VIA C3 Processor
Alternate Instruction Set

Application Note

Version 0.24
(Review version, Incomplete)

VIA Confidential

VIA C3 Alternate Instruction Set VIA Confidential

This is Version 0.24 of the VIA C3 Processor Alternate Instruction Set App Note.

© 2002 VIA Technologies, Inc All Rights Reserved.

VIA reserves the right to make changes in its products without notice in order to improve design or
performance characteristics.

This publication neither states nor implies any representations or warranties of any kind, including but not
limited to any implied warranty of merchantability or fitness for a particular purpose. No license, express or
implied, to any intellectual property rights is granted by this document.

VIA makes no representations or warranties with respect to the accuracy or completeness of the contents
of this publication or the information contained herein, and reserves the right to make changes at any time,
without notice. VIA disclaims responsibility for any consequences resulting from the use of the information
included herein.

VIA Confidential VIA C3 Alternate Instruction Set

Table of Contents

1 11
1.1 BASIC CON CEP TS ...t ee e e e e e eeeeees 1-1
1.2 RATIONALE ...t aaaae e e e eeeeeeees 1-1
1.2.1 PROCESSOR TESTING..uuuuueeeerireereeeeeeerrsnsessesssssssssseeersssssnsssseesees 1-2
1.2.2 PROCESSOR DEBUG. ...ceeiueeereeraurrasnnessneessnesssnessseessseesnsnessnseenns 1-2
1.2.3 SOFTWARE PERFORMANCGEuuiiiitteteeeeisieeeeserenassssessnsesssssnneseees 1-2
1.3 PROCESSOR VARIATIONScooteeteee ettt e e e eeeeees 1-2
14 GENERAL WARNINGS & DISCLAIMERS..........ooeeeeeeeieeeeeen 1-2
2 241
2.1 CPUID IDENTIFICATIONcceeeeeeeeeee e aeee e e e eee e 2-1
2.2 USAGE MODES ... oottt eaaae e e e e e eeeeees 2-3
2.3 ALTERNATE INSTRUCTIONS ENABLED MODE........cccccoeeeeenn.. 2-4
2.4 ALTERNATE INSTRUCTION EXECUTION MODE...........ccceen..... 2-5
2.5 TERMINATING ALTERNATE INSTRUCTION EXECUTION MODE2-7
2.6 X86 ARCHITECTURE RESTRICTIONS ... 2-7
3 341
3.1 GENERAL INSTRUCTION FEATURES........ovvteeeeeee e 3-1
3.2 REGISTERS ...ttt e e e e e e e e ee e e s e e s eeeeees 3-2
3.3 SOME INTERESTING INSTRUCTIONS.......ooeeeeeee e 3-2
34 PROTECTION MECHANISMS ... 3-3
4 41
4.1 INTERRUPTS & EXCEPTIONS IN SAMUEL, SAMUEL 2, AND EZRA 4-1
4.2 C5XL: TRANSPARENT INTERRUPTS & EXCEPTIONS............. 4-1
43 C5XL: PRESERVING REGISTERScoiieeeeeetceceeee e 4-2
4.3.1 MASKING INTERRUPTS . .eeeeeeeeeeeeeeeeeeeeeeaaaaaeeeeeeeeeeeeeeenemmnaaaaaeeeens 4-3
4.3.2 UNMASKABLE INTERRUPTS.....cttruttarteessneessseeesseesseessssessnseesssesnns 4-1
4.3.3 C5XL: REGISTER TRASHING DETECTION ..uuueieirrenerrrerensaeesennnnaseees 4-1
5 541
51 MODE TRANSITIONS ...t eeaeee e e e eeeeees 541
5.2 ALTERNATE INSTRUCTION EXECUTION.........coeveeeerereeeeeeeee e 541
A A-1
A1 GENERAL INSTRUCTIONS ...t ee e e A-1
A2 X87 FLOATING POINT INSTRUCTIONScoiiiieeeeeieeeeereeeeeeeen A-1

Table of Contents i

VIA Confidential VIA C3 Alternate Instruction Set

CHAPTER

INTRODUCTION

This document describes the VIA C3 processor capability to execute an alternate set of
instructions. A separate document, the
describes the details of the micro-operations that may be used as alternate instructions.

1.1 BASIC CONCEPTS

The VIA C3 processor family is intended as a plug-replaceable, software-compatible
alternative to the Intel Pentium III processor. Accordingly, the VIA C3 processor normally
executes compatible instructions. The internal design of the VIA C3 processor, however,
is quite different from the Pentium III internal design. In particular, the VIA C3 processor
comprises two major components: a front-end that fetches x86 instruction bytes and translates
them from x86 into micro-operations, and an internal microprocessor that executes these
micro-operations.

This Application Note discloses an additional capability: the VIA C3 processor has a special
mode where the front-end logic can also fetch (selected) micro-operations (versus x86
instructions) and pass them directly to the internal execution unit. The specific micro-
operations that can be fetched from memory in this fashion are called CIf
certain rules are carefully followed, these new instructions can be intermixed seamlessly with
x86 instructions in almost any combination.

1.2 RATIONALE

The VIA C3 processor family provides the alternate instruction capability for three basic uses:
processor testing, processor debugging, and selected software performance improvement.

Chapter 1

Introduction 1-1

VIA C3 Alternate Instruction Set VIA Confidential

1.21

PROCESSOR TESTING

1.2.2

Since the internal microprocessor of the VIA C3 processor family is considerably different
from x86 architecture, it is difficult to test internal microprocessor features from the x86
architecture. For example, the internal microprocessor has 32 general registers that are all used
in emulating the x86 architecture. It would take x86 instructions to guarantee adequate
testing of all 32 internal registers, assuming that a deterministic map of x86 instructions to
internal registers could be accurately produced.

By executing alternate instructions from memory, however, it is easy to directly test all of the
internal microprocessor hardware features using a small number of alternate instructions. This
capability is extensively used in the VIA C3 processor’s production manufacturing tests.

PROCESSOR DEBUG

Similarly, in debugging software on the VIA C3 processor, it is often desirable to directly
understand or manipulate internal microprocessor state. The alternate instruction capability
allows alternate instructions to be embedded within x86 instructions to setup special states,
sample internal values, and so forth. This capability is used by the Centaur Technology
development and debug team.

123 SOFTWARE PERFORMANCE

1.3

The x86 instruction architecture provides an extensive set of functions, but also has many
well-known architectural deficiencies: two-operand instructions, inadequate number of
registers, the condition code architecture, and so forth. The alternate instruction set eliminates
many of these x86 deficiencies thus potentially providing for improved software performance.

This Application Note is intended for sophisticated programmers who may be able to utilize
the alternate instruction capability to obtain increased software performance.

PROCESSOR VARIATIONS

14

There are variations in the implementation of the alternate instruction capability within the
VIA C83 processor family. This document describes the alternate instruction capability for the
VIA C3 Samuel, Samuel 2, Ezra and C5XL. (Nehemiah) processors. In particular, C5XL
differs from the others in certain aspects, and these differences are noted in this document
with in italics. C5XL has improved handling of interrupts and exceptions while
in alternate instruction execution mode, therefore most of the sections in Chapter 4 apply only
to C5XL and are so noted in the section headings. Section 2.1 describes the CPUID
functions that can be used to identify the processor version and its capabilities.

GENERAL WARNINGS & DISCLAIMERS

The alternate instruction capability provides substantial additional function over the x86
instruction set. Part of this additional functionality is the ability to bypass many of the x86
architecture “protection” mechanisms. The rules documented in this manual must be followed
to avoid damaging the integrity of other applications or an underlying operating system.

1-2

Introduction Chapter 1

VIA Confidential VIA C3 Alternate Instruction Set

Thus, use of the alternate instruction capability is restricted (by limiting documentation) to
those who have a justified need for this additional capability and can demonstrate the technical
ability and “maturity” to properly use the alternate instructions.

In addition, since the alternate instructions expose the underlying implementation, some
details of the alternate instruction set change between processor versions.

Chapter 1

Introduction 1-3

VIA Confidential VIA C3 Alternate Instruction Set

CHAPTER

x86 ARCHITECTURE INTERACTION

This chapter describes how to enable, invoke, and terminate the alternate instruction mode.
The effect on x86 instructions when in alternate instruction mode is described.

2.1 CPUID IDENTIFICATION

System software should use the CPUID instruction to identify the processor and its
capabilities. Do not assume that future processors in the VIA processor family will implement
the Alternate Instruction Set or that it will be implemented in a backward-compatible
manner. In order to determine if the processor supports the Alternate Instruction Set, system
software should follow the following procedure.

Identify the processor as a member of the VIA processor family by checking for a Vendor
Identification String of “CentaurHauls” using CPUID with EAX=0. Once this has been
verified, system software must determine the processor version in order to properly use the
Alternate Instruction Set.

In general system software can determine the processor version by comparing the Family and
Model Identification fields returned in EAX by the CPUID standard function EAX=1.

31:14 13:12 11:8 74 3.0
EAX |Reserved Type ID Family ID Model ID Stepping ID
18 2 4 4 4

Chapter 2 x86 Architecture Interaction 2-1

VIA C3 Alternate Instruction Set VIA Confidential

The specific values for the VIA C3 processors described in this document are:

PROCESSOR TYPEID | FAMILYID | MODEL ID | STEPPING ID
VIA C3 Samuel (C5A) 0 6 6 Varies
VIA C3 Samuel 2 (C5B) 0 6 7 0-7
VIA C3 Ezra (C5C) 0 6 7 Begins at 8
VIA C3 Nehemiah (C5XL) 0 6 9

Varies

If the processor version is not recognized then system software must not attempt to enable or
use the Alternate Instruction Set.

The VIA C3 Nehemiah (C5XL) processor supports Centaur Extended CPUID Functions
that should be used to determine if the processor supports Alternate Instruction Set and
whether it is enabled. Extended CPUID functions are requested by executing CPUID with
EAX set to 0xC0000000 or 0xC0000001.

The following table summarizes the Centaur Extended CPUID Functions.

Centaur Extended CPUID Functions (VIA C3 Nehemiah)

EAX TITLE OUTPUT
C0000000 Largest Centaur Extended EAX=C0000001
Function Input Value EBX ECX EDX=Reserved

C0000001 Centaur Extended Feature EAX,EBX,ECX=Reserved
Flags

EDX=Centaur Extended Feature Flags

Largest Centaur Extended Function Input Value (EAX==0xC0000000)
VIA C3 Nehemiah (C5XL) returns 0xC0000001 in EAX, the largest Centaur extended
function input value. Note that VIA C3 Samuel, Samuel 2, and Ezra do not support the
Centaur Extended CPUID Functions and will return EAX=0xC0000000 or
EAX=0x00000000 when CPUID is executed with EAX=0xC0000000.

Centaur Extended Feature Flags (EAX==0xC0000001)
Returns Centaur extended feature flags in EDX, these correspond to some Centaur unique

features, like the Alternate Instruction Set:
EDX][0]=0 No AIS Support, FCR[0] is zero and WRMSR cannot set it.
1 AIS supported, WRMSR can modify FCRI0].

EDX[1]=0 AIS is Disabled, IMPAI EAX (opcode OF 3F) will cause Invalid Opcode
Exception (INT6).

1 AIS is Enabled, IMPAI EAX (opcode OF 3F) will enter Alternate Instruction
Execution Mode.

EDX][31:2] Reserved

2-2 x86 Architecture Interaction Chapter 2

VIA Confidential VIA C3 Alternate Instruction Set

2.2 USAGE MODES

The VIA C3 processor has three major modes of operation:

m x86 execution mode. The normal execution mode as defined by the VIA C3 processor
datasheets.

m Alternate instructions enabled mode. This is the same as x86 mode except that one
x86-mode opcode that is normally invalid is now a valid instruction. This new
instruction (JMPAI EAX), when executed, switches execution to alternate instruction
execution mode. The execution of other x86 instructions is the same as in x86 mode.

In Figure 1 normally invalid x86 opcode “1" JMPAI EAX) becomes a branch to
alternate instruction execution mode when in alternate instruction enabled mode.

m Alternate instruction execution mode. This mode is entered from alternate instructions
enabled mode by execution of the new x86 branch instruction, IMPAI EAX. Following
execution of this instruction, a particular x86 instruction is transformed so that it
becomes a “wrapper” instruction that carries a micro-operation as its 32-bit
displacement. When an alternate instruction is fetched and decoded in alternate
instruction execution mode the “wrapper” portion of the alternate instruction is
discarded, and the following micro-operation is queued for the execution units to
process. All other x86 instructions work as before.

Figure 1. Opcode Mapping

x86 opcodes alternate instructions
1 byte
opcodes
reserved alternate opcodes
[
OF +
1 byte
opcodes 1. invalid x86 opcode that initates alt inst execution

2. "wrapper" opcode for alternate instructions

In Figure 1, normally valid x86 opcode “2” is replaced, in alternate instruction execution
mode, by a complete set of alternate instructions. The remaining x86 instructions all
work normally (but some have restricted use for functional reasons).

Chapter 2 x86 Architecture Interaction 2-3

VIA C3 Alternate Instruction Set VIA Confidential

2.3

Figure 2. Alternate Instruction Mode Transitions

Normal x86 execution mode L
RESET
INIT (C5XL)
WRMSR RESET
FCRALTINST = 1 INIT (C5XL)
WRMSR FCRALTINST = 0
\
JMPAI EAX
Alternate p{ Alternate
instructions A 18100047 1nstruc.t10n
X
enabled mode | execution
mode
C5XL:

IRETD with new EFLAGS.Al=1

RSM with new EFLAGS.Al=1

Task switch with new EFLAGS.AIl =1

P
C5XL:

Interrupts

Exceptions

Task switch with new EFLAGS.Al =0

ALTERNATE INSTRUCTIONS ENABLED MODE

The ability to use alternate instruction mode is controlled by a bit in the VIA C3 processor
FCR MSR at address 0x1107. When the ALTINST bit (bit 0) is set to 1, execution of a new
x86 instruction is enabled. This setting must be done using a read-modify-write sequence to
preserve the values of other FCR bits.

On processors other than C5XL,, there be (depending on processor version and stepping)
other functional sideffects of setting the ALTINST bit

The new x86 instruction enabled is

Opcode Instruction Description

OF 3F IMPAI EAX Near jump to address in EAX and enter
alternate instruction mode

If FCR.ALTINST is 0, this is an invalid opcode. While setting an FCR bit is a privileged
operation, starting alternate instruction mode by executing JMPAI can be done from any
protection level.

x86 Architecture Interaction Chapter 2

VIA Confidential VIA C3 Alternate Instruction Set

2.4 ALTERNATE INSTRUCTION EXECUTION MODE

Once ALTINST bit in the FCR MSR has been set to 1, the mechanism for initiating
execution of alternate instructions mode is as follows:

1. The ALTINST bit enables execution of the JMPALI instruction that starts execution of

alternate instructions. This new branch instruction can be executed from any privilege
level at any time that ALTINST is 1. The JMPALI instruction is a two-byte
instruction: 0xOF Ox3F. If ALTINST is 0, the execution of JIMPAI causes an Invalid
Instruction exception.

2. When executed, the new IMPATI x86 instruction causes a near branch to the value in

EAX. That is, the branch function is the same as the existing x86 instruction
jmp eax
In addition to the branch, the IMPALI instruction sets the processor into an internal

mode where the target bytes are not interpreted as x86 instructions but rather as
alternate instructions.

In alternate instruction execution mode, bit 31 of EFLAGS is set to 1. This bit is
reserved in the x86 architecture and is 0 in x86 execution mode and alternate
instruction enabled mode in VIA C3 processors. This EFLAGS bit allows
transparent management of alternate instruction mode across exceptions and
interrupts (see Chapter 4).

3. Following the JMPAI EAX branch, the instructions fetched are treated as one of two

types:
* Normal x86 instructions; these are all normally executed x86 instructions except

for the second category of instructions. Some of these x86 instructions, however,
should not be used in alternate instruction execution mode (see Section 2.6).

= x86 instruction opcodes that are used as a wrapper for alternate instructions

Opcode Instruction Description
(Wrapper) Al wuop32 Alternate instruction with micro-operation uop32
8D 84 00

The alternate instructions have the following memory format:
0xYY... XXXXXXXX

where 0xYY... is the “wrapper” opcode for the alternate instruction, and XXXXXXXX is
the 32-bit micro-operation contained in the x86 displacement field of the wrapper
instruction stored little-endian order. For example, the 32-bit micro-operation to
return control from alternate instruction execution mode is 0x18100047, where 0x18 is

Chapter 2

x86 Architecture Interaction 2-5

VIA C3 Alternate Instruction Set VIA Confidential

the most significant byte and 0x47 is the least significant byte. The mnemonic for this
alternate instruction would be written as

AT 0x18100047
This would be encoded for an Ezra processor as follows:

8D 84 004700 10 18
Notice that the four bytes for the micro-operation are stored in little-endian order,
consistent with 32-bit displacements in x86 architecture. The least significant byte

(0x47) is at the lower address and the most significant byte (0x18) is at the highest
address.

For C5XL, the encoding of AI 0x18100047 is:
62 8047 00 10 18

Details of the micro-operations and registers that may be used in alternate
instruction execution mode are provided in the
, which is also a restricted document.

4. Each processor version has a potentially different wrapper prefix. For Samuel, Samuel 2,
and Ezra, the wrapper is 0x8D 0x84 0x00. That is, the alternate instructions are
presented as the 32-bit displacement of a

LEA [EAX+EAX+disp32]

instruction.

For , the alternate instruction wrapper is 0x62 0x80. That is, the alternate
instructions are presented as the 32-bit displacement of a

BOUND [EAX+disp32]
instruction.

These examples assume that the address size is 32-bits, if it is 16-bits, then an address
size prefix (0x67) must be placed in front of the wrapper opcode.

No form of the particular x86 opcode used for the alternate instruction wrapper can be
used in alternate instruction mode: for example, all forms of LEA instructions (for
C5A, C5B, C5C), or all forms of the BOUND instruction (for C5XL) are restricted.

5. Upon fetching, the wrapper bytes are stripped off and the 32-bit micro-operation
contained in the displacement field is directly passed to the execution unit.

2-6 x86 Architecture Interaction Chapter 2

VIA Confidential VIA C3 Alternate Instruction Set

6. The VIA C3 Samuel, Samuel 2 and Ezra processors (not C5XL) require that the
following instruction be the first instruction executed in Alternate Instruction
Execution Mode (following the IMPAI EAX instruction):

Al 0x83E00819

2.5 TERMINATING ALTERNATE INSTRUCTION EXECUTION MODE

The alternate instruction set contains a special branch instruction that explicitly returns
control to alternate instruction enabled mode. The x86 state upon return, however, is not
necessarily what it was when alternate instruction execution is entered since the alternate
instructions can completely modify the x86 state.

The instruction to return to alternate instruction enabled mode is
Al 0x18100047

This performs a branch to the address in EAX. The EFLAGS bit 31 is set to 0. Alternate
instruction mode is still enabled, but the x86 wrapper instruction (LEA or BOUND) now
performs as defined in x86 mode.

2.6 X86 ARCHITECTURE RESTRICTIONS

When in alternate instruction execution mode, all x86 instructions can also be used with
normally expected behavior for a specific set of x86 instructions. Some common
restrictions exist across all processors:

m The x86 IRET and RSM instructions, and any instruction that causes a task switch
from protected mode to virtual 86 mode should not be used.

m There are many x86 instructions that can be used that destroy the values in some of the
additional alternate instructions registers. This means that the programmer must choose
between using these additional registers, and using certain x86 instructions. Appendix
A (available in a later version of this document) will contain the detailed list of
instruction and which additional registers they use.

Chapter 2 x86 Architecture Interaction 2-7

VIA C3 Alternate Instruction Set VIA Confidential

In addition to specific x86 instructions that do not work, or should not be used, there are
some limitations to execution modes and other pervasive x86 architecture features:

m x86 debug features (breakpoints, single-step mode, etc.) do not work as expected—don’t
even dream of using these things on alternate instructions.

C5XL handles interrupts and exceptions differently, so it is possible to use x86
debug features in alternate instruction execution mode in C5XL.

2-8 x86 Architecture Interaction Chapter 2

VIA Confidential VIA C3 Alternate Instruction Set

CHAPTER

ALTERNATE INSTRUCTION
FEATURES

This chapter briefly summarizes the characteristics of the VIA C3 processor alternate
instruction set. The instruction set details are provided in another document.

3.1 GENERAL INSTRUCTION FEATURES

Alternate instructions have the following general characteristics:

m All alternate instructions are 32 bits in length, but are contained within a six- or seven-
byte x86 instruction “wrapper”.

m Most alternate instructions reference two source registers and a destination register

m In most instructions, one of the source registers can be replaced with a small (encoded)
immediate operand

m Some instructions have a 16-bit immediate source operand.

m All instructions that can set the conditions in EFLAGS have an instruction field that
suppresses EFLAGS modification.

m Most instructions can explicitly control the operand size to be 32 bits, 16 bits (low), or
eight bits (high or low portion of a 32-bit register). Some instructions can also operate
on the high 16 bits of a 32-bit register.

m All instructions are either register-register, or they are a load or a store instruction: there
are no composite load-ALU type alternate instructions. The load and store instructions,
however, can auto-increment and decrement a base address register as a side-effect.

Chapter 3 Alternate instruction Features 3-1

VIA C3 Alternate Instruction Set VIA Confidential

3.2

REGISTERS

3.3

The alternate instruction set contains many more registers than the x86 instruction set. Since
these registers are used for executing x86 instructions, however, there are potential restrictions
on using these additional registers as defined in Chapter 4 and Chapter 5. Following is a
summary of the various registers that be usable by alternate instructions:

m General Registers. There are 31 total 32-bit general registers (plus a zero-value

register). These include the eight x86 general registers, the six x86 selector registers, and
a combined LSTR/TR register, leaving 16 additional registers. These additional
registers are used by some x86 instructions, thus they may not be available for alternate
instruction usage depending on the mix of x86 and alternate instructions.

m x87 Floating-point Registers. There are 18 total 80-bit x87 floating-point registers

including the eight architected x87 floating-point registers, leaving 10 extended x87
floating-point registers. These additional registers are used by some x87 floating-point
instructions, thus they may not be available for alternate instruction usage depending on
the mix of x87 and alternate instructions. An advantage to alternate instructions is they
can directly access any x87 floating-point register (flat register addressing) in addition to
being able to use stack-based floating-point addressing on the eight architected x87
floating-point registers

s MMX/3DNow! Registers. The physical registers used by the MMX and 3DNow!

instructions are distinct from the x87 floating-point registers and the MMX/3Dnow!
registers can be used without affecting the x87 floating-point registers. (Note that
C5XL does not implement 3DNow! instructions). There are 10 (16 on C5XL) total
MMX/3Dnow! registers including the eight x86 MMX registers, leaving tow (eight)
additional MMX registers. These additional registers are used by some x86 instructions,
thus they may not be available for alternate instruction usage.

The advantage of being able to distinctly use the MMX and x87 floating-point registers
may be a disadvantage in some cases; the automatic synchronization provided by x86
execution of the two sets of register does not happen when using alternate instructions.

m Control Registers. There are many control registers in the hardware implementation.

Only two of these may be used by alternate instructions: the architected x86 EFLAGS
and CRO registers. The instructions provided can, however, affect other control registers.
Changing any other control register, however, will surely have disastrous and
consequences.

SOME INTERESTING INSTRUCTIONS

Much of the additional capability of alternate instructions comes from general instruction
features such as three-operand addressing and the additional registers. The alternate
instruction set also includes many useful instructions that have no direct x86 counterpart.
Some of these are:

m PUSH & POP-type instructions that can use any general register as a “stack” pointer (as

well as any selector register)

m A load instruction that can load two different 32-bit general registers using one 64-bit

memory load.

Alternate instruction Features Chapter 3

VIA Confidential VIA C3 Alternate Instruction Set

m An instruction that can directly push the IP (avoiding having to CALL to get the IP)

m Instructions that can move data between general registers and MMX/3DNow! registers,
between floating-point and MMX/3DNow! registers, and between floating-point and
general registers,

m x87 floating-point instructions that can directly access any x87 floating-point register
(in addition to being able to use the x87 stack-based floating-point addressing).

m Instructions that AND and OR a value with the EFLAGS register, thus providing fast
and direct manipulation of all EFLAGS bits.

m Instructions that can move to and from control registers from any privilege level.

3.4 PROTECTION MECHANISMS

The alternate instruction set supports most of the x86 “protection” mechanisms, but many of
these mechanisms are optional and can be bypassed. The following is a summary of x86
protection mechanisms that may be used, or may be bypassed, in alternate instructions:

m Normal x86-style limit and protection checking is performed when the x86 descriptor
registers are used. These checks can be bypassed, however, by use of a new “flat
descriptor” that is available to alternate instructions.

m Selected x86 control registers such as CRO can be loaded or stored without any
protection checking.

Chapter 3

Alternate instruction Features 3-3

VIA Confidential VIA C3 Alternate Instruction Set

CHAPTER

EXCEPTIONS & INTERRUPTS

This chapter describes the considerations, rules, and alternatives relative to exceptions and
interrupts while in alternate instruction mode.

41 INTERRUPTS & EXCEPTIONS IN SAMUEL, SAMUEL 2, AND EZRA

VIA C3 processors prior to C5XL (Samuel, Samuel 2 and Ezra) do not support the
EFLAGS.AI flag which indicates that a process is in alternate instruction execution mode.
These processors will transition out of alternate instruction execution mode only by RESET or
execution of the alternate instruction “A1 0x18100047.” Therefore, alternate instruction
execution mode should be avoided in multitasking operating systems in these processors, or
only used with interrupts disabled.

4.2 CHXL: TRANSPARENT INTERRUPTS & EXCEPTIONS

In the C5XL processor an application that uses alternate instructions can be interrupted
without interfering with execution of tasks and operating system features that are not aware of
alternate instruction mode. In addition, when control is returned to the interrupted
application, alternate instruction mode is automatically restored without involvement of the
operating system. Certain alternate instruction resources being used by the program, however,
may be trashed by the exception handler (this is discussed more in subsequent sections).

The mechanisms providing this transparent use of alternate instructions across interrupts are:

1. When alternate instruction execution mode is entered (using the JMPAI EAX
instruction), bit 31 of the EFLAGS register, the is set to 1. This bit is
reserved in normal x86 mode and is always zero in x86 mode.

Chapter 2

x86 Architecture Interaction 4-1

VIA C3 Alternate Instruction Set VIA Confidential

4.3

2. The POPFD instruction does not modify the ALTINST bit in EFLAGS. The
PUSHEFD instruction always stores ‘0" in the ALTINST bit position of EFLAGS in
memory, even if the ALTINST bit is ‘1" in the EFLAGS register.

3. When an exception or interrupt occurs, the EFLAGS value containing the set
ALTINST bit is pushed by the standard x86 interrupt mechanism. We assume that
this reserved bit on the stack is not clobbered by the operating system.

4. If the ALTINST bit is set, the processor switches hardware execution to alternate
instructions enabled mode and clears ALTINST bit before invoking the x86 exception
handler. Thus, exception handlers are executed in alternate instructions enabled mode
(or normal x86 execution mode if ALTINST bit was clear);

5. An IRET or RSM instruction restores EFLAGS from a saved memory location. If the
ALTMODE bit is set in the restored EFLAGS value, the processor switches execution

to alternate instruction execution mode before performing the IRET or RSM branch.
Thus,

6. The ALTINST bit in EFLAGS is preserved across task switches. It is saved along with
EFLAGS in the TSS of the outgoing task and replaced with the value from the TSS of
the incoming task. Thus,

COXL: PRESERVING REGISTERS

Although alternate instructions in C5XL can be intermixed with x86 instructions without
impacting tasks or the operating system, an exception or interrupt still has an undesirable
effect on the task using alternate instructions. The reason is that the contents of additional
registers —one of the most useful additional features of the alternate instruction set—are
destroyed by an exception or interrupt.

There are three basic approaches to this problem:

m Don't use additional registers with alternate instructions. This reduces the utility of
alternate instructions, but they still offer some advantages over x86 instructions even if
no additional registers are used.

m Modify the operating system to save and restore the additional registers. This is, for
most people, unfeasible.

m Prevent exceptions and interrupts from occurring while additional registers are in use.
This is discussed in the next two on masking interrupts.

m Use a unique VIA C3 processor mechanism that allows an application to detect if
registers have been trashed by an exception or interrupt. This approach is discussed in
section 4.3.3.

4-2

x86 Architecture Interaction Chapter 2

VIA Confidential VIA C3 Alternate Instruction Set

431 MASKING INTERRUPTS

Alternate instructions can be used to mask and unmask INTR at any privilege level (unlike in
x86, where this depends on a combination of the CPL, the IOPL,, whether in protected mode
and whether in V86 mode). The alternate instruction sequence to mask INTR
(corresponding to x86 instruction CLI) is:

Al A007FFCO // cfc2 tmp7, EFLAGS
AT 2CE7FDFF // andil tmp7, tmp7, ~{IF MASK}
AT 80EQF819 // ctc2.32 EFLAGS, tmp7
The instruction sequence to unmask INTR (corresponding to x86 instruction STT) is:
Al A007FFCO // cfc2 tmp7, EFLAGS
AT 34E70200 // ori tmp7, tmp7, IF_MASK
AT 80EOF819 // ctc2.32 EFLAGS, tmp7

When this unmask sequence is executed, an INTR interrupt may interrupt execution
immediately following the unmask instruction. This sequence will therefore not prevent
interrupts from happening while in AIS execution mode even if this sequence is immediately
followed by the alternate instruction that exits AIS execution mode.

C5A, C5B and C5C do not handle external interrupts transparently in AIS
execution mode, so it may be desirable to re-enable interrupts and exit AIS
execution as an atomic sequence. This can be accomplished by using the STI
instruction and exiting AIS execution mode immediately afterward (the STI
instructions inhibits interrupts until after completion of the instruction following
the STI). However, note that the STT instruction may #GP fault based on x86
privilege rules (CPL, IOPL, etc.).

Chapter 2

x86 Architecture Interaction 4-3

VIA Confidential VIA C3 Alternate Instruction Set

43.2 UNMASKABLE INTERRUPTS

The process of masking INTR may not fully enable use of additional registers since there are
other non-maskable interrupts that can occur. These other interrupts are:

= x86 Exceptions. These cannot be masked, but they can all be easily avoided by the
application code except for a Page Faults which can be avoided (albeit not easily) by
pinning pages in memory.

= NMI (Non-Maskable Interrupt). Fortunately, no modern PC (running Windows)
causes an NMI interrupt. Thus, in most cases the possibility of NMI does not have to
be considered.

= SMI. Unfortunately, all modern PCs (running Windows) cause SMI interrupts. In
theory, these can be suppressed via the chipset programming, but this is privileged and
very hard to do.

= Internal bus interrupts. Some bus signals actually cause interrupts to the microcode.
These are transparent at the instruction interface, but the internal interrupt processing
uses all of the general alternate instructions registers. Thus, an application cannot use
additional general registers unless it can guarantee that the following bus interrupts will
not occur:

= STPCLK
= FLUSH

These bus interrupts can be suppressed via the chipset programming, but this is privileged and
very hard to do, so guaranteeing that these bus interrupts won't occur is not realistic.

433 COXL: REGISTER TRASHING DETECTION

The previous section identified the difficulty (impossibility?) of guaranteeing that no
exception or interrupt can occur during use of alternate instructions. A mechanism exists,
however, that allows code to detect that an exception or interrupt has occurred. This enables
the technique of writing a block of code such that it is tolerant of its registers being trashed.

The specifics steps using this approach are:

1. At the start of a block of alternate instructions that use additional registers, a zero value
should be written into general register 31.

2. The code using additional registers must not change permanent application state. That
is, the code must be written such that it can be re-executed multiple times using the
input state and still get the correct result.

3. Upon completing a block of code that used additional registers, register 31 should be
tested:

= If its value is zero, that means that no exception or interrupt occurred and thus no
additional register was transparently thrashed. In this case, the results of the code
block can be committed.

= If the register 31 value is not zero, this means that the register values cannot be
trusted and the results should not be committed. In this case, register 31 should be

Chapter 4 Exceptions & Interrupts 4-1

VIA C3 Alternate Instruction Set VIA Confidential

reset to zero, and the code re-executed using the original input values. This test and
re-execute process should continue until register 31 indicates that no exception or
interrupt occurred to trash the additional register content.

4-2 Exceptions & Interrupts Chapter 4

VIA Confidential VIA C3 Alternate Instruction Set

CHAPTER

PERFORMANCE

This chapter summarizes basic performance factors for use of alternate instructions. Additional
detail about slips and stalls is provided in the detailed alternate instruction set defintion
Application Note.

51 MODE TRANSITIONS

The IMPALI branch instruction (0xOF 0x3F) that enters alternate instruction execution mode,
and the branch that returns to normal x86 instruction mode, are not predicted. In addition,
the branch to enter alternate instruction execution mode is trapped to microcode. Thus, these
branches take many clocks to execute.

5.2 ALTERNATE INSTRUCTION EXECUTION

The basic execution time for all documented alternate instructions is one clock. These
instructions, however, are subject to the same types of slips and stalls that apply to x86
instructions (as documented in xxx).

Chapter 5 Performance 5-1

VIA Confidential VIA C3 Alternate Instruction Set

APPENDIX

REGISTER USAGE

A1 GENERAL INSTRUCTIONS

This Appendix will be provided in a later version of this document.

A2 X87 FLOATING POINT INSTRUCTIONS

Appendix A Register Usage A1

