™

ZFx86™
System-on-a-Chip
Data Book
Version 1.0 Rev D
June 5, 2006

ZFx86 Data Book 1.0 Rev D Page 1

Legal Notice

THIS DOCUMENT AND THE INFORMATION CONTAINED THEREIN IS PROVIDED “AS-IS”
AND WITHOUT A WARRANTY OF ANY KIND. YOU, THE USER, ACCEPT FULL RESPONSI-
BILITY FOR PROPER USE OF THE MATERIAL. ZF MICRO SOLUTIONS, INC. MAKES NO
REPRESENTATIONS OR WARRANTIES THAT THIS DATA BOOK OR THE INFORMATION
CONTAINED THERE-IN IS ERROR FREE OR THAT THE USE THEREOF WILL NOT
INFRINGE ANY PATENTS, COPYRIGHT OR TRADEMARKS OF THIRD PARTIES. ZF MICRO
SOLUTIONS, INC. EXPLICITLY ASSUMES NO LIABILITY FOR ANY DAMAGES WHATSO-
EVER RELATING TO ITS USE.

LIFE SUPPORT and HIGH RISK APPLICATION POLICY

Customers of ZF Micro Solutions products will not knowingly integrate, promote, sell, or other-
wise transfer any ZF Product to any customer or end user for use in any high risk applications,
LIFE SUPPORT DEVICES or Life support SYSTEMS.

ZF MICRO SOLUTIONS' PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COM-
PONENTS IN HIGH RISK APPLICATIONS or LIFE SUPPORT DEVICES or LIFE SUPPORT
SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GEN-
ERAL COUNSEL OF ZF MICRO SOLUTIONS, INC. and ZF Micro Solutions does not indemnify
for any such uses.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical
implant into the body, or (b) support or sustain life, and whose failure to perform when properly
used in accordance with instructions for use provided in the labeling, can be reasonably
expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to per-
form can be reasonably expected to cause the failure of the life support device or system, or to
affect its safety or effectiveness.

3. A high risk application is any use in any applications where it is reasonably foreseeable that
failure of the product as used in such application(s) would lead to death, bodily injury, or cata-
strophic property damage. Examples of such applications specifically include, without limitation,
certain uses in nuclear facilities, air traffic control systems, and aeronautical aircraft control appli-
cations.

ZFx86 Data Book 1.0 Rev D Page 2

Legal Notice

© 2001 ZF Micro Devices, Inc. All rights reserved.
© 2006 ZF Micro Solutions, Inc. All rights reserved.

ZFx86, FailSafe FailSafe Boot ROM, Z-tag ZF-Logic, InternetSafe, OEMmodule SCC, ZF
SystemCard, ZF FlashDisk-SC, netDisplay, ZF 104Card, ZF SlotCard, and ZF Micro Solutions

logo are trademarks of ZF Micro Solutions, Inc. Other brands and product names are trademarks
of their respective owners.

All trademarks and copyrights of ZF MicroSystems, ZF Embedded, ZF Linux Devices and ZF
Micro Devices are the property of ZF Micro Solutions.

ZFx86 Data Book 1.0 Rev D Page 3

ZFx86 Specification Changes

ZFx86 Specification Changes

This application note describes the differences in specifications between the
ZFx86BGA388 devices produced for ZF Micro Solutions by National Semiconductor and
the new devices available as of June 1, 2006 produced for ZF Micro Solutions by IBM
Microelectronics.

DEVICE MARKING

NSC produced devices had the following foundry code: 3100-0200-01 B1 or 3100-0200-
01 A5

IBM produced devices have the following foundry code: 3100-0200-03 CO

CPU PERFORMANCE

Initial units of the IBM produced devices will be available at 100 MHz CPU clock speeds.
(NSC produced versions were: Industrial temp 100MHz; Commercial temp 128MH2z)
VOLTAGE

NOTE: IF YOU WILL BE TESTING THE NEW ZFx86 ON AN EXISTING DESIGN THE
CORE VOLTAGE MUST BE CHANGED TO THE SETTING BELOW!

The Vdd-Core voltage specification is expected to be:
Minimum 2.09V

Nominal 2.20V

Maximum 2.31V

(NSC produced versions were also dual voltage devices: 5V tolerant, 3.3V 1/O, 2.5V core
voltage at 100MHz and 2.7V core voltage at 128MHz)

MECHANICAL / ENVIRONMENTAL

Commercial Temperature - Up to 100MHz (0C to +70C ambient temperature)
Industrial Temperature - Up to 100MHz (-40C to +85C case temperature)
Package: 388-pin Plastic Ball Grid Array, 35mm x 35mm, fully RoHS compliant

(NSC produced versions were non RoOHS compliant)

ZFx86 Data Book 1.0 Rev D Page 4

ZFx86 Specification Changes

NOTE: After full characterization of the devices from the IBM foundry has been
completed ZF will issue an update regarding final temperature ratings.

SOFTWARE

An updated version of the ZTAG .bin file for loading the Phoenix BIOS is required
however there is no change to the BIOS, just this particular loader module.

Please contact support@zfmicro.com with “NEW Z-TAG” in the subject line and you
will be sent the new file.

Note: When you flash the BIOS using the dongle there are two software components
inside of the dongle; the loader program and the BIOS image. You will now use a new
version of the loader program but the same BIOS image.)

ZFx86 Data Book 1.0 Rev D Page 5

Revision History

Revision History

This section contains the revision history of this manual, starting with ZFx86 Data Book 1.0
Revision D. The change from revision C to revision D occurred when ZF Micro Solutions
resumed production of the ZFx86 using a new foundry in 2006. Designers who used ZFx86 chips
in pre-2006 products will want to review the specification changes listed herein.

Volume | Revision D June 5th, 2006

Most references to ZF Micro Devices are changed to ZF Micro Systems (except in copyright of
source code listings).

The specification for Vdd-Core has been changed to new voltages in Table 7.2, ‘Recommended
Operating Conditions, ' on page 482

A note listing important changes between the NSC (previous) and IBM (current) produced chips
appears on "ZFx86 Specification Changes" on page 4

ZFx86 Data Book 1.0 Rev D Page 6

Table of Contents

ZFX86 SpecCifiCation ChaNGESuuiiiiiiie ittt e e e e e e e 4
REVISION HISTOMY .eiiiiiiiiiite ettt e e e e et e e e e e s e et n et e e e e e e s aneeeeeas 6
Volume | ReVISIoN D JUNE 5th, 20006ccouiieeieieee et e et e e e e e e e e e e s 6
TabIE Of CONTENTS ..ot e e e e e et e e e e e e e e e e 7
LISt Of FIQUIES e 13
LISt OF TADIES .. 17
L. OVBIVIBW .ottt ettt e e e e et e e e e e e e st e e e e e e eaaa e eeesessaaeaeeesssaanaeeeenns 29
2. 32-DIt XBB PrOCESSON .eiiiiiiiiiiiiiiie e e e e ettt e s e e e e e e e e e e e e e e ee e e e eaetba e e e e e aaeaaaaes 31
BN I O Y o = 31
0 0 N [01 (=T g = LI [Tl o T [32

2.1.2. On-Chip Write-Back CaCheccuuiiiiiiiiiiiii e 32

2.1.3. System Management MOOE...........couuiiiiiiiee et 33

A N e o VYT G \Y = T g =T 1= o T o | 33

2.1.5. SIGNAl SUMIMATY ...ooeiiiiiiiiiiii et e e e e e e et e e e e e e e aanne 33

2.2. Programming INTEITACEoouieiiiiiiie ettt e e e e e 33
2.2.1. ProcesSOor INIAlIZATIONuuuuiiiiiiiiiiiiiiiiiiiiie et e e e e e e e e e e e e e e e e eeeeees 34

2.2.2. INSEIUCLION SO OVEIVIEWuuiiiiiiiiiiiiiiieieeieeieeeeeeeeeeeeeeeeeeeeeesseeeeeeeseeeeeeeeeeeeeeeeeeeeees 35

2.2.3. REQISTEI SBL ...ttt e et e e e e e 36

2.2. 4, AUUIrESS SPACES....cciiieiiiiiii it e e ee et e e e e e ettt e e e e e e e e e aa e s e e eeeeeeeatnaaaaeaeeeaeenes 60

2.2.5. Interrupts and EXCEPLIONSc.ooiiiiiiiiie e e 66

2.2.6. System Management MOccuuuiiiiiie e 71

2.2.7. ShUtdowWN aNd HAULueiiiiiiiiiiiiiiiie et e e e e e e e e e e eeeeeeeees 80

B < TR o 1] (=T 1] o PP 80

2.2.9. VIrtUal 8086 IMOUE........uuuiuuiiiuiiiniiiiiiieiieteeeteeeeeeeeeeseeeseeeseesssesseseaeeesseeeeeeeeesenseeeeeeees 82

A N O B o O I @] 0 1=T = 11 o RPN 83

2.3 INSIIUCTION SEL ... e 86
2.3.1. General INStrUCHION FIElUSuuiiiiiiiiiiiiiiiiiiiiiiiiieieeeiee e e e e e e e e e eereeeeeeeeeeees 87

2.3.2. INSLrUCLION St TADIESuviiiiiiiiiiiiiiiiiiiiiiiiee it e e e e e e eeseeeeeeeeeeeeeeeaeees 93

T N[0T (T = o (o PR TP TP TPPPPPPP 113
3.1. NOIth Bridge FEALUIESuuii it e e e e e e e e e e e e e e e eearenan 113
3.2, INErfACE SIGNQAISt e e e 116
3.3. FUNCLIONAI DESCIIPLION .ceeiiiiiiiiie ittt e e e e e e e e e e e e 118
3.3.1. ProCeSSOr INTEITACE........uuuiiieiiiiiiiiiiiiiii bbb essaeesssessseneeeenees 118

3.3.2. DRAM CONIIOIIE ...ttt e e e e e e eeeees 122

3.3.3. Configuration and Testabilityuueiiiieiiiiiiiii e 126

3.3.4. PCl bus interface and arbiter.............uuuuuruiiiiiieeiiiiiiieieeeeeereeeeeeeeeeeereeeeeeeeeeeeereees 127

3.3.5. PCl Write BUffer @and BUISES...........uuuiuuuiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeens 129

3.3.6. Write buffer arChit@CtUIeuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiieei e eeeeeeeeees 134

3.3.7. System Management MOOE.............uuuiiiiieiiiiiiiieee e 134

3.3.8. POWEr ManagemMENT......uiiiiiii e eiei et e e e e et s e e e et e e e e et e e e e eaan e e e e e e eaees 136

I = To 5] (] Y= PP T PP PPP T OPPPPPPPPRPN 136

ZFx86 Data Book 1.0 Rev D Page 7

Table of Contents

3.4.1. RegiSter AAreSS IMaAPcuuiiiiiiiiiiiiiiie ettt e et e e e 137
3.4.2. DRAM TEQISTEIS ...eiiieiiiiiiiiieie ettt ettt e e e e e et e e e e e e e s st b baeeeeeeeeaaans 149
3.4.3. Power Management FEQISIEISuuuuiiii e e e e 160
4.4, TESE SIGNAIS ...ttt e e e e 162
3.4.5. PCI configuration reQiSLEIScccuuuiriiieeeeiiiiiiiii ittt e e e 162

A, SOULN BITAQE oottt ettt ettt e e e e e e e e e e e eeeeeeeneeees 165
4.1, South Bridge MOAUIEccooiiiiee e e e e e e e e s 165
4.1.1. SOUth Bridge FEAIUIESuuiiiiiiieeeiiiieiee ettt 165

4.2, ATCNITECIUIE ... 166
4.2.1. Front-side PCI / Back-Side PCI BUSccooiiiiiii e 167
4.2.2. IDE CONIOIET ... e 168
4.2.3. Universal Serial BUSooooiiiiiii s 168
4.2.4. Integrated SUPETI/Occii e e e e e et e e e e e eeaaae 169
425 ISA BUS INtEITACE ..o 169
4.2.6. POWEI MaNAGEMENT. ...ttt ettt e e e e e e e e e reeennnes 170
4.2.7. GPIO INEITACE ... 171
B.2.8. ZF-LOQIC...eeeeeiiiiittte ettt ettt e e e s 171

4.3, SIigNAl DESCIIPLIONSvvteiieeeee ettt ettt e e et e e e e e e bbb e e e e e e e s asbbaneeeeeeeeans 172
4.3.1. System Interface SigNalSuuiiiii i 173
4.3.2. Back-Side PCI Interface SignalS........c.coovviiiiiiiiii i eeeaans 175
4.3.3. Integrated Superl/O Interface SIgNalScoooiiiiiiiiiiieii e 188

4.4, RegiSter DESCIIPLIONS......cciiiiieiiies e s e e et e e e e e e e e e e e e e e e e e aeaa e eeeas 195
4.4.1. PCI Configuration Space and Access Methods............cccceeeviiieviveiiiciin e, 196
4.4.2. REQISIEr SUMIMAIIES ...ccoiiiiiiiiiieee ettt e e e e e e a e s 197
4.4.3. ChipSet REQISIEI SPACEuuuiiiiiieiiiiiiiiii it 206
4.4.4. USB Controller Registers - PCIUSBciiiiiiiiiiiiieis et aeea e 246
4.4.5. ISA Legacy REQISIEr SPACE.......cciiiiiiiiiiiiiieee e 248

4.5. Superl/O - A PC98 Compliant Celloiiiiiiiiiieieiie e 258
4.5.1. OUtStaNdiNg FEALUIESccoiieiiiiiiii e e e e e e e e e e e e eeaanes 258
5.2, FRAIUIES. ...ttt e e e e et e e bt e e e e e et e e bbb aeaaaeeenaaa 259
4.5.3. SIGNAL/PIN DESCIIPUONSuvvvtiieeeiiiiiiieieee e e et e e e s e e 261
4.5.4. Device Architecture and Configurationc.coovvviiiiiiiini e ee e 261
4.,5.5. Standard Logical Device Configuration Register Definitions ..o 265
4.5.6. Standard Configuration REQISTEIS...........uuuiiiiiiiiiiiiieee e 267
4.6. Superl/O Configuration REQISTEIS........ccovvuiiiiiii e e e 269
4.6.1. Register Type ABBreviationsccooooviiiiiiiiii e 269

4.7. Floppy Disk Controller (FDC) Configurationcuuueeeiieeiiiiiiiiiiieeee e ssiiiieeeeee e 272
4.8. Parallel Port ConfigUrationoeieiiiiiiiiiiiieee e e e 274
4.8.1. Logical Device 1 (PP) ConfiQUurationcouuiuuiiiiieeeeeniiiiiiieeee e 274
4.9. System Wake-Up Control (SWC)ccooeiieeeicn e e e 276
e T I O 1V =TV = 276
4.9.2. FUNCLIONAI DESCIIPLION ...ttt e e 276
4.9.3. EVENE DELECHION ..o 277

ZFx86 Data Book 1.0 Rev D Page 8

Table of Contents

4.9.4. SWC ReQIStEr BilMacoiiuiiiiiiiiieei ittt 291
4.9.5. Keyboard/MoUuSE CONIIOL.........ueiiiiiiiiiiiiiiiiie et 294
4.9.6. Infrared Communication Port Configurationcccccceeeiiii i 297
4.10. ACCESS.Bus Interface (ACB) Configuration..............cuueeeiiiiiiiiiieeeenniiiiiieeee e 298
4.11. Real-time ClIOCK (RTC) ..iiiiiiiiiiiiiiiie ettt e et e e e e e e 300
I O O = O @ 1 =T 1= 302
4.11.2. Functional DEeSCIIPLIONcouiiiiiiie e e e e e e et e eeeeeeeaenns 302
4.11.3. RTC Configuration REQISTEIS.........iiiiiiiiiiieeeeeiiiiiee e 307
I O O (T |1 (= £ PP PR PRI 309
4.11.5. RTC General-purpose RAM Mapcoccuuiiiiiiiiiiiieeiiiiess e e e e e e eevvnin e e e e e eeeanes 321
4.12. ACCESS.DUS INTEIfACE (ACB) ...eiiiieiiiiiiiiiiiee ettt e e 322
4.12.1. FUNCLIONAI DESCIIPLION ...veiiiiiiee ettt e e e e 322
O AN O = B =T |13 (=] £ SR 329
4.13. Legacy FUNCHONAI BIOCKSuuuiiiii et e e e e e e aanaana s 335
4.13.1. Keyboard and Mouse Controller (KBC)coocuuiiiiieieiiiiiiiieeeee e 335
4.13.2. Floppy Disk CoNntroller (FDC).......couiiiuiiiiiiieeeieiiiiieee et 336
4.13.3. PArallel POto 337
4.13.4. UART Functionality (SPL/SP2).......cccuuiiiiiiiieeeiiieeeee et 340
4.13.5. IR Communication Port (IRCP) Functionalitycceeeiiiiiiiieiiiiiiii e, 345

5. ZF-L0QIC @Nd ClOCKING ..uuuiiiiiiieeeeee et 403
D FRATUIES . ..ttt e ettt e e et e e e a e e ern s 403
5.2. ZFL RegiSter SPACE SUMIMAIYcceiiiiuiiiiiiieaeeeeiaieieeee e e e e s s e e e e e e e s asnsbeneeeeeeeaaaans 404
5.2.1. Pins Associated With ZF-LOGIC..........uuuiiiiiiiiiiiiiiiiceeeeeciiieee e 408

5.3. ISA Memory Mapper for FIaSh/SRAM ... e 410
5.3.1. WINdOW SEttiNGS FEQISIEIS ... cciiiiiiiiici e e 415
5.3.2. CONLIOl (R/W, 8/L6) ..ottt e e e 418
5.3.3. EVENLS (SMI, BIC.) ceiriiiiiiii ittt e et e e e e e e e e e e e e eaeene 418
5.3.4. Initialization of MEM_CSOcciiiiiiie e 418
5.3.5. Sample Code for Memory Window Calculationccccvveeeiiiiiiiiiiieeeeennns 421

L 1 O T 1@ I 4= T o] o= 422
5.4.1. GPCS CONIOL....cuiiiiiiiiiiie e e e e 424
5.4.2. GPCS hase oW DYE........ouiiiiiiiiiii e 424
5.4.3. GPCS base Nigh DYcooiiiiiii e 424
5.4. 4, GPCS EVENES....oiiiiiiiiiieiiiet ettt e e 424
5.5, WACHAOG TIMET ...ttt e et e e e e e e e e e e e e anees 424
5.5.1. WatChdOg REQGISIEISuiiiiiiiiieiiiiiee ettt e 426

L G A VAV A1 o T =T = o 430
I A - Yo T O A= YT 434
5.8. BOOt Parameters REQISIENooiviiiiiiiie it e e e e e e e e e e e eeeanena 437
5.8.1. Special NOtES Of INTEIEST......cciiiiiiiiiiiiiie e 440
5.8.2. DESIGN EXAMPIC...ciiiiiiiiiiiieiiii ettt e e 441
5.8.3. Clocking and Control OVEIVIEWccccieeiiieeeiiiiiii e eee et e e e e 443

5.9. Data registers (FOH t0 FEH)uiiiiiiiiiiiiec et 444

ZFx86 Data Book 1.0 Rev D Page 9

Table of Contents

5.10. BUR BaSE REGISIETcci ittt et e e e e e 445
5.11. SYSEM ClIOCKING ...utttiiiiieeiiiiee et e e e e e e e e e e e e e 447
5.10.1. MNZ_TAC [AFLB]....uieiieeiiiiiee ettt ettt e ettt e e e e et e e e e nne e e e e e 448
5.11.2. 32KHZC _C [AFOL] ... iiiiiiieee e ettt a e e e e et e e e e e e e s snnsrneeeeeeaeaanns 449
5.11.3. SYSCLK _C [AZ20]. . uteeeeutiieeeiitieeeaaitiee ettt a ettt e et e e s s nntae e e s anbae e e e neees 450
5.11.4. USB_48MHZ_C [AELS]....cetiiiiiiiie ettt e e 453
5.11.5. PCl CIOCKING -..ttttttteee e ettt ettt ee e e e e e e st e e e e e e e s snssnneeeeeeeeaanns 454

6. Z-tag, BUR, and The ZFiX CONSOI@......ccoiiiiiii i 455
6.1. Serial Port CONNECHIONccoiiii i e e seeessereeeeees 455
6.2. Z-TAG DONGIES ...ttt e e e et e e e e e e e e e 455
6.2.1. PassTRrough DONGIEoii i e e 455
(SR V=Y o o] Y o o | = 455
6.2.3. USING the DONGIE ..o 456

6.3. Z-tag Manager SOftWAIEocuuuuiiii e e e e e e e e e aaeraaaaas 459
LOIC = o S 101 0] 0 = Y/ 459
6.3.2. Z-tag Data Transfer ProtoColcoiuiiiiiiiiiiiiiceeciieee e 460
6.3.3. Z-tag POrt INTErfaCevei e e e 461

6.4. Z-tag Register DESCIPLIONSccuuiiiiie e e e e e e e e e e e e aeaeennans 461
6.4.1. Z-tag Data (DIN) ...cccoiiiiiiiiiiiiieee e 461
6.4.2. Z-tag CoNtrol (7TCR) ..ot e e 461

6.5. BUR (BOOt UP ROM) ..ooiiiiiiiiiiiiiiie ettt e e e e et e e e e e s st eeeeeeeeannes 462
6.5.1. ZFiX CONSO0I@ FUNCLONSuuuiiiiiiiiiiiiiiiiiiiiiiiietieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeeeees 463
6.5.2. Z-tag FUNCHONAIILY ...t e e 464
6.5.3. Internal FUNCHONAIITY.........oiiiie e 465
6.6. BUR COM1 Download EXamMPIEScciieeiiiiiieiii et e et e e e e e e eennens 466
6.6.1. Procomm: Download a TeSt Program...........cccuuvveiiieiiiiiiiiiiiieee e 466
6.6.2. HyperTerminal: Download a Test Programccccccuuiiiiiiieeeeniiniiiiieeeee e 468
6.6.3. BUR Version Test Program Source Codeccooeveeeiiiiiiiiiiiiiie e 469
6.6.4. BUR/BET MEMOIY MaP ...ceeiiiiiiiiiiiiiiiieee ettt 470

6.7. Flash Programming EXamPIEcooiiiiiiiiiiiiiiiiiiiiiieeee e 470
7. Electrical SPeCIifiCatIONS.....ccoiiiiiiiiiie ettt 481
7.1. General SPECITICALIONScciiiiiiiee e e e e e 481
7.1.1. MTTF and FIT SPeCifiCatioNS.........uceeiii i 481
7.1.2. Power/Ground Connections and Decoupling..........ccoouiuviiiiiieeeiniiiiiiiiieeee e 481

7.2. Signal 1/0O BUffer TYPe DIr€CIOIYuuuuiie et 483

7.3. Detailed DC Characteristics Of CellS.......ccooiiiiiiiiiie e 484
A N O O g T = Lo (T 1 1o 489
741, SYSEM INTEITACEcii i et e e e 489
A V=T o oV (T = T = 492
7.4.3. ACCESS.DUS INTEITACEuuuiiieiiiiiiiiiiiiieiieiiteieeeeeeeteeeeee et eeeeeeeeeeeeeeeeas 494
T4 PClBUS....ceiii ittt e ettt e e e hb e e et e e e e e 495
T 1Y N | 1= = Vo] PP 501
7.4.6. IDE INterface TiMINGuuiii i e e e e e e e e e e e e e 504

ZFx86 Data Book 1.0 Rev D Page 10

Table of Contents

7.4.7. Universal Serial BUS (USB)oooiiiiiiiiiiieiiiiie e 523
7.4.8. Serial PO (UART) .ottt ettt e e e et e e e e e e aaans 527
A = U 1 o A I 11 o 528
7.4.20. JTAG TIMING woeieiiiiiiee ettt ettt e et b e e e e ssbe e e e e abbe e e e s anneeeeeennes 529
A 55 T] = [R 13T Vo PSPPI 530
7.4.12. FIOPPY DiSK INTEIACEuuii e e 531
7.4.13. Keyboard and Mouse INtEIACE..........coiiiiiiiiiiiiiiiiceee e 533
T.4.14. PArallel POITttt s s e s seesaeesseeaeneaeeeeeees 534
A A e o T o TP PPPPP 540

8. PINOUL SUMIMAIY ..oiiiiiiiiiiiiiie et e e e e e e e et e e e e e e e e e e e e e eeaaaans 541
8.1, PaU ASSIGNMENTSutiiiiiieeiiiiiiee ettt e e e e et e e e e e s s s bbb et e e e e e e s asbbbaeeeeeeeeaans 541
8.2. Pin Descriptions (Sorted DY PiN)ooiuviiiiiiieeiiiiiiieie et 545
8.3. Pin Descriptions (Sorted by Pin NamMe)ccooiiiiiiiiiiiiieeee e 558
8.4. Pin Descriptions (Sorted by Pin DeSCrPioN)cc.vviiiiiiieiiiiiiiee e 572
O, BUR AP et eeeaaaaas 587
9.1. USING the BUR AP ...ttt e e 587
9.2. Function Call DefinitioNSccooiiiiiiis e 587
10. Signal StatuS AFLEI POSTuiiiiiiiiiiiiiiie et 597
J0.1. ACCESS BUS ...ttt e e e 597
O T i T o] o)V £ SRR 597
10.2.1. FDD ACHVE ..eeeiiiiiiiiie ettt ettt ettt e et e et e e nnes 597
10.2.2. Z-1AG ACHIVE .ottt ettt e et e e e e e e e e e 598
F0.3. GPIO e 599
T 1 PO PUPPPPRPRR 599
L0.5. PSS/ 2 ettt e e b ean 599
I T = O PR PUPPPPPRP 600
0 T = R PUPPPPROTR 600
10.8. IR CONIOl (COM2) ... ittt e e 601
OIS A o W oo | o PP PP PUPPPP PRI 601
11. Phoenix BIOS Register SettiNgS. ..o 603
O I [1 = T [T TP PSP PPPPPPPPPPN 603
11.1.1. Reset, Sampling, and Misc North Bridge RegiSters..........ccccccovnniiiiiiieeeennnns 603
11.1.2. DRAM REQISIEIS .. iiiieiiiiie et e ettt e ettt e e e e e e e et n e e e e e e e e e e neaa e e e s 615
11.1.3. Power Management REQISIEIScuuuuiiiiii e e e ee e 623
11.1.4. PCI Configuration REQISTEISuuiiiiiiieiiiiiiiiiiie e 624
R 10T UL = o [1SS 626
7 R [o] o) V2 I 11 Q@01 {0 = 626
I T = 11 1= I o o] o AU 629
L11.2.3. SEMIAl POt L .oiiiiiiiiieiiiiiieiieee ettt et e aaeaaaaaaaaaaas 630
11.2.4. SEIAl POIT 2 ...ttt 632
11.2.5. PS/2 MOUSE/KEYDOAId.........cooiiiiiiiiiiiieee e 633
11.2.6. Infrared Communication Port Configurationccccvveeieeeeniiiiiiieeeeeeeenns 635

ZFx86 Data Book 1.0 Rev D Page 11

Table of Contents

L11.2.7. ACCESS BUS ...ttt e e e e e et e e e e e aeeeaaea 636
11.2.8. Pin MUItIPIEXOr REQISTEIS ...ttt 637
11.2.9. GPIO Configuration PiNSccooiiiiiiiiiiiiiiiis e e e e e e e e e e e e eaanns 640
T L0 1= PRSP 653

ZFx86 Data Book 1.0 Rev D Page 12

List of Figures

Table Of CONTENTS ..o e e e e e e e e eeeeeeeenennnan 7
LIST Of FIQUIES ittt e e e e e e e e e e e e e e ee s e e e e e eata e eaaaens 13
ISy A0 1= o] 17
L. OVEBIVIBW ettt ettt e e e e e e e et et ettt ettt abb e e e e e e e e e e eeeeeeeeeesesbnnnnn s 29
Figure 1-1 ZFx86 Fail-Safe PC-on-a-Chip Block Diagramccccccvveeeeiiiiiiiiiiieeeeenns 30
2. 32-DIt XBB PrOCESSOI oiiiiiiiiiiiiiiiii e e e e e e e e e ettt s s e e e e e e e e e e e e e e e e eaeaeataanaeaeeaeeeeeees 31
Figure 2-1 Processor BIOCK Diagramcoooiiiiiiiiiiiee et 31
Figure 2-2 TASK REQISTEI ..t 46
Figure 2-3 Processor Internal 1/O Interface Signalscccoevivieiiiieiiiiii e 53
Figure 2-4 Processor Cache ArchiteCtureccoooeeiiiiiiiiiiii e 58
Figure 2-5 Memory and I/O AdAreSS SPACEScciiieeiiiiiiiiiiien e 61
Figure 2-6 Offset Address CalCulationcoiiiiiiiiiiiiie e 61
Figure 2-7 Real Mode Address CalCulationeeviieeiiiiiiiiiiieee e 63
Figure 2-8 Protected Mode Address CalCulationcccvvvvviiieiiiiiiiiiieee e 63
Figure 2-9 Selector MEChaNISIM ... e eeeeeans 64
Figure 2-10 Paging MEChaNISIMciiiiiiiiiiiice e e s 65
Figure 2-11 Error Code FOIMALcoooiiiiiiiiiiiiieeeee it e e e e 70
Figure 2-12 System Management Memory Address SPaceccccccevviiiiiieeieeeeenininnee. 72
Figure 2-13 SMI Execution FIOW DIiagramooocuiiiiiiieeiiiiiiiiiiee e e e 73
Figure 2-14 SMM Memory Space HEAUENuciiiiieiiiieeiiciee e 74
Figure 2-15 SMM and Suspend Mode State Diagramcccooeevvvveeiiiiinneeeeeeeeeiriiene e 78
Figure 2-16 Tag WOrd REQISIEIuvuuiiii it e e e e 84
Figure 2-17 FPU StatuS REQISIENoviiiiiiiiiiieie ettt 84
Figure 2-18 FPU Mode Control REQISTETcccoiiiiiiiiiiiiieee e 84
Figure 2-19 INSLruction Set FOIMALcooiuiiiiiiiiee i 86
T N[0T T = o (o PR TP TR TPPPPPP 113
Figure 3-1 = = B = 11 1 114
Figure 3-2 =] [Tt S I =T | = o 115
Figure 3-3 CPU Address Translation and DECOUEccovvviiviiiiiiiiiieeeeceiiieie e 122
Figure 3-4 32-Bit BanKS CONNECLIONooiiiiiiiiiiiie e 124
Figure 3-5 16-Bit BanNK CONNECHIONSevviiiieiiiiiiiiiiei et 124
Figure 3-6 PCI Bus Arbiter BIOCK Diagramcc.ueeeiieeiiiiiiiiiiieeeee e 128
Figure 3-7 PCI Bank Arbiter State Diagramccceeeeerieieiiiiiiie e e e e e 129
Figure 3-8 Translation of Type 0 Configuration Cyclecccccceiiiiiiiiiiiiccci e, 132
Figure 3-9 Translation of Type 1 Configuration Cyclecccccceeeeiiiiiiiiiiiiiiii e, 132
Figure 3-10 SMM RAM LOCAUONeiiiiiiiiiiiiiiiiie e ettt e e e e aae 135
Yo TU L o I = o Lo 1= PSPPSR 165
Figure 4-1 Internal BIOCK DIagrameeviiiiiiiiiiiiii e 167
Figure 4-2 IDE Channel CONNECHIONScoiiiiiiiiiiiiiiiiee et 168
Figure 4-3 South Bridge BIOCK Diagramccooeeuiiiiiiiiieiirieeis e e e 172
Figure 4-4 ST o LT g VL@ =1 o Tod [T= To | = 1 1 o PP 259

ZFx86 Data Book 1.0 Rev D

Page 13

List of Figures

Figure 4-5 Detailed Superl/O BIOCK DIiagramcccoooriiiiiiiiiiieeeiiiiiieeee e 262
Figure 4-6 Structure of the Standard Configuration Register Fileccccccvvvvvviinnnn.. 264
Figure 4-7 Configuration RegISIEr MaAPuuuiuiiiiiiiiiiiiiiiiiiiiireiieeireereerereeeeeeeeeeeeeeeeeeee 267
Figure 4-8 Keyboard and Mouse INterfaCescccvvveiiiiiiiiiee e 295
Figure 4-9 Divider Chain Controloooiiiiiiiii 303
Figure 4-10 INterrupt/Status TiMINGooooovriiiiieeeee e 306
Figure 4-11 Bit TIANSTEI ..oooiiiiiiiiiei et e e e e 323
Figure 4-12 Start and Stop ConditioNScooooiiiiiiiii i 323
Figure 4-13 ACCESS.bus Data Transactionccoooeeeiiiieiiiiiiiiseccceineanes 323
Figure 4-14 ACCESS.bus Acknowledge CyCleccooiriiiiiiiiiii e, 324
Figure 4-15 A Complete ACCESS.bus Data TransSactionccccccccveeeiemmenemeemnennennnnns 325
Figure 4-16 UART Mode Register Bank ArchiteCtureccccoooiiiiiiiiiiieiiiiiiiees 341
Figure 4-17 Composite Serial DAtaccccuveiiiiiiiiiiiiiiiiieeee e 346
Figure 4-18 IRCP Register Bank Architecturecccoooe oo 355
Figure 4-19 DMA Control Signals ROULINGooooiiiiiiiieie e 377
N4 St o Yo | [olir= 10 Lo I @ T Yo 41 o 403
Figure 5-1 A o To | [l =T 1 [= PP 404
Figure 5-2 Memory Window Mappingcooeeeeeeieeiiieeeee e 415
Figure 5-3 Fields in 32-bit memory settings regiSterccccvveiieieiiiiiiieee e 416
Figure 5-4 Watchdog BIOCK DIagramooocuiiiiiiiieeiiiiiieeee e 425
Figure 5-5 PWM CoNtrol UNItcooviiiiiiiiieiieee e 430
Figure 5-6 PWM Period and DUty CYCIEuuiiiiieiiiiieeiie e 431
Figure 5-7 Do) gl | (SR (LY7o T O o 1Y =] o) 434
Figure 5-8 Sample DIP Switch SChematiCuuueeeiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeee e 442
Figure 5-9 System Clocking and CONLrolcooiiiiiiiiiiiiiee e 443
Figure 5-10 mhz_14c[AF16] Clocking Control CirCUItrYccccuuererieeeiiiiiiiiiieeee e 449
Figure 5-11 32KHZC_C [AF01] Clocking Control CirCUItryccccceeviurumuuvmnrnnniinninnennnnns 450
Figure 5-12 SYSCLK_C [A20] Clocking Control CirCUItrYccccoeeeeieiiiiiiiiiiiieeeeeeeeeennnnns 452
Figure 5-13 USB_48MHz_C [AE15] Clocking Control CirCuitryccccccceeevivieeveeeennnnnnnn. 453
Figure 5-14 PCI Clocking Control CirCUItIYoooiiiiiiiiiiiee e 454
6. Z-tag, BUR, and The ZFiX CONSOIEcoouiiiiiiiiiiiii e 455
Figure 6-1 Data Transfer ProtOCOIoeiiiiiiiiiiiiiiieee e 460
Figure 6-2 DAtA INPUL e 460
Figure 6-3 Dongle Data RECOMcoovvvviiiiiiiiieeeee e 465
Figure 6-4 Using Procomm YMODEM BatChccooiiiiiiiiiiiiii e 467
Figure 6-5 Using HyperTerminal - Send File Ymodemccccoooevviiiiiiiiiiiie e, 468
7. Electrical SPeCIfiCatiONSccciii e 481
Figure 7-1 Differential Input Sensitivity for Common Mode Rangecceoeeeeinnns 486
Figure 7-2 sysclk_c Timing and Measurement POINESccccvviiiieeiiniiiiiiiiieeee e 490
Figure 7-3 FESEE_N TIMING ittt e e e e e e e e e e 490
Figure 7-4 (=TSR 01U 88 110 11 o TSP 491
Figure 7-5 (8 = O T T 1] 011 T PP 491
Figure 7-6 Drive Level and Measurement Points for Switching Characters 492
Figure 7-7 OULPUL Valid TIMING ..eeeeiiiiiiiiiiieiiiiiiiiiieeeeeeeeeeeeee et eeeeeeeeeeeeeeeeees 493

ZFx86 Data Book 1.0 Rev D

Page 14

List of Figures

Figure 7-8

Figure 7-9

Figure 7-10
Figure 7-11
Figure 7-12
Figure 7-13
Figure 7-14
Figure 7-15
Figure 7-16
Figure 7-17
Figure 7-18
Figure 7-19
Figure 7-20
Figure 7-21
Figure 7-22
Figure 7-23
Figure 7-24
Figure 7-25
Figure 7-26
Figure 7-27
Figure 7-28
Figure 7-29
Figure 7-30
Figure 7-31
Figure 7-32
Figure 7-33
Figure 7-34
Figure 7-35
Figure 7-36
Figure 7-37
Figure 7-38
Figure 7-39
Figure 7-40
Figure 7-41
Figure 7-42
Figure 7-43
Figure 7-44
Figure 7-45
Figure 7-46
Figure 7-47
Figure 7-48
Figure 7-49
Figure 7-50
Figure 7-51
Figure 7-52
Figure 7-53

Setup and Hold Timing - Read Data INccccccoviiiiiiiiiiieiiieeeeee e 494
ACB Signals (SDAT AND SCLK) Rising and Falling timesccccvvuuie. 494
Testing Setup for Slew Rate and Minimum TimiNgcccccceeevviiviniiiinnnnn. 496
V/1 Curves for PCI Output SIgNalSccoooviieiiiiiiiiiiii e 496
PCICLK Timing and Measurement PoINtscccccoeiiiiiiii, 497
Load Circuits for Maximum Time Measurementsccccceeeeeeieeeieeeneeeeenn. 498
Output Timing Measurement CONAItiONScooiiiiiiiiiieeeiniiiiiiee e 499
Input Timing Measurement Conditions ..., 500
RESEL TIMING werieiiiiiiiiieeeeeeeee e 500
[ISY AN R =T= Tl @ 01T = 11 0] o 503
ISA WIite OPEIatiONoiiiiiiiiiiiieiiei et 503
IDE RESEL TIMING .oeiiiiiiiiiiiiiiiieiee ettt 504
IDE Register Transfer TO/From DEeVICEooccvviiiiiiiieiiiiiiiiiieeee e 506
IDE PIO Data Transfer TO/From DEeVICEcccvvvveiiieeiiiiiiiiiiiiee e 508
Multiword Data TranSfer e 510
Initiating an Ultra DMA Data in BUrStooooviiiiiiiieceeeeee e 513
Sustained Ultra DMA Data INn BUISTEuuueiiiiiiiiiiiiiiiiiieieeieieeieeeeeeeeee e 514
Host Pausing an Ultra DMA Data In BUrstcccccvvvieiiiiiiii 515
Device Terminating an Ultra DMA Data In BUrStcccccvviiivieeiniiiiiiine, 516
Host Terminating an Ultra DMA Data In BUrstccccoeeeeiiiii. 517
Initiating an Ultra DMA Data Out BUIStccvviiiiiiiiiiieccie e, 518
Sustained Ultra DMA Data Out BUISEueuiiiiiiiiiiiiiiiiiiiiieiiieeeeeeeeeeeeeeee 519
Device Pausing an Ultra DMA Data Out Burstccccoeeeeiiiiiee, 520
Host Terminating an Ultra DMA Data Out Burstcccccoeeeeiiiiiineen. 521
Device Terminating an Ultra DMA Data Out Burstcccooeeeeeeeeeeennn. 522
Data Signal Rise and Fall Timecccccoeiiiiii 525
Source Differential Data JItteruuuueuiuimiiiiiiieiiiiiiiiiiieieeiieeeeeeeeeeeeeeeeees 525
EOP Width TIMING ..eeeeeeiiiiiiiiiee et e e 526
Receiver Jitter TOIEranCeoooovvviiiiiiiiie 526
UART, Sharp-IR, SIR, and Consumer Remote Control Timing 527
Fast IR Timing (MIR and FIR)cooiiiiiiiiiiii e 528
TCK Timing and Measurement POINESccooooiiiiiiiiiccicciies 529
GPIO Output Timing Measurement ConditionScccooveeevviviiiiiiiinieeeeeeeenns 530
GPIO Input Timing Measurement Conditionscccoeveeevviiviiiiiiineeeeeeeeenns 530
Floppy Disk Reset TIMING ...oooiiiiiiiiiiiiieie e 531
Write Data TimiNG ...ccooooiiieiiieee e 532
Drive Control TIMINGcooiiiiiiiiiiie e 532
Read Data TiMING ...coovvviiiiiiieieeeeee e, 533
KBC Signals Rising and Fallingcccoooeviiiiiiiiii e 533
Parallel Port Interrupt Timing (Compatible Mode)ccccvveeiiiiiiiiieiiiiinnnn, 534
Parallel Port Interrupt Timing (Extended Mode)ccccoeeiiiii. 534
Typical Parallel Port Data EXChangeccccvvviiiiiiiiiiiiiee e 535
Enhanced Parallel Port 1.7 TiMiNgGoevviieiiiiiiiiiiieeee e 536
Enhanced Parallel Port 1.9 TiIMiNgcoooovvviiiiiii . 537
ECP Parallel Port Forward Timing Diagramccccvevvvvviiiiiiieeeeeeeeieiinnnnn 538
ECP Parallel Port Backward Timing Diagramcccccvevvvviiiiieeeeeeeenennnnnn. 539

ZFx86 Data Book 1.0 Rev D

Page 15

List of Figures

Figure 7-54 ZF-Logic Output Timing Measurement Conditionsccccvvveveeeeerinnnnns 540
Figure 7-55 ZF-Logic Input Timing Measurement ConditionNScccovviiiiiiieeeeeninnnns 540
8. PINOUL SUMIMAIY ..oeiiiiiiiiiiiii ettt e e e e e e e 541
Figure 8-1 ZFx86 Package - Solder BallSccccoiiiiiiiiiiiiiiiiiiieeee e 542
Figure 8-2 388 BGA INEINAIci e et e e e e e eanees 543
Figure 8-1 A eI @ 11=T 1] r= 11 o] o [P 544
0. BUR AP et eeeaaaans 587
10. Signal Status AFLEI POST ...ooiiiiiiiiiiiiiiiiee et 597
11. Phoenix BIOS RegiSter SEtliNgS ... 603
Lo PO PPPPPPPPP PP 653

ZFx86 Data Book 1.0 Rev D Page 16

List of Tables

Table Of CONTENTS ..o e e e e e e e e eeeeeeeenennnan 7
LISt Of FIQUIES e e e et e e e e e e e e e e e e e e e e e 13
LISt Of TADIES oo 17
L. OVEBIVIEW ettt et ettt e e e e et e e e e e e e et e e e e e e e esta e eeeeessaaeaeeesssaanaaeeeenns 29
2. 32-DIt X6 PrOCESSOI ittt ettt e e e e e e e e e e e ettt bbb e e e e e e e e aaaas 31
Table 2.1 Initialized RegiSter CONIOIS.........ccoiiiiiiiiiiiee e 34
Table 2.2 APPlICAtioN REQISIEr SEL......uuiiiiiiiiiiiiiiii e 37
Table 2.3 Segment Register Selection RUIES..........occuviiiiiiiiiiiciiieee e 39
Table 2.4 [I ST L= 1S (= 40
Table 2.5 SYStEM REQISIEI SEL... .o e aeeeans 41
Table 2.6 Control REQISIEIS MaAPccuiiiiiiii e e e e e eeeeeeees 42
Table 2.7 CR3, CR2, and CRO Bit DEfINItIONSccvuiiiiiiiiieeee et e e e e raan e 42
Table 2.8 Effects of Various Combinations of TS, EM and MP Bits.............................. 43
Table 2.9 Application and System Segment DescCriptorsccccceeeeeeeiiiicicee, 45
Table 2.10 (T L LI B LT]) (o] £ SP 45
Table 2.11 Gate Descriptor Bit DefinitionSccouuiiiiiiii e 46
Table 2.12 32-Bit Task State Segment (TSS) Table ... 46
Table 2.13 16-Bit Task State Segment (TSS) Table ..., 47
Table 2.14 Configuration Register Map...........uueuiiiieiiiiiiiiiiiie e 48
Table 2.15 CCRL Bit DefiNItIONS ...ttt e e e e e e eeeeeeeeeeeeas 49
Table 2.16 CCR2 Bit DefiNItIONS ... e e eeeeeeeeeeeeeeas 51
Table 2.17 CCR3 Bit DefinItiONS ...ttt e e eeeeeeeeeeeeeees 51
Table 2.18 SMAR SizZ€ Field ... 52
Table 2.19 DIRO Bit DefiNItiONS ...cccvvviiiieieeceeeeeeeeeeeeeee 52
Table 2.20 DIR1 Bit DEfiNitioNScooviiieiiieiie e, 52
Table 2.21 =T o180 =011 (= 54
Table 2.22 DR6 and DR7 Field Definitionscoooviiiiiiiiiiiii 55
Table 2.23 =TS R T 1S3 =] P 56
Table 2.24 TR7 and TR6 Bit DefinitioNSccccooeeiiiee e, 56
Table 2.25 TR6 Attribute Bit PairS.......ccooeiiiieeeee 57
Table 2.26 TR3-TR5 Bit DefiNitioNS........coooeiiiee e 59
Table 2.27 Memory Addressing MOAES.........uuuviiiiiie e s 62
Table 2.28 Directory and Page Table Entry (DTE and PTE) Bit Definitions.................... 66
Table 2.29 Interrupt Vector ASSIGNMENESuuuiii i e e s 68
Table 2.30 Interrupt and EXCeption PriONtIESeviiiiiiiiiiiiiecee e 69
Table 2.31 Exception Changes in Real MOdeccooiiiiiiiiiiiiie e 70
Table 2.32 Error Code Bit DefinitioNS.........covvvvviiiiiiiii 71
Table 2.33 Requirement for Recognizing SMI# and SMINTcooooiiiiiiiiiiieveeeeiiinn 72
Table 2.34 SMM Memory Space Headerccovviiiiiiiiiir e eeeeens 75
Table 2.35 SMM INSTFUCHION ST ...t eeeeeeees 76
Table 2.36 SMM Pin DEfiNItIONSuiniiiiiiiiiii e eenneereeenne 79
Table 2.37 Descriptor Types Used for Control Transfer...........ccccocee e, 82
Table 2.38 Status Control Register Bit DefinitioNsoocvvviiiiieiiiiiiiie e 84
Table 2.39 Mode Control Register Bit Definition ..o 85

ZFx86 Data Book 1.0 Rev D

Page 17

List of Tables

Table 2.40
Table 2.41
Table 2.42
Table 2.43
Table 2.44
Table 2.45
Table 2.46
Table 2.47
Table 2.48
Table 2.49
Table 2.50
Table 2.51
Table 2.52
Table 2.53
Table 2.54
Table 2.55
Table 2.56
Table 2.57
Table 2.58

3. North Bridge

Table 3.1
Table 3.2
Table 3.3
Table 3.4
Table 3.5
Table 3.6
Table 3.7
Table 3.8
Table 3.9
Table 3.10
Table 3.11
Table 3.12
Table 3.13
Table 3.14
Table 3.15
Table 3.16
Table 3.17
Table 3.18
Table 3.19
Table 3.20
Table 3.21
Table 3.22
Table 3.23
Table 3.24
Table 3.25
Table 3.26

INSLIUCHION FIEIAS oveeveieiiieieeee e 87
Instruction Prefix SUMMary ..., 87
W Field ENCOAING ..ooovviiiiiiiiiee 88
(o [=] o I =t Too o [Vo RPN 88
€€ Field ENCOAINGo eeeeenees 88
MOd /M Field ENCOING ...coiiiiiiiiiie et 89
mod r/m Field Encoding Dependent on w Fieldcccccoiiiiiiiniiiiniiiinnee, 90
(=0 T =] [PP 90
sreg3 Field ENCOdiNg.......ccoooviiiiii e, 90
(ST (=T P22 = (o N = g oo 1] o 91
SS Field ENCOAING ...coeeeiieeeeeeeeee e 91
Tglel=tq =] (o I =Yg oo o |1 Vo S SSR 91
Mod base Field ENCOTINGuuuiiiiiiiiiiiiiiiee et 91
CPU Clock Count ADDBreviationsoociiiiiiiiieiiiiiiiiiicee e 93
Flag AbDbreviations............ooveiiiiii . 94
Action of INStruction 0N Flaguuuiiiiiiiiiiece e 94
Processor Core Instruction Set SUMMary ..o, 94
FPU Table Abbreviations ..., 107
MMX INStruction Set SUMMAIYcovviiiiiiieiiee e 108
.. 113
SDRAM INterface SigNalS........c..uuviiiiiiiiiiiiiiec e 116
PCI Sideband SignalScccovviviiiiiiiii 118
Test SIGNAIS (JTAG) i e e e e e e e e e e e eeeeenes 118
MEMOIY ACCESS MAP ... eieiiie ettt e e e e e e et eeeaan e 119
[/O AQAIrESS MAP ..ottt 119
North Bridge Core BUrst SEQUENCEcciiiiiiiiiiiiiiiieee e 120
SDRAM CONFIQUIATIONSeeiiiiiiiiiiiiiee et 123
ROM Shadow HIUSTrAtIONccuiiiiiiiiiiiiie e 126
NOIth Bridge REQISIEISuuiiii e 126
CPU-PCI CyCle CONVEISION ...uuiiiieieieieiiiiiis e e e e ee e s e e e e e eeeaananan s e e e e eeeeannns 133
Configuration REQISIEIS uuuiiieiiiiiiiiiiiiiieieetieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeas 137
SMM Control Register (SMMC)cooiiiiiiiiiiiiieceee e 140
Processor Control Register (PROC)coooiiiiiiiiiiiiieiee e 142
Write FIFO Control Register (WFIFOC) ..., 143
PCI Control Register (PCIC) ..o 145
Clock Skew Adjust Register (CSA) ..ouviiiiiiii i e e e e e 146
BUS MASTER And Snooping Control Register (SNOOPCTRL)................. 146
Arbiter Control Register (ARBCTRL)uuiiiiiiiiiiiiiiieeeeeeiiee e 148
PCI Write FIFO Control Register (PCIWFIFOC)cccooviiiiiiiiiiieeiiiiiieeen 148
Shadow RAM Read Enable Control Register (SHADRC)ccovvvvvvveenn. 149
Shadow RAM Write Enable Control Registercccevvviiiiiiiviiiiiiiii e, 150
Bank 0 Control Register (N_BOC)ccooieeeiiiiiiiiii e 151
Bank 0 Timing Control Register (N_BOTC) ..., 152
Bank 1 Control Register (N_BLC)ouiiiiiiiiiiiiiiieeieee e 152
Bank 1 Timing Control Register (N_B1TC)cccccviiiiiiiiiiiiiieecee e 153
Bank 2 Control Register (N_B2C)ccooviiiiiiiiiiie, 153

ZFx86 Data Book 1.0 Rev D

Page 18

List of Tables

Table 3.27
Table 3.28
Table 3.29
Table 3.30
Table 3.31
Table 3.32
Table 3.33
Table 3.34
Table 3.35
Table 3.36
Table 3.37
Table 3.38
Table 3.39
Table 3.40
Table 3.41
Table 3.42
Table 3.43
Table 3.44

4. South Bridge

Table 4.1
Table 4.2
Table 4.3
Table 4.4
Table 4.5
Table 4.6
Table 4.7
Table 4.8
Table 4.9
Table 4.10
Table 4.11
Table 4.12
Table 4.13
Table 4.14
Table 4.15
Table 4.16
Table 4.17
Table 4.18
Table 4.19
Table 4.20
Table 4.21
Table 4.22
Table 4.23
Table 4.24
Table 4.25
Table 4.26
Table 4.27

Bank 2 Timing Control Register (N_B2TC)ccccviiiiieiiiiiiieeeee e 154
Bank 3 Control Register (N_B3C) ...ccoovviiiiiiiiiii, 155
Bank 3 Timing Control Register (N_B3TC)ooeeiiiiiiii, 155
DRAM Configuration Register 1 (DCONF1)ccccoviiiiiiiiieiiiiiiiieeeeeeeeeeiiinnn, 156
DRAM Configuration Register 2 (DCONF2) ..., 157
DRAM Refresh Control Register (DRFSHC) ..., 158
SDRAM Mode Program Register (SDRAMMPR)ccccoveiiiiiiiiiiiiiieeeeee 158
SDRAM Mode Program Register (SDRAMMPREX)coovvvvvviiiiiiiiiiiiininnn, 159
SDRAM Slew Control Register (SDRAMSLEW) ...ooovvvivvviiiiiiiiiiiiiiiiieeee, 159
Clock Control RegISter (CC) .uuuiiiii s e et e e e e e e eenes 160
Clock Control2 RegiSter (CC2) ...uuuuuuuuuuiiieeeiiieiiiieeeeeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeess 161
CPU-SYNC Register (CPUSYNC) ..oiciiiiiiiiiiiiieee et eiieeee e e e 162
Vendor ID ReQISTEr (VID) ...uuiiiiiiiiiiiiiiieee et 162
Device ID Register (DID)ccovvviiiiiiiieeieeeee e 162
Command Register (COMMD)uuuuuiiuiiiiiiiiiiiieeeiieeieeeeeereeeeeereeeeeeerreeaeees 162
Status REQISIEr (STAT) ciieeiiiiii i it e e e e e e e et e e e e eeeeaann 163
Revision ID Register (RID)ooviiiiiiiiiiieeeeeeeee e 163
Class ReQIStEr (CLASS)uuuuiuuiiiuiiiiiiieiiiieiieeeteees 163

... 165
LOGICAI DEVICES ...ttt 169
System INterface SIgNalS.........ccvvviiiiiiei e 173
Clock and Crystal Interface Signalsevvvvvveeirieiiiiieeeiieeiieeieeeeeeeeeeeeeen 173
CPU Interface SignalSouviiiiii i e e e e e e e eeenns 174
Back-Side PCI Bus Interface Signals.........cccccccceiiiiieeiiieciiiie e 175
IDE Interface SignalS.........coovviiiiiiiiiii 180
USB INterface SIgNaAlScooouiiiiiiiieeii e 182
GPIO INterface SIgNaAIS.......ccoiiiuiiiiiiiieee e 182
FUIT TSA TNEEITACEeeeeee e 183
ACCESS BUS....i et 189
L4 o Tox PRSP 189
Floppy DiSK CONLIOIET ...ceeeiiieiiieeieeeeeeeeee e, 189
Keyboard and Mouse Controller (KBC)cooiiiiiiiiiiieeiiiiiiieeeee e 190
[Tr= 11 L=T I = o o USRS 192
POWET @Nd GrOUNGcoiiiiiiiiiiiiee ettt 193
Serial Port 1 and Serial Port 2 (Shared with I/R Port)cccccccveeiiiiiennnnns 194
Infrared Communication Port (Shared W/COM2)........cccoovviiiiiiiieeeeeeeeinnnnnn, 195
PCI Configuration Address Register (OCF8h) ..., 196
FO: PCI Header/Bridge and GPIO Configuration Register Summary 197
FOBARO: GPIO Support Registers SUMMArYcccceeriiiiviinieeeeeeniniiennen 199
F1: PCl Header Registers for SMI Status Summarycccceeeeeeeeennn. 200
F1BARO: SMI Status Registers SUMMAarY.......ccccoveeeeeveeeeiiiiiineeeeeeeeeeeniinn 200
F2: PCI Header Registers for IDE Controller Support Summary 201
IDE Controller Configuration SUMMary ..., 202
F3: PCI Header Registers for XBus Expansion Summarycccceeee... 202
F3BARO: XBus Expansion Registers SUMmaryccccccvvveeeeeeeeniniinnnnnn. 203
PCIUSB: USB Controller Register Summaryccccccceeeeeeeeeiiiieeeeeeeeeee, 203

ZFx86 Data Book 1.0 Rev D

Page 19

List of Tables

Table 4.28
Table 4.29
Table 4.30
Table 4.31
Table 4.32
Table 4.33
Table 4.34

Table 4.35
Table 4.36
Table 4.37
Table 4.38
Table 4.39
Table 4.40
Table 4.41
Table 4.42
Table 4.43
Table 4.44
Table 4.45
Table 4.46
Table 4.47
Table 4.48
Table 4.49
Table 4.50
Table 4.51
Table 4.52
Table 4.53
Table 4.54
Table 4.55
Table 4.56
Table 4.57
Table 4.58
Table 4.59
Table 4.60
Table 4.61
Table 4.62
Table 4.63
Table 4.64
Table 4.65
Table 4.66
Table 4.67
Table 4.68
Table 4.69
Table 4.70
Table 4.71
Table 4.72
Table 4.73
Table 4.74

ZF-LogiC RegiSter SUMMAIYccvviiiiiieeiiiiiieie e 204
Legacy I/O Register SUMMArYoccovviieiiiiiiiieeeee e, 204
FO Index xxh: PCI Header and Bridge Configuration Registers 207
FOBARO+I/O Offset xxh: GPIO Runtime and Configuration Registers 230
F1 Index xxh: PCl Header Registers for SMI Status...............cooeeeeeeeeeenn. 232
F1BARO+I/O Offset xxh: SMI Status RegISIErSccoevviiiiiiiiiiieeeeiiiiiie, 233
F2 Index xxh: PCIl Header/Channels 0 & 1 Registers for

IDE Controller Configoovvviiiiiiiiii 236
F2BAR4+I/0O Offset xxh: IDE Controller Configuration Registers................ 239
F3 Index xxh: PCl Header Registers for XBus Expansioncccc.uuu... 241
F3BARO+I/O Offset xxh: XBus Expansion Registersccccceeeeeiiiinnnnnn. 244
PCIUSB: USB Controller RegISters ..o 246
DMA Channel Control REQISTEISuuviiiiiiiiiiiiiiieiee e 248
DMA Page REQISLEIS ...coivvviiiiiiiiieeeeeee e 252
Programmable Interval Timer Registersccccceeiiiii, 253
Programmable Interrupt Controller Registerscvvvvvviiiiiiiiiie e, 254
Keyboard Controller REQISIErSoooviiiiiiieiiie e 256
Real-Time CIOCK REQISIEIS.......oviiiiiiiiiiieeeeeee e, 257
MisSCellaneouSs REQISIEISoiiiiiiiiiiiiiiii e 257
ACCESS.bus Interface (ACB)ooooviiiiiii 261
Superl/O Configuration OPLIONSccvviiiiii e e eeaenns 263
Logical Device Number (LDN) ASSIGNMENTScovieeeeiereeiiiiiiieeeeeeeeviiiinnnnn 264
Standard CoNtrol REQISIEISuuuiiiiiiiiiiiiiiiiiiiiiieieeeieeieeeeeeeeeeeeee e eeeeeeeeeees 265
Logical Device Activate REJISIENuuviiiieiiiiiiiiiiieee e 265
I/O Space Configuration REQISTEISuuiiiiiiiiiiiiiiiieeee e 265
Interrupt Configuration RegISters ... 266
DMA Configuration RegISIEISc.uuvviiiiiiie e 266
Special Logical Device Configuration Registers.........ccccovveeevvveveiiiiiiiieneeeenn, 266
Register Type Abbreviations ... 269
Superl/O Configuration REJISIEIScccuviiiiiiieeiiiiiiiee e 269
Superl/O ID Register (SID) - INndeX 20Hooviiiiiiiiiiiiiiieeeee e 270
Superl/O Configuration 1 Register (SIOCF1) - Index 21Hcc.cccoeeee. 270
Superl/O Configuration 2 Register (SIOCF2) - Index 22Hccoeeeeeeee 271
Superl/O Revision ID Register (SRID) - Index 27Hccoovvvviiiiiiiiieeeeeeens 271
FDC REQISIEIS ...ttt 272
Logical Device 0 (FDC) Configurationooccvveerieeeeiiiiiiiiieeeee e 273
FDC Configuration Register - Index FOH ... 273
Drive ID Register - Index FIHccccciiiiiii 274
Parallel Port Configuration RegQIStersccuuviiiiiiiiieiieeeece e 275
Parallel Port Configuration Register - FOHccoooiiiiiiiiiiiiiii e, 275
Banks 0 and 1 - The Common Control and Status Register Map 279
Bank 0 - PS/2 KBD/MOUSE Wake-Up Config/Control Register Map 279
Bank 1 - CEIR Wake-Up Config/Control Register Mapcccccccvvviivvennnnn. 279
Wake-Up Events Status Register (WKSR) - 00Hccee, 280
Wake-Up Events Control Register (WKCR) - 01Hcoooviiiiiiiieiireiiiinn, 281
Wake-Up Configuration Register (WKCFG) - 02Hcooovviiiiiiiiieeiieeeninn, 282
PS/2 Protocol Control Register (PS2CTL) (Bank 0 Offset O3H).................. 283
Keyboard Data Shift Register (KDSR) - Bank 0 Offset 06H....................... 284

ZFx86 Data Book 1.0 Rev D

List of Tables

Table 4.75
Table 4.76
Table 4.77
Table 4.78
Table 4.79
Table 4.80
Table 4.81
Table 4.82
Table 4.83
Table 4.84
Table 4.85
Table 4.86
Table 4.87
Table 4.88
Table 4.89
Table 4.90
Table 4.91
Table 4.92
Table 4.93
Table 4.94
Table 4.95
Table 4.96
Table 4.97
Table 4.98
Table 4.99
Table 4.100
Table 4.101
Table 4.102
Table 4.103
Table 4.104
Table 4.105
Table 4.106
Table 4.107
Table 4.108
Table 4.109
Table 4.110
Table 4.111
Table 4.112
Table 4.113
Table 4.114
Table 4.115
Table 4.116
Table 4.117
Table 4.118
Table 4.119
Table 4.120
Table 4.121

Mouse Data Shift Register (MDSR) O7Hoooiiiiiiiiiiiieeee e 284
PS/2 Keyboard Key Data Registers (PS2KEYO0 - PS2KEY7)ccoovveeinnns 285
CEIR Wake-Up Control Register (IRWCR) - Bank 1 Offset 3 285
CEIR Wake-Up Address Register (IRWAD) - Bank 1 Offset 05H 286
CEIR Wake-Up Address Mask Register (IRWAM) - Bank 1 Offset 6 286
CEIR Address Shift Register (ADSR) - Bank 1 Offset 7covvvvvveeiienneen. 286
CEIR Wake-Up Range 0 Registers - IRWTROL- Bank 1 Offset 8 287
CEIR Wake-Up Range 0 Registers - IRWTROH — Bank 1 Offset 9 287
CEIR Wake-Up Range 1 Registers - IRWTRL1L — Bank 1 Offset OAH 287
CEIR Wake-Up Range 1 Registers - IRWTR1H — Bank 1 Offset OBH 288
CEIR Wake-Up Range 2 Registers - IRWTR2L — Bank 1 OCH) 289
CEIR Wake-Up Range 2 Registers - IRWTR2H —Bank 1 ODH 289
CEIR Wake-Up Range 3 Registers - IRWTR3L —Bank 1 OEH 289
CEIR Wake-Up Range 3 Registers - IRWTR3H — Bank 1 OFH 290
Time Range Limits for CEIR Protocolscooooeiiiiiiiiiciiens 290
Banks 0 and 1 - The Common Three-Register Mapccccccceevveeevvveevnnnnnnn. 291
Bank O - PS/2 Keyboard/Mouse Wake-Up Config/Ctrl Registers 291
CEIR Wake-Up Configuration and Control Registersccccccvvvveeeeeeneee. 291
Serial Ports 1 and 2 Configuration REQISTErScccuviiiiiieiiiiiiiiiiieeeeeee 292
Serial Ports 1 and 2 Configuration Register - FOHvvvvvviviiviiinieneeee. 293
System Wake-Up Control (SWC) Configuration............cccevvvvvvviiiinieeeeeeennns 294
Mouse Configuration REQISTEISuuuiiiiieeeiiieeiie e 295
Keyboard Configuration RegiSters ..., 296
iIKBC Configuration Register - FOHccuiiiiiiiiiiiieeeeeiieeeee e 296
Infrared Communication Port Configuration RegiSters..........ccccccovvvvvvennnn. 297
Infrared Communication Port Configuration Register - FOH........................ 297
ACB RUNLIME REQISIEIS ...t e e e e e 298
Access Bus Interface (ACB) Configurationcccoeeevvvviiiiiiiiineeeeeeeeeeinns 299
ACB Configuration Register — FOH ..., 299
Logical Device A (RTC) Configurationccccuvveeeeieeeniniiiiiiiieee e 300
RAM Lock Register (RLR) - FOHuuiiiiiiiiiiiiieeeeeeeeeee e 300
Date Of Month Alarm Register Offset (DOMAO) —F1H......................ol. 301
Month Alarm Register Offset (MAO) — F2H......cccooov i, 301
Century Register Offset (CENOQ) — F3Hccoviiiiiiiiiiiie e 302
RTC Configuration Register Mapcoovvviiiiiiiiiiieee 307
RAM Lock RegiSter (RLR)uuviiiiiiiiiiiiiiieeee e 307
Date Of Month Alarm Register Offset (DOMAOQO).......cccooiiiiiiiiiiiieeeeniiiiine 308
Month Alarm Register Offset (DOMAO)ccooviiiiiiiiiiii, 308
Century Register Offset (CENO)ooovviiiiiii i 309
RTC Configuration Register BitMapc.ueiiiiiieeiiieiiieee e 309
RTC ReQIStEr MaAPcoiiiiiiiiiiiiiieee e, 310
Seconds Register (SEC)) — INdeX O0Hoovviiiiiiiiiiiiiiieeeeeiiieeee e 310
Seconds Alarm Register (SECA)) — OL1H......ooviiiiiiiiiiiiieeeeeiieeeeee e 311
Minutes Register (MIN)) —02H ..., 311
Minutes Alarm Register (MINA) —03Hooovriiiiii e 311
Hours Register (HOR) — O04Hovuiiii e 312
Hours Alarm Register (HORA) —05H ..o, 312

ZFx86 Data Book 1.0 Rev D Page 21

List of Tables

Table 4.122
Table 4.123
Table 4.124
Table 4.125
Table 4.126
Table 4.127
Table 4.128
Table 4.129
Table 4.130
Table 4.131
Table 4.132
Table 4.133
Table 4.134
Table 4.135
Table 4.136
Table 4.137
Table 4.138
Table 4.139
Table 4.140
Table 4.141
Table 4.142
Table 4.143
Table 4.144
Table 4.145
Table 4.146
Table 4.147
Table 4.148
Table 4.149
Table 4.150
Table 4.151
Table 4.152
Table 4.153
Table 4.154
Table 4.155
Table 4.156
Table 4.157
Table 4.158
Table 4.159
Table 4.160
Table 4.161
Table 4.162
Table 4.163
Table 4.164
Table 4.165
Table 4.166
Table 4.167
Table 4.168

Day Of Week Register (DOW) — 06Hccooiiiiiiiiiiiiiiiiiiiiieeeee e 312
Date Of Month Register (DOM) —O7H ..., 313
Month Register (MON) - 08Hooovviiiiiiiie 313
Year Register (YER) - O9Hcooiiiiiiiie et 313
RTC Control Register A (CRA) —0AH ..o 314
Divider Chain Control and Test Selectionccccoeiiiiiii 314
Periodic Interrupt Rate ENCOAINGcvvvviiiieeiiiiiiiieeeee e 315
RTC Control Register B (CRB) - 0BHccoovviiiiiiiiiiiiiee, 316
RTC Control Register C (CRC) - 0CH ..., 318
RTC Control Register D (CRD) - ODHccooiiiiiiie e, 319
Date of Month Alarm Register (DOMA) ..., 319
Month Alarm Register (MONA) ..o 319
Century Register (CEN) ...cooiiiiiiiiieiee e 320
BCD and Binary FOrmatsccccccviviiiiiiiieeeeeeeee 320
RTC Register Bitmapoovvvviiiiiiiiee 321
Standard RAM Map ...ccooiiieiiiii et e e e e e e e e eaane 321
Extended RAM Mapooooiiiiiiieee 321
ACB REQIStEr MaAP....ciiiiiiiiiiiieii e 329
ACB Serial Data Register (ACBSDA) - O0Hcooviiiiiiiiiiiiieeeeeeeeeiiieee 329
ACB Status Register (ACBST) - 01H ..., 330
ACB Control Status Register (ACBCST) - 02Hccooooiiiiieeciiiee e, 331
ACB Control Register 1 (ACBCTLL) - 03H....covviiiiiieeerieeecieee e, 332
ACB Own Address Register (ACBADDR) - 04H ..., 333
ACB Control Register 2 (ACBCTL2) - O5H.......cccuiiiiiiieiiiiieeeee e 334
ACB REQISter BIitMAP ...ccoieiieiiiiiiee et 334
KBC REQISIEr MAP.....ciiiiiiiiiiiiiiieeeeeeeeee e, 335
KBC BitMap SUMIMATYuiiiieieieeeeiiiss e et e e e e e e s e e e e e e eeannnnnnnes 335
[D TG L= o] (=T 1V = T o 336
FDC Bitmap SUMMATYcooiiiiiiiiiiiieeee e 337
Parallel Port Register Map for First Level OffSet.........cccccceiiiiiiiiiiiiiiinnins 338
Parallel Port Register Map for Second Level OffSet..........ccccvvvveeeiiiiiiinnnnn. 338
Parallel Port Bitmap Summary for First Level Offset........................ooe. 339
Parallel Port Bitmap Summary for Second Level Offset.............cccevvvvvinnnnnn. 340
Bank O ReQISTEr MaAP ...uuuuiiiii i e e e e e 341
Bank Selection ENCOAINGcoovvviiiiiiieeee 342
Bank 1 REQISIEr MAPccoi it 342
Bank 2 REQISTEr IMAPciiiiiiiiiiiee et 342
Bank 3 RegIStEr Mapccovvviiiiiiiiiieeee e 342
[Fo T] QO =1 (4 = o 343
[Fo T] Qi A =1 (4 = o 344
7T o] QA =1 14T T o PSS 344
BaANK 3 BItMEAP ... 344
Register Bank SUMIMATIYooiiiiiiiiiiiiiie e 355
Bank 0 RegIStEr Mapccovvviiiiiiiiieeeeee e 356
Interrupt Enable Register (IER, Non-Extended Mode)ccccoeeevevvvriennnnnn. 358
Non-Extended Mode Interrupt PrioritieSc..uvieiiiie e, 360
Bit Settings for Parity CONtrol ... 364

ZFx86 Data Book 1.0 Rev D

Page 22

List of Tables

Table 4.169
Table 4.170
Table 4.171
Table 4.172
Table 4.173
Table 4.174
Table 4.175
Table 4.176
Table 4.177
Table 4.178
Table 4.179
Table 4.180
Table 4.181
Table 4.182
Table 4.183
Table 4.184
Table 4.185
Table 4.186
Table 4.187
Table 4.188
Table 4.189
Table 4.190
Table 4.191
Table 4.192
Table 4.193
Table 4.194
Table 4.195
Table 4.196

5. ZF-Logic and Clocking

Table 5.1
Table 5.2
Table 5.3
Table 5.4
Table 5.5
Table 5.6
Table 5.7
Table 5.8
Table 5.9
Table 5.10
Table 5.11
Table 5.12
Table 5.13
Table 5.14
Table 5.15
Table 5.16
Table 5.17
Table 5.18

Bank Selection ENCOTINGcuviiiiiiiiiiiiiiiie e 365
BanK O BItMAP c.oveeeeiiiiiiiieiieee ettt 372
Bank 1 RegiSter Mapc.covvviiiiiiiiieeeee e 373
Bits Cleared on Fallback ... 374
Baud Generator DiviSor SettingS........covvviieiiiieiieeeee e 374
7T o] S =11 0= T o PSS 375
Bank 2 REQISTEr IMAPciiiiiiiiiiiee et 375
DMA Threshold LEVEISooiiiiiiiiiiiiieee e 377
BanNK 2 BItMAP ...eveveiiiiiiiiiiieee ettt 380
Bank 3 ReQISEr MaAP ...uuvuiiiiiiiiieeeis e e e e 380
R F T a1 QG =114 F= T o PR RS 381
Bank 4 RegiSter Mapccovvviiiiiiiiieeeeeee e 382
BaANK 4 BItMEP ...t 384
Bank 5 RegIStEr Mapc.oovvviiiiiiiiiii e 385
BanK 5 BItMAP c..eeviiiiiiiiiiiiiiee ettt 388
Bank 6 ReQIStEr MaAPuuuiiiiieeiceeeiiis e e e e e 388
IMIR Pulse Width SettingS........covviiiiiiiiiieee 390
MIR Beginning Flagsooovieiiiiii 392
FIR Preamble LENgthoviiiieeee e 392
BanK 6 BItMAP ...eevveviiiiiiiiiiieeieeeeeeeeee et 392
Bank 7 ReQIStEr MaP ...uuvuiiiii it e e e e e 393
CEIR, Low Speed Demodulator (RXHSC = 0) ...coevvviiiiiieeiieeeiiiiieie e eeeeeeens 394
Consumer IR High Speed Demodulator (RXHSC = 1)....coovvvviiviiiiiieiiinnnnn.. 395
Sharp-IR DeMOUUIALONcooiiiiiiiiiie e 395
Carrier Clock Pulse Width Options (Frequency Ranges in KHz)................. 396
CEIR Carrier Frequency Encoding (Frequency Ranges in KHz)................. 396
Infrared Receiver INput SeleCtioncoovviviiiiiii e 400
[Fo T] QA =11 (4 = o 401

... 403
ACCESS 10 ZFL ..o 404
ZF-Logic Complete INAEXccoooi e 406
ZF-LOGIC PiN LIST ettt 409
MeMOry MapPPET PINSooiiiiiiiiiiee et 410
Indices For Memory WIiNdOWScoooiviiieiiiiie 411
Memory Window “N” Base Low - Bits 15:12 (nibble 3)......cccccoovviiiviininnnnnnnn. 411
Memory Window “N” Base High - Bits 23:16 (nibbles 5-4)cccceevvveen. 412
Memory Window “N” Size Low - (nibble 3) ... 412
Memory Window “N” Size High - (Nibbles 5-4) ..., 412
Memory Window “N' Page Low - (nibble 3) ... 412
Memory Window “N” Page High - (nibbles 5-4)......................ccco, 412
Memory Control Low -- INdeX SAH ..o 413
Memory Control High -- INdeX 5BHcccooviiiiiiiiiii e 413
I/0 and Memory Window Mapper Events -- Index 66H...............ccccooovvneee. 414
G S PN ittt n et ntnnrrnnnnen e 422
ZF-Logic Indices FOr 1/O WINUOWScooiiiiiiiiiiiieeee e 423
ZF-Logic Index for /O WINAOWSccooeiieiiiecicceccccec e 423
I/0 Window “N” Base LoOw FOrmat.........cccceviiiiiiiiiiiii 423

ZFx86 Data Book 1.0 Rev D

List of Tables

Table 5.19 I/0 Window “N” Base High FOrmat...........ccccoviiiiiiiiiieieiiiiieeeee e 424
Table 5.20 ZF-Logic Index for the Watchdog Timersccooceeeviiiiiiiiiiiees 426
Table 5.21 Watchdog 1 Count Low Byte -- INdeX OCHoovvvvviiiiiiiiiiiiiieiiieieeeeeee 426
Table 5.22 Watchdog 1 Count High Byte -- Index ODH..........ccooooeiiiiiiiiiii e, 426
Table 5.23 Watchdog Generated Reset Pulse Length -- Index OFHc.. 427
Table 5.24 Watchdog Control Low -- INdeX 10Hooouiiiiiiiiiiiiiiiiiiieeiieeeieeeeeeeeeeeeee e 427
Table 5.25 Watchdog Control High -- INndeX 11H ..o 428
Table 5.26 Watchdog Status - INAeX 12Hoeviiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeee e 429
Table 5.27 ZF-Logic Index for the PWM GENEratorccccccvuuuuunuviuineniinriiiiiinniennnnnnns 430
Table 5.28 PWM Prescaler Low Byte - INndex 04Hcceeiiiiiiiiiereecee e, 431
Table 5.29 PWM Prescaler High Byte - Index O5h ..., 431
Table 5.30 PWM duty cycle - INndexX 06N..........ooovviiiiiiii 431
Table 5.31 PWM 1/O Control -- INdeX 08Hccooeiiiiiieiiieeee 432
Table 5.32 PWM Read Output -- INdeX OAH ..., 432
Table 5.33 ZF-Logic Index for the Z-tag..........coooeeiiii e 434
Table 5.34 Z-tag Data Write Register -- INdeX 5EH ..., 435
Table 5.35 Z-tag Data Read Register -- Index 60H..........ccocoiiiiiiiiiiiiiieee 435
Table 5.36 Z-tag Control Register -- Index 7TCH ... 436
Table 5.37 Z-tag Sequencer Divisor -- INdeX 7DHccoooiiiiiiiiiiiiie e 436
Table 5.38 Z-tag Sequencer Waveform -- IndexX 7EHcccoooiiiiiiiiiiiiiiciiis 436
Table 5.39 Z-tag Sequencer Strobe Points -- IndeX 7FHcccoooiiiiiiiiiiiiii e, 437
Table 5.40 Z-tag Sequencer Data -- INdex 80Hc.ooooviiiiiiiiiii e 437
Table 5.41 ZF-Logic Index for the Boot Parameters Register.........cccccccvveiiviiinniiiiennnns 438
Table 5.42 Composite BootStrap Register Mapccooviiiiiiiiiiiiieiiiiiiiieeee e 438
Table 5.43 Sample DIP SWItCh SEttiNgS......ccuiiiiiiiiiiiiiiieee e 441
Table 5.44 ZF-Logic Index for the Scratch Register...........cvvvvviviiiiiiiiiiie 444
Table 5.45 Indices for Scratch REQISIENSccvviviiii e 444
Table 5.46 Scratch Register “N” High OF LOW.......oouvuiiiiiiii e 445
Table 5.47 ZF-Logic Index for BUR BaAS€ccoooiiiiiiiiiieei e 445
Table 5.48 BUR Base BitS 15-12cooviiiiiiiiiiieeeeeee e 445
Table 5.49 BUR BaSe BitS 23-16cccevviiiiiiiiiiieeeeee ettt 446
Table 5.50 SYSLEM ClOCKING ... bbb e s seesesseeeeeees 447
Table 5.51 Formal Clock Names and Clocking Modescccoeeevvvvieiiiiiiiiieeeeeeeeiiiiinnn, 448
Table 5.52 CORE frequenci@s (MHZ)........oiii it e e 451
6. Z-tag, BUR, and The ZFiX CONSOIEccovvviiiiiiii e 455
Table 6.1 Memory Dongle Jumper SettingsSooovviieiiiiiii 458
Table 6.2 Z-tag and ZFiX SUMMAIYooiiiiiioii oo 459
Table 6.3 Pins for the FLOPPY / Z-tag LOQICuuvrriiieiiiiiiiiiiieeeee e 460
Table 6.4 Z-tag Data LINESccoiiiiiiiiiceee et 461
Table 6.5 Z-Logic Index for the Z-tagcoooeieeiiie e 461
Table 6.6 Z-tag Control Register -- INdeX 7TCH.......ccoiii i, 462
Table 6.7 ZFiX Console COMMANASccooeiiieeeeeee e 463
Table 6.8 On-Chip RAM Assignment in BURuuiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeee e 470
7. Electrical SPeCIfiCatiONScciiii i 481
Table 7.1 Absolute Maximum RatiNgS........ccovviiiiiiiiie e 481
Table 7.2 Recommended Operating ConNditioNSoccviiiieiiieeiiiiiiieeeee e 482

ZFx86 Data Book 1.0 Rev D

List of Tables

Table 7.3

Table 7.4

Table 7.5

Table 7.6

Table 7.7

Table 7.8

Table 7.9

Table 7.10
Table 7.11
Table 7.12
Table 7.13
Table 7.14
Table 7.15
Table 7.16
Table 7.17
Table 7.18
Table 7.19
Table 7.20
Table 7.21
Table 7.22
Table 7.23
Table 7.24
Table 7.25
Table 7.26
Table 7.27
Table 7.28
Table 7.29
Table 7.30
Table 7.31
Table 7.32
Table 7.33
Table 7.34
Table 7.35
Table 7.36
Table 7.37
Table 7.38
Table 7.39
Table 7.40
Table 7.41
Table 7.42
Table 7.43
Table 7.44
Table 7.45
Table 7.46
Table 7.47
Table 7.48

CUrrent CONSUMPTIONeviiiiiiiiiiiiii et e e e e e e e e e e e 482
Pin Capacitance and INductance.............cccccvvviiiiiii 482
[/O Cell CharaCteriStICS.ccuvvvrriiieeee et 483
INPUL, MP Gl e e e e e e e e e e ennnreees 484
INPUE, GENEIIC2 ..ot 484
INPUL, MUSB ...t e et e e e e e e e e e e e e e e e e e ennnseees 485
INPUL, MIDE .. et e e e e eab e aes 485
INPUL, M-FDCP .ottt 485
INPUL, MIMC-D ..ttt 485
INPUL, MWUSB ...ttt e e e e e e e e e e e e e nnneees 486
INPUL, MACOT .ttt e e e e e e e e e e e e e e e e ennnreees 486
Output, PCI TRI-STATE BUFErveiiiieiiiccee e 487
Output, GENERIC 2 ...t eeeees 487
OULPUL, MIDE ..ottt e et e e e e e e aan 487
OULPUL, MUSB ...ttt e e e e e e e 487
OULPUL, M-FDC_PP ..ttt et e e e e e e a e 487
OULPUL, MIMC D ..ttt e e e a e e e e e et aeeeeeaans 488
OULPUL, MWUSBttt e e e e e e e e e e s eeeeeeeeaann 488
OUIPUL, MACOT ..ttt e e e et e e e e e e eeaeee 488
Default Levels for Measurement of Switching Parameterscc...... 489
SYSCIK_C CloCk Parameterscoovvviiiiiiiii e e e 489
SDRAM Interface SigNalS........cooiie o e e e 493
ACCESS.bus Interface ... 494
PCI BUS - AC SPECITICAIONSoeiieiiiiiiiiiii et 495
PCI ClOCK ParametersS........ccouviiviiiiiiiieiieeeeeeee e 497
PCI Bus Timing Parameters.........ccovvviiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeee 498
Measurement Condition Parameters..........ccoooiiiiiii, 499
Y AN @ V11 o 10 AT o F= | 501
General Timing of the IDE INterface.............uuevuiieeiiiiiiiiiiiiiieeeeieeeeeeeeeeeeee e 504
IDE Register Transfer TO/From DEeVICEooiviviiiiiiiiiiiiiiiieeeee e 505
IDE PIO Data Transfer TO/From DevViCe.........ccceeeeeieeiiiiiiiieeeeeeeeee, 507
IDE Multiword DMA Data Transfer ... 509
Ultra DMA Data Burst Timing RequiremMentS..........ccovvvvvviiiiiieeeeeeeeeiiien 511
Universal Serial BUS (USB)uuuiiiiiiiciiceeiin et e e 523
UART, Sharp-IR, SIR, and Consumer Remote Control Parameters........... 527
Fast IR Port Timing Parameters.........cccuuvviiiiiiiiiiiiiiieeeeee e 528
JTAG TIMING ettt e e e e e e e e e e e s 529
GPIO TIMING . ttttiiie ettt e e e e e e e e e e e be e e eeeeeeaaas 530
Floppy Disk ReSet TIMINGccovviiiiiiiii e e e e e 531
Floppy Disk Write Data TimMIiNgoiiieeeerieiiiiiiiis e e e e e e 531
Write Data Timing — Minimum tWDW Values...........cccccoi . 531
Drive Control TiMiNGoooiieiiieiiee e 532
Read Data TiMINGcooiiiiiiiiiiieee e 533
KBC Signals Rising and Falling...........cccccceiiiiii 533
Standard Parallel Port TimMiNgcoooviiiiiiiieeeeeeeeis e e e e 534
Enhanced Parallel Port 1.7 Timing Parameterscccccvvvvvieiiiieeeeeeeeinnnnnnn. 535

ZFx86 Data Book 1.0 Rev D

Page 25

List of Tables

Table 7.49 Enhanced Parallel Port 1.9 Timing Parametersccccoovcvviivveeeeniiiiiinnnn. 536
Table 7.50 Extended Capabilities Port (ECP) Timing — Forwardcccccoeeeviiiinnnnne. 538
Table 7.51 Extended Capabilities Port (ECP) Timing — Backward.............cccccceevuvnnen. 539
Table 7.52 ZF-LOQIC SIGNQAIS ... e e aann 540
8. PINOUL SUMIMAIY ..ottt e e e e e e e e e e e et e e e 541
Table 8.1 Pin ULHIZAtIONooiiiiiiiiiii 541
Table 8.2 Pin Descriptions Sorted by Pin ... 545
Table 8.3 Pin Descriptions Sorted by Pin Name ... 558
Table 8.4 Pin Descriptions Sorted by Pin Description..........cccceeeveeeeeiieeeeeeeee, 572
0. BUR AP e e 587
10. Signal Status AFLEI POST ...ooiiiiiiiiiiiiiiiiee ettt 597
Table 10.1 ACCESS BUS SEHINGS...uvvuiiii i e e e e e 597
Table 10.2 Floppy Disk (FDD) SENGSccuuuiiiiiiieeeeeeeeiiiie e e e 597
Table 10.3 Floppy Disk (Z-tag) SEetliNgS......ccuuuiiiiiiieieiiieiiiie e 598
Table 10.4 GPIO SEENGS .oieeeiiiitiee ettt e e e e e e e e e 599
Table 10.5 [SA PiN SEHINGS ..vvveiiiieiiiiiie et 599
Table 10.6 (ST A T TS 1] o 1 599
Table 10.7 [O IR 1] o 600
Table 10.8 LPT SetliNGS ..ceiieiiiieiieiieee e 600
Table 10.9 IR CONrol SELHNGS «.ovvviiiiiiiiiieeeeeeeee e 601
Table 10.10 ZF LOQIC SEIHNGS ..uuuuurruruiiiiiiiiiiiiiiieeieieteneeeeeeeesaeeeeseeeseeeeeeeeeeeeeereerrererreerreee 601
11. Phoenix BIOS Register SEttiNgS .ouuviii i 603
Table 12.1 Reset, Sampling, and Misc North Bridge Registerscccccceveeeeviiiiinennn. 603
Table 12.2 DRAM REQISIEISeteiiieee ittt ettt e e e e e 615
Table 12.3 Power Management REQISTEISuuiiii it 623
Table 12.4 PCI Configuration REQISIEISuuuiiiiie e 624
Table 12.5 Floppy Disk Controller REQISIEISuuuiiii i 626
Table 12.6 Floppy Disk Controller Bitmap SUMMArYcooooiiiiiiiiieeeiniiiiiiieeee e 627
Table 12.7 Parallel POrt REQISTEIS. ... 629
Table 12.8 Serial POrt 1 REQISTEISoooiiiiiiiiiiiiiiee ettt e e 630
Table 12.9 Serial POrt 2 REQISIEIS ...ovviviiiii e e e et e e e e e eeanes 632
Table 12.10 PS/2 Mouse/Keyboard REQISIEISuuciiiiieeiiiieiiiiii e e e eeee e 633
Table 12.11 Infrared Communication Port Configuration Registers...........ccccceeevieeennnnn, 635
Table 12.12 ACCESS BUS REQISIEIS ...ttt 636
Table 12.13 Pin MUltipleX0Or REQISIEISuiiiiiiiiiiiiiiie et 637
Table 12.14 GPIO0 REQISIEIS ...cviiiiiiiiiiiiiieee ettt e e e eeees 640
Table 12.15 GPIOL REQISIEIS ... iceiiieeeiiiits et s e e e e e s e e e e e e e e e e eeeeeeeeeaenes 641
Table 12.16 GPIO2 REQISIEISiceiiieeeeiiisi e et e e e e s e e e e e e e e e aaa e e e e e eeeeaenes 642
Table 12.17 GPIO3 REQISIEIS ... i i iiiieiiiiiis et e e e e e e e e e e et e e e e e eeeeaenes 643
Table 12.18 GPIOA REUISIEISeiieiiiiiiiiiiei ettt e e e 644
Table 12.19 GPIOS5 REQISIEISoeiiiiiiiiiiiii ittt e e e 645
Table 12.20 GPIOB REQISIEISvviiiiiiiiiiiiiieee ettt e e e e e enabeeees 646
Table 12.21 GPIO7 REQISIEIS ... iieeeieieeiiies ettt e e e e e e e e e e e e e e ae e e e e e eeeeaenes 647
Table 12.22 ZF—LOQIC REQISIEISc.cieeeeiiiiii ettt e e e e e e e e e e e e eenenes 648

ZFx86 Data Book 1.0 Rev D

Page 26

List of Tables

ZFx86 Data Book 1.0 Rev D Page 27

List of Tables

ZFx86 Data Book 1.0 Rev D Page 28

. 1

1. Overview

The “ZFx86” System-On-a-Chip (SOC) is a
complete processor and peripheral subsystem
requiring only external clocks, SDRAM, and
BIOS ROM/Flash. It is illustrated in ZEx86
Fail-Safe PC-on-a-Chip Block Diagram and

consists of the following major blocks:

1)

2)

3)

Industry standard 32 bit processor core
with integrated floating point co-pro-
cessor and 8K byte write-back level 1
cache. The clock multiplier design
allows the core to run at a multiple of
the system bus. For example, a 3x
multiplier delivers a system running at
100 MHz with a 33 MHz PCI bus.

A North Bridge (system controller) with
“Frontside” PCI Master / Slave Arbitra-
tion interface and SDRAM interface.
See ‘North Bridge ' on page 113.

A custom South Bridge with “Front-
side” PCI interface to the North Bridge
and “Backside” PCI Master/Slave sys-
tem interface, enhanced IDE controller
supporting four devices on two chan-
nels, USB controller with two hub
ports, real time clock (RTC), floppy
disk controller, serial ports, access
bus, 8042 compatible keyboard and
mouse controller, parallel port, general
purpose programmable 1/O’s and
counters, PC/AT system components,
and power management. The PC/AT
system components include 8237
compatible DMA controllers, two 8259
compatible interrupt controllers, 8254
compatible system timer, and ISA bus
interface. See ‘South Bridge ’ on page

4)

5)

12K Bytes of ROM with ZF proprietary
code. This Boot Up ROM (BUR) is
used in a special mode which allows a
flash based BIOS to be updated with-
out removal of any system compo-
nents or peripherals. See ‘BUR (Boot
Up ROM) ’ on page 462.

ZF proprietary digital logic including
specific and general purpose chip
selects, watchdog timer, and flash con-
troller. See ‘ZF-Logic and Clocking ’

on page 403.

The above functions are packaged in a 35
MM. 388 pin Ball Grid Array (BGA). See
‘Pinout Summary ’ on page 541.

165.

ZFx86 Data Book 1.0 Rev D

Page 29

Figure 1-1 ZFx86 Fail-Safe PC-on-a-Chip Block Diagram

1

N

Ny
L] TM L]
Inside the ZFx86™ Chip
2 USB Devices \ ~ =g
32-BIT X86 4 EIDE Devices >
Processor, FPU, 8K
L1 WB Cache Floppy Disk : : ~
. Parallel Port T
2 Serial Ports L 1 >
4-256 MB SDRAM NORTH IrDA] | >
SELECTABLE 16/32 BIT BUS BRIDGE PS2 Keyboard | | >
— | P52 Mouse -) g
Real-time Clock ! 1 s
—
— I°C Bus i
Full PCI Bus 28 8 GPIO —
BRIDGE DMA >
S h— IRQ I I >
ZF FAILSAFE
Boot ROM — ZF-LOGIC
(12K Byte Boot | Z-TAG Interface I I ;
Update ROM) External Memory I | =~
&1/0 Decode Logic I I -4
Watchdog Timer I | -
Scratch Registers . |
< EUILIS B PWM Generator >

. Processor: 486+ CPU at 100 MHz
* North Bridge: DRAM Controller and FrontSide 32 MHz PCI Bus
e« South Bridge: Generates BackSide PCI and ISA Buses.

. USB + Extended IDE Device Interface: on the FrontSide PCI Bus

« SuperlO: Industry Standard X86 1/O + 1°C
e ZF-Logic: ISA Additions for Embedded Systems, Low BOM cost, and FailSafe

ZFx86 Data Book 1.0 Rev D

Page 30

Wi

2. 32-bit x86 Processor

2.1. Overview

The Processor is an industry standard 32-bit
x86 compatible microprocessor.

Configure the 8 KB cache to run in traditional
write-through mode or in the higher perfor-
mance write-back mode. Write-back mode
eliminates unnecessary external memory write
cycles offering higher overall performance
than write-through mode.

The processor supports 8-, 16- and 32-bit data
types and operates in real, virtual 8086 and

protected modes. The CPU accesses up to 256
MB of physical memory using a 32-bit burst
mode bus. Floating point instructions are
parallel processed using an on-chip math
COProcessor.

The processor is an ideal design solution for
low-powered applications. Due to its static
design, it features a low current drain while the
input clock is stopped in suspend mode. SMM
(System Management Mode) allows the imple-
mentation of transparent system power
management or the software emulation of I/0
peripheral devices.

r——— - - - - - - - - - - - — — A r— - — —
| | | SUSP#
Instruction _ Int?;S;tiin A |
| Decbder < Queue I Core SMM, SUSPA#
| | Clock 4-'—- Suspend >
Mode
| i | | and CLK
Control Immediate Prefetch Bus b Clock [—
| Yy Yy | DataBus | 32 Clock °c SMi#
ROM Control | g—
| \/ Address | | SMADS#
| o Microcode ROM | | ——
| Sequencer [| |
| Control * * Immediate | 8_ |
P \Write >
i i Memory
| Branch Control Execution Unit ata Byte Buffers | D31-D0
us MUXES] Dat:
- - 3-Input . : <_L> ata 47.4>
| Execution Pipeline Limit | Multiplier Add’;:er Shift Reg:ster &o [1 | Buffers Z
| Unit Line Unit Unit File | Regs < :
| Linear Address Bus |
L o e —— - _ |
Y / Y D EPU | B Control
us
Cache and Memory Memory > brefetch > aKB > Contiol | —
Management Management Uni Instr/Data |
” nit < -
Unit Cache - -
CoNtro| —- |
| [} L | AD31-AD2
Instruction Address Bus |V BE3#-BEO#
Address
> (< —
Data Address Bus | Buffers

| 32-bit x86-Compatible

Bus Interface

Figure 2-1 Processor Block Diagram

ZFx86 Data Book 1.0 Rev D

Page 31

Wi

2.1.1. Internal Clock Logic

The processor operates in 4 clock rate modes
and 3 clock operation modes. These modes
are controlled by 4 signals, CLKMODEDQO,
CLKMODE1, PLLMODE and RAWCLK. Addi-
tionally 3 signals, CLKDEL][2:0] control the
duty cycle of the internal clock signal.

As you look at the clock modes, please also
reference Table 5.42 "Composite BootStrap
Register Map" on page 438, and Figure 5-9
"System Clocking and Control" on page 443.

2.1.1.1. Clock Rate Modes

The internal clock rate can be 1, 2, 3 or 4
times the input clock rate as controlled by the
CLKMODE[1:0] signals.

RATE CLKMODE[1:0]
1X 00b
2X 01b
3X 11b
4X 10b

2.1.1.2. Clock Operation Modes

The source of the internal clock is determined
by the PLLMODE and RAWCLK signals.
Three modes of operation are supported, PLL
Mode, Delay Mode and Raw Clock Mode.

Mode PLLMODE RAWCLK
PLL Mode 1 1
Delay Mode 0 1
Rawclock Mode 0 0
NOT SUPPORTED 1 0

PLL Mode (DLL Mode)

In PLL Mode the source of the internal clock is
from the Digital Locked Loop. Clock modes 1x,
2x, 3x and 4x are supported. The duty cycle of
the internal clock is determined by the state of
the CLKDEL][2:0] signals.

Delay Mode

In Delay Mode the source of the internal clock
is from the Clock Delay circuitry. Modes 1x,

2x, 3x and 4x are supported. The duty cycle
and frequency of the internal clock is deter-
mined by the state of the CLKDEL[2:0]
signals. The exact operation of this mode is
beyond the scope of this document.

Raw Clock Mode

Raw Clock Mode is normally used for test

purposes only. In Raw Clock Mode the source
of the internal clock is from the CLK port. Only
clock rate mode 1x is supported in this mode.

Clock Delay Signals

The CLKDEL][2:0] signals effect the duty cycle
of the internal clock. The exact effect is
beyond the scope of this document. The
setting of these signals is determined during
early production testing experimentally. The
setting which results in the best performance
over voltage, temperature and frequency is
normally used as a bond out option in the final
package.

2.1.2. On-Chip Write-Back Cache

The processor on-chip cache can be config-
ured to run in traditional write-through mode or
in a higher performance write-back mode. The
write-back cache mode was specifically
designed to optimize performance of the CPU
core by eliminating bus bottlenecks caused by
unnecessary external write cycles. This write-
back architecture is especially effective in
improving performance of the clock-tripled
processor.

Traditional write-through cache architectures
require that all writes to the cache also update
external memory simultaneously. These
unnecessary write cycles create bottlenecks
which result in CPU stalls that adversely
impact performance. In contrast, a write-back
architecture allows data to be written to the
cache without updating external memory. With
a write-back cache, external write cycles are
only required when a cache miss occurs, a
modified line is replaced in the cache, or when
an external bus master requires access to
data.

ZFx86 Data Book 1.0 Rev D

Page 32

Wi

The processor cache is an 8 KB unified
instruction. Data cache is implemented using
a four-way set associative architecture and an
LRU (Least Recently Used) replacement algo-
rithm. The cache is designed for optimum
performance in write-back mode; however, the
cache can be operated in write-through mode.
The cache line size is 16 bytes and new lines
are only allocated during memory read cycles.
Valid status is maintained on a 16-byte cache
line basis, but modified or “dirty” status for
write-back mode is maintained on a 4-byte
DWORD (Double Word) basis. Therefore, only
the DWORDs that have been modified are
written back to external memory when a line is
replaced in the cache. The CPU core can
access the cache in a single internal clock
cycle for both reads and writes.

2.1.3. System Management Mode

System Management Mode (SMM) provides
an additional interrupt and a separate address
space that can be used for system power
management or software transparent emula-
tion of I/O peripherals. SMM is entered using
the SMI# (System Management Interrupt) or
SMINT instruction. While running in isolated
SMM address space, the SMI interrupt routine
can execute without interfering with the oper-
ating system or application programs.

After entering SMM, portions of the CPU state
are automatically saved. Program execution
begins at the base of SMM address space.
The location and size of the SMM memory are
programmable within the processor. Eight
SMM instructions have been added to the
processor instruction set that permit software
entry into SMM, as well as saving and
restoring the total CPU state when in SMM
mode.

2.1.4. Power Management

The processor power management features

allow for a dramatic improvement in battery life
over systems designed with non-static proces-
sors. During suspend mode the typical current

consumption is far less than full operation
current.

Suspend mode is entered by either a hard-
ware or a software initiated action. Using the
hardware method to initiate suspend mode
involves a two-signal handshake between the
SUSP# and SUSPA# signals. The software
can initiate suspend mode through the execu-
tion of the HALT instruction. Once in suspend
mode, power consumption is further reduced
by stopping the external clock input. Since the
processor is static, no internal data is lost
when the clock is stopped.

2.1.5. Signal Summary

The processor interface signal set includes
five cache interface signals, two coprocessor
interface signals, two power management
signals, and two system management mode
signals.

2.2. Programming Interface

In this chapter the internal operations of the
Processor are described from an application
programmer’s point of view. Included in this
chapter are descriptions of processor initializa-
tion, the register set, memory addressing,
various types of interrupts and the shutdown
and halt process. An overview is provided of
real, virtual 8086 and protected operating
modes. FPU operations are described sepa-
rately at the end of this chapter.

ZFx86 Data Book 1.0 Rev D

Page 33

Wi

2.2.1. Processor Initialization

The processor is initialized when the RESET#
signal is asserted. The processor is placed in
real mode and the registers listed in Table 2.1
are set to their initialized values. RESET inval-
idates and disables the processor cache, and
turns off paging. When RESET# is asserted
the processor terminates all local bus activity
and all internal execution. During the entire
time that RESET# is asserted the internal
pipeline is flushed, and no instruction execu-

tion or bus activity occurs.

Approximately 150 to 250 external clock
cycles (additional 22° + 60 if self-test is
requested) after RESET is negated, the
processor begins executing instructions at the
top of physical memory (address location FFFF
FFFOh). When the first intersegment JMP or
CALL is executed, address lines AD31-AD20
are driven low for code segment-relative
memory access cycles. While AD31-AD20 are
low, the processor executes instructions only
in the lowest 1 MB of physical address space

until system-specific initialization occurs via
program execution.

Table 2.1 Initialized Register Controls

Register Register Name Initialized Contents Comments
EAX Accumulator XXXX XXXXh 0000 0000h indicates self-test passed
EBX Base XXXX XXXXh
ECX Count XXXX XXXxh
EDX Data Xxxx 0400h + Device ID | Device ID = xxh
EBP Base Pointer XXXX XXXXh
ESI Source Index XXXX XXXXh
EDI Destination Index XXXX XXXXh
ESP Stack Pointer XXXX XXXXh
EFLAGS Flag Word 0000 0002h
EIP Instruction Pointer 0000 FFFOh
ES Extra Segment 0000h Base address set to 0000 0000h. Limit set to FFFFh
CS Code Segment FOOOh Base address set to FFFF 0000h. Limit set to FFFFh
SS Stack Segment 0000h Base address set to 0000 0000h. Limit set to FFFFh
DS Data Segment 0000h Base address set to 0000 0000h. Limit set to FFFFh
FS Extra Segment 0000h Base address set to 0000 0000h. Limit set to FFFFh
GS Extra Segment 0000h Base address set to 0000 0000h. Limit set to FFFFh
IDTR Interrupt Descriptor Table Register | Base = 0, Limit = 3FFh
CRO Machine Status Word 6000 0010h
CCR1 Configuration Control 1 00h
CCR2 Configuration Control 2 00h
CCR3 Configuration Control 3 00h
SMAR SMM Address Region 0000h
DIRO Device Identification O processor = xxh
DIR1 Device Identification 1 Step ID + Revision ID
DR7 Debug Register 7 0000 0400h

Note: x = Undefined value

ZFx86 Data Book 1.0 Rev D

Page 34

Wi

2.2.1.1. Warm Reset

The WM_RESET input signal is used to
support write back caching policy on the
processor. The WM_RESET signal will reset
the entire processor except for the CD and
NW bits in the CRO register, the CFGO
register, the CFGL1 register and the valid and
dirty bits in the cache. The WM_RESET signal
is always enabled and included a pull-down
resistor to keep the pin inactive when not
used.

2.2.2. Instruction Set Overview

The processor instruction set can be divided
into eight types of operations:

* Arithmetic

 Bit Manipulation

» Control Transfer

o Data Transfer

» Floating Point

» High-Level Language Support
» Operating System Support

» Shift/Rotate

 String Manipulation

All processor instructions operate on as few
as 0 operands and as many as 3 operands.
An NOP instruction (no operation) is an
example of a 0 operand instruction. Two
operand instructions allow the specification of
an explicit source and destination pair as part
of the instruction. These two operand instruc-
tions can be divided into eight groups
according to operand types:

* Register to Register

* Register to Memory

* Memory to Register

* Memory to Memory

» Register to 110

* |/O to Register

* Immediate Data to Register
* Immediate Data to Memory

An operand can be held in the instruction itself
(as in the case of an immediate operand), in a
register, in an I/O port or in memory. An
immediate operand is prefetched as part of the
opcode for the instruction.

¢ Operand lengths of 8, 16, or 32 bits are
supported as well as 64 or 80 bit associ-
ated with floating point instructions.

« Operand lengths of 8 or 32 bits are gener-
ally used when executing code written for
x86 32-bit code processors.

« Operand lengths of 8 or 16 bits are gener-
ally used when executing existing 8086 or
80286 code (16-bit code).

The default length of an operand can be over-
ridden by placing one or more instruction
prefixes in front of the opcode. For example, by
using prefixes, a 32-bit operand can be used
with 16-bit code or a 16-bit operand can be
used with 32-bit code.

Section 2.3. ‘Instruction Set’ of this manual
lists each instruction in the processor instruc-
tion set along with the associated opcodes,
execution clock counts and effects on the
FLAGS register.

2.2.2.1. Lock Prefix

The LOCK prefix may be placed before certain
instructions that read, modify, then write back
to memory. The prefix asserts the LOCK#
signal to indicate to the external hardware that
the CPU is in the process of running multiple
indivisible memory accesses. The LOCK
prefix can be used with the following instruc-
tions:

 Bit Test Instructions (BTS, BTR, BTC)

« Exchange Instructions (XADD, XCHG,
CMPXCHG)

» One-operand Arithmetic and Logical
Instructions (DEC, INC, NEG, NOT)

ZFx86 Data Book 1.0 Rev D

Page 35

Wi

» Two-operand Arithmetic and Logical
Instructions (ADC, ADD, AND, OR, SBB,
SUB, XOR)

An invalid opcode exception is generated if
the LOCK prefix is used with any other instruc-
tion, or with the above instructions when no
write operation to memory occurs (i.e., the
destination is a register). The LOCK prefix
function may be disabled by setting the
NO_LOCK bhit in Configuration Control Register
1 (CCR1).

If No_Lock (bit 4 in CCR1) is set, locked
cycles are inhibited for some locked instruc-
tions. These instructions include interrupt
acknowledge cycles, descriptor loads, and
updates and accesses to the interrupt
descriptor table. However, locked cycles are
not inhibited by No_Lock bit for TLB table
lookups, XCHG instructions to memory, or any
instruction that includes a lock prefix.

If No_Lock = 0, locked cycles occur for all
locked instructions.

2.2.3. Register Set

There are 40 accessible registers in the
processor, and these registers are grouped
into two sets:

» The Application Register Set contains
eight general purpose registers, six
segment registers, a flag register and an
instruction pointer register, and are typi-
cally used by application programmers.

» The System Register Set contains the
remaining registers which include three
control registers, four system address
registers, six debug registers, six configu-
ration registers and five test registers, and
are typically used by operating system
programmers.

Each of the registers is discussed in detail in
the following sections.

2.2.3.1. Application Register Set

The Application Register Set, shown in Table
2.2, are generally accessible and are not
protected from read or write access.

The contents of the eight General Purpose
Registers are frequently modified by assembly
language instructions and typically contain
arithmetic and logical instruction operands.

In real mode the six Segment Registers
contain the base address for each segment. In
protected mode the Segment Registers
contain segment selectors. The segment
selectors provide indexing for tables (located
in memory) that contain the base address for
each segment, as well as other memory
addressing information.

The Flag Register contains control bits used to
reflect the status of previously executed
instructions. This register also contains control
bits that affect the operation of some instruc-
tions.

The Instruction Pointer register points to the
next instruction that the processor will
execute. This register is automatically incre-
mented by the processor as execution
progresses.

ZFx86 Data Book 1.0 Rev D

Page 36

Wi

Table 2.2 Application Register Set

Application
31 16 15 8 |7 0 Register Set
AX
AH | AL
EAX (Extended A Register)
BX
BH | BL
EBX (Extended B Register)
CX
CH | cL
ECX (Extended C Register)
X General
Purpose
DH | DL ;
: Registers
EDX (Extended D Register)
| Sl (Source Index)
ESI| (Extended Source Index)
| DI (Destination Index)
EDI (Extended Destination Index)
| BP (Base Pointer)
EBP (Extended Base Pointer)
| SP (Stack Pointer)
ESP (Extended Stack Pointer)
CS (Code Segment)
SS (Stack Segment) S t
DS (D Data Segment) egmen
(Selector)
ES (E Data Segment) .
Registers
FS (F Data Segment)
GS (G Data Segment)
EIP (Extended Instruction Pointer Register) Instruction
. Pointer and
EFLAGS (Extended Flags Register) Flags Register

General Purpose Registers (eight)

The General Purpose Registers are divided
into four data registers, two pointer registers,
and two index registers.

Data Registers are used by the applications
programmer to manipulate data structures and
to hold the results of logical and arithmetic
operations. Different portions of the general
data registers can be addressed by using
different names. An “E” prefix identifies the
complete 32-bit register. An “X” suffix without
the “E” prefix identifies the lower 16 bits of the

register. The lower two bytes of the register
can be addressed with an “H” suffix to identify
the upper byte or an “L” suffix to identify the
lower byte. When a destination operand size
specified by an instruction is smaller than the
specified destination register, the other bytes
of the destination register are not affected
when the operand is written to the register.

ZFx86 Data Book 1.0 Rev D

Page 37

Wi

The Pointer and Index Registers are listed as
follows:

» SlorESI Source Index
* Dl or EDI Destination Index
* SP or ESP Stack Pointer
 BP or EBP Base Pointer

These registers can be addressed as 16- or 32-
bit registers, with the “E” prefix indicating 32
bits. The pointer and index registers can be
used as general purpose registers, however,
some instructions use a fixed assignment of
these registers. For example, repeated string
operations always use ESI as the source
pointer, EDI as the destination pointer and
ECX as a counter. The instructions using fixed
registers include multiply and divide, /O
access, string operations, translate, loop, vari-
able shift and rotate and stack operations
instructions.

The processor implements a stack using the
ESP register. This stack is accessed during
the PUSH and POP instructions, procedure
calls, procedure returns, interrupts, excep-
tions, and interrupt/exception returns. The
microprocessor automatically adjusts the value
of the ESP during operation of these instruc-
tions.

The EBP register may be used to reference
data passed on the stack during procedure
calls. Local data may also be placed on the
stack and referenced relative to BP. This
register provides a mechanism to access
stack data in high-level languages.

Segment Registers and Selectors (Six)

Segmentation provides a means of defining
data structures inside the memory space of
the microprocessor. There are three basic
types of segments: code, data, and stack.
Segments are used automatically by the

processor to determine the location in memory
of code, data and stack references.

There are six 16-bit segment registers:
¢ CS - Code Segment
¢ DS — Data Segment
* ES — Extra Segment
* SS — Stack Segment
* FS — Additional Data Segment
* GS - Additional Data Segment

In real and virtual 8086 operating modes, a
segment register holds a 16-bit segment base.
The 16-bit segment base is multiplied by 16
and a 16-bit or 32-bit offset is then added to it
to create a linear address. The offset size is
dependent on the current address size. In real
mode and in virtual 8086 mode with paging
disabled, the linear address is also the phys-
ical address. In virtual 8086 mode with paging
enabled, the linear address is translated to the
physical address using the current page
tables.

In protected mode, a segment register holds a
Segment Selector containing a 13-bit Index, a
Table Indicator (TI) bit, and a two-bit
Requested Privilege Level (RPL) field, as illus-

trated in Figure 2-1.
15 3

Index RPL

— 4N

Tl = Table Indicator
RPL = Request Privilege Level

Figure 2-1 Segment Selector

The Index Register points into a descriptor
table in memory and selects one of 8192 (213)
segment descriptors contained in the
descriptor table. A segment descriptor is an 8-
byte value used to describe a memory
segment by defining the segment base, the
segment limit, and access control information.

ZFx86 Data Book 1.0 Rev D

Page 38

Wi

To address data within a segment, a 16-bit or
32-bit offset is added to the segment’s base
address. Once a segment selector has been
loaded into a segment register, an instruction
needs to specify the offset only. The Table
Indicator (TI) bit of the selector defines which
descriptor table the index points to. If TI = 0,
the index references the Global Descriptor
Table (GDT). If TI = 1, the index references the
Local Descriptor Table (LDT). The GDT and
LDT are described in more detail later in
Section ‘Descriptor Table Registers and
Descriptors’ on page 44.

The Requested Privilege Level (RPL) field contains
a 2-bit segment privilege level (O = most privi-
leged, 3 = least privileged). The RPL bits are
used when the segment register is loaded to
determine the Effective Privilege Level (EPL). If
the RPL bits indicate less privilege than the
Current Program Level (CPL), the RPL over-
rides the CPL and the EPL is the less privileged
level. If the RPL bits indicate more privilege than
the program, the CPL overrides the RPL and
again the EPL is the less privileged level.

When a segment register is loaded with a
segment selector, the segment base, segment
limit and access rights are also loaded from
the descriptor table into a user-invisible or
hidden portion of the segment register i.e.,
cached on-chip. The CPU does not access the
descriptor table again until another segment
register load occurs. If the descriptor tables
are modified in memory, the segment registers
must be reloaded with the new selector values
by the software.

The processor automatically selects a default
segment register for memory references. Table
2.3 describes the selection rules. In general, data
references use the selector contained in the
DS register, stack references use the SS
register and instruction fetches use the CS
register. While some of these selections may be
overridden, instruction fetches, stack opera-
tions, and the destination write of string opera-
tions cannot be overridden. Special segment
override prefixes allow the use of alternate
segment registers including the use of the ES,
FS, and GS segment registers.

Table 2.3 Segment Register Selection Rules

Implied (Default) Segment-Override
Type of Memory Reference Segment Prefix
Code Fetch Cs None
Destination of PUSH, PUSHF, INT, CALL, PUSHA instructions SS None
Source of POP, POPA, POPF, IRET, RET instructions SS None
Destination of STOS, MOVS, REP STOS, REP MOVS instructions ES None
Other data references with effective address using base registers of: DS CS,ES, FS, GS, SS
EAX, EBX, ECX, EDX, ESI, EDI, EBP, ESP
SS CS, DS, ES, FS, GS

Instruction Pointer Register (one)

The Instruction Pointer (EIP) register contains
the offset into the current code segment of the
next instruction to be executed. The register is
normally incremented with each instruction
execution unless implicitly modified through an
interrupt, exception or an instruction that

changes the sequential execution flow
(e.g., IMP, CALL).

ZFx86 Data Book 1.0 Rev D

Page 39

Wi

Flags Register (one)

The Extended Flags Register, EFLAGS, FLAGS register that is used when executing
contains status information and controls 8086 or 80286 code. The flag bits are illus-

certain operations on the processor. The lower ~ trated in Table 2.4

16 bits of this register are referred to as the

Table 2.4 EFLAGS Register

Bit Name Flag Type | Description

31:19 RSVD - Reserved — Set to 0.

18 AC System Alignment Check Enable — In conjunction with the AM flag in CRO, the AC flag determines
whether or not misaligned accesses to memory cause a fault. If AC is set, alignment faults are
enabled.

17 VM System Virtual 8086 Mode — If set while in protected mode, the processor switches to virtual 8086
operation handling segment loads as the 8086 does, but generating exception 13 faults on
privileged opcodes. The VM bit can be set by the IRET instruction (if current privilege level
is 0) or by task switches at any privilege level.

16 RF Debug Resume Flag — Used in conjunction with debug register breakpoints. RF is checked at
instruction boundaries before breakpoint exception processing. If set, any debug fault is
ignored on the next instruction.

15 RSVD -- Reserved — Set to 0.

14 NT System Nested Task — While executing in protected mode, NT indicates that the execution of the
current task is nested within another task.

13:12 I0PL System 1/0 Privilege Level — While executing in protected mode, IOPL indicates the maximum cur-
rent privilege level (CPL) permitted to execute I/O instructions without generating an excep-
tion 13 fault or consulting the I/O permission bit map. IOPL also indicates the maximum CPL
allowing alteration of the IF bit when new values are popped into the EFLAGS register.

11 OF Arithmetic | Overflow Flag — Set if the operation resulted in a carry or borrow into the sign bit of the result
but did not result in a carry or borrow out of the high-order bit. Also set if the operation resulted
in a carry or borrow out of the high-order bit but did not result in a carry or borrow into the sign
bit of the result.

10 DF Control Direction Flag — When cleared, DF causes string instructions to auto-increment (default) the
appropriate index registers (ESI and/or EDI). Setting DF causes auto-decrement of the index
registers to occur.

9 IF System Interrupt Enable Flag — When set, maskable interrupts (INTR input signal) are acknowl-
edged and serviced by the CPU.

8 TF Debug Trap Enable Flag — Once set, a single-step interrupt occurs after the next instruction com-
pletes execution. TF is cleared by the single-step interrupt.

7 SF Arithmetic | Sign Flag — Set equal to high-order bit of result (0 indicates positive, 1 indicates negative).

6 ZF Arithmetic | Zero Flag — Set if result is zero; cleared otherwise.

5 RSVD -- Reserved — Set to 0.

4 AF Arithmetic | Auxiliary Carry Flag — Set when a carry out of (addition) or borrow into (subtraction) bit
position 3 of the result occurs; cleared otherwise.

3 RSVD -- Reserved — Set to 0.

2 PF Arithmetic | Parity Flag — Set when the low-order 8 bits of the result contain an even number of ones;
otherwise PF is cleared.

RSVD -- Reserved — Set to 1.
CF Arithmetic | Carry Flag — Set when a carry out of (addition) or borrow into (subtraction) the most signifi-
cant bit of the result occurs; cleared otherwise.

ZFx86 Data Book 1.0 Rev D

Page 40

Wi

2.2.3.2. System Register Set

The System Register Set, shown in Table 2.5,
consists of registers not generally used by
application programmers. These registers are
typically employed by system level program-
mers who generate operating systems and
memory management programs.

The Control Registers control certain
aspects of the processor such as paging,
coprocessor functions, and segment protec-
tion. When a paging exception occurs while
paging is enabled, the control registers retain
the linear address of the access that caused
the exception.

The Descriptor Table Registers and the
Task Register can also be referred to as
system address or memory management
registers. These registers consist of two 48-bit
and two 16-bit registers. These registers
specify the location of the data structures that
control the segmentation used by the
processor. Segmentation is one available
method of memory management.

The Configuration Registers are used to
configure the processor on-chip cache opera-
tion, coprocessor interface, power manage-
ment features and System Management
Mode. The configuration registers also provide
information on the CPU device type and revi-
sion.

The Debug Registers provide debugging
facilities for the processor and enable the use
of data access breakpoints and code execu-
tion breakpoints.

The Test Registers provide a mechanism to
test the contents of both the on-chip 8 KB
cache and the Translation Lookaside Buffer
(TLB). The TLB is used as a cache for the
tables which are used in translating linear
addresses to physical addresses while paging
is enabled. In the following sections, the
system register set is described in greater
detail.

Table 2.5 System Register Set

Width
Group Name Function (Bits)
Control CRO System Control Register 32
Registers CR2 Page Fault Linear 32
Address Register
CR3 Page Directory Base Reg- 32
ister
Descriptor GDTR GDT Register 48
Table and IDTR IDT Register 48
Task -
Registers LDTR LDT Register 16
TR Task Register Setup 16
Configuration | CCR1 Configuration Control 8
Registers Register 1
CCR2 Configuration Control 8
Register 2
CCR3 Configuration Control 8
Register 3
SMAR SMM Address Region 24
Register
DIRO Device Identification 8
Register 0
DIR1 Device Identification 8
Register 1
Debug DRO Linear Breakpoint 32
Registers Address 0
DR1 Linear Breakpoint 32
Address 1
DR2 Linear Breakpoint 32
Address 2
DR3 Linear Breakpoint 32
Address 3
DR6 Breakpoint Status 32
DR7 Breakpoint Control 32
Test TR3 Cache Test 32
Registers TR4 Cache Test 32
TR5 Cache Test 32
TR6 TLB Test Control 32
TR7 TLB Test Status 32

ZFx86 Data Book 1.0 Rev D

Page 41

Wi

2.2.3.3. Control Registers (3)

A map of the Control Registers (CR3, CR2
and CRO0) is shown in Table 2.6 and the bit
definitions are given in Table 2.7. The CRO

register contains system control flags which
control operating modes and indicate the

general state of the CPU. The lower 16 bits of

CRO are referred to as the Machine Status

Word (MSW). The reserved bits in CRO should

not be modified.

When paging is enabled and a page fault is

generated, the CR2 register retains the 32-bit

linear address of the address that caused the
fault. Register CR3 contains the 20 most
significant bits of the physical base address of
the page directory. The page directory must
always be aligned to a 4 KB page boundary;
therefore, the lower 12 bits of CR3 are not
required to specify the base address.

When operating in protected mode, any
program can read the control registers;
however, only privilege level 0 (most privi-
leged) programs can modify the contents of
these registers.

Table 2.6 Control Registers Map

31|30(|29(28(27|26|25|24(23|22|21({20|19|18|17|16|15|14({13|12|11(10|{9 |8 |7 |6 |5|4|3|2|1|0
CR3 Register
PDBR (Page Directory Base Register) RSVD P|P RSVD
Cc|wW
DT
CR2 Register
PFLA (Page Fault Linear Address)
CRO Register
P|C|N RSVD A|R|[W RSVD N[(1|T|E|M|P
G|D|W M|S|P E S|{M|P|E
\%
D
Machine Status Word (MSW)
Table 2.7 CR3, CR2, and CRO Bit Definitions
Bit ‘ Name ‘Description
CR3 Register
31:12 | PDBR | Page Directory Base Register: Identifies page directory base address on a 4 KB page boundary.
11:4 RSVD | Reserved
PCD | Page-level Cache Disable: Affects the operation of internal cache.
PWT | Page Write Through: Drives output pins for controlling external caches.
2:0 RSVD | Reserved

CR2 Register

31:.0

PFLA

Page Fault Linear Address: With paging enabled and after a page fault, PFLA contains the linear address of the
address that caused the page fault.

CRO Register

ZFx86 Data Book 1.0 Rev D

Page 42

Wi

Table 2.7 CR3, CR2, and CRO Bit Definitions (cont.)

Bit Name | Description

31 PG Paging Enable Bit: If PG = 1 and protected mode is enabled (PE = 1), paging is enabled.

30 CD Cache Disable: If CD = 1, no further cache line fills occur; however data already present in the cache continues to be
used if the requested address hits in the cache. The cache must also be invalidated to completely disable any cache
activity.

29 NW Not Write-Through: If NW = 1, the on-chip cache operates in write-back mode. In write-back mode, writes are issued
to the external bus only for a cache miss, a line replacement of a modified line, or as the result of a cache inquiry
cycle. If NW = 0, the on-chip cache operates in write-through mode. In write-through mode, all writes (including cache
hits) are issued to the external bus.

28:19 | RSVD | Reserved

18 AM Alignment Check Mask: If AM = 1, the AC bit in the EFLAGS register is unmasked and allowed to enable alignment
check faults. Setting AM = 0 prevents AC faults from occurring.

17 RSVD | Reserved

16 WP Write Protect: Protects read-only pages from supervisor write access. WP = 0 allows a read-only page to be written
from privilege level 0-2. WP = 1 forces a fault on a write to a read-only page from any privilege level.

15:6 RSVD | Reserved

5 NE Numerics Exception: NE = 1 to allow FPU exceptions to be handled by interrupt 16. NE = 0 if FPU exceptions are to
be handled by external interrupts.

1 Reserved: Do not attempt to modify.

3 TS Task Switched: Set whenever a task switch operation is performed. Execution of a floating point instruction with TS =
1 causes a DNA (Device Not Available) fault. If MP = 1 and TS = 1, a WAIT instruction also causes a DNA fault.

EM Emulate Processor Extension: If EM = 1, all floating point instructions cause a DNA fault 7.

MP Monitor Processor Extension: If MP =1 and TS = 1, a WAIT instruction causes a DNA fault 7. The TS bitis setto 1
on task switches by the CPU. Floating point instructions are not affected by the state of the MP bit. The MP bit should
be set to one during normal operations.

0 PE Protected Mode Enable: Enables the segment based protection mechanism. If PE = 1, protected mode is enabled. If
PE =0, the CPU operates in real mode, with segment based protection disabled, and addresses are formed as in an
8086-style CPU.

Table 2.8 Effects of Various Combinations of TS, EM and MP Bits
CRO[3:1] Instruction Type
TS EM MP WAIT ESC
0 0 0 Execute Execute
0 0 1 Execute Execute
1 0 0 Execute Fault 7
1 0 1 Fault 7 Fault 7
0 1 0 Execute Fault 7
0 1 1 Execute Fault 7
1 1 0 Execute Fault 7
1 1 1 Fault 7 Fault 7

ZFx86 Data Book 1.0 Rev D Page 43

Wi

Descriptor Table Registers and
Descriptors

The Global, Interrupt and Local Descriptor
Table Registers (GDTR, IDTR and LDTR),
shown in Figure 2-2 "Task Regqister", are used
to specify the location of the data structures
that control segmented memory management.
The GDTR, IDTR and LDTR are loaded using
the LGDT, LIDT and LLDT instructions,
respectively. The values of these registers are
stored using the corresponding store instruc-
tions. The GDTR and IDTR load instructions
are privileged instructions when operating in
protected mode. The LDTR can only be
accessed in protected mode.

The Global Descriptor Table Register (GDTR)
holds a 32-bit linear base address and 16-bit
limit for the Global Descriptor Table (GDT).
The GDT is an array of up to 8192 8-byte
descriptors. When a segment register is
loaded from memory, the TI bit in the segment
selector chooses either the GDT or the Local
Descriptor Table (LDT) to locate a descriptor. If
Tl =0, the index portion of the selector is used
to locate a given descriptor within the GDT.
The contents of the GDTR are completely
visible to the programmer. The first descriptor
in the GDT (location 0) is not used by the CPU
and is referred to as the “null descriptor”. If the
GDTR is loaded while operating in 16-bit
operand mode, the processor accesses a 32-
bit base value but the upper 8 bits are ignored
resulting in a 24-bit base address.

The Interrupt Descriptor Table Register
(IDTR) holds a 32-bit linear base address and
16-bit limit for the Interrupt Descriptor Table
(IDT). The IDT is an array of 256 8-byte inter-
rupt descriptors, each of which is used to point
to an interrupt service routine. Every interrupt
that may occur in the system must have an
associated entry in the IDT. The contents of
the IDTR are completely visible to the
programmer.

The Local Descriptor Table Register (LDTR)
holds a 16-bit selector for the Local Descriptor
Table (LDT). The LDT is an array of up to 8192
8-byte descriptors. When the LDTR is loaded,
the LDTR selector indexes an LDT descriptor
that must reside in the Global Descriptor Table
(GDT). The contents of the selected descriptor
are cached on-chip in the hidden portion of the
LDTR. The CPU does not access the GDT
again until the LDTR is reloaded. If the LDT
descriptor is modified in memory in the GDT,
the LDTR must be reloaded to update the
hidden portion of the LDTR.

When a segment register is loaded from
memory, the TI bit in the segment selector
chooses either the GDT or the LDT to locate a
segment descriptor. If Tl = 1, the index portion
of the selector is used to locate a given
descriptor within the LDT. Each task in the
system may be given its own LDT, managed
by the operating system. The LDTs provide a
method of isolating a given task’s segments
from other tasks in the system.

48 16 15 0
Base Address Limit GDTR
Base Address Limit IDTR
Selector LDTR

Figure 2-2 Descriptor Table Registers

ZFx86 Data Book 1.0 Rev D

Page 44

Wi

Descriptors » Gate Descriptors that define task gates,
There are three types of descriptors: interrupt gates, trap gates and call gates.
» Application Segment Descriptors that Application Segment Descriptors are located in
define code, data and stack segments. either the LDT or GDT; System Segment

Descriptors can only be located in the GDT.

* System Segment Descriptkors that define Dependent on gate type, gate descriptors are
an LDT segment or a Task State Segment |,~e4 in either the GDT, LDT or Interrupt

(TSS) table described later in this text. Descriptor Table (IDT). Table 2.9 illustrates the
descriptor format for both Application Segment
Descriptors and System Segment Descriptors.

Table 2.9 Application and System Segment Descriptors

31|31|29(28(27|26|25|24(23|22|21({20|19|18|17|16|15|14(13|12|11(10|{9 |8 |7 |6 |5|4|3|2|1|0

Memory Offset +4
BASE[31:24] G|D|O|A| LIMIT[19:16] |P | DPL | D TYPE BASE[23:16]

Memory Offset +0

| BASE[15:0] | LIMIT[15:0] |
Gate Descriptors provide protection for Interrupt Gate Descriptors are used to enter
executable segments operating at different a hardware interrupt service routine. Trap
privilege levels. Table 2.10 illustrates the Gate Descriptors are used to enter exceptions
format for Gate Descriptors and Table 2.11 or software interrupt service routines. Trap
lists the corresponding bit definitions. Gate and Interrupt Gate Descriptors can only

_ be located in the IDT.
Task Gate Descriptors (TGD) are used to

switch the CPU’s context during a task switch. Call Gate Descriptors are used to enter a
The selector portion of the TGD locates a Task procedure (subroutine) that executes at the
State Segment. TGDs can be located in the same or a more privileged level. A Call Gate
GDT, LDT or IDT tables. Descriptor primarily defines the procedure

entry point and the procedure’s privilege level.

Table 2.10 Gate Descriptors

31(30|29|28|27|26(25|24|23|22|21|20({19(18|17|16|15|14|13(12|11|10|{9 |8 |7 |6 |5|4|3|2|1|0

Memory Offset +4
| OFFSET[31:16] [P opL o] TYPE [o]o0|0]| PARAMETERS |

Memory Offset +0
| SELECTORJ[15:0] | OFFSET[15:0] |

ZFx86 Data Book 1.0 Rev D Page 45

Wi

Table 2.11 Gate Descriptor Bit Definitions
Memory
Bit Offset Name Description
31:16 +4 OFFSET Offset — Used during a call gate to calculate the branch target.
15:0 +0
31:16 +0 SELECTOR Selector — Segment selector used during a call gate to calculate the
branch target.
15 +4 P Segment present.
14:13 +4 DPL Descriptor privilege level.
11:8 +4 TYPE Segment type:
0100 = 16-bit call gate
0101 = task gate
0110 = 16-bit interrupt gate
0111 = 16-bit trap gate
1100 = 32-bit call gate
1110 = 32-bit interrupt gate
1111 = 32-bit trap gate.
4:0 +4 PARAMETERS | Parameters — Number of 32-bit parameters to copy from the caller’s
stack to the called procedure’s stack.

Task Register

The Task Register (TR) holds a 16-bit selector
for the current Task State Segment (TSS)
table as shown in xxx. The TR is loaded and
stored via the LTR and STR instructions,
respectively. The TR can only be accessed
during protected mode and can only be loaded
when the privilege level is 0 (most privileged).
When the TR is loaded, the TR selector field
indexes a TSS descriptor that must reside in
the Global Descriptor Table (GDT). The
contents of the selected descriptor are cached
on-chip in the hidden portion of the TR

During task switching, the processor saves the
current CPU state in the TSS before starting a
new task. The TR points to the current TSS.
The TSS can be either a 386/486-type 32-bit
TSS as shown in Table 2.12 or a 286-type 16-bit
TSS type as shown on Table 2.13. An I/O
permission bit map is referenced in the 32-bit
TSS by the I/O Map Base Address.

15 0
SELECTOR

Figure 2-2 Task Register

Table 2.12 32-Bit Task State Segment (TSS) Table

31 16|15 0

/O Map Base Address ojofo]o]o]o]o]oo]o]o]o]o]o]o]|T]| +64an
ojojofojo|of0O|O|O|O|O|O|O|O|O]|O Selector for Task’s LDT +60h
o|lojolo|o|o]o|o]o|o]|o]o|o]o|o]o0 GS +5Ch
olojolo|o|o]o|o]o|o]|o]o|o]o|0]o0 FS +58h
olojolo|o|o]o|o]o]o]|o]o|o]o|0o]o0 DS +54h
olololo|o|o]olo]ofo]o]o|o]o|o]o ss +50h
olololo]olo]olo]ofo]o]o|o]o|o]o0 cs +4Ch
o|lojolo|o|lo|o|ofo]o]|o]o|o]o|0o]o0 ES +48h

ZFx86 Data Book 1.0 Rev D

Page 46

Wi

Table 2.12 32-Bit Task State Segment (TSS) Table (cont.)

31 16‘15 0
EDI +44h
ESI +40h
EBP +3Ch
ESP +38h
EBX +34h
EDX +30h
ECX +2Ch
EAX +28h
EFLAGS +24h
EIP +20h
CR3 +1Ch
oJlolo[o]o|o]o]o]o]o]o]o]o]o]o]0] SS for CPL = 2 +18h
ESP for CPL = 2 +14h
oJlolo]o]o]o]o]o]o]o]o]o]o]o]o]0] SSfor CPL = 1 +10h
ESP for CPL=1 +Ch
ojlolo[o]o|o]o]o]o]o]o]o]o][o]o]0] SS for CPL =0 +8h
ESP for CPL=0 +4h
oJlolo[o]o|o]o]o|o]o]o]o]o]o]o]0] Back Link (Old TSS Selector) +0h

Note: 0 = Reserved

Table 2.13 16-Bit Task State Segment (TSS) Table

15 0

Selector for Task’s LDT +2Ah
DS +28h

SS +26h

Cs +24h

ES +22h

DI +20h

Sl +1Eh

BP +1Ch

SP +1Ah

BX +18h

DX +16h

CX +14h

AX +12h

FLAGS +10h

P +Eh

SS for Privilege Level 2 +Ch
SP for Privilege Level 2 +Ah
SS for Privilege Level 1 +8h
SP for Privilege Level 1 +6h
SS for Privilege Level 0 +4h
SP for Privilege Level 0 +2h

ZFx86 Data Book 1.0 Rev D Page 47

Wi

Table 2.13 16-Bit Task State Segment (TSS) Table (cont.)

15

Back Link (Old TSS Selector)

+0h

Configuration Registers (six)

The processor provides three 8-bit Configura-
tion Control Registers (CCR1, CCR2 and
CCR3) used to control the on-chip write-back
cache, the coprocessor interface signals and
SMM features. The processor also provides
two 8-bit internal read-only device identifica-
tion registers (DIRO and DIR1) and one 24-bit
SMM Address Region Register (SMAR). The
CCR, DIR, and SMAR registers exist in I/O
memory space and are selected by a “register
index” number as listed in ‘Table 2.14 Configura-
tion Reqister Map’ on page 48.

Access to these registers is achieved by writing
the index of the register to I/0O port 22h. 1/0
port 23h is then used for data transfer. Each
I/O port 23h data transfer must be preceded

by an 1/O port 22h register index selection,

otherwise the second and later I/O port 23h

operations are directed off-chip and produce

external I/O cycles. If the register index

number is outside the COh-CFh, FEh-FFh
range, external 1/0 cycles will also occur.

The CCR1 register, Table 2.15 on page 49,
controls SMM features and enables SMM and
cache interface signals.

The CCR2 register, Table 2.16 on page 51, is
used to setup internal cache operation and
enable suspend control signals.

The CCR3 register, Table 2.17 on page 51,
controls additional SMM features.

The SMAR register, Table 2.18 on page 52, is
used to define the location and size of the
memory region associated with SMM memory
space. The starting address of the SMM
address region must be on a block size
boundary. For example, a 128 KB block is
allowed to have a starting address of 0 KB,
128 KB, 256 KB, etc. The SMM block size
must be defined for SMI# to be recognized.

‘Table 2.19 DIRO Bit Definitions’ on page 52
contains an 8-bit value that defines the device

type.

‘Table 2.20 DIR1 Bit Definitions’ on page 52
contains additional device type information.
The upper 4 bits of DIR1 represent the step-
ping number of the device and the lower 4 bits
of DIR1 represent the particular revision
number of the stepping. Actual values for
DIRO and DIR1 are shown in Table 2.1 "Initial-
ized Register Controls" on page 34.

Table 2.14 Configuration Register Map

Register Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Index

Control Registers
CCR1 (C1h) RSVD NO_LOCK | MMAC SMAC SMI RPL
CCR2 (C2h) SUSP BWRT BARB WTI HALT LOCK_NW | WBAK RSVD
CCR3 (C3h) RSVD RSVD RSVD RSVD SMM_MODE RSVD RSVD RSVD
SMM Address Region Registers (24 bits)
CDh A3l A30 A29 A28 A27 A26 A25 A24
CEh A23 A22 A21 A20 Al9 Al8 Al7 Al6
CFh Al5 Al4 Al13 Al12 SIZE

ZFx86 Data Book 1.0 Rev D

Page 48

Wi

Table 2.14 Configuration Register Map (cont.)

Device ID Registers

DIRO DEVID | DEVID | DEVID | DEVID4 DEVID3 DEVID2 DEVID1 | DEVIDO
7 6 5
DIR1 SID[3:0] RID[3:0]

Note: The following register index numbers are reserved for future use: COh through CFh and FEh, FFh.

Example

; Enable CPU warm reset (WM_RST). See Table 2.16, “CCR2 Bit Defi-
nitions,” on page 51, and see “Configuration Registers (six)” on
page 48. Compare North Bridge Configuration Registers in “1/0
Address Map” on page 119.

mov al, 0C2h ; select CCR2
out 22h, al ; set address pointer to CCR2
in al, 23h ; read data from CCR2
or al, 2 ; or in WBAK bit Enable WM_RST
mov ah, al
mov al, 0C2h ; select CCR2 again (see prev page)
out 22h, al ; set address pointer to CCR2
mov al, ah ; or in bit 1 WBAK
out 23h, al ; write data to CCR2
Table 2.15 CCR1 Bit Definitions

Bit Name Description

75 RSVD Reserved.

4 NO_LOCK | Negate LOCK# —If = 1: All bus cycles are issued with LOCK# signal negated except
page table accesses. Interrupt acknowledge cycles are executed as locked cycles
even though LOCK# is negated. With NO_LOCK set, previously noncacheable locked
cycles are executed as unlocked cycles and, therefore, may be cached. This results in
higher CPU performance.

3 MMAC Main Memory Access — If = 1: All data accesses which occur within an SMI service
routine (or when SMAC = 1) access main memory instead of SMM memory space.

If = 0: No effect on access.
2 SMAC System Management Memory Access —
If = 1: Any access to addresses within the SMM memory space cause external bus
cycles to be issued with SMADS# output active. SMI# input is ignored.
If = 0: No effect on access.
1 SMI Enable SMM Signals —
If = 1: SMI# input/output signal and SMADS# output signal are enabled.
If = 0: SMI# input signal ignored and SMADS# output signal floats.
0 RPL Enable RPL Signals —
If = 1: Enable output signals RPLSET(1-0) and RPLVAL#.
If = 0: Output signals RPLSET(1-0) and RPLVAL# float.

ZFx86 Data Book 1.0 Rev D

Page 49

Wi

Table 2.15 CCRL1 Bit Definitions (cont.)

Bit

Name

Description

Note: Bits [4:0] are cleared to O at reset.

ZFx86 Data Book 1.0 Rev D

Page 50

Wi

Table 2.16 CCR2 Bit Definitions

Bit Name Description
7 SUSP Enable Suspend Signals —
If = 1: SUSP# input and SUSPA# output are enabled.
If = 0: SUSP# input is ignored and SUSPA# output floats.
6 BWRT Enable Burst Write Cycles —
If = 1: Enables use of 16-byte burst write-back cycles.
5 BARB Enable Cache Coherency on Bus Arbitration —
If = 1: Enable write-back of all dirty cache data when HOLD is requested and prior to
asserting HLDA.
4 WT1 Write-Through Region 1 —
If = 1: Forces all writes to the 640 KB to 1 MB address region that hit in the on-chip
cache to be issued on the external bus.
3 HALT Suspend on HALT —
If = 1: CPU enters suspend mode following execution of a HALT instruction.
2 LOCK_NW | LOCK NW Bit —
If = 1: Prohibits changing the state of the NW bit in CRO.
1 WBAK Enable Write-Back Cache Interface Signals —
If = 1: Enable INVAL and WM_RST input signals, and HITM# output signal.
If = 0: INVAL and WM_RST input signals are ignored, and HITM# output signal floats.
0 RSVD Reserved.

Note: All bits are cleared to zero at reset.

Table 2.17 CCR3 Bit Definitions

Bit

Name

Description

74

RSVD

Reserved.

SMM_MODE

SL-enhanced compatible mode.
If = 1: SL compatible mode enabled.
If = 0: SL compatible mode disabled.

NOTE: Once the SMI_Lock bit is set, the CPU must be reset in order to modify
SMI_Lock and SMM_Mode.

RSVD

Reserved

NMIEN

NMI Enable —
If = 1: NMI is enabled during SMM.
If = 0: NMI is not recognized during SMM.

SMI_LOCK

SMM Register Lock —

If = 1: the following SMM control bits cannot be modified:
CCR1 bits: 1, 2, and 3

CCR3 bit: 1

all SMAR bits

While operating within an SMI handler, these SMM control bits can be modified.

Once set, the SMI_LOCK bit can only be cleared by asserting the RESET signal.

Note: Bits [1:0] are cleared to zero at reset.

ZFx86 Data Book 1.0 Rev D

Page 51

Wi

Table 2.18 SMAR Size Field

Bits [3:0] Block Size Bits [3:0] Block Size
Oh Disabled 8h 512 KB
1h 4 KB 9h 1 MB
2h 8 KB Ah 2 MB
3h 16 KB Bh 4 MB
4h 32 KB Ch 8 MB
5h 64 KB Dh 16 MB
6h 128 KB Eh 32 MB
7h 256 KB Fh 4 KB (Same as 1h)
Table 2.19 DIRO Bit Definitions
Bit Name Description
7:0 DEVID[7:0] Device Identification —
DEVID[7:0] bits define the CPU type. These bits are read only.
processor = xxh
Table 2.20 DIR1 Bit Definitions

Bit Name Description
74 SID[3:0] Stepping Identification —

SID[3:0] are read only and indicate device stepping number.
3.0 RID[3:0] Revision Identification —

RID[3:0] are read only and indicate device revision number.

ZFx86 Data Book 1.0 Rev D

Page 52

Wi

A20M# ——> —
AHOLD ——* —
BOFF# —— —
BRDY# ——» —

BS16#, BS8# ——— —

CLK —— NG
EADS# —— 1 —
FLUSH# 1 Processor 5
Input and Output
IGNNE# ——» 2 Signals 1 —
INTR —— —
INVAL —— 1 —
HOLD ——* Y
KEN# —— 1 1 —
NMI ——> —
RDY# —— —
RESET ——»
SMi# <-— 4
susp ——» 3
up# ——
WM RST —* 5

1= Cache Interface

= Coprocessor Interface

= Power Management

= System Management Mode
5= Reset Input

Figure 2-3 Processor Internal I/O Interface Signals

[I N e

A31-A2
ADS#
BE3#-BEO#
BLAST#
BREQ
D31-DO
DICH#
DP3-DP0
FERR#
HITM#
HLDA
LOCK#
M/IO#
PCD
PCHK#
PLOCK#
PWT
RPLSET(1-0)
RPLVAL#
SMADS#
SUSPA#
W/R#

ZFx86 Data Book 1.0 Rev D

Page 53

Wi

Debug Registers

Six debug registers (DR0O-DR3, DR6 and
DR7), shown in Table 2.21, support debugging
on the processor. Memory addresses loaded
in the debug registers, referred to as “break-
points”, generate a debug exception when a
memory access of the specified type occurs to
the specified address. A breakpoint can be
specified for a particular kind of memory
access such as a read or a write. Code and
data breakpoints can also be set allowing
debug exceptions to occur whenever a given
data access (read or write) or code access
(execute) occurs. The size of the debug target
can be set to 1-, 2-, or 4-bytes. The debug
registers are accessed via MOV instructions
which can be executed only at privilege level
0.

Debug Address Registers (DR0O-DR3) contain
the linear address for one of four possible
breakpoints. Each breakpoint is specified by
bits in Debug Control Register (DR7). For
each breakpoint address in DR0O-DR3, there
are corresponding fields (L, R/W, and LEN) in

DRY7 that specify the memory access type
associated with the breakpoint.

The R/W field can be used to specify instruc-
tion execution as well as data access break-
points. Instruction execution breakpoints are
always taken before execution of the instruc-
tion that matches the breakpoint.

The Debug Status Register (DR6) reflects
conditions that were in effect at the time the
debug exception occurred. The contents of the
DR6 register are not automatically cleared by
the processor after a debug exception occurs
and, therefore, should be cleared by software
at the appropriate time. Table 2.22 on page 55
lists the field definitions for the DR6 and DR7
registers.

Code execution breakpoints may also be
generated by placing the breakpoint instruction
(INT 3) at the location where control is to be
regained. The single-step feature may be
enabled by setting the TF flag in the EFLAGS
register. This causes the processor to perform
a debug exception after the execution of every
instruction

Table 2.21 Debug Registers

31(30(29(28|27|26(25|24(23|22|21({20|19|18|17|16|15|14|13|12|11|10(9|8 |7 |6 |5 (4|3 |2 |1]|0

DR7 Register
LEN3 | R/W3 | LEN2 | R/W2 | LEN1 | R/W1 | LENO [RWO |0 |0 |G |0 |0 |1 |G|L|G|L|G|L|G|L|G|L
D E|E|[3]3]|2|2]|1[1]0]O0

DR6 Register
ojojo|ofojojofjojojojojofojojojo|Bf{B|O|Of1|2j21|1|21(1|1|1|B|B|B|B
T|S 3/12]1]0

DR3 Register
| Breakpoint 3 Linear Address |

DR2 Register
| Breakpoint 2 Linear Address |

DR1 Register
| Breakpoint 1 Linear Address |

DRO Register

| Breakpoint O Linear Address |

Note: All bits marked as 0 or 1 are reserved and should not be modified.

ZFx86 Data Book 1.0 Rev D

Page 54

Wi

Table 2.22 DR6 and DR7 Field Definitions

Number

Register Field Of Bits Description

DR6 Bi 1

Bi is set by the processor if the conditions described by DRI, R/Wi, and LENi
occurred when the debug exception occurred, even if the breakpoint is not
enabled via the Gi or Li bits.

BT 1

BT is set by the processor before entering the debug handler if a task switch
has occurred to a task with the T bit in the TSS set.

BS 1

BS is set by the processor if the debug exception was triggered by the single-
step execution mode (TF flag in EFLAGS set).

DR7 R/Wi 2

10 - Not used

Applies to the DRI breakpoint address register:
00 - Break on instruction execution only
01 - Break on data writes only

11 - Break on data reads or writes.

LENi 2

10 - Not used

11 - Four byte length.

Applies to the DRI breakpoint address register:
00 - One byte length
01 - Two byte length

If set to a 1, breakpoint in DRi is globally enabled for all tasks and is not
cleared by the processor as the result of a task switch.

Li 1

If set to 1, breakpoint in DRI is locally enabled for the current task and is
cleared by the processor as the result of a task switch.

GD 1

Global disable of debug register access. GD bit is cleared whenever a debug
exception occurs.

Test Registers

The five test registers, shown in Table 2.23,
are used to test the CPU’s Translation Look-
aside Buffer (TLB) and on-chip cache. TR6 and
TRY are used for TLB testing, and TR3-TR5

are used for cache testing. Table 2.24 on page
56 lists the bit definitions for the TR6 and TR7
registers.

The processor TLB is a four-way set associa-
tive memory with eight entries per set. Each
TLB entry consists of a 24-bit tag and 20-bit
data. The 24-bit tag represents the high-order
20 bits of the linear address, a valid bit, and
three attribute bits. The 20-bit data portion
represents the upper 20 bits of the physical
address that corresponds to the linear
address.

The TLB Test Control Register (TR6) contains
a command bit, the upper 20 bits of a linear
address, a valid bit and the attribute bits used
in the test operation. The contents of TR6 is
used to create the 24-bit TLB tag during both
write and read (TLB lookup) test operations.
The command bit defines whether the test
operation is a read or a write.

The TLB Test Data Register (TR7) contains
the upper 20 bits of the physical address (TLB
data field), three LRU bits and a control bit.
During TLB write operations, the physical
address in TR7 is written into the TLB entry
selected by the contents of TR6. During TLB
lookup operations, the TLB data selected by
the contents of TR6 is loaded into TR7.

ZFx86 Data Book 1.0 Rev D

Page 55

Wi

Table 2.23 Test Registers

31|30|29(28|27|26|25(24|23|22|21{20(19|18|17|16|15|14|13|12(11|10|9 (8 |7 |6 |5(4|3|2|1|O0
TR7 Register
TLB Physical Address P|P|TLBLRU 0| O |PL| REP |0 | O
C|W
D|T
TR6 Register
TLB Linear Address [v]plp#]ulus|r]re[0]0]0]0]C]
TR5 Register
RSVD Line Selection Set/ CTL
DWORD
TR4 Register
Cache Tag Address 0|V Cache Dirty Bits RSVD | O
LRU Bits
TR3 Register
Cache Data
Table 2.24 TR7 and TR6 Bit Definitions
Register
Name Bit Description
TR7 31:12 Physical address.
TLB lookup: data field from the TLB.
TLB write: data field written into the TLB.
11 Page-level cache disable bit (PCD).
Corresponds to the PCD bit of a page table entry.
10 Page-level cache write-through bit (PWT).
Corresponds to the PWT bit of a page table entry.
9:7 LRU bits.
TLB lookup: LRU bits associated with the TLB entry prior to the TLB lookup.
TLB write: ignored.
4 PL bit.
TLB lookup: If = 1, read hit occurred. If = 0, read miss occurred.
TLB write: If = 1, REP field is used to select the set. If = 0, the pseudo-LRU
replacement algorithm is used to select the set.
3:2 Set selection (REP).

TLB lookup: If PL = 1, set in which the tag was found. If PL = 0, undefined data.
TLB write: If PL = 1, selects one of the four sets for replacement. If PL = 0, ignored.

ZFx86 Data Book 1.0 Rev D

Page 56

Wi

Table 2.24 TR7 and TR6 Bit Definitions

Register
Name Bit Description
TR6 31:12 Linear address.
TLB lookup: The TLB is interrogated per this address. If one and only one match occurs
in the TLB, the rest of the fields in TR6 and TR7 are updated per the matching
TLB entry.
TLB write: A TLB entry is allocated to this linear address.
11 Valid bit (V).
TLB write: If set, indicates that the TLB entry contains valid data.
If clear, target entry is invalidated.
10:9 Dirty attribute bit and its complement (D, D#). Refer to Table 2-17 on page 30.
8.7 User/supervisor attribute bit and its complement (U, U#). Refer to Table 2-17 on page
30.
6:5 Read/write attribute bit and its complement (R, R#). Refer to Table 2-17 on page 30.
0 Command bit (C).
If = 0: TLB write.
If = 1: TLB lookup.
Table 2.25 TR6 Attribute Bit Pairs
Bit Bit Complement (D#,
(D, UorR) U#, or R#) Effect On TLB Lookup Effect On TLB Write
0 0 Do not match. Undefined.
0 1 Match if D, U or R bit = 0. Clear the bit.
1 0 Match if D, U or R bit = 1. Set the hit.
1 1 Match if D, U or R bit = either 1 or 0. | Undefined.

Cache Test Registers

The processor 8 KB on-chip cache is a four-
way set associative memory that can be
configured as either write-back or write-
through. Each cache set contains 128 entries.
Each entry consists of a 21-bit tag address, a
16-byte data field, a valid bit, and four dirty
bits.

The 21-bit tag represents the high-order 21
bits of the physical address. The 16-byte data
represents the 16 bytes of data currently in
memory at the physical address represented
by the tag. The valid bit indicates whether the
data bytes in the cache actually contain valid
data. The four dirty bits indicate if the data
bytes in the cache have been modified inter-
nally without updating external memory (write-
back configuration). Each dirty bit indicates

the status for one double-word (4 bytes) within
the 16-byte data field.

For each line in the cache there are three LRU
bits that indicate which of the four sets was
most recently accessed. A line is selected
using bits10-4 of the physical address. Figure
2-4 illustrates the processor cache architec-
ture.

The processor contains three test registers
that allow testing of its internal cache. Bit defi-
nitions for the cache test registers are shown
in Table 2.26. Using these registers, cache
writes and reads may be performed.

Cache test writes cause the data in the cache
fill buffer to be written to the selected set and
entry in the cache. Data must be written to
TR3 (32-bit register) four times in order to fill
the cache fill buffer. Once the cache fill buffer

ZFx86 Data Book 1.0 Rev D

Page 57

Wi

has been loaded, a cache test write can be
performed. For data to be written to the allo-
cated entry, the valid bit for the entry must be
set prior to the write of the data.

Cache test reads cause the data in the
selected set and entry to be loaded into the

cache flush buffer. Once the buffer has been
loaded, data must be read from TR3 four
times in order to empty the cache flush buffer.
For proper operation, cache tests should be
performed only when the cache is disabled
(CD bitin CRO = 1).

SET 1 SET 2 SET 3 LRU

Line
Address
SETO
127
126
D
E
A10-A4 : 8
D
E
0
153 ---

= Cache Entry (154 bits)
Tag Address (21 bits)
Data (128 bits)
Valid Status (1 bit)
Dirty Status (4 bits)

153 ---0 153 ---0 153 ---0 2--0

Figure 2-4 Processor Cache Architecture

ZFx86 Data Book 1.0 Rev D

Page 58

Wi

Table 2.26 TR3-TR5 Bit Definitions

Bit Name Description

31:0 TR3 Cache data —
Flush buffer read: data accessed from the cache flush buffer.
Fill buffer write: data to be written into the cache fill buffer.

31:12 TR4 Upper Tag Address —

Cache read: upper 21 bits of tag address of the selected entry.
Cache write: data written into the upper 21 bits of the tag address of
the selected entry.

10 Valid Bit —
Cache read: valid bit for the selected entry.
Cache write: data written into the valid bit for the selected entry.

9:7 LRU Bits —

Cache read: the LRU bits for the selected line.

xx1 = Set 0 or Set 1 most recently accessed.

xx0 = Set 2 or Set 3 most recently accessed.

x1x = Most recent access to Set 0 or Set 1 was to Set 0.
X0x = Most recent access to Set 0 or Set 1 was to Set 1.
1xx = Most recent access to Set 2 or Set 3 was to Set 2.
0Oxx = Most recent access to Set 2 or Set 3 was to Set 3.
Cache write: ignored.

6:3 Dirty Bits —
Cache read: the dirty bits for the selected entry (one bit per DWORD).
Cache write: data written into the dirty bits for the selected entry.

10:4 TR5 Line Selection —
Physical address bits 10:4 used to select one of 128 lines.
3:2 Set/DWORD Selection —

Cache read: selects which of the four sets is used as the source for data
transferred to the cache flush buffer.

Cache write: selects which of the four sets is used as the destination for data
transferred from the cache fill buffer.

Flush buffer read: selects which of the four Words in the flush buffer is

loaded into TR3.

Fill buffer write: selects which of the four DWORDs in TR3 is written to the fill buffer.

1:0 Control Bits —

If = 00: flush read or fill buffer write. Writing to TR3 fill buffer write. Reading TR3 ini-
tiates flush buffer read.

If = 01: cache write.

If = 10: cache read.

If = 11: cache flush.

ZFx86 Data Book 1.0 Rev D Page 59

Wi

2.2.4. Address Spaces

The CPU can directly address either memory
or I/O space. Figure 2-5 illustrates the range
of addresses available for memory address
space and I/O address space. For the
processor, the addresses for physical memory
range between 0000 0000h and FFFF
FFFFh (4 GB). However, the address bus
capability of the ZFx86 limits external memory
address space to 256 MB.The accessible 1/0
addresses space ranges between 0000 0000h
and 0000 FFFFh (64 KB). The processor does
not use coprocessor communication space in
upper I/0O space between 8000 00F8h and
8000 00FFh as do the 386-style CPU’s. The
I/O locations 22h and 23h are used for the
processor configuration register access.

2.2.4.1. 1/0 Address Space

The processor I/O address space is accessed
using IN and OUT instructions to addresses
referred to as “ports”. The accessible 1/10
address space is 64 KB and can be accessed
as 8-bit, 16-bit or 32-bit ports. The execution
of any IN or OUT instruction causes the M/IO#
signal to be driven low, thereby selecting the
I/O space instead of memory space.

The processor configuration registers reside
within the 1/0 address space at port addresses
22h and 23h and are accessed using standard
IN and OUT instructions. The configuration
registers are modified by writing the index of
the configuration register to port 22h, then
transferring the data through port 23h.
Accesses to the on-chip configuration regis-
ters do not generate external I/O cycles. Each
port 23h operation must be preceded by a port
22h write with a valid index value. Otherwise,
the second and later port 23h operations are
directed off-chip and generate external /0 cycles
without modifying the on-chip configuration
registers. Writes to port 22h outside of the
processor index range (COh-CFh and FEh-
FFh) result in external I/O cycles and do not
affect the on-chip configuration registers.

Reads of port 22h are always directed off-chip.

2.2.4.2. Memory Address Space

The processor directly addresses up to 4 GB
of physical memory. However, the address
bus capability of the ZFx86 limits external
memory address space to 256 MB. Memory
address space is accessed as bytes, WORDS
(16-bits) or DWORDs (32-bits). WORDS and
DWORDs are stored in consecutive memory
bytes with the low-order byte located in the
lowest address. The physical address of a
word or DWORD is the byte address of the
low-order byte.

Memory can be addressed using nine different
addressing modes. These addressing modes
are used to calculate an offset address often
referred to as an effective address. Depending
on the operating mode of the CPU, the offset
is then combined using memory management
mechanisms to create a physical address that
actually addresses the physical memory
devices.

Memory management mechanisms on the
CPU consist of segmentation and paging.
Segmentation allows each program to use
several independent, protected address
spaces. Paging supports a memory
subsystem that simulates a large address
space using a small amount of RAM and disk
storage for physical memory. Either or both of
these mechanisms can be used for manage-
ment of the processor memory address space

ZFx86 Data Book 1.0 Rev D

Page 60

Wi

Accessible
Physical Programmed
Memory Space I/O Space
FFFF FFFFH FFFF FFFFH
Not
Accessible
Physical Memory
4GB
Allowed Memory Processor
256 MB Configuration
0000 FFFFh Register 1/0
64 KB Space
0000 0023h
-————
0000 0000h 0000 0000h 0000 0022h

Figure 2-5 Memory and I/O Address Spaces

Offset Mechanism

The offset mechanism computes an offset
(effective) address by adding together up to
three values: a base, an index and a displace-
ment. The base, if present, is the value in one
of eight 32-bit general registers at the time of
the execution of the instruction. The index, like
the base, is a value that is contained in one of
the 32-bit general registers (except the ESP
register) when the instruction is executed. The
index differs from the base in that the index is
first multiplied by a scale factor of 1, 2, 4 or 8
before the summation is made. The third
component added to the memory address
calculation is the displacement which is a
value of up to 32-bits in length supplied as part
of the instruction. See Figure 2-6 "Offset
Address Calculation”.

Nine valid combinations of the base, index,
scale factor and displacement can be used
with the processor instruction set. These
combinations are listed in Table 2.27. The

base and index both refer to contents of a
register as indicated by [Base] and [Index]

Index

Base

Displacement

Scaling
x1, X2, X4, X8

¢

e

Offset Address
(Effective Address)

Figure 2-6 Offset Address Calculation

ZFx86 Data Book 1.0 Rev D

Page 61

Wi

Table 2.27 Memory Addressing Modes

Addressing Mode Base Index FS;c?I:r Displacement | Offset Address (OA) Calculation
Direct X OA=DP

Register Indirect X OA = [BASE]

Based X X OA = [BASE] + DP

Index X X OA =[INDEX] + DP

Scaled Index X X X OA = ([INDEX] * SF) + DP

Based Index X X OA =[BASE] + [INDEX]

Based Scaled Index X X X OA = [BASE] + ([INDEX] * SF)
Based Index with X X X OA = [BASE] + [INDEX] + DP
Displacement

Based Scaled Index X X X X OA = [BASE] + ([INDEX] * SF) + DP
with Displacement

Real Mode Memory Addressing

In real mode operation, the CPU only
addresses the lowest 1 MB of memory. To
calculate a physical memory address, the 16-
bit segment base address located in the
selected segment register is multiplied by 16
and then the 16-bit offset address is added.
The resulting 20-bit address is then extended
with twelve zeros in the upper address bits to
create the 32-bit physical address. Figure 2-13
illustrates the real mode address calculation.

The addition of the base address and the
offset address may result in a carry. Therefore,
the resulting address may actually contain up
to 21 significant address bits that can address
memory in the first 64 KB above 1 MB.

Protected Mode Memory Addressing

In protected mode three mechanisms calculate
a physical memory address:

» Offset Mechanism that produces the offset
or effective address as in real mode.

» Selector Mechanism that produces the
base address.

¢ Optional Paging Mechanism that trans-
lates a linear address to the physical
memory address.

The offset and base address are added
together to produce the linear address. If pag-
ing is not used, the linear address is used as
the physical memory address. If paging is
enabled, the paging mechanism is used to
translate the linear address into the physical
address. The offset mechanism is described in
‘Offset Mechanism’ on page 61. and applies to
both real and protected mode. The selector
and paging mechanisms are described in the
following paragraphs.

ZFx86 Data Book 1.0 Rev D

Page 62

Wi

Offset Address

Offset Mechanism

X 16 J

Selected Segment
Register

Linear Address = Physical Address

Figure 2-7 Real Mode Address Calculation

Offset Address

Offset Mechanism

Selector
Mechanism

Base Address *

|
Linear Address . Physical
™ P inoe\/ltlonﬁI nism —» Memory
aging viechanis Address

Figure 2-8 Protected Mode Address Calculation

Selector Mechanism

Memory is divided into an arbitrary number of
segments, each containing less than the 232
byte (4 GB) maximum.

The six segment registers (CS, DS, SS, ES,
FS and GS) each contain a 16-bit selector that
is used when the register is loaded to locate a
segment descriptor in either the global
descriptor table (GDT) or the local descriptor
table (LDT). The segment descriptor defines
the base address, limit and attributes of the
selected segment and is cached on the
processor as a result of loading the selector.

The cached descriptor contents are not visible
to the programmer. When a memory reference
occurs in protected mode, the linear address
is generated by adding the segment base

address in the hidden portion of the segment
register to the offset address. If paging is not
enabled, this linear address is used as the
physical memory address. Figure 2-9
"Selector Mechanism" illustrates the operation
of the selector mechanism.

ZFx86 Data Book 1.0 Rev D

Page 63

Wi

15

Selector (Accessed
Index TI RPL Selector Segment
Load .
l] Register)
Segment =0 \. G n=1 Segment
—® Descriptor) Descriptor ——

Global Descriptor Table

Local Descriptor Table

Cache Update p- Descriptor
From Memory Caci?e ——— > Base Address

Figure 2-9 Selector Mechanism

Paging Mechanism

The paging mechanism supports a memory
subsystem that simulates a large address
space with a small amount of RAM and disk
storage. The paging mechanism either trans-
lates a linear address to its corresponding
physical address or generates an exception if
the required page is not currently present in
RAM. When the operating system services the
exception, the required page is loaded into
memory and the instruction is then restarted.
Pages are either 4 KB or 1 MB in size. The
CPU defaults to 4 KB pages that are aligned to
4 KB boundaries.

A page is addressed by using two levels of

tables as illustrated in Figure 2-10 on page 65.
The upper 10 bits of the 32-bit linear address
are used to locate an entry in the page direc-
tory table. The page directory table acts as a
32-bit master index to up to 1 KB individual

second-level page tables. The selected entry
in the page directory table, referred to as the

directory table entry, identifies the starting
address of the second-level page table. The
page directory table itself is a page and is,
therefore, aligned to a 4 KB boundary. The
physical address of the current page directory
table is stored in the CR3 control register, also
referred to as the Page Directory Base
Register (PDBR).

Bits 21:12 of the 32-bit linear address, the
Page Table Index, locate a 32-bit entry in the
second-level page table. The Page Table
Entry (PTE) contains the base address of the
page frame. The second-level page table
addresses up to 1 KB individual page frames.
A second-level page table is 4 KB in size and
is itself a page. The lower 12 bits of the 32-bit
linear address, the Page Frame Offset (PFO),
locate the desired physical data within the
page frame.

Since the page directory table can point to 1
KB page tables, and each page table can point
to 1 KB of page frames, a total of 1 MB of page

ZFx86 Data Book 1.0 Rev D

Page 64

Wi

frames can be implemented. Since each page
frame contains 4 KB, up to 4 GB of virtual
memory can be addressed by the processor
with a single page directory table.

Linear Address

In addition to the base address of the page
table or the page frame, each directory table
entry or page table entry contains attribute bits
and a Present (P) Flag bit as illustrated in
Figure 2-10 and listed in Table 2.28.

31 22 21 v 12 11 v 0
Directory Table Index Page Table Index Page Frame Offset
(DTI) (PTI) (PFO)
Directory Table Page Table Page Frame
4 KB 4 KB 4 KB
.| Physical Data
> PTE
> DTE
0 0 0

y

CR3 | Control Register

If the P bit is set in the DTE, the page table is
present and the appropriate page table entry
is read. If P = 1 in the corresponding PTE
(indicating that the page is in memory), the
accessed and dirty bits are updated, if neces-
sary, and the operand is fetched. Both
accessed bits are set (DTE and PTE), if
necessary, to indicate that the table and the
page have been used to translate a linear
address. The dirty bit (D) is set before the first
write is made to a page.

The P bits must be set to validate the
remaining bits in the DTE and PTE. If either of
the P bits is not set, a page fault is generated
when the DTE or PTE is accessed. If P =0,
the remaining DTE/PTE bits are available for
use by the operating system. For example, the

y

Figure 2-10 Paging Mechanism

operating system can use these bits to record
where on the hard disk the pages are located.
A page fault is also generated if the memory
reference violates the page protection
attributes.

Translation Look-Aside Buffer

The translation look-aside buffer (TLB) is a
cache for the paging mechanism and replaces
the two-level page table lookup procedure for
TLB hits. The TLB is a four-way set associa-
tive 32-entry page table cache that automati-
cally keeps the most commonly used page
table entries in the processor. The 32-entry
TLB, coupled with a 4 KB page size, results in
coverage of 128 KB of memory addresses.

ZFx86 Data Book 1.0 Rev D

Page 65

Wi

The TLB must be flushed when entries in the
page tables are changed. The TLB is flushed

vidual entry in the TLB can be flushed using
the INVLPG instruction.

whenever the CR3 register is loaded. An indi-

Table 2.28 Directory and Page Table Entry (DTE and PTE) Bit Definitions

Bit Name Description
31:12 Base Address Specifies the base address of the page or page table.
11:9 -- Undefined and available to the programmer.

8:7 RSVD Reserved and not available to the programmer.

6 D Dirty Bit — If set, indicates that a write access has occurred to the page (PTE
only; undefined in DTE).

5 A Accessed Flag — If set, indicates that a read access or write access has
occurred to the page.

4 PCD Page Caching Disable Flag — If set, indicates that the page is not cacheable
in the on-chip cache.

3 PWT Page Write-Through Flag — If set, indicates that writes to the page or page
tables that hit in the on-chip cache must update both the cache and external
memory.

2 u/s User/Supervisor Attribute — If set (user), page is accessible at privilege
level 3. If clear (supervisor), page is accessible only when CPL < 2.

1 W/R Write/Read Attribute — If set (write), page is writable. If clear (read), page is
read only.

0 P Present Flag — If set, indicates that the page is present in RAM, and vali-
dates the remaining DTE/PTE bits. If clear, indicates that the page is not
present in memory and the remaining DTE/PTE bits can be used by the pro-
grammer.

2.2.5. Interrupts and Exceptions

The processing of either an interrupt or an
exception changes the normal sequential flow
of a program by transferring program control
to a selected service routine. Except for SMM
interrupts, the location of the selected service
routine is determined by one of the interrupt
vectors stored in the interrupt descriptor table.

True interrupts are hardware interrupts and
are generated by signal sources external to
the CPU. All exceptions (including so-called soft-
ware interrupts) are produced internally by the
CPU.

2.2.5.1. Interrupts

External events can interrupt normal program
execution by using one of the three interrupt
signals on the CPU.

« Non-maskable Interrupt (NMI signal)
» Maskable Interrupt (INTR signal)
¢ SMM Interrupt (SMI# signal).

For most interrupts, program transfer to the
interrupt routine occurs after the current
instruction has been completed. When the
execution returns to the original program, it
begins immediately following the interrupted
instruction.

ZFx86 Data Book 1.0 Rev D

Page 66

Wi

The NMlI interrupt cannot be masked by soft-
ware and always uses interrupt vector 2 to
locate its service routine. Since the interrupt
vector is fixed and is supplied internally, no
interrupt acknowledge bus cycles are
performed. This interrupt is normally reserved
for unusual situations such as parity errors
and has priority over INTR interrupts.

Once NMI processing has started no addi-
tional NMls are processed until an IRET
instruction is executed, typically at the end of
the NMI service routine. If NMI is re-asserted
prior to execution of the IRET instruction, one
and only one NMI rising edge is stored and
then processed after execution of the next
IRET.

During the NMI service routine, maskable
interrupts may be enabled. If an unmasked
INTR occurs during the NMI service routine,
the INTR is serviced and execution returns to
the NMI service routine following the next IRET.
If a HALT instruction is executed within the
NMI service routine, the processor restarts
execution only in response to RESET, an
unmasked INTR or an SMM interrupt. NMI
does not restart CPU execution under this
condition.

The INTR interrupt is unmasked when the
Interrupt Enable Flag (IF) in the EFLAGS
register is set to 1. With the exception of string
operations, INTR interrupts are acknowledged
between instructions. Long string operations
have interrupt windows between memory
moves that allow INTR interrupts to be
acknowledged.

When an INTR interrupt occurs, the CPU
performs two locked interrupt acknowledge
bus cycles. During the second cycle, the CPU
reads an 8-bit vector which is supplied by an
external interrupt controller. This vector selects
which of the 256 possible interrupt handlers
will be executed in response to the interrupt.

The SMM interrupt has higher priority than
either INTR or NMI. After SMI# is asserted,

program execution is passed to an SMi
service routine which runs in SMM address
space reserved for this purpose. The
remainder of this section does not apply to the
SMM interrupts. SMM interrupts are described
in greater detail in Section 2.2.5.4. ‘Interrupt
and Exception Priorities’ on page 69.

2.2.5.2.Exceptions

Exceptions are generated by an interrupt
instruction or a program error. Exceptions are
classified as traps, faults or aborts depending
on the mechanism used to report them and
the ability to restart of the instruction which
first caused the exception.

A Trap Exception is reported immediately
following the instruction that generated the
trap exception. Trap exceptions are gener-
ated by execution of a software interrupt
instruction (INTO, INT 3, INT n, BOUND), by a
single- step operation or by a data breakpoint.

Software interrupts can be used to simulate
hardware interrupts. For example, an INT n
instruction causes the processor to execute
the interrupt service routine pointed to by the
nth vector in the interrupt table. Execution of
the interrupt service routine occurs regardless
of the state of the IF flag in the EFLAGS
register.

The one byte INT 3, or breakpoint interrupt
(vector 3), is a particular case of the INT n
instruction. By inserting this one byte instruc-
tion in a program, the user can set breakpoints
in the code that can be used during debug.

Single-step operation is enabled by setting the
TF bit in the EFLAGS register. When TF is set,
the CPU generates a debug exception (vector
1) after the execution of every instruction.
Data breakpoints also generate a debug
exception and are specified by loading the
debug registers (DR0O-DR7) with the appro-
priate values.

A Fault Exception is reported prior to comple-
tion of the instruction that generated the

ZFx86 Data Book 1.0 Rev D

Page 67

Wi

exception. By reporting the fault prior to
instruction completion, the CPU is left in a
state which allows the instruction to be
restarted and the effects of the faulting instruc-
tion to be nullified. Fault exceptions include
divide-by-zero errors, invalid opcodes, page
faults and coprocessor errors. Debug excep-
tions (vector 1) are also handled as faults
(except for data breakpoints and single-step
operations). After execution of the fault
service routine, the instruction pointer points
to the instruction that caused the fault.

An Abort Exception is a type of fault exception
that is severe enough that the CPU cannot
restart the program at the faulting instruction.
The double fault (vector 8) is the only abort
exception that occurs on the processor.

2.2.5.3.Interrupt Vectors

When the CPU services an interrupt or excep-
tion, the current program’s instruction pointer
and flags are pushed onto the stack to allow
resumption of execution of the interrupted
program. In protected mode, the processor
also saves an error code for some exceptions.
Program control is then transferred to the
interrupt handler (also called the interrupt
service routine). Upon execution of an IRET at
the end of the service routine, program execu-
tion resumes at the instruction pointer address
saved on the stack when the interrupt was
serviced.

Interrupt Vector Assignments

Each interrupt (except SMI#) and exception is
assigned one of 256 interrupt vector numbers
listed in Table 2.29. The first 32 interrupt
vector assignments are defined or reserved.
INT instructions acting as software interrupts
may use any of interrupt vectors, 0 through
255.

The non-maskable hardware interrupt (NMI) is
assigned vector 2. lllegal opcodes including

faulty FPU instructions will cause an invalid
opcode fault, Interrupt Vector 6.

Table 2.29 Interrupt Vector Assignments

Interrupt Exception
Vectors Function Type
0 Divide error FAULT
1 Debug exception TRAP/FAULT
(see note)
2 NMI interrupt
3 Breakpoint TRAP
4 Interrupt on overflow TRAP
5 BOUND range exceeded FAULT
6 Invalid opcode FAULT
7 Device not available FAULT
8 Double fault ABORT
9 Reserved
10 Invalid TSS FAULT
11 Segment not present FAULT
12 Stack fault FAULT
13 General protection fault TRAP/FAULT
14 Page fault FAULT
15 Reserved
16 FPU error FAULT
17 Alignment check exception |FAULT
18-31 Reserved
32-255 | Maskable hardware inter- TRAP
rupts
0-255 Programmed interrupt TRAP

Note: Data breakpoints and single steps are traps. All are debug

exceptions are faults.

In response to a maskable hardware interrupt
(INTR), the processor issues interrupt
acknowledge bus cycles used to read the
vector number from external hardware. These
vectors should be in the range 32-255 as
vectors 0-31 are pre-defined.

ZFx86 Data Book 1.0 Rev D

Page 68

Wi

Interrupt Descriptor Table

The interrupt vector number is used by the
CPU to locate an entry in the interrupt
descriptor table (IDT). In real mode, each IDT
entry consists of a 4-byte far pointer to the
beginning of the corresponding interrupt
service routine. In protected mode, each IDT
entry is an 8-byte descriptor. The Interrupt
Descriptor Table Register (IDTR) specifies the
beginning address and limit of the IDT.
Following RESET, the IDTR contains a base
address of Oh with a limit of 3FFh.

The IDT can be located anywhere in physical
memory as determined by the IDTR register.
The IDT may contain different types of
descriptors: interrupt gates, trap gates and
task gates. Interrupt gates are used primarily
to enter a hardware interrupt handler. Trap
gates are generally used to enter an exception
handler or software interrupt handler. If an
interrupt gate is used, the Interrupt Enable
Flag (IF) in the EFLAGS register is cleared
before the interrupt handler is entered. Task
gates are used to make the transition to a new
task.

2.2.5.4. Interrupt and Exception Priori-
ties

As the processor executes instructions, it
follows a consistent policy for prioritizing

exceptions and hardware interrupts. The prior-
ities for competing interrupts and exceptions
are listed in Table 2-31 “Interrupt and Excep-
tion Priorities”. SMM interrupts always take
precedence. Debug traps for the previous
instruction and next instructions are handled
as the next priority. When NMI and maskable
INTR interrupts are both detected at the same
instruction boundary, the processor services
the NMI interrupt first.

The processor checks for exceptions in
parallel with instruction decoding and execu-
tion. Several exceptions can result from a
single instruction. However, only one excep-
tion is generated upon each attempt to
execute the instruction. Each exception
service routine should make the appropriate
corrections to the instruction and then restart
the instruction. In this way, exceptions can be
serviced until the instruction executes prop-
erly.

The processor supports instruction restart
after all faults, except when an instruction
causes a task switch to a task whose task
state segment (TSS) is partially not present. A
TSS can be partially not present if the TSS is
not page aligned and one of the pages where
the TSS resides is not currently in memory.

Table 2.30 Interrupt and Exception Priorities

Priority Description Notes
0 SMM hardware interrupt. SMM interrupts are caused by SMI# asserted and
always have highest priority.
1 Debug traps and faults from previous instruc- Includes single-step trap and data breakpoints
tion. specified in the debug registers.
2 Debug traps for next instruction. Includes instruction execution breakpoints speci-
fied in the debug registers.
Non-maskable hardware interrupt. Caused by NMI asserted.
Maskable hardware interrupt. Caused by INTR asserted and IF = 1.
Faults resulting from fetching the next instruc- Includes segment not present, general protection
tion. fault and page fault.
6 Faults resulting from instruction decoding. Includes illegal opcode, instruction too long, or
privilege violation.

ZFx86 Data Book 1.0 Rev D

Page 69

Wi

Table 2.30 Interrupt and Exception Priorities

Priority Description Notes

7 WAIT instruction and TS =1 and MP = 1. Device not available. Exception generated.

8 ESC instruction and EM =1 or TS = 1. Device not available. Exception generated.

9 Floating point error exception. Caused by unmasked floating point exception

with NE = 1.

10 Segmentation faults (for each memory refer- Includes segment not present, stack fault, and
ence required by the instruction) that prevent general protection fault.
transferring the entire memory operand.

11 Page Faults that prevent transferring the entire
memory operand.

12 Alignment check fault.

2.2.5.5. Exceptions in Real Mode 2.2.5.6. Error Codes

Many of the exceptions described in the ‘Inter-
rupt and Exception Priorities’ on page 69 are
not applicable in real mode. Exceptions 10, 11,
and 14 do not occur in real mode. Other
exceptions have slightly different meanings in
real mode as listed in ‘Exception Changes in
Real Mode’ on page 70

Table 2.31 Exception Changes in Real

Mode
Protected
Vector | Mode Function | Real Mode Function
8 Double fault Interrupt table limit
overrun.
10 Invalid TSS --

11 Segment not --
present

12 Stack fault

SS segment limit over-
run

CS, DS, ES, FS, GS
segment limit overrun

13 General protec-
tion fault

14 Page fault --

Note: -- means “does not occur”.

When operating in protected mode, the following
exceptions generate a 16-bit error code:

* Double Fault

¢ Alignment Check

e Invalid TSS

¢ Segment Not Present

» Stack Fault

* General Protection Fault
* Page Fault

The error code format is shown in Figure 2-18
and the error code bit definitions are listed in
Table 2-33. Bits [15:3] (selector index) are not
meaningful if the error code was generated as
the result of a page fault. The error code is
always zero for double faults and alignment
check exceptions.

15 32 1 0
s|s|s
Selector Index >1110

Figure 2-11 Error Code Format

ZFx86 Data Book 1.0 Rev D

Page 70

Wi

Table 2.32 Error Code Bit Definitions

Selector Index S2 S1 SO
Fault Type (Bits [15:3]) (Bit 2) (Bit 1) (Bit 0)
Page Fault Reserved Fault caused by: Fault occurred during: | Fault occurred during:
0 = not present page 0 =read access 0 = supervisor access
1 = page-level protec- | 1 = write access 1 = user access
tion violation
IDT Fault Index of faulty IDT Reserved 1 If = 1, exception
selector occurred while trying
to invoke exception or
hardware interrupt
handler.
Segment Index of faulty selec- Tl bit of faulty selector | O If =1, exception
Fault tor occurred while trying
to invoke exception or
hardware interrupt
handler.

2.2.6. System Management Mode

System Management Mode (SMM) provides
an additional interrupt which can be used for
system power management or software trans-
parent emulation of I/O peripherals. SMM is
entered using the System Management Inter-
rupt (SMI#) that has a higher priority than any
other interrupt, including NMI. An SMI interrupt
can also be triggered via the software using an
SMINT instruction. After an SMI interrupt,
portions of the CPU state are automatically
saved, SMM is entered, and program execu-
tion begins at the base of SMM address space
(Eigure 2-12). Running in protected SMM
address space, the interrupt routine does not
interfere with the operating system or any
application program.

Eight SMM instructions are included in the
processor instruction set that permit software
initiated SMM, and saving and restoring of the
total CPU state when in SMM mode. The
signals SMI# and SMADS# support SMM

functions.

ZFx86 Data Book 1.0 Rev D

Page 71

Wi

FFFF FFFFh

Physical
Memory Space

Physical Memory
4GB

Allowed Memory
256 MB

0000 0000h

Non-SMM Mode
ADS# Active

Potential
SMM Address
Space
FFFF FFFFh
ADS# Active
Defined
4 KB to SMM >)
32 MB Address SMADS# Active
Space
ADS# Active
0000 0000h
SMM Mode

Figure 2-12 System Management Memory Address Space

2.2.6.1. SMM Operation

SMM operation is summarized in Figure 2-20.
Entering SMM requires the assertion of the
SMI# signal for at least two CLK periods or
execution of the SMINT instruction. For the
SMI# or SMINT instruction to be recognized,
the following configuration register bits must be
set as shown in Table 2.33. The configuration
registers are discussed in detail in Section
“Configuration Registers” on page 25.

Table 2.33 Requirement for Recognizing
SMI# and SMINT

Register (Bit) SMI# SMINT
SMI CCR1[1] 1 1
SMAC CCR1[2] 0 1
SMAR SIZE [3-0] >0 >0

After recognizing SMI# or SMINT and prior to
executing the SMI service routine, some of the
CPU state information is changed. Prior to
modification, this information is automatically
saved in the SMM memory space header

located at the top of SMM memory space.
After the header is saved, the CPU enters real
mode and begins executing the SMI service
routine starting at the SMM memory base
address.

The SMI service routine is user definable and
may contain system or power management
software. If the power management software
forces the CPU to power down, or the SMI
service routine modifies more than what is
automatically saved, the complete CPU state
information can be saved.

ZFx86 Data Book 1.0 Rev D

Page 72

Wi

SMI# Sampled Active or
SMINT Instruction Executed

Y

CPU State Stored in SMM
Address Space Header

Y

Program Flow Transfers
to SMM Address Space

CPU Enters Real Mode

Y

Execution Begins at SMM
Address Space Base Address

Y

RSM Instruction Restores CPU
State Using Header Information

Normal Execution Resumes

Figure 2-13 SMI Execution Flow Diagram

2.2.6.2. SMM Memory Space Header

With every SMI interrupt or SMINT instruction,
certain CPU state information is automatically
saved in the SMM memory space header
located at the top of SMM address space. See
Figure 2-14. The header contains CPU state
information that is modified when servicing an
SMI interrupt. Included in this information are
two pointers. The Current IP points to the
instruction executing when the SMI was
detected.

ZFx86 Data Book 1.0 Rev D

Page 73

Wi

31 0
Top of SMM |
Address Space DR7 -4h
[
EFLAGS -8h
[
CRO -Ch
[
Current IP -10h
[
Next IP }
31 16 15 0 14h
[[
Reserved CS Selector -18h
[[
CS Descriptor (Bits 63:32) -1Ch
[[[
CS Descriptor (Bits 31:0 -20h
31 pror () 3210
Reserved S|Pl -24h
| 16] 15
1/0 Write Data Size /0O Write Address -28h
[[
1/0 Write Data -2Ch
[
ESI or EDI -30h

Figure 2-14 SMM Memory Space Header

The Next IP points to the instruction that will
be executed after exiting SMM. Also saved are
the contents of debug register 7 (DR7), the
extended flags register (EFLAGS), and control
register 0 (CRO). If SMM has been entered
due to an /O trap for a REP INSx or REP
OUTSKx instruction, the Current IP and Next IP
fields contain the same addresses and the | and
P field contain valid information.

If entry into SMM was caused by an 1/O trap
(“I/O Trapping” on page 99.), it is useful for the
programmer to know the port address, data
size and data value associated with that I/O
operation. This information is also saved in the
header and is only valid for an 1/O write opera-

tion. The I/O write information is not restored
within the CPU when executing an RSM instruction.

ZFx86 Data Book 1.0 Rev D

Page 74

Wi

Table 2.34 SMM Memory Space Header

Name Size Description
DR7 4 Bytes The contents of Debug Register 7.
EFLAGS 4 Bytes The contents of Extended Flags Register.
CRO 4 Bytes The contents of Control Register 0.
Current IP 4 Bytes The address of the instruction executed prior to servicing SMI interrupt.
Next IP 4 Bytes The address of the next instruction that will be executed after exiting SMM mode.
CS Selector 2 Bytes Code segment register selector for the current code segment.
CS Descriptor 8 Bytes Code segment register descriptor for the current code segment.
S 1 Bit Software SMM Entry Indicator.
S =1 if current SMM is the result of an SMINT instruction.
S =0 if current SMM is not the result of an SMINT instruction.
P 1 Bit REP INSx/OUTSX Indicator.
P = 1 if current instruction has a REP prefix.
P = 0 if current instruction does not have a REP prefix.
| 1 Bit IN, INSx, OUT, or OUTSx Indicator.
| = 1 if current instruction performed is an 1/0 WRITE.
I = 0 if current instruction performed is an I/0 READ.
1/0 Write Data 2 Bytes Indicates size of data for the trapped 1/O write.
Size 01h = Byte
03h = WORD
OFh = DWORD
1/0 Write 2 Bytes Address of the trapped I/O write.
Address
1/0 Write Data 4 Bytes Data associated with the trapped I/O write.
ESI or EDI 4 Bytes Restored ESI or EDI value. Used when it is necessary to repeat a REP OUTSx or
REP INSx instruction when one of the I/O cycles caused an SMI# trap.

Note: INSx = INS, INSB, INSW or INSD instruction.
OUTSx = OUTS, OUTSB, OUTSW and OUTSD instruction.

2.2.6.3. SMM Instructions

The processor automatically saves the minimal
amount of CPU state information when entering
SMM which allows fast SMI service routine
entry and exit. After entering the SMI service
routine, the MOV, SVDC, SVLDT and SVTS
instructions can be used to save the complete
CPU state information. If the SMI service
routine modifies more than what is automatically
saved or forces the CPU to power down, the
complete CPU state information must be
saved. Since the CPU is a static device, its
internal state is retained when the input clock is

stopped. Therefore, an entire CPU state save
is not necessary prior to stopping the input
clock.

The SMM instructions, listed in Table 2-36,
can only be executed if the following condi-
tions are met:

ZFx86 Data Book 1.0 Rev D

Page 75

Wi

SMI# is enabled and
SMAR SIZE > 0 and

[the Current Privilege Level (CPL) =0 and

the SMAC bit (CCR1, bit 2) is set] or

[the Current Privilege Level (CPL) =0 and
the CPU is in an SMI service routine (SMi# = 0)].

If the above conditions are not met and an
attempt is made to execute an SVDC, RSDC,
SVLDT, RSLDT, SVTS, RSTS, SMINT or RSM
instruction, an invalid opcode exception is
generated. These instructions can be
executed outside of defined SMM space

provided the above conditions are met.

The SMINT instruction can be used by soft-
ware to enter SMM. The CPU will not drive the
SMI# output low during the software initiated
SMM.

Table 2.35 SMM Instruction Set

Instruction OPCODE Format Description
SvDC OF 78 [mod sreg3 SVDC mem80, Save Segment Register and Descriptor:
r/m) sreg3 Saves reg (DS, ES, FS, GS, or SS) to mem80.
RSDC OF 79 [mod sreg3 RSDC sreg3, Restore Segment Register and Descriptor:
r/m] mem80 Restores reg (DS, ES, FS, GS, or SS) from mem80

Use RSM to restore CS.
Note: Processing “RSDC CS, Mem80” will produce
an exception.

SVLDT OF 7A [mod 000 r/m] SVLDT mem80 Save LDTR and Descriptor:
Saves Local Descriptor Table (LDTR) to mem80.

RSLDT OF 7B [mod 000 r/m] RSLDT mem80 Restore LDTR and Descriptor:
Restores Local Descriptor Table (LDTR) from
mem80

SVTS OF 7C [mod 000 r/m] | SVTS mem80 Save TSR and Descriptor:
Saves Task State Register (TSR) to mem80.

RSTS OF 7D [mod 000 r/m] RSTS mem80 Restore TSR and Descriptor:
Restores Task State Register (TSR) from mem80.

SMINT OF 7E SMINT Software SMM Entry:
CPU enters SMM mode. CPU state information is
saved in SMM memory space header and execu-
tion begins at SMM base address.

RSM OF AA RSM Resume Normal Mode:
Exits SMM mode. The CPU state is restored using
the SMM memory space header and execution
resumes at interrupted point.

Note: mem80 = 80-bit memory location

If the SMI# is asserted to the CPU during a
software SMM, the SMI# handshake occurs
normally. The hardware SMI# is serviced after
the software SMM has been exited by execu-
tion of the RSM instruction.

All of the SMM instructions (except RSM and
SMINT) save or restore 80 bits of data,
allowing the saved values to include the
hidden portion of the register contents.

ZFx86 Data Book 1.0 Rev D

Page 76

Wi

2.2.6.4. SMM Memory Space

SMM memory space is defined by specifying
the base address and size of the SMM
memory space in the SMAR register. The
base address must be a multiple of the SMM
memory space size. For example, a 32 KB
SMM memory space must be located at a

32 KB address boundary. The memory space
size can range from 4 KB to 32 MB.

SMM memory space accesses are always
non-cacheable. SMM accesses ignore the
state of the A20M# input signal and drive the
A20 address bit to the unmasked value.

Access to the SMM memory space can be
made even though not in SMM mode by
setting the SMAC bit in the CCR1 register.
This feature may be used to initialize the SMM
memory space.

While in SMM mode, SMADS# address
strobes are generated instead of ADS# for
SMM memory accesses. Any memory
accesses outside the defined SMM space
result in normal memory accesses and ADS#
strobes. Data (hon-code) accesses to main
memory that overlap with defined SMM
memory space are allowed if MMAC in CCR1
is set. In this case, ADS# strobes are gener-
ated for data accesses only and SMADS#
strobes continue to be generated for code
accesses.

2.2.6.5. SMI Service Routine Execu-
tion
After the SMM header has been saved, upon
entry into SMM the CRO, EFLAGS, and DR7
registers are set to their reset values. The
Code Segment (CS) register is loaded with the
base, as defined by the SMAR register, and a
limit of 4 GB. The SMI service routine then
begins execution at the SMM base address in
real mode.

The programmer must save the value of any
registers that may be changed by the SMI
service routine. For data accesses immedi-

ately after entering the SMI service routine,
the programmer must use CS as a segment
override. I/O port access is possible during the
routine, but care must be taken to save regis-
ters modified by the I/O instructions. Before
using a segment register, the register and the
register’s descriptor cache contents should be
saved using the SVDC instruction. While
executing in the SMM space, execution flow
can transfer to normal memory locations.

Hardware interrupts, (INTRs and NMIs), may
be serviced during a SMI service routine. If
interrupts are to be serviced while executing in
the SMM memory space, the SMM memory
space must be within the 0 to 1 MB address
range to guarantee proper return to the SMI
service routine after handling the interrupt.

INTRs are automatically disabled when
entering SMM since the IF flag is set to its
reset value. Once in SMM, the INTR can be
enabled by setting the IF flag. An NMI event in
SMM mode can be enabled by setting NMIEN
in the CCR3 register. If NMI is not enabled
while in SMM mode, the CPU latches one NMI
event and services the interrupt after NMI has
been enabled or after exiting SMM mode
through the RSM instruction.

Within the SMI service routine, protected
mode may be entered and exited as required,
and real or protected mode device drivers may
be called.

To exit the SMI service routine, a Resume
(RSM) instruction, rather than an IRET, is
executed. The RSM instruction causes the
processor to restore the CPU state using the
SMM header information and resume execu-
tion at the interrupted point. If the full CPU
state was saved by the programmer, the
stored values should be reloaded prior to
executing the RSM instruction using the MOV,
RSDC, RSLDT and RSTS instructions.

ZFx86 Data Book 1.0 Rev D

Page 77

Wi

CPU States Related to SMM and Suspend Mode

Figure 2-15 illustrates the various CPU states
associated with SMM and suspend mode.
While in the SMI service routine, the processor
can enter suspend mode either by (1)
executing a halt (HLT) instruction or (2) by
asserting the SUSP# input.

During SMM operations and while in SUSP#
initiated suspend mode, an occurrence of
either NMI or INTR is latched. (In order for
INTR to be latched, the IF flag must be set.)

NMI or INTR

The INTR or NMI is serviced after exiting
suspend mode. If suspend mode is entered
via a HLT instruction from the operating
system or application software, the reception
of an SMI# interrupt causes the CPU to exit
suspend mode and enter SMM. If suspend
mode is entered via the hardware (SUSP# =
0) while the operating system or application
software is active, the CPU latches one occur-
rence of INTR, NMI and SMI#.

Interrupt Service

Suspend Mode
(SUSPA# = 0)

IRETX
HLT*

Y

Routine

NMI or INTR

SUSP#=0 _
| OS/Application "~/ Suspend Mode
RESET "| Software | SUSP#=1 (SUSPA# = 0)
SMI#=0
A (INTR, NMI and SMI latched)
SMI#=0 RSM*
SMINT*
Non-SMM Operations
\‘ SMM Operations
Y
SMI Service HLT*
Routine \
INTR or NMI (SMI# = 0) Suspend Mode
(SUSPA# = 0)
IRV A
INTR and NMI
SUSP#=0 SUSP#=1 Interrupt Service
y Routine

Suspend Mode
(SUSPA# = 0)

* |Instructions

(INTR and NMI latched)

Figure 2-15 SMM and Suspend Mode State Diagram

ZFx86 Data Book 1.0 Rev D

Page 78

Wi

SL-enhanced Compatibility Mode

Following power-up or RESET, the CPU SMM
interface pins are disabled. Once enabled,
these two pins can either function as defined
previously (SMI and SMADS) or can be
programmed to function with a signalling
protocol compatible with the 32-bit x86-
enhanced CPUs (SMI, SMIACT). This section
describes the operation of the SMM interface
pins when operating in the SL-compatible
mode.

SMM Control Bit

The SMM_Mode bit in the configuration
register (CCR3 bit 3) controls the SMM inter-
face mode. Once the SMI_Lock bit is set, the
CPU must be reset in order to modify
SMI_Lock and SMM_Mode.

Pin Definitions

The two pins that change function in SL-
compatible mode are SMI and SMADS.

Table 2.36 SMM Pin Definitions

Non-SLCompatible Mode

SL-Compatible Mode

SMI: Bidirectional System Management Interrupt pin.

Asserted by the system logic to request an SMI interrupt.
Sampled by the CPU on each rising clock edge. Causes 1/0O
trap to occur if sampled and found asserted at least two clocks
prior to ready sampled asserted for an 1/O cycle.

Asserted by the CPU during execution of an SMI service routine
or in response to SMINT if SMAC is set.

SMI: System Management Interrupt input pin.

Asserted by the system logic to request an SMI interrupt. Sam-
pled by the CPU on each rising clock edge. SMI is falling edge
sensitive and causes an I/O trap to occur if sampled and found
asserted at least three clocks prior to RDY/BRDY sampled
asserted for any 1/O cycle.

SMADS: SMI Address Strobe output used to indicate that the
current bus cycle is an SMM memory access.

SMIACT: SMI Active output asserted by the CPU during execu-
tion of an SMI service routine.

Nested SMI

In Non-SLCompatible mode, nested SMI's
cannot occur due to the fact that the SMI pin
becomes an output during SMI servicing. In
SL-Compatible mode, if an SMI occurs during
an SMI service routine, one and only one SMI
is latched. The latched SMI is then serviced
immediately following execution of a RSM
instruction (used to exit the original SMI
service routine).

SMM Features Not Used with SL-
Compatible Interface.

The SMAC and MMAC functions are disabled
when in SL-Compatible mode. Additionally,
SMIACT remains asserted while executing an
SMI service routine regardless of the address
being accessed. In other words, if the SMI
service routine accesses memory outside the
defined SMM memory space, SMIACT

remains asserted. Also, the SMINT instruction
should not be used in SL-Compatible mode.

Write-Back Caching and SMM

The CPU allows caching of SMM memory
accesses. The SMM memory caching may
cause coherency problems in systems where
SMM memory space and normal memory
space overlap. Therefore, one of the following
options is recommended:

1) Flush the cache when entering and exiting
an SMI service routine.

OR

2) Flush the cache when entering an SMI
service routine and then make all SMM
accesses non-cacheable using the KEN pin.

In either case it is recommended to assert the
FLUSH input pin when the SMIACT pin is

ZFx86 Data Book 1.0 Rev D

Page 79

Wi

asserted. Asserting FLUSH in this manner is
acceptable for a CPU with write-through cache
as the flush invalidates the cache in a single
clock.

However, on CPUs with write-back cache,
asserting FLUSH requires the writing of all
dirty data to external memory prior to invali-
dating the cache contents. Bus cycles that
address normal memory addresses that
overlap with SMM memory space should not
be issued while SMIACT is asserted.

Therefore, while in SL-Compatible mode, the
CPU automatically writes all dirty data to
memory and then invalidates the cache prior
to asserting SMIACT. This guarantees that no
dirty data exists in the CPU at the time that
SMIACT is asserted.

SMM accesses are always non-cacheable and
the cache is flushed before entering the SMI
service routine. For these reasons, a bus
snoop that occurs while SMIACT is asserted
can never hit on a dirty line that is in SMM
space or the overlapped normal memory
space.Therefore, bus snoops that occur, while
SMIACT is asserted, never result in memory
incoherences.

2.2.7. Shutdown and Halt

The halt instruction (HLT) stops program
execution and prevents the processor from
using the local bus until restarted. The
processor then enters a low-power suspend
mode if the HLT bit in CCR2 is set. SMI, NMI,
INTR with interrupts enabled (IF bit in
EFLAGS = 1), or RESET forces the CPU out
of the halt state. If interrupted, the saved code
segment and instruction pointer specify the
instruction following the HLT.

Shutdown occurs when a severe error is
detected that prevents further processing. An
NMI input can bring the processor out of shut-
down if the IDT limit is large enough to contain
the NMI interrupt vector (at least 000Fh) and
the stack has enough room to contain the

vector and flag information (i.e., stack pointer
is greater than 0005h). Otherwise, shutdown
can only be exited by a processor reset.

2.2.8. Protection

Segment protection and page protection are
safeguards built into the CPU protected mode
architecture which deny unauthorized or incor-
rect access to selected memory addresses.
These safeguards allow multitasking
programs to be isolated from each other and
from the operating system. Page protection is
discussed earlier in this chapter in ‘Paging
Mechanism’ on page 64. This section concen-
trates on segment protection.

Selectors and descriptors are the key
elements in the segment protection mecha-
nism. The segment base address, size, and
privilege level are established by a segment
descriptor. Privilege levels control the use of
privileged instructions, 1/O instructions and
access to segments and segment descriptors.
Selectors are used to locate segment descrip-
tors.

Segment accesses are divided into two basic
types, those involving code segments (e.g.,
control transfers) and those involving data
accesses. The ability of a task to access a
segment depends on:

» the segment type
« the instruction requesting access

« the type of descriptor used to define the
segment

 the associated privilege levels (described
below).

Data stored in a segment can be accessed
only by code executing at the same or a more
privileged level. A code segment or procedure
can only be called by a task executing at the
same or a less privileged level.

ZFx86 Data Book 1.0 Rev D

Page 80

Wi

2.2.8.1. Privilege Levels

The values for privilege levels range
between 0 and 3. Level 0 is the highest privi-
lege level (most privileged), and level 3 is the
lowest privilege level (least privileged). The
privilege level in real mode is effectively 0.

The Descriptor Privilege Level (DPL) is the
privilege level defined for a segment in the
segment descriptor. The DPL field specifies
the minimum privilege level needed to access
the memory segment pointed to by the
descriptor.

The Current Privilege Level (CPL) is defined
as the current task’s privilege level. The CPL
of an executing task is stored in the hidden
portion of the code segment register and
essentially is the DPL for the current code
segment.

The Requested Privilege Level (RPL) speci-
fies a selector’s privilege level and is used to
distinguish between the privilege level of a
routine actually accessing memory (the CPL),
and the privilege level of the original requestor
(the RPL) of the memory access. The lesser of
the RPL and CPL is called the effective privilege
level (EPL). Therefore, if RPL = 0 in a segment
selector, the effective privilege level is always
determined by the CPL. If RPL = 3, the effec-
tive privilege level is always 3 regardless of
the CPL.

For a memory access to succeed, the effective
privilege level (EPL) must be at least as privi-
leged as the descriptor privilege level (EPL £
DPL). If the EPL is less privileged than the
DPL (EPL > DPL), a general protection fault is
generated. For example, if a segment has a
DPL =2, an instruction accessing the segment
only succeeds if executed with an EPL £ 2.

2.2.8.2. 1/O Privilege Levels

The 1/O Privilege Level (IOPL) allows the oper-
ating system executing at CPL = 0 to define
the least privileged level at which IOPL-sensi-
tive instructions can unconditionally be used.

The IOPL-sensitive instructions include CLI,
IN, OUT, INS, OUTS, REP INS, REP OUTS,
and STI. Modification of the IF bit in the
EFLAGS register is also sensitive to the 1/0
privilege level.

The IOPL is stored in the EFLAGS register. An
I/0O permission bit map is available as defined
by the 32-bit Task State Segment (TSS). Since
each task can have its own TSS, access to
individual I/O ports can be granted through
separate 1/0O permission bit maps.

If CPL <= I10PL, IOPL-sensitive operations
can be performed. If CPL > IOPL, a general
protection fault is generated if the current task
is associated with a 16-bit TSS. If the current
task is associated with a 32-bit TSS and CPL
> |OPL, the CPU consults the I/O permission
bitmap in the TSS to determine on a port-by-port
basis whether or not I/O instructions (IN, OUT,
INS, OUTS, REP INS, REP OUTS) are
permitted, and the remaining IOPL-sensitive
operations generate a general protection fault.

2.2.8.3. Privilege Level Transfers

A task’s CPL can be changed only through
intersegment control transfers using gates or
task switches to a code segment with a
different privilege level. Control transfers result
from exception and interrupt servicing and
from execution of the CALL, JMP, INT, IRET
and RET instructions.

There are five types of control transfers that
are summarized in Table 2.37. Control trans-
fers can be made only when the operation
causing the control transfer references the
correct descriptor type. Any violation of these
descriptor usage rules causes a general
protection fault.

Any control transfer that changes the CPL
within a task results in a change of stack. The
initial values for the stack segment (SS) and
stack pointer (ESP) for privilege levels 0, 1,
and 2 are stored in the TSS. During a JMP or
CALL control transfer, the SS and ESP are

ZFx86 Data Book 1.0 Rev D

Page 81

Wi

loaded with the new stack pointer and the
previous stack pointer is saved on the new
stack. When returning to the original privilege

level, the RET or IRET instruction restores the
less-privileged stack.

Table 2.37 Descriptor Types Used for Control Transfer

Control Transfer Type Operation Types Descriptor Descriptor Table
Intersegment within the same privilege level. JMP, CALL, RET, Code Segment GDT or LDT
IRET*
Intersegment to the same or a more privileged CALL Gate Call GDT or LDT
level. .
- Interrupt Instruction, | Trap or Interrupt Gate | LDT
Interrupt within task (could change CPL level). Exception
External Interrupt
Intersegment to a less privileged level (changes RET, IRET* Code Segment GDT or LDT
task CPL).
Task Switch via TSS. CALL, JMP Task State Segment GDT
Task Switch via Task Gate. CALL, JMP Task Gate GDT or LDT
IRET** Interrupt Task Gate IDT
Instruction, Excep-
tion, External Inter-
rupt

* NT (Nested Task bit in EFLAGS) =0
** NT (Nested Task bit in EFLAGS) = 1
Gates IDT should be at least 256 bytes, and the GDT

Gate descriptors provide protection for privi-
lege transfers among executable segments.
Gates are used to transition to routines of the
same or a more privileged level. Call gates,
interrupt gates and trap gates are used for privi-
lege transfers within a task. Task gates are
used to transfer between tasks.

Gates conform to the standard rules of privi-
lege. In other words, gates can be accessed
by a task if the effective privilege level (EPL) is
the same or more privileged than the gate
descriptor’s privilege level (DPL).

2.2.8.4. Initialization and Transition to

Protected Mode

The processor switches to real mode immedi-
ately after RESET. While operating in real

mode, the system tables and registers should
be initialized. The GDTR and IDTR must point to
avalid GDT and IDT, respectively. The size of the

must contain descriptors which describe the
initial code and data segments.

The processor can be placed in protected
mode by setting the PE bit in the CRO register.
After enabling protected mode, the CS register
should be loaded and the instruction decode
queue should be flushed by executing an inter-
segment JMP. Finally, all data segment regis-
ters should be initialized with appropriate
selector values.

2.2.9. Virtual 8086 Mode

Both real mode and virtual 8086 (V86) mode
are supported by the CPU, allowing execution of
8086 application programs and 8086 operating
systems. V86 mode allows the execution of
8086-type applications, yet still permits use of
the processor protection mechanism. V86
tasks run at privilege level 3. Upon entry, all

ZFx86 Data Book 1.0 Rev D

Page 82

Wi

segment limits are set to FFFFh (64 KB) as in
real mode.

2.2.9.1. Memory Addressing

While in V86 mode, segment registers are
used in an identical fashion to real mode. The
contents of the segment register are multiplied
by 16 and added to the offset to form the
segment base linear address. The CPU
permits the operating system to select which
programs use the V86 address mechanism
and which programs use protected mode
addressing for each task.

The processor also permits the use of paging
when operating in V86 mode. Using paging,
the 1 MB address space of the V86 task can
be mapped to anywhere in the 4 GB linear
address space of the CPU.

The paging hardware allows multiple V86
tasks to run concurrently and provides protec-
tion and operating system isolation. The
paging hardware must be enabled to run
multiple V86 tasks or to relocate the address
space of a V86 task to physical address space
greater than 1 MB.

2.2.9.2. Protection

All V86 tasks operate with the least amount of
privilege (level 3) and are subject to all of the
protected mode protection checks. As a result,
any attempt to execute a privileged instruction
within a V86 task results in a general protec-
tion fault.

In V86 mode a slightly different set of instruc-
tions is sensitive to the I/O privilege level
(IOPL) than in protected mode. The instruc-
tions are: CLI, INTn, IRET, POPF, PUSHF, and
STI. The INT3, INTO and BOUND variations
of the INT instruction are not IOPL sensitive.

2.2.9.3. Interrupt Handling

To fully support the emulation of an 8086-type
machine, interrupts in V86 mode are handled
as follows. When an interrupt or exception is
serviced in V86 mode, program execution

transfers to the interrupt service routine at
privilege level O (i.e., transition from V86 to
protected mode occurs) and the VM bit in the
EFLAGS register is cleared. The protected
mode interrupt service routine then deter-
mines if the interrupt came from a protected
mode or V86 application by examining the VM
bit in the EFLAGS image stored on the stack.
The interrupt service routine may then choose
to allow the 8086 operating system to handle
the interrupt or may emulate the function of
the interrupt handler. Following completion of
the interrupt service routine, an IRET instruc-
tion restores the EFLAGS register (restores
VM = 1) and segment selectors and control
returns to the interrupted V86 task.

2.2.9.4. Entering and Leaving V86
Mode

V86 mode is entered from protected mode by
either executing an IRET instruction at CPL=0
or by task switching. If an IRET is used, the
stack must contain an EFLAGS image with
VM = 1. If a task switch is used, the TSS must
contain an EFLAGS image containing a 1 in
the VM bit position. The POPF instruction
cannot be used to enter V86 mode since the
state of the VM bit is not affected. V86 mode
can only be exited as the result of an interrupt
or exception. The transition out must use a 32-
bit trap or interrupt gate which must point to a
non-conforming privilege level 0 segment
(DPL = 0), or a 32-bit TSS. These restrictions
are required to permit the trap handler to IRET
back to the V86 program.

2.2.10. FPU Operations

2.2.10.1. FPU Register Set

In addition to the registers described to this
point, the FPU circuitry within the CPU
provides the user eight data registers
(accessed in a stack-like manner), a control
register, and a status register. The CPU also
provides a data register tag word which
improves context switching and stack perfor-
mance by maintaining empty/non-empty

ZFx86 Data Book 1.0 Rev D

Page 83

Wi

status for each of the eight data registers. In
addition, registers in the CPU contain pointers
to (a) the memory location containing the
current instruction word and (b) the memory
location containing the operand associated
with the current instruction word (if any).

FPU Tag Word Register. The processor
maintains a tag word register comprised of two
bits for each physical data register. Tag Word
fields assume one of four values depending
on the contents of their associated data regis-
ters, Valid (00), Zero (01), Special (10), and
Empty (11). Note: Denormal, Infinity, QNaN,
SNaN and unsupported formats are tagged as
“Special”. Tag values are maintained transpar-
ently by the processor and are only available
to the programmer indirectly through the
FSTENV and FSAVE instructions. The tag
word with tag fields for each associated phys-
ical register, tag(n), is shown in Figure 2-16.

15 13 11 9 7 5 3 1

Tag 7 |Tag 6 | Tag 5| Tag 4 | Tag 3| Tag 2| Tag 1| Tag O

Figure 2-16 Tag Word Register

FPU Status Register. The FPU circuitry
communicates information about its status and
the results of operations to the CPU via the
status register. The FPU status register, illus-
trated in Figure 2-17, is comprised of bit fields

that reflect exception status, operation execu-
tion status, register status, operand class, and
comparison results. This register is continu-
ously accessible to the CPU regardless of the
state of the Control or Execution Units. The
Status Register’s bit definitions are given in
Table 2.38.

15 11 7 3

BC3 S S|SC2C1COESSFP UO Z D |

Figure 2-17 FPU Status Register

FPU Mode Control Register. The FPU Mode
Control Register (MCR), Figure 2-18, is used
by the CPU to specify the operating mode of
the FPU. The MCR contains bit fields which
specify the rounding mode to be used, the
precision by which to calculate results, and the
exception conditions which should be reported
to the CPU via traps. The user controls preci-
sion, rounding, and exception reporting by
setting or clearing appropriate bits in the MCR.
The Mode Control Register’s bit definitions are
given in Table 2.39.

15 11 7 3

-|RCRCPCPC| - - P U O Z DI

Figure 2-18 FPU Mode Control Register

Table 2.38 Status Control Register Bit Definitions

Bit Name Description
15 B Copy of the ES bit. (ES is bit 7 in this table.)
14, 10:8 C3-Co Condition code bits.

13:11 SSS Top of stack register number which points to the current TOS.
7 ES Error indicator. Set to 1 if an unmasked exception is detected.
6 SF Stack Fault or invalid register operation bit.
5 P Precision error exception bit.
4 U Underflow error exception bit.
3 (0] Overflow error exception bit.
2 z Divide by zero exception bit.
1 D Denormalized operand error exception bit.

ZFx86 Data Book 1.0 Rev D

Page 84

Wi

Table 2.38 Status Control Register Bit Definitions

Bit Name Description
0 | Invalid operation exception bit.
Table 2.39 Mode Control Register Bit Definition
Bit Name Description
15:12 RSVD Reserved.
11:10 RC Rounding Control bits:
00 = Round to nearest or even
01 = Round towards minus infinity
10 = Round towards plus infinity
11 = Truncate
9:8 PC Precision Control bits:
00 = 24-bit mantissa
01 = Reserved
10 = 53-bit mantissa
11 = 64-bit mantissa
5 P Precision error exception bit mask.
4 U Underflow error exception bit mask.
3 (0] Overflow error exception bit mask.
2 4 Divide by zero exception bit mask.
1 D Denormalized operand error exception bit mask.
0 | Invalid operation exception bit mask.

ZFx86 Data Book 1.0 Rev D

Page 85

Wi

2.3. Instruction Set

This section summarizes the Processor
instruction set and provides detailed informa-
tion on the instruction encodings. All instruc-
tions are listed in the CPU Instruction Set
Summary Table Table 2.56 on page 94, and
the FPU Instruction Set Summary Table Table
2.58 on page 108. These tables provide infor-
mation on the instruction encoding, and the
instruction clock counts for each instruction.
The clock count values for both tables are
based on the assumptions described in the
Section 2.3.2.1. ‘Assumptions Made in Deter-
mining Instruction Clock Count’ on page 93.

Depending on the instruction, the CPU instruc-
tions follow the general instruction format
shown in Figure 2-19. These instructions vary
in length and can start at any byte address. An
instruction consists of one or more bytes that
can include: prefix byte(s), at least one
opcode byte(s), mod r/m byte, s-i-b byte,
address displacement byte(s) and immediate
data byte(s). An instruction can be as short as
one byte and as long as 15 bytes. If there are
more than 15 bytes in the instruction a general
protection fault (error code 0) is generated.

7 07 0
|PPPPPPPP|TTTTTTTT| mod RRR r/m | ss index base 32 16 8 none 32 16 8 none
76 543 210 76 543 210
operation prefix opcode mod r/m s-i-b address displacement immediate data
byte(s) 1 or 2 bytes byte byte 4, 2,1 bytes or none (4, 2, 1 bytes or none)
register and address
mode specifier
P = prefix bit
T = opcode bit
R = opcode bit or reg bit
ss = scale
r/m = register/mode

Figure 2-19

Instruction Set Format

ZFx86 Data Book 1.0 Rev D

Page 86

Wi

2.3.1. General Instruction Fields

The fields in the general instruction format at
the byte level are listed in Table 2.40.

Table 2.40 Instruction Fields

Field Name Description

Width

Optional Prefix
Byte(s)

Specifies segment register override, address and operand size,
repeat elements in string instruction, LOCK# assertion.

1 or more bytes

Opcode Byte(s) Identifies instruction operation. 1 or 2 bytes
mod and r/m Byte Address mode specifier. 1 byte
s-i-b Byte Scale factor, Index and Base fields. 1 byte

Address Displace-
ment

Address displacement operand.

1, 2 or 4 bytes

Immediate data Immediate data operand.

1, 2 or 4 bytes

2.3.1.1. Optional Prefix Byte(s)

Prefix bytes can be placed in front of any
instruction. The prefix modifies the operation
of the next instruction only. When more than
one prefix is used, the order is not important.
There are five types of prefixes as follows:

» Segment Override explicitly specifies
which segment register an instruction will
use for effective address calculation.

» Address Size switches between 16- and
32-bit addressing. Selects the inverse of
the default.

* Operand Size switches between 16- and
32-bit operand size. Selects the inverse of
the default.

* Repeat is used with a string instruction
which causes the instruction to be
repeated for each element of the string.

¢ Lock is used to assert the hardware
LOCK# signal during execution of the
instruction.

Table 2.41 lists the encodings for each of the
available prefix bytes. The operand size and
address size prefixes allow the individual over-
riding of the default value for operand size and
effective address size. The presence of these
prefixes selects the opposite (non-default)
operand size and/or effective address size.

Table 2.41 Instruction Prefix Summary

Prefix Encoding Description

ES: 26h Override segment default, use ES for memory operand
CS: 2Eh Override segment default, use CS for memory operand
SS: 36h Override segment default, use SS for memory operand
DsS: 3Eh Override segment default, use DS for memory operand
FS: 64h Override segment default, use FS for memory operand
GS: 65h Override segment default, use GS for memory operand

ZFx86 Data Book 1.0 Rev D

Page 87

Wi

Table 2.41 Instruction Prefix Summary

Prefix Encoding Description

Operand Size 66h Make operand size attribute the inverse of the default
Address Size 67h Make address size attribute the inverse of the default
LOCK FOh Assert LOCK# hardware signal.

REPNE F2h Repeat the following string instruction.

REP/REPE F3h Repeat the following string instruction.

2.3.1.2. Opcode Byte(s)

The opcode field is either one or two bytes in
length and may be further defined by addi-
tional bits in the mod r/m byte. The opcode
field specifies the operation to be performed
by the instruction. Some operations have
more than one opcode, each specifying a
different form of the operation. Some opcodes
name instruction groups. For example, opcode
0x80 names a group of operations that has an
immediate operand, and a register or memory
operand. The opcodes are given in hex
values unless shown within brackets ([]).
Values within brackets are given in binary. The
reg field may appear in the second opcode
byte or in the mod r/m byte.

2.3.1.3. w Field

The 1-bit w field selects the operand size
during 16 and 32 bit data operations.

Table 2.42 w Field Encoding

2.3.1.4. d Field

The d field determines which operand is taken
as the source operand and which operand is
taken as the destination.

Table 2.43 d Field Encoding

d Field Direction Source Destination
of Operation Operand Operand
0 Register --> Register or | reg mod r/m or
Register --> Memory mod s-i-b
1 Register --> Register or | modr/mor | reg
Memory --> Register mod s-i-b

2.3.1.5. eee Field

The eee field is used to select the control,
debug and test registers in the MOV instruc-
tions. The type of register and base registers
selected by the eee field are listed in Table
2.44. The values shown are the only valid
encodings for the eee bits.

Operand Size Operand Size Table 2.44 eee Field Encoding
W Field Olgebrgtza;? gi':ri;t?;éi eee Field Register Type Base Register

8 Bits 8 Bits 000 Control Register CRO

1 16 Bits 32 Bits 010 Control Register CR2
011 Control Register CR3

000 Debug Register DRO

001 Debug Register DR1

010 Debug Register DR2

011 Debug Register DR3

110 Debug Register DR6

111 Debug Register DR7

ZFx86 Data Book 1.0 Rev D

Page 88

Wi

Table 2.44 eee Field Encoding (cont.)

eee Field Register Type Base Register
011 Test Register TR3
100 Test Register TR4
101 Test Register TR5
110 Test Register TR6
111 Test Register TR7

2.3.1.6. mod and r/m Byte

The mod and r/m fields, within the mod r/m
byte, select the type of memory addressing to

be used. Some instructions use a fixed
addressing mode (e.g., PUSH or POP)

and

therefore, these fields are not present. Table
2.45 lists the addressing method when 16-bit
addressing is used and a mod r/m byte is
present. Some mod r/m field encodings are
dependent on the w field and are shown in

Table 2.46.

Table 2.45 mod r/m Field Encoding

32-bit Address Mode
mod and r/m 16-bit Address Mode with mod r/m byte and
fields with mod r/m byte no s-i-b byte present
00 000 DS:[BX+SI] DS:[EAX]
00 001 DS:[BX+DI] DS:[ECX]
00 010 DS:[BP+SI] DS:[EDX]
00 011 DS:[BP+DI] DS:[EBX]
00 100 DS:[S]] s-i-b is present
00 101 DS:[DI] DS:[d32]
00 110 DS:[d16] DS:[ESI]
00 111 DS:[BX] DS:[EDI]
01 000 DS:[BX+SI+d8] DS:[EAX+d8]
01 001 DS:[BX+DI+d8] DS:[ECX+d8]
01010 DS:[BP+SI+d8] DS:[EDX+d8]
01011 DS:[BP+DI+d8] DS:[EBX+d8]
01 100 DS:[SI+d8] s-i-b is present
01101 DS:[DI+d8] SS:[EBP+d8]
01110 SS:[BP+d8] DS:[ESI+d8]
01111 DS:[BX+d8] DS:[EDI+d8]
10 000 DS:[BX+SI+d16] DS:[EAX+d32]
10 001 DS:[BX+DI+d16] DS:[ECX+d32]
10 010 DS:[BP+SI+d16] DS:[EDX+d32]
10011 DS:[BP+DI+d16] DS:[EBX+d32]
10 100 DS:[SI+d16] s-i-b is present
10 101 DS:[DI+d16] SS:[EBP+d32]
10 110 SS:[BP+d16] DS:[ESI+d32]
10 111 DS:[BX+d16] DS:[EDI+d32]
11000-11111 See Table 5-7 See Table 5-7

ZFx86 Data Book 1.0 Rev D

Page 89

Wi

Table 2.46 mod r/m Field Encoding Dependent on w Field

16-bit 16-bit 32-bit 32-bit
Operation Operation Operation Operation
mod r/m w=0 w=1 w=0 w=1
11 000 AL AX AL EAX
11 001 CL CX CL ECX
11 010 DL DX DL EDX
11 011 BL BX BL EBX
11 100 AH SP AH ESP
11101 CH BP CH EBP
11 110 DH Sl DH ESI
11 111 BH DI BH EDI
2.3.1.7. reg Field
The reg field determines which general regis-
ters are to be used. The selected register is
dependent on whether a 16 or 32 bit operation
is current and the status of the w bit.
Table 2.47 reg Field
16-bit 32-bit
Operation Operation 16-bit 16-bit 32-bit 32-bit
w Field Not w Field Not Operation Operation Operation Operation
reg Present Present w=0 w=1 w=0 w=1
000 AX EAX AL AX AL EAX
001 CX ECX CL CX CL ECX
010 DX EDX DL DX DL EDX
011 BX EBX BL BX BL EBX
100 SP ESP AH SP AH ESP
101 BP EBP CH BP CH EBP
110 Sl ESI DH Sl DH ESI
11 DI EDI BH DI BH EDI
2.3.1.8. sreg3Field FS and GS segment registers.

The sreg3 field (Table 2.43) is 3-bit field that is

similar to the sreg?2 field, but allows use of the Table 2.48 sreg3 Field Encoding

sreg3 Field Segment Register Selected
000 ES
001 Cs

ZFx86 Data Book 1.0 Rev D Page 90

Wi

Table 2.48 sreg3 Field Encoding

Table 2.50 ss Field Encoding

sreg3 Field Segment Register Selected ss Field Scale Factor

010 Ss 01 x2

011 DS 01 x4

100 FS 1 X8

101 GS

110 undefined 2.3.1.12. index Field

11 undefined The index field (Table 2.51) specifies the index

) register used by the offset mechanism for

2.3.1.9. sreg2 Field offset address calculation. When no index

The sreg?2 field (Table 2.42) is a 2-bit field that
allows one of the four 286 type segment regis-
ters to be specified.

Table 2.49 sreg2 Field Encoding

register is used (index field = 100), the ss
value must be 00 or the effective address is
undefined.

Table 2.51 index Field Encoding

sreg2 FIELD Segment Register Selected Index Field Index Register
00 ES 000 EAX
01 cs 001 ECX
10 SS 010 EDX
1 DS 011 EBX
2.3.1.10. s-i-b B = o
3.1 ..S-I- y.te | | 01 -
The s-i-b fields provide scale factor, indexing 110 ES|
and a base field for address selection.
111 EDI
2.3.1.11. ss Field _
Base Field

The ss field (Table 2.50) specifies the scale
factor used in the offset mechanism for
address calculation. The scale factor multi-
plies the index value to provide one of the
components used to calculate the offset
address.

Table 2.50 ss Field Encoding

ss Field Scale Factor

00 x1

In Table 2.45, the note “s-i-b present” for
certain entries forces the use of the mod and
base field as listed in Table 2.52. The first two
digits in the first column of this table identifies
the mod bits in the mod r/m byte. The last
three digits in the first column identify the base
fields in the s-i-b byte.

Table 2.52 mod base Field Encoding

base Field 32-Bit Address Mode
mod Field within within with mod r/m and
mode/rm Byte s-i-b Byte s-i-b Bytes Present
00 000 DS:[EAX+(scaled index)]
00 001 DS:[ECX+(scaled index)]

ZFx86 Data Book 1.0 Rev D

Page 91

Wi

Table 2.52 mod base Field Encoding (cont.)

base Field 32-Bit Address Mode
mod Field within within with mod r/m and

mode/rm Byte s-i-b Byte s-i-b Bytes Present

00 010 DS:[EDX+(scaled index)]

00 011 DS:[EBX+(scaled index)]

00 100 SS:[ESP+(scaled index)]

00 101 DS:[d32+(scaled index)]

00 110 DS:[ESI+(scaled index)]

00 111 DS:[EDI+(scaled index)]

01 000 DS:[EAX+(scaled index)+d8]

01 001 DS:[ECX+(scaled index)+d8]

01 010 DS:[EDX+(scaled index)+d8]

01 011 DS:[EBX+(scaled index)+d8]

01 100 SS:[ESP+(scaled index)+d8]

01 101 SS:[EBP+(scaled index)+d8]

01 110 DS:[ESI+(scaled index)+d8]

01 111 DS:[EDI+(scaled index)+d8]

10 000 DS:[EAX+(scaled index)+d32]

10 001 DS:[ECX+(scaled index)+d32]

10 010 DS:[EDX+(scaled index)+d32]

10 011 DS:[EBX+(scaled index)+d32]

10 100 SS:[ESP+(scaled index)+d32]

10 101 SS:[EBP+(scaled index)+d32]

10 110 DS:[ESI+(scaled index)+d32]

10 111 DS:[EDI+(scaled index)+d32]

ZFx86 Data Book 1.0 Rev D

Page 92

Wi

2.3.2. Instruction Set Tables

The instruction set is presented in two tables,
the CPU Instruction Set (Table 2.56 on page

94) and the FPU Instruction Set (Table 2.58 on

page 108). Additional information concerning
the FPU Clock Counts is presented on page
107.

2.3.2.1. Assumptions Made in Deter-
mining Instruction Clock
Count

The following assumptions have been made in
presenting the clock count values for the indi-
vidual instructions:

 All clock counts refer to the internal CPU
internal clock frequency. For example, the
clock counts for a clock-doubled processor
refer to 50 MHz clocks while the external
clock is 25 MHz.

» The instruction has been prefetched,
decoded and is ready for execution.

» Bus cycles do not require wait states.

e There are no local bus HOLD requests
delaying processor access to the bus.

* No exceptions are detected during instruc-
tion execution.

« If an effective address is calculated, it
does not use two general register compo-
nents. One register, scaling and displace-
ment can be used within the clock count
shown. However, if the effective address
calculation uses two general register
components, add one clock to the clock
count shown.

 All clock counts assume aligned 32-bit
memory/1O operands.

* If instructions access a 32-bit operand on
odd addresses, add one clock for read or

write and add two clocks for read and write.

¢ For non-cached memory accesses, add
two clocks (DX) or four clocks (DX2),
assuming zero wait state memory
accesses.

» Locked cycles are not cacheable. There-
fore, using the LOCK prefix with an instruc-
tion adds additional clocks as specified in
instruction 9 above.

2.3.2.2. CPU Instruction Set Summary
Table Abbreviations

The clock counts listed in the CPU Instruction
Set Summary Table are grouped by operating
mode and whether there is a register/cache hit
or a cache miss. In some cases, more than
one clock count is shown in a column for a
given instruction, or a variable is used in the
clock count. The abbreviations used for these
conditions are listed in Table 2.53.

Table 2.53 CPU Clock Count Abbreviations

Clock
Count
Symbol Explanation
/ Register operand/memory operand.
n Number of times operation is repeated.
L Level of the stack frame.
I

Conditional jump taken | Conditional jump
not taken.

(e.g. “4]1" = 4 clocks if jump taken, 1 clock if
jump not taken)

\ CPL<IOPL \ CPL>I0PL
(where CPL = Current Privilege Level, IOPL =

I/O Privilege Level)

ZFx86 Data Book 1.0 Rev D

Page 93

Wi

2.3.2.3. CPU Instruction Set Summary Table Flags Table
The CPU Instruction Set Summary Table lists Table 2.54 Flag Abbreviations (cont.)

nine flags that are affected by the execution of Abbreviation Name Of Flag
instructions. The conventions shown in Table 2.54 A Auxiliary Flag

are used to identify the different flags. Table oF Parity Flag

2.55 lists the conventions used to indicate oF Cany Flag

what action the instruction has on the partic-
ular flag.

Table 2.55 Action of Instruction on Flag

Table 2.54 Flag Abbreviations :
Instruction
Abbreviation Name Of Flag Table Symbol Action
OF Overflow Flag X Flag is modified by the instruction.
DF Direction Flag - Flag is not changed by the instruction.
IF Interrupt Enable Flag Flag is reset to “0”.
TF Trap Flag Flag is set to “1".
SF Sign Flag
ZF Zero Flag

Table 2.56 Processor Core Instruction Set Summary

Real Prot’d Real | Prot’d
Flags Mode Mode Mode | Mode
ODI TS Z AP Clock Count
Instruction Opcode FFFFFTFTFFTF (Reg/Cache Hit) Notes
AAA ASCII Adjust AL after Add 37 X 4 4
AAD ASCII Adjust AX before Divide D5 0A X X X 4 4
AAM ASCII Adjust AX after Multiply D4 0A X X X 16 16
AAS ASCII Adjust AL after Subtract 3F X 4 4
ADC Add with Carry
Register to Register 1 [00dw] [11 reg r/m] X X X X X 1 1 b h
Register to Memory 1 [000w] [mod reg r/m] 3 3
Memory to Register 1 [001w] [mod reg r/m] 3 3
Immediate to Register/Memory 8 [00sw] [mod 010 r/m]# 1/3 1/3
Immediate to Accumulator 1 [010w] # 1 1
ADD Integer Add
Register to Register 0 [00dw] [11 reg r/m] X X X X X 1 1 b h
Register to Memory 0 [000w] [mod reg r/m] 3 3
Memory to Register 0 [001w] [mod reg r/m] 3 3
Immediate to Register/Memory 8 [00sw] [mod 000 r/m]# 1/3 1/3
Immediate to Accumulator 0 [010w] # 1 1
AND Boolean AND
Register to Register 2 [00dw] [11 reg r/m] 0 X X X 1 1 b h
Register to Memory 2 [000w] [mod reg r/m] 3 3
Memory to Register 2 [001w] [mod reg r/m] 3 3
Immediate to Register/Memory 8 [00sw] [mod 100 r/m]# 1/3 1/3
Immediate to Accumulator 2 [010w] # 1 1
ARPL Adjust Requested Privilege Level

ZFx86 Data Book 1.0 Rev D

Page 94

Wi

Table 2.56 Processor Core Instruction Set Summary (cont.)

Real Prot'd Real | Prot'd
Flags Mode Mode Mode | Mode
) O D TSZAPC Clock Count
Instruction Opcode F F FFFFFF (Reg/Cache Hit) Notes
From Register/Memory 63 [mod reg r/m] - - - - X - - - 6/10 a h
BOUND Check Array Boundaries
If Out of Range (Int 5) 62 [mod reg r/m] - - L L 11+INT 11+INT b,e |gh,jkr
If In Range 11 11
BSF Scan Bit Forward
Register, Register/Memory |0F BC [mod reg r/m] | - - - X - - - | 5/7+n | 5/7+n | b | h
BSR Scan Bit Reverse
Register, Register/Memory |0F BC [mod reg r/m] | - - - X - - - | 5/7+n | 5/7+n | b | h
BSWAP Byte Swap |oF c1 reg] - - - - - - - -] 4 | a4] |
BT Test Bit
Register/Memory, Immediate OF BA [mod 100 r/m]# - - - - - - - X 3/4 3/4 b h
Register/Memory, Register OF A3 [mod reg r/m] 3/6 3/6
BTC Test Bit and Complement
Register/Memory, Immediate OF BA [mod 111 r/m]# - - - - - - - X 4/5 4/5 b h
Register/Memory, Register OF BB [mod reg r/m] 5/8 5/8
BTR Test Bit and Reset
Register/Memory, Immediate OF BA [mod 110 r/m]# - - - - - = = X 4/5 4/5 b h
Register/Memory, Register OF B3 [mod reg r/m] 5/8 5/8
BTS Test Bit and Set
Register/Memory OF BA [mod 101 r/m - - - - - - - X 3/5 3/5 b h
Register (short form) OF AB [mod reg r/m] a/7 a/7
CALL Subroutine Call
Direct Within Segment E8 +++ - - R 7 7 b h,j,k,r
Register/Memory Indirect Within Segment |FF [mod 010 r/m] 8/9 8/9
Direct Intersegment 9A [unsigned full offset, 12 30
-Call Gate to Same Privilege selector] 41
-Call Gate to Different Privilege No Par’s 83
-Call Gate to Different Privilege m Par’s 81+4x
-16-bit Task to 16-bit TSS 235
-16-bit Task to 32-bit TSS 262
-16-bit Task to V86 Task 179
-32-bit Task to 16-bit TSS 238
-32-bit Task to 32-bit TSS 265
-32-bit Task to V86 Task 182
Indirect Intersegment FF [mod 011 r/m] 14 14
-Call Gate to Same Privilege 43
-Call Gate to Different Privilege No Par’s 85
-Call Gate to Different Privilege m Par’s 86+4x
-16-bit Task to 16-bit TSS 237
-16-bit Task to 32-bit TSS 264
-16-bit Task to V86 Task 181
-32-bit Task to 16-bit TSS 240
-32-bit Task to 32-bit TSS 267
-32-bit Task to V86 Task 184
CBW Convert Byte to Word 98 - - T 3 3
CDQ Convert DWORD to Quadword 99 - - L 1 1
CLC Clear Carry Flag F8 - - - - - - -0 1 1
CLD Clear Direction Flag FC -0 R 1 1
CLI Clear Interrupt Flag FA - - L 7 7 m

ZFx86 Data Book 1.0 Rev D

Page 95

Wi

Table 2.56 Processor Core Instruction Set Summary (cont.)

Real Prot'd Real | Prot'd
Flags Mode Mode Mode | Mode
) oD TS Z P Clock Count
Instruction Opcode F F FFF F (Reg/Cache Hit) Notes
CLTS Clear Task Switched Flag OF 06 I 5 | s c |
CMC Complement the Carry Flag |F5 | - - - - - 1 | 1 |
CMP Compare Integers
Register to Register 3 [10dw] [11 reg r/m] X - - X X X b h
Register to Memory 3 [101w] [mod reg r/m] 1 1
Memory to Register 3 [100w] [mod reg r/m] 3 3
Immediate to Register/Memory 8 [00sw] [mod 111 r/m] # 3 3
Immediate to Accumulator 3 [110w] ### 1/3 1/3
CMPS Compare String A [011w] X - - X X X 7 7 b h
CMPXCHG Compare and Exchange
Registerl, Register2 OF B [000w] [11 reg2 regl] ([x - - X X X 5 5
Memory, Register OF B [000w] [mod reg r/m] 7 7
CWD Convert Word to DWORD 99 - - - - - - 1 1
CWDE Convert Word to DWORD Extended 98 - - - - - - 3 3
DAA Decimal Adjust AL after Add 27 - - - 4 4
DAS Decimal Adjust AL after Subtract 2F - - - X X X 4 4
DEC Decrement by 1
Register/Memory F [111w] [mod 001 r/m] X - - X X X 1/3 1/3 b h
Register (short form) 4 [1req] 1 1
DIV Unsigned Divide
Accumulator by Register/Memory F [011w] [mod 110 r/m] - - - - - - b,e eh
Divisor: Byte 14/15 14/15
WORD 22/23 22/23
DWORD 38/39 38/39
ENTER Enter New Stack Frame
Level =0 C8 ++[8-bit Level] - - - - - - 7 7 b h
Level =1 10 10
Level (L)>1 6+4*L 6+4*L
HLT Halt [F4 [- - - i 3 3 [
IDIV Integer (Signed) Divide
Accumulator by Register/Memory F [011w] [mod 111 r/m] |- - - - - - be eh
Divisor: Byte 19/20 19/20
WORD 27/28 27/28
DWORD 43/44 43/44
IMUL Integer (Signed) Multiply

ZFx86 Data Book 1.0 Rev D

Page 96

Wi

Table 2.56 Processor Core Instruction Set Summary (cont.)

Real Prot'd Real | Prot'd
Flags Mode Mode Mode | Mode
) ODI TS ZAP Clock Count
Inst