 Status Registers

The two status registers are the global status register (GSR) and the error sta-

tus register (ESR). As indicated by their names, GSR provides information for

all functions of the CAN peripheral and ESR provides information about any

type of error encountered.

11.5.1 Global Status Register (GSR)

Figure 11–18. Global Status Register (GSR) — Address 7107h

15–8

Reserved

7–6 5 4 3 2 1 0

Reserved SMA CCE PDA Reserved RM TM

R-0 R-1 R-0 R-0 R-0

Note: R = Read access;  value following dash (–) = value after reset

Bits 15–6 Reserved.

Bit 5 SMA. Suspend Mode Acknowledge

0 The CAN peripheral is not in suspend mode.

1 The CAN peripheral has entered suspend mode.

This bit is set after a latency of 1 clock cycle up to the length of one frame after

the SUSPEND signal is activated.

Bit 4 CCE. Change Configuration Enable

0 Write access to the configuration registers is denied.

1 The CPU has write access to the configuration registers BCR while
CCR is set. Access is granted after reset or when the CAN module
reaches the idle state.

This bit is set after a latency of 1 clock cycle up to the length of one frame.

Bit 3 PDA. Power-Down Mode Acknowledge

Before the CPU enters its IDLE mode (to potentially shut off ALL device

clocks), it must request a CAN power down by writing to the PDR bit in MCR.

The CPU must then poll the PDA bit and enter IDLE only after PDA is set.

0 Normal operation.

1 The CAN peripheral has entered the power-down mode.

This bit is set after a latency of 1 clock cycle up to the length of one frame.
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Bit 2 Reserved.

Bit 1 RM. The CAN module is in the Receive Mode.

This bit reflects what the CBM is actually doing regardless of mailbox configu-

ration.

0 The CAN core module is not receiving a message.

1 The CAN core module is receiving a message.

Bit 0 TM. The CAN module is in the Transmit Mode.

This bit reflects what the CBM is actually doing regardless of mailbox configu-

ration.

0 The CAN core module is not transmitting a message.

1 The CAN core module is transmitting a message.

11.5.2 Error Status Register (ESR)

The error status register (see Figure 11–19) is used to display errors that oc-

curred during operation. Only the first error is stored. Subsequent errors do not

change the status of the register. These registers are cleared by writing a 1 to

them except for the SA1 flag, which is cleared by any recessive bit on the bus.

Bits 8 to 3 are error bits that can be read and cleared by writing a 1 to them.

Bits 2 to 0 are status bits that cannot be cleared, only read.

Figure 11–19. Error Status Register (ESR) — Address 7106h

15–9 8

Reserved FER

RC-0

7 6 5 4 3 2 1 0

BEF SA1 CRCE SER ACKE BO EP EW

RC-0 RC-1 RC-0 RC-0 RC-0 R-0 R-0 R-0

Note: R = Read access; C = Clear; value following dash (–) = value after reset

Bits 15–9 Reserved.

Bit 8 FER. Form Error Flag

0 The CAN module was able to send and receive correctly.

1 A Form Error occurred on the bus. This means that one or more of the
fixed-form bit fields had the wrong level on the bus.
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Bit 7 BEF. Bit Error Flag

0 The CAN module was able to send and receive correctly.

1 The received bit does not match the transmitted bit outside of the
arbitration field; or during transmission of the arbitration field, a
dominant bit was sent but a recessive bit was received.

Bit 6 SA1. Stuck at dominant Error

0 The CAN module detected a recessive bit.

1 The SA1 bit is always 1 after a hardware or a software reset or a
bus-off condition. The CAN module did not detect a recessive bit.

Bit 5 CRCE. CRC Error

0 The CAN module did not receive a wrong CRC.

1 The CAN module received a wrong CRC.

Bit 4 SER. Stuff Error

0 No stuff-bit error occurred.

1 The stuff-bit rule was violated.

Bit 3 ACKE. Acknowledge Error

0 The CAN module received an acknowledge.

1 The CAN module did not receive an acknowledge.

Bit 2 BO. Bus Off Status

0 Normal operation.

1 There is an abnormal rate of error occurrences  on the CAN bus. This
condition occurs when the transmit error counter TEC has reached
the limit of 256. While in bus-off status, no messages can be received
or transmitted. This state is only exited by clearing the CCR bit in the
Master Control Register (MCR) or if the Auto Bus-On bit in the Master
Control Register is set. After leaving the bus-off state, the error
counters are cleared.

Bit 1 EP. Error Passive Status

0 The CAN module is not in error-passive mode.

1 The CAN module is in error-passive mode.

Bit 0 EW. Warning Status

0 The values of both error counters are less than 96.

1 At least one of the error counters reached the warning level of 96.



Status Registers

11-31CAN Controller Module

11.5.3 CAN Error Counter Register (CEC)

The CAN module contains two error counters: the receive error counter (REC)

and the transmit error counter (TEC). The values of both counters can be read

from the CEC register via the CPU interface.

Figure 11–20. CAN Error Counter Register (CEC) — Address 7108h

15–8

TEC[7:0]

R-0

7–0

REC[7:0]

R-0

Note: R = Read access; value following dash (–) = value after reset

After exceeding the error passive limit (128), REC is not increased any further.

When a message is received correctly, the counter is set again to a value be-

tween 119 and 127. After reaching the bus-off status, TEC is undefined, while

REC is cleared and its function is changed: It will be incremented after every

11 consecutive recessive bits on the bus. These 11 bits correspond to the gap

between two telegrams on the bus. If the receive counter reaches 128, the

module changes automatically back to the status bus-on if bit ABO in MCR is

set. Otherwise, it changes when the recovery sequence of 11 × 128 bits has

finished and the CCR bit in the MCR register is reset by the DSP. All internal

flags are reset and the error counters are cleared. The configuration registers

keep the programmed values.

After the power-down mode, the error counters stay unchanged. They are

cleared when entering the configuration mode.
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11.6 Interrupt Logic

There are two interrupt requests from the CAN peripheral to the peripheral

interrupt expansion (PIE) controller, the mailbox interrupt and the error inter-

rupt. Both interrupts can assert either a high priority request or a low priority

request to the CPU. The following events may initiate an interrupt:

� Mailbox Interrupt

� A message was transmitted or received successfully. This event as-

serts the Mailbox interrupt.

� Abort Acknowledge Interrupt

� A send transmission was aborted. This event asserts the Error inter-

rupt.

� Write Denied Interrupt

� The CPU tried to write to a mailbox but was not allowed to. This event

asserts the Error interrupt.

� Wake-up Interrupt

� After wake-up, this interrupt is generated. This event asserts the Error

interrupt, even when clocks are not running.

� Receive Message Lost Interrupt

� An old message was overwritten by a new one. This event asserts the

Error interrupt.

� Bus Off Interrupt

� The CAN module enters the bus off state. This event asserts the Error

interrupt.

� Error Passive Interrupt

� The CAN module enters the error passive mode. This event asserts

the Error interrupt.

� Warning Level Interrupt

� One or both of the error counters is greater than or equal to 96. This

event asserts the Error interrupt.

Note: While servicing a CAN interrupt, the user should check all the bits in the

CAN_IFR register to ascertain if more than one bit has been set. The corre-

sponding ISRs should be executed for all the set bits. This must be done since

the core interrupt will be asserted only once, even if multiple bits are set in the

CAN_IFR register.
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11.6.1 CAN Interrupt Flag Register (CAN_IFR)

The interrupt flag bits are set if the corresponding interrupt condition occurs.

The appropriate mailbox interrupt request is asserted only if the corresponding

interrupt mask in CAN_IMR register is set. The peripheral interrupt request

stays active until the interrupt flag is cleared by the CPU by writing a 1 to the

appropriate bit. An interrupt acknowledge does not clear the interrupt flags.

The MIFx flags cannot be cleared by writing to the IF register; instead, they

must be cleared by writing a 1 to the appropriate TA bit in the TCR register for

a transmit mailbox (mailboxes 2 to 5), or the RMP bit in the RCR register for

the receive mailbox (mailboxes 0 to 3). If another interrupt event associated

with the same interrupt request occurs before an earlier event has been

cleared, the interrupt request will continue to be asserted until after all interrupt

flags have been cleared.

Figure 11–21. CAN Interrupt Flag Register (CAN_IFR) — Address 7109h

15–14 13 12 11 10 9 8

Reserved MIF5 MIF4 MIF3 MIF2 MIF1 MIF0

R-0 R-0 R-0 R-0 R-0 R-0

7 6 5 4 3 2 1 0

Reserved RMLIF AAIF WDIF WUIF BOIF EPIF WLIF

RC-0 RC-0 RC-0 RC-0 RC-0 RC-0 RC-0

Note: R = Read access; C = Clear;  value following dash (–) = value after reset

Bits 15–14 Reserved.

Bits 13–8 MIFx. Mailbox Interrupt Flag (receive/transmit)

0 No message was transmitted or received.

1 The corresponding mailbox transmitted or received a message
successfully.

Each of the 6 mailboxes may initiate an interrupt. These interrupts can be a

receive or a transmit interrupt depending on the mailbox configuration. If one

of the configurable mailboxes is configured as Remote Request Mailbox (AAM

set) and a remote frame is received, a transmit  interrupt  is set after sending

the corresponding data frame. If a remote frame is sent, a receive interrupt is

set after the reception of the desired data frame.

There is one interrupt mask bit for each mailbox. If a message is received, the

corresponding bit RMPn in the RCR is set. If a message is sent, the corre-

sponding bit TA in the TCR register is set. The setting of the RMPn bit or the



Interrupt Logic

 11-34

TAn bit also sets the appropriate MIFx flag in the IF register if the correspond-

ing interrupt mask bit is set. The MIFx flag generates an interrupt. The MIMx

mask bits determine if an interrupt can be generated by a mailbox.

Bit 7 Reserved.

Bit 6 RMLIF. Receive Message Lost Interrupt Flag

0 No message was lost.

1 An overflow condition has occurred in at least one of the receive
mailboxes.

Bit 5 AAIF. Abort Acknowledge Interrupt Flag

0 No transmission was aborted.

1 A send transmission was aborted.

Bit 4 WDIF. Write Denied Interrupt Flag

0 The write access to the mailbox was successful.

1 The CPU tried to write to a mailbox but was not allowed to.

Bit 3 WUIF. Wake-Up Interrupt Flag

0 The module is still in the sleep mode or in normal operation.

1 The module has left the sleep mode.

Bit 2 BOIF. Bus Off Interrupt Flag

0 The CAN module is still in the bus-on mode.

1 The CAN has entered the bus-off mode.

Bit 1 EPIF. Error Passive Interrupt Flag

0 The CAN module is not in the error-passive mode.

1 The CAN module has entered the error-passive mode.

Bit 0 WLIF. Warning Level Interrupt Flag

0 None of the error counters has reached the warning level.

1 At least one of the error counters has reached the warning level.
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11.6.2 CAN Interrupt Mask Register (CAN_IMR)

The setup for the interrupt mask register (see Figure 11–22) is the same as for

the interrupt flag register (CAN_IFR) with the addition of the interrupt priority

selection bits MIL and EIL. If a mask bit is set, the corresponding interrupt re-

quest to the PIE controller is enabled.

Figure 11–22. CAN Interrupt Mask Register (CAN_IMR) — Address 710Ah

15 14 13 12 11 10 9 8

MIL Reserved MIM5 MIM4 MIM3 MIM2 MIM1 MIM0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

7 6 5 4 3 2 1 0

EIL RMLIM AAIM WDIM WUIM BOIM EPIM WLIM

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Note: R = Read access; W = Write access; value following dash (–) = value after reset

Two additional control bits are included in this register:

Bit 15 MIL. Mailbox Interrupt Priority Level

For the mailbox interrupts MIF5 – MIF0.

0 The mailbox interrupts generate high priority requests; that is, on line
CAMBOXIRQn with CAMBOXPRI set to 1.

1 The mailbox interrupts generate low priority requests; that is, on line
CAMBOXIRQn with CAMBOXPRI set to 0.

Bit 14 Reserved.

Bit 7 EIL. Error Interrupt Priority Level

For the error interrupts RMLIF, AAIF, WDIF, WUIF, BOIF, EPIF, and WLIF.

0 The named interrupts generate high priority requests; that is, on line
CAERRIRQn with CAERRPRI set to 1.

1 The named interrupts generate low priority requests; that is, on line
CAERRIRQn with CAERRPRI set to 0.
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11.7 Configuration Mode

The CAN module must be initialized before activation. This is only possible

when the module is in the configuration mode, which is set by programming

CCR with 1. The initialization can be performed only if the status bit CCE con-

firms the request by getting 1. Afterwards, the bit configuration registers can

be written. The module is activated again by programming the control bit CCR

with zero. After a hardware reset, the configuration mode is active.

Figure 11–23. CAN Initialization

Normal mode (CCR = 0)
(CCE = 0)

Wait for configuration mode (CCR = 1)
(CCE = 0)

Configuration mode requested
(CCR = 1)
(CCE = 0)

(CCE = 0)

Configuration mode active (CCR = 1)
(CCE = 1)

Changing of bit timing
parameters enabled

Normal mode requested
(CCR = 0)
(CCE = 1)

Wait for normal mode
(CCR = 0)
(CCE = 1)

(CCE = 1)
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11.8 Power-Down Mode (PDM)

If the peripheral clocks are to be shut off by the device low-power mode, the

CAN peripheral’s own low-power mode must be requested before a device

low-power mode is entered by executing the IDLE instruction.

Before the CPU enters its IDLE mode prior to the device low-power mode that

potentially shuts off all device clocks, it must first request a CAN peripheral

power down by writing a 1 to the PDR bit in MCR. If the module is transmitting

a message when PDR is set, the transmission is continued until a successful

transmission, a lost arbitration, or an error condition on the CAN bus line oc-

curs. Then the PDA is asserted. Thus, the module causes no error condition

on the CAN bus line. When the module is ready to enter the power-down mode,

the status bit PDA is set. The CPU must then poll the PDA bit in GSR, and only

enter IDLE after PDA is set.

On exiting the power-down mode, the PDR flag in the MCR must be cleared

by software, or automatically, if the WUBA bit in MCR is set and there is bus

activity on the CAN bus line. When detecting a dominant signal on the CAN

bus, the wake-up interrupt flag (WUIF) is asserted. The power-down mode is

exited as soon as the clock is switched on. There is no internal filtering for the

CAN bus line.

The automatic wake-up on bus activity can be enabled or disabled by setting

the configuration bit WUBA. If there is any activity on the CAN bus line, the

module begins its power up sequence. The module waits until detecting

11 consecutive recessive bits on the RX pin and goes to bus active afterwards.

The first message, which initiates the bus activity, cannot be received.

When WUBA is enabled, the error interrupt WUIF is asserted automatically to

the PIE controller, which will handle it as a wake-up interrupt and restart the

device clocks if they are stopped.

After leaving the sleep mode with a wake up, the PDR and PDA are cleared.

The CAN error counters remain unchanged.
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11.9 Suspend Mode

The suspend mode can operate in either Free mode, where the CAN peripher-

al continues to operate regardless of the suspend signal being active, or Soft

mode, where the CAN peripheral stops operation at the end of the current

transmission. Suspend mode is entered when the CPU activates the SUS-

PEND signal. The SUSP bit in MCR determines which of the two suspend

modes (Free or Soft) is entered.

When the module enters the Soft suspend mode, the status bit SMA is set. If

the module is actually transmitting a message when the SUSPEND signal is

activated, the transmission is continued until a successful transmission, a lost

arbitration, or an error condition on the CAN bus line occurs. Otherwise, it en-

ters suspend mode immediately and sets the SMA bit.

In Free mode, the peripheral ignores the suspend signal and continues to op-

erate, receiving and transmitting messages.

Either way, the module causes no error condition on the CAN bus line.

When suspended (in Soft mode), the module does not send or receive any

messages. The module is not active on the CAN bus line. Acknowledge flags

and error flags are not sent. The error counters and all other internal registers

are frozen. Suspend is only asserted when a system is being debugged with

an in-circuit emulator.

In case the module is in bus-off mode when suspend mode is requested, it en-

ters suspend mode immediately. It does, however, still count the 128 × 11 re-

cessive bits needed to return to the bus-on mode. All error counters are unde-

fined in that state. The bus-off flag and the error-passive flag are set.

The module leaves the suspend mode when the SUSPEND signal is deacti-

vated. It waits for the next 11 recessive bits on the bus and goes back to normal

operation. This is called the idle mode (different from the CPU’s IDLE mode).

The module waits for the next message or tries to send one itself. When the

module is in bus-off mode, it continues to wait for the bus-on condition. This

occurs when 128 × 11 recessive bits are received. It also counts those that oc-

curred during the suspend mode.

Note: The clock is not switched off internally for suspend or low-power mode.

For easy reference, Table 11–5 provides a listing of the notation, definition,

and register and bit number.
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Table 11–5. CAN Notation

Notation Signification Register Bit No.

AA: Abort Acknowledge TCR 11:8

AAIF: Abort Acknowledge Interrupt Flag IFR 5

AAIM: Abort Acknowledge Interrupt Mask IMR 5

AAM: Auto Answer Mode MSGIDn 13

ABO: Auto Bus On MCR 7

ACKE: Acknowledge Error ESR 3

AME: Acceptance Mask Enable MSGIDn 14

BEF: Bit Error Flag ESR 7

BO: Bus Off Status ESR 2

BOIF: Bus Off Interrupt Flag IFR 2

BOIM: Bus Off Interrupt Mask IMR 2

BRP: Baud Rate Prescaler BCR2 7:0

CCE: Change Configuration Enable GSR 4

CCR: Change Configuration Request MCR 12

CDR: Change Data Field Request MCR 8

CRCE: CRC Error ESR 5

DBO: Data Byte Order MCR 10

DLC: Data Length Code MSGCTRLn 3:0

EIL: Error Interrupt Priority Level IMR 7

EP: Error Passive Status ESR 1

EPIF: Error Passive Interrupt Flag IFR 1

EPIM: Error Passive Interrupt Mask IMR 1

EW: Warning Status ESR 0

FER: Form Error Flag ESR 8

IDE: Identifier Extension MSGIDn 15

LAMI: Local Acceptance Mask Identifier LAM 15

MBNR: Mailbox Number MCR 1:0

ME: Mailbox Enable MDER 5:0

MD: Mailbox Direction MDER 7:6

MIF: Mailbox Interrupt Flag IFR 13:8

MIL: Mailbox Interrupt Priority Level IMR 15

MIM: Mailbox Interrupt Mask IMR 13:8

OPC: Overwrite Protection Control RCR 3:0
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Table 11–5. CAN Notation (Continued)

Notation Bit No.RegisterSignification

PDA: Power-Down Mode Acknowledge GSR 3

PDR: Power-Down Mode Request MCR 11

REC: Receive Error Counter CEC 7:0

RFP: Remote Frame Pending RCR 15:12

RM: Receive Mode GSR 1

RML: Receive Message Lost RCR 11:8

RMLIF: Receive Message Lost Interrupt Flag IFR 6

RMLIM: Receive Message Lost Interrupt Mask IMR 6

RMP: Receive Message Pending RCR 7:4

RTR: Remote Transmission Request MSGCTRLn 4

SA1: Stuck at dominant Error ESR 6

SAM: Sample Point Setting BCR1 7

SBG: Synchronization on Both Edge BCR1 10

SER: Stuff Error ESR 4

SJW: Synchronization Jump Width BCR1 9:8

SMA: Suspend Mode Acknowledge GSR 5

STM: Self Test Mode MCR 6

SUSP: Action on Emulator Suspend MCR 13

TA: Transmission Acknowledge TCR 15:12

TEC: Transmit Error Counter CEC 15:8

TM: Transmit Mode GSR 0

TRS: Transmission Request Set TCR 4:7

TRR: Transmission Request Reset TCR 0:3

WDIF: Write Denied Interrupt Flag IFR 4

WDIM: Write Denied Interrupt Mask IMR 4

WLIF: Warning Level Interrupt Flag IFR 0

WLIM: Warning Level Interrupt Mask IMR 0

WUBA: Wake Up on Bus Activity MCR 9

WUIF: Wake Up Interrupt Flag IFR 3

WUIM: Wake Up Interrupt Mask IMR 3



12-1

Watchdog (WD) Timer 

The watchdog (WD) timer peripheral monitors software and hardware opera-

tions, and implements system reset functions upon CPU disruption. If the soft-

ware goes into an improper loop, or if the CPU becomes temporarily disrupted,

the WD timer overflows to assert a system reset.

Most conditions that temporarily disrupt chip operation and inhibit proper CPU

function can be cleared and reset by the watchdog function. By its consistent

performance, the watchdog increases the reliability of the CPU, thus ensuring

system integrity.

All registers in this peripheral are eight bits in width and are attached to the low-

er byte of the peripheral data bus of the 16-bit CPU.

The only difference between the ’X243/241/242 WD timer and that on the

’X240 is the lack of real-time Interrupt capability.

This implementation of the WD timer generates it’s own watchdog clock locally

by dividing down the CLKOUT from CPU.
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12.1 Watchdog Timer Features

The WD module includes the following features:

� 8-bit WD counter that generates a system reset upon overflow

� 6-bit free-running counter that feeds the WD counter via the WD counter

prescale

� A WD reset key (WDKEY) register that clears the WD counter when the

correct combination of values are written, and generates a reset if an in-

correct value is written to the register

� A WD flag (WD FLAG) bit that indicates if the WD timer initiated a system

reset

� WD check bits that initiate a system reset if the WD timer is corrupted

� Automatic activation of the WD timer, once system reset is released

� A WD prescale with six selections from the 6-bit free-running counter

Figure 12–1 shows a block diagram of the WD module
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Figure 12–1. Block Diagram of the WD Module
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WDCNTR Watchdog Counter Register
WDKEY Watchdog Reset Key Register

WDCR Watchdog Control Register

��Writing to bits WDCR.5–3 with anything but the correct pattern (101) generates a system reset.
��These prescale values are with respect to the WDCLK signal.
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12.2 Control Registers

Three registers control the WD operations:

� WD Counter Register (WDCNTR) — This register contains the value of

the WD counter.

� WD Key Register (WDKEY) — This register clears the WDCNTR when a

55h value followed by an AAh value is written to WDKEY.

� WD Control Register (WDCR) — This register contains the following con-

trol bits used for watchdog configuration

� WD disable bit

� WD flag bit

� WD check bits (three)

� WD prescale select bits (three)
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12.3 Watchdog Timer Clock

A low-frequency clock (WDCLK) is used to clock the watchdog timer. WDCLK

has a nominal frequency of 39062.5 Hz when CPUCLK = 20 MHz. WDCLK is

derived from the CLKOUT of the CPU. This ensures that the watchdog contin-

ues to count when the CPU is in IDLE1 or IDLE 2 mode (see section 4.4, Low

Power Modes, on page 4-3). WDCLK is generated in the watchdog peripheral.

The frequency of WDCLK can be calculated from:

WDCLK  =  (CLKOUT)/512

WDCLK is seen at the CLKOUT pin only when the watchdog is enabled. If the

watchdog is enabled, the WDCNTR should be reset before it overflows to pre-

vent a device reset.

12.3.1 Watchdog Suspend

WDCLK is stopped when the CPU’s suspend signal goes active. This is

achieved by stopping the clock input to the clock divider which generates

WDCLK from CLKOUT.

Note that the watchdog timer clock does not run when the real-time monitor

is running. This is different from the ’F/C240.

12.3.2 Operation of WD Timers

The WD timer is an 8-bit resetable incrementing counter that is clocked by the

output of the prescaler. The timer protects against system software failures

and CPU disruption by providing a system reset when the WDKEY register is

not serviced before a watchdog overflow. This reset returns the system to a

known starting point. Software then clears the WDCNTR register by writing a

correct data pattern to the WD key logic.

A separate internal clocking signal (WDCLK) is generated by the on-chip clock

module and is active in all operational modes except the HALT mode. WDCLK

enables the WD timer to function, regardless of the state of any register bit(s)

on the chip, except during the HALT low-power mode, which disables the

WDCLK signal. The current state of WDCNTR can be read at any time during

its operation.

12.3.3 WD Prescale Select

The 8-bit WDCNTR can be clocked directly by the WDCLK signal or through

one of six taps from the free-running counter. The 6-bit free-running counter

continuously increments at a rate provided by WDCLK. The WD functions are
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enabled as long as WDCLK is provided to the module. Any one of the six taps

(or the direct input from WDCLK) can be selected by the WD prescale select

(bits WDPS2–0) as the input to the time base for the WDCNTR. This prescale

provides selectable watchdog overflow rates of from 6.55 ms to 419.43 ms for

a WDCLK rate of 39062.5 Hz. While the chip is in normal operation mode, the

free-running counter cannot be stopped or reset, except by a system reset.

Clearing WDCNTR does not clear the free-running counter.

12.3.4 Servicing the WD Timer

The WDCNTR is reset when the proper sequence is written to the WDKEY be-

fore the WDCNTR overflows. The WDCNTR is enabled to be reset when a val-

ue of 55h is written to the WDKEY. When the next AAh value is written to the

WDKEY, then the WDCNTR actually is reset. Any value written to the WDKEY

other than 55h or AAh causes a system reset. Any sequence of 55h and AAh

values can be written to the WDKEY without causing a system reset; only a

write of 55h followed by a write of AAh to the WDKEY resets the WDCNTR.

The following shows a typical sequence written to WDKEY after power-up

(Table 12–1):

Table 12–1. Typical WDKEY Register Power-Up Sequence

Sequential

Step

Value Written

to WDKEY Result

1 AAh No action.

2 AAh No action.

3 55h WDCNTR is enabled to be reset by the next AAh.

4 55h WDCNTR is enabled to be reset by the next AAh.

5 55h WDCNTR is enabled to be reset by the next AAh.

6 AAh WDCNTR is reset.

7 AAh No action.

8 55h WDCNTR is enabled to be reset by the next AAh.

9 AAh WDCNTR is reset.

10 55h WDCNTR is enabled to be reset by the next AAh.

11 23h System reset due to an improper key value writ-

ten to WDKEY.

Step 3 above is the first action that enables the WDCNTR to be reset. The

WDCNTR is not actually reset until step 6. Step eight re-enables the WDCNTR
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to be reset, and step 9 resets the WDCNTR. Step 10 again re-enables the

WDCNTR to be reset. Writing the wrong key value to the WDKEY in step 11

causes a system reset.

A WDCNTR overflow or an incorrect key value written to the WDKEY also sets

the WD flag (WDFLAG). After a reset, the program reads this flag to determine

the source of the reset. After reset, WDFLAG should be cleared by the soft-

ware to allow the source of subsequent resets to be determined. WD resets

are not prevented when the flag is set.

12.3.4.1 WD Reset

When the WDCNTR overflows, the WD timer asserts a system reset. Reset

occurs one WDCNTR clock cycle (either WDCLK or WDCLK divided by a pres-

cale value) later. The reset cannot be disabled in normal operation as long as

WDCLK is present. The WD timer is, however, disabled in the oscillator power-

down mode when WDCLK is not active. For software development or flash

programming purposes, the WD timer can be disabled by applying 5V to the

VCCP pin (on Flash devices) or the WDDIS pin (on ROM devices) and setting

the WDDIS bit in the WD control register (WDCR.6). However, if the hardware

and software conditions are not met, the WD timer will not be disabled.

12.3.4.2 WD Check Bit Logic

The WD check bits (WDCR.5–3, described in detail in section 12.4.3 on page

12-10) are continuously compared to a constant value (1012). If writes to the

WD check bits do not match this value, a system reset is generated. This func-

tions as a logic check, in case the software improperly writes to the WDCR, or

if an external stimulus (such as voltage spikes, EMI, or other disruptive

sources) corrupt the contents of the WDCR. Writing to bits WDCR.5-3 with

anything but the correct pattern (1012) generates a system reset.

The check bits are always read as zeros (0002), regardless of what value has

been written to them.

12.3.4.3 WD Setup

The WD timer operates independently of the CPU and is always enabled. It

does not need any CPU initialization to function. When a system reset occurs,

the WD timer defaults to the fastest WD timer rate available (6.55 ms for a

39062.5 Hz WDCLK signal). As soon as reset is released internally, the CPU

starts executing code, and the WD timer begins incrementing. This means

that, to avoid a premature reset, WD setup should occur early in the power-up

sequence.
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12.4 Watchdog Control Registers

The WD module control registers are shown in Table 12–2 and discussed in

detail in the subsections that follow the table.

Table 12–2. WD Module Control RegistersÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍBit Number

Address

Register

mnemonic

ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

7

ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

6

ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

5

ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

4

ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

3

ÍÍÍ
ÍÍÍ
ÍÍÍ

2

ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

1

ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

0

7020h — Reserved

7021h — Reserved

7022h — Reserved

7023h WDCNTRÍÍÍÍ
ÍÍÍÍ

D7 ÍÍÍÍ
ÍÍÍÍ

D6 ÍÍÍÍ
ÍÍÍÍ

D5 ÍÍÍÍ
ÍÍÍÍ

D4 ÍÍÍÍ
ÍÍÍÍ

D3 ÍÍÍ
ÍÍÍ

D2ÍÍÍÍ
ÍÍÍÍ

D1 ÍÍÍÍ
ÍÍÍÍ

D0

7024h — Reserved

7025h WDKEYÍÍÍÍ
ÍÍÍÍ

D7 ÍÍÍÍ
ÍÍÍÍ

D6 ÍÍÍÍ
ÍÍÍÍ

D5 ÍÍÍÍ
ÍÍÍÍ

D4 ÍÍÍÍ
ÍÍÍÍ

S3 ÍÍÍ
ÍÍÍ

S2ÍÍÍÍ
ÍÍÍÍ

D1 ÍÍÍÍ
ÍÍÍÍ

D0

7026h — Reserved

7027h — Reserved

7028h — Reserved

7029h WDCRÍÍÍÍ
ÍÍÍÍ

ReservedÍÍÍÍ
ÍÍÍÍ

WDDISÍÍÍÍ
ÍÍÍÍ

WDCHK2ÍÍÍÍ
ÍÍÍÍ

WDCHK1ÍÍÍÍ
ÍÍÍÍ

WDCHK0 ÍÍÍ
ÍÍÍ

WDPS2ÍÍÍÍ
ÍÍÍÍ

WDPS1ÍÍÍÍ
ÍÍÍÍ

WDPS0
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12.4.1 WD Counter Register

The 8-bit WD counter register (WDCNTR) contains the current value of the WD

counter. This register continuously increments at a rate selected through the

WD control register. When WDCNTR overflows, an additional single-cycle

delay (either WDCLK or WDCLK divided by a prescale value) is incurred be-

fore system reset is asserted. Writing the proper sequence to the WD reset key

register clears WDCNTR and prevents a system reset; however, it does not

clear the free-running counter.

Figure 12–2. WD Counter Register (WDCNTR) — Address 7023h

7 6 5 4 3 2 1 0

D7 D6 D5 D4 D3 D2 D1 D0

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

Note: R = Read access; value following dash (–) = value after reset

Bits 7–0 D7–D0. Data Values. These read-only data bits contain the 8-bit WD
counter value. Writing to this register has no effect.

12.4.2 WD Reset Key Register

The WD reset key register clears the WDCNTR register when a 55h followed

by an AAh is written to WDKEY. Any combination of AAh and 55h is allowed,

but only a 55h followed by an AAh resets the counter. Any other value causes

a system reset.

Figure 12–3. WD Reset Key Register (WDKEY) — Address 7025h

7 6 5 4 3 2 1 0

D7 D6 D5 D4 D3 D2 D1 D0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Note: R = Read access; W = Write access; value following dash (–) = value after reset

Bits 7–0 D7–D0. Data Values. These write-only data bits contain the 8-bit WD
reset key value. When read, the WDKEY register does not return the
last key value but rather returns the contents of the WDCR register.
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12.4.3 WD Timer Control Register

WDCR contains control bits used for watchdog configuration. These include

flag bits that indicate if the WD timer initiated a system reset; check bits that

assert a system reset if an incorrect value is written to the WDCR register; and

watchdog prescale select bits that select the counter overflow tap which is

used to clock the WD counter.

Figure 12–4. WD Timer Control Register (WDCR) — Address 7029h

7 6 5 4 3 2 1 0

Reserved WDDIS WDCHK2 WDCHK1 WDCHK0 WDPS2 WDPS1 WDPS0

RC-x RWc-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Note: R = Read access; C = Clear by writing 1 only; W = Write access; Wc = Write access conditional on VCCP or

WDDIS Pins being high; value following dash (–) = value after reset (-x = depends on cause of reset)

Bit 7 Reserved.

Bit 6 WDDIS. Watchdog Disable. This bit can be written only when the
VCCP (on Flash devices) or the WDDIS pin (on ROM devices) is high.

0 Watchdog is enabled

1 Watchdog is disabled

Bit 5 WDCHK2. Watchdog Check Bit 2. This bit must be written as a 1 when
you write to the WDCR register, or else a system reset is asserted.
This bit is always read as 0.

0 System reset is asserted

1 Normal operation continues if all check bits are written
correctly

Bit 4 WDCHK1. Watchdog Check Bit 1. This bit must be written as a 0 when
you write to the WDCR register, or else a system reset is asserted.
This bit is always read as 0.

0 Normal operation continues if all check bits are written
correctly

1 System reset is asserted
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Bit 3 WDCHK0. Watchdog Check Bit 0. This bit must be written as a 1 when
you write to the WDCR register, or else a system reset is asserted.
This bit is always read as 0.

0 System reset is asserted

1 Normal operation continues if all check bits are written
correctly

Bits 2–0 WDPS2–WDPS0. Watchdog Prescale Select Bits. These bits select
the counter overflow tap that is used to clock the WD counter. Each
selection sets up the maximum time that can elapse before the WD
key logic is serviced. Table 12–3 show the overflow times for each
prescaler setting when the WDCLK is running at 39062.5 Hz. Be-
cause the WD timer counts 257 clocks before overflowing, the times
given are the minimum for overflow (reset). The maximum timeout
can be up to 1/256 longer than the times listed in Table 12–3 because
of the added uncertainty resulting from not clearing the prescaler.

Table 12–3. WD Overflow (Timeout) Selections

WD Prescale Select Bits 39.0625 kHz WDCLK†

WDPS2 WDPS1 WDPS0
WDCLK

Divider

Overflow

Frequency (Hz)

Minimum

Overflow (ms)

0 0 X 1 152.59 6.55

0 1 0 2 76.29 13.11

0 1 1 4 38.15 26.21

1 0 0 8 19.07 52.43

1 0 1 16 9.54 104.86

1 1 0 32 4.77 209.72

1 1 1 64 2.38 419.43

X = Don’t care
† Generated by a 5-MHz input clock

Note: WDDIS pin

0 WD always active

1 (5V) Provides software disable feature using WDDIS bit in
WDCR
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’240–’24x Compatibility

This section describes how to use an ’F/C240 device to develop ’F/C24x soft-

ware.

The software changes required between ’X240 code and ’C24x code have

been kept to an absolute minimum. All register addresses, and almost all bit

positions and functions, are identical between the ’X240 and ’C24x devices.
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13.1 General

If porting code from an ’X240 to an ’F243/F241 or ’C242 device, the total code

size must be less than 8k or 4k words respectively.

Low power mode 2 (Halt) is the lowest power mode on the ’C24x. It is similar

to the LPM3 (oscillator power down) on the ’X240. There is no equivalent to

LPM2 (PLL power down) on the ’X240. The low power mode bits are in a differ-

ent register (SCSR) and in different bit positions on the ’C24x.

Software reset is not available; however, a software reset can be achieved by

writing an incorrect key to the watchdog timer after setting a flag in memory

to indicate that this was a software reset, and not a true watchdog time-out.

Illegal address detect does not have 100% coverage on the ’X240; however,

it does on ’C24x devices. Furthermore, an illegal address generates a reset

on the ’X240, and an NMI on the ’C24x. The NMI service routine must poll the

ILLADDR bit in SCSR to determine whether the NMI was caused by an illegal

address or the NMI pin.

External interrupts XINT2 and XINT3 on the ’X240 are similar to external inter-

rupts XINT1 and XINT2 on the ’C24x. The addresses of the registers are differ-

ent, however, and the general purpose I/O multiplexing control bits are located

in the digital I/O registers, not in the external interrupt control registers. The

external interrupt flags are cleared by writing a 1 to the flag bit. This is in order

to be consistent with the other peripherals.

The clock out control bits are in a different register (SCSR) and bit position.
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13.2 Event Manager

In order to port code from ’X240 to ’C24x:

� The GP timer 3 must not be used.

� The single-up count and single-up/down count modes of the GP timers

must not be used. The decoding of the timer modes from the TMODE1-0

bits has changed, and this code will have to be modified when porting code

from the ’X240 to the ’C24x.

� The 32-bit timer mode cannot be used.

� Capture 3 on the ’X240 cannot be used, when porting code from the ’X240

to the ’C24x. Capture 4 should be changed into capture 3.

� The capture units can use either GP Timer 1 or 2 as a time base.

� The capture interrupt code needs to allow for the fact that an interrupt is

usually generated after every second capture and not every capture as on

the ’X240.

� The QEP logic can clock GP timer 1 or 2.

� The three simple compare units cannot be used.

� The compare mode of the (full) compare units cannot be used; only the

PWM mode can be used.

� Software must change from ’X240 to ’C24x to comprehend the changes

to the dead-band counters and dead-band prescaler.

� All general interrupt service routines must be changed to get their periph-

eral interrupt vectors from the PIVR (701Eh) and not one of EVIVRA,

EVIVRB or EVIVRC. Reading from PIVR does not clear interrupt flags. In-

terrupt flags must be cleared manually.



Analog-to-Digital Converter

 13-4

13.3 Analog-to-Digital Converter

The ADC clock prescale values will have to be changed when porting code

from a ’X240 to a ’C24x device. Only ADC inputs 0–3 and 8–11 can be used

on the ’X240 (these are equivalent to inputs 0–7 on ’C24x devices). Otherwise,

further software changes will be required.

13.4 Serial Communication Interface

Some code changes are required. This is code that switches the SCI pins be-

tween their SCI functions and their digital I/O functions, and accesses them

in digital I/O mode. When porting code from a ’X240 to a ’C24x device, it must

access the relevant bits in the digital I/O peripheral instead of the SCIPC2

register.

The SCI has free and soft emulation modes.

13.5 Serial Peripheral Interface

This SPI is no longer limited to a maximum transmission rate of CLKOUT / 8

in slave mode. The maximum transmission rate in both slave mode and master

mode is now CLKOUT / 4.

Some code changes are required. This is code that switches the SPI pins

between their SPI functions and their digital I/O functions, and accesses them

in digital I/O mode. When code is ported from ’X240 to ’C24x devices, it must

access the relevant bits in the digital I/O peripheral instead of the SCIPC1 and

SCIPC2 register.

When code is ported from an ’X240 to a ’C24x device, writes of transmit data

to the serial data register, SPIDAT, must be left-justified within a 16-bit register,

not within an 8-bit register.

The SPI has free and soft emulation modes.

13.6 Watchdog Timer

Because ’C24x devices do not have an RTI, all code that uses the RTI

peripheral (if any) must be removed when porting code from ’X240 to ’C24x

devices.

Analog-to-Digital Converter / Serial Communication Interface / Serial Peripheral Interface / Watchdog Timer
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Appendix A

Summary of Programmable Registers
on the TMS320F243/F241/C242

Table A–1. Programmable Registers on the TMS320F243/F241/C242  

Shown in

Address Register Name Figure Page

Internal ST0 CPU Status Register 0 SPRU160 Chapter 4

Internal ST1 CPU Status Register 1 SPRU160 Chapter 4

0004h IMR CPU Interrupt Mask Register Figure 2–6 2-19

0005h GREG Global Data Memory Configuration 

Register

Figure 3–7 3-12

0006h IFR CPU Interrupt Flag Register Figure 2–5 2-18

7010h PIRQR0 Peripheral Interrupt Request Register 0 Figure 2–8 2-22

7011h PIRQR1 Peripheral Interrupt Request Register 1 Figure 2–9 2-23

7014h PIACKR0 Peripheral Interrupt Acknowledge 

Register 0

Figure 2–10 2-24

7015h PIACKR1 Peripheral Interrupt Acknowledge 

Register 1

Figure 2–11 2-25

7018h SCSR System Control and Status Register Figure 5–1 5-3

701Ch DINR Device Identification Name Register Figure 5–2 5-4

701Eh PIVR Peripheral Interrupt Vector Register Figure 2–7 2-21

7023h WDCNTR Watchdog Counter Register Figure 12–2 12-9

7025h WDKEY Watchdog Reset Key Register Figure 12–3 12-9

7029h WDCR Watchdog Timer Control Register Figure 12–4 12-10

7032h ADCTRL1 ADC Control Register 1 Figure 8–3 8-10

7034h ADCTRL2 ADC Control Register 2 Figure 8–4 8-13

7036h ADCFIFO1 ADC Data Register FIFO 1 Figure 8–5 8-15

7038h ADCFIFO2 ADC Data Register FIFO 2 Figure 8–5 8-15

Appendix A



Summary of Programmable Registers on the ’F243/F241/C242

 A-2

Table A–1. Programmable Registers on the TMS320F243/F241/C242 (Continued)

Shown in

NameRegisterAddress PageFigureNameRegisterAddress

7040h SPICCR SPI Configuration Control Register Figure 10–7 10-18

7041h SPICTL SPI Operation Control Register Figure 10–8 10-20

7042h SPISTS SPI Status Register Figure 10–9 10-22

7044h SPIBRR SPI Baud Rate Control Register Figure 10–10 10-23

7046h SPIRXEMU SPI Emulation Buffer Register Figure 10–11 10-24

7047h SPIRXBUF SPI Serial Receive Buffer Register Figure 10–12 10-25

7048h SPITXBUF SPI Serial Transmit Buffer Register Figure 10–13 10-26

7049h SPIDAT SPI Serial Data Register Figure 10–14 10-27

704Fh SPIPRI SPI Priority Control Register Figure 10–15 10-28

7050h SCICCR SCI Communication Control Register Figure 9–10 9-21

7051h SCICTL1  SCI Control Register 1 Figure 9–11 9-23

7052h SCIHBAUD SCI Baud-Select Register, High Bits Figure 9–12 9-26

7053h SCILBAUD SCI Baud-Select Register, Low Bits Figure 9–13 9-26

7054h SCICTL2 SCI Control Register 2 Figure 9–14 9-27

7055h SCIRXST SCI Receiver Status Register Figure 9–15 9-28

7056h SCIRXEMU SCI Emulation Data Buffer Register Figure 9–17 9-31

7057h SCIRXBUF SCI Receiver Data Buffer Register Figure 9–18 9-31

7059h SCITXBUF SCI Transmit Data Buffer Register Figure 9–19 9-32

705Fh SCIPRI SCI Priority Control Register Figure 9–20 9-32

7070h XINT1CR External Interrupt 1 Control Register Figure 5–3 5-5

7071h XINT2CR External Interrupt 2 Control Register Figure 5–4 5-6

7090h OCRA I/O Mux Control Register A Figure 6–2 6-4

7092h OCRB I/O Mux Control Register B Figure 6–3 6-6

7098h PADATDIR I/O Port A Data and Direction Register Figure 6–5 6-8

709Ah PBDATDIR I/O Port B Data and Direction Register Figure 6–6 6-9
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Table A–1. Programmable Registers on the TMS320F243/F241/C242 (Continued)

Shown in

NameRegisterAddress PageFigureNameRegisterAddress

709Ch PCDATDIR I/O Port C Data and Direction Register Figure 6–7 6-10

709Eh PDDATDIR I/O Port D Data and Direction Register Figure 6–8 6-11

7100h MDER Mailbox Direction/Enable Register Figure 11–11 11-18

7101h TCR Transmission Control Register Figure 11–12 11-19

7102h RCR Receive Control Register Figure 11–13 11-21

7103h MCR Master Control Register Figure 11–14 11-22

7104h BCR2 Bit Configuration Register 2 Figure 11–15 11-25

7105h BCR1 Bit Configuration Register 1 Figure 11–16 11-25

7106h ESR Error Status Register Figure 11–19 11-29

7107h GSR Global Status Register Figure 11–18 11-28

7108h CEC CAN Error Counter Registers Figure 11–20 11-31

7109h CAN_IFR Interrupt Flag Register Figure 11–21 11-33

710Ah CAN_IMR Global Interrupt Mask Register Figure 11–22 11-35

710Bh LAM0_H Local Acceptance Mask Mailbox 0 and 1 Figure 11–9 11-17

710Ch LAM0_L Local Acceptance Mask Mailbox 0 and 1 Figure 11–10 11-17

710Dh LAM1_H Local Acceptance Mask Mailbox 2 and 3 Figure 11–9 11-17

710Eh LAM1_L Local Acceptance Mask Mailbox 2 and 3 Figure 11–10 11-17

7200h MSGID0L CAN Message ID for Mailbox 0 (lower

16 bits)

Figure 11–6 11-10

7201h MSGID0H CAN Message ID for Mailbox 0 (upper

16 bits)

Figure 11–5 11-10

7202h MSGCTRL0 CAN Message Control Field 0 Figure 11–7 11-11

7204h MBX0A CAN 2 of 8 Bytes of Mailbox 0 Not shown Not shown

7205h MBX0B CAN 2 of 8 Bytes of Mailbox 0 Not shown Not shown

7206h MBX0C CAN 2 of 8 Bytes of Mailbox 0 Not shown Not shown

7207h MBX0D CAN 2 of 8 Bytes of Mailbox 0 Not shown Not shown
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Table A–1. Programmable Registers on the TMS320F243/F241/C242 (Continued)

Shown in

NameRegisterAddress PageFigureNameRegisterAddress

7208h MSGID1L CAN Message ID for Mailbox 1 (lower

16 bits)

Figure 11–6 11-10

7209h MSGID1H CAN Message ID for Mailbox 1 (upper

16 bits)

Figure 11–5 11-10

720Ah MSGCTRL1 CAN Message Control Field 1 Figure 11–7 11-11

720Ch MBX1A CAN 2 of 8 Bytes of Mailbox 1 Not shown Not shown

720Dh MBX1B CAN 2 of 8 Bytes of Mailbox 1 Not shown Not shown

720Eh MBX1C CAN 2 of 8 Bytes of Mailbox 1 Not shown Not shown

720Fh MBX1D CAN 2 of 8 Bytes of Mailbox 1 Not shown Not shown

7210h MSGID2L CAN Message ID for Mailbox 2 (lower

16 bits)

Figure 11–6 11-10

7211h MSGID2H CAN Message ID for Mailbox 2 (upper

16 bits)

Figure 11–5 11-10

7212h MSGCTRL2 CAN Message Control Field 2 Figure 11–7 11-11

7214h MBX2A CAN 2 of 8 Bytes of Mailbox 2 Not shown Not shown

7215h MBX2B CAN 2 of 8 Bytes of Mailbox 2 Not shown Not shown

7216h MBX2C CAN 2 of 8 Bytes of Mailbox 2 Not shown Not shown

7217h MBX2D CAN 2 of 8 Bytes of Mailbox 2 Not shown Not shown

7218h MSGID3L CAN Message ID for Mailbox 3 (lower

16 bits)

Figure 11–6 11-10

7219h MSGID3H CAN Message ID for Mailbox 3 (upper

16 bits)

Figure 11–5 11-10

721Ah MSGCTRL3 CAN Message Control Field 3 Figure 11–7 11-11

721Ch MBX3A CAN 2 of 8 Bytes of Mailbox 3 Not shown Not shown

721Dh MBX3B CAN 2 of 8 Bytes of Mailbox 3 Not shown Not shown

721Eh MBX3C CAN 2 of 8 Bytes of Mailbox 3 Not shown Not shown

721Fh MBX3D CAN 2 of 8 Bytes of Mailbox 3 Not shown Not shown

7220h MSGID4L CAN Message ID for Mailbox 4 (lower

16 bits)

Figure 11–6 11-10
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Table A–1. Programmable Registers on the TMS320F243/F241/C242 (Continued)

Shown in

NameRegisterAddress PageFigureNameRegisterAddress

7221h MSGID4H CAN Message ID for Mailbox 4 (upper

16 bits)

Figure 11–5 11-10

7222h MSGCTRL4 CAN Message Control Field 4 Figure 11–7 11-11

7224h MBX4A CAN 2 of 8 Bytes of Mailbox 4 Not shown Not shown

7225h MBX4B CAN 2 of 8 Bytes of Mailbox 4 Not shown Not shown

7226h MBX4C CAN 2 of 8 Bytes of Mailbox 4 Not shown Not shown

7227h MBX4D CAN 2 of 8 Bytes of Mailbox 4 Not shown Not shown

7228h MSGID5L CAN Message ID for Mailbox 5 (lower

16 bits)

Figure 11–6 11-10

7229h MSGID5H CAN Message ID for Mailbox 5 (upper

16 bits)

Figure 11–5 11-10

722Ah MSGCTRL5 CAN Message Control Field 5 Figure 11–7 11-11

722Ch MBX5A CAN 2 of 8 Bytes of Mailbox 5 Not shown Not shown

722Dh MBX5B CAN 2 of 8 Bytes of Mailbox 5 Not shown Not shown

722Eh MBX5C CAN 2 of 8 Bytes of Mailbox 5 Not shown Not shown

722Fh MBX5D CAN 2 of 8 Bytes of Mailbox 5 Not shown Not shown

7400h GPTCON GP Timer Control Register Figure 7–12 7-31

7401h T1CNT GP Timer 1 Counter Register Figure 7–5 7-19

7402h T1CMPR GP Timer 1 Compare Register Figure 7–3 7-14

7403h T1PR GP Timer 1 Period Register Figure 7–4 7-15

7404h T1CON GP Timer 1 Control Register Figure 7–11 7-29

7405h T2CNT GP Timer 2 Counter Register Figure 7–5 7-19

7406h T2CMPR GP Timer 2 Compare Register Figure 7–3 7-14

7407h T2PR GP Timer 2 Period Register Figure 7–4 7-15

7408h T2CON GP Timer 2 Control Register Figure 7–11 7-29

7411h COMCON Compare Control Register Figure 7–14 7-37

7413h ACTR Full-Compare Action Control Register Figure 7–15 7-38
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Table A–1. Programmable Registers on the TMS320F243/F241/C242 (Continued)

Shown in

NameRegisterAddress PageFigureNameRegisterAddress

7415h DBTCON Dead-Band Timer Control Register Figure 7–17 7-42

7417h CMPR1 Full-Compare Unit Compare Register 1 Not shown Not shown

7418h CMPR2 Full-Compare Unit Compare Register 2 Not shown Not shown

7419h CMPR3 Full-Compare Unit Compare Register 3 Not shown Not shown

7420h CAPCON Capture Control Register Figure 7–26 7-60

7422h CAPFIFO Capture FIFO Status Register Figure 7–27 7-62

7423h CAP1FIFO Two-Level-Deep Capture FIFO Stack 1 Not shown Not shown

7424h CAP2FIFO Two-Level-Deep Capture FIFO Stack 2 Not shown Not shown

7425h CAP3FIFO Two-Level-Deep Capture FIFO Stack 3 Not shown Not shown

7427h CAP1FBOT Capture 1 FIFO Bottom Stack Register Not shown Not shown

7428h CAP2FBOT Capture 2 FIFO Bottom Stack Register Not shown Not shown

7429h CAP3FBOT Capture 3 FIFO Bottom Stack Register Not shown Not shown

742Ch EVIMRA EV Interrupt Mask Register A Figure 7–33 7-74

742Dh EVIMRB EV Interrupt Mask Register B Figure 7–34 7-75

742Eh EVIMRC EV Interrupt Mask Register C Figure 7–35 7-76

742Fh EVIFRA Interrupt Flag Register A Figure 7–30 7-70

7430h EVIFRB Interrupt Flag Register B Figure 7–31 7-72

7431h EVIFRC Interrupt Flag Register C Figure 7–32 7-73

FF0Fh (I/O

space)

FCMR Flash Control Mode Register Not shown Not shown

FFFFh WSGR Wait State Generator Register Figure 3–13 3-21

† Address in I/O space
‡ Address in program memory space

Notes: 1) CAN and SPI are not available in ’C242. Registers pertaining to these peripherals should not be accessed in ’C242.

2) WSGR is absent in ’F241 and ’C242.

3) FCMR is absent in ’C242.
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Appendix A

Program Examples

This appendix provides:

� A brief introduction to the tools used for generating executable COFF files

that run on the ’24x devices.

� Sample programs to test some of the peripherals available in the ’24x de-

vices.

This appendix is not intended to teach you how to use the software develop-

ment tools. The following documents cover these tools in detail:

TMS320C1x/C2x/C2xx/C5x Assembly Language Tools User’s Guide

(literature number SPRU018)

TMS320C2x/C2xx/C5x Optimizing C Compiler User’s Guide

(literature number SPRU024)

TMS320C2xx C Source Debugger User’s Guide

(literature number SPRU151)

For further information about ordering these documents, see Related

Documentation From Texas Instruments on page v of the Preface.

Topic Page

B.1 About These Program Examples B-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

B.2 Program Examples B-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Appendix B
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B.1 About These Program Examples

Figure B–1 illustrates the basic process for generating executable COFF files:

1) Use any ASCII editor to create:

� An assembly language program (test.asm in the figure)

� A linker command file (24x.cmd in the figure) that defines address

ranges according to the architecture of the particular device and

where the various sections of the user code should be located

2) Assemble the program. The command shown under Step 2 in the figure

generates an object file (.obj) and list file (.lst) containing a listing of as-

sembler messages.

3) Use the linker to bring together the information in the object file and the

command file and create an executable file (test.out in the figure). The

command shown also generates a map file, which explains how the linker

assigned the individual sections in the memory.

Note:

The procedure here applies to the PC  development environment and is giv-
en only as an example.

Figure B–1. Procedure for Generating Executable Files

Step 1

Using any ASCII editor, create source program

test.asm
and command file

24x.cmd

Step 2

Assemble source program

dspa test.asm –l –v2xx –s

Step 3

Run linker

dsplnk test.obj 24x.cmd –o test.out –m test.map

Output files

test.lst  – error listings
test.obj  – assembled file

Output files

test.out  – executable file
test.map  – map file

About These Program Examples
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Table B–1. Common Files For All Example Programs

Program Functional Description

24x_PM.cmd Linker command file that defines the program, data, and I/O memory maps of the target

hardware. It also locates the various sections in the user code into predetermined

segments of memory. This .cmd file locates user code (vectors and .text sections) in

program memory beginning at 0000h.

24x.h Header file that designates labels for the addresses of the various registers.

vector.h File that contains the vectors for various interrupts.

Table B–2. Program Examples

Program Functional Description

SPI.asm Program to output serial data through the SPI port

SCI.asm Program to check the SCI module in ’24x

ADC.asm Program to check ADC of ’24x

GPIO_OUT.asm Program that checks GPIO pins of ’24x as outputs

GPIO_IN.asm Program that checks GPIO pins of ’24x as inputs

REM_ANS.asm

REM_REQ.asm

Programs that perform RTR (Remote Transmission Request) operations in the

CAN module

EV_T1INT.asm Program to check the operation of timer 1 in EV2

EV.CAPT.asm Program to check the operation of capture units in EV2
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B.2 Program Examples

/******************************************************************************/

/* File Name:  24x_PM.cmd                                                    */

/* Description:   Linker command file to place user code (vectors & .text)    */

/* sections beginning at 0000h of program memory. .text is loaded at 40h.     */

/* This file should be modified if it is desired to load code in B0 memory or */

/* if .bss and .data sections need to be located elsewhere in data memory.

                                   

/******************************************************************************/

MEMORY

{

PAGE 0:                                /* PROGRAM MEMORY                      */

EX1_PM  :ORIGIN=0h    ,  LENGTH=0FDFFh /* 63.5K external RAM                  */

B0_PM   :ORIGIN=0FE00h,  LENGTH=0200h  /* On–chip DARAM if CNF=1, else        */

                                       /* external                            */

                                       /* B0 = FE00 to FEFF or FF00 to FFFF   */

PAGE 1:                                /* DATA MEMORY                         */

REGS    :ORIGIN=0h    ,  LENGTH=60h    /* Memory mapped regs & reservd address*/

BLK_B2  :ORIGIN=60h   ,  LENGTH=20h    /* Block B2                            */

BLK_B0  :ORIGIN=200h  ,  LENGTH=200h   /* Block B0, On–chip DARAM if CNF=0    */

BLK_B1  :ORIGIN=300h  ,  LENGTH=200h   /* Block B1                            */

EX1_DM  :ORIGIN=0800h ,  LENGTH=7800h  /* External data RAM  1                */

EX2_DM  :ORIGIN=8000h ,  LENGTH=8000h  /* External data RAM  2                */

PAGE 2:                                /* I/O MEMORY                          */

IO_IN   :ORIGIN=0FFF0h, LENGTH=0Fh     /* On–chip I/O mapped peripherals      */

IO_EX   :ORIGIN=0000h , LENGTH=0FFF0h  /* External I/O mapped peripherals     */

}

SECTIONS

{

        vectors :{}  > EX1_PM   PAGE 0

       .text    :{}  > EX1_PM   PAGE 0

       .bss     :{}  > BLK_B2   PAGE 1

       .data    :{}  > BLK_B1   PAGE 1 

}
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;**************************************************************************

; File name:    24x.h

;

; Description:  241,242,243 register definitions.

;**************************************************************************

; 24x core registers

IMR             .set 0004h      ; Interrupt Mask Register

GREG            .set 0005h      ; Global memory allocation Register

IFR             .set 0006h      ; Interrupt Flag Register

; System configuration and interrupt registers

SCSR            .set 7018h      ; System Control &  Status Reg. X241/2/3 only.

DIN             .set 701Ch      ; Device Identification Register.

PIVR            .set 701Eh      ; Peripheral Interrupt Vector Reg. X241/2/3 only.

PIRQR0          .set 7010h      ; Periph Interrupt Request Reg 0. X241/2/3 only.

PIRQR1          .set 7011h      ; Periph Interrupt Request Reg 1. X241/2/3 only.

; External interrupt configuration registers

XINT1CR         .set 7070h      ; Ext. interrupt 1 config reg for X241/2/3 only.

XINT2CR         .set 7071h      ; External interrupt 2 config. X241/2/3 only.

; Digital I/O registers

OCRA            .set 7090h      ; Output Control Reg A

OCRB            .set 7092h      ; Output Control Reg B

PADATDIR        .set 7098h      ; I/O port A Data & Direction reg.

PBDATDIR        .set 709Ah      ; I/O port B Data & Direction reg.

PCDATDIR        .set 709Ch      ; I/O port C Data & Direction reg.

PDDATDIR        .set 709Eh      ; I/O port D Data & Direction reg.

; Watchdog (WD) registers

WDCNTR          .set 7023h      ; WD Counter reg

WDKEY           .set 7025h      ; WD Key reg

WDCR            .set 7029h      ; WD Control reg

; ADC registers

ADCTRL1         .set 7032h      ; ADC Control Reg1

ADCTRL2         .set 7034h      ; ADC Control Reg2

ADCFIFO1        .set 7036h      ; ADC DATA REG FIFO for ADC1

ADCFIFO2        .set 7038h      ; ADC DATA REG FIFO for ADC2

; SPI registers

SPICCR          .set 7040h      ; SPI Config Control Reg

SPICTL          .set 7041h      ; SPI Operation Control Reg

SPISTS          .set 7042h      ; SPI Status Reg

SPIBRR          .set 7044h      ; SPI Baud rate control reg

SPIRXEMU        .set 7046h      ; SPI Emulation buffer reg

SPIRXBUF        .set 7047h      ; SPI Serial receive buffer reg

SPITXBUF        .set 7048h      ; SPI Serial transmit buffer reg

SPIDAT          .set 7049h      ; SPI Serial data reg

SPIPRI          .set 704Fh      ; SPI Priority control reg
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; SCI registers

SCICCR          .set 7050h      ; SCI Communication control reg

SCICTL1         .set 7051h      ; SCI Control reg1

SCIHBAUD        .set 7052h      ; SCI Baud Rate MSbyte reg

SCILBAUD        .set 7053h      ; SCI Baud Rate LSbyte reg

SCICTL2         .set 7054h      ; SCI Control reg2

SCIRXST         .set 7055h      ; SCI Receiver Status reg

SCIRXEMU        .set 7056h      ; SCI Emulation Data Buffer reg

SCIRXBUF        .set 7057h      ; SCI Receiver Data buffer reg

SCITXBUF        .set 7059h      ; SCI Transmit Data buffer reg

SCIPRI          .set 705Fh      ; SCI Priority control reg

; Event Manager (EV) registers

GPTCON          .set 7400h      ; GP Timer control register.

T1CNT           .set 7401h      ; GP Timer 1 counter register.

T1CMPR          .set 7402h      ; GP Timer 1 compare register.

T1PR            .set 7403h      ; GP Timer 1 period register.

T1CON           .set 7404h      ; GP Timer 1 control register.

T2CNT           .set 7405h      ; GP Timer 2 counter register.

T2CMPR          .set 7406h      ; GP Timer 2 compare register.

T2PR            .set 7407h      ; GP Timer 2 period register.

T2CON           .set 7408h      ; GP Timer 2 control register.

COMCON          .set 7411h      ; Compare control register.

ACTR            .set 7413h      ; Full compare action control register.

DBTCON          .set 7415h      ; Dead–band timer control register.

CMPR1           .set 7417h      ; Full compare unit compare register1.

CMPR2           .set 7418h      ; Full compare unit compare register2.

CMPR3           .set 7419h      ; Full compare unit compare register3.

CAPCON          .set 7420h      ; Capture control register.

CAPFIFO         .set 7422h      ; Capture FIFO status register.

CAP1FIFO        .set 7423h      ; Capture Channel 1 FIFO Top

CAP2FIFO        .set 7424h      ; Capture Channel 2 FIFO Top

CAP3FIFO        .set 7425h      ; Capture Channel 3 FIFO Top

CAP1FBOT .set 7427h ; Bottom Register of Capture FIFO Stack 1

CAP2FBOT .set 7428h ; Bottom Register of Capture FIFO Stack 2

CAP3FBOT .set 7429h ; Bottom Register of Capture FIFO Stack 3

EVIMRA          .set 742Ch      ; Group A Interrupt Mask Register

EVIMRB          .set 742Dh      ; Group B Interrupt Mask Register

EVIMRC          .set 742Eh      ; Group C Interrupt Mask Register

EVIFRA          .set 742Fh      ; Group A Interrupt Flag Register

EVIFRB          .set 7430h      ; Group B Interrupt Flag Register

EVIFRC          .set 7431h      ; Group C Interrupt Flag Register

; CAN registers. F241/3 only.

CANMDER         .set 7100h      ; CAN Mailbox Direction/Enable reg

CANTCR          .set 7101h      ; CAN Transmission Control Reg

CANRCR          .set 7102h      ; CAN Recieve COntrol Reg

CANMCR          .set 7103h      ; CAN Master Control Reg
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CANBCR2         .set 7104h      ; CAN Bit COnfig Reg 2

CANBCR1         .set 7105h      ; CAN Bit Config Reg 1

CANESR          .set 7106h      ; CAN Error Status Reg

CANGSR          .set 7107h      ; CAN Global Status Reg

CANCEC          .set 7108h      ; CAN Trans and Rcv Err counters

CANIFR          .set 7109h      ; CAN Interrupt Flag Registers

CANIMR          .set 710ah      ; CAN Interrupt Mask Registers

CANLAM0H        .set 710bh      ; CAN Local Acceptance Mask MBx0/1

CANLAM0L        .set 710ch      ; CAN Local Acceptance Mask MBx0/1

CANLAM1H        .set 710dh      ; CAN Local Acceptance Mask MBx2/3

CANLAM1L        .set 710eh      ; CAN Local Acceptance Mask MBx2/3

CANMSGID0L      .set 7200h      ; CAN Message ID for mailbox 0 (lower 16 bits)

CANMSGID0H      .set 7201h      ; CAN Message ID for mailbox 0 (upper 16 bits)

CANMSGCTRL0     .set 7202h      ; CAN RTR and DLC

CANMBX0A        .set 7204h      ; CAN 2 of 8 bytes of Mailbox 0

CANMBX0B        .set 7205h      ; CAN 2 of 8 bytes of Mailbox 0

CANMBX0C        .set 7206h      ; CAN 2 of 8 bytes of Mailbox 0

CANMBX0D        .set 7207h      ; CAN 2 of 8 bytes of Mailbox 0

CANMSGID1L      .set 7208h      ; CAN Message ID for mailbox 1 (lower 16 bits)

CANMSGID1H      .set 7209h      ; CAN Message ID for mailbox 1 (upper 16 bits)

CANMSGCTRL1     .set 720Ah      ; CAN RTR and DLC

CANMBX1A        .set 720Ch      ; CAN 2 of 8 bytes of Mailbox 1

CANMBX1B        .set 720Dh      ; CAN 2 of 8 bytes of Mailbox 1

CANMBX1C        .set 720Eh      ; CAN 2 of 8 bytes of Mailbox 1

CANMBX1D        .set 720Fh      ; CAN 2 of 8 bytes of Mailbox 1

CANMSGID2L      .set 7210h      ; CAN Message ID for mailbox 2 (lower 16 bits)

CANMSGID2H      .set 7211h      ; CAN Message ID for mailbox 2 (upper 16 bits)

CANMSGCTRL2     .set 7212h      ; CAN RTR and DLC

CANMBX2A        .set 7214h      ; CAN 2 of 8 bytes of Mailbox 2

CANMBX2B        .set 7215h      ; CAN 2 of 8 bytes of Mailbox 2

CANMBX2C        .set 7216h      ; CAN 2 of 8 bytes of Mailbox 2

CANMBX2D        .set 7217h      ; CAN 2 of 8 bytes of Mailbox 2

CANMSGID3L      .set 7218h      ; CAN Message ID for mailbox 3 (lower 16 bits)

CANMSGID3H      .set 7219h      ; CAN Message ID for mailbox 3 (upper 16 bits)

CANMSGCTRL3     .set 721Ah      ; CAN RTR and DLC

CANMBX3A        .set 721Ch      ; CAN 2 of 8 bytes of Mailbox 3

CANMBX3B        .set 721Dh      ; CAN 2 of 8 bytes of Mailbox 3

CANMBX3C        .set 721Eh      ; CAN 2 of 8 bytes of Mailbox 3

CANMBX3D        .set 721Fh      ; CAN 2 of 8 bytes of Mailbox 3

CANMSGID4L      .set 7220h      ; CAN Message ID for mailbox 4 (lower 16 bits)

CANMSGID4H      .set 7221h      ; CAN Message ID for mailbox 4 (upper 16 bits)

CANMSGCTRL4     .set 7222h      ; CAN RTR and DLC

CANMBX4A        .set 7224h      ; CAN 2 of 8 bytes of Mailbox 4

CANMBX4B        .set 7225h      ; CAN 2 of 8 bytes of Mailbox 4

CANMBX4C        .set 7226h      ; CAN 2 of 8 bytes of Mailbox 4

CANMBX4D        .set 7227h      ; CAN 2 of 8 bytes of Mailbox 4

CANMSGID5L      .set 7228h      ; CAN Message ID for mailbox 5 (lower 16 bits)

CANMSGID5H      .set 7229h      ; CAN Message ID for mailbox 5 (upper 16 bits)

CANMSGCTRL5     .set 722Ah      ; CAN RTR and DLC

CANMBX5A        .set 722Ch      ; CAN 2 of 8 bytes of Mailbox 5

CANMBX5B        .set 722Dh      ; CAN 2 of 8 bytes of Mailbox 5

CANMBX5C        .set 722Eh      ; CAN 2 of 8 bytes of Mailbox 5

CANMBX5D        .set 722Fh      ; CAN 2 of 8 bytes of Mailbox 5
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;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

; I/O space mapped registers

;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

WSGR            .set    0FFFFh  ; Wait–State Generator Control Reg

FCMR            .set    0FF0Fh  ; Flash control mode register

;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

; Bit codes for Test bit instruction (BIT) (15 Loads bit 0 into TC)

;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

BIT15           .set 0000h      ; Bit Code for 15

BIT14           .set 0001h      ; Bit Code for 14

BIT13           .set 0002h      ; Bit Code for 13

BIT12           .set 0003h      ; Bit Code for 12

BIT11           .set 0004h      ; Bit Code for 11

BIT10           .set 0005h      ; Bit Code for 10

BIT9            .set 0006h      ; Bit Code for 9

BIT8            .set 0007h      ; Bit Code for 8

BIT7            .set 0008h      ; Bit Code for 7

BIT6            .set 0009h      ; Bit Code for 6

BIT5            .set 000Ah      ; Bit Code for 5

BIT4            .set 000Bh      ; Bit Code for 4

BIT3            .set 000Ch      ; Bit Code for 3

BIT2            .set 000Dh      ; Bit Code for 2

BIT1            .set 000Eh      ; Bit Code for 1

BIT0            .set 000Fh      ; Bit Code for 0
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;************************************************************

; File name:          vector.h

; Interrupt Vector declarations

; This section contains the vectors for various interrupts in

; the ’24x. Unused interrupts are shown to branch

; to a ”phantom” interrupt service routine which disables the

; watchdog and loops on itself. Users should replace the label

; PHANTOM with the label of their interrupt subroutines in case

; these interrupts are used.

;************************************************************

            .sect  ”vectors”

RSVECT      B    START            ; Reset Vector

INT1        B    GISR1            ; Interrupt Level 1

INT2        B    GISR2            ; Interrupt Level 2

INT3        B    GISR3            ; Interrupt Level 3

INT4        B    GISR4            ; Interrupt Level 4

INT5        B    GISR5            ; Interrupt Level 5

INT6        B    GISR6            ; Interrupt Level 6

RESERVED    B    PHANTOM          ; Reserved

SW_INT8     B    PHANTOM          ; Software Interrupt

SW_INT9     B    PHANTOM          ; Software Interrupt

SW_INT10    B    PHANTOM          ; Software Interrupt

SW_INT11    B    PHANTOM          ; Software Interrupt

SW_INT12    B    PHANTOM          ; Software Interrupt

SW_INT13    B    PHANTOM          ; Software Interrupt

SW_INT14    B    PHANTOM          ; Software Interrupt

SW_INT15    B    PHANTOM          ; Software Interrupt

SW_INT16    B    PHANTOM          ; Software Interrupt

TRAP        B    PHANTOM          ; Trap vector

NMI         B    NMI              ; Non–maskable Interrupt

EMU_TRAP    B    PHANTOM          ; Emulator Trap

SW_INT20    B    PHANTOM          ; Software Interrupt

SW_INT21    B    PHANTOM          ; Software Interrupt

SW_INT22    B    PHANTOM          ; Software Interrupt

SW_INT23    B    PHANTOM          ; Software Interrupt

SW_INT24    B    PHANTOM          ; Software Interrupt

SW_INT25    B    PHANTOM          ; Software Interrupt

SW_INT26    B    PHANTOM          ; Software Interrupt

SW_INT27    B    PHANTOM          ; Software Interrupt

SW_INT28    B    PHANTOM          ; Software Interrupt

SW_INT29    B    PHANTOM          ; Software Interrupt

SW_INT30    B    PHANTOM          ; Software Interrupt

SW_INT31    B    PHANTOM          ; Software Interrupt
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;=================================================================================

* File Name:  SPI.asm 

* Description: PROGRAM TO OUTPUT SERIAL DATA THROUGH THE SPI PORT 

* This program outputs a set of incrementing words (that roll over) through 

* the SPI. If a Digital–to–analog (DAC) converter is connected to the SPI,

* the DAC outputs a sawtooth waveform. The program sends data to the serial DAC

* by means of the SPI. For this example, the TLC5618 serial DAC from TI was used.

;=================================================================================

        

.include 24x.h

.include vector.h

;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

; Variable Declarations for on chip RAM Blocks

;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

.bss GPR0,1 ;General purpose registers.

.bss GPR3,1

;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

; M A C R O – Definitions

;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

KICK_DOG .macro ;Watchdog reset macro

LDP     #00E0h

SPLK    #05555h, WDKEY

SPLK    #0AAAAh, WDKEY

LDP     #0h

.endm

;===========================================================================

; M A I N   C O D E  – starts here

;===========================================================================

.text

START: LDP     #0

SETC    INTM ;Disable interrupts during initialization.

SPLK    #0h,GPR3                 

OUT     GPR3,WSGR ;Set XMIF to run with no wait states.

CLRC    SXM ;Clear Sign Extension Mode

CLRC    OVM ;Reset Overflow Mode

CLRC    CNF ;Config Block B0 to Data mem.

LDP     #WDCR>>7

SPLK    #006Fh,WDCR ;Disable WD if Vccp = 5V

KICK_DOG
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;===========================================================================

; SPI Initialization

;===========================================================================

SPI_INIT: LDP     #SPICCR>>7

SPLK    #000Fh, SPICCR ;16 char bits,

SPLK    #0006h, SPICTL ;Enable master mode, normal clock

;and enable talk.

SPLK    #0002h, SPIBRR ;Set up the SPI to max speed.

LDP     #OCRB>>7 ;Set up the GPIO pins to function

SPLK    #003CH, OCRB ;as SPI pins

LDP     #SPICCR>>7

SPLK    #008Fh, SPICCR ;Relinquish SPI from Reset.

;===========================================================================

; This section generates the sawtooth by ramping a counter down to zero

; reloading it every time it under-flows.

;===========================================================================;

LP: LAR     AR0,#07FEh ;Load AR0 with a count

XMIT_VALUE: LDP     #0

SAR     AR0,GPR0

LACC    GPR0

ADD     #8000H ;MSB should be one (DAC requirement)

XOR     #07FFH ;To change the direction of counting to

;upward

LDP     #SPITXBUF>>7

SACL    SPITXBUF ;Write xmit value to SPI Trasmit Buffer.

LDP     #SPISTS>>7

XMIT_RDY: BIT     SPISTS,BIT6 ;Test SPI_INT bit

BCND    XMIT_RDY, NTC ;If SPI_INT=0,then repeat loop

;i.e. wait for the completion of

;transmission. 

LDP     #SPIRXBUF>>7 ;else read SPIRXBUF

LACC    SPIRXBUF ;dummy read to clear SPI_INT flag.

                

KICK_DOG

MAR     *,AR0

BANZ    XMIT_VALUE ;xmit next value, if counter is non zero.

B       LP ;if counter reaches zero repeat loop

;re–loading the counter.

PHANTOM RET

GISR1 RET

GISR2 RET

GISR3 RET

GISR4 RET

GISR5 RET

GISR6 RET
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;===========================================================================

* File Name: SCI.asm

* Description: PROGRAM TO PERFORM A LOOPBACK IN THE SCI MODULE IN ’24x

* An 8 bit value is transmitted through the SCITXD pin at a baud rate of

* 9600 bits/sec. SCITXD–SCIRXD pins are connected together, if external

* loopback is desired i.e. if it is desired to echo the bit–stream back. The SCI

* receives the bit–stream and stores the received data in memory for verification.

* This program is capable of doing internal loopback AND external loopback,

* depending on the value written in SCICCR.

;===========================================================================

.include        24x.h

.bss     GPR0,1

KICK_DOG .macro ;Watchdog reset macro

LDP      #00E0h

SPLK     #05555h, WDKEY

SPLK     #0AAAAh, WDKEY

LDP      #0h

.endm

;===========================================================================

; M A I N   C O D E  – starts here

;===========================================================================

.text

START:

LDP     #0

SETC    INTM ;Disable interrupts

CLRC    SXM ;Clear Sign Extension Mode

CLRC    OVM ;Reset Overflow Mode

SETC    CNF ;Config Block B0 to Data mem.

LDP     #00E0h

SPLK    #006Fh,WDCR ;Disable WD if Vccp = 5V

KICK_DOG

SPLK    #0h,GPR0 ;Set wait state generator for:

OUT     GPR0,WSGR ;Program Space, 0–7 wait states

LDP     #00E0h

SPLK    #0000h,SCSR ;CLKOUT = CPUCLK
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;===========================================================================

;SCI TRANSMISSION TEST – starts here

;===========================================================================

SCI: LDP     #0E1h

SPLK    #0FFFFh,OCRA

LAR     AR0, #SCITXBUF ;Load AR0 with SCI_TX_BUF address

LAR     AR1, #SCIRXBUF ;Load AR1 with SCI_RX_BUF address

LAR     AR2, #20h ;AR2 is the counter

LAR     AR3, #60h ;AR3 is the pointer

LDP     #SCICCR>>7

SPLK    #17h, SCICCR ;17 for internal

;loopback 07–External

;1 stop bit,odd parity,8 char bits,

;async mode, idle–line protocol

SPLK    #0003h, SCICTL1 ;Enable TX, RX, internal SCICLK,

;Disable RX ERR, SLEEP, TXWAKE

SPLK    #0000h, SCICTL2 ;Disable RX & TX INTs

SPLK    #0000h, SCIHBAUD

SPLK    #0103h, SCILBAUD ;Baud Rate=9600 b/s

LDP     #SCICCR>>7

SPLK    #0023h, SCICTL1 ;Relinquish SCI from Reset.

XMIT_CHAR: LACL    #55h ;Load ACC with xmit character

MAR *,AR0

SACL    *,AR1 ;Write xmit char to TX buffer

LDP     #SCICTL2>>7

XMIT_RDY: BIT     SCICTL2,BIT7 ;Test TXRDY bit

BCND    XMIT_RDY,NTC ;If TXRDY=0,then repeat loop

RCV_RDY: BIT     SCIRXST,BIT6 ;Test TXRDY bit

BCND    RCV_RDY,NTC ;If TXRDY=0,then repeat loop

READ_CHR: LACL    *,AR3 ;The received (echoed) character is

;stored in 60h

SACL    *+,AR2 ;This loop is executed 20h times

BANZ    XMIT_CHAR ;Repeat the loop again

LOOP B LOOP ;Program idles here after executing

;transmit loops
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;===========================================================================

* File Name: ADC.asm

* Description: PROGRAM TO CHECK ADC OF 24x

* This program checks the conversion ability of selected ADC channels

* Simple program without using any interrupts, performs simulataneous

* conversion of any two channels. The results can be viewed in the

* ADC FIFO’s. 

;============================================================================

.title ” 24x ADC1” 

 

.bss GPR0,1

.include 24x.h

;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

; M A C R O – Definitions

;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

KICK_DOG .macro ;Watchdog reset macro

LDP      #00E0h ;DP––>7000h–707Fh

SPLK     #05555h, WDKEY

SPLK     #0AAAAh, WDKEY

LDP      #0h ;DP––>0000h–007Fh

.endm

.text                   

START: LDP      #0h ; Set DP=0

SETC     INTM ;Disable interrupts

SETC     CNF

SPLK     #0000h,IMR ;Mask all core interrupts

LACC     IFR ;Read Interrupt flags

SACL     IFR ;Clear all interrupt flags

LDP      #00E0h ;(E0=224)(E0*80=7000)

SPLK     #006Fh, WDCR ;Disable WD if VCCP=5V (706F)

KICK_DOG

SPLK     #0h,GPR0 ;Set wait state generator for:

OUT      GPR0,WSGR ;Program Space, 0–7 wait states

;(E1=225)(E0*80=7080)

LDP      #0E0h

LOOP LACL     ADCFIFO1 ; Clear ADC FIFOs

LACL     ADCFIFO1

LACL     ADCFIFO2

LACL     ADCFIFO2
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;**************************************************************************

;***********          Configure all ADC registers                **********

;**************************************************************************

SPLK #0000000000000000b, ADCTRL2

;  ||||||||||||||||

;          FEDCBA9876543210  

 

; bit 0–2 000 Prescaler value 

; bit 3–4 FIFO2 status

; bit 5 Reserved

; bit 6–7 FIFO1 status

; bit 8 Reserved

; bit 9 0 Mask external SOC input 

; bit A 0 Mask EV SOC input

; bit B–F Reserved

 

LOOP: SPLK #1101100000000001b, ADCTRL1

;  ||||||||||||||||

;             FEDCBA9876543210

; bit 0 1 Start of conversion

; bit 1–3 000 Channel 0 address

; bit 4–6 001 Channel 1 address

; bit 7 0 End of convert 

; bit 8 1 Interrupt flag – write 1 to clear

; bit 9 1 Interrupt mask – enable with 1, mask 0

; bit A 0 Continuous run mode disabled

; bit B 1 Enable ADC2

; bit C 1 Enable ADC1

; bit D 1 Immediate start – 0 = no action

; bit E 1 Free run – ignore suspend

; bit F 1 Soft – Not applicable with bit E = 1

B LOOP

PHANTOM KICK_DOG ;Resets WD counter

B PHANTOM
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;=================================================================================

* File Name: GPI0_OUT

* Description:  This program writes a running pattern of zeros to the GPIO pins of

* 24x. It ouputs a total of 8 bit patterns to all the four GPIO ports.

* Each bit pattern forces a particular bit low and forces the other 7

* bits high. This goes on in an endless loop.

* .data section must be loaded at 60h.

;=================================================================================

        .title ” 24x GPIO”

        .data                   ; Loaded @ 60h in data memory

b0      .word   0FFFEh          ; Turn–on GPIO0

b1      .word   0FFFDh          ; Turn–on GPIO1

b2      .word   0FFFBh          ; Turn–on GPIO2

b3      .word   0FFF7h          ; Turn–on GPIO3

b4      .word   0FFEFh          ; Turn–on GPIO4

b5      .word   0FFDFh          ; Turn–on GPIO5

b6      .word   0FFBFh          ; Turn–on GPIO6

b7      .word   0FF7Fh          ; Turn–on GPIO7

GPR0    .word   0               ; Gen purp reg

        .include 24x.h

;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

; M A C R O – Definitions

;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

KICK_DOG .macro ;Watchdog reset macro

LDP     #00E0h ;DP––>7000h–707Fh

SPLK    #05555h, WDKEY

SPLK    #0AAAAh, WDKEY

LDP     #0h ;DP––>0000h–007Fh

.endm

.text

START: LDP     #0h ; Set DP=0

SETC    INTM ;Disable interrupts

SETC    CNF

SPLK    #0000h,IMR ;Mask all core interrupts

LACC    IFR ;Read Interrupt flags

SACL    IFR ;Clear all interrupt flags

LDP     #00E0h ;(E0=224)(E0*80=7000)

SPLK    #006Fh, WDCR ;Disable WD if VCCP=5V (706F)

KICK_DOG

SPLK    #0h,GPR0 ;Set wait state generator for:

OUT     GPR0,WSGR ;Program Space, 0–7 wait states

;(E1=225)(E0*80=7080)

LDP     #00E1h ;

SPLK    #0103h,OCRB ;Select IOPC0,1 & IOPD0,1

SPLK    #0FFFFh, PADATDIR ; All pins are o/p’s

SPLK    #0FFFFh, PBDATDIR ; and forced high

SPLK    #0FFFFh, PCDATDIR ;

SPLK    #0FFFFh, PDDATDIR ;
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MAIN LDP     #0

LAR     AR0,#60h ; AR0 points to bit pattern

LAR     AR1,#7 ; AR1 is the counter

LOOP MAR     *,AR0

LACC    *+,AR2 ; Load bit pattern in accumulator

LDP     #00E1h

SACL    PADATDIR ; Output the same bit pattern

SACL    PBDATDIR ; to all the 4 GPIO ports

SACL    PCDATDIR

SACL    PDDATDIR

CALL    DELAY

MAR     *,AR1 ; Check if all 8 patterns have

BANZ    LOOP ; been output. If not, continue.

B       MAIN

DELAY LAR     AR2,#0FFFFh

D_LOOP RPT     #015h

NOP

BANZ    D_LOOP

RET

PHANTOM KICK_DOG ;Resets WD counter

B       PHANTOM
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;===============================================================================

* File Name: GPI0_IN

* Description: PROGRAM TO CHECK GPIO BITS OF 24x as inputs

* All GPIO bits are programmed as inputs and the values read from the

* GPIO pins are written in 60h,61h,62h,63h of DM

===============================================================================

.title ” 24x GPIO”

.include 24x.h

.bss GPR0,1

;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

; M A C R O – Definitions

;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

KICK_DOG .macro ;Watchdog reset macro

LDP     #00E0h ;DP––>7000h–707Fh

SPLK    #05555h, WDKEY

SPLK    #0AAAAh, WDKEY

LDP     #0h ;DP––>0000h–007Fh

.endm

.text

START: LDP     #0h ;Set DP=0

SETC    INTM ;Disable interrupts

SETC    CNF

SPLK    #0000h,IMR ;Mask all core interrupts

LACC    IFR ;Read Interrupt flags

SACL    IFR ;Clear all interrupt flags

LDP     #00E0h ;(E0=224)(E0*80=7000)

SPLK    #006Fh, WDCR ;Disable WD if VCCP=5V (706F)

KICK_DOG

SPLK    #0h,GPR0 ;Set wait state generator for:

OUT     GPR0,WSGR ;Program Space, 0–7 wait states

;(E1=225)(E0*80=7080)

LDP     #00E1h

SPLK    #0103h,OCRB ;Select IOPC0,1 & IOPD0,1

SPLK    #0h, PADATDIR ;All GPIO pins are programmed

SPLK    #0h, PBDATDIR ;as inputs

SPLK    #0h, PCDATDIR ;

SPLK    #0h, PDDATDIR ;
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MAIN LDP     #0 ;This loop reads the level on

LAR     AR0,#60h ;the GPIO pins. The bit patterns

MAR     *,AR0 ;read from the 4 GPIO ports

LDP     #00E1h ;is copied in the data memory

LACL    PADATDIR

SACL    *+

LACL    PBDATDIR

SACL    *+

LACL    PCDATDIR

SACL    *+

LACL    PDDATDIR

SACL    *+

B       MAIN

PHANTOM KICK_DOG ;Resets WD counter

B       PHANTOM
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;===============================================================================

* File name :   REM_ANS.asm                                                    *

* Description : PROGRAM TO INITIATE AUTO–ANSWER TO A REMOTE FRAME              *

*               REQUEST IN CAN                                                 *

* The two CAN modules must be connected to each other with appropriate         *

* termination resistors. Reception and transmission by MBX2. Low priority      *

* interrupt used. Transmit acknowledge for MBX2 is set after running this      *

* program and the message is transmitted.To be used along with REM_REQ.asm     *

* PERIPHERAL CODE : A, TEST CODE : 0 After successful completion of            *

* this program, the value A000 must be present in 3A0h (DM)                    *

* Error code:A001 –– Remote request not received from the remote node          *

;===============================================================================

                .title   ”REM_ANS”       ; Title 

                .include 24x.h          ; Variable and register declaration

                .include vector.h        ; Vector label declaration 

;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

; Constant definitions

;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

DP_PF1          .set     0E0h            ; Page 1 of peripheral file (7000h/80h

DP_CAN          .set     0E2h            ; CAN Register (7100h)

DP_CAN2         .set     0E4h            ; CAN RAM (7200h)

;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

; M A C R O – Definitions

;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

KICK_DOG        .macro                   ; Watchdog reset macro

                LDP      #00E0h

                SPLK     #05555h, WDKEY

                SPLK     #0AAAAh, WDKEY

                LDP      #0h

                .endm

;===============================================================================

; M A I N   C O D E  – starts here

;===============================================================================

                .text

START:          SETC     INTM            ; Disable interrupts

                LDP      #DP_PF1

                SPLK     06Fh,WDCR       ; Disable Watchdog

                KICK_DOG

                LDP      #7h             ; Write error code to start with

                SPLK     #0A001h,020h    ; at 3A0h in B1 memory    

                 LDP      #225

                SPLK     #00C0H,OCRB     ; Configure CAN pins

                LAR      AR0,#300h       ; AR0 => Copy CAN RAM (B0)

                LAR      AR1,#3h         ; AR1 => counter

                LAR      AR2,#7214h      ; AR2 => MBX2      
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;**************************************************************************

; Enable 1 core interrupt 

;**************************************************************************

                LDPK     #0

                SPLK     #0000000000010000b, IMR ; core interrupt mask register

;                         ||||||||||||||||

;                         FEDCBA9876543210 

                SPLK     #000ffh,IFR     ; Clear all core interrupt flags

                CLRC     INTM            ; enable interrupt

;**************************************************************************

;******************** CAN Initialization***********************************

;**************************************************************************

                LDP      #DP_CAN

                SPLK     #1001111111111110b,CANLAM1H   ; Set LAM

                SPLK     #1111111111111111b,CANLAM1L   ; 1:don’t care

                SPLK     #1011111111111111b,CANIMR     ; Enable all interrupts

; bit 0                  Warning level 

; bit 1                  Error passive

; bit 2                  Bus off

; bit 3                  Wake up

; bit 4                  Write denied

; bit 5                  Abort acknowledge

; bit 6                  Receive message lost interrupt

; bit 7                  Error interrupt priority level  1=low

; bit 8–D                Mailbox interrupt mask  

; bit E                  Reserved

; bit F                  Mailbox interrupt priority level. 1=low

;**************************************************************************

;***********           Configure CAN before writing              **********

;**************************************************************************

   

                LDP      #DP_CAN

                SPLK     #0000000000000000b,CANMDER 

;                         ||||||||||||||||

;                         FEDCBA9876543210

; bit 0–5                disable each mailbox

                SPLK     #0000000100000000b,CANMCR 

;                         ||||||||||||||||

;                         FEDCBA9876543210     

; bit 8                  CDR: Change data field request

;**************************************************************************

;***********                Write CAN Mailboxes                  **********
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;**************************************************************************

                LDP      #DP_CAN2

                SPLK     #1111111111111111b,CANMSGID2H  

;                         ||||||||||||||||

;                         FEDCBA9876543210 

; bit 0–12               upper 13 bits of extended identifier

; bit 13                 Auto answer mode bit

; bit 14                 Acceptance mask enable bit

; bit 15                 Identifier extension bit   

                SPLK     #1111111111111111b,CANMSGID2L

;                         ||||||||||||||||

;                         FEDCBA9876543210

; bit 0–15               lower part of extended identifier

                SPLK     #0000000000001000b,CANMSGCTRL2

;                         ||||||||||||||||

;                         FEDCBA9876543210

; bit 0–3                Data length code: 1000 = 8 bytes

; bit 4                  0: data frame 

                SPLK     #0BEBEh,CANMBX2A   ; Message to be transmitted

                SPLK     #0BABAh,CANMBX2B   ; to the remote node

                SPLK     #0DEDEh,CANMBX2C   

                SPLK     #0DADAh,CANMBX2D

;**************************************************************************

;***********    Set parameters after writing                    **********

;**************************************************************************

                LDP      #DP_CAN

                SPLK     #0000000000000000b,CANMCR 

;                         ||||||||||||||||

;                         FEDCBA9876543210

; bit 8                  CDR: Change data field request

                SPLK     #0000000000000100b,CANMDER 

;                         ||||||||||||||||

;                         FEDCBA9876543210

; bit 0–5                Enable  MBX2

; bit 6                  MBX2 configured as Transmit MBX

;**************************************************************************

;***********         CAN Registers configuration    ***********************

;**************************************************************************

                SPLK     #0001000000000000b,CANMCR 

;                         ||||||||||||||||

;                         FEDCBA9876543210
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; bit 12                 Change configuration request

W_CCE           BIT      CANGSR,#0Bh     ; Wait for Change config Enable

                BCND     W_CCE,NTC

                SPLK     #0000000000000000b,CANBCR2

;                         ||||||||||||||||

;                         FEDCBA9876543210  

; bit 0–7                Baud rate prescaler 

; bit 8–15               Reserved

                SPLK     #0000010101010111b,CANBCR1

;                         ||||||||||||||||

;                         FEDCBA9876543210

; bit 0–2                TSEG1 

; bit 3–6                TSEG2

; bit 7                  Sample point setting (1: 3 times, 0: once)

; bit 8–A                Synchronization jump width 

; bit B                  Synchronization on falling edge 

; bit C–F                Reserved 

                SPLK     #0000000000000000b,CANMCR 

;                         ||||||||||||||||

;                         FEDCBA9876543210

; bit 12                 Change configuration request

;

W_NCCE          BIT      CANGSR,#0Bh     ; Wait for Change config disable

                BCND     W_NCCE,TC

W_ERROR         LACL     CANESR          ; Check errors

                BCND     W_ERROR,NEQ

LOOP            B        LOOP            ; Wait for Receive Interrupt

;==================================================================

; ISR used to copy MBX2 RAM when an interrupt is received

;==================================================================

GISR5:     

LOOP_READ       MAR      *,AR2

                LACL     *+,AR0          ; Copy MBX2 contents in Accumulator

                SACL     *+,AR1          ; Copy MBX2 contents in B0

                BANZ     LOOP_READ       ; Copy all 4 words

                LDP      #7h             ; Write A000 at 3A0h in B1 memory

                SPLK     #0A000h,020h    ; if this ISR is executed once.    

                CLRC     INTM

                RET
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GISR1:                   RET

GISR2:                   RET

GISR3:                   RET

GISR4:                   RET

GISR6:                   RET

PHANTOM         RET

                .end

; When data in MBX2 is transmitted in response to a ”Remote frame request,”

; the MBX2 data is copied from 300h onwards in DM. Note that TRS bit is not 

; set for MBX2. The transmission of MBX2 data is automatic ,in response to 

; a ”Remote frame request.”
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;==============================================================================

* File name :   REM_REQ.asm                                                   *

* Description : PROGRAM TO TRANSMIT A REMOTE FRAME REQUEST IN THE CAN OF 24x *

* The two CAN modules must be connected to each other with appropriate        *

* termination resistors. Transmission of a remote frame by MBX3 and reception * 

* of the data frame in MBX0. To be used along with REM_ANS.asm                *

* PERIPHERAL CODE : A, TEST CODE : 0 After successful completion of           *

* this program, the value A000 must be present in 3A0h (DM)                   *

* Error code:A001 –– Error in initialization/ communication                   *

;==============================================================================

                .title   ”REM_REQ”       ; Title 

                .include 24x.h          ; Variable and register declaration

                .include vector.h        ; Vector label declaration 

;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

; Other constant definitions

;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

DP_PF1          .set     0E0h            ; Page 1 of peripheral file (7000h/80h

DP_CAN          .set     0E2h            ; Can Registers (7100h)

DP_CAN2         .set     0E4h            ; Can RAM (7200h)

;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

; M A C R O – Definitions

;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

KICK_DOG        .macro                   ; Watchdog reset macro

                LDP      #00E0h

                SPLK     #05555h, WDKEY

                SPLK     #0AAAAh, WDKEY

                LDP      #0h

                .endm

;==============================================================================

; M A I N   C O D E  – starts here

;==============================================================================

                .text

START:          SETC     INTM            ; Disable interrupts

                LDP      #DP_PF1

                SPLK     06Fh,WDCR       ; Disable Watchdog

                KICK_DOG

                LDP      #7h             ; Write error code to start with

                SPLK     #0A001h,020h    ; at 3A0h in B1 memory    

                LDP      #225

                SPLK     #00C0H,MCRB     ; Configure CAN pins

                LAR      AR0,#7204h      ; AR0 => MBX0  

                LAR      AR1,#300h       ; AR1 => B0 RAM

                LAR      AR2,#3h         ; AR2 => Counter

                LAR      AR3,#721ch      ; AR3 => MBX3  
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;**************************************************************************

;******************** CAN Initialization***********************************

;**************************************************************************

                LDP      #DP_CAN

                SPLK     #1001111111111111b,CANLAM0H  ; Set LAM0

                SPLK     #1111111111111111b,CANLAM0L  ; 1:don’t care

                SPLK     #1011111111111111b,CANIMR    ; Enable all interrupts

;**************************************************************************

;***********           Configure CAN before writing             **********

;**************************************************************************

   

                LDP      #DP_CAN

                SPLK     #0000000000000000b,CANMDER 

;                         ||||||||||||||||

;                         FEDCBA9876543210   

; bit 0–5                disable each mailbox

                SPLK     #0000000100000000b,CANMCR 

;                         ||||||||||||||||

;                         FEDCBA9876543210  

; bit 8                  CDR: Change data field request

;**************************************************************************

;***********                Write CAN Mailboxes                  **********

;**************************************************************************

                LDP      #DP_CAN2

                SPLK     #1111111111111111b,CANMSGID3H

;                         ||||||||||||||||

;                         FEDCBA9876543210  

; bit 0–12               upper 13 bits of extended identifier

; bit 13                 Auto answer mode bit

; bit 14                 Acceptance mask enable bit

; bit 15                 Identifier extension bit

                SPLK     #1111111111111111b,CANMSGID3L

;                         ||||||||||||||||

;                         FEDCBA9876543210 

; bit 0–15               lower part of extended identifier

                SPLK     #0000000000011000b,CANMSGCTRL3

;                         ||||||||||||||||

;                         FEDCBA9876543210

; bit 0–3                Data length code. 1000 = 8 bytes
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; bit 4                  1: Remote frame

                SPLK     #1111111111111111b,CANMSGID0H

;                         ||||||||||||||||

;                         FEDCBA9876543210  

; bit 0–12               upper 13 bits of extended identifier

; bit 13                 Auto answer mode bit

; bit 14                 Acceptance mask enable bit

; bit 15                 Identifier extension bit

                SPLK     #1111111111111110b,CANMSGID0L

;                         ||||||||||||||||

;                         FEDCBA9876543210 

; bit 0–15               lower part of extended identifier

                SPLK     #0000000000001000b,CANMSGCTRL0

;                         ||||||||||||||||

;                         FEDCBA9876543210

;**************************************************************************

;***********    Set parameters after writing                    **********

;**************************************************************************

                LDP      #DP_CAN

                SPLK     #0000000000000000b,CANMCR 

;                         ||||||||||||||||

;                         FEDCBA9876543210

; bit 8                  CDR: Change data field request

                SPLK     #0000000001001001b,CANMDER 

;                         ||||||||||||||||

;                         FEDCBA9876543210

; bit 0–5                enable mailbox 3 and mailbox 0

; bit 7                  0: mailbox 3 = transmit 

;**************************************************************************

;***********         CAN Registers configuration    ***********************

;**************************************************************************

                SPLK     #0001000000000000b,CANMCR 

;                         ||||||||||||||||

;                         FEDCBA9876543210

; bit 12                 Change conf register

W_CCE           BIT       CANGSR,#0Bh    ; Wait for Change config Enable

                BCND      W_CCE,NTC

                SPLK      #0000000000000000b,CANBCR2

;                          ||||||||||||||||

;                          FEDCBA9876543210 

; bit 0–7                Baud rate prescaler
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; bit 8–15               Reserved

                SPLK     #0000010101010111b,CANBCR1

;                         ||||||||||||||||

;                         FEDCBA9876543210  

; bit 0–2                TSEG1 

; bit 3–6                TSEG2

; bit 7                  Sample point setting (1: 3 times, 0: once)

; bit 8–A                Synchronization jump width 

; bit B                  Synchronization on falling edge 

; bit C–F                Reserved 

                SPLK     #0000000000000000b,CANMCR 

;                         ||||||||||||||||

;                         FEDCBA9876543210 

; bit 12                 Change conf register

W_NCCE          BIT      CANGSR,#0Bh     ; Wait for Change config disable

                BCND     W_NCCE,TC

;**************************************************************************

;***********                      TRANSMIT                      **********

;**************************************************************************

                SPLK     #0020h,CANTCR   ; Transmit request for MBX3           

W_TA            BIT      CANTCR,2        ; Wait for transmission acknowledge

                BCND     W_TA,NTC        ; for MBX3

                SPLK     #2000h,CANTCR   ; reset TA 

RX_LOOP:

W_RA            BIT      CANRCR,BIT4     ; Wait for data from remote node

                BCND     W_RA,NTC        ; to be written into MBX0

LOOP_READ2      MAR      *,AR0           ; Copy MBX0 contents in Accumulator

                LACL     *+,AR1          ; Copy MBX0 contents in B0

                SACL     *+,AR2          ; Copy all 4 words

                BANZ     LOOP_READ2 

                LAR      AR1,#300h       ; AR1 => B0 RAM

                MAR      *,AR1

CHECK           LACL     *+              ; Check the received data

                XOR      #0BEBEh         ; The remote node transmits

                BCND     LOOP,NEQ        ; BEBEh, BABAh, DEDEh & DADAh

                LACL     *+              ; The correct reception of those

                XOR      #0BABAh         ; 4 words are checked in this loop.

                BCND     LOOP,NEQ

                LACL     *+

                XOR      #0DEDEh

                BCND     LOOP,NEQ

                LACL     *+

                XOR      #0DADAh
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                BCND     LOOP,NEQ

PASS            LDP      #7h             ; Received data is correct

                SPLK     #0A000h,020h    ; Write A000 in 3A0

LOOP            B        LOOP

GISR1:                    RET

GISR2:                    RET

GISR3:                    RET

GISR4:                    RET

GISR5:                    RET

GISR6:                    RET

PHANTOM         RET

                .end
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;===============================================================================

* File Name: EV_T1INT.asm

* Description:  PROGRAM TO CHECK THE OPERATION OF TIMER1 IN EV

* Mode: Continous Up/Down-counting, x/128

* Output: OF,UF,CMPR & PERIOD  interrupts that toggles IOPB0,1,2,3

;===============================================================================

        .title ” EV test routine” ;Title

        .include ”24x.h” ;Variable and register declaration

;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

;Vector address declarations

;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

.sect   ”vectors”

RSVECT B    START ;Reset Vector

INT1 B    PHANTOM ;Interrupt Level 1

INT2 B    GISR2 ;Interrupt Level 2

INT3 B    PHANTOM ;Interrupt Level 3

INT4 B    PHANTOM ;Interrupt Level 4

INT5 B    PHANTOM ;Interrupt Level 5

INT6 B    PHANTOM ;Interrupt Level 6

RESERVED B    PHANTOM ;Reserved

SW_INT8 B    PHANTOM ;User S/W Interrupt

SW_INT9 B    PHANTOM ;User S/W Interrupt

SW_INT10 B    PHANTOM ;User S/W Interrupt

SW_INT11 B    PHANTOM ;User S/W Interrupt

SW_INT12 B    PHANTOM ;User S/W Interrupt

SW_INT13 B    PHANTOM ;User S/W Interrupt

SW_INT14 B    PHANTOM ;User S/W Interrupt

SW_INT15 B    PHANTOM ;User S/W Interrupt

SW_INT16 B    PHANTOM ;User S/W Interrupt

TRAP B    PHANTOM ;Trap vector

NMI B    PHANTOM ;Non–maskable Interrupt

EMU_TRAP B    PHANTOM ;Emulator Trap

SW_INT20 B    PHANTOM ;User S/W Interrupt

SW_INT21 B    PHANTOM ;User S/W Interrupt

SW_INT22 B    PHANTOM ;User S/W Interrupt

SW_INT23 B    PHANTOM ;User S/W Interrupt

;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

;M A C R O – Definitions

;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

KICK_DOG .macro ;Watchdog reset macro

LDP     #00E0h ;DP––>7000h–707Fh

SPLK    #05555h, WDKEY

SPLK    #0AAAAh, WDKEY

LDP     #0h ;DP––>0000h–007Fh

.endm

.text
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START: LDP     #0h ;set DP=0

SETC    INTM ;Disable interrupts

SPLK    #0000h,IMR ;Mask all core interrupts

LACC    IFR ;Read Interrupt flags

SACL    IFR ;Clear all interrupt flags

LDP     #WDKEY >> 7h ;Peripheral page

SPLK    #006Fh, WDCR ;Disable WD if VCCP=5V

KICK_DOG

MAR     *,AR0

LDP     #0E1h ;Peripheral page

SPLK    #1111111100000000b,PBDATDIR

;set IOPBn as outputs,0

* Load TIMER 1 registers

LDP     #GPTCON >> 7h ;Peripheral page

SPLK    #0000000000000000b,GPTCON

SPLK    #0000000000000000b,T1CNT ;zero timer 1 count

SPLK    #0000111101000010b,T1CON

;000 01 Cont, Up/Down

;111 x/128

;01 Tenable reserved for T1

;00 Internal clk

;00 LD CMPR whencntr =0

;1 enable compare

;0 use own period register

SPLK    #1111111111111111b,T1PR

SPLK    #0000000011111111b,T1CMPR

SPLK    #0000011110000000b,EVIMRA

;Enable OV,U,C,P interrupt bits

SPLK    #0000011110000000b,EVIFRA

;clear interrupts

LDP     #0

SPLK    #0000000000000010b,IMR

CLRC    INTM ;Enable INT2

wait: NOP ;main loop

NOP

B wait

GISR2: NOP ;Int2 GISR

LDP     #PIVR >> 7h ;Peripheral page

LACL    PIVR ;PIVR value

XOR     #002ah ;T1 overflow

BCND    SISR2a,eq

LACL    PIVR

XOR     #0029h ;T1 underflow

BCND    SISR29,eq

LACL    PIVR

XOR     #0028h ;T1 Compare

BCND    SISR28,eq

LACL    PIVR

XOR     #0027h ;T1 Period

BCND    SISR27,eq

RET
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SISR2a:

LDP     #0E1h ;Peripheral page

SPLK    #0FF01h,PBDATDIR ;Set IOPB0

CALL    DELAY

LDP     #GPTCON >> 7h ;Peripheral page

LACC    #0400h ;clear overflow int. flag

SACL    EVIFRA ;in EVIFRA

CLRC    INTM ;Enable all interrupts

RET

SISR29:

LDP     #0E1h ;Peripheral page

SPLK    #0FF02h,PBDATDIR ;Set IOPB1

CALL    DELAY

LDP     #GPTCON >> 7h ;Peripheral page

LACC    #0200h ;clear underflow int. flag

SACL    EVIFRA ;in EVIFRA

CLRC    INTM ;Enable all interrupts

RET

SISR28:

LDP     #0E1h ;Peripheral page

SPLK    #0FF04h,PBDATDIR ;Set IOPB2

CALL    DELAY

LDP     #GPTCON >> 7h ;Peripheral page

LACC    #0100h ;clear compare int. flag

SACL    EVIFRA ;in EVIFRA

CLRC    INTM ;Enable all interrupts

RET

SISR27:

LDP     #0E1h ;Peripheral page

SPLK    #0FF08h,PBDATDI ;Set IOPB3

CALL    DELAY

LDP     #GPTCON >> 7h ;Peripheral page

LACC    #0080h ;clear period int. flag

SACL    EVIFRA ;in EVIFRA

CLRC    INTM ;Enable all interrupts

RET

DELAY LAR     AR0,#01h ;Gen. purpose delay

D_LOOP RPT     #01h ;Delay parameters may need to be

NOP ;modified for easy observation

BANZ    D_LOOP

RET

PHANTOM: RET

.end ;Assembler module end directive –optional
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;===============================================================================

* File Name: EV_Capt.asm

* Description: PROGRAM TO CHECK THE OPERATION OF CAPTURE UNITS IN EV

* Function: To test CAP1, CAP2 & CAP3 using Timer 1

* Mode: Timer 1 at x/128

* Output: Port C bits 2,3,4 are toggled by capture interrupt

* Set up: Connect T1CMP to CAP1,2,3 inputs

* ISR: CAP1,2,3 interrupts read, CAPFIFO

*      CAP1 on rising edge,  FIFO value at 70h,71h, toggle OPC2

*      CAP2 on falling edge, FIFO value at 72h,73h, toggle OPC3

*      CAP3 on both edges,   FIFO value at 74h,75h, toggle OPC4

;===============================================================================

.title ” EV capture test” ;Title

.include ”24x.h” ;Variable and register declaration

;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

;Vector address declarations

;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

.sect   ”vectors”

RSVECT B    START ;Reset Vector

INT1 B    PHANTOM ;Interrupt Level 1

INT2 B    PHANTOM ;Interrupt Level 2

INT3 B    PHANTOM ;Interrupt Level 3

INT4 B    GISR4 ;Interrupt Level 4

INT5 B    PHANTOM ;Interrupt Level 5

INT6 B    PHANTOM ;Interrupt Level 6

RESERVED B    PHANTOM ;Reserved

SW_INT8 B    PHANTOM ;User S/W Interrupt

SW_INT9 B    PHANTOM ;User S/W Interrupt

SW_INT10 B    PHANTOM ;User S/W Interrupt

SW_INT11 B    PHANTOM ;User S/W Interrupt

SW_INT12 B    PHANTOM ;User S/W Interrupt

SW_INT13 B    PHANTOM ;User S/W Interrupt

SW_INT14 B    PHANTOM ;User S/W Interrupt

SW_INT15 B    PHANTOM ;User S/W Interrupt

SW_INT16 B    PHANTOM ;User S/W Interrupt

TRAP B    PHANTOM ;Trap vector

NMI B    PHANTOM ;Non–maskable Interrupt

EMU_TRAP B    PHANTOM ;Emulator Trap

SW_INT20 B    PHANTOM ;User S/W Interrupt

SW_INT21 B    PHANTOM ;User S/W Interrupt

SW_INT22 B    PHANTOM ;User S/W Interrupt

SW_INT23 B    PHANTOM ;User S/W Interrupt

del .set 0fffh ;define delay

;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

;M A C R O – Definitions

;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

KICK_DOG .macro ;Watchdog reset macro

LDP     #00E0h ;DP––>7000h–707Fh

SPLK    #05555h, WDKEY

SPLK    #0AAAAh, WDKEY

LDP     #0h ;DP––>0000h–007Fh

.endm
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.text

START: LDP     #0h ;set DP=0

SETC    INTM ;Disable interrupts

SPLK    #0000h,IMR ;Mask all core interrupts

LACC    IFR ;Read Interrupt flags

SACL    IFR ;Clear all interrupt flags

LDP     #WDKEY >> 7h ;Peripheral page

SPLK    #006Fh, WDCR ;Disable WD if VCCP=5V

KICK_DOG

LAR     ar7,#del ;Load AR7 with delay value

MAR     *,ar7 ;Set ARP to ar7

LDP     #PCDATDIR >> 7h ;Peripheral page

SPLK    #0001110000000000b,PCDATDIR

;set IOPC 2,3,4 as outputs

SPLK    #1111111111111111b,OCRA

;enable all EV signals

* Load TIMER 1 registers

LDP     #GPTCON >> 7h ;Peripheral page

SPLK    #0000000001001001b,GPTCON

;0000 0000 0

;1 – Enable Compare o/ps

;00 reserved

;10 – T2 CMP active hi

;01 – T1 CMP active lo

SPLK    #0000000000000000b,T1CNT ;zero timer 1 count

SPLK    #0001011101000010b,T1CON

;000 10 Cont, Up

;111 x/128,

;0 reserved for T1,Tenable select

;1 Tenable for Timer 1

;00 Internal clk

;00 cntr =0

;1 enable compare

;0 use own period register

SPLK    #1111111111111111b,T1PR

SPLK    #0011111100000000b,T1CMPR

SPLK    #0000000000000000b,EVIMRA

SPLK    #0000000000000000b,EVIMRB

;disable group A,B interrupts
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* Load Capture registers

SPLK    #0011000001101100b,CAPCON

;0 clear capture registers

;01 –enable Capture 1,2 disable QEP

;1 –enable Capture 3

;0 –reserved

;0 –Use GPTimer 2 for CAP3

;0 –Use GPTimer 2 for CAP1,2

;0 –No ADC start on CAP3 interrupt

;01 –CAP1 is rising edge detect

;10 –CAP2 is falling edge detect

;11 –CAP3 on both edges

;00 –reserved

SPLK    #0000000000000111b,EVIMRC

;0000 0000 0000 0

;111, enable CAP3,CAP2,CAP1 interrupts

LDP     #0

SPLK    #0000000000001000b,IMR ;Enable INT4

CLRC    INTM ;Enable interrupts globally

LDP     #GPTCON >> 7h ;Peripheral page

wait: NOP ;main loop

B       wait

GISR1: ret ;Int1 GISR

GISR2: ret ;Int2 GISR

GISR3: ret ;Int3 GISR

GISR4: ;Int4 GISR

NOP

LDP     #PIVR >> 7h ;Peripheral page

LACL    PIVR ;PIVR value

XOR     #0033h ;CAP1 interrupt

BCND    SISR33,eq

LACL    PIVR ;PIVR value

XOR     #0034h ;CAP2 interrupt

BCND    SISR34,eq

LACL    PIVR ;PIVR value

XOR     #0035h ;CAP3 interrupt

BCND    SISR35,eq

RET

SISR33: ;CAP1 SISR

LDP     #PCDATDIR >> 7h ;Peripheral page

SPLK    #3c38h,PCDATDIR ;clear OPC2

CALL    DELAY

SPLK    #3c3ch,PCDATDIR ;set OPC2

LDP     #GPTCON >> 7h ;Peripheral page

SPLK    #0001h,EVIFRC ;clear Capture flag

LDP     #0h

BLDD    #CAP1FIFO,70h

BLDD    #CAP1FIFO,71h

CLRC    INTM

RET
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SISR34: ;CAP2 SISR

LDP     #PCDATDIR >> 7h ;Peripheral page

SPLK    #3c34h,PCDATDIR ;clear OPC3

CALL    DELAY

SPLK    #3c3ch,PCDATDIR ;set OPC3

LDP     #GPTCON >> 7h ;Peripheral page

SPLK    #0002h,EVIFRC ;clear Capture flag

LDP     #0h

BLDD    #CAP2FIFO,72h

BLDD    #CAP2FIFO,73h

CLRC    INTM

RET

SISR35: ;CAP3 SISR

LDP     #PCDATDIR >> 7h ;Peripheral page

SPLK    #3c2ch,PCDATDIR ;clear OPC4

CALL    DELAY

SPLK    #3c3ch,PCDATDIR ;set OPC4

LDP     #GPTCON >> 7h ;Peripheral page

SPLK    #0004h,EVIFRC ;clear Capture flag

LDP     #0h

BLDD    #CAP3FIFO,74h

BLDD    #CAP3FIFO,75h

CLRC    INTM

RET

DELAY: RPT     #0ffh ;sub–routine for delay.

NOP

BANZ    DELAY,ar7

LAR     ar7,#del

RET

PHANTOM: ret

.end
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Appendix A

Glossary

A

A0–A15: Collectively, the external address bus; the 16 pins are used in par-

allel to address external data memory, program memory, or I/O space.

ACC:  See accumulator.

ACCH: Accumulator high word. The upper 16 bits of the accumulator. See

also accumulator.

ACCL: Accumulator low word. The lower 16 bits of the accumulator. See

also accumulator.

accumulator: A 32-bit register that stores the results of operations in the

central arithmetic logic unit (CALU) and provides an input for subsequent

CALU operations. The accumulator also performs shift and rotate opera-

tions.

address:  The location of program code or data stored in memory.

addressing mode: A method by which an instruction interprets its operands

to acquire the data it needs. See also direct addressing; immediate

addressing; indirect addressing.

analog-to-digital (A/D) converter: A circuit that translates an analog signal

to a digital signal.

AR: See auxiliary register.

AR0–AR7: Auxiliary registers 0 through 7. See auxiliary register.

ARAU: See auxiliary register arithmetic unit (ARAU).

ARB: See auxiliary register pointer buffer (ARB).

ARP:  See auxiliary register pointer (ARP).

auxiliary register: One of eight 16-bit registers (AR7–AR0) used as point-

ers to addresses in data space. The registers are operated on by the aux-

iliary register arithmetic unit (ARAU) and are selected by the auxiliary

register pointer (ARP).

Appendix C
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auxiliary register arithmetic unit (ARAU): A 16-bit arithmetic unit used to

increment, decrement, or compare the contents of the auxiliary registers.

Its primary function is manipulating auxiliary register values for indirect

addressing.

auxiliary register pointer (ARP): A 3-bit field in status register ST0 that

points to the current auxiliary register.

auxiliary register pointer buffer (ARB): A 3-bit field in status register ST1

that holds the previous value of the auxiliary register pointer (ARP).

B

B0: An on-chip block of dual-access RAM that can be configured as either

data memory or program memory, depending on the value of the CNF

bit in status register ST1.

B1: An on-chip block of dual-access RAM available for data memory.

B2: An on-chip block of dual-access RAM available for data memory.

BIO pin: A general-purpose input pin that can be tested by the conditional

branch instruction (BCND) that causes a branch when BIO is driven low

externally.

bit-reversed indexed addressing: A method of indirect addressing that

allows efficient I/O operations by resequencing the data points in a

radix-2 fast Fourier transform (FFT) program. The direction of carry

propagation in the ARAU is reversed.

boot loader: A built-in segment of code that transfers code from an external

source to a 16-bit external program destination at reset.

BR: Bus request pin. This pin is tied to the BR signal, which is asserted when

a global data memory access is initiated.

branch: A switching of program control to a nonsequential program-

memory address.

BRR: The value in the baud select registers.
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C

C bit: See carry bit.

CALU: See central arithmetic logic unit (CALU).

carry bit: Bit 9 of status register ST1; used by the CALU for extended

arithmetic operations and accumulator shifts and rotates. The carry bit

can be tested by conditional instructions.

central arithmetic logic unit (CALU): The 32-bit wide main arithmetic logic

unit for the ’24x CPU that performs arithmetic and logic operations. It

accepts 32-bit values for operations, and its 32-bit output is held in the

accumulator.

CLKIN: Input clock signal. A clock source signal supplied to the on-chip

clock generator at the CLKIN/X2 pin or generated internally by the

on-chip oscillator. The clock generator divides or multiplies CLKIN to

produce the CPU clock signal, CLKOUT1.

CLKOUT: Master clock output signal. The output signal of the on-chip clock

generator. The CLKOUT high pulse signifies the CPU’s logic phase

(when internal values are changed), and the CLKOUT1 low pulse

signifies the CPU’s latch phase (when the values are held constant).

CNF bit: DARAM configuration bit. Bit 12 in status register ST1. CNF is used

to determine whether the on-chip RAM block B0 is mapped to program

space or data space.

codec: A device that codes in one direction of transmission and decodes in

another direction of transmission.

COFF: Common object file format. A system of files configured according to

a standard developed by AT&T. These files are relocatable in memory

space.

context saving/restoring: Saving the system status when the device

enters a subroutine (such as an interrupt service routine) and restoring

the system status when exiting the subroutine. On the ’24x, only the pro-

gram counter value is saved and restored automatically; other context

saving and restoring must be performed by the subroutine.

CPU: Central processing unit. The ’24x CPU is the portion of the processor

involved in arithmetic, shifting, and Boolean logic operations, as well as

the generation of data- and program-memory addresses. The CPU

includes the central arithmetic logic unit (CALU), the multiplier, and the

auxiliary register arithmetic unit (ARAU).
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CPU cycle: The time required for the CPU to go through one logic phase

(during which internal values are changed) and one latch phase (during

which the values are held constant).

current AR: See current auxiliary register.

current auxiliary register: The auxiliary register pointed to by the auxiliary

register pointer (ARP). The auxiliary registers are AR0 (ARP = 0)

through AR7 (ARP = 7). See also auxiliary register; next auxiliary

register.

current data page: The data page indicated by the content of the data page

pointer (DP). See also data page; DP.

D

D0–D15: Collectively, the external data bus; the 16 pins are used in parallel

to transfer data between the ’24x and external data memory, program

memory, or I/O space.

DARAM: Dual-access RAM. RAM that can be accessed twice in a single

CPU clock cycle. For example, your code can read from and write to

DARAM in the same clock cycle.

DARAM configuration bit (CNF):  See CNF bit.

data-address generation logic: Logic circuitry that generates the address-

es for data memory reads and writes. This circuitry, which includes the

auxiliary registers and the ARAU, can generate one address per

machine cycle. See also program-address generation logic.

data page: One block of 128 words in data memory. Data memory contains

512 data pages. Data page 0 is the first page of data memory (addresses

0000h–007Fh); data page 511 is the last page (addresses

FF80h–FFFFh). See also data page pointer (DP); direct addressing.

data page 0: Addresses 0000h–007Fh in data memory; contains the

memory-mapped registers, a reserved test/emulation area for special

information transfers, and the scratch-pad RAM block (B2).

data page pointer (DP): A 9-bit field in status register ST0 that specifies

which of the 512 data pages is currently selected for direct address

generation. When an instruction uses direct addressing to access a data-

memory value, the DP provides the nine MSBs of the data-memory

address, and the instruction provides the seven LSBs.

data-read address bus (DRAB): A 16-bit internal bus that carries the

address for each read from data memory.
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data read bus (DRDB): A 16-bit internal bus that carries data from data

memory to the CALU and the ARAU.

data-write address bus (DWAB): A 16-bit internal bus that carries the

address for each write to data memory.

data write bus (DWEB): A 16-bit internal bus that carries data to both

program memory and data memory.

decode phase: The phase of the pipeline in which the instruction is

decoded. See also pipeline; instruction-fetch phase; operand-fetch

phase; instruction-execute phase.

direct addressing: One of the methods used by an instruction to address

data-memory. In direct addressing, the data-page pointer (DP) holds the

nine MSBs of the address (the current data page), and the instruction

word provides the seven LSBs of the address (the offset). See also

indirect addressing.

DP: See data page pointer (DP).

DRAB: See data-read address bus (DRAB).

DRDB: See data read bus (DRDB).

DS: Data memory select pin. The ’24x asserts DS to indicate an access to

external data memory (local or global).

DSWS: Data-space wait-state bit(s). A value in the wait-state generator

control register (WSGR) that determines the number of wait states

applied to reads from and writes to off-chip data space.

dual-access RAM: See DARAM.

dummy cycle: A CPU cycle in which the CPU intentionally reloads the

program counter with the same address.

DWAB: See data-write address bus (DWAB).

DWEB: See data write bus (DWEB).

E

execute phase: The fourth phase of the pipeline; the phase in which the

instruction is executed. See also pipeline; instruction-fetch phase;

instruction-decode phase; operand-fetch phase.

external interrupt: A hardware interrupt triggered by an external event

sending an input through an interrupt pin.
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F

FIFO buffer: First-in, first-out buffer. A portion of memory in which data is

stored and then retrieved in the same order in which it was stored. The

synchronous serial port has two four-word-deep FIFO buffers: one for its

transmit operation and one for its receive operation.

flash memory: Electrically erasable and programmable, nonvolatile (read-

only) memory.

G

general-purpose input/output pins: Pins that can be used to accept input

signals or send output signals. These pins are the input pin BIO, the out-

put pin XF, and the GPIO pins.

global data space: One of the four ’24x address spaces. The global data

space can be used to share data with other processors within a system

and can serve as additional data space. See also local data space.

GREG: Global memory allocation register. A memory-mapped register

used for specifying the size of the global data memory. Addresses not

allocated by the GREG for global data memory are available for local

data memory.

H

hardware interrupt: An interrupt triggered through physical connections

with on-chip peripherals or external devices.

I

IFR: See interrupt flag register (IFR).

immediate addressing: One of the methods for obtaining data values used

by an instruction; the data value is a constant embedded directly into the

instruction word; data memory is not accessed.

immediate operand/immediate value: A constant given as an operand in

an instruction that is using immediate addressing.

IMR: See interrupt mask register (IMR).

indirect addressing: One of the methods for obtaining data values used by

an instruction. When an instruction uses indirect addressing, data

memory is addressed by the current auxiliary register. See also direct

addressing.
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input clock signal: See CLKIN.

input shifter: A 16- to 32-bit left barrel shifter that shifts incoming 16-bit data

from 0 to 16 positions left relative to the 32-bit output.

instruction-decode phase: The second phase of the pipeline; the phase in

which the instruction is decoded. See also pipeline; instruction-fetch

phase; operand-fetch phase; instruction-execute phase.

instruction-execute phase: The fourth phase of the pipeline; the phase in

which the instruction is executed. See also pipeline; instruction-fetch

phase; instruction-decode phase; operand-fetch phase.

instruction-fetch phase: The first phase of the pipeline; the phase in which

the instruction is fetched from program-memory.  See also pipeline;

instruction-decode phase; operand-fetch phase; instruction-execute

phase.

instruction register (IR): A 16-bit register that contains the instruction

being executed.

instruction word: A 16-bit value representing all or half of an instruction. An

instruction that is fully represented by 16 bits uses one instruction word.

An instruction that must be represented by 32 bits uses two instruction

words (the second word is a constant).

internal interrupt: A hardware interrupt caused by an on-chip peripheral.

interrupt: A signal sent to the CPU that (when not masked or disabled)

forces the CPU into a subroutine called an interrupt service routine (ISR).

This signal can be triggered by an external device, an on-chip peripheral,

or an instruction (INTR, NMI, or TRAP).

interrupt flag register (IFR):  A 16-bit memory-mapped register that indi-

cates pending interrupts. Read the IFR to identify pending interrupts and

write to the IFR to clear selected interrupts. Writing a 1 to any IFR flag

bit clears that bit to 0.

interrupt latency:  The delay between the time an interrupt request is made

and the time it is serviced.

interrupt mask register (IMR): A 16-bit memory-mapped register used to

mask external and internal interrupts. Writing a 1 to any IMR bit position

enables the corresponding interrupt (when INTM = 0).

interrupt mode bit (INTM): Bit 9 in status register ST0; either enables all

maskable interrupts that are not masked by the IMR or disables all mask-

able interrupts.
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interrupt service routine (ISR): A module of code that is executed in

response to a hardware or software interrupt.

interrupt trap: See interrupt service routine (ISR).

interrupt vector: A branch instruction that leads the CPU to an interrupt

service routine (ISR).

interrupt vector location: An address in program memory where an inter-

rupt vector resides. When an interrupt is acknowledged, the CPU

branches to the interrupt vector location and fetches the interrupt vector.

INTM bit: See interrupt mode bit (INTM).

I/O-mapped register: One of the on-chip registers mapped to addresses in

I/O (input/output) space. These registers, which include the registers for

the on-chip peripherals, must be accessed with the IN and OUT instruc-

tions. See also memory-mapped register.

IR: See instruction register (IR).

IS: I/O space select pin. The ’24x asserts IS to indicate an access to external

I/O space.

ISR: See interrupt service routine (ISR).

ISWS: I/O-space wait-state bit(s). A value in the wait-state generator control

register (WSGR) that determines the number of wait states applied to

reads from and writes to off-chip I/O space.

L

latch phase: The phase of a CPU cycle during which internal values are held

constant. See also logic phase; CLKOUT1.

local data space: The portion of data-memory addresses that are not allo-

cated as global by the global memory allocation register (GREG). If none

of the data-memory addresses are allocated for global use, all of data

space is local. See also global data space.

logic phase: The phase of a CPU cycle during which internal values are

changed. See also latch phase; CLKOUT1.

long-immediate value: A 16-bit constant given as an operand of an

instruction that is using immediate addressing.

LSB: Least significant bit. The lowest order bit in a word. When used in plural

form (LSBs), refers to a specified number of low-order bits, beginning

with the lowest order bit and counting to the left. For example, the four

LSBs of a 16-bit value are bits 0 through 3. See also MSB.
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M

machine cycle: See CPU cycle.

maskable interrupt: A hardware interrupt that can be enabled or disabled

through software. See also nonmaskable interrupt.

master clock output signal: See CLKOUT1.

master phase: See logic phase.

memory-mapped register: One of the on-chip registers mapped to

addresses in data memory. See also I/O-mapped register.

microcomputer mode: A mode in which the on-chip ROM or flash memory

in program memory space is enabled. This mode is selected with the MP/

MC pin.

microprocessor mode: A mode in which the on-chip ROM or flash memory

is disabled and external program memory is enabled. This mode is se-

lected with the MP/MC pin.

microstack (MSTACK): A register used for temporary storage of the

program counter (PC) value when an instruction needs to use the PC to

address a second operand.

MIPS: Million instructions per second.

MP/MC pin: A pin that indicates whether the processor is operating in micro-

processor mode or microcomputer mode. MP/MC high selects micropro-

cessor mode; MP/MC low selects microcomputer mode. This pin is used

to execute the on-chip bootloader/user code at reset. When MP/MC is

held low during reset, program control transfers to on-chip non-volatile

memory at location 0000h. When MP/MC is held high, control transfers

to 0000h in external program memory.

MSB: Most significant bit. The highest order bit in a word. When used in

plural form (MSBs), refers to a specified number of high-order bits, begin-

ning with the highest order bit and counting to the right. For example, the

eight MSBs of a 16-bit value are bits 15 through 8. See also LSB.

MSTACK: See microstack.

multiplier: A part of the CPU that performs 16-bit × 16-bit multiplication and

generates a 32-bit product. The multiplier operates using either signed

or unsigned 2s-complement arithmetic.
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N

next AR: See next auxiliary register.

next auxiliary register: The register that is pointed to by the auxiliary regis-

ter pointer (ARP) when an instruction that modifies ARP is finished

executing. See also auxiliary register; current auxiliary register.

NMI: A hardware interrupt that uses the same logic as the maskable inter-

rupts but cannot be masked. It is often used as a soft reset. See also

maskable interrupt; nonmaskable interrupt.

nonmaskable interrupt: An interrupt that can be neither masked by the

interrupt mask register (IMR) nor disabled by the INTM bit of status

register ST0.

NPAR: Next program address register. Part of the program-address genera-

tion logic. This register provides the address of the next instruction to the

program counter (PC), the program address register (PAR), the micro

stack (MSTACK), or the stack.

O

operand: A value to be used or manipulated by an instruction; specified in

the instruction.

operand-fetch phase: The third phase of the pipeline; the phase in which

an operand or operands are fetched from memory. See also pipeline;

instruction-fetch phase; instruction-decode phase; instruction-execute

phase.

output shifter: 32- to 16-bit barrel left shifter. Shifts the 32-bit accumulator

output from 0 to 7 bits left for quantization management, and outputs

either the 16-bit high or low half of the shifted 32-bit data to the data write

bus (DWEB).

OV bit: Overflow flag bit. Bit 12 of status register ST0; indicates whether the

result of an arithmetic operation has exceeded the capacity of the

accumulator.

overflow (in a register): A condition in which the result of an arithmetic

operation exceeds the capacity of the register used to hold that result.
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overflow mode: The mode in which an overflow in the accumulator causes

the accumulator to be loaded with a preset value. If the overflow is in the

positive direction, the accumulator is loaded with its most positive

number. If the overflow is in the negative direction, the accumulator is

filled with its most negative number.

OVM bit: Overflow mode bit. Bit 11 of status register ST0; enables or

disables overflow mode. See also overflow mode.

P

PAB: See program address bus (PAB).

PAR: Program address register. A register that holds the address currently

being driven on the program address bus for as many cycles as it takes

to complete all memory operations scheduled for the current machine

cycle.

PC: See program counter (PC).

PCB: Printed circuit board.

pending interrupt: A maskable interrupt that has been successfully

requested but is awaiting acknowledgement by the CPU.

pipeline: A method of executing instructions in an assembly line fashion.

The ’24x pipeline has four independent phases. During a given CPU

cycle, four different instructions can be active, each at a different stage

of completion. See also instruction-fetch phase; instruction-decode

phase; operand-fetch phase; instruction-execute phase.

PLL: Phase lock loop circuit.

PM bits: See product shift mode bits (PM).

power-down mode: The mode in which the processor enters a dormant

state and dissipates considerably less power than during normal opera-

tion. This mode is initiated by the execution of an IDLE instruction. During

a power-down mode, all internal contents are maintained so that opera-

tion continues unaltered when the power-down mode is terminated. The

contents of all on-chip RAM also remains unchanged.

PRDB: See program read bus (PRDB).

PREG: See product register (PREG).

product register (PREG): A 32-bit register that holds the results of a multi-

ply operation.
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product shifter: A 32-bit shifter that performs a 0-, 1-, or 4-bit left shift, or

a 6-bit right shift of the multiplier product based on the value of the

product shift mode bits (PM).

product shift mode: One of four modes (no-shift, shift-left-by-one, shift-left-

by-four, or shift-right-by-six) used by the product shifter.

product shift mode bits (PM): Bits 0 and 1 of status register ST1; they iden-

tify which of four shift modes (no-shift, left-shift-by-one, left-shift-by-four,

or right-shift-by-six) will be used by the product shifter.

program address bus (PAB): A 16-bit internal bus that provides the

addresses for program-memory reads and writes.

program-address generation logic: Logic circuitry that generates the

addresses for program memory reads and writes, and an operand

address in instructions that require two registers to address operands.

This circuitry can generate one address per machine cycle. See also

data-address generation logic.

program control logic: Logic circuitry that decodes instructions, manages

the pipeline, stores status of operations, and decodes conditional

operations.

program counter (PC): A register that indicates the location of the next

instruction to be executed.

program read bus (PRDB): A 16-bit internal bus that carries instruction

code and immediate operands, as well as table information, from

program memory to the CPU.

PS: Program select pin. The ’24x asserts PS to indicate an access to exter-

nal program memory.

PSLWS: Lower program-space wait-state bits. A value in the wait-state

generator control register (WSGR) that determines the number of wait

states applied to reads from and writes to off-chip lower program space

(addresses 0000h–7FFFh). See also PSUWS.

PSUWS: Upper program-space wait-state bits. A value in the wait-state

generator control register (WSGR) that determines the number of wait

states applied to reads from and writes to off-chip upper program space

(addresses 8000h–FFFFh). See also PSLWS.
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R

RAMEN: RAM enable pin. This pin enables or disables on-chip single-

access RAM.

RD: Read select pin. The ’24x asserts RD to request a read from external

program, data, or I/O space. RD can be connected directly to the output

enable pin of an external device.

READY: External device ready pin. Used to create wait states externally.

When this pin is driven low, the ’24x waits one CPU cycle and then tests

READY again. After READY is driven low, the ’24x does not continue pro-

cessing until READY is driven high.

repeat counter (RPTC): A 16-bit register that counts the number of times

a single instruction is repeated. RPTC is loaded by an RPT instruction.

reset: A way to bring the processor to a known state by setting the registers

and control bits to predetermined values and signaling execution to start

at address 0000h.

reset pin (RS): A pin that causes a reset.

reset vector: The interrupt vector for reset.

return address: The address of the instruction to be executed when the

CPU returns from a subroutine or interrupt service routine.

RPTC: See repeat counter (RPTC).

RS: Reset pin. When driven low, causes a reset on any ’24x device.

R/W: Read/write pin. Indicates the direction of transfer between the ’24x and

external program, data, or I/O space.

S

scratch-pad RAM: Another name for DARAM block B2 in data space

(32 words).

short-immediate value: An 8-, 9-, or 13-bit constant given as an operand

of an instruction that is using immediate addressing.

sign bit: The MSB of a value when it is seen by the CPU to indicate the sign

(negative or positive) of the value.

sign extend: Fill the unused high order bits of a register with copies of the

sign bit in that register.
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sign-extension mode (SXM) bit:  Bit 10 of status register ST1; enables or

disables sign extension in the input shifter. It also differentiates between

logic and arithmetic shifts of the accumulator.

slave phase: See latch phase.

software interrupt: An interrupt caused by the execution of an INTR, NMI,

or TRAP instruction.

software stack: A program control feature that allows you to extend the

hardware stack into data memory with the PSHD and POPD instructions.

The stack can be directly stored and recovered from data memory, one

word at time. This feature is useful for deep subroutine nesting or protec-

tion against stack overflow.

ST0 and ST1:  See status registers ST0 and ST1.

stack: A block of memory reserved for storing return addresses for subrou-

tines and interrupt service routines. The ’24x stack is 16 bits wide and

eight levels deep.

status registers ST0 and ST1: Two 16-bit registers that contain bits for

determining processor modes, addressing pointer values, and indicating

various processor conditions and arithmetic logic results. These regis-

ters can be stored into and loaded from data memory, allowing the status

of the machine to be saved and restored for subroutines.

STRB: External access active strobe. The ’24x asserts STRB during ac-

cesses to external program, data, or I/O space.

SXM bit: See sign-extension mode bit (SXM).

T

TC bit: Test/control flag bit. Bit 11 of status register ST1; stores the results

of test operations done in the central arithmetic logic unit (CALU) or the

auxiliary register arithmetic unit (ARAU). The TC bit can be tested by

conditional instructions.

temporary register (TREG):  A 16-bit register that holds one of the oper-

ands for a multiply operation; the dynamic shift count for the LACT,

ADDT, and SUBT instructions; or the dynamic bit position for the BITT

instruction.

TOS: Top of stack. Top level of the 8-level last-in, first-out hardware stack.

TREG: See temporary register (TREG).

TTL: Transistor-to-transistor logic.
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V

vector: See interrupt vector.

vector location: See interrupt vector location.

W

wait state: A CLKOUT cycle during which the CPU waits when reading from

or writing to slower external memory.

wait-state generator: An on-chip peripheral that generates a limited

number of wait states for a given off-chip memory space (program, data,

or I/O). Wait states are set in the wait-state generator control register

(WSGR).

WE: Write enable pin. The ’24x asserts WE to request a write to external pro-

gram, data, or I/O space.

WSGR: Wait-state generator control register. This register, which is mapped

to I/O memory, controls the wait-state generator.

X

XF bit: XF-pin status bit. Bit 4 of status register ST1 that is used to read or

change the logic level on the XF pin.

XF pin: External flag pin. A general-purpose output pin whose status can be

read or changed by way of the XF bit in status register ST1.

XINT1–XINT2: External pins used to generate general-purpose hardware

interrupts.

Z

zero fill: A way to fill the unused low or high order bits in a register by insert-

ing 0s.
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Appendix A

Updates To This Document

This appendix provides a summary of the updates in this version of the docu-

ment. Updates within paragraphs appear in a bold typeface.

In general, all technical changes noted in SPRZ151A, the Manual Update

Sheet for the B revision of this user’s guide, have been incorporated in this ver-

sion of the document.

Page: Changed or Added:

1-6 Added the following note below Table 1–1, ’F243/F241/C242 Device Configurations:

Note:  The PMT pin should be connected to ground for proper operation.

3–21 Removed the “Rs” indicating read access from below the register in Figure 3–13, ’F243
Wait-State Generator Control Register (WSGR).

7–29 Changed the bit 7 description in Figure 7–11, GP Timer x Control Register (TxCON;
x = 1 or 2), to T2SWT1.

Chp. 10 Added example waveform figures to the end of the chapter.

Chp. 11 In general, Chapter 11, CAN Controller Module, has been revised to make it more read-
able. New CAN example programs have been provided in Appendix B.

11–32 Added the following note after the bulleted list in Section 11.6, Interrupt Logic:

Note: While servicing a CAN interrupt, the user should check all the bits in the

CAN_IFR register to ascertain if more than one bit has been set. The corre-

sponding ISRs should be executed for all the set bits. This must be done since

the core interrupt will be asserted only once, even if multiple bits are set in the

CAN_IFR register.

12–8 Changed the bit 7 description for WDCR in Table 12–2, WD Module Control Registers,
to Reserved.

12–10 Changed the bit 7 description in Figure 12–4, WD Timer Control Register (WDCR), to
Reserved.
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