VIA C3 Processor
Alternate Instruction Set

Programming Reference

Version 0.25
(Review version, Incomplete)

VIA Confidential

VIA C3 Alternate Instruction Set Programming Reference VIA Confidential
November 2002

This is Version 0.25 of the VIA C3 Processor
Alternate Instruction Set Programming Reference.

© 2002 VIA Technologies, Inc All Rights Reserved.

VIA reserves the right to make changes in its products without notice in order to improve design or per-
formance characteristics.

This publication neither states nor implies any representations or warranties of any kind, including but not
limited to any implied warranty of merchantability or fitness for a particular purpose. No license, express or
implied, to any intellectual property rights is granted by this document.

VIA makes no representations or warranties with respect to the accuracy or completeness of the contents
of this publication or the information contained herein, and reserves the right to make changes at any time,
without notice. VIA disclaims responsibility for any consequences resulting from the use of the information
included herein.

VIA Confidential

VIA C3 Alternate Instruction Set Programming Reference

November 2002
Table of Contents
1 11
1.1 BASIC CON CEP TS ...t ee e e e e e eeeeees 1-1
1.2 OVERVIEW OF THIS PROGRAMMING REFERENCE............... 1-1
1.3 GENERAL PURPOSE REGISTERS.......cotteeeeetcieeee e 1-2
14 FLOATING POINT REGISTERS ... e ree e 1-4
15 MMX™ REGISTERSot eeaee e e e eeeeees 1-4
1.6 INTERNAL PROCESSOR REGISTERS ..o 1-5
2 241
2.1 GENERAL FORMAT & PRIMARY OPCODES.ccccovieeenns 2-1
2.1.1 PRIMARY OPCODES....tuutuiieieeiiieieieeeeeertsissssssesssssssseeessssssssassssees 2-2
2.2 INSTRUCTION FORMATS USED ... oot 2-2
2.2.1 IMMEDIATE (OR I-TYPE) INSTRUCTION FORMATSccveveecrnreennnen. 2-2
2.2.2 XMISC-TYPE INSTRUCTION FORMATSuvvuiieeeeeeirreeeerrresenneeeseens 2-6
2.2.3 XLS-TYPE INSTRUCTION FORMATS ...cueiiiiteeiieeeeeeeeeeereeeeeeenanns 2-7
2.2.4 CP1 (FLOATING POINT) INSTRUCTION FORMATS.........cceeeeueenne 2-14
225 CP4 (MMX) INSTRUCTIONS......ccuieeeirrieeeecnieeeecneeeeesneeeeesnnseeennns 2-15
3 1
3.1 ALU INSTRUCTIONSot e e 1
3.1.1 IMMEDIATE INSTRUCTIONSuueeeeeiiereeerresssneeesessssseeersssssnsssssessees 1
3.1.2 XBB6-SEMANTIC INSTRUCTIONS ...eviireeerrerrrieeeeessesseeerrssssnnsssseees 10
3.2 EFLAGS UPDATE FORMSot aaeeee e ee e 33
3.3 LOAD/STORE INSTRUCTIONS ... eeeeeeeeeaeeee e 38
34 CONTROL REGISTERS AND MICRO-OPERATIONS................. 51
4 441
41 X87 FLOATING POINT REGISTERS.......oveeeeeeeeeeeeeee e 4-1
4.2 X87 FLOATING-PONT MICRO-OPERATIONS. ..., 4-2
4.2.1 FADD, FSUB, FSUBR, FMUL, FDIV, FDIVR ..ueeeeeeeeeeeeeeeeeeeaeaeeeaeens 4-2
4.2.2 FSQRT, FABS, FCOHS ..ttuutiieeeeiiieiieeeeeeertsssssesesssssssseeesrssssnsaseeses 4-4
5 541
51 MMX REGISTERS ...ttt e e e ee e e e eeeeees 5-2
52 MMX MICRO-OPERATIONS ...t eeaee e 5-3
5.2.1 MMXADD / MMXSUBeeeererreuunnseeessssseeersssssnnasesessssseesssssssnssnssssees 5-3
B.2.2 IMMXPACK eeeeeiieeeteeeeeeeeaaesseeetssaasseessnnesessanseseeenaaaeeerreanseeerennnns 54
B5.2.3 IMIMXUNPACK ... oot eee et eeeeaa e e e e e e e e e e e eemeeaaaaaaeeeeeeeeeeeneemnnaaaaeaeeens 5-5
LT S 1o T [0 = T 5-6
LI T V.0 Y/ I SR 5-7
5.2.6 COMPARESiitiiteeteeteee e e eeetsaeeteesaaaaeseesaesereeeaaaeeerrenseeerannnns 5-8
B.2.7 IMULTIPLIES e eetteseeeeeetaseeeeessssseesssssssasessssssseeesrssssnnnssssess 5-9
LT S S 1 11 5-10

Table of Contents i

VIA Confidential VIA C3 Alternate Instruction Set Programming Reference
November 2002

CHAPTER

INTRODUCTION

This document describes an alternate set of instructions that may be used on the VIA C3 proces-
sor. The alternate instructions are the internal instructions of the VIA C3 processor and provide
substantial additional function over the x86 instruction set. The VIA C3 Alternate Instruction
Set Application Note describes how system software can enable these alternate instructions. This
document is a programming reference describing the encoding and operation of alternate instruc-
tions.

1.1 BASIC CONCEPTS

The VIA C3 processor family is intended as a plug-replaceable, software-compatible alternative to
the Intel Pentium III processor. Accordingly, the VIA C3 processor normally executes compatible

instructions. The internal design of the VIA C3 processor, however, is quite different from the
Pentium III internal design. In particular, the VIA C3 processor comprises two major components:
a front-end that fetches x86 instruction bytes and translates them from x86 into internal instruc-
tions, and an internal microprocessor that executes these internal instructions.

1.2 OVERVIEW OF THIS PROGRAMMING REFERENCE

This Programming Reference is divided into sections describing internal instructions according to
the registers used:

m Chapter 1 - Introduction. Describes the different execution units and programmer’s
model of the registers.

Chapter 1 Introduction 1-1

VIA C3 Alternate Instruction Set Programming Reference VIA Confidential

November 2002

m Chapter 2 -Instruction format. Describes the instruction format and bit field defini-
tions.

m Chapter 3 - General instructions. These instructions operate on the general x86 regis-
ters EAX, EBX, ECX, EDX, EBP, ESP, ESI, EDI as well as additional temporary
general registers.

m Chapter 4 - Floating-point instructions. These instructions operate on the floating-
point registers as well as additional temporary floating-point registers.

m Chapter 5 - MMX™ instructions. These instructions operate on the x86 MMX™
registers as well as additional temporary MMX™ registers.

1.3 GENERAL PURPOSE REGISTERS

These are 32 general purpose registers (GPRs) with similar usage to the x86 GPRs. GPR 0 always
returns zero and can never be written. GPR 31 has a different special meaning in alternate instruc-
tion mode. It is the forward path data from the EA unit when referenced on load/store
instructions (not LEA) as the base.

The GPRs have the required x86 functionality in that there are instruction controls that can select
byte-oriented subsets (such as the low byte) of the 32-bit result data to be written into the result
register.

The x86 instruction translator and associated microcode use the GPRs to store some x86 architec-
ture registers such as the x86 GPRs and the x86 selector registers. These registers are directly
referenced by code generated by the translator; thus, the mapping of EAX etc. into the native
GPRs is fixed and considered part of the ISA. Other use of the GPRs is known only to the x86
microcode and thus is not defined as part of the ISA. A table below shows the usage of all GPRs
and whether their use is known to the hardware (T means that the translator references the register,
and H means that there are special hardware semantics for this register).

1-2

Introduction Chapter 1

VIA Confidential

VIA C3 Alternate Instruction Set Programming Reference

November 2002
GPR Registers

Reg Asm Label Description Hdw

Vis
RO 0 Constant O H, T
R1 tmpl, X EA Xlator-ucode communication T
R2 tmp2,X ED Xlator-ucode communication T
R3 tmp3,X ED2 Xlator-ucode communication T
R4 tmp4 Normal microcode temp
R5 tmpb Normal microcode temp
R6 tmp6 Normal microcode temp
R7 tmp7 Normal microcode temp
R8 ES (1) T, H
RY Cs (1) T,H
R10 SS (1) T,H
R11 DS (1) T,H
R12 FS (1) T,H
R13 GS (1) T,H
R14 LDTR (1) TR (upper), LDTR (lower) H
R15 tmpl5 (1) Special emulator temp H
R16 EAX T
R17 ECX T
R18 EDX T
R19 EBX T
R20 ESP T
R21 EBP T
R22 EST T
R23 EDI T
R24 tmp24 Exception handler temp
R25 tmp25 Exception handler temp
R26 tmp26 Exception handler temp
R27 tmp27 Exception handler temp
R28 tmp28 Exception handler temp
R29 tmp29 Exception handler temp
R30 tmp30 Exception handler temp

Chapter 1 Introduction 1-3

VIA C3 Alternate Instruction Set Programming Reference VIA Confidential

November 2002

R31 tmp31 Exception handler temp

LEA FWD EA forward path for load/store T,H
instructions/
Normal data for non load/store
instructions

(1) XPUSH of 32-bits pushes 0x0000 | [15:0]

1.4 FLOATING POINT REGISTERS

The floating point data registers are similar to those in x86 architecture except that:
m there are extra scratch registers available, and

m all of the registers may be directly accessed in addition to the x86 stack semantics.

Reg Asm Label Description Type
FP0 FPO x86 FP Stack Register RW
FP1 FP1 x86 FP Stack Register 1 RW
FP2 FP2 x86 FP Stack Register 2 RW
FP3 FP3 x86 FP Stack Register 3 RW
FP4 FP4 x86 FP Stack Register 4 RW
FP5 FP5 x86 FP Stack Register 5 RW
FP6 FP6 x86 FP Stack Register 6 RW
FP7 FP7 x86 FP Stack Register 7 RW
FP8 FP8 RW
FP9 FP9 RW
FP10 FP10 RW
FP11 FP11 RW
FP12 FP12 RW
FP13 FP13 RW
FP14 FP14 RW
FP15 FP15 RW
FP16: FP16:FP31 FP Scratch registers 16 to 31 RW
FP31

1.5 MMX™ REGISTERS

Xxxx

1-4 Introduction Chapter 1

VIA Confidential VIA C3 Alternate Instruction Set Programming Reference

November 2002

1.6 INTERNAL PROCESSOR REGISTERS

XXXX.

CRO ...

Chapter 1 Introduction 1-5

VIA Confidential VIA C3 Alternate Instruction Set Programming Reference

November 2002

CHAPTER

INSTRUCTION FORMAT

This chapter describes the format and bit fields of the alternate instructions.

2.1 GENERAL FORMAT & PRIMARY OPCODES

Alternate instruction formats are all instructions 32 bits long with a 6-bit primary opcode field:

31:26 25:0
Primary Opcode Opcode Dependent
6 26

Some of the primary opcodes have extended opcodes in other bits of the instruction.

Chapter 2 Instruction Format 2-1

VIA C3 Alternate Instruction Set Programming Reference

VIA Confidential

November 2002

2.1.1 PRIMARY OPCODES

The primary opcodes are:

28:26—

31:294
0

1
2
3
4
5
6

7

0 1 2 3 4 5 6 7
XJ
ORIU | ADDI | ANDIU [ANDIL | ANDI ORI XORI XORIU
FPU XLFP XSFP MMX XLMMX | XSMMX

XALU | XALUI| XALUR |XALUIR
XMISC XLEAI | XLEAD

XL XL2 XL3 XLBI | XLDESC | XIOR | XPOPBR | XPOP

XS XS2 | XPUSHI XSI | XPUSHIP | XIOW XSU XPUSH

The shaded opcodes have extended opcodes as defined in subsequent sections. Cross-hatched unla-
beled opcodes represent primary opcodes that are not included in the alternate instruction set.

2.2 INSTRUCTION FORMATS USED

2.2.1 IMMEDIATE (OR I-TYPE) INSTRUCTION FORMATS

Some alternate instructions use the immediate instruction format:

31:26 25:21 20:16 15:0
Opcode RS RT IMMMEDIATE
6 5 5 16

The opcode is one of the primary opcodes. The source and target operands for these I-type in-
structions are:

GPR[RT] € GPR[RS] opcode IMMEDIATE

Note that the destination is RT in this case rather than RD as for R-type instructions (which are
described in a later section).

The I-type instructions are:

28:26— 0 1 2 3 4 5 6 7
31:294
1 ORIU | ADDI | ANDIU | ANDIL | ANDI ORI XORI | XORIU

2-2

Instruction Format Chapter 2

VIA Confidential VIA C3 Alternate Instruction Set Programming Reference
November 2002

2.2.1.1 XALU-Type Instruction Formats

The XALU-type instruction format is used for x86-style ALU instructions defined using the
XALU(I][R] primary opcodes. It has special control fields to allow most x86 ALU semantics to be
specified in a single 32-bit instruction.

31:26 25:21 20:16 15:11 10:0
XALU[R] RS RT RD Function
XALUI[R] RS Const RD Function

6 5 5 5 11

The source and target operands for XALU[R] instructions is basically the same as for R-type
instructions. XALUI[R] instructions are similar except that they allow an encoded immediate
value, to be used instead of RT. is a multi-part field that defines the function
to be performed.

GPR[RD] € GPRI[RS] function GPR[RT]
GPR[RD] €« GPR[RS] function Const value

The R versions of the XALU[I][R] instructions cause the x86 result flags to be set as defined for
the particular instruction type.

Implementation Note: As described in the instruction definition section, not every version of every
extended opcode is needed for all of the XALU[I][R] instructions.

2.2.1.2 Const Field (for XALUI forms)

The 5-bit field allows a small constant to be used as an immediate value. The following ta-
ble lists the values for

Const Mnemonic Description

00000, 0 Constant zero

00001, 1 Constant one

00010, 2 Constant two

00011, 4 Constant four

00100, 8 Constant eight

00101, 16 Constant 16

00110, 24 Constant 24

00111, 32 Constant 32

01000, LoWdMask | 0x0000FFFF (used for AltInst sel register moves)

01001, -1 Constant minus one

01010, -2 Constant minus two

01011, -4 Constant minus four

01100, -8 Constant minus eight

01101,

01110,

01111, 5 Constant 5

Chapter 2 Instruction Format 2-3

VIA C3 Alternate Instruction Set Programming Reference

VIA Confidential

November 2002
10000, OS Operand size: +2 or +4 depending on TSR.OS
10001, 3 Constant 3
10010, 6 Constant 6
10011, 7 Constant 7
10100, 9 Constant 9
10101, | LoByteMask | Constant 0x00FF
10110, OSSH OS-related shift magic count: 16 for OS==0, 0 for OS==
10111,
11000, MOS Minus operand size: -2 or -4 depending on TSR.OS
11001, MGS
11010,
11011,
11100, DFind1 Minus or Plus 1 respectively depending on EFLAGS.DF
11101, DFindOS | Minus or Plus Operand Size (2 or 4) (defined in TSR.OS) re-
spectively depending on EFLAGS.DF
11110, IMMED | Use value in the IMMED Register
11111, DISP Use value in the DISP Register

2.2.1.3 Function Codes for XALU-Type

10:8 7:5 4:0
Ind DPcntl SubOp
3 3 5
SubOp Field
This field describes the ALU function. It is similar in concept to the 6-bit extended opcode
for special instructions. The extended opcodes for the primary opcodes are:
2:0> 0 1 2 3 4 5 6 7
4:31
0 SHL SHR SAR ROL ROR RCL RCR
1 INC CMPS DEC IMUL [MUL IDIV
2 ADD ADC SUB SBB AND OR XOR NOR
3 CTC2 SETCC |MFLOU | MFLOI

The fourth-row opcodes have special semantics over the normal logical operations: the C2 suffix
indicates that the destination is a CP2 control register (vs. a GPR. Only some CP2 registers may be
used as the destination.

DPcntl

The DPcntl field controls (1) the source byte selection, (2) the size of the writes into the register
file, and (3) the size of the result over which condition codes are calculated.

In the table below, BE indicates which bytes of the register file are written back (
CC is the portion of the result that the condition codes other than AF and PF are calculated over

); and

Instruction Format

Chapter 2

VIA Confidential VIA C3 Alternate Instruction Set Programming Reference

November 2002

(these are always based on carry from bit 3 and the low order 8 bits of the result). Condition codes
are always calculated over the low-order bits of the result.

DPcntl Mnemonic BE cC
000, 32 00001111, 32 bits
001, 16 00000011, 16 bits
010, LL 00000001, 8 bits
011, HL 00000010, 8 bits
100, LH 00000001, 8 bits
101, HH 00000010, 8 bits
110, (reserved)

111, (reserved)
32

Provides 32 bit operations. All 32 bits are written back to the register file. Condition codes are
calculated with an operand size of 32 bits.

16

Provides for 16-bit operations. The low 16 bits are written back to the register file. Condition
codes are calculated on the low-order 16 bits of the result.

LL

Provides for 8-bit low-low byte operations. The low 8 bits of each operand are used as the
sources and the low 8 bits of the result are written back to the register file. Condition codes are
calculated on the low-order 8 bits of the result.

HL

Provides for 8-bit high-low byte operations. Bits 15:8 of the left operand are shifted right and
operated on with the low byte of the right operand. Condition codes are calculated on the low-
order 8 bits of the result. The low 8 bits are shifted left and written into bits 15:8 of the tar-
get register.

HH

Provides for 8-bit high-high byte operations. Bits 15:8 of both operands are shifted right and
operated on. Condition codes are calculated on the low-order 8 bits of the result. . The low 8
bits are shifted left and written into bits 15:8 of the target register.

LH

Provides for 8-bit low-high byte operations. Bits 15:8 of the right operand are shifted right
and operated on with the low byte of the left operand. Condition codes are calculated on the
low-order 8 bits of the result. The low 8 bits are into the low byte of the target register.

(reserved)

Using reserved DPcntl codes will result in unpredictable results.

Chapter 2

Instruction Format 2-5

VIA C3 Alternate Instruction Set Programming Reference VIA Confidential
November 2002

Ind

The field is not useful for alternate instruction mode and must always be all zeros. Non-zero
values will result in unpredictable results.

2.2.2 XMISC-TYPE INSTRUCTION FORMATS

The XMISC-type instruction format is used for miscellaneous x86-related instructions defined

using the XMISC primary opcode. It is like the XALU format except that the field is
special for each particular instruction.
31:26 25:21 20:16 15:11 10:6 5:0
XMISC RS RT RD SubFunc Defined By
Instruction
6 5 5 5 5 6

Subfunction Field

This field describes the specific instruction. It is similar in concept to the 6-bit extended op-
code for R-form instructions. The extended opcodes for the new primary opcode are
8:6— 0 1 2 3 4 5 6 7
10:94
0 XRET |XCNULL| XRFP |XHALT [SBF/SBN | MFHI CFPFL
1 XTI XTII MTCO0 | MFC0 [MTCNT| MFCNT
2 XMDB | XMDBI | DMTC1 [DMFC1| MTC1 | MFC1 | CTC1 CFC1
3 DMTMD | DMTC2 MTC2 | MFC2 CFC2

2-6 Instruction Format Chapter 2

VIA Confidential VIA C3 Alternate Instruction Set Programming Reference

November 2002

2.2.3 XLS-TYPE INSTRUCTION FORMATS

The new XLS-Type instruction format is used for x86-style load and store (Xlx, XSx) instructions
This form is highly encoded to allow most x86 load/store semantics to be specified in a single 32-
bit instruction.

31:26 25:21 20:16 15:11 10:0
Opcode RS Base Offset Function
6 5 5 5 11

The source and target operands for XL-type instructions are similar to those for load and store in-
structions (except that the Base register is in a different register field). The x86-style EA is
calculated as a base register plus an offset. The x86 selector register and other x86 addressing se-
mantics are specified in the field.

Load: RS € memory(selector, GPR[Base] + Offset)
Store: RS = memory(selector, GPR[Base] + Offset)

This general instruction format is also used for XLEA instructions which do not actually perform
load or stores but rather calculate an offset address. However, the XLEA instructions have some
unique fields and should really be considered as special format instructions.

Offset

The 5-bit field allows a small constant to be used as an immediate value. The following table
lists the values for

Offset Mnemonic Description
00000, 0 Constant zero

00001, 1 Constant one

00010, 2 Constant two

00011, 4 Constant four
00100, 8 Constant eight
00101, 16 Constant 16

00110, 24 Constant 24

00111, 32 Constant 32

01000, 10 Constant ten

01001, -1 Constant minus one
01010, -2 Constant minus two
01011, -4 Constant minus four
01100, -8 Constant minus eight
01101,

01110,

01111, 5 Constant 5

Chapter 2 Instruction Format 2-7

VIA C3 Alternate Instruction Set Programming Reference

VIA Confidential

November 2002
10000, OS Operand size: +2 or +4 depending on TSR.OS
10001, PDOS
10010,
10011,
10100,
10101,
10110,
10111,
11000, MOS Minus operand size: -2 or -4 depending on TSR.OS
11001, MGS
11010, MDOS
11011,
11100, DFind1 Minus or Plus 1 respectively depending on EFLAGS.DF
11101, DFindOS | Minus or Plus Operand Size (2 or 4) (defined in TSR.OS) re-
spectively depending on EFLAGS.DF
11110,
11111, DISP Use value in the DISP Register

Function Codes

The XLx and XSx instructions are used to implement x86 load and store instructions. The func-

tion field encodes most of the x86 peculiar load/store semantics:

10:9 8 7:6 5:2 1 0
SubOp AddrSize-1 Size-2:1 Sel Size-0 | AddrSize-0
2 1 2 4 1 1

Note that GPR indirection (via the IIR) is not available in the normal load/store format. If
register indirection is needed, a XLEAX instruction (which allows indirection) must be used to
calculate the address followed by the load/store instruction using the output register of the

XLEA as the Base register.

AddrSize

Indicates the address size for the effective address calculation of this XL. , or XS instruction.
AddrSize Mnemonic Address Size Used

00, AS TSR.AS

01, SAS TSR.SAS

01, OS TSR.OS If XLEAD or XLEAI

10, 16 16

11, 32 32

Sel

Specifies the selector descriptor used for virtual address calculation and limit checking. The bit
encoding is:

Instruction Format

Chapter 2

VIA Confidential

VIA C3 Alternate Instruction Set Programming Reference

SEL Value Mnemonic Descriptor Used
0000, ES ES
0001, CS CS
0010, SS SS
0011, DS DS
0100, FS FS
0101, GS GS
0110, GDT GDT
0111, LDT LDT
1000, IDT IDT
1001, TSS TSS
1010, FLAT Flat 32-bit address space
1011, TO Temp(
1100,
1101,
1110,
1111, indSEL Use value in field of the TSR

November 2002

Architecture Note: The register encoding values for GDT and LDT are important: they differ
only in the low-order bit which corresponds to the TT bit in a selector that selects GDT or LDT.
This bit has a mux on it that selects the saved TT bit or the bit in the
set-up be the XTT instruction, but affects the following instruction —assumed to be a XLDES.
See these instructions for more description of this magic.

field based. This mux is

Usage Note: The FLAT descriptor is set-up (by microcode) as a special “flat” segment used for
implementing I/O accesses. This is a 32-bit, flat RW segment.

Size

The size field indicates which portion of the destination register to update for loads, and the
size of the source operand for stores. It has different encodings for the various types of x86
load/store opcodes. The high order two bits come from the Size-2:1 field, and the low order
bit is bit 1 of the instruction. The XLEAD and XLEAI instructions have an additional
(highest order) bit which comes from bit 2 of the instruction.

All Load/Store Instructions (Include LEAx) Except XLDESC, XLFP/XSFP

Chapter 2

Instruction Format

29

VIA C3 Alternate Instruction Set Programming Reference

VIA Confidential

November 2002
Size Mnemonic Data Size
000, 16 16 bits-low
010, 32 32 bits
100, AS address size-16 or 32 | 114 pis it is low 16 bits.
110, OS operand size - 16 or 32 | 116 picc it is low 16 bits.
001, 8L 8 bits-low
011, 8H 8 bits-high
011 16H XPUSH: operand size
: 16 (31:16) or 32
(31:16) zero extended
101, 64 . 64 bits . Note that there a store of 64 bits is an inva-
II? this ce.lse, the destina- lid (missing) instruction.
tion register (RS) must
have an even address; the
data will be loaded into
RS and RS | 1.
111, IND defined by TSR.DPcntl
111, GS 16 or ;%}%egftng’i]ng O | Gate Size (only on XPUSH)

XLEAD and XLLEAI same as previous plus:

Size Mnemonic Data Size
1000, SAS stack address size-16 or 32
1001, undefined
1010, undefined
1011, undefined
1100, undefined
1101, undefined
1110, undefined

1111, undefined

SubOp

This field controls the use of the effective-address, linear-address, physical-address, and pro-
tection-calculation hardware for performing operations other than simple loads and stores. It is
used mostly to precipitate exceptions before modifying the architectural state (thus facilitating
instruction restartability). It is also used to control bus operations.

Various types of load/store instructions have different encodings for this field:

2-10

Instruction Format

Chapter 2

VIA Confidential

VIA C3 Alternate Instruction Set Programming Reference

November 2002
SubOp Type 1 - For All Load/Store Instructions Except Below Types
SubOp Mnemonic Load Desc Store Desc
00, [norm] Normal Load Normal Store
01, rwv Verify Writeable Verify Writeable
10, sup Assume CPL = 0 Assume CPL = 0
11, lock Locked Load UnLock Store

SubOp Type 2 — XSU & XPOP Instructions

SubOp Mnemonic Load Desc Store Desc
00, [norm] Normal Load Normal Store
01, str_int Decr/test COUNT String Semantics
Allow Interrupt Allow Interrupt
10, str_testcnt Test COUNT Test COUNT
Don’t allow inter- Don’t allow inter-
rupt rupt
11,

SubOp Type 3 — For XLDESC (details on xldesc in page Error! Bookmark not defined.)

SubOp Mnemonic Load Desc
00, dschk Data Segment checks
01, sschk Stack Segment checks N/A
10,
11, NoChk N/A
SubOp Type 3 — For XLDESC_CS (details on xldesc_cs in page Error! Bookmark not
defined.)
SubOp Mnemonic Load Desc
00, jmp call JMP and CALL checks
01, retf Return far checks N/A
10, spec Checks for special
microcode
11, NoChk N/A

Chapter 2

Instruction Format

2-11

VIA C3 Alternate Instruction Set Programming Reference

VIA Confidential

November 2002
SubOp Type 4 — X1L.2 & XS2 Instructions
SubOp Mnemonic Load Desc Store Desc
00, [norm] Normal Load
01, tickle Tickle Load Tickle Store
10, tickle lock Tickle Locked Load
11, suplk Assume CPL = 0, Assume CPL = 0, Un-
Locked Load Lock Store
SubOp Type 5 — For XIO
SubOp Mnemonic Load Desc Store Desc
00, [norm] I/0 Read I/0 Write
01, special Interrupt Ack Special Bus Cycle
(type defined by low
three address bits)
10,
11,
SubOp Type FP — XLLFP & XSFP Instructions
SubOp Mnemonic Load Desc Store Desc
00, [norm] Normal Load
01, tickle Tickle Load Tickle Store
10, NORM REC Load w/ RFP Store w/ RFP
11, TICK REC Tick Load w/ RFP Tick Store w/ RFP
norm

Performs a normal load or store operation as specified in the rest of the instruction. This is the
default in assembler instructions and does not have to be specified.

rwv (used only with loads)

Performs the load operation as specified in the instruction, except that it performs all protec-
tion and access right checks as though this were a store operation. This is meant to be used to
force read-modify-write operations that are going to fault on the write to fault on the read in-
stead. This is used to force exceptions to occur before the flags are modified, and to prevent
partial modification of the target memory location on unaligned references.

tickle

Performs the effective-address, virtual-address, and physical-address calculations as specified in
the instruction including all protection and access-right checks. However, the actual transfer of
data is inhibited. This is meant to be used to verify that all parts of a data structure will not
generate faults before a portion of it is modified.

lock (used only with loads)

Performs the load operation as specified in the instruction with x86 Lock semantics. The fully
compatible definition invalidates the cache line containing the data and asserts the LOCK#

2-12

Instruction Format Chapter 2

VIA Confidential VIA C3 Alternate Instruction Set Programming Reference

November 2002

signal on the external bus. Locked loads are also tested for write privileges as described above in
LSrmv.

The bus control unit manages the synchronization of asserting and deasserting LOCK#. It
basically counts consecutive locked loads operations (reaching the bus unit) and deasserts
LOCKH# after the last of an equivalent number of stores. However, the locked store portions of
the locked RMW sequence must be specified with a Lock SubOp.

Note that the TSR.LK bit (the x86 instruction had a valid LOCK prefix) forces a LOCK se-
quence only if the SubOp is RVW. If the SubOp is nom, for example, the LOCK prefix is
ignored.

str_int
Adds the following semantics to the load/store instruction:

o Ifthe COUNT register is 0 (considering any effect of the previous instruction),
do not perform the load or store operation and signal “stop string generation” to the translator.

e Else, perform the operation and decrement COUNT by one (forwarding results to next instruction test of
COUNT).

In addition, an external interrupt, data breakpoint trap exception, or TF exception is allowed
to occur following successful completion of the associated load/store instruction.

str_testent
Adds the following semantics to the load/store instruction:

If the COUNT register is 0 (considering any effect of the previous instruction), do
not perform the load or store operation and signal “stop string generation” to the translator.

special

Allows generation of interrupt acknowledge on loads, and special cycles on stores the low-order
bits of the address defines the special bus operation (the byte enable lines on the bus define
the cycle type).

sup

Performs the otherwise specified operation but performs all access right and paging tests as
though CPL == 0. This is used for descriptor table accesses.

suplk

Performs the load with the semantics of and combined.

Unaligned Operations
There are two different meanings of

1. The data operand spans across two 8-byte-aligned memory units. This case is handled auto-
matically by the hardware by decomposing the load/store operation into the correct two
load/store operations for each portion. This will called

Note that this is technically different than the P54 which uses a four-byte boundary for generat-
ing multiple bus cycles (if the data size is four bytes or less) rather than eight.

Chapter 2 Instruction Format 2-13

VIA

C3 Alternate Instruction Set Programming Reference VIA Confidential

November 2002

2. The data is aligned such that it meets the x86 architecture definition of unaligned. In this
case, if CPL == 3 && (EFLAGS.AC & CR0.AM) then an alignment exception occurs.
This will called

The architecture alignment boundary for data is the same as for the P54 (some of this must be
enforced by microcode).

MMX Load and Store Instructions

The MMX load and store instructions are formatted identically to the LS form load store instruc-
tions, with the exception that the load target and the store source registers are MMX operand
registers. The size 64 store is a true size_64 store in that page protection checking, etc. is per-
formed for the entire 64 bit operand. Note that this is not the case in the standard form store-64
instructions.

ADD LOAD_ALU INFO HERE!

FPU Load and Store Instructions

The FPU load and store instructions are formatted identically to the LS form load store in-
structions, with the exception that the load target and the store source registers are FPU
operand registers and the size field (bits 7,6,1 in the instruction) are encoded to represent the
format of the FPU load/store (see table below). The size 64 store is a true size_64 store in
that page protection checking, etc. is performed for the entire 64 bit operand. Note that this
is not the case in the standard form store-64 instructions.

2.2.3.1 XLFP and XSFP size encodings

Size Mnemonic Data Size
000, Int 16 (H) 16
001, Int 64 (L) 64
010, Int 32 (W) 32
011, o

100, Exp 16 (Exp) 16
101, FP Ext (E) 64
110, FP Sng (S) 32
111, FP Dbl (D) 64

2.24 CP1 (FLOATING POINT) INSTRUCTION FORMATS

See the floating-point instruction description section.

2-14

Instruction Format Chapter 2

VIA Confidential VIA C3 Alternate Instruction Set Programming Reference

November 2002
2.2.5 CP4 (MMX) INSTRUCTIONS

Coprocessor 4 primary opcodes are used for implementation of the MMX instruction set. Please
refer to the MMX section for more detail.

Chapter 2 Instruction Format 2-15

VIA Confidential

VIA C3 Alternate Instruction Set Programming Reference

November 2002

CHAPTER

GENERAL INSTRUCTIONS

This chapter describes the instructions that operate on the general purpose registers (GPRs) as well
as the additional temporary registers.

3.1 ALU INSTRUCTIONS

3.1.1 IMMEDIATE INSTRUCTIONS

Usage Note: The following table summarizes what gets modified how by the 16-bit immediate

logical instructions:

Instruction Upper RT Lower RT
ANDI 0 RS(15:0) & Immed
ANDIL RS(31:16) RS(15:0) & Immed
ANDIU RS(31:16) & Immed RS(15:0)
ORI RS(31:16) RS(15:0) | Immed
ORIU RS(31:16) | Immed RS(15:0)
XORI RS(31:16) RS(15:0) » Immed
XORIU RS(31:16) * Immed RS(15:0)
Chapter 3 General Instructions 3-1

VIA C3 Alternate Instruction Set Programming Reference VIA Confidential

November 2002
3.1.1.1 ADDI - Add Immediate

Encoding
31:26 25:21 20:16 15:0
ADDI: 001001, RS RT Immediate
6 5 5 16
Format
|apD1 RT, RS, 0x1234
Description
The contents of GPR is added to the field extended with 0x0000. The result is

written back to GPR

Operation

|GPR[RT] = GPR[RS] + IMMEDIATE;

Flags Setting

None

Exceptions

None

2 General Instructions Chapter 3

VIA Confidential

VIA C3 Alternate Instruction Set Programming Reference

3.1.1.2 ANDI - AND Immediate

November 2002

Encoding
31:26 25:21 20:16 15:0
ANDI: 001100, RS RT Immediate
6 5 5 16
Format
|ANDI RT,RS,0x1234
Description
the field and ANDs it to 32-bit GPR with the result replacing 32-bit
GPR
Operation
|GPR[RT] = GPR[RS] & IMMEDIATE;

Flags Setting

None

Exceptions

None

Chapter 3

General Instructions

VIA C3 Alternate Instruction Set Programming Reference VIA Confidential

November 2002
3.1.1.3 ANDIL - AND Immediate Lower

Encoding
31:26 25:21 20:16 15:0
ANDIL.: 001011, RS RT Immediate
6 5 5 16
Format

|[ANDIL RT,RS,0x1234

Description

The contents of GPR are ANDed with the field extended with 0xFFFF. The result
is written back to GPR

Operation

|GPR[RT] = GPR[RS] & (OxFFFF0000 | IMMEDIATE);

Flags Setting

None

Exceptions

None

4 General Instructions Chapter 3

VIA Confidential

VIA C3 Alternate Instruction Set Programming Reference

3.1.1.4 ANDIU - AND Immediate Upper

November 2002

Encoding
31:26 25:21 20:16 15:0
ANDIU: 001010, RS RT Immediate
6 5 5 16

Format
|[ANDIU RT, RS, 0x6789
Description

The contents of GPR ~ are ANDed with the immediate field shifted left 16 and extended on the

right with OxFFFF. The result is written back to GPR
Operation
|GPR [RT] = GPR[RS] & ((IMMEDIATE << 16) 0x0000FFFF) ;

Flags Setting

None

Exceptions

None

Chapter 3

General Instructions

VIA C3 Alternate Instruction Set Programming Reference VIA Confidential

November 2002
3.1.1.5 ORI -OR Immediate

Encoding
31:26 25:21 20:16 15:0
ORI: 001101, RS RT Immediate
6 5 5 16
Format

[ORT RT, RS, 0x1234

Description
the field and ORs it to 32-bit GPR with the result replacing 32-bit
GPR
Operation
[GPR[RT] = GPR[RS] | IMMEDIATE;

Flags Setting

None

Exceptions

None

6 General Instructions Chapter 3

VIA Confidential

VIA C3 Alternate Instruction Set Programming Reference

3.1.1.6 ORIU - OR Immediate Upper

November 2002

Encoding
31:26 25:21 20:16 15:0
ORIU: 001000, RS RT Immediate
6 5 5 16
Format
[oRTU RT, RS, 0x1234
Description
The contents of GPR are ORed with the immediate field shifted left 16. The result is written
back to GPR
Operation
|GPR [RT] = GPR[RS] | (IMMEDIATE << 16);

Flags Setting

None

Exceptions

None

Chapter 3

General Instructions

VIA C3 Alternate Instruction Set Programming Reference VIA Confidential

November 2002
3.1.1.7 XORI - XOR Immediate

Encoding
31:26 25:21 20:16 15:0
XORI: 001110, RS RT Immediate
6 5 5 16
Format
[XORT RT,RS,0x1234
Description
the field and XORs it to 32-bit GPR ~ with the result replacing 32-bit

GPR

Operation

|GPR[RT] = GPR[RS] ~ IMMEDIATE;

Flags Setting

None

Exceptions

None

8 General Instructions Chapter 3

VIA Confidential

VIA C3 Alternate Instruction Set Programming Reference

3.1.1.8 XORIU - XOR Immediate Upper

November 2002

Encoding
31:26 25:21 20:16 15:0
XORIU: 001111, RS RT Immediate
6 5 5 16
Format

|[XORIU RT,RS, 0x1234

Description

The contents of GPR

back to GPR

Operation

are XORed with the immediate field shifted left 16. The result is written

|GPR[RT] =

GPR[RS]

~ (IMMEDIATE << 16);

Flags Setting

None

Exceptions

None

Chapter 3

General Instructions

VIA C3 Alternate Instruction Set Programming Reference VIA Confidential

November 2002

3.1.2 X86-SEMANTIC INSTRUCTIONS

3.1.2.1 XADCI[I][R] - X86 Add with Carry

Encoding
31:26 25:21 20:16 15:11 10:8 7:5 4:0
XADC: 100000, RS RT RD 000, | DPecntl ADC
XADCR: 100010, 10001,
6 5 5 5 3 3 5
31:26 25:21 20:16 15:11 10:8 7:5 4:06
XADCI: 100001, RS Const RD 000, | DPcntl ADC
XADCIR: 100011, 10001,
6 5 5 5 3 3 5
Format
XADC RD, RS, RT

XADCI RD,RS,?2

Description

The contents of GPR are added to either the contents of GPR or the immediate value
specified in depending on the primary opcode. The EFLAGS.CEF is also added to the result.

Operation

GPR[RD] GPR[RS] + GPR[RT] + CF
GPR[RD] = GPR[RS] + Const + CF

Flags Setting
CCarith

Exceptions

None

10 General Instructions Chapter 3

VIA Confidential

VIA C3 Alternate Instruction Set Programming Reference

November 2002
3.1.2.2 XADDII][R] - X86 Add
Encoding
31:26 25:21 20:16 15:11 10:8 7:5 4:0
XADD: 100000, RS RT RD 000, | DPcntl ADD
XADDR: 100010, 10000,
6 5 5 5 3 3 5
31:26 25:21 20:16 15:11 10:8 7:5 4:06
XADDI: 100001, RS Const RD 000, | DPcntl ADD
XADDIR: 100011, 10000,
6 5 5 5 3 3 5
Format

XADD RD, RS, RT
XADDI RD,RS,?2

Description

The contents of GPR RS are added to either the contents of GPR
depending on the primary opcode.

specified in

Operation

or the immediate value

GPR[RD]
GPR[RD] =

= GPR[RS]
GPR[RS]

+ GPRI[RT]
+ Const

Flags Setting
CCarith

Exceptions

None.

Chapter 3

General Instructions

11

VIA C3 Alternate Instruction Set Programming Reference

VIA Confidential

November 2002

3.1.2.3 XANDII][R] - X86 And

Encoding

XAND:
XANDR:

XANDI:
XANDIR:

Format

31:26 25:21 20:16 15:11 10:8 7:5 4:0
100000, RS RT RD 000, | DPcntl AND
100010, 10100,

6 5 5 5 3 3 5

31:26 25:21 20:16 15:11 10:8 7:5 4:06
100001, RS Const RD 000, | DPentl AND
100011, 10100,

6 5 5 5 3 3 5

XAND RD, RS, RT
XANDI RD,RS,?2

Description

The contents of GPR RS are logically ANDed to either the contents of GPR RT or the value im-
mediate specified in

depending on the primary opcode.

Operation
GPR[RD] = GPR[RS] & GPRI[RT]
GPR[RD] = GPR[RS] & Const

Flags Setting

CClog

Exceptions

None.

12

General Instructions

Chapter 3

VIA Confidential VIA C3 Alternate Instruction Set Programming Reference

November 2002
3.1.2.4 XCMPS - X86 A-Stage Compare String
Encoding
31:26 25:21 20:16 15:11 10:8 7:5 4:0
XCMPS: 100000, RS RT | xxxxx, | xxx, | DPcntl | XCMPS
01001,
6 5 5 5 3 3 5
Format
|XCMPS RS, RT
Description
If the COUNT register modulo TSR.AS is not zero then it is decremented by one. The contents
of GPR are compared in the to the contents of GPR according to the size specified
by the field as described in the following table. If any of the conditions to terminate or

interrupt an x86 string compare are true then the instruction is nullified and the translator is sig-
nalled to stop generating the sequence for a repeat string and control is transferred to microcode.
The conditions under which a string compare terminate are either the COUNT register modulo
TSR.AS is zero or the comparison results in equality and TSR.REPN is set or the com-
parison results in inequality and TSR.REPN is clear. The conditions under which a string
compare is interrupted is an external interrupt or debug trap. If the string compare is interrupted
or a debug trap is triggered before the terminating condition is met then hardware will set
XCRI[STRINT_BIT] at the .T that completes the current x86 instruction; IP is not advanced in
this case. See the operation description below.

DPcntl Mnemonic Compare
000, 32 31:0
001, 16 15:0
010, LL 7:0
110, 0s 31 or 15:0

Usage Note: XCMPS is needed to allow the translator to generate the instruction sequence for x86
string compares and scan strings.

A sample usage is
MTCNT ECX // mod AS automatically
XPOP.8L.AS tmp2,DSdesc,ESI, 1,str_testcnt
XPOP.8L.AS tmp3,ESdesc,DSI, 1,str_testcnt
XCMPS.8L tmp2,tmp3

which loads the COUNT register with CX or ECX based on the address size, then checks for
COUNT equal to zero and if not zero then loads a byte from DS:[E]SI and from ES:[E]DI and

Chapter 3 General Instructions 13

VIA C3 Alternate Instruction Set Programming Reference VIA Confidential

November 2002

compares the two bytes. The loads and the compare are repeatedly generated by the translator until
COUNT goes to zero or the terminating condition of equality is reached or there is an interrupt or
debug trap. Note that XCMPS does not modify EFLLAGS, microcode must determine if the origi-
nal count in [E]CX was non-zero and set EFLAGS in that case.

Operation

if (COUNT.AS !=0) {

COUNT = COUNT - 1;
}
REP_DONE = (COUNT.AS == 0 or not((GPR[]==GPR[]) * TSR.REPN));
if REP_DONE or interrupt or I'T or TF or DBRKPT) {

send signal to xlator to stop;

nullify inst;

nullify pipeline;

transfer control to corresponding microcode entry point;

}

//--The following action taken at ."T that completes current x86 instruction

if REP_DONE ==0) {
1P advance;
XCR[STRINT_BIT] =1;
}

Flags Setting

None

Exceptions

None.

14

General Instructions Chapter 3

VIA Confidential VIA C3 Alternate Instruction Set Programming Reference

November 2002
3.1.2.5 XDECIR - X86 Decrement
Encoding
31:26 25:21 20:16 15:11 10:8 7:5 4:0
XDECIR: 100011, RS Const RD | 000, | DPcntl DEC
01010,
6 5 5 5 3 3 5
Format
|[XDECIR RD,RS, 1
Description
The contents of the immediate specified in are subtracted from the contents of GPR RS.

Usage Note: XDECIR is needed to perform a single-cycle X86 DEC function. It is the same as a
XSUBIR instruction (subtract immediate) except that it sets EFLAGS differently than XSUBIR.

Operation

|GPR[RD] = GPR[RS] - Const

Flags Setting
CCinc

Exceptions

None.

Chapter 3 General Instructions 15

VIA C3 Alternate Instruction Set Programming Reference VIA Confidential

November 2002
3.1.2.6 XIDIV - X86 Signed Divide Step

Encoding
31:26 25:21 20:16 15:11 10:9 8 7:5 4:0
XIDIV: 100000, | xxxxx, | xxxxx, | 00000, | xx, 0, Cntl IDIV
01110,
6 5 5 5 2 1 3 5
Format
|XIDIV.STEP
Description
Performs an signed divide of the dividend in (loaded by DMTMD.DVD) by the di-
visor in (loaded by DMTMD.DVS).. The size of the dividend, divisor, and quotient
are specified by the field and summarized in the following table. The dividend and divisor

must be loaded using the DMTMD.DIV.size instruction before issuing XDIV. For 64b-by32b
divide the dividend is loaded separately using DMTMD.DIVidend.32 instruction. XIDIV does
not allow register indirection or (immediate) values. XIDIV computes as many quotient bits
as are specified in the table below. The quotient is written to the LO register, the remainder is
written to the HI register. A MFLOU.size instruction is used to get the quotient. A MFHI in-
struction is used to get the remainder. This DIVIDE instruction is a divide styep instruction that
produces one bit of result per cycle. Unlike previous implementations, C3 microcode will control
all steps of the multiply process.

Cntl Mnemonic Details

000, Step General Divide Step
001, OVF Detect Divide Ovf
010, REM Remainder Adjust
011, QUO Quotient Adjust
100,

101,

110,

111,

Flags Setting

None

Exceptions

None

16 General Instructions Chapter 3

VIA Confidential VIA C3 Alternate Instruction Set Programming Reference

November 2002
3.1.2.7 XIMUL]I] - X86 Signed Multiply Step
Encoding
31:26 25:21 20:16 15:11 10:9 8 7:5 4:0
XIMUL: 100000, RS RT | 00000, | xx, 0, Cntl IMUL
01100,
6 5 5 5 2 1 3 5
31:26 25:21 20:16 15:11 109 8 7:5 4:0
XIMULI: 100001, RS Const | 00000, | xx, 0, Cntl IMUL
01100,
6 5 5 5 2 1 3 5
Format
XIMUL RS, RT
XIMULT RS, 2
Description
Performs a signed multiply of the operands in the MUL operand registers. The product is written
to the LO register. The size of the factors and product are specified by the field and sum-
marized in the following table. XIMUL does not allow register indirection. If is used it
must be coded as IMMED.
Cntl Mnemonic Info
[2] First First Multiply Clock (choose ops)
[1] LastClk Load result into LO
(0]
Operation

Flags Setting

None

Exceptions

None

Chapter 3 General Instructions 17

VIA C3 Alternate Instruction Set Programming Reference VIA Confidential

November 2002
3.1.2.8 XMUL - X86 Unsigned Multiply Step

Encoding
31:26 25:21 20:16 15:11 10:9 8 7:5 4:0
XMUL: 100000, | RS | RT | 00000, | xx, 0, Cntl | MUL
01101,
6 5 5 5 2 1 3 5

Format

[xMUL RS, RT

Description

Performs an unsigned multiply of ~ and . The product is written to the LO register. The size
of the factors and product are specified by the field and summarized in the following table.
XIMUL does not allow register indirection. If is used it must be coded as IMMED.

Cntl Mnemonic Info
[2] First First Multiply Clock (choose ops)
[1] LastClk Load result into LO
[0]
Operation

Flags Setting

None.

Exceptions

None

18 General Instructions Chapter 3

VIA Confidential VIA C3 Alternate Instruction Set Programming Reference

November 2002
3.1.2.9 XINCIR - X86 Increment
Encoding
31:26 25:21 20:16 15:11 10:8 7:5 4:0
XINCIR: 100011, RS | Const RD 000, | DPcntl INC
01000,
6 5 5 5 3 3 5

Format
[XINCIR RD, RS, 1
Description

The contents of the immediate specified in are added to the contents of GPR RS.

Usage Note: XINCIR is needed to perform a single-cycle X86 INC function. It is the same as a
XADDIR instruction (add immediate) except that it sets EFLAGS differently than XADDIR.

Operation

|GPR[RD] = GPR[RS] + Const

Flags Setting
CCinc

Exceptions

None.

Chapter 3 General Instructions 19

VIA C3 Alternate Instruction Set Programming Reference

VIA Confidential

November 2002
3.1.2.10X8NOR]I][R] - X86 NOR

Encoding
31:26 25:21 20:16 15:11 10:8 7:5 4:0
X8NOR: 100000, RS RT RD 000, | DPecntl NOR
X8NORR: 100010, 10111,
6 5 5 5 3 3 5
31:26 25:21 20:16 15:11 10:8 7:5 4:06
X8NORI: 100001, RS Const RD 000, | DPcntl NOR
X8NORIR: | 100011, 10111,
6 5 5 5 3 3 5
Format
X8NOR RD,RS,RT
X8NORI RD,RS,O0 // Same as RD = NOT (RS)
Description
The contents of GPR are logically NORed with the immediate value specified in de-

pending.

struction function. This is the intended function of this instruction.

Usage Note: By specifying a constant of zero, this instruction directly performs an X86 NOT in-

Operation
GPR[RD] = ~ (GPR[RS] | GPRI[RT])
GPR[RD] = ~ (GPR[RS] | Const)

Flags Setting

None

Exceptions

None

20 General Instructions

Chapter 3

VIA Confidential VIA C3 Alternate Instruction Set Programming Reference

November 2002
3.1.2.11X80R]I][R] - X86 OR
Encoding
31:26 25:21 20:16 15:11 10:8 7:5 4:0
X8OR: 100000, RS RT RD 000, | DPcntl OR
X8ORR: 100010, 10101,
6 5 5 5 3 3 5
31:26 25:21 20:16 15:11 10:8 7:5 4:06
X8ORI: 100001, RS Const RD 000, | DPcntl OR
X8ORIR: 100011, 10101,
6 5 5 5 3 3 5
Format
X80R RD, RS, RT
X80RI RD,RS,0 // Moves RS to RD
Description
The contents of GPR RS are logically ORed to either the contents of GPR RT or the value imme-
diate specified in depending on the primary opcode.
Operation
GPR[RD] = GPR[RS] | GPRI[RT]
GPR[RD] = GPR[RS] | Const
Flags Setting
CClog
Exceptions
None.

Chapter 3 General Instructions 21

VIA C3 Alternate Instruction Set Programming Reference VIA Confidential

November 2002

3.1.2.12 XRCL - X86 Rotate Left Thru Carry

Encoding
31:26 25:21 20:16 15:11 10:8 7:5 4:06
XRCLI: 100001, RS 00001, RD 000, | DPcntl RCL
XRCLIR: 100011, 00110,
6 5 5 5 3 3 5
Format

|[XRCLT RD, RS

Description
This instruction implements a rotate left through carry of a GPR. The low-order portion of GPR

(as defined by the operand size in with the carry flag concatenated on the left end is
rotated left
Usage Note: This instruction directly performs an X86 RCL instruction of . The multi-bit

X86 instructions are trapped to the microcode and performed one bit at a time.

Architecture Note: This instruction only rotates through carry one bit because (1) it is much
harder to do multi-bit rotates through carry, and (2) the multi-bit forms are rarely used in X86.

Operation

Temp bit = EFLAGS.CF
EFLAGS.CF = MSB(GPR[RS]) // MSB = most significant bit
GPR[RD] = (GPR[RS] << 1) | Temp bit

Flags Setting
CCirl

Exceptions

None.

22

General Instructions Chapter 3

VIA Confidential VIA C3 Alternate Instruction Set Programming Reference

November 2002
3.1.2.13XRCR - X86 Rotate Right Thru Carry
Encoding
31:26 25:21 20:16 15:11 10:8 7:5 4:06
XRCRI: 100001, RS 00001, RD 000, | DPcntl RCR
XRCRIR: 100011, 00111,
6 5 5 5 3 3 5

Format

|[XRCRT RD, RS

Description

This instruction implements a rotate right through carry of a GPR.. The low-order portion of
GPR (as defined by the operand size in with the carry flag concatenated on the right
end is rotated right

Usage Note: This instruction directly performs an X86 RCR instruction of . The multi-bit
X86 instructions are trapped to the emulator and performed one bit at a time.

Architecture Note: This instruction only rotates through carry one bit because (1) it is much
harder to do multi-bit rotates through carry, and (2) the mult-bit forms are rarely used in X86.

Performance

If there is no data dependency stall, this instruction executes in one clock.

Operation

Temp = EFLAGS.CF << N // N = 32, 16, or 8 depending on
DPcntl

EFLAGS.CF = GPR[RS] & 1

GPR[RD] = Temp | (GPR[RS] >> 1)

Flags Setting
CCrr

Exceptions

None.

Chapter 3 General Instructions 23

VIA C3 Alternate Instruction Set Programming Reference VIA Confidential
November 2002

3.1.2.14XROL[I][R] - X86 Rotate Left

Encoding
31:26 25:21 20:16 15:11 10:8 7:5 4:0
XROL: 100000, RS RT RD 000, | DPecntl ROL
XROLR: 100010, 00100,
6 5 5 5 3 3 5
31:26 25:21 20:16 15:11 10:8 7:5 4:06
XROLI: 100001, RS Const RD 000, | DPcntl ROL
XROLIR:: 100011, 00100,
6 5 5 5 3 3 5
Format

XROL RD, RS, RT
XROLI RD,RS,?2

Description

This instruction implements a rotate left of a GPR. The low-order portion of GPR as defined
by the operand size in is rotated left the value in GPR or modulo 32.

Operation

|Temp = XXXXXX

Flags Setting
CCil

Exceptions

None.

24 General Instructions Chapter 3

VIA Confidential VIA C3 Alternate Instruction Set Programming Reference

November 2002
3.1.2.15XROR][I][R] - X86 Rotate Right
Encoding
31:26 25:21 20:16 15:11 10:8 7:5 4:0
XROR: 100000, RS RT RD 000, | DPcntl ROR
XRORR: 100010, 00101,
6 5 5 5 3 3 5
31:26 25:21 20:16 15:11 10:8 7:5 4:06
XRORI: 100001, RS Const RD 000, | DPcntl ROR
XRORIR: 100011, 00101,
6 5 5 5 3 3 5
Format

XROR RD, RS, RT
XRORI RD,RS,?2

Description

This instruction implements a rotate right of a GPR. The low-order portion of GPR as defined
by the operand size in is rotated right the value in GPR

Operation

or

modulo 32.

|Temp = XXXXXX

Flags Setting
CCrr

Exceptions

None.

Chapter 3 General Instructions

25

VIA C3 Alternate Instruction Set Programming Reference

VIA Confidential

November 2002

3.1.2.16XSBBIIJ[R] - X86 Subtract with Borrow

Encoding
31:26 25:21 20:16 15:11 10:8 7:5 4:0
XSBB: 100000, RS RT RD 000, | DPcntl SBB
XSBBR: 100010, 10011,
6 5 5 5 3 3 5
31:26 25:21 20:16 15:11 10:8 7:5 4:0
XSBBI: 100001, RS Const RD 000, | DPcntl SBB
XSBBIR: 100011, 10011,
6 5 5 5 3 3 5
Format

XSBB RD, RS, RT
XSBBI RD,RS,?2

Description
The contents of GPR or the immediate specified in , depending on the primary opcode,
are subtracted from the contents of GPR
Operation
GPR[RD] = GPR[RS] - GPR[RT] - EFLAGS.CF
GPR[RD] = GPR[RS] - Const - EFLAGS.CF

Flags Setting
CCarith

Exceptions

None.

26

General Instructions

Chapter 3

VIA Confidential VIA C3 Alternate Instruction Set Programming Reference

November 2002
3.1.2.17XSETCC - X86 SETcc
Encoding
31:26 25:21 20:16 15:11 10:8 7:5 4:0
XSETCC: 100000, | 00000, | 00000, RD 000, | DPcntl | XSETCC
11101,
6 5 5 5 3 3 5
Format

|[xseTCC RD

Description

The contents of GPR ~ (expected to be coded as 0) are logically ORed to the contents of GPR
(also expected to be coded as 0), the low order bit of the result is then logically ORed with the
condition specified by the tttn field of the IIR.

Architecture Note: This instruction is intended for the translator to implement the x86 SETcc
instruction, its use in microcode is limited by the fact that the condition to test is specified in the
tttn field of IIR.

| Architecture Differences: this instruction is new to C2.

Operation

Flags Setting

None.

Exceptions

None.

Chapter 3 General Instructions 27

VIA C3 Alternate Instruction Set Programming Reference

VIA Confidential

November 2002
3.1.2.18XSHLI[I][R] - X86 Shift Left Logical

Encoding
31:26 25:21 20:16 15:11 10:8 7:5 4:0
XSHL: 100000, RS RT RD 000, | DPcntl SLL
XSHLR: 100010, 00000,
6 5 5 5 3 3 5
31:26 25:21 20:16 15:11 10:8 7:5 4:0
XSHLI: 100001, RS Const RD 000, | DPcntl SLL
XSHLIR:: 100011, 00000,
6 5 5 5 3 3 5
Format
XSHL RD,RS,RT

XSHLI RD,RS,?2

Description

This instruction implement a shift left of a GPR. The low-order portion of GPR as defined by
modulo 32.

the operand size in is shifted left the value in GPR or

Operation

|GPR [RD] = XXXXXX

Flags Setting
CCshl

Exceptions

None.

28 General Instructions

Chapter 3

VIA Confidential

VIA C3 Alternate Instruction Set Programming Reference

November 2002
3.1.2.19XSARII][R] - X86 Shift Right Arithmetic
Encoding
31:26 25:21 20:16 15:11 10:8 7:5 4:0
XSAR: 100000, RS RT RD 000, | DPcntl SRA
XSARR: 100010, 00011,
6 5 5 5 3 3 5
31:26 25:21 20:16 15:11 10:8 7:5 4:0
XSARI: 100001, RS Const RD 000, | DPcntl SRA
XSARIR: 100011, 00011,
6 5 5 5 3 3 5
Format

XSAR RD, RS, RT
XSARI RD,RS,?2

Description

This instruction implement a shift right arithmetic of a GPR. The low-order portion of GPR
is shifted right arithmetically the value in GPR or

as defined by the operand size in
modulo32.

Operation

|GPR[RD] =

XXXXXX

Flags Setting
CCsar

Exceptions

None.

Chapter 3

General Instructions

29

VIA C3 Alternate Instruction Set Programming Reference

VIA Confidential

November 2002

3.1.2.20XSHRJI][R] - X86 Shift Right Logical

Encoding
31:26 25:21 20:16 15:11 10:8 7:5 4:0
XSHR: 100000, RS RT RD 000, | DPcntl SHR
XSHRR: 100010, 00010,
6 5 5 3 3 3 5
31:26 25:21 20:16 15:11 10:8 7:5 4:0
XSHRI: 100001, RS Const RD 000, | DPcntl SHR
XSHRIR: 100011, 00010,
6 5 5 S 3 3 5
Format
XSHR RD, RS, RT
XSHRI RD,RS,2
Description

This instruction implement a shift right logical of a GPR. The low-order portion of GPR

defined by the operand size in

modulo 32.

Operation

is shifted left logically the value in GPR or

|GPR[RD]

XXXXXX

Flags Setting

CCshr

Exceptions

None.

30

General Instructions

Chapter 3

VIA Confidential

VIA C3 Alternate Instruction Set Programming Reference

November 2002
3.1.2.21XSUBJI][R] - X86 Subtract
Encoding
31:26 25:21 20:16 15:11 10:8 7:5 4:0
XSUB: 100000, RS RT RD 000, | DPcntl SUB
XSUBR: 100010, 10010,
6 5 5 5 3 3 5
31:26 25:21 20:16 15:11 10:8 7:5 4:0
XSUBI: 100001, RS Const RD 000, | DPcntl SUB
XSUBIR: 100011, 10010,
6 5 5 5 3 3 5
Format

XSUB RD, RS, RT
XSUBI RD,RS,?2

Description

The contents of GPR
are subtracted from the contents of GPR

Operation

or the immediate specified in

, depending on the primary opcode,

GPR[RD]
GPR[RD]

= GPR[RS]
GPR[RS]

- GPRI[RT]
— Const

Flags Setting
CCarith

Exceptions

None.

Chapter 3

General Instructions

31

VIA C3 Alternate Instruction Set Programming Reference

VIA Confidential

November 2002

3.1.2.22X8XOR[I][R] - X86 XOR

Encoding
31:26 25:21 20:16 15:11 10:8 7:5 4:0
X8XOR: 100000, RS RT RD 000, | DPcntl XOR
X8XORR: 100010, 10110,
6 5 5 3 3 3 5
31:26 25:21 20:16 15:11 10:8 7:5 4:0
X8XORI: 100001, RS Const RD 000, | DPcntl XOR
X8XORIR: 100011, 10110,
6 5 5 S 3 3 5
Format
X8XOR RD, RS, RT
X8XORT RD, RS, 2
Description

The contents of GPR RS are logically XORed to either the contents of GPR RT or the value im-
mediate specified in

depending on the primary opcode.

Operation
GPR[RD] = GPR[RS] " GPRI[RT]
GPR[RD] = GPR[RS] ~ Const

Flags Setting
CClog

Exceptions

None.

32

General Instructions

Chapter 3

VIA Confidential

VIA C3 Alternate Instruction Set Programming Reference

November 2002

3.2 EFLAGS UPDATE FORMS

The EFLAGS update forms specify how the EFLAGS register is modified by certain XALU in-
structions. These update forms specify how the CF, PF, AF, ZF, SF, and OF are modified; there
is no hardware support for modifying the other bits in EFLAGS. In the following sections the ex-
act semantics of each EFLAG update form will be specified.

In the following table the EFLAG update forms are shown along with the corresponding opera-
tions performed on the flag bits. An indicates the flag is modified, a — indicates the flag is
specified in an X86 as undefined (the actual value used on a C1 is the same as on a Pentium and is

documented in the detail descriptions), and a blank indicates that the flag is unmodified.

Label OF SF ZF AF PF CF | X86 Instruction Cl Instructions
CCnop NOT MENTIONED BELOW | NOT MENTIONED BELOW
CCarith M M M M M M ADC, ADD, CMP, CMPS, XADC, XADD, XSBB, XSUB
CMPXCHG, NEG, RSM,
SBB, SCAS, SUB, XADD
CClog 0 M M - M 0 AND, OR, TEST, XOR XAND, X8OR, X8XOR
CCinc M M M M M DEC, INC XDEC, XINC
CCshl M M M - M M SAL1, SAL N, SHL 1, SHL. N | XSHL
CCshr M M M - M M SARI, SAR N, SHR 1, SHR XSHR, XSAR
N
CCrl M M RCL1, RCL N, ROL 1, ROL XRCL, XROL
N
CCrr M M RCR1, RCRN,ROR 1, ROR | XRCR, XROR
N
CCdiv - - - - - - DIV XDIV
CCidiwv - - - - - - IDIV XIDIV
CCimul M - - - - M MUL XMUL
CCmul M - - - - M IMUL XIMUL

Default Flag Setting

In most of the following descriptions
are the carry outs from bits 3, 6, 7, 14, 15, 30, and 31 of the adder respec-
and

and
tively.

For the shift and rotate flag setting operations,
lows the code to specify

is the 32 bit result of an operation,

are encodings of the DPcntl field specifying that the operation is 8,
16, or 32 bits wide. The variable SubOp indicates that the instruction is a subtract.

is the 34 bit output of the shifter. This al-

[-1] and

[33] which are required to generate the carry out for
the shift and rotate instructions. The high and low bits (33 and -1) only go to the condition code

Chapter 3

General Instructions

33

VIA C3 Alternate Instruction Set Programming Reference VIA Confidential

November 2002
unit, they never appear in registers. The semantics of the flag operations are specified in a pseudo-C
language.

CF - Carry Flag

Set on a carry out or not a borrow from the high-order bit of an add or subtract calculation respec-
tively; cleared otherwise. The high-order bit is determined by the DPcntl field in the extended
opcode which specifies bit 7 for eight bit operations, bit 15 for sixteen bit operations, and bit 31
for thirty-two bit operations.
if DP8

CF = SubOp *~ CF7;
if DP16

CF = SubOp ~ CF15;
if DP32

CF = SubOp ~ CF31;

PF - Parity Flag

Set if the low order eight bits of the result have an even number of ones; cleared otherwise.
PF =! (Result[7] »~ Result[6]” Result[5]”" Result[4]"
Result[3] * Result[2]” Result[l]” Result[0]);

AF - Auxiliary Carry Flag

Set on a carry out of bit 3 or not a borrow from bit 3 of an add or subtract calculation respectively;
cleared otherwise

|AF = subop ~ CF3; |

ZF - Zero Flag

Set if the result of an operation modulo the operation size, specified in DPcntl, is all zeros; cleared
otherwise.
if DPS8
ZF = Result[7:0] == 0;
if DP16
ZF = Result[1l5:0] == 0;
if DP32
ZF = Result[31:0] == 0;

SF - Sign Flag

Set to equal the high-order bit of the result. The high order bit of the result is specified by the size
in DPcntl.
if DP8
SF = Result[7];
if DP16
SEF = Result[1l5];
if DP32
SE = Result[31];

34 General Instructions Chapter 3

VIA Confidential VIA C3 Alternate Instruction Set Programming Reference
November 2002

OF - Overflow Flag

Set if the carry out of the high-order two bits differ. The high-order bit of the result is specified by
the size in DPcntl. Note that for adds and subtracts, OF may also be determined from the signs of
the result versus the sign of the sources.

if DPS8

OF = CF7 ~ CF6;
if DP16

OF = CF15 ~ CF14;
if DP32

OF = CF31 ~ CF30;

CCarith
The CCarith flags setting causes all the flags to be set as described in the Default Flag Setting sec-
tion above

SF = defaultSF;

ZF = defaultzF;

PF = defaultPF;

OF = defaultOF;

CF = defaultCF;

AF = defaultAF;

CCinc

The CCinc flags setting causes all the flags except the CF to be set as described in the Default Flag
Setting section above. The CF is unmodified.

SEF = defaultSF;
ZF = defaultzF;
PF = defaultPF;
OF = defaultOF;
AF = defaultAF;

CClog

The CClogic flags setting causes the SF, ZF, and PF to be set as described in the Default Flag
Setting section above.. The CF and OF are cleared. AF is architected as undefined; its real behavior
is: that it is cleared.

SE = defaultSF;

ZF = defaultzF;

PF = defaultPF;

OF = 0;

Cr = 0;

AF = 0; // Verified on Pentium

Chapter 3 General Instructions 35

VIA C3 Alternate Instruction Set Programming Reference VIA Confidential

November 2002
CCnop

The CCnop flags setting leaves all flags unchanged.

CCshl

Note the special setting of CF and OF for byte shifts with

shift counts greater than operand size.

}

if (shiftCnt != 0) {

ZF defaultZF;
PF = defaultPF;
SEF = defaultSF;
AF = 1;
if (shiftCnt >= operand size)
CF = ((shiftCnt % operand size) == 0)
& bit 0 of original data;

else

CF = result[operand size];
OF = SF ~ CF;

CCsar

if

(shiftCnt != 0) {
ZF = defaultzF;
PF = defaultPF;

SF = defaultSF;
AF = 1;
OF = 0;

CF = result[-17;

36

General Instructions Chapter 3

VIA Confidential

VIA C3 Alternate Instruction Set Programming Reference

CCshr

November 2002

Note the special setting of CF and OF for byte shifts with

shift counts greater than operand size.

if (shiftCnt != 0) {
SF = defaultSF;
ZF = defaultzF;

CF = result([-1];
if (shiftCnt == 1)
OF = high bit of result;

PF = defaultPF;
AF = 1;
if (shiftCnt >= operand size)
CF = ((shiftCnt % operand size)
& MSB of original data;
else

== 0)

else
OF = 0;
}
CCrl
The SF, ZF, AF, and PF flags are not affected.
if (shiftCnt != 0) {

OF = result[len] » result[len+1l];
CF = result[len+1]

}

CCrr
The SF, ZF, AF, and PF flags are not affected.

if (shiftCnt !'= 0) {
OF = result[len] » result[len-1];
CF = result[-1]

Chapter 3 General Instructions

37

VIA C3 Alternate Instruction Set Programming Reference VIA Confidential
November 2002

3.3 LOAD/STORE INSTRUCTIONS

There are no MIPS format load/store instructions and no way to perform load/stores to native-
mode address space. All load/store operations use X86 address and load/store semantics.

3.3.1.1 XIOR - X86 I/0 Read

Encoding
31:26 25:21 20:16 15:11 10:9 8 7:6 5:2 1 0
XIOR: 110101, | Offset | Base RS SubOp | Addr |Size-2:1| Seg | Size-0 | Addr
Sizel Size0
6 5 5 5 2 1 2 4 1 1
Format
Description
Performs an I/0 read operation into GPR
The effective address is calculated by adding the value specified in to the contents of GPR
modulo the address size specified in . The linear address is calculated with respect to
the segment descriptor specified in ~ , The field specifies the number of bytes to load and the
location within the target register. The field specifies further special 1/0 read semantic in-
formation.

No virtual-to-physical address translation is performed on the linear address. The operation by-
passes the cache and performs an I/O read bus cycle.

Usage Note: To perform an X86 IN operation, the Seg should be a flat 32-bit linear address seg-
ment, the Base register contains the I/O address (from DX or the immediate field), the Offset is 0.
The 16-bit base address value should be zero extended to 32-bits since the address size from the
translator could be 32 bits.

Exceptions

None.

38 General Instructions Chapter 3

VIA Confidential VIA C3 Alternate Instruction Set Programming Reference

November 2002
3.3.1.2 XIOW - X86 I/O Write
Encoding
31:26 25:21 20:16 15:11 10:9 8 76 52 1 0
XIOR: 111101, | Offset | Base RS SubOp | Addr | Size-2:1 | Seg | Size-0 | Addr
Sizel Size0
6 5 5 5 2 1 2 4 1 1
Format
Description
Performs an I/O write operation of the data in GPR
The effective address is calculated by adding the value specified in to the contents of GPR
modulo the address size specified in . The linear address is calculated with respect to
the segment descriptor specified in ~ , The field specifies the number of bytes to load and the
location within the target register. The field specifies further special I/O read semantic in-

formation.

No virtual-to-physical address translation is performed on the linear address. The operation by-
passes the cache and performs an I/O read write cycle.

Usage Note: To perform an X86 OUT operation, the Seg should be a flat 32-bit linear address
segment, the Base register contains the I/O address (from DX or the immediate field), the Offset is
0. The 16-bit base address value should be zero extended to 32-bits since the address size from the
translator could be 32 bits.

Exceptions

None.

Chapter 3 General Instructions 39

VIA C3 Alternate Instruction Set Programming Reference VIA Confidential

November 2002

3.3.1.3 XL - X86 Load

Encoding
31:26 25:21 20:16 15:11 10:9 8 7:6 5:2 1 0
XL: 110000, | Offset | Base RS SubOp | Addr |Size-2:1| Seg | Size-0 | Addr
Sizel Size0
6 5 5 3 2 1 2 4 1 1
Description

Performs a load with X86 addressing semantics into GPR Data Register ~ (or RS | 1 for load of
64 bit size)

The effective address is calculated by adding the value specified in to the contents of GPR
modulo the address size specified in . The linear address is calculated with respect to
the segment descriptor specified in ~, The field specifies the number of bytes to load and the
location within the target register. The field specifies further special load semantic informa-
tion.
Performance

If there is no data dependency stall, and the requested data is in the cache and contained within an
eight-byte aligned data unit, the load executes in one clock. Note that the loaded data is available to
the next ALU or store instruction without a pipeline stall. However, if the load is used as a source
to an addressing calculation in the next instruction, there is a one-cycle data dependency stall
(AGI) on the subsequent instruction.

If the requested data is not in the cache, the instruction (and all subsequent instruction) execution
stalls until the data is found and returned.

If the data spans an eight-byte aligned unit, this instruction is automatically decomposed into two
sequential loads to get the two data portions. The timing of each follows the rules above except that
the second load can't cause an data dependency stall.

If LOCK is specified, timing gets more complicated depending on the compatibility mode in ef-
fect.

Operation

Exceptions

SEGERR, DPAGE, ALIGN, DBRKPT

40

General Instructions Chapter 3

VIA Confidential VIA C3 Alternate Instruction Set Programming Reference

November 2002
3.3.1.4 XLDESC - X86 Load Descriptor

Encoding
31:26 25:21 20:16 15:11 10:9 8 76 52 1 0

XLDESC: 110100, | Offset | Base | DRS | SubOp | Addr | 10, | Seg | 1, | Addr
Sizel Size0

Description

Even though the load descriptor instruction is a load instruction, its documentation has moved to

the Segment Register function section to be with its tightly-bound companion the XTT instruc-
tion.

Chapter 3 General Instructions 41

VIA C3 Alternate Instruction Set Programming Reference VIA Confidential
November 2002

3.3.1.5 XLEAD - X86 Load Effective Address - Displacement

Encoding
31:26 25:21 20:16 15:11 10:9 8 76 53 2 1 0
XLEAD: | 101100, | Offset | Base RS XX, | Addr [Size- | xxx, | Size3 | Size | Addr
Sizel | 2:1 -0 | Size0
6 5 5 5 2 1 2 3 1 1 1
Description
Performs an X86 (EA) calculation by adding GPR to the value specified by the
field (typically the DISP register) modulo the size defined by the field and storing
the result back into GPR with size defined by the field. On C2 an of operand

size (TSR.OS) is encoded as 01, which C1-A interprets as stack address size (TSR.SAS).

Architecture Note: The XLEAx instructions are not really load and store instructions and don't
need all of the load/store semantics (such as a segment register and the load/store SubOp field), but
they are included in this section since they have many features in common with load/store instruc-
tions and are used with them.

Usage Note: This instruction is needed for three reasons: (1) to (partially) perform an X86 LEA
function, (2) to partially perform address calculations using a base register and an index register and
a displacement, and (3) to perform address calculations in trapped microcode since the XL and XS
instructions can't use register indirection.

This XLEAD instruction performs an X86 EA calculation using a base register and a displace-
ment. When combined with the XLEALI instruction, a full three component X86 LEA can be
performed.

Architecture Differences: The extension of Size for XLEAD to 4 bits is new to C2 as is allowing
operand size encoding in

Performance

Same rules as for the XLEAT instruction.

Exceptions

none

42 General Instructions Chapter 3

VIA Confidential

VIA C3 Alternate Instruction Set Programming Reference

November 2002
3.3.1.6 XLEAI - X86 Load Effective Address - Indexed
Encoding
31:26 25:21 20:16 15:11 10:9 8 7:6 5:3 2 1 0
XLEAL: 101011, | Index | Base | RD | shift | Addr | Size- | xxx, | Size3 | Size- | Addr
count | Sizel | 2:1 0 Size0
6 5 5 5 2 1 2 3 1 1 1
Description
Performs an X86 (EA) calculation by adding GPR to GPR storing the

result modulo the size defined by the

field back into

with size defined by the

field. . On C2 an of operand size (TSR.OS) is encoded as 01, which C1-A inter-
prets as stack address size (TSR.SAS).

Usage Note: This instruction is needed for three reasons: (1) to (partially) perform an X86 address
calculation involving both a base and an index register, and (2) to perform address calculations in
trapped microcode since the XL and XS instructions can’t use register indirection.

This XLEALI instruction performs an X86 EA calculation using a non-shifted index register and a
base register. X86 LEA calculations using a scaled index value require that a separate shift instruc-
tion be performed. X86 LEA calculations involving a register and a displacement can use the
XLEAD instruction.

Architecture Differences: The extension of Size for XLEAI to 4 bits is new to C2 as is allowing
operand size encoding in

Performance

If there is no data dependency stall, this instruction executes in one clock.

If either RS or RT are the result of a load or an ALU operation on the immediately preceding in-
struction, there is an additional one-cycle data dependency stall.

Architecture Note: This is effectively a register—register add operation that executes in the A-stage
versus a normal ALU instruction that executes in the D-stage. Thus, address calculations instruc-
tions that follow this one don’t have a data-dependency stall on the XLLEA instruction results.

Exceptions

none

Chapter 3 General Instructions 43

VIA C3 Alternate Instruction Set Programming Reference

VIA Confidential

November 2002

3.3.1.7 XPOP[BR] - X86 POP (Load with Post Update)

Encoding
31:26 25:21 20:16 15:11 10:9 8 76 52 1 0
XPOP: 110111, | Offset | Base RS | SubOp | Addr |Size-2:1| Seg | Size-0 | Addr
Sizel Size0
6 5 5 5 2 1 2 4 1 1
31:26 25:21 20:16 15:11 10:98 8 76 52 1 0
XPOPBR: (110110,| Offset | Base RS | SubOp | Addr |Size-2:1| Seg | Size-0 | Addr
Sizel Size0
6 5 5 5 23 1 2 4 1 1
Description

Performs a load with X86 addressing semantics into GPR

and updates the base register with a

new address.

The effective address is the value in GPR modulo the address size specified in . The
linear address is calculated with respect to the segment descriptor specified in , The field
specifies the number of bytes to load. The field specifies further special load semantic in-
formation.

, the address size portion of GPR is re-
placed with the result of adding the to the contents of .If and are the same
register, then the behavior of the instruction depends on the implementation:

e On CI1-A the load data is loaded into and the address offset is not used.

e On C2 the update of with number of bytes from the address offset can be
thought of as occuring first, then the load of =~ with S number of bytes from memory.
This is relevant when the number of bytes specified in is larger than S

Usage Note: This instruction is intended to directly perform an X86 POP function in one clock..
In order to perform the POP SP function correctly, the load data must have priority over the up-
dated Base value, if both registers are the same.

To perform the X86 POP function, set:
=SS, = OS, = indOS, = LSnop.

The XPOPBR version of the instruction will read the linear address contained in the top of the
call/return stack (LINEAR_RET). If LINEAR_RET is in the instruction cache then a branch is
initiated to it and a hidden latch (RETSTK_HIT) is set. If LINEAR_RET is not in the instruc-
tion cache then RETSTK_HIT is cleared. See the description of the POP version of XJ for how
RETSTK_HIT is used.

| Architecture Differences: XPOPBR instruction is new to C2.

44

General Instructions Chapter 3

VIA Confidential VIA C3 Alternate Instruction Set Programming Reference

November 2002

Usage Note: The XPOPBR instruction is intended to speed up subroutine return. It is used to
initiate a return to the address pushed on the call/return stack by a previous XBcc.PUSH.
Whether this branch was in fact correct is verified by a subsequent XJ.POP.

Performance

Same rules as for the XL instruction.

Operation
if (XPOPBR) { // Subroutine return
LINEAR_RET = RETSTK[TOS]; // Linear instruction pointer of expected return
if (in_I_Cache(LINEAR RET)) { /! Expected return is in instruction cache
start_branch(LINEAR_RET); // Get fetcher and translator going
RETSTK_HIT = 1; // Latch to remember branch started
} else {
RETSTK_HIT = 0; // Indicate branch was not started
}
}
Exceptions

SEGERR, DPAGE, ALIGN, DBRKPT

Chapter 3 General Instructions 45

VIA C3 Alternate Instruction Set Programming Reference

VIA Confidential

November 2002
3.3.1.8 XPUSH - X86 PUSH (Store with Pre-Update)

Encoding
31:26 25:21 20:16 15:11 10:9 8 7:6 3:2 1 0
XPUSH: |111111,| Offset | Base RS SubOp | Addr |Size-2:1| Seg |Size-0| Addr
Sizel Size0
6 5 5 3 2 1 2 4 1 1

Description

Performs a store with X86 addressing semantics of the data in GPR
ter with a new address.

and updates the base regis-

The effective address is calculated by adding the displacement specified in

to the contents of

GPR modulo the address size specified in . The linear address is calculated with re-
spect to the segment descriptor specified in ~, The field specifies the number of bytes to
store. The field specifies further special store semantic information.

If the field indicates that four bytes are to be pushed and is in the range 8 to 15 (a segment

register) then the upper two bytes of the data pushed are zero.
If the field is 16H (encoded as 8L) then it is the upper 2 bytes o

data pushed are zero.

f GPR

that are stored. In
this case the store size is controlled by TSR.OS. If TSR.OS is 32 then the upper two bytes of the

, the address size portion of GPR Base is re-

placed by the effective address of the store.

Usage Note: This instruction is intended to perform an X86 PUSH function in one clock. Note
that the pre-update function correctly handles the PUSH SP function: the old SP value is stored
before SP is updated.
To perform the PUSH function, set:
=SS, = OS, = indMOS, = LSnop.
Performance

Follows the same rules as for the XS instruction.

Exceptions
SEGERR, DPAGE, ALIGN, DBRKPT

46 General Instructions

Chapter 3

VIA Confidential VIA C3 Alternate Instruction Set Programming Reference

November 2002
3.3.1.9 XPUSHIP - X86 PUSH NSIP (Store with Pre-Update)
Encoding
31:26 25:21 20:16 15:11 10:9 8 76 52 1 0
XPUSHIP: [111100,| Offset | Base [00000, | SubOp | Addr [Size-2:1| Seg | Size-0 | Addr
Sizel Size(
6 5 5 5 2 1 2 4 1 1
Description
Performs a store with X86 addressing semantics of the NSIP register
The effective address is calculated by adding the displacement specified in to the contents of
GPR modulo the address size specified in . The linear address is calculated with re-
spect to the segment descriptor specified in , The field specifies the number of bytes to

store. The field specifies further special store semantic information.
More information on the semantics of the function is found on page 2-7.

The address size portion of GPR is updated to contain the effective address of the store; thus,
this is a store with pre-update type instruction.

Architecture Note: There is no general store of a CP2 data register instruction (which is where
NSIP lives). Thus, a special form is provided for NSIP.

Usage Note: This instruction is intended to perform a “push IP” function needed for fast CALL
execution. To perform this operation set

=SS, = OS, = indMOS, = LSnop.

Performance

Follows the same rules as for the XS instruction.

Exceptions
SEGERR, DPAGE, ALIGN, DBRKPT

Chapter 3 General Instructions 47

VIA C3 Alternate Instruction Set Programming Reference

VIA Confidential

November 2002

3.3.1.10XS - X86 Store

Encoding
31:26 25:21 20:16 15:11 10:9 8 7:6 5:2 1 0
XS: 111000, | Offset | Base RS | SubOp | Addr |Size-2:1| Seg |Size-0| Addr
Sizel Size0
6 5 5 5 2 1 2 4 1 1
31:26 25:21 20:16 15:11 10:98 8 7:6 5:2 1 0
XS2: 111001,[Offset | Base RS SubOp | Addr |Size-2:1| Seg |[Size-0| Addr
Sizel Size0
6 5 5 5 23 1 2 4 1 1
Description

Performs a store with X86 addressing semantics of the data in GPR

The effective address is calculated by adding the displacement specified in

GPR modulo the address size specified in
spect to the segment descriptor specified in

and the location within the target register. The
information. The difference between XS and XS2 is merely the choice of data sizes and locations as
defined in section 5.1.5.

Performance

, The

to the contents of
. The linear address is calculated with re-

field specifies the number of bytes to load

field specifies further special store semantic

If there is no data dependency stall, and the requested data is in the cache and contained within an
eight-byte aligned unit, and there is no pending store operation. the store executes in one clock.

If either base or RS are the result of a load or an ALU operation on the immediately preceding in-
struction, there is an additional one-cycle data dependency stall.

There is a store buffer between the D-stage and the cache/bus unit. Thus, stores that miss in the
cache or that are blocked by previous loads or store operations take an indeterminate time. The rules
for store queuing are complex and are discussed elsewhere.

If the data spans an eight-byte aligned unit, this instruction is automatically decomposed into two
sequential stores to handle the two data portions. The timing of each follows the rules above except
that the second load can’t cause an data dependency stall.

If LOCK is in effect (specified on a previous load operation), timing gets more complicated de-
pending on the compatibility mode in effect.

Operation

Exceptions

SEGERR, DPAGE, ALIGN, DBRKPT

48

General Instructions Chapter 3

VIA Confidential VIA C3 Alternate Instruction Set Programming Reference

November 2002
3.3.1.11XSI, XPUSHI - X86 Store/PUSH Immediate

Encoding

31:26 25:21 20:16 15:11 10:9 8 7:6 5:2 1 0

XSI: 111011, Offset | Base | 00000, | SubOp | Addr |Size-2:1| Seg | Size-0 | Addr

Sizel Size0

6 5 5 5 2 1 2 4 1 1

31:26 25:21 20:16 15:11 10:9 8 7:6 5:2 1 0

XPUSHI: (111010, Offset | Base | 00000, | SubOp | Addr |Size-2:1| Seg | Size-0 | Addr

Sizel Size0

6 5 5 5 2 1 2 4 1 1

Description

Performs a store or a PUSH with X86 addressing semantics of the value specified in the IMMED
register. The semantics are the same as for the XS and XPUSH instructions except that the
IMMED register is stored instead of the RS register.

Architecture Note: There is no way to address the IMMED register as a source in a normal store
instruction. Thus, a special form is provided for store IMMED.

Usage Note: This instruction is intended to directly perform the corresponding X86
MOQV [ea],immed or PUSH 10H
instructions in one clock:
To perform this MOV operation set
= AS, = OS, = LSnop.

Operation
Follows the same rules as for the XS and XPUSH instruction.

Exceptions
SEGERR, DPAGE, ALIGN, DBRKPT

Chapter 3 General Instructions 49

VIA C3 Alternate Instruction Set Programming Reference

VIA Confidential

November 2002

3.3.1.12XSU - X86 Store with Post-Update

Performs a store with X86 addressing semantics of the data in GPR

ter with a new address.

Follows the same rules as for the XS instruction.

Exceptions

SEGERR, DPAGE, ALIGN, DBRKPT

Encoding
31:26 25:21 20:16 15:11 10:9 8 7:6 5:2 1 0
XSU: 111110, Offset | Base RS | SubOp | Addr |Size-2:1| Seg |Size-0| Addr
Sizel Size0
6 5 5 3 2 1 2 4 1 1
Description

and updates the base regis-

The effective address is the value in GPR modulo the address size specified in . The
linear address is calculated with respect to the segment descriptor specified in ~, The field
specifies the number of bytes to load. The field specifies further special load semantic in-
formation.
, the address size portion of GPR is re-
placed with the result of adding the to the contents of
Performance

50

General Instructions

Chapter 3

VIA Confidential VIA C3 Alternate Instruction Set Programming Reference

November 2002

3.4 CONTROL REGISTERS AND MICRO-OPERATIONS

This section includes micro-operations that move to/from control registers that may be useful as
Alternate Instructions.

CP2 Control Registers

[Reg [Asm Lbl Description

XC5 TSC U Time Stamp Counter (Upper 32 bits)
XC19 |TsC L Time Stamp Counter (Lower 32 bits)
XC30 CRO X86 CRO

XC31 EFLAGS X86 EFLAGS

3.41.1 CTC2 - Store To CP2

Encoding
31:26 25:21 20:16 15:11 10:8 7:5 4:0
CTC2 100000, RS [00000, | C2RD [000, | DPcntl | 11001,
6 5 5 5 3 3 5
Description

Moves the contents of general purpose register RS to the CP2 control register C2RD.

DPcntl does not control the size of the result stored to the CP2 control register except for
EFLAGS: in this case, a size of 16 or 32 bits can be specified directly or indirectly through OS.

Chapter 3 General Instructions 51

VIA C3 Alternate Instruction Set Programming Reference VIA Confidential

November 2002
3.4.1.2 CFC2 - Move Control From CP2

Encoding
31:26 25:21 20:16 15:11 10:6 5:3 2:0
CFC2 XMISC | 00000, RT C2RD | CFC2 XXX, | XXX,
101000, 11111,
6 5 5 5 5 3 3
Description
The contents of CP2 control register are loaded into GPR

52 General Instructions Chapter 3

VIA Confidential VIA C3 Alternate Instruction Set Programming Reference

November 2002
3.4.1.3 XJ[XAI] - X86 Jump and optionally exit Alternate Instruction Execu-
tion Mode
Encoding
31:26 25:21 20:16 15:11 10 9 8 7:6 5:2 1:0
XIJ: 000110, | 00000, | Base | 00000,| O, | O, | 0, | XJSize | 0001, | 00,
XIXAIL 11,
6 5 5 5 1 1 1 2 4 2
XJSize | Mnemonic Data Size
00, 16 16 bits-low
01, 32 32 bits
10, AS address size-16 or 32
11, OS operand size - 16 or 32
Description

XJ Performs an absolute branch with X86 addressing semantics. XJXAI will branch like XJ and
also exit Alternate Instruction Execution Mode (encoded with bits 1:0 = ‘11'). The target address
is the contents of the GPR modulo the current operand size (as opposed to address size as for
load/store instructions). The linear address is calculated with respect to the CS segment descriptor.
X]JSize controls the size of the EA calculation.

The NSIP is updated with the calculated target address. This has the effect of clearing the

upper 16 bits of NSIP when an XJ instruction is executed with a 16 bit operand size.
Exceptions

SEGERR

Chapter 3 General Instructions 53

VIA Confidential VIA C3 Alternate Instruction Set Programming Reference
November 2002

CHAPTER

X87 FLOATING-POINT MICRO-
OPERATIONS (C5XL)

This chapter describes the x87 floating point registers and micro-operations available for use in
Alternate Instruction enabled mode in the VIA C5XL (Nehemiah) processor. The encoding of
x87 floating point micro-operations is different in earlier versions of the VIA C3 Processor family
(C5A, C5B, C5C) and are not included in this document.

4.1 X87 FLOATING POINT REGISTERS (C5XL)

All VIA C3 processors implement eight 80-bit registers corresponding to the standard x87 floating
point registers. In addition to these eight registers the processor implements additional extended
x87 floating-point registers, as described in the following table:

Processor C5XL (Nehemiah)

Standard x87 floating- | Eight standard x87 float-

point registers ing-point registers
FPO-FP7

Extended x87 float- Ten extended x87 float-

ing-point registers ing-point registers
FP8-FP17

Chapter 4 X87 Floating Point 4-1

VIA C3 Alternate Instruction Set Programming Reference VIA Confidential

November 2002

4.2 X387 FLOATING-POINT MICRO-OPERATIONS (C5XL)

X87 Floating-point micro-operations have certain fields in common to control the effects on the
top-of-stack (TOS) field in FPSW and to control the precision, rounding, and response to excep-
tion cases.

Fmt2 Precision Controls

Fmt2[15:13] Round | Mask PC C1 Description
000, FPCW FPCW | FPCW Per |Normal
result
001, FPCW All 64 A Set FPLE.PE, Clear DE
010, FPCW FPCW | FPCW [StkFlt|Update Cl on stack fault only
011, FPCW PE 64 Don’t |?
clear
100, FPCW FPCW 53 ? ?
101, Nearest | All 64 A Set FPLE.PE, Clear DE
110, - - - - Undefined
111, Nearest | All 64 - Mask Overflow/Underflow

TOSCtrl — Top Of Stack Control
TOSCHrl[7:6] Description
00, Hold
01, FPSW.TOS += 1
10, FPSW.TOS -= 1
11, FPSW.TOS += 2

4-2 X87 Floating Point Chapter 4

VIA Confidential

VIA C3 Alternate Instruction Set Programming Reference

4.2.1 FADD, FSUB, FSUBR, FMUL, FDIV, FDIVR

November 2002

FADD, FSUB, FSUBR, FMUL, FDIV, FDIVR - x87 Floating-point Add, Subtract,
Subtract Reverse, Multiply, Divide, Divide Reverse

Encoding

FADD
FSUB
FSUBR
FMUL
FDIV
FDIVR

31:26

25:21

20:16

15:13

12:9

8

7:6

5:0

010001,

FRD

FRS

Fmt2

0000,

TOSCtrl

SubOp

Description

The FADD, FSUB, SUBR, FMUL, FDIV and FDIVR instructions operate on the floating-point
values in x87 floating-point register FRS and FRD and store the result in FRD. Note that
FSUBR and FDIVR are like FSUB and FDIV except the input operands (FRS and FRD) are re-
versed (FRD is always the destination).

Fields

e R

e FRS - Source x87 FP register

e FRD - Source and Destination x87 FP
register

0 - No record

1 - Record FP environment

e Fmt2 - Controls rounding, exception
masking, precision, and flags

e TOSCtrl - encode the function to be
performed on the FPSW.TOP field

Instruction encoding and operation

Instruction | SubOp Operation

FADD 000000, | FRD <- FRD + FRS
FSUB 000001, | FRD <- FRD - FRS
FSUBR 001001, | FRD <- FRS - FRD
FMUL 000010, | FRD <- FRD *FRS
FDIV 000011, | FRD <- FRD + FRS
FDIVR 001011, | FRD <- FRS + FRD

Chapter 4

X87 Floating Point

4-3

VIA C3 Alternate Instruction Set Programming Reference VIA Confidential
November 2002

4.2.2 FSQRT, FABS, FCHS

FSQRT, FABS, FCHS - x87 Floating-point Square Root, Absolute Value, Change
Sign

Encoding

31:26 25:21 20:16 15:13 12:9 8 7:6 5:0
FSQRT 010001, | FRD FRS | Fmt2 | 0000, R | TOSCtrl SubOp
FABS
FCHS

6 5 5 3 4 1 2 6

Description

The unary operations FSQRT, FABS and FCHS operate on the value in x87 floating-point regis-
ter FRS and store the result in FRD. FABS and FCHS will copy FRS to FRD and set the sign bit
of FRD to ‘0’ (FABS) or invert it (FCHS).

Fields
e FRS - Source x87 FP register Instruction encoding and operation
e FRD - Destination x87 FP register Instruction | SubOp Operation
e Fmt2 - Controls rounding, exception FSQRT 000100, | FRD <- SQRT(FRS)
masking, precision, and flags FABS 000101, | FRD <- ABS(FRS)
* R FCHS 000111, | FRD<- - (FRS)
0 - No record

1 - Record FP environment

e TOSCtrl - encode the function to be
performed on the FPSW.TOP field

4-4 X87 Floating Point Chapter 4

VIA Confidential VIA C3 Alternate Instruction Set Programming Reference

November 2002

Chapter 4 X87 Floating Point 4-5

VIA Confidential VIA C3 Alternate Instruction Set Programming Reference

November 2002

CHAPTER

MMX MICRO-OPERATIONS

This chapter describes the MMX registers and MMX micro-operations available for use in Alter-
nate Instruction execution mode. There are micro-operations corresponding to all register-to-
register x86 MMX instructions. There are no alternate instructions for loading data directly from
memory to an MMX register. Also lacking are alternate instructions that combine a memory load
with another operation. This is because these micro-operations require more than 32-bits and al-

ternate instructions are restricted to 32-bits. Use x86 MMX instructions to move data to/from
memory.

Chapter 5 MMX 5-1

VIA C3 Alternate Instruction Set Programming Reference VIA Confidential
November 2002

5.1 MMX REGISTERS

All VIA C3 processors implement eight 64-bit registers corresponding to the standard x86 MMX
registers. In addition to these eight registers the processor implements additional extended MMX
registers, as described in the following table:

Processor Samuel, Samuel 2, Ezra C5XL. (Nehemiah)
Standard X86 MMX | Eight standard x86 MMX | Eight standard x86 MMX
registers registers registers

MMO0-MM?7 MMO0-MM?7

Extended MMX reg- | Two extended MMX reg- | Five extended MMX reg-

isters isters isters:
MM8-MM9 MM8-MM9
MM13-MM15

5-2 MMX Chapter 5

VIA Confidential VIA C3 Alternate Instruction Set Programming Reference

November 2002

5.2 MMX MICRO-OPERATIONS

5.2.1 MMXADD/ MMXSUB

Encoding
31:26 25:21 20:16 15:11 10:8 76 54 3 2 1 0
MMXADD | 010100, | RT RS RD | 000, | Sz |01, K|S|T|O

MMXSUB
6 5 5 5 3 2 2 1111
Description
Implements the x86 instructions with operands in two MMX registers and

destination in MMX register. Note that the x86 instruction encoding requires that one of the
source registers also be the destination register, this micro-operation allows the destination MMX
register (RD) be different from the two source registers (RT,RS).

Fields
Equivalent x86 instruction encoding
e Sz -Source /Dest Size x86 instruction | Sz (K|S [T
00 - 8 bit PADDB 00, |O[0O]O
01 - 16 bit PADDW 01, (0|0 |0
10 - 32 bit PADDD 10, (0|0 |0
e RT - Source MMX register PADDSB 00, o111
2
e RS - Source MMX register PADDSW 0. o111
2
¢ RD - Destination MMX register PADDUSB 00. lolol1
2
e K PADDUSW 01, |0 J0 |1
0 - Addition PSUBB 00, [1]0[0
1 - Subtraction PSUBW 01, [1]0 o0
e S-Signed PSUBD 10, |1]0 |0
0 - Unsigned
nsigne PSUBSB 00, [1]1]1
1 - Signed
PSUBSW 0L, |1]1]1
e T - Saturation
PSUBUSB 00, |1 /0|1
0 - Wrap
PSUBUSW 01, |1 |0 |1
1 - Saturate

Chapter 5 MMX 5-3

VIA C3 Alternate Instruction Set Programming Reference VIA Confidential

November 2002

5.2.2 MMXPACK

Encoding
31:26 25:21 20:16 15:11 10:8 7:6 53 2 1:0
MMXPACK | 010100, RT RS RD | 000, | Sz | 000,) S| 00,
6 5 5 5 3 2 3 1 2

Description

Implements the x86 instructions with operands in two
MMX registers and destination in MMX register. Note that the x86 instruction encoding requires
that one of the source registers also be the destination register, this micro-operation allows the des-
tination MMX register (RD) be different from the two source registers (RT,RS).

Fields

e Sz -Source /Dest Size Equivalent x86 instruction encoding
00 - 8 bit x86 instruction | Sz | S
01 - 16 bit PACKSSWB 00, |1

e RT - Source MMX register PACKSSDW 01, |1

e RS- Source MMX register PACKUSWB 00, [0

e RD - Destination MMX register

e S-Signed
0 - Unsigned
1 - Signed

5-4 MMX Chapter 5

VIA Confidential VIA C3 Alternate Instruction Set Programming Reference

November 2002

5.2.3 MMXUNPACK

Encoding
31:26 25:21 20:16 15:11 10:8 7.6 53 2.1 0
MMXUNPK | 010100, | RT | RS | RD | 000,| Sz | 001, | 00, | H
6 5 5 5 3 2 3 2 1

Description

Implements the x86 instructions with operands in two MMX reg-
isters and destination in MMX register. Note that the x86 instruction encoding requires that one
of the source registers also be the destination register, this micro-operation allows the destination
MMX register (RD) be different from the two source registers (RT,RS).

Fields
e Sz -Source /Dest Size Equivalent x86 instruction encoding
01 - 16 bit x86 instruction | Sz | H
10 - 32 bit PUNPCKHBW | 01, | 1
11 - 64 bit PUNPCKHWD | 10, | 1
e RT - Source MMX register PUNPCKHDQ | 11, [1
e RS - Source MMX register PUNPCKLBW | 01, [O
e RD - Destination MMX register PUNPCKLWD | 10, [0
e H - Source Half PUNPCKLDQ 11, | 0
0-Low
1 - High

Chapter 5 MMX 5-5

VIA C3 Alternate Instruction Set Programming Reference VIA Confidential
November 2002

5.24 LOGICALS

Encoding

31:26 25:21 20:16 15:11 10:8 7:6 53 2:1 0
MMXAND | 010100, | RT RS RD 000, | 11, | 100, | L | O
MMXANDN
MMXOR
MMXXOR

6 5 5 5 3 2 3 2 1
Description
Implements the x86 instructions with operands in two

MMX registers and destination in MMX register. Note that the x86 instruction encoding requires
that one of the source registers also be the destination register, this micro-operation allows the des-
tination MMX register (RD) be different from the two source registers (RT,RS).

Fields

e L - Logical Operation Equivalent x86 instruction encoding
00- AND x86 instruction | L
01 - AND NOT PAND 00,
10- OR PANDN 01,
11 - XOR POR 10,

e RT - Source MMX register PXOR 11,

¢ RS- Source MMX register

¢ RD - Destination MMX register

5-6 MMX Chapter 5

VIA Confidential VIA C3 Alternate Instruction Set Programming Reference

November 2002

9.2.5 MOVES

Encoding
31:26 25:21 20:16 15:11 10:8 76 53 2 1 0
MMXMO 010100, | 00000, | RS RD | 000, | 11, | 100, |0| S| 1

\'
6 5 5 5 3 2 3 1 11
Description
Implements the x86 instructions with source operand in an MMX register and desti-
nation in MMX register.
Fields
e S- Replicate Low 32-bits in High Equivalent x86 instruction encoding
0 - High 32-bits from high 32-bits x86 instruction | S
1 - High 32-bits copy of low 32-bits MOVQ 0
e RS - Source MMX register

e RD - Destination MMX register

Chapter 5 MMX 5-7

VIA C3 Alternate Instruction Set Programming Reference VIA Confidential
November 2002

5.2.6 COMPARES

Encoding
31:26 25:21 20:16 15:11 10:8 7:6 53 2 1:0
MMXCMP | 010100, | RT RS RD | 000, | Sz | 101, | E| 00,
6 5 5 5 3 2 3 1 2

Description

Implements the x86 instructions with operands in two
MMX registers and destination in MMX register. Note that the x86 instruction encoding requires
that one of the source registers also be the destination register, this micro-operation allows the des-
tination MMX register (RD) be different from the two source registers (RT,RS).

Fields
e Sz -Source /Dest Size Equivalent x86 instruction encoding
00 - 8 bit x86 instruction | Sz | E
01 - 16 bit PCMPEQB 00, |1
10 - 32 bit PCMPEQW 01, |1
e RT - Source MMX register PCMPEQD 10, | 1
e RS- Source MMX register PCMPGTPB 00, | 0
¢ RD - Destination MMX register PCMPGTPW 01, [0
e E - Compare Type PCMPGTPD 10, [O
0 - Greater Than
1 - Equal

5-8 MMX Chapter 5

VIA Confidential VIA C3 Alternate Instruction Set Programming Reference

November 2002

5.2.7 MULTIPLIES

Encoding
31:26 25:21 20:16 15:11 10:9 86 5:3 2:0

MMXMULL 010100, | RT RS RD M | 000, | 110, | 000,

MMXMULH

MMXMULADD

6 5 5 5 2 3 3 3

Description

Implements the x86 instructions with operands in two MMX reg-

isters and destination in MMX register. Note that the x86 instruction encoding requires that one
of the source registers also be the destination register, this micro-operation allows the destination
MMX register (RD) be different from the two source registers (RT,RS).

Fields

e M - Multiply Type Equivalent x86 instruction encoding
00, - Low x86 instruction | M
01, - High PMULLW 00,
10, - Multiply Add PMULHW 01,

e RT - Source MMX register PMADDWD 10,

e RS -Source MMX register

e RD - Destination MMX register

Chapter 5 MMX 5-9

VIA C3 Alternate Instruction Set Programming Reference VIA Confidential
November 2002

5.2.8 SHIFT

Encoding
31:26 25:21 20:16 15:11 10:8 7:6 53 2:1 O
MMXSHL 010100, | RT RS RD | 000, | Sz | 111, S |O

MMXSHR
MMXSAR
6 5 5 5 3 2 3 2 1
Description
Implements the x86 instructions with operands in two

MMX registers and destination in MMX register. Note that the x86 instruction encoding requires
that one of the source registers also be the destination register, this micro-operation allows the des-
tination MMX register (RD) be different from the two source registers (RT,RS).

Fields

e Sz -Source /Dest Size Equivalent x86 instruction encoding
01 - 16 bit x86 instruction | Sz | S
10 - 32 bit PSLLW 01, | 10,
11 - 64 bit PSLLD 10, | 10,

e RT - MMX register with shift count PSLLQ 11, | 10,

e RS- Source MMX register PSRLW 01, | 01,

e RD - Destination MMX register PSRLD 10, | 01,

e S - Shift type PSRLQ 11, | 01,
00 - Arithmetic Right PSRAW 01, | 00,
01 - Right PSRAD 10, | 00,
10 - Left

5-10 MMX Chapter 5

