

ZilOg Product Specification

January 1989

ZBO@ Family Data Book

Product Specifications

Z80@ Family Data Book
Table of Contents

2ilog 280 Family .. .
28400/284COO NMOS/CMOS 280 CPU 3
284C01 280 CPU with Clock Generator/Controller .. 25
28410/284C10 NMOS/CMOS 280DMA .. 57
28420/284C20 NMOS/CMOS 280 PIO .. 81
28430/284C30 NMOS/CMOS 280CTC .. 97
28440/1 /214 284C40/1 /2/3/4 NMOS/CMOS Z80 SIO .. 11 3
28470 280 DART ... 137
284C80 CMOS Z80 GLU ... 149
Z84C90 CMOS 280KIO .. 167
280180 Z180 MPU ... 185
2280 MPU .. 227

Application Notes

Z80 Family Interrupt Structure ... 293
Using the Z80 SIO In Asynchronous Communications .. 305
Using the Z80 SIO with SDLC .. 329
Binary Synchronous Communication Using the 280 SIO ... 341
Serial Communication with the Z80A DART ... 345
Interfacing 8500 Peripherals to the Z80 ... 353
Serial Clock Generation Using the Z8536C10 .. 359
Timing in an Interrupt-Based System with the Z80 CTC .. 363
A Z80-Based System Using the DMA with the SIO .. 375
Interfacing Z80 CPUs to the 28500 Peripheral Family ... 387
Z80Family Questions and Answers ... 411
Zilog Quality and Reliability .. 427
Literature Guide .. 431
Ordering Information ... 433
Package Information ... 437

Zilog
January 1989

Zilog remains an industry leader, thanks to continuing
innovation in integrated design and new superintegration
technology. At Zilog, innovation means using proven,
sophisticated mainframe and minicomputer concepts and
translating them into the latest LSI technologies. Integra­
tion means more than designing an ever-greater number of
functions onto a single chip.

This guide to the Z80 family of state-of-the-art micropro­
cessors and intelligent peripheral controllers demonstrates
Zilog's continued support for the Z80 microprocessor and
the other members of the Z80 product family - family first
introduced in 1976 that continues to enjoy growing cus­
tomer support while family chips are upgraded to newer
and ever-higher standards.

The Z8400/84COO CPU Central Processing Unit rapidly
established itself as the most sophisticated, most powerful,
and most versatile 8-bit microprocessor in the world.

In addition to being source-code compatible with the 8080A
microprocessor, the Z80 offers more instructions than the
8080A (158 vs 78) and numerous other features that
simplify hardware requirements and reduce programming
effort while increasing throughput. The dt¥11-register set of
the Z80 CPU allows high-speed context switching and
more efficient interrupt processing. Two index registers
give additional memory addressing flexibility and simplify
the task of programming. Interfacing to dynamic memory
is simplified by on-chip, programmable refresh logic. Block
moves plus string and bit manipulation instructions reduce
programming effort, program size, and execution time.
The CMOS versions of the family retain all the functions of
the standard NMOS components while providing dramatic
power savings and increased reliability.

The four traditional functions of a microcomputer system
(parallel 1/0, serial 1/0, counting/timing, and direct memory
access) are easily implemented by the following well­
proven family of Z80 peripheral devices: Z80 PIO, Z80 SIO,
Z80 DART, Z80 CTC, and Z80 DMA.

The easily programmed, dual channel Z8420/84C20 ZBO
PIO Parallel Input/Output Controller offers two 8-bit 1/0
ports with individual handshake and pattern recognition
logic. Both 1/0 ports operate in either a byte or a bit mode.
In addition, this device can be programmed to generate
interrupts for various status conditions.

Zilog Z80 Family
An Industry Standard 8-Bit Architecture
with 16-Bit Migration Path

All common data communications protocols, asynchro­
nous as well as synchronous, are remarkably well handled
by the Z8440/84C40 Z80 SIO Serial Input/Output Con­
troller. This dual-channel receiver/transmitter device of­
fers on-chip parity and CRC generation/checking. FIFO
buffering and flag and frame detection generation logic are
also offered.

If asynchronous-only applications are required, the cost
effective Z8470 Z80 Dart Dual Asynchronous Receiver/
Transmitter can be used in place of the Z80 SIO. The Z80
Dart offers all Z80 SIO asynchronous features in two
channels.

Timing and event-counting functions are the forte of the
Z8430/84C30 Z80 Counter/Timer Controller. The CTC
provides four counters, each with individually program­
mable prescalers. The CTC is a convenient source of
programmable clock rates for the SIO.

With the Z8410/84C10 Z80 OMA Direct Memory Access
Controller, data can be transferred directly between any
two ports (typically, 1/0 and memory). The DMA transfers,
searches, or search/transfers data in Byte-by-Byte, Burst,
or Continuous modes.

The Z180 microprocessor integrates an enhanced Z80
CPU and many of the functions traditionally assigned lo
peripheral circuits onto a single chip. The Z180 provides an
easy software upgrade path. Old zao designs can be
converted to the Z180 with essentially no loss in software
investment. New designs will benefit from the processor's
low cost, powerful instruction set, real low power consump­
tion, and high level of integration. Recent advances in
CMOS technology and chip-packing densities inspired the
Z180. The processor is essentially a Z80 core (with a few
added instructions), and a number of on-board peripherals.
The most important of these is Memory Management Unit
(MMU), which translates 16 bit addresses to 20 bits.
Although this translation gives programs access to 1 MB of
memory, the code uses only 16 bit (64K) addresses. Z80
software compatibility is thus completely maintained. Other
Z180 peripherals include two 16 bit counter/timers, pro­
grammable refresh and wait state generation, a pair of
DMA controllers, and three serial ports with on-chip baud
rate generation.

The Z80280 brings 16-bit CPU and sophisticated features

required by complex, high performance applications to the
Z80 architecture. Z280 maintains complete object code
compatibility with the Z80. One of the unique features of
the Z280 is its bus size. By strapping a single pin on the
chip, the designer can select 8 or 16 bit bus widths. Thus
to use existing designs, an 8-bit Z80 compatible bus can be
used. Higher performance systems can be designed using
the Z280's 16 bit mode, in which all memory references use
true 16 bit accesses. A single processor can be used in
both medium and high performance products, without
changing the software. The Z280 includes a Memory
Management Unit (MMU), which gives the processor ac­
cess to 16 MB of memory. Other features of the Z280
include on-chip instruction and cache memory, 3-stage
pipeline, dual operating modes, four channel OMA Control­
ler, three 16 bit counter/timers, programmable refresh and
wait state generation, and a serial port with on-chip baud
rate generation.

Zilog's Superintegration Strategy
In these days, when success in the semiconductor busi­
ness requires that each competitor have a significant
"edge", Zilog finds itself in a unique position. Customers
have welcomed ASIC products specifically tailored for their
particular needs. As these chips grow larger, however,
economics dictates that there be a higher degree of organi­
zation in the architecture of the chips than exists with
conventional gate arrays and standard cells; the micropro­
cessor "core" offers the ideal, may be even unique solution
to this requirement.

There are only three or four microprocessor families which
are sufficiently well known in the industry to be recognized
by a wide user base. The Zilog Z80 microprocessor family
is well positioned in that ranking.

2

Zilog is making its microprocessor cores and peripheral
cells available to the industry in a concept we have called
"Superintegration". In this concept, popular one-chip ar­
rangements of the Zilog cores and cells are offered to our
customers as "standard products" which may be tailored in
software to meet particular customer needs.

The Zilog Superintegration concept offers three major
benefits:

• The economics, quality and reliability of standard
structures. ·

• The familiar Zilog product architectures and operat­
ing systems.

• User customization via software.

One of the first "Superintegration" products of the Z80
family is the Z84C90 Killer 110 (KIO). This chip combines
the features of Z84C30 (CTC), Z84C4x (SIO), Z84C20
(PIO), a byte-wide bit programmable 110 port, and a crystal
oscillator on a single chip. Tf1e Z84C01 is the Z80 CPU with
a built-in clock generator/controller. The Z84C80 GLU is a
collection of various circuits required to interface Z80 with
memory and 1/0 peripheral devices. The features included
on this chip include; the crystal oscillator, dynamic memory
interface controller, static memory interface, memory and
chip 1/0 selects, watch-dog timer, five types of wait state
generators, and Z8500 peripheral interface.

Z •1 ADVANCED INFORMATION
1 og Product Specification

FEATURES

• The extensive instruction set contains 158 instructions,
including the 8080A instruction set as a subset.

• Single 5 volt power supply.

• NMOS version for low cost high performance solutions,
CMOS version for high performance low power de­
signs.

• NMOS Z0840004 - 4 MHz, Z0840006 - 6.17 MHz,
Z0840008 - 8 MHz.

CMOS Z84C0004 - DC to 4 MHz, Z84C0006 - DC to
6.17 MHz, Z84C0008- DC to 8 MHz, Z84C0010 - DC
to 10 MHz.

• 6 MHz version can be operated at 6.144 MHz clock.

Ao
A,

MREQ A,

SYSTEM A,

CONTROL AD A,

WR As

As

RFSH A1 ADDRESS
As BUS

HALT Ag

A10 - WAIT A11
ZB400

A,, CPU
CONTROL - INT A13 - NMI A,.

A15 - REill
Do

CPU { o,-
BUS

CONTROL
o,- DATA

CLK BUS

+5V Ds-

Ds-

07

Figure 1. Pin Functions

Z8400/Z84COO NMOS/CMOS
Z8CJ!l> CPU
Central Processing Unit

January 1989

• The zao microprocessors and associated family of
peripherals can be linked by a vectored interrupt sys­
tem. This system can be daisy-chained to allow implem­
entation of a priority interrupt scheme.

• Duplicate set of both general-purpose and flag registers.

• Two sixteen bit index registers.

• Three modes of maskable interrupts:
Mode 0-8080A similar;
Mode 1-Non-Z80 environment, location 38H;
Mode 2-Z80 family peripherals, vectored interrupts.

• On-chip dynamic memory refresh counter.

A11 40 A10

A,, 39 Ag

A13 38 As

A,. 37 A1

A15 36 As

CLK 35 As

D, 34 A,

DJ 8 33 A,

Ds 9 32 A,

Ds 10 31 A,

+5V 11 ZSOCPU 30 Ao
D, 12 29 GND

07 13 28 RFSH

Do 14 27 Ml
o, 15 26 RESET

INT 16 25 BUSREO

NMI 17 24 WAIT

HALT 18 23 BUSACK

MREO 19 22 WR
IORO 20 21 RB

Figure 2. 40-pin Dual-In-Line (DIP), Pin Assignments

3

CLK
D4
D3

DS

D6

+sv
D2

DI

DO
DI

..,.,4'..,.,~..," .. i""-i'..,.,.,..,..C" """o """ "fct ..,,,,. """

44 34

ZBOCPU

12 22

~~%,'~"~~~_:,,\." p -...:,~•·;p~

AS

A4

A3

A2

Al

AO

GND

RFSH
Mi
iITTET

23

44 pin Quad Flat Pack (QFP), Pin Assignments
(Only available for 84COO)

GENERAL DESCRIPTION

The CPUs are fourth-generation enhanced microproc­
essors with exceptional computational power. They offer
higher system throughput and more efficient memory
utilization than comparable second- and third-generation
microprocessors. The internc;il registers contain 208 bits of
read/write memory that are accessible to the programmer.
These registers include two sets of six general-purpose
registers which may be used individually as either 8-bit
registers or as 16-bit register pairs. In addition, there are two
sets of accumulator and flag registers. A group of
"Exchange" instructions makes either set of main or
alternate registers accessible to the programmer. The
alternate set allows operation in foreground-background
mode or it may be reserved for very fast interrupt response.

~v ,. ~ ,_ ,_ "-1,....,'l. ,_ ,. ~,.~ ,_-o "'"" ,_'()

6 5 4 3 2 1 44 43 42 41 40

CLK 7 39 As

D4 8 38 A,

D, 9 37 A,

Ds 10 36 A,

Ds 11 35 A,

NC 12 Z80 CPU 34 Ao

+5V 13 33 GND

D, 14 32 RFSH

D1 15 31 M1
Do 16 30 RESET

D, 17 29 BUSREQ

Fiaure 2b. 44-Pin Chio Carrier Pin Assianments

The CPU also contains a Stack Pointer, Program Counter,
two index registers, a Refresh register (counter), and an
Interrupt register. The CPU is easy to incorporate into a
system since it requires only a single + 5V power source. All
output signals are fully decoded and timed to control
standard memory or peripheral circuits; the CPU is
supported by an extensive family of peripheral controllers.
The internal block diagram (Figure 3) shows the primary
functions of the processors. Subsequent text provides more
detail on the 1/0 controller family, registers, instruction set,
interrupts and daisy chaining, and CPU timing.

S·BIT
DATA BUS

INSTRUCTION
DECODER

INSTRUCTION
REGISTER

ALU

+5V-+-

GND-+-

CLOCK-..

4

8 SYSTEMS 5 CPU
AND CPU CONTROL
CONTROL INPUTS
OUTPUTS

CPU
TIMING

16-BIT
ADDRESS BUS

Figure 3. ZSOC CPU Block Diagram

CPU REGISTERS

Figure 4 shows three groups of registers within the CPU.
The first group consists of duplicate sets of 8-bit registers: a
principal set and an alternate set [designated by ' (prime),
e.g., A']. Both sets consist of the Accumulator register, the
Flag register, and six general-purpose registers. Transfer of
data between these duplicate sets of registers is
accomplished by use of "Exchange" instructions. The
result is faster response to interrupts and easy, efficient
implementation of such versatile programming techniques

MAIN REGISTER SET

A ACCUMULATOR F FLAG REGISTER

B GENERAL PURPOSE c GENERAL PURPOSE

D GENERAL PURPOSE E GENERAL PURPOSE

H GENERAL PURPOSE L GENERAL PURPOSE

------ 8 BITS ---•

---------16 BITS---------

IX INDEX REGISTER

JV INDEX REGISTER

SP STACK POINTER

PC PROGRAM COUNTER

l INTERRUPT VECTOR I A MEMORY REFRESH

------ 8 BITS---•

A'

B'

D'

H'

as background-foreground data processing. The second
set of registers consists of six registers with assigned
functions. These are the I (Interrupt register), the R (Refresh
register), the IX and IY (Index registers) the SP (Stack
Pointer), and the PC (Program Counter). 1 ne third group
consists of two interrupt status flip-flops, plus an additional
pair of flip-flops which assists in identifying the interrupt
mode at any particular time. Table 1 provides further
information on these registers.

ALTERNATE REGISTER SET

ACCUMULATOR F' FLAG REGISTER

GENERAL PURPOSE C' GENERAL PURPOSE

GENERAL PURPOSE E' GENERAL PURPOSE

GENERAL PURPOSE L' GENERAL PURPOSE

INTERRUPT FLIP-FLOPS STATUS

G r INTERRUPTS DISABLED 4 ~ : INTERRUPTS ENABLED

STORES IFF1

DURING NMI

SERVICE

INTERRUPT MODE FLIP·FLOPS

INTERRUPT MODE 0
NOT USED
INTERRUPT MODE 1
INTERRUPT MODE 2

Figure 4. CPU Registers

INTERRUPTS: GENERAL OPERATION

The CPU accepts two interrupt input signals: NMI and INT
The NMI is a non-maskable interrupt and has the highest
priority. INT is a lower priority interrupt and it requires that
interrupts be enabled in software 1n order to operate. INT
can be connected to multiple peripheral devices in a
wired-OR configuration.

The Z80 has a single response mode for interrupt service
on the non-maskable interrupt. The maskable interrupt,
INT, has three programmable response modes available.
These are:

• Mode O - similar to the 8080 microprocessor.

• Mode 1 - Peripheral Interrupt service, for use with
non-8080/Z80 systems.

• Mode 2 - a vectored interrupt scheme, usually daisy­
chained, for use with the zao Family and compatible
peripheral devices.

The CPU services interrupts by sampling the NMI and INT
signals at the rising edge of the last clock of an instruction.
Further interrupt service processing depends upon the type
of interrupt that was detected. Details on interrupt
responses are shown in the CPU Timing Section.

Non-Maskable Interrupt (NMI). The nonmaskable
interrupt cannot be disabled by program control and
therefore will be accepted at all times by the CPU. NMI is
usually reserved for servicing only the highest priority type
interrupts, such as that for orderly shutdown after power

5

zao
Table 1 . ZSOC CPU Registers

Register Size (Bits)

A, A' Accumulator 8

F, F' Flags 8

B, B' General Purpose 8

C,C' General Purpose 8

D,D' General Purpose 8

E, E' General Purpose 8

H,H' General Purpose 8

L, L' General Purpose 8

Interrupt Register 8

R Refresh Register 8

IX Index Register 16

IY Index Register 16

SP Stack Pointer 16

PC Program Counter 16

IFF1-IFF2 Interrupt Enable Flip-Flops

IMFa-IMFb Interrupt Mode Flip-Flops

failure has been detected. After recognition of the NMI
signal (providing BUSREO 1s not active), the CPU jumps to
restart location 0066H. Normally, software starting at this
address contains the interrupt service routine.

Maskable Interrupt (INT). Regardless of the interrupt
mode set by the user, the CPU response to a maskable
interrupt input follows a common timing cycle. Alter the
interrupt has been detected by the CPU (provided that
interrupts are enabled and BUSREQ is not active) a special
interrupt processing cycle begins. This is a special fetch
(M1) cycle in which IORO becomes active rather than
MREO, as in a normal M1 cycle. In addition, this special M1
cycle is automatically extended by two WAIT states, to allow
for the time required to acknowledge the interrupt request.

Mode O Interrupt Operation. This mode is similar to the
8080 microprocessor interrupt service procedures. The
interrupting device places an instruction on the data bus.
This is normally a Restart instruction, which will initiate a call

6

Remarks

Stores an operand or the results of an operation.

See Instruction Set.

Can be used separately or as a 16-bit register with C.

Can be used separately or as a 16-bit register with C.

Can be used separately or as a 16-bit register with E.

Can be used separately or as a 16-bit register with E.

Can be used separately or as a 16-bit register with L.

Can be used separately or as a 16-bit register with L.

Note: The (B,C), (D,E), and (H,L) sets are combined as follows:

B - High byte C - Low byte
D-High byte

H-High byte

E-Lowbyte

L-Lowbyte

Stores upper eight bits of memory address for vectored interrupt

processing.

Provides user-transparent dynamic memory refresh. Automatically

incremented and placed on the address bus during each

instruction fetch cycle.

Used for indexed addressing.

Used for indexed addressing

Holds address of the top of the stack. See Push or Pop in instruction

set.

Holds address of next instruction.

Set or reset to indicate interrupt status (see Figure 4).

Reflect Interrupt mode (see Figure 4).

to the selected one of eight restart locations in page zero of
memory. Unlike the 8080, the Z80 CPU responds to the
Call instruction with only one interrupt acknowledge cycle
followed by two memory read cycles.

Mode 1 Interrupt Operation. Mode 1 operation is very
similar to thatfor the NMI. The principal difference is that the
Mode 1 interrupt has only one restart location, 0038H.

Mode 2 Interrupt Operation. This interrupt mode has been
designed to most effectively utilize the capabilities of the
Z80 microprocessor and its associated peripheral family.The
interrupting peripheral device selects the starting address
of the interrupt service routine. It does this by placing an 8-
bit vector on the data bus during the interrupt acknowledge
cycle. The CPU forms a pointer using this byte as the lower
8 bits and the contents of the I register as the upper 8 bits.
This points to an entry in a table of addresses for interrupt
service routines. The CPU then jumps to the routine at that

address. This flexibility in selecting the interrupt service
routine address allows the peripheral device to use several
different types of service routines. These routines may be
located at any available location in memory. Since the
interrupting device supplies the low-order byte of the 2-byte
vector, bit O (A0) must be a zero.

Interrupt Enable/Disable Operation. Two flip-flops, IFF1
and IFF2, referred to in the register description, are used to
signal the CPU interrupt status. Operation of the two
ll1p-llops is described in Table 2. For more details, refer to
the Z80 CPU Technical Manual (03-0029-01) and Z80
Assembly Language Programming Manual (03-0002-01).

Table 2. State of Flip-Flops

Action IFF1 IFF2 Comments

CPU Reset 0

DI instruction execution O

El instruction execution

LO A,I instruction execution

LO A,R instruction execution
Accept NMI 0

0

0

Maskable interrupt
iNT Uit5abieci

Maskable interrupt
INT disabled

Maskable interrupt
INT enabled

IFF2--+ Parity flag

I FF2 --+ Parity flag
Maskable interrupt

INT disabled

RETN instruction execution IFF2 IFF2 --+ IFF1 at

INSTRUCTION SET

The microprocessor has one of the most powerful and
versatile instruction sets available in any 8-b1t micro­
processor. It includes such unique operations as a block
move for last, efficient data transfers within memory, or
between memory and 1/0. It also allows operations on any
bit in any location in memory.

The following is a summary of the instruction set which
shows the assembly language mnemonic, the operation,
the flag status, and gives comments on each instruction. For
an explanation of flag notations and symbols for mnemonic
tables, see the Symbolic Notations section which follows
these tables. The Z80 CPU Technical Manual (03-0029-01),
the Programmer's Reference Gwde (03-0012-03), and
Assembly Language Programming Manual (03-0002-01)
contain significantly more details for programming use.

The instructions are divided into the following categories:

o 8-bit loads

CJ 16-bit loads

o Exchanges, block transfers, and searches

o 8-bit arithmetic and logic operations

CJ General-purpose arithmetic and CPU control

o 16-bit arithmetic operations

o Rotates and shifts

completion of an
NMI service

routine.

o Bit set, reset, and test operations

CJ Jumps

o Calls, returns, and restarts

o Input and output operations

A variety of addressing modes are implemented to permit
efficient and last data transfer between various registers,
memory locations, and input/output devices. These
addressing modes include:

Immediate

Immediate extended

1.1 Modified page zero

n Relative

Extended

rr Indexed

i-1 Register

n Register indirect

Cl Implied

Bit

7

PIN DESCRIPTIONS

A0-A15. Address Bus (output, active High, 3-state). Ao-A15
form a 16-bit address bus. The Address Bus provides the
address for memory data bus exchanges (up to 64K bytes)
and for 1/0 device exchanges. ·

BUSACK. Bus Acknowledge (output, active Low). Bus
Acknowledge indicates to the requesting device that the
CPU address bus, data bus, and control signals MREQ,
IORQ, RD, and WR have entered their high-impedance
states. The external circuitry can now control these lines.

BUSREQ. Bus Request (~t, active Low). Bus Request
has a higher priority than NMI and is always recognized at
the end of the current machine cycle. BUSREQ forces the
CPU address bus, data bus, and control signals MREQ,
IORQ, RD, and WR to go to a high-impedance state so that
other devices can control these lines. BUSREQ is normally
wired-OR and requires an external pullup for these
applications. Extended BUSREQ periods due to extensive
OMA operations can prevent the CPU from properly
refreshing dynamic RAMs.

0 0-07 . Data Bus (input/output, active High, 3:state). D0-D7
constitute an 8-bit bidirectional data bus, used for data
exchanges with memory and 1/0.

HALT. Halt State (output, active Low). HALT indicates that
the CPU has executed a Halt instruction and is awaiting
either a nonmaskable or a maskable interrupt (with the mask

. enabled) before operation can resume. While halted, the
CPU executes NOPs to maintain memory refresh.

INT. Interrupt Request (input, active Low). Interrupt Request
is generated by 110 devices. The CPU honors a request at
the end· of the current instruction if the internal
software-controlled interrupt enable flip-flop (IFF) is
enabled. INT is normally wired-OR and requires an external
pullup for these applications.

IORQ. Input/Output Request (output, active Low, 3-state).
IORQ indicates that the lower half of the address bus holds a
valid 1/0 address for an 1/0 read or write operation. IORQ is
also generated concurrently with M1 during an interrupt
acknowledge cycle to indicate that an interrupt response
vector can be placed on the data bus.

8

M1. Machine Cycle One (output, active Low). M1, together
with MREQ, indicates that the current machine cycle is the
opcode fetch cycle of an instruction execution. M 1, together
with IORQ, indicates an interrupt acknowledge cycle.

MREQ. Memory Request (output, active Low, 3-state).
MREQ indicates that the address bus holds a valid address
for a memory read or memory write operation.

NMI. Non-Maskable Interrupt (input,~~e edge­
triggered). NMI has a Higher priority than INT. NMI is always
recognized at the end of the current instruction,
independent of the status of the interrupt enable flip-flop,
and automatically forces the CPU to restart at location
0066H.

RD. Read (output, active Low, 3-state). RD indicates that the
CPU wants to read data from memory or an 1/0 device. The
addressed 1/0 device or memory should use this signal to
gate data onto the CPU data bus.

RESET. Reset (input, active Low). RESET initializes the CPU
as follows: it resets the interrupt enable flip-flop, clears the
PC and Registers I and R, and sets the interrupt status to
Mode 0. During reset time, the address and data bus go to a
high-impedance state, and all control output signals go to
the inactive state. Note that RESET must be active for a
minimum of three full clock cycles before the reset operation
is complete .

RFSH. Refresh (output, active Low). RFSH, together with
MREQ, indicates that the lower seven bits of the system's
address bus can be used as a refresh address to the
system's dynamic memories.

WAIT. Wait (input, active Low). WAIT indicates to the CPU
that the addressed memory or 110 devices are not ready for
a data transfer. The CPU continues to enter a Wait state as
long as this signal is active. Extended WAIT periods can
prevent the CPU from properly refreshing dynamic
·memory.

WR. Write (output, active Low, 3-state). WR indicates thatthe
CPU data bus holds valid data to be stored at the addressed
memory or 110 location.

CPU TIMING

The Z80 CPU executes instructions by proceeding through
a specific sequence of operations:

• Memory read or write

• 1/0 device read or write

• Interrupt acknowledge

The basic clock period is referred to as a T time or cycle. and
three or more Tcycles make up a machine cycle (M1. M2 or
M3 for instance). Machine cycles can be extended either by
thR CPU automaticallv inserting one or more Wait states or
by the insertion of one or more Wait states by the user.

CLOCK

~1 1~@)
I

Do-07 ~

Instruction Opcode Fetch. The CPU places the contents
of the Program Counter (PC) on the address bus at the start
of the cycle (Figure 5). Approximately one-half clock cycle
later, MREQ goes active. When active, RD 1nd1cates that the
memory data can be enabled onto the CPU data bus.

The CPU samples the WAIT input with the falling edge of
clock state T 2 During clock states T 3 and T 4 of an M 1 cycle,
dynamic RAM refresh can occur while the CPU starts
decoding and executing the instruction. When the Refresh
Control signal becomes active, refreshing of dynamic
u1er11ury Gar 1 cake f]iaGe.

Figure 5. Instruction Opcode Fetch

9

Memory Read or Write Cycles. Figure 6 shows the timing
of memory read or write cycles other than an opcode fetch
(MT) cycle. The MREQ and RD signals function exactly as in
the fetch cycle. In a memory write cycle, MREQ also

- -@ l Rei

OPERA~~~~

Do-D1

-

becomes active when the address bus is stable. The WR line
is active when the data bus is stable, so that it can be used
directly as an R/W pulse to most semiconductor memories.

Figure 6. Memory Read or Write Cycles

10

Input or Output Cycles. Figure 7 shows the timing for an
1/0 read or 1/0 write operation. During 1/0 operations, the
CPU automatically inserts a single Wait state (T wA). This

-®

{

RD

OPERA~~~~
Do-01

--- 34

\

WR

WRI~~ ~~I @ -. OPERATION :

Do-01 ------

TwA = One wait cycle automatically inserted by CPU.

extra Wait state allows sufficient time for an 1/0 port to
decode the address from the port address lines.

DATA OUT

Figure 7. Input or Output Cycles

11

Interrupt Request/Acknowledge Cycle. The CPU
samples the interrupt signal with the rising edge of the last
clock cycle at the end of any instruction (Figure 8). When an
interrupt is accepted, a special M1 cycle is generated.

Tu

CLOCK

Ao-A15

During this M1 cycle, IORO becomes active (instead of
MREQ) to indicate that the interrupting device can place an
8-bit vector on the data bus. The CPU automatically adds
two Wait states to this cycle.

TwA TwA Tw T3

~~~~~~---~ .... 1--~~~~~~~~ ..... ~~~-++-.or~~~~~-+>+~~~--~ 

l------<5011------1 

Do·D7 

NOTES: 1) T LI = Last state of any instruction cycle. 
2) TwA = Wait cycle automatically Inserted by CPU. 

Figure 8. Interrupt Request/Acknowledge Cycle 

12 



Non-Maskable Interrupt Request Cycle. NMI is sampled 
atthe same time as the maskable interrupt input INT but has 
higher priority and cannot be disabled under software 
control. The subsequent timing is similar to that of a normal 

memory read operation except that data put on the bus by 
the memory is ignored. The CPU instead executes a restart 
(RST) operation and jumps to the NMI service routine 
located at address 0066H (Figure 9). 

----LAST M CYCLE ---~·l•--------------M1-------------<•1 

Tu Tt T2 T3 Ts 

CLOCK 

_------~H-1®1- --- --
NMi -------- ----- --

--®-- --------~--------
~-i-~~~~~~~~..-,_;,~~~~~~-i--~~+-~~~~~ .... 

Ao-A1s PC REFRESH 

® 

*Although NMI is an asynchronous input, to guarantee its being recognized on the following machine cycle, NM l's falling edge must occur no later than the rising edge 
of the clock cycle preceding the last state of any instruction cycle (Tu). 

Figure 9. Non-Maskable Interrupt Request Operation 

13 



Bus Request/Acknowledge Cycle. The CPU samples 
. BUSREQ with the rising edge of the last clock period of any 
machine cycle (Figure 10). If BUSREQ is active. the CPU 
sets its address, data, and MREQ, IORQ, RD, and WR lines 

TLM Tx 

CLOCK 

~ 

- -@ 

-
Do-D7 

- -@ 
MREQ~~~~~~~~~~~~~-+---.i 

to a high-impedance state with the rising edge of the next 
clock pulse. At that time, any external device can take 
control of these lines, usually to transfer data between 
memory and 1/0 devices. 

Tx Tx 

__. -@ 

FLOAT 

FLOAT 

FLOAT 
iffi,WR 1>-~-F~~~~~~~~~~~~~_.,'"""4 
IORQ~~~~~~~~~~~~~-+---'I 

- ® .._ 

UNCHANGED 

NOTES: 1) TLM = Last state ofany M cycle. 
2) Tx = An arbitrary clock cycle used by requesting device. 

Figure 10. BUS Request/Acknowledge Cycle 

14 



Halt Acknowledge Cycle. When the CPU receives a HALT 
instruction, it executes NOP states until either an INT or NMI 
input is received. When in the Halt state, the HALT output is 

activ~nd remains so until an interrupt is received (Figure 
11 ). INT will also force a Halt exit. 

M1-----c~ •---------M1---------.. ... ~----- M1 

CLOCK 

NMI 

Halt Instruction 
Received 

T1 T2 T3 T2 

*Although NMI is an asynchronous input, to guarantee its being recognized on the following machine cycle, NM l's falling edge must occur no 
later than the rising edge of the clock cycle preceding the last state of any instruction cycle (Tu>· 

Figure 11. Halt Acknowledge 

Reset Cycle. RESET must be active for at least three clock 
cycles for the CPU to properly accept it. As long as RESET 
remains active, the address and data buses float, and the 
control outputs are inactive. Once RESET goes inactive, two 

CLOCK 

RESET 

Ao-A1s 

Do-07 

M1 

MREQ, 

internal T cycles are consumed before the CPU resumes 
normal processing operation. RESET clears the PC register, 
so the first opcode fetch will be to location OOOOH 
(Figure 12). 

l-+----M1------

----1©1----
1 11~~~~~~~~-

~~~~~~~~~1~7~z~z~z~1~1~.--~~-1/J"--~~~~~~~~~~...--~~~~~~ 

BUSACK
HALT

Figure 12. Reset Cycle

15

Power-Down mode of. operation (Only applies to CMOS
Z80CPU).

CMOS 280 CPU supports Power-Down mode of operation.

Power-Down Acknowledge Cycle. When the clock input
to the CPU 1s stopped at either a High or Low level. the CPU
stops its operation and maintains all registers and control
signals. However. lcc2 (standby supply current) 1s
guaranteed only when the system clock is stopped at a Low

T, T2 T3 T,

CLK

Ml \ I
HALT

T,

This mode is also referred to as the "standby mode", and
supply current for the CPU goes down as low as 10 uA
(Where specified as lcc2).

level during T4 of the machine cycle following the execut,on
of the HALT 1nstruct1on. The timing diagram for the
power-down function. when implemented with the HALT
instruction, is shown in Figure 13.

Ti T3 T,

\ I

Figure 13. Power-Down Acknowledge

16

Power-Down Release Cycle. The system clock must be
supplied to the CPU to release the power-down state. When
the system clock is supplied to the CLK input, the CPU
restarts operations from the point at which the power-down
state was implemented.
The timing diagrams for the release from power-down mode
are shown in Figure 14.

CU<

r
J , ____ !

NOTES:
1) When the external oscillator has been stopped to enter the power-down

state. som.e warm·up time may be required to obtain a stable clock for
the release.

2) When the HALT instruction is executed to enter the power-down state,
the CPU will also enter the Halt state. An interrupt signal (either NMI or
INT) or a RESET signal must be applied to the CPU after the system
clock 1s supplied in order to release the power-down state.

''--------

Figure 14a.

Figure 14b.

T1 T2 T3 T1 T2 TwA TwA

CLK

iNT

\,_ _____ _
..,r,,~,---------9/>-----------------------------'

Figure 14c.

Figure 13. Power-Down Release

17

ABSOLUTE MAXIMUM RATINGS

Voltage on Vee with respect to Vss -0.3V to + ?V
Voltages on all inputs with respect

to Vss -0.3V to Vee + 0.3V
Operating Ambient

Temperature See Ordering Information
Storage Temperature -65°C to + 150°C

STANDARD TEST CONDITIONS

The DC Characteristics and capacitance sections below
apply for the following standard test conditions, unless
otherwise noted. All voltages are referenced to GND (OV).
Positive current flows into the referenced pin.

Available operating temperature ranges are:

• S = O"C to + 70"C
Voltage Supply Range:

NMOS: +4.75V ~Vee~ +5.25V
CMOS: +4.50V "?" V cc ~ 5.50V

• E = -4D°C to 1 OO"C, +4.50V ~ V cc > +5.50V

All ac parameters assume a load capacitance of 100 pf. Add
1 O ns delay for each 50 pf increase in load up to a maximum
of 200 pf for the data bus and 100 pf for address and control
lines. AC timing measurements are referenced to 1.5 volts
(except for clock, which is referenced to the 100/o and 900/o
points).

18

Stresses greater than those listed under Absolute Maximum Ratings may
cause permanent damage to the device. This is a stress rating only;
operation of the device at any condition above those indicated in the
operational sections of these specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect
device reliability.

The Ordering Information section lists temperature ranges
and product numbers. Package drawings are in the
Package Information section. Refer t6 the Literature List for
additional documentation.

+sv

2.1K

DC CHARACTERISTICS (Z84COO/CMOS zso CPU)

Symbol

V1Le

V1He

Vtl

VtH

Vol

VoH

Parameter

Clock Input Low Voltage

Clock Input High Voltage

Input Low Voltage

Input High Voltage

Output Low Voltage

Output High Voltage

Ouiput High Voitage

Power Supply Current 4 MHz
6 MHz
8 MHz
10 MHz

Standby Supply Current

Input Leakage Current

3-State Output Leakage Current in Float

1. Measurements made with outputs floating.
2. A1s·Ao. DrDo. MREQ, IORQ, RD, and WR.

Min

-0.3

Vee-.6

-0.3

2.2

2.4

Vee-0.8

-10

Max

0.45

Vee+.3

0.8

Vee

0.4

20
30
40
50

10

10

102

Unit

v
v
v
v
v
v
v

mA
mA
mA
mA

µA

µA

µA

Condition

loL = 2.0mA

loH = -1.6mA

IQH = -250µA

Vee= 5V

V1H = Vee - 0.2V

V1L = 0.2V

Vee= 5V

CLK = (0)

V1H = Vee - 0.2V

V1L = 0.2V

V1N = 0.4 to Vee

Vour = 0.4 to Vee

3. lcc2 standby supply current is guaranteed only when the supplied clock is stopped at a low level during T 4 of the machine cycle immediately following
the execution of a HALT instruction.

CAPACITANCE

Symbol

CeLOeK

C1N

Gour

TA = 25°e, f = 1 MHz.
Unmeasured pins returned to ground.

Parameter

Clock Capacitance

Input Capacitance

Output Capacitance

Min Max

10

5

15

Unit

pf

pf

pf

19

AC CHARACTERISTICSt (Z84COO/CMOS Z80 CPU)

Z84C0004 Z84C0006 Z84C0008 Z84C0010
Number Symbol Parameter Min Max Min Max Min Max Min Max

Tee Clock Cycle Time 250* DC 162• DC 125 DC 100 DC
2 TwCh Clock Pulse Width (High) 110 DC 65 DC 55 DC 42 DC
3 TwCI Clock Pulse Width (Low) 110 DC 65 DC 55 DC 42 DC
4 TfC Clock Fall Time 30 20 10 10
5 TrC Clock Rise Time 30 20 10 10

6 TdCr(A) Clock f to Address Valid Delay 110 90 80 65
7 TdA(MREQf) Address Valid to MREQ + Delay 65* 35• 20• 22·
8 TdCf(MREQf) Clock + to MREQ j. Delay 85 70 60 55
9 TdCr(MREQr) Clock f to MREQ f Delay 85 70 60 55
10 TwMREQh MREQ Pulse Width (High) 11o•tt 65*tt 45•tt 32*tt

11 TwMREQI MREQ Pulse Width (Low) 22o•tt 135* tt 100• tt 75*tt
12 TdCf(MREQr) Clock j. to MREQ t Delay 85 70 60 55
13 TdCl(RDf) Clock + to RD j. Delay 95 80 70 65
14 TdCr(RDr) Clock t to RD f Delay 85 70 60 55
15 TsD(Cr) Data Setup Time .to Clock t 35 30 30 25

16 ThD(RDr) Data Hold Time to RD t 0 0 0 0
17 TsWAIT(Cf) WAIT Setup Time to Clock j. 70 60 50 25
18 ThWAIT (Cf) WAIT Hold Time after Clock j. 10 10 10 10
19 TdCr(M1f) Clock t to Ml L Delay 100 80 70 65
20 TdCr(Mlr) Clock t to Ml t Delay 100 80 70 65

21 TdCr(RRSHf) Clock t to RFSH ~ Delay 130 110 95 80
22 TdCr(RFSHr) Clock f to RFSH f Delay 120 100 85 80
23 TdCf(RDr) Clock ~ to RD f Delay 85 70 60 55
24 TdCr(RDf) Clock f to RD + Delay 85 70 60 55
25 TsD(Cf) Data Setup to Clock ~ during M2, 50 40 30 25*

M3, M,, or M5 Cycles

26 TdA(IORQf) Address Stable prior to IORQ ! 180* 110• 75• 70*
27 TdCr(IORQf) Clock f to IORQ ! Delay 75 65 55 50
28 TdCf(IORQr) Clock ! to IORQ t Delay 85 70 60 55
29 TdD(WRf)Mw Data Stable prior to WR ! 80* 25* 5• 40*

•For clock periods other than the minimums shown. calculate parameters using the table on the following page.
Calculated values above assumed TrC = TfC = 20 ns.

tUnits in nanoseconds (ns)
tt For loading;;, 50 pl. Decrease width by 10 ns for each addltlonal 50 pl ..

20

AC CHARACTERISTICSt (Z84COO/CMOS zao CPU; Continued)

Z84C0004 Z84C0006 Z84C0008 Z64C0010
Number Symbol General Parameter Min Max Min Max Min Max Min Max

30 TdCf(WRf) Clock I to WR I Delay 80 70 60 55
31 TwWR WR Pulse Width 220• 135* 100• 75'
32 TdCf(WRr) Clock I to WR t Delay 80 70 60 55
33 TdD(WRf)IO Data Stable prior to WR I -10* -55* -55* -8'
34 TdCr(WRf) Clock t to WR I Delay 65 60 55 50

35 TdWRr(D) Data Stable from WR t 60* 30* 15* 12'
36 TdCf(HALT) Clock I to HALT t or I 300 260 225 90
37 TwNivii NMi Puise Width 80 70 60 60
38 TsBUSREQ(Cr) BUSREQ Setup Time to Clock t 50 50 40 30
39 ThBUSREQ(Cr) BUSREQ Hold Time after Clock t 10 10 10 10

40 TdCr(BUSACKf) Clock t to BUSACK I Delay 100 90 80 75
41 TdCf(BUSACKr) Clock I to BUSACK t Delay 100 90 80 75
42 TdCr(Dz) Clock I to Data Float Delay 90 80 70 65
43 TdCr(CTz) Clock I to Control Outputs 80 70 60 60

Float Delay(MREQ, IORQ,
RD, and WR)

44 TdCr(Az) Clock t to Address Float Delay 90 80 70 65

45 TdCTr(A) MREQ t , IORQ t , RD I , and 80* 35• 20* 32'
WR t to Address Hold Time

46 TsRESET(Cr) RESET to Clock t Setup Time 60 60 45 40
47 ThRESET(Cr) RESET to Clock t Hold Time 10 10 10 10
48 TslNTf(Cr) INT to Clock t Setup Time 80 70 55 50
49 ThlNTr{Cr) INT to Clock t Hold Time 10 10 10 10

50 TdMtf{IORQf) Mt I to IORQ I Delay 565* 365* 270* 222'
51 TdCf(IORQf) Clock I to IORQ I Delay 85 70 60 55
52 TdCf(IORQr) Clock I to IORQ t Delay 85 70 60 55
53 TdCf(D) Clock + to Data Valid Delay 150 130 115 110

'For clock periods other than the minimums shown, calculate parameters using the following table. Calculated values above
assumed TrC = TfC = 20 ns.

tUnits in nanoseconds (ns).

FOOTNOTES TO AC CHARACTERISTICS

Number Symbol General Parameter Z84C0004 Z84C0006 Z84C0008 Z64C0010

TcC TwCh + TwCI + TrC + TfC
7 TdA{MREQf) TwCh + TfC -65 -50 -45 -45
10 TwMREQh TwCh + TfC -20 -20 -20 -20
11 TwMREQI TcC -30 -30 -25 -25
26 TdA(IORQf) TcC -70 -55 -50 -50
29 TdD(WRf) Tee -170 -140 -120 -60

31 TwWR TcC -30 -30 -25 -25
33 TdD(WRf) TwCI + TrC -140 -140 -120 -60
35 TdWRr(D) TwCI + TrC -70 -55 -50 -40
45 TdCTr(A) TwCI + TrC -50 -50 -45 -30
50 TdMtf(IORQf) 2TcC + TwCh + TfC -65 -50 -45 -30

AC Test Conditions: V1H = 2.0 V VoH = 1.5 V V1He = Vee -0.6 v FLOAT= ±0.5 V
V1L = 0.8 V Vol = 1.5 V V1LC = 0.45 V

21

DC CHARACTERISTICS (Z8400/NMOS ZBO CPU)
All parameters are tested unless otherwise noted.

Symbol Parameter

V1LC Clock Input Low Voltage

V1HC Clock Input High Voltage

V1L Input Low Voltage

V1H Input High Voltage

Vol Output Low Voltage

VoH Output High Voltage ·

Ice Power Supply Current

lu Input Leakage Current

ILQ 3·State Output Leakage Current in Float

1. For military grade parts. refer to the ZBO Military Electrical Specification.
2. A1s·Ao. DrDo. MRrn. irnm. lili. and WR.
3. Measurements made with outputs ftoating.

CAPACITANCE
Guaranteed by design and characterization.

Symbol

NOTES:
TA = 25°C. f = 1 MHz

Parameter

Clock Capacitance

Input Capacitance

·output Capacitance

Unmeasured pins returned to ground.

22

Min

-0.3

Vcc-.6

-0.3

2.01

'-10

Max

0.45

Vcc+.3

0.8

Vee

0.4

200

10

102

Min

Unit

v
v
v
v
v
v

mA

µA

µA

Max

35

5

15

Test Condition

loL =2.0mA

loH= -250µA

Note3

V1N=Ot0Vcc

VouT = 0.4 to Vee

Unit

pf

pf

pf

AC CHARACTERISTICst (Z8400/NMOS zao CPU)

Z0840004 Z0840006 Z0840008
Number Symbol Parameter Min Max Min Max Min Max

1 TcC Clock Cycle Time 250* 162* 125*

2 TwCh Clock Pulse Width (High) 110 2000 65 2000 55 2000

3 TwCI Clock Pulse Width (Low) 110 2000 65 2000 55 2000

4 TfC Clock Fall Time 30 20 10

5 TrC Clock Rise Time 30 20 10

6 TdCr(A) Clock t to Address Valid Delay 110 90 80

7 TdA(MREOf) Address Valid to MREQ I Delay 65* 35* 20*

8 TdCf(MREOf) Clock I to MREQ I Delay 85 70 60

9 TdCr(MREOr) Clock t to MREQ t Delay 85 70 60

10 TwMREQh MREO Pulse Width (High) 110*it 65'tt 45* IT

11 TwMREOI MREQ Pulse Width (Low) 220* tt 135*tf- 100*tt

12 TdCf(MREOr) Clock I to MREQ t Delay 85 70 60

13 TdCf(RDf) Clock I to RD I Delay 95 80 70

14 TdCr(RDr) Clock t to RD t Delay 85 70 60

15 TsD(Cr) Data Setup Time to Clock t 35 30 30

16 ThD(RDr) Data Hold Time to RD t 0 0 0

17 TsWAIT(Cf) WAIT Setup Time to Clock I 70 60 50

18 ThWAIT(Cf) WAIT Hold Time after Clock I 0 0 0

19 TdCr(M1D Clock t to M1 I Delay 100 80 70

20 TdCr(M1r) Clock t to M 1 t Delay 100 80 70

21 TdCr(RFSHD Clock t to RFSH I Delay 130 110 95

22 TdCr(RFSHr) Clock t to RFSH t Delay 120 100 85

23 TdCf(RDr) Clock I to RD t Delay 85 70 60

24 TdCr(RDD Clock t to RD I Delay 85 70 60

25 TsD(Cf) Data Setup to Clock I during M2, M3, 50 40 30

M4, or Ms Cycles

26 TdA(IORQf) Address Stable prior to IORQ I 180' 11 O* 75*

27 TdCr(IORQf) Clock t to IORQ I Delay 75 65 55

28 TdCf(IORQr) Clock I to IORQ t Delay 85 70 60

29 TdD(WRf) Data Stable prior to WR I 80* 25* 5*

30 TdCf(WRD Clock I to WR I Delay 80 70 60

31 TwWR WR Pulse Width 220* 135* 100*

32 TdCf(WRr) Clock I to WR t Delay 80 70 60

33 TdD(WRf) Data Stable prior to WR I -10* -55* 55*

34 TdCr(WRD Clock t to WR I Delay 65 60 55

35 TdWRr(D) Data Stable from WR t 60* 30* 15*

36 TdCf(HALT) Clock I to HALT tor I 300 260 225

37 TwNMI NMI Pulse Width 80 70 60*

38 TsBUSREO(Cr) BUSREQ Setup Time to Clock t 50 50 40

*For clock periods other than the minimums shown, calculate parameters using the table on the following page. Calculated values above
assumed TrC ~ TIC ~ 20 ns.

tUnits in nanoseconds (ns).

1t. For loading;;,: 50 pf., Decrease width by 10 ns for each additional 50 pl.

23

AC CHARACTERISTICSt (Z8400/NMOS ZSO CPU; Continued)

Z0840004 Z0840006 Z0840008
Number Symbol Parameter Min Max Min Max Ii/tin Max

39 ThBUSREO(Cr) BUSREQ Hold Time after Clock t 0 0 0

40 TdCr(BUSACKf) Clock t to BUSACK i Delay 100 90 80

41 T dCf(BUSACKr) Clock t to BUSACK t Delay 100 90 80

42 TdCr(Dz) Clock t to Data Float Delay 90 80 70

43 TdCr(CTz) Clock t to Control Outputs Float Delay 80 70 60

(MREQ, IORQ, RD, and WR)

44 TdCr(Az) Clock t to Address Float Delay 90 80 70

45 TdCTr(A) MREQ t, IORQ t, RD t, and WR t to 80* 35* 20*

Address Hold Time

46 TsRESET(Cr) RESET to Clock t Setup Time 60 60 45

47 ThRESET(Cr) RESET to Clock t Hold Time 0 0 0

48 TslNTf(Cr) INT to Clock t Setup Time 80 70 55

49 ThlNTr(Cr) INT to Clock t Hold Time 0 0 0

50 TdM1f(IORQf) M1 Ho IORQ t Delay 565* 365* 270*

51 TdCf(IORQf) Clock> to IORQ > Delay 85 70 60

52 TdCf(IORQr) Clock t IORQ t Delay 85 70 60

53 TdCf(D) Clock i to Data Valid Delay 150 130 115

*For clock periods other than the minimums shown, calculate parameters using the following table. Calculated values above
assumed TrC = TfC = 20 ns.

tUnits in nanoseconds (ns).

FOOTNOTES TO AC CHARACTERISTICS

Number Symbol General Parameter Z0840004 Z0840006 Z0840008

TcC TwCh + TwCI + TrC + TIC

7 TdA(MREQf) TwCh +TIC - 65 -50 -45

10 TwMREOh TwCh +TIC - 20 -20 -20

11 TwMREQI Tee - 30 -30 -25

26 TdA(IORQf) TcC - 70 -55 -50

29 TdD(WRf) Tee - 170 -140 -120

31 TwWR TcC - 30 -30 -25

33 TdD(WRf) TwCI + TrC ~ 140 -140 -120

35 TdWRr(D) TwCI + TrC - 70 -55 -50

45 TdCTr(A) TwCI + TrC - 50 -50 -45

50 TdM1f(IORQf) 2TcC + TwCh +TIC - 65 -50 -45

AC Test Conditions:
V1H = 2.0V VoH = 1.5 V
V1L = 0.8 V Vol= 1.5V
V1He = Vee - 0.6 v FLOAT = ± 0.5 V
V1LC = 045 V

24

Z • 1 PRELIMINARY
1 og Product Specification

January 1989

FEATURES:

• Commands compatible with the Zilog Z80 MPU

• Low power consumption

40mA Typ (SV, 10 MHz under RUN mode)
2mA Typ (SV, 10 MHz under IDLE1 mode)
10mA Typ (SV, 10 MHz under IDLE2 mode)
.5µ A Typ (SV under STOP mode)

• DC to 10 MHz operation (at 5V±10%)

• Single SV power supply (at 5V± 10%)

• Operating temperature (0° C to 70° C)

• On-chip clock generator

• In the HALT state, the following 4 modes are
selectable:

RUN mode
IDLE 1 mode
IDLE 2 mode
STOP mode

GENERAL DESCRIPTION:

The Z84C01 is an 8-bit microprocessor (hereinafter re­
ferred to as MPU) with a built-in clock generator/control­
ler, which provides low power operation and high perform­
ance.

Built into the Z84C01 is a control function and clock
generator for the standby function in addition to: six paired
general purpose registers, accumulator, flag registers, an
arithmetic-and-logic unit, bus control, memory control
and timing control circuits.

Z84C01 Z80® CPU with
Clock Generator/Controller

• Powerful set of 158 instructions

• Powerful interrupt function

Non-maskable interrupt terminal (NMl)
Maskable interrrupt terminal (INT)

The following three modes are selectable:

8080 compatible interrupt mode (interrupt
by Non-Z80 family peripheral LSI) (Mode 0)
Restart interrupt (Mode 1)
Daisy-chain structure interrupt using Z80
family peripheral LSI (Mode 2)

• An auxiliary register provided lo each of
general purpose registers.

• 2 index registers

• 10 addressing modes

• Built-in refresh circuit for dynamic memory

• Molded in 44-pin PLCC package

The Z84C01 is fabricated with Zilog CMOS technology
and molded in a 44-pin PLCC package.

Further, in the following text and explanations for charts
and tables, hexadecimal numbers are directly used with­
out giving an identification to explanation of address, etc.
so as not to cause confusions.

25

PIN CONNECTIONS AND PIN FUNCTIONS:

The pin connections and 1/0 pin names and brief func­
tions of the Z84C01 are shown below.

Pin Connections. The pin connections of the Z84C01
are as shown in Fig. 1.

RESET

Ml
CLK

v ..
AO

Vee (1)

Al

A2
A3

A4

A5

Pin Names and Functions. 1/0 pin names and functions
are as shown in Table 1.

39 INT
38 07
37 06
36 05
35 04
34 Vee (2)
33 03
32 02
31 01
30 DO
29 MS2

18 19 20 212223 24 2526 27 28

Figure 1. Pin Connections (Top View)

Table 1 Pin Names and Functions

Pin Name

AO-A15

MS1, MS2

D0-07

INT

26

Number
of Pin

16

2

8

Input/Output
3-state

Output
3-state

Input

1/0
3-state

Input

Function

16-bit address bus.
Specify addresses of memories and 1/0 to be
accessed. During the refresh period, addresses
for refreshing are output.

Mode selection input.
One of 4 modes (Run, IDLE1/2, STOP) is
selected according to the state of these 2 pins.

8-bit bidirectional data bus.

Maskable interrupt request signal.
Interrupt is generated by peripheral LSI. This signal is
accepted if the interrupt enable flip-flop (IFF) is set at "1 ".
INT is normally wired-OR and requires an external pull up
for these applications.

Table 1 Pin Names and Functions (continued)

Pin Name

HALT

MREQ

IORQ

BUSACK

BUSREQ

Number
of Pin

Input/Output
3-state

Input

Output

Output
3-state

Output
3-state

Output
3-state

Output
3-state

Output

Input

Input

Function

Non-maskable interrupt request signal. This interrupt
request has the higher priority than the maskable interrupt
request and does not rely upon the state of the interrupt
enable flip-flop (IFF).

Halt signal.
Indicates that the CPU has executed a Halt instruction.

Memory request signal.
When an effective address for memory access is on the
address bus, ·o· is output.

110 request signal.
When addres!Jes for 110 are on lower 8 bits (AO - A?) of
the address bus in the 110 operation, ·o· is output. In
addition, IORQ signal is output together with M1 signal at
lime of interrupt acknowledge cycle to inform peripheral
LSI of the state that the interrupt response vector may be
put on the data bus.

Read signal.
"O" signal is output for a period when MPU can receive
data from a memory or peripheral LSI. It is possible to put
data from a specified peripheral LSI or mamory on the
MPU data bus after gating by this signal.

Write signal.
This signal is output when data to be stored in a specified
memory or peripheral LSI is on the MPU data bus.

Bus acknowledge signal.
In response to BUSREQ signal, this signal informs a
peripheral LSI of the fact that the address bus, data bus,
MREQ, IORQ, RD and WR signals have been placed in
the high impedance state.

Wait signal.
WAIT signal is a signal to inform MPU of specified
memory or peripheral LSI which is not ready for
data transfer. As long as WAIT signal as at
"O" level, MPU is continuously kept in the wait state.

Bus request signal.
BUSREQ signal is a signal requesting placement of
the address bus, data bus, MREQ, IORQ, RD and
WR signals in the high impedance slate. BUSREQ
signal is normally wired-OR. In this case, a pull-up
resistor is externally connected.

27

Table 1 Pin Names and Functions (continued)

Pin Name Number Input/Output Function
of Pin 3-state

RESET Input Reset signal.
RESET signal is used for initializing MPU and
must be kept in active state ("O") for a period of at
least 3 clocks.

M1 Output Signal showing machine cycle 1. "O" is output
together with MREQ signal in the operation code
fetch cycle. This signal is output for every opcode
fetch when 2 byte opcode is executed. In the
maskable interrupt acknowledge cycle, this signal
is output together with IORQ signal.

XTAL 1
(XIN) 2 Input Crystal oscillator connecting terminal.

XTAL2 Output
(XOUT)

CLK Output Single-phase clock output. Clock polarity is in-
phase with OSC-IN (XTAL 1) so that zao users
could use OSC-IN as clock input without needing
extra inverter on the board. When the HALT in
struction in STOP Mode is executed, MPU stops its
operation and holds clock output at "O" level.

vcc (1), 2 Power supply +5V
(2) Connect pin 34 and pin 12 externally.

VSS Power supply ov

28

FUNCTIONAL DESCRIPTION:

The system configuration, functions and basic operation
of the Z84C01 are described here.

Vee

XTAL2

XTAL 1

D0-07

IFF1

MS1 MS2 CLK •
Clock Generator
Control Circuit

Internal Counter
for

IFF2

Start Up

Data 1/0
Control

Block Diagram. The block diagram of the internal con­
figuration is shown in Fig. 2.

Address Bus Output Circuit

C Register Register
D Register D Register

E Re ister E RE!gister
H Register H Register
L Register L Register

IX Register
IY Register

Stack Pointer SP
Program Counter (PC)

Instruction
Decoder

1/0 Control Control
Signal to

~---.----~ Internal

A'

Vss

Fig. 2 Block Diagram

29

System Configuration. The Z84C01 has a built-in sys­
tem clock generator for CMOS Z80 in addition to the
standard functions of the Z84COO MPU. The explanation
is provided here with emphasis placed on the halt function
relative to the clock generator, which is an additional
function. The internal register group, reset and interrupt
function are identical to those of the Z84COO. For details,
please refer to the data sheet for the Z84COO.

In this section, the following principal components and
functions will be described:

(1) Generation of clock
(2) Operation mode
(3) Start-up time at time of restart

Generating the System Clock.The Z84C01 has a built­
in oscillation circuit and required clock can be easily
generated by connecting an oscillator to the external
terminals ()CT AL 1, XT AL2). Clock in the same frequency
as input oscillation frequency is generated.
Examples of oscillator connection are shown in Fig. 0.0.

30

XTAL1 XTAL2

Figure 3a Example of Oscillator Connection
and Constant

COUT

22PF

Figure 3b Example of Oscillator Connection
and Constant

Operation Modes. There are four kinds of operation
modes available for the Z84C01 in connection with gen­
eration of clock; RUN Mode, IDLE112 Modes and STOP
Mode. One of these modes is selected by the mode select
inputs (MS1, MS2).

The operation mode is effective when the halt instruction
is executed. Restart of MPU from the stopped state under
IDLE1/2 Mode or STOP Mode is effected by inputting
either RESET signal or interrupt signal (INT or NMI).

Operations of these modes in the halt state are shown in
Table 2.

Table 2 Clock Generating Operation Mode

Operation
Mode

RUN Mode

MS1

IDLE 1 Mode 0

IDLE2 Mode 0

MS2

0

STOP Mode 0

Description at HALT State

MPU continues the operation and supplies clock to the
outside continuously.

The internal oscillator's operation is continued. Clock
(CLK) output as well as internal operations are stopped at
•o· level of T 4 state in the halt instruction operation code
ietch cycle.

The internal oscillator's operation and clock (CLK) output are
continued but the internal operations are stopped at ·o· level
of T4 state in the halt instruction operation code fetch cycle.

All operations of the internal oscillator, clock (CLK) output,
and internal operation are stopped at •o• level of T 4 state in
the halt instruction operation code fetch cycle.

Start-up Time at Time of Restart (STOP Mode).
When MPU is released from the halt state by accepting an
interrupt request, MPU, then will execute an interrupt
service routine. Therefore, when an interrupt request is
accepted, MPU starts generation of internal system clock
and clock output after a start-up time by the internal
counter (214+2.5) TcC (TcC: Clock Cycle) to obtain a
stabilized oscillation for MPU operation.

Further, in case of the restart by RESET signal, the
internal counter does not operate for a quick operation at
time of power ON.

Status Change Flowchart and Basic Timing. In this
section, the status change and basic timing when the
Z84C01 is operating are explained.

31

YES

M1=0

YES
} lW

IORO=O

YES } lW

lXWAff i~
YES

TI {
YES

YES

YES

HaltS1art
T4

YES

"°
YES

YES

Figure 4 (a) Status Change Flowchart

32

HALT Start

HAU'= o

Run Mode

IDLE1 Mode

Clock Output Stop

Internal Operation Stop

No

Stop Mode

IDLE2 Mode

Internal

Operation Stop

Yes (Stop Mode)

Internal Oscillation Stop

(Clock Output Stop)

Internal Operation Stop

No (IDLE1/2 Mode)
Internal Oscillation Start

Internal System Clock Restart
Clock Output Restart Only Stop, IDLE1

End

Figure 4 (b) Status Change Flowchart

Start Up

33

Basic Timing. The basic timing is explained here with
emphasis placed on the halt function relative to the clock
generator. Except RFSH signal output, the following
items are identical to those for the Z84COO. Refer to the
data sheet for the Z84COO.

Operation code fetch cycle

Memory read/write operation

Input/output operation

Bus request/acknowledge operation

Maskable interrupt request operation

Non-maskable interrupt request operation

Reset operation

Note that the Z84C01 does not have the refresh terminal
(RFSH), but refresh address is output on the address btis
in the operation code fetch cycle (M1) as in the Z84COO
since the on-chip refresh control circuit is available.

M1 CYCLE M1 CYCLE

0

CLK

HiiLT

M1

HALT OPCODE
FETCH CYCLE NOP EXECUTION

(1) Operation When HALT Instruction is Executed
When MPU fetches a halt instruction in the operation
code fetch cycle, HALT signal goes active (low level) in
synchronous with falling edge of T 4 state for the periph­
eral LSI and MPU stops the operation. The system clock
generating operation after this differs depending upon
the operation mode (RUN Mode, IDLE1/2 Mode or STOP
Mode). If the internal system clock is running, MPU con­
tinues to execute NOP instruction even in the halt state.

(a) RUN Mode (MS1:1, MS2:1)
Shown in Fig. 5 is the basic timing wflen the halt instruction
is executed in RUN Mode.

In RUN Mode, system clock (RI) in MPU and clock output
(CLK) are not stopped, even after the halt instruction is
executed. Therefore, until the halt state is released by the
interrupt signal (NMI or INT) or RESET signal, MPU
continues to execute NOP instruction.

M1 CYCLE

T2

NOP EXECUTION

Figure 5 Timing of RUN Mode
(at Halt Command Execution)

34

(b) IDLE1 Mode (MS1=0, MS2:0)
Shown in Fig. 6 is the basic timing when the halt instruc­
tion is executed in IDLE1 Mode.

In IDLE1 Mode, system clock (.0') in MPU and clock output
(CLK) are stopped and MPU stops its operation after the
halt instruction is executed. However, the internal oscilla­
tor continues to operate.

CLK

T4

____ll~~~~~~~~~~~~~~~
~ (INTERNAL r--1

SYSTEM CLOCK) __J D°'")---"'M-'--PU"-"-0;..;PE=-'-R"-A"'-Tl"'O'"-'N-"S-'-TO;:.;P _______ ~l)-------

HALT

"1"

HALT INSTRUCTION OPERATION ' I
CODE FETCH CYCLE -------i

Figure 6 IDLE1 Mode Timing
(at Halt Instruction Execution)

(c) IDLE2 Mode (MS1:0, MS2=1)
Shown in Fig. 7 is the basic timing when the halt instruc'
tion is executed in IDLE2 Mode.

In IDLE2 Mode, system clock (.0') in MPU is stopped and
MPU stops its operation after the halt instruction is exe­
cuted. However, the internal oscillator and clock output
(CLK) to the outside of MPU continues to operate.

CLK

0 (INTERNAL ~

SYSTEM CL~:: -----------i;1L----------------~:t---~
MPU OPERATION STOP

"1"

HALT INSTRUCTION OPERATION • I
CODE FETCH CYCLE -------i

Figure 7 IDLE2 Mode Timing
(at Halt Instruction Execution)

35

(d) STOP Mode (MS1:1, MS2:0)
Shown in Fig. 8 is the basic timing when the halt instruc­
tion is executed in STOP Mode.

CLK

.• (INTERNAL
SYSTEM CLOCK)

In STOP Mode, internal operation and internal oscillator
are stopped after the halt instruction is executed. There­
fore, system clock(•) in MPU and clock output (CLK) to
the outside of MPU are stopped.

CLK OUTPUT STOP

MPU OPERATION STOP

HALT --v._____
M1

HALT INSTRUCTION OPERATION
CODE FETCH CYCLE

Figure 8 STOP Mode Timing
(at Halt Instruction Execution)

(2) Release from Halt State
The halt state of MPU is released when "O" is input to
RESET signal and MPU is reset or an interrupt request is
accepted. An interrupt request signal is sampled at the
leading edge of the last clock cycle (T4 state) of NOP
instruction. In case of the maskable interrupt, interrupt will
be accepted by an active INT signal ("O" level). Also the .
interrupt enable flip-flop must have been set to "1". The
accepted interrupt process is started from next cycle.

Further, when the internal system clock is stopped
(IDLE112 Mode, STOP Mode), it is necessary first to
restart the internal system clock. The internal system
clock is restarted when RESET· or interrupt signal
(NMI or INT) is input.

36

(a) RUN Mode (MS1, MS2:1)
The halt release operation by acceptance of interrupt
request in RUN Mode is shown in Fig. 9.

In RUN Mode the internal system clock is not stopped,
and therefore, if the interrupt signal is recognized at the
rise of T 4 state of the continued NOP instruction, MPU will
execute the interrupt process from next cycle.

The halt release operation by resetting MPU in RUN Mode
is shown in Fig. 10. After reset, MPU will execute an in­
struction starting from address OOOOH. However, in order
to reset MPU it is necessary to keep RESET signal at "O"
for at least 3 clocks. In addition, if RESET signal becomes
•1 •, after the dummy cycle for at least two T states, MPU
executes an instruction from address OOOOH.

CLK

~(INTERNAL

HALT INSTRUCTION
EXECUTION

SYSTEM CLOCK)

HALT

NMI

INT

NOP INSTRUCTION EXECUTION INTERRUPT PROCESS

M1

I

i--- MPU INTERNAL
- - LATCH FOR NMI

Figure 9 Halt Release Operation Timing by interrupt
Request Signal in RUN Mode

HALT INSTRUCTION

EXECUTION • I

CLK
T4

l/J (INTERNAL
SYSTEM CLOCK)

HALT

M1

RESET

Figure 10 Halt Release Operation Timing by Reset
in RUN Mode

(b) IDLE1 Mode (MS1=0, MS2=0), IDLE2 Mode
(MS1:0, MS2:1)

.,ADDRESSOOOOH •
I EXECUTE INSTRUCTION

T1 T2

37

The halt release operation by interrupt signal in IDLE1
Mode is shown in Fig. 11 (a) and in IDLE2 Mode in Fig. 11
(b).

When receiving NMI or INT signal, MPU starts the internal
system clock operation. In IDLE1 Mode, MPU starts clock
output to the outside at the same time.

CLK

4J(INTERNAL
SYSTEM CLOCK)

HALT

M1

NMI

INT

The operation stop of MPU in IDLE1/2 Mode is taking
place at "O" level during T 4 state in the halt instruction
operation code fetch cycle. Therefore, after being re­
started by the interruption signal, MPU executes one NOP
instruction and samples an interrupt signal at the rise of
T 4 state during the execution of this NOP instruction, and
executes the interrupt process from next cycle.

Nr INSTRUCTION EXECU:rN

T1 T2 T3 T4 T1

_________ 1... __ .-MPU INTERNAL

1 LATCH FOR NMI

INTERRUPT SAMPLING TIMING

Figure 11 (a) IDLE1 Mode

38

CLK

$(INTERNAL
SYSTEM CLOCK)

HALT

M1

NMI

INT

T ""RUcm• "'""'·j
T1

_________ 1... __ ,--MPU INTERNAL

LATCH FOR NMI

INTERRUPT SAMPLING TIMING

Figure 11 (b) IDLE2 Mode

Figure 11 Halt Release Operation Timing by Interrupt
Request Signal in IDLE1/2 Mode

If no interrupt signal is accepted during the execution of
the first NOP instruction after the internal system clock is
restarted, MPU is not released from the halt state and is
placed in IDLE1 /2 Mode again at "O" level during T 4 state
of the NOP instruction, stopping the internal system clock.
If INT signal is not at "O" level at the rise of T4 state, no
interrupt request is accepted.

The halt release operation by resetting MPU in IDLE1
Mode is shown in Fig. 12 (a} and that in IDLE2 Mode in
Fig. 12 (b}.

CLK

~(INTERNAL
SYSTEM CLOCK)

HALT

M1

RESET

When RESET signal at "O" level is input into MPU, the
internal system clock is restarted and MPU will execute an
instruction stored in address OOOOH.

At time of RESET signal input, it is necessary to take the
same care as that in resetting MPU in RUN Mode.

EXECUTE INSTRUCTION FROM
ADDRESS OOOOH

Figure 12 (a) IDLE1 Mode

CLK

11' (INTERNAL
SYSTEM CLOCK)

HALT

M1

RESET

Figure 12 (b} IDLE2 Mode

Figure 12 Halt Release Operation Timing by
Reset in IDLE1/2 Mode

EXECUTE INSTRUCTION FROM
ADDRESS OOOOH

39

(c) STOP Mode (MS1=1, MS2:0)
The halt release operation by interrupt signal in STOP
Mode is shown in Fig. 13.

When MPU received an interrupt signal, the internal
oscillator is restarted. In order to obtain stabilized oscilla­
tion, the internal system clock and clock output to the
butside are started alter a start-up time of (214+2.5) T cC
(TcC: Clock Cycle) by the internal counter.

MPU executes one NOP instruction after the internal
system clock is restarted and at the same time, sampling
an interrupt signal at the rise of T 4 state during the
execution of this NOP instruction. If the interrupt signal is
accepted, MPU executes the interrupt process operation
from next cycle.

T4

CLK

q, (INTERNAL
SYSTEM CLOCK)

HALT

NMI

At time of interrupt signal input, it is necessary to take the
same care as that in the interrupt signal input in IDLE1/2
Mode. The halt release operation by MPU resetting in
STOP Mode is shown in Fig. 14.

When RESET signal at "O" level is input into MPU, the
internal oscillator is restarted. However, since it performs
a quick operation at time of power ON, the internal
counter does not operate. Therefore, the operation may
not be carried out properly due to unstable clock immedi­
ately after the signal in STOP Mode, it is necessary to hold
RESET signal at "O" level for sufficient time. When RESET
signal becomes "1 ", after the dummy cycle for at least 2T
states, MPU starts to execute an execution from address
OOOOH.

NOP COMMAND EXECUTION

1· ·1
T1 T2 T3 T4 T1

I I ___ -55- _______________ .!. ___ i----- MPU INTERNAL

I LATCH FOR NMI

INT

40

•.-------

INTERRUPT SAMPLING TIMING

Figure 13 Halt Release Operation Timing by Interrupt
Request Signal in STOP Mode

CLK

$(INTERNAL
SYSTEM CLOCK)

HALT

M1

RESET

EXECUTE INSTRUCTION FROM
I ADDRESS OOOOH

Figure 14 Halt Release Operation Timing by Reset
in STOP Mode

Instruction Set. Instruction set of the Z84C01 is the
same as thalfor the Z84COO. For details refer to the data
sheet for the Z84COO.

Method of Use. An example of the Z84C01 with the zao
family peripheral LSl's is shown in Fig. 15.

41

,(

enK 1il ...--
<(

I-- t:;:
CJ

en I--
:J

"' en en
w
a:
Cl
Cl
<(

~
'(

A

K
~

v 7

42

l l MPU

~ "' --
~ :i RESET
x I:< --

HALT

AO-A15
CLK --IORQ

--
MREO

-
M1

-\
-

00-07 RD

v' -
WR

r .A --- - +5V
BUSREQ

BUSACK

.A. - J. ·vv ~+5V
INT

AU::::

Ao.C::::

r-

)
a:
w
Cl
0

r (.)
w
Cl .____

~
v'

)
,----,

..),. ffi
-~ 8 t--1 ...,. ~

CJ__

CTC

RESET _J SIO

RESET _l PIO

~ D0-07 CLK
-y --

CS1 - IORQ
BIA ·-

cso M1
-- RD C/D
-
INT

'--- 0 CE [j:j !±!

~ t
OMA

[j:j
CLK
--
IORQ
--

AO-A15 MREQ
-
M1
-

DO-D7
RD
-
WR

BUSREO

-
-
CE

INT
-
BAI

~ 0

"' !±!

l l
Figure 15 Example of Z80 Family

Peripheral LSI

Ii
l

CPU TIMING

. Timing Diagrams. The Z84C01 CPU executes instruc­
tions by proceeding through a specific sequence of op­
erations:

• Memory read or write
• 1/0 device read or write
• Interrupt acknowledge

The basic clock period is referred to as a Time or Cycle,
and three or more T cycles make up a machine cycle (M1,
M2 or M3 for instance). Machine cycles can be extended
either by the CPU automatically inserting one or more
Wail states or by the insertion of one or more Wait states
by the user.

CLOCK

--- 19

Instruction Opcode Fetch. The CPU places the con­
tents of the Program Counter (PC) on the address bus as
the start of the cycle (Figure 16). Approximately one-half
clock cycle later, MREQ goes active. When active, RD in­
dicates that the memory data can be enabled onto the
CPU data bus.

The CPU samples the WAIT input with the falling edge of
clock stale T2. During clock states T3 and T4 of an M1
cycle, dynamic RAM refresh can occur while the CPU
starts decoding and executing the instruction.

((((~-: -'J: : ~,--16--~-

Figure 16 Instruction Opcode Fetch

43

Memory Read or Write Cycles. Figure 17 shows the
timing of memory read or write cycles other than an
opcode fetch (M1) cycle. The MREQ and RD signals
function exactly as in the fetch cycle.

T1 T2

CLOCK

1
Ro

OPERA~~~~
Do-D1

In a memory write cycle, MREQ also becomes active
when the address bus is stable. The WR line is active
when the data bus is stable, so that it can be used directly
as an RJW pulse to most semiconductor memories.

Tw T3

211-­
!

Figure 17 Memory Read or Write Cycles

44

Input or Output Cycles. Fig. 18 shows the timing for an
110 read or 1/0 write operation. During 1/0 operations, the
CPU automatically inserts a single Wait state {T wA).

CLOCK

24

!22

i RD

OPERA~~~~
Oo-07

I
1 .. 51-1

This extra Wait stale allows sufficient time for an 1/0 port
to decode the address from the poi:t address lines.

17-1

110
WRITE

OPERATION I -!_31:-

(~~~~~-: ~u-ATA-OUT~~>-

TwA = One wait cycle automatically inserted by CPU

Figure 18 Input or Output Cycles

45

Interrupt Request/Acknowledge Cycle. The CPU
samples the interrupt signal with the rising edge of the last
clock cycle at the end of any instruction (Fig. 19). When an
interrupt is accepted, a special M1 cycle is generated.

During this M1 cycle, IORO becomes active (instead of
MREQ) to indicate that the interrupting device can place
an 8-bit vector on the data bus. The CPU automatically
adds two Wait states to this cycle.

Ao-A15~~~~~~_,_i --''l'-~~~~~~~PC~-;-~~~-;-',--!F-~~P+-~+-1-..--.~-

l-119

... , --40

Do-01 _____ __.)>----------~<~<~«

------116
1s-1 - I
~~

NOTES· 1) Tu= Last state of any instruction cycle.
2) TwA = Wait cycle automatically inserted by CPU.

Figure 19 Interrupt Request/Acknowledge Cycle

46

Non-Maskable Interrupt Request Cycle. NM1 is
sampled at the same time as the maskable interrupt input
iNT, but has higher priority and cannot be disabled under
software control. The subsequent timing is similar to that

of a normal memory read operation except that data put
on the bus by the memory is ignored. The CPU instead
executes a restart (AST) operation and jumps to the NMI
service routine located at address 0066H (Fig. 20).

----LASTMCYCLE ----.j.+---------~---M11------------­

Tu T1 Ts

CLOCK

- - - - - - t:f-1 35• -- - - -
lilMi : --------i -----

- 6 --

•Although NMI is an asynchronous input, to guarantee Its being recognized on the following machine cycle, NMl's falling edge must occur no later than the rising edge
of the clock cycle preceding the last state of any Instruction cycle (Tu).

Figure 20 Non-Maskable Interrupt
Request Operation

47

Bus Request/Acknowledge Cycle. The CPU samples
BUSREQ with the rising edge of the last clock period of
any machine cycle (Fig. 21). If BUSREQ is active, the CPU
sets its address, data, and MREQ, IORQ, RD, and

CLOCK

NOTES: 1) TLM = Last state of any M cycle.
2) T11: = An arbitrary clock cycle used by requestmg device.

WR lines to a high-impedance state with the rising edge of
the next clock pulse. Atthat time, any external device can
take control of these lines, usually to transfer data be­
tween memory and 1/0 devices.

UNCHANGED

Figure 21 BUS Request/Acknowledge Cycle

48

Halt Acknowledge Cycle.

M1 ----,-.---------M1---------•------ M1

*Although NMI is an asynchronous input, to guarantee its being recognized on the following machine cycle, NM l's falling edge must occur no
later than the rising edge of the clock cycle preceding the last state of any instruction cycle (Tu>·

Figure 22 Halt Acknowledge

Reset Cycle. RESET must be active for at least three
clock cycles for the CPU to properly accept it. As long as
RESET remains active, the address and data buses float,
and the control outputs are inactive.

Once RESET goes inactive, two internal T cycles are
consumed before the CPU resumes normal processing
operation. RESET clears the PC register, so the first
opcode fetch will be location OOOOH (Fig. 23).

----M1-----·

CLOCK

Ao-A1s

FLOAT
Do-D1

I ,
-1191-

M1
----------------r---J,l--------------1--,. i

I

MREQ,

~~~~~~~--.11~z~z~z~z~z~~~,~,~~~~~~~~~~~~ 

BUSACK 
HALT 

Figure 23 Reset Cycle 

49 



50 

CLK 

INT 

NMI 

CLK 
(IDLE 1 MODE) 

CLK 
(IDLE 2 MODE) 

INT 

NMI 

T4 T1 

Figure 24 Clock Restart Timing 
(STOP Mode) 

Figure . 25 Clock Restart Timing 
(IDLE1/2 Mode) . 

T2 

T2 T3 



PRECAUTIONS: 

(1) 

(2) 

To reset MPU, it is necessary to hold RESET 
signal input at "O" level for al least three clocks. 

In particular, to release the HALT state by RESET 
signal in STOP Mode, hold RESET signal al "O" 
level for sufficient time in order to stabilize output 
from the internal oscillator. 

In releasing MPU from the HALT state by inter 
rupl signal in IDLE1/2 Mode and STOP Mode, 
MPU will noi be reieased from the HALT state and 

the internal system clock will stop again unless an 
interrupt signal is accepted during the execution 
of NOP instruction even when the internal system 
clock is restarted by the interrupt signal input. In 
particular, care must be taken when INT is used. 

Other precautions are identical to those for the 
Z84COO, except those for RFSH terminal. Refer 

to the data sheet for the Z84COO. 

51 



AC CHARACTERISTICS: 

AC CHARACTERISTICS TA= o•c to 1ooc, VCC = 5V +/- 10%, VSS= OV. 

Number Symbol Parameter Min Max Unit 

1 TcC Clock cycle time 100 DC ns 
2 TwCh High clock pulse width 40 DC ns 
3 TwCI Low clock pulse width 40 DC ns 
4 TfC Clock falling time 10 ns 
5 TrC Clock rising time 10 ns 

6 TdCr (A) Effective address output 60 ns 
delay from clock rise 

7 TdA (MREQI) Address output definite ns 
time prior to MREQ 

8 T dCf (MREQI) Delay from clock fall 40 ns 
to MREO="L" 

9 T dCf (MREQr) Delay from clock rise 40 ns 
to MREQ = "H" 

10 TwMREQh MREQ high level pulse width ns 
11 TwMREQI MREQ low level pulse width ns 
12 T dCf (MREQr) Delay from clock fall 40 ns 

to MREO= "H" 
13 TdCf (RDf) Delay from clock fall to 40 ns 

RD= "L" 

14 TdCr (RDr) Delay from clock rise 40 ns 
to RD= "H" 

15 TsD (Cr) Data set-up time for 25 ns 
clock rise 

16 ThD (RDr) Data hold time for 0 ns 
RD rise 

17 TsWAIT (Cf) WAIT signal set-up time 30 ns 
for clock fall 

18* ThWAIT (Cf) WAIT hold time after 0 ns 
clock fall 

19 TdCr (Mlf) Delay from clock rise 40 ns 
to M1 = "L" 

20 TdCr (Mir) Delay from clock rise 40 ns 
to M1 = "H" 

21 TdCf (RDr) Delay from clock fall 40 ns 
to RD= "H" 

22 TdCr (RDF) Delay from clock rise 40 ns 
to RD= "L" 

23 TsD (Cf) Data set-up time for 25 ns 
clock fall 

24 TdA (IORQI) Address definite time ns 
prior to IORQ fall 

25 TdCr (IORQf) Delay from clock rise 40 ns 
to IORQ = "L" 

52 



AC CHARACTERISTICS (continued) 

Number Symbol Parameter Min Max Unit 

26 TdCf (IORQr) Delay from clock fall 40 ns 
to IORQ "H" 

27 TdD (WRF) Data definite time ns 
prior to WR fall 

28 TdCf (WRF) Delay from clock fall 40 ns 
to WR ="L" 

29 TwWR WR pu!se width n~ 

30 TdCf (WRr) Delay from clock fall 40 ns 
to WR ="H" 

31 TdD (WRf) Data definite time prior ns 
to WR fall 

32 TdCr (WRf) Delay from clock rise 40 ns 
to WR ="L" 

33 TdWRr (D) Output data holding ns 
after WR = "H" 

34 TdCf (HALT) Delay from clock fall 100 ns 
to HALT = "L" or "H" 

35 TwNMI NMI pulse width 60 ns 
36 TsBUSREQ (Cr)Set-up time for clock rise 35 ns 
37• ThBUSREQ (Cr)BUSREQ hold time after 0 ns 

clock rise 

38 TdCr (BUSACKf)Time from clock rise 40 ns 
to BUSACK= "L" 

39 T dCf (BUSACKr) Time from clock fall 40 ns 
to BUSACK= "H" 

40 TdCr (Dz) Delay from clock rise 40 ns 
to data bus float state 

41 TdCr (CTz) Delay from clock rise to 40 ns 
control output float state 
(MREQ, IORQ, RD, WR) 

42 TdCr (Az) Delay from clock rise to 50 ns 
address bus float state 

43 TdCTr (A) Address hold time from .. ns 
MREQ, IORQ, RD, or WR 

44 TsRESET (Cr) RESET set-up time for 30 ns 
clock rise 

45• ThRESET (Cr) RESET hold time for 0 ns 
clock rise 

46 TsfNTf (Cr) INT set-up time for 50 ns 

47• ThlNTr (Cr) INT hold time after 0 ns 
clock rise 

49 TdCf (IORQf) Delay from clock fall 40 ns 
to IORQ ="L" 

50 TdCr (IORQr) Delay from clock rise 40 ns 
to IORQ ="H" 

51 TdCf (D) Delay from clock fall 80 ns 
to data output 

53 



AC CHARACTERISTICS (continued) 

Number Symbol Parameter Min 

52 TRST1S Clock (CLk) restart time 
by INT (STOP mode) 

53 TRST2S Clock (CLK) restart time 
by NMI (STOP mode) 

54 TRST11 Clock (CLK) restart time 
by INT (IDLE1/2 mode) 

55 TRST21 Clock (CLK) restart time 
by NMI (IDLE1/2 mode) 

• Test conditions are: CL = 100 pf 

•• NOTES: AC Characteristics (per line item number). 

Number Symbol General Parameter 

1 Tee TwCh + TwCI + TrC + TfC 
7 TdA(MREQf) TwCh + TfC - 45 

10 TwMREQh TwCh + TfC - 25 
11 TwMREQI TcC-30 
24 TdA(IORQf) TcC- 50 
27 TdD(WRf) TcC-100 

29 TwWR TcC-25 
31 TdD (WRf) TwCI + TrC-100 

33 TdWRr(D) TwCI + TrC - 50 
43 TdCTr (A) TwCI + TrC - 45 
48 TdM1f (IORQf) 2TcC + TwCh + TfC - 45 

Max Unit 

(typ) (214+2.5 )xTcC ns 

(typ) {214+2.5)xTcC ns 

(typ) 2.5 TcC ns 

(typ) 2.5 TcC ns 

AC Test Conditions: v,H = 3V VOH = 2V VIHC =Vee -0.6V FLOAT= +-0.5V 

v,L = .5V v oL = .av v,Lc = .5V v 00 = 4.5 to 5.5V 

54 



DC CHARACTERISTICS vcc = 5.0 v +-10% 

Symbol Parameter Min Max 

VOHC Clock Output High Voltage VCC-0.6 
VOLC Clock Output Low Voltage 0.4 
VIH Input High Voltage 2.2 vcc 
VIL Input Low Voltage -0.3 0.8 

VOL Output Low Voltage 0.45 

VOH! Output High Voltage 2.45 

VOH2 Output High Voltage VCC-0.85 

1001 1 Power Supply Current 1 O MHz 50 

lce21,3 Power Supply Current (STOP Mode) 1.0 
10031 Power Supply Current (IDLE1 Mode) 4 

leC41 Power Supply Current (IDLE2 Mode) 15 

lu Input Leakage Current -10 104 

ILO 3-State Output Leakage -10 102 

Current in Float 

1. Measurements made with outputs floating. 
2. A15-A.,, D7-D0, MREQ, IORQ, RD, and WR. 
3. 1002 standby current is guaranteed when the halt pin is low in STOP mode. 
4. All pins except XT AL 1, where ...!u_= ±_ 25 uA. _ 
5. A15- A0• D1-D0 , MREQ, IORQ, RD, WR, HALT, M1, and BUSACK . 

... 
(mA) 40 

30 

20 

10 

5 

Unit Condition 

v 
v 
v 

v 
v 
v 
mA 

uA 
mA 

mA 

uA 
uA 

-2mA 
+2mA 

IOL = 2.0mA 
l0 H = -1.6mA 
IOH = -250uA 
Vee= 5V 
V11H =Vee - 0.2V 
V11L =0.2V 

XTALIN = 10 MHz 

V0e= 5V 
VIH= Vee - 0.2V 
VIL= 0.2V 

XTALIN = 10 MHz 
V1H =Vee - 0.2V 
VIL- 0.2V 

XTALIN = 10 MHz 
VIN = 0.4 to Vee 
VOIJT = 0.4 to Vee 

•cco 
(IDLE 1) 

0 2 4 6 8 1 0 FREQ 
Ice VS Freq (MHz) 

CONDITIONS: V1HC=V..,=V cc·0.2V V cc= 5V, TEMP=.0°C to 1·o•c V1Lc=V1L = 0.2V 

Figure 26 Z84C01 Typical 100 vs Freq 

55 



ELECTRICAL CHARACTERISTICS: 

ABSOLUTE MAXIMUM RATINGS 

Voltage on Vee with respect to Vss .......... -0.3V to+ 7V 
Voltages on all inputs with respect to Vss .. -0.3V to Vee+ 
0.3V 
Operating Ambient 
Temperature ....................... See Ordering Information 
Storage Temperature ............... -65°C to+ 150°C 

Standard Test Conditions 

The DC Characteristics and capacitance sections below 
apply for the following standard test conditions, unless 
otherwise noted. All voltages are referenced to GND (OV). 
Positive current flows into the referenced pin. 

Available operating temperature ranges are: 

S = 0°C to 70°C 
Voltage Supply Range: +4.50V < Vee < + 5.50V 

All AC parameters assume a load capacitance of 100 pf. 
Add 10 ns delay for each 50 pf increase in load up to a 
maximum of 150 pf for the data bus and 100 pf for address 
and control lines. AC timing measurements are refer­
enced to 1 .5 volts (except for clock, which is referenced to 
the 10% and 90% points). Maximum capacitive load for 
CLK is 125 pf. 

56 

Stresses greater than those listed under Absolute Maxi­
mum Ratings may cause permanent damage to the de­
vice. This is a stress rating only; operation of the device at 
any condition above those indicated in the operational 
sections of these specifications is not implied. Exposure 
to absolute maximum rating conditions for extended 
periods may affect device reliability. 

The Ordering Information section lists temperature 
ranges and product numbers. Package drawings are in 
the Package Information section. Refer to the Literature 
List for additional documentation. 

+SV 

2.1K 



ZilOg Product Specification 

January 1989 

FEATURES 

• Transfers, searches, and search/transfers in Byte-at-a­
Time, Burst, or Continuous modes. Cycle length and 
edge timing can be programmed to match the speed of 
any port. 

• Dual port addresses (source and destination) generated 
for memory-to-1/0, memory-to-memory, or l/O-to-1/0 
operations. Addresses may be fixed or automatically 
incremented/decremented. 

• Next-operation loading without disturbing current 
operations via buffered starting-address registers. An 
entire previous sequence can be repeated automatically. 

• Extensive programmability of functions. CPU can read 
complete channel status. 

• NMOS version for high cost performance solutions 

GENERAL DESCRIPTION 

The ZBO OMA (Direct Memory Access), hereafter referred 
to as ZBO OMA or OMA, is a powerful and versatile device for 
controlling and processing transfers of data. Its basic 

Do 

D, 

D, ···-j D, 
DATA 

BUS D, 

Ds 

Ds 

D7 

BUS { 

BUSREQ 

CONTROL Bil 
BAO 

zao DMA 

l Mi 

SYSTEM ,,...__.. IORO 
CONTROL MREO 

BUS ~RO 

ViR 
,-- ---, 
I RESET I L ____ _J 

C-MOSDMA 

Ao 
A, 

A, 

A, .. 
As 

As 

A7 .. 
Ag 

Arn 

A,, 

A,, 

An 

A,. 

A,. 

PLCC PACKAGE ONLY '--.....--..,---.---' 

+SY GND CLK 

Figure 1. Pin Functions 

SYSTEM 
ADDRESS 
BUS 

Z841O/Z84C10 NMOS/CMOS 
Z80® OMA Direct Memory 
Access Controller 

• CMOS version for the designs requires low power 
consumption 

• NMOS Z0841004- 4MHz 

• CMOS Z84C1006 - DC 4 MHz to 6.17 MHz, 
Z84C1008 - DC to 8 MHz 

• 6 MHz version supports 6~ 144 MHz CPU clock opera­
tion clock. 

• Standard ZBO Family bus-request and prioritized 
interrupt-request daisy chains implemented without 
external logic. Sophisticated, internally modifiable 
interrupt vectoring. 

• Direct interfacing to system buses without external logic. 

function of managing CPU-independent transfers between 
two ports is augmented by an array of features that optimize 
transfer speed and control with little or no external logic in 
systems using an 8- or 16-bit data bus and a 16-bit address 
bus. 

As 40 As 

A, 39 A, 

A3 38 IEI 

A, 37 fNTIPULSE 

A, 36 IEO 

Ao 35 "" CLK 34 D, 

WR 33 D, 

RD 32 D, 

IORQ " 31 D, 

+sv 11 zao DMA 30 GND 

MREQ 12 29 Ds 

BAO 13 28 Ds 

BAi 14 27 D, 

BUSREQ 15 26 M1 
CE/WAIT 16 25 ADY 

A,s 17 24 .. 
A,. 18 23 Ag 

An 19 22 Arn 

A,, 20 21 .,, 

Figure 2a. 40-pin Dual-In-Line Package (DIP), 
Pin Assignments 

57 



Ao • 39 00 
CLK o, 

02 
Ro o, 

IORO 04 

N.C 12 Z8410 GNO 

+SV o. 
MiiEQ o. 

15 07 

30 M1 

BUSREQ" 17 29 N.C 

18 19 20 21 22 23 24 2526 27 28 

1~ 
U> "' "' °' ,,... o o• m >- o 

I~ 
<<<<C<<<~Z 

Figure 2b. Z8410 NMOS Z80 OMA 
44-Pin PLCC Pinout 

I~ 
:- !!! I~ ~ 

6 5 4 3 2 1 44 4342 4140 

Ao • 39 00 

CLK 38 o, 
37 02 

Ro 36 o, 
loOO 04 

RESET Z84C10 GNO 

+SV o. 
MREQ o. 

31 07 

M1 
BUSReQ1o N.C 

18 19 20 21 22 23 24 2526 27 28 

1~ 
I~ 

; ; 1 1 .[' 1 : <m ~ ~ 

Figure 2c. Z84C10 CMOS Z80 OMA 
PLCC Pinout 

58 



Transfers can be done between any two ports (source and 
destination), including memory-to-1/0, memory-to-memory, 
and l/0-to-1/0. Dual port addresses are automatically 
generated for each transaction and may be either fixed or 
incrementing/decrementing. In addition, bit-maskable byte 
searches can be performed either concurrently with 
transfers or as an operation in itself. 

The ZSO OMA contains direct interfacing to, and 
independent control of, system buses, as well as 

FUNCTIONAL DESCRIPTION 

Classes of Operation. The ZSO OMA has three basic 
classes of operation: 

• Transfers of data between two ports (memory or 1/0 
peripheral) 

• Searches for a particular 8-bit maskable byte at a single 
port in memory or an 1/0 peripheral 

• Combined transfers with simultaneous search between 
two ports 

Figure 4 illustrates the basic functions served by these 
classes of operation. 

CPU 
+5V 

iNrl 

+5V 

T 
IEI 

ZC/T01 

CTC 
ZCIT02 INT 

IEO 

IEI 

RxCA INT 
TxCA IEO 

Rx CB 

TxCB 

W/RDYA 

WIRDYB 

SIO 

SYSTEM 
BUSES 

l/l---\ 
~ l' 

,. 

I-

I 

J 
)- _I\ 

\f l' 

OMA 

-
INT 

ADY 

IEI 

IEO -
INT 

IEI 

ADY 

OMA 

Figure 3. Typical Z80 Environment 

sophisticated bus and interrupt controls. Many 
programmable features, including variable cycle timing and 
auto-restart, minimize CPU software overhead. They are 
especially useful in adapting this special-purpose transfer 
processor to a broad variety of memory, 1/0 and CPU 
environments. 

The Z80 DMA is packaged in a 40-pin plastic or Cerdip DIP, 
or 44-pin PCC. It uses a single +SV power supply and the 
standard Z80 Family single-phase clock. 

During a transfer, the OMA assumes control of the system 
address and data buses. Byte by byte, data is read from one 
addressable port and written to the other addressable port. 
The ports may be programmed to be either system main 
memory or peripheral 1/0 devices. Thus, a block of data 
may be written from one peripheral to another, from one 
area of main memory to another, or from a peripheral to main 
memory and vice versa. 

During a search-only operation, data is read from the source 
port and compared byte by byte with a OMA-internal register 
containing a programmable match byte. This match byte 
may optionally be masked so that only certain bits within the 
match byte are compared. Search rates up to 2M bytes per 
second can be obtained with the 4 MHz ZSO OMA. 

In combined searches and transfers, data is transferred 
between two ports while simultaneously searching for a 
bit-maskable byte match. 

Data transfers or searches can be programmed to stop, or 
interrupt, under various conditions. In addition, CPU­
readable status bits can be programmed to reflect the 
condition. 

Modes of Operation. The ZSO OMA can be programmed 
to operate in one of three transfer and/or search modes: 

• Byte-at-a-Time: data operations are performed one byte 
at a time. Between each byte operation the system buses 
are released to the CPU. The buses are requested again 
for each succeeding byte operation. 

ZBODMA 

1. Search memory 

110 
PERIPHERAL 

'-ir---t-< .. 

2. Transfer memory-to-memory (optional search) 
3. Transfer memory-to·lfO (optional search) 
4. Search 110 
5. Transfer l/O·to-1/0 (optional search) 

Figure 4. Basic Functions of the Z80 OMA 

59 



• Burst: data operations continue until a port's Ready line 
to the OMA goes inactive. The OMA then stops and 
releases the system buses after completing its current 
byte operation. 

• Continuous: data operations continue until the end of the 
programmed block of data is reached before the system 
buses are released. If a port's Ready line goes inactive 
before this occurs, the OMA simply pauses until the 
Ready line comes active again. 

In all modes, once a byte of data is read into the OMA, the 
operation on the byte will be completed in an orderly 
fashion, regardless of the state of other signals (including a 
port's Ready line). 

Due to the DMA's high-speed buffered method of reading 
data, operations on one byte are not completed until the 
next byte is read in. This means that total transfer or search 
block lengths must be two or more bytes, and that block 
lengths programmed into the OMA must be one byte less 
than the desired block length (count is N-1 where N is the 
block length). 

Commands and Status. The Z80 ·OMA has several 
writable control registers and readable status registers 
available to the CPU. Control bytes can be written to the 
OMA whenever the OMA is not controlling the system 
buses, but the act of writing a control byte to the OMA 
disables the OMA until it is again enabled by a specific 
command. Status bytes can also be read at any such time, 
but writing the Read Status Byte command or the Initiate 
Read Sequence command disables the OMA. 

Control bytes to the OMA include those which affect 
immediate command actions such as enable, disable, 
reset, load starting-address buffers, continuet clear 
counters, and clear status bits. In addition, many 
mode-setting control bytes can be written, including mode 
and class of operation, port. configuration, starting 
addresses, block length, address counting rule, match and 
match-mask byte, interrupt conditions, interrupt vector, 
status-affects-vector condition, pulse counting, auto restart, 
Ready-line and Wait-line rules, and read mask. 

Readable status registers include a general status byte 
reflecting Ready-line, end-of-block, byte-match, and 
interrupt conditions, as well as 2-byte registers for the 
current byte count, Port A address, and Port B address. 

Variable Cycle. The Z80 OMA has the unique feature of 
programmable operation-cycle length. This is valuable in 
tailoring the OMA to the particular requirements of other 
system components (fast or slow) and maximizes the 
data-transfer rate. It also eliminates external logic for signal 
conditioning. 

There are two aspects to the variable cycle feature. First, the 
entire read and write cycles (periods) associated with the 
source and destination ports can be independently 
programmed as 2, 3, or 4 T-cycles long (more if Wait cycles 
are used), thereby increasing or decreasing the speed with 
which all OMA signals change (Figure 5). 

60 

Second, the four signals in each port specifically associated 
with transfers of data (1/0 Request, Memory Request, Read 
and Write) can each have its active trailing edge terminated 
one-half T-cycle early. This adds a further dimension of 
flexibility and speed, allowing such things as 
shorter-than-normal Read or Write signals that go inactive 
before data starts to change. 

Address Generation. Two 16-bit addresses are generated 
by the Z80 OMA for every transfer operation, one address 
for the source port and another for the destination port. 
Each address can be either variable or fixed. Variable 
addresses can increment or decrement from the 
programmed starting address. The fixed-address capability 
eliminates the need for separate enabling wires to 1/0 ports. 

Port addresses are multiplexed onto the system address 
bus, depending on whether the OMA is reading the source 
port or writing to the destination port. Two readable address 
counters (2 bytes each) keep the current address of each 
port 

Auto Restart. The starting addresses of either port can be 
reloaded automatically at the end of a block. This option is 
selected by the Auto Restart control bit. The byte counter is 
cleared when the addresses are reloaded. 

The Auto Restart feature relieves the CPU of software 
overhead for repetitive operations such as CRT refresh and 
many others. Moreover, when the CPU has access to the 
buses during byte-at-a-time or burst 'transfers, different 
starting addresses can be written into buffer registers during 
transfers, causing the Auto Restart to begin at a new 
location. 

Interrupts. The Z80 OMA can be programmed to interrupt 
the CPU on four conditions: 

• Interrupt on Ready (before requesting bus) 

• Interrupt on Match 

• Interrupt on End of Block 

• Interrupt on Match and End of Block 

Any of these interrupts causes an interrupt-pending status 
bit to .be set, and each of them can optionally alter the DMA's 
interrupt vector. Due to the buffered constraint mentioned 
under "Modes of Operation," interrupts on Match at End of 
Block are caused by matches to the byte just prior to the last 
byte in the block. 

CLK 

_,.CYCLE :~EARLYENDING 
-+-3·CYCLE ~I ~. FOR CONTROL SIGNALS 

....-- 4-CYCLE ' : I 

Figure 5. Variable Cycle Length 



The OMA shares the Z80 Family's elaborate interrupt 
scheme, which provides fast interrupt service in real-time 
applications. In a Z80 CPU environment, the OMA passes 
its internally modifiable 8-bit interrupt vector to the CPU, 
which adds an additional eight bits to form the memory 
address of the interrupt-routine table. This table contains the 
address of the beginning of the interrupt routine itself. In this 
process, CPU control is transferred directly to the interrupt 
routine, so that the next instruction executed after an 
interrupt acknowledge is the first instruction of the interrupt 
routine itself. 

PIN DESCRIPTION 

A0-A15. System Address Bus (output, 3-state). Addresses 
generated by the OMA are sent to both source and 
destination ports (main memory or 110 peripherals) on these 
lines. 

BAI. Bus Acknowledge In (input, active Low). Signals that 
the system buses have been released for OMA control. In 
multiple-OMA configurations, the BAI pin of the highest 
priority OMA is normally connected to the Bus Acknowledge 
pin of the CPU. Lower-priority DMAs have their BAI connec­
ted to the BAO of a higher-priority OMA. 

BAO. Bus Acknowledge Out (output, active Low). In a 
multiple-OMA configuration, this pin signals that no other 
higher-priority OMA has requested the system buses. BAI 
and BAO form a daisy chain for multiple-OMA priority 
resolution over bus control. 

BUSREQ. Bus Request (bidirectional, active Low, open­
drain). As an output, it sends requests for control of the 
system address bus, data bus, and control bus to the CPU. 
As an input when multiple DMAs are strung together in a 
priority daisy chain via BAI and BAO, it senses when another 
OMA has requested the buses and causes this OMA to 
refrain from bus requesting until the other OMA is finished. 
Because it is a bidirectional pin, there cannot be any buffers 
between this OMA and any other OMA. It can, however, 
have a buffer between it and the CPU because it is 
unidirectional into the CPU. A pull-up resistor is connected 
to this pin. 

CE/WAIT. Chip Enable and Wait (input, active Low). 
Normally this functions only as a CE line, but it can also be 
programmed to serve a WAIT function. As a CE line from the 
CPU, it becomes active when WR or RD and IORO are ac­
tive and the 110 port address on the system address bus is 
the DMA's address, thereby allowing a transfer of control, 
command bytes from the CPU to the OMA, or status bytes 
from the OMA to the CPU. As a WAIT line from memory or 
110 devices, after the OMA has received a bus-request 
acknowledge from the CPU, it causes wait states to be 
inserted in the DMA's operation cycles thereby slowing the 
OMA to a speed that matches the memory or 110 device. 

CLK. System Clock (input). Standard Z80 single-phase 
clock. 

0 0-07. System Data Bus (bidirectional, 3-state). Commands 
from the CPU, OMA status, and data from memory or 110 

Pulse Generation. External devices can keep track of how 
many bytes have been transferred by using the DMA's pulse 
output, which provides a signal at 256-byte intervals. The 
interval sequence may be offset at the beginning by 1 to 255 
bytes. 

The Interrupt line outputs the pulse signal in a manner that 
prevents misinterpretation by the CPU as an interrupt 
request, since it only appears when the Bus Request and 
Bus Acknowledge lines are both active. 

peripherals are transferred on these lines. 

IE!. Interrupt Enable In (input, active High). This is used with 
IEO to form a priority daisy chain when there is more than 
one interrupt-driven device. A High on this line indicates that 
no other device of higher priority is being serviced by a CPU 
interrupt service routine. 

IEO. Interrupt Enable Out (output, active High). IEO is High 
only if IEI is High and the CPU is not servicing an interrupt 
from this OMA. Thus, this signal blocks lower-priority 
devices from interrupting while a higher-priority device is 
being serviced by its CPU interrupt service routine. 

INT/PULSE. Interrupt Request (output, active Low, open­
drain). While the CPU is the bus master, this output requests 
a CPU interrupt. The CPU acknowledges the interrupt by 
pulling its IORO output Low during an M1 cycle. It is typically 
connected to the INT pin of the CPU with a pullup resistor 
and tied to all other INT pins in the system. This pin can also 
be used to generate periodic pulses to an external device 
when the OMA is bus master (i.e., the CPU's BUSREO and 
BUSACK lines are both Low and the CPU cannot see 
interrupts). While the OMA is the bus master, this output can 
be programmed to pulse each time 256 transfers have 
occurred. 

IORQ. Input/Output Request (bidirectional, active Low, 
3-state). As an input, this indicates that the lower half of the 
address bus holds a valid 110 port address for transfer of 
control or status bytes from or to the CPU, respectively; this 
OMA is the addressed port if its CE pin and its WR or RD pins 
are simultaneously active. As an output, after the OMA has 
taken control of the system buses, it indicates that the lower 
half of the address bus holds a valid port address for another 
110 device involved in a OMA transfer of data. When IORO 
and M1 are both active simultaneously, an interrupt 
acknowledge is indicated. 

M1. Machine Cycle One (input, active Low). Indicates that 
the current CPU machine cycle is an instruction fetch. It is 
used by the OMA to decode the return-from-interrupt 
instruction (RETI, ED-40) sent by the CPU. During two-byte 
instruction fetches, M1 is active as each opcode byte is 
fetched. An interrupt acknowledge is indicated when both 

M1 and IORQ are active. On CMOS DMA, M1 signal has 
another function. When M1 occurs without an active RD or 
IORQ for at least two clock cycles, the DMA is reset. 

61 



· MREQ. Memory Request (output, active Low, 3-state). This 
indicates that the address bus holds a valid address for a 
memory read or write operation. After the OMA has taken 
control of the system buses, it indicates a OMA transfer 
request from or to memory. 

RD. Read (bidirectional, active LOw, 3-state). As an input, 
this indicates that the CPU wants to read status bytes from 
the DMA's read registers. As an output, after the OMA has 
taken control of the system buses, it indicates a 
OMA-controlled read from a memory or 1/0 port address. 

RESET. Reset (CMOS PLCC version only: input, active 
Low). A low on this line resets the OMA. 

INTERNAL STRUCTURE 

The internal structure of the Z80 OMA includes driver and 
receiver circuitry for interfacing with an 8-bit system data 
bus, a 16-bit system address bus, and system control lines 
(Figure 6). In a Z80 CPU environment, the OMA can be tied 
directly to the analogous pins on the CPU (Figure 7) with no 
additional buffering, except for the CE/WAIT line. 

The DMA's internal data bus interfaces with the system data 
bus and services all internal logic and registers. Addresses 
generated from this logic for Ports A and B (source and 
destination) of the DMA's single transfer channel are 
multiplexed onto the system address bus. 

Specialized logic circuits in the OMA are dedicated to the 
various functions of external bus interfacing, internal bus 
control, ·byte matching, byte counting, periodic pulse 
generation, CPU interrupts, bus requests, and address 
generation. A set of 21 writable control registers and seven 
readable status registers provides the means by which the 
CPU governs and monitors the activities of these logic 
circuits. All registers are eight bits wide, with double-byte 
information stored in adjacent registers. The two address 
counters (two bytes each) for P9rts A and B are buffered by 
the two starting addresses. 

The 21 writable control registers are organized into seven 
base-register groups, most of which have multiple registers. 
The base registers in each writable group contain both 

SYSTEM 
DATA/'----'-....____,, 

BUS \.----.--.--./ 
(8-BIT) 

CONTROL 
AND 

STATUS 
REGISTERS 

ROY. Ready (input, programmable active Low or High). This 
is monitored by the OMA to determine when a peripheral 
device associated with a OMA port. is ready for a read or 
write operation. Depending on the mode of OMA operation 
(Byte, Burst, or Continuous), the ROY line indirectly controls 
OMA activity by causing the BUSREQ line to go Low or 
High. 

WR. Write (bidirectional, active Low, 3-state). As an input, 
this indicates that the CPU wants to write control . or 
command bytes to the OMA write registers. As an output, 
after the OMA has taken control of the system buses, it 
indicates.a OMA-controlled write to a memory or 1/0 port 
address. 

control/command bits and pointer bits that can be set to 
address other registers within the group. The seven 
readable status registers have no analogous second-level 
registers. 

The registers are designated as follows, according to their 
base-register groups: 

WRO-WR6-Write Register groups 0 through 6 
(7 base registers plus 14 associated registers) 

RRO-RR6-Read Registers O through 6 

Writing to a register within a write-register group involves first 
writing to the base register, with the appropriate pointer bits 
set, then writing to one or more of the other registers within 
the group. All seven of the readable status registers are 
accessed sequentially according to a programmable mask 
contained in one of the writable registers. The section 
entitled Programming explains this in more detail. 

A pipelining scheme is used for reading data in. The 
programmed block length is the number of bytes compared 
to the byte counter, which increments at the end of each 
cycle. In searches, data byte comparisons with the match 
byte are made during the read cycle of the next byte. 
Matches are, therefore, discovered only after the next byte is 
read in. 

SYSTEM 
ADDRESS 
BUS 
(18-BIT) 

Figure 6. Block Diagram 

62 



COMMON: INT 
BUSA: Ea 

r---------1 BUSACK CPU M1 

COMMON 

IOAO 
MREQ 

RD 
WR 
CLK 

Do-1 

COM MO COMMON 

+ ~ + 
...-~--'~~-=~---. 

CE/WAIT BAO t--_,,•I BAJ TO NEXT OMA 

FROM HIGHER·PRIORITY 
INTERRUPTING DEVICE IEI 

DMA 
IEO t--_,,-t IEI 

RDY 

FROM 
110 

DEVICE 

RDY 

FROM 
110 

DEVICE 

DMA 
IEO 

TO LOWER· PRIORITY 
INTERRUPTING DEVICE 

Figure 7. Multiple-OMA Interconnection to the ZBO CPU 

In multiple-OMA configurations, interrupt-request daisy 
chains are prioritized by the order in which their IEI and IEO 
lines are connected. The system bus, however, may not be 
pre-empted. Any OMA that gains access to the system 
buses keeps them until it is finished. 

Read Registers 

RRO Status byte 

RR1 Byte counter (low byte) 

RR2 Byte counter (high byte) 

RR3 Port A address counter (low byte) 

RR4 Port A address counter (high byte) 

RR5 Port B address counter (low byte) 

RR6 Port B address counter (high byte) 

WRO 

Write Registers 

Base register byte 

Port A starting address (low byte) 

Port A starting address (high byte) 

Block length (low byte) 

Block length (high byte) 

WR1 Base register byte 

Port A variable-timing by1e 

WR2 Base register byte 

Port B variable-timing byte 

WR3 Base register byte 

Mask byte 

Match byte 

WR4 Base register byte 

Port B starting address (low byte) 

Port B starting address (high byte) 

Interrupt control byte 

Pulse control byte 

Interrupt vector 

WR5 Base register byte 

WR6 Base register byte 

Read mask 

63 



PROGRAMMING 

The ZSO OMA has two programmable fundamental states: 
(1) an enabled state, in which it can gain control of the 
system buses and direct the transfer of data between ports, 
and (2) a disabled state, in which it can initiate neither bus 
requests nor data transfers. When the OMA is powered up 
or reset by any means, it is automatically placed into the 
disabled state. Program commands can be written to it by 
the CPU in either state, but this automatically puts the OMA 
in the disabled state, which is maintained until an enable 
command is issued by the CPU. The CPU must program the 
OMA in advance of any data search or transfer by 
addressing it as an 1/0 port and sending a sequence of 
control bytes using an Output instruction (such as OTIR for 
the zso CPU). 

Reading. (Figure Sa) The Read Registers (RRO-RR6) are 
read by the CPU by addressing the OMA as an 1/0 port 
using an Input instruction (such as INIR for the ZSO CPU). 
The readable bytes contain OMA status, byte-counter 
values, and port addresses since the last OMA reset. The 
registers are always read in a fixed sequence beginning with 
RRO and ending with RR6. However, the register read in this 
sequence is determined by programming the Read Mask in 
WR6. The sequence of reading is initialized by writing an 
Initiate Read Sequence or Set Read Status command to 
WR6. After a Reset OMA, the sequence must be initialized 
with the Initiate Read Sequence command or a Read Status 
command. The sequence of reading all registers that are not 
excluded by the Read Mask register must be completed 
before a new Initiate Read Sequence or Read Status 
command. 

Writing. Control or command bytes are written into one or 
more of the Write Register groups (WRO-WR6) by first writing 
to the base register byte in that group. All groups have base 
registers and most gr.cups have additional associated 
registers. The associated registers in a group are 
sequentially accessed by first writing a byte to the base 
register containing register-group identification and pointer 
bits (1's) to one or more of that base register's associated 
registers. 

READ REGISTER 0 

0 7 0 6 0 5 0 4 03 02 0 1 Do 

I x I x I I I I x I I I STATUS BYTE 

11 
I I 1 = OMA TflANSFER HAS OCCURRED 

0 = READY ACTIVE 

0 = INTERRUPT PENDING 
0 = MATCH FOUND 
0 = END OF BLOCK 

READ REGISTER 1 

~I _._l ___..l _._l _._f _....]_....]_....__.I BYTE COUNTER (HIGH BYTE) 

This is illustrated in Figure Sb. In this figure, the sequence in 
which associated registers within a group can be written to is 
shown by the vertical position of the associated registers. 
For example, if a byte written to the DMA contains the bits 
that identify WRO (bits DO, 01 and 07), and also contains 1 's 
in the bit positions that point to the associated "Port A 
Starting Address (low byte)" and "Port A Starting Address 
(high byte)," then the next two bytes written to the OMA will 
be stored in that order in these two registers. 

Fixed-Address Programming. A special circumstance 
arises when programming a destination port to have a fixed 
address. The load command in WR6 only loads a fixed 
address to a port selected as the source, not to a port 
selected as the destination. Therefore, a fixed destination 
address must be loaded by temporarily declaring it a 
fixed-source address and subsequently declaring the true 
source as such, thereby implicitly making the other a 
destination. 

The following example illustrates the steps in this procedure, 
assuming that transfers are to occur from a variable-address 
source (Port A) to a fixed-address destination (Port 8): 

1. Temporarily declare Port B as source in WRO. 

2. Load Port B address with LOAD command to WR6. 

3. Declare Port A as a source in WRO. 

4. Load Port A address with LOAD command to WR6. 

5. Enable OMA in WR6. 

Figure 9 illustrates a program to transfer data from memory 
(Port A) to a peripheral device (Port B). In this example, the 
Port A memory starting address is 1050H and the Port B 
peripheral fixed address is 05H. Note that the data flow is 
1001 H bytes-one niore than specified by the block length. 
The table of DMA commands may be stored in consecutive 
memory locations and transferred to the OMA with an 
output instruction such as the ZSO CPU's OTIR instruction. 

READ REGISTER 2 

~I _._I _._I _._I _._I _._I __._I _....__.I BYTE COUNTER (LOW BYTE) 

READ REGISTE;R 3 

l_~l _._I _._I _._I _._I _.__...._I PORT A ADDRESS COUNTER (LOW BYTE) 

READ REGISTER 4 

l_~j __._] __._] __._] _._I _.__...._I PORT A ADDRESS COUNTER (HIGH BYTE) 

READ REGISTER 5 

.. I _._I _._I _l..__.l__.l__.l__.__,I PORT B 'ADDRESS COUNTER (LOW BYTE) 

READ REGISTER 6 

I...._._] _._I _l..__.l__.l__.__.__,I PORT B ADDRESS COUNTER (HIGH BYTE) 

Figure Sa. Read Registers 

64 



WRITE REGISTER 0 GROUP 

D1 06 05 04 03 02 D, Do 

I 0 : I I BASE REGISTER BYTE 

I I 
0 0 
0 1 
1 0 
1 1 

DO NOT USE 
= TRANSFER 
1::: SEARCH 
= SEARCH/TRANSFER 

0 =PORT 8 -PORT A 
1 =PORT A -PORT B 

~.,....._....,_......,_....._,_~~~ PORT A STARTING ADDRESS 

'---'--,-'-,..-L-,_.l.--'-~...__. (LOW BYTE) 

~.,....._....,_-'-T~-~~~ PORT A STARTING ADDRESS 
'--.J....,-'-,..-L--'---'-~...__. (HIGH BYTE) 

WRITE REGISTER 1 GROUP 
0 1 0 0 0 0 0 4 OJ D) 0 1 Do 

I 0 I ! : 1 I 0 : 0 I BASE REGISTER BYTE 

I I l = PORT A IS MEMORY 
1 = PORT A IS 110 

O 0 = PORT A ADDRESS DECREMENTS 
O 1 = PORT A ADDRESS INCREMENTS 

1 ~ \ = PORT A ADDRESS FIXED 

0 ' 0 PORT A VARIABLE TIMING BYTE 
'---'---'----'---'-~-~ ............ 

WR ~OS'/; CYCLE EARLY=! I I I ! ! =CYCLE LENGTH = 4 
RD ENDS 'h CYCLE EARLY = 0 0 1 = CYCLE LENGTH : 3 

MREQ ENOS 'h CYCLE EARLY= 0 1 0 =CYCLE LENGTH = 2 
1 1 = DO NOT USE 

0 = IORQ ENOS 'h CYCLE EARLY 

WRITE REGISTER 2 GROUP 

D, Os Os 04 03 02 D1 Do 

I 0 I I I 0 I 0 I 0 I BASE REGISTER BYTE 

I I I = PORT B IS MEMORY 
1 = PORT B IS 110 

O 0 = PORT B ADDRESS DECREMENTS 
O 1 = PORT B ADDRESS INCREMENTS 

~ ~ } = PORT B ADDRESS FIXED 

'--'--'--'---'-~~_._~I PORT B VARIABLE TIMING BYTE 

WR ENOS V2 CYCLE EARLY = ! I I I I I = CYCLE LENGTH = 4 
RO ENDS 'h CYCLE EARLY = 0 0 1 = CYCLE LENGTH = 3 

MREQ ENOS 112 CYCLE EARLY = 0 1 0 = CYCLE LENGTH = 2 
1 1 DO NOT USE 

O = IORO ENDS 'h CYCLE EARLY 

WRITE REGISTER 3 GROUP 

D7 Ds D5 04 03 02 01 Do 

I 1 I I 0 I 0 I BASE REGISTER BYTE 

I I j J = STOP ON MATCH OMA ENABLE = 1 
INTERRUPT ENABLE = 1 

'--'--'----'--r-'~-~ ........ ~ 
MASK BYTE (0 = COMPARE) 

WRITE REGISTER 4 GROUP 

D, D5 D5 D4 03 D, D1 Do 

I 1 : I I 0 : 1 I BASE REGISTER BYTE 

I I 
BYTE = 0 O 

CONTINUOUS = 0 1 
BURST = 1 0 

DO NOT PROGRAM = 1 

,-,---,---,-..._,....,~,--,--,PORT B STARTING ADDRESS 

'--'---'-....l-r-'r-~-'--' (LOW BYTE) 

.-,---,---,-..._,._.,_,--,--, PORT B STARTING ADDRESS 

._..._~--'-T-'-~-~..._- (HIGH BYTE) 

INTERRUPT CONTROL BYTE 

PULSE CONTROL BYTE 

L-..._-'--'--'--'-:'-......_.l 1NTERRUPT VECTOR 

I I 
VECTOR IS AUTOMATICALLY { 0 0 =INTERRUPT ON ROY 

MODIFIED AS SHOWN O 1 =INTERRUPT ON MATCH 
ONLY IF "STATUS 1 0 =INTERRUPT ON ENO OF BLOCK 

AFFECTS VECTOR" BIT IS SET 1 1 = INTERFl:UPT ON MATCH 
ANO ENO OF BLOCK 

WRITE REGISTER 5 GROUP 
D, 06 Ds 04 03 Di D, Do 

I 1 I 0 I I 0 I 1 I 0 I BASE REGISTER BYTE 

1
1 
0 = READY ACTIVE LOW 
1 = READY ACTIVE HIGH 

O=CE"ONLY 
1 =CE/WAIT MULTIPLEXED 

0 = STOP ON END OF BLOCK 
1 = AUTO RESTART ON END OF BLOCK 

WRITE REGISTER 6 GROUP 

LI _1~1-~I ~~'_l __ 1 _l_1_I BASE REGISTER BYTE 

II I I I HEX COMMAND NAME 

0 = C3 = RESET 0 
0 

1 0 
1 = C7 = RESET PORT A TIMING 

1 0 = CB = RESET POAT B TIMING 

1 0 1 = CF = LOAD 
1 0 0 = D3 = CONTINUE 

1 1 = AF = DISABLE INTERRUPTS 
1 0 = AB = ENABLE INTERRUPTS 
0 0 = A3 = RESET AND DISABLE INTERRUPTS 

1 0 1 = B7 = ENABLE AFTER RETI 

1 1 = BF= READ STATUS BYTE 
1 0 =SB =REINITIALIZE STATUS BYTE 

0 1 0 0 1 = A7 = INITIATE READ SEQUENCE 

0 1 1 0 0 = 83 = FORCE READY 

1 = 87 = ENABLE OMA 
0 = 83 = DISABLE OMA 

r---- 0 1 1 1 0 = BB = READ MASK FOLLOWS 

LlnT._l _o_..!_:_~..._-~~~I READ MASK 11 =ENABLE! 

Figure Sb. Write Registers 

65 



en 
en 

Comments 07 Ds Ds 04 

WRO sets DMA to receive 0 1 1 1 
block length, Port A start· Block Length Block Length Port A 
ing address and temporarily Upper Lower Upper 
sets Port B as source. Follows Follows Address 

Follows 

Port A address (lower) 0 1 0 1 

Port A address (upper) 0 0 0 1 

Block length (lower) 0 0 0 0 

Block length (upper) 0 0 0 1 

WR1 defines Port A as 0 0 0 1 
memory with fixed No Timing Address Address 
incrementing address. Follows Changes Increments 

WR2 defines Port B as 0 0 1 0 
peripheral with fixed No Timing Fixed 
address Follows Address 

WR4 sets mode to Burst, 1 1 0 0 
sets OMA to expect Port B 

Burst Mod~ 
No Interrupt 

address. Control Byte 
Follows 

Port B address (lower) 0 0 0 0 

WR5 sets Ready active High 1 0 0 0 
No Auto No Wait 
Restart States 

WR6 loads Port B address 1 1 0 0 
and resets block counter.* 

WRO sets Port A as source.* 0 0 0 0 
No Address or Block 

Length Bytes 

WR6 loads Port A address 1 1 0 0 
and resets block counter. 

WR6 enables DMA t.o start 1 0 0 0 
operation. 

NOTE. The actual number of bytes transferred 1s one more than spec1f1ed by the block length. 
*These entries are necessary only in the case of a fixed destination address 

03 

1 
Port A 
Lower 

Address 
Follows 

0 

0 

0 

0 

0 
Port is 

Memory 

1 
Port is 

1/0 

0 
No Upper 
Address 

0 

1 
RDY 

Active High 

1 

0 

1 

0 

Figure 9. Sample OMA Program 

D2 D1 Do HEX 

0 0 T 1 79 
B--A 
Temporary 

Transfer, No Search for 
Loading B 
Address• 

0 0 0 50 

0 0 0 10 

0 0 0 00 

0 0 0 10 

1 0 0 14 

0 0 0 28 

1 0 1 cs 
Port B Lower 

Address 
Follows 

1 0 1 05 

0 1 0 SA 

1 1 1 CF 

1 0 1 05 
A--B Transfer, No Search 

1 1 1 CF 

1 1 1 87 



INACTIVE STATE TIMING 
(OMA as CPU Peripheral) 

In its disabled or inactive state, the OMA is addressed by the 
CPU as an 1/0 peripheral for write and read (control and 
status) operations. Write timing is illustrated in Figure 10. 

Reading of the DMA's status byte, byte counter, or port 
address counters is illustrated in Figure 11. These 

CLKrLJLnn 
~_E~I I r~I ____ _ 
io£~ -----

00-01 -~+--1--- . 

Figure 10. CPU-to-OMA Write Cycle 

ACTIVE STATE TIMING 
(OMA as Bus Controller) 

Default Read and Write Cycles. By default, and after 
reset, the DMA's timing of read and write operations is 
exactly the same as the Z80 CPU's timing of read and write 
cycles for memory and 1/0 peripherals, with one exception: 
during a read cycle, data is latched on the falling edge of T 3 
and held on the data bus across the boundary between 
read and write cycles, through the end of the following write 
cycle. 

Figure 12 illustrates the timing for memory-to-1/0 port 
transfers and Figure 13 illustrates 1/0-to-memory transfers. 

operations require less than three kycles. The CE, IORQ, 
and RD lines are made active over two rising edges of CLK, 
and data appears on the bus approximately one i:cycle 
after they become active. 

CLK 

Figure 11. CPU-to-OMA Read Cycle 

Memory-to-memory and 1/0-to-l/O transfer timings are 
simply permutations of these diagrams. 

The default timing uses three i:cycles for memory 
transactions and four i:cycles for 1/0 transactions, which 
include one automatically inserted wait cycle (TwA) between 
T 2 and T 3. If the CE/WAIT line is programmed to act as a 
WAIT line during the OMA's active state, it is sampled on the 
falling edge of T 2 for memory transactions and the falling 
edge of TWA for 1/0 transactions. If CE/WAIT is Low during 
this time, another i:cycle 1s added, during which the 

I~ MEMORY READ ----------.1---- 110 WRITE ____ .,. 

T1 I T2 I T3 T1 T2 TWA T3 

WNft { oo~: --------+-
1

------.... --+--i----+---' 

MEMORY 
Do-D7 DATA BUS DRIVEN BY DMA 

CE/WAIT 

Figure 12. Memory-to-l/O Transfer 

67 



CE/WAIT line will again be sampled. The duration of 
transactions can thus be indefinitely extended. 

Variable Cycle and Edge Timing. The ZSO DMA's default 
operation-cycle length for the source (read) port and 
destination (write) port can be independently programmed. 
This variable-cycle feature allows read or write cycles 
consisting of two, three, or four i:cycles (more if Wait cycles 
are inserted), thereby increasing or decreasing the speed of 
all signals generated by the OMA. In addition, the trailing 
edges of the IORQ, MREQ, RD, and WR signals can be 
independently terminated one-half cycle early. Figure 14 
illustrates this. 

In the variable-cycle mode, unlike default timing, IORQ 
comes active one-half cycle before MREQ, RD, and WR. 
CE/WAIT can be used to extend only the 3 or 4 i:cycle 
variable memory cycles and only the 4-cycle variable 1/0 
cycle. The CE/WAIT line is sampled at the failing edge of T 2 
for 3- or 4-cycle memory cycles, and at the falling edge of T 3 

for 4-cycle 1/0 cycles. 

During transfers, data is latched on the clock edge causing 
the rising edge of RD and held until the end of the write 
cycle. 

Bus Requests. Figure 15 illustrates the bus request and 
acceptance timing. The ROY line, which may be 
programmed active High or Low, is sampled on every rising 
edge of CLK. If it is found to be active and if the bus is not in 
use by any other device, the following rising edge of CLK 
drives BUSREQ Low. After receiving BUSREQ, the CPU 
acknowledges on the BAI input either directly or through a 
multiple-OMA daisy chain. When a Low is detected on BAI 
for two consecutive rising edges of CLK, the OMA will begin 
transferring data on the next rising edge of CLK. 

Bus Release Byte-at-a-Time. In Byte-at-a-Time made, 
BUSREQ is brought High on the rising edge of CLK prior to 
the end of each read cycle (search-only) or write cycle 
(transfer and transfer/search) as illustrated in Figure 16. This 
is done regardless of the state of ROY. There is no possibility 
of confusion when a ZSO CPU is used since the CPU cannot 

------- l/O READ ----·1..,...__ MEMORY WRITE -----..I 
~ ~ ~ ~ ~ I ~ I ~ 

68 

CLK 

[ I 

READ { IORQ --+-I __ \ ______ 1 _______ _ 
RD \ j ,__ _____ ... 

Do-07 
\_ 110 DRIVES DATA J 

OMA DRIVES DATA BUS I 

{ \ r-
WRITE :------"'""°+--+--\_+--'i__rr--

CE/WAJT -[---[---IT \ --1---Tt-r----­
----~--f-I \.. --1--- JI L 

Figure 13. 1/0-to-Memory Transfer 

I T, I T, I T, I T, I 
CLK __jLJ1__fLJl._f CLK 

~:::~:~~F~ BUSREQ ___ -J 

MREQ ~ T"-r-r--r h- --
RD,WR t t ff 

- - - - - - - r;---rr-..1 
BAI-------' 

2-CYCLE 3-CYCLE 4-CYCLE 
EARLY END EARLY END EARLY END 

Figure 14. Variable-Cycle and Edge Timing Figure 15. Bus Request and Acceptance 



begin an operation until the following T-cycle. Most other 
CPUs are not bothered by this either, although note should 
be taken of it. The next bus request for the next byte will 
come after both BUSREQ and BAI have returned High. 

Bus Release at End of Block. In Burst and Continuous 
modes, an end of block causes BUSREQ to go High, usu­
ally on the same rising edge of CLK in which the OMA 
completes the transfer of the data block (Figure 17). The last 
byte in the block is transferred even if ROY goes inactive 
before completion of the last byte transfer. 

Bus Release on Not Ready. In Burst mode, when ROY 
goes inactive it causes BUSREQ to go Higt-1 Oil tt-1e next 
rising edge of CLK after the completion of its current byte 
operation (Figure 18). The action on BUSREQ is thus 
somewhat delayed from action on the ROY line. The OMA 
always completes its current byte operation in an orderly 
fashion before releasing the bus. 

By contrast, BUSREQ is not released in Continuous mode 
when ROY goes inactive. Instead, the OMA idles after 
completing the current byte operation, awaiting an active 
ROY again. 

Bus Release on Match. If the OMA is programmed to stop 
on match in Burst or Continuous modes, a match causes 

BUSREQ to go inactive on the next OMA operation, i.e., at 
the end of the next read in a search or at the end of the 
following write in a transfer (Figure 19) . .Due to the pipelining 
scheme, matches are determined while the next OMA read 
or write is being performed. 

The ROY line can go inactive after the matching operation 
begins without affecting this bus-release timing. 

Interrupts. Timings for interrupt acknowledge and return 
from interrupt are the same as for the other Z80 peripherals. 

Interrupt on ROY (interrupt before requesting bus) does not 
directly affect the BUSREQ line. Instead, the interrupt 
service routine must handle this by issuing the following 
commands to WR6: 

1. Enable after Return From Interrupt (RETI) 
Command-Hex B7 

2. Enable OMA-Hex 87 

3 .. An RETI instruction that resets the Interrupt Under 
Service latch in the Z80 OMA. 

OMA ACTIVE -.1...- OMA INACTIVE 

RDY 

Figure 16. Bus Release (Byte-at-a-Time Mode) 

ACTIVE 

INACTIVE 

I LAST BYTE I OMA 
..,__OPERATION..---. .--INACTIVE 

IN BLOCK 

Figure 17. Bus Release at End of Block 
(Burst and Continuous Modes) 

69 



CU< 

RDY 

70 

ACTIVE 

INACTIVE 

I__ CURRENT BYTE I OMA r---- OPERATION ___.,...,_INACTIVE 

Figure 18. Bus Release When Not Ready 
(Burst Mode) 

BYTEn I BYTEn+1 OMA 
-+----READ IN~----~,..___ READ IN AND ----..i....1--INACTIVE 

MATCH FOUND 
ON BVTEn 

Figure 19. Bus Release on Match 
(Burst and Continuous Modes) 



ABSOWTE MAXIMUM RATINGS 

Voltages on Vee with respect to Vss ..... -0.3Vto + 7.0V 
Voltages on all inputs with respect 

to Vss ...................... - 0.3V to Vee + 0.3V 
Storage Temperature .............. -65°C to + 150°C 

STANDARD TEST CONDITIONS 

The characteristics below apply for the following test 
conditions, unless otherwise noted. All voltages are 
reierenced to GND (OVJ. Positive current iiows into me 
referenced pin. Available operating temperature range is: 

• S = O"C to + 7D"C, V cc Range 
NMOS: =4.75V :s; Vee S';+5.25V 
CMOS: +4.50V :s;vcc:s;+s.sov 

• E = -40"C to 100"C, +4.50V :s;vcc:s;+5.50V 

DC CHARACTERISTICS (Z84C10 I CMOS zao OMA) 

Symbol Parameter 

V1Le Clock Input Low Voltage 

V1He Clock Input High Voltage 

V1L Input Low Voltage 

V1H Input High Voltage 

Vol Output Low Voltage 

VoH1 Output High Voltage 

VoH2 Output High Voltage 

lu Input Leakage Current 

ILQ 3-State Output Leakage Current in 
Float 

1ee1 Power Supply Current 

ICC2 Standby Supply Current 

Over specified temperature and voltage range. 

CAPACITANCE 

Symbol Parameter 

Clock Capacitance 

Input Capacitance 
Output Capacitance 

NOTES: Over specified temperature range; f = MHz. 
Unmeasured pins returned to ground. 

Min 

-0.3 

Vee-0.6 

-0.3 

+2.2 

+2.4 

Vee-0.8 

Stresses greater than those listed under Absolute Maximum Ratings may 
cause permanent damage to the device. This is a stress rating only; 
operation of the device at any condition above those indicated in the 
operational sections of these specifications is not implied. Exposure to 
absolute maximum rating conditions for extended periods may affect 
device reliability. 

Max 

+0.45 

Vee+0.3 

+0.8 

Vee 
+0.4 

±10 

±10 

25/35 

10 

Min 

Typ 

0.5 

Unit 

v 
v 
v 
v 
v 
v 
v 

µA 

µA 

mA 

µA 

Max 

5 
5 

10 

+5 v 

2.1K 

Test Condition 

loL = 2.0mA 

ioH = -1.6mA 

ioH = -250µA 

V1N = 0.4 to Vee 

VouT = 0.4 to Vee 

Vee= 5V 
CLK= 6/8MHz 
V1He = V1H = Vee - 0.2V 
V1Le = 0.2V 

Vee= 5V 
CLK = (0) 
V1He = V1H = Vee - 0.2V 
V1Le = V1L = 0.2V 

Unit 

pf 
pf 
pf 

71 



AC CHARACTERISTICS (Z84C10 I CMOS Z80 DMA) 
(Inactive State) 

CLK 

INTERRUPT 

CONDITION --------------------....J 

ACTIVE 

RDY 

INACTIVE 

NOTE: Signals in this diagram bear no relation to one another unless specifically noted as a numbered item. 

72 

® -



AC CHARACTERISTICS (Z8410 I NMOS zao OMA) 
(Inactive State) 

Z0841004 
Number Symbol Parameter Min Max Unit 

Tee Clock Cycle Time 250 4000 ns 

2 TwCh Clock Width (High) 110 2000 ns 

3 TwCI Clock Width (Low) 110 2000 ns 

4 TrC Clock Rise Time 30 ns 

5 TfC C!ock Fail Time 30 ns 

6 Th Hold Time for Any Specified Setup Time 0 ns 

7 TsC(Cr) IORO, WR, CE I to Clock t Setup 145 ns 

8 TdDO(RDf) RD I to Data Output Delay 380 ·ns 

9 TsDl(Cr) Data In to Clock t Setup (WR or MT) 50 ns 

10 TdDO(IOf) IORQ I to Data Out Delay (INTA Cycle) 160 ns 

11 TdRDr(Dz) RD t to Data Float Delay (output buffer disable) 110 ns 

12 TslEl(IOROf) IEI to IORQ I Setup (INTA Cycle) 140 ns 

13 TdlEOr(IElr) IEI t to IEO t Delay 160 ns 

14 TdlEOf(IElf) IEI I to IEO I Delay 130 ns 

15 TdM1f(IEOf) MT I to I EO I Delay (interrupt just prior to MT I) 190 ns 

16 TsM1f(Cr) MT I to Clock t Setup 90 ns 

17 TsM1r(Cf) MT t to Clock Setup -10 ns 

18 TsRC~f(Cr) RD I to Clock t Setup (MT Cycle) 115 ns 

19 Tdl(INTf) Interrupt Cause to INT I Delay (INT generated 

only when OMA 1s inactive) 500 ns 

20 T dBAI r(BAOr) BAI t to BAO t Delay 150 ns 

21 TdBAlf(BAOf) BAI I to BAO I Delay 150 ns 

22 TsRDY(Cr) ROY Active to Clock t Setup 100 ns 

NOTE: Negative minimum setup values mean that the first-mentioned event can come after the second-mentioned event. 

73 



74 

AC CHARACTERISTICS (Z84C10 I CMOS Z80 OMA) 
(Active State) 

CLK 

f INPUT 

Do-D•1 OUTPUT ---t-t+----+t-'------H-----!----!-i'-\, Jt-t-----t---1-Ht--~ 
~-+-~~~--1+~~~~++~~~-+~~++J~+-~~+--+~I---' 

--~-WAIT 

NOTE: Signals In this diagram bear no relation to one another unless specifically noted as a numbered item. 

Z84C1006°* t Z84C1008° *t 
Number Symbol Parameter Min(ns) Max(ns) 

TcC Clock Cycle Time 162 
2 TwCh Clock Width (High) 65 
3 TwCI Clock Width (Low) 65 
4 TrC Clock Rise Time 

5 TIC Clock Fall Time 

NOTES: 
° For clock periods other than the minimums shown, calculate parameters using the following table. 
i Calculated VallJ9l! above assum.ed TrC =TIC =_20ns (6 MHz version) or 10ns (8 MHz version). 
t Data must be enabled onto data bus when RD is active. 
• Parameter is not illustrated in the AC Timing Diagran:is .. 
• Z84C10 timing parameters are preliminary and subject to change. 

DC 125 DC 
DC 55 DC 
DC 55 DC 

20 10 
20 10 



AC CHARACTERISTICS (Z84C10 I CMOS zao DMA) 
(Active State) 

Z84C1006 Z84C1008 
Number Symbol Parameter Min(ns) Max(ns) Min(ns) Max(ns) 

6 TdA Address Output Delay 90 70 

7 TdC(Az) Clock t to Address Float Delay 80 70 

8 TsA(MREQ) Address to MREQ t Setup (Memory Cycle) 35t 35* 

9 TsA(IRW) Address Stable to IORQ, RD, WR t Setup 110t 70* 

(l/OCycle) 

• 10 TdRW(A) RO, WR t to Addr Stable Delay 35t 15* 

• 11 TdRW(Az) RD, WR t to Addr. Float 60t 45t 

12 TdCf(DO) Clock t to Data Out Delay 130 110 

'13 TdCr(Dz) Clock t to Data Float Delay (Write Cycle) 70 65 

14 TsOl(Cr) Data In to Clock t Setup (Read cycle when 30 25 

rising edge ends read) 

15 TsDl(Cf) Data In to Clock t Setup (Read cycle when 40 

falling edge ends read) 30 

'16 TsDO(WfM) Data Out to WR t Setup (Memory Cycle) 25t 5* 

17 TsDO(Wfl) Data Out to WR t Setup (1/0 cycle) 55 40 

'18 TdWr(DO) WR t to Data Out Delay 30* 10.t 

19 Th Hold Time for Any Specified Setup Time 0 0 

20 TdCr(Mf) Clock t to MREO t Delay 70 60 

21 TdCf(MD Clock t to MREQ t Delay 70 60 

22 TdCr(Mr) Clock t to MREQ t Delay 70 60 

23 TdCf(Mr) Clock t to MREQ t Delay 70 60 

24 TwM1 MREQ Low Pulse Width 135t 95.:t 

'25 TwMh MREQ High Pulse Width 65* 45* 

26 TdCf(lf) Clock t to IORO t Delay 70 60 

27 TdCr(lf) Clock t to IORO t Delay 65 55 

28 TdCr(lr) Clock t to IORQ t Delay 70 60 

'29 TdCf(lr) Clock t to IORQ t Delay 70 60 

30 TdCr(Rf) Clock t to RD t Delay 70 60 

31 TdCf(Rf) Clock< to RD t Delay 80 70 

32 TdCr(Rr) Clock t to RO t Delay 70 60 

33 TdCf(Rr) Clock t to RD t Delay 70 60 

34 TdCr(Wf) Clock t to WR t Delay 60 55 

35 TdCf(Wf) Clock< to WR t Delay 70 60 

36 TdCr(Wr) Clock t to WR t Delay 70 60 

37 TdCf(Wr) Clock t to WR t Delay 70 60 

38 TwWI WR Low Pulse Width 135* 95t 

39 TsWA(Cf) WAIT to Clock t Setup 60 50 

40 TdCr(B) Clock t to BUSREQ Delay 90 80 

41 TdCr(lz) Clock t to IORO, MREO, RO, WR Float Delay 70 70 

NOTES: * All AC equations imply OMA default (standard) timing. 
t Qata must be enabled onto data bus when RD is active. 
• Parameter is not illustrated in the AC Timing Diagrams. 
• Numbers in parentheses are other parameter - numbers in this table; 
• their values should be substituted in equations. 

75 



FOOTNOTES TO AC CHARACTERISTICS 

Number Symbol General Parameter Z84C1006 Z84C1008 

8 TsA(MREQ) TwCh-TfC -35 -30 

9 TsA(IRW) TcC -55 -55 

10 TdRW(A) TwCl-TrC -50 -50 

11 TdRW(Z) TwCl-TrC -25 -20 

16 TsDO(WfM) Tee -140 -120 

18 TdWr(DO) TwCl-TrC -55 -55 

24 TwM1 TcC -30 -30 

25 TwMh TwCh-TfC -20 -20 

38 TwWI TcC -30 -30 

76 



AC CHARACTERISTICS (Z8410 I NMOS Z80 OMA) 
(Inactive State) 

CLK 

INTERRUPT 

CONDITION -----------------------' 

~CTIVE 

RDY 

INACTIVE 

NOTE: Signals in this diagram bear no relation to one another unless specifically noted as a numbered Item. 

®-

77 



AC CHARACTERISTICS (Z8410 I NMOS Z80 OMA) 
(Active State) 

NOTE: Signals in this diagram bear no relation to one another unless specifically noted as a numbered Item. 

Number Symbol Parameter 

TcC Clock Cycle Time 

2 TwCh Clock Width (High) 

3 TwCI Clock Width (Low) 

4 TrC Clock Rise Time 

5 TIC Clock Fall Time 

NOTES: 
0 Numbers in parentheses are other parameter-numbers in this table; their values should be substituted in equations. 
+All equations imply DMA default (standard) timing. 
t Data must be enabled onto data bus when RO is active. 
• Parameter is not illustrated in the AC Timing Diagrams. 

78 

Z0841004°H 
Min(ns) Max(ns) 

250 

110 2000 

110 2000 

30 

30 



AC CHARACTERISTICS (Z8410 I NMOS zao OMA) 
(Active State) 

Z0841004 •:n 
Number Symbol Parameter Mln(na) Max(na) 

6 TdA Address Output Delay 110 

7 TdC(Az) Clock t to Address Float Delay 90 

8 TsA(MREO) Address to MREQ I Setup (Memory Cycle} (2)+ (5)- 75 

9 TsA(IRW) Address Stable to IORQ, RD, WR I Setup 

(1/0 Cycle) (1)- 70 

·10 TdRW(A) RD, WR t to Addr. Stable Delay 13)+(4)-50 

• 11 TdRW(Az) RD. WR t to Addr. Float (3)+(4)-45 

12 TdCf(DO) Clock I to Data Out Delay 150 

'13 TdCr(Dz) Clock t to Data Float Delay (Write Cycle) 90 

14 TsDl(Cr) Data In to Clock t Setup (Read cycle when 

rising edge ends read) 35 

15 TsDl(Cf) Data In to Clock I Setup (Read cycle when 

falling edge ends read) 50 

·15 TsDO(WfM) Data Out to WR I Setup (Memory Cycle) (1)-170 

17 TsDO(Wfl) Data Out to WR I Setup (1/0 cycle) 100 

'18 TdWr(DO) WR t to Data Out Delay (3)+(4)-70 

19 Th Hold Time for Any Specified Setup Time 0 

20 TdCr(Mf) Clock t to MREQ I Delay 85 

21 TdCf(Mf) Clock I to MREQ I Delay 85 

22 TdCr(Mr) Clock t to MREQ t Delay 85 

23 TdCf(Mr) Clock I to MREO t Delay 85 

24 TwM1 MREQ Low Pulse Width (1)-30 

·25 TwMh MREQ High Pulse Width (2)+(5)-20 

26 TdCf(lf) Clock I to IORQ I Delay 85 

27 TdCr(lf) Clock t to !ORO I Delay 75 

28 TdCr(lr} Clock t to IORO t Delay 85 

·29 TdCf(lr) Clock I to IORO t Delay 85 

30 TdCr(Rf) Clock t to RD I Delay 85 

31 TdCf(Rf) Clock I to RD I Delay 95 

32 TdCr(Rr) Clock t to RD t Delay 85 

33 TdCf(Rr) Clock I to RD t Delay 85 

34 TdCr(Wf) Clock t to WR I Delay 65 

35 TdCf(Wf) Clock I to WR I Delay 80 

36 TdCr(Wr) Clock t to WR t Delay 80 

37 TdCf(Wr) Clock I to WR t Delay 80 

38 TwWI WR Low Pulse Width (1)-30 

39 TsWA(Cf) WAIT to Clock I Setup 70 

40 TdCr(B) Clock t to BUSREO Delay 100 

41 TdCr(lz) Clock t to IORO. MREO, RD, WR Float Delay 80 

NOTES: 

'!' All AC equations imply OMA default (standard) timing. • Numbers in parentheses are other parameter - numbers in this table; 
t Data must be enabled onto data bus when RD is active their values should be substituted in equations. 
• Parameter 1s not illustrated in the AC T1m1ng Diagrams. 

79 



AC CHARACTERISTICS (Z84C10 I CMOS zao DMA) 
(Inactive State) 

Z84C1006 Z84C1008 
Number Symbol Parameter Min Max Min Max Unit 

1 TcC Clock Cycle Time 162 DC 125 DC 

2 TwCh Clock Width (High) 65 DC 55 DC 

3 TwCI Clock Width (Low) 65 DC 55 DC 

4 TrC Clock Rise Time 20 10 

5 TIC Clock Fall Time 20 10 

6 Th Hold Time for Any Specified Setup Time 0 0 ns 

7 TsC(Cr) IORQ, WR, CE t to Clock t Setup 60 45 ns 

8 TdDO(RDf) RD t to 'Data Output Delay 300 220 ns 

9 TsDl(Cr) Data In to Clock t Setup (WR or iiii1) 30 20 ns 

10 TdDO(IOf) IORQ t to Data Out Delay (INTA Cycle) 110 85 ns 

11 TdRDr(Dz) RD t to Data Float Delay (output buffer disable) 70 50 ns 

12 TslEl(IORQf) IEI to IORQ t Setup (INTA Cycle)' 100 80 ns 

13 TdlEOr(IElr) IEI t to IEO t Delay 100 70 ns 

14 TdlEOf(IElf) IEI t to IEO t Delay 100 70 ns 

15 TdM1f(IEOf) iiii1 t to IEO t Delay (interrupt just prior to iiii1 t) 100 80 ns 

16 TsM1f(Cr) iiii1 t to Clock t Setup 70 45 ns 

17 TsM1r(Cf) iiii1 t to Clock Setup -15 -15 ns 

18 TsRDf(Cr) RD t to Clock t Setup (M1 Cycle) 60 45 ns 

19 Tdl{INTf) Interrupt Cause to INT t Delay (INT generated 

only when DMA is inactive) 450 400 ns 

20 TdBAlr(BAOr) BAI t to BAO t Delay 100 70 ns 

21 TdBAlf(BAOf) BAI t to BAO t Delay 100 70 ns 

22 TsRDY(Cr) RDY Active to Clock t Setup 50 50 ns 

NOTE: Negative minimum setup values mean that the first-mentioned event can come after the second-mentioned event. 

Z84C10 Timing parameters are preliminary and subject 
to change. 

M1 must be active for a minimum of two clock cycles to 
reset the OMA (This feature is only with C-MOS ZSO 
OMA). 

80 



ZilOg Product Specification 

January 1989 

FEATURES 

• Provides a direct interface between Z80 microcomputer 
systems and peripheral devices. 

• Two ports with interrupt-driven handshake for fast 
response. 

• Four programmable operating modes: Output, Input, 
Bidirectional (Port A only), and Bit Control 

• Programmable interrupts on peripheral status 
· conditions. 

• NMOS version for high cost performance solutions. 

• CMOS version for the designs requiring low powar con­
sumption. 

GENERAL DESCRIPTION 

The Z80 P 10 Parallel 1/0 Circuit (hereinafter referred lo as 
the Z80 PIO or PIO) is a programmable, dual-port device 
that provides a TTL-compatible interface between periph­
eral devices and the Z80 CPU (Figures 1 and 2 ). Note the 
QFP package is only available in CMOS version. The CPU 
configures the Z80 PIO to interface with a wide range of 

{ ' 

PAo 

--o, PA, 

o, PA, 

DATA - 03 PA, 

BUS -o4 PA, 

--o, PORT A 

o, PA, __ o, 
PA, 

{- BIA SEL ARDY - c1DsEL ASTB 

PIO CE Z80 PIO 
CONTROL 

Mi PB, 

IORO 

Ro 

- +5 v PORT B 

GNO 

PB7 -
CLK 

BROY 

INT BSTB -INTERRUPT { 
'" CONTROL 
IEO 

Figure 1. Pin Functions 

Z8420/Z84C20 NMOS/CMOS 
Z80® PIO 
Parallel Input/Output 

• NMOS Z0842004 - 4 MHz, Z0842006 - 6.17 MHz. 

• CMOS Z84C2004 - DC to 4 MHz, Z84C2006 - DC to 
6.17 MHz, Z84C2008 - DC to 8 MHz. 

• Standard Z80 Family bus-request and prioritized 
interrupt-request daisy chains implemented without 
external logic. 

• The eight Port B outputs can drive Darlington transistors 
(1.5 mA at 1.5V). 

• 6 MHz version supports 6.144 MHz CPU clock opera­
tion. 

peripheral devices that are compatible with the Z80 PIO 
include most keyboards, paper tape readers and punches, 
printers, and PROM programmers. 

One characteristic of the Z80 peripheral controllers that 
separates them from other interface controllers is that all 

o, 40 o, 
o, 39 o, 
o, 38 O; 

CE 37 Mi 
CID 36 IORQ 

BIA 35 RO 

PA, 34 PB1 

PA, 33 PB, 

PA; 32 PB; 

PA, 10 ZBOPIO 31 PB, 

GNO 11 30 PB, 

PA, 12 29 PB, 

PA, 13 28 PB, 

PA, 14 27 PBo 

PAo 15 26 +5V 

ASTB 16 25 CLK 

BSTB 17 24 IEI 

ARDY 18 23 INT 

Do 19 22 IEO 

o, 20 21 BROY 

Figure 2a. 40-pin Dual-In-Line Package (DIP), 
Pin Assignments 

81 



BIA 

PA7 

PAs 

PAs 

PA4 

NC 

GND 

PA3 

PA2 

PA1 

PAo 

.sv 
PBO 

PB1 

PB2 
PB3 

NC 

PB4 

PBS 

PB6 
PB7 

Rii 

~v vf> i((,, Q"Q Q"' <::J'""' Q~ Q~ Q"'> ~..,_ <#-°' 
6 5 4 3 2 1 44 43 42 41 40 

8 

9 

10 

11 

12 
Z80PIO 

13 

14 

15 

16 

17 

18 19 20 21 22 23 24 25 26 27 28 

,;'~<c ~~ Q~ <:>" ~~ ~CJ ~CJ f<-o 4"- .@' 
~O:J"'-q,O:J 't-~ q,<1:" ~ ~ 

Figure 2b. 44-pin Chip Carrier, 
Pin Assignments 

:s: ~ ~Ii!!!!! ~ml!z@a:o.-oa: 00 o ___ m zoo< m< 

CMOS 
Z80 PIO 

39 

38 

37 

36 

35 

34 

33 

32 

31 

30 

29 

R5 

PB1 

PBs 

PBs 

PB, 

PB, 

PB2 

PB1 

PBo 

+5V 

CLK 

PAO 
PA.1 
PA2 

PA3 

GNO 

NC 
PA4 

PAS 

PA6 

PA7 

eiA 

Figure 2c. 44-pin Quad Flat Pack Pin 
Assignments. 

data transfer between the peripheral device and the CPU is 
accomplished under interrupt control. Thus, the interrupt 
logic of the PIO permits full use of the efficient interrupt 
capabilities of the Z80 CPU during 1/0 transfers. All logic 
necessary to implement a fully nested interrupt structure is 
included in the PIO (Figure 3). 

Another feature of the PIO is the ability to interrupt the CPU 
upon occurrence of specified status conditions in the 
peripheral device. For example, the PIO can be 
programmed to interrupt if any specified peripheral alarm 
conditions should occur. This interrupt capability reduces 
the time the processor must spend in polling peripheral 
status. 

The Z80 PIO interfaces to peripherals via two independent 
general-purpose 1/0 ports, designated Port A and Port B. 
Each port has eight data bits and two handshake signals, 
Ready and Strobe, which control data transfer. The Ready 

82 

CPU 

iNr 

+5V 

T 
IEI 

ZC/T01 

CTC 
ZCIT02 INT 

IEO 

IEI 

Rx CA INT 

TxCA IEO 

Rx CB 

TxCB 

W/RDYB 

SIO 

+5V 

SYSTEM 
BUSES 

J_ 
PIO 

INT 

IEI 

IEO 

INT 

IEI 

ROY 

DMA 

Figure 3. PIO in a Typical ZSO Family Environment 

output indicates to the peripheral that the port is ready for a 
data transfer. Strobe is an input from the peripheral that 
indicates when a data transfer has occurred. 

Operating Modes. The Z80 PIO ports can be programmed 
to operate in four modes: Output (Mode 0), Input (Mode 1), 
Bidirectional (Mode 2) and Bit Control (Mode 3). 

Either Port A or Port B can be programmed to output data in 
Mode 0. Both ports have output registers that are 
individually addressed by the CPU; data can be written to 
either port at any time. When data is written to a port, an 
active Ready output indicates to the external device that 
data is available at the associated port and is ready for 
transfer to the external device. After the data transfer, the 
external device responds with an active Strobe input, which 
generates an interrupt, if enabled. 

Either Port A or Port B can be programmed to input data in 
Mode 1. Each port has an input register addressed by the 



CPU. When the CPU reads data from a port, the PIO sets the 
Ready signal, which is detected by the external device. The 
external device then places data on the 1/0 lines and strobes 
the 1/0 port, which latches the data into the Port Input 
Register, resets Ready, and triggers the Interrupt Request, 1f 
enabled. The CPU can read the input data at any time, 
which again sets Ready. 

Mode 2 is bidirectional and uses only Port A, plus the 
interrupts and handshake signals from both ports. Port B 
must be set to Mode 3 and masked off from generating 
interrupts. In operation, Port A is used for both data input 
a11J uulµul. Gulµul uperaiion is similar io ivioae 0 except 
that data is allowed out onto the Port A bus only when ASTB 
is Low. For input, operation 1s similar to Mode 1, except that 
the data input uses the Port B handshake signals and the 
Port B interrupt, 1f enabled. 

Both ports can be used in Mode 3. In this mode, the 
individual bits are defined as either input or output bits. This 
provides up to eight separate, individually defined bits for 

INTERNAL STRUCTURE 

The internal structure of the ZSO PIO consists of a ZSO CPU 
bus interface, internal control logic, Port A 1/0 logic, Port B 
1/0 logic, and interrupt control logic (Figure 4). The CPU bus 
interface logic allows the ZSO PIO to interface directly to the 
Z80 CPU with no other external logic. The internal control 
logic synchronizes the CPU data bus to the peripheral 
device interfaces (Port A and. Port B). The two 1/0 ports (A 
and B) are virtually identical and are used to interface 
directly to peripheral devices. 

Port Logic. Each port contains separate input and output 
registers, handshake control logic, and the control registers 
shown in Figure 5. All data transfers between the peripheral 
unit and the CPU use the data input and output registers. 
The handshake logic associated with each port controls the 
data transfers through the input and the output registers. 
The mode control register (two bits) selects one of the four 
programmable operating modes. 

B {= 4--
CONTROL 

CPU 
BUS 
110 

INTERRUPT CONTROL LINES 

each port. During operation, Ready and Strobe are not 
used. Instead, an interrupt is generated 1f the cond1t1on of 
one input changes, or if all inputs change. The requirements 
for generating an interrupt are defined during the 
programming operation; the active level is specified as 
either High or Low, and the logic condition is specified as 
either one input active (OR) or all inputs active (AND). For 
example, ifthe port is programmed for active Low inputs and 

the logic function is AND, then all inputs at the specified port 
must go Low to generate an interrupt. 

Data outouts are controlled by the r:Pt J rind cc;in he wnttPn 
or changed at any time. 

• Individual bits can be masked off. 

• The handshake signals are not used in Mode 3; Ready is 
held Low, and Strobe 1s disabled. 

• When using the ZSO PIO interrupts, the ZSO CPU 
interrupt mode must be set to Mode 2. 

The Bit Control mode (Mode 3) uses the remaining registers. 
The input/output control register spec1f1es which of the eight 
data bits in the port are to be outputs and enables these bits; 
the remaining bits are inputs. The mask register and the 
mask control register govern Mode 3 interrupt conditions. 
The mask register specifies which of the bits in the port are 
active and which are masked or inactive. 

The mask control register specifies two conditions: first, 
whether the active state of the input bits is High or Low, and 
second, whether an interrupt is generated when any one 
unmasked input bit 1s active (OR cond1t1on) or 1f the interrupt 
is generated when a// unmasked input bits are active (AND 
condition). 

Interrupt Control Logic. The interrupt control logic section 
handles all CPU interrupt protocol for nested-priority 
interrupt structures. Any device's physical location 1n a 

DATA 
OR CONTROL 

}HANDSHAKE 

DATA 
OR CONTROL 

}HANDSHAKE 

PERIPHERAL 
INTERFACE 

Figure 4. Block Diagram 

83 



daisy-chain configuration determines its priority. Two lines 
(IEI and IEO) are provided in each PIO to form this dai$y 
chain. The device closest to the CPU has the highest priority. 
Within a PIO, Port A interrupts have higher priority than 
those of Port B. In the byte input, byte output, or bidirectional 
modes, an interrupt can be generated whenever the 
peripheral requests a new byte transfer. In the bit control 
mode, an interrupt can be generated when the peripheral 
status matches a programmed value. The PIO provides for 
complete control of nested interrupts. That is, lower priority 
devices may not interrupt higher priority devices that have 
not had their interrupt service routines completed by the 
CPU. Higher priority devices may interrupt the servicing of 
lower priority devices. 

If the CPU (in interrupt Mode 2) accepts an interrupt, the 
interrupting device must provide an 8-bit interrupt vector for 
the CPU. This vector forms a pointer to a location in memory 
where the address of the interrupt service routine is located: 
The 8-bit vector from the interrupting device forms the least 
significant eight bits of the indirect pointer while the I 
Register in the CPU provides the most significant eight bits 
of the pointer. Each port (A and B) has an independent 
interrupt vector. The least significant bit of the vector is 
automatically set to O within the PIO because the pointer 
must point to two adjacent memory locations for a complete 
16-bit address. 

MODE 
CONTROL 
REGISTER 

(2 BITS) 

Unlike the other Z80 peripherals, the PIO does not enable 
interrupts immediately after programming. It waits until M1 
goes Low (e.g., during an opcode fetch). This condition is 
unimportant in the Z80 environment but might not be if 
another type of CPU is used. 

The PIO decodes the RETI (Return From Interrupt) 
instruction directly from the CPU data bus so that each PIO 
in the system knows at all times whether it is being serviced 
by the CPU interrupt service routine. No other 
communication with the CPU is required. 

CPU Bus 1/0 Logic. The CPU bus interface logic interfaces 
the Z80 PIO directly to the Z80 CPU, so no external logic is 
necessary. For large systems, however, address decoders 
and/or buffers may be necessary. 

Internal Control Logic. This logic receives the control 
words for each port during programming and, in turn, 
controls the operating functions of the Z80 PIO. The control 
logic synchronizes the port operations, controls the port 
mode, port addressing, selects the read/write function, and 
issues appropriate commands to the ports and the interrupt 
logic. The Z80 PIO does not receive a write input from the 
CPU; instead, the RD, CE, CID and IORQ signals internally 
generate the write input. 

INPUT/ 
OUTPUT 
SELECT 

REGISTER 
(8 BITS) 

DATA 
INPUT 

8·BIT 110 BUS 

MASK 
CONTROL 
REGISTER 

(2 BITS) 

MASK 
REGISTER 

(8 BITS) v------4 RraG~~is~R "------' 

84 

INTERRUPT 
CONTROL 

LOGIC 

SHAKE HANDSHAKE 
HAND· READY } 

CONTROL SfiiOiE CONTROL 
LOGIC 

*Used in the bit mode only to allow generation of an interrupt If the peripheral 1/0 pins go to the 
specified state. 

Figure 5. 'fyplcal Port 1/0 Block Diagram 



PROGRAMMING 

Mode 0, 1, or 2. (Input, Output, or Bidirectional). 
Programming a port for Mode 0, 1, or 2 requires at least one, 
and up to three, control words per port. These words are: 

Mode Control Word (Figure 6). Selects the port operating 
mode. This word is required and may be written at any time. 

Interrupt Vector Word (Figure 7). The Z80 PIO is designed 
for use with the Z80 CPU 1n interrupt Mode 2. This word 
must be programmed if interrupts are to be used. 

Interrupt Cantrnl Wont (Figure 9) or Interrupt Disable 
Word (Figure 11 ). Controls the enable or disable of the PIO 
interrupt function. 

Mode 3 (Bit Control). Programming a port for Mode 3 
requires at least two, and up to four, control words. 

Mode Control Word (Figure 6). Selects the port operating 
mode. This word is required and may be written at anytime. 

1/0 Register Control Word (Figure 8). When Mode 3 is 
selected, the Mode Control Word must be followed by the 
1/0 Control Word. This word configures the 1/0 control 
register, which defines which port lines are inputs or outputs. 
This word 1s required. 

lo,losloslo,l 1 I 1 I 1 I 1 I 
L IDENTIFIES MODE 

CONTROL WORD 

DON'T CARE 

MODE SELECT 

MODEO 
MODE 1 
MODE2 
MODE 3 

Figure 6. Mode Control Word 

1~1~1~1~1~1~1~1~1 

L IDENTIFIES INTERRUPT 
VECTOR 

----- ~~~~~~PPLIED INTERRUPT 

Figure 7. Interrupt Vector Word 

----- 0 SETS BIT TO OUTPUT 
1 SETS BIT TO INPUT 

Figure 8. 1/0 Register Control Word 

2006·007. 008, 009. 010, 011. 012 

Interrupt Vector Word (Figure 7). The Z80 PIO is designed 
for use with the Z80 CPU in interrupt Mode 2. This word 
must be programmed if interrupts are to be used. 

Interrupt Control Word. In Mode 3, handshake is not 
used. Interrupts are generated as a logic function of the 
input signal levels. The interrupt control word sets the logic 
conditions and the logic levels required for generating an 
interrupt. Two logic conditions or functions are available: 
AND (if all input bits change to the active level, an interrupt is 
triggered), and OR (if any one of the lnput bit~ ch3ngcs tc the 
active level, an interrupt is triggered). Bit 0 5 sets the logic 
function, as shown in Figure 9. The active level of the input 
bits can be set either High or Low. The active level is 
controlled by Bit 05. 

Mask Control Word. This word sets the mask control 
register, allowing any unused bits to be masked off. If any bits 
are to be masked, then 0 4 must be set. When 0 4 is set, the 
next word written to the port must be a mask control word 
(Figure 10). 

Interrupt Disable Word. This control word can be used to 
enable or disable a port interrupt. It can be used without 
changing the rest of the interrupt control word (Figure 11 ). 

IDENTIFIES INTERRUPT CONTROL WORD 

1 = MASK FOLLOWS (1) 

1 = ACTIVE HIGH 

1 = AND FUNCTION 

1 = INTERRUPT FUNCTION ENABLE (2) 

*NOTE: 

1. Regardless of the operating mode, setting Bit 04 = 1 
causes any pending interrupts to be cleared. 

2. The port interrupt is not enabled until th~nterrupt 
function enable is followed by an active M1. 

Figure 9. Interrupt Control Word 

MB0-M87 MASK BITS. A 
BIT IS MONITORED FOR AN 

'------ INTERRUPT IF IT IS 
DEFINED AS AN INPUT ANO 
THE MASK BIT IS SET TO 0. 

Figure 10. Mask Control Word 

ID1I DslDslD•I o Io I 1 I 1 I 

T L IDENTIFIES INTERRUPT 
DISABLE WORD 

DON'T CARE 

07 = 0 INTERRUPT DISABLE 
07 = 1 INTERRUPT ENABLE 

Figure 11. Interrupt Disable Word 

85 



PIN DESCRIPTION 

PA0-PA7. Port A Bus (bidirectional, 3-state). This 8-bit bus 
trans.fers data, status, or control information between Port A 
of the PIO and a peripheral device. PA0 is the least 
significant bit of the Port A data bus. 

ARDY. Register A Ready (output, active High). The 
meaning of this signal depends on the mode of operation 
selected for Port A as follows: 

Output Mode. This signal goes active to indicate that the 
Port A output register has been loaded and the peripheral 
data bus is stable and ready for transfer to the peripheral 
device. 

Input Mode. This signal is active when the Port A input 
register is empty and ready to accept data from the 
peripheral device. 

Bidirectional Mode. Thi.s signal is. active when data is 
available in the Port A output register for transfer to the 
peripheral device. In this mode, data is not placed on the 
Port A data bus, unless ASTB is active. 

Control Mode. This signal is disabled and forced to a Low 
state. 

ASTB. Port A Strobe Pulse From Peripheral Device (input, 
active Low). The meaning of this signal depends on the 
mode of operation selected for Port A as follows: 

Output Mode. The positive edge of this strobe is issued by 
the peripheral to acknowledge the receipt of data made 
available by the PIO .. 

Input Mode. The strobe is issued by the peripheral to load 
data from the peripheral into the Port A input register. Data is 
loaded into the PIO when this signal is active. 

Bidirectional Mode. When this signal is active, data from 
the Port A output register is gated onto the Port A 
bidirectional data bus. The positive edge of the strobe 
acknowledges the receipt of the data. 

Control Mode. The strobe is inhibited internally. 

PBo"PB7 . Port B Bus (bidirectional, 3-state). This 8-bit bus 
transfers data, status, or control information between Port B 
and a peripheral device. The Port B data bus can supply 1.5 
mA at 1.SV to drive Darlington transistors. PB0 is the least 
significant bit of the bus. 

B/A. Port B or A Select (input, High = B). This pin defines 
which port is accessed during a data transfer between the 
CPU and the PIO. A Low on this pin selects Port A; a High 
selects Port B. Olten address bit Ao from the CPU is used for 
this selection function. 

BROY. Register B Ready (output, active High). This signal is 
similar to ARDY, except that in the Port A bidirectional mode 
this signal is High when the Port A input register is empty 
and ready to accept data from the peripheral device. 

86 

BSTB. Port B Strobe Pulse From Peripheral Device (input, 
active Low). This signal is similar to ASTB, except that 1n the 
Port A bidirectional mode this signal strobes data from the 
peripheral device into the Port A input register. 

CID. Control or Data Select (input, High = C). This pin 
defines the type of data transfer to be performed between 
the CPU and the PIO. A High on this pin during a CPU write 
to the PIO causes the Z80 data bus to be interpreted as a 
command for the port selected by the BIA Select line. A Low 
on this pin means that the Z80 data bus is being used to 
transfer data between the CPU and the PIO. Olten address 
bit A1 from the CPU is used for this function. 

CE. Chip Enable (input, active Low). A Low on this pin 
enables the PIO to accept command or data inputs from the 
CPU during a write cycle or to transmit data to the CPU 
during a read cycle. This signal is generally decoded from 
four 110 port numbers for Ports A and B, data, and control. 

CLK. System Clock (input). The Z80 PIO uses the standard 
single-phase Z80 system clock. 

o0-D7. Z80 CPU Data Bus (bidirectional, 3-state). This bus is 
used to transfer all data and commands between the Z80 
CPU and the Z80 PIO. 0 0 is the least significant bit. 

IEI. Interrupt Enable In (input, active High). This signal 1s 
used to form a priority-interrupt daisy chain when more than 
one interrupt driven device is being used. A High level on 
this pin indicates that no other devices of higher priority are 
being serviced by a CPU interrupt service routine. 

IEO. Interrupt Enable Out (output, active High). The IEO 
signal is the other signal required to form a daisy chain 
priority scheme. It is High only if IEI is High and the CPU is 
not servicing an interrupt from this PIO. Thus this signal 
blocks lower priority devices from interrupting while a higher 
priority device is being serviced by its CPU interrupt service 
routine. 

INT. Interrupt Request (output, open drain, active Low). 
When INT is active theZ80 PIO is requesting an interrupt 
from the Z80 CPU. 

IORQ. Input/Output Request (input from Z80 CPU, active 
Low). IORQ is used in conjunction with B/A, CID, CE, and 
RD to transfer commands and data between the Z80 CPU 
and the Z80 PIO. When CE, RD, and IORQ are active, the 
port addressed by BIA transfers data to the CPU (a read 
operation). Conversely, when CE and IORQ are active but 
RD is not, the port addressed by B/A is written into from the 
CPU with either data or control information, as specified by 
CID. Also, if IORO and M1 are active simultaneously, the 
CPU is acknowledging an interrupt; the interrupting port 
automatically places its interrupt vector on the CPU data bus 
1f it is the highest priority device requesting an interrupt. 



M1. Machine Cycle (input from CPU, active Low). This signal 
1s used as a sync pulse to control several internal PIO 
operations. When both the M1 and RD signals are active, 
the Z80 CPU is fetching an instruction from memory. 
Conversely, when both M1 and IORQ are active, the CPU is 
acknowledging an interrupt. In addition, M1 has two other 
functions within the Z80 PIO it synchronizes the PIO 

TIMING 

The following t1m1ng diagrams show typical timing in a Z80 
CPU environment. For more precise specifications refer to 
the composite ac timing diagram. 

Write Cycle. Figure 12 illustrates the timing for 
programming the Z80 PIO or for writing data to one of its 
ports. The PIO does not receive a spec1f1c write signal; it 
internally generates its own from the lack of an active RD 
signal. 

Read Cycle. Figure 13 illustrates the timing for reading the 
data input from an external device to one of the Z80 PIO 
ports. 

CLK 

PORT 
OUTPUT 

READY 

•wR =RD• CE• iORQ • M1 

interrupt logic; when M1 occurs without an active RD or 
IORQ signal, the PIO is reset. 

RD. Read Cycle Status (input from Z80 CPU, active Low). If 
RD is active, or an 1/0 operation is, in progress, RD is used 
with Bit\ C/D, CE, and IORQ to transfer data from the Z80 
PIO to the Z80 CPU. 

Output Mode (Mode O). An output cycle (Figure 14) 1s 
alwavs started by the execution of ;in nutr1Jt instriJr.tinn hy 
the CPU. The WR* pulse from the CPU latches the data from 
the CPU data bus into the selected port's output register. The 
WR* pulse sets the Ready flag after a Low-going edge of 
CLK, indicating data is available. Ready stays active until the 
positive edge of the strobe line is received, indicating that 
data was taken by the peripheral. The positive edge of the 
strobe pulse generates an INT if the interrupt enable flip-flop 
has been set and if this device has the highest pnority. 

T1 T2 TwA T, T1 

CLK 

CID, B/A =x x= 
CE 

IORQ \ I 
iiD \ I 

DATA ( OUT )-

RD* \ I 
•RD = RD • CE • IORQ • M1 

Figure 13. Read Cycle Timing 

Figure 14. Mode 0 Output Timing 

87 



Input Mode (Mode 1). When STROBE goes from Low to 
High, data is latched .into the selected port input register 
(Figure 15). While STROBE is Low, the input data latches are 
transparent. The next rising edge of STROBE activates I NT, if 
Interrupt Enable is set and this is the highest-priority 
requesting device. The following falling edge of CLK resets 
Ready to an inactive state, indicating that the input register is 
full and cannot accept any more data until the CPU 
completes a read. When a read is complete, the positive 
edge of RD sets Ready at the next Low-going transition of 
CLK. At this time new data can be loaded into the PIO. 

*RD= RD•CE•iOiG•M1 

Bldirectional Mode (Mqde 2). This is a combination of 
Modes 0 and 1 using all four handshake lines and the eight 
Port A 1/0 lines (Figure 16). Port B must be set to the bit 
mode and its inputs must be masked. The Port A handshake 
lines are used for output control and the Port B lines are 
used for input control. If interrupts occur, Port A's vector will 
be used during port output and Port B's will be used during 
port input. Data is allowed out onto the Port A bus only when 
ASTB is Low. The rising edge of this strobe can be used to 
latch the data into the peripheral. 

Figure 15. Mode 1 Input Timing 

CLK 

WR* 

BRDY 

*WR= RD• CE• IORQ • M1 

Figure 16. Mode 2 Bidirectional Timing 

88 



Bit Control Mode (Mode 3). The bit mode does not utilize 
the handshake signals, and a normal port write or port read 
can be executed at any time. When writing, the data is 
latched into the output registers with the same timing as the 
output mode. 

When reading (Figure 17) the PIO, the data returned to the 
CPU 1s composed of output register data from those port 
data lines assigned as outputs and input register data from 
those port data lines assigned as inputs. The input register 
contains data that was present immediately prior to the 
falling edge of RD. An interrupt is generated if interrupts 
from the port are enabled and the data on the port data lines 
satisfy the logical equation defined by the 8-b1t mask and 
2-bit mask control registers. However, if Port A is 
programmed in bidirectional mode, Port B does not issue an 
interrupt 1n bit mode and must therefore be polled. 

Interrupt Acknowledge Timing. During M1 time, 
peripheral controllers are inhibited from changing their 
interrupt enable status, permitting the Interrupt Enable 
signal to ripple through the daisy chain. The peripheral with 
IEI High and IEO Low during INTACK places a 
preprogrammed 8-bit interrupt vector on the data bus at this 
time (Figure 18). IEO is held Low until a Return From 

CLK 

Interrupt (RETI) instruction is executed by the CPU while IEI 
is High. The 2-byte RETI 1nstruct1on is decoded internally by 
the PIO for this purpose. 

Return From Interrupt Cycle. If a ZBO peripheral has no 
interrupt pending and is not under service, then its IEO = 

IEI. If it has an interrupt under service (i.e., it has already 
interrupted and received an interrupt acknowledge) then its 
IEO 1s always Low, inhibiting lower priority devices from 
interrupting. If it has an interrupt pending which has not yet 
been acknowledged, IEO 1s Low unless an "ED" is decoded 
as the first byte of a 2-byte opcode (Figure 19). In this case, 
IFO QOPs High until the next opcode byte is decoded, 
whereupon it goes Low again. If the second byte of the 
opcode was a "4D," then the opcode was an RETI 
instruction. 

After an "ED" opcode 1s decoded, only the peripheral 
device which has interrupted and is currently under service 
has its IEI High and its IEO Low. This device is the 
highest-priority device in the daisy chain that has received 
an interrupt acknowledge. All other peripherals have IEI = 

IEO. If the next opcode byte decoded is "4D," this peripheral 
device resets its "interrupt under service" condition. 

PORT x DATA WORD 1 x DATA WORD 2 x 
DATA::: _-:_ ----------D~AT~A~M_J_CH_\_,..._-_-_-_-___ ---_:i+--;,''-------' '-----------

OCCURS HERE . 

10:: -----------~ ~-----J~~-----------~ 
Do-D1 --------------{ DATA IN 

LDATA WORD 1 PLACED ON BUS 

Figure 17. Mode 3 Bit Control Mode Timing, Bit Mode Read 

T, ,, ,, '• T, ,, ,, '• T, 

CLK 

ii1 

) IORO ANO Mi iii> 
INDICATE 
INTERRUPT 
ACKNOWLEDGE 

0 0 INT ACK Do-D1 

IEI ______ _/ 

IEO 
IEI 

Figure 18. Interrupt Acknowledge Timing Figure 19. Return From Interrupt 

89 



ABSOLUTE MAXIMUM RATINGS 

Voltages on Vee with respect to Vss ... -0.3V to + 7.0V 
Voltages on all inputs with respect 

to Vss . . . .......... -0.3V to Vee+ 0.3V 
Storage Temperature . . ... - 65 °C to + 150 °C 

STANDARD TEST CONDITIONS 

The characteristics below apply for the following test 
conditions, unless otherwise noted. All voltages are 
referenced to GND (OV). Positive current flows into the 
referenced pin. Available operating temperature range is: 

• S = O"C to +70"C, V cc Range 
NMOS: +4.75V <Vee< +5.25V 
CMOS: +4.50V < V cc <+5.50V 

• E = -40"C to 100"C, +4.50V <Vee< +5.50V 

The Ordering Information section lists package temperature 
ranges and product numbers. Refer to the Literature List for 
additional documentation. Package drawings are in the 
Package Information section. 

CAPACITANCE 

Symbol Parameter 

Clock Capacitance 

Input Capacitance 

Output Capacitance 

Over specified temperature range; f ~ 1 MHz. 
Unmeasured pins returned to ground. 

90 

Stresses greater than those listed under Absolute Maximum Ratings may 
cause permanent damage to the device. This is a stress rating only; 
operation of the device at any condition above these indicated in the 
operational sections of these specifications is not implied. Exposure to 
absolute maximum rating conditions for extended periods may affect 
device reliability. 

Min Max 

10 

5 

15 

+SV 

Unit 

pf 
pf 

pf 



DC CHARACTERISTICS (Z84C20/CMOS Z80 PIO) 

Symbol Parameter Min Max TYP Unit Test Condition 

V1Le Clock Input Low Voltage -0.3 +0.45 v 
V1He Clock Input High Voltage Vee-0.6 Vee+0.3 v 
V1L Input Low Voltage -0.3 +0.8 v 
V1H Input High Voltage +2.2 Vee v 
Vol Output Low Voltage +0.4 v loL = 2.0 mA 

VoH1 Output High Voltage +2.4 v loH = -1 6m.A. 

VoH2 Output High Voltage Vee-0.8 v loH = -250µA 

lu Input Leakage Current ±10 µA V1N = 0.4 to Vee 

ILO 3-State Output Leakage Current in Float ±10 µA VouT = 0.4 to Vee 

ICC1 Power Supply Current 4MHz 5 2 mA Vee= sv 
6MHz 6 CLK=4MHz, 

6 MHz, BMHz 
8MHz 7 V1H = Vee - 0.2V 

V1L = 0.2V · 

ICC2 Standby Supply Current 10 0.5 µA Vee= 5V 

CLK = (0) 

V1H = Vee - 0.2V 

V1L = 0.2V 

loHD Darlington Drive Current, Port B only -1.5 -5.0 mA VoH = 1.SV 

REXT = 1.1KQ 

Over specified temperature and voltage range. 

91 



AC CHARACTERISTICS (Z84C20/CMOS zso PIO) 

Z84C2004 Z84C2006 Z84C2008 
No. Symbol Parameter Min Max Min Max Min Max . Notes 

t TcC Clock Cycle Time. 250 [t) 162 [1) 125 DC. 
2 TwCh Clock Pulse Width (High) 105 DC 65 DC 55 DC 
3 TwCI Clock Pulse Width (Low) 105 DC 65 DC 55 DC 
4 TIC Clock Fan Time 30 20 10 
5 TrC Clock Rise Time 30 20 to 

6 TsCS(RI) ~.BIA,C/15 to m5,K>m':i .L Seq> Time 50 50 40 (6) 
7 Th Any l:lold Times for Specified 

S~lme 40 35 15 
8 TsRl(C) m5,IO Q to Clock t Setup Time 115 70 60 
9 TdRl(DO) RD,IORQ .L to Data Out Delay 380 300 200 [2) 
10 TdRl(DOs) RD,K>m':i t to Data Out Roat Delay ttO 70 60 

tt TsDl(C) Data In to Clock t Setup Time 50 40 30 CL=50 pf 
12 TdlO(DOI) IORQ .L to Data Out Delay 

JNTACK Cycle) 160 120 80 [3) 
t3 TsM1(Cr) .L to Clock t Setup Time 90 70 50 
14 TsM1(Cf) JiAT t to Clock .L Setup Time (Mt Cycle) 0 0 0 [8) 
15 TdM1(1EO) JiAT .L to IEO .L Delay (Int~ 

Immediately Preceding Mt .L) 190 100 70 [5,7) 

16 TslEl(IO) IEI to IORQ .L Setup Time 
(INTACK ~cle) t40 100 80 [7) 

17 TdlEl(IEOI) IEI .L to IEO Delay 130 t20 70 [5] 
CL=50pf 

18 TdlEl(IEOr) IEI t to IEO t Delay (after ED DeCQde) 160 t50 70 [5) 
19 TclO(C) JOm':i t to Clock .L Setup Time 

(To Activate READY on 
Next Clcok Cycle) 200 170 t40 

20 TdC(RDYr) Clock .L to READY t Delay t90 170 150 [5) 
CL=50pf 

21 TdC(RDYI) Clock .L to READY .L Delay 140 120 100 [5) 
22 TwSTB ~Pulse Width 150 120 100 [4) 
23 TsSTB(C) STROBE t to Clock .L Setup Time 

(To Aciivate READY on 
Next Clock Cycle) 220 150 120 [5) 

24 TdlO(PD) IORQ t to PORT DATA Stable 
Delay (Mode~ 180 160 140 [5) 

25 TsPD(STB) PORT DATA to Et Setup Time 
(Mode1) 230 190 140 

26 TdSTB(PD) ~ .L to PORT DATA Stable 

~2~ 210 180 150 [5) 
27 TdSTB(PDr) to PORT DATA Roat 

Delay (Mode 2) 180 160 140 CL=50pf 
28 TdPD(INT) PORT DATA Match to iNT .L Delay 

~3~ 490 430 360 
29 TdSTB(INT) SRO E toiNT.LDelay 440 350 290 

NOTES: 
[1) TcC = TwCh + TwCI + TrC + TfC. [6] TsCS(RI) may be reduced. However, the time subtracted from 
[2] Increase TdRl(DO) by 10 ns for each 50 pf increase in load up to TsCS(RI) will be added to TdRl(DO). 

200 pf max. [7) 2.5 TcC > (N-2)TdlEl(IEOf) + TdM1(1EO) + TslEl(IO) +TTL Bulfer 
[3] Increase TdlO(DOI) by 10 ns for each 50 pf, increase in loading up Delay, if any. 

to 200 pf max. [BJ M 1 must be active for a minimum of two clock cycles to reset the 
[4] For Mode 2: TwSTB > TsPD(STB). PIO: 
[5] Increase these values by 2 ns for each 10 pf increase in loading up [9) An parameters in nanoseconds unless otherwise specified. 

to 100 pf max. 

92 



DC CHARACTERISTICS (Z8420/NMOS Z80 PIO) 

Symbol Parameter Min 

V1Le Clock Input Low Voltage -0.3 

V1He Clock Input High Voltage Vee-0.6 

V1L Input Low Voltage -0.3 

V1H Input High Voltage +2.0 

Vol Output Low Voltage 

VoH Output High Voltage +2.4 

lu Input Leakage Current 

ILO 3-State Output Leakage Current in Float 

Ice Power Supply Current 

loHD Darlington Drive Current -1.5 

Port B Only 

Over specified temperature and voltage range 

Max 

+0.45 

Vcc+0.3 

+0.8 

Vee 

+0.4 

±10 

±10 

100 

Unit 

v 
v 
v 
v 
v 
v 

,uA 

1-1A 
mA 

mA 

Test Condition 

loL = 2.0 mA 

loH = -2501-1A 

v~f'~ = o tn Vee 
VouT = 0.4V to Vee 

VoH = 1.5V 

REXT = 390 Q 

93 



AC CHARACTERISTICSt (Z8420/NMOS zao PIO) 

Z0842004 Z0842006 
Number Symbol Parameter Min Max Min Max Notes 

TcC Clock Cycle Time 250 [1] 162 [1] 

2 TwCh Clock Width (High) 105 2000 65 2000 

3 TwC1 Clock Width (Low) 105 2000 65 2000 

4 TIC Clock Fall Time 30 20 

5 TrC Clock Rise Time 30 20 

6 TsCS(RI) CE, BIA, C/D to RD, IORQ ,J, Setup Time 50 50 [6] 

7 Th Any Hold Times for Specified Setup Time 0 0 0 

8 TsRl(C) RD, IORQ to Clock t Setup Time 115 70 

9 TdRl(DO) RD, IORO ,J, to Data Out Delay 380 300 [2] 

10 TdRl(DOs) RD, IORQ t to Data Out Float Delay 110 70 

11 TsDl(C) Data In to Clock t Setup Time 50 40 CL= 50 pf 

12 TdlO(DOI) IORQ ,J, to Data Out Delay (INTACK Cycle) 200 120 [3] 

13 TsM1(Cr) M 1 ,J, to Clock t Setup Time 90 70 

14 TsM1(Cf) M1 t to ClocH Setup Time (M1 Cycle) 0 0 [8] 

15 TdM1(1EO) M1 ,J, to IEO ,J, Delay (Interrupt Immediately 

Preceding M 1 <) 190 100 [5,7] 

16 TslEl(IO) IEI to !ORO ,J, Setup Time (INTACK Cycle) 140 100 [7] 

17 TdlEl(IEOf) IEI ,J, to IEO ,J, Delay 130 120 [5] 

CL= 50 pf 

18 TdlEl(IEOr) IEI t to IEO t Delay (after ED Decode) 160 150 [5] 

19 TclO(C) IORQ t to Clock ,J, Setup Time (To Activate 

READY on Next Clock Cycle) 200 170 

20 TdC{RDYr) Clock ,J, to READY t Delay 190 170 [5] 

CL= 50pf 

21 TdC(RDYf) Clock< to READY ,J, Delay 140 120 [5] 

22 TwSTB STROBE Pulse Width 150 120 [4] 

23 TsSTB(C) STROBE t to Clock< Setup Time (To Activate 

READY on Next Clock Cycle) 220 150 [5] 

24 TdlO(PD) IORQ t to PORT DATA Stable Delay (Mode 0) 180 160 [5] 

25 TsPD(STB) PORT DATA to STROBE t Setup Time (Mode 1) 230 190 

26 TdSTB(PD) STROBE,!, to PORT DATA Stable (Mode 2) 210 180 [5] 

27 TdSTB(PDr) STROBE t to PORT DATA Float Delay (Mode 2) 180 160 CL= 50pf 

28 TdPD(INT) PORT DATA Match to INT< Delay (Mode 3) 490 430 

29 TdSTB(INT) STROBE tto INT ,J, Delay 440 350 

NOTES: 
[1) TcC = TwCh + TwCI + TrC + TfC. [5) Increase these values by 2 ns for each 10 pf increase 1n loading up to 
[2) Increase TdRl(DO) by 10 ns for each 50 pf increase in load up to 100 pf max. 

200 pf max. [6) TsCS(RI) may be reduced. However, thetime subtracted from TsCS(RI) 
[3] Increase TdlO(DOI) by 10 ns for each 50 pf, increase in loading up to will be added to TdRl(DO). 

200 pf max. • M1 must be active for a minimum of two clock cycles to reset the PIO. 
[4) For Mode 2: TwSTB > TsPD(STB). t Units in nanoseconds (ns). 
*Clock-cycle time-dependent characteristics. See Footnotes 
to AC Characteristics. 

94 



AC TIMING DIAGRAM 

CLOCK 

Cit 
Bli, CID 

Do-D7 J OUT ----+-------~---------,ir-++-----l IN 

IEI 

IEO 

READY 
jARDY OR BRDYJ 

STROBE 
(ASTB OR BSTBJ 

MODE 0 

MODE 1 

MOOE 2 

MODE 3 

INT 1__:.~--

95 



96 



ZilOg Product Specification 

January 1989 

FEATURES 

• Four independently programmable counter/timer 
channels, each with a readable downcounter and a 
selectable 16 or 256 prescaler. Downcounters are 
reloaded automatically at zero count. 

• Selectable positive or negative trigger initiates timer 
operation. 

• Three channels have Zero Count/Timeout outputs 
capable of driving Darlington transistors. 

• NMOS version for high cost performance solutions. 

• CMOS version for the designs requires low power con­
sumption. 

GENERAL DESCRIPTION 

The Z80 CTC, hereinafter referred to as Z80 CTC or CTC, 
four-channel counter/timer can be programmed by system 
software for a broad range of counting and timing applica­
tions. The four independently programmable channels of 
the Z80 CTC satisfy common microcomputer system re­
quirements for event counting, interrupt and interval timing, 
and general clock rate generation. 

System design is simplified because the CTC connects 
directly to both the Z80 CPU and the Z80 SIO with no 
additional logic. In larger systems, address decoders and 
buffers may be required. 

- Do CLK/TRGo - D, ZCITOo -- D, 

CPU - D3 CLKITRG1 
DATA 

BUS - D, ZC/T01 - D5 -- D, CLK/TRG2 - D1 ZC/T02 

CLK/TAG3 

CONTROL - CS1 
CTC {= ~o 

FROM ---. M1 RESET 

CPU ___,. !ORO 

- Rii Z80CTC 
DAISY{- IEI 

INTE~::.::.~ IEO 

CONTROL INT 

t t t 
CLK +SV GND 

-

Figure 1. Pin Functions 

CHANNEL 
SIGNALS 

Z8430/Z84C30 NMOS/CMOS 
Z80®CTC 
Counter/Timer Circuit 

• NMOS Z0843004 - 4 MHz, Z0843006 - 6.17 MHz. 

• CMOS Z84C3004 - DC to 4 MHz, Z84C3006 - DC to 
6.17 MHz. Z84C3008 - DC to 8 MHz. 

• Interfaces directly to the ZBO CPU or-for baud rate 
generation-to the ZSO SIO. 

• Standard Z80 Family daisy-chain interrupt structure 
provides fully vectored, prioritized interrupts without 
external logic. The CTC may also be used as an interrupt 
controller. 

• 6 MHz version supports 6.144 MHz CPU clock opera­
tion. 

Programming the CTC is straightforward: each channel is 
programmed with two bytes; a third is necessary when 
interrupts are enabled. Once started, the CTC counts down, 
automatically reloads its time constant, and resumes 
counting. Software timing loops are completely eliminated. 
Interrupt processing is simplified because only one vector 
need be specified; the CTC internally generates a unique 
vector for each channel. 

The Z80 CTC requires a single +5% V power supply and the 
standard Z80 single-phase system clock. It is packaged in 
28-pin DIPs, a 44-pin plastic chip carrier, and a 44-pin Quad 
Flat Pack. (Figures 2a, 2b, and 2c). Note that the OFP 
package is only available for CMOS versions. 

D, 28 D3 

D5 27 D, 

D, 26 D, 

D1 25 Do 

GND 24 +5V 

RD 23 CLK/TAGo 

ZCITOo 22 CLKITAG1 

ZC/T01 8 Z80CTC 21 CLKITAG2 

ZC/T02 20 CLK!TRG3 

10RQ 10 19 cs, 
IEO 11 18 CSo 

INT 12 17 RESET 

IEI 13 16 CE 

M1 14 15 CLK 

Figure 22a. Pin Assignments 

97 



GND 7 

NC 8 

RD 9 

ZCJTOo 10 

NC 11 

ZC/T01 12 

ZCIT02 13 

IORO 14 

NC 15 

IEO 16 

NC 17 

~(J <v" ;y'<> ~(J <v""' ;yt>- <:)"> ()'l- <:)" <:)<;:, ~(J 

6 5 4 3 2 1 44 43 42 41 40 

ZSOCTC 

18 19 20 21 22 23 24 25 26 27 28 

~04 ~v ~ 4" ~v 0v*°" ~"-.. v"./~ ~v 
<>:-<; 

39 NC 

38 NC 

37 + 5V 

36 NC 

35 CLK/TRGo 

34 NC 

33 CLK/TRG1 

32 CLK/TRG2 

31 CLK/TAG3 

30 NC 

29 cs, 

Figure 2b. 44-pin Chip Carrier, Pin Assignments 

FUNCTIONAL DESCRIPTION 

The Z80 CTC has four independent counter/timer channels. 
Each channel is individually programmed with two words: a 
control word and a time-constant word. The control word 
selects the operating mode (counter or timer), enables or 
disables the channel interrupt, and selects certain other 
operating parameters. If the timing mode is selected, the 
control word also sets a prescaler, which divides the system 
clock by either 16 or 256. The time-constant word is a value 
from 1 to 256. 

During operation, the individual counter channel counts 
down from the preset time constant value. In counter mode 
operation the counter decrements on each of the CLK/TRG 
input pulses until zero count is reached. Each decrement is 
synchronized by the system clock. For counts greater than 
256, more than one counter can be cascaded. At zero 
count, the down-counter is automatically reset with the time 
constant value. 

The timer mode determines time intervals as small as 2 · 
µs(8 MHz), 3 µs (6 MHz), or 4 µs (4MHz) without additional 
logic or software timing loops. Time intervals are generated 
by dividing the system clock with a prescaler that decre­
ments a preset down-counter. 

INTERNAL STRUCTURE 

The CTC has four major elements, as shown in Figure 3. 

• CPU busl/O 

·• Channel control logic 

• Interrupt logic 

• Counter/timer circuits 

CPU Bus 1/0. The CPU bus 1/0 circuit decodes the address 
inputs, and interfaces the CPU data and control signals to 
the CTC for distribution on the internal bus. 

98 

,~ ow 0 
~m1~z ~o 1.-owol!z a: oz:=:z_z_ 

NC IEO 
CSI IORQ 

CLKITRG3 NC 
Cl.K/TRG2 ZCIT02 

NC 
CMOS 

ZCIT01 
NC NC 

CLK/TRG1 zso CTC ZC/TOO 
CLK/TRGO NC 

NC Ro 
+SV GND 

Nc" D7 

2os~~~~~;g8~ 

Figure 2C. 44-Pin Quad Flat Pack 
Pin Assignments 

Thus, the time interval is an integral multiple of the clock 
period, the prescaler value (16 or 256), and the time 
constant that is preset in the down-counter. A timer is 
triggered automatically when its time constant value is 
programmed, or by an external CLK/TRG input. 

Three channels have two outputs that occur at zero count. 
The first output is a zero-count/timeout pulse at the ZC/TO 
output. The fourth channel (Channel 3) does not have a 
ZC/TO output; interrupt request is the only output available 
from Channel 3. 

The second output is Interrupt Request (INT), which occurs 
if the channel has its interrupt enabled during programming. 
When the Z80 CPU acknowledges Interrupt Request, the 
Z80 CTC places an interrupt vector on the data bus. 

The four channels of the Z80 CTC are fully prioritized and fit 
into four contiguous slots in a standard Z80 daisy-chain 
interrupt structure. Channel O is the highest priority and 
Channel 3 the lowest. Interrupts can be individually enabled 
(or disabled) for each of the four channels. 

Internal Control Logic. The CTC internal control logic 
controls overall chip operating functions such as the chip 
enable, reset, and read/write logic. 

Interrupt Logic. The interrupt control logic ensures that the 
CTC interrupts interface properly with the Z80 CPU interrupt 
system. The logic controls the interrupt priority of the CTC as 
a function of the IEI signal. If IEI is High, the CTC has priority. 
During interrupt processing, the interrupt logic holds IEO 
Low, which inhibits the interrupt operation on lower priority 
devices. If the IEI input goes Low, priority is relinquished 
and the interrupt logic drives IEO Low. 



FROM 
80 CPU 

{

DATA 

CONTROL 

CPU 
eus 
1/0 

RESET 

INTERNAL 
CONTROL 

LOGIC 

iNf 
IN~~~~gPT ..------ IEI 

COUNTER/ 
TIMER 
1..0GiC 

----~ 

IEO 

ZC/TO 

Figure 3. Functional Block Diagram 

If a channel is programmed to request an interrupt, the 
interrupt logic drives IEO Low at the zero count, and 
generates an INT signal to the Z80 CPU. When the Z80 CPU 
responds with interrupt acknowledge (M1 and IORQ), then 
the interrupt logic arbitrates the CTC internal priorities, and 
the interrupt control logic places a unique interrupt vector on 
the data bus. 

If an interrupt is pending, the interrupt logic holds IEO Low. 
When the Z80 CPU issues a Return From Interrupt (RETI) 
instruction, each peripheral device decodes the first byte 
(ED16). If the device has a pending interrupt, it raises IEO 
(High) for one M1 cycle. This ensures that all lower priority 
devices can decode the entire RETI instruction and reset 
properly. 

INTERNAL BUS 

CHANNEL 
CONTROL 

LOGIC 

TIME 
CONSTANT 
REGISTER 

8·BIT 
DOWN· 

COUNTER 
CLK/TRG -----• 

CLK-~ 

ZC/TO 

Figure 4. Counter/Timer Block Diagram 

Counter/Timer Circuits. The CTC has four independent 
counter/timer circuits, each containing the logic shown 1n 
Figure 4. 

Channel Control Logic. The channel control logic 
receives the 8-bit channel control word when the 
counter/timer channel is programmed. The channel control 
logic decodes the control word and sets the following 
operating conditions: 

• Interrupt enable (or disable) 

• Operating mode (timer or counter) 

• Timer mode prescaler factor (16 or 256) 

• Active slope for CLK/TRG input 

• Timer mode trigger (automatic or CLK/TRG input) 

• Time constant data word to follow 

• Software reset 

Time Constant Register. When the counter/timer channel 
is programmed, the time constant register receives and 
stores an 8-bit time constant value, which can be anywhere 
from 1 to 256 (0 = 256). This constant is automatically 
loaded into the down-counter when the counter/timer 
channel 1s initialized, and subsequently after each zero 
count. 

Prescaler. The prescaler, which 1s used only in timer mode, 
divides the system clock frequency by a factor of either 16 or 
256. The prescaler output clocks the down-counter during 
timer operation. The effect of the prescaler on the 
down-counter is a multiplication of the system clock period 
by 16 or 256. The prescaler factor is programmed by bit 5 of 
the channel control word. 

99 



Down-Counter. Prior to each count cycle, the 
down-counter is loaded with the time constant register 
contents. The counter is then decremented one of two ways, 
depending on operating mode: 

• By the prescater output (timer mode) 

• By the trigger pulses into the CLK/TRG input (counter 
mode) 

PROGRAMMING 

Each Z80 CTC channel must be programmed prior to 
operation. Programming consists of writing two words to the 
1/0 port that corresponds to the desired channel. The first 
word is a control word that selects the operating mode and 
other parameters; the second word is a time constant, which 
is a binary data word with a value from 1 to 256. A time 
constant word must be preceded by a channel control word. 

After initialization, channels may be reprogrammed at any 
time. If updated control and time constant words are written 
to a channel during the count operation, the count 
continues to zero before the new time constant is loaded into 
the counter. 

If the interrupt on any Z80 CTC channel is enabled, the 
programming procedure should also include an interrupt 
vector. Only one vector is required for alt four channels, 
because the interrupt logic automatically modifies the vector 
for the channel requesting service. 

A control word is identified by a 1 in bit 0. A 1 in bit 2 indicates 
a time constant word is to follow. Interrupt vectors are always 
addressed to Channel 0, and identified by a O in bit 0. 

Addressing. During programming, channels are 
addressed with the channel select pins CS1 and CS2 . A 2-bit 
binary code selects the appropriate channel as shown in the 
following table. 

Channel 

0 

2 
3 

CSo 

0 
0 

0 
1 
0 

INTERRUPT Jj 
1 ENABLES INTERRUPT 

0 DISABLES INTERRUPT -

MODE 
0 SELECTS TIMER MODE 

1 SELECTS COUNTER MODE . 

PRESCALER VALUE* 
1 = VALUE OF 256 

0 = VALUE OF 16 

CLKITRG EDGE SELECTION ---~ 
0 SELECTS FALLING EDGE 

1 SELECTS RISING EDGE 

Without disturbing the down-count; the Z80 CPU can read 
the count remaining at any time by performing an 1/0 read 
operation at the port address assigned to the CTC channel. 
When the down-counter reaches the zero count, the ZC/TO 
output generates a positive-going pulse. When the interrupt 
is enabled, zero count also triggers an interrupt request 
signal (INT) from the interrupt logic. 

Reset. The CTC has both hardware and software resets. 
The hardware reset terminates alt down-counts and disables 
all CTC interrupts by resetting the interrupt bits in the control 
registers. In addition, the ZC/TO and Interrupt outputs go 
inactive, IEO reflects IEI, and 0 0-07 go to the 
high-impedance state. All channels must be completely 
reprogrammed after a hardware reset. 

The software reset is controlled by bit 1 in the channel 
control word. When a channel receives a software reset, it 
stops counting. When a software reset is used, the other bits 
in the control word also change the contents of the channel 
control register. After a software reset a new time constant 
word must be written to the same channel. 

If the channel control word has both bits 0 1 and 0 2 set to 1 , 
the addressed channel stops operating, pending a new time 
constant word. The channel is ready to resume after the new 
constant is programmed. In timer mode, if 0 3 = 0, 
operation is triggered automatically when the time constant 
word is loaded. 

Channel Control Word Programming. The channel 
control word is shown in Figure 5. It sets the modes and 
parameters described below. 

Interrupt Enable. 0 7 enables the interrupt, so that an 
interrupt output (INT) is generated at zero count. Interrupts 
may be programmed in either mode and may be enabled or 
disabled at any time. 

Mode. Da selects either timer or counter operating mode. 

Prescaler Factor. (Timer Mode Only). 0 5 selects 
factor-either 16 or 256. 

t CONTROL OR VECTOR 
0 = VECTOR 
1 = CONTROL WORD 

RESET 
0 = CONTINUED OPERATION 
1 = SOFTWARE RESET 

TIME CONSTANT 
0 = NO TIME CONSTANT FOLLOWS 
1 = TIME CONSTANT FOLLOWS 

~--- TIMER TRIGGER* 
0 = AUTOMATIC TRIGGER WHEN 

TIME CONSTANT IS LOADED 
1 = CLK/TRG PULSE STARTS TIMER 

*TIMER MODE ONLY 

Figure 5. Channel Control Word 

100 



Clock/Trigger Edge Selector. D4 selects the active edge or 
slope of the CLK/TRG input pulses. Note that 
reprogramming the CLK/TRG slope during operation is 
equivalent to issuing an active edge. If the trigger slope is 
changed by a control word update while a channel is 
pending operation in timer mode, the result is the same as a 
CLKITRG pulse and the timer starts. Similarly, if the channel 
is in counter mode, the counter decrements. 

Timer Trigger (Timer Mode Only). D3 selects the trigger 
mode for timer operation. When D3 is reset to 0, the timer is 
triggered automatically. The time constant word is 
programmed during an 110 write ooeration. which takes one 
machine cycle. At the end of the ~rite operation there is a 
setup delay of one clock period. The timer starts 
automatically (decrements) on the rising edge of the second 
clock pulse (T2) of the machine cycle following the write 
operation. Once started, the timer runs continuously. At zero 
count the timer reloads automatically and continues 
counting without interruption or delay, until stopped by a 
reset. 

When D3 is set to 1, the timer is triggered externally through 
the CLK/TRG input. The time constant word is programmed 
during an 110 write operation, which takes one machine 
cycle. The timer is ready for operation on the rising edge of 
the second clock pulse (T 2) of the following machine cycle. 
Note that the first timer decrement follows the active edge of 
the CLK/TRG pulse by a delay time of one clock cycle if a 
minimum setup time to the rising edge of clock is met. If this 
minimum is not met, the delay is extended by another clock 
period. Consequently, for immediate triggering, the 
CLK/TRG input must precede T 2 by one clock cycle plus its 
minimum setup time. If the minimum time is not met, the 
timer will start on the third clock cycle (T 3). 

Once started the timer operates continuously, without 
interruption or delay, until stopped by a reset. 

Time Constant. A 1 in 0 2 indicates that the next word 
addressed to the selected channel is a time constant data 
word for the time constant register. The time constant word 
may be written at any time. 

AO in D2 indicates no time constant word is to follow. This is 
ordinarily used when the channel is already in operation and 
the new channel control word is an update. A channel will 

1~1~1~1~1~1~1~1~1 

:~:~~ I ~~ :~: re,~ ~re, 
TC4 TC3 

Figure 6. Time Constant Word 

not operate without a time constant value. The only way to 
write a time constant value is to write a control word with D2 
set. 

Software Reset. Setting 0 1 to 1 causes a software reset, 
which is described in the Reset section. 

Control Word. Setting Do to 0 identifies the word as a control 
word. 

Time Constant Programming. Before a channel can start 
counting it must receive a time constant word from the CPU. 
During programming or reprogramming, a channel control 
word in which bit 2 is set must precede the time constant 
word to indicate that the next word is a time constant. The 
time constant word can be any value from 1 to 256 (Figure 
6). Note that 0016 is interpreted as 256. 

In timer mode, the time interval is controlled by three factors: 

• The system clock period (CLK) 

• The prescaler factor (P), which multiplies the interval by 
either 16 or 256 

• The time constant (T), which is programmed into the time 
constant register 

Consequently, the time interval is the product of CLK x P x T. 
The minimum timer resolution is 16 x CLK (4µs with a 4MHz 
clock). The maximum timer interval is 256 x CLK x 256 
(16.4 ms with a: 4M Hz clock). For longer intervals timers may 
be cascaded. 

Interrupt Vector Programming. If the ZBO CTC has one or 
more interrupts enabled, it can supply interrupt vectors to 
the Z80 CPU. To do so, the Z80 CTC must be 
pre-programmed with the most-significant five bits of the 
interrupt vector. Programming consists of writing a vector 
word to the 1/0 port corresponding to the Z80 CTC Channel 
0. Note that Do of the vector word is always zero, to 
distinguish the vector from a channel control word. 0 1 and 
D2 are not used in programming the vector word. These bits 
are supplied by the interrupt logic to identify the channel 
requesting interrupt service with a unique interrupt vector 
(Figure 7). Channel 0 has the highest priority. 

V7-V3~ 
SUPPLIED 

BY USER 

O = INTERRUPT VECTOR WORD 
1 = CONTROL WORD 

CHANNEL IDENTIFIER 
(AUTOMATICALLY INSERTED 
BY CTC) 
0 0 = CHANNEL 0 
0 1 = CHANNEL 1 
1 O = CHANNEL 2 
1 1 = CHANNEL 3 

Figure 7. Interrupt Vector Word 

101 



PIN DESCRIPTION 

CE. Chip Enable (input, active Low). When enabled the CTC 
accepts control words, interrupt vectors, or time constant 
data words from the data bus during an 110 write cycle; or 
transmits the contents of the downcountertothe CPU during 
an 110 read cycle. In most applications this signal is 
decoded from the eight least significant bits of the address 
bus for any of the four 110 port addresses that are mapped to 
the four counter-timer channels. 

CLK. System ·Clock (input). Standard single-phase Z80 
system clock. 

CLK/TRG0-CLK/TRG3. External Clock/Timer Trigger 
(input, user-selectable active High or Low). Four pins 
corresponding to the four Z80 CTC channels. In counter 
mode, every active edge on this pin decrements the 
downcounter. In timer mode, an active edge starts the timer. 

CS0-CS1• Channel Select (inputs active High). Two-bit 
binary address code selects one of the four CTC channels 
for an 110 write or read (usually connected to Ao and A1). 

102 

SYSTEM 
BUSES 

A '\ 

CPU_ J_+sv 
INT 

\j----y 

+sv 
T 
IEI 

ZC/T01 

CTC 
ZCIT02 INT 

IEO 

IEI 
Rx CA INT 

TxCA IEO 

RxCB 

TxCB 

WIRDYB 

SIO 

--< 

A_ _)\ 

'{ r' 

PIO 

-
INT 

IEI 

IEO -
INT 

IEI 

ROY 

DMA 

Figure 8. A Typical ZSO Environment 

00-07. System Data Bus (bidirectional, 3-state). Transfers all 
data and commands between the Z80 CPU and the Z80 
CTC. 

IE!. Interrupt Enable In (input, active High). A High indicates 
that no other interrupting devices of higher priority in the 
daisy chain are being serviced by the Z80 CPU. 

IEO. Interrupt Enable Out (output, active High). High only if 
IEI is High and the Z80 CPU is not servicing an interrupt 
from any Z80 CTC channel. IEO blocks lower priority 
devices from interrupting while a higher priority interrupting 
device is being serviced. 

INT. Interrupt Request(output, open drain, active Low). Low 
when any Z80 CTC channel that has been progmmmed to 
enable interrupts as a zero-count condition in its 
downcounter. 

IORQ. Input/Output Request (input from CPU, active Low). 
Used with CE and RD to transfer data and channel control 
words between the Z80 CPU and the Z80 CTC. During a 
write cycle, IORQ and CE are active and RD inactive. The 
Z80 CTC does not receive a specific write signal; rather, it 
internally generates is own from the inverse of an active RD 
signal. In a read cycle, IORQ, CE, and RD are active; the 
contents of the downcounter are read by the Z80 CPU. If 
IORQ and M1 are both true, the CPU is acknowledging an 
interrupt request, and the highest priority interrupting 
channel places its interrupt vector on the Z80 data bus. 

M1. Machine Cycle One (input from CPU, active Low). 
When M1 and IORQ are active, the Z80 CPU is 
acknowledging an interrupt. The Z80 CTC then places an 
interupt vector on the data bus if it has highest priority, and if 
a channel has requested an interrupt (IN1). 

RD. Read Cycle Status (input, active Low). Used in 
conjunction with IORQ and CE to transfer data and channel 
control words between the Z80 CPU and the Z80 CTC. 

RESET. Reset (input active Low). Terminates all 
down-counts and disables all interrupts by resetting the 
interrupt bits in all control registers; the ZCITO and the 
interrupt outputs go inactive; IEO reflects IEI; D0-D7 go to the 
high-impedance state. 

ZC/T00-ZC/T02 . Zero Count/Timeout (output, active 
High). Three ZCITO pins corresponding to Z80 CTC 
channels 2 through O (Channel 3 has no ZC/TO pin). In both 
counter and timer modes the output is an active High pulse 
when the downcounter decrements to zero. 



TIMING 

Read Cycle Timing. Figure 9 shows read cycle timing. This 
cycle reads the contents of a down-counter without 
disturbing the count During clock cycle T 2 . the ZBO CPU 
initiates a read cycle by driving the following inputs Low RD, 
IORQ, and CE. A 2-bit binary code at inputs CS1 and CS0 

selects the channel to be read. M1 must be High to 
distinguish this cycle from an interrupt acknowledge. 

cso, cs,, CE ___ _,X..__cH_•_N_N-EL_•_o_oR_E_ss _ __,X._ __ _ 

RD 

- --.,.---------------
M1 I 

_.; 

DATA-----------( 

Figure 9. Read Cycle Timing 

Write Cycle Timing. Figure 10 shows write cycle timing for 
loading control, time constant, or vector words. 

The CTC does not have a write signal input, so 1t generates 
one internally when the read (RD) input is High during T1. 

During T 2 IORQ and CE inputs are Low. M 1 must be High to 
distinguish a write cycle from an interrupt acknowledge. A 
2-bit binary code at inputs CS1 and CS0 selects the channel 
to be addressed, and the word being written is placed on the 
ZBO data bus. The data word is latched into the appropriate 
register with the rising edge of clock cycle T 3 . 

CLK 

csa, cs1, CE ___ _,X,_ __ c_H•_N_N-EL_•_o_o_RE_s_s _ _,X,_ __ _ 

--..,.---------------
RD I 

-J 

- --..,.---------------
M1 I _ _, 

DATA _____ _,)(~--'N _ __,)(~------

Figure 10. Write Cycle Timing 

Timer Operation. In the timer mode, a CLK/TRG pulse 
input starts the timer (Figure 11) on the second succeeding 
rising edge of CLK. The trigger pulse is asynchronous, and 
it must have a minimum width. A minimum lead time (21 O ns) 
1s required between the active edge of the CLK/TRG and the 
next rising edge of CLK to enable the prescaler on the 
following clock edge. If the CLK/TRG edge occurs closer 
than this, the initiation of the timer function 1s delayed one 
clock cycle. This corresponds to the start-up timing 
discussed 1n the programming section. The timer can also 
be started automatically 1t so programmed by the channel 
control word. 

CLK/TRG 

INTIERNAL 
TIMIER 

START TIMING 

Figure 11. Timer Mode Timing 

Counter Operation. In the counter mode, the CLK/TRG 
pulse input decrements the downcounter. The trigger 1s 
asynchronous, but the count is synchronized with CLK. For 
the decrement to occur on the next rising edge of CLK, the 
trigger edge must precede CLK by a minimum lead time as 
shown in Figure 12. If the lead time 1s less than specified, the 
count is delayed by one clock cycle. The trigger pulse must 
have a minimum width, and the trigger period must be at 
least twice the clock period. If the trigger repetition rate is 
faster than 1/3 the clock frequency, then TsCTR(Cs), AC 
Characteristics Specification 26, must be met. 

The ZC/TO output occurs immediately after zero count, and 
follows the rising CLK edge. 

CLK/TRG 

INTERNAL 
COUNTER -----"'I 

Figure 12. Counter Mode Timing 

103 



INTERRUPT OPERATION 

The Z80 CTC follows the Z80 system interrupt protocol for 
nested priority interrupts and return from interrupt, wherein 
the interrupt priority of a peripheral is determined by its 
location in a daisy chain. Two lines-IE\ and IEO-in the CTC 
connect it to the system daisy chain. The device closest to 
the + SV supply has the highest priority (Figure 13). For 
additional information on the Z80 interrupt structure, refer to 
the ZBO CPU Product Specification and the ZBO CPU 
Technical Manual. 

+SV 

HIGHEST PRIOAITY 
DEVICE 

DEVICE 0 DEVICE 1 DEVICE 2 

LOWEST PRIORITY 
DEVICE 

DEVICE 3 

HI 
IEI 

HI 
IEO IEI 

HI 
IEO IEI IEO HI IEI 

Figure 13. Daisy-Chain Interrupt Priorities 

HI 
IEO 

Within the Z80 CTC, interrupt priority is predetermined by 
channel number: Channel O has the highest priority, and 
Channel 3 the lowest. If a device or channel is being 
serviced with an interrupt routine, it cannot .be interrupted by 
a device or channel with lower priority until service is 
complete. Higher priority devices or channels may interrupt 
the servicing of lower priority devices or channels. 

A Z80 CTC channel may be programmed to request an 
interrupt every time its downcounter reaches zero. Note that 
the CPU must be programmed for interrupt mode 2. Some 
time after the interrupt request, the CPU sends an interrupt 
acknowledge. The CTC interrupt control logic determines 
the highest priority channel that is requesting an interrupt. 
Then, if the CTC \El input is High (indicating that it has 
priority within the system daisy chain) it places an 8-bit 

CLK 

IEI - - - - - - - -r------\- - - - -
_______ J ~----

DATA-------------<~----

Figure 14. Interrupt Acknowledge Timing 

104 

interrupt vector on the system data bus. The high-order five 
bits of this vector were ·written to the CTC during the 
programming process; the next two bits are provided by the 
CTC interrupt control logic as a binary code that identifies 
the highest priority channel requesting an interrupt; the 
low-order bit is always zero. 

Interrupt Acknowledge Timing. Figure 14 shows 
interrupt acknowledge timing. After an interrupt request, the 
ZBO CPU sends an interrupt acknowledge (M1 and IORQ). 
All channels are inhibited from changing· their interrupt 
request status when M 1 is active-about two clock cycles 
earlier than IORQ. RD is High to distinguish this cycle from 
an instruction fetch. 

The CTC interrupt logic determines the highest priority 
channel requesting an interrupt. If the CTC interrupt enable 
input (\El) is High, the highest priority interrupting channel 
within the CTC places its interrupt vector on the data bus 
when \ORQ goes Low. Two wait states (T wA) are 
automatically inserted at this time to allow the daisy chain to 
stabilize. Additional wait states may be added. 

Return from Interrupt Timing. At the end of an interrupt 
service routine the RETI (Return From Interrupt) instruction 
initializes the daisy chain enable lines for proper control of 
nested· priority interrupt handling. The CTC decodes the 
2-byte RETI code internally and determines whether it is 
intended for a channel being serviced. Figure 15 shows 
RETI tifj1ing. 

If several Z80 peripherals are in the daisy chain, IE\ settles 
active (High) on the chip currently being serviced when the 
opcode ED16 is decoded. If the following opcode is 4016, 

the peripheral being serviced is released and its IEO 
becomes active. Additional wait states are allowed. 

T1 T2 Ta T4 T1 T2 T3 T4 

CLK 

r.tt\ I \ I 
iii>\ I \ I 

Do-07 ED 

IEl ______ J 

IEO 

Figure 15. Return From Interrupt Timing 



ABSOLUTE MAXIMUM RATINGS 

Voltages on Vee with respect to Vss . - 0.3V to + 7.0V 
Voltages on all inputs with respect 

to Vss . . .................. -0.3V to Vee+ 0.3V 
Storage Temperature. . -65°C to+ 150°C 

STANDARD TEST CONDITIONS 
The characteristics below apply for the following test 
conditions, unless otherwise noted. All voltages are 
mfArfmu~rl to GND (OV). Positive current flows into the 

referenced pin. Available operating temperature range 1s: 

• S = O"C to +70"C, V cc Range 
NMOS: +4.75V <Vee< +5.25V 
CMOS: +4.50V < V cc <+5.50V 

• E = -40"C to 1 OO"C, +4.50V < V cc< +5.50V 

The Ordering Information section lists package temperature 
ranges and product numbers. Refer to the Literature List for 
additional documentation. Package drawings are in the 
Package Information section. 

DC CHARACTERISTICS (Z84C30/CMOS Z80 CTC) 

Symbol Parameter 

Clock Input Low Voltage 

Stresses greater than those listed under Absolute Maximum Ratings may 
cause permanent damage to the device. This is a stress rating only, 
operation of the device at any cond1t1on above these 1nd1cated in the 
operational sections of these specifications is not implied Exposure to 
absolute maximum rating cond1t1ons tor extended periods may affect 
device reliability 

+5V 

T 
2.1K 

... ,, I 

Min Max Unit Test Condition 

-0.3 +0.45 V1Le 
V1He 
V1L 
V1H 
Vol 

Clock Input High Voltage Vee-0.6 Vee+0.3 
v 
v 
v 
v 
v 

Input Low Voltage 
Input High Voltage 
Output Low Voltage 
Output High Voltage 
Output High Voltage 
Input Leakage Current 
3-State Output Leakage Current in Float 

Power Supply Current 4MHz 
6MHz 

8MHz 

Standby Supply Current 

lo HD Darlington Drive Current 

Over specified temperature and voltage range. 

CAPACITANCE 

Symbol 

CLK 

C1N 
CouT 

TA= 2s 0 e, t = 1 MHz 
Unmeasured pins returned to ground 

Parameter 

Clock Capacitance 

Input Capacitance 

Output Capacitance 

-0.3 
+2.2 

+2.4 
Vee-08 

-1.5 

+0.8 
Vee 
+0.4 

±10 
±10 

7 

8 

10 

10 

-5.0 

Max 

10 
10 
15 

v 
v 

µA 
µA 

mA 

µA 

mA 

I = 2.0mA 
loH = -1.6mA 
loH = -250µA 
V1N = 0.4 to Vee 
VouT = 0.4 to Vee 

Vee= sv 
CLK = 4 MHz, 6 MHz, 

8MHz 
V1H = Vee - 0.2V 
V1L = 0.2V 
Vee= 5V 
CLK = (0) 
V1H = Vee - 0.2V 
V1L = 0.2V 
VoH = 1.5V 
REXT = 1 1K Q 

Unit 

pf 

pf 

pf 

105 



AC CHARACTERISTICS (Z84C30/CMOS zao CTC) 

CLOCK 

CSo, CS1 

CE 

----~JXl'-~-TT-----t~J(-1--------l-<D--- l©I 
~~~~~~,,,........,,...__~--+r---~~J 

I+---©-- ~ ----
READ IORQ

~I /,,_ __
ilD ~1~--1-1-----++--~~~ • ..-1

I -!!, -

DATA

--Fl@

CS0,CS1){ x ----++----++--~ 1-Ji.J
Ci

WRITE

/ \.
~I 1--<D--+

IORQ /---
I~

DATA

I~

M1

-©-I
INTERRUPT -

ACKNOWLEDGE IORQ

DATA ..:F

IEI _)

IEO _

U4T ~ -----@-li.---++-----{•J-----·~-~:~1>-+--••11
CLKITRGo-3 JLLr--1+--..,._~ ~}

(COUNTER _J.
·MOOE) --j-@- ®-1~11--@- --

CLKnRGo-3
~~~~ ___ _} 

f-®--1 
ZC/TOo-2 \_ 

--W---1 

106 



AC CHARACTERISTICS (Z84C30/CMOS zao CTC Continued) 

Z84C3004 Z84C3006 Z84C3008 
No. Symbol Parameter Min(ns) Max(ns) Min(ns) Max(ns) Min(ns) Max(ns) Notes• 

1 TcC Clock Cycle Time 250 DC[1] 162 DC[1] 125 DC 
2 TwCh Clcok Pulse Width (High) 105 DC 65 DC 55 DC 
3 TwCI Clock Pulse Width (Low) 105 DC 65 DC 55 DC 
4 TIC Clock Fall Time 30 20 10 
5 TrC Clock Rise Time 30 20 to 

6 Th All Hold Times 0 0 0 
7 TsCS(C) CS to Clock t Setup Time 160 100 50 
8 TsCE(C) CE to Clock i Setup Time 150 100 50 
9 TslO(C) IORQ J, to Clock T Setup Time 115 70 40 
10 TsRD(C) RD J. to Clock i Setup Time 115 70 40 

11 TdC(DO) Clock t to Data Out Delay 200 t30 90 [2] 
t2 TdRlr(DOz) RD, IORQ l to Data Out Float Delay 50 40 40 
t3 TsDl(C) Data In to Clock t Setup Time 50 40 30 
t4 TsMt(C) Mt to Clock i Setup Time 90 70 50 
15 TdM1(EO) M1 J. to IEO J. Delay (Interrupt 

immediately preceeding Mt) t90 t30 90 (3] 

t6 TdlO(DOI) IORO J. to Data Out Delay (INTA t60 tto 80 [2],[6] 
17 TdlEl(IEOI) IEI J. to IEO J. Delay 130 too 70 (3] 
t8 TdlEl(IEOr) IEI t to IEO t Delay (after ED Decode) t60 ttO 70 [3] 
t9 TdC(INT) Clock i to INT J. Delay (TcC (TcC (TcC (4] 

+140) +120) +100) 
20 TdCLK(INT) CLK!TRG i to INT J. 

tsCTR(C) satisfied (19)+(26) (t9)+(26) (t9)+(26) [5] 
tsCTR(C) not satisfied (t )+(19)+(26) ( 1)+(19)+(26) (t )+(t 9)+(26) [5] 

21 TcCTR CLK!TRG Cycle Time (2TcC) (2TcC) (2TcC) [5] 
22 TrCTR CLK!TRG Rise Time 50 40 30 
23 TICTR CLK!TRG Fall Time 50 40 30 
24 TwCTRI CLK!TRG Width (Low) 200 120 90 
25 TwCTRh CLK!TRG Width (High) 200 t20 90 

26 TsCTR(Cs) CLK!TRG i to Clock i Setup Time 
for Immediate Count 2t0 t50 t10 [5] 

27 TsCTR(Ct) CLK!TRG i to Clock i Setup Time 
for enabling of Prescaler on following 
clock T 210 150 110 (4] 

28 TdC(ZC/TOr) Clock l to ZC/TO l Delay 190 140 100 
29 TdC(ZC/TOI) Clock J. to ZC/TO J. Delay 190 140 100 
30 ThRlr(D) RD, IORO i to Data Hold 20 20 to 
31 ThC (CS) Clock t to CS hold 20 20 20 

'RESET must be active for a minimum of 3 clock cycles. [3] Increase delay by 2 ns for each 1 O pf increase in loading, 100 pf 

NOTES: maximum 

[1] TcC ~ TwCh + TwCI + TrC + TfC [4] Timer mode. 

[2] Increase delay by 10 ns for each 50 pf increase in loading, 200 pf [5] Counter mode 

maximum for data lines, and I 00 pf for control lines. [6] 2 5 TcC > (n-2) TdlEl(IEOf) + TdM1(1EO) + TslEl(IO) +TTL buffer 
delay, 1f any. 

107 



DC CHARACTERISTICS (Z8430/NMOS Z80 CTC) 

Symbol Parameter Min 

V1LC Clock Input Low Voltage -0.3C 

V1HC Clock Input High Voltage Vcc-0.63 

V1L Input Low Voltage 

V1H Input High Voltage 

Vol Output Low Voltage 

VoH Output High Voltage 

Ice Power Supply Current: 

lu Input Leakage Current 

ILO 3-State Output Leakage Current in Float 

IOHO Darlington Drive Current 

CAPACITANCE 

Symbol 

CLK 

C1N 

Cour 

TA= 25°C, f = 1 MHz 
Unmeasured pins returned to ground. 

Parameter Test Status 

a Tested 
b Guaranteed 
c Guaranteed by characterization/design 

108 

Parameter 

Clock Capacitance 

Input Capacitance 

Output Capacitance 

-0.3C 

+2.23 

+2.4a 

-1.5a 

Max 

+045a 

Vcc+0.3b 

+o.sa 

Vccb 

+o.4a 

+ 12oa 

± 1oa 

± 1oa 

Unit 

v 
v 
v 
v 
v 
v 

mA 

µA 
µA 
mA 

Max 

2oc 

5c 

15C 

Condition 

loL = 2.0mA 

loH = -250µA 

V1N = 0.4 to Vee 

VouT = 0.4 to Vee 

VoH = 1.5V 

REXT = 390Q 

Unit 

pf 
pf 

pf 



AC CHARACTERISTICS (28430/NMOS 280 CTC Continued) 
-----0---------

r--i ~~ n ("\ t\ 
CLOCK 

~~ -~f----; ~ WI \_ 
~~~--+l" I~ ~ 

~ ~
1--<D--- -W-:-1

I cs., c_s, JX)(.--+--+---

- -------- / READ IORQ _1

l:..W- ~I
-----+----

I--®--- ~I

DATA -----------{_l'-++--1--.;.....JI
~I --€Fl

CSo, CS1 x j(

WAITE F·-<•>----
-----+---

f--<9_',.-

DATA x j(
-----l+-'~l·--{ij-13>---~--Ci).~:,.1----+----+-~

_
---<D--1

INTERRUPT
ACKNOWLEDGE IOAQ

DATA ----++---+------__,_--(]{

IEI

IEO

CLKITAGo-3
(COUNTER

MOOE)

ZCITOo-2

-®-I-

[---@---- +--------

\ I~
ji.----++-------(2• ~ --T

~ ®-/1~1-----wP~-

109

AC CHARACTERISTICS (Z8430/NMOS zao CTC)

Z0843004 Z0843006
Number Symbol Parameter Min Max Min Max Not est

1 TcC Clock Cycle Time 250 [1] 162 [1]

2 TwCh Clock Width (High) 105 '2000 65 2000

3 TwCI Clock Width (Low) 105 2000 65 2000

4 TIC Clock Fall Time 30 20

5 TrC Clock Rise Time 30 20

6 Th All Hold Times 0 0

7 TsCS(C) CS to Clock t Setup Time 160 100

8 TsCE(C) CE to Clock t Setup Time 150 100

9 TslO(C) IORQ +to Clock t Setup
Time 115 70

10 TsRD(C) RD +to Clock t Setup Time 115· 70

11 TdC(DO) Clock t to Data Out Delay 200 130 [2]

12 TdC(DOz) Clock +to Data Out Float
Delay 110 90

13 TsDl(C) Data In to Clock t Setup
Time 50 40

14 TsM1(C) M1 to Clock t Setup Time 90 70

15 TdM1(1EO) M1 Ho IEO+ Delay

(Interrupt immediately

preceding M1) 190 130 [3]

16 TdlO(DOI) IORQ +to Data Out Delay

(INTA Cycle) 160 110 [2]

17 TdlEl(IEOI) IEI +to IEO +Delay 130 100 [3]

18 TdlEl(IEOr) IEI t to IEO t Delay

(After ED Decode) 160 110 [3]

19 TdC(INT) Clock t to I NT + Delay (1)+140 (1)+120 [4,6]

20 TdCLK(INT) CLK/TRG tto INH.

tsCTR(C) satisfied (19)+(26) (19)+(26) [5,6]

tsCTR(C) not satisfied (1)+(19)+(26) (1)+(19)+(26) [5,6]

21 TcCTR CLK/TRG Cycle Time 2TcC 2TcC [5]

22 TrCTR CLK/TRG Rise Time 50 40

23 TfCTR CLK/TRG Fall Time 50 40

24 TwCTRI CLK/TRG Width (Low) 200 120

25 TwCTRh CLK/TRG Width (High) 200 120

NOTES:
[1) Tee = TwCh + TwCI + TrC +TIC. [6) Parenthetical numbers reference the table number of a parameter.
[2) Increase delay by 10 ns for each 50 pf increase in loading, 200 pf e.g., (1) refers to TcC.

maximum for data lines, and 100 pf for control lines. t 2.5 TcC > (n-2) TDIEl(IEOI) + TDM1 (IEO) + TslEl(IO) + TIL buffer
[3] increase delay by 2 ns for each 1 O pf increase in loading, 100 pf delay, if any. RESET must be active for a minimum of 3 clock cycles.

maximum. Units are nanoseconds unless otherwise specified.
[4) Timer mode
[5] Counter mode.

110

AC CHARACTERISTICS (Z8430/NMOS zao CTC Continued)

Number Symbol Parameter

26 TsCTR(Cs) CLK/TRG t to Clock t Setup

Time for Immediate

Count

27 TsCTR(Ct) CLK/TRG t to Clock t Setup

Time for enabling of

Prescaler on following

clock t

28 TdC(ZC/TOr) Clock t to ZC/TO t Delay

29 TdC(ZC/TOf) Clock+ to ZC/TO + Delay

NOTES
[1] TcC ~ TwCh + TwCI + TrC + TfC
[2] Increase delay by 1 O ns for each 50 pf increase 1n loading, 200 pf

maximum tor data lines and 100 pf for control lines
[3] Increase delay by 2 ns for each 10 pf increase 1n loading 100 pf

maximum
[4] Timer mode
[5] Counter mode

Z0843004
Min

210

210

Max

190

190

20843006
Min

150

150

Max

140

140

Not est

[5]

[4]

[6] Parenthetical numbers reference the table number of a parameter
e.g ,(1)referstoTcC

t 2 5TcC>(n-2)TDIEl(IEOD + TDM1(1EO) + TslEl(IO) +TTL butter
delay, 1f any RESET must be active for a minimum of 3 clock cycles
Units are nanoseconds unless otherwise spec1f1ed.

111

112

ZilOg Product Specification

January 1989

FEATURES
• Two iiidependent ful:-duplex channels, vvith st:µa.ra.te

control and status lines for modems or other devices.

• Data rate in the x1 clock mode of O to 1.6M bits/
second with a 8.0 MHz clock.

• NMOS version for high cost performance solutions,
CMOS version for the designs requires low power
consumption.

• NMOS Z0844x04-4 MHz Z0844x06- 6.17 MHz (Where
xis the designator for the bonding option; 0, 1, 2 or 4)

• CMOS Z84C4x04 - DC 4 MHz Z84C4x06 - DC to 6.7
MHz Z84C4x08- DC to 8 MHz (Where xis the designa­
tor for the bonding option; 0, 1, 2 or 3, 4)

• 6 MHz version supports 6.144 MHz CPU clock opera­
tion.

GENERAL DESCRIPTION

The Z80 SIO (here in after referred to as the Z80 SIO or,
SIO). Serial Input/Output Controller is a dual-channel data
communication interface with extraordinary versatility and
capability. Its basic functions as a serial-to-parallel, paral­
lel-to-serial converter/controller can be programmed by a
CPU for a broad range of serial communication applica­
tions.

The device supports all common asynchronous and
synchronous protocols, byte- or bit-oriented, and performs
all of the functions traditionally done by UARTs, USARTs,
and synchronous communication controllers combined,
plus additional functions traditionally performed by the
CPU. Moreover, 1t does this on two fully-independent

PIN DESCRIPTION

Figures 1 through 6 illustrate the three 40-pin configurations
(bonding options) available in the Z80C SIO (hereafter
referred to as SIO or Z80 SIO). The constraints of a 40-pin
package make it impossible to bring out the Receive
Clock (RxC), Transmit Clock (TxC), Data Terminal Ready
(DTR) and Sync (SYNC) signals for both channels. There­
fore, either Channel B lacks a signal or two signals are
bonded together:

• Z80 SI0/2 lacks SYNCB

• Z80 SI0/1 lacks DTRB

Z8440/1 /2/4, Z84C40/1 /2/3/4
NMOS/ CMOS Z80® SIO
Serial Input/Output Controller

• A'vyr 1vr 1ru11uu::, jJ(Otocols. 8v·t:rythir1Q (1ecessa1y 1ur

complete messages in 5, 6, 7, or 8 bits/character.
Includes variable stop bits and several clock-rate
multipliers; break generation and detection; parity;
overrun and framing error detection.

• Synchronous protocols: everything necessary for
complete bit- or byte-oriented messages in 5, 6, 7, or 8
bits/character, including IBM Bisync, SDLC, HDLC,
CCITT-X.25 and others. Automatic CRC generation/
checking, sync character and zero insertion/deletion,
abort generation/detection, and flag insertion.

• Receiver data registers quadruply buffered, transmitter
registers doubly buffered.

• Highly sophisticated and flexible daisy-chain interrupt
vectoring for interrupts without external logic.

channels, with an exceptionally sophisticated interrupt
structure that allows very fast transfers.

Full interfacing is provided for CPU or OMA control. In
add1t1on to data communication, the circuit can handle
virtually all types of serial 1/0 with fast, or slow, peripheral
devices. While designed primarily as a member of the Z80
family, its versatility makes it well suited to many other CPUs.

The ZSO SIO uses a single +5V power supply and the
standard Z80 family single-phase clock. The SIO/O, SI0/1,
and SI0/2 are packaged in a 40-pin DIP, the SI0/4 is
packaged in a 44-pin PCC and the SI0/3 is packaged in a
44-pin QFP. Note that SI0/3 is only available in CMOS and
in QFP package.

• Z80 SIO/O has all four signals, but TxCB and RxCB are
bonded together

The 44-pin package, the Z80 SI0/4 for PLCC package, and
Z80 SI0/3 for QFP, has all options (Figure 7a and 7b).

The first bonding option above (SI0/2) is the preferred
version for most applications. The pin descriptions are as
follows:

BIA. Channel A or B Select (input, High selects Channel B).
This input defines which channel is accessed during a data

113

CPU
DATA

BUS

CONTROL
FROM

CPU

CHAIN DAISY I
INTERRUPT

CONTROL

CPU
DATA

BUS

CONTROL
FROM

CPU

CHAIN DAISY I
INTERRUPT

CONTROL

114

Do

o,
-o,
-o,
--o,
--o,

o.
-07

ZBO
CE SI0/2

~RESET

____..,.. M1
IORQ

---+- RD

-

RxOA .,..___

RxCA ,...,__

TxDA

TxCA .,____

SYNCA -

WIRDYA

RxCB

TxDB

TxCB

WIRDYB

+5 V GND CLK

Figure 1. Pin Functions

Do

o,
--o,
-o, -o.
-o,

RxDA ..,___

RxCA .,..___

TxDA

TxCA-+--

SYNCA

WIRDYA

)
MODEM
CONTROL

-o.
-07

____..EE
---+-RESET

ZBO
SI0/1

-)MODEM
- CONTROL

---+- M1
IORO.

Ril

Clil

BIA

RxOB .._.__

RxCB ..-­

TxDB

TxCB

SYNCB

WIRDYB

INT

IEI

IEO

}
MODEM ::::= CONTROL

t t t
+5 V GND CLK

Figure 3. Pin Functions

CHANNEL A

CHANNEL B

CHANNEL A·

CHANNELB

o,
03

Os

07

iNt
IEI

IEO

Mi
+5V

W/RDVA

SYN CA

Rx DA

Rx CA

fxCA
TxDA

DTRA

RTSA

CTSA

OCDA

CLK

zao
SI0/2

40

39

27

26

25

24

23

22

21

Do

o,

o.
IORO

CE
BIA

Clil

jjjj

GND

WtRDYB

Rx DB

TxCB

TxDB

DTRB

Rffij

CTSB

DCDB

RESET

Figure 2. 40-pin Dual-In-Line Package (DIP),
Pin Assignments

o,
03

05

07

INT
IEI

IEO

Mi
+sv.

W/RDYA

SYNCA

RxDA

RxCA

llcCA
llcOA

OTRA

RTSA

CTSA

DCDA

CLK

ZBO
510/1

Do

o,
o,
Ds

IORQ

CE
BIA

CID

jjjj

GND

30 WtRIWB

29 SYN CB

28 Rx DB

27

26

25

24

23

22

21

Rx CB

llcCB

TxDB

Rffij

CTSB

DCDB

RESET

Figure 4. 40-pin Dual-In-Line Package (DIP),
Pin Assignments

Do Rx DA

D, Rx CA

D, TxDA

CPU DJ TxCA
DATA

BUS D, SYNCA --Ds W!RDYA

D,

D1 RTSA

CTSA -}····· zao DTRA - CONTROL

CONTROL I
c-E 51010 DCDA

ifES-ET

M1
IORQ Rx DB

CPU ______... '""") RD RxTxCB

TxDB

C/5
SYNCB --- WIRDYB - BIA

RTSB

INT CTSB
CHAIN ___._ i

IEI DTRB -}·· ... - CONTROL
INTERRUPT

CONTROL

!El

IEO
Mt
+SV

w1R5YA
$YNCA

Rx DA

RxCA
TxCA

TxDA

IEO DCOB

r r r
+5V GND CLK

Figure 5. Pin Functions

NC 17

" 18 19 20 21 22 23 24 2526 27 28 /

00000000000
1 ~1 .. I .. , .. ::s l:u I"' l"'I"' I"' 0
b~~8om8~~~z

0 a: 0

Figure 7a. 44-pin Chip Carrier,
Pin Assignments

BiA
C/0

RD

GND

W/RDYB

SYN CB

Rx OB

RxCB

TXcB
TxDB

NC

transfer between the CPU and the SIO. Address bit Ao from
the CPU is often used for the selection function.

CID. Control or Data Select (input, High selects Control).
This input defines the type of information transfer performed
between the CPU and the SIO. A High at this input during a
CPU write to the SIO causes the information on the data bus
to be interpreted as a command for the channel selected by
BIA. A Low at C/D means that the information on the data
bus is data. Address bit A 1 is often used for this function.

'\

CHANNEL A

CHANNEL B

IE!
IEO

M1
+SV

WtRDYA
NC

!'iVflCA
RxDA

RxCA
TxCA

TxDA

o, 40 Do

DJ 39 o,
Ds 38 o,
o, 37 05

INT 36 IOAO

IEI 35 CE

IEO 34 B/A

r.f1 33 CID

+5V zao 32 RD

W/ADYA 10 510/0 31 GND

SYN CA 11 30 W/RDYB

Ax DA 12 29 SYNCS

Rx CA 13 28 Rx DB

TxCA 14 27 RxlxCB

TxDA 15 26 TxDB

DTAA 16 25 DTRB

FftS-A 17 24 RTSB

CTSA 18 23 CTSB

DCDA 19 22 DCOB

CLK 20 21 RESET

Figure 6. 40-pin Dual-In-Line Package (DIP),
Pin Assignments

Z84C43
C-MOS ZBO

SI0/3

23

11

12

Figure 7b. 44-pin Quad Flat Pack
Pin Assignments

GND

CE. Chip Enable (Input, active Low). A Low level at this input
enables the SIO to accept command or data input from the
CPU during a write cycle, or to transmit data to the CPU
during a read cycle.

CLK. System Clock (input). The SIO uses the standard Z8C
System Clock to synchronize internal signals. This is
single-phase clock.

115

CTSA, CTSB. Clear To Send (inputs, active Low). When
programmed as Auto Enables, a Low on these inputs
enables the respective transmitter. If not programmed as
Auto Enables, these inputs may be programmed as
general-purpose inputs. Both inputs are Schmitt-trigger
buffered to accommodate slow-risetime signals. The SIO
detects pulses on these inputs and interrupts the CPU on
both logic level transitions. The Schmitt-trigger buffering
does not guarantee a specified noise-level margin.

o0-o7. System Data Bus (bidirectional, 3-state). The system
data bus transfers data and commands between the CPU
and the Z80 SIO. Do is the least significant bit.

DCDA, DCDB. Data Carrier Detect (inputs, active Low).
These pins function as receiver enables if the SIO is
programmed for Auto Enables; otherwise they may be used
as general-purpose input pins. Both pins are Schmitt-trigger
buffered to accommodate slow-risetime signals. The SIO
detects pulses on these pins and interrupts the CPU on both
logic level transitions. Schmitt-trigger buffering does not
guarantee a specific noise-level margin.

DTRA, DTRB. Data Terminal Ready (outputs, active Low).
These outputs follow the state programmed into the Z80
SIO. They can also be programmed as general-purpose
outputs.

In the Z80 SI0/1 bonding option, DTRB is omitted.

IEI. Interrupt Enable In. (input, active High). This signal is
used with IEO to form a priority daisy chain when there is
more than one interrupt-driven device. A High on this line
indicates that no other device of higher priority is being
serviced by a CPU interrupt service routine.

· IEO. Interrupt Enable Out (output, active High). IEO is High
only. if IEI is High and the CPU is not servicing an interrupt
from this SIO. Thus, this signal blocks lower priority devices
from interrupting while a higher priority device is being
serviced by its CPU interrupt service routine.

INT. Interrupt Request (output, open drain, active Low).
When the SIO is requesting an interrupt, it pulls INT Low.

IORQ. Input/Output Request (input from CPU, active Low).
IORQ is used in conjunction with BIA, C/D, CE, and RD to
transfer commands and data between the CPU and the SIO.
When CE, RD, and IORQ are all active, the channel selected
by BIA transfers data to the CPU (a read operation). When
CE and IORQ are active, but RD is inactive, the channel
selected by BIA is written to by the CPU with either data or
control information as specified by CID. As mentioned
previously, if IORQ and M1 are active simultaneously, the
CPU is acknowledging an interrupt and the SIO
automatically places its interrupt vector on the CPU data bus
if it is the highest priority device requesting an interrupt.

M1. Machine. Cycle One(input from Z80 CPU, active Low).
When M1 is active and RD is also active, the Z80 CPU is
fetching an instruction from memory; when M1 is active

116

while IORQ is active, the SIO accepts M1 and IORO as an
interrupt acknowledge if the SIO is the highest priority
device that has interrupted the Z80 CPU.

RxCA, RxCB. Receiver Clocks (inputs). Receive data is
sampled on the rising edge of RxC. The Receive Clocks
may be 1, 16, 32, or 64 times the data rate in asynchronous
modes. These clocks may be driven by the Z80 CTC
Counter Timer Circuit for programmable baud rate
generation. Both inputs are Schmitt-trigger buffered; no
noise level margin is specified.

In the Z80 SIO/O bonding option, RxCB is bonded together
with TxCB.

RD. Read Cycle Status (input from CPU, active Low). If RD is
active, a memory or 1/0 read operation is in progress. RD is
used with B/A, CE, and IORQ to transfer data from the SIO
to the CPU.

RxDA, RxDB. Receive Data (inputs, active High). Serial
data at TTL levels.

RESET. Reset (input, active Low). A Low RESET disables
both receivers and transmitters, forces TxDA and TxDB
marking, forces the modem controls High, and disables all
interrupts. The control registers must be rewritten after the
SIO is reset and before data is transmitted or received.

RTSA, RTSB. Request To Send (outputs, active Low).
When the RTS bit in Write Register 5 (Figure 14) is set, the
RTS output goes Low. When the RTS bit is reset in the
Asynchronous mode, the output goes High after the
transmitter is empty. In Synchronous modes, the RTS pi. n
strictly follows the state of the RTS bit. Both pins can be used
as general-purpose outputs.

SYNCA, SYNCB. Synchronization (bidirectional, active
Low). These pins can act either as inputs or outputs. In the
asynchronous receive mode, they are inputs similar to CTS
and DCD. In this mode, the transitions on these lines affect
the state of the Sync/Hunt status bits in, Read Register 0
(Figure 13), but have no other function. In the External Sync
mode, these lines also act as inputs. When external
synchronization is achieved, SYNC must be driven Low on
the second rising edge of RxC after that rising edge of RxC
on which the last bit of the sync character was received. In
other words, after the sync pattern is detected, the external
logic must wait for two full Receive Clock cycles to activate
the SYNC input. Once SYNC is forced Low, it should be kept
Low until the CPU informs the external synchronization
detect logic that synchronization has been lost or a new
message is about to start. Character assembly begins on
the rising edge of RxC that immediately precedes the falling
edge of SYNC in the External Sync mode.

In the internal synchronization mode (Monosync and
Bisync), these pins act as outputs that are active during the
part of the receive clock (RxC) cycle in which sync
characters are recognized. The sync condition is not
latched, so these outputs are active each time a sync pattern

is recognized, regardless of character boundaries.

In the Z80 SI0/2 bonding option, SYNCB is omitted.

TxCA, TxCB. Transmitter Clocks (inputs). In asynchronous
modes, the Transmitter Clocks may be 1, 16, 32, or 64 times
the data rate; however, the clock multiplier must be the same
for the transmitter and the receiver. The Transmit Clock
inputs are Schmitt-trigger buffered for relaxed rise- and
fall-time requirements; no noise level margin is specified.
Transmitter Clocks may be driven by the Z80 CTC Counter
Timer Circuit for programmable baud rate generation.

In the Z80 SIO/O bonding option, TxCB is bonded together
with RxCB. ,

TxDA, TxDB. Transmit Data (outputs, active High). Serial
data at TTL levels. TxD changes from the falling edge of TxC.

W/RDYA, W/RDYB. Wait/Ready (outputs, open drain when
programmed for Wait function; driven High and Low when
programmed for Ready function). These dual-purpose
outputs may be programmed as Ready lines for a OMA
controller or as Wait lines that synchronize the CPU to the
SIO data rate. The reset state is open drain.

117

FUNCTIONAL DESCRIPTION

The functional capabilities of the Z80 810 can be described
from two different points of view: as a data communications
device, it transmits and receives serial data in a wide variety
of data-communication protocols; as a Z80 family
peripheral, it interacts with the Z80 CPU and other
peripheral circuits, sharing the data, address and control
buses, as well as being a part of the Z80 interrupt structure.
As a peripheral to other microprocessors, the 810 offers
valuable features such as non-vectored interrupts, polling,
and simple handshake capability. Figure 8 is a block
diagram.

Figure 9 illustrates the conventional devices that the 810
replaces.

The first part of the following discussion covers 810
data-communication capabilities; the second part
describes interactions between the CPU and the 810.

DATA

CONTROL

CHANNEL A
CONTROL

AND
STATUS

REGISTERS

INTERNAL
CONTROL

LOGIC

CPU
BUS
110

INTERRUPT (INTERRUPT
CONTROL -- CONTROL

LINES LOGIC

CHANNEL B
CONTROL

AND
STATUS

REGISTERS

CHANNEL
B

Figure 8. Block Diagram

118

UA0RT

SYNCHRONOUS
COMMUNICATIONS

CONTROLLER

UART

SYNCHRONOUS
COMMUNICATION

CONTROLLER

B CHANNEL

MICROP,ROCESSOR A
INTERFACE -

CHANNEL
. B ,

Figure 9. Conventional Devices Replaced by the Z80 SIO

CHANNEL
A

CHANNEL
B

I SERIAL
DATA

-1gr~~~:L
SYNC
WAIT/READY

I ~~~!AL
} g~~~~:L

- SYNC
WAIT/READY

DATA COMMUNICATION CAPABILITIES

The SIO provides two independent full-duplex channels that
can be programmed for use 1n any common asynchronous,
or synchronous data-communication protocol. Figure 1 Oa
Illustrates some of these protocols. The following 1s a short
description of them. A more detailed explanation of these
modes can be found in the Z80 SIO Technical Manual
(03-3033-01).

Asynchronous Modes. Transmission and reception can
be done independently on each channel with five to eight
bits per character, plus optional even or odd parity. The
transmitters can supply one, one-and-a-half, or two stop bits
per character and can provide a break output at any time.
The receiver break-detection logic interrupts the CPU both
at the start and end of a received break. Reception is
protected from spikes by a transient spike-rejection
mechanism that checks the signal one-half a bit time after a
Low level is detected on the receive data input (RxDA or
RxDB in Figure 5). If the Low does not persist, as 1n the case
of a transient, the character assembly process is not started.

Framing errors and overrun errors are detected and
buttered together with the partial character on which they
occurred. Vectored interrupts allow fast servicing of error
conditions using dedicated routines. Furthermore, a built-in
checking process avoids interpreting a framing error as a
new start bit: a framing error results 1n the addition of
one-half a bit time to the point at which the search for the
next start bit is begun.

The SIO does not require symmetric transmit and receive
clock signals, a feature that allows 1t to be used with a Z80
CTC or many other clock sources. The transmitter and
receiver can handle data at a rate of 1, 1 /16, 1 /32, or 1 /64 of
the clock rate supplied to the receive and transmit clock
inputs.

In asynchronous modes, the SYNC pin may be
programmed as an input that can be used for functions such
as monitoring a ring indicator.

Synchro11uus Modes. Tl-18 310 suppurb UuU-1 Uyle­
oriented and bit-oriented synchronous communication.

Synchronous byte-oriented protocols can be handled 1n
several modes that allow character synchronization with an
8-bit sync character (Monosync), any 16-bit sync pattern
(Bisync), or with an external sync signal. Leading sync
characters can be removed without interrupting the CPU.

Five-, six-, or seven-bit sync characters are detected with 8-
or 16-bit patterns in the SIO by overlapping the larger
pattern across multiple incoming sync characters, as shown
in Figure 1 Ob.

CRC checking for synchronous byte-oriented modes is
delayed by one character time so the CPU may disable CRC
checking on specific characters. This permits implemen­
tation of protocols such as IBM Bisync.

Figure 1 Oa. Some ZBO SIO Protocols

PARITY

STr rr
M-A-R-Kl-NG_L_IN_E _ __,I ... I -DA_T_A ...,.l'"'l....,, ... , __ ... I =D=AT=A=1=1_,·..,11

DATA 11 i MARKING LINE

ASYNCHRONOUS

SYNC DATA :: I DATA CRC1 CRC2

MONOSYNC

SYNC SYNC DATA :: DATA CRC1 CRC2

SIGNAL BISYNC

+ :: I DATA DATA CRC1 CRC2

EXTERNAL SYNC

FLAG I ADDRESS I INFO{M}TION CRC1 CRC2

SDLCIHDLCIX.25

Figure 1 Ob. Six-Bit Sync Character Recognition

5 BITS
~

SYNq SYNC DATA

16

DATA

Figure 10. Data Communication

DATA DATA

FLAG

119

BothCRC-16(X16 + X15 + X2 + 1)andCCITT(X16 + x12
+ X5 + 1) error checking polynomials are supported. In all
non-SDLC modes, the CRC generator is initialized to Os; in
SDLC modes, it is initialized to 1 s. The SIO can be used for
interfacing to peripherals such as hard-sectored floppy
disks, but it cannot generate or check CRC for
IBM-compatible soft-sectored disks. The SIO also provides
a feature that automatically transmits CRC data when no
other data is available for transmission. This allows very
high-speed transmissions under OMA control with no need
for CPU intervention at the end of a message. When there is
no data or CRC to send 1n synchronous modes, the
transmitter inserts 8- or 16-bit sync characters regardless of
the programmed character length.

The SIO supports synchronous bit-oriented protocols such
as SDLC and HDLC by performing automatic flag sending,
zero insertion. and CRC generation. A special command
can be used to abort a frame in transmission. At the end of a
message the SIO automatically transmits the CRC and
trailing flag when the transmit buffer becomes empty. If a
transmit underrun occurs in the middle of a message, an
external/status interrupt warns the CPU of this status change
so that an abort may be issued. One to eight bits per
character can be sent, which allows reception of a message
with no prior information about the character structure in the­
information field of a frame.

1/0 INTERFACE CAPABILITIES

The SIO offers the choice of polling, vectored or
non-vectored interrupts and block-transfer modes to
transfer data, status, and control information to, and from,
the CPU. The block-transfer mode can also be implemented
under OMA control.

Polling. Two status registers are updated at appropriate
times for each function being performed (for example, CRC
error-status valid at the end of a message). When the CPU is
operated in a polling fashion, one of the SIO's two status
registers is used to indicate whether the SIO has some data
or needs some data. Depending on the contents of this
register, the CPU will either write data, read data, or just go
on. Two bits in the register indicate that a data transfer is
needed. In addition, error and other conditions are
indicated. The second status register (special receive
conditions) does not have to be read in a polling sequence,
until a character has been received. All interrupt modes are
disabled when operating the device in a polled
environment.

Interrupts. The SIO has an elaborate interrupt scheme to
provide fast interrupt service in real-time applications. A
control register and a status register in Channel B contain
the interrupt vector. When programmed to do so, the SIO
can modify three bits of the interrupt vector in the status
register so that it points directly to one of eight interrupt
service routines in memory, thereby servicing conditions in
both channels and eliminating most of the needs for a
status-analysis routine.

Transmit interrupts, receive interrupts, and external/status
interrupts are the main sources of interrupts. Each interrupt

120

The receiver automatically synchronizes on the leading flag
of a frame in SDLC or HDLC, and provides a
synchronization signal on the SYNC pin; an interrupt can
also be programmed. The receiver can be programmed to
search for frames addressed by a single byte to only a
specified user-selected address or to a global broadcast
address. In this mode, frames that do not match either the
user-selected or broadcast address are ignored. The
number of address bytes can be extended under software
control. For transmitting data, an interrupt on the first
received character or on every character can be selected.
The receiver automatically deletes all zeroes inserted by the
tran.smitter during character assembly. It also calculates and
automatically checks the CRC to validate frame
transmission. At the end of transmission, the status of a
received frame is available in the status registers.

The SIO can be conveniently used under OMA control to
provide high-speed reception or transmission. In reception,
for example, the SIO can interrupt the CPU when the first
character of a message is received. The CPU then enables
the OMA to transfer the message to memory. The SIO then
issues an end-of-frame interrupt and the CPU can check the
status of the received message. Thus, the CPU is freed for
other service while the message is being received.

source is enabled under program control, with Channel A
having a higher priority than Channel B, and with receive,
transmit, and external/status interrupts prioritized in that
order within each channel. When the transmit interrupt is
enabled, the CPU is interrupted by the transmit buffer
becoming empty. (This implies that the transmitter must
have had a data character written into it so it can become
empty.) The receiver can interrupt the CPU in one of two
ways:

• Interrupt on first received character

• Interrupt on all received characters

Interrupt-on-first-received-character is typically used with
the block-transfer mode. lnterrupt-on-all-rece1ved­
characters has the option of modifying the interrupt vector in
the event of a parity error. Both of these interrupt modes will
also interrupt under special receive conditions on a
character or message basis (end-of-frame interrupt in
SDLC, for example). This means that the special-receive
condition can cause an interrupt only if the
interrupt-on-first-received-character or interrupt-on-all­
received-characters mode is selected. In interrupt-on-first­
received-character, an interrupt can occur from
special-receive conditions (except parity error) after the
first-received-character interrupt (example: receive-overrun
interrupt).

The main function of the external/status interrupt is to
monitor the signal transitions of the Clear To Send (CTS),
Data Carrier Detect (DCD), and Synchronization (SYNC)
pins (Figures 1 through 7). In addition, an external/status

interrupt is also caused by a CRC-send1ng condition, or by
the detection of a break sequence (asynchronous mode) or
abort sequence (SDLC mode) in the data stream. The
interrupt caused by the break/abort sequence allows the
SIO to interrupt when the break/abort sequence is detected
or terminated. This feature facilitates the proper termination
of the current message, correct initialization of the next
message, and the accurate timing of the break/abort
condition in external logic.

In a Z80 CPU environment (Figure 11), SIO interrupt
vectoring is "automatic": the 810 passes its internally­
modifiable 8-bit interrupt vector to the CPU, which adds an
:::irlrlitinn;::d A hitc::: frnm itc: intPrn 1nt-\1(:lrtnr fl\ rcinidPr tn fnrrn ---·-.--·--·-· - -·-- .. - ... -- .. .---·~r-- ._ \'J ,...,::::.i, ,...,. ,.....,, ..

the memory address of the interrupt-routine table. This table
contains the address of the beginning of the interrupt routine
itself. The process entails an indirect transfer of CPU control
to the interrupt routine, so that the next instruction executed
after an interrupt acknowledge by the CPU is the first
instruction of the interrupt routine itself.

CPU/OMA Block Transfer. The SIO's block-transfer mode
accommodates both CPU block transfers and OMA
controllers (Z80 OMA or other designs). The block-transfer
mode uses the Wait/Ready output signal, which is selected
with three bits in an internal control register The Wait/Ready
output signal can be programmed as a WAIT line in the CPU
block-transfer mode or as a READY line in the OMA
block-transfer mode.

To a OMA controller, the 810 READY output indicates that
the 810 is ready to transfer data to, or from, memory. To the
CPU, the WAIT output indicates that the 810 1s not ready to
transfer data, thereby requesting the CPU to extend the 1/0
cycle.

INTERNAL STRUCTURE

The internal structure of the device includes a Z80 CPU
interface, internal control and interrupt logic, and two
full-duplex channels. Each channel contains its own set of
control and status (write and read) registers, and control and
status logic that provides the interface to modems or other
external devices.

The registers for each channel are designated as follows:

WRO-WR7 - Write Registers 0 through 7
RRO-RR2 - Read Registers O through 2

The register group includes five 8-bit control registers, two
sync-character registers and two status registers. The
interrupt vector is written into an additional 8-bit register
(Write Register 2) in Channel B that may be read through
another 8-bit register (Read Register 2) in Channel B. The bit
assignment and functional grouping of each register is
configured to simplify and organize the programming
process. Table 1 lists the functions assigned to each read or
write register.

The logic for both channels provides formats,
synchronization, and validation for data transferred to and
from the channel interface. The modem control inputs, Clear
To Send (CTS) and Data Carrier Detect (DCD), are

CPU

SYSTEM
BUSES

if
\'r-V

OMA

-
INT r ADY

IEI

+5V

T
IEI

ZCIT01

CTC
ZC/T02 INT

IEO

IEI

RxCA INT

TxCA lEO

Rx CB

TxCB

WIROYA

W/RDYB

SID

I-<

IEO -
INT

I
IEI

J
ADY

OMA

~
-v

Figure 11. Typical ZSO Environment

Table 1. Register Functions

Read Register Functions

RRO Transmit/Receive buffer status. interrupt status and
external status

RR1 Special Receive Condition status

RR2 Modified interrupt vector (Channel B only)

Write Register Functions

WRO Register pointers, CRC initialize, and 1nit1alizat1on
commands for the various modes.

WR1 Transmit/Receive interrupt and data transfer mode
definition.

WR2 Interrupt vector (Channel B only)

WR3 Receive parameters and control

WR4 Transmit/Receive miscellaneous parameters and modes

WR5 Transmit parameters and controls

WR6 Sync character or SDLC address field

WR7 Sync character or SDLC flag

121

monitored by the external control and status logic under
program control. All external control-and-status-logic
signals are general-purpose in nature and can be used for
functions other than modem control.

Data Path. The transmit and receive data path illustrated for
Channel A in Figure 12 is identical for both channels. The
receiver has three 8-bit buffer registers in a FIFO
arrangement, in addition to the 8-bit receive shift register.
This scheme creates additional time for the CPU to service
an interrupt at the beginning of a block of high-speed data.

_ RECEIVE
RxCA __,. CLOCK

LOGIC

RECEIVE

~ATA

FIFO

HUNT MODE (BISYNC) r---------,

SYNC REGISTER
I ZERO DELETE

ASYNC DATA

CRC DELAY
REGISTER

(8 BITS)

CRC
CHECKER

Incoming data is routed through one of several paths (data
or CRC) depending on the selected mode and-in
asynchronous modes-the character length.

The transmitter has an 8-bit transmit data buffer register that
is loaded from the internal data bus, and a 20-bit transmit
shift register that can be loaded from the sync-character
buffers or from the transmit data register. Depending on the
operational mode, outgoing data is routed through one of
four main paths before it is transmitted from the Transmit
Data output (T'-'D).

CPU 110

-R~
RECEIVE

ERROR

FIFO

SYNC
DATA

ZERO INSERT
(5 BITS)

SDLC·CRC

CRC
GENERATOR

TxDA

Figure 12. Transmit and Receive Data Path (Channel A)

122

PROGRAMMING

The system program first issues a series ol commands that
initialize the basic mode ol operation and then issues other
commands that qualify conditions within the selected mode.
For example, the asynchronous mode, character length,
clock rate, number ol stop bits, even or odd parity might be
set first; then the interrupt mode; and finally, receiver or
transmitter enable.

Both channels contain registers that must be programmed
via the system program prior to operation. The channel·
select input (B/A) and the control/data (C/D) are the
cor°nniand-sltuclure auuress1r1g corrirois, and are normaiiy
controlled by the CPU address bus. Figures 15 and 16
illustrate the timing relat1onsh1ps for programming the write
registers and transferring data and status.

Read Registers. The SIO contains three read registers for
Channel Band two read registers for Channel A (RRO·RR2
in Figure 13) that can be read to obtain the status
information; RR2 contains the internally-modifiable interrupt
vector and is only in the Channel B register set. The status
information includes error conditions, interrupt vector, and
standard communications-interlace signals.

To read the contents ol a selected read register other than
RRO, the system program must first write the pointer byte to
WRO in exactly the same way as a write register operation.
Then, by executing a read instruction, the contents ol the
addressed read register can be read by the CPU.

The status bits ol RRO and RR1 are carefully grouped to
simplify status monitoring. For example, when the interrupt
vector indicates that a Special Receive Condition interrupt
has occurred, all the appropriate error bits can be read from
a single register (RR1).

Write Registers. The SIO contains eight write registers for
Channel B and seven write registers for Channel A
(WRO-WR7 in Figure 14) that are programmed separately to
configure the functional personality ol the channels; WR2
contains the interrupt vector for both channels and is only in
the Channel B register set. With the exception of WRO,
programming the write registers requires two bytes. The first
byte is to WRO and contains three bits (00-02) that point to
the selected register; the second byte 1s the actual control
word that is written into the register to configure the SIO.

WRO is a special case in that all ol the basic commands can
be written to it with a single byte. Reset (Internal or external)
initializes the pointer bits 0 0-02 to point to WRO. This implies
that a channel reset must not be combined with the pointing
to any register.

READ REGISTER 0

1~1~1~1~1~1~1~1~1

11 I I I L_j I R' CHARACTER AVAILABLE
L-=::= INT PENDING (CH. A ONLY)

Tx BUFFER EMPTY
~----DCO '\

~-------CTS * I SYNC/HUNT }

~~~~~;.:~~~/EOM 

*Used With "External/Status Interrupt" Mo£1es 

READ REGISTER 1 t 

1~1~1~1~1~1~1~1~1 

L..._ALL SENT 

I FIELD BITS I FIELD BITS IN } 
IN PREVIOUS SECOND PREVIOUS * 

BYTE BYTE 
0 0 3 
0 0 4 
0 0 5 
1 0 6 
1 0 7 
1 0 8 
1 1 8 
0 2 8 

PARITY ERROR 
Rx OVERRUN ERROR 

~---CRC/FRAMING ERROR 
~----END OF FRAME (SDLC) 

*Residue data for eight Rx bits/character programmed 
tUsed with special receive condition mode 

READ REGISTER 2 (Channel B only) 

1~1~1~1~1~1~1~1~1 

tVariable if "Status Affects Vector" is programmed 

Figure 13. Read Register Bit Functions 

123 



WRITE REGISTER 0 

1~1~1~1~1~1~1~1~1 
I I I 

NULL CODE 

REGISTER 0 
REGISTER 1 
REGISTER 2 
REGISTER 3 
REGISTER 4 
REGISTER 5 
REGISTER 6 
REGISTER 7 

SEND ABORT (SDLC) 
RESET EXT/STATUS INTERRUPTS 
CHANNEL RESET 
ENABLE INT ON NEXT Rx CHARACTER 
RESET TxlNT PENDING 
ERROR RESET 
RETURN FROM INT (CH-A ONLY) 

NULL CODE 
RESET Rx CRC CHECKER 
RESET Tx CRC GENERATOR 
RESET Tx UNDERRUN/EOM LATCH 

WRITE REGISTER 1 

1~1~1~1~1~1~1~1~1 

111 
I l____ EXT INT ENABLE 
L--===: Tx INT ENABLE 

L---- STATUS AFFECTS VECTOR 
(CH. B ONLY) 

Rx INT DISABLE } 
Rx INT ON FIRST CHARACTER 
INT ON ALL Rx CHARACTERS (PARITY AFFECTS VECTOR) * 
INT ON ALL Rx CHARACTERS (PARITY DOES NOT AFFECT 
VECTOR) 

WAIT/READY ON R/T 
WAIT/READY FUNCTION 

'-----WAIT/READY ENABLE 

*Or on special condition 

WRITE REGISTER 2 (Channel B only) 

1~1~1~1~1~1~1~1~1 

I ~I I ~~}INTERRUPT ~V4 VECTOR 
vs 
V6 
V7 

WRITE REGISTER 3 

Rx 5 BITS/CHARACTER 
Rx 7 BITS/CHARACTER 
Rx 6 BITS/CHARACTER 
Rx 8 BITS/CHARACTER 

WRITE REGISTER 4 

1~1~:~1~1~1~1~1~1 

I I I L____PARITY ENABLE 
L__.==PARITY EVEN/ODO 

SYNC MODES ENABLE 
1 STOP BIT/CHARACTER 
1 1h STOP BITS/CHARACTER 
2 STOP BITS/CHARACTER 

8 BIT SYNC. CHARACTER 
16 BIT SYNC CHARACTER 
SDLC MOOE (01111110 FLAG) 
EXTERNAL SYNC MOOE 

X1 CLOCK MODE 
X16 CLOCK MODE 
X32 CLOCK MODE 
X64 CLOCK MODE 

WRITE REGISTER 5 

1~1~1~1~1~1~1~1~1 

DTR 

11 l-~---~~iRC ENABLE 
- SDLC/CAC·16 

Tx ENABLE 
'-------SEND BREAK 

Tx 5 BITS (OR LESS)/CHARACTER 
Tx 7 BITS/CHARACTER 
Tx 6 BITS/CHARACTER 
Tx 8 BITSICHARACTER 

WRITE REGISTER 6 

*Also SDLC address field 

WRITE REGISTER 7 

*For SDLC it must be programmed to --01111110·· for flag recognition 

Figure 14. Write Register Bit Functions 

124 



TIMING 

The SIO must have the same clock as the CPU (same phase 
and frequency relationship, not necessarily the same 
driver). 

Read Cycle. The timing signals generated by a ZBO CPU 
input instruction to read a data or status byte from the SIO 
are illustrated in Figure 15. 

Write Cycle. Figure 16 illustrates the timing and data 
signals generated by a ZBO CPU output instruction to write a 
data or control byte into the SIO. 

Interrupt-Acknowledge Cycle. After receiving an 
interrupt-request signal from an SIO (INT pulled Low), the 
ZBO CPU sends an interrupt-acknowledge sequence, M1 
Low and IORQ Low, a few cycles later (Figure 17). 

The SIO contains an internal daisy-chained interrupt 
structure for prioritizing nested interrupts for the various 
functions of its two channels, and this structure can be used 
within an external user-defined daisy chain that prioritizes 
several peripheral circuits. 

The IEI of the highest-priority device is terminated High. A 
device that has an interrupt pending or under service forces 
its IEO Low. For devices with no interrupt pending or under 
service, IEO = IEI. 

To insure stable conditions in the daisy chain, all interrupt 
status signals are prevented from changing while M1 is Low. 
When IORQ is Low, the highest priority interrupt requestor 

T1 T2 Tw T3 T, 

CLOCK 

Ci,Clii, B/i 

IORQ 

iiii 

M1 

DATA ~ 
Figure 15. Read Cycle 

T1 T2 Tw T3 T1 

RD ----------+------
M1 ----------.;.------

DATA---------~-----
Figure 16. Write Cycle 

(the one with IEI High) places its interrupt vector on the data 
bus and sets its internal interrupt-under-service latch. 

Return From Interrupt Cycle. Figure 18 illustrates the 
return from interrupt cycle. Normally, the ZBO CPU issues a 
Return From Interrupt (RETI) instruction at the end of an 
interrupt service routine. RETI is a 2-byte opcode (ED-40) 
that resets the interrupt-under-service latch in the SIO to 
terminate the interrupt that has just been processed. This is 
accomplished by manipulating the daisy chain in the 
following way. 

The normal daisy-chain operation can be used to detect a 
pending interrupt; however, it cannot distinguish between 
an interrupt under service and a pending unacknowledged 
interrupt of a higher priority. Whenever ED is decoded, the 
daisy chain is modified by forcing High the IEO of any 
interrupt that has not yet been acknowledged. Thus the 
daisy chain identifies the device presently under service as 
the only one with an IEI High and an IEO Low. If the next 
opcode byte is 40, the interrupt-under-service latch is reset. 

The ripple time of the interrupt daisy chain (both the 
High-to-Low and the Low-to-High transitions) limits the 
number of devices that can be placed in the daisy chain. 
Ripple time can be improved with carry-look-ahead, or by 
extending the interrupt-acknowledge cycle. For further 
information about techniques for increasing the number of 
daisy-chained devices, refer to the Z8400 ZBO CPU Product 
Specification (00-2001-04). 

CLOCK 

M1 \....._ _____ _,,,_,: I 
I 

\ I I 
'---11--'· 

RD ------------+-----
---------~..--------.1~ 

IEI ---------/ : \===== 
DATA-------------(~~-----

Figure 17. Interrupt Acknowledge Cycle 

IEI ------./ 

IEO ,-______ ___._/ 

Figure 18. Return from Interrupt Cycle 

125 



ABSOLUTE MAXIMUM RATINGS 

Voltages 1n Vee with respect to Vss ...... - 0.3V to + 0. 7V 
Voltages on all inputs with respect 

to Vss . . ............... -0.3V to Vee+ 0.3V 
Storage Temperature. . - 65°C to + 150°C 

STANDARD TEST CONDITIONS 

The characteristics below apply for the following test 
conditions, unless otherwise noted. All voltages are 
referenced to GND (OV). Positive current flows into the 
referenced pin. Available operating temperature range is: 

• S = O"C to +70"C, V cc Range 
NMOS: +4.75V <Vee< +5.25V 
CMOS: +4.50V < V cc < +5.50V 

ii E = ·40"C to 100"C, :4.50V <Vee< +5.50V 

126 

Stresses greater than those listed under Absolute Maximum Ratings may 
cause permanent damage to the device. This is a stress rating only; 
operation of the device at any condition above these indicated 1n the 
operational sections of these spec1ficat1ons is not 1mpl1ed. Exposure to 
absolute maximum rating cond1t1ons for extended periods may affect 
device reliability 

+SV 

2.1K 



DC CHARACTERISTICS (Z84C4X CMOS Z80 SIO) 

Symbol Parameter Min Max Typ Unit Test Condition 

V1Le Clock Input Low Voltage -0.3 +045 v 
V1He Clock Input High Voltage Vee-0.6 Vee+0.3 v 
V1L Input Low Voltage -0.3 +0.8 v 
V1H Input High Voltage +2.2 Vee v 
Vol Output Low Voltage +04 v loL = 2.0mA 

VoH 1 Output High Voltage +24 v loH = -1.6mA 

VoH2 Output High Voltage Vee-o.s v loH = -250µA 

lu Input Leakage Current ±10 µA V1N = 04 to Vee 
11 () 3-State Output Leakaae Current 1n Float er 10 fJA vol.); = n 4 t0 Vee 

IL(SY) SYNC Pin Leakage Current + 10/-40 µA v1N = 04 to Vee 

ICC1 Power Supply Current Vee= sv 
10 7 mA CLK = 4MHz 
10 7 mA CLK = 6MHz 
12 8 mA CLK = 8MHz 

V1H = Vee - 0.2V 
V1L = 0.2V 

ICC2 Standby Supply Current 10 0.5 µA Vee= sv 
CLK = (0) 
V1H = Vee - 0.2V 
V1L = 0.2V 

Over specified temperature and voltage range. 

CAPACITANCE 

Symbol Parameter Min Max Unit 

c Clock Capacitance 7 pf 

C1N Input Capacitance 5 pf 

CouT Output Capacitance 10 pf 

Over specified temperature range; f = 1 MHz. 
Unmeasured pins returned to ground. 

127 



AC CHARACTERISTICS* (Z84C4X CMOS Z80 SIO) 

Z84C40/1/2/4 

Z84C4X04 Z84C4X06 Z84C4X08 

No. Symbol Parameter Min Max Min Max Min Max Notes 

TcC Clock Cycle Time 250 DC 162 DC 125 DC 

2 TwCh Clock Width (High) 105 DC 65 DC 55 DC 

3 TIC Clock Fall Time 30 20 10 

4 TrC Clock Rise Time 30 20 10 

5 TwCI Clock Width (Low) 105 DC 65 DC 55 DC 

6 TsAD(C) CE, CID, BIA to Clock i Setup Time 145 60 40 

7 TsCS(C) 'IO'RQ, RTI to Clock i Setup Time 115 60 40 

8 TdC(DO) Clock i to Data Out Delay 220 150 100 

9 TsDl(C) Data In to Clock i Setup (write or Jlf Cycle) 50 30 20 

10 TdRD(DOz) RD i to Data Out Float Delay 110 90 75 

11 TdlO(DOI) lCi'RO .J, .to Data Out Delay (INTACK Cycle) 160 120 90 

12 TsM1(C) fil to Clock i Setup Time 90 75 55 

13 TslEl(IO) IEI to IORQ .J, Setup Time (INTACK Cycle) 140 120 80 

14 TdM1(1EO) M1 .J, to IEO .J, Delay (interrupt before M1) 190 160 130 

15 TdlEl(IEOr) IEI i to IEO i Delay (after ED decode) 100 70 60 

16 TdlEl(IEOI) IEI .J, to IEO .J, Delay 100 70 60 

17 TdC(INT) Clock i to 1RT .J, Delay 200 150 120 

18 TdlO(W/RWI) IORQ .J, or CE .J, to WiRDY Delay (Wait Mode) 210 175 130 

19 TdC(W/RR) Clock i to WiRIJY' Delay (Ready Mode) 120 100 90 

20 TdC(W/RWz) Clock .J, to WiJm? Float Delay (Wait Mode) 130 110 90 

21 Th Any unspecified Hold when Setup is specified 0 0 0 

• Units in nanoseconds (ns). 

128 



AC CHARACTERISTICS TIMING (Z84C4X CMOS ZBO SIO) 

CLK 

CE, CID, BIA 

IORQ 

M1 

IEI 

----0}-----l--+---~I 

IEO 

INT 

129 



AC CHARACTERISTICS TIMING (Z84C4X CMOS zao SIO; Continued) 

WIRDY 

1-------<!61----"""' 

130 



AC CHARACTERISTICS (Z84C4X CMOS Z80 SIO; Continued) 
Z84C40/1 /2/4 

Z84C4X04 Z84C4X06 Z84C4X08 

No. Symbol Parameter Min Max Min Max Min Max Notes 

TwPh Pulse Width (High) 200 200 150 2 

2 TwPI Pulse Width (Low) 200 200 150 2 

3 TcTxC TxC Cycle Time 400 330 250 2 

4 TwTxCI TxC Width (Low) 180 100 85 2 

5 TwTxCh TxC Width (High) 180 100 85 2 

6 fdlxC(TxD) txC J, to TxD Delay 300 220 160 2 

7 TdTxC(W/RRf) TxC l to W!RDY J Delay (Ready Mode) 5-9 5-9 5-9 

8 TdTxC(INT) TxC l to INT l Delay 5-9 5-9 5-9 

9 TcRxC RxC Cycle Time 400 330 250 2 

10 TwRxCI RxC Width (Low) 180 100 85 2 

11 TwRxCh RxC Width (High) 180 100 85 2 

12 TsRxD(RxC) RxD to RxC i Setup Time (x1 Mode) 0 0 0 2 

13 ThRxD(RxC) RxC i RxD Hold Time (x1 Mode) 140 100 80 2 

14 TdRxC(W/RRf) RxC i to W!RDY l Delay (Ready Mode) 1G· 13 10-13 10-13 

15 TdRxC(INn RxC i to TNT l Delay 10-13 10-13 10-13 

16 TdRxC(SYNC) RxC i to SYNC l Delay (Output Modes) 4-7 4-7 4-7 

17 TsSYNC(RxC) SYNC l to RxC i Setup (External Sync Modes) -100 -100 -100 2 

•in all modes, the System Clock rate must be at least five times the maximum data rate. RESET must be active a minimum of one complete clock cycle. 

1 . Units equal to System Clock Periods. 

2. Units in nanoseconds (ns). 

131 



DC CHARACTERISTICS (Z844X I NMOS Z80 SIO) 

Symbol 

V1Le 

V1He 

V1L 

V1H 

Vol 
VoH1 

VoH2 

lu 

ILO 

IL(SY) 

ICC1 

Parameter 

Clock Input Low Voltage 

Clock Input High Voltage 

Input Low Voltage 

Input High Voltage 

Output Low Voltage 

Output High Voltage 

Output High Voltage 

Input Leakage Current 

3-State Output Leakage Current 1n Float 

SYNC Pin Leakage Current 

Power Supply Current 

Over specified temperature and voltage range. 

CAPACITANCE 

Symbol Parameter 

c Clock Capacitance 

C1N Input Capacitance 

CouT Output Capacitance 

Over specified temperature range; f = 1 MHz. 
Unmeasured pins returned to ground. 

132 

Min 

-0.3 

Vee-0.6 

-0.3 

+2.0 

+2.4 

Max 

+0.45 

Vee+0.3 

+0.8 

Vee 

+0.4 

±10 

±10 

+10/-40 

100 

Min Max 

40 

5 

15 

Unit 

v 
v 
v 
v 
v 
v 
v 

µA 

µA 

µA 

mA 

Test Condition 

loL = 2.0mA 

loH = -250µA 

v1N = 0.4 to Vee 

VouT = 0.4 to Vee 

O<V1N<Vec 

Unit 

pf 

pf 

pf 



AC CHARACTERISTICS* (Z844X I NMOS Z80 SIO) 

Z0844X04 Z0844X06 
Number Symbol Parameter Min Max Min Max 

TcC Clock Cycle Time 250 4000 162 4000 

2 TwCh Clock Width (High) 105 2000 70 2000 

3 TfC Clock Fall Time 30 15 

4 TrC Clock Rise Time 30 15 

5 TwCI Clock Width (Low) 105 2000 70 2000 

6 TsAD(C) CE, CID, BIA to Clock t Setup Time 145 60 

7 TsCS(C) /ORO, RD to Clock t Setup Time 115 60 

8 TdC(DO) Clock t to Data Out Delay 220 150 

9 TsDl(C) Data In to Clock t Setup (Write or M 1 Cycle) 50 30 

10 TdRD(DOz) RD t to Data Out Float Delay 110 90 

11 TdlO(DOI) IORQ +to Data Out Delay (INTACK Cycle) 160 120 

12 TsM1(C) M1 to Clock t Setup Time 90 75 

13 Ts/El(IO) IE/ to IORQ +Setup Time (INTACK Cycle) 140 120 

14 TdM1(/EO) M1 +to IEO +Delay (interrupt before Mi) 190 160 

15 TdlEl(IEOr) /El t to IEO t Delay (alter ED decode) 100 70 

16 TdlEl(IEOf) /El +to IEO + Delay 100 (0 

17 TdC(INT) Clock t to INT+ Delay 200 150 

18 Td/O(WIRWf) IORQ +or CE+ to WIRDY + Delay (Wait Mode) 210 175 

19 TdC(WIRRf) Clock t to WIRDY + Delay (Ready Mode) 120 100 

20 TdC(WIRWz) Clock+ to WIRDY Float Delay (Wait Mode) 130 110 

21 Th Any unspecified Hold when Setup is specified 0 0 

·units in nanoseconds (ns). 

133 



AC CHARACTERISTICS TIMING (Z844X I NMOS Z80 SIO; Continued) 

I 
CD 

' CTS, DCD, SYNC ) 
0 

TxD 

WlRDY 

INT 

RxC 

) 

RxD 

WlRDY 

INT 

SYNC 

16 

134 



AC CHARACTERISTICS TIMING (Z844X I NMOS Z80 SIO) 

CLK 

CE. Clii, Bli 

IOAQ, RD 

M1 

IEI 

----@---+---+---

IED 

INT 

--~ 
W/RDY ---{ __ _ 

135 



, 

AC CHARACTERISTICS (Z844X I NMOS Z80 SIO; Continued) 

Z0844X04 Z0844X06 
No. Symbol Parameter Min Max Min Max Notes• 

TwPh Pulse Width (High) 200 200 2 

2 TwPI Pulse Width (Low) 200 200 2 

3 TcTxC lxC Cycle Time 400 00 330 co 2 

4 TwTxCI TxC Width (Low) 180 00 100 co 2 

5 TwTxCh lxC Width (High) 180 00 100 co 2 

6 TdTxC(TxD) lxC J. to TxD Delay 300 220 2 

7 TdTxC(W/RRf) lxC J. to WtlIDY J. Delay (Ready Mode) 5 9 5 9 

8 TdTxC(INT) TxC J. to INT J. Delay 5 9 5 9 

9 TcRxC RXC Cycle Time 400 00 330 co 2 

10 TwRxCI RXC Width (Low) 180 00 100 2 

11 TwRxCh RXC Width (High) 180 00 100 co 2 

12 TsRxD(RxC) RxD to RxCiSetup Time (x1 Mode) 0 0 2 

13 ThRxD(RxC) RXC i RxD Hold Time (x1 Mode) 140 100 2 

14 T dRxC(W /RR!) RXC i to WtRDY J. Delay (Ready Mode) 10 13 10 13 

15 TdRxC(INT) RXC i to TFIT l Delay 10 13 10 13 

16 TdRxC(SYNC) RxC i to SYNC J. Delay (Output Modes) 4 7 4 7 

17 TsSYNC(RxC) SYNC J. to RXC i Setup {External Sync Modes) -100 -100 2 

*In all modes, the System Clock rate must be at least five times the maximum data rate. RESET must be active a minimum of one complete clock cycle. 

1. Units equal to System Clock Periods. 

2. Units in nanoseconds (ns). 

136 



Zilog 

FEATURES 

• Two independent full-duplex channels with separate 
modem controls. Modem status can be monitored. 

• In x1 clock mode, da~a rates are Oto SOOK bits/second 
with a 4.0 MHz clock, or 0 to 1.2 M bits/second with a 6.0 
MHz clock. 

• Receiver data registers are quadruply buffered; the 
transmitter is doubly buffered. 

• Programmable options include 1, 11/2, or 2 stop bits; 
even, odd, or no parity; and x1, x16, x32, and x64 clock 
modes. 

GENERAL DESCRIPTION 

The Z80 DART (Dual-Channel Asynchronous Receiver/ 
Transmitter) is a dual-channel multifunction peripheral 
component that satisfies a wide variety of asynchronous 
serial data communications requirements in microcomputer 
systems. The zao DART is used as a serial-to-parallel, 

Do Rx DA 

D, ._.,_R11CA ., TxDA 

"'"{ 
.,.__TkCA 

DATA 
W/RDYA BUS .. 

.,..__m 
D, i!ffi 

~ }-CONTROL 
liTliA 

J:8470 
Z80DART 

Rx DB 

WIROVS 

BIA 
Rii 
iffiill 

DAISY { iNf -cm }--CHAIN 
CONTROL 

IEI OTRB 
INTERRUPT 

CDNTRDL IEO DCDB 

+5 V GND CLK 

Figure 1. Pin Functions 

Z8470 Z80® DART 
Dual Asynchronous 
Receiver/Transmitter 

Product 
Specification 

January 1989 

• Break generation and detection as well as parity-, 
overrun-, and framing-error detection are available. 

• Interrupt features include a programmable interrupt 
vector, a "status affects vector" mode for fast interrupt 
processing, and the standard zao peripheral daisy­
chain interrupt structure that provides automatic interrupt 
vectoring with no external logic. 

• On-chip logic for ring indication and carrier-detect status. 

parallel-to-serial converter/controller in asynchronous 
applications. In addition, the device also provides modem 
controls for both channels. In applications where modem 
controls are not needed, these lines can be used for 
general-purpose 1/0. 

CH·A 

CH·B 

., 
D, ., ., .. ., 

fN'i' 
IEI 

IEO BIA 

m 
+5V R1i 

WIRDYA 10 Z8470 31 GND 

RIA 11 ZSODART 30 WiRDYB 
R11.0A 12 Aili 

Rx CA 13 R11:DB 

TxCA 14 RxTxCB 

TxDA 15 TxOB 

DTRA 16 25 DTRB 

RTSA 17 RTSB 

CTSA 18 CTSB 

OCDA 19 DCDB 

CLK 20 21 RESET 

Figure 2. 40-Pin Dual-In-line Package (DIP), 
Pin Assignments 

137 



Zilog also offers the ZBO 810, a more versatile device that 
provides synchronous (Bisync, HDLC, and SDLC) as well 
as asynchronous operation. 

PIN DESCRIPTION 

B/A. Channel A or B Select (input, High selects Channel B). 
This input defines which channel is accessed during a data 
transfer between the CPU and the Z80 DART 

C/D. Control or Data Select (input, High selects Control). 
This input specifies the type of information (control or data) 
transferred on the data bus between the CPU and the Z80 
DART. 

CE. Chip Enable (input, active Low). A Low at this input 
enables the Z80 DART to accept command or data input 
from the CPU during a write cycle, or to transmit data to the 
CPU during a read cycle. 

CLK. System Clock (input). The 280 DART uses the 
standard zao single-phase system clock to synchronize 
internal signals. 

CTSA, CTSB. Clear To Send (inputs, active Low). When 
programmed as Auto Enables, a Low on these inputs 
enables the respective transmitter. If not programmed as 
Auto Enables, these inputs may be programmed as 
general-purpose inputs. Both inputs are Schmitt-trigger 
buffered to accommodate slow-risetime signals. 

Do-07. System Data Bus (bidirectional, 3-state). This bus 
transfers data and commands between the CPU and the 
zao DART. 1 

DCDA, DCDB. Data Carrier Detect (inputs, active Low). 
These pins function as receiver enables if the Z80 DART is 
programmed for Auto Enables; otherwise they may be used 
as general-purpose input pins. Both pins are Schmitt-trigger 
buffered. 

DTRA, DTRB. Data Terminal Ready (outputs, active Low). 
These outputs follow the state programmed into the DTR bit. 
They can also be programmed as general-purpose outputs. 

IEI. Interrupt Enable In (input, active High). This signal is 
used with IEO to form a priority daisy chain when there is 
more than one interrupt-driven device. A High on this line 
indicates that no other device of higher priority is being 
serviced by a CPU interrupt service routine. 

IEO. Interrupt Enable Out (output, active High). IEO is High 
only if IEI is High and the CPU is not servicing an interrupt 
from this 280 DART. Thus, this signal blocks lower priority 
devices from interrupting while a higher priority device is 
being serviced by its CPU interrupt service routine. 

INT. Interrupt Request (output, open drain, active Low). 
When the Z80 DART is requesting an interrupt, it pulls INT 
Low. 

M1. Machine Cycle One (input from 280 CPU, active Low). 
When M1 and RD are both active, the Z80 CPU is fetching 

138 

The Z80 DART is fabricated with n-channel silicon-gate 
depletion-load technology, and is packaged in a 40-pin 
plastic or ceramic DIP (Figures 1 and 2). 

an instruction from memory; when M1 is active while IORQ 
is active, the zao DART accepts M1 and IORQ as an 
interrupt acknowledge if the Z80 DART is the highest priority 
device that has interrupted the Z80 CPU. 

IORQ. Input/Output Request (input from CPU, active Low). 
IORQ is used in conjunction with B/A, CID, CE, and RD to 
transfer commands and data between the CPU and the Z80 
DART When CE, RD, and IORQ are all active, the channel 
selected by B/Atransfers data to the CPU (a read operation). 
When CE and IORQ are active, but RD is inactive, the 
channel selected by B/A is written to by the CPU with either 
data or control information as specified by C/D. 

RxCA, RxCB. Receiver Clocks (inputs). Receive data is 
sampled on the rising edge of RxC. The Receive Clocks 
may be 1, 16, 32, or 64 times the data rate. 

RD. Read Cycle Status (input from CPU, active Low). If RD is 
active, a memory or 1/0 read operation is in progress. 

RxDA, RxDB. Receive Data (inputs, active High). 

RESET. Reset (input, active Low). Disables both receivers 
and transmitters, forces TxDAand TxDB marking, forces the 
modem controls High, and disables all interrupts. 

RIA, RIB. Ring Indicator (inputs, active Low). These inputs 
are similar to CTS and DCD. The zao DART detects both 
logic level transitions and interrupts the CPU. When not used 
in switched-line applications, these inputs can be used as 
general-purpose inputs. 

RTSA, RTSB. Request to Send (outputs, active Low). When 
the RTS bit is set, the RTS output goes Low. When the ATS bit 
is reset, the output goes High after the transmitter empties. 

'li<CA; TxCB. Transmitter Clocks (inputs). TxD changes on 
the falling edge of TxC. The Transmitter Clocks may be 1, 16, 
32, or 64 times the data rate; however, the clock multiplier for 
the transmitter and the receiver must be the same. The 
Transmit Clock inputs are Schmitt-trigger buffered. Both the 
Receiver and Transmitter Clocks may be driven by the Z80 
C1C Counter Time Circuit for programmable baud rate 
generation. 

'li<DA, 'li<DB. Transmit Data (outputs, active High). 

W /ROYA, W /RDYB. Wait/Ready (outputs, open drain when 
programmed for Wait function, driven High and Low when 
programmed for Ready function). These dual-purpose 
outputs may be programmed as Ready lines for a OMA 
controller or as Wait lines that synchronize the .CPU to the 
280 DART data rate. The reset state is open drain. 



FUNCTIONAL DESCRIPTION 

The functional capabilities of the Z80 DART can be 
described from two different points of view: as a data 
communications device, it transmits and receives serial 
data, and meets the requirements of asynchronous data 
communications protocols; as a Z80 family peripheral, it 
interacts with the Z80 CPU and other Z80 peripheral 
circuits, and shares the data, address, and control buses, as 
well as being a part of the Z80 interrupt structure. As a 
peripheral to other microprocessors, the Z80 DART offers 
valuable features such as nonvectored interrupts, polling. 
and simple handshake capability. 

The first part of the following functional description 
introduces Z80 DART data communications capabilities; 
the second part describes the interaction between the CPU 
and the Z80 DART 

The Z80 DART offers RS-232 serial communications 
support by providing device signals for external modem 
control. In addition to dual-channel Request To Send, Clear 
To Send, and Data Carrier Detect ports, the Z80 DART also 
features a dual channel Ring Indicator (RIA, RIB) input to 
facilitate local/remote or station-to-station communication 
capability. Figure 3 is a block diagram. 

Communications Capabilities. The Z80 DART provides 
two independent full-duplex channels for use as an 
asynchronous receiver/transmitter. The following is a short 
description of receiver/transmitter capabilities. For more 
details, refer to the Asynchronous Mode section of the ZBO 
SIO Technical Manual (03-3033-01 ). 

The Z80 DART offers transmission and reception of five to 
eight bits per character, plus optional even or odd parity. The 
transmitter can supply one, one and a half, or two stop bits 
per character and can provide a break output at any time. 
The receiver break detection logic interrupts the CPU both 
at the start and end of a received break. Reception is 
protected from spikes by a transient spike rejection 
mechanism that checks the signal one-half a bit time after a 
Low level is detected on the Receive Data input. If the Low 
does not persist-as in the case of a transient-the 
character assembly process is not started. 

Framing errors and overrun errors are detected and 
buffered together with the character on which they 
occurred. Vectored interrupts allow fast servicing of 
interrupting conditions using dedicated routines. 
Furthermore, a built-in checking process avoids interpreting 
a framing error as a new start bit: a framing error results in 
the addition of one-half a bit time to the point at which the 
search for the next start bit is begun. 

The Z80 DART does not require symmetric Transmit and 
Receive Clock signals, a feature that allows it to be used with 
a Z80 CTC or any other clock source. The transmitter and 
receiver can handle data at a rate of 1 , 1 /16, 1 /32, or 1 /64 of 
the clock rate supplied to the Receive and Transmit Clock 
inputs. When using Channel B, the bit rates for transmit and 
receive operations must be the same because RxC and TxC 
are bonded together (RxTxCB). 

DATA 

INTERRUPT ( 
CONTROL 

LINES 

) SERIAL DATA 

RIO 

......__ I SERIAL DATA 

CHANNEL CLOCK 
WAIT/READY 

Figure 3. Block Diagram 

1/0 Interface Capabilities. The Z80 DART offers the 
choice of Polling, Interrupt (vectored or non-vectored) and 
Block Transfer modes to transfer data, status, and control 
information to and from the CPU. The Block Transfer mode 
can be implemented under CPU or OMA control. 

Polling. There are no interrupts in the Polled mode. Status 
registers RRO and RR1 are updated at appropriate times for 
each function being performed. All the interrupt modes of 
the Z80 DART must be disabled to operate the device in a 
Polled environment. 

While in its Polling sequence, the CPU examines the status 
contained in RRO for each channel; the RRO status bits serve 
as an acknowledge to the Poll inquiry. The two RRO status 
bits 0 0 and 0 2 indicate that a data transfer is needed. The 
status also indicates Error or other special status conditions. 
The Z80 DART Programming section contains more 
information. The Special Receive Condition status 
contained in RR1 does not have to be read in a Polling 
sequence because the status bits in RR1 are accompanied 
by a Receive Character Available status in RRO. 

Interrupts. The ZSO DART offers an elaborate interrupt 
scheme that provides fast interrupt response in real-time 
applications. As a member of the Z80 family, the Z80 DART 
can be daisy-chained along with other ZSO peripherals for 
peripheral interrupt-priority resolution. In addition, the 
internal interrupts of the Z80 DART are nested to prioritize 
the various interrupts generated by Channels A and B. 
Channel B registers WR2 and RR2 contain the interrupt 
vector that points to an interrupt service routine in the 
memory. To eliminate the necessity of writing a status 
analysis routine, the Z80 DART can modify the interrupt 
vector in RR2 so it points directly to one of eight interrupt 
service routines. This is done under program control by 
setting a program bit (WR1, 0 2) in Channel B called "Status 

139 



Affects Vector." When this bit is set, the interrupt vector in 
RR2 is modified according to the assigned priority of the 
various interrupting conditions. 

Transmit interrupts, Receive interrupts, and External/Status 
interrupts are the main sources of interrupts. Each interrupt 
source is enabled under program control with Channel A 
having a higher priority than Channel B, and with Receiver, 
Transmit, and External/Status interrupts prioritized in that 
order within each channel. When the Transmit interrupt is 
enabled, the CPU is interrupted by the transmit buffer 
becoming empty. (This implies that the transmitter must 
have had a data character written into it so it can become 
empty.) When enabled, the receiver can interrupt the CPU in 
one of three ways: 

• Interrupt on the first received character 

• Interrupt on all received characters 

• Interrupt on a Special receive condition 

Interrupt On First Character is typically used with the Block 
Transfer mode. Interrupt On All Received Characters can 
optionally modify the interrupt vector in the event of a parity 
error. The Special Receive Condition interrupt can occur on 
a character basis. The Special Receive Condition can cause 
an interrupt can occur on a character basis. The Special 
Receive condition can cause an interrupt only if the Interrupt 
On First Received Character or Interrupt On All Received 
Characters mode is selected. In Interrupt On First Receive 

INTERNAL ARCHITECTURE 

The device internal structure includes a Z80 CPU interface, 
internal control and interrupt logic, and two full-duplex 
channels. Each channel contains read and write registers, 
and discrete control and status logic that provides the 
interface to modems or other external devices. 

The read and write register group includes five 8-bit control 
registers and two status registers. The interrupt vector is 
written into an additional 8-bit register (Write Register 2) in 
Channel B, that may be read through Read Register 2 in 
Channel B. The registers for both channels are designated 
as follows: 

WRO-WR5 Write Registers 0 through 5 
RRO-RR2 Read Registers 0 through 2 

The bit assignment and functional grouping of each register 
is configured to simplify and organize the programming 
process. 

The logic for both channels provides formats, bit 
synchronization, and validation for data transferred to and 
from the channel interface. The modem control inputs Clear 
to Send (CTS), Data Carrier Detect (DCD), and Ring 

140 

Character, an interrupt can occur from Special Receive 
conditions (except Parity Error) after the first Received 
character interrupt (example: Receive Overrun interrupt). 

The main function of the External/Status interrupt is to 
monitor the signal transitions of the CTS, DCD, and Ai pins; 
however, an External/Status interrupt is also caused by the 
detection of a Break sequence in the data stream. The 
interrupt caused by the Break sequence has a special 
feature that allows the Z80 DART to interrupt when the Break 
sequence is detected or terminated. This feature facilitates 
the proper termination of the current message, correct 
initialization of the next message, and the accurate timing of 
the Break condition. 

CPU/DMA Block Transfer. The Z80 DART provides a Block 
Transfer mode to accommodate CPU block transfer 
functions and OMA block transfers (Z80 OMA or other 
designs). The Block Transfer mode uses the W/RDY output 
in conjunction with the Wait/Ready bits of Write Register 1. 
The W/RDY output can be defined under software control as 
a Wait line in the CPU Block Transfer mode or as a Ready line 
in the OMA Block Transfer mode. 

To a OMA controller, the Z80 DART Ready output indicates 
that the Z80 DART is ready to transfer data to or from 
memory. To the CPU, the Wait output indicates that the Z80 
DART is not ready to transfer data, thereby requesting the 
CPU to extend the 1/0 cycle. 

Indicator (Ai) are monitored by the control logic under 
program control. All the modem control signals are general 
purpose in nature and can be used for functions other than 
modem control. 

For automatic interrupt vectoring, the interrupt control logic 
determines which channel and which device within the 
channel has the highest priority. Priority is fixed with 
Channel A assigned a higher priority than Channel B; 
Receive, Transmit, and External/Status interrupts are 
prioiitized, in that order within each channel. 

Data Path. The transmit and receive data path illustrated for 
Channel A in Figure 4 is identical for both channels. The 
receiver has three 8-bit buffer registers in a FIFO 
arrangement in addition to the 8-bit receive shift register. 
This scheme creates additional time for the CPU to service a 
Receive Character Available interrupt in a high-speed data 
transfer. 

The transmitter has an 8-bit transmit data register that is 
loaded from the internal data bus, and 'a 9-bit transmit shift 
register that is loaded from the transmit data register. 



RECEIVE 
RxCA __,.. CLOCK 

LOGIC 

RECEIVE 
SHIFT REGISTER 

(8 BITS) 

RECEIVE 
ERROR 
LOGIC 

u 
TRANSMIT DATA 

SHIFT REGISTER 1 START 
BIT 

TRANSMIT 
2·BIT DELAY TxDA 

Figure 4. Data Path 

READ, WRITE AND INTERRUPT TIMING 

Read Cycle. The timing signals generated by a Z80 CPU 
input instruction to read a Data or Status byte from the Z80 
DART are illustrated in Figure 5. 

Write Cycle. Figure 6 illustrates the timing and data signals 
generated by aZ80 CPU output instruction to write a Data or 
Control byte into the Z80 DART 

Interrupt Acknowledge Cycle. (Figure 7) After receiving 
an Interrupt Request signal (INT pulled Low), the Z80 CPU 
sends an Interrupt Acknowledge signal (M 1 and IORQ both 
Low). The daisy-chained interrupt circuits determine the 
highest priority interrupt requestor. The /El ot the highest 
priority peripheral is terminated High. For any peripheral 

r, T, Tw T, r, 

CLOCK 

CE 

IOAQ 

AD 

M1 

DATA G:) 
Figure 5. Read Cycle 

that has no interrupt pending or under service, IEO = IEI. 
Any peripheral that does have an interrupt pending or under 
service forces its IEO Low 

To insure stable conditions in the daisy chain, all interrupt 
status signals are prevented from changing while M 1 is Low. 
When IORQ is Low, the highest priority interrupt requestor 
(the one with IEI High) places its interrupt vector on the data 
bus and sets its internal interrupt-under-service latch. 

Reier to the Technical Manual (03-3033-01) tor additional 
details on the interrupt daisy chain and interrupt nesting. 

T, T, Tw T, r, 

CLOCK 

CE 

IOAQ 

FiD 

M1 

DATA 

Figure 6. Write Cycle 

141 



CLOCK 

M1 ~--------/ 
, ___ ! 

--------------- ----IE• _________ / \ __ ,,_ __ 

DATA----------~>----

Figure 7. Interrupt Acknowledge Cycle 

Return From Interrupt Cycle. (Figure 8) Normally, the Z80 
CPU issues an RETI (Return From Interrupt) instruction at 
the end of an interrupt service routine. RETI is a 2-byte 
opcode (ED-4D) that resets the interrupt-under-service latch 
to terminate the interrupt that has just been processed. 

Z80 DART PROGRAMMING 

To program the Z80 DART, the system program first issues a 
series of commands that initialize the basic mode and then 
other commands that qualify conditions within the selected 
mode. For example, the character length, clock rate, 
number of stop bits, even or odd parity are first set, then the 
Interrupt mode and, finally, receiver or transmitter enable. 

Write Registers. The zao DART contains six registers 
(WRO-WR5) in each channel that are programmed 
separately by the system program to configure the 
functional personality of the channels (Figure 4). With the 
exception of WRO, programming the write registers requires 
two bytes. The first byte contains three bits (D0-D2) that point 
to the selected register; the second byte is the actual control 

. word that is written into the register to configure the Z80 
DART. 

WRO is a special case in that all the basic commands 
(CMDo-CMD2) can be accessed with a single byte. Reset 
(internal or external) initializes the pointer bits D0-D2 to point 
to WRO. This means that a register cannot be pointed to in 
the same operation as a channel reset. 

Write Register Functions 

WRO Register pointers, initialization commands fbr the various 
modes 

WR1 Transmit/Receive interrupt and data transfer mode 
definition 

WR2 Interrupt vector (Channel B only) 

WR3 Receive parameters and control 
WR4 Transmit/Receive miscellaneous parameters ahd modes 
WR5 Transmit parameters and controls 

142 

------------------
IEI ------./ 

IEO 

Figure 8. Return from Interrupt Cycle 

When used with other CPUs. the Z80 DART allows the user 
to return from the interrupt cycle with a special command 
called "Return From Interrupt" in Write Register 0 of 
Channel A. This command is interpreted by the Z80 DART in 
exactly the same way it would interpret an RETI command 
on the data bus. 

Both channels contain command registers that must be 
programmed via the system program prior to operation. The 
Channel Select input (B/A) and the Control/Data input (C/D) 
are the command structure addressing controls, and are 
normally controlled by the CPU address bus. 

Read Registers. The Z80 DART contains three registers 
(RRO-RR2) that can be read to obtain the status information 
for each channel (except for RR2, which applies to Channel 
B only). The status information includes error conditions, 
interrupt vector, and standard communications-interface 
signals. 

To read the contents of a selected read register other than 
RRO, the system program must first write the pointer byte to 
WRO in exactly the same way as a write register operation. 
Then, by executing an input instruction, the contents of the 
addressed read register can be read by the CPU. 

The status bits of RRO and RR1 are carefully grouped to 
simplify status monitoring. For example, when the interrupt 
vector indicates that a Special Receive Condition interrupt 
has occurred, all the appropriate error bits can be read from 
a single register (RR1). 

Read Register Functions 

RRO Transmit/Receive buffer status, interrupt status and 
external status 

RR1 Special Receive Condition status 

RR2 Modified interrupt vector (Channel B only) 



Z80 DART READ AND WRITE REGISTERS 

READ REGISTER 0 

l__NOTUSED 

PARITY ERROR ~E
L ALL SENT 

Rx OVERRUN ERROR 

FRAMING ERROR 

NOT USED 

• U~ed With Special Receive Condition Mode. 

WRITE REGISTER 0 

NULL CODE 
NOT USED 

REGISTER 0 
REGISTER 1 
REGISTER 2 
REGISTER 3 
REGISTER 4 
REGISTER 5 

RESET EXT/STATUS INTERRUPTS 
CHANNEL RESET 
ENABLE INT ON NEXT Rx CHARACTER 
RESET TxlNT PENDING 
ERROR RESET 
RETURN FROM INT {CH-A ONLY) 

~-------NOT USED 

WRITE REGISTER 2 (Channel B only) 

1~1~1~1~1~1~1~1~1 

m~i 
'---------V7 

WRITE REGISTER 4 

1~1~1~1~1~1~1~1~1 

INTERRUPT 
VECTOR 

T l L PARITY ENABLE 

- PARITY EVEN/ODO 

O 0 NOT USED 
0 1 1 STOP BIT/CHARACTER 
1 0 1 V2 STOP BITS/CHARACTER 
1 1 2 STOP BITS/CHARACTER 

'------- NOT USED 

X1 CLOCK MODE 
X16 CLOCK MODE 
X32 CLOCK MODE 
X64 CLOCK MODE 

REAU fiEGi5TER i 

INTERRUPT 
VECTOR 

'--------- V7 
*•Variable if ''Status Affects Vector·· 

is Programmed. 

WRITE REGISTER 1 

T ~L EXT INT ENABLE 

- Tx INT ENABLE 
STATUS AFFECTS VECTOR 
(CH. B ONLY) 

0 1 Rx INT ON FIRST CHARACTER OR ON 
0 0 Rx INT DISABLE } 

1 0 IN!~F.~~i~ :~gT~AR~ACTERS (PARITY ~~~~:e~ 
INT ON ALL Rx CHARACTERS (PARITY CONDITION 

DOES NOT AFFECT VECTOR) 

'----- WAIT/READY ON R/T 

'------ WAIT/READY FUNCTION 

'------- WAIT/READY ENABLE 

WRITE REGISTER 3 

1~1~1~1~1~1~1~1~1 

T I c :~~::~~E(MUST BE PROGRAMMED 0) 

- '------- AUTO ENABLES 

Rx 5 BITS/CHARACTER 
Rx 7 BITS/CHARACTER 

WRITE REGISTER 5 

~NOT USED 

Rx 6 BITS/CHARACTER 
Rx 8 BITS/CHARACTER 

T ~I L___= :~:USED 

Tx ENABLE 

SEND BREAK 

Tx 5 BITS (OR LESS)/CHARACTER 
Tx 7 BITS/CHARACTER 
Tx 6 BITS/CHARACTER 
Tx 8 BITS/CHARACTER 

'------OTA 

143 



ABSOWTE MAXIMUM RATINGS 

Voltages on all pins with respect 
toGND .......................... -0.3Vto +?V 

Operating Ambient 
Temperature .............. See Ordering Information 

Storage Temperature .............. - 65 °C to + 150 °C 

STANDARD TEST CONDITIONS 

The DC characteristics and capacitance sections listed 
below apply for the following standard test conditions, 
unless otherwise noted. All voltages are referenced to GND 
(OV). Positive current flows into the referenced pin. 

Available operating temperature ranges are: 

• S = 0°Cto +70°C, +4.75V.;;;Vcc,,; +5.25V 

The Ordering Information section lists package temperature 
ranges and product numbers. Package drawings are in the 
Package Information section. Refer to the Literature List for 
additional documentation. 

DC CHARACTERISTICS 

Symbol Parameter 

V1LC Clock Input Low Voltage 

Stresses greater than those listed under Absolute Maximum Ratings may 
cause permanent damage to the device. This is a stress rating only; 
operation of the device at any condition above those indicated in the 
operational sections of these specifications is not implied. Exposure to 
absolute maximum rating conditions for extended periods may affect 
device reliability. 

+SV 

2.1K 

Min Max Unit Test Condition 

-0.3 +0.45 v 
V1HC Clock Input High Voltage Vcc-0.6 v Vee +0.3V 
V1L Input Low Voltage -0.3 +0.8 v 
V1H Input High Voltage +2.0 +5.5 v 
Vol Output Low Voltage +0.4 v loL = 2.0mA 

VoH Output High Voltage +2.4 v loH = -250µA 

IL lnput/3-State Output Leakage Current -10 +10 µA 0.4 < V1N < 2.4V 

IL(RI) RI Pin Leakage Current -40 +10 µA 0.4 < V1N < 2.4V 

Ice Power Supply Current 100 mA 

TA= 0°Cto70°C, Vee= +5V, ±5%. 

CAPACITANCE 

Symbol Parameter Min Max Unit 

c Clock Capacitance 40 pf 

C1N Input Capacitance 5 pf 

CouT Output Capacitance 15 pf 

Over specified temperature range; f = 1 MHz. 
Unmeasured pins returned to ground. 

144 



AC CHARACTERISTICS TIMING 

CLK 

CE, CID, BIA 

IORQ, RD 

IEI 

IEO 

INT 

iilRDY 

145 



AC CHARACTERISTICS 

Z0847004 Z0847006 
Number Symbol Parameter Min Max Min Max 

1 TcC Clock Cycle Time 250 4000 165 4000 

2 TwCh Clock Width (High) 105 2000 70 2000 

3 TfC Clock Fall Time 30 15 

4 TrC Clock Rise Time 30 15 

5 TwCI Clock Width (Low) 105 2000 70 2000 

6 TsAD(C) CE, CID, BIA to Clock t Setup Time 145 60 

7 TsCS(C) IORQ, RD to Clock t Setup Time 115 60 

8 TdC(DO) Clock t to Data Out Delay 220 150 

9 TsDl(C) Data In to Clock t Setup (Write or M1 Cycle) 50 30 

10 TdRD(DOz) RD t to Data Out Float Delay 110 90 

11 TdlO(DOI) IORQ +to Data Out Delay (INTACK Cycle) 160 100 

12 TsM1(C) M 1 to Clock t Setup Time 90 75 

13 TslEl(IO) IEI to IORQ +Setup Time (INTACK Cycle) 140 120 

14 TdM1(1EO) M1 +to IEO +Delay (interrupt before M1) 190 160 

15 TdlEl(IEOr) IEI t to IEO t Delay (after ED decode) 100 70 

16 TdlEl(IEOf) IEI +to IEO + Delay 100 70 

17 TdC(INT) Clock t to I NT+ Delay 200 150 

18 TdlO(W/RWf) IORQ +or CE+ to W!PJSY +Delay (Wait Mode) 210 175 

19 TdC(W/RR) Clock t to W/RDY + Delay (Ready Mode) 120 100 

20 TdC(W/RWz) Clock+ to WiRDY Float Delay (Wait Mode) 130 110 

·units in nanoseconds (ns). 

146 



AC CHARACTERISTICS (Continued) 

'-~-----

TxD 

RxD 

Z0847004 Z0847006 
Number Symbol Parameter Min Max Min Max Notes• 

1 TwPh Pulse Width (High) 200 200 2 

2 TwPI Pulse Width (Low) 200 200 2 

3 TcTxC TxC Cycle Time 400 00 330 2 

4 TwTxCI TxC Width (Low) 180 100 2 

5 TwTxCh TxC Width (High) 180 100 00 2 

6 TdTxC(TxD) TxC +to TxD Delay 300 220 2 

7 TdTxC(W/RRf) TxC +to W/RDY +Delay (Ready Mode) 5 9 5 9 

8 TdTxC(INT) TxC +to INT+ Delay 5 9 5 9 

9 TcRxC RxC Cycle Time 400 00 330 00 2 

10 TwRxCI RxC Width (Low) 180 100 2 

11 TwRxCh RxC Width (High) 180 00 100 2 

12 TsRxD(RxC) RxD to RxC t Setup Time (x1 Mode) 0 0 2 

13 ThRxD(RxC) RxD Hold Time (x1 Mode) 140 100 2 

14 TdRxC(W/RRf) RxC t to W/RDY + Delay (Ready Mode) 10 13 10 13 

15 TdRxC(INT) RxC t to INT+ Delay 10 13 10 13 

• In all modes, the System Clock rate must be at least five times the maximum data rate. RESET must be active a minimum of one complete clock cycle. 
1. Units equal to System Clock Periods. 
2. Units in nanoseconds (ns). 

147 



148 



' 

ZilOg Product Specification 

January 1989 

FEATURES: 

• On-Chip Clock Oscillator with Power-Save Monitor 
Circuitry 

• Dynamic Memory Interface Controller 
• Static Memory Interface 
• Memory and 1/0 Chip Selects 
• Reset Synchronization and Power-On Reset 
• Watchdog Timer 
• ZBO CPU to Z8500 Peripheral Interface 
• General Purpose Outputs 

GENERAL DESCRIPTION: 

Zilog's new Z84C80 General Logic Unit (hereafter referred 
to as the ZBO GLU) is a programmable, multi-purpose 
interface controller designed to perform many of the func­
tions required to "glue" a ZBO-based microprocessor sys­
tem together. The CPU programs the Z80 GLU to interface 
with a wide range of peripheral devices, both memories and 
1/0. 

Z84C80 CMOS Z80®GLU 
General Logic Unit 

• 5 Wait State Generators (WSG) 
Static Memory WSG 
l/OWSG 
Interrupt Acknowledge Cycle Timing Stretch 
RETI Cycle Timing Stretch 
Opcode Fetch WSG 

• 68-pin PLCC Package 
• Single +5 Volt Power Supply 

most used logical functions onto a single piece of silicon, tlie 
ZBO GLU chip offers a cost effective and powerful solution 
to the size and complexity constraints in a system design. 
This solution will allow the systems designer to simplify the 
design, decrease the time to market, and reduce costs. 

In offering the features found in most system designs, the 
Z84CBO can replace approximately 100 SSI and MSI 
packages with a single 68-pin PLCC. By combining the 

Designed and manufactured in N-Well CMOS, the device 
offers high-speed performance and low power consump­
tion. Zilog's CMOS process provides these features plus a 
high degree of reliability. 

A10 fO 
A11 
A12 
A13 

01 
A14 15 

02 
D3 

A15 
PIORQ(GP1) 

GNO 20 

5 65 

Z84C80 

60 RSTI 
cAS{GP1) 
RAS{ GPO) 
MA5(CS5) 
GNO 

55 ~CS6) 
HAL!@'O) 
iNT(ZWR) 
CLOCK 
CS5 

50 CS6 
Voe 
PD 

Vee GND BU,;~~ l~.~~ .~ XTALI ~CS7) 
XTALO 25 45 WAIT 

A7 30 35=="°40'=-c==-' RFSH 

.. .,,.. ~/"" 010101~10 w~~~oruoo~ao 0 ~ocw~oc 
<<..i:< < < ~<Cl_Q§ 

1I 

Figure 1: Z84C80 Pin Functions 

149 



150 

XTALI 

XTALO 

CLOCK 

RSTI 

RSTO 

M1' 
MREQ 
lORCi 

RD 
RFSH 

BUSACK 

07-00 

A15-AO 

~---+ 

,._____ 
+-~ 

------. 
<-------

± 
osc 

& 

CLOCK 

CONTROL 

RESET 

LOGIC 

OPCODE 

DECODE 

~ 

r+I 

DRAM 

CONTROL 

~---~ 

WAIT 

STATE 
GENERATORS 

OPTIONS 

MUX 

OPTIONS 

MUX 

Figure 2. Z84C80 Block Diagram 

CS6..CSO 

MA7 -MAO(CS7-Cso) 
RAS{ GPO) 
Ci\S(GP1) 

GPO 

PD 

NMl(fNTACK) 

HALT(ZRD) 
INT(iWR) 

PfORO(GP1) 



PIN DESCRIPTIONS: 

The device pinout is depicted in Figure 1 and the block 
diagram is shown in Figure 2. 

A1s·Ao. Address Bus (Input, active High). A1s-Ao form a 
16-bit address bus to provide the means for controlling 
memory data bus exchanges (up to 64K bytes) and 1/0 
device exchanges. 

BUSACK. Bus Acknowledge (Input, active Low). As an 
output from the CPU, BUSACK indicates that the CPU has 
relinquished control of the system bus (address, data, and 
some control) to external circuitry. 

CAS. Column Address Strobe (Output, active Low). This 
signal (along with PIORQ) is multiplexed with the GP1 out­
put. As a CAS strobe signal, this output is used by the 
DRAM interface controller to signal the DRAM device to 
latch the current contents of the multiplexed address bus 
(MA7-MAo) in order to address the correct column within 
the DRAM. 

CLOCK. System Clock (Output, active High). This output 
is used to provide the standard single-phase clock for 
either a zao NMOS or CMOS system. 

CS7-CS0• Chip Selects (Outputs, acitve Low). These 
outputs are used to select memory and/or 1/0 devices for 
data exchanges. The output is active depending upon the 
decoded machine cycle and the contents of the address 
bus. The CS -CS signals are multiplexed with MA7-MAo 
signals. The ~-CS!signals are also available separately. 
When the DRAM Interface Controller is enabled, these pins 
serve as the multiplexed address bus while the separate 
CS -CS pinscanbeusedforchipselects. When the DRAM 
lnt;rfac~ Controller is disabled, the chip select outputs 
appear on these multiplexed pins as well as the separate 
C"8s-C8a pins. 

0 7-00 • Data Bus (Input, active High). D1-D0 form an 8-bit 
data bus that is used for programming the Z84C80 GLU 
during 1/0 transfers. It is also used for decoding the 
instruction sequences for wait state insertion during the 
RETI sequence. 

GP 0• General Purpose Output O (Output, active High). This 
signal is available on pin 39, and is also multiplexed with the 
RAS output . When the dynamic memory interface is not 
enabled, this output also becomes available to the user on 
the RAS pin. This output can be controlled through the 
General Purpose Output Control Register. 

GP1• General Purpose Output 1 (Output, active High). This 
signal is multiplexed with two other pins, the PIORQ output 
and the CAS output. When the Z08500 peripheral interlace 
and the interrupt acknowledge wait state generator are not 
enabled, this output becomes available to the user on the 
PIORQ pin. When the dynamic memory interlace is not 
enableC.:, this output becomes available to the user on the 
CAS pin. This output can be controlled through the General 
Purpose Output Control Register. 

HALT. Hait Acknowiedge (input, active Low). This pin is 
multiplexed with the ZRD output. When the Power-Down 
Interlace is enabled (the Z8500 peripheral interlace is not 
enabled), this pin is the HALT input to the device. it is used 
by the zao GLU to control entry to the power-down mode of 
operation for the Z80 CMOS CPU. 

INT. lnterrrupt Request (Input, active Low). This pin is 
multiplexed with the ZWR line. When the Power-Down 
Interface is enabled (the Z8500 Peripheral Interlace is not 
enabled), this pin is the INT (interrupt) input to the device. 
It is used by the Z80 GLU to control exit from the power­
down mode of operation for the Z80 CMOS CPU. 

INTACK. ZB500 lnteffupt Acknowledge (Output, active 
Low). This signal is multiplexed with the NMI input. When 
the Power-Down interlace is not enabled (the Z8500 pe­
ripheral interlace is enabled), this pin is the INT ACK output 
from the device. This signal is used for the Z8500 periph­
erals during the interrupt acknowledge cycle. 

IORQ. Input/Output Request (Input, active Low). This sig­
nal is used to select the Z80 GLU device during program­
ming and also to assist in the decoding of the 1/0 chip select 
outputs. 

M1. M1 Cycle (Input, active Low). This signal is used to 
decode the opcode fetch and interrupt acknowledge 
machine cycles for the wait state generators, code/data 
separation, and RETI logic. 

MA7·MAo. Multiplexed Address Bus (Output, active High). 
These lines are multiplexed with the CS?-CSo lines. When 
the DRAM Interface Controller is enabled, these pins serve 
as the multiplexed (row and column) address bus required 
to interface to 64K dynamic memories. During dynamic 
memory access cycles, these pins provide both halves of 
the required address. During the refresh cycles these pins 
provide an 8-bit refresh address to the dynamic memory. 

151 



PIN DESCRIPTIONS (cont): 

MREQ. Memory Request (Input, active Low). This signal 
is used to assist in the decoding of the chip select outputs 
for memory access and for the dynamic memory interface. 

NMI. Non-Maskable Interrupt Request(lnput, active Low). 
This signal is multiplexed with the INTACK output. When 
the Power-Down Interface is enabled (the Z8500 Periph­
eral Interface is not enabled), this pin is the NMI input to the 
device. It is used by the Z80 GLU to control exit from the 
power-down mode operation for the Z80 CMOS CPU. 

PD. Power-Down Option (Input, active High, Z84C80 
only). When pulled to V cc' the Power-Down feature is en­
abled. When pulled to GND, the Z8500 Peripheral Interface 
is enabled. 

PIORQ. Peripheral lnpuf/Output Request (Output, active 
Low). This signal is multiplexed with the GP1 output. When 
either the Z8500 Peripheral Interface is enabled or the 
interrupt acknowledge wail state generator is enabled, this 
output is a delayed IORQ signal to Z80 Peripherals. 

RAS. Row Address Strobe (Output, active Low). This sig­
nal is multiplexed with the GPo output. As a RAS strobe 
signal, this output is used by the DRAM interface control­
ler to signal the DRAM device to latch the current contents 
of the multiplexed address bus (MA7-MAo) in order to ad­
dress the correct row within the DRAM. 

RD. Read (Input, active Low). This input is used to assist 
in the determination between 1/0 read and write cycles. 

RFSH. Refresh (Input, active Low). This signal is used to 
indicate when the system bus (address and control) are 
idle so that dynamic memory refresh can occur. 

RSTI. Reset In (Input, active Low). This is a reset request 
input from the external system. 

ARCHITECTURE: 

Clock Oscillator. The clock oscillator circuit (see Figure 3) 
consists ofthree parts; the oscillator, the controller, and the 
driver. The oscillator circuit can accept either a parallel 
resonant crystal, a ceramic resonator, or a TTL compatible 
clock input for the main clock generation. The oscillator 
frequency is twice that of the CLOCK output (system 
operating frequency) and is rated to a maximum frequency 
of 12MHz. 

The controller circuit performs two monitoring functions. 
First, it monitors the M1 and HALT outputs from the Z80 
CMOS CPU in order to provide control over the CLOCK 
output for entry into the power-down mode. Second, it also 
monitors the RSTI, NMI, and INT signals to provide con-

152 

RSTO. Reset Out (Output, active Low). This is the 
synchronized reset output for the system. 

SSo. StaticSelect(Output, active Low). This output is used 
to select a static memory device (typically a ROM). It is 
enabled by default but can be disabled under program con­
trol. 

WAIT. Wait (Bidirectional, Active Low, Open-drain). This 
pin serves to provide a wait output to the Z80 CPU as deter­
mined by the on-chip wait state generators of the Z80 GLU. 
It also serves as an input pin to determine if any external 
logic has caused wait states. 

XTALI. Crystal In (Input, active High). This input can be 
connected to either a parallel resonant crystal, a ceramic 
resonator, or an external clock source. A fundamental 
parallel-type crystal is recommended. 

XTALO. Crystal Out (Output). This output can be con­
nected to either a parallel-resonant crystal or a ceramic 
resonanlor. If XTALI is connected to a clock source, then 
this pin should be left OPEN. 

ZRD. Z8500 Read (Output, active Low). This pin is 
multiplexed with the HALT input. When the Power-Down 
Interface is not enabled (the Z8500 peripheral interface is 
enabled), this pin is the ZRD output from the device. This 
signal is used for the Z8500 peripherals during 1/0 read 
cycles and during the reset cycle. 

ZWR. ZB500 Write (Output, active Low). This pin is multi­
plexed with the INT line. When the Power-Down Interface 
is not enabled (the Z8500 peripheral interface is enabled). 
this pin is the ZWR output from the device. This signal is 
used for the Z8500 peripherals during 1/0 write cycles and 
during the reset cycle. 

XTALI 

XTALO 

Mi 
HALT 

INT 
NM! 
RSTI 

CLOCK 
CONTROL 

CLOCK 

Figure 3: Clock Oscillator Block 



ARCHITECTURE (cont): 

trol over the CLOCK output for exit from the power-down 
mode. This feature is enabled through a strap option with 
the PD pin of the device and is multiplexed with the Z8500 
peripheral interface allowing utilization with only one of the 
two features. 

The driver circuit provides a clock output with the neces­
sary AC and DC characteristics to satisfy both the NMOS 
and CMOS ZSO CPUs. It also provides the clock signal with 
enotJgh drive to conneci direcily to several peripherals. 

Static Memory Interface. The ZSO GLU provides logic 
(see Figure 4) for a static memory (RAM or ROM) chip 
select output (SSo) that is based upon the address inputs 
to the device. A part of the upper byte of the address bus 
(A15-A12) is compared against the contents of the Static 
Memory Boundary Registers. If the comparison yields a 
result that is less than or equal to the programmed address 
value, then the chip select signal is enabled for the dura­
tion of the memory access cycle. Boundaries are written in 
4K segments (address lines A1s-A12). 

A15-A12 

PROGRAMMED 
VALUE 

ADDRESS < = 
COMPARATOR t----1~ 

GREATER 
THANSSO 

Figure 4: Static Memory Select Block 

The default condition of the Static Memory Boundary 
Register after reset is to indicate that all memory is static 
(contents= OFFH) and that the SSo output is enabled. The 
lower limit of the static memory area addressed by SSo is 
always assumed to be OOOOH. 

A wait state generator is available to insert from o to 3 ad­
ditional wait states into access cycles for all static acces­
ses (for interfacing with slow memory devices). For more 
detail, refer to the section on the wait state generators. 

Dynamic Memory Interface Controller. This logic (see 
Figure 5) provides all the necessary control circuitry to in­
terface directly to 64K DRAM memories. It provides all the 
required timing to generate RAS and CAS signals for all 
memory accesses not decoded as being for a static 
memory area and handles the timing required for RAS 
precharge time. It also provides for RAS only refresh of 
dynamic memories with support for all 64K devices. This 
is accomplished by an 8-bit counter on-chip that provides 
the refresh address instead of accepting it from the ZSO 
CPU. 

A15-AO 

MREQ 
osc 

CLOCK 

ORAM 
SEL 

AD~~~ss ---· MA7·MAO 

RASICAS 1------1~ RAS 
GENERATOR 

CAS 

Figure 5: DRAM Controller Block 

Memory and 1/0 Chip Selects. This section (see Figure 
6) allows up to eight individual chip selects to be available 
to the user by programming the CS1-CS0 outputs to 
respond to either memory or 1/0 addresses. Each chip 
select has a separately programmable address range and 
can be enabled or disabled via software. The software 
would program the required Chip Select Control Register 
(CSCR7-CSCRO). 

Greater 
Mno anSSO 

ADDRESS 
A15-A12 MUX 

A7-A2 

Programmed ADDRESS 
<= Value COMPARATOR ~cso 

MREO 

IORQ 

Greater 
Than CSO 

Mno 
ADDRESS 

A15-A12 MUX 
A7·A2 

Programmed 
ADDRESS - <= 

CS? Value COMPARATOR 

MREQ 

IORQ 

Figure 6: Chip Selects Control Block 

When programmed as a memory chip select, values for 
address lines A1s-A12 are stored into the respective 
register. These values are used in comparison against the 
actual state of the address bus during the memory access 
cycle. If the comparison yields a result that is less than or 
equal to the programmed address value, then the chip 
select signal is enabled for the duration of the memory ac­
cess cycle. Since address lines A1s-A12 are used, memory 
chip selects must be programmed in multiples of 4K bytes. 

153 



ARCHITECTURE (cont): 

When programmed as an 1/0 chip select, values for ad­
dress lines A7-A2 (A1-A4 for CS1-CSs) are stored into the 
respective register. These values are used in comparison 
against the actual state of the address bus during the 1/0 
access cycle. When a comparison yields a result that is 
equal to the stored value, the appropriate chip select out­
put is made active for the duration of the cycle. Since ad­
dress lines A1-A2 are used, 110 chip selects can be 
programmed only for 4 contiguous port addresses (except 
CS1-CSs, which are programmed for 16 contiguous ad­
dresses). 

Since 1/0 address comparisons are made on an "equal to" 
basis, all 110 selects should be programmed after any 
memory selections. The default condition after reset is with 
all chip select registers equal to OOH (addresses un­
specified and outputs disabled). 

Reset Synchronization Logic. The reset logic (see 
Figure 7) performs two functions; providing a power-on 
reset pulse that insures proper reset initialization and 
synchronization of an external reset request. The power­
on reset circuit holds the RSTO output active for at least 
16 clock cycles after the power has stabilized and the os­
cillator is running. The synchronization logic allows the 
RSTI input to be synchronized with M 1 and CLOCK sig­
nals to inhibit erroneous memory writes while entering a 
reset sequence. In this case, the RSTO output is held ac­
tive for a period of 16 CLOCK cycles. 

RSTI RESET 

Mi SYNC 

Watchdog 
Timeout RESET 

Software 
COUNTER 

RSTO 
Reset 

Figure 7: Reset Control Block 

Watchdog Timer. The watchdog timer circuit (see Figure 
8) consists of an 8-bit counter configured as a modulo 256 
prescaler circuit, and a 16-bit count-down counter. The 16-
bit count-down counter can be programmed for the time­
out count that the user desires. If the 16-bit count-down 
timer is allowed to reach a count of zero, then the logic will 
issue an internal reset to the Reset Synchronization Logic 
and reset the entire system. The Watchdog Timer is kept 
from reaching a zero count by reloading the count before it 
reaches zero. This feature can be enabled or disabled via 
program control with the default condition alter reset is 
disabled. 

154 

CLOCK 

TIME 
CONSTANT 
REGISTERS 

16 - BIT 

COUNTER 

PRESCALER 
8-BIT 

Watchdog 
Timeout 

Figure 8: Watchdog Timer Block 

Wait State Generators. There are five different wait state 
generators (see Figure 9) available to the user; one for 
static memory access cycles, one for 1/0 cycles (ad­
dresses OOH-03FH only), one of RETI cycle stretching, one 
for the interrupt acknowledge cycle stretching, and one for 
the opcode fetch cycle. The first three wait state generators 
are capable of adding from 0 to 3 additional wait states to 
their respective machine cycles. The fourth wait state 
generator (interrupt acknowledge) adds a varied amount of 
wait states depending upon whether or not the Z8500 
peripheral interface is enabled. The opcode fetch wait state 
generator will add only one wait state. Each wait state 
generator is separately programmable and can be enabled 
or disabled under program control. The default state alter 
reset is with all wait state generators enabled for the 
maximum number of wait states. 

Mi 

sso 
CS7-CSO 
formem 

IORQ 

A7-AO 

OPCODE 
WAIT 

GENERATOR 

STATIC 
WAIT 

GENERATOR 

llO 
WAIT 

GENERATOR 

internal wait (RETI) 

Internal Wait 
Interrupt Acknowledge 

Figure 9: Wait State Generator Block 

WAIT 

Interrupt Acknowledge Stretching. This logic unit (see 
Figure 10) monitors the M1, MREQ, and IORQ signals from 
the Z80 CPU to determine when an interrupt acknowledge 
cycle is being executed. When a long interrupt daisy chain 
settle time by using one of the on-chip wait state generators 
to insert additional wait states (beyond the two automatic 
wait states already inserted by the CPU) into the interrupt 
acknowledge cycle. If addtionai wait states are inserted , 



ARCHITECTURE (cont): 

then the IORQ signal is delayed by those number of wait 
states before being output lo the peripherals (as PIORQ). 

INTERRUPT 
MREQ __ _,_.,~ACKNOWLEDGEf-----_.. INTACK 

IORQ STRETCHING 

Figure 10: Interrupt Acknowledge Stretching 

28500 Peripheral Interface. This logic (see Figure 11) 
provides the signals necessary to interface the Z80 CPU 
to the 28500 peripheral family. The logic controls the read 
(ZRD), write (ZVVR), and INTACK signals to the Z8500 
peripherals and provides the necessary wait states for the 
Z80 CPU to achieve this interface. During the interrupt 
acknowledge cycle, two additional wait states are auto­
matically inserted (beyond the two automatic wait states 
already inserted by the CPU) if this feature is enabled. To 
allow customization of the interrupt daisy chain, the inter­
rupt acknowledge wail state generator can be used to 
provide up to four additional wait states beyond those 
already inserted. 

This logic also controls the ZRD and ZWR lines for reset 
control of the Z8500 peripherals. This feature is multi­
plexed with the power-down clock control mode and con­
trolled with the PD pin. 

Reg. 
RO 
R1 
R2 
R3 
R4 
R5 
R6 
R7 

CLOCK 

RSTI 

IORQ 

Mi 

ZRD 

ZWR 

_.inter_nal 
wait 

Figure 11: Z8500 Peripheral Interface Block 

Address 
OFOH 
OF1H 
OF2H 
OF3H 
OF4H 
OF5H 
OF6H 
OF?H 

Name 
MCR 
DMCR 
SMCR 
CSCRO 
CSCR1 
CSCR2 
CSCR3 
CSCR4 

Description 
Master Control 
Device Mode Control 
Static Select O Control 
Chip Select O Control 
Chip Select 1 Control 
Chip Select 2 Control 
Chip Select 3 Control 
Chip Select 4 Control 

RETI Stretching. This logic (see Figure 12) monitors the 
contents of the data bus during the fetching of an instruc­
tion. If the instruction fetched is one of the special "ED" op­
codes, then up to three additional wait states can be 
inserted into the next machine cycle. This feature allows 
for extension of the trailing end of the Z80 interrupt daisy 
chain (very useful for peripherals decoding the RETI in­
struction sequence). 

M"f __ _...,,.i-----, 
D,-00 ---­

MREQ--

R5----

OPCODE 

DECODE 

~---~ 

- Internal 
Wait 

Figure 12: RETI Stretching 

General Purpose Outputs. There are two general pur­
pose outputs available to the user. These outputs are multi­
plexed with either the PiORQ output, or the RAS and GAS 
outputs. These outputs are controlled via software. 

Reg. 
R8 
R9 
R10 
R11 
R12 
R13 
R14 
R15 

Address 
OF8H 
OF9H 
OFAH 
OFBH 
OFCH 
OFDH 
OFEH 
OFFH 

Name 
CSCR5 
CSCR6 
CSCR7 
WDTC1 
WDTCO 
WSCR 
GPCR 

Description 
Chip Select 5 Control 
Chip Select 6 Control 
Chip Select 7 Control 
Watchdog Time Constant 1 
Watchdog Time Constant O 
Wait State Control 
General Purpose Control 
Reserved 

Figure 13: Registers 

155 



PROGRAMMING: 

The Z80 GLU device has 15 internal write registers for 
programming options and control (the 16th register is 
reserved for future use). Each register is addressed indi­
vidually with the port addresses residing at locations OFOH 
through OFFH. All bits referenced as "Reserved" must be 
programmed as "O". 

Port Address OFOH - Register o - Master Control Reg­
ister (see Figure 14). Master Control Register provides 
some global control functions for the Z80 GLU. The "Reset" 
bit allows a software reset for the chip. All registers are 
initialized to their default state. The D1 bit is used to reload 
the Watchdog Time Constant Registers (Registers 11 and 
12) into the Watchdog Counter. This bit should be set 
periodically to make sure thatthe Watchdog Timer does not 
expire and reset the system. The D7 bit is the "Master 
Enable" for the Z80 GLU. It is a good practice to program 
all registers before setting this bit. This register is preset to 
02H on reset. 

@±@.sj[)sj o4J 03J 02j 01 J ool 

11 

'-.-' L.'.== Reset 

- ] ~":!r~ed'Tof'9 Timer 
- Reserved (0) 

____ Reserved (0) 
_____ M~~!raan1e 

Figure 14: Master Control Register 

Port Address OF1H - Register 1 - Device Mode Control 
(see Figure 15). This register controls the functional op­
tions of the Z80 GLU devices. The DRAM Interlace, Chip 
Selects, General Purpose Outputs, and Watchdog Timer 
are controlled by bit settings within this register. This reg­
ister is present to all O's on reset to configure the Z80 GLU 
device with the DRAM interlace disabled and general 
purpose outputs enabled on the CAS and RAS outputs. 
The Watchdog Timer is also disabled on reset. 

Figure 15: Device Mode Control Register 

Port Address OF2H - Register 2 - Static Select 
Memory Control (SSo, Figure 16). This register not 
only controls the SSo output, but also allows the user to 
program the memory range to which this output should 
respond. Memory ranges are programmed on 4K boun­
daries with a logical comparison of less than or equal to 
the programmed address being made. The lower bound-

156 

ary for this comparison is always assumed to be OOOOH. 
This register is preset to all 1 's on reset to let the SSo out­
put respond to all memory addresses. 

J 01j osj osj o4J D3J 02j 01 J ooj L ~1-Enable 
~~~~ess A15-A12 

Figure 16: Static Select Memory Control Register

Port Addresses OF3H-OFAH - Register 3-10 -
Chip Select Control 0 - Chip Select Control 7
(see Figure 17). These registers control the additional chip
select outputs from the Z80 GLU. The outputs can be
programmed to respond to either memory or 1/0 device ad­
dresses. Each output is individually programmed and can
be enabled or disabled under program control. These
registers are preset to all O's on reset to ensure that all the
Chip Select outputs are inactive and disabled.

I 01j osj osl D4J ool 02Jo1J ooj T ~L_ 1-Enable
L___ Memory or 1/0 Select

1 ... 1/0, O=Memory
Ad<*oss SpedfiOL- _

A3-A2 for VO (CS4-{;SQ.2!Jy)
00 for Memory (or ~-CS5)

Boll'ldary Adc*ess
A7-A4for 110
A15-A12 for Memory

Figure 17: Chip Select Control Register

When programmed for memory devices, address line
values for A15-A12 should be programmed here. Com­
parisons on memory addresses are made for less than or
equal to the contents of the current register and greater
than the contents of the previous register (SSo for CSQ).
When programmed for 1/0 devices, address line values for
A1-A2 should be programmed here. Chip Selects O through
4 respond to four consecutive VO port addresses while
Chip Selects 5 through 7 respond to 16 consecutive 1/0
addresses (this allows direct interface devices such as the
Z84C90 KIO). Comparisons on 1/0 addresses are made
equal to the contents of this register. When programming
the Chip Select Control Registers, it is advisable to disable
the GLU (using bit 7 of Register 0) and re-enable it
afterwards.

PROGRAMMING (cont):

Port Address OFBH • Register 11 • Watchdog
Time Constant 1 (see Figure 18). This register is used to
hold the most significant byte of the time constant for the
watchdog timer. The enable control for tlie watchdog timer
is in the Device Mode Control Register (Register 1). This

I 011061 osl D4J ool 02101 I ool
~--i:==='--- Waichdog Time Constant

Register 11: High Byte
Register ! 2: !...!:!w Byte

Figure 18: Watchdog Time Constant Register

register is preset to all O's on reset to indicate a maximum
count.

Port Address OFCH • Register 12 • Watchdog
Time Constant 0 (see Figure 18). This register is used to
hold the least significant byte of the time constant for the
watchdog timer. The enable control for the watchdog timer
is in the Device Mode Control Register (Register 1). This
register is preset to all O's on reset to indicate a maximum
count.

Port Address OFDH • Register 13 • Walt State
Control (see Figure 19). Programming this register
provides the user with control over the individual wait state
generators of the Z80 GLU. Each of the first three wait state
generators can add between 0 and 3 additional wait states
into the respective machine cycles. The fourth wait state
generator adds 2 to 4 additional wait states. Programming
O's into a wait state generator is the same as disabling that
function. This register is preset to all 1 's to add the maxi­
mum number of wait states into the respective cycles until
the user can program the Z80 GLU. If the Z8500 peripheral

I 011 D6j osl D4J oal oaj 01 I ool I I y 'i::'_ :'" ":Wl- j RE~loWait
oo.Oisablod
01 .. 1 additionaJ
10..2 add'rtional
11...S additional

lntenupt Acknowledge Wait
00-Disablod
01-2 additional
10..3 additional
11-4 additional

Figure 19: Wait State Control Register

interface is selected, then two additional wait states are
automatically added to the interrrupt acknowledge cycle
(allowing up to 6 wait states to be added).

Port Address OFEH • Register 14 • General
Purpose Control (see Figure 20). This register is
used to provide the user with control over the general pur­
pose outputs.

@±@_SE_sl D4J ooj 02101 I ool L__O' L- General P .. poee OutputO

General Pl.l"pose Oulput 1
Res8Mld(O)

__ Reserved (0)

Figure 20: General Purpose Control Register

This register is preset to 03H on reset to ensure that the
general purpose outputs are held high (for a possible
DRAM interface). When DRAM interface is disabled, the
programmed value in bit O (GPO) is output on pin 39 as well
as pin 58.

157

TIMING:

The following timing diagrams show typical timing relation­
ships when the Z84C80 is in a zao CPU environment.
Together with the AC Characteristics, they also describe
how the devices will behave when interfaced with other

1/0 Cycle. Figure 21 illustrates the timing for 1/0 read and
write cycles; this includes the programming of the Z80 GLU
and other devices. The Z80 GLU does not receive a
specific write signal; it internally generates its own by
decoding an 1/0 operation (corresponding to 1/0 addres­
ses OFOH through OFFH) with the absence of a read sig­
nal.

All chip select outputs programmed for operation with 1/0
devices are affected whenever the IORQ signal becomes
active. The Z80 GLU will compare the contents of the lower
half of the address bus (A7-Ao) against pre-programmed
values. If the compared address is the same as the
programmed range, then the appropriate chip select is
made active and will remain active until the IORQ signal

CLOCK

ADDRESS

DATA

WAIT
WAIT
.......

CPUs. For more detailed information, please refer to the
AC Characteristics section. For more detailed information
about the timing of the Z80 CPU, please refer to the Z80
Product Specification and Technical Manual.

becomes inactive. Chip Selects 7 through 5 respond to 16
consecutive 1/0 addresses (for interface with high port con­
sumption devices such as the Z84C90 KIO) while Chip
Selects 4 through 0 respond to 4 consecutive 1/0 addres­
ses. Additional wait states can be placed into 1/0 cycles
using the lower 64 1/0 addresses (OOH through 3FH) by
utilizing the on-chip 1/0 wait state generator.

During the 1/0 cycles, the Z84C80 has the ability to provide
either the Read (ZRD) or Write (ZWR) signal to a Z8500
peripheral device. The ZWR signal is generated with timing
guaranteed to ensure that the data is valid before and
during the entire time that the write signal is active.

45 "'i..-----------1--
ZWR 41_..,

i~ r
~-----#--------~

Figure 21 : 1/0 Cycle Timing

158

TIMING (cont):

Opcode Fetch Cycle. Figure 22 illustrates the sequence
of events during an opcode fetch cycle. Several events can
occur within the zao GLU during the opcode fetch cycle.
Since all opcode fetch cycles are accesses to memory,
either the static or dynamic memory interface can be ac­
tivated. The decision for which interface is done by com­
paring the contents of the address bus at the beginning of
the cycie. All memory addresses not corr~onding to
static memory interface (either SSo or CS1-CS0) are con­
sidered to be dynamic in nature.

All chip select outputs programmed for operation with
memory devices are affected whenever the MREQ signal
becomes active. The Z80 GLU will compare the contents
of the upper half of the address bus (A1s-Aa) against pre-

CLOCK

ADDRESS

DATA

M1

MREQ

RO

RFSH

SSO,CSx

RAS

CAS

MABUS

WAIT
WAIT

11

12

"

programmed values. If the compared address falls within
the programmed range, then the appropriate chip select is
made active and will remain active until the MREQ signal
becomes inactive.

The dynamic memory interface controller will assert the
RAS signal as a result of the rising edge of T 2. This en­
sures that all addresses are stable and that the proper
memory address decoding has occurred. If the decoded
address does not indicate a selection for static memory.
then the CAS signal is generated on the falling edge of T2
to indicate that the contents of the multiplexed address bus
now contain the column address.

Cobno

Figure 22: Opcode Fetch Cycle Timing

159

TIMING (cont):

A third fqnction that can occur during the opcode fetch
cyde is that of the RETI decode sequence. During the op­
code fetch cycle, the Z80 GLU decodes the special "ED"
instruction sequence of the Z80 CPU. If the "ED" opcode
is detected, then the Z80 GLU automatically inserts one
additional wait state into the next opcode fetch cycle. This
provides the Z80 GLU with enough time to decode the fol­
lowing byte of the instruction to determine if it is the "4D"
part ofthe RETI sequence. If the second byte is not a "4D,"
then the WAIT line is released and the CPU is allowed to
continue its process. It the second byte is the "4D" part of
the RETI sequence, then the logic can insert up to 2 more

Memory Access Cycles. Figure 23 illustrates the timing
for a normal memory access cyde. During the normal
memory access cycle only one of two memory interfaces
can be enabled, static or dynamic. The operation of these

CLOCK ;-··-

ADDRESS

DATA

MABUS

WAIT

wait states to provide a longer interrupt daisy-chain settle
time for the RETI instruction sequence.

Additional wait states can be inserted into the opccide fetch
cyde from several sources. The opcode fetch wait state
generator can insert one additional wait state so that
memory access time can be defined by the normal memory
cyde rather than the opcode fetch cycle. The static wait
state generator can add wait states whenever one of the
chip select outputs are active as a result of a requested
memory address. The RETI wait state generator also adds
wait states as previously described.

two memory interfaces are the same as during the opcode
fetch cycle. Wait states can also be added here for static
memory access (for use with slow memories).

___ _} ___ _

eo

Figure 23: Memory Access Cycle Timing

160

TIMING (cont):

Interrupt Acknowledge Cycles. Figure 24 depicts the
timing sequence for a ZSO interrupt acknowledge cycle.
The Z84C80 GLU device provides the user with the
capability of "stretching• the interrupt acknowledge cycle
of the ZSO CPU by adding wait states and delaying the
IORQ (actually the PIORQ output) to the ZSO family of
peripherals. This allows the user to have more interrupting

CLOCK

INTACK

PIORQ

ZRD

15

W/IJT
W/IJT

peripherals within his system by lengthening his daisy
chain settle time. The Z84C80 GLU also "stretches" the
RETI decode time to help facilitate a long interrupt daisy
chain (see Opcode Fetch Cycle description). During the in­
terrupt acknowledge cycle, the Z84C80 has the ability to
provide the proper timing for the interrupt acknowledge
(INTACK) and read (ZRD) signals for Z8500 peripherals.

r-\ r-\
____} __

Figure 24: Interrupt Acknowledge Cycle Timing

Z84COO CPU Power-Down Control. The Z84C80
GLU device can also provide control over the system clock
for interface with the ZSO CMOS CPU and its peripheral
family in order to facilitate the stand-by power feature of
those devices. The power-down mode of operation is
entered by the Z84COO CPU during the T 4 low time of a
HALT acknowledge cycle. Since the Z84COO does not
decode this by itself, additional logic is placed within the

T1 T2

CLOCK

GLU chip to decode this machine cycle and stop the clock
at the proper instant in time. This mode of operation is ex­
ited when the logic detects either an interrupt (maskable
or non-maskable) or a reset to the system. The logic then
releases the clock output and the CPU is allowed to con­
tinue its processing flow. This feature is multiplexed with
the Z8500 peripheral interface (only one of the two can be
enabled at any given time).

T3

M1 \ d
-~r-~ .. --

Figure 25: Power-Down Mode Entrance Timing

161

TIMING (cont):

CLOCK

__

Figure 26: Power-Down Mode Exit Timing

Reset Cycle. There are three different reset cycles (see
Figure 27) that are controlled by the Z80 GLU devices;
power-on, external, and watchdog timer. During a power­
on reset the Z80 GLU ensures thatthe reset output (RSTO)
is held low until the power supply has stabilized and the
oscillator is properly operating. The RSTO signal is then
released and the system is allowed to continue. If the
Z8500 peripheral interface is enabled then the ZRD and
ZWR signals are also held active to ensure a proper reset
of the peripherals. When an external reset is required, the
logic synchronizes the reset input (RSTI) with the Ml input
signal to inhibit a possible reset during cycles which may

cause erroneous writes to memory or 1/0 devices. If the
system is in the power-down mode of operation, the reset
input will release the system clock and then synchronize
the input to perform the function. In either case, the RSTO
signal is held active for 16 clock cycles to ensure a proper
reset. If the watchdog timer is enabled and is also allowed
to reach a zero count, then a reset cycle will be generated
to bring the system back into a known state. Control over
the ZRD and ZWR signals is also performed during a reset
operation to ensure that both signals are active at the same
time (the reset condition for this peripheral family).

RSTO

61

-~-----63-------<"(

~--~~r

Figure 27: Reset Synchronization

162

ABSOLUTE MAXIMUM RATINGS:

Voltage on Vee with respect to Vss
. -0.3V to +7.0V

Voltages on all inputs with respect to Vss
. -0.3V to Vcc+0.3V

Operating Ambient Temperature
. See Ordering Information

Storage Temperature
. -65Cto+150C

STANDARD TEST CONDITIONS:

The DC Characteristics and Capacitance sections below
apply to the following standard test conditions, unless
otherwise noted. All voltages are referenced to GND (OV).
Positive current flows into the referenced pin.

Available operating temperature ranges are:
• S = O C to +70 C

Voltage Supply Range: +5.0V +/- 10%

All AC parameters assume a load capaitance of 100 pF.
Add 10 ns delay for each 50 pF increase in load up to a
maximum of 200 pF for the data bus and 100 pF for the ad­
dress and control lines. AC liming measurements are
referenced to 1.5 volts (except for CLOCK, which is
referenced to the 10% and 90% points).

DC CHARACTERISTICS:

Symbol

V1HC
V1Lc
V1H
V1L
VoHC

VoH
VoL
VoLW
hL
Ice

C1
Co

Parameter

Input Clock High Voltage
Input Clock Low Voltage
Input High Voltage
Input Low Votlage
Output Clock High Voltage

Output High Voltage
Output Low Voltage
Output Low Voltage (Wait)
Input Leakage Current
Power Supply Current

Input Capacitance
Output Capacitance

min

2.2
-0.3
2.2

-0.3
Vcc-0.6

2.4

Stresses greater than those listed under Absolute Maxi­
mum Ratings may cause permanent damage to the device .
This is a stress rating only; operation of the device at any
condition above those indicated in the operational sections
of these specifications is not implied. Exposure to absolute
maximum rating conditions for extended periods may af­
fect device reliability .

The Ordering Information section lists temperature ranges
and product numbers. Package drawings are in the Pack­
age Information section. Refer to the Literature List for ad­
ditional documentation.

+5V

2.1K
FROM OUTPUT

UNDER TEST :rr-·
100 (1) 250 y

max

Vcc+0.3
.8

Vcc+0.3
0.8

0.4
0.5

±10
30
40

5
10

pF I l µA y

Unit Condition

v Driven by Ext. Clock
v Driven by Ext. Clock
v
v
v

loH=-250 µA
v loL=2.0 mA
v loL=5.0 mA
µA
mA f=8.0 MHz
mA f=10.0 MHz

Vcc=5V
V1H=Vcc-0.2V
V1L=0.2V

pF
pF

163

AC CHARACTERISTICS:

No. Symbol Parameter Z84C8006
min max notes

1 TcXTAL XT AL Cycle Time 81
2 TwXTALh XTAL High Width 25
3 TwXTALI XT AL Low Width 25
4 TrXTAL XT AL Rise Time 15
5 TIXTAL XTAL Fall Time 15

6 TcC CLOCK Cycle Time 160
7 TwCh CLOCK High Width 65
8 TwCI CLOCK Low Width 65
9 TrC CLOCK Rise Time 15

10 TIC CLOCK Fall Time 15

11 TsM1f(Cr) 11/11 J. to CLOCK t Setup 20
12 TsMREOf(Cr) fiilREO J. to CLOCK t Setup 20
13 TsA(MREQf) Address to fiilREO J. Setup 50
14 TdNMll(Cr) NMI J. to CLOCK T Delay 2*T0 C
15 TdM1f(WAITI) 11/11 J. to W)!;fT J. Delay 55 note 1

16 TdMREO(CS) fiilREO to SSo,CS, Delay 50
17 TdA(RA) Address to Row Address Delay 50
18 TdMREQf(WAITI) fiilREO J. to W)!;fT 1. Delay 55 note2
19 TdCr(RAS) CLOCK t to ro\S ! Delay 50
20 TsWAIT(Cf) W)!;fT lo CLOCK J. Setup 25

21 ThCl(WAIT) CLOCK J, to W)!;fT Hold 10
22 ThRASl(RA) ro\S J, to Row Address Hold 25
23 TdCA(CASI) Column Address to C]l;S J, Delay 25
24 TdCf(CASf) CLOCK J. lo C]l;S ! Delay 45
25 TdCf(WAITr) CLOCK ! to W)!;fT t Delay RC+25 note3

26 TdCr(RASr) CLOCK i lo roiS t Delay 45
27 TdRASr(RASf) RIIB i lo R!IB J, Delay TcC
20 TdRASr(CASr) ro\S t to C]l;S i Delay 45
29 TsRFSHf(Cr) RFSR J, to CLOCK i Setup 15
30 TdRFSHf(CASr) RFSR J. to C]l;S i Delay 45

31 TdMREOr(CASr) fiilREO 1' to C]l;S 1' Delay 45
32 TdRFSHl(RFA) RFSR J, to Refresh Address Delay 45

33 TsD(MRD) Data lo fiilREO or RD i Setup 15
34 ThMRD(D) fiilREO or RD i to Data Hold 10
35 TdlNTf(Cr) ll'lT J. to CLOCK T Delay 2*TcC

36 TdCf(RASr) CLOCK j, to R!IB t Delay 50
37 TsA(IORQf) Address to llJRO J. Setup 40
38 TslORQf(Cr) TORO J, to CLOCK t Setup 20
39 TsRD(Cr) RD to CLOCK t Setup 20
40 TsD(Cr) Wr~e Data to CLOCK t Setup 30

41 TdlORO(CS) !ORO to CS, Delay 50
42 TdlORQl(WAITf) llJRO ! to WAIT J, Delay 55
43 ThCl(D) CLOCK J, to Data Hold 10
44 TdRD(ZRD) RD to ZRD Delay 50
45 TdCr(ZWRf) CLOCK T to ZWR J. Delay 50

46 TdCf(ZWRr) CLOCK T lo ZWR t Delay 50
47 TwZWRI ZWR Pulse Width Low 1.o·rce
48 TdlORO(PIORQ) llJRO to mRO Delay 40 note 4
49 TdCr(INTACKf) CLOCK T to~! Delay 50
50 TdA(CS) Address to SSo,CS, Delay 50 note 5

51 TdCf(PIORQI) CLOCK ! to mRO J. Delay 50
52 TdCf(ZRDI) CLOCK j, to ZFID j, Delay 50
53 TdM11(PIORQI) 11/11 J, to mRO J, Delay note6
54 TdM11(ZRDI) 11/11 ! to ZRD J, Delay note 7
55 TdM1r(INTACKr) 11/ilTto~iDelay 50
56 TdM1 r(PIOROr) 11/11 T to mRO t Delay 50
57 TdM1r(ZRDr) 11/11 i to ZRD t Delay 50
58 TsHAL Tl(M1 r) HACT ! to 11/11 i Setup 20

164

AC CHARACTERISTICS (cont):

No. Symbol Parameter Z84C8010
min max

2'TcC
20
10

50
1s·rce

59 TdRSTlf(Cr) mm J. to CLOCK T Delay
60 TsRSTlf(M1f) mmJ.tofiiff .I.Setup
61 ThM1f(RSTI) MT J.tommHold
62 TdM1f(RSTOf) MT J. to mITO J, Delay
63 TwRSTOI mITO Pulse Width Low

50
50

64 TdCr(RSTOr) CLOCK i to mIT0 i Delay
65 TdRSTlr(RSTOr) mm i to mIT0 i Delay

All parameters in units of nanoseconds unless specified.

Notes:
1. This parameter is valid only when the opcode wait state generator is enabled and interrupt acknowledge cycles.
2. This parameter is valid only when the static memory wait state genereator is enabled.
3. This parameter value is dependent upon the RC time constant as determined by the external pull-up resistor.
4. For 1/0 cycles and non-stretched interrupt acknowledge cycles.
5. This parameter is valid only if parameters 13 and 37 are not met.
6. Z8500 Peipheral Interface disabled; 2*TcC+ TwCh+ TfC+n*Tw-80 where n=0,2,3, or 4.

Z8500 Peripheral Interface enabled; 4*TcC+ TwCh+ TfC+n*Tw-80 where n=1,2,3, or 4.
7. 4*TcC+TwCh+TfC+n*Tw-80where n=1,2,3, or4.
8. There is an error with the M1 signal which may cause the DRAM interface to function improperly during

a refresh cycle. To correct this just add a 200-500 ohm resistor in series with the M1 signal from the Z80 CPU.
9. The ZWR signal from the Z84C80 is one clock cycle wide. The 8500 peripherals expect this signal to be

one and a half clock cycles wide. For example, the Z8530 specification for ZWR at 6 MHz is 250 n sec ..
The ZWR signal pulse width from the 84C80 at 6 MHz is 166.6 n sec .. To work-around this problem, one
possibility is to run the 8500 peripheral at a higher speed than the GLU. For example, use a 6 MHz 8530,
and run the GLU at 4 MHz.

165

166

I

ZilOg Product Specification

January 1989

FEATURES:

• Two independent synchronous/asynchronous serial
channels.

• Three 8-bit parallel ports.
• Four independent counter/timer channels.
• On-chip clock oscillator/driver.
• Software/Hardware Resets.

GENERAL DESCRIPTION:

Zilog's new Z84C90 Serial/Parallel/Countermmer (KIO) is
a multi-channel, multi-purpose 1/0 device designed to pro­
vide the end-user with a cost effective and powerful solution

, to meet his peropheral needs. The Z84C90 combines the
features of one Z84C30 CTC, one Z84C4xSIO, one
Z84C20 PIO, a byte-wide bit-programmable 1/0 port, and
a crystal oscillator into a single 84 pin PLCC package. The

osc
XTALI Osclllator

XTALO
Cl.KOUT

g
c:

"' 0

"'
::I (.)

::I
al a

al e i ~ 'E
0

Bus Q (.) s
Interface

and
Control

INf Interrupt
IEI Control IEO

Z84C90 CMOS Z80®KIO
Serial/Parallel/Counter/Timer

• Designed in CMOS for low power operations.
• Supports Z80 Family interrupt daisy chain.
• Programmable interrupt priorities.
• 8MHz bus clock frequency.
• Single +5 Volt Power Supply.

block diagram for the Z84C90 is shown in Figure 1 while the
pinout is shown in Figure 2. Utilizing fifteen internal regis­
ters for data and programming information, the KIO can
easily be configured to any given system environment.
Although the optimum performance is obtained with a
Z84COO CPU, the KIO can just as easily be used with any
other CPU.

PIO

PIA/MUX' PCo •PC7

i
8 ... DA

51 ... CA
TxDA

13 TiCA
:il = ilCDA

510
"'DB
fbCB
T>DB = = DClll!

ZCITOo

CLKtTRGo
ZC/T01

CTC CLK/'TRG1
ZC!T02
CU<ITRG2
zcrro,
CLKITRG:3

Figure 1 : KIO Block Diagram

167

PC1(SYNCB)

PC2(DTRB)
PC3(RTSB)

TxDA

TxCA

RxCA

Rx DA

PAO

PA1

PA2

v
cc

PA3

GND

PA4

PA5
PAS

PA7

PC4(RTSA)

PC5(DTRA)

PC6(SYNCA)

PC7(WT/RDYA)

168

1r
I~ I< Im 0Cl1;3 Cl Cl lgi ()Zf-00f­
a.. C!) 0 0 0 C,)

.,
<It ll) co "'" "'"' ., (I) (I) (I) C") ., .,

Z84C90
KIO

0 ~"' ., ...
I() co "'" c:o " ... " v v...,. v

Figure 2: PLCC Pinout

74 CLKfTRG2

73 CLKfTRG1

72 CLKfTRGO

71 07

70 06

69 05

68 04

67 GND

66 v cc
65 03

64 02

63 01

62 DO

61 Vee

60 XTALI

59 XTALO

58 GND

57 CLOCK

56 CLKOUT

55 osc
54 iN'T

"'0 ~ "' .,
" "' "'"' "'

Z84C20 Parallel Input/Output Logic Unit: This logic unit
provides both TTL- and CMOS-compatible interfaces be­
tween peripheral devices and a CPU through the use of
two 8-bit parallel ports. The CPU configures the logic to in­
terface to a wide range of peripheral devices with no ex­
ternal logic. Typical devices that are compatible with this
interface are keyboards, printers, and EPROM/PAL
programmers.

The parallel ports (designated Port A and Port B) are byte­
wide and completely compatible with the Z84C20 PIO (see
Figure 3.). These two ports have several modes of opera-

INTERRUPT CONTROL LINES

tion; input, output, bidirectional, or bit control mode. Each
port has two handshake signals (RDY and STB) which can
be used to control data transfers. The RDY (ready) indi­
cates that the port is ready for data transfer while STB
(strobe) is an input to the port that indicates when data
transfer has occurred. Each of the ports can also be
programmed to interrupt the CPU upon the occurrence of
specified status conditions and generate unique interrupt
vectors when the CPU responds. (For more information on
the operation of this portion of the logic, please refer to the
Z84C20 PIO Product Specification and Technical Manual.)

DATA
OR CONTROL

}HANDSHAKE

DATA
OR CONTROL

}HANDSHAKE

PERIPHERAL
INTERFACE

Figure 3: PIO Block Diagram

Parallel Interface Adapter (PIA) Logic Unit: This logic
also offers an additional 8-bits of 1/0, referred to as the PIA
port (see Figure 4), to the user. This port, designated as
Port C, is bit-programmable for data transfers; each bit can
be individually programmed as either an input or an output.
Bil direction control is accomplished through the program­
ming of the PIA Control Register. When programmed as
outputs, the output data latches are programmed with an I/
0 write cycle and their state can be read with an 1/0 read
cycle. When programmed as inputs, the state of the
external pin is read with the 1/0 read cycle. This port does
not have handshake capabilities and offers no interrupt
capabilities. This port is multiplexed to provide, when
desired, the additional modem and CPU control signals for
the serial 1/0 logic unit.

Figure 4: PIA Block Diagram

When a read from the PIA port is done, input data will be
latched when IORQ, CS, and RD are all detected active.
The data bus will display this data as a result of the rising
edge of the CLOCK input after this occurrence. When a
write to the PIA port is done, data will be written as a result
of the rising edge of the CLOCK input after IORQ and CS
have been detected active and RD has been detected in­
active.

Counter/Timer Logic Unit: This logic unit provides the
user with four individual 8-bit counter/timer channels that
are compatible with the Z84C30 CTC (see Figure 5). The
counter/timers can be programmed by the CPU for a broad
range of counting and timing applications. Typical applica­
tions include event counting, interrupt and interval timing,
and serial baud rate clock generation.

Each of the counter/timer channels, designated Channels
O through 3, have an 8-bit prescaler (when used in timer
mode) as well as its own 8-bit counter to provide a wide
range of count resolution. Each of the channels also have
their own clock/trigger input to quantify the counting
process and an output to indicate zero crossing/timeout
conditions. With only one interrupt vector programmed into
this logic unit, each channel can generate a unique inter­
rupt vector in response to the interrupt acknowledge cycle.

169

DATA
CPU
BUS
110

INTERNAL
CONTROL

LOGIC

CONTROL

iNT
INI~'li~~PT - IEI

IEO

COUNTERI
TIMER
LOGIC

Figure 5: CTC Block Diagram

ZCITO

CLK/
TRG

Serial 1/0 Logic Unit: This logic unit provides the user with
two separate serial 110 channels that are completely com­
patible with the Z84C4x SIO (see Figure 6). Their basic
functions as serial-to-parallel and parallel-to-serial con­
verters can be programmed by a CPU for a broad range of
serial communications applications. Each channel, desig-

DATA

CDNTRDL

CHANNEL A
CONTROL

AND
STATUS

REGISTERS

INTERNAL
CONTROL

LOGIC

CPU
BUS
uo

INTERRUPT I INTERRUPT
CONTROL - CONTROL

LINES LOGIC

CHANNEL B
CONTROL

AND
STATUS

REGISTERS

I SERIAL
DATA

::: I g~~~~:L
SYNC
WAITIREADY

I ~~~!AL
I g~~~~:L

S'iiiic
WiffTIREADY

Figure 6: SIO Block Diagram

nated Channel A and Channel B, is capable of supporting
all common asynchronous and synchronous protocols
(Monosync, Bisync, and SDLC/HDLC), byte- or bit­
oriented.

170

In the default state of the KIO, each serial channel supports
full duplex communication with separate transmit and re­
ceive data lines, two modem control signals (CTS and
DCD), and seprate transmit and receive clock inputs. Op­
tionally, addition.al modem and CPU/OMA control signals
can be obtained through the PIA port. (For more informa­
tion on the operation of this portion of the logic, please refer
to the Z84C40 SIO Product Specification and Technical
Manual).

Clock Oscillator/Driver Logic Unit: A clock oscil­
lator/driver is also available that will allow the user to
eliminate that circuitry within his new design, or for use as
another oscillator within the system. This logic will accept
either Jl crystal, ceramic resonator, or TIL-compatible

clock input and generate a MOS-compatible clock output
and also an oscillator reference output. A fundamental
parallel resonant crystal (Figure 7) is recommended. The
preferred value of the two capacitors - C1 and C2 is 33 pf
each.

C1
XTAL1 •e---1~1~

Crystal
Inputs c=::i

I C2
XTALO •e---~-;I E--::i_

Figure 7: Crystal Connection

Command Logic Unit: This logic unit provides for much
more than just controlling the interface between the KIO
and the CPU. The main function provided by this unit is to
allow the user to configure the internal interrupt daisy chain
of the KIO into the order in which he would like the
peripherals to interrupt. Any one of the three devices (SIO,
CTC, PIO) can be the highest priority while another can be
second and the remaining one -third. The user can even
configure the daisy chain such that no internal peripherals
are involved in the chain. Programming of the daisy chain
configuration is done by programming the Command Reg­
ister with the appropriate 3-bit pattern in

· D0-D2 and 0 3 set to "1".

A second function of this logic unit is to provide software
controllable "hardware" resets to each of the individual
devices. This allows an individual peripheral to be reset
without having to resetthe entire KIO. Requiring bit D3to be
set to a "1" in order to program the daisy chain configuration
allows the user to reset the individual devices without
changing the daisy chain. The software reset commands
for the individual devices still remain available to the user.

A third function of the Command Register allows the user
to obtain use of the additional control signals of the SIO
logic instead of the PIA Port. This is done by programming
bit 0 7 of the Command Register with "1 ".

PIN DESCRIPTIONS:

Ao-Aa. Address Bus (inputs, active high, 3-state). Use to
select which port/register the current transaction cycle is
for.

ARDY,BRDY. Port Ready (outputs, active high). these
signals indicate that the port is ready for a data transfer.
lnmode 0, it indicates thatthe port has data available for the
peripheral device. In mode 1, it indicates that the port is
ready to accept data from the peripheral device. In mode2,
ARDY indicates that Port A has available for the peripheral
device, but that it will not be placed onto PA0-PA7 until the
ASTB signal is active, while BROY indicates that Port A is
able to accept data from a peripheral device. Note that Port
B does not support mode 2 operation and can only be used
in mode 3 operation when Port A is programmed for mode
2. These signals are not used in mode 3 operation.

ASTB, BSTB. Port Strobe (inputs, active low). These sig­
nals indicate that the peripheral device has performed a
transfer. In mode 0, it indicates that the peripheral device
has accepted the data present on the port pins. In mode 1 ,
it causes the data on the port pins to be latched into Port A.
In mode 2, the ASTB signal causes the data in the output
data latch of Port A to be placed onto the Port A pins while
the BSTB signal will cause the data present on the Port A
pins to be latched into the Port A input data latch. The end
of the current transaction is noted by the rising edge of
these signals. Note that Port B does not support mode 2
operation and can only be used in mode 3 operation when
Port A is programmed for mode 2. These signals are not
used in mode 3 operation.

CLK/TRG0-CLK/TRG3 • External ClockfTimer Trigger (in­
puts, user selectable active high or low). These four pins
correspond to the four counter/timer channels of the KIO.
In counter mode, each active edge will cause the
downcounter to decrement. In timer mode, an active edge
will start the timer.

CLKOUT. Clock Out (output, active high). This output is a
divide-by-two of the oscillator (XT AL) input.

CLOCK. System Clock (input, active high). This clock
should be the same as (or a derivative of) the CPU clock.
If the CLKOUT is to be used as the system clock, then
these two pins should be connected together.

CS. Chip Select (input, active low). Used to activate the
internal register decoding mechanism and allow the KIO to
perform a data transfer to/from the CPU.

CTSA, CTSB. Clear to Send (inputs, active low). These
signals are modem control signals to their serial channels.
When programmed for Auto Enables, a low on these pins
will enable their respective transmitters. If not programmed
as Auto Enables, these pins may be used as general-pur­
pose input signals.

0 0-D,. Data Bus (bidirectional, active high, 3-state). Used
for data exchanges between the CPU and the KIO for
programming and data transfer. The KIO also monitors the
data bus during the RETI instruction cycle to resolve its

DCDA, DCDB. Data Carrier Detect (inputs, active low).
These signals are modem control signals to their serial
channels. When programmed for Auto Enables, a low on
these pins will enable their respective receivers. If not
programmed as Auto Enables, these pins may be used as
general-purpose input signals.

DTRA, DTRB. Data Terminal Ready (outputs, active low).
These signals are modem control signals for their serial
channels. They will follow the state programmed into their
respective serial channels. They are multiplexed with Port
C, bits 5 and 2 respectively.

IEI. Interrupt Enable In (input, active high). This signal is
used with IEO to form a priority daisy chain when there is
more than one interrupt-driven device. A high on this line
indicates that no higher priority device is requesting an in­
terrupt.

IEO. Interrupt Enable Out (output, active high). This signal
is used with IEI to form a priority daisy chain when there is
more than one interrupt-driven device. A high on this line
indicates that this device and no higher priority device is
requesting an interrupt. A low will block any lower priority
devices from requesting an interrupt.

INT. Interrupt Request (output, active low, open-drain).
When any of the devices within the KIO requests interrupt
servicing, this line will be active.

IORO. 1/0 Request (input, active low). IORQ is used with
RD, AO-A3, and CS to transfer data between the KIO and
the CPU. When fORQ, RD, and CS are all active, the
device selected by AO-A3 transfers data to the CPU. When
IORQ and CS are active, but RD is inactive, the device
selected by AO-A3 is written into by the CPU, When IORQ
and M1 are both active the KIO will respond with an
interrupt vector from the highest priority interrupting device.

M1. Machine Cycle 1 (input, active low). When M1 is active
and RD is active, the Z80 CPU is fetching an instruction
from memory; the KIO decodes this cycle to determine if the
RETI instruction sequence is being executed. When M1
and fORQ are both active, the KIO decodes the cycle to be
an interrupt acknowledge and will respond with a vector
from the highest priority interrupting device.

OSC. Oscillator (output, active high). This output is a
reference clock for the oscillator.

171

PAo-PA1. Port A Bus (bidirectional, active high, 3-state).
This 8-bit bus transfers data between the peripheral device
and the port. PAo is the least significant bit of the bus.

PBo-PB1. Port B Bus (bidirectional, active high, 3-state).
This 8-bit bus transfers data between the peripheral device
and the port. PBo is the least significant bit of the bus. This
port can also supply 1 .5 mA at 1.5 volts to drive Darlington
transistors.

PC0-PC7. Port C Bus (bidirectional, active high, 3-state).
This 8-bit bus transfers data between the peripheral device
and the port. PCo is the least significant bit of the bus.
These pins are multiplexed to provide either an 8-bit paral­
lel port or additional modem control signals for the serial
channels.

RD. Read (input, active low). when RD is active, a memory
or 1/0 read operation is in progress. RD is used with AO-A3,
CS and IORQ to transfer data between the KIO and CPU.

RESET. Reset (input, active low). A low on this pin will force
the KIO into a reset condition. This signal must be active for
a minimum of three CLOCK cycles. The reset state of the
KIO is with the PIO ports in Mode 1 operation and hand­
shakes inactive and interrupts disabled; PIA port in input
mode and active; CTC channel counting terminated and
interrupts disabled; SIO channels disabled and marking
with interrupts disabled. All control registers should be
rewritten after a hardware reset.

RTSA, RTSB. Request to Send (outputs, active low).
These signals are modem control signals for their serial
channels. They will follow the inverse state programmed
into their respective serial channels. They are multiplexed
with Port C, bits 4 and 3 respectively.

RxCA, RxCB. Receive Clock (inputs, active low). These
clock are used to assemble data in the receiver shift
register for their serial channels. Data is sampled on the
rising edge of the dock.

REGISTER ADDRESSES:

Register 0: PIO Port A Data
Register 1 : PIO Port A Command
Register 2: PIO Port B Data
Register 3: PIO Port B Command
Register 4: CTC Channftl 0
Register 5: CTC Channel 1
Register 6: CTC Channel 2
Register 7: CTC Channel 3

172

RxDA, RxDB. Receive Data (inputs, active high). These
are the input data pins to the receive shift register for their
serial channels.

SYNCA, SYNCS. Synchronization (bidirectional, active
low). In the asynchronous mode of operation, these pins
act much like the CTS and DCD pins. Transitions affect the
Sync/Hunt status bit for their respective serial channel but
serve no other purpose. They are multiplexed with Port C,
bits 6 and 1 respectively.

TxCA, TxCA. Transmit Clock (inputs, active low). These
clocks are used to transmit data from the transmit shift
register for their serial channels. Data is transmitted on the
falling edge of the clock.

TxDA, TxDB. Transmit Data (outputs, active high). These
are the output data pins from the transmitter for their serial
channels.

WT/ROYA, WT/RDYB. Wait/Ready (outputs, open-drain
when programmed as Wait, active high when programmed
as Ready). These pins may be programmed as Ready
lines for a OMA controller or Wait lines for interface to a
CPU. As a Ready line, it indicates (when active) that trans­
mitter or receiver is able to perform a transfer between the
serial channel and the DMA. As a Wait line, in dictates
(when active), that the CPU should wait until the transmit­
ter or receiver can complete the requested transaction.
They are multiplexed with Port C, bits 7 and O respective­
ly.

XTALI. Crystal/Clock Connection (input, active high).

XTALO. Crystal Connection (output, active high).

ZC/T00-ZC/T03• Zero Count/Timeout (outputs, active
high). These four pins correspond to the four counter/timer
channels of the KIO. Each pin will become active when its
corresponding downcounter reaches a zero count.

Register 8: SIO Channel A Data
Register 9: SIO Channel A Command/Status
Register 10: SIO Channel B Data
Register 11: SIO Channel B Command/Status
Register 12: PIA Port C Data
Register 13: PIA Port C Command
Register 14: KIO Command
Register 15: Reserved

REGISTER PROGRAMMING:

PIO Registers: For more detailed information, please con­
sult the PIO Technical Manual.

Interrupt Vector Word (Figure 8). The PIO logic unit is
designed to work with the Z80 CPU in interrupt Mode 2.
This word must be programmed if interrupts are to be used
and bit Do must be a zero.

jv,iv, lvs\v,lv,lv, Iv, I Vo I
L IDENTIFIES INTERRUPT

VECTOR

~---- ~~~~;~PPLIEO INTERRUPT

Figure 8: PIO Interrupt Vector Word

Mode Control Word (Figure 9). Selects the port operating
mode. This word is required and may be written at any time.

jo,1D.1D,ID·I' I 1 I 1 I 1 I
L IDENTIFIES MOOE

CONTROL WORD

DON'T CARE

MOOE SELECT

MODEO
MODE 1
MOOE2
MOOE3

Figure 9: PIO Mode Control Word

1/0 Register Control Word (Figure 10). When Mode 3 is
selected, the Mode Control Word must be followed by the
1/0 Register Control Word. This word configures the 1/0
register, which defines which port lines are inputs or out­
puts. A "1" indicates input while a "O" indicates output. This
word is required when in Mode 3.

~--- 0 SETS BIT TO OUTPUT
1 SETS BIT TO INPUT

Figure 10: PIO 1/0 Register Control Word

Interrupt Control Word (Figure 11). In Mode 3 operation,
handshake signals are not used. Interrupts are generated
as a logic function of the input signal levels. The Interrupt
Control Word sets the logic conditions and the logic levels
required for generating an interrupt. Two logic conditions
or functions are available: AND (if all input bits change to
the active level, an interrupt is triggered), and OR (ii any
one of the input bits change to the active logic level, an in­
terrupt is triggered). The user can also program which input
bits are to be considered as part of this logic function. Bit
Ds sets the logic function, bit Ds sets the logic level, and
bit D4 specifies a mask control word to follow.

07..... rMS~ Oo

I 1 I IHiLI I 0 I 1 I 1 I 1 I
I L IDENTIFIES INTERRUPT CONTROL WORD

1 = MASK FOLLOWS (1)

1 = ACTIVE HIGH

1 = AND FUNCTION

1 = INTERRUPT FUNCTION ENABLE (2)

"NOTE:

1. Regardless of the operating mode, setting Bit 0 4 "' 1
causes any pena1ng interrupts to oe c1earea.

2. The port interrupt is not enabled until th!_lnterrupt
function enable is followed by an active M1.

Figure 11: PIO Interrupt Control Word

Mask Control Word (Figure 12). This word sets the mask
control register, thus allowing any unused bits to be masked
off. If any bits are to be masked, then bit 04 of the interrupt
Control Word must be set. When bit 04 of the Interrupt
Control Word is set, then the next word programmed must
be the Mask Control Word. To mask an input bit, the corre­
sponding Mask Control Word bit must be a "1 ".

MB0-MB7 MASK BITS. A
BIT IS MONITORED FOR AN

'----- INTERRUPT IF IT IS
DEFINEO AS AN INPUT ANO
THE MASK BIT IS SET TO 0.

Figure 12: PIO Mask Control Word

Interrupt Disable Word (Figure 13). This word can be
used to enable or disable a port's interrupts without chang­
ing the rest of the port's interrupt conditions.

lo,1D,10,10.1oIoI1 I 1 I

T L IDENTIFIES INTERRUPT
- DISABLE WORD

DON'T CARE

D1 = 0 INTERRUPT DISABLE
07 = 1 INTERRUPT ENABLE

Figure 13: PIO Interrupt Disable Word

CTC Registers: For more detailed information, please
consult the CTC Technical Manual.

Channel Control Word (Figure 14). This word sets the
operating modes and parameters as described below. Bit
Do must be a "1" to indicate that this is a Control Word.

Interrupt Enable. Bit 07 enables the interrupt logic so that
an interrupt output (INT) can be generated al zero count.
Interrupts can be programmed in either mode and may be
enabled or disabled at any time.

173

Mode. Bit Ds selects either Timer Mode or Counter Mode.

Prescale Factor. Bit Ds selects the prescale factor for use
in the timer mode. Either divide-by-16 or divide-by-256 is
available.

Clockffrigger Edge Selector. Bit 04 selects the active edge
of the CLKfTRG input pulses.

Timer Trigger. Bit Ds selects the trigger mode for timer
operation. Either automatic or external trigger may be
selected.

Time Constant. Bit D2 indicates that the next word
programmed is time constant data for the downcounter.

Software Reset. Setting bit D1 indicates a software reset
operation.

INTERRUPT
1 ENABLES INTERRUPT

0 DISABLES IN"TERRUPT

MODE
0 SELECTS TIMER MODE

1 SELECTS COUNTER MODE

PRESCALER VALUE•
1 =VALUE Of 256
0 ~VALUE Of 16

CLKJTAG EOOE SELECl"ION
0 SELECTS FALLING EDGE

1 SELECTS RISING EDGE

~
ll~t CONTROC OR VECTOR

0 =VECTOR
1 = CONTROL WOAD

RESET
0 = CONTINUED OPERA TtON
1 = SOFTWARE RESET

TIME CONSTANT
0 = NO TIME CONSTANT FOLLOWS
1 = TIME CONSTANT FOLLOWS

TIMER TRIGOER•
O ,.- AUTOMATIC TRIGGER WHEN

TIME CONSTANT IS LOADED
1 = CLKITRG PULSE STARTS TIMER

'TIMER MODE ONLY

Figure 14: CTC Channel Control Word

Time Constant Word (Figure 15). Before a channel can
start counting, it must receive a time constant word. The
time constant value may be anywhere between 1 and 256,
with "O" being accepted as a count of 256.

1~1~1~1~1~1~1~1~1

:~: ~ I I I I ~ :~~
TCs~ ~TC2
TC4 TC3

Figure 15: CTC Time Constant Word

Interrupt Vector Word (Figure 16). If one or more of the
CTC channels have interrupts enabled, then the Interrupt
Vector Word must be programmed. Only the five most
significant bits of this word are programmed, and bit D0

must be "O". Bits D2-D1 are automatically modified by the
CTC channel when it responds with an interrupt vector.

174

SUPPLIED~
BY USER L 0 = INTERRUPT VECTOR ~ORO

1 = CONTROL WORD

CHANNEL IDENTIFIER
(AUTOMATICALLY INSERTED
BY CTC)
0 0 = CHANNEL 0
0 1 = CHANNEL 1
1 0 = CHANNEL 2
1 1 = CHANNEL 3

Figure 16: CTC Interrupt Vector Word

SIO Registers: For more detailed information, please con­
sult the SIO Technical Manual.

Read Registers (Figure 17). The 810 channel B contains
three read registers while channel A contains only two that
can be read to obtain status information. To read the con­
tents of a register (other than RRo), the program must first
write a pointer to WRo in exactly the same manner as a
write register operation. The next 1/0 read cycle will place
the contents of the selected read register onto the data bus.

READ REGISTER 0

*Used With "External/Status ~nterrupr· Modes

READ REGISTER 1 t

1~1~i~:~1~1~:~;~1

L-ALLSENT

I FIELD BITS I FIELD errs IN }
IN PREVIOUS SECOND PREVIOUS *

BYTE BYTE
0 3
0 4
0 5
0 6
0 7
0 6
1 8
2 8

PARITY ERROR
Rx OVERRUN ERROR

~---CRCIFRAMING ERROR
~---- END OF FRAME (SOLC)

*Residue data tor eight Rx bits/character programmed
tUsed with special receive condition mode

READ REGISTER 2 (Channel 8 only)

1~,~1~1~1~:~1~i~I

\ I I ~~! } INTERRUPT
· V4 VECTOR

vs
V6
V7

tVariable if "Status Affects Vector'· is programmed

Figure 17: SIO Read Registers

Write Registers (Figure 18). The SIO channel B contains
eight write registers while channel A contains only seven
that are programmed to configure the operating modes and
characteristics of each channel. With the exception of
WRo, programming the write registers is a two step opera-

WRITE REGISTER 0

1~:~ ~:~ ~:~:~,~1

11111

111

I

NULL CODE

REGISTER 0
REGISTER 1
REGISTER 2
Hi:.U1Blf.H J
REGISTER 4
REGISTER 5
REGISTER 6
REGISTER 7

SEND ABORT (SDLC)
RESET EXT/STATUS INTERRUPTS
CHANNEL RESET
ENABLE INT ON NEXT Rx CHARACTER
RESET TxlNT PENDING
ERROR RESET
RETURN FROM INT (CH·A ONLY)

NULL CODE
RESET Rx CRC CHECKER
RESET Tx CRC GENERATOR
RESET h. UNDERRUN/EOM LATCH

WRITE REGISTER 1

ID, I D6 i D5 • D, ID,! D, I D, [D0 I

111
I I · EXT INT ENABLE
L_-==: Tx INT ENABLE

'-----STATUS AFFECTS VECTOR
(CH. B ONLY)

0 Rx INT DISABLE }
Rx INT ON FIRST CHARACTER
INT ON ALL Rx CHARACTERS (PARITY AFFECTS VECTOR) *
INT ON ALL Rx CHARACTERS (PARITY DOES NOT AFFECT
VECTOR)

WAIT/READY ON RIT
WAtTIREADY FUNCTION

~----WAIT/READY ENABLE

•Or on special condition

WRITE REGISTER 2 (Channel B only)

1~:~,~:~i~1~1~r~1

11 I L_~~ } INTERRUPT
· V4 VECTOR

vs
V6
V7

WAITE REGISTER 3

Rx 5 BITS/CHARACTER
Rx 7 BITS/CHARACTER
Rx 6 BITS/CHARACTER
Rx 8 BITS/CHARACTER

lion. The first operation is a pointer written to WRo that point
to the selected register. The second operation is the actual
control word that is written into the register to configure the
SIOchannel.

WRITE REGISTER 4

101 06 D5 :D4 ,D3 0 2 0 1 Dal

11 11 n
l nl ~~~~:i~ ~~:~/~EDD

I I - - ~~~gp~~~l~SH~~·~~~~R
1 ,_,, STOP BITS/CHARACTER
2 STOP BITS/CHARACTER

8 BIT SYNC CHARACTER
16 BIT SYNC CHARACTER
SOLC MODE (01111110 FLAG)
EXTERNAL SYNC MODE

X1 CLOCK MODE
X16 CLOCK MODE
X32 CLOCK MODE
X64 CLOCK MOOE

WAITE REGISTER 5

DTR

11 l_l ___ ~~~RC ENABL~
· SDLCICRC·16

Tx ENABLE
'-------SEND BREAK

Tx 5 BITS (OR LESS)/CHARACTER
Tx 7 BITS/CHARACTER
Tx 6 BITS/CHARACTER
Tx 8 BITS/CHARACTER

WRITE REGISTER 6

*Also SDLC address field

WRITE REGISTER 7

*For SDLC it must be programmed to ··01111t10·· for flag recognition

Figure 18: SIO Write Registers

175

PIA Registers:

The PIA port can be configured for any combination of input
and output bits. The direction is controlled by writing to the
PIA Control Register. A "1" written to a bit position will
indicate that the respective bit should be an input (Figure
19). All bits are inputs on reset. '

Figure 19: PIA Control Register

KIO Command Register:

The KIO Command Register is used to program software
resets and to configure the internal interrupt daisy chain
priority (Figure 20). This register should be programmed
before all others. The reset control bits are momentary,
writing a "1" will pulse an internal reset signal to the
appropriate device.

176

I 071 Dal osl 0 41031 o,!~ Ooicia5hoi~o~~nfigurotion bl I 001 SIO,CTC,PIO
010 SIO,PIO,CTC
011 CTC,510,PlO
1 OD CTC,PIO,S!O
l 01 PIO,SIO.CTC
11 0 PIQ,CTC,S!O
111 None

Daisy Chain Write Encb!e
Reset PIO
Resel CTC

'---------Reset SIO
~-------- SIO/PIA Mux

0"" PIA
1 = SIO

Figure 20: KIO Command Register

ABSOLUTE MAXIMUM RATINGS:

Voltage on Vee with respect to Vss
. -0.3V to +7.0V

Voltages on all inputs with respect to Vss
. -0.3V to Vcc+0.3V

Operating Ambient Temperature
. See Ordering Information

Storage Temperature
............ -65Cto+150C

STANDARD TEST CONDITIONS:

The DC Characteristics and Capacitance sections below
apply to the following standard test conditions, unless
otherwise noted. All voltages are referenced to GND (OV).
Positive current flows into the referenced pin.

Available operating temperature ranges are:
• S = o c to +70 c
• E = -40 C to +100 C

Voltage Supply Range: +5.0V ± 10%

All AC parameters assume a load capaitance of 100 pf.
Add 10 ns delay for each 50 pf increase in load up to a
maximum of 200 pf for the data bus and 100 pf for the ad­
dress and control lines. AC timing measurements are
referenced to 1.5 volts (except for CLOCK, which is
referenced to the 10% and 90% points).

DC CHARACTERISTICS:

Symbol Item min

V1LC Clock Input Low Voltage -0.3
VIHC Clock Input High Voltage Vcc-0.6
V1L Input Low Voltage -0.3
V1H Input High Voltage 2.2
VoL Output "L" Voltage
VOH1 Output "H" Voltage 1 2.4
VOH2 Output "H" Voltage 2 Vcc-0.8

lu Input Leakage Current
loL 3-State Leakage Current
IL(SY) SYJiJC Pin Leakage Current +10
IOHD Darlington Drive Current -1.5

Ice Power Supply Current
6MHz
8MHz

Over specified temperature and voltage ranges:

Stresses greater than those listed under Absolute Maxi­
mum Ratings may cause permanent damage to the device.
This is a stress rating only; operation of the device at any
condition above those indicated in the operational sections
of these specifications is not implied. Exposure to absolute
maximum rating conditions for extended periods may af­
fect device reliability.

The Ordering Information section lists temperature ranges
and product numbers. Package drawings are in the Pack­
age Information section. Refer to the Literature List for ad­
ditional documentation.

+sv

max Unit Condition.

+0.45 v
Vcc+0.3 v

+0.8 v
Vee v

+0.4 v loL=2.0mA
v loH=-1.6mA
v IOH=-250µA

±10.0 µA Vin=0.4-Vcc
±10.0 µA Vin=0.4-Vcc

-40 µA Vin=0.4-Vcc
mA VoH=1.5 V

REXT=390 Ohms

15 mA vcc=5 v
20 mA V1H=V00-.2 V

V1L=.2 V

177

178

CLOCK

A0-A3
cs

IORO

00-07

RD

D0-07

WT/ROY
Woit Mc.de

·~ WT/ROY
Ready Mode

T1

CLOCK

INT

M1

IORQ

00-07

IEI

IEO

lf-----t-9 -----l!
·~----+~•

491'-

110 Read/Write Timing (M1 = 1)

T2 Two Twe! T4

7

,..._---13---01/-------.1

19

Interrupt Acknowledge Cycle

T4

CLOCK

Ml

RD

l[I

1[0

Opcode Fetch Cycle

179

180

CLOCK

IORQ
RD

PORT C
INPUT

PORT C
OUTPUT

ROY

STB

MODE 0

MODE 1

MODE 2

MODE 3

INT

Port 110 Read/Write Timing

CTS OCO I SYNC

TxC

r .. o

WT/ROY

le- 59
iNT

R>'C I
64 63

RxO

WT/ROY

INT

70
SYNC

Serial 1/0 Timing

181

CAPACITANCE:

Symbol Parameter min

CcLOCK Clock CapacJjance
C1N Input Capacitance
CouT Output Capacitance

TA=25 C, f=1 MHz

AC CHARACTERISTICS:

Z84C9008
No. Symbol Parameter min max

1 TcC Clock Cycle Time 125 DC
2 TwCh Clock Pulse Width (High) 55 DC
3 TwCI Clock Pulse Width (Low) 55 DC
4 TIC Clock Fall Time 10
5 TrC Clock Rise Time 10

6 TsA(Rlf) Address, CS Setup to JW,KmO J. 50
7 TsRl(Cr) JW,KmQ to CLOCK't Setup 60
8 Th Hold Time for SpecWied Setup 15
9 TdCr(DO) CLOCK 't to Data Out Delay 100

10 TdRlr(DOz) RD,IORQ 't to Data Float Delay 75

11 ThRDr(D) M1 Jii5,IORQ 't to Data Hold 15
12 TsD(Cr) Data In to CLOCK 't Setup , 30
13 TdlOl(DO) iORO J. to Data Out Delay

(INTACK_Cycle) 90
14 ThlOr(D) IORQ 't to Data Hold 15
15 ThlOr(A) IORQ 't to Address Hold 15

16 TsM1f(Cr) JAf J. to CLOCK 't Setup 40
17 TsM1r(Cf) JAf 't to CLOCK J. Setup (M1 Cycle) -15
18 TdM1f(IEOf) JAf J. to IEO J. Delay (Interrupt

immediate~ preceding M1 J.) 100
19 TslEl(IOf) IEI to iORO Setup 30
20 TdlEll(IEOf) IEI J. to IEO J. Delay 70

21 TdlElr(IEOr) IEI 't to IEO 't Delay
(after ED Deoode) 70

22 TslEl(Cr) IEI to CLOCK J. Setup
~4Ddecode) 50

23 TslOr(Cr) 't to CLOCK 't Setup
(to activate ROY on next clock) 100

24 TdCf(RDYr) CLOCK J. to ROY 't Delay 100.
25 TdCf(RDYf) CLOCK J. to ROY J. Delay 100

26 TwSTB STB Pulse Width 100
27 TsSTBr(Cr) 5i'B 't to CLOCK J. Setup

~activate ROY on next clock) 100
28 TdlOr(PD) 't to Port Data Valid (Mode 0) 140
29 TsPD(STBr) Port A,B Data to STB 't Setup 140
30 TdSTBf(PD) Sin J. to Port A,B Data Valid

Delay (Mode 2) 150

31 TdSTBr(PDz) m r to Port A,B Data Float
Delay (Mode 2) 140

32 TdPD(INTf) Port A,B Data Match to 1fii'i' J.
Delay (Mode3) 360

33 TdSTBr(INTf) 5i'B 't to 1lilT J. Delay 290
34 TsPD(Rlf) Port Data to RD,IORQ J. Setup
35 TdCr(PD) Clock 't to Port Data Valid Delay 80

36 TdCr(INTf) CLOCK 't to iRT Delay .
37 TsCTRr(Cr)c CLK/TRG r to CLOCK r Setup

(for immediate count,
counter.mode) 90

182

max

10'
10
15

units

ns
ns
ns
ns
ns

ns
ns
ns
ns
ns

ns
ns

ns
ns
ns

ns
ns

ns
ns
ns

ns

ns

ns
ns
ns

ns

ns
ns
ns

ns

ns

ns
ns

ns

ns

ns

n~

(1)

unit

pF
pF
pF

AC CHARACTERISTICS:

Z84C9008
No. Symbol Parameter min max units notes.

38 TsCTRr(Cr)t CLK!TRG t to CLOCK t Setup
(for enabling prescaler on
following CLOCK t, timer mode) 90 ns

39 TdCTRr(INTI) CLK!TRG t to INT J. Delay
TsCTRr(Cr) satisfied (2)
T sCTRrlCr) not satisfied , .. ,

CLK!TRG ·cycle Time
,_,

40 TcCTR 250 DC ns

41 TwCTRh CLK!TRG Width High 90 DC ns
42 TwCTRI CLK!TRG Width Low 90 DC ns
43 TrCTR CLK!TRG Rise Time 30 ns
44 TICTR CLK!TRG Fall Time 30 ns
45 TdCr(ZCr) CLOCK t to ZC/TO t Delay 80 ns

46 TdCf(ZCI) CLOCK J, to ZC/TO J, Delay 80 ns
47 Tdlot(W/Rf) IORQ J. to WT/ROY J. Delay

(Walt Mode) 130 ns
48 TdCr(W/Rf) CLOCK t to WT/ROY Delay

(Ready Mode) 80 ns
49 TdCl(W/Rz) CLOCK J. to WT/ROY Float

Delay (Walt Mode) 90 ns
50 TwPh Pulse Width High 150 ns

51 TwPI Pulse Width Low 150 ns
52 TcTxC TxC Cycle Time 250 DC ns
53 TwTxCh TxC Width High 85 DC ns
54 TwTxCI TxC Width Low 85 DC ns
55 TrTxC TxC Rise Time 60 ns

56 TITxC TxC Fall Time 60 ns
57 TdTxCf(TxD) TxC J, to TxD Delay (x1 mode) 160 ns
58 TdTxCf(W/Rf) TxC J, to Wf7RDY J, Delay

(Ready Mode) 5-9 (4)
59 TdTxCf(INTI) TxC J. to INT J. Delay 5-9 (4)
60 TcRxC RxC Cycle Time 250 DC ns

61 TwRxCh RxC Width High 85 DC ns
62 TwRxCI RxC Width Low 85 DC ns
63 TrRxC RxCRiseTime 60 ns
64 TIRxC RxCFallTime 60 ns
65 TsRxD(RxCr) RxD to RxC t Setup 0 ns

66 ThRxCr(RxD) RxC t to RxD Hold Time 80 ns
67 TdRxCr(W/Rf) RxC t to W/RDY J. Delay

~eadyMode) 10-13 (4)
68 TdRxCf(INTI) J. to INT J. Delay 10-13 (4)
69 TdRxCr(SYNCI) RxC t to SYNC J. Delay

~utmode) 4-7 (4)
70 TsSYNCl(RxCr) SYNC J. to RxC t Setup

(external sync mode) -100 ns

71 TdCl(IEOr) Clock J. to IEO t Delay 90 ns
72 TdCl(IEOI) Clock J. to IEO J. Delay 110 ns

Notes:
1: TcC+100
2: TdCr(INTI)+ TsCTRr(Cr)c orTdCr(INTI)+ TsCTRr(Cr)t
3: TcC+ TdCr(INTI)+ TsCTRr(Cr)cor TcC+ TdCr(INTI)+ TsCTRr(Cr)t
4: Units equal to System Clock periods (T0 C)

183

184

ZilOg Product Specification

January 1989

FEATURES:

• Operating Frequency to 10 MHz
• On-Chip MMU Supports Extended Address Space
• Two OMA Channels
• On-Chip Wait State Generators
• Two UART Channels
• Two 16-Bit Timer Channels

GENERAL DESCRIPTION:

Based on a microcoded execution unit and an advanced
CMOS manufacturing technology, the Z80180 is an 8-bit
MPU which provides the benefits of reduced system costs
and low power operation while offering higher performance
and maintaining compatibility with a large base of industry
standard software written around the Zilog Z80 CPU.

Higher performance is obtained by virtue of higher operat­
ing frequencies, reduced instruction execution times, an
enhanced instruction set, and an on-chip memory manage­
ment unit (MMU) with the capability of addressing up to 1
Mbyte of memory.

Reduced system costs are obtained by incorporating
several key system functions on-chip with the CPU. These
key functions include 1/0 devices such as OMA, UART, and
timer channels. Also included on-chip are several "glue"

x;.=~ 0
~:;ti

BUSACK
BUSREO

RESET~
NMO
INTo 9

M; 11

ST o

Ao ...
.,, Z80180 m
A~ ffi
•.. . ., ...
...

...... 'TOUT I

.
RO
WR

•Iii
E

iiliR>
R5llll
iiF§H
HALT

"""' 6AIQ,
CKS
RXSCTS·

TXA.1
CKAo·CilifQ,.

iRXAo
)tXAo

~= m;,
mo

'D•
o •

'o,
o,
o .

"" V«....,_ ___ ~v"

Figure 1. 64 Pin DIP

Z80180
Z180 MPU

• On-Chip Interrupt Controller
• On-Chip Clock Oscillator/Generator
• Clocked Serial 1/0 Port
• Code Compatible with Zilog Z80 CPU
• Extended Instructions
• 6 MHz Version Supports 6.144 MHz CPU Clock

Operation

functions such as dynamic RAM refresh control, wait state
generators, clock oscillator, and interrupt controller.

Not only does the Z80180 consume a low amount of power
during normal operation, but it also provides two operating
modes that are designed to drastically reduce the power
consumption even further. The SLEEP mode reduces
power by placing the CPU into a "stopped" state, thereby
consuming less current, while the on-chip 1/0 device is still
operating. The SYSTEM STOP mode places both the CPU
and the on-chip peripherals into a "stopped" mode, there­
by reducing power consumption even further.

When combined with other CMOS VLSI devices and
memories, the Z80180 provides an excellent solution to
system applications requiring high performance, and low
power operation.

::.~
iN'ril

STO ' ' •.

0

Z80180

HAIT
flNl:f,

"""'· CKS '
RXS~
TXS

4 CKA··fEliiifo
RXA•
TEST

I TXA•
CKAo 6AECiO
RXAo

' TXAc

·~ = .. RT&
'Do

Figure 2. 68 Pin PLCC

185

NC
NC

iii'o

INT1

IN12 DREQ1

ST CKS
Ao RXS/crs,

A1

A2 CKA1 ;rENOO
A3 RXA1

NC
lXA1

NC
A5 CKAomA'E00
Ao RXAo

A1

Ae DCDo
Ag

A10

Au
NC

NC NC

De

.,,.,.,,ID~O~oo 1 ·
<.C.C< .;zf?., >0 .C> ,fotf~o•if

~

Figure 2b. 80-pln Quad Flat Pack

186

-Vee

.,.__ Vss

Do-01

Figure 3. Block Diagram

187

PIN DESCRIPTION:

Ao-A 19. Address Bus (Output, active High, 3-state). Ao-A1 g

form a 20-bit address bus. The Address Bus provides the
address for memory data bus exchanges, up to 1 Mbyte,
and 1/0 data bus exchanges, up to 64K. The address bus
enters a high impedance state during reset and external
bus acknowledge cycles. Address line A1s is multiplexed
with the output of PRT channel 1 (TOUT, selected as ad­
dress output on reset) and address line A19 is not available
in DIP versions of the Z80180.

BUSACK. Bus Acknowledge (Output, active Low).
BUSACK indicates the requesting device, the MPU ad­
dress and data bus, and some control signals, have
entered their high impedance state.

BUSREQ. Bus Request (Input, active Low). This input is
used by external devices (such as DMA controllers) to re­
quest access to the system bus. This request has a higher
priority than NMI and is always recognized at the end of
the current machine cycle. This signal will stop the CPU
from executing further instructions and places the address
and data buses, and other control signals, into the high im­
pedance state.

CKAo, CKA1. Asynchronous Clock 0 and 1 (Bidirectional,
active High). These pins are the transmit and receive
clocks for the synchronous channels. CKAo is multiplexed
with DREQo and CKAi is multiplexed with TENDo.

CKS. Serial Clock (Bidirectional, active High). This line is
clock for the CSIO channel.

CLOCK. System Clock (Output, active High). The output is
used as a reference clock for the MPU and the external
system. The frequency of this output is equal to one-half
that of the crystal or input clock frequency.

CTS0-CTS1. Clear to Send O and 1 (Inputs, active Low).
These lines are modem control signals for the ASCI chan­
nels. c.TS1 is multiplexed with RXS.

Do-D1. Data Bus (Bidirectional, active High, 3-state). Do­
D1 constitute an 8-bit bidirectional data bus, used for the
transfer of information to and from 1/0 and memory
devices. The data bus enters the high impedance state
during reset and external bus acknowledge cycles.

DCDo. Data Carrier Detect O (Input, active Low). This is a
programmable modem control signal for ASCI channel 0.

DREQo, DRE01. DMA Request 0 and 1 (Input, active
Low). DREQ is used to request a DMA transfer from one
of the on-chip OMA channels. The DMA channels monitor
these inputs to determine when an external device is ready
for a read or write operation. These inputs can be
programmed to be either level or edge sensed. DREQo is
multiplexed with CKAo.

188

E. Enable Clock (Output, active High). Synchronous
machine cycle clock output during bus transactions.

EXTAL. External Clock/Crystal (Input, active High). Crys­
tal oscillator connection. An external clock can be input to
the Z80180 on this pin when a crystal is not used. This input
is Schmitt triggered.

HALT. Halt/Sleep Status (Output, active Low) This output
is asserted after the CPU has executed either the HALT or
SLP instruction, and is waiting for either non-maskable or
maskable interrupt before operation can resume. It is also
used with the M1 and ST signals to decode status of the
CPU machine cycle.

INTo. Maskable Interrupt Request O (Input, active Low).
This signal is generated by external 1/0 devices. The CPU
will honor this request at the end of the current instruction
cycle as long as the NMI and BUSREQ signals are inac­
tive. The CPU acknowledges this interrupt request with an
interrupt acknowledge cycle. During this cycle, both the M1
and IORQ signals will become active.

INT 1, INT 2. Maskable Interrupt Requests 1 and 2 (Inputs,
active Low). This signal is generated by external 1/0
devices. The CPU will honor these requests at the end of
the current instruction cycle as long as the NMI, BUSREQ,
and INTo signals are inactive. The CPU will acknowledge
these interrupt requests with an interrupt acknowledge
cycle. Unlike the acknowledgement for INT o, during this
cycle neither the M1 or IORQ signals will become active.

IORQ. 110 Request (Output, active Low, 3-state). IORQ in­
dicates that the address bus contains a valid 1/0 address
for an 1/0 read or 1/0 write operation. IORQ is also
generated, along with M1, during the acknowledgement of
the INT o input signal to indicate that an interrupt response
vector can be placed onto the data bus. This signal is
analogous to the IOE signal of the Z64180.

M1. Machine Cycle 1 (Output, active Low). Together with
MREQ, M1 indicates that the current cycle is the opcode
fetch cycle of an instruction execution. Together with
IORQ, M1 indicates that the current cycle is for an inter­
rupt acknowledge. It is also used with the HALT and ST
signal to decode status of the CPU machine cycle. This
signal is analogous to the UR signal of the Z64180.

MREQ. Memory Request (Output, active Low, 3-state).
MREQ indicates that the address bus holds a valid address
for a memory read or memory write operation. This signal
is analogous to the ME signal of the Z64180.

NMI. Non-maskable Interrupt (Input, negative edge trig­
gered). NMI has a higher priority than INT and is always
recognized at the end of an instruction, regardless of the
state of the interrupt enable flip-flops. This signal forces
CPU execution to continue at location 0066H.

RD. Read (Output, active Low, 3-state). RD indicates that
the CPU wants to read data from memory or an 110 device.
The addressed 1/0 or memory device should use this sig­
nal to gate data onto the CPU data bus.

RFSH. Refresh (Output, active Low). Together with
MREQ, RFSH indicates that the current CPU machine
cyde and the contents of the address bus should be used
for refresh of dynamic memories. The low order 8 bits of
the address bus (A7-Ao) contain the refresh address.

This signal is analogous to the REF signal of the Z64180.

RTSo. Request to Send O (Output, active Low). This is a
programmable modem control signal for ASCI channel 0.

RXAo, RXA 1. Receive Data 0 and 1 {Inputs, active High).
These signals are the receive data to the ASCI channels.

RXS. Clocked Serial Receive Data (Input, active High).
This line is the receiver data for the CSIO channel. RXS is
multiplexed with the CTS1 signal for ASCI channel 1.

ST. Status (Output, active High). This signal is used with
the M1 and HALT output to decode the status of the CPU

TXS. Clocked Serial Transmit Data (Output, active High).
This line is the transmitted data from the CSIO channel.

WAIT. Wait {Input, active Low). WA IT indicates to the MPU
that the addressed memory or 110 devices are not ready
for a data transfer. This input is used to induce additional
clock cycles into the current machine cycle. The WAIT
input is sampled on the falling edge of T 2 (and subsequent
wait states). lflhe input is sampled low, then additional wait
states are inserted until the WAIT input is sampled high, at
which time execution will continue.

WR. Write (Output, active Low, 3-state;. WR indicates lhai
the CPU data bus holds valid data to be stored at the ad­
dressed 1/0 or memory location.

XTAL. Crystal (Input, active High). Crystal oscillator con­
nection. This pin should be left open if an external clock is
used instead of a crystal. The oscillator input is not a TTL
level (reference DC characteristics).

Multiplexed pin descriptions

machine cycle. AtafTOUT During RESET, this pin is initialized
as A,8 pin. If either TOC1 or TOCO
bit of the Timer Control Register
(TCR) is set to 1, TOUT function is
selected. If TOC1 and TOCO bits are
cleared to 0, A18 function is selected.

Note thatthe output from Mt is affected by the status of the
Mt E bit in OMCR register. Table 1 shows the status while
M1E = 1.

ST HALT M1 Operation

0 1 0 CPU operation
(1 st op-code fetch) CKAolDREOo

1 1 0 CPU operation
(2nd op-code and
3rd op-code fetch)

1 1 1 CPU operation
(MC except for op-code fetch)

0 x 1 OMA operation

0 0 0 HALT mode

1 0 1 SLEEP mode (including
SYSTEM STOP mode)

NOTE X: Don't care
MC: Machine cycle

Table 1. Status Summary RXS/CTS1

TENDo, TEND1. Transfer End O and 1 (Outputs, active
Low). This output is asserted active during the last write
cyde of a OMA operation. It is used to indicate the end of
the block transfer. TENDo in multiplexed with CKA1.

TOUT. Timer Out (Output, active High). TOUT is the pulse
output from PRT channel 1 . This line is multiplexed with
Ate of the address bus.

TXAo, TXA1. Transmit Data 0 and 1 (Outputs, active High).
These signals are the transmitted data from the ASCI
channels. Transmitted data changes are with respect to
the falling edge of the transmit clock.

During RESET, this pin is initialized
as CKAo pin. if either DM1 or SM1 in
OMA Mode Register (DMODE) is set
to t, DREOo function is always selec­
ted.

During RESET, this pin is initialized
as CKA1 pin. If CKA1D bit in ASCI
control register ch 1 (CNTLA t) is set
to t, TENDo function is selected. if
CKA t D bit is set to 0, CKAt function
is selected.

During RESET, this pin is initialized
as RXS pin. If CTS1E bit in ASCI
statu~ister ch 1 (STAT1) is set
to 1, CTSt function is selected.
If CTS1 E bit is set to 0, RXS function
is selected. ·

189

ARCHITECTURE:

The Z80180 combines a high performance CPU core with
a variety of system and 110 resources useful in a broad
range of applications. The CPU core consists of five func­
tional blocks: clock generator, bus state controller (indud­
ing dynamic memory refresh), interrupt controller, memory
management unit (MMU), and the central processing unit
(CPU). The integrated 1/0 resources mak.e up the remain­
ing four functional blocks: direct memory access (OMA)
control (2 channels), asynchronous serial communications
interface (ASCI, 2 channels), programmable reload timers
(PAT, 2 channels), and a clock serial 1/0 (CSIO) channel.

Clock Generator. This logic generates the system clock
from either an external crystal or clock input. The external
clock is divided by two and provided to both internal and
external devices.

Bus State Controller. This logic performs all of the status
and bus control activity associated with both the CPU and
some on-chip peripherals. This includes wait state timing,
reset cycle~. DRAM refresh, and OMA bus exchanges.

Interrupt Controller. This block monitors and prioritizes
the variety of internal and external interrupts and traps to
provide the correct responses from the CPU. To remain
compatible with the Z80 CPU, three different interrupt
modes are supported.

Memory Management Unit. The MMU allows the user to
"map" the memory used by the CPU (logically only 64K)
into the 1 M Byte addressing range supported by the
Z80180. The organization of the MMU object code com­
patibility with the Z80 CPU while offerring access to an ex­
tended memory space. This is accomplished by using an
effective "common area - banked area" scheme.

OPERATION MODES:

The Z80180 can be configured to operate like the '64180.
This is accomplished by allowing the user to have control
over the MT, IORQ, WR, and RD signals. The Operation
Mode Control Register (OMCR) determines the M1 op­
tions; the timing of the IORQ, RD, and WR signals; and the
RETI operation.

07 06

IOC (R/W) Reserved

M1TE (W)

M1E (R/W)

Figure 4. Operation Mode Control Register
(110 Address = 3 EH)

M1E 00 Enable): This bit controls the M1 output and is set
to a 1 during reset.

190

Central Processing Unit. rhe CPU is microcoded to
provide a core that is object code compatible with the Z80
CPU. It also provides a superset of the Z80 instruction set,
including 8-bit multiply and divide. This core has been en­
hanced to allow many of the instructions to execute in
fewer clock cycles.

OMA Controller. The OMA controller provides high speed
transfers between memory and 110 devices. Transfer
operations supported are memory to memory, memory
to/from 1/0, and 1/0 to 1/0. Transfer modes supported are
request, burst, and cycle steal. OMA transfers can access
the full 1 Mby1e addressing range with a block length up to
64K by1es, and can cross over 64K boundaries.

Asynchronous Serial Communications Interface
(ASCI). The ASCI logic provides two individual full-duplex
UARTs. Each channel includes a programmable baud rate
generator and modem control signals. The ASCI channels
can also support a multiprocessor communications format.

Programmable Reload Timer (PRT).This logic consists
of two separate channels, each containig a 16-bit counter
(timer) and count reload register. The time base for the
counters is derived from the system clock (divided by 20)
before reaching the counter. PRT channel 1 provides an
optional output to allow for waveform generation.

Clocked Serial 1/0 (CSIO). The CSIO channel provides a
half-duplex serial transmitter and receiver. This channel
can be used for simple high-speed data connection to
another microprocessor or microcomputer.

When M1E=1, the MT output is asserted LOW during the
opcode fetch cycle, the INT o acknowledge cycle, and the
first machine cycle of the NMI acknowledge. This will also
cause the M 1 signal to be active during both fetches of the
RETI instruction sequence, which may cause corruption of
the external interrupt daisy chain. Hence, this bit should be
set to 0 for the Z80180. When M1 E=O, the M1 output is
normally inactive and asserted LOW only during the
refetch of the RETI instruction sequence and during the
INTo acknowledge cycle.

Write into OMCR Opcode Fetch

Figure 5. M1 Temporary Enable Timing
MITE (M1 Temporary Enable): This bit controls the tem­
porary assertion of the M 1 signal. It is always read back as

a 1 · and is set to 1 during reset. This function is used to
"ann" the internal interrupt structure of the ZSOPIO. When
a control word is written to the ZSOPIO to enable interrupts,
no enable actually takes place until the PIO sees an active
M1 signal. When M 1TE= 1, there is no change in the opera­
tion of the M1 signal and M1 E controls its function. When
M1TE=O, the Mt output will be asserted during the next
opcode fetch cycle regardless of the state programmed
into the M 1 E bit. This is only momentary (one time) and the
user need not reprogram a 1 to disable the function (See
Figure 5).

iOC: this bit conirois ihe timing of the IORQ and RD sig­
nals. It is set to 1 by reset.

When IOC= 1, the IORQ and RD signals function the same
as the Z64180.

.___ ____ r--
Figure 6.110 Read and Write Cycles with IOC =1

TIMING:

This section explains the Z80180 CPU timing for the fol­
lowing operations:

Instruction (op-code) fetch timing.
Operand and data read/write timing.
1/0 read/write timing.
Basic instruction (fetch and execute) timing.
RESET timing.
BUSREQ/BUSACK bus exchange timing.

The basic CPU operation consists of one or more "Machine
Cycles" (MC). A machine cycle consists of three system
clocks, T1, T2, and T3 while accessing memory or 1/0, or
it consists of one system clock (T1) during CPU internal
operations. The system clock is half the frequency of the
Crystal oscillator (e.g., an 8 MHz crystal produces 4 MHz
or 250 nsec). For interfacing to slow memory or
peripherals, optional wait states (Tw) niay be inserted be­
tween T2 and T3.

Instruction (op-cede) Fetch Timing. Fig. 8 shows the in­
struction (op-code) fetch timing with no wait states. An op­
code fetch cyde is externally indicated when the M 1 output
pin is LOW.

In the first half of T1, the address bus (Ao-A19) is driven

When IOC=O, the timing of the IORQ and RD signals match
the timing required by the ZSO family of peripherals. The
IORQ and RD signals will go active as a result of the rising
edge of T2. This allows the Z80180 to satisfy the setup
times required by the zao peripherals on those two signals.

T1 Tw

"' IORQ ___ __...., .___ ____ ___,r--

!~I _____ r--
Figure 7. 110 Read and Write Cycles with IOC = o

For the rest of this manual, it is assumed that M1 E=O and
IOC=O. The user must program the Operation Mode Con­
trol Register before the first 1/0 instruction is executed .

from the contents of the Program Counter (PC). Note that
this is the translated address output of the Z80180 on-chip
MMU.

In the second haH of T 1, the MREQ (Memory Request) and
RD (Read) signals are asserted LOW, enabling the
memory.

The op-code on the data bus is latched at the rising edge
of Ta and the bus cyde tenninates at the end of Ta.

Op-code fetch· cycle •I
T• Ts T, T•

' ' ' '

Ao-A!'iJ ==:::x i PCf X._---'-P=C-'+--'-1 -

Do-01 : ~>-------
, I

WAIT ::::::::::~::::::::::::::::
I I

:
'

Figure 8. Opcode Fetch timing (Without Walt State)

191

Fig. 9 illustrates the insertion of wait states (Tw) Into the
op-code fetch cycle. Wait states (Tw) are controlled by the
external WAIT Input combined with an on-chip program­
mable wait state generator.

At the falling edge of T 2 the combined WAIT Input Is
sampled. If WAIT Input is asserted LOW, a wait state (Tw)
is inserted. The address bus, ~. RD and Mi are held
stable during wait states. When the WAIT is sampled Inac­
tive HIGH at the falling edge of Tw, the bus cycle enters
Ts and completes at the end of Ts.

oj,.code fetch cycle

Ao-A,. :::X-----.----1--~-.--~x ____ _
Do-D1

' I
I I~>------

1 I I I

:::::::::::::~J,...t::::·J __ ::_-_-_;.'i\~.[..:-_::::-_:::.:::.-.. -_-_-_-_-_-.:.:::
: : : '~-----

1
I

Figure 9. Opcode F.etch Timing (With Walt State)

Operand and Data Read/Write Timing. The Instruction
operand and data read/write timing differs from op-code
fetch timing in two ways. First, the MT output Is held Inac­
tive. Second, the read cycle timing Is relaxed by one-halt
clock cycle since data is latched at the falling edge of Ts.

Instruction operands include Immediate data, displace­
ment, and extended addresses, and have the same timing
as memory data reads.

During memory write cycles the JJRE<:'i signal goes active
in the second half of T 1. At the end of T 1, the data bus is
driven with the write data.

At the start of T 2, the WFI signal is asserted LOW enabling
the memory. MREQ and WR go inactive in the second half
of T3 followed by disabling of the write data on the data
bus.

Wait states (Tw) are inserted as previously described for
op-code fetch cycles. Fig. 10 illustrates the read/write
timing without wait states (Tw), while Fig. 11 Hlustrates
read/write timing with wait states (Tw).

192

' ' ' ' ' '
Ao-A19 =:x~_Mam_ory-;0 ~add_,.._, ~! ~X~,__Memorv~...,.:-lldd_ ... _s --><==

I

'
Do-01 Write deta

' I
1 ! l I

::::::::::J:'_:::::-_-_-_-_-_-_r_-:_-_-J"t"_:::::::::::::::
I I I I
I I I I
' I I

'-----.--~

Figure 10. Memory Read/Write Timing (Without Walt
State)

I

Ao-A9 :J(! X,--;---~--+---
1 I

Do-01 ~ Writedat&
I I~· :' I ;

::. ::::·::::::¥:.:7:::::.::r:::::::::t:::::+:::.rt:::::::::
MREQ : 1 : I j

I

~'----+---i'---r:/

Figure 11. Memory Read/Write Timing (With Walt
State)

110 Read/Write Timing. 110 instructions cause data
read/write transfers which differ from memory data trans­
fers in the following three ways:

1. The IORQ (VO Request) signal is as'serted LOW in­
stead of the MREQ signal.

2. The 16-blt VO address Is not translated by the MMU.
3. A1&-A19 are held LOW.

At least one wait state (Tw) is always Inserted for 110 read
and write cycles (except internal 110 cycles).

Fig. 12 shows 110 read/write timing with the automatically
Inserted wait state (Tw).

VO-cycle

' '

1(0 write cyde

' VO address Ao-A19 .:X VO ~ress i

---~-.-~ Wmedata >
:::::.::::~::::~:::~:::::~t:::::~:::r-'C:"::::::~

Do-01

'
--~-..._--i--~i..,,/

Wli ' '
' '

NOTE: A,1-A19 = o for ilo cycles 1

Figure 12. 1/0 Read/Write Timing

Basic Instruction Timing. An instruction may consist of a
number of machine cycles including op-code fetch,
operand fetch, and data read/write cycles. An instruction
may also include cycles for internal processes which make
the bus idle.

CPU mtemal

11t op--code 2nd op-code Displacement operotoon Memorv Next instrucl!On I f.tch cycle j fetch cycle I read cycle wnte cycle I fetch cycle

Ao-AIS

10001 (70H- 77H)

Machine Cycle

MC1 MC2 MC3 MC7

NOTE. d = displacement
g = register contents

Figure 13. Instruction Timing

The example in Fig. 13 illustrates the bus liming for the
data transfer instruction LD (IX+d),g. This instruction
moves the contents of a CPU register (g) to the memory
location with address computed by adding a signed 8-bit
displacement (d) to the contents of an index register (IX).

The instruction cycle starts with the two machine cycles to
read the two byte instruction op-code as indicated by M1
LOW. Next, the instruction operand (d) is fetched.

The external bus is idle while the CPU computes the effec­
tive address. Finally, the computed memory location is
written with the contents of the CPU register (g).

RESET Timing. Fig. 14 shows the Z80180 hardware
RESET liming. If the RESET pin is LOW for six or more
than six clock cycles, processing is terminated and the
Z80180 restarts execution from (logical and physical) ad­
dress OOOOOH.

. RESET StM
r-----,--·-~

f------- RESET OP-code fetch cycle

6 or more than 6 clocks

High impedance ~
Ao-A19 -----~,____,f--~~-----<,Restart address(OOOOOli

Figure 14. Reset Timing

BUSREQ/BUSACK Bus Exchange Timing. The Z80180

REQ (Bus Request) input LOW. After the Z80180 releases
the bus, it relinquishes control to the alternate bus master
by asserting the BUSACK (Bus Acknowledge) output
LOW.

The bus may be released by the Z80180 at the end of each
machine cycle. In this context, a machine cycle consists of
a minimum of 3 clock cycles (more if wait states are in­
serted) for op-code fetch, memory read/write, and 1/0
read/write cycles. Except for these cases, a machine cycle
corresponds to one clock cycle.

When the bus is released. the address (Ao-A19\, data 1Do­
D7), and control (MREQ, IORQ, RD, and WR) signals are
placed in the high impedance state.

Note that dynamic RAM refresh is not performed when the
Z80180 has released the bus. The alternate bus master
must provide dynamic memory refreshing if the bus is
released for long periods of lime.

Fig. 15 illustrates BUSREQ/BUSACK bus exchange
during a memory read cycle. Fig. 16 illustrates bus ex­
change when the bus release is requested during a
Z80180 CPU internal operation. BUSREQ is sampled at
the falling edge of the system clock prior to Ts, Ti and Tx
(BUS RELEASE state). If BUSREQ is asserted LOW at the
falling edge of the clock state prior to Tx, another Tx is ex­
ecuted.

CPU memory read cycte Bus release cycle I CPU cycle

Figure 15. Bus Exchange Timing

CPU internal opera:1on Bus release cycle 1 CPU cycle

,, ,, T1 ,, T

JL
Ao-A19
~~~~~--~~~-~ 

Do-01 

can coordinate the exchange of control, address and data eusAcK ----------~ 
bus ownership with another bus master. The alternate bus ~---~ 
master can request the bus release by asserting the BUS- Figure 16. Bus Exchange Timing 

193 



WAIT State Generator 

To ease interfacing with slow memory and 110 devices, the 
Z80180 uses wait states (Tw) to extend bus cycle timing. 
A wait state(s) is inserted based on the combined (logical 
OR) state of the external WAIT input and an internal 
programmable wait state (Tw) generator. Wait states (Tw) 
can be inserted in both CPU execution and OMA transfer 
cycles.' 

When the external WAIT input is asserted LOW, wait 
state(s) (Tw) are inserted between T 2 and T 3 to extend the 
bus cycle duration. The WAIT input is sampled at the fall­
ing edge of the system clock in T 2 or Tw. If the WAIT input 
is asserted LOW at the falling edge of the system clock in 
Tw, another Tw is inserted into the bus cycle. Note that 
WAIT input transitions must meet specified set-up and hold 
times. This can easily be accomplished by externally 
synchronizing WAIT input transitions with the rising edge 
of the system clock. 

Dynamic RAM refresh is not performed during wait states 
(Tw) and thus system designs which use the automatic 

HALT and Low Power Operation Modes 

The Z80180 can operate in 4 different modes. HALT mode, 
IOSTOP mode and 2 low power operation modes - SLEEP 
and SYSTEM STOP. Note that in all operating modes, the 
_basic CPU clock (XTAL, EXTAL) must remain active. 

HALT mode. HALT mode is entered by execution of the 
HALT instruction (op-code = 76H) and has the following 
characteristics. 

(1) The internal CPU clock remains active. 

(2) All internal and external interrupts can be received. 

(3) Bus exchange (BUSREQ and BUSACK) can occur. 

(4) Dynamic RAM refresh cycle (RFSH) insertion con­
tinues at the programmed interval. 

(5) 1/0 operations (ASCI, CSl/O and PRn continue. 

(6) The DMAC can operate. 

(7) The RID output pin is asserted LOW. 

(8) The external bus activity consists of repeated "dummy" 
fetches of the op-code following the HALT instruction. 

refresh function must consider the affects of the occur­
rence and duration of wait states (Tw). Figure 17 
shows WAIT timing. 

\ r--\ I I '-~~~~~-
Ft g u re 17. WAIT Timing 

Programmable Wait State Insertion. In addition to the 
WAIT input, wait states (Tw) can also be inserted by 
program using the Z80180 on-chip wait state generator. 
Wait state (Tw) timing applies for both CPU execution and 
on-chip DMAC cycles. 

By programming the four significant bits of the OMA/WAIT 
Control Register (DCNTL) the number of wait states, (Tw) 
automatically inserted in memory and 110 cycles, can be 
separately specified. 

serted LOW for at least 6 clock cycles, HALT mode is ex­
ited and the normal RESET sequence (restart at address 
OOOOOH) is initiated. 

Interrupt Exit from HALT mode. When an internal or ex­
ternal interrupt is generated, HALT mode is exited and the 
normal interrupt r~sponse sequence is initiated. 

If the interrupt source is masked (individually by enable bit, 
or globally by IEF1 state), the Z80180 remains in HALT 
mode. However, NMI interrupt will initiate the normal NMI 
interrupt response sequence independent of the state of 
IEF1. 

HALT timing is shown in Fig 18. 

HALT op-code fetch cy.cle I HALT mode 

IN'fi,NMI -------'""°' 

Ao-A19 HALT op-code address X'-__ H_AL_T ~op-_code_add_,..._+ _1 ---

Essentially, the Z80180 operates normally in HALT mode, -.m 
· except that instruction execution is stopped. 

HALT mode can be exited in the following two ways. 

RESET Exit from HALT mode. If the RESET input is as-

194 

Figure 18. HALT Timing 

SLEEP mode. SLEEP mode is entered by execution of the 
2 byte SLP instruction. SLEEP .mode has the following 
characteristics. 



(1) The internal CPU clock stops, reducing power con­
sumption. 

(2) The internal crystal oscillator does not stop. 

(3) Internal and external interrupt inputs can be received. 

(4) DRAM refresh cycles stop. 

(5) 1/0 operations using on-chip peripherals continue. 

(6) The internal DMAC stop. 

(7) BUSREQ can be received and acknowledged. 

(8) Address outputs go HIGH and all other control signal 
output become inactive HIGH. 

(9) Data Bus, 3-state. 

SLEEP mode is exited in one of two ways as shown below. 

RESET Exit from SLEEP mode. If the RESET input is 
held LOW for at least 6 clock cycles, it will exit SLEEP 
mode and begin the normal RESET sequence with execu­
tion starting at address (logical and physical) OOOOOH. 

Interrupt Exit from SLEEP mode. The SLEEP mode is 
exited by detection of an external (NMI, INT0-INT2) or in­
ternal (ASCI, CSl/O, PRT) interrupt. 

In case of NMI, SLEEP Mode is exited and the CPU begins 
the normal NMI interrupt response sequence. 

(IEF1=1) and an individually enabled interrupt occurs, 
SLEEP mode is exited and the appropriate normal inter­
rupt response sequence is executed. 

If interrupts are globally disabled (IEF1=0) and an in­
dividually enabled interrupt occurs, SLEEP mode is exited 
and instruction execution begins with the instruction follow­
ing the SLP instruction. Note that this provides a technique 
for synchronization with high speed external events 
without incurring the latency imposed by an interrupt 
response sequence. 

Figure 19 shows SLEEP timing. 

IOSTOP mode. IOSTOP mode is entered by setting the 
IOSTOP bit of the 1/0 Control Register (ICR) to 1. In this 
case, on-chip 1/0 (ASCI, CSl/O, PRT) stops operating. 
However, the CPU continues to operate. Recovery from 
IOSTOP mode is by resetting the IOSTOP bit in ICR to 0. 

SYSTEM STOP mode. SYSTEM STOP mode is the com­
bination of SLEEP and IOSTOP modes. SYSTEM STOP 
mode is entered by setting the IOSTOP bit in ICR to 1 fol­
lowed by execution of the SLP instruction. In this mode, 
on-chip 1/0 and CPU stop operating, reducing power con­
sumption. Recovery from SYSTEM STOP mode is the 
same as recovery from SLEEP mode, noting that internal 
1/0 sources (disabled by IOSTOP) cannot generate a 
recovery interrupt. 

SLP 2nd op-code 
fetch cvcle 1 

Op-<:ode fetch or interrupt 
acknowtedge cycle 

In the case of all other interrupts, the interrupt response .,..,.., - --------~ 
d d h . m;NMI 

epen s on t e state of the global interrupt enable flag 
(IEF1) and the individual interrupt source enable bit. 

If the individual interrupt condition is disabled by the cor­
responding enable bit, occurrence of that interrupt is ig­
nored and the CPU remains in the SLEEP state. 

Assuming the individual interrupt condition is enabled, the 
response to that interrupt depends on the global interrupt 
enable flag (IEF1). If interrupts are globally enabled 

Trap and Interrupts 

The Z8018d CPU has twelve interrupt sources, 4 external 
and 8 internal, with fixed priority. (Reference Rgure 20). 

Ao-As SLP 2nd op-code address X.____;F:.;.F.:.:FF..:..FH"--_JX._ ___ _ 

Figure 19. SLEEP Timing 

Higher (1) TRAP !Undefined Op-code Trap) . . . . tntemal Interrupt 
Priority 121 'fro! INon Maskable Interrupt) 

(3) INT o <Maskable Interrupt Level 0) Extemal Interrupt 
C41 ~ (Maskable Interrupt Level 1 ~ 
151 11'1, IMaskable lnt8"\lpt Level 21 
161 Timer 0 
(7) Timer 1 
ISi OMA channel 0 
191 OMA channel 1 Internal lntOITUpt 

11 OJ Clocked Serial VO Port 
Lower 111 I Asynchronous SCI channel 0 
Priori1y 1121 Asynchronous SCI channel 1 

Figure 20. Interrupt Sources 

195 



TRAP Interrupt. The Z80180 generates a non-maskaable 
TRAP interrupt when an undefined op-code fetch occurs. 
This feature can be used to increase software reliability, 
implement an "extended" instruction set, or both. TRAP 
may occur during op-code fetch cycles and also if an 
undefined op-code is fetched during the interrupt acknowl­
edge cycle for INT 0 when Mode O is used. 

When a TRAP interrupt occurs the Z80180 operates as fol­
lows. 

(1) The TRAP bit in the Interrupt TRAP/Control (ITC) 
register is set to 1. 

(2) The current PC (Program Counter) value, reflecting 
location of the undefined op-code, is saved on the stack. 

(3) The Z80180 vectors to logical address 0. Note that if 
logical address OOOOH is mapped to physical address 
OOOOOH, the vector is the same as for RESET. In this case, 
testing the TRAP bit in ITC will reveal whether the restart 
at physical address OOOOOH was caused by RESET or 
TRAP. 

External Interrupts. The Z80180 has four external 
hardware interrupt inputs. 

(1) NMI- Non-maskable Interrupt 
(2) INTo - Maskable Interrupt Level O 
(3) INT1 - Maskable Interrupt Level 1 
(4) INT2 - Maskable Interrupt Level 2 

NMI, INT1 and INT2 have fixed interrupt response modes. 
INT o has 3 different software programmable interrupt 
response modes - Mode 0, Mode 1 and Mode 2. 

NMI - Non-Maskable Interrupt. The NMI interrupt input is 
edge sensitive and cannot be masked by software. When 
NMI is detected, the Z80180 operates as follows. 

(1) DMAC operation is suspended by the clearing of the 
DME (OMA Main Enable) bit in DCNTL. 

(2) The PC is pushed onto the stack. 

(3) The contents of IEF1 are copied to IEF2. This saves 
the interrupt reception state that existed prior to NM I. 

(4) IEF1 is cleared to 0. This disables all external and in­
ternal maskable interrupts (i.e. all interrupts except NMI 
and TRAP). 

(5) Execution commences at logical address 0066H. 

The last instruction of an NMI service routine should be 
RETN (Return from Non-maskable Interrupt). This restores 
the stacked PC, allowing the interrupted program to con­
tinue. 

196 

INTo - Maskable Interrupt Level O 
The nex1 highest priority external interrupt after NMI is 
INT o. INTo is sampled at the falling edge of the clock state 
prior to Tg or T1 in the last machine cycle. If INTo is as­
serted LOW at the falling edge of the clock state prior to T 3 

or T1 in the last machine cycle, INTo is accepted. The in­
terrupt is masked if either the IEF1 flag or the ITEO (Inter­
rupt Enable 0) bit in ITC are reset to 0. 

The INTo interrupt is unique in that 3 programmable inter­
rupt response modes are available - Mode 0, Mode 1 and 
Mode 2. The specific mode is selected with the IM 0, IM 1 
and IM 2 (Set Interrupt Mode) instructions. During RESET, 
the Z80180 is initialized to use Mode O for INTO. The 3 in­
terrupt response modes for INT o are: 

(1) Mode O - Instruction fetch from data bus. 

(2) Mode 1 - Restart at logical address 0038H. 

(3) Mode 2 - Low byte vector table address fetch from data 
bus. 

INTo ModeO. 
During the interrupt acknowledge cycle, an instruction is 
fetched from the data bus (DO-D7) at the rising edge of T3. 
Often, this instruction is one of the eight single byte RST 
(RESTART) instructions which stack the PC and restart ex­
ecution at a fixed logical address. However, multibyte in­
structions can be processed if the interrupt acknowledging 
device can provide a multibyte response. Unlike all other 
interrupts, the PC is not automatically stacked. 

Note that TRAP interrupt will occur if an invalid instruction 
is fetched during Mode 0 interrupt acknowledge. 

INTo Mode 1 
When INTo is received, the PC is stacked and instruction 
execution restarts at logical address 0038H. Both IEF1 and 
IEF2 flags are reset to 0, disabling all maskable interrupts. 
The interrupt service routine should normally terminate 
with the El(Enable Interrupts) instruction followed by the 
RETI (Return from Interrupt) instruction, to reenable the in­
terrupts. 

INTo Mode 2 
This method determines the restart address by reading the 
contents of a table residing in memory. The vector table 
consists of up to 128 two-byte restart addresses stored in 
low byte, high byte order. 

The vector table address is located on 256 byte boundaries 
in the 64K byte logical address space programmed in the 
8-bit Interrupt Vector Register (I). 

During the INTo Mode 2 acknowledge cycle, the low-order 
8 bits of the vector is fetched from the data bus at the rising 
edge of T3 and the CPU acquires the 16-bit vector. 



Next, the PC is stacked. Finally, the 16-bit restart address 
is fetched from the vector table and execution begins at 
that address. 

Note that external vector acquisition is indicated by both 
M 1 and IORQ LOW. Two wait states (Tw) are automatical­
ly inserted for external vector fetch cycles. 

INT1, INT2 
The operation of external interrupts INT 1 and INT 2 is a vec­
tor mode similar to INTo Mode 2. The difference is that INT 1 
and INT 2 generate the low-order byte of vector table ad­
dress using the !L (lnterrJpt Vector Low) register rathe.­
than fetching it from the data bus. This is also the interrupt 
response sequence used for all internal interrupts (except 
TRAP). 

Internal Interrupts. Internal interrupts (except TRAP) ise 
the same vectored response mode as INT1 and INT2. 
Internal interrupts are globally masked by IEF1 = 0. Individ­
ual internal interrupts are enabled/disabled by program­
ming each individual 1/0 (PAT, DMAC, CSl/O, ASCI) 
control register. The lower vector of INT,, INT 2 and internal 
interrupt are summarized in Table 2. 

Interrupt Source Priority 
b, 

IL 

b, b, 

INT, Htghest 

INT2 

PAT channel 0 

PAT channel 1 

OMA channel 0 

OMA channel 1 

CSl/O 

ASCI channel 0 

ASCI chann~ 1 Lowest 

• Programmabk! 

Table 2. Vector Table 

RETI Instruction Sequence: 

b· 

0 

0 

0 

0 

0 

0 

0 

0 

1 

Fixed Code 

bo b, b· bo 

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 1 1 0 

1 0 0 0 

1 0 1 0 

1 1 0 0 

1 1 1 0 

0 0 0 0 

When the EDH/4DH sequence is fetched by the Z80180, 
it is recognized as the RETI instruction sequence. The 
Z80180 will then refetch the RETI instruction with 4 T­
states in the EDH cycle to allow the Z80 peripherals time 
to decode that cycle (See Figure 21 ). This allows the inter­
nal interrupt structure of the peripheral to properly decode 
the instruction and behave accordingly. 

The M1 E bit of the Operation Mode Control Register 
(OMCR) should be set to ' 0 so that M 1 signal is active 
only during the refetch of the RETI instruction sequence. 
This is the desired operation when Z80 peripherals are 
connected to the zao 180. 

Ao-A1s!A1~)~= 
EDH 4DH EDH 4DH 

J.lt (MtE=l) 

g; ( MtE.:::::Q) 

MREO 

RD~~ 

ST 

Figure 21. RETI Instruction Sequence 

The RETI instruction takes 22 T-states and 10 machine 
cydes. 

Interrupt Control Registers and Flags. The Z80180 has 
three registers and two flags which are associated with in­
terrupt processing. 

EunctiQ.o Name 
(1) Interrupt Vector High I 

(2) Interrupt Vector Low IL 

(3) lnterrupVfrap Control ITC 

(4) Interrupt Enable Flag IEF1,IEF2 
1,2 

Interrupt Enable/Disable Operation 

Access Method 
LD A,I and LD I, 

A instructions 
1/0 instruction 
(addr=33H) 
1/0 instruction 
(addr=34H) 
El and DI 

Two flags, IEF, and IEF2, are used to signal the Z80180 
CPU interrupt status. IEF, controls the overall enabling and 
disabling of all internal and external maskable interrupts 
(i.e. all interrupts except NMI and TRAP). 

If IEF1 = 0, all maskable interrupts are disabled. IEF1 can 
be reset to Oby the DI (Disable Interrupts) instruction and 
set to 1 by the El (Enable Interrupts) instruction. 

The purpose of IEF2 is to correctly manage the occurrence 
of NMI. During NMI, the prior interrupt reception state is 
saved and all maskable interrupts are automatically dis­
abled (IEF1 copied to IEF2 and then IEF1 cleared to 0). At 
the end of the NMI interrupt service routine, execution of 
the RETN (Return from Non-maskable Interrupt) will 
automatically restore the interrupt receiving state (by copy­
ing IEF2 to IEF1) prior to the occurrence of NMI. 

IEF2 state can be reflected in the PN bit of the CPU Status 
Register by executing LD A, I or LD A, R instructions. 

197 



CPU Operation 

RESET 

NMI 

AETN 

Interrupt except 
NMI and TRAP 

RETI 

TRAP 

El 

DI 

LO A, I 

LO A, R 

198 

IEF1 IEF2 REMARKS 

Inhibits the interrupt eKcept NMl and 
TRAP 

"' Copies the contents of IEF, to IEF 2 

~,, not affected Returns from the NMl service routine 

Inhibits the interrupt except NMi and 
TRAP 

not affected not affected 

not affected not affected 

not affected not affected Transfers the contents of IEF2 to PN 
flag 

not affected not affected Transfers the contents of IEFi to P/V 
flag 

Table 3. State of IEF, and IEF 2 

Internal 110 Registers 

The Z80180 internal 110 Registers occupy 64 110 addres­
ses (including reserved addresses). These registers ac­
cess the internal 110 modules (ASCI, CSllO, PAT) and 
control functions (DMAC, DRAM refresh, interrupts, wait 
state generator, MMU and 110 relocation). 

To avoid address conflicts with external 1/0, the Z80180 
internal 1/0 addresses can be relocated on 64 byte boun­
daries within the bottom 256 bytes of the 64K byte 110 ad­
dr1:iss space. 



Internal 1/0 Registers 

By programming IOA 7 and IOA6 in the I/O control register, internal I/O regis­
ter addresses are relocatable within ranges from OOOOH to OOFFH in the I/O address 
space. 

REGISTER j MNEMONICS ADDRESS REMARKS 

ASCI Control Registllt' A Channel 0 0 0 
MPBR/ : CNTLAO bit MPE RE TE ~ EFR MOD2 MOD1 MODO 

during RESET 0 0 0 1 invalid 0 0 0 

R/W R/W R/W R/W R/W R/W R/W R,W R/W 

1 L MODE Selection 
Multi Processor Bit Receive/ 
Error Flag Reset 

Request To Send 
'-Transmrt Enable 

~ Receive Enable 
'--Multi Processor Enable 

ASCI Control Registllt' A Channa! 1 0 1 
: CNTLA1 

bit MPE RE TE CKA1D 
MPBR/ 

MOD2 MOD1 MODO EFR 

during RESET 0 0 0 1 invalid 0 0 0 
R/W R/W R/W R/W R/W R/W R/W R/W R/W 

l, LMODE Selection 
Multi Processor Brt Receive/ 
Error Flag Resat 

'- CKA 1 Disable 
~Transmrt Enable 

~ Receive Enable 
'- Multi Processor Enable 

MOD2, 1. 0 
0 0 0 Start + 7 bit Data + 1 Stop 
0 0 1 Start + 7 brt Data + 2 Stop 
0 1 0 Start + 7 bit Data + Parify + 1 Stop 
0 1 1 Start + 7 bit Data + Perify + 2 Stop 
1 0 0 Start + 8 bit Data + 1 Stop 
1 0 1 Start + 8 brt Deta + 2 Stop 
1 1 0 Start + 8 bit Deta + Pamy + 1 Stop 
1 1 1 Start + 8 bit Data + Parify + 2 Stop 

jASCI Control Register B Channa! 0 0 2 
MPBT MP rn1 

PEO DR SS2 SS! sso : CNTLBO brt PS 

during RESET invaid 0 0 0 1 1 1 

R/W R/W R/W R/W R/W R/W R.W R/W R/W 

L Tclock Sou""' and 
Speed Select 

Divide Ratio 
Perify Evan or Odd 

~ Clear T 0 Sand/Pn1Scale 
~Multi Processor 

Multi Processor Bit Transmrt 

• CTS : Depending on the condition of CTS Pin . 
PS :Clean!dtoO. 

Ito be conmuadl 

199 



REGISTER I MNEMONICS ADDRESS REMARKS 

ASCI Control Register B Channel 1 0 3 rn-1 
: CNTLB1 bit MPBT MP PS PEO OR SS2 SS! sso . 

during RESET inval9d 0 0 0 0 1 1 1 

R/W RIW R1W RIW R/W R,W R/W R:W R/W I L Clock SoUJQI and 
Speed Select 

Divide Ra1io 
'-Parity Even or Odd 

'- Clear To Send/Pl9Scalo 
'- Multi Processor 

1...-Multi Processor Btt Transmtt 

General PS=O PS=1 
divide ratio (divide ratio= 10) (divide ratio= 30) 

SS2.1.0 DR=O (X 16) DR=l {X64) DR=O (X 161 DR=l (X64) 

000 fl>+ 160 ti>+ 640 fl>+ 460 ti>+ 1920 
001 + 320 + 1280 + 960 + 3840 
010 + 640 + 2560 + 1920 + 7680 
011 + 1280 + 5120 + 3840 + 15360 
100 + 2560 + 10240 + 7680 + 30720 
101 + 5120 + 20480 + 15360 + 61440 
110 + 10240 +40960 +30720 + 122880 

111 External clock {fiequency < 
"' 

+40) 

ASCI Stalus Register Channel 0 0 4 bit RDRF OVRN PE FE RIE i5ffii TORE TIE 

: STATO during RESET 0 0 0 0 0 - 0 

R,W R R R R R1W R R RW 

T,.J.smil 
lntanupt 
Enable 

Transmtt Data 
RO!jister Empty 

'-Data Carrier Detect 
'-- Receive lntanupt Enable 

'- Framing Error 
'-Parity Enar " CTSo Pinj TORE 

'-0- Run Enar L I 1 

·~ 
'-Receive Data Register Ful 

H 0 : Depending on the condition of i5a50 Pin. 

jASCI Stalus Register Channel 1 0 5 bit RDRF OVRN PE FE RIE CTSIE TORE TIE 

: STATl during RESET 0 0 0 0 0 0 1 0 

RIW R R R R RIW R,W R R/W 

TL.m~ 
lntanupt 
Enable 

Transmtt Data 
RO!jister Empty 

'-CTS 1 Enable 
'-Receive lntenupt En-

L-Framing Enar 
'-Parity Enar 

'-0- Run Error 
._ R- DlllB Register Ful 

200 



REGISTER l MNEMONICS ADDRESS REMARKS 

ASCI Tninsmlt 0118 Regiltllr C- 0 8 
0 

: TORO 

ASC1 Transmit Oata Registllr Channel 0 7 
1 

: TORI 

ASCI ReceNe Data Rogistllr Channel o a 
0 

:TSAO 

ASCI ReceNe 0118 Registllr Channel 0 9 
1 

: TSR1 

CSVO Control Registllr 0 A bit Ef EE RE TE - SS2 SS1 sso 
: CNTR 

during RESET 0 0 0 0 1 1 1 1 

R/W R R/W R/W R/W R/W R/W R/W 

l RJ ~=It Enable L Speed SeEct 

'-End Interrupt Enable 
End Flag 

SS2.1.0 Baud Rate ss2.1.o Baud Raia 

000 r/J+ 20 100 cjJ+ 320 
001 + 40 101 + 640 
010 + 80 110 +1280 
011 +160 111 External 

(fraquency < + 201 

CSVO Transmit/R...,;.,,, Data o a 
Registllr 

: TRDR 

Tim• Data Register Channel Ol 0 c 
:TMDROL 

Tim.- Dl18 Register Channel OH 0 D 
: TMOROH 

Tim• Reload Register Channel Ol 0 E 
: RLOROL 

Tim.- Reload Register Channel OH 0 F 
: RLDROH 

Tim.- Control Register 1 0 bit TIF1 TIFO TIE! TIEO TOC1 TOCO TDE1 TDEO 
: TCR 

during RESET 0 0 0 0 0 0 0 0 

R/W R A R/W R/W R/W R/W R/W R/W 

L 1 Timer Down 
Count Enable 1,0 

rmer Output Control 1,0 
rmer Interrupt En- 1,0 

Timw lntenupt Flllg 1,0 

TOC1,D A,ofTOUT 

00 Inhibited 
01 Toggle 
10 0 
11 1 

(lo be continued) 

201 



202 

REGISTER 1 MNEMONICS ADDRESS REMAfll(S 

Timer Data Registar Channel 1 L 1 4 
:TMDRll 

Timer Data Regis111r Channel 1 H 1 5 
: TMDRlH 

Timer Relo&d Register Channel 1 L 1 6 
: RLDRll 

Timer Reload Registar Channel 1 H 1 7 
: ALDA1H 

Free Running Counter 1 8 niad only 
: FRC 

OMA Sou"'8 Address Register 2 0 
Channel OL 

: SAROL 

OMA Source Addrna Register 2 1 
Chennel OH 

: SAROH 

OMA Sou""' Addrna Registar 2 2 Bits 0-2 131 are used for SAROB. 
Channel OB A1e·, A,., Air, A,s OMA Transfer Rllguest 

: SAROB x x 0 0 DREOo lextema» 
x x 0 1 RDRO (ASCI()) 
x x 1 0 RORI IASCl1) 

OMA Destination Addrna RegilW 2 3 x x 1 1 Not Used 
Channel OL 

: DAROL 

OMA Destination Add1'11U Regiltar 2 4 
Channel OH 

: DAROH 

OMA Destination Address Registar 2 5 Bits 0..2 (3) are used for DAROS. 

Channel OB A1g•, A,., A,1, A,, OMA Transfer Request 
: DAROS x x 0 0 i5iITT1o !external) 

x x 0 1 TORO IASCIO) 
x x , 0 TORI !ASCII) 

OMA lly1e Count Registar Channel 2 e x x 1 1 Not Used 

OL 
: BCROL 

OMA Byte Count Registar Channel 2 7 
OH 

: BCROH 

OMA Memory Address Registar 2 8 
Channel 1L 

: MAA1L 

OMA Mamo<y Address Regisblr 2 9 
Channel lH 

: MAR1H 

OMA Memory Address RegisW 2 A Bils 0-2 13) are used for MAR1 B. 
Channel lB 

: MAR1B 

OMA VO Address Register Channel 2 B 
1L 

: IARll 

OMA VO Address Register C'*"'81 2 c 
lH 

: IAR1H 

• In the Rl and Z Mask, these OMAC· registers are expanded from 4 bits to 3 bits in the package Y81'Sion of CP-68 
and FP-80. 



REGISTER l MNEMONICS ADDRESS REMARKS 

OMA Byte Count Aegistllr Channel 2 E 
IL 

· BCRIL 

OMA Byte Count Registllr Channel 2 F 
lH 

· BCRIH 

OMA Status Regist..- 3 0 bit DEi OEO OWEl DWEO DIEi DEO - DME 
: DSTAT 

during RESET 0 0 I I 0 0 1 0 

R!W R!W R!W w w R!W R/W R 

I b.. Master 
Enable 

MA Interrupt Enable 1.0 
~OMA Enable B~ Write Enable 1,0 

'-- OMA Enable ch 1,0 
OMA Mode Register 3 1 

DMODE brt - - OM1 OMO SM1 SMO MMOD -
during RESET 1 1 0 0 0 0 0 1 

R1W R/W R/W R/W R/W R/W 

LMemory 
MODE 
Select 

'- Ch 0 Soun:e 
Mode 1,0 

'--Ch O Destination 

Mode 1, 0 

DM1, 0 Oestinat10~ Address SM1, 0 Source Address 

00 M 

I 
DARO+ 1 0 0 M SARO+ 1 

0 I M DARO- 1 0 1 M SARO- 1 
1 0 M DARO f;xed 1 0 M SARO fixed 
1 1 VO DARO fixed 1 1 VO SARO fixed 

MMOD l Mode 

0 1 Cycle Steal Mode 
1 Burst Mode 

lto be continued) 

203 



REGISTER l MNEMONICS ADDRESS REMARKS 

OMA,WAfT Control Register 3 2 bit MW11 MW10 1\11/11 l\IVIO OMS! DMSO DIMl DIMO 
: DCNTL during RESET 1 1 1 1 0 0 0 0 

FVW R/W R1W R/W R/W RfW R/W R;W R/W 

LoMA Ch 1 
110 MemO<y 
Mode Select 

'- 5RITIT Select i = 1,0 
VO Wait lnsertioo 

'-- Memory Wait lnset'tlOn 

The number of The number of 
MWll,O wart states 1\11/11,0 wait states 

00 0 00 0 
01 1 01 2 
1 0 2 10 3 
11 3 11 4 

DMSi J Sense~ 
1 1 Edge sense 
0 Level sense 

DIM1,0 Transfer Mcx:le Address Increment/Decrement 

00 M-VO MAR1+1 IARl fixed 
01 M--VO MARl-1 IAR1 fixed 
10 VO-M lARl fixed MAA1+1 
11 VO-M IAAl fixed MARl-1 

lntem.ipt Vector Low Register 3 3 bit ll7 T IL6 IL5 - - - - -
:IL 

during RESET 0 l 0 0 0 0 0 0 0 

RfW FVW] R/W R,W 

Lnterrupt Vector Low 

INT !TRAP Control Register 3 4 bit TRAP TUFO - - - fTE2 fTEl ITEO 
: ITC 

during RESET 0 l 0 1 1 1 0 0 1 

RfW R/W] R R/W R1W R1W 

I T Undeh1ecl Fetch Object 

liNT Enable 2, 1,0 

TRAP 

Refresh Control Reg1Ster 3 6 bit REFE }REFW - - - - CYCl CYCO 
: RCA 

during RESET 1 ] 1 1 1 1 1 0 0 

RfW RIW] R/W RfW FVW 

1 lefresh Wait State 
!cycle Select 

Refresh Enable 

CYCl,O Interval of Rehesh Cycle 

00 10 States 
01 20 
10 40 
11 80 

(to be contmued) 

204 



REGISTER ] MNEMONICS ADDRESS REMARKS 

MMU Common Base Regisbl< 3 8 
bit CB7' CB6 CBS CB4 CB3 CB2 CB1 CBO 

: CBR 
during RESET 0 0 0 0 0 0 0 0 

R/W R/W R/W R/W R/W R/W R/W RW R/W 

T MMU Common Base Register 

MMU Bank Base Regtstar 3 9 
bit 887' 886 885 BB4 883 882 881 880 

: B8R 
dunng RESET 0 0 0 0 0 0 0 0 

Mi"Vv I ;;,:Vv I rv~wv I ~ .. I ;;,ve-1 ;;,';,; I ~tN I~.~".' I 

MMU Bank Base Regtster 

MMU Common/Bank Area Registar 3 A 
bit CA3 CA2 CA1 CAO BA3 BA2 BA1 BAO 

: CBAR 
du'"'ll RESET 1 1 1 1 0 0 0 0 

R/W R/W R/W R/W a;w RW RIW R/W R.W 

L MMU Common 

L MMU Bank 
Area Register 

Area Register 

Operation Mode Control Register 3 E bit M1E M1TE IOC - - - - -
OMCR 

dunng RESET 1 1 1 1 1 1 1 1 

R/W R:W w AW L L _ L 110 Compatob;kty 
M1Temporary Enable 

Ml Enable 

VO Control Regist81' 3 F 
: ICR bit 'oOA7 'oOA6 IOSTP - - - - -

during RESET 0 0 0 1 1 1 1 1 

R/W R/W R/W RW 

L Lvo Stop 
VO Address 

These MMU registers are exparded from 7 bits to B bits 1n the PLCC package 

205 



Memory Management Unit (MMU) 

The Z80180 has an on-chip MMU which performs the 
translation of the CPU 64K byte {16-bit addresses OOOOH 
to FFFFH) logical memory address space into a 1024K 
byte (20-bit addresses OOOOOH to FFFFFH) physical 
memory address space. Address translation occurs inter­
nally in parallel with other CPU operation. 

Logical Address Spaces. The 64K byte CPU logical ad­
dress space is interpreted by the MMU as consisting of up 
to three separate logical address areas, Common Area 0, 
Bank Area, and Common Area 1. 

As shown in Fig.22, a variety of logical memory configura­
tions are possible. The boundaries between the Common 
and Bank Areas can be programmed with 4K byte resolu­
tion. 

Cemmon Area 1 Common Area 1 Common Area 1 

Common Area 1 

Bank Area 

Bank Aren Common Area O 

Common Area 0 

Figure 22. Logical Address Mapping Examples 

Whether address translation takes place depends on the 
type of CPU cycle as follows. 

(1) Memory Cycles 
Address Translation occurs for all memory access cycles 
including instruction and operand fetches, memory data 
reads and writes, hardware interrupt vector fetch, and 
software interrupt restarts. 

20& 

(2) 110 Cycles 
The MMU is logically bypassed for 110 cycles. The 16-bit 
logical 110 address space corresponds directly with the 16-
bit physical 1/0 address space. The four high-order bits 
(A 16-A 19) of the physical address are always O during 1/0 
cycles. 

LA" LAo 

;. .;, 
Logical Address 

"0000" 

PA19 j PAie 

I I Physical Address 

Figure 23. 110 Address Translation 

(3) OMA Cycles 
When the Z80180 on-chip DMAC is using the external bus, 
the MMU is physically bypassed. The 20-bit source and 
destination registers in the DMAC are directly output on the 
physical address bus (AO-A 19). 

Physical address translation. Fig. 24 shows the way in 
which physical addresses are generated based on the con­
tents of CBAR, CBR and BBR. MMU comparators classify 
an access by logical area as defined by CBAR. Depend­
ing on which of the three potential logical areas (Common 
Area 1, Bank Area, or Common Area O) is being accessed, 
the appropriate 8-bit base address is added to the high­
order 4 bits of the logical address, yielding a 20-bit physi­
cal address. CBR is associated with Common Area 1 
accesses. Common Area 0, if defined, is always based at 
physical address OOOOOH. 



MMU Common 
Bank Area 
Register 

MMU Common 
Bank Area 
Register 

, 5 12 , , 0 
,------....,---------------,Logical 

Address 

'---~--'----------"T""----' (64k) 

Comparator t---------1 

MMU Commoo Ba>e Reg h 
MMU Bank Base Reg 

(19) 18 

Logical 
Address 
!64 I< 

Base Register 
(8 b1tl 

,7 6 

I i 
,19 1 fl 

Phvs1ca1 
Address 
{1M' 

Adder 

7 
18 

. ~, 

' 4 •3 

1ft1:. 

12 ,, 

12 ,, 

+ 
GI 

I 
' 
' 

'::'h 

Figure 24. Physical Address Generation 

0 
Physical 
Address 
1512Kor lM 

' ,I 

207 



Dynamic RAM Refresh Control 

The Z80180 incorporates a dynamic RAM refresh control 
circuit including 8-bit refresh address generation and 
programmable refresh timing. This circuit generates 
asynchronous refresh cycles inserted at the programmable 
interval independent of CPU program execution. For sys­
tems which do not use dynamic RAM, the refresh function 
can be disabled. 

When the internal refresh controller determines that a 
refresh cycle should occur, the current instruction is inter­
rupted at the first breakpoint between machine cycles. The 
refresh cycle is inserted by placing the refresh address on 
Ao-A7 and the RFSH output is driven LOW. 

Refresh cycles may be programmed to be either 2 or 3 
clock cycles in duration by programming the REFW 
(Refresh Wait) bit in the Refresh Control Register (RCA). 
Note that the external WAIT input and the internal wait 
state generator are not effective during refresh. 

OMA Controller (DMAC) 

The Z80180 contains a two-channel DMA (Direct Memory 
Access) controller which supports high speed data trans­
fer. Both channels (channel O and channel 1) have the fol­
lowing capabilities. 

Memory Address Space. Memory source and destination 
addresses can be directly specified anywhere within the 
1024K byte physical address space using 20-bit source 
and destination memory addresses. In addition, memory 
transfers can arbitrarily cross 64K byte physical address 
boundaries without CPU intervention. 

1/0 Address Space. 1/0 source and destination addresses 
can be directly specified anywhere within the 64K byte 1/0 
address space (16-bit source and destination 1/0 addres­
ses). 

Transfer Length. Up to 64K bytes are transferred based 
on a 16-bit byte count register. 

OREO Input. Level and edge sense DREQ input detection 
are selectable. 

TEND Output. Used to indicate OMA completion to exter­
nal devices. 

Transfer Rate. Each byte transfer can occur every 6 clock 
cycles. Wait states can be inserted in DMA cycles for slow 
memory or 1/0 devices. At the system clock (11) = 6 MHz, 
the OMA transfer rate is as high as 1.0 megabytes/second 
(no wait states). 

There is an additional feature disc for DMA interrupt re­
quest by DMA END. Each channel has the following addi­
tionai specific capabilities. 

208 

Fig. 25 shows the timing of a refresh cycle with a refresh 
wait (TRw) cycle. 

Refresh signal 
(Internal stgnal) 

MC1 Refresh cycle 

Refresh address Ao-A? 

MREO -----------2----~'----' 

RFSH 

MCi+1 

\ _______ _ 

NOTE: • tf three refresh cycles are specified, TRW· is inserted 
Otherwise. TRW is not inserted 
MC: Machine Cycle 

Figure 25. Refresh Cycle Timing 

ChannelO 
Memory H memory, memory H 1/0, memory H memory 
mapped 1/0 transfers. 

-Memory address increment, decrement, no-change. 
-Burst or cycle steal memory to/from memory transfers. 
-OMA to/from both ASCI channels. 
-Higher priority than DMAC channel 1. 

Channel 1 
Memory H 1/0 transfer. 
Memory address increment, decrement 

DMAC Registers 
Each channel of the DMAC (channel 0, 1) has three 
registers specifically associated with that channel. 

Channel o 
SARO - Source Address Register 
DARO - Destination Address Register 
SCRO - Byte Count Register 

Channel 1 
MAR 1 - Memory Address Register 
IAR1 - 1/0 Address Register 
BCR1 - Byte Count Register 

The two channels share the following three additional 
registers in common. 

DST AT - DMA Status Register 
DMODE - DMA Mode Register 
DCNTL - DMA Control Register 



DMAC Block Diagram. Fig.26 shows the Z64180 DMAC 
Block Diagram. 

DMA Source Address 
Register chO SARO (20) 

OMA Destination Address 
Register chO DARO {201 

OMA Byte Count 
Register chO BCRO 0 6 

OMA 1/0 Address 
Register chl IAAl (16) 

OMA Byte Count 
Register chl BCRl {16 

Internal Address/Data Bus 

OMA Status 
Register DSTAT 181 

OMA Mode 
Register DMODE (8) 

OMA 'WAIT Control 
Register DCNTL (81 

OMA Control 

I 

Priority & -- DREQo 

Request 

Control -- OREO, 

Bus & CPU 
Control 

lncrementer/Decrementer (19) ~Interrupt Request 

Figure 26. DMAC Block Diagram 

Asynchronous Serial Communication Interface (ASCI) 

The Z80180 on-chip ASC I has two independent full-duplex 
channels. Based on full programmability of the following 
functions, the ASCI directly communicates with a wide 
variety of standard UARTs (Universal Asynchronous 
Receiver!Transmitter) including the Z8440 810 and the 
Z8530SCC. 

The key functions for ASCI are shown below. Each chan­
nel is independently programmable. 

-Full-duplex communication. 
-7- or 8-bit data length. 
-Program controlled 9th data bit for multiprocessor 

communication. 
-1 or 2 stop bits. 
-Odd, even, no parity. 
-Parity, overrun, framing error detection. 
-Programmable baud rate generator, /16 and /64 modes. 
-Speed to 38.4K bits per second (CPU fc = 6.144 MHz). 
-Modem control signals - Channel 0 has DCDO, CTSO and 

RTSO Channel 1 has CTS1. 
-Programmable interrupt condition enable and disable. 
-Operation with on-chip DMAC. 

ASCI Block Diagram. Fig. 27 shows the ASCI Block 
Diagram. 

Int em al Address 'Data Bus 

~---J~---,lnterrupt Request 

ASCt Transmit Data Register 
ch a TORO 

J_ 
ASCI Transmit Data Register 

Ch 1 TDR1 

XAo ~"SCI Transmit Sh1tt Register· ] !I ! ASCI Transmit Sh1tt Register• ..... TXA 
r· ch 0 TSAO 1 ch l TSR1 

,.-'---, 
ASC1 Receive Data Register ASCI Receive Data Register 

ch O RDRO H t-- ch l RDR1 

XAo ~ ASCI Receive Shttt Register" 
ch 0 RSAO (8) 

ASCI Control Register A 

R'fSo -i ch 0 CNTLAO (81 

CTSo- -j ASCI Control Register B 
ch 0 CNTLBO (8) 

.----------< 
DCDo ASCI Status Register 

chO STATOlB) 

ASCI 
Control I 

ASCI Receive Sl"uft Register• 14"- RXA 
ch 1 ASAl 18) 

ch 1 CNTLB 1 (8) 

ASCI Status Register 
ch 1 STATl (8) 

f-- CTS HJ'---r-'rH ::: ~::~:~:::: : 
~------~ ..._______ ___ ___, 

CKAo __, Baud Rate 

Generator O 1--- ¢ 

CKA, _____.., Baud Rate 
"Not program Accessible 

Generator 1 

Figure 27. ASCI Block Diagram 

209 



Clocked Serial 1/0 Port (CSl/O) 

The Z80180 includes a simple, high speed clock, 
synchronous serial 1/0 port The CSl/O includes trans­
mit/receive (half-duplex), fixed 8-bit data, and internal or 
external data clock selection. High speed operation (baud 
rate 200K bits/second at fC = 4 MHz) is provided. The 
CSl/O is ideal for implementing a multiprocessor com­
munication link between mulitple Z80180s. These secon­
dary devices may typically perform a portion of the system 
1/0 processing, i.e. keyboard scan/decode, LDC interface, 
etc. 

CSl/O Block Diagram. The CSl/O block diagram is shown 
in Fig. 28. The CSl/O consists of two registers - the Trans­
mit/Receive Data Register (TRDR) and Control Register 
(CNTR). 

CSl/O Transmit/Receive Data Register (TRDR: 110 Ad­
dress = OBH). TADA is used for both CSl/O transmission 
and reception. Thus, the system design must insure that 
the constraints of half-duplex operation are met (Transmit 
and receive operation cannot occur simultaneously). For 
example, if a CSl/O transmission is attempted while the 
CSl/O is receiving data, a CSl/O will not work. Also note 
that TADA is not buffered. Therefore, attempting to per­
form a CSl/O transmit while the previous transmit data is 
still being shifted out causes the shift data to be immediate­
ly updated, thereby corrupting the transmit operation in 

Programmable Reload Timer (PRT) 

The Z80180 contains a two channel 16-bit Programmable 
Reload Timer. Each PRT channel contains a 16-bit down 
counter and a 16-bit reload register. The down counter is 
directly read and written and a down counter overflow in­
terrupt can be programmably enabled or disabled. Also, 
PAT channel 1 has a TOUT output pin (pin 31 - multiplexed 
with A 18) which can be set HIGH, LOW, or toggled. Thus, 
PRT1 can perform programmable output waveform 
generation. 

PRT block diagram. The PAT block diagram is shown in 
Fig. 29. The two channels have seperate timer data and 
reldad registers and a common status/control register. The 
PRT input clock for both channels is equal to the system 
clock divided by 20. 

Secondary Bus Interface 

E clock Output Timing. The Z80180 also has a secon­
dary bus interface that allows it to easily interface with other 
peripheral families. 

These devices require connection with the Z80180 

.210 

progress. Similarly, reading TADA while a transmit or 
receive is in progress should be avoided. 

Internal Address/Data Bus 

TXS - CSl/O Transmit/Receive 

RXS ~~~AA:iister 

CSl/0 Control Register: 

Saud Rate 
Generator 

CNTR 18) i------~ 

Interrupt Request 

Figure 28. CSl/O Block Diagram 

CSl/O Register Description 

CKS 

CSl/O Control/Status Register (CNTR: 1/0 Address = 
OAH). CNTR is used to monitor CSl/O status, enable and 
disable the CSl/O, enable and disable interrupt generation, 
and select the data clock speed and source. 

<b + 20 
j 

Timer Data 
Register Ol Register OH 
o TMDROL 181 TMDROH 181 

Timer Reload Timer Reload 
Register OL Register OH 
o RLDROL 181 o RLDROH 181 

Timer Control 
Register 

TCR 181 

L 

T 1mer Reload T 1mer Reload 
Register 1 L Register 1 H 

TLDR 1 L (8) TLDR 1 H (8) 

tntet'rupt Request 

Figure 29. PRT Block Diagram 

TOUT 

synchronous E clock output. The speed (access time) re­
quired for the peripheral devices are determined by the 
Z80180 clock rate. Table 19, and Figures 80-82 define E 
clock output timing. 



On-Chip Clock Generator 

The Z80180 contains a crystal oscillator and system clock 
generator. A crystal can be directly connected or an exter­
nal clock input can be provided. In either case, the system 
clock is equal to one-half the input clock. For example, a 
crystal or external clock input of 8 MHz corresponds with 
a system clock rate of 4 MHz. 

The following table shows the AT cut crystal characteris­
tics (Co, Rs) and the load capacitance (Cl 1, CL2) required 
for various frequencies of Z80180 operation. 

4MHz 4MHz < f ~ 12MHz l2MHz < f ~ 16MHz 

Co < 7 pF <7pF <7pF 

Rs <601! <60il <6011 
.--~~~~j------~~+--~~~~-+------~~ 

Cl1. CL2 10 to 22pF±10% 10 to 22pF±10% 10 to 22 pF ±10% 

Table 4. 

Miscellaneous 

Free Running Counter (110 Address = 18H) 

Read only 8-bit free running counter without control 
registers and status registers. The contents ofthe 8-bit free 
running counter is counted down by one with an interval of 
1 O clock cycles. The free running counter continues count­
ing down without being affected by the read operation. 

If an external clock input is used instead of a crystal, the 
waveform (twice the clock rate) should exhibit a 50%± 10% 
duty cycle. Note that the minimum clock input HIGH volt­
age level is Vcc-0.6V. The external clock input is con­
nected to the EXTAL pin, while the XTAL pin is left open. 
Fig. 30 shows external clock interface. 

Figure 30. External Clock Interface 

If data is written into the free running counter, the interval 
of DRAM refresh cycle and baud rates for the ASCI and 
CSl/O are not guaranteed. 

In IOSTOP mode, the free running counter continues 
counting down. It is initialized to FFH during RESET. 

211 



SOFTWARE ARCHITECTURE 

Instruction Set. The Z80180 is object code compatible 
with the Z80 CPU, refer to the Z80 CPU Technical Manual 
or the Z80 Assembly Language Programming Manual for 
further details. 

New Instructions Operation 

SLP Enter SLEEP mode 

ML T 8-bit multiply with 16-bit result 

INO g, (m) Input contents of immediate 110 
address 

OUTO(m), g 

OTIM 

OTIMR 

OTDM 

OTDMR 

TSTIOm 

TSTg 

TSTm 

TST(HL) 

Output register contents to immediate 
110 address 

Block outpu1 - increment 

Block outpu1 - increment and repeat 

Block output - decrement 

Block output - decrement and repeat 

Non-destructive AND, 1/0 port, and 
accumulator 

Non-destructive AND, register, and 
accumulator 

Non-destructive AND, immediate data 
and accumulator. 

Non-destructive AND, memory data, 
and accumulator. 

SLP - Sleep. The SLP instruction causes the Z80180 to 
enter the SLEEP low power consumption mode. See sec­
tion 2.4 for a complete description of the SLEEP state. 

ML T- Multiply. The MLT performs unsigned multiplication 
on two 8-bit numbers yielding a 16-bit result. MLT may 
specify BC, DE, HL or SP registers. In all cases, the 8-bit 

212 

operands are loaded into each half of the 16-bit register 
and the 16-bit result is returned in that register. 

OTIM, OTIMR, OTDM, OTDMR - Block 1/0. The contents 
of memory pointed to by HL is output to the 1/0 address in 
(C). The memory address (HL) and 1/0 address (C) are in­
cremented in OTIM and OTIMR and decremented in 
OTDM and OTDMR, respectively. The B register is decre­
mented. The OTIMR and OTDMR variants repeat the 
above sequence until register Bis decremented to 0. Since 
the 1/0 address (C) is automatically incremented or decre­
mented, these instructions are useful for block 1/0 (such 
as Z80180 on-chip 1/0) initialization. When 1/0 is ac­
cessed, OOH is output in high-order bits of address 
automatically. 

TSTIO m - Test 110 Port. The contents of the 1/0 port ad­
dressed by C are ANDed with immediately specified 8-bit 
data and the status flags are updated. The 1/0 port con­
tents are not written (non-destructive AND). When 1/0 is 
accessed, OOH is output in higher bits of address automati­
cally. 

TST g - Test Register. The contents of the specified 
register are ANDed with the accumulator (A) and the status 
flags are updated. The accumulator and specified register 
are not changed (non-destructive AND). 

TST m - Test Immediate. The contents of the immediate­
ly specified 8-bit data are ANDed with the accumulator (A) 
and the status flags are updated. The accumulator is not 
changed (non-destructive AND). 

TST (HL)- Test Memory. The contents of memory pointed 
to by HL are ANDed with the accumulator (A) and the 
status flags are updated. The memory contents and ac­
cumulator are not changed (non-destructive AND). 

INO g, (m) - Input, Immediate 1/0 address. The contents 
of immediately specified 8-bit 1/0 address are input into the 
specified register. When 1/0 is accessed, OOH is output in 
high-order bits of the address automatically. 

OUTO (m), g - Output, immediate 110 address. The con­
tents of the specified register are output to the immediate­
ly specified 8-bit 1/0 address. When 1/0 is accessed, OOH 
is output in high-order bits of the address automatically. 



CPU Registers 
The Z80180 CPU registers consist of Register Set GR, 

Register Set GR' and Special Registers. 
The Register Set GR consists of 8-bit Accumulator (A), 

8-bit Flag Register (F), and three General Purpose 
Registers (BC, DE, and HL) which may be treated as 16-
bit registers (BC, DE, and HL) or as individual 8-bit 
registers (B, C, D, E, H, and L) depending on the instruc­
tion to be executed. The Register Set GR' is alternate 
register set of Register Set GR and also contains Ac­
cumulator (A'), Flag Register (F') and three General Pur­
pose Registers (BC', DE', and HL'). While the alternate 
Register Set GR' contents are not directly accessible, the 
contents can be programmably exchanged at high speed 
with those of Register Set GR. 

The Special Registers consist of 8-bit Interrupt Vector 
Register (I), 8-bit R Counter (R), two 16-bit Index Registers 
(IX and IY), 16-bit Stack Pointer (SP), and 16-bit Program 
Counter (PC). 

Fig. 31 shows CPU registers configuration. 

Register Set GR 

Accumulator Flag Register 
A F 

B Register C Register 

D Register E Register 

H Register L Register 

} 

General 
Purpose 
Registers 

Register Set GR' 

Accumulator Flag Register 
A' F" 

B' Register C' Register 

D' Register E' Register 

H' Register L' Register 

Special Registers 

Interrupt R Counter 
Vector Register 
I R 

Index Register IX 

Index Register IV 

Stack Pointer SP 

Program Counter PC 

} 

General 
Purpose 
Registers 

Figure 31 . CPU Registers 

213 



Z80180 ELECTRICAL CHARACTERISTICS 

214 

ABSOLUTE MAXIMUM RATINGS 

·Item Symbol Value Unit 

Supply Voltage Vee -0.3 - +7.0 v 
Input Voltage V;n -0.3 - Vee+0.3 v 
Operating Temperature l;opr 0 - 70 oc 
Storage Temperature Tstg -55-+150 oc 

[NOTE] Permanent LSI damage may occur if maximum ratings are exceeded. Normal. operation 
should be under recommended operating conditions. If these conditions are exceeded. it 
could affect reliability of LSI. 

DC CHARACTERISTICS 

(Vee= 5V + 10%, Vss = OV, over specified temperature range, unless otherwise noted.) 

Symbol Item Condition 

Input "H" Voltage 

V1H1 RESET. EXTAL. NMf 
Input "H" Voltage 

V1H2 Except RESET, EXTAL. NMI 

Input "L" Voltage 

V1L1 RESET. EXTAL. NMI 

Input "L" Voltage 

V1L2 Except RESET, EXTAL. NMI 

Output "H" Voltage iciH = -200µA 

VOH All outputs 

iciH = -20µA 

Output "L" Voltage 

Vol All Outputs iciL = 2.2 mA 

Input Leakage 

IL Current All Inputs Vin=0.5 - Vcc-0.5 
Except XT AL. EXT AL 

Three State Leakage 

In. Current Yin=0.5 ,""'.: Vec-0.5 

Power Oissipation• f-6 MHz 
(Normal Operation) f=SMHz 

Ice· 
Power Dissipation• 

f-10MHz 

f=6MHz 
(SYSTEM STOP mode) f- 8MHz 

f-10MHz 

Vin= OV, f= 1 MHz 
Cp Pin Capacitance Ta=25°C 

• v...,., = Vee- 1.0V. V1.m1• = 0.8V (all output terminals are at no load.) 

VCC=S.OOV 

min typ max 

Vcc-0.6 - Vcc+0.3 

2.0 - Vcc+0.3 

-:0.3 - 0.6 

:-0.3 - . 0.8 

2.4 ,.. -

Vce-1.2 - -
- - 0.45 

- - 1.0 

- - 1.0 

- 15 40 

- 20 50 

- 25 60 

- 3.8 12.5 

- 5 15.0 

- 6.3 17.5 

- - 12 

Un rt 

v 

v 

v 

v 

v 

v 

µA 

µA 

mA 

pF 



Z80180 AC CHARACTERISTICS 

(Vee= 5V + 10%, Vss = OV, over specified temperature range, unless otherwise noted.) 

No. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

26a. 

Symbol 

lcvc 

lcHW 

lcLW 
;,, 
t,,, 

tAD 

!AS 

IMED1 

ti.001 

l.M101 

tAH 

1Mrn2 
ti.002 

tM1D2 

!oRS 

!oRH 

tsm1 

tsm2 

tws 

tWH 

twoz 

!wR01 

!woo 

twos 

twRD2 

lwRP 

Item 

Clock Cycle Time 

Clock "'H"' Pulse Width 

Clock "'L"' Pulse Width 
,...f~-·· ~-11 T:--
'-''-'V~ '"'" '"''"" 

Clock Rise Time 

0 t to Address Valid Delay 

Address Valid to (MREO • or 
!ORO i) 
¢ ~to MREO )Delay 

¢ j to RD i Delay J IOC= 1 

¢ t to RD i Delay J 1oc= 0 

¢ t to M 1 j Delay 

Address Hold Time from 
(MREO, !OREO, RD, WR ) 

¢ j to MREO t Delay 

S1J i to RD t Delay 

¢ t to Mt tDelay 

Data Read Set-up Time 

Data Read Hold T 1me 

f{) j to ST j Delay 

0 + to ST f Delay 

WAIT Set-up Time to 0 j 

WAIT Hold Time from 0 j 

¢ j to Data Float Display 

¢jto WRj Delay 

0 j to Write Data Delay Time 

Wr~e Data Set-up Time to WR j 

¢jtoWRtDelay 

WR Pulse Width (Memory Write Cyde) 

WR Pulse Width (1/0 Write Cycle) 

Z80180-6 

min max 

162 2000 

65 -
65 -

<C -
- 15 

- 90 

30 -

- 60 

- 60 

- 65 

- 80 

35 -

- 60 

- 60 

- 80 

40 -
0 -
- 90 

- 90 

40 -
40 -
- 95 

- 65 

- 90 

40 -

- 80 

170 -
332 -

Z80180-8 Z80180-10 
Un rt 

min max min max 

125 2000 100 2000 ns 

50 - 40 - ns 

50 - 40 - ns 

-
·~ - iO ns 

- 15 - 10 ns 

- 80 - 70 ns 

20 - 10 - ns 

- 50 - 50 ns 

- 50 - 50 ns 

- 60 - 55 

- 70 - 60 ns 

20 - 10 - ns 

- 50 - 50 ns 

- 50 - 50 ns 

- 10· - 60 ns 

30 - 25 - ns 

0 - 0 - ns 

- 70 - 60 ns 

- 70 - 60 ns 

40 - 30 - ns 

40 - 30 - ns 

- 70 - 60 ns 

- 60 - 50 ns 

- 80 - 60 ns 

20 - 15 - ns 

- 60 - 50 ns 

130 - 110 - ns 

255 - 210 - ns 

215 



216 

27 

29 

30 

31 

32. 

33 

34. 

35 

36. 

37. 

38. 

39. 

40. 

41. 

42. 

43. 

44. 

45. 

46. 

47. 

48. 

49. 

50. 

51. 

52. 

Symbol .. 

lwoH 

ltoo1 

~002 

~DJ 

lwrs 

twrH 

to.Miw 

leRs 

leRH 

leAo1 
teAo2 

tezo 
~EWH 

~EWL 
~FDl 

~FD2 

liiAD1 

ti.Ao2 

loRas 

loRCH 
tTEDl 

tTED2 

teo1 

teo2 

PwEH 

PwEL 

Item 

Write Data Hold Time from 
(WR p 
0 ~ to IORQ +Delay} IOC= 1 

0 t to !ORO ~DelayTioc= 0 

0 l to IOFiCi t Delay 

M1 + tolORQ + Delay 

INT Set-up Time to 0 + 

INT Hold Time from 0 + · 

NMI Pulse Width 

BUSREQ Set-up Time to 0 + 

BUSREQ Hold Time from 0 + 

0 f to BUSACK t Delay 

0 + to BUSACK t Delay 

0 f to Bus Floating Delay Time 

MREQ Pulse Width (HIGH) 

MREQ Pulse Width (LOW) 
0. t to RFSH t Delay 

!IS t to RFSH t Delay 

0 t to HALT t Delay 

QJ t HAL f t Delay 

DREOi Set-up Time to 0 t 
DREOi Hold Time from 0 t 
0 + to TENDi t Delay 

0 + to TENDI t Delay 

0 ftoE fDelay 

tlH or fto E +Delay 

E Pulse Width (HIGH) 

E Pulse Width ILOWl 

I Z80180-6 

min max 

40 -

- 60 

- 65 

- 60 

340 -

40 -

40 -
120 -
40 -

40 -
- 95 

- 95 

- 125 

110 -
125 -
- 90 

- 90 

- 90 

- 90 

40 -
40 -
- 70 

- 70 

- 95 

- 95 

75 -
180 -

Z8G180-8 Z80180-10 
Unit 

min max min max 

15 - 10 - ns 

- 50 ~ 50 ns 

- 60 - 55 " 
- 50 - 50 ns 

250 - 200 - ns 

40 - 30 - ns 

40 - 30 - ns 

100 - 80 - ns 

40 - 30 - ns 

40 - 30 - ns 

- 70 - 60 ns 

- 70 - '60 ns 

- 90 - 80 ns 

90 ,.. 70 - ns 

100 - 80 - ns 

- 80 - 60 ns 

- 80 - 60 ns 

- 80 - 50 ns 

- 80 - 50 ns 

40 - 30 - ns 

40 - 30 - ns 

- 60 - 50 ns 

- 60 - 50 ns 

- 70 - 60 ns 

- 70 - 60 ns 

65 - 55 - ns 

130 - 110 - ns 



53. 

54. 

55. 

56. 

57. 

58. 

59. 

60. 

61. 

62. 

63. 

64. 

65. 

66. 

67. 

68. 

69. 

70. 

Symbol 

1£, 

!ft 
troo 

tsrrn 

tsroE 

lsRSI 

ts A HI 

tsRSE 

tsRHE 

ti.ES 

ti.EH 

lose 

lfx, 

'Ext 
t,,, 

!i.t 

"' 
"' 

Item 

Enable Rise Time 

Enable Fall Time 

0 ! to Timer Output Delay 

CSl/0 Transmit Data Delay Time 
(Internal Clock Operation) 

CSl'O Transmrt Data Delay Time 
(External Clock Operation) 

CSVO Receive Data Set-up Time 
(Internal Clock Operabon) 

CSllO Recetve Data Hold Time 
Onternal Clock Operation) 

CSl'O Receive Data Set-up Time 
(External Clock Operation) 

CSl 10 Receive Data Hold Time 
(External Clock Operation) 

RESET Set-up Time to (1\ + 
RESET Hold Time from 0 + 
Oscillator Stabilization Time 

External Clock Rise Time (EXTALI 

External Clock Fall Time (EXTALI 

RESET Rise Time 

RESET Fall Time 

Input Rise Time 
(except EXT AL. RESET) 

Input Fall Time 
(except EXT AL. RESET) 

Z80180-6 

min max 

- 20 

- 20 

- 300 

- 200 

- 7.5tcyc 
+300 

1 -

1 -

1 -

1 -
120 -
BO -
- 20 

- 25 

- 25 

- 50 

- 50 

- 100 

- 100 

Z80180-8 Z80180-10 
Unit 

min max min max 

- 20 - 20 ns 

- 20 - 20 ns 

- 200 - 150 ns 

- 200 - 150 ns 

- 7.5tcyc - 7.5tcyc ns 
+200 +150 

1 - 1 - tcyc 

1 - 1 - tcyc 

1 - 1 - tcyc 

1 - 1 - tcyc 

100 - 80 - ns 

70 - 50 - ns 

- 20 - TBD ms 

- 25 - 25 ns 

- 25 - 25 ns 

- 50 - 50 ms 

- 50 - 50 ms 

- 100 - 100 ns 

- 100 - 100 ns 

217 



TIMING DIAGRAMS 

218 

Op-code fetch Cycle 110 Write Cycle •2 

1/0 Read Cycle •2 
T1 T2 Tw T3 

If> 

ADDRESS 

WATT 

MREQ 

29 11 

IORO 

RO 

9 

WR 26,26a 

M1 

ST 

Data ------------------<! 
OUT 

62 Ir 
RESET~-j~fj:~-6-i~~~~ 

I .\ 

~ 
sdlltss .. 

• 1 Output buffer Is off at this point. 
• 2 Memory Read/Write Cycle timing are the same as 1/0 Read/Write Cycle 

except there are no automatic wait states (Tw), and MREQ is active instead of IORQ 

CPU Timing ~p-code fetch Cyclj 
Memory Read Cycle 
Memory Write Cycle 
1/0 Write Cycle 
110 Read Cycle 



33 

NMI -,Jiil ,.----+--

Data 
IN "1 

' 

39 

36 

BUSACK ______ __,h] 

ADDRESS 
38 

DATA ~---------,~ 

30 

MREQ ITT> 1>---------+-~ 

Wit IORQ t . ~---­
·3 

43 44 

HACT-------t::::l 

• 1 during INT o acknowledge cycle 
• 2 during refresh cycle 
•3 Output buffer is oft at this point 

CPU Timing INT o Acknowledge cycle 
Refresh Cycle 
BUS RELEASE Mode 
HALT Mode 
SLEEP Mode 
SYSTEM STOP Mode 

219 



~ 

T1 

0 

ADDRESS 
__JI j 

IROQ It 
RD 11 

WR 

1/0 Read Cycle 

28 

9 

j J-291\ 

I 11 1 ~13 
I --

CPU Timing (IOC=O) 

J 110 Read Cycle ) l "o WrHe Cycle 

VO Write Cycle 

T2 Tw T3 

j l- 28 
j I 

l- 29 

12s 

I I 
+j 



T1 

"' 
DREQl 
(at level sense) 

DRE Qi 
(at edge sense) 

TENDi 
·3 17 .I 

ST 

~ 

CPU or OMA Read/Write Cycle (Only OMA Write Cycle for TENDi) 
T2 Tw T3 T1 

45 46 ·2 

1~1---------------------

I 1 •• ,. 

47 L-48~~ 

OMA Control Signals 
• 1 toROS and toROH are specified for the rising edge of clock followed by T 3_ 
• 2 to ROS and to ROH are specified for the rising edge of clock. 
•3 DMA cycle starts. 
•4 CPU cycle starts. 



~ 

T, T, Tw T.i 

q, 

E 
!Memory Read/Write) 

49 

E 
11!0 Read) 

49 50 

E 
1110 Write) 

Do-D1 ~ ((( I fJ 

q, 

E 

E Clock Timing [Memory Read/Write Cycle] 
1/0 Read/Write Cycle 

(
BUS RELEAS. E mode ) 
SLEEP mode 
SYSTEM STOP mode 

E Clock Timing [BUS RELEASE Mode l 
SLEEP Mode 
SYSTEM STOP Mode 

50 



T2 Tw TJ T, 

<I> 

E 52 
Example 

(10 read ) 50 
- Op-code fetch J49 

51 ·~ E 
(1'0 Write) 

A ,,'TOUT 

--=TL53 ~h 

E Clock Timing rl Minimum timing example J' 

of PwEL and PwEH 

Timer Data 
Reg =OOOOH 

55 

Timer Output Timing 

T2 

223 



SLP Instruction fetch 

r, 

"' 

INTj J-\ 

1ilMf 

Ao-Arn 

MREQ;MI 
RD 

RAI:T 

43 

SLP Execution Cycle 

Next op-code fetch 

T2 

~ 



~ 
()1 

CSl/O Clock 

T ransrnit data 
(Internal Clock) 

T ransrnit data 

56 

57 

(External Clock) ----------+----' 

Receive data 
(Internal. Clock) 

Receive data 
(External Clock) 

11tcyc 

CSl/O Receive/Transmit Timing 

\__ 
56 

57 

11tcyc 

59 

!Z_ 
16.5tcyc 

iool 1.P 



External Clock Rise Time and Fall Time 

STANDARD TEST CONDITIONS: 

The DC Characteristics and Capacitance sections above 
apply to the following standard test .c:Onditions, unless 
otherwise noted. All voltages are referenced to GND (OV). 
Positive current flows in to the referenced pin. 

All AC parameters assume a load capaitance of 100 pF. 
Add 10 ns delay for each 50 pF increase in load up to a 
maximum of 200 pF for the data bus and 100 pF for the ad­
dress and control lines. AC timing measurements are 
referenced to 1.5 volts (except for CLOCK, which Is 
referenced to the 10% and 90% points). · 

226 

Input Rise Time and Fall Time 
(Except;.EXT AL, RESET) 

The Ordering Information section lists temperature ranges 
and product numbers. Package drawings are in the Pack­
age Information section. Refer to the Literature List for ad­
ditional documentation. 

+sv 



Z • 1 PRELIMINARY 
1 og Product Specification 

January 1989 

FEATURES 

• Designed in CMOS for low power operations. 

• Enhanced Z80® CPU instruction set that maintains 
object-code compatibility with Z80 microprocessor. 

• Three-stage pipelined, 16-bit CPU architecture with user 
and system modes. 

• Direct coprocessor and multiprocessor interface 
support. 

• On-chip paged Memory Management Unit (MMU) 
addresses up to 16 M bytes. 

• On-chip 256-byte instruction and data associative cache 
memory with burst load. 

GENERAL DESCRIPTION 

Zilog's new Z280 microprocessor features a high­
performance microprocessor designed to give the end­
user a powerful and cost-effective solution to application 
requirements. The Z280 microprocessor unit (MPU) 
incorporates advanced architectural features that allow fast 
and efficient throughput and increased memory addressing 
while maintaining Z80 object-code compatibility. The Z280 
microprocessor offers a continuing growth path for present 
Z80 based designs and serves as a high-performance 
microprocessor for new, advanced designs. 

Central to the Z280 microprocessor is an enhanced version 
of the Z80 Central Processing Unit (CPU). To assure system 
integrity, the Z280 microprocessor can operate in either 
user or system mode, allowing protection of system 
resources from user tasks and programs. System mode 
operation is supported by the addition of the system Stack 
Pointer to the working register set. The IX and IY registers 
have been modified so that in addition to their regular 
function as index registers, each register can be accessed 
as a 16-bit general purpose register or as two byte registers. 
The R register, used for refresh by the Z80 CPU, is now 
available to the programmer as a data register in the Z280 
microprocessor. 

Z280™MPU 
Microprocessor Unil 

• High performance 16-bit Z-BUS® bus interface or 8-bit 
Z80 CPU compatible bus interface. 

• Three on-chip 16-bit counter/timers. 

• Four on-chip OMA channels. 

• On-chip full duplex UART. 

• Refresh controller for dynamic RAMs. 

• On-chip oscillator or direct input clock options. 

• 20 MHz oscillator clock frequency. 

The Z80 CPU instruction set has been retained, meaning 
that the Z280 microprocessor is completely binary-code 
compatible with present Z80 code. The basic addressing 
modes of the Z80 microprocessor have been augmented 
with the addition of Indexed mode with full 16-bit 
displacement, Program Counter Relative with 16-bit 
displacement, Stack Pointer Relative with 16-bit 
displacement, and Base Index modes. The new addressing 
modes are incorporated into many of the old Z80 CPU 
instructions, resulting in greater flexibility and power. Some 
additions to the instruction set include 8-and 16-bit signed 
and unsigned multiply and divide, 8-and 16-bit sign 
extension, and a test and set instruction to support 
multiprocessing. The 16-bit instructions have been 
expanded to include 16-bit compare, memory increment, 
memory decrement, negate, add, and subtract, in addition 
to the previously mentioned multiply and divide. 

A requirement of many of today's microprocessor-based 
system designs is to increase the memory address space 
beyond the 64K byte range of typical 8-bit microprocessors. 
The Z280 microprocessor has an on-chip Memory 
Management Unit (MMU) that enables addressing of up to 
16M bytes of memory. In addition to enabling the address 

22:1 



space to be expanded, the MMU performs other memory 
management functions previously handled by dedicated 
off-chip memory management devices. 

110 address space has been expanded by the addition of an 
1/0 Page register used to select pages of 1/0 addresses. The 
8-bit 1/0 Page register can select one of 256 possible pages 
of 1/0 addresses to be active at one time, allowing a total of 
64K 1/0 addresses to be accessed. 

There are 256 bytes of on-chip memory present on the Z280 
MPU. This memory can be configured as a high-speed 
cache or as a fixed address local memory. When configured 
as a cache, the memory can be programmed to be 
instruction only, data only, or both data and instruction. The 
cache memory allows programs to run significantly faster by 
reducing the number of external bus accesses. Operation 
and update of the cache is performed automatically and is 
completely transparent to the user. When used as a local 
memory, the addresses are programmable, which permits 
selected storage of time-critical loops in local memory. 

Many features that have traditionally been handled by 
external peripheral devices have been incorporated in the 
design of the Z280 microprocessor. The "on-chip 
peripherals" reduce system chip count and reduce 
interconnection on the external bus. The Z280 MPU 
contains an on-chip clock oscillator and a refresh controller 
that provides 10-bit refresh addresses for dynamic 
memories. Also present are additional on-chip peripherals 
to provide system design flexibility. To support 
high-bandwidth data transmission, four Direct Memory 
Access (OMA) channels are incorporated on-chip. Each 
OMA channel operates using full 24-bit source and 
destination addresses with a 16-bit count. The channels can 
be programmed to operate in single transaction, burst, or 
continuous mode. System event counting and timing 
requirements are met with the help of the three 16-bit 
counter/timers. The counter/timer functions can be 
externally controlled with gate and trigger inputs, and can 
be programmed as retriggerable or nonretriggerable. A full 
duplex UART, capable of handling a variety of data and 
character formats, is present to facilitate asynchronous 
serial communication. 

Z280 CPU 

User and System Modes of Operation 

The Z280 CPU can operate in either user or system mode. 
In user mode, some instructions cannot be executed and 
some registers of the CPU are inaccessible. In general, this 
mode of operation is intended for use by application 
programs. In system mode, all of the instructions can be 
executed and all of the CPU registers can be accessed. This 
mode is intended for use with programs that perform 
operating system functions. This separation of CPU 
resources promotes the integrity of the system, since 
programs operating in user mode cannot access those 
aspects of the CPU that deal with system interface events. 

228 

The Z280 MPU also features programmable bus timing, 
allowing the user to tailor timing to the individual system. 
Upon reset the Z280 microprocessor can be programmed 
for system timing that is one-fourth, one-half, or equal to the 
speed of the MPU's internal Central Processing Unit (CPU), 
with one-half being the default. In addition to clock scaling, 
programmable wait states can be inserted during various 
bus transactions. Without the use of external hardware, one 
to three wait states can be inserted into memory, 1/0, and 
interrupt acknowledge transactions. Furthermore, separate 
memory wait states can be specified fdr upper and lower 
memory areas, facilitating the use of different speeds of 
ROMs and RAMs in the same system. 

An additional feature of the 16-bit bus interface is the ability 
to support "nibble-mode" dynamic RAMs. Using this 
feature (known as burst mode), the bus bandwidth of 
memory read transactions is essentially doubled. Burst 
mode transactions have the further benefit of allowing the 
cache to operate more efficiently by guaranteeing a high 
probability that the contents of the accessed memory will be 
present in the cache. 

The Z280 MPU supports Zilog's Extended Processor 
Architecture (EPA) in a number of ways. It is capable of 
trapping Extended Processor Unit (EPU) instructions in 
order to perform software emulation of the EPU. With its 
16-bit external bus interface, the Z280 MPU directly 
interfaces with an EPU and operates in a manner that is 
completely transparent to the user and the program. 

Multiprocessor system architectures are also supported by 
the Z280 MPU. When operating in multiprocessor mode, 
the Z280 MPU's Local Address register is used to 
distinguish between local and global memory access. 
Global accesses are controlled through a global request 
and global acknowledge protocol. 

The pin functions and the pin assignments of the Z280 M PU 
are illustrated in Figures 1 and 2. Figure 3 shows the block 
diagram. 

To further support the dual user/system mode, there are two 
Stack Pointers-one for the user stack and another for the 
system stack. These two stacks facilitate the task switching 
involved when interrupts or traps occur. To ensure that the 
user stack is free of system information, the information 
saved on the occurrence of interrupts or traps is always 
pushed onto the system stack before the new program 
status is loaded. 



BUS CONTROL { - BUSREC 
BUSACK 

INTERRUPTS 

ADDRESS/ 
DATA 
~ 

9 8 7 6 5 4 3 2 1 68 67 66 6S 64 63 62 61 

~ 10 • 

DMAStBO 11 A21 

WR S8 RDY3 

DMASTB1 

RFSH 

IOAO lS 

OE 16 

fE 11 

ADo 

S6 ADY1 

SS ADvo 
AD, 

GND 
Z280 
MPU 

Ao 

Ao 

Aw 

An 

A,, 

Au 

A,. 

A,; 

Arn 

A,, 

A,. 

A,, 

Aw 

A,, 

A,, 

A,, 

ADDRESS .sv Z280 
MPU 52 RESERVED 

r
- R'D 

T<D 

<!N-~HIP l + cnNIGACi<• 
PERIPHERALS CTIO/GAE-o • • 

4 -
-f+- ADY 

2 DMASTB 

~"~Q4~J~°4>I~{,~ ~~~~"~ oq_ ~q,'4.~~tr'-('?->:J~ 

~ GND '----....---' 

BUS TIMING CPU 
AND STATUS CONTROL 

Figure 1 a. Z280 Pin Functions, Z80 Bus Configuration 
(Input OPT tied to GND) 

ADDRESS 

~ 

BUS CONTROL { - BUSREO 
BUSACK 

{

- NMI 

- TNi'AtEOP,., 
INTERRUPTS - EOP 

- INTs/ 8 
iN'fc l _. RXD 

T<D 

ON·CHIP 3 CTINIGACK • 

PERIPHERALS 3 CTIO/GREQ". 

4 -
-f+- ROY 

2 OMASTB 

Z280 
MPU 

~"{;;," ~~e,"'-""o/"o/"'4-"-'<~ -b<v 

'-~~~ ........ ~~~-"NCOR'--v--"' 
+SV CPU 

CONTROL 
•Multiplexed with CTI No 

·"Multiplexed with CTIOo 
BUSTIMINQ 

AND STATUS 

ADo ...,.. 

A01 ........ 

ADz _.... 

AD3 ...._ 

AD4 _.... 

ADs ......_ 

A Do 

AD1 

Figure 2a. Z280 Pin Functions, Z-BUS Configuration 
(Input OPT tied to + SV or not connected) 

ADDRES 
DATA 

•5V 

CTI01 20 

Mi 21 

i.JIRECI 

CTI02 23 

RD 24 

CTIN2 

ttrrC 26 

St GND 

XTALI 

49 XTALO 

CLK 

"° 
Aw 

44 AD3 

Figure 1b. Z280 Pin Assignments, Z80 Bus 
(Input OPT tied to GND) 

B/W 10 

DMASTBo 11 

R/W 12 

DMASfBj 

STo 14 

ST1 1S 

OE t6 

iE 17 

+SV 18 

+5V 19 

CTI01 20 

ST2 21 

$T3 22 

CTI02 

fill 

CTIN2 

iNiC 

9 8 7 6 s 4 3 2 16867666S64636261 

Z280 
MPU 

A Do 

ROY3 

AD5 

56 ROY, 

55 AOY0 

AD, 

53 GND 

RESERVED 

St GNO 

SO XTALI 

XTALO 

48 RxD 

CLK 

"° 
Aw 

AD, 

Figure 2b. Z280 Pin Assignments, Z·BUS 
(Input OPT tied to + SV or not connected) 

229 



3-STAGE PIPELINE 
ZBO COMPATIBLE 

EXECUTION UNIT INSTRUCTION/ r.--w DATA CACHE 
OR MEMORY 

. w 

PAGED 
: INTERNAL MEMORY INSTRUCTION EXECUTION 

I- •CONTROL GENERAL· rl PROGRAM J- MANAGEMENT ....--,..- ADDRESS 256 
......,._ 

DECODER SEQUENCER 
: SIGNALS PURPOSE COUNTER 

REGISTER 
UNIT TAGS BYTES 

FILE . . 
I _1 R . 

: USP r:-SSP 
LRU 

If St L--St • 

l 
AS 

•RO/OS 
"HALT/B/W 
•WR1R1W 
"RFSH/STo 
•10RQfST1 
•MifST2 
"MREQ/ST3 

INTERNAL BUS -

~J.. .l 
- t- FOUR16-BIT CLOCK 

XTALI 

OSCILLATOR OMA CHANNELS 

XTALO 1-i - THREE 
16·BIT UART 

COUNTER/ 
TIMERS 24·BIT SOURCE 

+5V - 24-BIT DESTINATION 

16-BIT COUNTER 

GND -· CONTROL 

l l ] J ] 

1 1 ! DlTB 1 JD Tt 

DRAM 
10-BIT 

REFRESH 
ADDRESS 

GENERATOR 

.....__ 

INTERRUPT 
BURST CONTROL 

MEMORY 
CONTROL 

ZBOBUS 
(8-BIT)OR 

Z·BUS 
(16-BIT) 

EXTERNAL BUS SCALE 
BUS AND 

INTERFACE WAIT STATE 
GENERATOR 

J JJJ ] J 
RJer 1 ~ ~uf.e~ of.a i. 

AOL, JE BUSACK G'!.CK A16·A23 

3 

NMi 

OPT 

CLK 

WAIT 

PAUSE 

• Signal definition depends on OPT. 

+ EOP • shares with INT,. 

+ EOP 8 shares with INT 8 • 

+GACK shares with CT IN 0 • 

+GREQ shares with CTI00 • 

Figure 3. Z280 MPU Block Diagram. 

Address Spaces 

The Z280 CPU architecture supports four distinct address 
spaces corresponding to the different types of locations that 
can be accessed by the CPU. These four address spaces 
are: 

• CPU register space 

• CPU control and status register space 

• Memory address space 

• 1/0 address space 

CPU Register Space. The CPU register space (Figure 4) 
consists of all of the registers in the CPU register file. The 
CPU registers are used for data and address manipulation. 
Access to these registers is specified in the instruction. The 
CPU registers are labeled A, F, B,C, D, E, H, L,A', F', B', C', 
D', E', H', L', IX, IY, SSP, USP, PC, I, and R. 

230 

CPU Control and Status Register Space. The CPU 
control register space consists of all of the control and status 
registers found in the CPU control register file (Figure 5). 
These registers govern the operation of the CPU and are 
accessible only by the privileged Load Control instruction. 
The registers in the CPU control file consist of .th.e Bus 
Timing and Control register, Bus Timing and lnit1al1zat1on 
register, Local Address register, Cache Control reg.ister, 
Master Status register, Interrupt Status register, 
Interrupt/Trap Vector Table Pointer, 1/0 Page register, Trap 
Control register, and System Stack Limit register. 

Memory Address Space. Two memory address spaces 
are supported by the Z280 CPU; one for user and one for 
system mode of operation. They are selected by the 
User/System Mode (U/S) bit in the Master Status register, 
which governs the selection of Page Descriptor registers 
during address translation. 



Each address space can be viewed as a string of 64K bytes 
numbered consecutively in ascending order. The 8-bit byte 
is the basic addressable element in the memory address 
spaces. However, there are other addressable data 
elements: bits, 2-byte words, byte strings and multiple-byte 
EPU operands. 

The address of a multiple-byte entity is the address of the 
byte with the lowest address. Multiple-byte entities can be 
stored beginning at either even or odd memory addresses. 

1/0 Address Space. 1/0 addresses are generated only by 
the 1/0 instructions (IN, OUT, and the 1/0 block move 
instn_1c.tions) Logic-.al !JO a_ddresses ::_:i_re eight bits iri length, 
augmented by the A register on lines A8-A15 in Direct 
Address addressing mode and by the B register on lines 
A8-A15 in Indirect Register addressing mode and for block 
1/0 instructions. The 16-bit logical 1/0 address is always 
extended by appending the contents of the 8-bit page 
register to the augmented 1/0 address. Thus the complete 
address generated to address an 1/0 port consists of an 1/0 
page number on A23-A16, the contents of the A or B register 
on A8-A 15 , and the 8-bit 1/0 address on ArA0 . 

Unlike memory references, in which a 16-bit word store or 
fetch can generate two memory references, an 1/0 word 
store or fetch is always one 1/0 bus transaction, regardless of 
bus size or 1/0 port address. Note, however, that on-chip 
peripherals with word registers are accessed via word 1/0 
instructions for those 16-bit registers, regardless of the 
external bus size (Table 1 ). 

PRIMARY FILE 

A ACCUMULATOR F FLAG REGISTER 

B GENERAL PURPOSE c GENERAL PURPOSE 

D GENERAL PURPOSE E GENERAL PURPOSE 

H GENERAL PURPOSE L GENERAL PURPOSE 

-----6 BITS----.i 

I INTERRUPT VECTOR I R 

T 
IX INDEX REGISTER 

_!_ 
I 

IY INDEX REGISTER 

..!. 

PC PROGRAM COUNTER 

Data Types 

The CPU can operate on bits, binary-coded decimal (BCD) 
digits (4 bits), bytes (8 bits), words (16 bits), byte strings, and 
word strings. Bits in registers or memory can be set, cleared, 
and tested. BCD digits, packed two to the byte, can be 
manipulated with the Decimal Adjust Accumulator 
instruction (in conjunction with binary addition and 
subtraction) and the Rotate Digit instructions. Bytes are 
operated on by 8-bit load, arithmetic, logical, and shift and 
rotate instructions. Words are operated on in a similar 
manner by the 16-bit load and 16-bit arithmetic instructions. 
Block move and search operations can manipulate byte 
strings up to o4K bytes long. l::llock 1/U word 1nstruct1ons can 
manipulate word strings up to 32K words long. To support 
EPU operations, byte strings up to 16 bytes in length can be 
transferred by the CPU. 

CPU Registers 

The Z280 MPU contains 23 programmable registers 
(Figure 4) in the CPU register address space. 

Primary and Working Register Set. The working register 
set is divided into the two 8-b1t register files-the primary file 
and alternate (designated by ') file. Each tile contains an 
8-bit accumulator (A), a Flag register (F), and six 
general-purpose registers (B, C, D, E, H, and L). Only one 
file can be active at any given time. Upon reset, the primary 
register file is active. Exchange ,instructions allow the 
programmer to exchange the active file with the inactive file. 

AUXILIARY FILE 

A' ACCUMULATOR F' FLAG REGISTER 

B' GENERAL PURPOSE C' GENERAL PURPOSE 

D' GENERAL PURPOSE E' GENERAL PURPOSE 

H' GENERAL PURPOSE L' GENERAL PURPOSE 

NOTE: A is the 8-bit accumulator. 
HL is the 16-bit accumulator. 

SP STACK POINTER 

USER(USP)~ 
L SYSTEM (SSP) 

---------16 BITS--------• 

Figure 4. CPU Register Configuration 

231 



CONTROL 
REGISTERS 

BUS TIMING AND CONTROL 

BUS TIMING AND INITIALIZATION 

LOCAL ADDRESS 

CACHE CONTROL 

MASTER STATUS 

INTERRUPT STATUS 

INTERRUPT /TRAP VECTOR TABLE POINTER 

SYSTEM STATUS 
REGISTERS 

SYSTEM STACK LIMIT 

l/OPAGE 

TRAP CONTROL 

Figure 5. CPU Control and Status Registers 

The accumulator is the destination register for 8-bit 
arithmetic and logical operations. The six general-purpose 
registers can be paired (BC, DE, and HL)toform three 16-bit 
general-purpose registers. The HL register pair serves as a 
16-bit accumulator for 16-bit arithmetic operations. 

CPU Flag Register. The Flag register contains six flags that 
are set or reset by various CPU operations. This register is 
illustrated in Figure 6. 

7 0 

lslzlxlHlxlmlNlcl 

Figure 6. CPU Flag Register 

The flags in this register are: 

Carry (C). This flag is set when an add instruction generates 
a carry or a subtract instruction generates a borrow. Certain 
logical and rotate and shift instructions affect the Carry flag. 

Add/Subtract (N). This flag is used by the Decimal Adjust 
Accumulator instruction to distinguish between add and 
subtract operations. The flag is set for subtract operations 
and cleared for add operations. 

Parity/Overflow (P/V). During arithmetic operations this flag 
is set to indicate a two's complement overflow. During logical 
and rotate operations, this flag is set to indicate even parity of 
the result or cleared to indicate odd parity. 

Half Carry (H). This flag is set if an 8-bit arithmetic operation 
generates a carry or borrow between bits 3 and 4, or if a 
16-bit operation generates a carry or borrow between bits 
11 and 12. This bit is used to correct the result of a packed 
BCD addition or subtract operation. 

232 

Zero (Z). This flag is set if the result of an arithmetic or logical 
operation is a zero. 

Sign (S). This flag stores the state of the most significant bit of 
the accumulator. The Sign flag is also used to indicate the 
results of a test and set instruction. 

Dedicated MPU Registers 

Index Registers. The two Index registers, IX and IY, each 
hold a 16-bit base address that is used in the Indexed 
addressing mode. The Index registers can also function as 
general-purpose registers with the upper and lower bytes 
capable of being accessed individually. The high and low 
bytes of the IX register are called IXH and IXL. The high and 
low bytes of the IY register are called IYH and. IYL. 

Interrupt Register. The Interrupt register (I) is used in 
interrupt mode 2 to generate a 16-bit indirect logical address 
to an interrupt service routine. The Interrupt register 
supplies the upper eight bits otthe indirect address and the 
interrupting peripheral supplies the lower eight bits. 

Program Counter. The Program Counter (PC) is used to 
sequence through instructions in the currently executing 
program and to generate relative addresses. The Program 
Counter contains the 16-bit logical address of the current 
instruction being fetched from memory. 

R Register. The R register can be used as a 
general-purpose 8-bit read/write register. The R register is 
not associated with the refresh address and its contents are 
changed only by the user. 

NOTE: To be compatible with possible future enhance­
ments, a user should write O's into reserved register bits. A 
user should not rely on values read from reserved register 
bits. In figures and tables, unless otherwise noted, re­
served bits are labeled with "X". 



Peripheral 

Refresh Rate Register 

UART 

Configuration 

Transmitter Control/Status 

Receiver Control/Status 

Receiver Data 

Trans:n!tter Data 

MMU 

Master Control 

Page Descriptor Register Pointer 

Descriptor Select Port 

Block Move Port 

Invalidation 1/0 Port 

Page Descriptor Registers• 

User PORO 

User PDR 1 

UserPDR 14 

User PDR 15 

System PDR 0 

System PDR 1 

System PDR 14 

System PDR 15 

OMA 

Master Control 

Destination Address 

(bits0-11) 

Destination Address 

(bits 12-23) 

Source Address 

(bits0-11) 

Source Address 

(bits 12-23) 

Count 

Transaction Descriptor 

Counter/Timer 

Configuration 

Command/Status 

Time Constant 

Count-Time 

Table 1. On-Chip Peripheral 1/0 Port Addresses 

DMAO DMA1 

FFxxOO FFxxOS 

FFxx01 FFxx09 

FFxx02 FFxxOA 

FFxx03 FFxxOB 

FFxx04 FFxxOC 

FFxx05 FFxxOD 

CITO 

FExxEO 

FExxE1 

FExxE2 

FExxE3 

Address 

(Hexadecimal) 

FFxxEB 

FExx10 

FExx12 

FExx14 

FExx16 
rr,,.,-1n 
I L/\l\IU 

FFxxFO 

FFxxF1 

FFxxF5 

FFxxF4 

FFxxF2 

00 

01 

OE 

OF 

10 

11 

1E 

1F 

FFxx1 F 

C/T1 

FExxEB 

FExxE9 

FExxEA 

FExxEB 

DMA2 

FFxx10 

FFxx11 

FFxx12 

FFxx13 

FFxx14 

FFxx15 

DMA3 

FFxx18 

FFxx19 

FFxx1A 

FFxx1 B 

FFxx1C 

FFxx1 D 

C/T2 

FExxFB 

FExxF9 

FExxFA 

FExxFB 

'The Page Descriptor register address must be loaded into the Page Descriptor Register Pointer in order to access that Page Descriptor register 

233 



Stack Pointers. Two hardware Stack Pointers, the User 
Stack Pointer (USP) and the System Stack Pointer (SSP), 
support the dual mode of operation of the microprocessor. 
The SSP is used for saving information when an interrupt or 
trap occurs and for supporting subroutine calls and returns 
in system mode. The USP is used for supporting subroutine 
calls and returns in user mode. 

Status and Control Registers. There are ten status and 
control registers available to the programmer in the Z280 
MPU. Table 2 shows the addresses occupied by the 
registers in the status and control register addressing 
space. 

Table 2. Status and Control Register 1/0 Port Addresses 

Address 
Control Register Name (Hexadecimal) 

Bus Timing and Control Control 02 

Bus Timing and Initialization Control FF 

Cache Control 1 Control 12 

Interrupt Status Control 16 

Interrupt/Trap Vector Table Control 06 

1/0 Page Register Control 08 

Local Address Register2 Control 14 

Master Status (MSR) Control 00 

Stack Limit Control 04 

Trap Control Control 10 

NOTES: 
1. See section on on-chip memory for register description. 
2. See section on multiprocessing mode of operation for register 

description. 

Bus Timing and Control Register. This 8-bit register 
(Figure 7) governs the timing of transactions to high 
memory addresses and the daisy-chain timing for interrupt 
requests, as well as the functionality of requests on the 
various Z280 MPU interrupt request lines. 

~c lxlxl + 11p I 

Figure 7. Bus Timing and Control Register 

The fields in this register are: 

110 Wait Insertion (110). This 2-bit field specifies the number 
of additional wait states (in addition to the one automatically 
inserted for 1/0) to be inserted by the CPU in both 1/0 
transactions and vector response timing (00 = none, 01 = 
one, 10 = two, 11 = three). 

High Memory Wait Insertion (HM). This 2-bit field specifies 
the number of automatic wait states (00 = none, 01 = one, 
10 = two, 11 = three) for the CPU to insert in memory 
transactions when the MM U is enabled and there is a 1 in bit 
15 of the selected Page Descriptor register. 

234 

Daisy Chain Timing (DC). This 2-bit field determines the 
number of additional automatic wait states the CPU inserts 
while the interrupt acknowledge daisy chain is settling (00 = 
none, 01 = one, 1 O = two, 11 = three). A value of 01 in the 
DC field indicates that one additional cycle will be added to 
the four cycles that normally elapse between interrupt 
acknowledge, AS and OS (or IORQ) assertions. 

Bus Timing and Initialization Register. This 8-bit register 
(Figure 8) is used to specify the duration of control signals for 
the external interface bus when the MMU is disabled or 
when the MMU is enabled and there is a O in bit 15 of the 
selected Page Descriptor register. It also controls the 
relationship between internal processor clock rates and bus 
timing. It cap be programmed by external hardware upon 
reset. " 

7 0 

lo1cj sslMPI XI + I ~s I 
Figure 8. Bus Timing and Initialization Register 

During reset this register is initialized to one of two settings, 
depending on the state of the WAIT input line on the rising 
edge of Reset: if the WAIT line is not asserted, the register is 
set to OOH. If the WAIT line is asserted during reset, then 
this register is set to the contents of the AD lines. 

The fields in this register are: 

Clock Scaling (CS). This 2-bit field specifies the scaling of the 
CPU clock for all bus transactions (00 = one bus clock cycle 
is equal to two internal processor clock cycles, 01 = bus 
clock cycle is equal to the internal processor clock cycle, 1 O 
= one bus clock cycle is equal to four internal processor 
clock cycles, 11 = reserved). This field cannot be modified 
by software. 

Low Memory Wait Insertion (LM). This 2-bit field specifies the 
number of automatic wait states (00 = none, 01 = one, 1 O 
= two, 11 = three) for the CPU to insert in memory 
transactions when the MM U is disabled or when the MM U is 
enabled and there is a 0 in bit 15 of the selected Page 
Descriptor register. 

Multiprocessor Configuration Enable (MP). This 1-bit field 
enables the multiprocessor mode of operation (0 = 
disabled, 1 = enabled). (See the Multiprocessor Mode 
section.) 

Bootstrap Mode Enable (BS). This 1-bit field enables the 
bootstrap mode of operation (0 = disabled, 1 = enabled). 
(See the UART section for details about bootstrap mode.) 

Direct Input Clock Option (DIC). This bit when set (O=dsabled, 
1 =enabled) selects the direct clock source option for the 
XT ALI input. In this mode, the crystal oscillator and divide 
by 2 circuits are bypassed and XT ALI input is used to 
directly generate the MPU internal clocks. The XT ALI input 
must have TTL levels, 50% duty cycle, and 10MHz maxi­
mum frequency. When disabled, the input frequency is 
divided by 2 to generate the internal processor clock. A 
maximum crystal or input clock frequency of 20MHz is 
supported in this case. 



Interrupt Status Register. This 16-bit register (Figure 9) 
indicates which interrupt mode is in effect and which 
interrupt sources have interrupt requests pending. It also 
contains the bits that specify whether the interrupt inputs are 
to be vectored. Only the interrupt vector enable bits are 
writeable; all other bits are read-only. 

15 

Figure 9. Interrupt Status Register 

The fields 1n this register are: 

Interrupt Request Pending (IP). When bit IPn is set to 1, an 
interrupt request from sources at level n is pending. (See the 
Interrupt and Trap Structure section.) 

Interrupt Mode (IM). A value of n in this 2-bit field indicates 
that interrupt mode n is in effect. This field can be changed 
by executing the IM instruction. 

Interrupt Vector Enable (I). These four bits indicate whether 
each of the four interrupt inputs are to be vectored. When In 
is set to 1, interrupts on the Interrupt n line are vectored 
when the CPU is 1n interrupt mode 3; when cleared to 0, all 
interrupts on this line use the same entry in the Interrupt/Trap 
Vector Table. These bits are ignored except in interrupt 
mode3. 

Interrupt/Trap Vector Table Pointer. This 16-bit register 
(Figure 10) contains the most significant 12 bits of the 
physical address at the beginning of the Interrupt/Trap 
Vector Table: the lower 12 bits of the physical address are 
assumed to be 0. 

15 

Figure 10. Interrupt/Trap Vector Table Pointer 

110 Page Register. This 8-bit register (Figure 11) indicates 
the bits to be appended to the 16 bits that are output during 
the 1/0 address phase of 1/0 transactions. 

7 0 

f A231 A22I A21 I A20 I A191 A1s,A11 I A1s I 

Figure 11. 1/0 Page Register 

Master Status Register. The Master Status register (Figure 
12) is a 16-bit register containing status information about 
the currently executing program. This register is cleared to 0 
during reset. 

15 0 

I X I UIS I X I BH I X I X lsspl ss I X I •s I Es I •• I E, 1 E2 I E1 I Eo I 

Figure 12. Master Status Register 

The fields in this register are: 

Interrupt Request Enable (En). There are seven Interrupt 
Enable bits, one for each type of maskable interrupt source 
(both external and internal). When bit En is set to 1, interrupt 
requests from sources at level n are accepted by the CPU; 
when this bit is cleared to 0, interrupt requests at level n are 
not accepted. 

Single-Step (SS). While this bit is set to 1, the CPU is in 
single-stepping mode; while this bit is cleared to 0, 
automatic single-stepping is disabled. This bit is 
automatically cleared when a trap or interrupt is taken. 

Single-Step Pending (SSP). While this bit is set to 1, the CPU 
generates a trap prior to executing an instruction. The SS bit 
is automatically copied into this field at the completion of 
each instruction. This bit is automatically cleared to 0 when a 
Single-Step, Page Fault, Privileged Instruction, Breakpoint­
on-Halt or D1v1sion trap is taken so that the SSP bit in the 
saved Master Status register is cleared to 0. 

Breakpoint-on-Halt Enable (BH). While this bit is set to 1, the 
CPU generates a Breakpoint trap whenever a HALT 
instruction is encountered; while this bit is cleared to 0, the 
HALT instruction is executed normally. 

User/System Mode (UIS). While this bit is cleared to 0, the 
CPU is in the system mode of operation; while it is set to 1 the 
CPU is in the user mode of operation. 

System Stack Limit Register. This 16-bit register (Figure 
13) indicates when a System Stack Overflow Warning trap 
is to be generated. If enabled, by setting a control bit in the 
Trap Control register, pushes onto the system stack cause 
the 12 most significant bits in this register to be compared 
to the upper 12 bits of the system Stack Pointer and a trap 
is generated if they match. 

15 

Figure 13. System Stack Limit Register 

Trap Control Register. This 8-bit register (Figure 14) 
enables the maskable traps. Upon reset this register is 
initialized to all Os. 

7 0 

lxlxlxlxlxl 1 l•lsl 

Figure 14. Trap Control Register 

235 



The bits in this register are: 

System Stack Overflow Warning (S). While this bit is set to 1 , 
the CPU generates a Stack Overflow Warning trap when the 
system stack enters the specified region of memory. 

EPU Enable (E). While this bit is cleared to O, the CPU 
generates a trap whenever an EPA instruction is 
encountered. 

Inhibit User 110 (I). While this bit is set to 1, the CPU 
generates a Privileged Instruction trap when an 110 
instruction is encountered in user mode. 

Cache Control and Local Address Registers. See the 
On-Chip Memory section for information about the Cache 
Control register and the Multiprocessor Mode section for 
information about the Local Address register. 

Interrupt and Trap Structure 

The Z280 MPU provides a very flexible and powerful 
interrupt and trap structure. Interrupts are external 
asynchronous events requiring CPU attention and are 
generally triggered by peripherals needing service. Traps 
are synchronous events resulting from the execution of 
certain instructions. 

Interrupts. Two types of interrupt, nonmaskable and 
maskable, are supported by the Z280 M PU. The 
nonmaskable interrupt (NMI) cannot be disabled (masked) 
by software and is generally reserved for highest priority 
external events that require immediate attention. Maskable 
interrupts, however, can be selectively disabled by software. 
Both nonmaskable and maskable interrupts can be 
programmed to be vectored or nonvectored. Interrupts are 
always accepted between instructions and acknowledged 
after execution of the prior instruction is complete. The block 
move, search, and 1/0 instructions can be safely interrupted 
after any iteration and restarted after the interrupt is serviced. 

Interrupt Sources. The Z280 MPU accepts nonmaskable 
interrupts on the NMI pin only. The Z280 MPU accepts 
maskable interrupts on the INT pins and from the on-chip 
counter/timers, OMA channels, and the UART receiver and 
transmitter. 

Interrupt Lines A, B, and C can be selectively programmed 
to support vectored interrupts by setting the appropriate 
bits in the Interrupt Status register. The external interrupts 
can be programmed to be vectored or nonvectored in 
interrupt mode 3. 

Interrupt Modes of Operation. The CPU has four modes 
of interrupt handling. The first three modes extend the Z80 
interrupt modes to accommodate additional interrupt input 
lines in a compatible fashion. The fourth mode provides 
more flexibility in handling the interrupts. On-chip 
peripherals use the fourth mode regardless of which mode 
is selected for externally generated interrupt requests. The 
interrupt mode is selected by using the privileged 
instructions IM 0, IM 1, IM 2, or IM 3. On reset, the Z280 
MPU is automatically set to interrupt mode 0. The current 
interrupt mode in effect can be read from the Interrupt 
Status register. 

236 

Mode 0. This mode is identical to the 8080 interrupt 
response mode. With this mode, the interrupting device on 
any of the maskable interrupt lines can place a call or restart 
instruction on the data bus and the CPU will execute it. As a 
result, the interrupting device, instead of the memory, 
provides the next instruction to be executed. 

Mode 1. When this mode is selected, the CPU responds to a 
maskable external interrupt by executing a restart to the 
logical address 0038H in the system program address 
space. 

Mode 2. This mode is a vectored interrupt response mode. 
With a single 8-bit byte from the interrupting device, an 
indirect call can be made to any memory location. With this 
mode the system maintains a table of 16-bit starting 
addresses for every interrupt service routine. This table can 
be located anywhere in the system mode logical data 
address space on a 256-byte boundary. When an interrupt 
is accepted, a 16-bit pointer is formed to obtain the desired 
interrupt service routine starting address from the table. The 
upper eight bits of this pointer are formed from the contents 
of the I register. The lower eight bits of the pointer must be 
supplied by the interrupting device. The 16-bit pointer so 
formed is treated as a logical address in the system data 
address space, which can be translated by the MMU to a 
physical address. 

Mode 3. This is the intended mode of operation for 
systems that take advantage of the enhancements of the 
Z280 microprocessor (such as single-step and 
user/system mode) since the Master Status register is 
automatically saved and another loaded for the interrupts. 
Also, vector tables can be used for the external interrupt 
sources to provide more interrupt vectors for the 
Z8000® family, Z80 family, and Z8500 Universal 
Peripherals. When an interrupt request (either maskable 
or nonmaskable) is accepted, the Master Status register, 
the address of the next instruction to be executed, and a 
16-bit "reason code" are pushed onto the system stack. A 
new Master Status register and Program Counter are then 
fetched from the Interrupt/Trap Vector Table. The "reason 
code" for externally generated interrupts is the contents of 
the bus during the interrupt acknowledge sequence; for 
8-bit data buses, the least significant byte of the reason 
code is all 1 's. For interrupts generated by on-chip periph­
erals, the reason code identifies which peripheral gener­
ated the interrupt and is identical to the vector address in 
the Interrupt/Trap Vector Table. The Interrupt/Trap Table 
Pointer is used to reference the table. 

Traps. The Z280 CPU supports eight traps that are 
generated internally. The following traps can be disabled: 
the EPA trap, which allows software to emulate an EPU; the 
Stack Warning trap, which is taken at the end of an 
instruction causing the trap; the Breakpoint-on-Halt trap, 
which is taken when a HALT instruction is encountered; and 
the Single-Step trap, which is taken for each instruction. In 
addition, 110 instructions can be specified as privileged 
instructions. Traps cause the instruction to be terminated 
without altering CPU registers (except for the System Stack 



Pointer, which is modified when the program status is 
pushed onto the system stack). 

The saving of the program status on the system stack and 
the fetchinp of a new program status from the Interrupt/Trap 
Vector Table is the same in any interrupt mode of operation. 

Traps can only occur if the trap generating features of the 
Z280 CPU (such as System Stack Overflow warning) have 
been explicitly enabled. Traps cannot occur on instructions 
of the Z80 instruction set unless explicitly enabled by the 
operating system using Z280 CPU extensions. 

r .. • ....... .-.-J-,-J 1.-.-.1-~ ......... +:-.-. Th;,... •~- ...... ---.. ~- ... 1.-. ............ +h,..._ r>n1 1 
LJl.tC//Ut:;;U /l/VLIUVUVll. llllV LlOfJ VVVUIV VVllCll LIIV VIV 

encounters an extended instruction while the Extended 
Processing Architecture (EPA) bit in the Trap Control register 
is 0. Four trap vectors are used by the EPA trap-one for 
each type of EPA instruction. This greatly simplifies trap 
handlers that use 1/0 instructions to access an EPU or 
software to emulate an EPU. 

Privileged Instruction. This trap occurs whenever an attempt 
is made to execute a privileged instruction while the CPU is 
in user mode (User/System Mode control bit in the Master 
Status register is 1). 

System Call. This trap occurs whenever a System Call (SC) 
instruction is executed. 

Access Violation. This trap occurs whenever the MMU's 
translation mode is enabled and an address to be translated 
is invalid or (for writes) is write-protected. 

System Stack Overflow Warning. This trap occurs only while 
the Stack Overflow Warning bit in the Trap Control register is 
set to 1. For each system stack push operation, the most 
significant bits in the Stack Pointer register are compared 
with the contents of the Stack Limit register and a trap is 
signaled if they match. The Stack Overflow Warning bit is 
then automatically cleared in order to prevent repeated 
traps. 

Division Exception. This trap occurs whenever the divisor is 
zero (divide-by-zero case) or the true quotient cannot be 
represented in the destination precision (overflow); the CPU 
flags are set to distinguish these two cases. 

Single-Step. This trap occurs before executing an 
instruction if the Single-Step Pending control bit in the 
Master Status register is set to 1. Two control bits in the 
Master Status register are used for the Single-Step trap. The 
Single-Step bit (bit 8), on being set when previously clear, 
causes a trap to occur after the execution of the next 
instruction. While this bit is set to 1, if an instruction execution 
causes a trap, the Single-Step trap occurs after the 
execution of the trap-handling routine. The Single-Step 

Pending bit (bit 9), is used by the processor to ensure that 
only one Single-Step trap occurs for each instruction 
executed while the Single-Step bit is set to 1. 

Breakpoint-on-Halt. This trap occurs whenever the 
Breakpoint-on-Halt control bit in the Master Status register is 
1 and a HALT instruction is encountered. 

Interrupt and Trap Disabling. Maskable interrupts can be 
enabled or disabled independently via software by setting 
or clearing the appropriate control bits in the Master Status 
register. 

/\ 7 bit m2sk fic!d ir. the M3stcr St3tus register ir.dicntcs 
which of the requested interrupts will be accepted. Interrupt 
requests are grouped as follows, with each group controlled 
by a separate Interrupt Enable control bit. The list is 
presented in order of decreasing priority, with sources within 
a group listed in order of descending priority. 

• Maskable Interrupt A line (bit 0) 

• Counter/Timer 0, DMAO (bit 1) 

• Maskable Interrupt Bline (bit 2) 

• Counter/Timer 1, UART receiver, OMA 1 (bit 3) 

• Maskable Interrupt Cline (bit 4) 

• UART Transmitter, DMA2 (bit 5) 

• Counter/Timer 2, DMA3 (bit 6) 

When a source of interrupts has been disabled, the CPU 
ignores any interrupt request from that source. 

The System Stack Overflow Warning trap, Privileged 
Instruction trap (1/0 instructions in user mode), or Extended 
Instruction trap can be enabled by setting control bits in 
the Trap Control register, and the Single-Step and 
Breakpoint-on-Halt trap can be enabled by setting control 
bits in the Master Status register; these are the only traps that 
can be disabled. 

Interrupt/Trap Vector Table. The format of the Interrupt/ 
Trap Vector Table consists of pairs of Master Status register 
and Program Counter words, one pair for each separate 
on-chip interrupt or trap source. For each external interrupt, 
there is a separate Master Status register word and Program 
Counter word (for use if the input is not vectored). If the 
external interrupt is vectored, a vector table consisting of 
one Program Counter word for each of the 128 possible 
vectors that can be returned for each input line is used 
instead of the dedicated Program Counter word; thus for 
vectored interrupts, there is only one Master Status register 
for each interrupt type. 

237 



The format of the Interrupt/Trap Vector Table is shown in 
Table3. 

Table 3. Interrupt/Trap Vector Table 

Address 
{Hexadecimal) 

238 

00 
04 
08 
oc 
10 

14 

18 

1C 
20 
24 

28 
2C 
30 
34 

38 
3C 
40 
44 
48 
4C 

50 
54 

58 
5C 
60 
64 

68-6C 
70-16E 

170-26E 

270-36E 

Contents 

Reserved 
NMI Vector 
Interrupt Line A Vector 
Interrupt Line B Vector 
Interrupt Line C Vector 

Counter/Timer 0 Vector 
Counter/Timer 1 Vector 
Reserved 
Counter/Timer 2 Vector 
DMAOVector 
DMA1 Vector 
DMA2Vector 
DMA3Vector 
UART Receiver Vector 
UART Transmitter Vector 
Single-Step Trap Vector 
Breakpoint-on-Halt Trap Vector 
Division Exception Trap Vector 
Stack Overflow Warning Trap Vector 
Page Fault Trap Vector 
System Call Trap Vector 
Privileged Instruction Trap Vector 
EPU ~ Memory Trap Vector 
Memory~ EPU Trap Vector 

A - EPU Trap Vector 
EPU Internal Operation Trap Vector 
Reserved 
128 Program Counter Values for 

NMI and Interrupt Line A Vectors 

(MSR from 04 and 08, respectively) 

128 Program Counter Values for 

Interrupt Line B Vectors(MSR from OC) 

128 Program Counter Values for 

Interrupt Line C Vectors(MSR from 10) 

Addressing Modes 

Addressing modes (Figure 15) are used by the CPU to 
calculate the effective address of an operand needed for 
execution of an instruction. Nine addressing modes are 
supported by the Z280 CPU. Of these nine, four are 
additions to the Z80 addressing modes (Indexed with 16-bit 
displacement, Stack Pointer Relative, Program Counter 
Relative, and Base Index) and the remaining five modes are 
either existing or extensions to the existing Z80 addressing 
modes. 

Register. The operand is one of the 8-bit registers (A, B, C, 
D, E, H, L, IXH, IXL, IYH or IYL); or one of the 16-bit registers 
(BC, DE, HL, IX, IY, or SP), or one of the special byte 
registers (I or R). 

Immediate. The operand is in the instruction itself and has 
no effective address. 

Indirect Register. The contents of a register specify the 
effective address of an operand. The HL register is the 
register used for memory accesses. (For the Load To or 
Load From Accumulator instruction, BC and DE can also be 
used for indirection; for the JP instruction, IX and IY can also 
be used for indirection.) The C register is used for 1/0 and 
control register space accesses. 

Direct Address. The effective address of the operand is the 
location whose address is contained in the instruction. 
Depending on the instruction, the specified operand is 
either in the 1/0 or data memory address space. 

Indexed. The effective address of the operand is the 
location specified by adding the 16-bit address contained in 
the instruction to a two's complement "index" contained in 
the HL, IX, or IY register. 

Short Index. The effective address of the operand is the 
location computed by adding the 8-bit two's complement 
signed displacement contained in the instruction to the 
contents of the IX or IY register. This addressing mode is 
equivalent to the Z80 CPU indexed mode. 

Program Counter Relative. An 8- or 16-bit displacement 
contained in the instruction is added to the Program Counter 
to generate the effective address of the operand. 

Stack Pointer Relative. The effective address of the 
operand is the location computed by adding a 16-bit two's 
complement displacement contained in the instruction to 
the contents of the Stack Pointer. 

Base Index. The effective address of the operand is the 
location whose address is computed by adding the contents 
of HL, IX, or IY to the contents of another of these three 
registers. 



EXTENDED PROCESSING ARCHITECTURE 

Features 

The Zilog Extended Processing Architecture (EPA) 
provides an extremely flexible and modular approach to 
expanding both the hardware and software capabilities of 
the Z280 CPU. Features of the EPA include: 

• Allows Z280 CPU instruction set to be extended by 
external devices. 

• Increases throughput of the system by using up to four 
specialized external processors in parallel with the CPU. 

• Permits modular design of Z280 CPU-based systems. 

• Provides easy management of multiple microprocessor 
configurations via "single instruction stream" 
communication. 

• Direct interconnection between EPUs and Z280 MPU 
requires no additional external supporting logic. 

• EPUs can be added as the system grows and as EPUs 
with specialized functions are developed. 

General Description 

The processing power of the Zilog Z-BUS Z280 
microprocessor can be boosted beyond its intrinsic 
capability by the Extended Processing Architecture (EPA). 
The EPA allows the Z280 CPU to accommodate up to four 
Extended Processing Units (EPUs), which perform 
specialized functions in parallel with the CPU's main 
instruction execution stream. 

The EPUs connect directly to the Z-BUS and continuously 
monitor the CPU instrudtion stream for an instruction 
intended for the EPU (template). When a template is 
detected, the appropriate EPU responds, obtaining or 
placing data or status information on the Z-BUS by using the 
Z280 CPU-generated control signals and performing its 
function as directed. 

The CPU is responsible for instructing the EPU and 
delivering operands and data to it. The EPU recognizes 
templates intended for it and executes them, using data 
supplied with the template and/or data within its internal 
registers. There are three classes of EPU instructions: 

• Data transfers between main memory and EPU registers 

• Data transfers between CPUl'egisters and EPU 
status registers 

• EPU internal operations 

Six addressing modes can be utilized with transfers 
between EPU registers and the MPU and main memory: 

• Indirect Register 

• Direct Address 

• Indexed 

• Program Counter Relative 

• Stack Pointer Relative 

• Ba8e im.iex 

In addition to the hardware-implemented capabilities of the 
EPA, there is an extended instruction trap mechanism to 
permit software simulation of EPU functions. An EPU 
present bit in the Z280 MPU Trap Control register indicates 
whether actual EPUs are present or not. If not, the CPU 
generates a trap when an extended instruction is detected, 
and a software "trap handler" can emulate the desired EPU 
function. Thus, the EPA software trap routine supports 
systems not containing an EPU. 

EPA and CPU instruction execution are shown in Figure 
16. If an instruction has been fetched and decoded, the 
CPU determines whether or not it is an EPU instruction. If 
the instruction is an EPU instruction, the state of the EPU 
Enable bit in the Trap Control register is examined. If the 
EPU Enable bit is reset (E = 0), the CPU generates a trap 
and the EPU instruction can be simulated by an EPU 
instruction trap software routine. However, if the EPU 
Enable bit is set (E = 1 ), indicating that an EPU is present 
in the system, then the 4-byte EPU template is fetched from 
memory. The fetching of the EPU template is indicated by 
the status lines ST 0-ST 3. Each EPU continuously monitors 
the Z-BUS and the status lines for its own templates. After 
fetching the EPU template, the CPU, if necessary, trans­
fers appropriate data between the EPU and memory or 
between the CPU and the EPU. These transactions are 
indicated by unique encodings of the status lines. If the 
EPU is free when the template and the data appear, the 
EPU template is executed. If the EPU is still processing a 
previous instruction, the PAUSE line can be activated to 
halt further execution of CPU instructions until EPU execu­
tion is complete. After the execution of the template is com­
plete, the EPU deactivates the PAUSE line and CPU 
instruction execution continues_ 

239 



CPU IDLES 
IN PAUSE 

STATE 

• Due to pipelining, Instruction fetching can be independent to 
instruction execution 

(s;;) y 
MONITORS 
Z·BUS FOR 

EPU TEMPLATE 

r----------- ------------, 
1 
I 

CPU FETCHES 
EPU TEMPLATE 
FROM MEMORY 

EPU 
EXECUTES 
TEMPLATE 

L-----------

NO 

SET PAUSE 
LINE AT CPU 

UNTIL EPU 
FREE 

I 
I 
I 
I 
I 
I 
I 
I 
I 

Figure 16. EPA and Z280 MPU Instruction Execution. 

MEMORY MANAGEMENT 

Features 

• On-chip dynamic address translation 

• Permits addressing of 16M bytes of physical memory 

• Separate translation facilities for user and system modes 

• Permits instructions and data to reside in separate 
memory areas. 

• Write protection for individual pages of memory 

• Aborts CPU on access violation to support virtual 
memory 

General Description 

The Z280 microprocessor contains an on-chip Memory 
Management Unit (MMU), which translates logical 
addresses into physical addresses. This allows access to 
more than 64K bytes of physical memory and provides 
memory protection features typical of those found on large 
systems. With the MMU, the CPU can access up to 16M 
bytes of physical memory. The MMU features a 
sophisticated trapping mechanism that generates page 
faults on error conditions. Instructions that are aborted by a 

240 

page fault can be restarted in a manner compatible with 
virtual memory system requirements. On reset, the MMU 
features are not enabled, thus permitting logical addresses 
to pass to the physical memory untranslated. 

The physical address space is expanded by dividing the 
64K byte logical address space (the space manipulated by 
the program) into pages. The pages are then mapped 
(translated) into the larger physical address space of the 
Z280 microprocessor. The mapping process makes the 
user software addresses independent of the physical 
memory, so the user is freed from specifying where 
information is actually stored in physical memory. The actual 
size of the page depends on whether the program/data 
separation mode is enabled-if it is enabled, each page is 
BK bytes in length, and if it is not enabled, the page length is 
4K bytes. With the page mapping technique, 16-bit logical 
addresses can be translated into 24-bit physical addresses. 
Address translation can occur both in system and in user 
mode, with separate translation facilities available to each 
mode. The MMU further allows instruction references to be 
separated from data references, which enables programs 
of up to 64K bytes in length to manipulate up to 64K bytes of 
data without operating system intervention. 



MMU Architecture 

The Z280 MMU consists of two sets of sixteen Page 
Descriptor registers (Figure 17) that are used to translate 
addresses, a 16-bit control register that governs the 
translation facilities, a Page Descriptor Register Pointer, an 
1/0 write-only port that can be used to invalidate sets of page 
descriptors, and two 1/0 ports for accesses to the Page 
Descriptor registers. One set of Page Descriptor registers is 
dedicated to the system mode of operation and the other set 
is dedicated to the user mode of operation. 

While an address is being translated, attributes associated 
witi1 Li 1e iugicdi f.Jdge cu11[di11i11g [r1d[ iucdliu11 are checkeci. 
The correct logical page is determined by the CPU mode 
(user or system), address space (program/data), and the 
four most significant bits of the logical address. Pages can 
be write-protected to prevent them from being modified by 
the executing task and can also be marked as 
non-cacheable to prevent information from being copied 
into the cache for later reference. The latter capability 1s 
useful in multiprocessor systems, to ensure that the 
processor always accesses the most current version of 
information being shared among multiple devices. The 
MMU also maintains a bit for each page that indicates if the 
page has been modified. 

Each Page Descriptor register contains a Valid bit, which 
indicates that the descriptor contains valid information. Any 
attempt by the MMU to translate an address using an invalid 
descriptor generates a page fault. Valid bits for groups of 
Page Descriptor registers can be reset by writing to an MMU 
control port. 

15 

Figure 17. Page Descriptor Register 

For each mode of CPU operation, the MMU can be 
configured to separate instruction fetches from data fetches, 
and thus separate the program address space from the data 
address space. When the program/data separation mode is 
in effect, the sixteen Page Descriptor registers for the current 
CPU mode of operation (user or system) are partitioned into 
two sets, one for instruction fetches and one for data fetches. 
An instruction fetch or data access using the Program 
Counter Relative addressing mode is translated by the 
MMU registers associated with the program address space; 
data accesses using other addressing modes and accesses 
to the Interrupt Vector Table in interrupt mode 2 use the 
MMU registers associated with the data address space. In 
this mode of MMU operation, the page size is 8192 bytes. 
There are two control bits in the MMU Master Control 
register that independently specify whether the user and 
system modes of MPU operation have separate program 
and data address spaces. 

Each 16-bit Page Descriptor register consists of a 4-bit 
attribute field and a 12-bit page frame address field. The 
attribute field consists of the least significant bits of the 
descriptor and contains four control and status bits, listed 
below. 

Modified (M). This bit is automatically set whenever a write is 
successfully performed to a logical address in this page; it 
can be cleared to 0 only by a software routine that loads the 
Page Descriptor register. If the Valid bit is 0, the contents of 
this bit are undefined. 

Cacheable (C). While this bit is set to 1, information fetched 
irom this page can be piaced 1n me cache. vVni1e tn1s bit is 
cleared to 0, the cache control mechanism is inhibited from 
retaining a copy of the information. 

Write-Protect (WP). While this bit is set to 1, CPU writes to· 
logical addresses in this page cause a page fault to be 
generated and prevent a write operation from occurring. 
While this bit is cleared to 0, all valid accesses are permitted. 

Valid (V). While this bit is set to 1, the descriptor contains valid 
information. While this bit is cleared to 0, all CPU accesses to 
logical addresses 1n this page cause a page fault to be 
generated. 

MMU Control Registers and 1/0 Ports 

MMU operation is controlled by one control register and four 
dedicated 1/0 ports. The MMU Master Control register 
(Figure 18) determines the program/data address space 
separation in effect in both user and system modes and 
whether logical addresses generated in user and system 
mode will be translated by the MMU. Page Descriptor 
registers are accessed indirectly through the register 
address contained in the Page Descriptor Register Pointer. 
The Descriptor Select Port is used to access the Page 
Descriptor register that is pointed to by the Page Descriptor 
Register Pointer. After this access the Page Descriptor 
Register Pointer is left unchanged. The Block Move 1/0 Port 
is used to move blocks of words between the Page 
Descriptor registers and memory; reads or writes to this 1/0 
port access data pointed to by the Page Descriptor Register 
Pointer, then increment the pointer by one. The Invalidation 
1/0 Port is used to invalidate blocks of Page Descriptor 
registers; writes to this port cause the Valid bits in selected 
blocks of Page Descriptor registers to be cleared to 0, which 
indicates that the descriptors no longer contain valid 
information. 

15 

Figure 18. MMU Master Control Register 

241 



MMU Master Control Register. The MMU Master Control 
register (1/0 address location FFxxFO) controls the operation 
of the MMU. This register contains four control bits; all other 
bits in this register must be cleared to 0. The four control bits 
of the MMU Master Control register are described below. 

Page Fault Identifier (PF/). This 5-bit field latches information 
that indicates which Page Descriptor register was being 
accessed when the access violation was detected. 

System Mode Program/Data Separation Enable (SPD). 
While this bit is set to 1, instruction fetches and data 
accesses via the PC Relative addressing mode use the 
system mode Page Descriptor registers 8-15, and data 
references that do not use the PC Relative addressing mode 
use the system mode Page Descriptor registers 0-7. While 
this bit is cleared to 0, system mode Page Descriptor 
registers 0-15 are used to translate instruction and data 
references. 

System Mode Translate Enable (STE). While this bit is set to 1, 
logical addresses generated in the system mode of 
operation are translated. While this bit is cleared to 0, 
addresses are passed through the MMU extended with 
zeros in the most significant bits and no attribute checking or 
modified bit setting is performed. 

User Mode Program/Data Space Separation Enable (UPD). 
While this bit is set to 1, instruction fetches and data 
accesses via the PC Relative addressing mode use the user 
mode Page Descriptor registers 8-15, and data references 
that do not use the PC Relative addressing mode use the 
user mode Page Descriptor registers 0-7. While this bit is 
cleared to 0, user mode Page Descriptor registers 0-15 are 
used to translate instruction and data references. 

User Mode Translated Enable (UTE). While this bit is set to 1, 
logical addresses generated in the user mode of operation 
are translated. While this bit is cleared to 0, addresses are 
passed through the MMU extended with zeros in the most 
significant. bits and no attribute checking or modified bit 
setting is performed. 

Page Descriptor Register Pointer. Moves of data into and 
out of the MMU Page Descriptor registers use the Page 
Descriptor Register Pointer, which is at 110 address location 
FFxxF1 . This 8-bit register contains the address of one of the 
Page Descriptor registers. When a word 110 instruction 
accesses 1/0 address FFxxF5 (Descriptor Select Port), this 
register is used to access a Page Descriptor register. When a 
word 1/0 instruction accesses 1/0 address FFxxF4 (Block 
Move 110 Port), this register is also used to access a Page 
Descriptor register, but after the access, this register is 
automatically incremented by one. 

Descriptor Select Port. Moves of one word of data into and 
out of a Page Descriptor register are accomplished by 
writing and reading words to or from this dedicated 1/0 port 
at location FFxxF5. Any word 110 instruction can be used to 
access a Page Descriptor register via this port, provided that 
the Page Descriptor Register Pointer is properly initialized. 

242 

Block Move 110 Port. Block moves of data into and out of 
the Page Descriptor registers are accomplished by writing 
and reading words to or from this dedicated 110 port at 
location FFxxF4. Any word 110 instruction can be used to 
access Page Descriptor registers via this port, provided that 
the Page Descriptor Register Pointer is properly initialized. 

Invalidation 110 Port. Valid bits can be cleared (i.e., the 
Page Descriptor registers invalidated) by writing to this 
dedicated 8-bit port (Table 4), which is at 1/0 address 
location FFxxF2. Individual Valid bits can subsequently be 
set by software writing to the Page Descriptor registers. 
Reading this 1/0 port returns unpredictable data. 

Encoding 

Table 4. Invalidation Port Table 

Registers Invalid 

System Page Descriptor Registers 0-7 

System Page Descriptor Registers 8-15 

System Page Descriptor Registers 0-15 

User Page Descriptor Registers 0-7 

User Page Descriptor Registers 8-15 

User Page Descriptor Registers 0-15 

Translation Mechanism 

Address Translation. Address translation is illustrated in 
Figure 19. While the Program/Data Space Separation bit is 
cleared to 0, the 16-bit logical address is divided into two 
fields, a 4-bit index field used to select one of 16 Page 
Descriptor registers and a 12-bit offset field that forms the 
lower 12 .bits of the physical address. The physical address 
is composed of the 12-bit page frame address (bits 4-15) 
supplied by the selected Page Descriptor register and the 
12-bit offset supplied by the logical address. 

While the Program/Data Space Separation bit is set to 1 , the 
logical address is divided into a 3-bit index field and a 13-bit 
offset field. The Page Descriptor register consists of an 
11-bit Page Frame Address field (bits 5-15, with bit 4 = 0). 
The physical address is a result of concatenating the page 
frame address and the logical offset. The Page Descriptor 
register is chosen by a 4-bit index field, which consists of a 
Program/Data Address bit from the CPU and the three Index 
bits from the logical address. 



15 

[ INDEX 

J 
I OFFSET J } 

LOGICAL 
ADO RESS 

L: 15 
4 3 0 

5 

PAGE FRAME 
ADDRESS 

0 

oL _l 

23 I 
PAGE FRAME ADDRESS 

h 

ATTRIBUTE 

v 
VUSER 

l>1 v-sYSTEM 

1¥ 

_l_ 

OFFSET 

0 

] 

PAGE DESCRIPTOR 
REGISTERS 

} 
PHYSICAL 
ADDRESS 

Figure 19. Address Translation 

ON-CHIP MEMORY 

Features 

• 256-byte local memory 

• Configurable as high-speed associative cache 

• Programmable to cache instructions, data, or both 

• Permits faster execution by minimizing external bus 
accesses 

• Operation is transparent to user 

• Configurable as local RAM with user-definable 
addresses 

The Z280 MPU has 256 bytes of on-chip memory, which 
can be dedicated to memory locations programmed by the · 

20 BITS 16 BITS 

~,...-"--., 

TAGO 
VALID 
BITS 

LINE 0 

TAG 1 
VALID 
BITS LINE1 

TAG2 VALID 
BITS LINE2 

• • • 
• • 
• • 

TAG 15 
VALID 
BITS LINE 15 

system or used as a cache for instructions or data. Its mode 
of use (dedicated memory or cache) is programmable; on 
reset it is automatically enabled for use as a cache for 
instructions only. 

On-Chip Memory Architecture 

The on-chip memory is organized as 16 lines of 16 bytes 
each. Each line can hold a copy of 16 consecutive bytes in 
physical memory locations whose 20 most significant bits of 
physical address are identical. Each byte in the cache has 
an associated Valid bit that indicates whether the cache 
holds a valid copy of the memory contents at the associated 
physical memory location. Figure 20 illustrates the cache 
organization. 

16x8 BITS 
.A 

CACHE DATA 

CACHE DATA 

CACHE DATA 

• 
• 
• 

CACHE DATA 

Tag n =the 20 Address bits associated with line n 
Valid bits= 16 bits that Indicate which bytes In the cache line contain valid data 
Cache data = 16 bytes 

Figure 20. Cache Organization 

243 



The on-chip memory has two modes of operation. If the 
Memory/Cache bit in the Cache Control register is set to 1, 
then the 256 bytes of on-chip memory are treated as 
physical memory locations. Memory accesses to addresses 
covered by the on-chip memory do not generate bus 
transactions on the external bus and hence the accesses 
are faster. In this mode, the Valid bits are ignored. 

If the Memory/Cache bit is cleared to 0, then the 256 bytes of 
on-chip memory are treated as a cache memory. The lines 
are allocated using a least-recently used (LRU) algorithm. 
When a cache "miss" on a read occurs (and the MMU does 
not assert cache inhibit), the line in the cache that has been 
least recently accessed is selected to hold the newly read 
data. All bytes in the selected line are marked invalid except . 
for the bytes containing the newly accessed data. On a 
cache miss, one or two bytes, depending on the bus size, 
are fetched from main memory. Except for burst mode 
instruction fetches, the cache does not pre-fetch beyond the 
currently-requested address. A cache miss on a data write 
does not cause a line to be allocated to the memory location 
accessed. 

The cache can hold both instructions and data. Two control 
bits in the Cache Control register can be separately set to 
enable the cache to hold instructions and to hold data. If the 
cache contains data, writes to data at locations contained in· 
the cache also cause external bus transactions to update 
the appropriate memory location. 

Both the CPU and the on-chip DMAs access the cache. For 
the CPU, if the MMU is enabled, the access can be either 
cacheable or non-cacheable, depending on the value of the 
Cacheable bit in the Page Descriptor register used to 
translate the logical address. If the MMU is not enabled, all 
memory transactions are considered to be cacheable. Two 
bits in the Cache Control register, the Cache Instructions 
Disable bit and the Cache Data Disable bit, further 
determine the operation of the cache for various situations. 
These bits enable the cache for instructions and for data. 

When the on-chip memory is used as fixed memory 
locations, neither the Cache Instruction Disable or Cache 
Data Disable bits are used, and no distinction is made as to 
whether the CPU is accessing data or instructions. 

In general, when devices such as on-chip DMAs transfer 
data to the memory, the cache data is modified if the write is 
to a valid location in the cache but the LRU mechanism is 

CLOCK OSCILLATOR 

The Z280 MPU has an on-chip clock oscillator/generator 
that can be connected to a fundamental, parallel-resonant 
crystal or any suitable clock source. The bus timing clock 
generated from the on-chip oscillator is output for use by the 

244 

unaffected. Also, for the EPU to memory transfer, if the 
cache contains valid locations that are updated by an EPU 
transaction, the on-chip cache is also updated. 

Cache Control Register. The operation of the on-chip 
memory is controlled by an 8-bit Cache Control register 
(Figure 21) that is accessed using a load control instruction. 
This register contains five control bits. 

7 0 

IM1cl 1 I o ILMefiMel X I X I X I 

Figure 21. Cache Control Register 

The bits in this register are: 

High Memory Burst Capability (HMB). This 1-bit field 
specifies whether a memory burst transaction occurs when 
the MMU is enabled and there is a 1 in bit 15 of the selected 
Page Descriptor register (0 = burst mode not supported, 
1 = burst mode supported). 

Low Memory Burst Capability (LMB). This 1-bit field 
specifies whether a memory burst transaction occurs when 
the MMU is disabled or when the MMU is enabled and there 
is a o in bit 15 of the selected Page Descriptor register 
(0 = burst mode not supported, 1 = burst mode 
supported). 

Cache Data Disable (D). \fl/hile this bit is cleared to 0, data 
fetches are copied into the cache if the M/C bit = O (cache 
mode). If M/C = 1, the state of this bit is ignored. 

Cache Instructions Disable (I). While this bit is cleared to 0, 
instruction fetches are copied into the cache when the MIC 
bit = o (cache mode). When MIC = 1, the state of this bit is 
ignored. 

Memory/Cache (MIC). While this bit is set to 1, the on-c_hi.P 
memory is to be accessed as physical memory; while 1t 1s 
cleared to O, the memory is accessed associatively as a 
cache. 

If the on-chip memory is to be used as fixed memory 
locations, the user can programmably select the ranges of 
memory addresses for which the on-chip memory 
responds. 

rest of the system. 



REFRESH 

The Z280 MPU has an internal mechanism for refreshing 
dynamic memory. This mechanism can be activated by 
setting the Refresh Enable bit in the Refresh Rate register to 
1. Memory refresh is performed periodically at a rate 
specified by the Refresh Rate register. Refresh transactions 
are identical to memory transactions except that different 
status signals are used and no data is transferred. They can 
be inserted immediately after the last clock cycle of any bus 
transaction, including an internal operation. 

The refresh transaction is generated as soon as possible 
after the refresh period has elapsed (generally after the last 
clock cycle of the current bus transaction). If the MPU 
receives an interrupt request, the refresh operation is 
performed first. When the Z280 MPU does not have control 
of the bus or is in the Wait state, internal circuitry records the 
number of refresh periods that have elapsed and refresh 
cycles cannot be generated. When the M PU regains control 
of the bus or the WAIT input signal is deactivated and the 
bus transaction completes, the refresh mechanism 
immediately issues the skipped refresh cycles. The internal 
circuitry can record up to 256 such skipped refresh 
operations. 

A 10-bit refresh address is generated for each refresh 
operation with the refresh address being incremented by 
two between refreshes for 16-bit data bus and by one for 
8-bit data bus. 

UART 

The Z2SO UARTtransmits and receives serial data using any 
common asynchronous data-communication protocol. 

Transmission and reception can be performed 
independently with five, six, seven, or eight bits per 
character, plus optional even or odd parity. The transmitter 
can supply one or two stop bits and can provide a break 
output at any time. Reception is protected from spikes by a 
"transient spike-rejection" mechanism that checks the 
signal one-half a bit time after a Low level is detected on the 
receiver data input; if the Low does not persist-as in the 
case of a transient-the character assembly process is not 
started. Framing errors and overruns are detected and 
buffered with the partial character on which they occur. 
Furthermore, a built-in checking process avoids interpreting 
a framing error as a new start bit: a framing error results in 
the addition of one-half a bit time to the point at which the 
search for the next start bit is begun. 

The UART uses the same clock frequency for both the 
transmitter and the receiver. The input for the UART clocking 
circuitry is derived from counter/timer 1, either from its 
external input line for an external clock or from the 
counter/timer output for a bit rate generated from the internal 
processor clock. The UART input clock is further scaled by 
1 , 16, 32, or 64 for clocking the transmitter and receiver. 

On reset, the Refresh Rate register contains SSH, refresh is 
enabled, the rate is 32 processor clock cycles, and the 
refresh address is not affected. 

The Refresh mechanism is controlled by an 8-bit control 
register, described below. 

Refresh Rate Register 

This S-bit register (Figure 22) enables the refresh 
mechanism and specifies the frequency of refresh 
transactions. 

Figure 22. Refresh Rate Register 

The fields in this register are: 

Refresh (Rate). This field indicates in processor clock cycles 
the rate at which refresh transactions are to be generated; a 
value of n in this field indicates a refresh period of 4n, with 
Rate = O indicating 256 clock cycles. 

Refresh Enable (E). When this 1-bit field is set to 1, the 
refresh mechanism is enabled. 

Two of the OMA channels can be used independently to 
move characters between memory and the transmitter or 
receiver without CPU intervention. Both the transmitter and 
receiver can interrupt the CPU for processor assistance. 

The UART uses two external pins, Transmit and Receive. 
Data that is to be transmitted is placed serially on the 
Transmit pin and data that is to be received is read in from the 
Receive pin. 

Asynchronous Transmission 

The Transmitter Data Output line is held High (marking) 
when the transmitter has no data to send. Under program 
control, the Send Break command can be issued to hold the 
Data Output line Low (spacing) until the command is 
cleared. 

The UART automatically adds the start bit, the programmed 
parity bit (odd, even, or no parity), and the programmed 
number of stop bits to the data character to be transmitted. 
When the character is five, six, or seven bits, the unused 
most significant bits in the Transmitter Data register are 
automatically ignored by the UART. 

Serial data is shifted from the transmitter at a rate equal to 1, 
1 /16th, 1 /32nd or 1 /64th of the clock rate supplied to the 
transmitter clock input. Serial data is shifted out on the falling 
edge of the clock input. 

245 



Asynchronous Reception 

An asynchronous receive operation begins when the 
Receive Enable bit in the Receiver Control/Status register is 
set to 1. A Low (spacing) condition on the Receive input line 
indicates a start bit. If this Low persists for at least one-half of 
a bit time, the start bit is assumed to be valid and the data 
input is then sampled at mid-bit time until the entire 
character is assembled. This method of detecting a start bit 
improves error rejection when noise spikes exist· on an 
otherwise marking line .. If the x 1 clock mode is selected, bit 
synchronization must be accomplished externally; received 
data is sampled on the rising edge of the clock. 

Received characters are read from the Receive Data 
register. If parity is enabled, the parity bit is assembled as 
part of the character and is not removed from the assembled 
character for character lengths other than 8 bits. If the 
resulting character is still less than 8 bits, 1 s are appended in 
the unused high-order bit positions. 

Since the receiver is buffered by one 8-bit register in addition 
to the receiver shift register, the CPU has adequate time to 
service an interrupt and to accept the data character 
assembled by the UART. The receiver also has a buffer that 
stores error flags for each data character in the receive 
buffer. These error flags are loaded at the same time as the 
data character. 

/\ltcr a character is received, it is checked for the following 
error conditions: 

• Parity Error: when the parity bit of the character does not 
match the programmed parity. 

• Framing Error: if the character is assembled without any 
stop bits (i.e., a Low level is detected for a stop bit). 

• Receiver Overrun Error: if the CPU fails to read a data 
character when more than one character has been 
received. 

Since the Parity Error and Receiver Overrun Error flags are 
latched, the error status that is read reflects an error in the 
current character in the Receiver Data register plus any 
Parity or Overrun Errors detected since the last write to the 
Receiver Control/Status register. To keep correspondence 
between the state of the error buffers and the contents of the 
receiver data buffers, the Receiver Control/Status register 
must be read before the data. 

Polled Operation 

In a polled environment, the Receive Character Available bit 
in the Receiver Control/Status register must be monitored so 
the CPU can know when to read a character. This bit is 
automatically cleared when the Receiver Data register is 
read. To prevent overwriting data in polled operations, the 
transmitter buffer status must be checked before writing into 
the transmitter. The Transmit Buffer Empty bit in the 
Transmitter Control/Status register is set to 1 whenever the 
transmit buffer is empty. 

246 

UART Control and Status Registers 

The UART operation is controlled by three control and status 
registers. The UART configuration register specifies the 
character size, parity, clock source, scaling, and loop-back 
enable. Both the transmitter and the receiver have their own 
control/status register. 

UART Configuration Register. This 8-bit register (Figure 
23) contains control information for both the transmitter and 
receiver. 

I a1c IP IE/olcsl 

Figure 23. UART Configuration Register 

The control fields for this register are: 

Loopback Enable (LB). The UART is capable of local 
loopback. In this mode the internal transmit data line is tied 
to the internal receiver line and the external receiver input is 
ignored. If this bit is set to 1, loop back mode is enabled. 

Clock Rate (CR). These two bits specify the multiplier 
between the clock and data rates (00 = data rate x 1, 01 = 
data rate x 16, 1 O = data rate x 32, 11 = data rate x 64). 
The same rate is used for both the receiver and transmitter. If 
the x 1 clock rate is selected, bit synchronization must be 
accomplished externally. 

Clock Select (CS). This bit specifies the clock input for the 
UART. If the bit is set to 1 , the counter/timer 1 output pulse is 
used for bit-rate generation; if the bit is cleared to 0, the input 
line to counter/timer 1 provides the clock from an external 
source. 

Parity Even/Odd (E/O). If parity is specified, this bit 
determines whether it is sent and checked as even or odd 
(1 = even). 

Parity (P). If this bit is set to 1, an additional bit position (in 
addition to those specified in the bits/character control field) 
is added to transmitted data and is expected in received 
data. In the Receiver, the parity bit received is transferred to 
the CPU as a part of the character, unless eight bits/ 
character is selected. 

Bits/Character (BIC). Together, these two bits determine the 
number of bits to form a character. If these bits are changed 
during the time that a character is being assembled, the 
results are unpredictable (00 = 5 bits/character, 01 = 6 
bits/character, 10 = 7 bits/character, 11 = 8 bits/character). 

Transmitter Control/Status Register. This 8-bit register 
(Figure 24) specifies the operation of the transmitter. 

7 0 

I EN I 1e I X I sa laRKIFRclvALI BE I 

Figure 24. Transmitter Control/Status Register 



The control bits for this register are: 

Transmitter Buffer Empty (BE). This bit is automatically set to 
1 whenever the transmitter buffer becomes empty and 
cleared to 0 when a character is loaded into the transmit 
buffer. This bit is in the set condition after a reset. This bit 1s 
controlled by the UART control circuitry; it can be read by an 
1/0 read but cannot be set to 1 or cleared to 0 by an 1/0 write. 

Value (VAL). This bit determines the value of the bits 
transmitted while the FRC bit is 1 and dummy characters are 
loaded into the transmitter buffer. When this bit is 1, a mark 
character (all 1 s) is sent; when this bit is 0, a break character 
(all Os) is sent. 

Force Character (FRC). When this bit is set to 1 , any 
character loaded into the transmitter buffer causes the 
transmitter output to be held High or Low (as indicated by 
the VAL bit) for the length of time required to transmit a 
character. This allows a program to generate a marking 
signal or a break of multiple-character duration simply by 
setting this bit to 1, setting the VAL bit to 1 or 0, and loading 
the appropriate number of dummy characters into the 
transmitter buffer. 

Send Break (BRK). When set to 1, this bit immediately forces 
the transmitter output to the spacing condition, regardless of 
any data being transmitted. When this bit is cleared to 0, the 
transmitter returns to marking. 

Stop Bits (SB). This bit determines the number of stop bits 
added to each asynchronous character sent. The receiver 
always checks for one stop bit. If this bit is set to 1, two stop 
bits are automatically appended to the character sent; if this 
bit is cleared to 0, only one stop bit is appended. 

Transmitter Interrupt Enable (IE). When this bit is set to 1, 
interrupt requests are generated whenever the transmitter 
buffer becomes empty; when this bit is cleared to 0, no 
requests are made. 

Transmitter Enable (EN). While this bit is cleared to 0, data is 
not transmitted and the transmitter output is held marking. 
Data characters' in the process of being transmitted are 
completely sent if this bit is cleared to 0 after transmission 
has started. 

Receiver Control/Status Register. This 8-bit register 
(Figure 25) specifies the operation of the receiver. The 
control bits are described below. 

7 0 

I EN I 1E I X I CA I FE I PE jovEjERRI 

Figure 25. Receiver Control/Status Register 

Receiver Error (ERR). This bit is the logical OR of the PE, 
OVE, and FE bits. 

Framing Error (FE). This bit is automatically set to 1 for the 
received character in which the framing error occurred. 
Detection of a framing error adds an additional one-half of a 
bit time to the character time so the framing error is not 
interpreted as a new start bit. 

Parity Error (PE). When parity 1s enabled, this bit is 
automatically set to 1 for those characters whose parity does 
not match the programmed sense (even/odd). This bit is 
latched, so once an error occurs, it remains set until it is 
cleared by software. 

Receiver Overrun Error (OVE). This bit is automatically set to 
1 to indicate that more than two characters have been 
received without a read from the CPU (or OMA). Only the 
most recently received character is flagged with this error, 
but when this character is read, the error condition is latched 
until cleared by software. 

Receiver Character Available (CA). This bit is automatically 
set to 1 when at least one character is available in the receive 
buffer; it is automatically cleared to 0 when the Receiver 
Data register is read. This bit is controlled by the UART 
control circuitry; it can be read by an 1/0 read but cannot be 
set or cleared by an 1/0 write. 

Receiver Interrupt Enable (IE). While this bit is set to 1, 
interrupt requests are generated whenever the receiver 
detects an error or the receiver has a character available. 

Receiver Enable (EN). When this bit is set to 1, receiver 
operations begin. This bit should be set only after the 
parameters in the UART Configuration register are set. 

UART Bootstrapping Option 

The Z280 CPU supports an :H1lr>1r1.111r 111111:1l1.,iliri11 ,,i 

memory via the UART alter a roo;r;I "l'"r:il1rrr1. I I 11· ·.v·.lr ·11• 
bootstrapping capability pcr1111t~; f"IOMlc:::. ·.y· 11 111 
configurations: the memory can be initialized ily ;i ·:i:r1, ii 111 rl· 
before the Z280 CPU fetches information !rom inc111ory 
after the reset. 

On the rising edge of Reset, the AD lines are sensed if WAIT 
is asserted; if AD6 is being driven High, the Z280 CPU 
automatically enters a Halt state. The UART is also 
automatically initialized to receive 8-b1t character data with 
odd parity at a x 16 clock rate. An external clock source is 
assumed. A minimum of 15 processor clock cycles must 
elapse before the transmission can begin. 

During the bootstrapping operation, OMA Channel O is 
used to transfer received characters into the memory. This 
channel is initialized as follows: 

Transaction Descriptorregister--IE, EPS, and TC cleared, 
ST- byte transfer, BHP-continuous, TYPE-flowthrough, 
DAD-Auto-increment memory address 

OMA Master Control register-DOR and EOP set 

Count register-0100 (256 bytes to be transfe'rred) 

Destination Address register-000000 (starting memory 
address= 0) 

Source Address register-undefined (not used when 
DMAO is linked to UART 

247 



Characters received are placed in memory starting at 
physical memory !ocation zero. If an error occurs, the Z280 
CPU drives the Transmitter Output line Low. External 
circuitry monitoring this line can use this signal to cause the 
transmitting device to begin the initialization procedure 
again, starting with a reset and AD6 asserted on the rising 
edge of Reset. 

OMA CHANNELS 

The Z280 MPU has four on-chip Direct Memory Access 
(OMA) channels to provide high bandwidth data 
transmission capabilities. There are two types of OMA 
channels; two support flyby transactions and the other two 
do not. The two types of OMA channels otherwise have 
identical capabilities, although they have different priorities 
with respect to interrupt requests and bus requests. 

Each OMA channel is a powerful and versatile device for 
controlling and processing transfers of data. Its basic 
function of managing CPU-independent transfers between 
two ports is augmented by an array of features requiring little 
or no external logic in systems using an 8- or 16-bit data bus. 

Transfers can be performed between any two ports (source 
and destination), including memory-to-1/0, 1/0-to-memory, 
memory-to-memory, and l/0-to-1/0. Except for flyby, two 
por I ;iddresses are automatically generated for each 
tr<111;;;1ction and can be either fixed or incrementing/ 
r lr~crur 11ur1ting. 

During a transfer, a OMA channel assumes control of the 
system address and data bus. Data is read from one 
addressable port and written to the other addressable port, 
byte-by-byte or word-by-word. The ports can be 
programmed to be either system main memory or 
peripheral 1/0 devices. 

For both flyby and flowthrough OMA transactions, if the 
destination is a memory location that corresponds to an 
entry in the on-chip memory (either cache or fixed memory 
location), the on-chip memory is updated to reflect the new 
contents of the memory location. 

Except in flyby mode, two 24-bit addresses are generated 
by the OMA for every transfer operation, one address for the 
source port and another for the destination port. Two 
readable address counters (three bytes each) keep the 
current address of each port. 

The OMA devices use the same memory and 1/0 timing as 
the CPU for bus transactions, as indicated by the 
appropriate bus timing register. 

Modes of Transfer Operation 

Each OMA can be programmed to operate in one of three 
transfer modes: 

• Single Transaction. Data operations are performed one 
byte oi word at a time. 

• Burst. Data operations continue until a port's Ready line 
to the OMA goes inactive. 

248 

After 256 bytes of data have been transferred, the Z280 
CPU automatically begins execution by fetching the first 
instruction from memory location 0. 

• Continuous. Data operations continue until either the 
end of the programmed block of data is reached or an 
end of process has been signaled before the system bus 
is released. 

In all modes, once a byte or word of data is read by the OMA 
channel, the operation is completed in an orderly fashion, 
regardless of the state of other signals (including a port's 
Ready line). 

Pin Descriptions 

Each OMA channel has a Ready input line. In addition, two 
OMA channels have a flyby output line to support high 
speed data transfers between 1/0 devices and memory. 

The flyby output is asserted by the OMA channel to signal a 
peripheral device associated with the OMA channel that it 
should participate in the data transmission during the 
current flyby bus transaction. 

If Ready is active, the DMA channel requests control of the 
external system bus to perform the DMA transaction. 
When the external system bus is available for DMA trans­
fers, the DMA channel with a request pending and the 
highest priority assumes bus mastership. The priority of 
DMA channels from highest to lowest is: DMAO, DMA 1, 
DMA2, and DMA3. A DMA channel in burst mode relin­
quishes bus mastership to a higher priority DMA channel 
only when its Ready line is deasserted (or EOP is signaled 
or terminal count is reached). A DMA channel in continuous 
mode relinquishes bus mastership only when EOP is 
signaled or terminal count is reached. 

Priority of On-Chip OMA Channels and External Bus 
Requesters 

The on-chip OMA channels are arranged in a daisy chain 
with the external Bus Request input line being the "next 
lower bus requester" on this chain. The on-chip DMAs 
behave as if they were external bus requestors with respect 
to acquiring the bus, relinquishing the bus, and priority 
access to the bus. 

End-of-Process 

If the end-of-process (EOP) capability is enabled, transfers 
by DMA channels can be prematurely terminated by a Low 
on Interrupt A line or Interrupt B line during the transfer. 
This capability is programmed by control bits in the DMA 
Master Control register. EOP occurs regardless of the 



setting of the Interrupt A Enable bit in the Master Status 
register. When an EOP is signaled, the EOP Signaled 
(EPS) bit in the Transaction Descriptor register of the active 
DMA channel is set to 1 and the Enable bit is cleared to 0. 
If interrupt requests are enabled (IE= 1 in the Transaction 
Descriptor register), an interrupt request is generated by 
the channel that was active when the EOP was signaled. 
After an EOP has been signaled, the DMA relinquishes the 
bus within 16 cycles of the last DMA bus transaction. 

If the End-Of-Process signal on Interrupt A or B line is still 
asserted when the CPU is bus master, the signal is 
interpreted as an interrupt request; thus, both the DMA 
channel and the external EOP generating device ca;; 
request interrupts simultaneously. Separate mask bits in 
the Master Status register enable the CPU to accept 
interrupts from these two sources. 

On a flowthrough transaction, if the EOP signal is received 
while the information is being read into the 2280 MPU, the 
transfer is aborted and the data is not written out from the 
2280 MPU. 

OMA Linking 

The OMA devices can be linked together to achieve OMA 
transfers to non-contiguous memory locations (linked 
operation). Bits in the OMA Master Control register allow 
DMA3 to be linked to DMA1 and DMA2 to be linked to 
DMAO. If the appropriate bit is set to 1 in the OMA Master 
Control register, the master OMA (0 or 1) signals its linked 
OMA each time its transfer is complete (count = 0). This acts 
as an internal ready input to the linked OMA that reloads the 
master OMA control registers. 

Words are loaded into the master OMA control registers in 
the following order: Destination Address register (two 
words), Source Address register (two words), Count (one 
word), Transfer Descriptor register (one word). After six 
words have been transferred, the master OMA deasserts its 
internal ready line and begins the transfer of the next block 
of data. The master DMA can be programmed to interrupt 
the CPU on "count equals O" when the last block transfer is 
completed by the master DMA (to notify software that the 
entire sequence of transfers is completed). 

When programming linked DMAs, the last word to be 
programmed must be the master DMA's Transaction 
Descriptor register. Also, the linked OMA must be 
programmed before the master DMA's status register is 
programmed. 

DMA Master Control Register. This 16-bit register (Figure 
26) specifies the general configuration of the four on-chip 
OMA channels: the linking of the DMA channels, the 
software ready enables, and EOP enable. 

jx j x j x Ix I EoPCse jeOPCSAj eoPBjsR•l•ROIEOPAjo•Ljoajo•T!ooRj 
1514131211109 8 165 4 3 21 0 

Figure 26. OMA Master Control Register 

The fields in this register are: 

DMAO to Receiver Link (DOR). When this bit is set to 1, OMA 
channel O is linked to the UART receiver. 

OMA 1 to 7fansmitter Link (01 T). When this bit is set to 1, 
OMA channel 1 is linked to the UART transmitter. 

DMA2 Link (02L). When this bit is set to 1 , OMA channel 2 is 
linked to OMA channel 0. 

DMA3 Link (03L). When this bit is set to 1, OMA channel 3 is 
linked to OMA channel 1. 

End-of-Process (EOPA). When this bit is set to 1, the INTA 
line is used as aii end-of-process signal for the DMA 
channel defined by the EOPCSA field. 

End-of-Process (EOP ,). When this bit is set to 1, the INT 8 

input acts as an EOP input for the DMA channel defined by 
the EOPCSB field. 

Software Ready for DMAO (SRO). When this bit is set to 1 , 
OMA channel O requests service if enabled. 

Software Ready for OMA 1 (SR1). When this bit is set to 1, 
OMA channel 1 requests service if enabled. 

End-of-Process Channel Select.A (EOPCSA)_ This field 
defines the DMA channel that has iNiA as its EOP input 
This field has no effect if EOP A bit (bit 4) is cleared to zero 

00 DMA Channel o 
01 DMA Channel 1 
02 DMA Channel 2 
03 DMA Channel 3 

End-of-Process Channel Select B (EOPCSB). This field 
defines the DMA channel that has INT 8 as its EOP input. 
This field has no effect if EOP 8 bit (bit 7) is cleared to zero. 

00 OMA Channel O 
01 DMA Channel 1 
02 DMA Channel 2 
03 DMA Channel 3 

Note that while the EOP A and EOP 8 bits are active, INT A 
and iNT 8 can still serve as interrupt inputs. 

OMA Channel Control Registers 

Transaction Descriptor Registers. These four 16-bit 
registers, one for each channel (Figure 27), describe the 
type of OMA transfer to be performed and contain control 
and status information. 
~ 0 

I EN I SAD I •• I ST I BRP I TYPE I TC I DAD I •PSI 

Figure 27. Transaction Descriptor Register 

The fields in this register are: 
End-of-Process Signaled (EPS). This bit is set to 1 auto­
matically when the channel is active and an end-of-process 
is signaled for this channel as programmed on the Interrupt 
A or Interrupt B input lines, thus prematurely terminating 
the transfer. · 

249 



Destination Address Descriptor (DAO). The setting of this 
3-bit field indicates the type of location (memory or 1/0) and 
how the address is to be manipulated (incremented, 
decremented or left unchanged), as shown in Table 5. 

Table 5. SAD and DAD Encodings 

Encoding Address Modification Operation 

000 Auto-increment memory location 
001 
010 

011 
100 
101 
110 
111 

Auto-decrement memory location 
Memory address unmodified by 
transaction 
Reserved 
Auto-increment (by 1) 1/0 location 
Auto-decrement (by 1) 1/0.Jocation 
110 address unmodified by transaction 
Reserved 

Transfer Complete (TC). This bit is set to 1 automatically 
when the count register has reached zero. 

Transaction Type (Type). This 2-bit field specifies flyby or 
flowthrough type of operation (00 = flowthrough, 01 = 

reserved, 10 = flyby write, 11 = flyby read). In flowthrough 
1r1oclr! of operation, two bus transactions occur for each 
IJMA operation-a read from the source followed by a write 
to tlw destination. In a flyby operation, only one bus 
trunsuctlon occurs for each OMA operation. In flyby write to 
memory, the flyby output pin is pulsed instead of an 1/0 
transaction being performed and the contents of the 
Destination Address register are output to specify the 
memory location. In flyby read from memory, the flyby 
output pin is pulsed instead of an 1/0 transaction being 
performed and the contents of the Source Address register 
are output to specify the memory location. Only two DMAs 
have flyby capability. 

Bus Request Protocol (BRP). The setting of these two bits 
indicates the mode of OMA operation (Table 6). 

Table 6. Bus Request Protocol {BRP) 

Encoding OMA 

0 0 Single Transaction 
0 1 Burst 

0 Continuous 
1 Reserved 

Size of Transfer (ST). This 2-bit field specifies the size of the 
entity to be transferred by the OMA channel (Table 7). For 
word transfers to or from memory locations, the memory 
address must be even (least significant bit is 0). Long word 
(32-bit) transfers are supported only in flyby mode, with the 
cache disabled. 

250 

Table 7. Size of Transaction {ST) 

Encoding 
ST1 STO 

0 

0 

0 

1 

0 

1 

Size of 
Transfer 

Byte 
16-bitword 
32-bit longword 
Reserved 

Number to Increment/ 
Decrement By 

1 

2 
4 

Interrupt Enable (IE). When this bit is set to 1 , the OMA 
generates an interrupt request at end of count or end of 
process. When this bit is 0, no interrupt request is 
generated. 

Source Address Descriptor (SAD). The setting of this 3-bit 
field indicates the type of location (memory or 1/0) and how· 
the address is to be manipulated (incremented, 
decremented or left unchanged), as shown in Table 5. 

OMA Enable (EN). While this bit is 1 , the OMA transfer is 
enabled. 

Count Register. This 16-bit register is programmed to 
contain the number of OMA transfers to be performed. 
When the contents of the count register reach zero, further 
requests on the ROY input line are ignored. The OMA 
channel can be programmed to generate an interrupt when 
the count register reaches zero. 

Source Address Register and Destination Address 
Register. These 24-bit registers contain the 24-bit physical 
addresses to be used during the OMA transaction. They are 
not translated by the MMU. In flyby mode, only one of these 
registers is used to supply the address for the bus 
transaction as indicated in the Mode field in the Transfer 
Descriptor register. The format for these registers is shown in 
Figure28. 

15 0 

Ix x x x IA11 • . . • • • . • • . Ao I 
15 0 

I A23 . • . . • . • . A12I xxx xi 

Figure 28. Source and Destination Address Registers Format 

Flyby Transaction Timing 

The Transaction Type field in the Transaction Descriptor 
register indicates whether the transaction is a read or a write. 
For flyby read transactions, the Source Address Descriptor 
indicates the transaction is a read from memory; for write 
flyby transactions the Destination Address Descriptor 
indicates the trans.fiction is a write to memory. Additional wait 
states can be automatically inserted if programmed in the 
appropriate timing register. See Figures 29 and 30 for timing 
diagrams. 



CLK 

AD0-AD7 

Ae-A23 

iffi 

OE 

Figure 29a. On-Chip OMA Channel Flyby Memory Read Transaction, Z80 Bus 

251 



~T,-------T,---i----T.----roo---T.3----.J 

ADDRESS DATA VALID 

ADDRESS 

HIGH 

Figure 29b. On-Chip OMA Channel Flyby Memory Write Transaction, Z80 Bus 

252 



f--T,---.+---T,----.---T.----.---T,--1 

ADDRESS DATA VALID 

ADDRESS 

Figure 30a. On-Chip OMA Channel Flyby Memory Read Transaction, Z-BUS 

253 



S!,iST3 
RIW:O 

BiW 

HIGH 

Figure 30b. On-Chip DMA Channel Flyby Memory Write Transaction, Z-BUS 

COUNTER/TIMERS 

The Z280 MPU's three counter/timers can be programmed 
by system software for a broad range of counting and 
timing applications. The three independently 
programmable channels satisfy common microcomputer 
system requirements for event counting, interrupt and 
interval timing, and general clock generation. 

Programming the counter/timers is straightforward: each 
channel is programmed with four bytes. Once started, the 
channel counts down, and optionally reloads its time 
constant automatically and resumes counting. Software 
timing loops are completely eliminated. Interrupt 
processing is simplified because each channel uses a 
unique vector from the Interrupt/Trap Vector Table. 

Each channel is individually programmed with three 
registers: a configuration byte, a control byte, and a 

. . 

254 

time-constant word. The configuration byte selects the 
operating mode (counter or timer), enables or disables the 
channel interrupt, and selects certain other operating 
parameters. In the timing mode, the CPU processor clock is 
divided by four for input to the counter/timers. The 
time-constant word contains a value from 0 to 65,535. 

During operation, the individual counter channel counts 
down from the present time-constant value. In counter 
mode operation, the counter decrements on each of the 
input pulses until the count/time output condition is met. 
Each decrement is synchronized by the scaled internal 
processor clock. For counts greater than 65,536, two of the 
counters can be programmably cascaded. When the 
count/time output condition is reached, the downcounter is 
automatically reset with the time constant value, if so 
programmed. 



The timer mode determines time intervals without additional 
logic or software timing loops. Time intervals are generated 
by dividing the internal processor clock by four and 
decrementing a presettable downcounter. Thus, the time 
interval is an integral multiple of the processor clock period, 
the prescaler value four, and the time constant that is preset 
in the downcounter. A timer is triggered by setting the 
software trigger control bit in the Control/Status register or 
by an external input. 

All three channels can generate an external output when the 
count/time output condition is met. The output is high when 
the internal presettable downcounter contains all zeros. 

Each channel can be programmed to generate an Interrupt 
Request, which occurs only if the channel has its Interrupt 
Enable control bit set to 1 by software programming. When 
the Z280 CPU accepts the interrupt request it automatically 
vectors through the Interrupt Vector Table. 

Thethree channels of the Z280 MPU are fully prioritized and 
fit into three different slots in the Z280 internal peripheral 
daisy-chain interrupt structure. Channel O has the highest 
priority and Channel 2 has the lowest. The channels have 
separate interrupt enables and the CPU's Master Status 
register has individual control bits that selectively inhibit 
interrupts from each channel. 

Modes of Operation 

The counter/timer channels have two basic modes of 
operation: as counters or as timers. As counters they 
monitor external input lines and record Low to High 
transitions on these lines. In the timer mode, the processor 
clock, scaled by four, is used instead of the external input 
line. The duration of this counting or timing can be either 
continuous from initial enabling (trigger operation) or only 
during intervals specified by signals on an input line (gate 
and gate/trigger operation). The count can be automatically 

GATE 
INPUT-------' 

COUNTER 
OR TIMER 

CLOCK ___ _. 

COUNTITIME 
REGISTER 

DECREMENTED 

restarted by programming the Retrigger Enable control bit 
in the counter/timer's Configuration register. 

Each of the three counter/timers has a software gate and 
trigger facility that extends the hardware capabilities of the 
counter/timers. 

Counting Operation. While the appropriate enabling 
conditions are met, the counter/timer monitors its input line 
for Low-to-High transitions. When such a transition occurs, 
the Count/Time register is decremented by 1. 

Timing Operation. While the appropriate enabling 
conditions are met, the counter/timer monitors the internal 
- .. - -. - - - - __ - I - -1. - - -1 - -1 1-. _ J:._ . . '" L- .. I -· . , ..__ l I: -.l- J. •• - - - :-1-: _ - -
f.JIULt:titiUI LIUl.il\ tiVd.lt:U uy IUUI JUI LUW-Lu-n1~11 llct[ 1:::;1uu11;:,. 

When such a transition occurs the Count/Time register is 
decremented by 1. 

Gate Operation. A counter/timer can be programmed to 
count or time only when a gating condition is met. While the 
counter/timer is enabled and the external gate capability is 
selected, an external input line is monitored; only while this 
line is High are the counting or timing operations performed. 
The software gate facility filters the state of the input line; 
while the software gate bit in the Command and Status 
register is cleared to 0, the gating condition is not met 
regardless of the signals on the gating line. The gate facility 
is illustrated in Figure 31. 

Trigger Operation. A counter/timer can be programmed to 
count or time only after a triggering condition occws. While 
the counter/timer is enabled and the external trnmm 
capability is programmed, an external input lirie 1s 
monitored; only after this line makes a Low-to-High trans1t1on 
is a counting or timing operation performed. The software 
trigger facility causes the triggering condition to be met 
regardless of the activity of this line. The trigger operation is 
illustrated in Figure 32. 

Figure 31. Gate Facility 

TRIGGER 

INPUT-----------' 

COUNTER n 
ORTIMER __ 

CLOCK _____ ~------
___ n __ _ 

couNTITIME 
REGISTER 

DECREMENTED 

Figure 32. Trigger Operation 

255 



GATE/TRIGGER 

INPUT ------· i 

COUNTER 
OR TIMER 

CLOCK 
COUNTITIME 

REGISTER 
DECREMENTED 

GATE GATE 

TRIGGER 

Figure 33. Gate/Trigger Operation 

Gate/Trigger Operation. One input line can be used for 
both the gating and the triggering functions. A Low-to-High 
transition on this line acts as a trigger and subsequent High 
signals on this line function as gate signals. If non­
retriggerable mode is programmed, subsequent Low-to­
High transactions do not cause a trigger. Gate/Trigger 
Operation is shown in Figure 33. 

The software gate and trigger mechanism can also be used 
in this mode of operation. A software gate before a trigger 
(hardware or software) has no effect on the counter/timer. 
After a hardware or software trigger, the software gate must 
be set to 1 for the Count/Time register to be decremented. A 
software trigger after a hardware or software trigger has no 
effect unless the Retrigger Enable control bit is set to 1. 

Counter/Timer Control and Status Registers 

lcac:ti counter/timer has two 8-bit control registers and two 
16-bit count registers. The Configuration register and 
Command/Status register determine the counter/timers' 
operation, the Counter/Timer Command/Status register 
provides information about the current operation, the Time 
Constant register contains the initialization value for the 
counter/timer, and the Count/Time register contains the 
current value of the count in progress. 

lc1sl RE I 1E jCTc·I IPA 

• Only the CTC bit in Counter/Timer 0 is used. 

Figure 34. Counter/Timer Configuration Register 

Counter/Timer Configuration Register. This 8-bit register 
(Figure 34) specifies the counter/timer's mode of operation: 
the pin configuration, whether an interrupt request is 
generated, and whether the countdown sequence is 
automatically restarted when the count reaches zero or 
when a trigger occurs. 

The fields in this register are: 

Input Pin Assignments (IPA). This 4-bit field specifies the 
functionality of the input lines associated with the 
counter/timer and whether the counter/timer monitors an 
external input (counting operation) or uses the scaled 
internal processor clock (timing operation). The four bits in 
this field can be associated with enabling output generation 
(EO), selecting the external signal or internal clock (C/T), 
enabling the gating facility (G), and enabling the triggering 
facility (T). The selected options determine the functions 
associated with each input line associated with the 
counter/timer, as illustrated in Table 8. 

Table 8. Input Pin Functionality 

IPA Field Pin Functionality 

EO CIT G T Counter/Timer 110 Counter/Timer Input Notes 

0 0 0 0 Unused Unused Timer 

0 0 0 Unused Trigger Timer 

0 0 0 Gate Unused Timer 

0 0 1 1 Gate Trigger Timer 

0 1 0 0 Unused Input Counter 

0 0 Trigger Input Counter 

0 0 Gate Input Counter 

0 1 Gate/Trigger Input Counter 

0 0 0 Output Unused Timer 

0 0 Output Trigger Timer 

0 0 Output Gate Timer 

0 1 Output Gate/Trigger Timer 

0 0 Output Input Counter 

0 Unused Unused Reserved 

0 Unused Unused Reserved 

Unused Unused Reserved 

256 



Counter/Timer Cascade (CTC). When this bit is set to 1 , 
counter/timers O and 1 form a 32-bit counter. When used as 
a 32-bit counter/timer, the fields in the Configuration register 
and Command/Status register for Counter/Timer O are 
ignored with the exception of the IE, CTC, EO, CIP, CC, and 
COR fields. The CTC bits in the Counter/Timer Configuration 
registers of counter/timers 1 and 2 are never used. 

Interrupt Enable (IE). While this bit is set to 1 , the 
counter/timer generates an interrupt request when the 
count/time output condition is met. While this bit is 0, no 
interrupt request is generated. 

Retrigger Enable (RE). While this bit is set to 1, the time 
constant value is automatically loaded into the Count/Time 
register when a trigger input is received while the 
counter/timer is counting down. While this bit is 0, no 
reloading occurs. 

Continuous/Single Cycle (C/S). While this bit is set to 1, the 
countdown sequence is automatically restarted when the 
count reaches zero by loading the time constant value into 
the Count/Time register. While this bit is 0, no reloading 
occurs. 

Counter/Timer Command/Status Register. This 8-bit 
register (Figure 35) provides software control over the 
operation of the counter/timer and reflects the current status 
of the counter/timer's operation. Control bits in this register 
enable the counter/timer's operation and provide software 
gate and trigger capabilities. Status bits indicate whether a 
count is in progress, the count/time output condition has 
been reached, or the condition has been reached a second 
time. 

7 0 

IENjorjroj x Ix jc1PjccjcoRI 

Figure 35. Counter/Timer Command/Status Register 

The fields of this register are: 

Count Overrun (COR). When this bit is set to 1, the 
count/time output condition has been reached and the CC 
bit is set to 1, thus indicating a count overrun condition. 
While this bit is cleared to 0, the count/time output condition 
has not been reached with the CC bit set since the time the 
CC bit was cleared by software. This bit can be read or 
written (set or cleared) by software 110 instructions. 

CounVTime Output Condition has been Met (CC). When this 
bit is set to 1, the Count/Time register has been 
decremented to zero by the counter/timer control circuitry in 
single cycle mode or the Count/Time register has been 
reloaded in continuous mode. When this bit is cleared to 0, 
the count has not reached the count/time output condition 
since the bit was cleared by software. This bit can be read or 
written (set or cleared) by software 110 instructions. 

Count In Progress (CIP). While this bit is set to 1 , the 
counter/timer is operating and the Count/Time register is 
non-zero; while this bit is cleared to 0, the counter/timer is 

not operating. This bit is controlled by the counter/timer 
control circuitry; it can be read by an 110 read but cannot be 
set or cleared by an 1/0 write instruction. 

Software Trigger (TG). When this bit is set to 1 (and the trigger 
operation of the counter/timer is enabled), if the Enable bit is 
also set to 1, the trigger operation is enabled on the rising 
edge of the first processor clock period following the setting 
of this bit from a previously cleared value. That is, if a 
hardware trigger has not already occurred, the contents of 
the Time Constant register are loaded into the Count/Time 
register and the countdown sequence begins. If a hardware 
trigger has already occurred, then if Retrigger Enable is set 
to 1, the counter/timer is retriggered; otherwise, setting this 
bit has no effect. Writing a 1 in this field when the previous 
value was 1 has no effect on the operation of the 
counter/timer. When this bit is cleared to 0, this bit has no 
effect on the operation of the counter/timer. 

Software Gate (GT). When this bit is set to 1 (and the gate 
operation of the counter/timer is enabled), if the Enable bit is 
also set to 1, operation begins on the rising edge of the first 
processor clock period following the setting of this bit from a 
previously cleared value. Writing a 1 in this field when the 
previous value was 1 has no effect on the operation of the 
counter/timer. When this bit is cleared to 0, the countdown 
sequence is halted. 

Enable (EN). While this bit is set to 1, the counter/timer is 
enabled; operation begins on the rising edge of the first 
processor clock period following the setting of this bit from a 
previously cleared value. Reset clears this bit. While this bit 
is cleared to 0, the value in the Time Constant register is 
constantly transferred to the Count/Time register. If the Time 
Constant register is all zeros, the output of the counter/timer 
is one. Thus, when the counter/timer is not enabled, the 
counter/timer output in conjunction with the Time Constant 
register can be used as an 1/0 port. Writing a 1 in this field 
when the previous value was 1 has no effect on the 
operation of the counter/timer. While this bit is 0, the 
counter/timer performs no operation during the next (and 
subsequent) processor clock periods. 

Time Constant Register. This 16-bit register holds the 
value that is automatically loaded into the Count/Time 
register when the counter/timer is enabled or in the 
continuous or retrigger mode when the count reaches zero 
or the trigger is asserted, respectively. This register can be 
read or written by 1/0 instructions. · 

Count/Time Register. This 16-bit register holds the current 
value of the count or timing in progress. It is automatically 
loaded from the Time Constant register, and can be read by 
software using the 1/0 read instructions. 

Pin Descriptions 

The counter/timers have two external input lines associated 
with them. The 1/0 lines transfer signals between the 
counter/timers and external devices. The input lines receive 
signals from external devices for the counter/timers. The 
interpretations of the signals on these lines is determined by 
the Input Pin Assignment field in the Configuration register. 

257 



MULTIPROCESSOR MODE OF OPERATION 

Features 

• Allows global memory areas for shared resources 

• Global memory apdresses are user-specified 

• Separate requests for local and global buses 

• Requesting mechanism is transparent to user 

• Easily interfaces to external arbiters 

The Z280 supports various multiproce8sor configurations, 
wherein it is the default' bus master of the local bus, and it 
goes through a defined protocol to access the global bus. 
To invoke the multiprocessor mode, the Local Address 
Register contents should be defined, and the MP bit of the · 
Bus Timing and Initialization Register set. 

Pin Functionality When the Z280 is in the multiprocessor 
mode, Cciuntermmer O's 10 pin is used as the Global 
Request (GREQ) output, and Counter/Timer O's Input pin 
is used as the Global Acknowledge (GACK) input. 

Local Address Register. Before an external memory bus 
transaction is to proceed, , the Z280 distinguishes 
whether a bus transaction uses the local or global bus 
by comparing the four most significant bit of the 
physical address (address bits 20 through 23) with a 
4-bit Base field in the Local Address register (Figure 
36). A mask field in this register specffies which bits 
are to be compared. If all corresponding address bits 
match the Base field bits (for those bit positions 
specified by the mask field), then bus transaction can 
proceed on the local bus without requesting the global 
bus; if there is a mismatch in at least one specifies bit 
position, then the global bus is requested and the bus 
transaction does not proceed until the global bus 
acknowledge signal is asserted. 

7 0 

E'F+·f£ .. 1s .. 1822 I 821 I 9201 

Figure 36. Local Address Register 

The bits in the Local Address register are: 

Base (8,J. When Bn is 1 , address bit An must be 1 for a local 
bus transaction to be performed (unless Match Enable bit 
MEn is O); when bit Bn is 0, address bit An must be O for a 
local bus transaction to be performed. 

258 

Match Enable (ME,J. When MEn is 1, address bit An is 
compared to base bit Bn to determine if the address requires 
the use of the global bus. When MEn is 0, then any values for 
An and Bn will produce a match. If each MEn is 0, then all 
bus transactions are performed on the local bus. 

CPU Accesses on the Global Bus . . 

The Z280 is the default local bus master, whether it is in the 
multi-processor mode or not. It relinquishes the local bus by 
following a protocol controlled by the BUSREQ input and 
BUSACK output pins. When BUSREQ is asserted, it is syn­
chronized internally by the CPU. When the CPU is ready ti:> 
relinquish the local bus, it places all its bus control outputs, 
inducling GREQ, in 3-state, and then drives BUSACK 
active. After reset, the CPU acknowledges a request for the 
local bus before performing any transactions. 

In multi-processor mode, the CPU determines if the next 
external memory transaction should access the global bus. 
If such is the case, and if the CPU currently is the local bus 
master; it puts the global address on the address outputs, 
and the status signals are also made valid, at the beginning 
of a bus clock cyde. GREQ is asserted in the second half 
of the same bus clock cycle. The CPU then samples 
BUSREQ and GACK continuously. Both inputs are syn­
chronized internally by the CPU. The CPU will proceed with 
the global transaction after it samples that GACK is as­
serted, with the absence of BUSREQ. Once the CPU 
controls the global bus, it can perform multiple global 
transactions. It relinquishes the global bus when the 
next transaction should not 8e global, when BUSREQ 
becomes active, or when ACK is de-asserted. A 
global test and set instruction is atomic (global read is 
followed by global write), and a global memory burst 
transaction completes its entire sequence of data 
transfers. 

OMA Accesses on the Global Bus 

Each on-chip· OMA channel can access the giobal bus to 
perform data transfers. The address generated during 
each OMA-initiated memory transfer is compared with the 
contents of the Local Address register to determine whether 
the global bus should be requested. The protocol is identi­
cal to the global memory transactions initiated by the CPU. 



1-r-I 
CLK_JL_J 

ADDRESS/ 
DATA 

ST0-ST3 
RiW 
BIW 

l 
-

-
-

l l 
GLOBAL ADDRESS 

HIGH 

\ 

Figure 37. Multiprocessor Mode Timing, Z-Bus Example 

EXTERNAL INTERFACE 

The two different external interfaces for the Z280 MPU are 
the 8-bit Z80 Bus and the 16-bit Z-BUS. 

ZBO Bus External Interface 

Features 

• 8-bit data bus 

• Multiplexed address/data lines 

• SupportsZ80 Family peripherals 

Pin Descriptions 

A8-A23 . Address (output, active High, 3-state). These 
address lines carry 1/0 addresses and memory addresses 
during bus transactions. 

AD0-AD7. Address/Data (bidirectional, active High, 3-state). 
These eight multiplexed Data and Address lines carry 1/0 
addresses, memory addresses, and data during bus 
transactions. 

AS. Address Strobe (output, active Low, 3-state). The rising 
edge of AS indicates the beginning of a transaction and 
shows that the address is valid. 

BUSACK. Bus Acknowledge (output, active Low). A Low on 
this line indicates that the CPU has relinquished control of 
the bus in response to a bus request. 

BUSREQ. Bus Request (input, active Low). A Low 011 tlm; 
line indicates that an external bus requester has obtained or 
is trying to obtain control of the bus. 

CLK. Clock Output (output). The frequency of the proces­
sor timing clock is derived from the oscillator input (external 
oscillator) or crystal frequency (internal oscillator). The 
processor clock is further divided by one, two, or four (as 
programmed) and then output on this line. 

CTIN. Counter/Timer Input (input, active High). These lines 
receive signals from external devices for the counter/timers. 

CTIO. Counter/Timer 110 (bidirectional, active High, 
3-state)~ These 1/0 lines transfer signals between the 
counter/timers and external devices. 

DMASTB. OMA Flyby Strobe (output, active Low). These 
lines select peripheral devices for flyby transfers. 

EOPA, EOP8 . End of Process (input, active Low). An 
external source can terminate a OMA operation in progress 
by driving EOP A or EOP 8 Low. EOP always applies to the 
corresponding programmed channel; if no channel is ac­
tive, EOP is ignored. 

GACK. Global Acknowledge (input, active Low). A Low on 
this line indicates the CPU has been granted control of a 
global bus. 

259 



GREQ. Global Request (output, active Low, 3-state). A Low 
on this line indicates the CPU has obtained or is trying to 
obtain control of a global bus. 

GND. Ground. Ground reference. 

HALT. Halt(output, active Low, 3-state). This signal indicates 
that the CPU is in the Halt state and is awaiting an interrupt 
before operation can resume. 

fE_ Input Enable (output, active Low, 3-state). A Low on this 
line indicates that the direction of transfer on the 
Address/Data lines is toward the MPU. 

INT. Maskable Interrupts (input, active Low). A Low on these 
lines requests an interrupt. 

IORQ. Input/Output Request (output, active Low, 3-state). 
This signal indicates that AD0-AD7 and AwA23 of the 
address bus hold a valid 1/0 address for an 1/0 read or write 
operation. An IORQ signal is also generated with an 
iiiIT signal when an interrupt is being acknowledged, to 
indicate that an interrupt response vector can be placed on 
the data bus. 

M1. Machine Cycle One (output, active Low, 3-state). This 
signal indicates that the current transaction is the opcode 
fetch cycle of a RETI instruction execution. M1 also occurs 
with IORQ to indicate an interrupt acknowledge cycle. 

MREQ. Memory Request (output, active Low, 3-state). This 
signal indicates that the address bus holds a valid address 
for a memory read or write operation. 

NMI. Nonmaskable Interrupt (input, falling-edge activated). 
A High-to-Low transition on this line requests a nonmaskable 
interrupt. 

OE. Output Enable (output, active Low, 3-state). A Low on 
this line indicates that the direction of transfer on the 
Address/Data lines is away from the MPU. 

OPT. Bus Option (input). This signal establishes the bus 
option during reset. 

OPT 

0 
1 

Bus Interface 

Z80 Bus, 8-bit 
Z-BUS, 16-bit 

PAUSE. MPU Pause (input, active Low). While this line is 
Low the MPU refrains from transferring data to or from an 
Extended Processing Unit in the system or from beginning 
the execution of an instruction. 

RD. Read(output, active Low, 3-state). This signal indicates 
that the CPU or OMA peripheral is reading data from 
memory or an 1/0 device. 

ROY. OMA Ready (input, active Low). These lines are 
monitored by the DMAs to determine when a peripheral 
device associated with a OMA port is ready for a read or 
write operation. When a OMA port is enabled to operate, its 
Ready line indirectly controls OMA activity; the manner in 
which OMA activity is controlled by the line varies with the 
operating mode (single-transaction, burst, or continuous). 

260 

RESET. Reset (input, active Low). A Low on this line resets 
the CPU and on-chip peripherals. 

RFSH. Refresh (output, active Low, 3-state). This signal 
indicates that the lower ten bits of the Address bus contain a 
refresh address for dynamic memories and the current 
MREQ signal should be used to perform a refresh to all 
dynamic memories. 

RxD. UART Receive (input, active High). This line receives 
serial data at standard TTL levels. 

TxD. UARTTransmit(output, active High). This line transmits 
serial data at standard TTL levels. 

WAIT. Wait (input, active Low). A Low on this line indicates 
that the responding device needs more time to complete a 
transaction. 

WR. Write (output, active Low, 3-state). This signal indicates 
that the bus holds valid data to be stored at the addressed 
memory or 1/0 location. 

XTALI. Clock/Crystal Input (time-base input). Connects a 
parallel-resonant crystal or an external single-phase clock to 
the on-chip oscillator. 

XTALO. Crystal Output (time-base output). Connects a 
parallel-resonant crystal to the on-chip oscillator. 

+ SV. Power Supply Voltage. ( + 5 nominal). 

Bus Operations 

Two kinds of operations can occur on the system bus: 
transactions and requests. At any given time, one device 
(either the CPU or a bus requester) has control of the bus 
and is known as the bus master. A transaction is initiated by 
the bus master and is responded to by some other device on 
the bus. Only one transaction can proceed at a time; seven 
kinds of transactions can occur: 

OMA Flyby This transaction is used by the OMA peripheral 
to transfer data between an external peripheral and 
memory. 

Halt. This transaction is used to indicate that the CPU is 
entering the Halt state. 

Interrupt Acknowledge. This transaction is used by the CPU 
to acknowledge an interrupt and to transfer additional 
information from the interrupting device. 

110. This transaction is used by the CPU or OMA peripheral 
to transfer data to or from an external peripheral. 

Memory. This transaction is used by the CPU or OMA 
peripheral to transfer data to or from a memory location. 

Refresh. This type of transaction performed by the refresh 
peripheral does not transfer data; it refreshes dynamic 
memory. 

RETI. This transaction is generated only by the CPU and is 
used in conjunction with the Z8400 peripheral's interrupt 
logic. 



Only the bus master can initiate transactions. A request, 
however, can be initiated by a component that does not have 
control of the bus. Two types of these requests can occur: 

Bus. This request is used by external devices to request 
control of the system bus to initiate transactions. 

Interrupt. This request is used to request the attention of the 
CPU. 

When an interrupt or bus request is made, it is answered by 
the CPU according to its type. For an interrupt request, the 
CPU initiates an interrupt acknowledge transaction and for 
bus requests, the CPU enters bus disconnect state, 
relinquishes the bus, and activates an Acknowiedge signai. 

Finally, the Z280 MPU itself may not be the system bus 
master. See the Multiprocessor Mode section for a 
discussion of this capability. 

Transactions 

Information transfers (both instructions and data) to and 
from the Z280 MPU are accomplished through the use of 
transactions. All transactions start when AS is driven Low 
and then raised High. This signal can be used to latch Z280 
MPU addresses to de-multiplex the Z280 Address/Data 
lines required by Z80 Family peripherals. Coincident with AS 
assertion, the Output Enable line is also asserted. 

If the transaction requires an address, it is valid on the rising 
edge of AS. No address is required for Interrupt 
Acknowledge transactions. 

The Read and Write lines are used to time the actual data 
transfer. (Refresh transactions do not transfer any data and 
thus do not activate RD.) For write operations, a Low on 
WR indicates that valid data from the bus master is on the 
AD lines. The Output Enable line is also activated with WR. 
For read operations, the bus master makes the AD lines 
3-state before driving RD Low so that the addressed device 
can put its data on the bus. The bus master samples this data 
on the falling clock edge just before raising RD High. 
The Input Enable line is also activated with RD. 

Wait Cycle. The WAIT line is sampled on the falling clock 
edge when data is to be sampled (i.e., when RD or WR rises). 

If the WAIT line is Low, another cycle is added to the trans­
action before data is sampled (RD or WR rises). In this added 
cycle and all subsequent cycles added due to WAIT being 
Low, the WAIT line is sampled on the falling edge and, if it 
is Low, another cycle is added to the transaction. In this way, 
the transaction can be extended by external devices to an 
arbitrary length to accommodate (for example) slow 
memories or 1/0 devices that are not yet ready for data 
transfer. 

The WAIT input is synchronous and thus must meet the 
specified setup and hold times in order for the Z280 M PU to 
function correctly. This requires asynchronously generated 
'vVAIT !:ligrn::tb Lu Ue ::ly11c.;hrur 1iLtKl lo ihe CLK ouipui before 
they are input into the Z280 MPU. Automatic wait states can 
also be generated by programming the Bus Timing and 
Control register and the Bus Timing and Initialization 
register; these are inserted in the transaction before the 
external WAIT signal is sampled. 

Memory Transactions. Memory transactions move 
instructions or data to or from memory when the Z280 MPU 
makes a memory access. Thus, they are generated during 
program execution to fetch instructions from memory and to 
fetch and store memory data. They are also generated to 
store old program status and fetch new program status 
during interrupt and trap handling, and are used by OMA 
peripherals to transfer information. A memory transaction is 
three bus cycles long unless extended with wait states 
(Figures 38 and 39). 

RETI Transactions. These transactions (Figure 40) are 
similar to two memory read transactions except that M1 is 
asserted throughout each read transaction, falling early in 
the first bus cycle, and that MREQ, M1, RD and iE are 
deasserted on the rising edge of the clock following the third 
cycle. Each of the read transactions is followed by a 
minimum of three bus cycles of inactivity. These transactions 
are invoked when an RETI instruction is encountered in the 
instruction stream; they are used during the re-fetching of 
the instruction from memory so that interrupt logic within 
Z80 peripherals that monitor the bus for this instruction will 
function correctly. 

Note: Refresh cycles and DMA transfers may occur 
between RETI bus cycles. 

261 



!J:: 
f\l 

I...,__ Ti __ ,..1..,..__T2 __..I,.___ T3 ------I 
CLK 

AD0-AD7 

Ae-A23 ADDRESS 

AS 

MREQ 

RD 

WAIT 

OE 

iE 

Figure 38. Memory Read Timing 

I.....,._ T1~~T2___..l...,___T3___..I 
CLK 

AD0-AD7 DATA VALID 

Ae-A23 ADDRESS 

Ai 

MREQ 

WR 

WAIT 

OE 

IE HIGH 

Figure 39. Memory Write Timing 



I\) 
O> 
(,J 

I..,___ T1 ----+-·I..__ T2------..1..--Ts______.I._ T4----..1.-Ts__.j._ Ts-----.,..__ r,___.I..__ T2._...j.....-.- T3-----.1..____ T4---.-...1-4----Ts----.1...,.__ T6-----..j 
CLK r-1 ,---, r-1 r-1 r-1 r-1 r-1 r-1 r-"l r-"l ~ 

l 
AD0-AD7 --t{ ADDRESS ~~~~~~ ADDRESS :e~~~~ 

__J 

Aa-A23 
--, 

___ L ___ ..J.-_____ x ADDRESS )'---·-..,----1---T x .. I c.__,__....=;.::-,r--T ADDRESS 

AS~ 
MREQ 

RD 

.. t l1 ,l 1 'I/ I I I' l1 ,l 1 '1,1 I : 
WAIT 

_f , I I 
I 

J IE 

Figure 40. RETI Read Timing 



Halt Transactions. The Halt bus transaction does not 
transfer data (Figure 41 ). It looks like a memory transaction, 
except that RD and WR remain High and no data is 

. transferred. The WAIT line is not sampled during the Halt 
transaction. 

Halt transactions are identical to memory read transactions 
except that HALT is asserted throughout the transaction, 
falling during the second half of the first bus cycle, and 
remains asserted until an interrupt is acknowledged. This 
transaction is invoked when a Halt instruction is 
encountered in the instruction stream or a fatal sequence of 
traps occurs. Although the Halt transaction is three cycles, 
the HALT line remains asserted until an Interrupt request is 
acknowledged or a Reset is received.·Refresh (to maintain a 

minimum frequency of bus transactions) or OMA transfers 
· may occur while HALT is asserted; also, the bus can be 
granted. The address put out during the address phase of 
this cycle is the address of the Halt instruction. 

1/0 Transactions. 1/0 transactions move data to (Figure 42) 
or from (Figure 43) peripherals and are generated during 
the execution of 1/0 instructions. 

1/0 transactions are four clock cycles long at a minimum, 
and may be lengthened by the addition of wait cycles. The 
extra clock cycle allows for slower peripheral operation. 

The IORQ line indicates that an 1/0 transaction is taking 
place. The 1/0 address is found on ADo·AD7 and As·A23 
when AS rises. 

l---r,-l---r•~-•141 •--Ta-j 
CLK 

AD0-AD7 

A9-A23 ADDRESS• 

HIGH 

HIGH 

OE' 

• Address of HALT Instruction. 

Figure 41. Halt Timing 

264 



CLK 

AD0-AD7 

Ae-A23 

AS 

IORQ 

WR 

WAIT 

OE 

iE 
HIGH 

Figure 42. 1/0 Write Timing 

r-T1---1 ....... 1---T2---..j~rw----..~T3~1 
CLK 

AD0-AD7 

ADDRESS 

RD 

IE 

Figure 43. 1/0 Read Timing 

265 



Interrupt Acknowledge Transactions. These trans­
actions (Figure 44) acknowledge an interrupt and read 
information from the devicelhat generated the interrupt. The 
transactions are generated automatically by the hardware 
when an external interrupt requestis detected. 

The Interrupt Acknowledge transactions are five cycles long 
at a minimum and have two automatic Wait cycles. The Wait 
cycles are used to give the interrupt priority daisy chain (or 
other priority resolution device) time to settle before the 
identifier is read. Additional automatic Wait states can be 
generated by programming the Bus Timing and Control 
register. 

The Interrupt Acknowledge transaction is indicated by an 
iiiIT assertion without MREQ during the first cycle. During 
this transaction the IORQ signal becomes active during the 
third cycle to indicate that the interrupting device can place 

CL K L L .... 

T L 
I 

T 7 
7 - K UNDEFINED• \. 

f 
ADo-AD 

-
3 -- --1 

Q 

T 7 \ 
D 

E ~ 
E 

an 8-bit vector on the bus. It is captured from the AD lines on 
the falling clock edge just before IORQ is raised High. 

There are two places where the WAIT line is sampled and, 
thus, where a Wait cycle can be inserted by external 
circuitry. The first serves to delay the falling edge of IORQ 
to allow the daisy chain a longer time to settle, and the 
second serves to delay the point at which the vector is read. 

· Refresh Transactions. A memory refresh transaction 
(Figure 45) is generated by the Z280 refresh mechanism 
and can occur immediately after the final clock cycle of any 
other transaction. The memory refresh counter's 10-bit 
address is output on AD0-AD7 and A8-Ag during the normal 
time for addresses. The RFSH line is activated with 
MREQ. This transaction can be used to generate refreshes 
for dynamic RAMs. 

l L L 

DATA 

UNDEFINED 

HIGH 

7 \: 
HIGH 

• AD1 and AD2 indicates type of interrupt being acknowledged, if interrupt mode 3 is in effect. 

Figure 44. Maskable Interrupt Acknowledge Sequence 

266 



~r,-l-r,-J--r,-1 
CLK 

AD0-AD7 

ADDRESS* 

IE 

• 1 o least significant bits are Refresh address, the rest are undefined. 

Figure 45. Refresh Timing 

Requests 

There are three kinds of request signals that the Z280 MPU 
supports. These are: 

• Interrupt requests, which another device initiates and the 
CPU accepts and acknowledges. 

• Bus requests, which an external potential bus master 
initiates and the Z280 M PU accepts and acknowledges. 

• Global bus requests, which the CPU or on-chip OMA 
initiates to acquire a global System bus. 

When a request is made, it is answered according to its type: 
for interrupt requests, an Interrupt Acknowledge transaction 
is initiated; for bus requests, an Acknowledge signal is sent; 
for global bus requests, an Acknowledge signal is received. 

Interrupt Requests. The Z280 CPU supports two types of 
interrupt, maskable and nonmaskable (NMI). The Interrupt 
Request line of a device that is capable of generating an 
interrupt can be tied to the NMI or maskable interrupt 
request lines. Several devices can be connected to one pin 
with the devices arranged in a priority daisy chain. However, 
all Z80 family peripherals should be on the same line (or no 
nesting of interrupts among different lines). The CPU uses 
different protocols for handling requests on the NMI pin 

than the protocol used for maskable interrupt pins. The 
sequence of events shown below should be followed: 

Any High-to-Low transition on the NMI input is asynch­
ronously edge-detected, and the internal NMI latch is set. 
At the beginning of the last clock cycle in the last internal 
machine cycle of any instruction, the interrupt inputs are 
sampled along with the state of the internal NMI latch. 

If a maskable interrupt is requested and the Master Status 
register indicates that requests on that line are to be 
accepted, the next possible bus transaction is the Interrupt 
Acknowledge transaction, which results in information from 
the highest-priority interrupting device being read off the AD 
lines. This data is used to initiatethe interrupt service routine. 
For a nonmaskable interrupt request, the hexadecimal 
constant 0066 is used to initiate the interrupt service routine, 
except in mode 3. 

Bus Requests. To generate transactions on the bus, a 
potential bus master (such as the OMA Controller) must gain 
control of the bus by making abus request. A bus request is 
initiated by pulling BUSREQ Low. Several bus requesters 
may be wired-OR to the BUSREQ pin; priorities are 
resolved externally to the CPU, usually by a priority daisy 
chain. 

267 



The asynchronous BUSREQ signal generates an internal 
BUSREO, which is synchronous. If the external BUSREQ is 
Low at the beginning of ahy machine cycle, the internal 
BUSREQ causes the Bus Acknowledge line (BUSACK) to 
be asserted after the current machine cycle is completed. 
(Exceptions are the TSET instruction where the 
read-modify-write cycle is atomic and OMA transfer in burst 
or continuous mode.) The CPU then enters Bus Disconnect 
state and gives up control of the bus. All MPU Output pins, 
except BUSACK, are 3-stated. 

The CPU regains control of the bus after BUSREQ rises. 
Any device desiring control of the bus must wait at least two 
bus cycles after BUSREQ has risen before pulling it down 
again. 

The on-chip OMA channels have higher priority than 
external devices requesting the bus via BUSREQ. 

Z-BUS External Interface 

Features 

• 16-bit data bus 

• Multiplexed address/data lines 

• Supports high-speed burst mode transfers 

• Provides EPA interface 

Pin Descriptions 

A1s-A23. Address (output, active High, 3-state). These 
address lines carry 1/0 addresses and memory addresses 
during bus transactions. 

AD0-AD1s- Address/Data (bidirectional, active High, 
3-state). These 16 multiplexed address and data lines carry 
1/0 addresses, memory addresses, and data during bus 
transactions. 

AS. Address Strobe (output, active Low, 3-state). The rising 
edge of Address Strobe indicates the beginning of a 
transaction and shows that the address, status, RiW, and 
B/W signals are valid. 

BUSACK. Bus Acknowledge (output, active Low). A Low on 
this line indicates that the CPU has relinquished control of 
the bus in response to a bus request. 

BUSREQ. Bus Request (input, active Low). A Low on this 
line indicates that an external bus requester has obtained or 
is trying to obtain control of the bus. 

B/W. Byte/Word (output, Low = Word, 3-state). This signal 
indicates whether a byte .or a word of data is to be 
transmitted during a transaction. 

CLK. Clock Output (output). The frequency of the processor 
timing clock is derived from the oscillator input (external 
oscillator) or crystal frequency (internal oscillator) by 
dividing the crystal or external oscillator input by two. The 
processor clock is further divided by one, two, or four (as 
programmed), and then output on this line. 

268 

CTIN. Counter/Timer Input (input, active High). These lines 
receive signals from external devices for the counter/timers. 

CTIO. Counter/Timer 110 (bidirectional, active High, 
3-state). These 1/0 lines transfer signals between the 
counter/timers and external devices. 

DMASTB. OMA Flyby Strobe (output, active Low). These 
lines select peripheral devices for OMA flyby transfers. 

DS. Data Strobe (output, active Low, 3-state). This signal 
provides timing for data movement to or from the bus 
master. 

EOP. End of Process (input, active Low). An external source 
can terminate a OMA operation in progress by driving EOP 
Low. EOP always applies to the active channel; if no channel 
is active, EOP is ignored. 

GACK. Global Acknowledge (input, active Low). A Low on 
this line indicates the CPU has been granted control of a 
global bus. 

GREQ. Global Request (output, active Low, 3-state). A Low 
on this line indicates the CPU has obtained or is trying to 
obtain control of a global bus. 

iE. Input Enable (output, active Low, 3-state). A Low on this 
line indicates that the direction of transfer on the 
Address/Data lines is toward the CPU. 

INT. Maskable Interrupts (input, active Low). A Low on these 
lines requests an interrupt. 

NMI. Nonmaskable Interrupt (input, falling-edge activated). 
A High-to Low transition on this line requests a nonmaskable 
interrupt. 

OE. Output Enable (output, active Low, 3-state). A Low on 
this line indicates that the direction of transfer on the 
Address/Data lines is away from the MPU. 

OPT. Bus Option (input). This signal establishes the bus 
option during reset as follows: 

OPT 

0 
1 

Bus Interface 

Z80-Bus, 8-bit 
Z-BUS, 16-bit 

PAUSE. CPU Pause (input, active Low). While this line is Low 
the CPU refrains from transferring data to or from an 
Extended Processing Unit in the system or from beginning 
the execution of an instruction. 

ROY. OMA Ready (input, active Low). These lines are 
monitored by the OMA channels to determine when a 
peripheral device associated with a OMA channel is ready 
for a read or write operation. When a OMA channel is 
enabled to operate, its Ready line indirectly controls OMA 
activity; the manner in which OMA activity is controlled by 
the line varieswith the operating mode (single-transaction, 
burst, or continuous). 

RESET. Reset (input, active Low). A Low on this line resets 
the CPU and on-chip peripherals. 



R/W. Read/Write (output, Low = Write, 3-state). This signal 
determines the direction of data transfer for memory, 1/0, or 
EPU transfer transactions. 

RxD. UART Receive (input, active High). This line receives 
serial data at standard TTL levels. 

ST0-ST3 . Status (output, active High, 3-state). These four 
lines indicate the type of transaction occurring on the bus 
and give additional information about the transaction. 

TxD. UART Transmit (output, active High). This line transmits 
serial data at standard TTL levels. 

WAIT. Wait (inrut. ::i.ctive Low) A. Low on this !ine indicates 
that the responding device needs more time to complete a 
transaction. 

XTALI. Clock/Crystal Input (time-base input). Connects a 
parallel-resonant crystal or an external single-phase clock to 
the on-chip clock oscillator. 

XTALO. Crystal Output (time-base output). Connects a 
parallel-resonant crystal to the on-chip clock oscillator. 

+ SV. Power Supply Voltage. ( + 5 nominal). 

GND. Gro.und. Ground reference. 

Bus Operations 

Two kinds of operations can occur on the system bus: 
transactions and requests. At any given time, one device 
(either the CPU or a bus requester) has control of the bus 
and is known as the bus master. A transaction is initiated by 
the bus master and is responded to by some other device on 
the bus. Only one transaction can proceed at a time; eight 
kinds of transactions can occur: 

Burst Memory. These transactions are used to transfer four 
words of instructions from the memory to the CPU. 

OMA Flyby. This transaction is used by the OMA peripheral 
to transfer data between an external peripheral and 
memory. 

EPU Transfer. This transaction is used to transfer data 
between the CPU and an EPU. 

Halt. This transaction is used to indicate that the CPU is 
entering the Halt state. 

Interrupt Acknowledge. This transaction is used by the CPU 
to acknowledge an external interrupt request and to transfer 
additional information from the interrupting device. 

110. This transaction is used by the bus master to transfer 
data.to or from an external peripheral. 

Memory. This transaction is used by the bus master to 
transfer data to or from a memory location. 

Refresh. These transactions by the refresh mechanism do 
not transfer data; they refresh dynamic memory. 

Only the bus master can initiate transactions. A request, 
however, can be initiated by a device that does not have 
control of the bus. Two types of requests can occur: 

Bus. This request is used to request control of the bus to 
initiate transactions. 

Interrupt. This request is used to request servicing by the 
CPU. 

When an interrupt or bus request is made, it is answered 
according to its type: for an externally generated interrupt 
request, an Interrupt Acknowledge transaction is initiated by 
the CPU; for bus requests, the MPU enters Bus Disconnect 
state, relinquishes the bus, and activates an acknowledge 
signal. 

Transactions 

Data transfers to and from the Z280 MPU are accomplished 
through the use of transactions. 

All transactions start with Address Strobe (AS) being driven 
Low and then raised High by the Z280 MPU. On the rising 
edge of AS, the Status lines ST 0-ST 3 are valid; these lines 
indicate the type of transaction being initiated (Table 9); 
seven types of transactions are discussed in the sections 
that follow. Associated with the status lines are two other lines 
that become valid at this time: R/W, and BIW. 

Tilble 9. Status Code Table 

Status Lines 
3• •O iype of Transaction 

0000 Reserved 
0001 Refresh 
0010 110 transaction 
0011 Halt 
0100 Interrupt acknowledge line A 
0101 NMI acknowledge 
0110 Interrupt acknowledge line B 
0111 Interrupt acknowledge line C 
1000 Transfer between CPU and memory, cacheable 
1001 Transfer between CPU and memory, 

non-cacheable 
1010 Data transfer between EPU and memory 
1011 Reserved 
1100 EPU Instruction fetch, template, subsequent 

words 
1101 EPU Instruction fetch, template, first word 
1110 Data transfer between EPU and CPU 
1111 Test and Set (data transfers) 

If the transaction requires an address, it is valid on the rising 
edge of AS. No address is required for EPU-CPU transfer 
transactions; the contents of the A and AD lines while AS is 
asserted are undefined. If an address is generated, the 
OE signal is also activated. 

269 



The Z-BUS MPUs use Data Strobe (OS) to time the actual 
data transfer. (Note that Refresh and Halt transactions do not 
transfer any data and thus do not activate OS.) For write 
operations (R/W = Low), a Low on OS indicates that valid 
data from the bus master is on the AD lines. The Output 
Enable continues to be asserted until OS is deasserted. For 
read operations (RiW = High), the bus master makes AD 
lines 3-state, deasserts OE, and asserts TE after driving 
OS Low so that the addressed device can put its data on 
the bus. The bus master samples this data on the falling 
clock edge just before raising OS and TE High. 

Wait Cycle. The WAIT line is sampled on the falling clock 
edge when data is sampled by the Z280 MPU (Read) orthe 
falling clock edge before OS rises (Read or Write). If WAIT is 
Low, another cycle is added to the transaction before data is 
sampled or OS rises. In this added cycle, and all 
subsequent cycles added when WAIT is Low, WAIT is again 
sampled on the falling clock edge and, if it is Low, another 
cycle is added to the transaction. In this way, the transaction 
can be extended to an arbitrary length by external circuitry 
to accommodate (for example) slow memories or 1/0 
devices that are not yet ready for data transfer. Automatic 
insertions of wait states by the CPU or on-chip OMA 
channels can be programmed by setting fields in the Bus 
Timing and Control register and Bus Timing and Initialization 
register to indicate the number to be inserted. 

Memory Transactions. Memory transactions move data to 
or from memory when a bus master makes a memory 

STATUS 
B/W 

ruw = 1 

access. Thus, they are generated during program execution 
to fetch instructions from memory and to fetch and store 
memory data. They are also generated to store old program 
status and fetch new program status during interrupt and 
trap handling and after reset. 

A memory transaction is three bus cycles long unless 
extended when WAIT is asserted. 

Bytes transferred to or from odd memory locations (address 
bit 0 = 1) are always transmitted on lines A00-A07 (bit 0 on 
ADo). Bytes transferred to or from even memory locations 
(address bit 0 = 0) are always transmitted on lines 
ADs-AD1s (bit 0 on ADs). For byte reads (B/W High, 
R/W High), the CPU or on-chip OMA channel uses only the 
byte whose address it put out on the bus. For byte writes 
(B/W High, R/W Low), the memory should store only the 
byte whose address was output. During byte memory 
writes, the CPU (or on-chip OMA channel in non-Flyby 
transactions) places the same byte on both halves of the 
bus, and the proper byte must be selected by testing A0 . For 
word transfers (B/W = Low), all 16 bits are captured by the 
CPU or OMA channel (Read: R/W = High) or stored by 
the memory (Write: R/W = Low). For these transactions 
(either memory or 1/0) the bytes of data appear swapped on 
the bus with the most significant byte on A0y-A00 and the 
least significant byte on AD15-A08. A word is aligned if the 
address is even; otherwise it is unaligned. 

Memory transaction timings are shown in Figures 46-50. 

STATUS VALID 

Figure 46. Memory Read Timing 

270 



CLK 

AD0-AD15 

A1&·A23 

AS 

STATUS 
B/W 

R/W = 1 

STATUS 
B/W 

R/W = o 

DS 

WAIT 

OE 

STATUS VALID 

HIGH 

Figure 47. Memory Write Timing 

STATUS VALID 

Figure 48. Memory Read Timing with External Wait Cycle 

271 



272 

STATUS 
B/W 

RIW = o 

STATUS 
alw 

R/W = 1 

STATUS VALID 

HIGH 

I 
Figure 49. Memory Write Timing with External Wait Cycle 

STATUS VALID 

Figure 50. Memory Read Timing with Internal Wait Cycle 



STATUS 
BIW:O 
RIW:1 

STATUS VALID 

Figure 51. Burst Memory Read Timing 

Burst Memory Transactions. Burst memory transactions 
use multiple Data Strobes associated with a single Address 
Strobe. The CPU uses burst transactions to read four 
consecutive words in four data transactions. The address of 
the first word read during a burst transaction has zeros in the 
three least significant bits. Control bits in the Cache Control 
register indicate whether or not portions of the memory 
system can support burst transactions. 

The CPU uses burst mode reads only for fetching 
instructions. If an instruction is to be fetched from a location 
within a half of physical memory that supports burst 
transactions, the CPU reads the eight bytes that contain the 
first byte of the instruction. (EPA template fetches do not use 
the burst transaction.) 

Timing for the first data transfer during a burst transaction is 
identical to that for a single memory read, including the 
automatic insertion of wait states, except there are four T3 
states. Subsequent data transfers do not include automatic 
wait states. On the first data transfer, if WAIT is sampled 
active then it is sampled again every bus clock cycle until it is 
inactive, at which time the data is read from the bus. Burst 
memory read timing is shown in Figure 51. 

Note: Burst Transactions can occur only in Z-BUS mode. 

Halt Transactions. Halt transactions do not transfer data. 
They look like a memory transaction, except that OS re­
mains High and no data is transferred. 

A Halt transaction (Figure 52) is generated when the CPU 
executes a HALT instruction or when a fatal sequence of 
traps and bus errors occurs. The address placed on the AD 
lines is the location of the Halt instruction or the instruction 
that initiated the fatai sequence of traps and errors. The 
Status lines indicate a Halt transaction (0011). 

WAIT is not sampled during the Halt transaction. 

1/0 Transactions. 1/0 transactions (Figures 53 and 54) 
move data to or from peripherals and are generated during 
the execution of 1/0 instructions. 1/0 transactions to on-chip 
peripheral devices (1/0 pages FEH and FFH) do not 
generate external bus transactions. 

1/0 transactions are four bus cycles long at a minimum, and 
they can be lengthened by the addition of wait cycles either 
automatically generated as indicated in the Bus Timing and 
Control register or generated by an external device. The 
extra clock cycles allow for slower peripheral operation. 

The status lines indicate that the access is an 1/0 transaction 
(0010). The 1/0 address is found on AD0-AD1 sand A15-A23. 

Byte data (BIW = High) is transmitted on AD0-AD7. This 
allows peripheral devices to attach to only eight of the AD 
lines. Word data (B/W = Low) is transmitted with the most 
significant byte on AD0-AD7 and the least significant byte on 
ADa-AD15. 

273 



274 

j--r1-j--r2-~r,-J 

CLK 

AD0-AD15 

STATUS 
BIW 

RIW = 0 

STATUS 
BtW = 1 
RiW =, 

"'Address Of Halt Instruction. 

ADDRESS• 

STATUS VALID 

HIGH 

Figure 52. Halt Timing 

STATUS VALID 

HIGH 

I 
Figure 53. 1/0 Write Timing 



f.---r1-----.j.....___r2 _____.J~rw--..!...___r3---.1 

CLK 

AD0-AD1s 

AS 

STATUS 
B/W 

R/W = 1 

OE 

IE 

DATA 

ADDRESS 

STATUS VALID 

Figure 54. 1/0 Read Timing 

Interrupt Acknowledge Transactions. These transac· 
lions (Figure 55) acknowledge an interrupt and read an 
identifier from the device that generated the interrupt. 
Interrupt Acknowledge transactions are generated 
automatically by the hardware when an external interrupt is 
detected. 

These transactions are five cycles long at a minimum, with at 
least two automatic Wait cycles, although others can be 
added by programming the Bus Timing and Control 
register. The Wait cycles are used to give the interrupt priority 
daisy chain (or other priority resolution device) time to settle 
before the identifier is read. 

The only item of data transferred is the identifier that is 
captured from the AD lines on the falling clock edge just 
before OS is raised High. The length of time that OS is 
asserted is identical with 1/0 timing programmed in the Bus 
Timing and Control register. 

There are two places where WAIT is sampled and thus a 
Wait cycle can be inserted by external devices. The first 
place serves to delay the falling edge of OS to allow the 
daisy chain a longer time to settle, and the second place 
serves to delay the point at which data is read. 

Refresh Transactions. A memory Refresh transaction 
(Figure 56) is generated by the refresh mechanism and can 
come immediately after the final clock cycle of any other 
transaction. The memory refresh counter's 10-bit address is 
output on the low order 10 bits of the bus during the first 
cycle of the transaction. The contents of the rest of the bus 
are undefined. The Status lines indicate Refresh (0001 ). This 
transaction can be used to generate refreshes for dynamic 
RAMs. Refreshes may occur while the CPU is in the Halt or 
Fatal state. 

CPU-Extended Processing Unit Interaction 

The Z280 CPU with a Z-BUS interface and PAUSE input 
line and one or more Extended Processing Units (EPUs) 
work together like a single CPU component, with the CPU 
providing address, status, and timing signals and the EPU 
supplying and capturing data. The EPU monitors the status 
and timing signals output by the CPU so that it knows when 
to participate in a memory transaction; for EPU to memory 
transfers, the CPU puts its AD lines in 3-state while OS is 
Low, so that the EPU can use them. 

275 



276 

CUl 

ADo·AD15 

STATUS 
Bl\ii = o 
RIW = 1 

UNDEFINED DATA 

UNDEFINED 

STATUS VALID 

Figure 55. Interrupt Acknowledge Timing 



J.,.___ T 1_...,_j.,.__r2_._.l~r3___.../ 

CLK 

AD0-AD15 

STATUS 
BIW = 0 
R/W = 1 

•10 least-significant bits are Refresh address. 

UNDEFINED 

STATUS VALID 

HIGH 

Figure 56. Memory Refresh Timing 

In order to know which transaction it is to participate in, the 
EPU must track the following sequence of events: 

• When the CPU fetches the first word of an EPA 
instruction template from memory (ST3-ST0 = 1101 ), the 
EPU must also capture the instruction returned by the 
memory. Within the template is an ID field that indicates 
whether or not the EPU is to execute the instruction. 

• The next non-refresh transaction by the CPU is the fetch 
of the second word of the instruction (ST3-ST0 = 1100). 
The EPU must also capture this word. If the template is 
not aligned, a third fetch is made (ST3-ST0 = 1100). 

• If the instruction involves a read or write to memory, then 
transfers of data between memory and the EPU (ST3-ST0 
= 1010) are the next non-refresh transactions performed 
by the CPU. The EPU must supply the data (Write: 
R/W = Low) or capture the data (Read: R/W = High) for 
each transaction, just as if it were part of the CPU. In both 
cases, the CPU 3-states its AD lines while data is being 
transferred (OS Low). 

• If the instruction involves a transfer from the EPU to the 
Z280 MPU, the next non-refresh transaction is the CPU 
transferring data between the EPU and CPU (ST3-ST0 = 
1110). 

In order to follow this sequence, an EPU has to monitor the 
status lines to verify that the transaction it is monitoring on the 
bus was generated by the CPU. In a multiple EPU system, 
there is no indication on the bus as to which EPU is 
cooperating with the CPU at any given time. This must be 
determined by the EPUs from the templates they capture. 

When an EPU begins to execute an extended instruction, 
the CPU can continue fetching and executing instructions. If 
the EPU wishes to halt the CPU from executing another 
instruction or bus transaction, the EPU must activate the 
PAUSE line to stop the CPU until the EPU is ready for 
subsequent MPU activity. This mechanism is used to 
synchronize MPU-EPU activity. 

277 



EPU Transfer Transactions. These transactions (Figures 
57-59) allow the CPU to transfer data to or from an EPU or to 
read or write an EPU's status registers. They are generated 
during.the execution of the EPU instructions. 

EPU-to-Memorytransfers are five cycles unless extended by 
WAIT. Memory-to-EPU transfers" are three cycles unless 
extended by WAIT. 

EPU-CPU transfer transactions have the same form as 1/0 
transactions and thus are four clock cycles long,. unless 
extended by WAIT. Although AS is asserted, no address is 
generated and the contents of the bus are undefined; only 
one status code is used (1110). 

In a multiple EPU system, the EPU that is to participate in a 
transaction is selected implicitly by the ID code in the EPU 
template, rather than by an address. The Read/Write line 
(RiifJ = High) indicates the direction of the data transfer 
into the CPU. 

Requests 

The 2280 MPU supports three types of request signals. 
These are: 

• Interrupt requests, which another device initiates and the 
CPU accepts and acknowledges. 

STATUS 
BIW=O 
RiW=1 

• Bus requests, which an external potential bus master 
initiates and the CPU accepts and acknowledges. 

• Global bus requests, which the CPU or on-chip OMA 
initiates to acquire a global system bus. 

When a request is made, it is answered according to its type: 
for interrupt requests, an Interrupt Acknowledge transaction 
is initiated by the CPU; for bus requests, an acknowledge 
signal is sent; for global bus request, an acknowledge signal 
is received. 

Interrupt Requests. The 2280 MPU supports two types of 
external interrupts, maskable and nonmaskable (NMI). The 
Interrupt Request line of a device that is capable of 
generating an interrupt may be tied to any of the interrupt 
pins. Several devices can be connected to one pin, with the 
devices arranged in a priority daisy chain. The CPU uses the 
same protocol for handling requests on these pins. The 
sequence of events is given below:. 

Any High-to-Low transition on the NMI input is asynch­
ronously edge-detected, and the internal NMI latch is set. 
At the beginning of the last processor clock cycle of any 
instruction, the interrupt inputs are sampled along with the 
state of the internal NMI latch. 

STATUS VALID= 1110 

Figure 57. EPU to CPU Timing 

278 



ITATUI ... 
ri=O 

iii 

ii 

STATUS 
B/W 

R/W = 1 

STATUS VALID = 1010 

HIGH 

I 
Figure 58. EPU Write to Memory 

STATUS VALID 

Figure 59. Memory to EPU Timing 

--0>114"•-T•--l 

EPU DATA VALID 

279 



.. 

If a maskable interrupt is requested and the Master Status 
register indicates that requests on that line are to be 
accepted, or ifthe NMI latch is set, the next possible bus 
transaction is an interrupt acknowledge transaction that 
results in an identifier from the highest-priority interrupting 
device being read off the AD lines. This data is used as 
specified by the currr;mt interrupt mode. 

Bus Requests. To generate transactions on the bus, a 
potential external bus master (such as a OMA Controller) 
must gain control of the bus by making a bus request. A bus 
request is initiated by pulling BUSREQ Low. Several bus 
requesters can be wired-OR to the BUSREQ pin; prior­
ities are resolved externally to the CPU, usually by a priority 
daisy chain. 

RESET 

A hardware reset puts the Z280 MPU into a known state and 
optionally initializes the Bus Timing and Initialization control 
register of the Z280 MPU to a system specifiable value. A 
reset begins at the end of any processor clock cycle if the 
RESET line is Low. However, if a bus transaction is in 
progress it is allowed to be completed. A system reset 
overrides all other operations of the chip, including 
interrupts, traps and bus requests. A reset should be used to 
initialize a system as part of the power-up sequence. 

The RESET input must be asserted for a minimum of 128 
processor clock cycles. Within this time the Z280 lines 
assume their reset values. For either bus, the AD lines are 
3-stated, and all control outputs are forced High. While 
RESET is asserted, the CLK output is the processor clock 
frequency scaled by four. 

The RESET line is sampled on the rising edge of an 
internal clock (derivative of XTAU). When the RESET 
line is sampled High (de-asserted}, the state of the 
WAIT line is also noted: if WAIT is asserted, then the 
contents of the AD lines are used to program the Bus 
Timing and Initialization register, otherwise the 

280 

The asynchronous BUSREQ signal generates an internal 
BUSREQ, which is synchronous. If the external BUSREQ is 
Low at the beginning of any processor clock cycle, the 
internal BUSREQ will cause the bus acknowledge line 
(BUSACK) to be asserted after the current bus transaction 
is completed or after the write transaction of a TSET 
instruction. The CPU then enters Bus Disconnect state and 
gives up control of the bus. All Z280 Output pins except 
BUSACK are 3-stated. 

The on-chip OMA channels have higher priority than the 
off-chip devices requesting the external bus via BUSREQ. 

constant 00 hexadecimal is used. If the hardware 
programming initialization option is used, AD4 must be 
O when the bus is sampled and the AD6 line 
determines whether the UART bootstrap option is 
selected. 

After reset, theZ280 MPU is initialized as shown in Tables 10 
and 11. 

The following registers are unaffected: 

• CPU register file, including user Stack Pointer 

• Page Descriptor registers 

• Interrupt/Trap Vector Table Pointer register 

On the rising edge of RESET, if Bus Request is asserted 
the Z280 MPU will grant the bus before fetching the first 
instruction from location 0. 

After RESET has returned to High, the CPU begins to 
operate unless the Bootstrap UART feature is utilized. 



Table 10. Effect of a Reset on Z280 CPU and MMU Registers 

Register 

Program Counter 

System Stack Pointer 

I 
R 
Master Status 

Bus Timing and Control 

Bus Timing and Initialization 

l/OPage 

Cache Control 

Trap Control 

System Stack Limit 

Local Address 

Interrupt Status 

Interrupt/Trap Vector Table Pointer 

CPU Registers AF, BC, DE, HL, IX, IY, AF', 

BC', DE', DE', HL 

User Stack Pointer 

MMU Master Control 

MMU Page Descriptor Register, Page 

Descriptor Register Pointer 

Value Loaded on Reset 

(Hexadecimal) 

0000 
0000 

00 
00 

0000 

oo·· 

00 

00 
20 

00 

0000** 
00 

OOxx 

0000 ... 

Comments 

System mode, Single-Step disabled, Breakpoint-on-Halt 

disabled 

All maskable interrupts disabled 

No automatic wait states for 1/0, upper 8M bytes of 

memory, or interrupt acknowledges 

CLK output 2x processor clock period, no automatic 

wait states for lower 8 Mbytes of memory, bootstrap 

mode disabled, direct clock option disabled, 
multiprocessor configuration disabled 

1/0 Page O in use 

Cache enabled for instructions 

All valid bits cleared to 0 
Burst mode disabled 

EPA trap enabled, 1/0 not privileged, System 

Stack Overflow Warning trap disabled 

All memory transactions are made to local bus 

Interrupt mode 0, nonvectored interrupts, current state 

of interrupt requests (indicated by xx) 

Unaffected 

Unaffected 

Unaffected 

MMU disabled 

Unaffected 

Table 11. Effect of a Reset on Z280 On-Chip Peripheral Registers 

Register 

Refresh 

Counter/Timers: 

Configuration 

Command/Status 

OMA Channels: 

Master Control 

DMAO Transaction Descriptor 

OMA 1 /2/3 Transaction Descriptor 

DMAO Destination Address 

DMAOCount 

UART: 

Configuration 

Transmitter Control/Status 

Receiver Control/Status 

'Unless bootstrap mode is selected. 

Value Loaded on Reset 

(Hexadecimal) Comments 

88 Refresh enabled, rate = 32 

00 
00 

0000 .... 

0100· 

000000 
0100 

oo· 

01 
oo· 

Timer mode, single-cycle, non-retrigger 
Timer disabled 

No OMA linking, EOP disabled, Software Ready disabled 

DMAO disabled, continuous mode 

EN, IE, TC, and EPS fields cleared, other fields unaffected 

5 bits/character, parity disabled, external clock, x1 clock rate, 

loop back disabled 

Transmitter disabled, transmit buffer empty 

Receiver disabled 

..Reserved bits are undefined on reads. 

281 



ABSOLUTE MAXIMUM RATINGS 

Voltage on Vee with respect to Vss ..... -0.3V to + 7V 
Voltages on all pins with respect to Vss ...... -0.3V to 

(Vee+ 0.3V) 
Operating Ambient 

Temperature . . . . . . . ...... See Ordering Information 
Storage Temperature .............. - 65 °C to + 150 °C 

Stresses greater than those listed under Absolute Maximum Ratings may 
cause permanent damage to the device. This is a stress rating only; 
operation of the device at any condition above those indicated in the 
operational sections of these specifications is not implied. Exposure to 
absolute maximum rating conditions for extended periods may affect 
device reliability. 

STANDARD TEST CONDITIONS 

The DC Characteristics and Capacitance sections below 
apply tor the following standard test conditions, unless 
otherwise noted. All voltages are referenced to GND (OV). 
Positive current flows into the referenced pin. 

Available operating temperature ranges are: 

• S = 0°C to + 70°C 

DC CHARACTERISTICS 

Symbol Parameter Min 

v._ Input Low Votage -0.3 

VIH Input High Voltage 2.0 

VOL Output Low Voltage 

VOH Output High Voltage 2.4 

Vee Operating Power Supply Voltage 4.5 

ICC Power Supply Current 

282 

All ac parameters assume a load capacitance of 1 OOpf. Add 
10 ns delay for each 50 pf increase in load up to a maximum 
of 200 pf for the data bus. 

FROM OUTPUT 

UNDER TEST 

Max 

0.8 

Vee+ 0.3 

0.4 

5.5 

200 

100pf 

I 

Unit 

v 
v 
v 
v 
v 
ma 

Vee 

0.91K 

Test Condition 

l0 L =4.0 ma 

l0 H = -400 pa 

Vee =5.5 V 

XTALI = 20 MHz 

V1H = 2.0V 

V._ =0.BV 

Outputs Unloaded 



AC CHARACTERISTICS 
Z·Bus Timing (Refer to Figures 60 and 61) 

Number Symbol Parameter Min Max 

1 TdCr(ST) Clock t to Status Delay 20 

2 TdCr(A) Clock t to Address Valid Delay 20 

3 TdCr(ASf) Clock t to AS+ Delay 20 

4 TdCf(ASr) Clock + to AS t Delay 20 

5 TwAS AS Low Width nT,,XT-20 

6 TdCr(Az) Clock t to Address Float Delay 25 

7 TdCr(DSf) Clock t to DS + Delay 20 

8 TdCf{DSr) Clock+ to DS t Delay 35 

9 TsD(Cf) Data to Clock+ Setup 30 

10 ThD(Cf) Data from Clock+ Hold 10 

11 TdCf(DSf) Clock+ to DS +Delay 20 

12 TdCr(D) Clock t to Data Valid Delay 20 

13 TdDSr(Dx) DS t to Data not Valid Delay nTcXT-40 

14 TsW(Cf) WAIT to Clock+ Setup 50 

15 ThW(Cf) WAIT from Clock+ Hold 0 

16 TdCr(OEf) Clock t to OE + Delay 20 

17 TdCr(OEr) Clock t to OE t Delay 20 

18 TdCf(IEf) Clock+ to TE+ Delay 20 

19 TdCf(IEr) Clock+ to TE t Delay 35 

20 TdA(ASr) Address Valid to AS t Delay nTcXT-25 

21 TdDSr(ASf) DS t to AS+ Delay nTcXT-40 

22 TdASr(Ax) AS t to Address not Valid Delay nTcXT- 30 

24 TdDSr(A) DS t to Address Active Delay nTcXT-40 

25 TdAz(DSf) Address Float to DS +Delay 0 

26 TdD(DSf) Data Valid to DS + Delay nTcXT- 20 

27 TwDSBh DS High Width (Burst Mode) nTcXT-40 

28 TwDSBI DS Low Width (Burst Mode) nTcXT-30 

1. TcXT = XTALi Cycle Time 
CLK = 1x (1x bus clock): n = 1 

2x (2x bus clock) : n = 2 
4x (4x bus clock) : n = 4 

i"Unlts in nanoseconds unless otherwise specWied. 
v .. = 2.0V, VIL= 0.8V, YOH= 2.0V, VO<.= 0.8V 

57 

Notest 

283 



CLK 

ST0-ST3 

RIW, Blliii --- --+----+---~-----+-+----- ----

DS(READ) 

~ -.@ -- CD -- --©--
AD0-AD15 

READ 

--© -
DS(WRITE) 

-@· -- CD 
AD0-AD15 

WRITE 

WAIT 

Figure 60. Z·Bus All Transactions 

T1 T2 r, ,, Ts Ts 

CLK 

DS 

ADo·AD1s < ) < >-< 

Figure 61. Z-Bus Burst Mode Timing 

284 



AC CHARACTERISTICS 
Z80 Bus Timing (Refer to Figures 62 and 63) 

Number Symbol Parameter Min Max Notest 

1 TdCr(OEf) Clock t to OE + Delay 20 

2 TdCr(A) Clock t to Address Valid Delay 20 

3 TdCr(ASf) Clock t to AS+ Delay 20 

4 TdCf(ASr) Clock+ to AS t Delay 20 

5 TwAS AS Low Width nTcXT- 20 

6 TdCr(Az) Clock t to Address Float Delay 25 

7 TsW!Cf) WAIT to Clock+ Setup 50 

8 ThW(Cf) WAIT from Clock+ Hold 0 

9 TdA{ASr) Address Valid to AS t Delay nTcXT-25 

10 TdASr(Ax) AS t to Address not Valid Delay nTcXT-30 

11 TdCr(RDf) Clock t to RD + Delay 20 

12 TdCf{RDr) Clock+ to RD t Delay 35 

14 TsD(Cf) Data to Clock+ Setup 30 

15 ThD(Cf) Data from Clock+ Hold 10 

16 TdAz(RDf) Address Float to RD + Delay 0 

19 TdCr(OEr) Clock t to OE t Delay 20 

20 TdCf(IEf) Clock+ to TE+ Delay 20 

21 TdCf(IEr) Clock+ to TE t Delay 35 

22 TdCr{IEr) Clock t to TE t Delay 20 2 

23 TdCr(RDr) Clock t to RD t Delay 20 2 

24 TdCf{WRf) Clock+ to WR + Delay 20 

25 TdCf{WRr) Clock+ to WR t Delay 35 

26 TdWRr(ASf) WR t to AS+ Delay nTcXT-40 

27 TdWRr(A) WR t to Address active Delay nTcXT-40 
28 TdCr(D) Clock t to Data Valid Delay 20 
29 TdWRr(Dx) WR t to Data not Valid Delay nTcXT-40 
30 TdD(WRf) Data Valid to WR+ Delay nTcXT- 20 
31 TdCf(MREQf) Clock+ to MREQ +Delay 20 

32 TdCf{MREQr) Clock+ to MREQ t Delay 35 

33 TdCr(MREQr) Clock t to MREQ t Delay 20 2 

34 TdCr (IORQf) Clock t to IORQ + Delay 20 

35 TdCf(IORQr) Clock+ to IORQ t Delay 35 

36 TdCf (IORQf) Clock+ to IORQ + Delay 20 3 

37 TdCf{M1r) Clock+ to M1 t Delay 35 3 

285 



AC CHARACTERISTICS (Continued) 

Z80 Bus Timing 

286 

Number Symbol Parameter 

38 TdCr(M1r) Clock t to M1 t Delay 

39 TdCr(M1f) Clock t to M1 t Delay 

40 TdCf(RFSHr) Clock t to RFSH t Delay 

41 TdCf(RFSHf) Clock t to RFSH t Delay 

42 TdCf(HALTf) Clock t to HALT t Delay. 

1. TcXT = XT Ali Cycle Time 
CLK = 1x (1x bus clock): n = 1 

2x (2x bus clock) : n = 2 
4x (4x bus. clock) : n = 4 

2. This Parameter is used for RETI (Return From Interrupt). 

3. This Parameter is used for interrupt Acknowledge. 

Min Max 

20 

20 

35 

20 

20 

TUnits In nanoseconds unless otherwise specified. 
v., = 2.ov, VIL= o.sv, v"" =2.ov, voi. = o.av 

Note st 

2 

2,3 



OE 

IE 

M1 

RFSH 

Figure 62. Z80 Bus Read Type Transactions 

287 



CU< 

Aa·A23 

AD0-AD1 

XTALi 

CLK 

CLK 

288 

-~1_·+ re 

~ )J 

Figure 63. Z80 Bus Write Transactions 

1+~~~~~,Q)~~~~~~-~1 

--Q)----
i------.1 

r 

' 

Figure 64. Z280 Clock Circuit 

Figure 65. Flyby OMA Write to Memory 

(Z-Bus: DS; zao Bus: WR) 



AC CHARACTERISTICS 
Z-Bus, Z80 Bus Common Signals and Peripherals Timing 
(Refer to Figures 64 through 71) 

Number Symbol Parameter Min Max Notes t 

TcXT XTALi Cycle time 50 tbd 

2 TwXTh XTALi High Width 15 

3 TwXTI XTALI Low Width 15 

4 TrXT XT ALI Rise Time 10 

5 TIXT XTALi Fall Time 10 

6 TdXTf(Cj XT AL i tu Clock Delay 40 

7 TrC Clock Rise Time 12 

8 TIC Clock Fall Time 12 

9 TdCr(CSf) Clock f to OS, RD, or WR l Delay 20 

10 TdCr(CSr) Clock l to OS, or WR l Delay 20 

11 TdCr(STBf) Clock f to DMASTB l Delay 20 

12 TdCf(STBr) Clock l to DMASTB f Delay 35 

13 TdCr(STBr) Clock f to DMASTB f Delay 20 

14 TdCf(CSr) Clock l to OS or RD f Delay 35 

15 TdCf(GREOf) Clock l to GREQ l Delay 35 

16 TdCf(GREOr) Clock ! GREQ t Delay 35 

17 T dCr(BUSACKf) Clock t to BUSACK ~ Delay 20 

18 TdCr(BUSACKr) Clock t to BUSACK t Delay 20 

19 TcCTIN CTIN Cycle Time 10TcXT 

20 TwCTINh CTIN High Width 4TcXT 

21 TwCTINI CTIN Low Width 4TcXT 

22 TwCTIOh CTIO High Width 4TcXT 

23 TwCTIOI CTIO low Width 4TcXT 

24 TdCTIN(CTIO) CTIN to CTIO Delay 20TcXT 28TcXT 2 

25 TdCf(TD) Baud Clock ! to Transmit Data Delay 70 3 

26 TsRD(Cr) Receive Data to Baud Clock i Setup 10 3 

27 ThRD(Cr) Receive Data from Baud Clock i Hold 50 3 

28 TrRESET RESET Rise Time 10 

29 TfRESET RESET Fall Time 10 

30 TsWAITf{RESETr) WAIT ! to RESET t Setup 4TcXT 4 

31 ThWAITr(RESETr) WAIT t from RESET t Hold 6TcXT 4 

32 TsD(RESETr) Data to RESET t Setup 0 4 

33 ThD(RESETr) Data from RESET t Hold 6TcXT 4 

34 TrlN Input Rise Time 20 5 

35 TflN Input Fall Time 20 5 

36 TwNMI NMI Low Width 4TcXT 

Notes: T Units in nanoseconds unless otherwise spec~ied. 
1. CTIO as Gate or Trigger Input. v," = 2.ov, v,L = o.sv, v"" = 2.ov. v oc = o.sv 2. CTIO as Output, when CTIN causes terminal count. 
3. CTIN1as X1 Baud Clock input. Refer to@ and @)!or pulse widths. 

Maximum frequency is - 2.5 MHz. 
4. To program Bus Timing and Initialization Register at reset. 
5. Inputs AD, BUSREQ, CTIN, CTIO, INT, NMI, ROY, RxD, PAUSE, WAIT 

289 



290 

BAUD 
CLOCK 

RxD 

Figure 66. Flyby OMA Read from Memory 
(Z-Bus: OS; ZSO Bus: RD) 

Figure 67. GREQ and BUSACK Timing 

Figure 68. Counter/Timer Timing 

Figure 69. UART Timing 



Figure 70. Reset Timing 

Figure 71. Inputs Timing 

NOTE: Package dimensions are given in inches. To convert to millimeters, multiply by 25.4. 

291 



292 



~ 
Zilog 

INTRODOCTION 

Z80 CPU 
INTERRUPT 
PROCESSING 

Non-Maskllble 
Interrupts 

611-1809-0003 

Interrupts provide a means of processing 
!nformat!on on e random or asynchronous 
basis. The Z80 CPU and peripheral family 
support Interrupts using a daisy-chain 
approach. As opposed to para I lei priority 
resolution, the daisy chain uses an 
eff lclent, minimal-hardware method of prlorl­
t lzlng multiple Interrupting devices. In 
addition, a paral lei priority resolution 
scheme can be conf I gured w I th th·e Z80 through 
the use of a priority encoder and other 
external hardware. 

Coupled with the powerful vectored Interrupt 
capabllltles of the Z80, this approach allows 

The ZBO uses two types of Interrupts: mask­
able ciNT Input) and non-maskable CNMI 
Input). Maskable Interrupts may be nested. 
The simplest maskable Interrupt Implementa­
tion does not provide for the nesting of 
Interrupts, thereby obligating an Interrupt 
service routine to complete Its processing 
and return to the main program before another 
Interrupt can be serviced. With nested 
Interrupts, an Interrupt service routine can 
be Interrupted either by an Interrupt that 
Invokes the same routine (reentrant type) or 
by a higher priority Interrupt that Invokes a 
dlf ferent Interrupt service routine. The ZBO 
family components al low the user to Implement 
a powerful Interrupt-driven system utll I zing 
these concepts. 

When both types of Interrupts are employed, 
the ZBO CPU wll I service them In a specific 
sequence. Both the TNT and NMi" Inputs are 
sampled by the CPU on the rising edge of CLK 
In the last T state of the last Machine (M) 
cycle of any Instruction. However, lf BUSRQ 
ls active at the same time, It wll I be 
processed before any Interrupts. Figure 
II lustrates the Z80 Interrupt service 
sequence. 

The non-maskable Interrupt !NMI) Is different 
from the maskable Interrupt In several 
respects. 'fi.11' Is always enabled and cannot 
be disabled by the progranrner. It Is 
employed when very fast response Is desired 
Independent of the maskable Interrupt status 

zao Family 
Interrupt Structure 
January 1980 

Tutorial 

the system designer great f lexlbi I lty In 
!mp!ement~ng an !nterrupt dr!ven system. 

This document describes the ZBO CPU Interrupt 
process and evaluates the design of the 
daisy-chain Interrupt scheme. The reader can 
refer to the following documents for addi­
tional Information: 

ZBO Assembly Language Programming 
Manua I ( 03-0002-01 ) 
Z80/Z80A CPU Technical Manual (03-0029-01) 
Z80/Z80A 510 Technical Manual (03-3033-01) 
Z80/ZBOA PIO Technical Manual (03-0008-01) 
Microcomputer Components Data 
Book (03-8032-01 > 

Figure I. Z80 Flow Diagram Interrupt Sequence 

and can be used for Interrupt conditions like 
a power fall detect. till ts an edge-sensi­
tive signal that has a lower priority than 
BUSRQ and higher priority than INT. When the 
CPU acknowledges an occurrence of NM!, the 
processor begins a normal opcode fetch. How-

This appUcation note refers to products as Z80 "A", "B" etc. to specifiy the speed grade. 
We are no longer using those characters for the speeds. For more details, please refer to the ordering 
Information section. 

293 



Mukeble 
Interrupts 

611-1809-0003 

ever, the data read from memory Is Ignored 
and Instead the CPU restarts Its operation 
from locatlon 66H. The restart operation 
Involves pushing the Program Counter onto the 
stack, Jumping to location 66H, and· continu­
ing to process there. During this time, the 
status of the maskable Interrupt condition Is 

preserved and maskable Interrupts are dls­
abled, untll either an El Instruction Is 
executed or a RETN Instruction Is used to 
exit the NMr service routine. 
The RETN Instruction Is discussed ln•detall 
In the Z80 CPU Technical Manual. Figure 2 
shows the timing used for NMI Interrupts. 

H I PCTO I PCTO I LAST M CYCLE -IGNORED M1 CYCLE- -STACK CYCLE- -STACK CYCLE-
LAST T STATE~ · 

I ~ I ~ I ~ I ~ ~ I ~ I ~ ~ I ~ I ~ 
<%> 

-1 i- 80 NS MIN 

lilMT 

Ml--------. 
MREQ --------- n ...-- ...---. .---,__ __ _. ._ _ __.. .,_ ____ _.. . .,_ ____ .... 
RD---------

WR-----------------------------.l_____J~------t____r---

RFSH -------------

Do-D7 ------------~--c:::::::::::::::::::~<:::::::::::::::::~ 

Flgute 2. Non-maskable Interrupt Request Operation 

Maskable Interrupts (INT> are acknowledged 
with a lower priority than the 1iii but al low 
the programmer more flexlblllty. TNf Is 
enabled under sot,tware control by way of the 
El Instruction and dlsabled via the DI In­
struction. When the Z80 CPU samples Tiif and 
It ·1s active, the processor begins an Inter­
rupt acknowledge cycle so long as BUSRQ and 
NMi are not active. The processor does not 
use an Interrupt acknowledge signal but 
Instead Issues the acknowledg~ by executing a 

CLK 

T A 

special RT cycle. During an Interrupt 
acknowledge cycle, Im Is Inactive, IORQ Is 
active, and two wait states are automatically 
added. 
Since the Z80 peripheral devices have logic 
to Interpret this speclal cycle with no 
additional external circuitry, a minima! 
amount of hardware Is needed by the system 
and there Is no loss In eff lclency. Figure 3 
shows the detailed timing for the Z80 CPU 
Interrupt acknowledge cycle. 

IORQ---------------.. 

RD-----------------------------(HIGH) 

Flgute 3. Interrupt Acknowledge Cycle 

294 12/1/80 



Maskable 
Interrupt 
Mode 0 

Mukable 
Interrupt 
Mode 1 

611-1809-0QOJ 

There are also three modes of operation tor 
servicing maskable Interrupts. These are Mode 
O, Mode 1, and Mode 2. Any particular mode 

is selected by the programmer using the IM 
Instruction. Figure 4 ii lustrates the 
processing sequence tor each Interrupt mode. 

MODEO MODE 1 MODE2 

DISABLE INTERRUPTS 
IFF1, IFF2 • 0 

DISABLE INTERRUPTS 
IFF1, IFF2 = 0 

DISABLE INTERRUPTS: 
IFF1, IFF2 = 0 

READ 1ST BYTE 
OF INSTRUCTION 
(Ml, IORO LOW) 

PC - STACK READ VECTOR 

JUMP TO OOJBH PC- STACK 

FORM VECTOR 
TABLE ADDRESS: 
IREG +VECTOR 

El (ENABLE INTERRUPTS) 

READ NEXT BYTE 
(NORMAL MEM. READ 
WITH PC STATIONARY) 

RET 
STACK~ PC 

GET STARTING 
ADDRESS FROM 
VECTOR TABLE 

YES 

JUMP TO NEW· 
LOCATION: 
START INTERRUPT 
SERVICE ROUTINE 

PC~ STACK El (ENABLE INTERRUPTS) 

EXECUTE INSTRUCTION 

l FOR CALL 
__ .,....,,.........____ OR RST 

RET ONLY 
.__ ... sT_A_C_K.._-_·_P_c _ _. 

El 
!ENABLE INTERRUPTS) 

RETI 
STACK- PC 

Figure 4. Maslcable Interrupt Sequences 

In the maskable interrupt Mode 0 Cas with the 
8080 interrupt response mode), the interrupt­
ing device places an instruction on the data 
bus tor execution by the Z80 CPU. The In­
struction used is normally a Restart CRST) 
instruction, since this Is an ettlcient one­
byte call to any of eight subroutines located 
In the first 64 bytes of memory. (Each sub­
routine Is a maximum of eight bytes.) How­
ever, any instruction may be given to the Z80 
CPU. 

The first byte of a multlbyte instruction Is 
read during the interrupt acknowledge cycle. 
Subsequent bytes are read In by normal memory 
read cycles. The Program Counter remains at 
its preinterrupt state, and the user must 
insure that memory wil I not respond to these 

Interrupt Mode 1 provides minimally complex 
peripherals access to Interrupt processing. 
It is similar to the NMI interrupt, except 
that the CPU automatically CALLs to location 

295 

read sequences, since the instruction must 
come from the Interrupt hardware. Timing tor 
the additional bytes of a multibyte Instruc­
tion is the same as tor a single byte in­
struction (see NMI in Figure 2). 

When an Interrupt is recognized by the CPU, 
succeeding interrupts are automatically 
disabled. An El Instruction can be executed 
anytime after the interrupt sequence begins. 
The subroutine can then be interrupted, 
allowing nested Interrupts to be used. The 
nesting process may proceed to any level as 
long as all pertinent data is saved and 
restored correctly. 

Upon RESET, the CPU automatically sets 
interrupt Mode o. 

38H instead of 66H. As with the NMI, the CPU 
pushes the Program Counter onto the stack 
automatically (figure 2). 

12/1/80 



Meskllble 
Interrupt 
Mode 2 
(Vectored 
Interrupts) 

Return from 
Meskeble 
Interrupt 

611-1809-0003 

The ZBO CPU Interrupt vectoring structure 
al lows the peripheral device to Identify the 
starting location of the, Interrupt service 
routine. 

Mode 2 Is the most powerful of the three' 
maskable Interrupt modes. It allows an 
Indirect call to any memory location by a 
single 6-blt vector suppl.led by the periph­
eral. In this mode, the peripheral ·generat­
ing the Interrupt places the vector onto the 
data bus In response to an Interrupt ack-
now I edge. The vector then b.ecomes the least 
significant eight bits of the ·16-blt Indirect 
pointer, whereas the I register I~ the CPU 
forms the most s.fgnlflcant eight bl.ts. This 
address points to an even address In the 
vector table which then becomes the starting 
address of the Interrupt service routine. 
Interrupt processing thus starts at an 
arbitrary 16-blt.address, allowing any loca­
tion In memory to begin the service routine. 
Since the vector Is used to Identify two 
adjacent bytes that form a 16-blt address, 
the CPU requires an even starting address for 
the vector's low byte. Figure 5 shows the 
sequence of events for processing vectored 
Interrupts. 
The I register Is loaded by the user from the 
A register. There Is no restriction on Its 

When execution of the Interrupt service 
routine Is complete, return to the main 
program Cor another service routine) occurs 
differently In each mode. In Mode O, the 
method of return depends on which Instruction 
was executed by the CPU. If an RST Instruc­
tion Is used, a simple RET suffices. In Mode 
1, the CPU treats the Interrupt as a CALL 
Instruction, so an RET Is used. Mode 2, 
however, uses the vector lnf.ormatlon from the 
peripheral chip to Identify the source of the 

CLK 

M1\ I 
RD 

\ I 
Do-Dr >G)( 
MREQ 

\ I 
IORQ 

(HIGH) 

·value other than Its pointing to a valid 
memory location. 

ZBOCPU MEMORY 

PC 

IREG 

NOTES: 

LOW ORDER ) VECTOR TABLE 
HIGH ORDER 

INTERRUPT 
SERVICE 
ROUTINE 

'-------'(!)=! '----I PERIPHERAL 
INTERRUPT VECTOR 

1. Interrupt vector generated by peripheral is read by CPU dur­
ing interrupt acknowledge cycle. 

2. Vector combined with I register contents form 16-bit memory 
address pointing to vector table. 

3. Two bytes are read sequentially from vector table. These 2 
bytes are read into PC. 

4. Processor control is transferred to interrupt service routine 
and execution continues. 

Figure 5. Vector Proceaslng Sequence 

recognized Interrupt, and a method of reset­
ting the perlpheral's Interrupt condition 
must be found. This Is accomplished by using 
the RETI Instruction. If Mode 2 Is used by 
the programmer, the RETI Instruction must be 
executed In order to utilize the daisy chain 
properly. Figure 6 shows the RETI Instruc­
tion timing for the ZBO CPU. A more complete 
description of how RETI affects the periph­
erals Is given In Chapter 3. 

\ I 

\ I 

~ 

\ I 

Figure 6. Return From Interrupt Timing (RETI) for Mode 2 Interrupts 

296 12/1/80 



Halt Exit 
Using 
Interrupts 

INTERRUPT 
PROCESSING 
BY Z80 
PERIPHERALS 

611-1809-0003 

Whenever a software halt Instruction Is exe­
cuted, the CPU enters the Halt state by 
executing No-OPs (NOPsl until an Interrupt or 
RESET Is received. Each NOP consists of one 
MT cycle with four T states. The CPU samples 
the state of the NMT and I NT 11 nes on the 
rising edge of each T4 clock (Figure 7). 

CLK 

HALT 

When an Interrupt exists on either line, the 
subsequent cycle wlll be either a memory read 
operation CNMIJ or an Interrupt acknowledge 
CINTJ. The timing in Figure 7 shows a mask­
able Interrupt causing the CPU to exit the 
Halt state. 

CPU INSERTED 
I/WAIT STATES 

T2 I Tw I Tw I T3 

INT=================..___ ______ ___. 

M1 -----:_ ___ __, 

IROQ 

Figure 7. Exit Halt State with Maskable Interrupt 

Understanding maskable Interrupt processing 
requires a famlllarlty with how the Z80 
peripherals respond to the CPU Interrupt 
sequence. The Z80 family products were 
designed around the daisy-chain Interrupt 
configuration, which utl llzes minimal 
external hardware (compared to para I tel con­
tention resolution Interrupt priority net­
works). Many devices handle Interrupts via a 
handshake arrangement, e.g. the use of 
Interrupt request and Interrupt acknowledge 
signals. This Is the most straightforward 
and probably the fastest method of Implement­
ing prioritization using more than one 
Interrupting device. However, this method 
requires a separate Interrupt request signal 
for each peripheral device and either a 
separate acknowledge signal for each device 
or a software acknowledge. Extra hardware Is 
needed to provide contention resolution 
should two or more devices request an Inter­
rupt slmultaneously. With the Z80 product 
family, however, such extra hardware Is 
unnecessary and the software does not need to 
remove the Interrupt request from the periph­
eral device. This Is made possible through 
use of the daisy-chain priority network, 
which can best be visual I zed as a type of 
bucket br I gade. 

The Z80 peripheral products Implement this 
daisy chain with just three extra signal 
I Ines on each chip: Interrupt enable Input 

CIEIJ, Interrupt enable output (IEOJ, and 
Interrupt request <TN'i'J. The Interrupt 
request fine Is an open-drain circuit that ts 
OR w I red to the iN'f p Ins of the other dev Ices 
In the cha In and connected to the iNT p In on 
the Z80 CPU. This line provides the Inter­
rupt request to the CPU. 

The IEI and IEO lines provide the means for 
establ I sh Ing 'priority among several request­
ing devices. The priority of a device Is 
determined by Its position In the chain. The 
IEI pin of the highest priority device In the 
chain Is connected to +5 volts, The IEO pin 
of the same device Is connected to the IE! 
pin of the next highest priority device, The 
IEO pin of that device goes to the IE! pin of 
the next lower device, as shown In Figure 8, 
and so on to the last device In the chain, 
where the IEO pin Is left open. When a 
device has an interrupt pending, It activates 
Its Tiii'f output which requests service from 
the CPU and brings Its IEO pin Low, thereby 
preventing the lower devices In the chain 
from responding to further Interrupt opera­
tions, When the CPU acknowledges the Inter­
rupt, the requesting device removes Its 
Interrupt request CiNTJ signal. After the 
interrupt processing Is completed, the 
peripheral wll I reset Itself with an RETI 
Instruction, which wll I bring IEO High and 
restore the chain to Its quiescent state, 

297 12/1/80 



+5V 

+5V 

IEO 

IEI 1 

+5V 

+5V 

+5V 

IP 
+5V 

+5V 

+5V 

+5V 

+5V 

+5V 

+5V 

611-1809-0003 

H 

2 

IEI 

2 

2 

L L 

2 

H H 

2 

2 

IP 

IEO 
L 

3 4 

IEI 

IUS 

L 

3 4 

IUS 

3 4 

L 

3 4 

IUS 

L 

3 4 

3 4 

NOTES: 
1. Device 3 has an interrupt pending (IP set), which causes its 

IEO pin to go low preventing device 4 from interrupting. 
2. CPU acknowledges the interrupt and device 3 has its inter­

rupt under service (IUS set). The device's IP is then reset. 
3. Device l requests service, suspending device 3 processing. 

(Assuming interrupts were reenabled.) 
4. Device l has its interrupt under service. 
5. CPU completes processing for device 1 and returns to device 3 

service routine 
6. CPU completes processing for device 3 and the daisy chain 

returns to quiescent state. 

Figure 8. ZBD Peripheral Device Interrupt Processing Sequence 

298 12/1/80 



Interrupt 
Acknowledge 
Operation 

Return from 
Interrupt 
Operation 

611-1809-0003 

The Z80 perlpherals are acknowledged by the 
CPU and then serviced by an appropriate 
Interrupt service routine. The acknowledge 
to the peripherals Is accomplished by the CPU 
executing a special MT cycle in which IORQ 
goes active instead of ~EQ and RD, Whenever 
MT goes active, al I peripheral devices are 
inhibited from changing their interrupt 
status. This allows time for IEO to propa­
gate through the other devices in the chain 
before IORQ goes active. As soon as IORQ and 
Mi go active, the peripheral device that has 
Its IEI High and an interrupt pending gates 
an 8-blt vector onto the data bus, (See 
Figure 9 for timing details,) This 8-blt 
vector, which was programmed Into the 
peripheral device, Is combined with the con­
tents of the I register In the CPU to form a 
16-blt address value. During the time that 

MT and ICRQ are active, the requesting device 
removes the 1NI signal (since the CPU has 

CLK 

INT-----. 

Ao-A15 

acknowledged It) and waits for a return 
operation. If the peripheral device has Its 
IEI pin High and has had an Interrupt ack­
nowledged, then It completes the Interrupt 
cycle and releases IEO (when It sees an RETI 
Instruction IED-4D sequence! on the data 
bus). This restores the chain to Its normal 
state so that lower priority Interrupts can 
occur. 

The Z80 per I phera Is mon I tor MT and RD for the 
Interrupt acknowledge cycle. Since RD goes 
active before IORQ, the peripheral devices 
assume an Interrupt acknowledge cycle If MT 
! 5 ~ct! ve !!~d RD ! 5 ~ot: Ttd s r~dt_~(".~~ +hei 

time required for the Internal device logic 
to respond to IORQ when It goes active, 

Thus, a very powerful Interrupt-driven system 
can be Implemented with mlnlmal hardware, 
simple software, and high efficiency using 
the Z80 family components, 

VECTOR 

RD1~--------------------------------------(HIGH) 

Figure 9. Peripheral Interrupt Acknowledge 

When the CPU executes an RETI Instruction, 
the device with an Interrupt under service 
resets Its Interrupt condition, provided that 
IEI Is High. Al I Z80 peripheral products 
sample the data bus for this Instruction when 
MT goes active along with RD. 

The RETI Instruction decode by the peripheral 
device has certain characteristics that the 
designer should be aware of. Since a periph­
eral can request an Interrupt (activate INT 
and bring IEO Low) at any time, it ls pos­
sible for a device whose interrupt is cur­
rently under service to have its IEI pin Low, 
This Is undesirable, since such a conditlon 
prevents the peripheral from resetting IUS 
properly. To overcome this problem, al I Z80 
family peripherals bring IEO High momentarily 

299 

when the ED is seen during the ED-4D 
instruction fetch, The device whose Inter­
rupt Is under service does not allow IEO to 
go High, but when It sees IEI High, It wll I 
reset Itself when the 4D byte Is fetched. 

Figure 10 shows the relatlonshlp of IP and 
IUS to INT, IEI, and IEO. IP Is set by an 
Interrupt condition on the peripheral (such 
as the transmit buffer becoming empty) when­
ever Interrupts are enabled. However, IP 
being set wl 11 only cause iN'f to go active 
(requesting an Interrupt) If IUS Is not set 
and IEI Is High, IP Is not necessarily 
cleared by the Interrupt acknowledge cycle. 
Some specific action must be taken within the 
service routine, such as fll llng a transmit 
buffer, Under these conditions, IUS becomes 

12/1/80 



set and disables IEO to prevent lower 
priority devices In the chain from responding 
to an Interrupt cycle. IUS ls cleared when 
IEI ls High and the peripheral decodes a 
val Id "E0-4011 Instruction. Thus, 

(!EO LOW) 

WAIT FOR CPU 
INTACK CYCLE 

(iNhow) 

and 

(VECTOR) 

IP 

IEO 

INTACK * INT COND 

IEI * IUS * (lP +"ED") 

IEO HIGH IF 
NO FURTHER INTERRUPTS AND 

IEI HIGH 

a) State Diagram of 280 Peripherals During Interrupt Cycle. 

IEI IP IUS IEO 

b) Truth Table of Daisy Chain During Idle 

or Interrupt Acknowlege Condition. 

IEI IP IUS IEO 

c) Truth Table of Daisy Chain During 

"ED" Decode of Opcode Fetch. 

RETURN TO 
IDLE 
STATE 

Note That IP Is Not Part of IEO Condition. 

Figure 10. Z80 Peripheral Interrupt States 

DAISY aiAIN There are several aspects of the Z80 family vector during Interrupt acknowledge, the 
buffers must also accommodate this. DESIGN daisy chain Implementation that deserve 

CONSIDERATIONS further attention. Second, because the peripheral devices have a 
finite time during which IEI and IEO can 
stabilize within, the propagation delay of 
the devices must be taken Into consideration. 
Since a device can change Its Interrupt 
status until reaching the active edge of MT 
during Interrupt acknowledge, the time from 
this edge until IORQ becomes active ls the 
time In which the daisy chain must stabilize. 
Figure 11 shows the timing relationships 
Involved In this process. 

611-1809-0003 

First, since the peripheral devices must be 
able to monitor the data bus In order to 
decode the RETI Instruction properly, a means 
of allowing them access to the data bus must 
be provided If buffers are used. This can be 
done by simply enabling the buffers from the 
data bus to the peripheral tor al I condl·tlons 
except 1/0 read and Interrupt acknowledge. 
Since the peripheral must assert an 8-blt 

~~ 
iii SAMPLE 

..-----J-( i-T• M1(1EO) 

••o=::)( ~: 
'------..-----­

INTERRUPT PENDING 
DEVICE CAN CHANGE 

IORQ~~~~~~~~~~~~~~~~--.. 

.... I 
I 

--ITl(IEl)I--

f.-T,--­
RIPPLE TIME FOR DAISY CHAIN • 

TdM1(1EO) + TdlEl(1EOF) • (N-2) +T,IEl(IO) + TIL BUFFER DELAY (If ANY) 
'--..-J .._________., 

DELAY TIME FOR N·2 DEVICES IEI SETUP TIME FOR LAST DEVICE IN 
FOR ALL IN CHAIN UNDER CHAIN BEFORE IORQ ACTIVE EDGE. 

DEVICES, TO WORST CASE 
PREVENT CONDITIONS 
FURTHER 

INTERRUPTS, FROM 
M1 ACTIVE EDOE. 

Figure ll. Interrupt Acknowledge Peripheral Propagation Delay 

300 12/1/80 



611-1809-0003 

The Z80 CPU automatically Inserts two wait 
states during i"iii'!'A&, al lowing a worst-case 
time for a chain of four devices to become 
settled <when using Z80A CPU and peripherals 
at 4MHzl. If more devices are In the chain, 
some other means of stabilizing the chain 
must be provided. This can be done either by 
adding additional wait states to the TNi'ACi< 
cycle or by providing logic to the periph­
erals that al lows faster propagation time 
down the chain. Figure 12·shows circuitry 
that provides both additional wait states and 
an Interrupt look-ahead circuit when more 
than four peripheral devices are connected to 
"the da,sy cha~n. 

iii 

CLK 

INT'-----

··--------

WAIT-----------+--------~ 

When adding wait states to the Z80 CPU Inter­
rupt acknowledge cycle, care must be taken to 
Insure that 'i'ORQ"goes active at the proper 
time. Normally, the CPU activates IORQ on 
the falling edge of the clock during the 
first wait cycle. If external logic Is used 
to Insert additional wait states, these are 
appended to the two wait states already 
generated by the CPU. Because IORQ goes 
active during the first wait state and the 
peripherals assert their vectors when IORQ 
becomes active, IORQ must be Inhibited untl I 
the daisy chain becanes stable. This can be 
done simply by adding a few gates to the wait 
!og!c (f!gure ?3}. ~' ?s Ths delayed ~ 
that activates the peripheral devices. 

2 WAIT STATl:S ADDl:D ,-------.... 

Figure l2A. DaJay Chain Look-Ah9ad Logic for More Them Four Peripheral Devices 

301 12/1/80 



611-1809-0003 

The propagation delay through the peripheral 
devices applies during the return fran 
Interrupt condition, also. Worst-case 
timing Involves the lowest priority device 
that has an Interrupt under service and the 
highest priority device that has an Inter­
rupt pending. When the ED part of the RETI 
opcode Is fetched, the peripheral devices 
must decode It, and the highest priority 
device must bring Its IEO pin High. This 
IEO high signal must then propagate through 
the chain down to the lowest priority device 

before the 40 part of RETI Is decoded. 
Figure 14 shows the timing relationships 
Involved. This timing Is not as critical as 
the Interrupt acknowledge timing at 4 t4iz, 
but shou Id be cons ldered If wait states are 
being added to the iNi'ACR cycle. 
If using nested Interrupts with a large daisy 
chain, the programmer should be careful not 
to place the RETI opcodes too close together. 
Since RETI Is 14 cycles long, this Is 
generally not a problem unless a very long 
chain Is used. 

lb--------1000 

Flgure 13. Walt Stat• I.ogle for Interrupt Acknowledge Cycle. 
Counter PrMet Value Should Be 5-n. Where n = # Walt 
State Added 

.... ,,----------~-
....... -----------;---;.-----' ..... 

I• •I TdlEll!EWl--f.:-:=.-1 

Td(IEOd ZIO ZIOA 

1',.ED(IEO.! I Ta1E114Df 1/ 
..,.,-----------+-1-------~·---f'I· 

.-------•.-----
RIPPLE TIME FOR 
DAISY CHAIN IN 
RETI CONDmON 

CTC 220 180 
SID A DART 1&0 100 

PIO 210 180 
DMA 210 180 

NOTES: 
I. Setup lime for !EI to "4D" decode "' 200ns (4.0 MHz). 
2. Must look at !El during ED-4D because neoted Interrupts 

allow more than 1 !US latch to be eel at one lime. 
3. Delay time from ED decode with IP eel to IEO hlqh . 

"' 300ns (typ) 400ns (maz) @2.5 MHz. This in in addition to 
ripple lime for ot!>er deV!ces In chain. 

T, l!: TdED(IEO,) + Td!EI(IEO,) * [N-21 + T,IEl(4D) 

~ 
for N-2 devices 

TdED(IEO,) = Delay lime from "ED" decode to IEO rise. 
Td!El(IEO,) = Delay lime from IE! hi9h lo IEO rise. 

T,IEI(4D) = Setup lime for !El during "4D" decode. 
(For last device in chain.) 

Flgure H. Da1SJ Chaln Interrupt Tlmlng (RETI Condltlon) 

302 12/1/80 



SPECIAL CASES 
OF INTERRUPTS 

611-1809-0003 

Interfacing Zllog 8500 series peripheral 
products CCIO, FIO, SCC, etc.) to the Z80 CPU 
Is a little different from Interfacing the 
Z80 peripherals to the CPU. 
The primary difference between the Z80-type 
peripherals and the 8500-type peripherals Is 
In the Interrupt acknowledge circuitry. 
Functionally, they are the same, as can be 
seen In the timing diagrams of Figure 15. 
However, the 8500 peripherals do not sample 
MT, RD, and IORQ for the Interrupt acknowl­
edge, but have an explicit INTACK pin to 
signal the Interrupt acknowledge. Also, 
since the 8500 peripherals have a software 
reset for the Interrupt under servlr,e flip­
flop, these devices do not require a special 
return opcode to do that operation. The user 
need only be concerned with the Interrupt 

CLK 

INT ACK----~ 

IORQ-------------....._ 

ABAD'---------------,.' 

acknowledge timing when using the 8500-type 
peripherals. 

Figure 16 shows a circuit that provides wait 
states for the Z80 CPU Interrupt acknowledge 
cycle In addition to INTACK generation. The 
~· circuitry can be omitted If no Z80 
family peripheral devices are used. 

In each case, the 8500 peripheral component 
requires ~and 'Im to be active In order 
for the Interrupt vector to be made available 
to the CPU. The logic shown provides for 
this. 
This circuitry also permits extended Inter­
rupt ~cknow!edge t!mes to a!!ow for the da?sy 
chain propagation delay and the vector 
response delay, so that larger chains can be 
Imp lamented. 

Figure 15. Timing for 8500 Peripherals During lntenupt Acknowledge. 

LS11 
Wii1----------------------r~ ...... o------Wiiiii 

RESET·--~-~---------------~-i.!£!. 

iiii1-----~----------------i 1------RHD 

MRE.Q-------1:.-'""I 

M1 

-- LS04 

CLK------+----f 

LS04 

IORQ/ 

NOTE: 

LSOO 

I. RD and WR should only be 
connected to 8500 peripherals 
and not to Z8o peripherals. 

WAIT---------------~,~...r------------WAIT/ 

Figure 18. Interface Logic: For Connecting 8500 Serles Peripherals To Z80 System 

303 12/1/80 



Interrupt 
During RESET 

611-1809-0003 

A RESET to the Z80 CPU does several things as 
far as Interrupts are concerned. The I 

-register, which contains the upper eight bits 
of the 16-blt Interrupt address value, Is 
reset to 0, and the Interrupt mode Is set to 
Mode o. Maskable Interrupts are disabled 
until the programmer Instructs the CPU to 

execute an El Instruction, just as if a DI 
instruction were executed. if an NMT occurs 
during the RESET operation, the CPU executes 
one Instruction after the RESET condition and 
before acknowledging the llRT. Processing 
then continues as usual. 

304 12/1/80 



B 
Zilog 

SECTIOif 

I 

Protocol 

26-0003-0340 

Introduction. 
The ZSO Serial Input/Output (SIO) controller 

is designed for use in a wide variety of serial­
to-parallel input and parallel-to-serial output 
applications. In this application note, only 
asynchronous applications are considered. The 
emphasis is almost completely on software 

Communication, either on an external data 
link or to a local peripheral, occurs in ·one of 
two basic formats: synchronous or asyn­
chronous. In synchronous communication, a 
message is sent as a continuous string of 
characters where the string is preceded and 
terminated by control characters; the pre­
ceding control characters are used by the 
receiving device to synchronize its clock with 
the transmitter's clock. In asynchronous com­
munication, which is described in this applica­
tion note, there is no attempt at synchronizing 
the clocks on the transmitting and receiving 
devices. Instead, each fixed-length character 
(rather than character string) is preceded and 
terminated by "framing bits" that identify the 
beginning and end of the character. The time 
between bits within a character is approx­
imately constant, since the clocks or "baud 
rates" in the transmitter and receiver are 
selected to be the same, but the time between 

Using the ZBO® 1SJO 
In Asynchronous 
Communications 
July 1980 

Application 
Note 

implementation, wjth only modest reference to 
hardware considerations. 

While reference is made only to the 
280 SIO, the entire text also applies to the 
280 DART, which is functionally identical to 
the 280 SIO in asynchronous applications. 

characters can vary. 
Thus, in asynchronous communication, each 

character to be transmitted is preceded by a 
"start" framing bit and followed by one or 
more "stop" framing bits. A start bit is a 
logical 0 and a stop bit is a logical 1. The 
receiver will look for a start bit, assemble the 
character up to the number of bits the SIO has 
been programmed for, and then expect to find 
a stop bit. The time between the start and stop 
bits is approximately constant, but the time 
between characters can vary. When one char­
acter ends, the receiving device will wait idly 
for the start of the next character while the 
transmitter continues to send stop or 
"marking" bits (both the stop bits and the 
marking bits are logical I). Figure l illus­
trates this. A very common application of asyn­
chronous communication is with keyboard 
devices, where the time between the operator's 
keystrokes can vary considerably. 

MEUAOE1LOW 

MA .. KING 

PMUTYMAYH 
000. IYEl O" NONI 

I : I .. , ...... , .... I 

f ..... ! ... 
ITOP8JTS 

l,t,f,0"181TIH" 
CHAAACTElll "ECEIVID 

t,Z, I, .. S. I, 1,0tll81TIPH 
CHAMCTllll TllANllltnED 

MAllJl(INQ 

~·r~· 
TlfH HTWllN CHAMCTIU VUIU 

Figure I. Jbynchronoua Data Format 

This application note refers to products as Z80 "A", "B" etc. to specifiy the speed grade. We are no longer 
using those characters for the speeds. For more details, please refer to the ordering information section. 

305 



Protocol 
(Continued) 

Modes 

SIO Con­
figurations 

SIO-CPU 
Hardware 
Interfacing 

If the transmitter's clock is slightly faster 
than the receiver's clock, the transmitter can 
be programmed to send additional stop bits, 
which will allow the receiver to catch up. If 
the receiver runs slightly faster than the trans­
mitter, then the receiver will see somewhat 
larger gaps between characters than the trans­
mitter does, but the characters will normally 

The SIO may be used in one of three modes: 
Polled, Interrupt, or Block Transfer, depend­
ing on the capabilities of the CPU. In Polled 
mode the CPU reads a status register in the 
SIO periodically to determine if a data 
character has been received or is ready for 
transmission. When the SIO is ready, the CPU 
handles the transfer within its main program. 

In Interrupt mode, which is far more com­
mon, the SIO informs the CPU via an interrupt 
signal that a single-character transfer is 
required. To accomplish this, the CPU must be 
able to check for the presence of interrupt 
signals (or "interrupt requests") at the end of 
most instruction cycles. When the CPU detects 
an interrupt it branches to an interrupt service 
routine which handles the single-character 
transfer. The beginning memory address of 
this interrupt service routine can be derived, 
in part, from an "interrupt vector" (8-bit byte) 
supplied by the SIO during the interrupt 
acknowledge cycle. 

In Block Transfer mode, the SIO is used in 

The SIO comes in four different 40-pin 
configurations: SIO/O, SIO/l, SI0/2, and 
SI0/9. The first three of these support two 
independent full-duplex channels, each with 
separate control and status registers used by 
the CPU to write control bytes and read status 
bytes. The SI0/9 differs from the first three 
versions in that it supports only one full-duplex 
channel. The product specifications for these 

The serial-to-parallel and parallel-to-serial 
conversions required for serial I/O are per­
formed automatically by the SIO. The device is 
connected to a CPU by an 8-bit bidirectional 
data path, plus interrupt and I/O control 
signals. 

The SIO was designed to interface easily to 
a 280 CPU, as shown in Figure 2. Other 
microprocessors require a small amount of 
external logic to generate the necessary inter­
face signals. 

The SIO provides a sophisticated vectored­
interrupt facility to signal events that require 
CPU intervention. The interrupt structure is 
based on the Z80 peripheral daisy chain. Non­
Z80 microprocessors that are unable to utilize 
external vectored interrupts require some 

still be received properly. This tolerance of 
minor frequency deviations is an important 
advantage of using asynchronous I/O. Note 
however that errors, called "framing errors," 
can still occur if the transmitter and receiver 
differ substantially in speed, since data bits 
may then be erroneously treated as start or 
stop bits. 

conjunction with a OMA (direct memory 
access) controller or with the Z80 or 28000 
CPU block transfer instructions for very fast 
transfers. The SIO interrupts the CPU or OMA 
only when the first character of a message 
becomes available, and thereafter the SIO uses 
only its Wait/Ready output pin to signal its 
readiness for subsequent character transfers. 
Due to the faster transfer speeds achievable, 
Block Transfer mode is most commonly used in 
synchronous communication and only rarely in 
asynchronous formats. It is therefore not 
treated with specific examples in this applica­
tion note. 

Since Polled mode requires CPU overhead 
regardless of whether or not an I/O device 
desires attention, Interrupt mode is usually the 
preferred alternative when it is supported by 
the CPU. Note that the choice of Polled or 
Interrupt mode is independent of the choice of 
synchronous or asynchronous I/O. This latter 
choice is usually determined by the type of 
device to which the system is communicating. 

versions explain this in full. 
There are 41 different signals needed for 

complete two-channel implementation in the 
SIO/O, SIO/l, and SI0/2, but only 40 pins are 
available. Therefore, the versions differ by 
either omitting one signal or bonding two 
signals together. The dual-channel asyn­
chronous-only 280 DART has the same pin 
configuration as the SIO/O. 

additional external logic to utilize efficiently 
this interrupt facility. Some non-Z80 system 
designs do not utilize the vectored interrupt 
structure of the SIO at all. Instead, these 
require the CPU to poll the SIO's status 
through the data bus or to use non-vectored 
SIO interrupts. 

Microprocessors such as the 8080 and 6800 
need some signal translation logic to generate 
SIO read/write and clock timing. CPU signals 
which synchronize a peripheral device read or 
write operation are gated to form the proper 
I/O signals for the SIO. The SIO is selected 
by some processor-dependent function of the 
address bus in a memory or I/O addressing 
space. 

306 



Reference 
Material 

26-0003-0341 

In the next section we begin with a dis­
cussion of features common to all forms of 
asynchronous 1/0. This is followed by discus­
sions of polled asynchronous l/O and interrupt 
asynchronous 1/0. Next is a series of fre­
quently asked questions about the SIO when 
used in asynchronous applications. Finally, an 
example of a simple interrupt-driven asyn­
chronous application is given and discussed in 
detail. For a complete understanding of the 

04 
INT 

'-2-A1 

A, 

Ao 

8080 
MPU •• 

•• 

Do-D1 

Do-Dr 

A2-A1s 

A, 

Ao 
8800 

R/W MPU 

VMA 
DBE 

material covered, the following publications 
are needed: 

• ZBO SIO Product Specification or ZBO DART 
Product Specification 

• ZBO SJO Technical Manual 

• ZBO Family Program Interrupt Structure 

• ZBO CPU Technical Manual 

• ZBO Assembly Language Programming 
Manual 

iNr 

CE 

BIA 

CID 

zao 
SIO 

CLK 

Mi 

Do-07 

Ro 

iOAQ 

Do-07 

CE 

BIA 

CID 

iiii 
zao 
SIO 

i6iffi 

+sv Mi 

CLK 

Figure 2. 510 Hardware Interlacing 

307 



SECTION 

2 

Addressing 
the SIO 

Asynch­
ronous 
Format 
Operations 

CPU-SIO 
Character 
Transfers 

Clock 
Divider 

Operational Considerations. 
All of the SIO options to be discussed here 

are software controllable and are set by the 
CPU. Thus, use of the SIO begins with an 
initialization phase where the various options 
are set by writing control bytes. These options 
are established separately for each of the two 

The CPU must have a means to identify any 
specific I/O device, including any attached 
SIO. In a Z80 CPU environment, this is done 
by using the lower 8 bits of the address bus 
(Ao-A7). Typically, the A1 bit is wired to the 
SIO's B/A input pin for selecting access to 
Channel A or Channel B, and the Ao bit is 
wired to the SIO's CID input pin for selecting 
the use of the data bus as an avenue for 
transferring control/status information (C) or 
actual data messages (D). The remaining bits 
of the address bus, A2-A7, contain a port 
address that uniquely identifies the SIO 

Bits per Character. The SIO can receive or 
transmit 5, 6, 7, or 8 bits per character. This 
can be different for transmission and recep­
tion, and different for each channel. ASCII 
characters, for example, are usually transmit­
ted as 7 bits. The SIO can in fact transmit 
fewer than 5 bits per character when set to the 
5-bit mode; this is discussed further in the sec­
tion entitled "Questions and Answers." 

Parity. A parity bit is an additional bit added 
to a character for error checking. The parity 
bit is set to 0 or l in order to make the total 
number of ls in the character (including parity 
bit) even or odd, depending on whether even 
or odd parity is selected. The SIO can be set 
either to adc! an optional parity bit to the "bits 
per character" described above, or not to add 
such a bit. When a parity bit is included, 
either even or odd parity can be chosen. This 

The SIO always passes 8-bit bytes to the 
CPU for each character received, no matter 
how many "bits per character" are specified in 
the sro initialization phase. If the number of 
"bits per character" is less than eight, parity 
and/or stop bits will be included in the byte 
sent to the CPU. The received character starts 
with the least-significant bit (Do) and continues 
to the most-significant bit; it is immediately 

The SIO has five input pins for clock 
signals. One of these inputs (CLK) is used 
only for internal timing and does not affect 
transmission or reception rates. The other four 
clock inputs (RxCA, TxCA, RxCB, and 
TxCBi are used for timing the reception and 
transmission rates in Channels A and B. Only 
these last four are involved in "clock divid­
ing." A clock divider within the SIO can be 

channels supported by the SIO if both chan­
nels are used. Before giving an overview of 
how initialization is done, we will describe 
some of the basic characteristics of SIO oper­
ations that are common to both the Polled and 
Interrupt-driven modes. 

device. These latter six lines are usually wired 
to an external decoding chip which activates 
that SIO's Chip Enable (CE) input pin when its 
address appears on A2-A7 of the address bus. 

The bar notation drawn above the names of 
certain signal lines, such as BIA and CID, 
refer to signals which are interpreted as active 
when their logic sense-and voltage level-is 
Low. For example, the BIA pin specifies Chan­
nel B of the SIO when it carries a logic l (high 
voltage) and it specifies Channel A when it 
carries a logic 0 (low voltage). 

selection can be made independently for each 
channel. 

Start and Stop Bits. There are two types of 
framing bits for each character: start and stop. 
When transmitting asynchronously, the SIO 
automatically inserts one start bit (logic 0) at 
the beginning of each character transmitted. 
The SIO can be programmed to set the 
number of stop bits inserted at the end of each 
character to either 1, I Y2 , or 2. The receiver 
always checks for l stop bit. Stop bits refer to 
the length of time that the stop value, a logic 
I, will be transmitted; thus l Y2 stop bits means 
that a I will be transmitted for the length of 
clock time that I Vi bits would normally take 
up. A logic I level that continues after the 
specified number of stop bits is called a 
"marking" condition or "mark bits." 

followed by the parity bit (if parity is enabled) 
and by the stop bit, which will be logic I 
unless there is a framing error. The remainder 
of the byte, if space is still available, is filled 
with logic ls (marking). If the "bits per char­
acter" is eight, then the byte sent to the CPU 
will contain only the data bits. In all cases, the 
start bit is stripped off by the SIO and is not 
transmitted to the CPU. 

programmed to cause reception/transmission 
clocking at the actual input clock rate or at 
1116, 1132, or 1164 of the input clock rate. The 
receiver and transmitter clock divisions within 
a given channel must be the same, although 
their input clock rates can be different. The xi 
clock rate can be used only if the transitions of 
the Receive clock are synchronized to occur 
during valid data bit times. 

308 



Auto 
Enables 

Special 
Receive 
Conclltions 

Modem 
Control 

26-0003-0342 

The SIO has an Auto Enables feature that 
allows automatic SIO response and telephone 
answering. When Auto Enables is set for a par­
ticular channel, a transition to logical 0 (Low 
input level) on the respective Data Carrier 

There are three error conditions that can 
occur when the SIO is receiving data. Each of 
these will cause a status bit to be set, and if 
operating in Interrupt mode, the SIO can 
optionally be programmed to interrupt the 
CPU on such an error. The error conditions 
are called "special receive conditions" and 
thAy include: 

• Framing error. If a stop bit is not detected 
in its correct location after the parity bit (if 
used) or after the most-significant data bit 
(if parity is not used), a framing error will 
result. The start bit preceding the char­
acter's data bits is not considered in deter­
mining a framing error, although character 
assembly will not begin until a start bit is 
detected. 

Five signal lines on the SIO are provided 
for optional modem control, although these 
lines can also be used for other general­
purpose control functions. They are: 

RTS (Request To Send). An output from the 
SIO to tell its modem that the SIO is ready to 
transmit data. 

DTR (Data Terminal Ready). An output from 
the SIO to tell its modem that the SIO is ready 
to receive data. 

CTS (Clear To Send). An input to the SIO 
from its modem that enables SIO transmission 
if the Auto Enables function is used. 

DCD (Data Carrier Detect). An input to the 
SIO from its modem that enables SIO recep­
tion if the Auto Enables function is used. 

810 
(CHANNllL Al 

REQUEST TO SEND 

CLEAR TO SEND 

Detect (DCD) input will enable reception, and 
a transition to logical 0 on the respective Clear 
To Send (CTS) input will enable transmission. 
This is described below under the heading 
"Modem Control." 

• Parity error. If parity bits are attached by 
the external 1/0 device and checked by the 
SIO while receiving characters, a parity 
error will occur whenever the number of 
logic 1 data bits in the character (including 
the parity bit) does not correspond to the 
odd/even setting of the parity-checking 
function. 

• Receiver overrun error. SIO buffers can 
hold up to three characters. If a character is 
received when the buffers are full (i.e., 
characters have not been read by the CPU), 
an SIO receiver overrun error will result. In 
this case, the most recently received char­
acter overwrites the next most recently 
received character. 

SYNC (Synchronization). A spare input to the 
SIO in asynchronous applications. This input 
may be used for the Ring Indicator function, if 
necessary, or for general-purpose inputs. 

In most applications of asynchronous l/O 
that use modems, the RTS and rITFf control 
lines and the Auto Enables function are acti 
vated during the initialization sequence, and 
they are left active until no further 1/0 is 
expected. This causes the SIO to tell its 
modem continuously that the SIO is ready to 
transmit and receive data, and it allows the 
modem to enable automatically the SIO's trans­
mission and reception of data. Figure 3 illus­
trates this. 

MODEM 

TxD --------

MC .. YllR 

DATA TERMINAL READY 

DATA CARRIER DETECT 

, Figure 3. Modem Control (Single Channel) 

309 



External/ 
Status 
Interrupts 

A change in the status of certain external 
inputs to the SIO will cause status bits in the 
SIO to be set. In the Polled Mode, these status 
bits can be read by the CPU. In the Interrupt ' 
mode, the SIO can also be programmed to 
interrupt the CPU when the change occurs; 
There are three such "external/status" condi­
tions that can cause these events: 

• DCD. Reflects the value of the DCD input. 

• CTS. Reflects the value of the CTS input. 

• Break. A series of logic 0 or "spacinq" bits. 

Initialization The SIO contains eight write registers for 
Channel B (WRO-WR7) and seven write 
registers for Channel A (all except write 
register WR2). These are described fully in 
the ZBO SIO Technical Manual and are 
summarized in Appendix B. The registers are 
programmed separately for each channel to 
configure the functional pers,onality of the 
channel. WR2 exists only in the Channel B 
register set and contains the interrupt vector 
for both channels. Bits in each register are 
named D1 (most significant) tJ;irough Do. With., 
the exception of WRO, programming the write 
registers requires two bytes: the first byte is to 
WRO and contains pointer bits for selection of 
one of the other registers; the second byte is 
written to the register selected. WRO is a 
special case in that all of the basic commands 
can be written to it with a single byte. 

There are also three read registers, named 
RRO through RR2, from which status results 
of operations can be read by the CPU (see 
Appendix B). Both channels have a set of 

A. Load WRO. This is done to reset the SIO. 

B. Load WR4. This specifies the clock divider, number of 
stop bits, and parity selection. Since register WR4 . 
establishes the general form of 1/0 for which the SJO is to 
be used, ii is best to set WR4 values first. 

C. Load WR3. This specifies the number of receive bits 
per character, Auto Enable selection, and turns on the 
receiver enabling bit. 

D. Load WRS. This specifies the number of transmit bits 
per character, turns off the bit that transmits the Break 
signal, turns on the bits indicating Data Terminal Ready 
and Request To Send, and turns on the transmitter 
enabling bit. 

E. Load WR2. (Interrupt mode only and Channel B only.} 
This specifies the interrupt vector. 

F. Load WRl. {Interrupt mode only.) This specifies 
various interrupt-handling options that will be explained 
later. 

NOTES: 
Steps A through F are performed 'in sequence. 
*Channel B only. 
tlnterrupt mode only. Polling rnode begins 110 after step D. 

Note that the DCD and CTS status bits are 
the inverse of the SIO lines, i.e., the DCD bit 
will be 1 when the DCD line is Low. 

Any transition in any direction (i.e., to logic 
0 or to logic 1) on any of these inputs to the 
SIO will cause the related status bit to be 
latched and (optionally) cause an interrupt. 
The SIO status bits are latched after a transi­
tion on any one of them. The status must be 
reset (using an SIO command) before new 
transitions can be reflected in the status bits. 

read registers, but register RR2 exists only in 
Channel B. 

Let us now look at the typical sequence of 
write registers that are loaded to initialize 
the SIO for either Polled or Interrupt-driven 
asynchronous I/O. Figure 4 illustrates the 
sequence. Except for step E, this loading is 
done for each channel when both are used. 
Steps E and F are described further in the sec­
tion on "Interrupt-Driven Environments." 

Registers WR6 and WR7 are not used in 
asynchronous I/O. They apply only to syn­
chronous communication. 

The reiated publications on the SIO should 
be referred to at this point. They will be 
necessary in following the discussion of func­
tions. In particular, the following material 
should be reviewed: 

ZBO SIO Technical Manual, pages 9-12 
("Asynchronous Operation") 

ZBO SIO Technical Manual, pages 29-37 
("Z80 SIO Programming") 

Figure 4. Typical Initialization Sequence (One Channel) 

310 26-0003-0343 



SECTION 

3 

Character 
Reception 

26-0003-0344 

Polled Environments. 
In a typical Polled environment, the SIO is 

initialized and then periodically checked for 
completion of an I/O operation. Of course, ii 
the checking is not frequent enough, received 
characters may be lost or the transmitter may 
be operated at a slower data rate than that of 

To check whether a character has been 
received, and to obtain a received character if 
one is available, the sequence illustrated in 
Figure 5 should be followed after the SIO is 
initialized. We assume that reception was 
enabled during initializ~tion; if it was not! the 
Rx Enable bit in register WR3 must be turned 
on before reception can occur. This must be 
done for each channel to be checked. 

Bit Do of register RRO is set to 1 by the SIO 
if there is at least one character available to be 
received. The SIO contains a three-character 
input buffer for each channel, so more than 
one character may be available to be received. 
Removing the last available character from the 
read buffer for a particular channel turns off 
bit Do. 

If bit Do of register RRO is 0, then no 
character is available to be received. In this 
case it is recommended that checks be made of 
bit D1 to determine if a Break sequence (null 
character plus a framing error) has been 
received. If so, a Reset External/Status Inter­
rupts command should be given; this will set 
the External/Status bits in register RRO to the 
values of the signals currently being received. 
Thus, if the Break sequence has terminated, 
the next check of bit D1 will so indicate. It may 
also be desirable to check bit 3 of register RRO 
which reports the value of the Data Carrier 
Detect (DCD) bit. 

READ RAO 

RESET EXTERNAU 
STATUS INTERRUPTS 

which it is capable. Initialization for Polled I/O 
follows the general outline described in the 
last section. We now give an overview of 
routines necessary for the CPU to check 
whether a character has been received by the 
SIO or whether the SIO is ready to transmit a 
'character. 

In any case, if bit Do of register RRO is 0, 
polled receive processing terminates with no 
character to receive. Depending on the facil­
ities of the associated CPU, this step may be 
repeated until a character is available (or 
possibly a time-out occurs), or the CPU 
may return to other tasks and repeat this 
process later. 

If bit Do of register RRO is 1, then at least 
one character is available to be read. In this 
case, the value of register RR! should first be 
read and stored to avoid losing any error infor­
mation (the manner in which it is read is 
explained later). The character in the data 
register is then read. Note that the character 
must be read to clear the buffer even if there is 
an error found. 

Finally, it is necessary to check the value 
stored from register RR! to determine if the 
character received was valid. Up to three bits 
need to be checked: bit 6 is set to 1 for a 
framing error, bit 5 is set to 1 for a rpceiver 
overrun error (which occurs when the recdv•• 
buffers are overwritten, i.e., no character has 
been removed and more than three characters 
have been received), and bit 4 is set to 1 for a 
parity error (if parity is enabled at initial­
ization time). In case of a receiver overrun or 
parity error, an Error Reset command must be 
given to reset the bits. 

RESET 
ERRORS 

Figure 5. Polled Receive Routine 

311 



Chmacter 
Transmission 

Auumptions 
for an 
Example 

hiltiallzation 

To check that an initialized SIO is ready to 
transmit a character on a channel. and if so to 
transmit the character, the steps illustrated in 
Figure 6 should be followed. We assume that 
the Request To Send (RTS) bit in WR5, if 
required by the external receiving device, 
and the Transmit (Tx) Enable bit were set al 
initialization. 

Depending on the external receiving device, 
the following bits in register RRO should be 
checked: bit 3 (DCD), to determine if a data 
carrier has been detected; bit 5 (CTS), lo 
determine if the device has signalled that ii is 
clear lo send; and bit 7 (Break). lo determine 
if a Break sequence has been received. If any 
of these situations have occurred, the bits in 
register RRO must be reset by sending the 
Reset External/Status Interrupts command, and 
the transmit sequence must be started again. 

Next, bit 2 of register RRO is checked. If this 
bit is 0, then the transmit buffer is not empty 
and a new character cannot yet be transmitted. 
Depending on .the capabilities of the CPU, this 
is repealed until a character can be trans~ 
milled (or a timeout occurs), or the CPU may 
return lo other tasks and start again later. 

If bit 2 of register RRO is 1, then the transmit 
buffer is empty and the CPU may pass. the 

Now let us consider some examples in more 
detail. We assume we are given an external 
device to which we will input and output 8-bit 
characters, with odd parity, using the Auto' 
Enables feature. We will support this device 
with 1/0 polling routines following the patterns 
illustrated in Figures 5 and 6. We assume that 
the CPU will provide space to receive char­
acters from the SIO as fast as the characters 
are received by the SIO, and that the CPU will 
transfer characters as fast as the output can be 
accomplished by the SIO. 

We begin with the initialization code for the 
SIO. This follows the outline illustrated in 
Figure 4. In the following sample code, each 
lime register WRO is changed to point to 
another register, the Reset External/Status 
Interrupts command is given simultaneously. 
Whenever a transition on any of the external 
lines occurs, the bits reporting such a transi­
tion are latched until the Reset External/Status 
Interrupts command is given. Up to two transi­
tions can be remembered by the SIO. There­
fore, it is desirable to do at least two different 

character to be transmitted to the SIO, com­
pleting the transmit processing. On the 
Z80 CPU, this is done with an OUT instruction 
to the SIO data port. 

READ RAO 

PUT- CHARACTER 
IN TJC BUFFER 

RESET EXTERNAU 
STATUS INTERRUPTS 

Figure 8. Polled Tnmsmll 

We specify this example by giving the con­
trol bytes (commands) written to the SIO and 
the status bytes that must be read from the 
SIO. Recall that to write a command to a regis­
ter, except register WRO, the number of the 
register to be written is first sent to register 
WRO; the following byte will be sent to the 
named register. Similarly, to read a register 
other than RRO (the default), the number of the 
register to be read is sent to register WRO; the 
following byte will return the register named. 

Reset External/Status Interrupts commands as 
late as possible in the initialization so that the 
status bits reflect the most recent information. 
Since it doesn't hurt, we include these com­
mands each time WRO is changed to point to 
another register. This is an easy way to code 
the initialization to insure that the appropriate 
resets occur. 

In the example below, the logic states on the 
CID control line and the system data bus 
(D1-Do) are illustrated, together with 
comments. 

312 26-0003-0345 



Initialization Bits 18nl to the $10 
(Continued) C/D 0., De Ds D, D3 Di D1 Do 

Reset and 
Error 
Sequences 

Receive and 
Transmit 
Routines 

1 0 0 0 1 1 0 0 0 

1 0 0 0 1 0 1 0 0 

1 1 1 0 0 I 1 0 1 

1 0 0 0 1 0 0 l I 

1 1 1 1 0 0 0 0 1 

1 0 0 0 1 0 1 0 1 

1 1 1 1 0 1 0 1 0 

In the receive and transmit routines that fol­
low, we treat errors such as a transition on the 
Data Carrier Detect line by calling for a "reset 
sequence" to set the values in read register 
RRO to reflect the current values found at 
the pins. This sequence consists of giving 
the Reset External/Status Interrupts com-
mand and beginning the driver over again. 
The command takes the form of a write to 
register WRO: 

D7 Da Dz Do 

a 1 a I 0 I 0 0 0 0 

Permits the status bits in RRO lo reflect current status. 

This command does not turn off the latches 
for such things as parity errors stored in bits 
4-6 of register RRI. When such an error 
occurs and the latches must be reset, we will 

Now we will first give an example 
of the receive routine. This parallels the 
preceding discussion of "Character 
Reception." 

The framing error in this routine is reported 
on a character-by-character basis and it is not 

Elfect1 and Comments 

Channel Reset command sent to register WRO (D5-D3). 

Point WRO to WR4 (D2-Do) and issue a Reset External/ 
Status Interrupts command (D5-D3). Throughout the 
initialization, whenever we point WRO to another 
register, we will also issue this command for the 
reasons noted above. 

Set WR4 to indicate the following parameters (from left 
to right): 
A. Run at 1/64 the input clock rate (D7-D5). 
B. Disable the sync bits and send out 2 stop bits per 

character (D5-D2). 
C. Enable odd parity (Di-Do). 

Point WR.O to WR.3. 

Set WR3 to indicate the following: 
A. 8-bit characters to be received (D7-D5). 
B. Auto Enables on (D5). 
C. Receive (Rx) Enable on (Do). 

Point WRO to WRS. 

Set WRS to indicate the following: 
A. Data Terminal Ready (DTR) on (D7). 
B. 8-bit characters to be transmitted (D5-D5). 
C. Break not to be transmitted (D4). 
D. Transmit (Tx) Enable on (D3). 
E. Request To Send (RTS) on (D1). 

call for an "error sequence." This sequence 
consists of giving the Error Reset command 
and beginning the driver over again. The 
command also takes the form of a write to 
register WRO: 

0., Da Ds D, Ds D2 D1 Do 

0 I 0 I 1 0 0 0 0 

Reseis the latches in register RRJ. 

313 

When specifying the result of reading 
register RRO or RRI or specifying data, we will 
indicate the values read as follows: 

0., Da Ds D, Ds D2 D1 Do 

D D D D D D D D 

Read a byte from the designated register .. 

necessary to execute an "error sequence" if it 
is the only error received. However, it is not 
harmful to do so. 

Next, we give an example of transmission 
code that parallels the above discussion on 
"Character Transmission." 



Receive and Bits sent and received 

Transmit c/15 D1 Dg Ds D4 D3 D2 D1 Do 

Routines 
(Continued) 

SECTION 

4 

Interrupt 
Vectors 

I D D D D D D D D 

I 0 0 0 0 0 0 0 I 

I D1 De Ds D4 D3 D2 D1 Do 

0 D1 De Ds D4 D3 D2 D1 Do 

Bits sent and received 
CID D1 De Ds D4 Da D2 D1 Do 

I D D D D D D D D 

0 D D D D D D D D 

Interrupt-Driven Environments .. 
In a typical interrupt-driven environment, 

the SIO is initialized and the first transmission, 
if any, is begun. Thereafter, further I/O is 
interrupt driven. When action by the CPU is 
needed, an SIO interrupt causes the CPU to 
branch to an interrupt service routine after the 
CPU first saves state information. 

In common usage, if I/O is interrupt driven, 
all interrupts are enabled and each different 
type of interrupt is used to cause a CPU 
branch to a different memory address. There is 
perhaps one frequent exception to this: parity 
errors are sometimes checked only at the end 
of a sequence of characters. The SIO facili­
tates this kind of operation since the parity 
error bit in read register RRI is latched; once 
the bit is set it is not reset until an explicit 

The interrupt vector, register WR2 of Chan­
nel B, is an 8-bit memory address. When an 
interrupt occurs (and note that an interrupt 
can only occur after interrupts have been 
enabled by writing to register WR!) the inter­
rupt vector is normally taken as one byte of an 
address used by the CPU to find the location 
of the interrupt service routine. It is also 
possible to cause the particular type of inter­
rupt condition to modify the address vector in 
WR2 before branching, resulting in a branch 

Effects and Comments (Receive Routine) 

Read a byte from RRO (the default read register); if 
Do = 0 then no character is ready to be received. In 
this case, if D1 (Break) or D3 (Data Carrier Detect) 
have changed state, then execute a "reset sequence." 
11 Do= 0 and D1 and D3 have not changed state, then 
no character is ready to be received; either loop on 
this read or try again later. 

Point WRO to read from RR 1; we will now check for 
errors in the character read. Note that Reset Exter­
nal/Status Interrupt Commands are not done normally 
to avoid losing a line-status change. 

Read a byte from RR I; if either bit Ds = I (framing 
error), D5;:::;: (receive overrun error), or D4= 1 
(parity error), the character is invalid and an "error 
sequence" should be executed after the following step. 

Read in the data byte received. This must be done to 
clear the SIO buffer even if an error is detected. 

Effects and Comments (Transmit Routine) 

Read a byte from RRO; if either bit D3 (Data Carrier 
Detect), Ds (Clear To Send) or D1 (Break) have 
changed state, a "reset sequence" should be executed. 
If D3, Ds and D1 have not changed state, then if 
D2 = 0, the transmit buffer is not yet empty and 
a transmit cannot take place; either loop, reading RRO, 
or try again later. 

Send the data byte to be transmitted. 

reset operation is done. Thus, if a parity error 
has occurred on any character since last reset, 
bit 4 in register RR 1 will be set. It is then 
possible to set register WRI so that parity 
errors do not cause an error interrupt when a 
character is received. The user then has the 
obligation to poll for the value of the parity 
bit upon completion of the sequence. 

SIO initialization for Interrupt mode nor­
mally requires two steps not used in Polled 
mode: an interrupt vector (if used) must be 
stored in write register WR2 of Channel B and 
write register WRI must be initialized to 
specify the form of interrupt handling. It is 
preferable to initialize the interrupt vector in 
WR2 first. In this way an interrupt that arrives 
after the enabling bits are set in WRI will 
cause proper interrupt servicing. 

to a different memory location for each inter­
rupt condition. This is a very useful construct; 
it permits short, special-purpose interrupt 
routines. The alternative, to have one general­
purpose interrupt routine which must deter­
mine the situation before proceeding, can be 
quite inefficient. This is usually undesirable 
since the speed of interrupt-service routines is 
often a critical factor in determining system 
performance. 

314 



Interrupt 
Vectors 
(Continued) 

Initialization 

There are at most eight different types of 
interrupts that the SIO may cause, four for 
each of the two channels. If bit 1 in register 
WR 1 of Channel B has been turned on so that 
an interrupt will modify the interrupt vector, 
the three bits (1-3) of the vector will be 
changed to reflect the particular type of inter­
rupt. These interrupts follow a hardware-set 
priority as follows, starting with the highest 
priority: 

Channel A Special Receive Condition sets bits 
3-1 of WRl to 111, 

Channel A Character Received sets bits 3-1 
to 110, 

Channel A Transmit Buffer Empty sets bits 3-1 
to 100, 

Channel A External/Status Transition sets bits 
3-1 to 101. · 

Channel B Special Receive Condition sets bits 
3-1to011, 

Channel B Character Received sets bits 3-1 
to 010, 

Channel B Transmit Buffer Empty sets bits 3-1 
to 000, 

Channel B External/Status Transition sets bits 
3-1 to 001. 

For example, suppose that the interrupt vec­
tor had the value 11110001 and the Status 
Affects Vector bit is enabled, along with all 
interrupt-enable bits. When an External/Status 
transition occurs in Channel A, the three zeros 
(bits 3-1) would be modified to 101, yielding 
an interrupt vector of 11111011. The value of 
the interrupt vector, as modified, may be 
tained by reading register RR2 in Channel B. 

In general, the initialization procedure 
illustrated in Figure 4 can still be followed. All 
six steps (A through F) are required here. 
After completing the first four steps, which are 
the same as initialization for polled I/O, it is 
necessary to load an interrupt vector into WR2 
of Channel B. Information is then written into 
register WRl specifying which interrupts are 
to be enabled and whether a specific kind of 
interrupt should modify the interrupt vector. 

Now let us give an example. As in the polled 
example, we assume that we are given a 
device to which we will input and output 8-bit 
characters, with odd parity, using the Auto 
Enables feature. We also assume the CPU will 
provide space to store characters as received. 

We do not discuss the SIO commands and 
registers in detail. This is done in the ZBO SIO 
Technical Manual. A summary of the register 
bit assignments taken from the ZBO SIO Serial 
Input/Output Product Specification is included 
at the end of this note. Recall that to write a 

Note that when a character is received, 
either the Special Receive Condition or Rx 
Character Available interrupt will occur, 
depending on whether or not an error 
occurred; the two will never occur simul­
taneously. Therefore, these two interrupts have 
equal priority. Note also that you can select 
not to be interrupted on some of the eight con­
ditions; in this case, the presence of a par­
ticular condition for which interrupts are not 
desired can be determined by polling. 

Suppose that interrupts have been enabled 
for all possible cases, and that the Status 
Affects Vector bit has also been enabled, 
allowing a different routine to handle each 
possible interrupt. As each interrupt causes a 
branch to a location only two bytes higher than 
the last interrupt, it is not possible to place a 
routine directly at the location where the vec­
tored interrupt branches. In a 280 CPU envi­
ronment, these addresses refer to a table in 
memory which contains the actual starting 
location of the interrupt service routine. Also, 
since the state information saved by a CPU is 
rarely all of the information necessary to prop­
erly preserve a computation state, a typical 
interrupt service routine will begin by saving 
additional information and end by restoring 
that information. This is shown briefly in the 
examples of code in Appendix A. 

It is possible to connect several SIOs using 
the interrupt mechanism and the IEI and IEO 
lines on the SIO to determine a priority for 
interrupt service. This mechanism is discussed 
on page 42 of the ZBO SIO Technical Manual 
and in the ZBO Family Program Interrupt 
Structure Manual. We do not go into it further 
in this application note. 

register other than register WRO, the number 
of the register to be written is first sent to 
register WRO, and the following byte will be 
sent to the named register. Similarly, to read a 
register other than RRO (the default), the 
number of the register to re read is first writ­
ten to register WRO and the next byte read will 
return the contents of the register named. 

In our example below, each time register 
WRO is changed to point to another register, 
the Reset External/Status Interrupts command 
is also given. Whenever a transition on any of 
the external/status lines occurs, the bits report­
ing the transition are latched until the Reset 
External/Status Interrupts command is given. 
Up to two transitions can be remembered by 
the internal logic of the SIO. Therefore, it is 
desirable to do at least two different Reset 
External/Status Interrupt commands as late as 
possible in the initialization so that the status 
bits reflect the most recent information. Since 
it doesn't hurt, we give these commands each 

315 



Initialization 
(Continued) 

time WRO is changed to point to another reg­
ister. This is an easy way to code the initial­
ization to assure that the appropriate resets 
occur. 

CID 

l 

I 

l 

I 

l 

1 

I 

I 

I 

I 

I 

Bits sent to the SIO 
D7 Ds Ds D4 D3 D2 

0 0 0 l I 0 

0 0 0 I 0 I 

I l 0 0 I I 

0 0 0 I 0 0 

I I l 0 0 0 

0 0 0 1 0 I 

I I I 0 I 0 

0 0 0 I 0 0 

I I 1 0 0 0 

0 0 0 I 0 0 

0 0 0 I 0 I 

Do 

0 0 

0 0 

0 l 

l l 

0 I 

0 I 

I 0 

I 0 

0 0 

0 I 

I I 

The _£olumns below show the logic states on 
the CID control line and the system data bus 
(D7-Do), together with comments. 

Effects and Comments 

Channel Reset command sent to register WRO (D5-D3). 

Point WRO to WR4 (D2-Do) and issue a Reset Exter­
nal/Status Interrupts command (D5-D3). Throughout 
the initialization, whenever we point WRO to another 
register we will also issue a Reset External/Status 
Interrupts command for the reasons noted above. 

Set WR4 to indicate the following parameters (from left 
to right): 
A. Run at 1/64 the clock rate (DrD5). 
B. Disable the sync bits and send out 2 stop bits per 

character (D5-D2). 
C. Enable odd parity (D1-Do). 

Point WRO to WR3. 

Set WR3 to indicate the following: 
A. 8-bit characters to be received (D7-D5). 
B. Auto Enables on (05). 
C. Rx Enable on (Do). 

Point WRO to WR5. 

Set WR5 to indicate the following: 
A. Data Terminal Ready (DTR) on (D7). 
B. 8-bit characters to be transmitted (D5-D5). 
C. Break not to be transmitted (D4). 
D. Tx Enable on (D3). 
E. Request To Send (RTS) on (D1). 

Point WRO to WR2 (Channel B only). 

Set the interrupt vector to point to address 11100000 
(which is hex ED and decimal 224). Once interrupts 
are enabled, they will cause a branch to this memory 
location, modified as described above if the Status 
Affects Vector bit is turned on (which it wilt be here). 
This vector is only set for Channel B, but it applies 
to both channels. It has no effect when set in 
Channel A. 

Point WRO to WR!. 

Set WR! to indicate the following: 

316 

A. Cause interrupts on all characters received, 
treating a parity error as a Special Receive 
Condition interrupt (D4-D3). 

B. Turn on the Status Affects Vector feature, causing 
interrupts to modify the status vector-meaningful 
only on Channel B, but will not hurt if set for 
Channel A (D2). 

C. Enable interrupts due to transmit buffer being 
empty (D1). 

D. Enable External/Status interrupts (Do). 



Special 
Receive 
Condition 
Interrupts 

Received (Rx) 
Character 
Interrupts 

External/ 
Status 
Interrupts 

Transmit (Tx) 
Buffer Empty 
Interrupts 

A Special Receive Condition interrupt 
occurs (a) if a parity error has occurred, (b) if 
there is a receiver overrun error (data is being 
overwritten because the channel's three-byte 
receiver buffer is full and a new character is 
being received), or (c) if there is a framing 
error. The processing in this case is the fol­
lowing: 

1. Issue an Error Reset command (to register 
WRO) to reset the latches in register RRl. 

2. Read the character from the read buffer and 
discard it to empty the buffer. 

It may be desirable to read and store the 

Bits "nt and received 
C/D 0, De D5 D4 D3 0i D1 Do 

I 0 0 0 0 0 0 0 I 

I D D D D D D D D 

I 0 0 I I 0 0 0 0 

0 D D D D D D D D 

When an Rx Character Available interrupt 
occurs, the character need only be read from 
the read buffer and stored. If parity is enabled 

To respond to an External/Status Interrupt, 
all that is necessary is to send a Reset Exter­
nal/Status Interrupts command. However, if 
you wish to find the specific cause of the 

Bits .. nt and received 
C/D 0, De D5 D4 D3 D2 D1 Do 

I D1 D5 Ds D4 D3 D2 Di Do 

I 0 0 0 I 0 0 0 0 

The final kind of interrupt is a Tx Buffer 
Empty interrupt. If another character is ready 
to be transmitted on this channel, a Tx Buffer 
Empty interrupt indicates that it is time to do 
so. To respond to this interrupt, you need only 
send the next character. If no other character 
is ready to transmit, it may be desirable to 
mark the availability of the transmit mechanism 
for future use. In addition, you should send a 
Reset Tx Interrupt Pending command. This 
command prevents further transmitter inter-

value of register RR 1 to gather statistics on 
performance or determine whether to accept 
the character. In some applications, a 
character may still be acceptable if received 
with a framing error. 

In specifying the result of reading register 
RRO, RR!, or specifying data, we will indicate 
the values as follows: 

D, De D5 D4 D3 D2 D1 Do 

D I D I D I D I D D D D 

Read a byte from the designated register. 

We now present an example of processing a 
Special Receive Condition interrupt. 

Ellects and Comments 

If we need to know what kind of error occurred, we 
point WRO to read from RR I. Note that the Reset 
External/Status Interrups command is not used. This 
avoids losing a valid interrupt. 

Read a byte from RR!; one or more of bit D5 (framing 
error), D5 (receive overrun error), or D4 (parity error) 
will be 1 to indicate the specific error. 

Give an Error Reset command to reset all the error 
latches. 

Read in the data byte received. This must be done to 
clear the receiver buffer, but the character will gener-
ally be disregarded. ' 

with character lengths of 5, 6, or 7 bits, the 
received parity bit will be transferred with the 
character. Any unused bits will be ls. 

interrupt, it is necessary to read register RRO. 
In this case, the complete processing takes the 
following form: 

Ellects and Comments 

Read register RRO; bit D1 (Break), Ds (Clear To Send), 
or D3 (Data Carrier Detect) will have had a transition 
to indicate the cause of the interrupt. 

Give a Reset External/Status Interrupts command to set 
the latches in RRO to their current values and stop 
External/Status Interrupts until another transition 
occurs. 

rupts until the next character has been loaded 
into the transmitter buffer. 

The Reset Tx Interrupt Pending command to 
WRO takes the following form: 

Do 

a I a I 0 0 

Reset Tx Interrupt Pending command; no Tx Empty Inter­
rupts will be given until after the next character has been 
placed in the transmit buffer. 

317 



zso 
Assembler 
Code 

To take these examples further, let us use 
ZBO Assembler code to implement the routines 
for a single channel. We assume that the loca­
tion stored in register WR2 points to the 
appropriate interrupt service routine. We also 
assume that the following constants have 
already been defined: 

SIOctrl. The address of the SIO's Channel B 
control pori (we assume Channel B in order to 
include code to initialize the interrupt vector). 

!NIT: LD C,S!Octrl 

LD A,OOOllOOOB 
OUT (C) ,A 

LD A,OOOIOIOOB 
OUT (C) ,A 
LD A,llOOllOIB 
OUT (C),A 

LD A,OOOIOOllB 
OUT (C) ,A 
LD A,lllOOOOIB 
OUT (C) ,A 

LD A,OOOIOIOJB 
OUT (C) ,A 
LD A, ll IOIOIOB 
OUT (C) ,A 

LD A,OOOIOOIOB 

OUT (C) ,A 
LD A,lllOOOOOB 

OUT (C) ,A 

LD A,OOOIOOOJB 
OUT (C) ,A 
LD A,OOOIOl llB 
OUT (C) ,A 

RET 

Now let us look first at some sample codes 
for the Special Receive Condition interrupt 
routine, following the example above. 

S!Ospecint: PUSH 

LD 
OUT 
IN 
LD 

LD 

OUT 

IN 

POP 
EI 

RETI 

AF 

A,OOOOOOOJB 
(S!Octrl) ,A 
A,(SIOctrl) 
(X) ,A 

A,001 IOOOOB 

(S!Octrl) ,A 

A,(S!Odata) 

AF 

SIOdata. The address of the SIO's Channel B 
data port. 

X. An address pointing to locations in memory 
that will be used to store various values. 

We will write data as binary constants; the 
"B" suffix indicates this. In most cases, binary 
constants will be referred to by the command 
names. We begin with the initialization 
routine: 

;place the address of the SIO in the C register for 
; use in subsequent output 
; load Channel Reset command in A register 
;give Channel Reset command 

;write to register WRO pointing it to register WR4 

;output basic 1/0 parameters to WR4 

;write to register WRO pointing it to register WR3 

;output receive parameters to WR3 

;write to register WRO pointing it to register WR5 

;output transmit parameters to WR5 

;write to register WRO pointing it to register WR2 
; (Channel B only) 

;output the interrupt vector to WR2; in this case ii is 
; decimal. location 224 

;write to register WRO pointing it to register WR! 

;output interrupt parameters to WR! 

; return from initialization routine 

This is followed by a simple receive interrupt 
routine that will fetch the character received 
and store it in a temporary location. 

;save registers which will be used in this routine 

;write to register WRO pointing it to register RR 1 

;fetch register RR 1 
;store result for later error analysis 

; send an Error Reset command to reset device 
; latches 

;fetch the character received-we will discard this 
; character since an error occurred during its 
; reception 

;restore saved registers 
;enable interrupts 

;return from interrupt 

318 



ZBO 
Assembler 
Code 
(Continued) 

SIOrecint: PUSH AF 

IN A,(S!Odata) 
LD (X) ,A 

POP AF 
EI 
RETI 

Of course, this last routine is probably far 
too simple to be useful. It is more likely that 
an interrupt routine will fill up a buffer of 
characters. A more complex example of a 
receive interrupt routine is contained in the 

SIOextint: PUSH AF 

LLJ A,OGGlGGOOB 
OUT (S!Octrl) ,A 

IN A,(SIOctrl) 
LD (X) ,A 

POP AF 
El 
RETI 

Finally, we give the processing for a 
transmit interrupt routine in the case where no 
more characters are to be transmitted. 

It is likely that this code would just be a por­
tion of a more general transmit interrupt 

S!Otrnint: PUSH AF 

LD A,OOIOIOOOB 
OUT (S!Octrl) ,A 

POP AF 
EI 
RETI 

;save registers which will be used in this routine 

;fetch the character received 
;store result for later use 

;restore saved registers 
;enable interrupts 
;return from interrupt 

chapter entitled "A Longer Example." 
We now give a simple interrupt routine for 

an External/Status Interrupt, again assuming 
that the status contents of SIO register RRO are 
stored in temporary location X: 

;save registers which will be used in this routine 
' n , r' , 11,-.. , T , ' 1 

,senu ct ne::iet .c.x1erna11 .. ::aatu::. Hlle11uµu:s L:u1uu1c1.uu 

; fetch register RRO 
;store result for later analysis 

; restore saved registers 
;enable interrupts 
;return from interrupt 

routine which would transmit a buffer-full of 
information at a time. A more complex exam­
ple is included in the section entitled "A 
Longer Example." 

;save registers which will be used in this routine 

; send a Reset T x Interrupt Pending command 

;restore saved registers 
;Enable Interrupts 
; Return From Interrupt 

319 



SECTIOK 

5 

Hmdwme 
Considerations 

Register 
Contents 

Questions and Answers. 
Q: Can a sloppy system cl~k cause prob­

lems in SIO operation? 
A: Yes; the specifications for the system 

clock are very tight and must .be met closely 
to prevent SIO malfunction. The clock high 
voltage must be greater than V cc - 0.6V but 
less than +5.5V. The clock low voltage 
must be greater than - 0.3V but less than 
+ 0 .45V. The transitions between these two 
levels must be made in less than 30 ns. This 
does not apply to the RxC and TxC inputs 
which are standard TTL levels. 

Q: When is a received character available to 
be read? 

A: Data will be available a maximum of 13 
system clock cycles from the rising edge of 
the RxC signal which samples the last bit of 
the data. 

Q: What is the maximum time between 
character-insertion for transmission and 
next-character transmission? 

A: This will vary depending on the speed of 
the line over which the character is being 
transmitted. 

Q: Are the control lines to the SIO synchro­
nous with the system clock so that nois.e may 
exist on the buses any time before setup 
requirements are satisfied? 

A: Yes. 

Q: In asynchronous use must receiver and 
transmitter clock rates be the same? 

A: No, the SIO allows receive and transmit 
for each channel to use a different clock 
(thus up to four different clocks for receiv­
ing and transmitting data can be used on 
each SIO). However, the clock multiplier 
for each channel must be the same. 

Q: Do Wait states have to.be added when 
using the SIO with other processors other 
than the Z80 CPU? 

Q: Does the Tx Buffer Empty (bit 2 in register 
RRO get set when the last byte in the buffer 
is in the process of being shifted out? 

A: No. The bit is set when the transmit buffer 
has already become empty. Similarly, the 
Tx Buffer Empty interrupt will not occur 
until the buffer is empty. The same is true 
for reception: the Rx Character Available 
bit (bit 0 in register RRO) is not set until the 
entire character is in the receive buffer, and 
the Rx Character Available interrupt will 
not occur until the entire character has 
been moved into the buffer. 

Q: If an Rx Overrun error occurs (and 
bit 5 of register RRl becomes latched on) 
because a new character has arrived, which 
character gets lost? 

A: No, provided that setup times specified for 
the SIO are met. 

Q: If the Auto Enables bit in register WR3 is 
set, will a change in state on the DCD (Data 
Carrier Detect) or CTS (Clear To Send) 
lines still cause an interrupt? 

A: Yes, provided that External/Status Inter­
rupts are enabled (bit 0 in register WRl). 

Q: Is the Ml line used by the SIO if no inter­
rupts are enabled? 

A: No, and in this case the Ml input should 
be tied high. 

Q: Will the SIO continue to interrupt for a 
condition if the condition persists and the 
interrupt remains enabled? 

A: Yes. 

Q: What is the maximum data rate of 
the SIO? 

A: It is 1/5 the rate of the system clock 
(CLK). For example, if the system clock 
operates at 4 MHz, the SIO's maximum 
transfer rate is BOOK bits (lOOK bytes) 
per second. 

Q: What pins are edge sensitive and should 
be strapped to avoid strange interrupts? 

A: The external synchronization (SYNC) pins 
and any other external status pins that are 
not used, including CTS, and DCD. 

Q: What happens if the transmitter or 
receiver is disabled, while processing a 
character, by turning off its associated 
enable bit (bit 3 in register WR5 for transmit 
or bit 0 in register WR3 for receive)? 

A: The transmitter will complete the 
character transmission in an orderly fashion. 
The receiver, however, will not finish. It will 
lose the character being received and no 
interrupt will occur. · 

A: The most recently received character 
overwrites the next most recently received 
character. 

Q: Does the Reset External/Status Interrupts 
command reset any of the status bits in 
register RRO? 

A: No. However, when a transition occurs on 
any of the five External/Status bits in 
register RRO, all of.the status bits are 
latched in their current position until a 
Reset External/Status Interrupts command is 
issued. Thus, the command does permit the 
appropriate bits of register RRO to reflect 
the current signal values and should be 
done immediately after proce~sing each 
transition on the channel. 

320 



Special 
Uses 

Q: If the CPU does not have the return from 
interrupt sequence (RETI instruction on the 
Z80 CPU), how may the SIO be informed of 
the completion of interrupt handling? 

A: This may be done by writing the Return 
From Interrupt command (binary, 00111000) 
to WRO in Channel A of the SIO. 

Q. If the CPU can be interrupted but cannot 
be used with vectored interrupts, how 
should processing be done? 

A: Immediately after being interrupted, pro­
ceed in a manner similar to polling the SIO 
for both receive and transmit. Alternatively, 
the Status Affects Vector bit (bit 2 in 
register WRl) may be set and a 0 byte 
placed into the interrupt vector (register 
WR2 in Channel B). Then, the contents of 
the interrupt vector can be used to deter­
mine the cause of the interrupt and the 
channel on which the interrupt occurred. 
This can be queried by reading register RRl 
of Channel B. Also, Ml should be tied High 
and no equivalent to an interrupt acknowl­
edge should be issued. 

Q: How can the Wait/Ready (W/RDY) signal 
be used by the CPU in asynchronous 1/0? 

A: The W/RDY signal is most commonly used 
in Block Transfer Mode with a DMA, and 
this use is described in the ZBO DMA 
Technical Manual. However, W/RDY may 
be directly connected to the Z80 CPU WAIT 
line in order to use the block 1/0 instruc­
tions OTDR, OTIR, INDR, and INIR. In this 
case, the SIO can be used for block transfer 
reception. To do this, the SIO is configured 
to interrupt on the first character received 
only (by settings bits 4 and 3 of register 
WRl to 01) and additional characters are 
sensed using the W!RDY line. The block I/O 
instructions decrement a byte counter to 
determine when 1/0 is complete. 

Q: Can the SYNC pin have any use in asyn­
chronous 1/0? 

A: It may be used as a general-purpose 
input. For example, by connecting it to a 
modem ring indicator, the status of that ring 
indicator can be monitored by the CPU. 

321 

Q: How can the SIO be used to transmit 
characters containing fewer than 5 bits? 

A: First, set bits 6 and 5 in register WR5 to 
indicate that five or fewer bits per character 
will be transmitted. The SIO then deter­
mines the number of bits to actually transmit 
from the data byte itself. The data byte 
should consist of zero or more ls, three Os, 
and the data to be transmitted. Thus, begin­
ning the data byte with 11110001 will cause 
only the last bit to be transmitted: 

D7 D6 
j j 

l l 
l l 
l 0 
0 0 

Contents of data byte 
(d ~arbitrary value) 

Ds D4 D3 D1 D1 
j j u u u 
l 0 0 0 d 
0 0 0 d d 
0 0 d d d 
0 d d d d 

Do 
d I 

d 2 
d 3 
d 4 
d 5 

*The rightmost number of bits indicated will be transmitted. 

Q: Can a Break sequence be sent for a fixed 
number of character periods? 

A: Yes. Break is continuously transmitted as 
logic 0 by setting bit 4 of register WR5. You 
can then send characters to the transmitter 
as long as the Break level is desired to per­
sist. A Break signal, rather than the char­
acters sent, will actually be transmitted, but 
each bit of each character sent will be 
clocked as if it were transmitt.,d. Tht' 1\11 
Sent bit, bit 0 of register RH I, is '"'I lo I 
when the last bit of a character is cluckvJ 
for transmission, and this may be used lo 
determine when to reset bit 4 of register 
WR5 and stop the Break signal. 

Q: If a Break sequence is initiated by setting 
bit 4 of register WR5, will any character 
in the process of being transmitted be 
completed? 

A: No. Break is effective immediately when 
bit 4 of WR5 is set. The "all sent" bit in 
register RR! should be monitored to deter­
mine when it is safe to initiate a Break 
sequence. 



SECTION 

6 
A Longer Example. 

In this section, we give a longer example of 
asynchronous interrupt-driven full-duplex I/O 
using the SIO. The code for this example is 
contained in Appendix A, and the basic 
routines are flow charted in Figures 7-12. 

The example includes code for initialization 
of the SIO, initialization of a receive buffer 
interrupt routine, and a transfer routine which 
causes a buffer of up to 80 characters of infor­
mation to be transmitted on Channel A and a 
buffer of up to 80 characters of information to 
be received from Channel A. The transfer 
routine stops when either all data is received 
or an error occurs. Completion of an operation 
on a buffer for both receive and transmit is 
indicated by a carriage return character. 
Additional routines (not included in this exam­
ple) would be needed to call the initialization 
code and initiate the transfer routine. There­
fore, we do not present a complete example; 
that would only be possible when all details of 
a particular communication environment and 
operating system were known. 

The code begins by defining the value of the 
SIO control and data channels, followed by 
location definitions for the interrupt vector. 
There is then a series of constant definitions of 
the various fields in each register of the SIO. 
This is followed by a table-driven SIO initiali­
zation routine called "SIO_init," shown in 
Figure 7, which uses the table beginning at 
the location "SIOitable." The SIO_Init routine 
initializes the SIO with exactly the same 

SET TRANSMIT BUFFER POINTER TO BEGINNING 
OF TRANSMIT BUFFER. SET RECEIVE BUFFER 

POINTER TO B,EGINNING OF RECEIVE 
BUFFER. SET RECEIVE BUFFER COUNTER, 
TRANSMIT STATUS WORD, AND RECEIVE 

STATUS WORD TO ZERO. 

RETURN 

START TRANSMISSION OF FIRST 
CHARACTER IN THE BUFFER. 

YES 

YES 

YES NO 

Figure 8. Interrupt-Driven 
Transmit Routine 

322 

RETURN 

LOAD I REGISTER WITH 
HIGH BYTE OF INTERRUPT· 

TABLE ADDRESS. 

LOAD A MEMORY LOCATION 
WITH LOW BYTE OF 

INTERRUPT·TABLE ADDRESS. 

LOAD HL REGISTER WITH 
BEGINNING ADDRESS OF 

SIO INITIALIZATION TABLE. 

MOVE DATA WORD FROM 
INITIALIZATION TABLE TO 

A REGISTER; INCREMENT HL. 

OUTPUT DATA WORD TO 
CONTROL PORT OF BOTH 

$10 CHANNELS. 

Figure 7. Interrupt-Driven 
Initialization Routine 

SAVE REGISTERS 

GET NEXT CHARACTER, 
TRANSMIT, AND INCREMENT 
TRANSMIT BUFFER POINTER 

RESTORE SAVED REGISTERS 

RETURN FROM INTERRUPT 

Figure 9. Transmitter Buffer 
Empty Interrupt Routine 

26-0003-0346 26-0003-0347 26-0003-0348 



A Longer 
Example 
(Continued) 

parameters as the interrupt-driven example in 
the previous section. The table-driven version 
is presented simply as an alternative means of 
coding this material. 

A short routine for filling the receive buffer 
with "FF" (hex) characters and buffer defini­
tions follows the SIO_Init routine. This in turn 
is followed by the transfer routine, Figure 8, 
which begins transmitting on Channel A; 
transmission and reception is thereafter 
directed by the interrupt routines. After the 
transfer routine begins output, it checks for 
various error conditions and loops until there 
is either completion or an error. 

Then the !our interrupt routines follcv;: 
TxBEmpty, Figure 9, is called on a transmit 
buffer interrupt; it begins transmission of the 
next character in the buffer. A carriage return 
stops transmission. RecvChar, Figure 10, is 
called on a normal receive interrupt; it places 
the received character in the buffer if the buf­
fer is not full and updates receive counters. 
The routines SpRecvChar, Figure 11, and 
ExtStatus, Figure 12, are error interrupts; they 
update information to indicate the nature of 
the error. 

The code of this example can be used in a 
situation where data is being sent to a device 
which echoes the data sent. In such a case, the 
transmit and receive buffers could be com­
pared upon completion for line or transmission 
errors. 

SAVE REGISTERS 

STORE CONTENTS OF 
RR1 IN RECEIVE 
STATUS WORD. 

RESET ERROR LATCHES 
IN SIO. 

FETCH AND DISCARD 
CHARACTER. 

RESTORE SAVED REGISTERS 

RETURN FROM INTERRUPT 

Figure II. Special Receive Condition 
Interrupt Routine 

26-0003-0349 26-0003-0350 26-0003-0351 323 

SET RECEIVE 
STATUS WORD 

TO 
"OVERFLOW" 

SET RECEIVE 
STATUS WORD 

TO 
"COMPLETE" 

YES 

SAYE REGISTERS 

FETCH CHARACTER AND 
PUT IN B REGISTER 

INCREMENT RECEIVE BUFFER 
COUNTER AND RECEIVE BUFFER 

POINTER. STORE 8 REGISTER 
CONTENTS WHERE RECEIVE 

BUFFER POINTS TO. 

RESTORE SAVED REGISTERS 

RETURN FROM INTERRUPT 

Figure 10. Receive Character 
Interrupt Routine 

SAVE REGISTERS 

STORE CONTENTS OF ARO 
IN THE TRANSMIT 

STATUS WORD. 

SEND THE RESET 
EXTERNAUSTATUS 

INTERRUPTS COMMAND. 

RESTORE SAVED REGISTERS 

RETURN FROM INTERRUPT 

Figure 12. ExternaVStatus 
Interrupt Routine 



Appendix A 
Interrupt-Driven Code Example 

SIO Port Identifiers and System Address Bus Addresses WR3 Commands 

B5: EQU QOH ;Receive 5 bits/character 

SIO: EQU 40H RENABL: EQU OIH ;Receiver enable 

SIOAData: EQU SIO+l ENRCVR: EQU OIH ;Receiver enable 

SIOACtrl: EQU SI0+2 SCLINH: EQU 02H ; Sync character load 'inhibit 

SIOBData: EQU SI0+3 ADSRCH: EQU 04H ; Address search mode 

SIOBCtrl: EQU Sl0+4 RCRCEN: EQU OSH ;Receive CRC enable 
HUNT: EQU !OH ; Enter hunt mode 
AUTOEN: EQU 20H ;Auto enables 

Table of Interrupt Vectors B7: EQU 40H ;Receive 7 bits/character 
B6: EQU SOH ;Receive 6 bits/character 

The table (lnLTab) starts at the lowest priority vector, which BS: EQU OCOH ;Receive 8 bits/character 

should be ddddOOOd. 
WR4 Commands 

ORG ODOH ; starts at address with low SYNC: EQU OOH ; Sync modes enable 
; byte = 11010000 NOPRTY: EQU OOH ;Disable parity 

Int_ Tab: DEFW TxBEmpty ;interrupt types for Channel B ODD: EQU OOH ;Odd parity 

DEFW ExtStat MONO: EQU OOH ;S bit sync character 

DEFW RxChar Cl: EQU OOH ;XI clock mode 

DEFW SpRxCond PARITY: EQU OIH ;Enable parity 
EVEN: EQU 02H ;Even parity 

DEFW TxBEmpty ;interrupt types for Channel A SI: EQU 04H ; I stop bit/character 
DEFW ExtStat SIHALF: EQU OSH ; I and a half stop bits/character 
DEFW Rx Char S2: EQU OCH ;2 stop bits/character 
DEFW SpRxCond BISYNC: EQU !OH ; 16 bit sync character 

SDLC: EQU 20H ;SDLC mode 
ESYNC: EQU 30H ; External sync mode 

Command Identifiers and Values Cl6: EQU 40H ;Xl6 clock mode 

Includes all control bytes for asynchronous and synchronous 1/0. 
C32: EQU SOH ;X32 clock mode 
C64: EQU OCOH ; X64 clock mode 

WRO Commands WRS Commands 
RO: EQU OOH ; SIO register pointers TS: EQU OOH ;Transmit 5 bits/character 
RI: EQU OIH XCRCEN: EQU OIH ;Transmit CRC enable 
R2: EQU 02H RTS: EQU 02H ;Request to send 
R3: EQU 03H SELCRC: EQU 04H ;Select CRC-16 polynomial 
R4: EQU 04H XENABL: EQU OSH ;Transmitter enable 
R5: EQU 05H BREAK: EQU !OH ;Send break 
R6: EQU 06H T7: EQU 20H ;Transmit 7 bits/character 
R7: EQU 07H T6: EQU 40H ;Transmit 6 bits/character 

NC: EQU OOH ;Null Code TS: EQU 60H ;Transmit S bits/character 

SA: EQU OSH ;Send Abort (SDLC) DTR: EQU SOH ;Data te;rminal ready 

RES!: EQU !OH ; Reset Ext/Stat Int 
CHRST: EQU !SH ;Channel Reset Initialization 

EIONRC: EQU 20H ;Enable Int On Next Rx Char S!O_Jnit: LD HL, lnLTab 
RTIP: EQU 2SH ;Reset Tx Int Pending LD A,H 
ER: EQU 30H ; Error Reset LD !,A 
RF!: EQU 3SH ;Return From Int LD A,L 
RRCC: EQU 40H ;Reset Rx CRC Checker LD (LLoc),A 
RTCG: EQU SOH ;Reset Tx CRC Generator LD HL, SIO!table 
RTUEL: EQU OCOH ;Reset Tx Under/EOM Latch 

lnit_Loop: LD A,(HL) ; loop for initialization 
INC HL 

WRI Commands CP 0 

WAIT: EQU OOH ;Wait function RET z 
DRCVR!: EQU OOH ; Disable Receive interrupts OUT (SIOACtrl),A 

EXTIE: EQU OlH ;External interrupt enable OUT (SIOBCtrl),A 

XMTRIE: EQU 02H ;Transmit interrupt enable JR lniLLoop 

SAVECT: EQU 04H ; Status affects vector S!Oltable: DEFB CR ; table for initialization 
FIRSTC: EQU OSH ; Rx interrupt on first character DEFB R4 + RES! 
PAVECT: EQU JOH ;Rx interrupt on all characters DEFB C64 + ODD + PARITY + S2 

; (parity affects vector) DEFB R3 + RES! 
PDAVCT: EQU 18H ; Rx interrupt on all characters DEFB BS + AUTOEN + ENRCVR 

; (parity doesn't affect vector) DEFB R5 + RES! 
WRONRT: EQU 20H ; Wait!R€ady on receive DEFB DTR + RTS + T8 + XENABL 
RDY: EQU 40H ; Ready function DEFB R2 +.RES! 
WRDYEN: EQU SOH ;Wait/Ready enable !_Loe: DEFS ; location of int table 

WR2 Commands DEFB Rl + RES! ;address 
DEFB EXTIE + XMTRIE + SAVECT + PAVECT 

IV: EQU OOH DEFB 0 

324 



Receiver Buller Initialization Receive Character Routine (see Figure 10) 

Buf_lnit: LO A,BufLength ;fill receiver buffer RxChar: PUSH AF 
LO B,A ; with FF characters PUSH BC 
LO HL,RBuffer ; to detect errors 

LO A,SIOAData 
LO A,OFFH LO C,A 

Bui_!: LO (HL).A ;a loop for Buf_lnit IN A,(C) ;get character. 
INC HL LO B,A 
DJNZ Bui_! LO A,(RBufCtr) 
RET CP BufLength 

Bui Length: EQU 80 ; buffer length JR Z,Over 

XBuffer: DEFS BufLength ;Tx buffer starting location INC A ; bump counter 
RBuffer: DEFS BufLength ; Rx buffer starting location LO (RBufCtr).A 

XBufPtr: DEFS 2 ;Tx pointer LO A,B 

RBufPtr: DEFS 2 ;Rx pointer LD HL,(RBufPtr) ; bump pointer 

RBufCtr: DEFS I ;Rx counter LD (HL),A 
INC HL 
LO (RBufPtr),HL 

Transmit Routine (see Figure 8) 
CP CR 

Initiates transmission of a buffer-full of data and terminates when JR NZ,RxExit 

an error is detected or a complete buffer has been received. LD A, Complete 

RxStat: DEFS ;Receive Status Word 
LO (RxStat),A 

TxStat: DEFS ;Transmit Status Word 
JR RxExit 

Complete: EQU I 
Over: LO A.Overflow ; indicate error 

CR: EQU ODH 
LO (RxStat),A 

Break: EQU 80H RxExit: POP BC 
EOM: EQU 80H POP AF 
Overflow: EQU OFFH EI 

Transfer: LO HL,XBuffer ;setup to begin Tx 
RETI 

INC HL Special Receive Condition Routine (see Figure 11) 
LO (XBufPtr),HL 
LD HL,RBuffer SpRxCond: PUSH AF 
LD (RBufPtr),HL PUSH BC 
XOR A ;A=O LD A,SIOAData 
LD (RBufCtr).A LD C,A 
LD (TxStat),A LD A.RI ;get RR! 
LO (RxStat),A INC c 
LO A,SIOAData ;start Tx task OUT (Cl.A 
LD C,A IN A,(C) 
LO HL,(XBuffer) ;first character LO (RxStat).A ;save status 
LD A,(HL) LO A,ER ; Reset Errors 
OUT (CJ.A DEC c 

Tloop: LO A,(TxStat) ;await Tx completion or error 
OUT (CJ.A 
DEC c 

CP 0 IN A,(C) ; get character 
RET NZ 
LO A,(RxStat) POP BC 
CP Overflow POP AF 
RET z El 
CP Complete RETI 
RET z 
JR NZ,Tloop External/Status Routine (see Figure 12) 
RET ExtStatus: PUSH AF 

Transmitter Buller Empty Routine (see Figure 9) 
PUSH BC 

TxBEmpty PUSH AF 
LD A,SIOACtrl 
LD C,A 

PUSH BC IN A,(C) ;get RRO 
PUSH HL LD (TxStat),A 
LD HL,(XBulPtr) LD A.RES! ;Reset Ext Stat Int 
LO A,SIOAData OUT (C),A 
LO C,A POP BC 
LO A,(HL) POP AF 
OUT! El 
CP CR RETI 
JR NZ, TxBExit ;last character? END 
LO A,RTIP ;Reset Tx Int Pending 
INC c 
OUT (Cl.A ;to control port 

TxBExit: LO (XBulPtr),HL ;save pointer 
POP HL 
POP BC 
POP AF 
El 
RETI 

325 



Appendix B 
Read Register Bit Functions 

READ REGISTER 0 

READ REGISTER It 

*Used With ''External/Status 
Interrupt" Mode 

111 
L_ALL SENT 

I FIELD BITS I FIELD BITS IN 
IN PREVIOUS SECOND PREVIOUS } 

BYTE BYTE 
1 0 0 0 3 
0 1 0 0 4 
1 1 0 0 5 • 
0 0 1 0 8 
1 0 1 0 7 
0 1 1 0 8 
1 1 1 1 8 
0 0 0 2 8 

PARITY ERROR "Residue Data For Eight 
Rx OVERRUN ERROR Ax Bits/Character Programmed 
CRCIFRAMING ERROR 

'------END OF FRAME (SDLC) 

tUsed With Special Receive Condition Mode 

READ REGISTER 2 

~:~ INTERRUPT lEI ~t) 

tVariable 1! "Status Affects 
Vector" is Programmed 

Y4 VECTOR 
V& 
VI 
V7 

326 



Appendix C 
Write Register Bit Functions 

WRITE REGISTER O 

1~1~1~1~1~1~1~1~1 
I I I 

NULL CODE 

REGISTER 0 
REGISTER 1 
REGISTER 2 
REGISTER 3 
REGISTER 4 
REGISTER 5 
REGISTER 8 
REGISTER 7 

SEND ABORT (SDLC) 
RESET EXT/STATUS INTERRUPTS 
CHANNEL RESET 
ENABLE INT ON NEXT Rx CHARACTER 
RESET TxlNT PENDING 
ERROR RESET 
RETURN FROM INT (CH·A ONLY} 

NULL CODE 
RESET Rx CRC CHECKER 
RESET Tx CRC GENERATOR 
RESET Tx UNDERRUN/EOM LATCH 

WRITE REGISTER I 

11 
I L ....... EXT INT ENABLE 
L.:::= Tx INT ENABLE 

'-----STATUS AFFECTS VECTOR 
(CH. 8 ONLY) 

0 Rx INT DISABLE } 

~ :!:r'~1 ~~t~RXS~i~'ARtr~~e:(PARITY AFFECTS VECTOR) .. 
1 INT ON ALL Rx CHARACTERS (PARITY DOES NOT AFFECT 

VECTOR) 

WAITIREADY ON R/T 
WJJ'f/READY FUNCTION 

~---WAIT/READY ENABLE 

WRITE REGISTER 2 (CHANNEL B ONLY) 

1~1~1~1~1~1~1~1~1 

I I 11 ~E ) INTERRUPT 
V4 VECTOR 
vs 
VB 
V7 

WRITE REGISTER 3 

Rx 5 BITS/CHARACTER 
Rx 1 BITS/CHARACTER 
Rx 8 BITS/CHARACTER 
Rx 8 BITS/CHARACTER 

•Qr On 
Special 
Condition 

327 

WRITE REGISTER 4 

1~1~1~1~1~1~1~1~1 

11 
0 
0 
1 
1 

I I I L_PARITY ENAll.L_ 
l.-=:=PARITY EVEN/050 

SYNC MODES ENABLE 
1 STOP BIT/CHARACTER 
1 V1 STOP BITS/CHARACTER 
2 STOP BITS/CHARACTER 

ii iiil SYNC CiiAFiACTEA 
19 BIT SYNC CHARACTER 
SDLC MODE (01111110 FLAG) 
EXTERNAL SYNC MODE 

X1 CLOCK MODE 
x1e CLOCK MODE 
X32 CLOCK MODE 
XM CLOCK MODE 

WRITE REGISTER 5 

~ 111 
I ~~~;Re ENABLE 

'-· ----SDLCICRC-11 
~----Tx ENABLE 

~-----SEND BREAK 

0 Tk 5 BITS (OR LESS)ICHAFIACTER 
1 Tx 7 BITS/CHARACTER 
0 Tx e BITS/CHARACTER 
1 Tx a BITS/CHARACTER 

DTR 

WRITE REGISTER 6 

'Also SDLC Address Field 

WRITE REGISTER 7 

"For SDLC !1 Must Be Programmed 
10 ··01111110·· For Ftag Recognition 



328 



~ 
Zilog 

INTROOUCTION This application brief describes the use of 
the Z80 SIO with the Increasingly popular 
Synchronous Data Link Control CSDLC) com­
munications protocol. A general description 
of the SDLC protocol and Implementation of 
the protocol using the SIO are discussed. 
Descriptions for transmit and receive opera­
tions are given for use with slmple contol 
frame sequences. 

DESCRIPTION Data communication today requires a communi­
cation protocol that can transfer data 
quickly and rellably. One such protocol, 
Synchronous Data Link Control CSOLC>, Is the 
!Ink control used by the IBM Systems Network 
Architecture CSNA> communication package. 
SDLC Is actually a subset of the Interna­
tional Standards Organization (ISO> llnk 
control cal led High Level Data Link Control 
(HOLCl, which Is used tor lnternatlonal data 
communication. 

SOLC Is a Bit-Oriented Protocol CBOPl. It 
differs from Byte-Control Protocols CBCPs), 
such as blsync, In having a few bit patterns 
for control functions Instead of several 
special character sequences. The attributes 
of the SDLC protocol are position dependent 
rather than character dependent, so control 
Is determined by the location of the byte as 
wet I as by the bit pattern. 

A character In SDLC Is sent as an octet, a 
group of eight bits. Several octets combine 
to form a message frame In such a way that 
each octet belongs to a particular field. 
Each message frame consists of an opening 
flag, address, control, Information, Frame 
Check Sequence ( FCS), and c I os Ing f I ag 
flelds. The flag field contains a unique 
binary pattern, 01111110, which Indicates the 
beginning and end of a message frame. This 
pattern simplifies the hardware Interface In 
receiving devices so that multlple devices 
connected to a common 11 nk do not con f 11 ct 
with one another. The receiving devices 
respond only after a valid flag character has 
been detected. Once communication Is esta-

Using the ZSO SIO With SDLC 

Applcation Brief 

The reader should be faml llar with hardware 
aspects of the SIO such as Interfacing to the 
CPU and a modem. A more detalled description 
of the SDLC protocol Is given In the IBM 
publication Synchronous Data Link Control 
General Information (document I GA27-3093-2l. 
A description of the ZBO SIO can be found In 
the Zllog Data Book (document I 00-2034-Al. 

b I I shed for a part I cu I ar dev Ice, the other 
devices Ignore the message untl I the next 
flag character Is detected. 

The address fleld contains one or more octets 
that are used to select a particular station 
on the data I Ink. An address of al I ts Is a 
global address code that selects all the 
devices on the fink. When a primary station 
sends a frame, the address f I e Id Is used to 
select a secondary station. When a secondary 
station sends a message to the primary sta­
tion, the address field contains the secon­
dary station address, I.e., the source of the 
message. 

The control field fol lows the address field 
and contains Information about the type of 
frame being sent. The control f leld consists 
of one octet and Is always present. 

The Information fleld consists of zero or 
more 8-bl t octets and cont a Ins any actua I 
data transferred. However, because of the 
I Imitations of the error-checking algorlthm 
used In the frame-check sequence, maximum 
recommended block size Is approxlmately 4096 
octets. 

The Frame Check Sequence CFCS) fol lows the 
Information field or the control field, de­
pending on the type of message frame sent. 
The FCS Is a 16-bl·t Cyc 11 c Redundancy Code 
CCRC) of the bits In the address, control, 
and Information fields. The FCS Is based on 
the CRC-CCITT code, which uses the polynomial 
cx16+x12+x5+1>. The ZBO SIO contains the 
circuitry necessary to generate and check the 
FCS field. 

This application note refers to products as Z80 "A", "B" etc. to specifiy the speed grade. We are no longer 
using those characters for the speeds. For more details, please refer to the ordering information section.' 

617-1564-0007 329 2-25-81 



617-1564-0007 

Zero lnsertlon/deletlon Is a feature of SDLC 
that allows any data pattern to be sent. Zero 
Insertion occurs when five consecutive 1s In 
the data pattern are transmitted. After the 
f I fth 1, a 0 Is Inserted before the next bit 
Is sent. The data Is not affected In any way 
except that there Is an extra 0 In the data 
stream. The receiver counts the ls and de­
letes the O fol lowing the five consecutive 
Ts, thus restoring the original data pattern. 
Zero Insertion and deletion Is necessary 
because of the hardware constraint of search­
! ng for a f I ag character or abort sequence. 
Six ls preceded and followed by a 0 Indicate 
a f I ag character. Seven to 14 ls s lgn I fy an 
abort, whl le an Id le I lne (Inactive) Is 
Indicated by 15 or more ls. Under these 
three conditions, zero lnsertlon/deletlon Is 
Inhibited. Figure 2 Illustrates the various 
I lne conditions. 

SDLC protocol differs from other synchronous 
protocols with respect to frame timing. In 
blsync, for example, a host computer might 
Interrupt transmission temporarily by sending 
sync characters Instead of data. Th Is sus­
pended condition could continue as long as 
the rece Iver does not time out. With SDLC, 
however, It Is I II ega I to send f I ags In the 
middle of a frame to Idle the llne. Such an 
occurrence causes an error condition and 
disrupts orderly operation. Therefore, the 
transmitting. device must send a complete 
frame without Interruption. If a message 
cannot be completed, the primary station 
sends an abort and resumes message trans­
mission later. These conditions are discussed 
later In the Programming section of this 
brief. 

~Z~o lo~.-.100/D•lotloo ood OIC Ao~~lotl~~ 

One One Zero or more 16-blt 
01111110 8-blt character 8-blt character 8-blt characters CRC-CCITT 01111110 

Flag 
(Beginning 
of message 

frame) 

Flag 

Address Control Information FCS 

Figure 1. A Typical SDLC Message Frame Format 

Address Control 

Flag 
(End of 
message 

frame) 

01111110 10110000 011111011 Actual Data Stream 

Address= 10110000 
Control= 01111111 

a) Zero Insertion 

xxxxi 11111101111110 •••• 
'---.---/~ 

Abort Flag 
bl Abort Condition 

xxxx111111111111111 ••• 
Idle 

cl Idle Condition 

t 
Zero Insertion 

Figure 2. Bit Patterns for Various Line Conditions 

330 2-25-81 



PROGRAMMING 
THE SIO 

TRANSMIT 
<PERATION 

617-1564-0007 

Implementation of the SDLC protocol with the 
Z80 SIO Is simplified by the design of the 
SI o. Th Is sect I on d I scu sses four areas of 
SIO programming: Initial lzatlon, transmit 
operation, receive operation, and exception 
condition processing, 

Initial lzatlon defines the basic mode of 
operation for the SIO. Table 1 shows the 
sequence of steps used to lnltlallze the SIO, 
along with the necessary parameters. Since 
vectored interrupts are used, the 510 is pro­
grammed with the status affects vector <SAVl 
bit (WR!, bit 2) set. 

Other func::tion b!ts that can be !nc!uded ars 
the external Interrupt enable bit (WR!, b It 
0), which results In an Interrupt for each 
DCD or CTS change, Tx underrun or abort 
change; address search bit (WR3, bit 2), 
which when set, prevents the 510 from res­
ponding to data received unless the address 
byte matches the contents of WR6 or the 
global (FFH) address; auto enable bit (WR3, 
bit 5), which causes the Inactive CTS level 
to disable the transmitter and the Inactive 
DCD I eve I to di sab I e the receiver; and DTR 
(WR5, bit 7) and RTS (WR5, bit ll, wh I ch can 
be used to control a modem or other such 
device, 

After the SIO has been Initial I zed and 
enabled, It can begin sending SDLC frames by 
software activation of the transmitter. 
Activating the transmitter Includes resetting 
the transmitter Inactive semaphore (a program 
Ind I ca tor), resett Ing the T x CRC accumu I a-

Once the SIO is Initial I zed and the trans­
mitter Is enabled, It sends flag characters 
continuously until a message begins trans­
mission. These flag characters consist of 
the full 8-blt pattern. Although the SIO can 
race Ive f I ag characters w I th shared Os 
(0111111011111101111110 ••• l, It can only 
transmit flag characters without shared Os 
(011111100111111001111110 ••• ) • 

Table 1. SIO lnltlallzatlon Sequence 

Register Dirt a Function 

0 00011000 Channel reset 
2 (Vector) Interrupt vector 

lower eight bits 
(channel B only) 

4 00100000 SDLC mode 
1 00011111 Interrupt control 
6 (Address) Rx address field 
7 01111110 Flag field 
5 11101011 Tx character length, 

enable, CRC enable 
RTS and DTR 

3 11001001 Rx character length, 
enable, and CRC 
enable 

tlon, sending a character to the SIO, and re­
setting the Tx underrun/EOM latch In the SIO. 
Figure 3 shows the sequence for transmitting 

a typlcal control message frame using Inter­
rupts. 

SDLC Tx 
Control Message Frame 

XXXXXX01111110 

I 
I Address Control I CRC-1 CRC-2 01111110 ••• 

Esc+ Activate Tx TBE* 

I 
Control 
to SIO 

Reset TxCRC 
Address to SI O, 
Reset Tx 

Underrun/EOM latch 

TBE 

I 
TBE.------1 nterrupt 

Condition 

Check error conditions; 
Update semaphores 

Set MC semaphore 
(no data to SIO), 
Reset TBE pending 

(no data to SIO), 
Start response timer, 
Reset TBE pending, 
Set Tx Inactive 
Reset MC semaphore 

* - Transmit Buffer Empty 
+ = External/Status Change 

Figure 3, A Typical Transmit Control Frame Sequence 

331 2-25-81 



RECEIVE 
<PERATION 

617-1564-0007 

When the SIO Is loaded with the first data 
character (address byte), It stores the 
character In the Tx buffer untl I the current 
flag character has completed shifting. After 
the address byte Is transferred Into the 
shift register, a Transmit Buffer Empty (TBE) 
Interrupt occurs. The program then loads the 
control character Into the 510 and continues 
processing. The next TBE Interrupt Is Ig­
nored by the program (and no further data Is 
sent to the SIO), but a Reset Tx Interrupt 
Pending command Is Issued to the SIO to clear 
the TBE Interrupt condition. Also, the pro­
gram Message completed (MC) semaphore Is set 
so thet appropriate action can be taken when 
the next TBE Interrupt occurs. 

When the last data character (the control 
byte) has been shifted out of the SIO, the Tx 
underrun/EOM latch Is set because the SIO 
buffer was not loaded with a character on the 
previous TBE Interrupt. As a result, an 
External/ Status Change <ESC> Interrupt 
occurs and the SIO begins transmitting the 
FCS bytes automatlcal ly. In the ESC Inter-

The SDLC receive sequence Is slightly less 
complex than the transmit sequence. To begin, 
the SI 0 enters Hunt mode when any of three 
conditions occurs: receive enable, abort 
detect, or a software command. In Hunt mode 
the SIO searches for flag characters, and 
when It detects a flag, the SIO generates an 
ESC Interrupt. This Interrupt can be used to 
signal line activation or the end of an abort 
condition, depending upon the previous re­
ceive condition. For example, when the SIO 
has been lnltlallzed, the receive circuitry 

rupt service routine, the program checks for 
other condition changes Including CTS, DCD, 
and abort, and passes the status on to the 
program at the next-higher level. 

After the FCS bytes have been sh I fted out, 
the SIO generates a TBE Interrupt to Indicate 
that a flag character Is being transmitted. 
The TBE Interrupt service routine Interprets 
the MC semaphore and determines that the 
frame has completed transmission. The pro­
gram then clears the MC semaphore, sets the 
Transmitter Inactive semaphore, starts a 
timer for a response from the receiving de­
vice, and clears the TBE Interrupt condition. 
At this point, transmission of en SDLC mes­
sage frame Is complete and another message 
frame may be sent. 

If the transmitter Is to be turned off, the 
program must allow et least a two-character 
time delay before disabling the transmitter. 
This can be accomplished by connecting the 
SIO Tx clock I lne to the Input of a counter 
and having the counter Interrupt the CPU when 
the bit count expires. 

Is enabled and Immediately begins searching 
for flag characters (Hunt mode operation>. 
When the first flag Is detected, the 510 
exits from Hunt mode, which results In an ESC 
Interrupt, and the SIO begins searching for 
the address field. If the SIO Is programmed 
for Address Search mode and an address Is 
received that does not match the programmed 
address byte In the SIO, the SIO does nothing 
until the next flag Is found, after which the 
SIO again searches for an address match. 

••• 01111110 Address Control CRC-1 

SRC++ RCA --1 nterrupt I ~dltlon 
RCA 

I 
RCA+ 

I 
RCA 

I 
Store data Store Store ( I f character Continuous 

flags (If desired) data data 
Set semaphores 
Check errors; 
Error Reset; 
Discard 
Character* 

Is not discarded 
by SRC routine, 
this RCA Interrupt 
occurs.) 

NOTES 

* The SRC routine normally reads the data character to clear the 
SIO buffer~ This should be done after the program Issues an Error 
Reset command. 

~CA= Receive Charaeter Available 

++sRC = Special Receive Condition (higher priority than RCA) 

Figure 4. A Typical Receive Control Frame Sequence 

332 2-25-81 



617-1564-0007 

If the address field matches the address byte 
programmed Into the SIO, the SIO generates a 
Receive Character Aval I able CRCA) Interrupt 
when the address byte Is ready to be trans­
ferred from the SIO to the CPU. If the SIO 
Is programmed to Interrupt on al I receive 
characters, It generates an RCA Interrupt for 
each character received thereafter. It 
should be noted that the SIO generates the 
RCA Interrupt when a character reaches the 
top of the recel ve FIFO rather than when a 
character Is transferred from the shift 
register to the FIFO. This means that If the 
FIFO Is f u I I of data, each character gener­
ates a separate RCA Interrupt. This results 
In a more cons lstent software routine that 
does not need to check the receive FIFO, 
prov I ded there Is enough time between char­
acter transfers to a 11 ow the rout I ne to com­
plete the processing for each character. 

After the I ast FCS byte of a frame Is re­
ce I ved and processed, the SIO generates a 
Special Receive Condition CSRC) Interrupt, 
which Is of higher priority than the RCA 
Interrupt. In the SRC service routine, RRl 
Is read to determl ne the cause of the Inter­
rupt and the appropriate program semaphores 
are updated. Normal completion results In no 
FCS or overrun errors and the End-of-Frame 

Wake: 
--C-1 ear TX I nact Ive semaphore 

Reset Tx CRC 
Data to SIO 

(Address field byte) 
Reset Tx Underrun/EOM latch 

Transmit Buffer Empty CTBE): 
If (MC cleared) 

If (buffer not empty) 
Data to S 10 

Else, 

Else, 

Set MC semaphore 
Reset TBE condition 

Clear MC 
Set Tx Inactive 
Reset TBE condition 
Start Response timer 

bit Is set. Upon completion of the SRC In­
terrupt service routine, the program Issues 
an Error Reset command to the SI 0 and reads 
the data port to d I scard the rece lved data. 
If the data Is not read and discarded, an RCA 
Interrupt occurs. Now, a complete message 
frame and the fl rst FCS byte are In the re­
ceive buffer. 

Figure 4 shows the sequence for a typical 
control frame received by the SIO. If the 
address field byte Is to be discarded, a 
program semaphore should Initially be set to 
signal this to the RCA routine. After the 
address field has been received, the sema­
phc~e !s ~!ea~ed a~d ~ecept!on co~t!nues 

normally. Note that upon completion of a 
frame, an RCA Interrupt Is generated for the 
f I rst FCS byte and an SRC Interrupt Is gen­
erated for the last CRC byte. 

Tab I e 2 I I sts the contents of the Interrupt 
service routines used with the SIO, The wake 
routine Is not an Interrupt service routine 
but Is a routine cal led by the program on the 
next higher level to begin frame transmis­
sion, Once the wake routine Is cal led, the 
program on the next higher level monitors the 
Tx active semaphore to determine when the 
current frame completes transmission and the 
next frame transmission can begin, 

External/Status Change (ESC): 
Clear DCD, CTS, abort semaphores 
If (abort) 

Set abort semaphore 
Else if CDCD change) 

Set DCD semaphore 
Else If CCTS change) 

Set CTS semaphore 

Receive Character Available (RCA): 
If (EOF) 

Read and discard data 
Else, 

Store data 

Special Receive Condition (SRC): 
Read SIO RRl 
If CEOF) 

Set EOF semaphore 
Else If CCRC error) 

Set Rx CRC error semaphore 
Else If <Rx overrun) 

Set Rx overrun semaphore 
Issue Error Reset 
Read data & discard 

Table 2, SIO SDLC Interrupt Service Routines 

333 2-25-81 



EXCEPTION 
<XN>ITION 
<PERATION 

CONCLUSION 

N'PEll>IX 

617-1564-0007 

Most of the exception conditions encountered 
In the SDLC protocol have been discussed In 
the previous sections. They Include abort 
detect and DCD or CTS change. Th Is sect Ion 
further describes some of the more unusual 
conditions. 

DCD and CTS Change. The program hand I es DCD 
and CTS change by updating Its semaphores 
each time an ESC Interrupt occurs. In this 
,manner, the program on the next h I gh er I eve I 
monitors the semaphores and determines a 
course of action based on what these sema­
phores Indicate. 

Abort and Idle Line Detect. Abort and Idle 
llne detect are a bit more complicated, since 
they result In slmllar Interrupt operations. 
An abort occurs during a valld message frame. 
If the abort time Is greater than 14 bits, an 
Idle llne Is detected. This detection can be 

atort1 11w: ndow11 

done by activating a timer when the ESC In­
terrupt that signals a ~rklng I lne occurs. 
If another ESC Interrupt occurs before the 
timer times out, the I lne Is In an abort 
condition. If the timer times out before 
another ESC Interrupt occurs, then the I lne 
Is Id I e and the program can pursue an appro­
pr I ate course of action. A possible mech­
anism for Implementing the timer function Is 
to use a programmable counter that Is tied to 
the receive clock I lne to count bits. The 
counter Is programmed for eight clock tran­
sitions and Is started as soon as the SIO 
Interrupts the CPU with an abort condition. 
Only eight clock transitions need to be 
counted because by the time the SIO generates 
the ESC Interrupt, at least seven ls have 
already passed. Figure 6 shows the abort/ 
Idle llne timing and the Interrupts resulting 
from the llne changes. 

••• 111111+ 11~ 111r ••••• 0111111t1111110 ••• 

ESC : counter/timer ESC Interrupt, hunt bit cleared 
Interrupt, expires SIO back In sync, 

abort bit set line active. 
I 
I 
I 
I 
I 
If another ESC Interrupt occurs within 
the abort window and the abort bit Is 
cleared, the program has detected an 
abort. Otherwise, when the counter/ 
timer expires, an Idle llne has been 
detected. 

Figure 6. Abort/Idle Line Conditions 

This brief describes Implementation of the 
SDLC protocol using the SIO In an Interrupt-
driven environment. Descriptions for trans­

mit and receive operations are given for use 
with simple control frame sequences. For 
frames that transfer data, the sequences are 
slml lar except for transmit, where 11 data 
character Is sent to the SI 0 for a TBE In­
terrupt. For receive, multiple RCA Inter-

Following Is the listing of 11 simple SIO test 
progam that uses the SDLC protocol. This 
program uses vectored Interrupts to send a 
short SDLC control frame cons I st Ing of Ad­
dress 9EH, Contro I 19H, and Data 81H. The 
response timer times the response of the 
receiving station after a message has been 

LOC 
TEST,SDLC 

OB~ CODE M STMT SOURCE STATEMENT 

rupts occur for each data byte received. 

The Z80 SI 0 enhances system performance by 
min lmlzlng CPU Intervention during data 
transfers using the SDLC protocol. Perfor­
mance can be Improved further by us Ing the 
Z80 OMA with the SIO, resulting In an effi­
cient system configuration that reduces CPU 
Interaction to a minimum. 

sent. If the response timer expires, the 
program on the next higher level normally 
retransmits the message frame (If the re­
transmit count has not yet expired). This 
program transmits continuously until the 
processor Is reset or Interrupted by an ex­
terna I source. 

ASM 5. 9 

1 
2 

SIO SDLC TEST PROGRAM 

3 ; [OJ 01-21-81/MDP INITIAL CREATION 
4 

334 2-25-81 



LOC 

617-1564-0007 

TEST.SDLC 
OBJ CODE M STMT SOURCE STATEMENT ASM 5. 9 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 

THIS PROGRAM SENDS ADDRESS 9EH, CONTROL 19H, 
AND DATA 81H CONTINUOUSLY USING THE Z80 VECTORED 
INTERRUPT MOOE. THE SIO IS INITIALIZED TO USE 
SDLC WITH THE BAUD RATE CLOCK SUPPLIED BY 
HARDWARE INTERNAL TO THE SYSTEM. 

EGUATES 

ADmESS: EGU 9EH 
CTRL: EGU 
DATA: EGU 
MSQ...EN: EGU 
RAM: EGU 
RAl'SIZ: EGU 
SICDA: EGU 
SIOCA: EGU 
SICDB: EGU 
SIOCB: EGU 
CIOC: EGU 
C ICl3: EGU 
CIIJll: EGU 

19H 
81H 
1 
2000H 
lOOOH 
0 
SIODA+l 
SIODA+2 
SIODB+1 
8 
CIOC+l 
CIOC+2 
CIOC+3 CIOCTL: EGU 

BAL(): EGU 
RATE: EGU 
CIOCNT: EGU 
LITE: EGU 
RSPCNT: EGU 

9600 
BAUD/100 
9216/RATE 
OEOH 
100 

SIO PARAMETERS 

SICWRO: EGU 0 
CHRES: EGU 
ESCRES: EGU 
TBERES: EGU 
RETIA: EGU 
ENINRX: EGU 
SRCRES: EGU 
RCRCRE: EGU 
TCRCRE: EGU 
EOMRES: EGU 

SICWR1: EGU 1 
WREN: EGU 
ROY: EGU 
WRONR: EGU 
RXIFC: EGU 
RXIAP: EGU 
RXIA: EGU 
SIOSAV: EGU 

TXI: EGU 
EXTI: EGU 

SICWR2: EGU 2 

SICWR3: EGU 3 
RX8: EGU 
RX6: EGU 
RX7: EGU 
RX5: EGU 
AUTOEN: EGU 
HUNT: EGU 
RXCRC: EGU 
ADSRCH: EGU 
SYNINH: EGU 
RXEN: EGU 

SICWR4: EGU 4 
X64 EGU 
X32 EGU 
X16 EGU 
Xl: EGU 

335' 

18H 
lOH 
28H 
38H 
20H 
30H 
40H 
80H 
OCOH 

80H 
. 40H 

20H 
8 
10H 
18H 
4 

2 
1 

OCOH 
80H 
40H 
0 
20H 
10H 
8 
4 
2 
1 

OCOH 
80H 
40H 
0 

1 ADDRESS FIELD 
1 CONTROL FIELD 
1 INFORMATION FIELD 
1 MESSAGE LENGTH 
1 RAM ORIGIN 
1 RAM SIZE 
1SIO PORT A DATA 
1SIO PORT A CTRL 
1 SIO PORT B DATA 
1SIO PORT B CTRL 
1 CID PORT C 
1 CIO PORT B 
; CIO PORT A 
1 CID CTRL PORT 
1ASYNC BAUD RATE 

1 LIGHT PORT 
;RESPONSE TIMER VALUE 

1CH. RESET CMD 
1 ESC RESET CMD 
1 TBE RESET CMD 
1 RETI CH. A 
1ENAB. INT. NEXT RX 
1 SRC RESET CMD 
1RX CRC RESET CMD 
1TX CRC RESET CMD 
1 EOM RESET CMD 

1WAJT/RDY ENABLE 
1 READY FUNCT. 
1 WAIT /ROY ON RX 
1RX INT. FIRST CHAR 
1RX INT. ALL+ PARITY 
1 RX INT. ALL 
1 STATUS AFFECTS VECT. 
1 (CH. B ONLY> 
1 TX I NT. ENABLE 
1EXT. INT. ENABLE 

1 (CH.B ONLY) 

RX 8 BITS 
RX 6 BITS 
RX 7 BITS 
RX 5 BITS 
AUTO ENABLES 
HUNT MODE 
RX CRC ENABLE 
ADDR SEARCH 
SYNC LOAD INHIBIT 
RX ENABLE 

64X CLOCK 
32X CLOCK 
16X CLOCK 
lX CLOCK 

2-25-81 



TEST.SDLC 
LOC OB.J CODE M STMT SOURCE STATEMENT ASM 5. 9 

77 EXTSYN: EOU 30H EXT. SYNC ENABLE 
78 SDLC: EOU 20H SDLC MODE 
79 SYN16: EOU lOH 16 BIT SYNC 
80 SYN8: EOU 0 8 BIT SYNC 
81 STOP2: EOU OCH 2 STOP BITS 
82 STOP15: EOU 8 1. 5 STOP BITS 
83 STOPl: EOU 4 1 STOP BIT 
84 SYNCEN: EOU 0 SYNC ENABLE 
85 EVEN: EOU 2 EVEN PARITY 
86 PARITY: EOU 1 PAR ITV ENABLE 
87 
88 SIQ.IR5: EGU 5 
89 DTR: EOU 80H ; ACTIVATE DTR 
90 TX8: EOU 60H ;'TX 8 BITS 
91 TX6: EOU 40H ; TX 6 BITS 
92 TX7: EGU 20H ; TX 7 BITS 
93 TX5: EOU 0 ; TX 5 BITS 
94 BREAK: EGU lOH ; TX BREAK 
95 TXEN: EOU 8 ; TX ENABLE 
96 CRC16: EOU 4 ; CRC-16 MODE 
97 RTS: EOU 2 ; ACTIVATE RTS 
98 TXCRC: EOU 1 ; TX CRC ENABLE 
99 

100 SIQ.IR6: EGU 6 ;LOW SYNC OR ADDR 
101 
102 Sia.IR7: EOU 7 ; HIGH SYNC OR FL.AG 
103 
104 SIOFLG = FLAGS FOR SIO STATUS 
105 
106 BIT SET CONDITION 
107 
108 0 TX ACTIVE 
109 1 MESSAGE COMPLETE 
110 2 CTS ACTIVE 
111 3 DCD ACTIVE 
112 4 ABO~ DETECT 
113 5 RX 0 ERRUN ERROR 
114 6 RX CRC ERROR 
115 7 RX END OF FRAME 
116 *E 
117 
118 ; i *** MAIN PROGRAM *** 
119 

0000 120 ORG 0 
0000 C32000 121 .JP BEGIN ; GO MAIN PROGRAM 

122 
123 INTERRUPT VECTORS 
124 (MUST START ON EVEN BOUNDARY) 
125 

0010 126 ORG $.AND.OFFFOH.OR. 10H 
127 IN1VEC: 
128 SICJJEC: 

0010 9COO 129 DEFW CHBTBE 
0012 0100 130 DEFW CHBESC 
0014 0101 131 DEFW CHBRCA 
0016 OF01 132 DEFW CHBSRC 
0018 3801 133 DEFW CHATBE 
001A 4301 134 DEFW CHAESC 
OOlC 4801 135 DEFW CHAR CA 
001E 5101 136 DEFW CHASRC 

137 
138 BEGIN: 

0020 314020 139 LO SP,STAK ; INIT SP 
0023 ED5E 140 IM 2 ;VECTOR INTERRUPT MODE 
0025 3EOO 141 LD A. INTVEC/256 ;UPPER VECTOR BYTE 
0027 ED47 142 LO I, A 
0029 214520 143 LO HL,BUFFER 
002C 369E 144 LO < HL > , ADDRESS ; STORE ADDRESS 
002E 23 145 INC HL 
002F 3619 146 LD <HL>, CTRL ; STORE CTRL BYTE 
0031 23 147 INC HL 
0032 3681 148 LD (HL>, DATA ;STORE DATA BYTE 
0034 CD4COO 149 CALL INIT ; INIT DEVICES 

617-1564-0007 336 2-25-81 



TEST.SDLC 
LOC OBJ CODE M STMT SOURCE STATEMENT ASM 5. 9 

0037 218720 150 LO HL,RBUF ; SETUP READ BUFFER 
003A 228520 151 LD <RBPTR >, HL 

152 LOCP: 
0030 213000 153 LD HL,LOOP ; SETUP STACK FOR RETURN 
0040 E5 154 PUSH HL 
0041 CD7000 155 CALL WAKE ; WAKE TX 

156 LOCP1: 
0044 3A4020 157 LO A, CSIOFLG) ; CHECK TX ACTIVE FLAG 
0047 CB47 158 BIT O,A 
0049 20F9 159 .JR NZ,LOOP1 ;LOOP IF TX ACTIVE 
0048 C9 160 RET 

161 
162 INIT: 
163 SIOINI: 

004C 217001 i64 Lii HL• SliJfA ; lNIT CH. A 
004F OEOl 165 LD C.SIOCA 
0051 060A 166 LD B,SIOEA-SIOTA 
0053 EDB3 167 OTIR 
0055 217A01 168 LD HL. SIOTB ; INIT CH. B 
0058 OE03 169 LD C,SIOCB 
005A 0610 170 LD B.SIOEB-SIOTB 
005C EDB3 171 OTIR 
005E 3EOO 172 LO A.O ;CLEAR FLAG BYTE 
0060 324020 173 LD CSIOFLG>. A 

174 C IOI NI: 
0063 0808 175 IN A, CCIOCTL> 1 INSURE STATE 0 
0065 AF 176 XOR A 1 POINT TO REQ 0 
0066 D30B 177 OUT CC IOCTL>. A 
0068 080B 178 IN A, CCIOCTL> ; CLEAR RESET OR STATE 0 
006A AF 179 XOR A 
006B 0308 180 OUT <CIOCTL>• A 1POINT TO REG 0 
0060 3C 181 INC A 1 WRITE RESET 
006E 0308 182 OUT <CIOCTL>, A 
0070 AF 183 XOR A 1 CL.EAR RESET COND. 
0071 0308 184 OUT CCIOCTL>.A 
0073 :Z1SA01 185 LO HL.CLST 1 INIT CIO 
0076 060E 186 LO 8.CEND-CLST 
0078 OEOB 187 LO C,CIOCTL 
007A ED83 188 OTIR 
007C C9 189 RET 

190 
191 WAl<E: 

007D 3A4020 192 LO A, <SIOFLG> ; SET ACTIVE FLAG 
0080 CBC7 193 SET O,A 
0082 324020 194 LD <SIOFLG),A 
0085 214520 195 LD HL,BUFFER 1 SET BUFFER PTR 
0088 224320 196 LD ( 8UFPTR >, HL 
008B 3E03 197 LD A,2+MSGLEN ; SET BYTE COUNT 
0080 324120 198 LD <BYTES>, A 
0090 3E80 199 LD A.TCRCRE ;CLEAR TX CRC 
0092 D303 200 OUT <SIOCB),A 
0094 CD9COO 201 CALL CHBTBE 1 START TRANSMIT 
0097 3ECO 202 LD A.EOMRES ; RESET EOM LATCH 
0099 D303 203 OUT CSIOCB), A 
009B C9 204 RET 

205 *E 
206 
207 ; i INTERRUPT SERVICE ROUTINES 
208 
209 CHBT8E: 

009C C05901 :no CALL SAVE ;CH.B TX BUFFER EMPTY 
009F iiU4020 211 LD HL.SIOFLQ ;POINT TO FLAG BYTE 
00A2 CB4E 212 BIT 1, CHL> ; CHl::CK MC FLAQ 
OOA4 2010 213 .JR NZ,CHBTB2 ;BRANCH IF MESSAGE CUMPLE 
TE 
00A6 3A4120 214 LD A. <BYTES> ;CHECK BYTE COUNT 
OOA9 87 215 OR A 
OOAA 280F 216 .JR z,CHBTB1 ;BRANCH IF DATA DONE 
OOAC 3D 217 DEC A 
OOAD 324120 218 LD <BYTES>, A 
OOBO 2A4320 219 LD HL, CBUFPTR> 
OOB3 7E 220 LD A, (HL> 
0084 D302 221 OUT CSIODB>. A 

617-1564-0007 337 2-25-81 



TEST. SPLC 
LOC OBJ CODE M STMT SOVRCE STATEMENT ASM 5 9 

OOB6 23 222 INC HL 
0087 224320 223 LO <BVFPTR), HL 
OOBA C9 224 RET 

225 CHBTBl: 
OOBB CBCE 226 SET 1, <HU ; SET MC FLAG 
OOBD 3ECO 227 LO A.EOMRES 
OOBF 0303 228 OVT <SIOCB,l. A 
OOCl 1809 229 JR CHBTB3 

230 CHBTB2: 
OOC3 CB8E 231 RES 1, <HU ; CLEAR MC FLAG 
OOC5 CB86 232 RES O, <HU ; SET TX INACTIVE 
OOC7 3E64 233 LO A,RSPCNT ; START RESPONSE TIMER 
OOC9 324220 234 LO <RSPTMR>. A 

235 CHBTB3: 
oocc 3E28 236 LO A.TBERES ; RESET TBE INT. PEND. 
OOCE 0303 237 OVT <SIOCB), A 
0000 C9 238 RET 

239. 
240 CHllESC: 

0001 C05901 241 CALL SAVE ;CH. B EXTERNAL/STATVS CHG 
0004 214020 242 LO HL. SIOFLG ;GET FLAG BYTE 
0007 CB96 243 RES 2, <HU 
0009 CB9E 244 RES 3, <HU 
OOOB CBA6 245 RES 4, <HU 
0000 OB03 246 IN A, <SIOCB> ;READ RRO 
OODF 47 247 LO B.A ; STORE IN :t.B 
OOEO CB58 248 BIT 3.B ;CHECK OCO BIT 
OOE2 C4FBOO 249 CALL NZ,SETOCO 
OOE5 CB68 250 BIT 5.B ; CHECK CTS BIT 
OOE7 C4FEOO 251 CALL NZ.SETCTS 
OOEA CB78. 252 BIT 7,B ;CHECK ABORT BIT 
OOEC C4F800 253 CALL NZ.SETABT 
OOEF CB4E 254 BIT 1. <HU ; CHECK MC FLAG 
OOFl 2800 255 JR Z.CHBESl ; BRANCH IF CLEAR 

256 CHllESl: 
OOF3 3E10 257 LO A.ESCRES ; RESET ESC 
OOF5 0303 258 OVT <SIOCB>. A 
OOF7 C9 259 RET 

260 SETABT: 
OOF8 CBE6 261 SET 4, <HU 
OOFA C9 262 RET 

263 SETDCD: 
OOFB CBDE 264 SET 3, <HU 
OOFD C9 265 RET 

266 SETCTS: 
OOFE CBD6 267 SET 2, <HU 
0100 C9 268 RET 

269 
270 CHEIRCA: 

0101 C05901 271 CALL SAVE ; CH. B RX CHAR AVAIL. 
0104 OB02 272 IN A. <SIOOB> 
0106 2A8520 273 LO HL, CRBPTR> ; GET READ BVFF PTR 
0109 77 274 LO <HLl. A 
OlOA 23 275 INC HL 
010B 228520 276 LO <RBPTRl. HL 
OlOE C9 277 RET 

278 
279 CHBSRC: 

OlOF C05901 280 CALL SAVE ; CH. B SPECIAL RX CONO. 
0112 3E01 281 LO A, 1 
0114 0303 282 OVT <SIOCBl.A ;READ RRl 
0116 OB03 283 IN A, <SIOCB > 
0118 47 284 LO B. A ; SAVE IN %B 
0119 214020 285 LO HL. SIOFLG 
011C CBB6 286 RES 6, CHU ; CLEAR CRC ERROR FLAG 
011E CB78 287 BIT 7,B ; CHECK EOF BIT 
0120 C43801 288 CALL NZ,SETEFF ; BRANCH IF NOT EDF 
0123 CB70 289 BIT 6.B ; CHECK CRC ERROR 
0125 C43501 290 CALL NZ.SETCRC 
0128 CB68 291 BIT 5.B ; CHECK OVRRVN BIT 
012A C43201 292 CALL NZ.SETOVR 

293 CHBSRl: 
0120 3E30 294 LO A.SRCRES ; ERROR RESET CMO 

617-1564-0007 338 2-25-81 



TEST. SDLC 
LOC OB.J CODE M STMT SOURCE STATEMENT ASM 5. 9 

012F D303 295 OUT CSIOCB), A 
0131 C9 296 RET 

297 SEIDVR: 
0132 CBEE 298 SET 5, CHU 
0134 C9 299 RET 

300 SETCRC: 
0135 CBF6 301 SET 6, CHU 
0137 C9 302 RET 

303 SETEFF: 
0138 CBFE 304 SET 7, CHU 
013A C9 305 RET 

306 
307 CHATBE: 

013B CD5901 308 CALL SAVE ;CH.A TX BUFFER EMPTY 
013E 3E28 309 LD A,TBERE5 
0140 0301 310 OUT CSIOCA), A 
0142 C9 311 RET 

312 
313 CHl'ESC: 

0143 C05901 314 CALL SAVE ;CH.A EXTERNAL/STATUS CHG 
0146 3E10 315 LD A,ESCRES 
0148 D301 316 OUT CSIOCA>,A 
014A C9 317 RET 

318 
319 CHMCA: 

014B CD5901 320 CALL SAVE ; CH. A RX CHAR AVAIL. 
,:, ! 4E DBOO 321 IN A, CSIQt)Al 
0150 C9 3:22 RE1 

3li?3 
324 CHASRC · 

ill !l 1 CD5901 325 CALL. SAVF. 1CH. 1l 2iH:ClAL Ri Ctit·W 
0154 3E30 326 LO A,SRCRES 
015<!> 0301 327 OUT CSIOCA>, ;, 
0158 C9 3:il8 RET 

3:i!9 
330 SAVE REGISTER ROUTINE 
33! 
332 SAl.E: 

0159 E3 333 EX CSP), HL ; SP Hl. 
015A 05 334 PUSH DE OF 
0158 cs 335 PUSH BC BC 
015C F5 336 PUSH AF AF' 
0150 ODES 337 PUSH IX IX 
015F FDE5 338 PUSH IY IY 
t) 161 CD6F01 339 CALL GO PC 
0164 FOE! 340 POP IY 
0166 DDEl 341 POP IX 
0168 F1 342 POP AF 
0169 Cl 343 POP BC 
016A 01 344 POP DE 
016B El 345 POP HL 
016C FB 346 EI 
0160 ED4D 347 RETI 

348 
349 GO: 

016F E9 350 .JP CHU 
351 *E 
352 
353 ; ' CONSTANTS 
354 
355 SI OTA: 

0170 00 356 DEFB SIOWRO ; CHAN RESET 
0171 18 357 DEFB CHRES 
0172 01 358 DEFB SIOWRl ; CHAN. CHAR ACS. 
0173 D2 359 DEFB WREN+RDY+RXIAP+TXI 
0174 04 360 DEFB SIOWR4 1 MOI>E: 
0175 4F 361 DEFB X16+STOP2+EVEN+PARITY 
0176 05 362 DEFB SIOWR5 ; TX PARAMS. 
0177 AA 363 DEFB OTR+TX?+TXEN+RTS 
0178 03 364 DEFB SIOWR3 ; RX PARAMS. 
0179 41 365 OEFB RX?+RXEN 

366 SI!EA: EGU • 367 

617-1564-0007 339 2-25-81 



TEST. SDLC 
LOC OBJ CODE M STMT SOURCE STATEMENT ASM 5 9 

368 SI OTB: 
017A 00 369 DEFB SIOWRO ; CHAN. RESET 
0178 18 370 DEFB CHRES 
017C 02 371 DEFB SIOWR2 ; VECTOR REG. 
017D 10 372 DEFB SIOVEC.AND. 255 
017E 04 373 DEFB SIOWR4 ; MODE 
017F 20 374 DEFB Xl+SDLC+SYNCEN 
0180 01 375 DEFB SIOWR1 ; CHAN. CHAR ACS. 
0181 lF 376 DEFB RXIA+SIOSAV+TXI+EXTI 
0182 06 377 DEFB SIOWR6 ; ADDRESS 
0183 9E 378 DEFB ADDRESS 
0184 07 379 DEFB SIOWR7 ; FLAG 
0185 7E 380 DEFB 011111108 
0186 05 381 DEFB SIOWR5 ; TX PARAMS. 
0187 EB 382 DEFB DTR+TX8+TXEN+RTS+TXCRC 
0188 03 383 DEFB SIOWR3 ; RX PARAMS. 
0189 Cl 384 DEFB RX8+RXEN 

385 SICEB: EGU $ 

386 
387 CLST: 

018A 28 388 DEFB 28H ; PORT B MODE 
018B 00 389 DEFB OOOOOOOOB 
018C 2B 390 DEFB 2BH ; DATA DIRECTION 
018D EE 391 DEFB 111011108 
018E lC 392 DEFB lCH ; CT1 MODE 
018F C2 393 DEFB 11000010B 
0190 16 394 DEFB 16H ; CT1 TC MSB 
0191 00 395 DEFB 0 
0192 17 396 DEFB 17H LSB 
0193 60 397 DEFB CIOCNT 
0194 01 398 DEFB 1 ; MASTER CONFIG. REG. 
0195 FO 399 DEFB 11110000B 
0196 OA 400 DEFB 10 ;CT1 TRIGGER 
0197 06 401 DEFB 00000110B 

402 CEllD: EGU $ 
403 *E 
404 
405 ii DATA AREA 
406 

2000 407 ORG RAM 
2000 408 DEFS 64 ; STACK AREA 

409 STlll<(.: EGU $ 
2040 410 SHFLG: DEFS 1 SIO FLAG BYTE 
2041 411 BYlES: DEFS 1 BUFFER BYTE COUNT 
2042 412 RSPTMR DEFS 1 RESPONSE TIMER 
2043 413 BUFPTR DEFS 2 BUFFER POINTER 
2045 414 BUFFER DEFS 64 BUFFER 
2085 415 RBPTR: DEFS 2 RE'AD BUFF PTR 

416 RBlF: EGU $ 
417 
418 END 

617-1564-0007 340' 2-25-81 



~ 
Zilog 

617-1564-000l 

A popular communication protocol used to 
exchange Information between data processing 
devices has been In use for some time •. This 
protocol. developed by IBM. Is cal led binary 
synchronous protocol. or blsync. The Z80 SIO 
provides a flexible and powerful tool for the 
lmplementatlon of the blsync protocol. How­
ever. there are some design considerations 
that require special attention. This paper 
wlll discuss these design considerations and 
offer an approach to using blsync with the 
Z80 SIO. Specif le examples are presented and 
readers who are unfamiliar with the blsync 
protocol should refer to the ANSI standard 
(1) or the IBM publication (2) listed at the 
end of this paper. 

Bisync is a character-oriented protocol with 
information transmitted in blocks between two 
(or more) data communication devices. The 
medium through which this Information Is 
conveyed is called the data link. The par­
ticular data link discussed in this paper Is 
a point-to-point link using the ASCII trans­
mission code. other codes, such as EBCDIC. 
are not covered. but the format for blsync is 
basically the same. The data link consists 
of a master station (usually a computer) and 
a slave station (usually a terminal) with the 
associated communication gear In between-­
modems. phone lines. etc. The master station 
controls message flow by poll Ing and select­
Ing the slave station. Polling involves send­
ing a general request message to the slave 
station(s) to determine whether or not any of 
the slaves have data to send (traffic). If a 
slave station does have traffic. It responds 
to the poll and the master can then select 
that partlcular slave for Information ex­
change. S l·aves can on I y respond to a master 
device and cannot Initiate communication on 
the data I Ink. 

Information is exchanged by means of a well­
defined block structure. Message blocks 
consist of a header. body. and traller 

Binary Synchronous 
Communication 
Using the ZSO SIO 

Application Note 

October 1980 

(figure I). The header Is made of two or 
more SYN characters (hence the name blsync>. 
a start of header (SOH) character. and ad­
dress Ing and control Information for a par­
ticular slave station. 

s 
y 

N 

s s s E B 

y 0 T T c 
N H x x c --'V v- ~ 

Header Body Trailer 

Ftgure 1. Basic Message Block Format 
far Btsync Protocol 

p 

A 

D 

The body begins with a start of text (STX) 
character and encompasses the entire text 
information. The body generally contains 
ASCII text data. although 8-blt binary data 
can be transmitted using transparent text 
mode. 

The trailer contains the end of text (ETX> 
character and the block check character 
CBCC). The BCC Is used for detecting errors 
through "eye 11 c redundancy check Ing" CCRC) or 
"longltudal redundancy checking" (lRC). 

Error detection is essentlal when transfer­
ring information between data processing 
equipment. Since ASCII specifies only seven 
bits for Its code. the eighth bit is used for 
vertical redundancy checking (YRC>. more 
commonly known as character parity. In syn­
chronous communications. character parity is 
generally odd• whereas In asynchronous com­
munications it is even. Figure 2 shows typi­
cal ASCII characters with parity. The SIO 
can be programmed for 7-blt characters with 
odd parity enabled to minimize software over­
head. 

This application note refers to products as Z80 "A", "B" etc. to specifiy the speed grade. We are no longer 
using those characters for the speeds. For more details, please refer to the ordering information section. 

341 10/24/80 



617-1564-0001 

0 1 1 0 0 1 0 0 1 0 1 1 0 1 0 1 

L M P L Mp 
s S A S S A 
B B R B BR 

I I 
T T 
y y 

Fl gura 2. Odd YRC. 
Numbar of la should be odd. 

Because VRC applles only to the lndlvldual 
character, the entire message block has an 
LRC that makes up the BCC. The LRC Is a 
slmple bit position checksum where the number 
of ts for each position CO through 6) Is even 
for a block of data. Since the BCC Is a 
character, LRC Is subject to the same char­
acter parity rules as the rest of the data 
block. The LRC Includes all characters, 
except SYN, starting with the first character 
after SOH or STX and up to and Including ETX 
In the traller (figure 3). Since the SIO 
cannot calculate the LRC, the task Is left up 
to the user. LRC can be generated on a 
microprocessor with little effort by taking 
the message block and X<Rlng the data with an 
lnltlal value of zero to provide even LRC. 

s s s s E B 
y y 0 T T c 
N N H x x c 

:v: Included In BBC 

Ftgure 3. Characters Included tn BBC 

Another type of BBC Is generated by a cyclic 
redundancy check (CRC), which results In a 
more powerful method of block checking. 
CRC-12 Is used for 6-blt transmission code 
and CRC-16 Is used for 8-blt transmission 
code. CRC Is used In lieu of character 
parity and LRC, as with transparent text mode 
operation. 

The remainder of this paper Illustrates how 
to use the SIO In three special cases of the 
blsync protocol: transparent text mode, 
abort/Interrupt procedures, and error re­
covery procedures. 

Transparent text mode Is useful In bf sync 
when Information exchanged between master and 
slave Is not ASCII data. For example, a 
binary data flle (object program) might be 
sent from master to slave. ASCII transmis­
sion code Is only seven bits long making It 
dlfflcult to send 8-blt binary data. One 
alternative Is to convert the binary data to 
ASCII hex format at the master, transmit It 
to the slave and reconvert It back Into 
binary at the slave. However, two dlsadvan-

tages result from this. First, the master 
and slave require a means of conversion, by 
either software or hardware, adding cost to 
the data llnk. Since the slave (terminal) Is 
burdened most by this, such an approach Is 
usually not feasible. The other disadvantage 
Is that the exchange of Information Is slower 
since two (or more) ASCII characters are sent 
for every eight bits of binary data. The 
blsync protocol has provisions for sending 
8-blt binary data by using transparent text 
mode transmission. In this mode, character 
parity Is disabled, allowing the full eight 
bits to be used for data. However, to allow 
control within the constraints of the proto­
col, there are certain !Imitations on the 
binary data pattern. The primary difference 
Is that during transparent mode some communi­
cation control characters are preceded by a 
OLE character, actually making the control 
characters a two-character sequence. To 
distinguish a data byte from a control OLE, 
the protocol specifies Insertion of another 
OLE. The receiver then throws away the f lrst 
OLE, keeping the second as data. Table 1 
shows the communication control characters 
that are valid during transparent mode. 

Another character change occurs when the SYN 
character Is used for II ne fl 11. Norma II y., 
the SYN character Is Ignored, but during 
transparent mode the SYN Is preceded by a 
OLE, and both are consequently Ignored by the 
receiver. In.the event that the CPU does not 
have a character ready to send, the SIO auto­
matlcal ly Inserts SYN characters Into the 
data stream. With the SIO programmed tor 
16-blt sync characters, two syncs are sent 
from the SIO <write registers WR6 and WR7} 
when Its transmit butter Is empty. In trans­
parent mode, the user must change WR6 and WR7 
to OLE, SYN In order for the SIO to provide 
the proper 1 lne fl 11 characters. In accord­
ance with the ANSI standard, llne tlll char­
acters are not Included In the SIO CRC calcu­
latlon during transmit. During reception In 
transparent mode, the software must dlsable 
CRC accumulatlon when the OLE SYN character 
sequence Is detected. 

While In transparent mode, the user must be 
concerned with the error detection codes. It 
parity Is enabled In the SIO normally, It 
must be dlsabled during transparent mode. 
This change In SIO operation affects both 
transmit and receive and should therefore be 
considered If using full duplex. 

OLE 
OLE 
OLE 
OLE 
OLE 
OLE 
OLE 

342 

Table t. Control Codes Used 
tn Transparent Mode --STX Start of transparent text 

ETB End of transparent text block 
ETX End of transparent text 
SYN Idle sync 
ENQ Enquiry 
OLE OLE data 
SOH Start of tranlil!AC..ent header 

10/24/80 



617-1564-0001 

Since the SIO al lows CRC enable/disable on 
the fly, the software can easlly control CRC 
accumulation In both receive and transmit. 
During transmit, the CRC must be enabled/ 
disabled before the character ts transferred 
Into the serlal shift register. During re­
ceive, the CRC accumulation Is delayed eight 
bits. After the character Is transferred 
from the serial shift register Into the 
buffer, the user has to read that character, 
decide whether or not to continue CRC accumu­
lation, and dlsable/enable CRC before the 
next character Is transferred to the buffer. 
This Is not generally a problem, since char­
acter transfers occur about every 833 m:cro---­
seconds at 9600 baud. Table 2 shows the char­
acters Included and omitted In the CRC during 
transparent mode. 

Table 2. Characters lncluded/Om1t1"ed In 
CRC During Transparent Mode 

Omitted from CRC 

OLE 
OLE 
OLE 

SYN 
SOH 
STX* 

*If not preceded by 
transparent header 
within same block 

Included In CRC 

OLE of OLE DLE 
ETX of OLE ETX 
ETB of DLE ET8 
STX of OLE STX** 

**If preceded by DLE 
SOH within same 
block 

When CRC accumulation Is to be resumed, the 
software should enable CRC before the desired 
character Is transferred to the receive 
buffer. For example, suppose a OLE pair Is 
received during transparent text mode. The 
SIO generates an Interrupt when the first OLE 
ls transferred to the receive buffer. The 
driver program reads the OLE and Immediately 
disables CRC. When the next Interrupt 
occurs, the driver reads the second OLE and 
Immediately enables CRC to Include the second 
OLE Into the CRC accumulation. 

The second category of Interest Includes 
abort and Interrupt procedures. There are two 
types of aborts: block abort and sending 
station abort. There are three types of 
Interrupts: termination Interrupt, reverse 
Interrupt and temporary Interrupt. 

The block abort Is used by the sending sta­
tion when, In the process of transmitting a 
data block, the sending station detects an 
error condition In the data and decides to 
terminate the block so that the receiving 
station will discard It. In nontransparent 
mode, block abort Is accomplished by ending 
the block with an ENQ character, Instead of 
ETX or ET8. The sending station then waits 
for a reply from the receiver, which should 
be a NAK. The transparent mode procedure Is 
Identical except that a DLE ENQ character 

343 

sequence Is used. Since a block abort puts 
the data link back In nontransparent mode, 
NAK ls the valid response the receiver should 
send In both transparent and nontransparent 
modes. 

The sending station abort Is similar to the 
block abort, except that the sending station 
does not necessarily do a block abort but 
simply ends the current message block, waits 
for a response or timeout, and then sends an 
EOT to regain control of the data link. The 
sending station abort Is useful when trans­
mission to a particular receiver Is necessary 
due to e h!gher pr!or!ty m~ss~gA; buffer 
overflow condition, error detection, etc. 
Once the sending station abort sequence Is 
made, the master can perform any data link 
control function. 

From the receiver side, a termination Inter­
rupt causes the sending station to stop 
transmission. Such a procedure Is useful when 
the receiver cannot accept any more data or 
Incurs an error condition, such as paper jam, 
card jam, hardware error, etc. To accomplish 
a termination Interrupt, the receiving sta­
tion sends an EOT Instead of the normal re­
sponse. The EOT resets al I stations on the 
link and allows the master to Issue any con­
trol sequence. 

The reverse Interrupt CRINTl Is used when the 
receiving station needs to transmit during 
reception of several message blocks. The 
RINT occurs when a receiver detects a valid 
CRC or LRC and, Instead of returning an ACK, 
sends a DLE "<" character sequence to s I gna I 
an affirmative acknowledgement and to stop 
transmission of data. Some exceptions and a 
more detailed description of RINT can be 
found In the ANSI standard. 

The temporary Interrupt procedure, WACK (Walt 
Before Sending Positive Acknowledge), Is used 
by the receiving station to Indicate positive 
acknowledgement and an lnabl llty to receive 
more data. Such a response may be necessary 
when the receiving station cannot accept data 
continuously, such as during a printing 
operation. The WACK consists of a OLE ";" 
character sequence and Is sent In place of an 
ACK or ACKn. The sending station then sends 
ENQs (Enquiry) until the receiving station 
stops sending WACKs. The sending station can 
resume transmitting data when the receiving 
station sends an ACK or ACKn. 

Recovery procedures provide a means of pre­
venting data link lnstablllty. The recovery 
mechanism consists mainly of timers, grouped 
Into four basic areas, and a NAK counter. 
The NAK counter Is used to prevent repeated 
NAKs from Inhibiting further communications. 
The sending unit counts how many NAKs It 
receives for a particular data block so that 
after a predetermined number of retries, It 
can recover and pursue another course of 

10/24/80 



617-1564-0001 

action. The particular count value and 
course of action taken when the count expires 
are left up to the user. 

Four timers (timer A or response' timer, timer 
B or receiver timer, timer C or gross timer, 
and timer 0 or no activity timer> prevent the 
data fink from getting "hung" or going Idle 
for extended periods of time. Generally, the 
shortest Interval Is used with timer A, and 
the longest Interval Is used with timer o. 
For maximum system efficiency, however, the 
receiver timer (timer Bl should timeout 
before the response timer (timer Al. The 
particular Implementation of these timers 
varies from system to_system, and some flexl­
bl I lty of exact timer values Is left up to 
the user. 

Since It Is assumed that lnte~rupts wlll be 
used with the SIO, an Interrupt driven re­
ceiver timer count Is kept In memory and Is 
reinitialized each time a character Is re­
ceived (receive Interrupt). The same applies 
for the response timer, except that when a 
timeout occurs, the transmit driver has 
several options to follow. 

If the SIO Is set to transmit CRC on transmit 
underrun, then the driver could simply set 
Its flags and not fll I the buffer. This 
al lows a normal exit, since the SIO wit I then 
send Its CRC bytes. If the SIO Is set to not 
transmit CRC on transmit underrun, then It 
sends sync characters (SYN SYN or OLE SYN, 
whichever was last written to WR6 and WR7l 
until the transmit buffer Is fl I led or trans­
mit data Is set to marking. 

In any event, enough time must be allowed 
after CRC Is sent so that the rece,lver can 

properly decode CRC. Because of the char­
acter delay In the SIO during CRC accumula­
tion, about 20 clock cycles are necessary 
after the ,fast CRC byte Is sent to ensure 
adequate decoding time. (See the SIO Techni­
cal Manual for further details.> The SIO 
could be programmed to send pad characters 
either by dlsabllng parity and sending 8-b,lt 
FFs (hex) or by fllllng WR6 and WR7 with FF 
hex. If enabled, the SIO automatlcally sends 
whatever Is In Its sync registers apon trans­
mit underrun. Multlple message blocks do not 
have to be separated by pad characters as 
long as CRC Is val Id for the previous message 
block. However, to Insure adequate time for 
the' receiver to process CRC, It Is recom­
mended that at least two pad characters 
follow the last character of a block. 

Using the SIO for the blsync protocol Is 
falrly straightforward. Care should be exer­
cised when using the SIO In transparent text 
mode, but the Implementation Is greatly 
slmpllfled by the SI01s flexlblllty, as com­
pared to other serlal communications ICs. 
The CRC capabllltles of the SIO provide a 
powerful means of maintaining maximum data 
Integrity with minimum software overhead. 
Coupled with the OMA and the Interrupt capa­
bl I ltles of the Z80 processor, the user wlll 
find the SIO an excellent choice In serving 
data communication needs. 

(1) American National Standards Institute. 
ANSI X3.28 - 1976. 

(2) "General Information - Binary Synchronous 
Communications." ,Pub. number GA27-
3004-2. 

10/24/80 



~ 
Zilog 

1NTRoOUCTiON Serl a: dat~ ccrn~:J:-:!c:!t!0~ 15 J:!!rrnn9 -the roost 
widely used forms of exchanging Information 
with and between computers. The rapid ex­
pansion of this form of communication has 
created the need for low-cost, eff lclent, and 
flexible peripheral devices that provide the 
user ~tth a w!de variety of options~ The Z80 
DART Is designed to f 111 th Is need by pro­
vi d Ing two Independently programmable, 

HARDWARE The hardware for this application consists of 
a Z8400 Z80 CPU, Z8470 Z80A DART, Z8536 CIO, 
4K ROM, and 4K RAM. Figure 1 shows a block 
diagram of the system. The CIO supplies the 
b It rate c I eek for the DART and a I I ows the 
baud rate for each channel to be determ I ned 
by the software. 

Z8400 

ZSOA 
CPU 

ADDRESS 

DATA 

OSCILLATOR _____ __,, 

4K 
ROM 

Z8538 
CIO 

Serial Communication 
with the ZSOA DART 

Application Brief 

January 1981 

asynchronous communication channels tor a 
Z80-based system. 
This application brief describes the use of 
the ZBO DART In a Z80-based system. Further 
Information on the ZBO CPU and ZBO DART Is 
aval lable In the Zllog Data Book (document 
number 00-2034-Al, Z8400 ZBO CPU Product 
Specif !cation (document number 00-2001-Al, 
and the Z8470 ZBO DART Product Specif lcatlon 
(document number 00-2044-Al. 

The DART-to-CPU Interface consists of eight 
bidirectional data lines, seven control 
lines, and three daisy chain Interrupt con­
trol 11 nes. The data 11 nes are used to 
transfer data between the DART and the CPU. 
The d I rect Ion of data flow on the data 11 nes 
Is determined through the use of the CE, RD, 

4K 
RAM 

Z8470 

ZSOA DART 

RS 232C 
INTERFACE 

L 
TO MODEM 

RS 232C 
INTERFACE 

~ 
TO MODEM 

Figure 1. ZBO Syst11111 Block DlagraM 

751-1809-0001 

This application note refers to products as ZSO "A", "B" etc. to specifiy the speed grade. We are no longer 
using those characters for the speeds. For more details, please refer to the ordering information section. 

345 2/18/81 



751-1809-0001 

and IORQ control I Ines. When CE and IORQ are 
active, a data transfer occurs between the 
CPU and DART. -If Ro Is active at the same 
time, data Is sent from the DART to the CPU. 
If RD Is not active, data Is sent from the 
CPU to the DART. MT signals an Interrupt 
acknowledge cycle from the CPU in conjunction 
with IORQ. The RESET I lne performs- a device 
reset on the DART, al lowing It to be placed 
In a known state. The rema In Ing two contro I 
lines determine which of the four ports are 
being accessed. Table 1 shows the rela­
tionship of these two lines to the ports. 

Table 1. DART Port Addressing 

Port CID B/A 

Channel A Data 0 0 

Channel B Data 0 1 

Channel A Control 1 0 

Channel B Control 1 1 

c)i) and B/A are usu a I I y t I ed to the I ow est 
two CPU address lines used for 1/0 device 
selection. Figure 2 shows the device-select 
decode logic used In this application. 

IORQ 

74LS138 

7 F>-
6 F>-
5 F>-
4 F>- Z8470 
3 F>- Z80A ,,, 2 F>- DART 

+sv-l 
1 F>-
0 p.., 

--IORQ 

w 74LS139 

3P 

2p 
1 CE 

op 
-
A/B 

C/D 

NOTE: Only the lower eight bits of the 
address bus are used for I/O select. 

Figure 2. DART DeYlce Select Logic 

External connections to the Z80 DART Include 
serial data and control lines and modem con­
trol I Ines. The serlal data I Ines are 
Transmit Data CTxD) and Receive Data CRxDl 
for each channel. Separate transmit and 

receive clock Inputs are available on channel 
A CTxCA and RXCA), whl le a combined 
transmit/receive clock Input Is provided for 
channel B (i'XRXC'B>. To al low separate baud 
rates for both channels, TxCA and RxCA are 
tied together and connected to one counter/ 
timer output, and TxRxCB Is connected to 
another counter/timer output. This provides 
the user with a simple, software-programmable 
baud rate generator. 

The modem control I Ines provide the user with 
a means of control ling some external device 
such as a modem. This Is particularly useful 
for remote applications In which the CPU must 
determ I ne a course of act I on based on the 
status of the modem contra I I In es. For ex­
amp I e, Ring Indicator (Rf) can be used to 
signal the CPU that an Incoming call needs to 
be answered, or Data Terminal Ready <DTR) can 
be used In conjunction with Data Carrier 
Detect (DCD) to s igna I the modem that data 
communications can take place. DTR remains 
active as long as the DART Is communicating 
over the ser I a I data I I n k. The CPU can "hang 
up" or disconnect the telephone connection by 
deactivating DTR. Finally, Request To Send 
CRTS) and Clear To Send (CTSJ are useful In a 
multidrop configuration; that Is, when three 
or more modems are connected to the same 
telephone line RTS Is used to switch the 
carrier for a particular modem on or off 
under software control. CTS Is monitored so 
that after RTS Is activated the CPU knows 
when to start sending data. 

346 

The IEI, IEO, and INT I Ines form the Z80 
daisy-chain Interrupt controls that enable 
proper Interrupt sequencing. INT Is an 
open-drain, active Low output that Is con­
nected to the Z80 CPU TNT Input, along with a 
pul lup resistor. IEI Is usually connected to 
the preceding device In the daisy cha_ln or Is 
tied High If there Is no preceding device. 
I EO Is connected to the fol low Ing device In 
the daisy chain or Is left open. This 
application example uses Interrupts with the 
Status Affects Vector (SAY) programming op­
tion. Interrupts are prioritized Internally 
In the DART according to the various condl­
t Ions. There are four sep.arate Interrupt 
groups for each channel. Table 2 shows the 
relative priorities of these Interrupts. 

Table 2. DART lnhrnip1" Priority 

Priority Function 

Highest Ch. A Special Rx Condition 
Ch. A Rx Char. Available 
Ch. A Tx Buffer Empty 
Ch. A External/Status Change 
Ch. B Special Rx Condition 
Ch. B Rx Char. Available 
Ch. B Tx Buffer Empty 

Lowest Ch. B External/Status Change 

2/18/81 



PROGRAMMING Programming the Z80 DART consists of two 
parts: lnltlallzatlon and program operation, 
Initial lzatlon Includes defining the oper­
ating characteristics of the DART, This Is 
done by writing a series of bytes to the 
control port of each channel, A data! led 
descr I pt I on of the programml ng for the DART 
can be found In the DART Product Specifica­
tion (document number 00-2044-A), A listing 
containing an Initial lzatlon routine for the 
DART can be found In the appendix of this 
brief, 

CONCLUSION 

Af'PEMllX 

751-1809-0001 

Once lnltlallzed, the DART Interrupts the CPU 
for certain conditions that occur, These 
conditions Include Transmit Buffer Empty, 
Receive Character Aval labia, Special Receive 
Condition, and External/Status Change for 
each channe I, 

The DART generates a Transmit Buffer Empty 
CTBEl Interrupt when a character Is trans­
ferred from the Internal buffer to the shift 
register, The Interrupt service routine 
determines whether to send another character 
to the DART or to Issue a Reset Tx Interrupt 
Pending command, If a character Is loaded 
Into the DART, the Interrupt condition ls 
automatlcal ly removed, If a character Is not 
loaded, the software Issues a Reset Tx Inter­
rupt Pending command to remove the Interrupt 
condition and also sets an Internal program 
status flag that signals the transmit channel 
as Inactive, When transmission starts from 
an Inactive condition (such as after lnltlal­
lzatlon), the main program must activate the 
transm I tter by send Ing a character to the 
DART, In this appl I cation, a cal I to the 
transmit Interrupt service routine activates 
the transmitter after the buffer and pointers 
have been Initialized, 

The Receive Character Available (RCA) Inter­
rupt occurs after the DART transfers a char­
acter from the serial shift register to the 
receiver FIFO, The DART can store up to 
three characters In the FIFO, g I vi ng the CPU 

As do other Z80 peripheral products, the Z80 
DART Interfaces wel I with the Z80 CPU, The 
software required to utilize the features of 
the DART Is conducive to efficient program­
ming, Interrupts provide a key method of 
maintaining efficient system operation, keep­
ing CPU processing overhead to a minimum, 

Other methods of utilizing the DART Include a 
"po I I ed" (non Interrupt) system, Because the 

Fol lowing Is the listing of a DART test pro­
gram, Note that a 11 Interrupt serv Ice rou­
t Ines are dummy routines, except DATBE, which 

some flexlblllty In receive Interrupt timing. 
Read Register 0 CRRO, bit 0) can be checked 
to see If any more characters are In the FIFO 
before exiting the Interrupt service routine, 
If the DART Is programmed so that parity does 
not affect the Interrupt vector, parity 
errors must be checked In the receive service 
routine, This ls done by writing a register 
pointer to the DART for Read Register 1 (RR1) 
and then reading the contents, The bit test 
Instructions of the Z80 CPU are parttcularly 
useful In determining which bits are set or 
cleared, Processing for these errors ts the 
same as processing for the Special Receive 
Condition. 

The DART generates a Special Receive Condi­
tion CSRC) Interrupt If It detects a parity 
error, overrun, or framing error during re­
ception, When this occurs the programmer 
shou Id reset the error condition by Issuing 
an Error Reset command to the DART, After 
the Error Reset command Is Issued, the pro­
grammer should read and discard the data If 
necessary, If the data Is not discarded, 
then an RCA Interrupt occurs Immediately 
after exiting the SRC service routine, 

An External/Status Change CESC) Interrupt 
occurs when the DART detects a change In the 
external signals (RI, CTS, DCDl or when a 
receive break condition Is Initiated or ter­
minated, This ts useful In monitoring the 
Interface to the modem where a software flag 
ts set when the break condition ts detected 
and reset when the break condition ts clear­
ed, With CTS, DCD, and RI, the same proce­
dure ts fol lowed as with a break condition, 
However, If the auto enable bit Is set In the 
DART, the DART does not transmit data untl I 
CTS becomes active, nor does It receive data 
until DCD becomes active. 

The append Ix conta Ins the I I st Ing of a test 
program for the DART, Whl le It Is by no 
means complete, It does highlight the Inter­
rupt features of the Z80 DART, 

Z80 CPU has three Interrupt modes, the DART 
can be used with the CPU without vectored 
Interrupts, However, such slmpl I city Is 
usually at the expense of program size and 
speed, 

Nevertheless, the user wll I find the Z80 DART 
a viable alternattve to more expensive de­
v Ices when cons I dart ng the asynchronous com­
mun 1 catl on requirements for any Z80 system, 

transfers characters from the buffer to Port 
A transmitter, 

347 2/18/81 



TEST.DART 
LOC OBJ CODE M STMT SOURCE STATEMENT ASM 5. 9 

73 ; i *** MAIN PROGRAM *** 74 
0000 75 ORG 0 
0000 C32000 76 JP BEGIN ;GO MAIN PROGRAM 

77 
78 INTERRUPT VECTORS 
79 

0010 80 ORG $. AND.OFFFOH.OR. lOH 
. 81 INTVEC: 

82 DRTVEC: 
0010 7EOO 83 DEFW DBTBE 
0012 9000 84 DEFW DBESC 
0014 8AOO 85 DEFW DB RCA 
0016 A400 86 DEFW DBSRC 
0018 B800 87 DEFW DATBE 
001A DlOO 88 DEFW DAE SC 
001C CBOO 89 DEFW DARCA 
001E E500 90 DEFW DASRC 

91 
92 BEGIN: 

0020 318320 93 LD SP,STAK ; INIT SP. 
0023 ED5E 94 IM 2 ;VECTOR INTERRUPT MODE 
0025 3EOO 95 LD A, INTVEC/256 ;UPPER VECTOR BYTE 
0027 ED47 96 LD I, A 
0029 CD4800 97 CALL INIT ; INIT DEVICES 
002C 210020 98 LD HL,BUFFER 
002F 063E 99 LD B.62 

100 LOCP: 
0031 78 101 LD A,B 
0032 F640 102 OR 40H 
0034 77 103 LD <HL>. A 
0035 23 104 INC HL 
0036 10F9 105 DJNZ LOOP 
0038 3600 106 LD <HL>.13 ; CR 
003A 23 107 INC HL 
003B 360A 108 LD (HL), 10 ;LF 
003D 210020 109 LD HL. BUFFER 
0040 224120 110 LD < BUFPTR >. HL 
0043 CDB800 111 CALL DATBE ;WAKE TX 

112 
0046 18FE 113 JR $ ; LOOP FOREVER 

114 
115 INIT: 
116 DRTINI: 

0048 211001 117 LD HL.DRTTA· ; INIT CH. A 
004B OE05 118 LD c.DRTCA 
0040 060A 119 LD B.DRTEA-DRTTA 
004F EDB3 120 OTIR 
0051 211A01 121 LD HL. DRTTB ; INIT CH. B 
0054 OE07 122 LD C.DRTCB 
0056 060C 123 LD B.DRTEB-DRTTB 
0058 EDB3 124 OTIR 
005A AF 125 XOR A ; CLEAR FLAG BYTE 
OOSB 324020 126 LD CDRTFLGJ. A 

127 C IOI NI: 
005E DBOB 128 IN A. CCIOCTL) ; INSURE STATE 0 
0060 AF 129 XOR A ;POINT TO REG 0 
0061 D30B 130 OUT CC IOCTL>. A 
0063 DBOB 131 IN A. <CIOCTL> 
0065 AF 132 XOR A 
0066 D308 133 OUT <CIOCTL>. A 
0068 3C 134 INC A ; WRITE RESET 
0069 D308 135 OUT (C IOCTL>. A 
0068 AF 136 XOR A ; ELSE, CLEAR RESET COND. 
006C 0308 137 OUT <CIOCTL>. A 
006E 3EFE 138 LO A.OFEH ; <FUDGE FOR CIO GUIRK> 
0070 D308 139 OUT <CIOCTL>, A 
0072 0308 140 OUT <CIOCTL>, A 
0074 212601 141 LD HL,CLST ; INIT CIO 
0077 0620 142 LD 8.CEND-CLST 
0079 OE08 143 LD C.CIOCTL 

751-1809-0001 348 2-18-81 



TEST.DART 
LDC OBJ CODE M STMT SOURCE STATEMENT ASM 5.9 

007B EDB3 144 OTIR 
0070 C9 145 RET 

146 *E 
147 
148 ; ; SUBROUTINES 
149 
150 SETUP FDR ASYNC AS: 
151 9600 BAUD 
152 2 STOP BITS 
153 EVEN PARITY 
154 7 BIT CHARACTERS 
155 
156 DRTFLG - x x 1 1 x x 1 1 
157 I 
158 ERROR ASLEEP ERROR ASLEEP 
159 CHANNEL B CHANNEL A 
160 
161 DBTBE: 

007E CDF900 162 CALL SAVE ;CH. B TX BUFFER EMPTY 
0081 3EOO 163 LO A.ORTWRO ; POINT TD REG. 0 
0083 0307 164 OUT CDRTCB>, A 
0085 3E28 165 LO A.TBERES ;RESET TBE 
0087 0307 166 OUT CDRTCB >.A 
0089 C9 167 RET 

168 
169 DB RCA: 

008A CDF900 170 CALL SAVE ;CH. B RX CHAR AVAIL. 
0080 DB06 171 IN A, <DRTDB> ; READ DATA 
008F C9 172 RET 

173 
174 DBESC: 

0090 CDF900 175 CALL SAVE ;CH. B EXTERNAL/STATUS 
0093 3EOO 176 LO A.DRTWRO ; POINT TD REG. 0 
0095 0307 177 OUT CDRTCB >.A 
0097 3E10 178 LO A.ESCRES ;RESET ESC 
0099 0307 179 OUT CDRl'CB >.A 
009B 3A4020 180 LO A. <DRTFLG> ; UPDATE FLAG 
009E CBE7 181 SET 4.A 
OOAO 324020 182 LO CDRTFLG>. A 
OOA3 C9 183 RET 

184 
185 DBSRC: 

OOA4 CDF900 186 CALL SAVE ;CH.B SPECIAL RX COND. 
OOA7 3EOO 187 LO A.DRTWRO 
OOA9 0307 188 OUT CDRTCB >.A 
OOAB 3E30 189 LO A.SRCRES ;RESET SRC 
OOAD 0307 190 OUT CDRTCB >.A 
OOAF 3A4020 191 LO A, CDRTFLG> ; UPDATE FLAG 
OOB2 CBEF 192 SET 5,A 
OOB4 324020 193 LO <DRTFLG>,A 
OOB7 C9 194 RET 

195 
196 DATBE: 

0088 CDF900 197 CALL SAVE ;CH. A TX BUFFER EMPTY 
OOBB 2A4120 198 LO HL, <SUFPTR > ; GET BUFFER PTR. 
OOBE 46 199 LO B, <HL> ; GET CHAR. 
OOBF 70 200 LO A,L ; UPDATE PTR. 
ooco 3C 201 INC A 
OOC1 E63F 202 AND 3FH ;64 BYTE WRAPAROUND 
OOC3 6F 203 LO L,A 
OOC4 224120 204 LO ( BUFPTR), HL 
OOC7 78 205 LO A.B ; OUTPUT CHAR. 
OOC8 0304 206 OUT CDRTDA>. A 
OOCA C9 207 RET 

208 
209 DARCA: 

OOCB CDF900 210 CALL SAVE ;CH.A RX CHAR AVAIL. 
OOCE DB04 211 IN A. <DRTDAl 
0000 C9 212 RET 

213 
214 DAESC: 

0001 CDF900 215 CALL SAVE ;CH.A EXTERNAL/STATUS 

751-1809-0001 349 2-18-81 



TEST.DART 
LOC OB.J CODE M STMT SOURCE STATEMENT ASM 5.9 

OOD4 3EOO 216 LO A.ORTWRO 
0006 0305 217 OUT <ORTCA>• A 
0008 3E10 218 LO A.ESCRES 
OOOA D305 219 OUT <DRTCA>, A 
OODC 3A4020 220 LD A, <DRTFLQl 
OODF CBC7 221 SET O.A 
OOE1 324020 222 LO <DRTFLQ), A 
OOE4 C9 223 RET 

224 
225 OASRC: 

OOE5 COF900 226 CALL SAVE 1 CH. B SPECIAL RX COND. 
OOE8 3EOO 227 LO A.ORTWRO 
OOEA 0305 228 OUT <DRTCA>.A 
OOEC 3E30 229 LD A,SRCRES 
OOEE 0305 230 OUT <DRTCA>. A 
OOFO 3A4020 231 LD A, <DRTFLQ) 
OOF3 CBCF 232 SET 1, A 
OOF5, 324020 233 LD <DRTFLQ),A 
OOF8 C9 234 RET 

235 
236 MATHEWS SAVE REGISTER ROUTINE 
237 
238 SA\.E: 

OOF9 E3 239 EX <SP>. HL ; SP "' HL 
OOFA D5 240 PUSH DE DE 
OOFB C5 241 PUSH BC BC 
OOFC F5 242 PUSH AF AF 
OOFD DDE5 243 PUSH IX IX 
OOFF FDE5 244 PUSH IV IV 
0101 CDOFOl 245 CALL QO PC 
0104 FOEl 9!46 POP IV 
0106 DOEl 247 POP IX 
0108 Fl 248 POP AF 
0109 Cl 249 POP BC 
OlOA Dl 250 POP DE 
0108 Ei 251 POP HI. 
01oc FB 252 EI 
0100 E040 253 RETI 

254 
255 QO: 

OtOF E9 256 .JP <HL> 
257 *E 
258 
259 ; i CONSTANTS 
260 
261 OR TT A: 

0110 00 262 DEFB ORTWRO ;CHAN. RESET 
0111 18 263 DEFB CHRES 
0112 01 264 OEFB ORTWR1 ;CHAN. CHARACS. 
0113 13 265 DEFB RXIAP+T.XI+EXTI 
0114 04 206 OEFB DRTWR4 1MODE 
0115 4F 267 i:>EFB X16+STOP2+EVEN+PARITV 
0116 05 268 DEFB ORTWR5 1 TX PARAMS. 
0117 AA 269 DEFB OTR+TX7+TXEN+RTS 
0118 03 270 DEFB DRTWR3 1 RX PARAMS. 
Ol.19 41 271 OEFB RX7+RXEN 

272 DR'TEA: EOU • 273 
274 ORTTB: 

01 lA 00 275 OEFB DRTWRO 1 CHAN. RESET 
0118 18 276 OEFB CHRES 
011C 01 277 DEFB DRTWR1 ;CHAN. CHARACS. 
0110 17 278 DEFB RXIAP+DRTSAV+TXI+EXTI 
011E 02 279 DEFB DRTWR2 1 VECTOR REQ. 
011F 10 280 DEFB ORTVEC.AND.255 
0120 04 281 OEFB DRTWR4 ;MODE 
0121 4F 282 OEFB X16+STOP2+EVEN+PARITV 
0122 05 283 OEFB DRTWR5 ; TX PARAMS. 
0123 AA 284 OEFB DTR+TX7+TXEN+RTS 
0124 03 285 DEFB DRTWR3 1 RX PARAMS. 
0125 41 286 OEFB RX7+RXEN 

751-1809-0001 350 2-18-81 



TEST. DART 
LOC OBJ CODE M STMT S OlJRCE STATEMENT ASM 5. 9 

287 DRTEB: EQU $ 

288 
289 CLST: 

0126 28 290 DEFB 28H ; PORT B MODE 
0127 00 291 DEFB OOOOOOOOB 
0128 28 292 DEFB 2BH ; DATA DIRECTION 
0129 EE 293 DEFB 11101110B 
012A 06 294 DEFB 6 ; " PORT C 
0128 OE 295 DEFB 000011108 
012C 1C 296 DEF8 1CH ; CT 1 MODE 
012D C2 297 DEFB 11000010B 
012E lD 298 DEFB 1DH ; cr2 MODE 
012F C2 299 DEFB 110000108 
0130 lE 300 DEF!l iEH ; CT:J MODE 
0131 C2 301 DEFB 11000010B 
Ol.32 16 302 DEFB 16H ; CT1 TC MSB 
0133 00 303 DEFB 0 
0134 17 304 DEF8 17H LS8 
01:35 06 305 DEFB CIOCNT 
01 '.l6 18 306 DEF8 18H 1CH? TC MS8 
0137 00 307 DEFB 0 
1J 1 :39 19 308 OEF8 19H LS8 
0139 06 309 DEFB CIOCNT 
Ol3A lA 310 DEF'8 lAH I Cl3 TC MS8 
013B 00 311 DEF'B 0 
013C 113 312 OEF8 lBH LS8 
0130 06 313 DEF'B CIOCNT 
<)1 '.JE 01 314 DEF'B 1 ; MASTER CONF'IQ. REQ. 
013F FO 315 DEF'B 111100008 
0140 OA 316 DEF'8 10 ; CT1 TRIGGER 
0141 06 317 DEF'B 000001108 
0142 OB 318 DEF'B 11 ; CT2 TRIGGER 
0143 06 319 DEF8 000001100 
0144 oc 320 DEFB 12 ;CT3 TRIGGER 
0145 06 321 DEF8 000001108 

322 CEND: EGU $ 
323 *E 
324 
325 '' DATA AREA 
326 

2000 327 ORG RAM 
2000 328 BUFFER: DEFS 64 
2040 329 DRTFLG: DEFS 1 
2041 330 BUFPTR: OEF'S 2 
2043 331 DEFS 64 ; STACK AREA 

332 STAK: EQU $ 
333 
334 END 

751-1809-0001 351 2-18-81 



352 



~ 
Zilog 

INTRODUCTION There are several differences beTween tne 
8500 devices and the Z80 family peripheral 
devices, Including interrupt handling, reset 
to the device, and daisy-chain control. 

CPU HARDWARE 
I NTERF AC I NG 

INTERRUPT 
OPERATION 

This application brief describes the hardware 
Interface requirements and interrupt struc-

The hardware interface consists of three 
basic groups of signals: the data bus, 
control and selection lines, and the Inter­
rupt control lines. Following is a table of 
the general interface signals used by the 
CPU. Additional information can be found in 
the peripherals' separate data sheets. 

CE 

DATA BUS 

Data bus, bidirectional, 3-state. 
This bus is used to transfer data 
between the CPU and the peripheral 
device. 

CONTROL SIGNALS 

Address select Ii nes (optional). 
These I Ines are normal I y used to 
select the port and/or control 
registers. 

Chip Enable. ff shou Id be gated 
with JORQ or ~EO to prevent spur­
ious chip selects during other 
ma ch I ne eye I es. 

Understanding the 8500 interrupt operation 
requires basic operational knowledge of the 
Interrupt Pending !IP) and Interrupt Under 
Service CIUS) bits in relation to the daisy 
chain. IP is set in the SID by an interrupt 
condition, such as the transmit buffer going 
empty, and is used with IUS to control the 
TNT signal. IP ls not set while the CPU is 
executing an Interrupt acknowledge cycle. 
Thus, 

JP= INT* VREAD 

The JP latch is cleared either by a software 

lnterf acing 
8500 Peripherals 
To The zao 

Application Brief 

December 1980 

ture of the 8500 5Gi!as perlphS:""3!S !r. Z80 

systems. The 8500 peripherals are general­
interface versions of the Z-BUS counterparts 
and are designed to interface to nonmultl­
plexed buses !such as in a ZBO system), 
instead of multiplexed buses (such as in the 
Z8000). 

RD* 

WR* 

Read, Ri5 activates chip-read cir­
cuitry and gates data from chip onto 
data bus (to be read by the CPU). 

Write. WR is used to strobe data 
from bus into chip. 

INTERRUPT CONTROL 

JNTACK Interrupt acknowledge si~al fr~ 
CPU. This replaces the M1 and IORQ 
generated by the Z80 CPU for inter­
rupt acknowledge. It is used in 
conjunction with m5" to gate the 
Interrupt vector onto the data bus. 

00, JEI 
IEO 

Interrupt Request, Interrupt Enable 
Input and Interrupt Enable Output. 
These lines are functionally equiv­
alent to those in the Z80 peripheral 
products. iN'f is open-drain, active 
Low output. 

*Chip reset is accompl I shed by activating RD 
and WR simultaneously. 

command to the device or by an implicit 
action generated by the interrupt service 
routine. The lmpllclt action may be 
triggered by the CPU reading or writing a 
register in the device. For example, on a 
serial receive device like the SlO, IP may be 
reset when the CPU reads the character from 
the receive buffer that caused the Interrupt. 
This removes the interrupt condition, allow­
ing other Interrupts to occur. 

The interrupt Under Service CIUS> latch Is 
used to designate the Interrupt that Is 

This application note refers to products as ZSO "A'', "B" etc. to specifiy the speed grade. We are no longer 
using those characters for the speeds. For more details, please refer to the ordering information section. 

611-1809-0002 353 11/26/80 



611-1809-0002 

currently being serviced. IUS ls set when 
the device receives an Interrupt acknowledge 
from the CPU while IEI ls High and IP Is set. 
If IEI ls Low, the device ls prevented from 
setting the IUS latch and thus cannot Issue a 
vector. In this way, the daisy chain can 
establish relative priority among peripheral 
devices. IUS ls cleared on the 8500 devices 
by an explicit software command. 

The daisy chain used In the Z80 peripherals 
ls referred to as an IP and IUS daisy chain, 
because the IP and IUS bits control the IEO 
pin and the lower portion of the chain. If 
IP Is set, IEO can be Low even If another 
peripheral has an Interrupt under service. 
When the CPU executes an RETI Instruct Ion 
(ED-4D opcode), the peripheral monitors the 
bus and resets IUS. When the CPU reads the 
11 ED" part of RETI, peripherals with IP set 
and IEI High bring IEO High momentarily. This 
enables the device In the chain with IUS set 
to clear Its IUS latch when the "4D" byte ls 
read by the CPU. CIUS for a device ls not 
c I eared un I ess IE I is HI gh and the 11ED-4D" 
Instruction ls decoded. This allows more 
than one device to have IUS set so that 
nested Interrupts can be Implemented.) 

On the 8500 series devices, IP ls used to 
control the daisy chain only during the 
Interrupt acknowledge cycle. Under normal 

INT•RRUPT 
CONDITION 

conditions, only IUS ls required to control 
the state of the IEO pin. Therefore, the 
daisy chain used In 8500 devices ls referred 
to as an IUS daisy chain. Since IP Is not a 
part of the da I sy cha In, there Is no 11 ED11 

decoding pulling IEO High when IP ls set. To 
allow more control over the daisy chain, the 
8500 devices have a "Disable Lower Chain" 
CDLC) software command that unconditionally 
brings IEO Low. This can be used to deacti­
vate parts of the daisy chain selectively, 
regardless of Interrupt status. Figure 1 
shows the functions of IP and IUS and the 
truth tables for each, 

A unique feature of the 8500 devices ls the 
INTACK pin. This pin acknowledges a CPU 
Interrupt service cycle to the peripheral, 
allowing the peripheral to gate Its vector 
onto the data bus, On the Z80 peripherals, 
Interrupt acknowledge cycles from the CPU 
consist of a special Ml cycle where IORQ ls 
activated Instead of ~EQ. This limits the 
control of devices in systems using a 
processor other than the Z80. As a result, a 
simpler implementation has been devised, 
which uses additional logic to accommodate a 
wider variety of processors. Figure 2 shows 
a clrcu it that generates INTACK for the 8500 
devices in addition to wait states. Figure 3 
shows the.timing for INTACK and wait gener­
at.ion, 

RHURNTO 
MAIN PROGRAM 

a) State diagram of 8500 devices during interrupt cycle. 
IEI IP IUS IEO 

x x 
1 0 
0 I 
0 0 

IEI IP IUS IEO 

x x 
1 0 
0 1 
0 0 

b) 8500 device during idle state. c) 8500 device during INTACK cycle. 

Figure I. 8500 Device lntenupt·Proceulng Sequence 

WR----------------«"""'" 
RD•T----------------t 

iiD----------------<1 
iiiiiii---~ LS114 

iiil--<(>--,.-l-A 
LS04 

Figure 2. INTACK and WAIT Generation for 8500 Peripherals 

354 11/26/80 



--1 
NOTE: WAIT is assumed to be High. 

Figure 3. Timing for 8500 Peripheral• During Interrupt Acknowledge Without ZBO Peripheral Logic 

On long daisy chains, wait states may be 
necessary to allow the IEI and IEO lines time 
to stabilize, thus avoiding conflict between 
devices and preventing IUS or IP from chang­
ing erroneously. Because of the IP and IUS 
configurations, the daisy chain used In ZBO 
peripherals needs to stablillze during the 
interrupt acknowledge and RETI operations. 

However, on the 8500 devices, the daisy chain 
is IUS and wait states are generated for the 
iN'i'ACK cycle only, nat for the return cycle. 
(There Is no 11 ED-4D" decode.> As a resu It, 
hardware interfacing is greatly simplified 
and timing is less complicated than on the 
Z80 peripherals. 

SOFTWARE There are several options available for peripheral Is programmed to return a vector 
that does not reflect the status change (SAY 
or VIS not set>. This allows a slmple soft­
ware routine to emulate the Z80 vector 
response operation, as shown In the code of 
Figure 4. 

CONSIDERATIONS servicing Interrupts on the 8500 devices. 

611-1809-0002 

Since the vector register (or IP register) 
can be read at any time, the software can 
emulate the Z80 CPU Interrupt response 
easily. The Interrupt vector reflects the 
Interrupt status condition, even if the 

...... 1 
.!:!!:.!.. DbJ Cod• !. .!!!!..l!!!r!!. ..!!!!!!!!!. 

12 ., 
" ,. This rou'tlne •uletes the Z80 vector Interrupt 
15 operation by reading the device I nterNp1' vector, 
10 forming an eddress fran e vector "table, and e(ft-

17 cutlng an Indirect jump to the lntern.ipt service 
18 routine. 
19 

0000 3EOO 20 ll()X; LO A,CIVREG ;CURRENT INT. VECTCA REG 
0002 03EO 21 our (CTRU,A 1WRITE REG. Pm. 
0004 DllEO 22 IN A1 (CTRL) ;READ VECTCR REG. 
0000 :lC 23 llC • ;VALID VECTOR? 
0007 C8 24 RET z ;NO INTERRJPT - RElURN 
0008 £60£ 25 ... 000011108 ;MASK OTHER BITS 
OOOA " 

,. LO E,A ;FORM lllJEX VALlE 
0008 1000 27 LO o,o 
0000 211600 R 28 LO HL 1VECTAB ;ADD VECTCR TABLE ADCR 
0010 19 29 MD HL,0£ 
0011 7£ 30 LO A,(HL) ;GET LOW BYTE 
0012 2l 31 llC HL 
0013 .. 32 LO H,(Ht) ;GET HIGH BYTE 
0014 ., 33 LO L,A ;PUT ROUTINE ADCR IN fHL 
001' E9 34 JP (HL) ;GO TO ROUTINE I 

35 ,. VECTAB: 
0016 0010 37 DEFW IN71 
0018 0011 38 OEFW INT2 
OOIA 0012 " OEFW INT3 
OOIC 0013 40 OEFW INT4 
ODIE 0014 41 OEfW INT5 
0020 0015 42 OEFW INTO 
0022 0016 43 OEFW INT7 
0024 0017 44 OEFW INTO 

Figure 4. ZBO Vector Interrupt llapome Emulation by Software 

355 11/26/80 



A SIMPLE 
zeo SYSTEM 

zeo 
PERIPHERAL~ 
WITH 8500 
PERIPHERALS 

611-1809-0002 

Because the 8500 devices have considerable 
program f I ex I b I 11 ty, a Master Interrupt 
Enable CMIE or IE) bit In the control 
register determines the device response to 
the CPU. If MIE Is not set, Interrupts are 

The 8500 devices Interface easily to the ZSO 
CPU, providing a system of considerable 
flexlbll lty. Figure 5 II l~strates a simple 
system using the Z80 CPU and a Z8536 CIO In a 
nonlnterrupt environment. Since TNi'ACR Is 
not used, It Is tied High and no additional 
logic Is needed. Because the CIO can be used 
In a pol led Interrupt system, the INT p,ln Is 
connected to the CPU. The ZSO should not be 
programmed for Interrupt Mode 2, because the 
vector from the CIO Is never sent to the CPU. 
Instead, the CPU can be set for Interrupt 
Mode 1, and a global Interrupt routine that 
reads the vector register from the CIO can 
determine which routine to go to when an 
Interrupt occurs, as previously II lustrated 
In Figure 4. 

A zao system using a combination of zao 
family peripherals and 8500-type peripherals 
Is easily constructed, as shown In Figure 6, 
There Is no placement restriction on the 8500 
devices within the daisy chain, but It Is 
recommended that they be near the beginning 

+sv 

~ 

not generated to the CPU and the device 
ignores any Interrupt response from the CPU. 
This Is used as a global enable and slmpll­
fles the programming of Interrupts so that 
they can be eas 11 y changed on the f I y. 

+sv 

+SY 

Do-D1.------r------.Do-D1 

Rlit------------1Rli 
zao aaae 
CPU CIO 

Wlit------------1YIR 

PCLK 

Figure 5. Non-Interrupt CPU Interface 

of the chain In order to minimize propagation 
delays during the 11ED-4D11 decoding. The 8500 
devices do not decode tile 11ED 11 during an 
opcode fetch cycle, so IEO will not change 
state during this time. 

IEI IEOj-- IEI IEOj-- IEI IEOj-- IEI 

B5XX zao-xxx Z80-XXX ZBO-XXX 

"°w.I~ 
- -

IORQ IORQ IORQ 

llo-07 INT Do-01 RD Mi -
Do-01 Ro Mi iNT Do-01 RD Mi iNr INT 

INT tl. 1 ii:_ J 1 tl J 1 tl l 1 
Do-D1 

8 .l .l l .l ] J J .J 
Z80 

~ 
CPU _ 

M1 WAIT& l IO'RQ 1 
MREQ INT ACK 
IORQ GENERATION J WAIT LOGIC 

+SY 

Ro 
WR 

R~tr 1 RESET J l CIRCUIT 

l~ osc CLK 
v 

M NOTE. 280 D A uses the WR lme also. 

Figure 6. A Z60 System Using 8500 Devices and Z80 Peripherals 

Figure 1 is a diagram of the logic repre­
sented by the WAIT and INTACK logic box In 
Figure 6. The WAIT 1signal is OR-wired to the 
output of each peripheral device (if used). 
The Ro and WR signals only go to the 8500 

356 

device. The Z80 peripherals are wired to the 
Z80 as usual. The timing for the iNTiiCK and 
WAIT generation logic Is Illustrated In 
Figure a. 

11/26/80 



611-1809-0002 

WR 

RESl!T 

iiD 

IORQ 

MRl!Q 

ii1 

LS184 

Oo 

Oe 
OF 11 

12 ' --o--{>o--, 

CLK---~---_-_"-'·_1c_~·i ~~LLSOOS041 I 

WAIT----------<~ 
LS11 

Figure 7. WAIT and INTACK Generation Logic 

WRITE 

READ 
TO 8100 

IORQ/ Pl!RIPHl!RALS 

INTACK 

"Wait from peripheral devices 

Figure 8. Timing for 8500 and ZID Peripherals During Interrupt Acknowledge 

357 11/26/80 



358 



~ 
Zilog 

iNTROOUCTION 

HARDWARE 

751-1809-0003 

Z80-based system, It Is often necessary to 
generate a bit-rate clock for serial devices. 
The most efficient way to accomplish this Is 
to use a programmable counter that can change 
the bit-rate clock under CPU control, In 
this example, the Z8536 Counter/Timer 1/0 
device CCIOl was chosen to generate the bit­
rate clocks for a Z80-based statistical mul-

The Z8536 CIO is housed In a 40-pln package 
and contains both system bus Interface and 
1/0 port connections. The three 16-bit coun­
ters can be programmed to output a pulse, 
square wave, or one-shot waveform on the 
timer's corresponding output pin, Three bits 
of the output ports (two from Port B and one 
from Port Cl are used as the counter/timer 
outputs and provide the bit-rate pulses used 
In this application. 

Interfacing the CIO to the ZBO CPU requires 
eight bidirectional data lines and five con­
trol lines. The data lines are used to 
transfer register address and data to or from 
the CIO via the RD, WR, CE, and address con­
trol lines, Two address lines <Ao and A1l 
select the port the CPU Is accessing, Table 
1 shows the port selected by the address 
bits, 

Table 1. Port Addressing for the CIO 

Address Line Al Ao 

Port c 0 0 
Port B 0 1 
Port A 1 0 

CTRL 1 1 

The control port CCTRLl Is used for control 
register selection and parameter transfer. 
To select 11 particular register, 11 Register 
Pointer ls written to the CTRL port and the 
data ls written Into or read from the 
register. 

The CIO contains a state machine that con­
trols the CPU Interface. Upon power-up, the 

Serial Clock Generation 
Using the Z8536 CIO 

Application Brief 

February 1981 

tlplexor oroject that used a Z80 510 and a 
ZBO DART. 

This application brief describes the use of 
the Z8536 CIO device In a Z80-based system 
for generating the bit-rate clocks for asyn­
chronous communications. The Z8536 CIO con­
tains the circuitry necessary to generate the 
clock pulses required by asynchronous com­
munication devices. 

CIO Is placed In a reset state and remains 
there until cleared by the program. Reset can 
also be Initiated by Issuing a command to 
Register 0 with bit 0 set or by a hardware 
condition (RO and WJi simultaneously active), 
The reset state Is described In detal I In the 
programming section, Once the reset state Is 
cleared, the CIO Is placed In state O, In 
which the control registers can be accessed 
by writing a Register Pointer to the CIO 
control port, This places the CIO In state 
1, after which the next CPU access (read or 
write register data) causes the CIO to revert 
to state O, The last register addressed may 
be accessed simply by reading the CIO control 
port, It should be noted that the Register 
Pointer can be written only while In state 0, 
Also, data can be written to a control reg­
ister only after a Register Pointer has been 
written, Figure 1 shows the state diagram 
for the CIO, 

KARDWARI! 

OR -aOFTWARI! 
Rl!SET 

WR ro REG.a 
(BIT 0 = 1) 

Figure 1. State Diagram for Z8536 CIO 

The RD and WR control lines determine the 
data path direction Into or out of the CIO, 
When activated simultaneously, they also 
perform the device's reset function. Figure 
2 Illustrates how the reset function can be 
Implemented using external circuitry, 

This application note refers to products as ZSO "A", "B" etc. to specifiy the speed grade. We are no longer 
using those characters for the speeds. For more details, please refer to the ordering information section. 

359 2-13-B 1 



Since Interrupts are not used In this appll­
catlon, INTACK Is tied High to prevent 
spurious Interrupt operation of the CIO due 
to noise. Function 

·· Table 2. Counter/Timer 
External Interface Bits 

C/Tl C/T2 

CIT Output PB4* PBO 

C/T3 

PCO Each counter/timer uses one or more bits on 
one of the parallel ports to provide for 
counter Input and counter/timer output. Table 
2 shows which output port bits correspond to 
particular counter/timer Inputs and outputs. 

, Counter Input PB5 PBl PC1 

The outputs of the counter/timers (PB4, PBO, 
and PCO) are fed to the rest of the circuitry 
to supply the serial clock pulses. 

{ 

- LS08 
RD ~-

FROM READ TO 

zao RESET§soa . } zasae 
CPU -- CIO 

WR . WRITE 

Figure 2. RESET Interface to the Z8536 

PROGRAMMING Once the hardware has been defined, the func-

751-1809-0003 

. tlonal operation and configuration of the 
Z8536 are determined entirely by the software 
programming. Several considerations concern­
ing lnltlallzatlon must be made when using 
the CJO. When the device receives a reset 
from either hardware or a software command, 
the reset state·must be removed before any 
data can be written to the CJb. To clear the 
reset state, the user writes to register 0 
with bit O cleared. Once the Internal reset 
latch Is cleared, the programmer can Initial­
ize the CIO and begin normal operations •. The 
program listed In the appendix shows a reset 
sequence that brings the CIO to state 0 even 
If the previous state Is undefined. 

The configuration of the CIO defines the 
general operating characteristics of the 
device with respect to Its Internal func­
tions. The Port Mode Specification register 
sets to output those bits In Port B that are 
used for the counter/timer outputs. In this 
example, Bit mode Is used on Ports B and C to 
output the counter/timer pulses. 

The Counter/Timer mode, time constant values, 
and trigger commands are the last parameters 
to be set. Finally, the Master Configuration 
Control register Is set to enable Port B, all 
the counter/timers, and Port C (Port C Is 
enabled along with the counter/timers). The 
Counter/Timer mode Is programmed for contin­
uous cycle square wave with external output 
enabled. The square-wave cycle time Is two 
times the programmed time constant, which 
must be taken Into account when programming 
time constant values. The downcounters In 
the CJO are ·16-blt counters that are decre­
mented by one for each Internal clock· cycle. 
The Internal clock cycle Is the PCLK cycle 
divided by two, so the time constant value Is 
determined by the following formula: 

360 

Trigger Input PB6 PB2 PC2 
Gate Input PB7 PB3 PC3 

*PB4 = Port B, bit 4 

The last hardware consideration Involves the 
clock Input, PCLK. Since the ZB536 does not 
need to be synchronized with the CPU clock, 
PCLK can come from any source so long as It 
meets the timing and Interface requirements. 
In fact, PCLK can come from a source external 
to the system If desired. Once Inside the 
device, PCLK Is divided by two before It Is 
sent to the counter/timer circuits. There 
Is no other prescallng done and the resulting 
clock Is fed to the 16-blt counters. 

Time Constant= PCLK I (4 * Output Frequency) 

PCLK Is divided by four In the formula be­
cause It Is divided by two Inside the CIO 
before being fed Into the downcounter and .by 
two again because.a square wave cycle Is two 
times the time constant value. Substituting 
the baud rate and a multlpller of 16 for the 
output frequency, the formula reduces to a 
simple time constant formula. 

TC = PCLK I (4 * 16 * Baud Rate) 

With a 3.6864 MHz PCLK Input and a desired 
9600 baud rate, the formula slmpllfles to: 

TC = 3,686,400 I (4 * 16 * 9600) 
= 57600 I 9600 
= 6 

Other 16X baud rates may be generated by 
using the above formula In a general form. 

TC = 57600 I Baud Rate 

The user must exercise caution when choosing 
values for the PCLK and baud rates since they 
must result In nearly Integral time constant 
values. For example, a 2.4576 MHz clock 
Input with 9600 baud and a 16X clock output 
gJve a time constant value of 4. Greater 
flexlblllty Is available for selecting time 
constant values because the SIO does not 
require a square wave Input when programmed 
for 16X, 32X, or 64X clock Inputs. Pulses 
may be used with the SIO provided the user 
adheres to the SIO timing requirements. 

The last operation performed on the CIO Is a 
trigger command to "kick It off." This also 
Includes setting the gate command bit In the 
Counter/Timer Command and Status registers, 
which al lows the clock pulses to toggle the 

2-13-81 



COJCLUSION 

APPEi'«> iX 

751-1809-0003 

downcounter. The trigger command bit loads an 
Initial value Into the downcounter and begins 
operation of the counter/timer circuitry. 
Once triggered, the counter/timer runs con­
tinuously, performing automatic reloads to 

The designer should find the Z8536 CIO a 
versatile and cost-effective component to 
satisfy his or her system needs. Coupled 
with other Zllog components, the Z8536 archi­
tecture enhances the performance of any ZBO 
system by providing the essential timing, 1/0 
functions, and Interrupt control functions 
necessary for efficient system operation. 

Following Is a listing of a test program 
written for the ZBO CPU. This program simply 
lnltlallzes the CIO and then loops until 

LOC 
TEST.CID 

OBJ CODE M STMT SOURCE STATEMENT 

the downcounter after It reaches zero <term-
1 na I) count. At this time, the CIO Is fin­
ished being programmed and the user has 
three clean square waveforms at the output 
pins. 

The Z8536 CIO was chosen after considering 
device count, performance, and ease of use. 
Alternatives to the CIO Include discrete 
(TTL) hardware counters and gates, external 
clock sources, or the ZBO CTC. These methods 
are generally too parts-Intensive, and power 
consumption Is therefore higher. For appli­
cations where two 8-blt ports and three 
counter/timers are needed, the CIO proves to 
be the Ideal component. 

stopped, with the CIO continuously providing 
pulses. All three counter/timers are used to 
generate square waves corresponding to a 16X 
9600 baud clock. 

ASM 5. 9 

1 
2 
3 
4 
5 
6 
7 
8 
9 

; [ 1J 
CIO TEST PROGRAM 
01-07-81/MDP INITIAL CREATION 

0000 

0000 
0003 

0006 

0008 
OOOA 
oooc 
OOOE 
0010 
0012 
0014 
0016 
0018 
001A 
001C 
001F 
0021 
0023 
0025 

314020 
CD0800 

18FE 

DBOB 
3EOO 
D30B 
DBOB 
3EOO 
D30B 
3E01 
D30B 
3EOO 
D30B 
212600 
0620 
OEOB 
EDB3 
C9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 

CICX:: 
C ICl3: 
CIClll: 
C ICX:TL: 
BAl.I>: 
RATE: 
C ICX:NT: 
RAM 
RAl'SIZ 
*E 

BEGIN: 

INIT: 
C IOI NI: 

THIS PROGRAM INITIALIZES THE THREE COUNTER 
TIMERS IN THE 28536 CIO TO GENERATE SQUARE 
WAVES, THEN LOOPS FOREVER. 

PROGRAM EQUATES 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

*** 

8 
CIOC+l 
CIOC+2 
CIOC+3 
9600 
BAUD/100 
576/RATE 
2000H 
1000H 

MAIN PROGRAM *** 
ORG 0 

LD 
CALL 

JR 

IN 
LO 
OUT 
IN 
LD 
OUT 
LD 
OUT 
LD 
OUT 
LO 
LD 
LO 
OTIR 
RET 

SP,STAK 
INIT 

$ 

A, <CIDCTL> 
A.O 
<CIOCTL>. A 
A. <CIOCTL> 
A.O 
<CIOCTL>. A 
A. 1 
<CIOCTL>. A 
A,O 
<CIOCTLl. A 
HL,CLST 
B.CEND-CLST 
C.CIOCTL 

; CIC PORT C 
; CIC PORT B 
; CIO PORT A 
; CIO CTRL PORT 
;ASVNC BAUD RATE 

;RAM START ADDR 
; RAM SIZE 

; INIT SP. 
; INIT DEVICES 

; LOOP FOREVER 

; INSURE STATE 0 
;REG 0 OR RESET 
;WRITE PTR OR CLEAR 
; STATE 0 
;REG 0 
; WRITE PTR 
; WRITE RESET 

;CLEAR RESET 

; INIT CID 

RESET 

:361 2-13-81 



TEST.CID 
LOC OBJ CODE M STMT SOURCE STATEMENT ASM 5.9 

49 ; i CONSTANTS 
50 
51 CLST: 

0026 28 52 DEFB 28H ;PORT 8 MODE 
0027 00 53 DEFB 000000008 
0028 28 54 DEFB 2BH ;PORT 8 DIRECTION 
0029 EE 55 DEFB 111011108 
002A 06 56 DEFB 06H ; PORT c DIRECTION 
0028 FE 57 DEF8 111111108 
002C lC 58 DEFB lCH ; Cll MODE 
002D C2 59 DEFB 110000108 
002E lD 60 DEF8 lDH ;CT2 MODE 
002F C2 61 DEFB 110000108 
0030 lE 62 DEFB lEH ;CT3 MODE 
0031 C2 63 DEFB 110000108 
0032 16 64 DEFB 16H ICT1 TC MSB 
0033 00 65 DEFB 0 
0034 17 66 DEFB 17H LS8 
0035 06 67 DEFB CIOCNT 
0036 18 68 DEFB 18H ;CT2 TC MS8 
0037 00 69 DEFB 0 
0038 19 70 DEFB 19H LSB 
0039 06 71 DEFB CIOCNT 
003A 1A 72 DEFB lAH ; CT3 TC MSB 
0038 00 73 DEFB 0 
003C 18 74 DEFB 1BH LSB 
003D 06 75 DEFB CIOCNT 
003E 01 76 DEFB 1 ; MASTER CONFIG. REG. 
003F FO 77 DEFB 111100008 
0040 OA 78 DEFB OAH ; CT1 TRIGGER 
0041 06 79 DEFB 000001108 
0042 OB 80 DEFB OBH ; CT2 TRIGGER 
0043 06 81 DEFB 000001108 
0044 oc 82 DEFB OCH ; CT3 TRIGGER 
0045 06 83 DEFB 0000011013 

84 CEN:>: EGU $ 

85 
86 ; ; DATA AREA 
87 

2000 88 ORG RAM 
2000 89 DEFS 64 ; STACK AREA 

90 STl>K: EGU $ 
91 
92 END 

751-1809-0003 362 2-13-81 



~ 
Zilog 

INTROOUCTION 

HARDWARE 
CONFIGURATION 

751-1809-0005 

In many computer systems, an accurate time 
base Is needed so that crltlcal ly timed 
events do not go awry. Use of a counter or 
timer to monitor time-dependent activities Is 
assent I a I In such systems. In an lnterrupt­
dr I ven system, the ZB 0 CTC can prov I de 
regular program time Intervals. Single-event 

In the example used here, the hardware con­
s I sts of a ZBO CPU with 4K bytes of RAM, 4K 
bytes of ROM, a ZBOA SIO, and a ZBOA CTC. 
There are two external Inputs to the CTC: one 
Is derived from the ac power line to provide 

ADDRESS 16 

DATA 'a 
CONTROL7 7 

7 

Z80A 
CPU 

+5V 

~4.7K 

Timing in an Interrupt-Based 

System with the zao®cTC 

Application Note 

March 1981 

counts or singie-even+ Time ae1ays can aiso 
be Implemented under program control. This 
appl I cation note descr I bes both cont I nuous 
time-Interval operations and single-Interval 
count operat Ions us Ing the ZB 0 CTC In a ZB O 
system. 

60Hz pulses; the other Is connected to a 
transmit clock 1 lne on the SI O. One of the 
counter/timer outputs Is connected to the SIO 
transmit and receive clock Input, as shown In 
Figure 1. 

4K 4K 
RAM ROM 

ZCIT02 RxTxCA 

CLKITRIG3 TxCB SIO 
CTC ,.-1 RxCB 

;» r+- CLKITRIG 1 

INT ~ CLK INT CLK INT 

CLK 

~SCILLATOj-J 
l RS-232C 

INTERFACE 

c 
60 Hz TTL j 
PULSES 

Figure 1. ZBOA Syst .. Block Diagram 

This application note refers to products as Z80 "A", "B" etc. to specifiy the speed grade. We are no longer 
using those characters for the speeds. For more details, please refer to the ordering information section. 

363 4/1/81 



CTC MODES 

TIMER MODE 

751-1809-0005 

The Z80 CTC Is designed for· easy Interface to 
the Z80 CPU. An 8-blt bldlrectlonal data bus 
Is used to transfer I nformat I on between the 
CTC and CPU. The control lines, RD, i'ORQ, Mi, 
and CE, determine what data Is being tr.ans­
ferred and when, Ml and rmQ are used during 
the Interrupt acknowledge cycle to al low the 
CTC to p~t Its 8-blt Interrupt vector to 
the CPU, IORQ Is also used In conjunction 
with ~to enable transfers between the CTC 
and the CPU, RO Is used to control the 
direction of data flow between the CTC and 
the CPU. The channel select I Ines CCSo and 
CS1J are connected to the lowest two bits of 
the address bus and are used to access one of 
the four counter/timer channels. Table 1 
shows the relationships between the CS pins 
and the counter/timer channels. 

Table 1. Channel Select Values 

cs1 CSo CIT Channel 

0 0 Channel 0 
0 1 Channel 1 
1 0 Channel 2 
1 1 Channel 3 

The CTC system clock Input requirements are 
slml lar to those of the Z80 CPU. For both, 
the system clock Input Low level should be no 
greater then 0.45 V, the High level should be 
no less than V c-0,6 V, and the clock rise 
and fal I times s~ould be less than 30 ns, A 
clock-driver device that meets trese require­
ments, such as the HH-3006-A , works wel I 

There are two basic modes under which the CTC 
can operate: Timer mode and Counter mode. 
Each mode has certain programmable character-

A typical use of the CTC In Timer mode Is to 
provide regular, fixed-Interval Interrupts to 
the CPU used as a time-base reference to 
allocate the processor resources efflclently, 
For example, a multltasklng system might have 
the proces.sor execute a task for a g I ven 
length of time and then Interrupt execution 
of the program at one-second Intervals to 
scan the task queue for higher-priority 
tasks. Th Is system t I tne I nterva I can be pro­
v I ded by the CTC In Timer mode. In Timer 
mode, the CTC downcounter Is decremented by 
the output of the prescaler, which Is toggled 
by the system clock Input. The prescaler has 
a programmable value of 16 or 256, depending 
on the condition of bit 5 In the channel 
control word (CCWJ. Thus, with a 4 MHz system 
clock fed Into the CTC, a timer resolution of 
4M.S (prescaler count of 16) or 64JC.S (count of 
256) Is possible. 

In the example shown, the Interrupt Interval 
Is set to 8.33 ms, which Is provided by the 
CTC with a 3.6864 MHz Input clock, 256 pre-' 
scaler value, and a time constant value of 
120. The CTC interrupt service routine uses a 
software count of 120 to maintain a one­
second system time Interval, Each time the 
service routine Is executed, the software 
count Is decremented by 1. When the count 
reaches O, a flag Is set and the program 
pursues an appropriate course of action. 
Figure 2 shows the lnltlallzatlon and Inter­
rupt service routine coding for a CTC channel 
using the Timer mode, 

with the etc, Several devices can be con­
nected to the driver, but the user should be 
careful not to overload the driver. The capa­
citance of the clock Input to the CTC (20 pf) 
should be noted as this may affect the system 
clock rise and fal I times, 

Interrupt control log le within the CTC Is 
used to Initiate Interrupts and to control 
the Interrupt acknowledge cycle generated by 
the CPU, An Interrupt Is generated by the CTC 
when one of the counter/timer do.wn counters 
reaches terminal count (0) and IE I Is High. 
IEI and IEO al low the CTC to operate within 
the Z80 Interrupt daisy chain and to connect 
to the next h I gher-pr I or I ty and next 
lower-priority devices In the chain, respec­
tlve I y. If there Is no higher-priority de­
vice, IEI is tied to +5 v. 
The CTC Internally prioritizes each counter/ 
timer with respect to interrupt generat Ion. 
This maximizes performance by resolving con­
tention between channels shou Id two or more 
interrupt conditions occur simultaneously, 
Table 2 shows the relative priority levels of 
each counter/timer within the CTC. 

Table 2. CTC Channel Interrupt Priority 

Priority Channe.I 

Highest 0 
1 
2 

Lowest 3 

!sties that enable the CTC to be used in a 
wide variety of appllcatlons. 

Another use of CTC Timer mode operation Is to 
Implement a nonretrlggerable one-shot using 
external circuitry. The digital approach to 
the one-shot provides a programmable time 
delay under CPU control and provides greater 
noise Immunity than the more common analog 
delay circuits provide, Figure 3 shows a 
circuit that uses part of a 74LS02 package In 
addition to one CTC channel, 

The trigger waveform should be positive-going 
and shou Id meet the CTC setup time for the 
CLK/TRIG Input, Also, the trigger High level 
time should be less than the CTC delay time 
In order to prevent the two 74LS02s from 
latch Ing In the triggered state, An addl­
tlonal gate can be added to lnltlal lze the 
7 4LS02 f II p-fl op to a def I ned state when the 
system Is reset or else the software can 
pulse the timer output to set the fl Ip-flop, 
as Is done In this case. A third use of the 
Timer mode Is to provide a bit rate clock for 
a serial transceiver device, such as the Z80 
SI O, The SI 0 can accept a lx, 16x, 32x, or 
64x bit rate clock Input from an external 
source, and with a 16x, 32x, or 64x multi­
plier, the SIO can_ accept a pulse waveform 
Input for the bit rate clocks, as long as the 
pulses meet the rise, fal I, and hold time 
req u I rements of the SI O. The CTC meets these 
requirements and can be connected directly to 
the SIO to provide the necessary bit rate 
clocks. Figure 4 shows the code needed to 
generate a bit rate clock for the SIO, 

1A clock driver by Hybrid House, 1615 Remuda La,, San Jose, CA 95112. 

364 4/1/81 



751-1809-0005 

With a lx bit rate clock programmed Into the 
SI O, a square-wave Input must be suppl led. 
This can be done by adding a ti Ip-flop be­
tween the CTC and the SIO. The time constant 

va I ue shou Id be set to ha It the baud rate 
value, since the CTC output Is divided In 
half by the flip-flop. 

START 

INITIALIZE CPU 

INITIALIZE CTC 

SETUP 
SOFTWARE COUNT 

SETUP DISPLAY 

ENABLE INTERRUPTS 

LOOP 

SAVE REGISTERS 

DECREMENT 
SOFTWARE COUNT 

N 

RESET 
SOFTWARE COUNT 

SWITCH 
DISPLAY STATE 

EXIT 

a) Main Program b) Interrupt Service Routine 

TRIQQER_jL 
INPUT 

Figure 2. Software for CTC TIMr Mode Operation 

LS02 
-,,_ _ ____.! 
c A 

_J L 
CLK/TRIG D 

zc1rol-_.!8-L~-+-=---

CTC 

cl ... _____ _, 

D_j 
Figure 3. Monostable Multlvlbrator Using the ZBO CTC 

.365 4/1/81 



751-1809-0005 

TEST.CTCO 
L.OC OBJ CODE M STMT SOURCE STATEMENT 

0000 
0000 

0010 

0010 
0012 
0014 
0016 

0018 
OOlB 
0010 
001F 
0021 
0024 

0025 

r.)027 
0(>29 
C:•02B 
0020 
002F 
0031 
0033 
oo:i4 
00.37 
0039 
003C 

C31800 

4000 
3000 
3000 
3DOO 

314020 
E05E 
3EOO 
E047 
CD2700 
FB 

18FE 

3EA7 
D30C 
3E78 
D30C 
3E10 
D30C 
AF 
324120 
3E78 
324020 
C9 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
.13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 

CTCO: 
CTC1: 
CTC2: 
CTC3: 
LJlE: 
RAM: 
RAl'BIZ: 
Til'E: 

CCW: 

; i 

INlVEC: 

BEGIN: 

INIT: 

CTC TEST PROGRAM 

THIS PROGRAM USES THE CTC IN CONTINUOUS 
TIMER MODE. THE CTC COUNTS SYSTEM CLOCK 
PULSES AND INTERRUPTS EVERY 120 PULSES. 
THEN DECREMENTS A COUNT, THEN SWITCHES 
THE LED STATE WHEN THE COUNT REACHES·ZERO. 

PROGRAM EQUATES 

EQU 
EQU 
EQU 
EGU 
EQU 
EGU 
EGU 
EGU 

12 
CTCO+l 
CTC0+2 
CTC0+3 
OEOH 
2000H 
1000H 
120 

CTC EGUATES 

EGU 
INTEN: EGU 
CTRMODE: 
P256: EGU 
R.ISEDG: EGU 
PSTRT: EQU 
TCLOAD: EGU 
RESET: EGU 

80H 
EQU. 
20H 
10H 
8 
4 
2 

*** MAIN PROGRAM *** 
ORG 0 
JP BEGIN 

; CH: 0 PORT 
; CTC: 1 PORT 
; CTC: 2 PORT 
; C:TC: 3 PORT 
; LIGHT PORT 
;HAM START ADDR 

; COUNT VALUE 

40H 

ORG S. AND. OFFFOH. OR. 101-l 

DEFW ICTCO 
DEFW ICTC1 
DEFW ICTC2 
DEFW ICTC3 

; INIT SP LD 
IM 
LD 
LD 
CALL 
EI 

SP,STAK 
2 
A, INTVEC/256 
I, A 

; VECTOR lNTERRUPT MODE" 
; UPPER VECTOR BYTE. 

INIT ; INIT DEVICE"S 
; AU.OW INTERRUPTS 

JR ;LOOP FOREVER 

LD A, INTEN+P256+TCLOAD+RESET+CCW 
OUT <CTCOl,A ;SfcT CTC MODE 
LD A, TIME 
OUT <CTCO»A ;SET TIME CONSTANT 
LD A, JNTVEC.AND. 111110008 
OUT <CTCO» A ; SJ::T VECTOR VALUF 
XOR A 
LD <DISP>.A ;CLEAR DISPLAY BYTE 
LD A.TIME ; INIT TIMER VALUE 
LD <COUNT>. A 
RET 

INTERRUPT SERVICE ROUTINE 

366 4/1/81 



LOC OBJ CODE M 

01)30 FB 
003E ED4D 

0040 CD5AOO 
0043 3A4020 
0046 3D 
0047 324020 
004A co 
1HJ4R 3E'78 

004D :l24020 
()Q(.}0 3A4120 
0053 2F 
0054 324120 
C•057 D3EO 
0059 C9 

(J05A E3 
i)05B D5 
<)05C cs 
i:~OSD FS 
U05E CD6800 
·~·061 F1 
0062 Cl 
0063 DI 
<) 1.i64 El 
•)<';1:;5 FB 
<)(}66 ED4D 

,.)f'.<68 E9 

2000 
2000 

2040 
2041 

751-1809-0005 

STMT SOURCE 

71 !CTCl: 
72 !CTC2: 
73 ICTC3 
74 
75 
76 
77 !CTCO: 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
8'7 
90 
91 
92 
93 s~,vE 

94 
'IS 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 GO 
107 
108 *E 
109 
110 '; 

111 
112 
113 
114 STAK: 
115 COUNT: 
116 DI!:P: 
117 
118 

TEST. CTCO 
STATEMENT 

EI 
RETI 

CALL SAVE 
LD A, <COUNTl 
DEC A 
LD <COUNT), A 
RET NZ 
LD A.TIME 
LD <COUNT), A 
LD A, <DJSP) 
CPL 
LD <DJSP >.A 
OUT <LITE>. A 
RET 

SAVE REGISTER RDUrINE 

EX CSP), HL 
PUSH DE 
PUSH BC 
PUSH AF 
CALL GO 
POP AF 
POP BC 
POP DE 
POP HL 
EI 
RETI 

JP IHL) 

DATA AREA 

ORG RAM 
DEFS 64 
EGU $ 

DEFS 1 
DEFS 1 

END 

START 

INITIZLIZE CTC 

LOOP 

I 
I 

t 
MAIN PROGRAM 

; DUMMY ROUTINES 

;S1WE REGISTERS 
; CHANGE TIMER COUNT 

; EXIT IF NOT DDNZ 
; ELC>E, RESET TIMFP '/f,L~UI-: 

; Bl. J Nf\ LlTES 

; Sl AC~. AREA 

; TJMER COUNT VALUE 
; LITE DISPLAY BYTE 

Figure 4. Software for CTC Bit Rate Generator 

367 4/1/81 



TEST.CTC2 
LDC OBJ CODE M STMT SOURCE STATEMENT 

0000 

0000 
0002 
0004 
0006 

0008 

3E07 
D30E 
3E03 
030E 

18FE 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 

CTCO 
CTCl 
CTC2 
CTC3 
Til''E 

CCW: 

*E 

; ; 

38 BEGIN: 
39 
40 
41 
42 
43 
44 
45 itE 
46 
47 
48 
49 

CTC TEST PROGRAM 

THIS PROGRAM USES THE CTC IN CONTINUOUS 
TIMER MODE. THE CTC SUPPLIES A BIT RATE 
CLOCK TO THE SIO FROM THE SYSTEM CLOCK. 
THE SYSTEM CLOCK IS 3.6864 MHZ, WHICH IS 
DIVIDED BY 16 BY THE PRESCALER, ANO.DIVIDED 
BY A TIME CONSTANT VALUE OF 3 TO 
PROVIDE A 16X, 4800 BAUD CLOCK 
TO THE SIO. OTHER BAUD RATES CAN BE OBTAINED 
BY PROGRAMMING DIFFERENT TIME CONSTANT 
VALUES INTO THE CTC. 

PROGRAM EGUATES 

EGU 12 
EGU CTCO+l 
EGU CTC0+2 
EGU CTC0+3 
EGU 3 

CTC EGUATES 

EGU 
INTEN: EGU 
CTRMOOE: 
P256: EGU 
RISEOG: EGU 
PSTRT: EGU 
TCLOAD: EGU 
RESET: EGU. 

*** MAIN PROGRAM 

ORG 0 

80H 
EGU 
20H 
10H 
8 
4 
2 

*** 

; CTC 0 PORT 
; CTC 1 PORT 
; CTC 2 POR"T 
; CTC 3 PORT 
;TIME CONSTANT VALUE 

40H 

LO A.TCLOAO+RESET+CCW 
OUT <CTC2>. A ; SET CTC MOOE 
LO A, TIME 
OUT <CTC2), A ; SET TIME CONSTANT 

MAIN PROGRAM GOES HERE 

JR $ ; LOOP FOREVER 

ENO 

COUNTER MODE A typ I ca I computer system often uses a 
time-of-day clock. In the United States, the 
60 Hz power 11 ne prov I des an accurate time 
base for synchronous motor clocks. A computer 
system can take advantage of the 60 Hz 
accuracy by Incorporating a circuit that 
feeds 60 Hz square waves Into a CTC channel. 
With a time constant value of 60, the CTC 
generates an Interrupt once every s~cond, 
which can be used to update a time-of-day 
clock. The CTC ls set to Counter mode and 
with a time constant value of 60, as shown In 
Figure 5. 

time delays to separate messages with the 
appropr I ate number of sync characters. 
Typically, software or timer delays are used 
to provide the time necessary to al low the 
characters to shift out of the serial device. 
The disadvantage of using this method Is that 
variable baud rates shift characters at 
variable times so a worst-case time must be 
allowed If the baud rate ls not known. If the 
bit rate clock Is supplied by the modem, as 
ls normally the case, this problem becomes 
even more acute. 

751-1809-0005 

The Interrupt service routine does nothing 
more than update the time-of-day clock. A 
more soph I st I cated operating system kernel 
would use the CTC to check the task queue 
status. In synchronous data communications, 
It ls often necessary to ensure that a f I ag 
or sync character separates two adjacent 
message packets. Since some serial controller 
devices have no way to determine the status 
of sync characters sent, the user must use 

368 

A solution to this problem ls to use a 
counter to count the number of b I ts sh I fted 
out of the serial device. With the CTC tied 
to the transmit clock line of the serial 
device, the CTC can be programmed to delay a 
certa In number of bits before the CPU sends 
another message. This solves al I of the pro­
blems nlentloned and slmpllfles the message­
handllng software. Figure 6 shows the program 
needed to achieve the counting function. Note 

4/1/81 



751-1809-0005 

reached terminal count. that the Interrupt service routine disables 
the CTC, because the CTC Is used on I y once 
with each message. Otherwise, the CTC would 
generate an Interrupt each time the counter 

Figure I shows the hardware Implementation of 
the character delay counter using the CTC. 

START 

INITIALIZE CPU 

INITIALIZE CTC 

SETUP DISPLAY 

ENABLE INTERRUPTS 

LOOP 

ENTER 

SAVE REGISTERS 

SWITCH 
DISPLAY STATE 

EXIT 

a) Main Program b) Interrupt Service Routine 

Figure 5. Software for CTC Counter Mode 

TEST. CTC1 
LOC OBJ CODE M STMT SOURCE STATEMENT 

CTC TEST PROGRAM 
2 
3 
4 
5 
6 
7 
8 
9 

THIS PROGRAM COUNTS EXTERNAL PULSES AND 
CHANGES THE LED STATE EVERY 60 COUNTS 

PROGRAM 

CTCO: EGU 
CTCl: EQU 
CTC2: EGU 
CTC3: EClU 
LITE: EGU 
RAM EGU 
RAl"SIZ EQU 

EQUATES 

12 
CTCO+l 
CTC0+2 
CTC0+3 
OEOH 
2000H 
!OOOH 

; en: 0 PORT 
; CTC PORT 
; CTC 2 PORT 
;CTC 3 PORT 
; LIGHT PORT 
; RAM START ADDR 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

COLNT EQU 60 ;COUNTER TIME CONSTANT 

CTC EQUATES 

CCW: EGU 1 
INTEN: EGU 80H 
CTRMODE: EGU 4011 
P256: EGU 20H 
RISEDG: EGU lOH 
PSTRT: EGU 8 
TCLOAD: EGU 4 
RESET: EQU 2 

369 4/1/81 



TEST.CTC1 
LOC OBJ CODE M STMT SOURCE STATEMENT 

28 *E 
29 
30 i; *** MAIN PROGRAM *** 
31 

0000 32 ORG 0 
0000 C31800 33' JP BEGIN 

34 
0010 35 ORG $.AND.OFFFOH.OR. 10H 

36 INTVEC: 
0010 3800 37 DEFW ICTCO 
0012 3BOO 38 DEFW ICTC1 
0014 3800 39 DEFW ICTC2 
0016 3800 40 DEFW ICTC3 

4i 
42 BEGIN: 

0018 314020 43 LD SP,STAK ; INIT SP 
001B ED5E 44 IM 2 ;VECTOR INTERRUPT MODE 
0010 3EOO 45 LD A, INTVEC/256 ; UPPER VECTOR BYTE 
001F ED47 46 LD I, A 
0021 CD2700 47 CALL INIT ; INIT DEVICES 
0024 FB 48 EI 1 AL.LOW INTERRUPTS 

49 
0025 18FE 50 JR $ ;LOOP FOREVER 

5i 
'52 INIT: 

0027 3EC7 53 LD A. INTEN+CTRMODE+TCLOAD+RESET+CCW 
00~'9 D30D 54 OUT <CTCil.A ; SET CTC MODE 
002B 3E3C 55 LD A.COUNT 
0020 D300 56 OUT <CTCl),A i SEl TIME CONSTANT 
002F 3E10 57 LO A, INTVEC.AND. liiiiOOOB 
0031 D30C 58 OUT <CTCO>. A ; SE:T VECTOR VALUE 
0033 AF 59 XOR A 
0034 324020 60 LO <DISP>.A 1 CLEAR DISPLAY BYTE:: 
0037 C9 6i RET 

62 *E 
63 
64 INTERRUPT SERVICE ROUTINE 
65 
66 ICTCO: 
67 ICTC2: 
6B ICTC3: 

0038 FB 69 EI ; DUMMY ROUTINES 
0039 E040 70 RETI 

7i 
72 ICTC1: 

003B C04800 73 CALL SAVE ; SAVE REGISTERS 
003E 3A4020 74 LO A, <DISP> ; BLJ NI'. LITES 
004i 2F 75 CPL 
0042 324020 76 LO <OISP>.A 
0045 03EO 77 OUT <LITE>, A 
0047 C9 7B RET 

79 
BO SAVE REGISTER ROUTINE 
Bi 
B2 SA\£: 

0048 E3 83 EX <SP>. Hi. 
0049 05 B4 PUSH OE 
004A C5 B5 PUSH BC 
004B F5 B6 PUSH AF 
004C C05600 B7 CALL GO 
004F Fi BB POP AF 
0050 Ci B9 POP BC 
005i 01 90 POP OE 
0052 El 9i POP HL 
0053 FB 92' EI 
0054 E04D 93 RETI 

94 
95 GO: 

0056 E9 96 JP <HL> 
97 *E 
9B 

751-1809-0005 370 4/1/81 



LOC 

2000 
2000 

2040 

751-1809-0005 

OBJ CODE M STMT S OIJRCE 

99 ; ' 
100 
101 
102 
103 STAK: 
104 DIEP: 
105 
106 

START 

INITIALIZE CPU 

INITIALIZE CTC 

SETUP 
SOFTWARE FLAG 

ENABLE INTERRUPTS 

READ FLAG BYTE 

N 

RESET BIT 0 

START CTC 

a) Main Program 

TEST.CTCl 
STATEMENT 

DATA AREA 

ORG RAM 
DEFS 64 ; STACK AREA 
EGU $ 
DEFS 1 ; LITE DI SPLAY BYTE 

END 

ENTER 

SAVE CPU STATUS 

SET FLAG BYTE 

RESTORE CPU STATUS 

RETURN 

bl Interrupt Service Routine 

Figure 6. Software for CTC Single-Cycle Use 

371 4/1/81 



751-1809-0005 

TEST.CTC3 
LOC OBJ CODE M STMT SOURCE STATEMENT 

0000 
0000 

0010 

0010 
0012 
0014 
0016 

0018 
0018 
0010 
001F 
0021 
0023 
0025 
0027 
002A 

OC12B 
00~E 

OC30 
OG32 
0034 
oc,37 
OC•39 
003B 
003D 
003F 

C31800 

4100 
4100 
4100 
4400 

318120 
3EOO 
ED47 
EDSE 
3E10 
030C 
3E01 
320020 
FB 

3A0020 
CB47 
2BF9 
CBB7 
320020 
3ED5 
D30F 
3El4 
030F 
lBEA 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

RAM: 
RAl"SIZ: 
CTCO: 
CTC1: 
CTC2: 
CTC3: 
COUllT: 

22 CCW: 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
49 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 

INlVEC: 
CTCVEC: 

BEGIN: 

LOCP: 

ICTCO: 
ICTC 1: 

CTC TEST PROGRAM 

THIS PROGRAM INITIALIZES CTC INTERRUPT VECTOR, 
THEN STARTS CTC 3, THEN WAITS FOR CTC 3 TO 
TERMINATE. AFTER TERMINATING. THE CTC INTERRUPT 
THE CPU AND ENTERS A SERVICE ROUTINE THAT SETS 
A PROGRAM FLAG TO INDICATE ZERO COUNT, AND 
RESETS CTC 3. 

EGUATES 

EGU 
EGU 
EGU 
EGU 
EGU 
EGU 
EGU 

2000H 
1000H 
12 
CTC0+1 
CTC0+2 
CTC0+3 
20 

CTC PARAMETERS 

EGU 1 

iRAM START ADDRESS 
; RAM SIZE 
; CTC 0 PORT 
; CTC 1 PORT 
; CTC 2 PORT 
; CTC 3 PORT 
;COUNT 20 PULSES 

; CTRL BYTE 
; INTERR. ENABLE INTEN: EGU 

CTRMOOE: 
80H 
EGU 
20H 
10H 
8 
4 

40H ;COUNTER MOPE 
P256: EGU 
RISEDG: EGU 
PSTRT: EGU 
TCLOAD: EGU 
RESET: EGU 2 

; PRESCALE BY 256 
;START ON RISING EDGE 
iPULSE STARTS TIMING 
; TIME CONST. FOLLOWS 
; SOFTWARE RESET 

ORG 
JP 

0 
BEGIN ;GO MAIN PROGRAM 

ORG S.ANO.OFFFOH.OR. 10H 

DEFW ICTCO 
OEFW ICTC1 
OEFW ICTC2 
OEFW ICTC3 

MAIN PROGRAM 

SP,STAK 1 INIT SP 
A, INTVEC/256 1 INIT VECTOR REG. 
I, A 

LO 
LO 
LO 
IM 
LO 
OUT 
LO 
LO 
EI 

ii! 1 VECTORED INTERRUPT MC 

LO 
BIT 
JR 
RES 
LO 
LO 
OUT 
LO 
OUT 
JR 

A,CTCVEC.ANO. 11111000B 
<CTCO>.A iSETUP CTC VECTOR 
A. 1 ; SET FLAG BYTE 
<FLAG), A 

A, <FLAG> ; RE'AO FLAG BYTE 
O.A 
Z,LOOP ;BRANCH IF NOT SET 
O.A ;CLEAR FLAG BYTE 
<FLAG>, A 
A, INTEN+CTRMODE+RISEDG+TCLOA0+1 
<CTC3l.A ;LOAD CTC 3 
A, COUNT 
<CTC3>, A 
LOOP 

INTERRUPT SERVICE ROUTINES FOR CTC 

372 4/1/81 



CONCLUSION 

751-1809-0005 

TEST. CTC3 
LOC OB..J CODE M STMT SOURCE STATEMENT 

73 ICTC2: 
0041 FB 74 EI ;DUMMY INTERRUPT ROUT! 
0042 ED4D 75 RETI 

76 
77 ICTC3: 

0044 OB 7B EX AF.AF' 
0045 3E03 79 LO A.000000118 ;RESET CTC 3 
0047 D30F BO OUT <CTC3l,A 
0049 ~A0020 B1 LO A, <FLAG> iSET PROGRAM FLAG 
004C CBC7 B2 SET O,A 
004E 320020 B3 LD <FLAG>. A 
0051 OB B4 EX AF.AF' 
0052 FB B5 EI 
0053 ED4D B6 RETI 

B7 *E 
BB 
B9 ; ; DATA ~REA 
90 

2000 91 ORG 
2000 92 FLIG: DEFS 
2001 93 DEFS 

94 STAK: EQU 
95 
96 END 

The versatl I lty of the Z80 CTC makes It use­
fu I In a myriad of appl I cations. System 
efficiency and throughput can be Improved 
through prudent use of the CTC w I th the Z8 0 
CPU. Coupled with the powerful, vectored 

373 

RAM 
1 ;PROGRAM FLAG BYTE 
128 
$ 

Interrupt capabl I I ties of the Z80 CPU, the 
CTC can be used to supply counter/timer func­
tions to the CPU, This reduces software over­
head on the CPU and significantly Increases 
system throughput, 

4/1/81 



374 



~ 
Zilog 

IN1ROOUCTION In cert11ln 11ppl lc11tlons, serl11I d11t11 com­
mun I cat Ions can be hand I ed more ef f I cl ent I y 
by using 11 OMA device In conjunction with a 
serial controller. This appl lc11tlon brief 
describes the use of the ZBOA SIO 11nd ZBOA 
OMA hardware and software In a ZBO-based 
system to transfer data to the SIO via the 
OMA. 

HAR>WARE 
DESCRIPTION 

Transfers through a serial data medium are 
usually done with a serial controller device, 
often a Universal Synchronous/Asynchronous 
Receiver/ Transmitter (USART>, such as the 
Z80 SIO. Additionally, some sort of con-
tro I 11 ng dev Ice Is requ I red to man I pu late the 
data on a char11cter-by-character basis, 
(usu11l ly e CPU). Transferring cheracters can 

The hardware used in the example for this 
brief consists of e ZSOA CPU, a ZBOA OMA 
control !er, a ZBOA SI0/2, some RAM 11nd ROM, 
end some support circuitry (Figure ll. 

The ZBOA OMA contains a 16-blt address bus, 
en 8-blt data bus, and 13 control I Ines for 
external Interfacing. The ZBO OMA can gen­
erate Independent addresses for Port A and 
Port B. Each address can be variable or 
f I xed. Var I ab le addresses can be programmed 
to either Increment or decrement from the 
progra11111ed starting addresses, whereas fixed 
eddress Ing e llm I nates the need for separate 
enab 11 ng II nes for I /0 ports. 

Readable registers contain the current 
address of each port end a count of the 
number of bytes searched and/or transferred. 
Additional registers el low the OMA to perform 
blt-meskable data comperlsons on the date 
that Is being searched and/or transferred. 
The OMA has 21 writeable control registers 
and seven readable status registers, which 
together provide e high degree of program­
mebl I lty. 

The OMA function described Is for a simple 
test operation using memory-to-1/0 trensfer 
with no search options, The OMA Is Initial-

A ZSO-Based System 
Using the OMA 
With the SIO 

Application Brief 
January 1981 

be accomplished either by pol I Ing the USART, 
which forces the CPU to take time away from 
other activities, or by Initiating an Inter­
rupt mechanism, which requires CPU time only 
If there Is data to be moved. However, when 
large blocks of d11ta need to be moved, even 
the Interrupt mechanism becomes awkward. In 
these cases, a Direct Memory Access <OMA) 
device Is especially valuable. 

With OMA transfer, data Is moved directly 
between memory and 1/0 (or additional memory) 
without CPU Intervention. Once initiated by 
the CPU, OMA operation continues transpar­
ently to CPU oper11tion until completed. Then 
the OMA device can either Interrupt the CPU 
or restart Its cycle using the previously 
programmed parameters. 

I zed to transfer data from a pattern In 
memory to the SIO when the SIO requests a 
byte via the WAIT/ROY signal I lne. The SIO 
then sends the byte to a term Ina I , wh !ch 
displays It for visual Inspection. After a 
block of bytes has been sent, the OMA 
restarts Itself <Auto Restart model and the 
process repeats continuously. Since the data 
pattern In memory consists of dlsplayable 
ASC I I characters, data Is eas 11 y ver If I ed by 
observing the characters displayed on the 
terminal. 

One feature of the zeo OMA Is the ease with 
which It Interfaces with the Z80 CPU. The 
OMA Is designed to connect directly to the 
CPU, as II lustrated In Figure 2, The 16 
address 11 nes, eight deta 11 nes, imd seven 
control I Ines ere connected directly to the 
corresponding lines on the ZBO CPU. These 
slgnels are then buffered by the 74LS241s and 
di str I buted to the rest of the system. The 
data bus Is buffered by the 74LS245 bldlrec­
tlonel octal buffer. Other connections to 
the OMA Include clock, cr/WA'ii', iN'f, ROY and 
I El. 

The clock Input to the OMA Is sensitive to 
both level and rise end fal I times, The 
voltage should be no greater than +o,45V for 
e low level and no less than Vcc-0.6V for a 

This application note refers to products asZSO "A", "B" etc. to specifiythe speed grade. We are no longer 
using those characters for the speeds. For more details, please refer to the ordering information section. 

7 51- 1809-0002 .375 2-6-81 



11 

••• 

high level. Addltlonally, the rise and fal I 
times for the waveform should be no greater 
than 30ns, according to the device specif!-

cations. A clock driver device Is used to 
deliver the proper voltage levels and rise/ 
fal I times. 

... 

CONTROL 
IUS 

II DIRECTIONAL 
BUFFER 

DATA 
IUS 

Figure 1. Block Diagram of a zso System with OMA and SIO. 

3C 7A 
ROY TIEO 

4.7K 4.7K 

••• 
.... , 

••• 
11 

t"----A~".,....-1_,7 Yee ROY 
A1• 18 .. 

21 

22 .. 

iiEiET 
1A 

A15 211 

Au 21A 

A13 22C 
A12 221 

A11 22A 

A,, 238 ... 22A 

····~--..--..... v..----'"l'Nii •• .. ... 24C 

4.7K 

IA iNf·~--4--------1::i1 iNT ,. 

+5V 

••• 
IF-----'1"'15 iiUsA£a 
'F-----ti--'44 iAi 
ii= ....... ----1--1'"'1oi0Ro 

>F-;----ti--"'11 iiD 
1i=-;----t1-"'18 WR 
lt='-.t----11-'"=t;;; 

ir-;----ti--1"'12 M'ReO .. .. 
31 .. 
33 .. 
35 

ZIOA 
DMA 

Figure 2. Schematic of CPU and OMA Interface 

Ar 241 ... 24A ... 25C 

.... 251 

A• 25A ... 20C 

A1 ... .. 2'A 

01 10C ,,. 188 

Os 1BA 

o. ... 
"' 19A 

"' 20C 

o, ... 
Do 20A 

IORQ 10C 

iiii 101 

w. 1DA 

Mi 118 

iiiiiQ 11A 

751-1809-0002 376 2-6-81 



751-1809-0002 

The CE/WA'i'T Input to the OMA serves a dua I 
purpose. When the OMA is idle [Bus Acknowl­
edge Input <BAil inactivel, the CE/WA'i'T input 
is used to select the OMA during a CPU access 
cycle, al lowing the OMA to be treated as a 
peripheral device by the CPU. However, when 
the OMA takes control of the system bus, the 
CE/WATT Input can be programmed as a Wiiii' 
control line for the OMA, similar to the WiiTi' 
input on the Z80 CPU. Figure 3 shows the 
gating that determines the CE/WAIT function. 

Wi'Ti~74LS02 74LS02 --­

CmwAIT 
••• 74LS04 1.c:..sc2 (TODMAJ 

(l'RJU!J&!lll~' cw 
DMA88L-~~~~~._J. 

NOTES: 
cE!WAi't = (DMASEL -..Jle.l) + (WAIT • iiAi> 
Bus Acknowledge Input (BAI) is active Low during the DMA cycle. 

Figure 3. CE/iiAiT Control Logic. 

With the 510, the hardware interface is 
slightly more complex than the OMA hardware 
interface. The Interface to the Z80 CPU is 
fairly straightforward, since the SIO is 
accessed as an 1/0 peripheral device. Stil I, 
the clock Input has the same requirements as 
the OMA; so in order to provide this signal, 
some sort of clock driver is needed. In 
addition, if the SIO is used in an interrupt 
environment where its internally generated 
vector ls placed onto the data bus, the data 
bus buffers must allow the Interrupt vector 
to be presented to the CPU d ur Ing the Inter­
rupt acknowledge cycle. Since the data bus 
Is buffered at the CPU, this Is nat a problem 
with the example given here; the bus Is con-

trolled by the CPU c lrcultry. However, In 
larger systems, any buffers near the SIO need 
to be cons I dered. 

In addition, the system must supply some form 
of bit rate clock to the SIO for data com­
munications. This Is accomplished either by 
using an external clock source or by gener­
ating the clock with a device such as the CTC 
or CIO. Here the clock Is supplied at a IX 
rate for asynchronous communications from an 
external device such as a modem. 

The WAIT/ROY pin on the SIO Is connected to 
the ROY Input on the OMA. This provides 
character transfer control between the SIO 
and OMA. In this appllcatlon, the ready 
function ls used. and the WAIT/ROY pin ls 
wired directly 1o the ROY Input on the OMA 
with a pullup resistor. A low level Initiates 
a OMA character transfer from memory to the 
SIO. The 510 drives the WAIT/ROY line High 
or Low so that pullup ls not strictly 
~'!:.!!!!· However, upon reset, the SIO 
WAIT/ROY pin floats until the ready function 
is programmed In the SIO. Figure 4 shows the 
Z80 CPU-SIO interface. 

Since the 510 has only one WAIT/ROY pin per 
channel, it can be used with the OMA only 
during transmit or receive but nat bath 
simultaneously. Therefore, characters re­
ceived by the SIO ere transferred via Inter­
rupts with the CPU intervening. The 
Interrupt system elso handles errors detected 
either during reception or when the SIO 
natices an externel or status change. 

tOK 

] -. +SY 

WIRDYWV 

RD'I 

RESET 

M1 

AD 

INT 

.( 
IOAQ 

• A 

Ao 

, 

CLK1 

TO CPU 

RESET IEI 

M1 TxD 
Tx 

c 
RD iil AxD 

INT z CTS RS.2112C z c ATS 
BUFFERS 

..1' :z: 
u 

Do-117 DTR 
y DCD 

IORQ txC 

I: RxC 

Z80A LS1111 
SIOll 

c 
I TxD 
A 

~ 
RS.nae 

llxD BUFFERS 
ATS 

CTI 

~ DTR p LB1111 
I 

.. i DCD 
A CE c _r :z: 

u 
All 

DICCLK 

--" J .... 
CLK DAYA. 

Figure 4. Z80 510 Interface 

.an 

} 

r} 

TO 
MODEM 

TO 
MODEM 

2-6-81 



PROGRAMMING 

751-1809-0002 

Before any action can occur, lnl·tlal lzatlon 
must be performed on the Z80 CPU, the OMA, 
and the SIO devices. Since Interrupts are 
used In processing special SIO conditions, 
the .Z80 CPU must be lnltlallzed for the 
proper Interrupt mode. In the example, the 
CPU Is set to Interrupt Mode 2 using the IM 
Instruction. The upper eight bits of the 
Interrupt vector are loaded Into the I 
register via the A register In the CPU. The 
Stack Pointer CSP) register must be loaded by 
the program upon reset, because It has an 
undefined value. The SP register Is used 
when process Ing Interrupts and when the Cal I 
Instruction Is executed during lnltlallza­
tlon. The appendix contains a source listing 
for a OMA test program using the SIO. 
The OMA Is lnltlallzed for memory-to-1/0, 
byte-at-a-time transfer with the search 
option disabled and operates contlnuously 
unt 11 stopped by a command from the CPU. The 
program uses Port A of the OMA tor the memory 
source address CSRC> and Port B for the 
destination address COST> and utl I lzes the 
auto restart option on the OMA so. that data 
can be sent to.the terminal as a stream of 
characters. Since Port B Is a fixed des­
tination address, It must be declared as the 
source when the OMA Is given the Load command 
CWR6, CFH), as stated 1.n the programming 
section of the OMA Technlcal Manual (document 
number 00-2013-A). Table 1 shows the lnl­
tlal lzatlon sequence for the example des-
cr I bed here. 

The SIC lnltlallzatlon sequence Is straight­
forward. The example uses channel A In 
Asynchronous Communication mode with the OMA 
providing data characters to the SIC on a 
transmit buffer empty cond It Ion. The ter­
minal requires async format, two stop bits, 
and even parity. An external 1X clock Is 
used with the SIC for the bit rate clock. The 
lower eight bits of the SIC Interrupt vector 
are loaded Into WR2 through channel B, and 
the Status Affects Vector CSAV) bit In WR1 Is 
also set. SAV provides eight separate In­
terrupt vectors (four for each channel), 
allowlng easy program operation. Table 2 
shows the programming sequence and mode of 
the 510 for OMA operation. Note that when 
OMA transfers are used to move data, the 
transmit buffer empty Interrupt should not be 
enabled CWR1, bit 1=0). 

A data test pattern Is generated In the 
memory buffer area used for transmission to 
the SIO so that Intel llglble Information can 
be sent to the terminal tor easy verifica­
tion. This Is done by a short routine that· 
tll Is the memory block with an Incremental 
pattern of ASCII characters In the range of 
from 20H to 7FH and appends a carrl age return 
and a I lnefeed to the data block. Figure 5 
contains a listing of the routine Involved. 
The block length programmed Into the OMA Is 
one less than the actual block length trans­
ferred due to the counter characteristics of 
the Z80 OMA. 

Table 1. OMA lnltlallzatlon Sequence 

1. Disable OMA 

2. Issue six reset commands 
(Insures a reset If OMA In undefined 
state) 

3. WRO - Port A (source) characteristics 

4. Port A start address - low byte 

5. Port A start address - high byte 

6. Port A block length - low byte 

7. Port A block length - high byte 

8. WR 1 - Port A Increment address 

9. WR2 - Port B Is fixed address, 1/0 

10. WR4 - Byte mode, Port B address Clow 
byte> fol lows 

11. Port B (destination) address 

12. WR5 - Auto Restart mode, CE/WAIT Is 
multiplexed 

13. Insure Port A Is standard timing 

14. Insure Port B Is standard timing 

15. Load Port B 

16. llRO - Port A Is source, Port B Is des­
tination 

17. Load Port A 

378 

Table 2. SIC lnltlallzatlon Sequence 

Channel A 

1. Channel Reset 

2. llR1 - WAIT/ROY enable for TX, ready 
function, RX Interrupt on all characters; 
parity affects vector 

3. WR4 - XI clock, two stop bits, even 
parity 

4. l'IR5 - crrR, RTS active, TX seven bits, 
enable TX 

5. l'IR3 - RX seven bits 

Channel B 

1. Channel Reset 

2. WR1 - status affects vector 

3. llR2 - lower eight bits of vector 

2-6-81 



COICLUSION 

APPEN:>IX 

75,_1809-0002 

Once the CPU, DMA, and SIO are set up, the 
program enables the DMA device CWR6, 87Hl and 
the data transfer process begins. The SIO 
brings the WAIT/ROY output active as soon as 
the SIO has been Initial I zed so that char­
acters can be transmitted Immediately. The 
user must Insure that the DMA and data block 
have been set up properly before any data 
transfer actually occurs. DMA data transfer 
Is different from the Interrupt data transfer 
of the SIO, because with Interrupts the SIO 
does not request data unt 11 It Is act lvated 
by having a character sent to It. 

Once operat Ion of the DMA and SI 0 has begun, 
data transfers occur without CPU Intervention 
unless the SIO encounters an error condition. 
An error causes the SIO to Interrupt the 
CPU, thereby Intervening In CPU processing. 
In this event, the CPU Is Interrupted by the 
dev I ca detect Ing the error and the DMA pro­
cess i ng Is term I nated by the CPU. Th Is 
termination Is achieved by writing a command 
word to the DMA. The DMA rema Ins d I sab I ad 
until given a command that enables It. 

LD HL, SRC ;%HL start adoress 
LD BC, BLKSIZ-2 ;%BC length 
LD D, 20H ;%D data byte 

LOOP: 
LD CHU, D ;store character 
I f\C D ;Increment character code 
LD A,D ;mask upper bl t 
AND 7FH 
OR 20H ;keep displayable character 
LD D,A ;save In %D 
I f\C HL ;Bump memory ptr. 
DEC BC ;Bump byte count 
LD A,B ;see If through 
OR c 

JR NZ, LOOP ;no-I oop 
LD CHU, 13 ;CR 
INC HL 
LD CHU, 10 ;LF 

Figure 5. Data Test Pattern Generator Routine Listing. 

This example shows only one aspect of using 
the DMA with the SIO. Use of the DMA with 
the SIO during receive deserves special con­
sideration. Since the DMA operates without 
CPU processing, data received by the SIO does 
not normally Indicate when the end of a 
message occurs. One solution to this problem 
Is to send fixed-length data blocks so that 
the CPU can be Interrupted when the DMA 
reaches terminal count. This ls done by 
programming a f lxed-length block count Into 
the DMA and enabling It to Interrupt the CPU 
upon End-Of-Block (EOBl. As an alternative 
to the terminal count Interrupt, the SIO can 
be programmed to Interrupt the CPU when the 
c I os Ing f I ag Is detected In SDLC mode. Th Is 
al lows the CPU to detect the end of a message 
using the SIO Instead of the DMA. 

Another method of detecting the end of a 
message Is to ded I cate a spec I a I EOB char­
acter used to terminate al I message blocks. 

Following Is a printout of the DMA/SIO test 
program. This program uses the DMA to 
transfer data from a pattern In memory to the 
SIO, which then sends the data, In async 
format at 9600 baud, to a terminal for dis­
play. The process continues until It Is 
externally Interrupted, such as by a reset. 

Interrupts are used to process error con-

The DMA can then be programmed to search for 
this character during data transfers and to 
Interrupt the CPU when the character ls 
detected. This method al lows for varlable­
length message blocks, up to the maximum byte 
count the DMA wll I accommodate. The disad­
vantage with this method ls that the user 
must dedicate one character as the special 
EOB character. 

The unique features of the DMA and SIO com­
bine to form a powerful and flexible data 
communication mechanism. Due to the de­
signed-In compatlbl llty of the SIO and DMA, 
Interfacing with both In hardware and soft­
ware becomes a slmp I I fled task. Programming 
Is easy because very Ii ttl a CPU I ntervent Ion 
Is necessary after lnltlallzatlon. Thus, the 
user Is afforded a powerful tool for Imple­
menting an efficient, cost-effective data 
process Ing system. 

dltlons or to receive characters. However, no 
code Is shown that handles the characters 
once they are received, Error conditions are 
reset by the Interrupt service routine, 
although nothing is shown for these condi­
tions either. The user normally sets a 
condition flag after resetting the error 
condition, so that the driver program can 
determine the appropriate course of action. 

379 2-6-81 



DMASIO 
LOC OB.I CODE M STMT SOURCE STATEMENT ASM 5.9 

1 OMA/SIO TEST PROGRAM 
2 
3 BY M. PITCHER - 10/10/90 
4 
5 GENERATES BLOCK OF DATA IN RAM. 
6 THEN OUTPUTS TO SIO VIA OMA, 
7 THEN CONTINUES FOREVER. 
9 
9 RAM: EQU 2000H I RAM START ADOR 

10 RAM3IZ: EQU 1000H JRAM SIZE 
11 SICDA: EQU 0 i SIO CH.A DATA PORT 
12 SIOCA: EQU SIOOA+1 ; SIO CH.A CTRL PORT 
13 SICDB: EQU SIOOA+2 ; SIO CH. B DATA PORT 
14 SIOCB: EQU SIOOB+1 ; SIO CH.B CTRL PORT 
15 OMA: EQU OFOH ; OMA PORT ADDR 
16 OST: EQU SI ODA ;DESTINATION ADOR 
17 BLl-ISIZ: EQU 64 ;XFER BLK SIZE 
19 OMABLK: ECIU BLKSIZ-1 ;OMA BLOCK SIZE VALUE 
19 
20 
21 START OMA AFTER INITIALIZATION <WR6, 87H> 
22 OMA PARAMETERS 
23 
24 OMAWRO: ECIU 0 
25 XFER: EQU 1 
26 SRCH: EQU 2 
27 XFRSCH: EQU 3 
28 A_B: EQU 4 
29 ALSTA: EQU 8 
30 AHSTA: EQU 10H 
31 ALB LEN: EQU 20H 
32 AHBLEN: EQU 40H 
33 
34 DMAWR1: EQU 4 
35 AIO: EQU 8 
36 AI NCR: EQU 10H 
37 ADECR: ECIU 0 
38 AFI XED: EQU 20H 
39 AVTIM: EGU 40H 
40 
41 DMAWR2: EQU 0 
42 BIO: EQU 8 
43 BI NCR: EQU 10H 
44 BDECR: EQU 0 
45 BFIXED: EGU 20H 
46 BVTIM: EQU 40H 
47 
48 DMAWR3: ECIU 80H 
49 DMAEN: EQU 40H 
50 INTEN: EQU 20H 
51 MCHBYT: EQU 10H 
52 MSKBYT: EQU 8 
53 SOMCH: EQU 4 
54 
55 DMAWR4: EQU 81H 
56 BYTE: EQU 0 
57 CONT: EQU 20H 
58 BURST: EQU 40H 
59 !CB: EGU 10H 
60 INTROY: EQU 40H 
61 DMASAV: EQU 20H 
62 IV: EGU 10H 
63 PCB: EQU 8 
64 PULSE: EGU 4 
65 INTEOB: EGU .2 
66 INTMCH: EGU 
67 
68 BHSTA: EQU 8 
69 BLSTA: EGU 4 
70 
71 DMAWR5: EQU 82H 

751-1809-0002 380 2-6-81 



LDC 
DMASIO 

OBJ CODE M STMT SOURCE STATEMENT 

AUTORS: EGU 20H 
CEWAIT: EGU lOH 
RDYHI: EGU B 

ASM 5. 9 

72 
73 
74 
75 
76 
77 
7B 
79 
BO 
Bl 
B2 
B3 
B4 
s:; 
B6 
B7 
BB 
B9 
90 
91 
92 
93 
94 
95 
96 
97 
9B 
99 

SETUP FOR ASYNC FORMAT AS FOLLOWS: 
9600 BAUD 
2 STOP BITS 
7 BIT CHARACTERS 
EVEN PARITY 

PROGRAM ASSUMES OMA XFER OF TX DATA 
THERE IS NO RECV DATA XFER 
STATUS IS REFLECTED IN "SIOFLG" LDC. 
EXTERNAL TX AND RX CLOC~ ASSVMED 

SIOFLG - X X 1 1 X X 1 1 
I 

ERROR ASLEEP ERROR ASLEEP 
CHANNEL B CHANNEL A 

100 
101 
102 
103 
104 
105 
106 
107 
lOB 
109 
110 
111 
112 
113 
114 
115 
116 

SICWRO: EGU 0 
CHRES: EGU lBH 
ESCRES: EGU lOH 
TBERES: EGU 2BH 
SRCRES: EGU 30H 
RCRCRE: EGU 40H 
TCRCRE: EGU BOH 
EOMRES: EGU OCOH 

SICWRl: EGU 1 
WREN: EGU 
ROY: EGU 
WRONR: EGU 
RXIFC: EGU 
RXIAP: EGU 
RXIA: EGU 
SIOSAV: EGU 
TXI: EGU 
EXTI: EGU 

SICWR2: EGU 

SICWR3: EGU 
RX8: 
RX6: 

2 

3 
EGU 
EGU 

BOH 
40H 
20H 
B 
lOH 
18H 
4 
2 

OCOH 
80H 

117 RX7: EGU 40H 
118 RX5: EGU 0 
119 AUTOEN: EGU 20H 
120 HUNT: EGU lOH 
121 RXCRC: EGU 8 
122 ADSRCH: EGU 4 
123 SYNINH: EGU 2 
124 RXEN: EGU 1 
125 
126 SICWR4: EGU 4 
127 X64: EGU OCOH 
128 X32: EGU BOH 
129 X16: EGU 40H 
130 Xl: EGU 0 
131 EXTSYN: EGU 30H 
132 SDLC: EGU 20H 
133 SYN16: EGU lOH 
134 SYN8: EGU 0 
135 STOP2: EGU OCH 
136 STOP15: EGU 8 
137 STOP 1: EGU 4 
138 SYNCEN: EGU 0 
139 EVEN: EGU 2 
140 PARITY: EGU 1 
141 
142 SICWR5: EGU 5 

;CH. B ONLY 

;CH. B ONLY 

751-1809-0002 381 2-6-81 



DMASIO 
LOC 08.J CODE M STMT SOURCE STATEMENT ASM 5. 9 

143 DTR: EOU 80H 
144 TX8: EQU 60H 
145 TX6: EOU 40H 
146 TX7: EOU 20H 
147 TX5: EQU 0 
148 BREAK: EQU 10H 
149 TXEN: EQU 8 
150 CRC16: EOU 4 
151 RTS: EQU 2 
152 TXCRC: EQU 1 
153 
154 SICWR6: EQU 6 
155 
156 SICWR7: EOU 7 
157 *E.J 
158 
159 i; *** MAIN PROGRAM *** 
160 

0000 161 ORG 0 
0000 C32000 162 .JP BEGIN 

163 
0010 164 ORG S.AND.OFFFOH.OR. 10H 

165 INlVEC: 
166 SIOllEC: 

0010 6400 167 DEFW CHSTBE 
0012 7600 168 DEFW CHSESC 
0014 7000 169 DEFW CHBRCA 
0016 8AOO 170 DEFW CHSSRC 
0018 9EOO 171 DEFW CHATBE 
001A BOOO 172 DEFW CHAESC 
001C AAOO 173 DEFW CHAR CA 
001E C400 174 DEFW CHASRC 

175 
176 BEGIN: 

0020 318120 177 LD SP,STAK ; INIT SP 
0023 EDSE 178 IM 2 ; INTERRUPT MODE 2 
0025 3EOO 179 LD A, INTVEC/256 
0027 ED47 180 LD I, A 
0029 CD4DOO 181 CALL INIT ; INIT OMA, SIO 
002C 210120 182 LD HL,SRC ; GENERATE DATA PATTERN 
002F 013EOO 183 LD BC,BLKSIZ-2 
0032 1620 184 LD D.20H 

185 LOCP: 
0034 72 186 LD <HL>. D 
0035 14 187 INC D 
0036 7A 188 LD A,D 
0037 E67F 189 AND 7FH 
0039 F620 190 OR 20H 
003B 57 191 LD D.A 
003C 23 192 INC HL 
0030 OB 193 DEC SC 
003E 78 194 LD A,B 
003F Bl 195 OR c 
0040 20F2 196 .JR NZ.LOOP 
0042 3600 197 LD CHU, 13 ; CR 
0044 23 198 INC HL 
0045 360A 199 LD CHU, 10 ; LF 
0047 3E87 200 LO A.87H ; ENABLE DMA 
0049 D3FO 201 OUT <OMA>. A 

202 
004B 18FE 203 .JR $ ; LOOP FOREVER 

204 
205 INIT: 
206 DMAINI: 

0040 OEFO 207 LD C.DMA ; INIT OMA 
004F 21EFOO 208 LO HL>DMATAB 
0052 0616 209 LO B,DMAEND-DMATAB 
0054 EDB3 210 OTIR 

211 SIOINI: 
0056 210501 212 LD HL.SIOTA ; INIT SIO CH. A 
0059 OEOl 213 LO C.SIOCA 
0058 060A 214 LD B, SIOEA-SIOTA 

751-1809-0002 382 2-6-81 



DMASIO 
LOC OB.J CODE M STMT SOURCE STATEMENT ASM 5. 9 

0050 EDB3 215 OTIR 
005F AF 216 XOR A ; CLEAR SIOFLG 
0060 320020 217 LD <SIOFLGl. A 
0063 C9 218 RET 

219 *E.! 
220 
221 INTERRUPT SERVICE ROUTINES 
222 
223 CHBTBE: 

0064 CDD800 224 CALL SAVE ; CH. B TX BUFFER EMPTY 
0067 3EOO 225 LD A.SIOWRO 
0069 0303 226 OUT (SIOCBl, A 
0068 3E28 227 LD A.TBERES 
0060 0303 228 OUT <SIOCBl, A 
006F C9 229 RET 

230 
231 CHllRCA: 

0070 CD0800 232 CALL SAVE ;CH. B RX CHAR AVAIL. 
0073 DB02 233 IN A, CSIODB> 
0075 C9 234 RET 

235 
236 CHBESC: 

0076 CD0800 237 CALL SAVE ;EXTERNAL/STATUS CHG 
0079 3EOO 238 LD A, SIOWRO 
0078 0303 239 OUT <SIOCBl,A 
0070 3E10 240 LD A.ESCRES 
007F 0303 241 OUT <SIOCBl, A 
0081 3A0020 242 LD A, CSIOFLGl 
0084 CBE7 243 SET 4.A 
0086 320020 244 LD <SIOFLGl, A 
0089 C9 245 RET 

246 
247 CHBSRC: 

008A C00800 248 CALL SAVE ;CH. B SPECIAL RX COND. 
0080 3EOO 249 LO A, SIOWRO 
008F 0303 250 OUT <SIOCBl, A 
0091 3E30 251 LO A.SRCRES 
0093 0303 252 OUT <SIOCB>. A 
0095 3A0020 253 LO A, <SIOFLGl 
0098 CBEF 254 SET 5, A 
009A 320020 255 LO <SIOFLGl, A 
0090 C9 256 RET 

257 
258 CHATBE: 

009E C00800 259 CALL SAVE ;CH. A TX BUFFER EMPTY 
OOA1 3EOO 260 LO A.SIOWRO 
OOA3 0301 261 OUT <SIOCAl.A 
OOA5 3E28 262 LO A.TBERES 
OOA7 0301 263 OUT <SIOCA>. A 
OOA9 C9 264 RET 

265 
266 CHAACA: 

OOAA COD800 267 CALL SAVE ; CH. A RX CHAR AVAIL. 
OOAO OBOO 268 IN A, <SIODA> 
OOAF C9 269 RET 

270 
271 CHl>E:SC: 

OOBO C00800 272 CALL SAVE ; EXTERNAL/STATUS CHG 
0083 3EOO 273 LO A. SIOWRO 
0085 0301 274 OUT <SIOCAl, A 
0087 3E10 275 LO A.ESCRES 
0089 0301 276 OUT <SIOCAl,A 
OOBB 3A0020 277 LO A, <SIOFLG> 
OOBE CBC7 278 SET O,A 
ooco 320020 279 LO <SIOFLG>.A 
OOC3 C9 280 RET 

281 
282 CHASRC: 

OOC4 COD800 283 CALL SAVE ;CH. A SPECIAL RX COND. 
OOC7 3EOO 284 LD A.SIOWRO 
OOC9 0301 285 OUT <SIOCA>, A 

751-1809-0002 383 2-6-81 



DMASIO 
LDC OBJ CODE M STMT SOURCE STATEMENT ASM 5. 9 

OOCB 3E30 286 LD A,SRCRES 
OOCD D301 287 OUT <SIOCA>,A 
OOCF 3A0020 288 LD A, <SIDFLQl 
OOD2 CBCF 289 SET 1,·A 
OOD4 320020 290 LD <SIOFLQ),A 
0007 C9 291 RET 

292 
293 MATHEWS SAVE REGISTER ROUTINE 
294 
295 SAVE: 

OOD8 E3 296 EX <SP>. HL SP = HL 
OOD9 D5 297 PUSH- DE DE 
OODA C5 298 PUSH BC BC 
OODB F5 299 PUSH AF AF 
OODC DDE5 300 PUSH IX IX 
OODE FDE5 301 PUSH IV IV 
OOEO CDEEOO 302 CALL GO SAVE PC 
OOE3 FDE1 303 POP IV 
OOE5 DDE1 304 POP IX 
OOE7 F1 305 POP AF 
OOE8 C1 306 POP BC 
OOE9 D1 307 POP DE 
OOEA E1 308 POP HL 
OOEB FB 309 El 
OOEC ED4D 310 RETI 

311 
312 GO: 

OOEE E9 313 JP <HLl 

314 •EJ 
315 
316 ;; CONSTANTS 
317 
318 DMATAB: 

OOEF 83 319 DEFB 83H 1WR6, DISABLE DMA 
OOFO C3 320 DEFB OC3H 1WR6. RESET 
OOF1 C3 321 DEFB OC3H 1 WR6, RESET 
OOF2 C3 322 DEFB OC3H 1WR6, RESET 
OOF3 C3 323 DEFB OC3H 1WR6, RESET 
OOF4 C3 324 DEFB OC3H 1WR6, RESET 
OOF5 C3 325 DEFB OC3H 1WR6, RESET 
OOF6 79 326 DEFB DMAWRO+XFER+ALSTA+AHSTA+ALBLEN+AHBLEN 
OOF7 01 327 DEFB SRC.AND.255 ;PORT A ADDR <Ll 
OOF8 20 328 DEFB SRC/256 ;PORT A ADDR <H> 
OOF9 3F 329 DEFB DMABLK.AND.255 ;PORT A COUNT <Ll 
OOFA 00 330 DEFB DMABLK/256 ;PORT A COUNT <Hl 
OOFB 14 331 DEFB DMAWR1+AINCR 
OOFC 28 332 DEFB DMAWR2+BIO+BFIXED 
OOFD 85 333 DEFB DMAWR4+BVTE+BLSTA 
OOFE 00 334 DEFB DST.AND.255 1PORT B ADDR <Ll 
OOFF B2 335 DEFB DMAWR5+AUTORS+CEWAIT 
0100 C7 336 DEFB OC7H 1WR6, RESET A TIMING 
0101 CB 337 DEFB OCBH ; WR6, RESET B TIMING 
0102 CF 338 DEFB OCFH 1WR6, LOAD PORT B 
0103 05 339 DEFB DMAWRO+XFER+A_B ; A -> B 
0104 CF 340 DEFB OCFH 1WR6, LOAD COUNTERS 

341 DMll£ND: EGU • 342 
343 SI OTA: 

0105 00 344 DEFB SIOWRO ;CH. RESET 
0106 18 345 DEFB CHRES 
0107 01 346 DEFB SIOWR1 1 RDV/WAIT, INT. MODE 
0108 DO 347 DEFB WREN+RDV+RXIAP 
0109 04 348 DEFB SIOWR4 ;MODE 
OlOA OF 349 DEFB Xl+STOP2+EVEN+PARITV 
OlOB 05 350 DEFB SIOWR5 ; TX PARAMS. 
OlOC AA 351 DEFB DTR+TX7+TXEN+RTS 
OlOD 03 352 DEFB SIOWR3 ; RX PARAMS. 
OlOE 40 353 DEFB RX7 

354 SICEA: EGU • 355 
356 SI OTB: 

751-1809-0002 384 2-6;_81 



DMASIO PAGE 8 
LOC OBJ CODE M STMT SOURCE STATEMENT ASM 5. 9 

OlOF 00 357 DEFB SIOWRO i CH. RESET 
0110 18 358 DEFB CHRES 
0111 01 359 DEFB SIOWRl l STATUS AFFECTS VECTOR 
0112 04 360 DEFB SIOSAV 
0113 02 361 DEFB SIOWR2 l VECTOR 
0114 10 362 DEFB SIOVEC. AND. 255 

363 SICEB: EOU $ 
364 •E.J 
365 
366 j; DATA AREA 
367 

2000 368 ORG RAM 
2000 369 SICFLQ: DEFS 1 ; SIO STATUS FLAQ BYTE 
2001 370 SP.C: DEFS BU•.SH ! Dl'IA SOURCE ADDR 
2041 371 DEFS 64 ; STACK AREA 

372 STW..: EOU $ 
373 
374 END 

751-1809-0002 385 2-6-81 



386 



Zilog 

INTRllJOCTllJtl 

The ZB500 Family consists of universal peripherals 
that can interface to a variety of microprocessor 
systems that use a non-multiplexed address and 
data bus. Though similar to ZBO peripherals, the 
ZB500 peripherals differ in the way they respond 
to 1/0 and Interrupt Acknowledge cycles. In 
addition, the advanced features of the ZB500 
peripherals enhance system performance and reduce 
processor overhead. 

To design an effective interface, the user needs 
an understanding of how the ZBO Family interrupt 
structure works. and how the ZB500 peripherals 
interact with this structure. This application 
note provides basic information on the interrupt 
structures, as well as a discussion of the 
hardware and software considerat10ns involved in 
interfacing the Z8500 peripherals to the ZBO 
CPUs. Discussions center around each of the 
following situations: 

• ZBOA 4 MHz CPU to Z8500 4 MHz peripherals 
e Z808 6 MHz CPU to Z850DA 6 MHz peripherals 
• ZBOH 8 MHz CPU to Z8500 4 MHz peripherals 
e ZBOH B MHz CPU to ZB500A 6 MHz peripherals 

This application note assllt1es the reader has a 
strong working knowledge of the Z8500 peripherals; 
it is not intended as a tutorial. 

CPU HARDWAR£ INllllFACIICi 

The hardware interface consists of three basic 
gr~ups of signals: data bus, system control, and 
interrupt control, described below. For more 
detailed signal information, refer to Zilog's 
Data Book, lkliversal Peripherals. 

Note: The timing specs. for the Z8530 have been improved. The numbers 
appearing in this application note are old timings. 

Interfacing Z80 CPUs to the 
Z8500 Peripheral Family 

Application 
Note 

May 1983 

Data Bua Signals 

DrDo Data Bus (bidirectional, 3-state). This 
bus transfers data between the CPU and the 
peripherals. 

Syate11 Control Signals 

An-A0 Address Select Lines (optional). These 
lines select the port and/or control 
registers. 

Chip Enable (input, active Low). rr is 
used to select the proper peripheral for 
programming. rr should be gated with TURll" 
or "RITT]" to prevent spurious chip selects 
during other machine cycles. 

Read (input, active Low). 'RI) activates the 
chip-read circuitry and gates dat.a from the 
chip onto the data bus. 

W* Write (input, active Low). W strobes data 
from the data bus into the peripheral. 

•Chip reset occurs when 'RI) and W are active 
simultaneously. 

Interrupt Control 

~ Interrupt Acknowledge (input, active Low). 
This signal indicates an Interrupt 
Acknowledge cycle and is used with Tlli to 
gate the interrupt vector onto the data 
bus. 

Interrupt Request (output, open-drain, 
active Low). 

387 



!El 

IEO 

Interrupt Enable In (input, active High). 

Interrupt Enable Out (output, active 
High). 

These lines control the interrupt daisy 
chain for the peripheral interrupt 
response. 

Z8500 1/0 OPERATION 

The ZB500 peripherals generate internal control 
signals from 1![i end Wlf. Since PCLK hes no 
required phase relationship to 'Rl'i or Wlf, the 
circuitry generating these signals provides time 
for metastable conditions to disappear. 

The ZB500 peripherals are initialized for dif­
ferent operating modes by progr1111ming the internal 
registers.' 
during 1/0 

These internal registers are accessed 
Read and Write cycles, which are 

described below. 

Read Cycle Tilling 

Figure 1 illustrates the ZBSOO Read cycle timing. 
All register addresses and TRTAl'.I< must remain 
stable throughout the cycle. lf rr goes active 
after llli goes active, or if rr goes inactive 
before llli goes inactive, then the effective Read 
cycle is shortened. 

Write Cycle Tilling 

Figure 2 illustrates the ZBSOO Write cycle 
titning. All register addresses and TRTAl'.I< must 
remain stable throughout the cycle. If rr goes 
active after WR" goes active, or if rr goes in­
active before WR" goes inactive, then the effective 
Write cycle is shortened. Data must be available 
to the peripheral prior to the falling edge of Wlf. 

PERIPl£RAL lNTERRtl'T OPERATION 

Understanding peripheral interrupt operation 
requires a basic knowledge of the Interrupt 
Pending (IP) and Interrupt Under Service (IUS) 
bits in relation to the daisy chain. Both ZBO end 
ZBSOO peripherals are designed in such a way that 
no additional interrupts can be requested during 
an Interrupt Acknowledge cycle. This allows the 
interrupt daisy chain to settle, and ensures 
proper response of the interrupting device. 

The IP bit is set in the per ipherel when CPU 
intervention is required (such conditions es 
buffer empty, character available, error detec­
tion, or status changes). The Interrupt Ac­
knowledge cycle does not necessarily reset the IP 
bit. This bit is cleared by a software commend to 
the peripheral, or when the action that generated 
the interrupt is completed (i.e., reading a 
character, writing date, resetting errors, or 
changing the status). When the interrupt has been 
serviced, other interrupts can occur. 

ADDR ________ __,)(~-----------------------A-o_o_R_Es_s __ vA_L_i_o ____________________ .,)(~--------~ 

\ __ _ 

D~A --------------------------------------------c(~ ___ o_A_T_A_v_A_L1_0 __ __,)>--------------

Figure 1. Z8500 Peripheral 1/0 Read Cycle Tilling 

388 2296-001 



''-----

Figure 2. Z8500 Peripheral I/O Write Cycle Tilling 

The !US bit indicates that an interrupt is 
currently being serviced by the CPU. The lUS bit 
is set during an Interrupt Acknowledge cycle if 
the IP bit is set and the IEI line is High. If 
the IEI line is Low, the !US bit is not set, and 
the device is inhibited from placing its vector 
onto the dsta bus. In the ZBO periphersls, the 
IUS bit is normally cleared by decoding the RETI 
instruction, but can also be cleared by a software 
commend (SIO). ln the Z8500 peripherals, the lUS 
bit is cleared only by software commands. 

Z80 Interrupt Oaisy-lllain Operation 

In the ZBO peripherals, both the IP and IUS bits 
control the IEO line and the lower portion of the 
daisy chain. 

When a peripherel's IP bit is set, its IEO line is 
forced Low. This is true regardless of the state 
of the IEI line. Additionally, if the peripher­
al 's IUS bit is clear end its IE! line High, the 
TRT line is slso forced Low. 

The ZBO periphersls sample for both 'Rf and "Imm 
sctive, and "RD" inactive to identify en Interrupt 
Acknowledge cycle. When 'Rf goes active and llt5" is 
inactive, the peripheral detects an Interrupt 
Acknowledge cycle and allows its intertupt dsisy 
chain to settle. When the Imm line goes active 
with 'Rf active, the highest priority interrupting 
peripheral places its interrupt vector onto the 
data bus. The IUS bit is also set to indicate 
that the peripheral is currently under service. 
As long aa the IUS bit ia set, the IEO line ia 
forced Low. Thia inhibits any lower priority 
devices from requesting an interrupt. 

When the ZBO CPU e><ecutes the RETI instruction, 
the peripherals monitor the data bus and the high­
est priority device under service resets its IUS 
bit. 

Z8500 Interrupt Oaisy-Olain Operation 

In the Z8500 peripherals, the IUS bit normally 
controls the state of the IEO line. The IP ·bit 
affects the daisy chain only during an Interrupt 
Acknowledge cycle. Since the IP bit is normally 
not part of the Z8500 peripheral interrupt daisy 
chain, there is no need to decode the RETI in­
struction. To allow for control over the daisy 
chain, Z8500 peripherals have a Disable Lower 
Chain (DLC) software command that pulls IEO Low. 
This can be used to selectively desctivste parts 
of the daisy chain regardleaa of the interrupt 
status. Tsble 1 shows the truth tables for the 
Z8500 interrupt daisy-chain control signals during 
certain cycles. Table 2 shows the interrupt state 
diagram for the Z8500 peripherals. 

Table 1. Z8500 Oaisy-0..ain Control Signals 

Truth Table for 
Daisy Dlain Signals 

During Idle State 
IEI IP IUS IEO 

D 
1 

x 
x 
x 

x 
0 

0 
1 
0 

Truth Table for 
Daisy ll'lain Signals 

During INTACK Cycle 
IEI IP IlJS IEO 

0 x 
1 
x 
0 

x 
x. 
1 

0 

0 

0 
0 

389 



Table 2. Z8500 Interrupt state Diagr• 

Interrupt Condition 

IEI High? 

INT Active <------> Wait for CPU INTACK Cycle 

OOAcK * IEI * RO 

IUS Set 

CPU Read, Write, or Reset IP 

IP Cleared 

IEO High? 

IUS Cleared 

Return to main program 

The Z8500 peripherals use INTACK (Interrupt 
Acknowledge) for recognition of an Interrupt 
Acknowledge cycle. This pin, used in conjunction 
with RD, allows the Z8500 peripheral to gste its 
interrupt vector onto the data bus·. An active Ro 
signal during an Interrupt Acknowledge cycle 
performs two functions. First, it allows the 
highest priority device requesting an interrupt to 
place its interrupt vector on the data bus. 
Secondly, it sets the IUS bit in the highest 
priority device to indicate that the device is 
currently under service. 

INPUT/lllTPUT CYQ.£5 

Although Z8500 peripherals are designed to be as 
universal as possible, certain timing parameters 
differ from the standard ZBO ti111ing. The 
following sections discuss the I/O interfsce for 
each of the ZBO CPUs and the ZB500 peripherals. 
Figure 5 depicts logic for the ZBOA CPU to. ZB500 
peripherals (and ZBOB CPU to ZB500A peripherals) 
I/O interface as well as the Interrupt Acknowledge 

390 

interface. figures 4 and 7 depict SOiie Of the 
logic used to interface the ZBCtl CPU to the ZB500 
and ZB500A peripherals for the I/O and Interrupt 

.Acknowledge interfaces. The logic required for 
adding additional Wait states into the timing flow 
is not discussed in the folowing sections. 

Z80A C'l.I to Z8500 Peripherala 

No additional Wait states are necessary during the 
1/0 cycles, although additional Wsit states can be 
inserted to compensate for timing delays that are 
inherent in a system. Although the ZBOA timing 
parameters indicate a negative value for deta 
valid prior to W, this is a 1«1rse than "worst 
case" value. This param11ter is based upon the 
longest (1«1rst case) delay for data available from 
the falling edge of the CPU clock minus the 
shortest (beat case) delay for CPU clock High to 
W Low. The negative value resulting from these 
t1«1 parameters does not occur because the worst 
case of one parameter and the beat case of the 
other do not occur within the same device. This 
indicates that the value for data available prior 
to 'lllf will always be greater than zero. 

All setup and pulse width times for the Z8500 
peripherals are met by the standard ZBOA timing. 
In determining the interface necessary, the ~ 
signal to the Z8500 peripherals is assumed to be 
the decoded address qualified with the 1tlRQ" 
signal. 

figure Ja shows the minimum ZBOA CPU to Z8500 
peripheral interface timing for 1/0 cycles. If 
additional Wait states are needed, the·same number 
of Wait states can be inserted for both 1/0 Read 
and Write cycles to' simplify interface logic. 
There are several ways to place the ZBOA CPU into 
a Wait condition (such as counters or shift 
registers to count system clock pulses), depending 
upon whether or not the user wants to place Wait. 
states in all 1/0 cycles, or only during Z8500 1/0 
cycles. Tables 3 and 4 list the Z8500 peripheral 
and the ZBOA CPU timing parameters (respectively) 
of concern during the 1/0 cycles. Tables 5 and 6 
list the equations used in determining if these 
parameters are satisfied. In generating these 
equations and the values obtained from them, the 
required number of Wait states was taken into 
account. The reference n .... bers in Tables 3 and 4 
refer to the timing diagram in Figure Ja. 



Table :J. ZB500 T i.8ing Par~ere 1/0 Cycles 

Worst c-
Min ... lhita 

6. TsA(WR) Address to iiR Low Setup 80 ns 
1. TsA(RD) Address to RD Low Setup 80 ns 
2. TdA(DR) Address to Read Data Valid 590 ns 

TsCEl(WR) CT Low to WR Low Setup 0 ns 
TsCEl(RD) CE Low to RO Low Setup 0 ns 

4. TwRDl RD Low Width 390 ns 
B. TwWRl WR Low Width 390 ns 
3. TdRDf(DR) RD Low to Read Oats Valid 255 ns 
7. TsDW(WR) Write Dsta to WR Low Setup 0 ns 

Table 4. Z80A Timing Par~ere 1/0 Cycles 

Worst C-
Hin ... lhita 

TcC Clock Cycle Period 250 ns 
TwCh Clock Cycle High Width 110 ns 
TfC Clock Cycle Fell Time JO ns 
TdCr(A) Clock High to Address Valid 110 ns 
TdCr(RDf) Clock High to RD Low 85 ns 
T dCr (IORQf) Clock High to IORQ Low 75 ns 
TdCr(WRf) Clock High to WR Low 65 ns 

5. TsD(Cf) Oat a to Clock Low Setup 50 ns 

Table 5. Par-':er Equations 

Z8500 Z80A 
Par-':er EquatilWI Value lhita 

TsA(RD) TcC-TdCr(A) 140 min ns 
T dA(DR) 3TcC+TwCh-TdCr(A)-TsD(Cf) BOO min ns 
TdRDf(DR) 2TcC+TwCh-TsD(Cf) 460 min ns 
TwRDl 2TcC+TwCh+TfC-TdCr(RDf) 525 min ns 
TsA(WR) TcC-T dCr( A) 140 min ns 
TsDW(WR) > 0 min ns 
TwWRl 2TcC+TwCh+TfC-TdCr(WRf) 560 min ns 

Table 6. Par-':er EquatilWIB 

ZBOA Z8500 
Par-ter EquatilWI Value lhita 

TsD(Cf) Address 
3TcC+TwCh-TdCr(A)-TdA(DR) 160 min ns 
RO 
2TcC+TwCh-TdCr(RDf)-TdRD(DR) 135 min ns 

391 



CLOCK 

ADDA 

CPU 
DATA IN 

CPU 
DATA OUT VALID DATA 

Figure )a. Z80A CPU to Z8500 Peripheral Miniala 1/0 Cycle li11ing 

Zlllll ll'IJ to Z8500A Peripheral• 

No additional Wait statea are necessary during 1/0 
cycles, although Wait states can be inserted to 
compensate for JIOY system delays. Al though the 
ZBOB timing parameters indicate a negative value 
for data valid prior to Wlf, this is a worse than 
"worst case" value. This parameter is based upon 
the longest (worst case) de.lay for data available 
from the falling edge of the CPU clock minua the 
shortest (best case) delay for CPU clock High to 
Wlf Low. The negative value resulting from these 

392 

two parameters does not occur because the worst 
case of one parameter and the best case of the 
other do not occur within the seme device. This 
indicates that the value for data available prior 
to Wlf will always be greater than zero. 

All setup and pulse width times for the Z8500A 
peripherals are met by the standard ZBOB timing. 
In determining the interface necessary, the rt:" 
signal to the Z8500A peripherals is assumed to be 
the decoded address qualified with the T!l'RU' 
signal. 

2296-003 



figure Jb shows the minim1.111 Z808 CPU to Z8500A 
peripheral interface timing for 1/0 cycles. lf 
additional Wait states are needed, the same nllllber 
of Wait states can be inserted for both 1/0 Read 
and 1/0 Write cycles in order to aimpli fy inter­
face logic. There are several ways to place the 
Z808 CPU into a Wait condition (such as counters 
or ahift registers to count system clock pulses), 
depending upon whether or not the user wants to 
place Weit ·states in ell 1/0 'cycles, or only 

CLOCK 

ADDR 

CPU 
DATA IN 

CPU 
DATA OUT 

during Z8500A 1/0 cycles. Tables 7 and 8 list the 
Z8500A peripheral end the ZBOB CPU timing 
parameters (respectively) of concern during the 
1/0 cycles. Tables 9 and 10 list the equations 
used in determining if these parameters ere satis­
fied. ln generating these equations and the 
values obtained from them, the required n1.111ber of 
Weit states was taken into account. The reference 
numbers in Tables 7 end 8 refer to the timing 
diagram of rigure Jb. 

VALID DATA 

figure Jb. ZBOB CPU to Z8500A Peripheral Miniam 1/0 Cycle Tilling 

2296-004 393 



Table 7. Z8500\ Tilling Parmetera 1/0 Cycles 

Worst C- · Min Max l)Uta 

6. TsA(WR) Address to WR Low Setup BO ns 
1. TsA(RD) Address to RD Low Setup BO ns 
2. TdA(DR) Address to Read Data Valid 420 ns 

TsCEl(WR) CE Low to iiR Low Set up 0 ns 
TsCEl(RD) CE Low to RD Low Set up 0 ns 

4. TwRDl RD Low Width 250 ns 
B. TwWRl WR Low Width 250 ns 
3. TdRDf(DR) RD Low to Read Data Valid 180 ns 
7. TsDW(WR) Write Data to iiR Low Setup 0 ns 

Table 8. Zlllll Tiaing Parmeters 1/0 Cycles 

Worst Case Min Max I.hits 

TcC Clock Cycle Period 165 ns 
TwCh Clock Cycle High Width 65 ns 
TfC Clock Cycle Fall Time 20 ns 
TdCr(A) Clock High to Address Valid 90 ns 
TdCr(RDf) Clock High to RD Low 70 ns 
TdCr( IORQf) Clock High to IORQ Low 65 ns 
TdCr(WRf) Clock High to WR Low 60 ns 

5. TsO(Cf) Data to Clock Low Setup 40 ns 

Table 9. Par-ter Equations 

Z8500A zem 
Par-ter Equation Value I.hits 

TsA(RD) TcC-TdCr(A) >75 min ns 
TdA(DR) 3TcC+TwCh-TdCr(A)-TsD(Cf) 430 min ns 
TdRDf(DR) 2TcC+TwCh-TsD(Cf) 345 min ns 
TwRDl 2TcC+TwCh+TfC-TdCr(RDf) 325 min ns 
TsA(WR) TcC~TdCr(A) 75 mm ns 
TsDW(WR) > 0 min ns 
T.wWRl 2TcC+TwCh+TfC-TdCr(WRf) 352 min ns 

Table 10. Par-ter Equations 

Z8(B Z85CD 
Par-ter Equation Value Lhita 

TsD( Cf) Address 
3TcC+TwCh-TdCr(A)-TdA(DR) 50 min ns 
RD 
2TcC+TwCh-TdCr(RDf)-TdRD(DR) 75 min ns 

394 



ZIDI CPU to Zl500 Peripherel• 

During an 1/0 Read cycle, there are three Z8500 
parameters that must be satisfied. Depending upon 
the loading characteriatics of the 1llr signal, the 
designer 11ay need to delay the 1 aading ( falling) 
edge of 1llr to satisfy the Z8500 timing paraneter 
TsA(RD) (Address Valid to 1!lr Setup). Since ZBOH 
timing par .. eters indicate that the 'M:i signal may 
go Low after the falling edge of T2, it ia 
recOllllllended that the rising edge of the system 
clock be used to delay 1!lr (if necessary). The CPU 
muat also be placed into a Wait condition long 
enough to satisfy TdA(DR) (Address Valid to Read 
Data Valid Deley) end TdRDf(DR) (lllr Low to Reed 
Data Valid Delay). 

During an 1/0 Write cycle, there ere three other 
Z8500 parameters that must be satisfied. 
Depending upon the loading characteristics of the 
WR" signal end the date bus, the designer may need 
to delay the leading (felling) edge of WR" to 
satisfy the Z8500 timing parameters TsA(WR) 
(Address Valid to WR" Setup) and TsDW(WR) (Date 
Valid Prior to WR" setup). Since ZBOH timing 
parameters indicate that the WR" signal may go Low 
after the felling edge of Tz, it is recommended 
that the rising edge of the system clock be used 
to delay WR" (if necessary). This delay will 
ensure that both parameters ere satisfied. The 
CPU must also be placed into a.Wait condition long 

enough to satisfy TwWRl (lllf Low Pulae Width). 
AaalJAing that the lllf aignal ia delayed, only two 
additional Wait elates are needed during an 1/0 
Write cycle when interfacing the ZBOH CPU to the 
Z8500 peripherals. 

To simplify the 1/0 interface, the designer can 
uae the aa1e mllll>er of Wait states for both 1/0 
Read and l/D Write cycles. Figure Jc ahows the 
minimum ZBOH CPU to Z8500 peripheral interface 
timing for the 1/0 cyclea (assuming that the sane 
number of Wait states are used for both cycles and 
that both 1!lr and WR" need to be delayed). Figure 
4 shows two circuits that can be used to delay the 
leading (falling) edge of either the 1llr or the lllf 
signals. There are several weye to place the ZBOA 
CPU into a Wait condition (such aa counters or 
shift registers to count system clock pulses), 
depending upon whether or not the user wants to 
place Wait states in all 1/0 cycles, or only 
during Z8500 1/0 cycles. Tables 4 and 11 list the 
Z8500 peripheral and the ZB!Ji CPU timing 
parameters (respectively) of concern during the 
1/0 cycles. Tables 14 and 15 list the equations 
used in determining if these parameters are 
satisfied. In generating these equations and the 
values obtained from them, the required number of 
Wait states was taken into account. The reference 
mnbers in Tables 4 and 11 refer to the timing 
diagram of Figure Jc. 

Table 11. ZllOt Tiaing Par-ter 1/0 Cycles 

Equation Min Max ltlita 

TcC Clock Cycle Period 125 ns 
TwCh Clock Cycle High Width 55 ns 
TfC Clock Cycle Fall Time 10 ns 
TdCr(A) Clock High to Address Valid 80 ns 
TdCr(RDf) Clock High to RO Low 60 ns 
TdCr( IORQf) Clock High to IORQ Low 55 ns 
TdCr(WRf) Clock High to WR Low 55 ns 

5. TaD(Cf) Data to Clock Low Setup JO ns 

Table 12. PBl'-ter Equati-

Z8500 ZIDI 
Parmeter Equation Value ltlita 

TaA(RO) ZTcC-TdCr(A) 170 min ns 
TdA(DR) 6TcC+TwCh-TdCr(A)-TaD(Cf) 695 min ns 
TdRDf(DR) 4TcC+TwOl-TaD(Cf) 523 min ns 
TwRDl 4TcC+TwCh+TfC-TdCr(RDf) 50J min ns 
TaA(WR) WR - delayed 

ZTcC-TdCr(A) 170 min ns 
TaDW(WR) > 0 min ns 
TwWRl 4TcC+TwCh+TfC ~J min ns 

395 



CLOCK 

ADDR 

IORQ 

CE 

WAIT 

RD 

RDD 

READ 

CPU 
DATA IN 

CPU 
DATA OUT 

396 

T1 T2 Twa Tw Tw Tw TJ 

VALID DATA 

VALID DATA 

figure Jc. ZBlll CPU to Z8500 Peripheral Min:imm 1/0 Cycle Timing 

2296-005 



Zlllll D'IJ to Zll50llA Periphnal• 

During an 1/0 Read cycle, there are three ZBSOOA 
paranetera that must be satisfied. Depending upon 
the loading cherecterietice of the 1!D" signal, the 
designer may need to delay the leading (falling) 
edge of 1!D" to satisfy the ZB500A timing parameter 
TeA(RD) (AddreBB Valid to 1lD" Setup). Since ZBOH 
timihg paranetere indicate that the 1!D" signal may 
go Low after the falling edg'e of T 2 , it is 
reconnended that the rising edge of the system 
clock be used to delay 1lD" (if neceeear~). The CPU 
must also be pieced into e Weit condition long 
enough to aatisfy TdA(DR) (Address Valid to Read 
Date Valid Deley) end TdRDf(DR) (l!D" Low to Read 
Date Valid Delay) • AssU11ing that., the "RI:) signal is 
delayed, then only one additional Wait state is 
needed during an I/O Read cycle when interfacing 
the ZBDH CPU to the ZB500A peripherals. 

During en 1/0 Write cycle, there ere three other 
ZB500A parameters that have to be satisfied. 
Depending upon the loading characteristics of the 
llR" signal end the date bus, the designer may need 
to delay the leading (felling) edge of llR" to 
satisfy the ZBSOOA timing parameters TsA(WR) 
(Address Valid to llR" Setup) end TsDW(WR) (Date 
Valid Prior to llR" Setup). Since ZBOH timing 
parameters indicate that the llR" signal may go Low 
after the felling edge of r2 , it is recommended 
that the rising edge of the system clock be used 

to delay lllf (if neceBBery). Thie delay will 
ensure that both parm11etere are satisfied. The 
CPU must eleo be pieced into a Weit condition long 
enough to satisfy TwWRl (11f Low Pulse Width). 
Assuming that the llR" signal is delayed, then only 
one additional Wait state is needed during en 1/0 
Write cycle when interfacing the ZBOH CPU to the 
ZB500A peripherals. 

Figure Jd shows the minimun ZBOH CPU to ZBSODA 
peripheral interface tilling for the 1/0 cycles 
(eeeuming that the eeme number of Weit states ere 
used for both cycles end that both "RI:) end "lllf need 
to be delayed). Figure 4 ehowa two circuits· that 
mey be used to delay the leading (felling) edge of 
either the 1!D" or the "lllf signals. There ere 
several methods used to place the ZBOA CPU into a 
Weit condition (such es counters or shift 
registers to count system clock pulses), depending 
upon whether or not the user wants to place Wait 
states in ell I/O cycles, or only during ZBSDDA 
1/0 cycles. Tables 7 end 11 list the ZBSOOA 
peripheral end the ZBOH CPU timing parameters 
(respectively) of concern during the I/O cycles. 
Tables 14 and 1S list the equations used in 
determining if these parameters ere satisfied. In 
generating these equations and the values obtained 
from them, the required n1111ber of Wait states was 
taken into account. The reference numbers in 
Tables 4 and 11 refer to the timing rliegram of 
Figure Jd. 

Table 13. Par-ter Equations 

Z811t 
Par-ter 

TsD(Cf) 

Z850IM 
Par-ier 

TsA(RD) 
TdA(DR) 
TdRDf(DR) 
TwRDl 
TsA(WR) 

TaDW(WR) 
TwWRl 

Z8500 

Equatim 

Address 
6TcC+TwCh-TdCr(A)-TdA(DR) 
Ri5 - delayed 
4TcC+TwCh+TfC-TdRO(DR) 

Table 14.. Par-ter Equations 

Z8llt 
Equatim 

2TcC-TdCr(A) 
6TcC+TwCh-TdCr(A)-TsD(Cf) 
4TcC+TwCh-TsD(Cf) 
4TcC+TwCh+TfC-TdCr(ROf) 
iiR - delayed 
2TcC-TdCr(A) 

2TcC+TwCh+TfC 

'Value ~ts 

ns min ns 

JOO min ns 

'Value lkiits 

170 min ns 
69S min ns 
S25 min ns 
503 min ns 

170 min ns 
> 0 min ns 
313 min ns 

397 



CLOCK 

CPU 
DATA IN 

CPU 
DATA OUT 

398 

VALID DATA 

figure lei. ZBtlt CPU to Z850Dll Peripheral Mini.am l/0 Cycle Tilling 

2296-006 



+ 

74LS32 s 
RD(WR) D Q 

RDD(WRD) 

CLOCK CK Q 

c 
74LS74 

+ 

Figure "· Delaying iiD or WR 

Table 15. Par~er Equati-

Z8(lf Z851B 
Par-ter Equation Ylllue lhits 

TsO(Cf) Address 
4TcC+TwCh-TdCr(A)-TdA(OR) 55 111in ns 
iffi - delayed 
2TcC+TwCh-TdRO(OR) 125 min ns 

2296-007 399 



INTERftlJPT ACICIOLEDGE CYCLES 

The primary timing differences between the ZBO 
CPUs and Z8500 peripherals occur in the Interrupt 
Acknowledge cycle. The Z8500 timing parameters 
that are significant during Interrupt Acknowledge 
cycles are listed in Table 16, while the ZBO 
parameters are listed in Table 17. The reference 
numbers in Tables 16 and 17 refer to Figurea 6, 
Ba, and Bb. 

If the CPU and the peripherals are running at 
different speeds (as with the ZBOH interface), the 
INTACK signal must be synchronized to the 
peripheral clock. Synchronization is discussed in 
detail under Interrupt Acknowledge for ZBOH CPU to 
Z8500/8500A Peripherals. 

!AJring an Interrupt Acknowledge cycle, Z8500 
peripherals require both INTACK and RO to be 
active at certain times. Since the ZBO CPUa do 
not issue either INTACK or RD, external logic must 
generate these signals. 

Generating these two signals is easily ac­
complished, but the ZBO CPU must be placed into a 
Wait condition until the peripheral interrupt 
vector is valid. If.more peripherals are added to 
the daisy chain, additional Wait states may be 

Table 16. Z8500 Timing Par-':era 

Worst Case 

1. TslA(PC) INT ACK Low to PCLK High Setup 
ThlA(PC) INTACK Low to PCLK High Hold 

2. TdIAi(RO) INTACK Low to RD (Acknowledge) 
5. TwRDA RD (Acknowledge) Width 
3. TdRDA(DR) RD (Acknowledge) to Data Valid 

TsIEI(RDA) IEI to RD (Acknowledge) Setup 
ThIEI(RDA) IEI to RD (Acknowledge) Hold 
TdlEI(JE) IEI to IEO Delay 

necessary to give the daisy chain ti111e to settle. 
Sufficient ti111& between INTACK active and RO 
active should be allowed for the entire daisy 
chain to settle. 

Since the Z8500 peripheral daisy chain does not 
uae the IP flag except during interrupt 
acknowledge, there is no need for decoding the 
RETI instruction used by the ZBO peripherals. In 
each of the Z8500 peripherals.• there are commands 
that reset the individual IUS flags. 

EXTERNAL INT£1FACE LOGIC 

The following sections discuss external interface 
logic required during Interrupt Acknowledge cycles 
for each interface type. 

CPU/Peripheral S- Speed 

Figure 5 shows the logic used to inter face the 
ZBOA CPU to the Z8500 peripherals and the ZBOB CPU 
to Z8500A peripherals during an Interrupt 
Acknowledge cycle. The primary component in this 
logic is the Shift register (74LS164), which 
generates l'ITT'm", ~. and lrn!T. 

Interrupt Acknowledge Cycles 

4 telz 6 telz 
Min Max Min Max i.rlts 

100 100 ns 
100 100 ns 

Low 350 250 ns 
350 250 ns 

250 180 ns 
120 100 ns 
100 70 ns 

150 100 ns 

Table 17. ZBO CPU Ti•ing P.r-1era Interrupt llcknowledge Cycles 

Worst Case 

TdC(M1f) 
TdM1 f( IORQf) 

4. TsD(Cr) 

400 

4 telz 
Min Max 

Clock High to Mi Low Delay 100 
Mi Low to IORii Low Delay 575* 
Date to Clock High Setup 35 

*ZBOA: 2TcC + TwCh + TfC - 65 
ZBOB: 2TcC + TwCh + T fC - 50 
ZBOH: 2TcC + TwCh + TfC - 45 

6 telz 8 telz 
Min Max Min Max ~its 

80 70 ns 
345* 275* ns 

30 25 ns 



74LS11 

WR 
WRITE 

RESET 
READ 

RD 

74LS164 

INTACK 
MREQ A Oo INT ACK 

74LS04 01 74LS04 74LS04 iREAD 
M1 B 02 

Q3 

CLR Q4 

Os 74LS04 

CLOCK 0& 

Q7 

74LS11 74LSOO 

WAIT 

WAIT' 

figure 5. ZllOA/ZllOB CPU to ZB500/ZBSOOA Peripheral Interrupt klcnowladge Interface Logic 

During I/O .and normal memory access cycles, the 
Shift register remains cleared because the lH' 
signal is inactive. During opcode fetch cycles, 
also, the Shift register remains cleared, because 
only Os can be clocked through the register. 
Since Shift register outputs are Low, l!'E:im", 
'WRITE', and WJ:lT are controlled by other system 
logic and gated through the AND gates (74LS11). 
During I/O and normal memory access cycles, "Rrllif 
and 'WRITE' are active as a result of the system "RD" 
and W signals (respectively) becoming active. 
lf system logic requires that the CPU be placed 
into a Wait condition, the WJ:!T• signal controls 
the CPU. Should it be necessary to reset the 
system, 'Rr'SET causes the interface logic to 
generate both "Rrllif and 'WRITE' (the Z8500 peripheral 
Reset condition). 

Normally an Interrupt Acknowledge cycle is 
indicated by the ZBO CPU when lH' and llJRIJ are both 
active (which can be detected on the third rising 
clock edge after T1). To obtain an early indica­
tion of an Interrupt Acknowledge cycle, the Shift 
register decodes an active lH' in the presence of 
an inactive 'RREll on the rising edge of T2• 

During an Interrupt Acknowledge cycle, the ~ 
signal is generated on the rising edge of T 2• 

2296-008 

Since it is the presence of ~ and an active 
~ that. gates the interrupt vector onto the data 
bus, the logic must also generate . l!'Ol'D" at the 
proper time. The timing parameter· of concern here 
is TdlAi(RD) [!lil'TilrR' to m:> (Acknowledge) Low 
Delay). This time delay allows the .interrupt 
daisy chain ta settle so that the device 
requesting the interrupt can place its interrupt 
vector onto the data bus. The Shi ft register 
allows a sufficient time.delay from the generation 
of !li1'TilrR' before it generates 'Rrl(!j". During this 
delay, it places the CPU into a Wait state until 
the valid interrupt vector can be placed onto the 
data bus. lf the time between these two signals 
is insufficient for daisy chain settling, more 
time can be added by taking ~ and WJ:lT from a 
later position on the Shift register. 

Figure 6 illustrates Interrupt Acknowledge cycle 
timing resulting from the ZBOA CPU to Z8500 
peripheral and the ZBOB CPU ta Z8500A peripheral 
interface. This timing comes from the logic 
illustrated in Figure 5, which can be used for 
both interfaces. Should more Wait states be 
required, the additional time can be calculated in 
terms of system clocks, since the CPU clack and 
PCLK are the sane. 

401 



CLOCK 

VECTOR 
DATA 

Figure 6. ZllOA/Zlllll CPU to Z8500/Z8500A Peripheral Interrupt Acknl>wledge lnterf1£e Tilling 

Z80H CPU to Z8500/Z8500A Peripherals 

Figure 7 depicts logic that can be used in inter­
facing the ZBOH CPU to the Z8500/ZB500A peripher­
als. This logic is the sane as that shown in 
figure S, except that a synchronizing flip-flop is 
used to recognize an Interrupt Acknowledge cycle. 
Since Z8500 peripherals do not rely upon PCLK 
except during Interrupt Acknowledge cycles, 
synchronization need occur only at that time. 
Since the CPU and the peripherals are running at 
different speeds, ~ and "Im must be 
synchronized to the Z8500 peripherals clock. 

During 1/0 and normal memory access cycles, the 
synchronizing flip-flop and the Shift register 
remain cleared because the "R1" signal is inactive. 
During opcode fetch cycles, the flip-flop and the · 
Shift register again remain cleared, but this time 
because the limrQ" signal is active. The synchro­
nizing flip-flop allows ·an Interrupt Acknowledge 

cycle to be recognized on the rising edge of T 2 
when "R1" is active and limrQ" is insctive, generating 
the INTA signal. When INTA is active, the Shift 
register can clock and generate ~ to the 
peripheral and WIT to the CPU. The Siift 
register delays the generation of ~ to the 
peripheral until the daisy chain settles. The 

402 

WIT signal is removed when sufficient time has 
been allowed for the interrupt vector data to be 
v.alid. 

Figure Ba illustrates Interrupt Acknowledge cycle 
timing for the ZBOH CPU to Z8500 peripheral inter­
fsce. Figure Bb illustrates Interrupt Acknowledge 
cycle timing for the ZBOH CPU to ZBSOOA peripheral 
interface. These timings result from the logic in 
Figure 7. Should more Wait states be required, 
the needed time should be calculated in terms of 
PCLKs, not CPU clocks. 

Z80 CPU to Z80 snd Z8500 Peripherals 

In a ZBO system, a combination of ZBO peripherals 
and Z8500 peripherals can be used compatibly. 
While there is no restriction on the placement of 
the Z8500 peripherals in the daisy chain, it is 
recommended that they be placed early in the chain 
to minimize propagation delays during RETI cycles. 

During an Interrupt Acknowledge cycle, the IEO 
line from the Z8500 peripherals changes to.reflect 

the interrupt status. Time should be allowed for 
this change t 0 ripple through the remainder of the 
daisy chain before activating lORQ' to the ZBO 
peripherals, or~ to the Z8500 peripherals. 

2296-009 



74LS11 

RESET...-~~~~~~~~~~~~~~~~~~~~---<~.-"'"\..~--

,D...-~~~~~~~~~~~~~~~~~~~---

74LS74 
MREQ-----. 

INTA 
D c 

74LS164 
74LS04 

A Co 
INT ACK 

C1 74LS04 
IREAD 

B C2 
C3 

CLR C4 

C5 74LS04 

PCLK Ce 

C7 

74LS11 74LSOO 

...._ __________ WAIT' 

Figure 7. Z80H to ZB!>OO/Z8SOM Peripheral Interrupt Acknowledge lnterfm:e Logic 

During the RETI cycles, the lEO line from the 
ZB500 peripherals does not change state as in the 
ZBO peripherals. As long as the peripherals are 
at. the top of the daisy chain, propagation delays 
ere minimized. 

The logic necessary to create the control signals 
for both ZBO and ZB500 peripherals is shown in 

2296-010 

Figure 9. This logic delays the generation of 
lORQ' to the ZBO peripherals by the same anount of 
time necessary to generate l!rllti for the ZB500 
peripherals. Timing for this logic during an 
Interrupt Acknowledge cycle is depicted in 
Figure 10. 

403 



~. 

T1 T2 Twa Twa Tw Tw Tw Tw Tw Tw Tw Tw T3 -CLOCK 

M1 

IORQ 

INTA 

PCLK 

INTACK 

WAIT 

READ 

VECTOR 
DATA 

figure 8a. Z80ff CPU ta Z8500 Peripharai lnterr-.t klcNNledge Interface Tilling 

I 



T1 T2 Twa Twa Tw Tw Tw Tw Tw T3 
J-""\,. 

CLOCK 

M1 

IORQ 

INTA 

PCLK 

INT ACK 

WAIT 

READ 

VECTOR 
DATA 

figure Rb. ZBOff CPU to Z8500A Peripheral Interrupt Acknowledge Interface Tilling 

"' 5: 



g 

WR 

RESET 

RD 
74LS04 -

IORQ 

MREQ A 
74LS04 -M1 

CLOCK., I> 

74LS164 

74LS11 

74LS04 
a0 I INTACK 

a ' I ' 1 ~ 74LS04 __ 
IREAD 

02 

Q3 

Q4 

Q5 

Q5 

Q7 

74LS11 

74LS04 

74LSOO 

WAIT ._~~~~~~~~~~~-t 

Figure 9. Ziil and Z8500 Peripheral interrupt llckRNledge Interface logic 

WRITE 

READ 

IORQ' 

INT ACK 

WAIT' 



T1 T2 Twa Twa Tw Tw Tw T3 

CLOCK 

M1 

IORQ 

INT ACK 

WAIT 

READ 

IORQ' --------------~--------------------,._~ 

figure to. ZllO and ZBSOO Peripheral Interrupt Acknowledge Interface T:iaing 

"' ~ 



SIFTWARE CONSIDERATIONS - POLLED OPERATION response. The interrupt vector read reflects the 
interrupt status condition even if the device is 
programmed to return a vector that does not 
reflect the statue change ( SAV or VIS is not 
set). The code below is a simple software routine 
that emulates the ZBO vector response operation. 

There are several options available for aerv icing 
interrupts on the ZB500 peripherals. Since the 
vector or IP registers can be read at any time, 
software can be used to emulate the ZBO interrupt 

lBO Vector Interrupt Re~, r.ul.atian by Software 

;This code emulates the ZBO vector interrupt 
;operation by reading the device interrupt 
; vector and forming an address from a vector 
;table. It then executes an indirect jlJllp to 
;the interrupt service routine. 

lNDX: LD A,CIVREG ;CURRENT INT. VECT. 
OUT (CTRL) ,A ;WRITE REG. PTR. 
IN A,(CTRL) ;READ VECT. REG. 
INC A ;VALID VECTOR? 
RET z ;NO INT - RETURN 
AND 00001110B ;MASK OTHER BITS 
LO £,A 
LD D,O ;FORM INDEX VALUE 
LD HL,VECTAB 

REG. 

ADD HL,DE ;ADD VECT. TABLE ADOR. 
LO A,(HL) ;GET LOW BYTE 
INC HL 
LO H,(HL) ;GET HIGH BYTE 
LO L,A ;FORM ROUTINE ADDR. 
JP (HL) ;JUMP TO IT 

VECTAB: OEfW INT1 
OEfW INT2 
OEf W INT3 
OEFW INT4 
DEf W INT5 
DEfW INT6 
DEFW 1NT7 
OEfW INTB 

408 



A Sill'LE ZllO-Z8500 SYSTEM 

The ZB500 devices interfece eeeily to the ZBO CPU, 
thus providing a system of considerable flexi­
bility. Figure 11 illuetretee e simple system 
using the ZBOA CPU end the ZB536 Counter/Timer end 
Perellel 1/0 Unit (CIO) in e mode 1 or non­
interrupt environment. Since interrupt vectors 
ere not usf!d, the TfJTlll'.1( line is tied High end no 
edditional logic is needed. Because the CIO can 

zao 
CPU 

8 

be used in s polled interrupt environment, the 1NT 
pin is connected to the CPU. The ZBO should not 
be set for mode 2 interrupts since the ClO will 
never place a vector onto the data bus. Instead, 
the CPU should be placed into mode 1 interrupt 
mode and a global interrupt service routine can 
poll the C IO to determine what caused the 
interrupt to occur. In this system, the software 
emulation procedure described above is effective. 

+sv 

+sv 

INT ACK 

INT 

D1-Do 

RD 
Z8536 

CIO 
WR 

2 A1·Ao ...,. _ _,__-+_._ __________ _.._. 
A1-Ao 

CLOCK 
GEN 

RESET K>----.... --1 

CLK WAIT 

WAIT 
LOGIC 

CE 

PCLK 

figure 11. ZBO to Z8500 Sillple Syste11 Ihde 1 Interrupt or Non-Interrupt Structure 

Additional Information - Z1log Publications 

1. ZBO CPU Technical Manual ( 03-0029-01) 7. Z80 Famil~ lnterru~t Structure 
2. ZBO OMA Technical Manual ( 00-2013-AO) Tutorial (611-1809-'-0003) 
3. ZBO PIO Technical Manuel (03-0008-01) e. ze530 sec Technical Manual (00-2057-01) 
4. ZBO CTC Technical Manual (03-0036-02) 9. Z8536 CIO Technical Manual (00-2091-01) 
5. ZBO SIO Technical Manual (03-3033-01) 10. Z8038 fIO Technical Manual (00-2051-01) 
6. ZBOH CPU AC Characteristics (00-2293-01) 11. Zilog 1982/83 Dela Book (00-2034-02) 

2296-015 409 



410 



Zilog 
January 1989 

This application note contains the most commonly asked 
questions about the Zilog Z80 Family. They are divided into 
following sections: 

• Z80CPU 
• Z80DMA 
• Z80PIO 
• Z80CTC 
• Z80 SIO, Z80 DART 

Obviously, not every questions on Z80 Family components 
are answered. However, this application note should give 
you a good feel for the Z80 Family devices. Along with the 
technical Manual, Product Specification and some other 
application note~. it should help make your Z80 design 
family a little easier. Also, this Application Note is applicable 
to the Z80 KIO and other- Z80 family based Super Integra­
tion Devices. 

Z80CPU 

0: Are the Z80 CPU 6 and 8MH:i clocks sensitive like their 
predecessors? 

A: Yes, specifications for rise and fall times and clock 
voltage levels must be met. 

Q: Can the rising edge on the CU< input affect the operation 
of the CPU? 

A: Very much so. For NMOS devices, a negative voltage 
spike on any pin without back bias will forward-bias the 
diode that exists between the N+ material connected to 
the pad and p-type substrate. This action causes the in­
jection of many electrons into the substrate. Once in the 
substrate, they are free to drift into any region of higher 
potential, which is the N+region at Vee of storage nodes 
storing a "1 ". Since storage holds don't store much 
charge (in order to minimize capacitance), these elec­
trons in the substrate can be swept across the junction 
and destroy the "1" stored there. This reaction obvi­
ously affects the operation of the part. 

Also, on CMOS devices, positive spikes on any pin 
exceeding Vee voltage could cause "Latch-up"! 

zao Family 
Questions & Answers 
Q: What is the clock input impeadance (load)? 
A: Capacitive load only (35pF max). 

Q: Will Non-maskable interrupts continue occurring and 
executing if the NMI line pulses prior to the finish 
of the service routine? 

A: Yes. Non-Maskable interrupts can not be disabled by 
user. Even though Non-Maskable Interrupts are nega­
tive edge triggered, if the inputto the CPU pulses before 
termination of the service routine, then the service 
routine will begin again. 

Q: How does the Non-Maskable Interrupt acknowledge 
cycle and RETN instruction actually work? 

A: When a Non-Maskable Interrupt is acknowledged, inter­
rupt flip-flop #1 (IFF1) is actually cleared to inhibit the 
acknowledgement of maskable interrupts. The state of 
interrupt flip-flop #2 (IFF2) is not altered. This is the only 
time that the contents of IFF1 and IFF2 can disagree. 
When the RETN instruction executes, the state of IFF2 
is copied back into IFF1 . This allows the state of 
maskable interrupts, before a Non-Maskable Interrupt , 
to be restored after service routine execution. 

Q: How are subtraction operations performed? 
A: Although the actual operation is probably a 2's comple­

ment addition, the flags are affectedas if it were a logical 
subtraction operation. 

Q: What is the setup time to recognize an NMI? 
A: Through characterization of the CPU, Zilog has found 

that a setup time of 120nS (@4MHz) is required in order 
to assure that NMI is recognized before INT is recog­
nized. 

Q: What do the El and DI instruction actually do? 
A: Only the interrupt control flip-flops (IFF1 and IFF2) are 

affected by those instructions. The DI instruction will 
clear both IFF1 and IFF2 and prevent any further 
maskable interrupt from being recognized from that 
point on. The El instruction will set both IFF1 and IFF2, 
but maskable interrupts will not be recognized till the 
completion of the next instruction. 

411 



0: What is the status of the output drivers when the CPU 
is in a power-down situation? 

A: When the CPU is without power, the output drivers 
appear to be in a high impedance state. 

Q: How can I use the o.n chip refresh mechanism of the Z80 
CPU to, handle refreshing of 64K D-RAMs? 

A: Here are some suggestions (assuming 256 cycle re­
fresh): 

1. Use an external counter to count 128 M1 cycles and 
toggle refresh address line A7. 

2. Use external hardware to generate an NMI every 
2mS and change the state of bit 07 in the R Register 
via software. 

3. Use refresh address bit A6 to toggle the state of 
refresh address bit A7. ' 

· Q: Is there a method for testing hardware without removing 
the Z80 CPU from the socket? 

A: Two methods are available: 

1. Use BUSREQ to tri-state all control signals and then 
use external hardware to simulate the logic; 

2. Remove power and ground from the CPU, all signals 
should go to a high-impedance. 

Q: Does the CPU tristate M1 during reset? 
A:No. 

Q: Is Zilog going to add a 3.15 Volt current drive spec for 
designers using 74HCxx series of components? 

A: 1\1<>. There is a choice of either using 74HCTxx logic or 
using our CMOS zao CPU. 

Q: If NMI is activated DURING reset, will the processor 
execute the NMI or address OOOOh after reset goes 
high? 

A: Since NMI input is "edge-triggered" input, if the CPU has 
active NMI "during" reset, CPU won't detect NMI and will 
execute the instruction at OOOOh .. If NMI goes low after 
RESET goes inactive, then CPU will process NMI. 

0: I've heardthe CPU is a static device. Can I use the clock 
to single step it? 

A: It's different for NMOS and CMOS. 

NMOS: No, it violates the clock specs. 
CMOS: Yes. You can do that 

Q: I don't seem to get the correct state of the interrupts 
when using the LO A,I arid LO A,R instructions to read 
the state of IFF2. Why is this? How can I get around 
this? 

A: On CMOS Z80 CPU, we've fixed this problem. On 
NMOS zao CPU, in certain narrowly defined circum-

412 

stances, the Z80 CPU interrupt enable latch, IFF2, does 
not necessarily reflect the true interrupt status. The two 
instructions LO A,R and LO A,I copy the state of 
interrupt enable latch (IFF2) into the parity flag and 
modifies the accumulator contents (See table 7.0.1 in 
the Z80 CP,U technical manual for details). Thus, it is 
possible to determine whether interrupts are enabled or 
disabled atthetime that the instruction is executed. This 
facility is necessary to save the complete state of the 
machine. However, if an interrupt is accepted by the 
CPU during the execution of the instruction -- implying 
that the interrupts must be enabled -- the PN flag is 
cleared. This incorrectly asserts that interrupts were 
disabled at the time the instruction was executed. 

This paradox can be traced to the internal timing of the 
CPU. The problem is that the interrupt flip-flop (IFF2) is 
cleared before it is actually transferred to the PN flag. 
The state of the interrupt enable latch is not copied into 
the parity flag until after the interrupt time, occurring 
during the execution of the instruction, has been ac­
cepted. Since the acceptance of the interrupt automati­
cally clears the interrupt enable latch, the parity flag is 
also cleared, despite the fact that interrupts were en­
abled when the instruction started executing. 

A neat solution to this anomaly relies on the fact that at 
least one item--the old PC value -- is saved on the stack 
when an interrupt is accepted. The "next entry" position 
on the stack (the word below the address currently held 
in the stack pointer) may be cleared before execution of 
LO A, I (or LD A,R). If that zero value has changed by the 
time that the next instruction in the routine is executed, 
then an interrupt must have been accepted. This implies 
that interrupts were enabled,. even if the state of the 
parity flag suggests that they were not. Of course, if the 
parity flag is found to be set after LO A,R (LO A,I) has 
been executed, there is no need to check the stack top. 
Interrupts are definitely enabled if the parity flag is in this 
state. 

Two routines are listed here. Both return carry clear if 
interrupts are enabled, set otherwise. Both corrupt the 
A register; it does not contain the value in the I (or R) 
register on exit The status of all flags except the carry 
flag are undefined on exit. 

The first routine may be loaded anywhere in memory 
except "page zero" -- OOOOh to OOFFh. This small 
restriction comes about because the routine checks 
only the most significant byte of the "next" stack entry. 
This byte will be non-zero afteran interrupt has occurred 
if and only if the routine itself is not on page zero. The 
second routine tests both bytes of the "nexf' entry and, 
therefore, overcomes this restriction. 



Caution, these routines presume that the service rou­
tine for any acceptable interrupt will re-enable interrupts 
before it terminates. This is almost always the case. 
They may not return the correct result if an interrupt 
service routine, which does not re-enable interrupts, is 
entered after the execution of LD A,I (or LD A,R). 

Listing 1 : This routine may not be loaded in page zero 
(OOOOh to OOFFh). 

GETIFF: 
XOR A 
PUSH AF 
POP AF 
LD A,I 
RET PE 
DEC SP 
DEC SP 
POP AF 
AND A 
RET NZ 
SCF 
RET 
END 

;C flag, acc. := O 
;stack bottom := OOxxh 
;Restore SP 
;P flag := IFF2 
;Exit if enabled 
;May be disabled. 
;Has stack bottom been 
;overwritten ? 
;If not OOxxh, INTs were 
;actually enabled. 
;Otherwise, they really are 
;disabled. 

Listing 2: This routine may be loaded anywhere in memory. 

GETIFF: 
PUSH HL ;Save HL contents 

;C flag, acc. := 0 
;HL :=0000h 

XOR A 
LD H,A 
LD L,A 
PUSH HL ;Stack bottom := OOOOh 

;Restore SP POP HL 
LD A,I ;P flag := IFF2 
JP PE, 

DEC 
DEC 
POP 
LD 
OR 
POP 
RET 
SCF 
RET 

POPHL: 
POP 
RET 
END 

POPHL ;Exit if isn't enabled 
SP ;May be disabled. 
SP ;Let's see if stack bottom 
HL ;is still OOOOh. 
A,H ;Are any bits set in H 
L ;or in L? 
HL ;Restore old contents. 
NZ ;HL <> O : isn't enabled. 

;Otherwise, they really are 
;disabled. 

HL ;Exit when P flag is 
;set by LD A,I 

Q: Are all of the zao control lines internally synchronized? 
A: The inputs in question are INT, NMI, BUSREQ, WAIT, 

and RESET. In the past, it seems that some of our 
customers have assumed that those inputs are totally 

asynchronous with respect to the system clock (i.e. no 
setup time required). Zilog's official position on this topic 
is as follows. 

All asynchronous inputs to the Z80 family CPUs should 
be externally synchronized with the CPU clock. The 
required synchronization is specified by the setup and 
hold limes for asynchronous inputs to the CPU. The 
synchronization is automatically provided for by the zao 
Family peripherals that are capable of driving the asyn­
chronous inputs to the CPU. 

In the Z80 CPU Technical Manual (Pages 70 and 72, 
iootnote B), it is stated that ··Aii controi signals are 
internally synchronized so that they are totally asyn­
chronous with respect to the clock." This statement 
should be amended to say "When interfacing the Z80 
CPU to the Z80 family peripherals, the interface control 
signals are internally synchronized with the system 
clock by the peripherals themselves. When interfacing 
to the Z80 CPU with other devices, these control signals 
should be synchronized with respect to the system 
clock." Note that the former statement has been re­
moved from the data book and the CPU product speci­
fication, but has not been removed from the technical 
manual yet. 

The basis for the synchronization of the input control 
signals is the potential forthe occurrence of a phenome­
non called a "meta-stable state". The details of the 
meta-stable state are complex, but the concept is fairly 
simple. A meta-stable state occurs in bi-stable logic 
devices at the interface between an asynchronous and 
synchronous environment. All two-state logic devices 
spend some finite amount of time in the "linear region" 
(between the logic state of one and zero). The length of 
time spent in the linear region depends upon the switch­
ing speed of the device. If a synchronous system 
samples asynchronous inputs at the precise point in 
time that it passes through the linear region, the output 
of the sampling logic may spend time in an undefined 
logic state (the meta-stable state). The settling time to 
a valid logic state is proportional to the inverse exponen­
tial of the speed of the switching devices. More impor­
tantly, if the device in the meta-stable state is connected 
to several other bi-state devices in the system, the pos­
sibility exists for each of these bi-state devices to inter­
pret the non-binary (or meta-stable) input differently. 
The final result can be an undefined or unpredictable 
state for a sequential state machine such as the Z80 
CPU. 

There are several points that should be remembered 
concerning these asynchronous inputs: 

413 



1. All interfaces between synchronous and asynchro­
nous system that use clocked bi-stable devices are 
subject to the "meta-stable" phenomenon. 

2. The probability of occurrence of a meta-stable state is 
directly proportional of the frequency of changes in 
the state at the interface and inversely proportional to 
the exponential of the switching speed of the devices 
used. 

Q: How to interface the Z80 CPU to a 8259 using Mode 0 
interrupt? 

A: The Z80 CPU's interrupt mode "Mode O" is the mode 
which maintains the "software compatibility" with the 
8080, it is NOT fully compatible. 
In this interrupt mode, during INTACK cycle, the Z80 
CPU fetches the data on the bus as an "instruction" and 
executes it, like the 8080. However, from the hardware 
stand point, it's not true. 
The 8080 generates three INTA pulses during the inter­
rupt acknowledge cycle while the Z80 CPU generates 
only one INT ACK signal (which can be decoded from M1 
and RD). 
This system works fine if you are not using the 8259 and 
put "AST" (restart) instruction onto the bus during the 
Interrupt Acknowledge cycle, which is a one byte instruc­
tion. 
However, if you want to use the 8259 with the Z80 CPU, 
you'll have a problem. That is: 

The 8259 expects three INTA pulses but the Z80 
CPU generates only one INTACK cycle. 

The best way to solve the problem is "simulating an 8080 
interrupt acknowledge cycle" - which means generating 
a total of three "INTA" pulse for the 8259 from the Z80 
CPU's interrupt acknowledge cycle by external logic. 
Following figure (Figure 1.) is the one example of the im­
plementation. 

'LS74 

This circuit works as follows (Assume that the instruction 
sent by the 8259 is "CALL" instruction): 

On interrupt acknowledge cycle, the decoded INTA sig­
nal is sent as an INT A pulse for the 8259 and at the 
same time sets the LS7 4 to indicate that an interrupt 
acknowledge cycle has started. 

On the following memory read cycle for the jump address 
on the call instruction, this circuit generates two 
additional INT A pulses for the 8259 and also masks 
off the read signal for the memory to avoid bus con­
tention problems. 

On the following write cycle, WR signal resets the LS7 4 
to indicate that the interrupt acknowledge cycle is 
completed. 

By using this circuit, you can use the 8259 with Z80 CPU. 

Z80 OMA 

Q: Does OMA recognize only 8-bit 1/0 addresses? 
A: The OMA device does not care whether the 1/0 ad­

dresses or memory addresses are 8-bit or 16-bit. The 
Z80 OMA can address just as many 1/0 locations as it 
can memory locations. 

Q: What is the importance on the placement of the "LOAD" 
commands? 

A: The "LOAD" command only loads the contents of the 
source address register into the source address counter. 
The contents of the destination address register are 
automatically loaded into the destination address 
counter the first time the destination address gets incre­
mented or decremented. 

INTA 
(8259) 

Z80 CPU 
CL Qv++----t 1 c TIT 

1Y2 

MEMR 
MEMW 
mR 
!OW 

MREQ1--1--------+--t------i2G 
!Ofill lG 

RD B 
WR A 

'LS155 

'LS08 

Figure 1. Z80 CPU to 8259 interface example 

414 



Q: When using the variable timing modes, are there any 
constraints in setting up the two ports that the user 
should be aware of? 

A: Yes. When using the early cycle end timing feature of the 
OMA, it is strongly recommended that both ports be 
initialized with the same timing constraints. 

Q: Is there any way to reset the OMA besides the RESET 
command and power-down? 

A: With the CMOS OMA: On 44-pin PLCC package, there 
is a newly added "hardware reset pin" on pin 12 (This 
pin is left open on NMOS PLCC). Also, we've added 
special functions to the M1 signal line that allows you to 
reset C-MOS OMA. During an active M1 signal, without 
an active RD or IORQ, the OMA is reset. This feature is 
the same as that with zao PIO. 
With NMOS, the only way to reset the OMA is by reset 
command. Actually, the RESET command can only 
reset the OMA if the CPU has control of the bus. if the 
OMA has control of the bus there is no way to reset it 
other than powering down the system (or the OMA). 

Q: How long does power need to be removed from the OMA 
for an internal reset to occur? 

A: Zllog tests the power-on reset circuit at 1 oms. If the user 
is going to remove power from the OMA, Zllog recom­
mends that it be done with the CLK input high. 

Q: What limitations are not specified in the data book? 
A: For NMOS OMA, when using the OMA in BURST mode 

with 2 cycle timing, an extra transaction is generated at 
the end of the burst. 

For CMOS OMA, we've fixed all limitations. 

Q: How can I use the OMA to transfer a page of information 
but do it one line at a time and wait between lines? 
(Printer application) 

A: Operate the OMA in the Burst mode and use the printer 
1/0 READY line to control OMA. Program the OMA for 
auto-restart mode to transfer the same "page" area 
continuously. When the printer is unable to accept a 
"line", the OMA will allow the CPU to control the bus. 

ZBO PIO 

Q: When using a port of the PIO in bit mode (mode 3), can 
any of the bits, programmed as outputs, affect the inter­
rupt conditions set for recognizing inputs? 

A: While it is undocumented, it is possible that the state of 
the bits programmed as outputs could be used as 
satisfying conditions for the mode 3 interrupt equation. 
It is recommended that all bits not needed for the 
interrupts be masked off. 

Q: Can the PIO be programmed to provide a 16-bit input 
port and an 8-bit bidirectional port at the same time? 

A: Yes. but there are some major concerns in doing it. 
Remember that when Port A is programmed into the 
bidirectional mode (mode 2), the handshake lines from 
Port B are used as input handshake lines for Port A. 
Some confusion occurs within the PIO if Port B is also 
programmed into the input mode (mode 1) and tries to 
use the handshake lines. A combination of software and 
hardware can be used to insure that data will not change 
until both ports can be read. 

Q: Is the PIO port protected against hysteresis? 
A: No. 

Q: Do you have to strobe data into the port for proper mode 
1 operation? 

A: Yes, if you want to generate interrupts for mode 1 
operation. If you only want to read the port data, then the 
STB input can be held low to make the input data latches 
transparent. 

Q: How can I get Port B interrupt in Mode 3 and Port A 
interrupt in Mode 2? 

A: You can get them, but it can cause severe interrupt 
conflicts if you chQose that option. Port B interrupts are 
used by Port A in bidirectional mode for receive data 
interrupts. To prevent interrupt conflicts, Port B inter­
rupts should be enabled, but all bits of Port B should be 
masked from affecting the interrupts. In the PIO Tech­
nical Manual it states that, "the same interrupt vector 
will be returned for a Mode 3 interrupt on Port B and an 
input interrupt during Mode 2 operation of Port A" 
(Section 5.3). 

Q: Can the PIO control register be written while the PIO IUS 
bit is set? 

A: Yes. But it is a safer programming practice to program 
the device after the RETI command. 

Q: The on-chip power-on reset does not always work prop­
erly. How can I get around this? 

A: Use the external hardware reset condition. Activate M1 
for a minimum of two clock cycles without activating 
either RD of IORQ. 

Q: When using the PIO in Mode 2, a 55h is written to the 
port. On the port side, an OAAh is storobed into the port 
via BSTB. When the processor reads the data port, the 
55h is read back instead of the OAAh. Why and How? 

A: The only way that the system can read the same data 
that it wrote into the PIO was if the ASTB signal was 
active (place the 55h onto the port bus) and the BSTB 
went active to strobe it into the data register. Suggest 
that system logic inhibit both strobe signals from be­
coming active during the same time. 

415 



Q: On which clock edge is the PIO reset (with M1 active and 
IORQ and RD inactive)? 

A: The actual reset function will take place when the M1 
signal goes low active (must have been active a mini­
mum of 2 clock cycles). 

Q: Can the PIO catch pending interrupts while interrupts 
are disabled? 

A: Yes. Enabling the interrupts allow the interrupt daisy 
· chain to function and the interrupt under service flip­

flops to be set. 

Q: A question came in concerning how the ZSO PIO 
handled its interrupts. Is the PIO capable of storing 
pending interrupts or must an interrupt be serviced and 
cleared (via either RESET or RETI) before another 
interrupt can be accepted? 

A: It seems that the Z80 PIO interrupt structure is designed 
so that pending interrupts can be stored. There are to 
caveats to watch for in this however. The only way to 
store a pending interrupt is while another one is under 
service, and only one pending interrupt can be stored. 
Be aware that if you are operating in Modes 0, 1 or 2, the 
transition of the STB signal can cause new data to be 
latched into the input data register and generate a 
pending interrupt. Be sure that any previous data can be 
read from the PIO before any new data is strobed in. 

The storage for pending interrupts is only one deep. 
This means that a second interrupt condition cannot be 
stored if the first one has not been acknowledged. 

Q: Does an interrupt mask word have to follow the interrupt 
control word (assuming bit 4 was set) if the PIO is not 
programmed for Mode 3 operation? 

A: Yes. Follow the interrupt control word with a dummy 
write to reset the PIO's write control logic. 

Q: How can you get two PIOs to talk with each other in 
Mode 2 operation? 

A: Suggest using ARDY1 and BRDY2 to generate a strobe 
pulse for ASTB1 and BSTB2. Same setup could be 
used for ARDY2 and BRDY1 and for ASTB2 and 
BSTB1. The logic basically consists of a 74LS123 (one 
shot) and a 74LS08 (AND gate). The ARDY1 and 
BRDY2 signals are ANDed together and supplied as B­
TRG for generating ASTB1 and BSTB2. The ARDY2 
and BRDY2 signals are ANDed together and supplied 
as theA-TRG for generating BSTB1 and ASTB2. The 
A-TAG for generating ASTB1 and BSTB2 is always low 
(grounded). In this manner, the port control signals are 
used to set the priority for strobe signal generation. 

Please refer to Figure 2 and Table 1. 

416 

0 0 
0 0 
0 0 

0 
0 
0 

0 
0 
0 

I 
I 
1 

'LS123 

B 

'LS123 

B 

A 

Figure 2. llF circuit example 

-BSTB[ ASTB2-BSTB1 

0 1 
I 1 
1 0 

0 I 
1 I 
1 0 

0 I 
1 I 
1 0 

0 1 0 
1 0 0 
1 1 0 

·rection 

2-3>1 

2-3>1 

2-3>1 

1-3>2 
1-3>2 
1-3>2 

Table 1. Truth Table for strobe signal generation 

Q: How can the PIO be reprogrammed without having 
pending interrupts locking the system? 

A: Try the following procedure. 

1. Disable CPU interrupts; 
2~ Disable interrupt in the PIO; 
3. Clear any pending interrupts within the PIO by using 

the interrupt control word with bit D4 set; 
4. Reprogram the PIO as desired; and 
5. Re-enable CPU interrupts. 

Q: The PIO generates false interrupts during the program­
ming sequence. What can cause this? 

A: This symptom is almost always the result of a program­
ming error. Depending upon the details of the problem, 
there are several solutions. 

1. The interrupts should be enabled last in the initializa­
tion sequence. The Interrupt Control Word should be 
written with interrupts disabled so that the logical 
interrupt equation should be set (Mode 3). Finish the 
initialization with the Interrupt Enable Control WOrd 
(83H) to enable the interrupts. 



2. The STB and RDY signals should be in a defined 
state. A transition on the STB input could cause a 
pending interrupt to be stored and executed as soon 
as interrupts are enabled. 

3. A change in bit pattern (while in Mode 3) may cause 
an interrupt. A defined state for external inputs is 
recommended for power-up sequences. 

Q: How can I get around the fact that only one "bit set" can 
be detected at a time in the OR bit mode? 

A: One possibility would be to "mask" that bit during the 
interrupt service routine. Another possibility is to use 
external hardware to "mask" the bit. 

Q: How can I get the PIO to give me interrupts on both 
transition of an input signal (Mode 3) ? 

A: One method to use would require the PIO to be repro­
grammed with a different logic equation during the 
interrupt service routine for the first transition. When the 
second transition occurs, then a new interrupt can be 
generated and the logic equation could be set back to its 
original state. Another method would require the use of 
external hardware to change the state of interrupting bit. 
Some possible logic could be to use an output port along 
with an exclusive-or (XOR) gate to control the state of 
the input bits. 

Z80 CTC 

Q: How does the software reset command to the CTC affect 
the rest of the CTC's operation? 

A: The data book and the technical manual differ in the 
information that is presented on this subject. A software 
reset command stop the counter from counting any 
further. In order to start the counter again, a new time 
constant must be loaded into the time constant register. 
All bits in a mode control word will cause the operation 
of the CTC to be affected. 

Q: What is the maximum frequency of the counter? 
A: If external input is synchronized to the system clock, it's 

half that of the CLK (system clock) input. If it's not, 1 /3 
of the system clock. 

Q: Are there any other uses for the CTC besides counting 
and timing? 

A: Yes, the CTC makes a very nice interrupt controller for 
the Z80 bus. By programming the counter for a terminal 
count of one and defining the transition of the trigger, 
you can interface non-vectored interrupting devices 
onto the Z80 bus. 

Q: How can I have control over an individual counter so that 
it cannot be started, stopped, and started again? 

A: Use an external gate to qualify the clock input to the 
counter. 

0: When does the time constant (from the time constant 
register) get loaded into the down-counter? 

A: On the first down count---- ? verify. 

Q: The CTC product specification states that no additional 
wait states (other than the automatic wait state inserted 
by the CPU) are allowed in the 1/0 cycles. Why? 

A: It is not that the the wait states aren't allowed, it is just 
that they don't accomplish anything. The data will arrive 
at a particular time for the read cycles, and the internal 
write strobe is generated as a result of the clock edges 
that will be available. During the read cycle, it is possible 
that an improper value of the down-counter could be 
released onto the bus if additional wait states were 
added (the counter could change in the middle of the 
read operation). 

ZSOSIO 

This section contains the most commonly asked questions 
about the Zilog SIO. They are divided into following groups: 

• Features 
• Registers 
• Interrupt 
• Modem control signals 
• Enable & Disable Tx & Rx, Auto enable mode 
• Questions around DMA 
• Internal timings 
• External interface 
• Asynchronous mode of operation 
• Synchronous mode 
• Questions about SDLC mode 

Features 

Q: What is the maximum data rate of the SIO? 
A: 1/5 of the system clock rate. So it is 1.6Mb/s max for 

8MHz version. 

Q: What are the differences between Z80 SIO/O, /1, /2 and 
14? 

A: The differences between those four devices is "a com­
bination of Channel B Modem signals". In fact, the SIO 
die itself has 41 pins internally. But a 40 pin DIP pack­
age has only "40 PINs", so we made three kinds of 
SIO's: 

1. ZSO SIO/O: Have all channel B modem signals, 
exceptTxCB and RxCB, bonded together internally. 

417 



2. Z80 SI0/1: Lacks "DTRB". 
3. Z80 SI0/2: Lacks "SYNCB". 

For PLCC packages we are only offering "SI0/4", which 
covers all, since PLCC has 44 pins to bond out all 
signals. 

Q: What are the differences between the SIO and Z80 
DART? 

A: The Z80 DART (Dual Asynchronous Receiver ff ransmit­
ter) is the device which only supports asynchronous 
mode of operation. The functionality, internal architec­
ture and AC/DC characteristics are identical to the SIO 
in asynchronous mode. Also, pin assignment of it is 
identical to Z80 SIO/O with the exception of one signal 
name. The "SYNC" pin on SIO/O is "RI" (Ring Indicator) 
on SIO/O, but the functionality is exactly the same as the 
SIO/O in asynchronous mode. 

Registers 

Q: How do you read the status registers? 
A: Reads from RRO (Read RegisterO) are accomplished by 

simply doing a read from the SIO. Reads from RR1 or 
RR2 are accomplished by writing a register pointer to 
the SIO (WRO) and then doing a read operation. 

Q: What happens when you read an empty FIFO? 
A: You will read the last charact(:lr in the buffer. 

Q: How do you avoid an overrun in the receiver FIFO? 
A: The receive buffer must be read before the recently 

received data character on the serial input is shifted into 
the receive data FIFO. This FIFO is three bytes deep. 
Thus, if the buffer is not read, the fifth character that just 
arrived caused an overrun condition. There is no set or 
reset bit to disable the buffering. 

Q: When the FIFO gets locked due to an error condition, 
can it still receive? 

A: The SIO continues to receive until an overrun error 
occurs. 

Q: When does the FIFO buffer lock on an error condition? 
A: The reeeive data FIFO gets locked when the following 

receiver interrupt modes are selected: 

• Receive interrupt on Special condition only. 
• Receive interrupt on First character or Special 

condition. 

In both of these modes the special condition interrupt 
occurs afterthe character with the special condition has 
been read. The error status has to be valid when read 

418 

in the service routine. The special condition locks the 
FIFO and guarantee that the OMA will not transfer any 
character until the special condition has been serviced. 

Q: When a special condition occurs due to parity error, will 
a receive interrupt for that byte still be generated? 

A: No. In the case of Receive interrupt on Special condition 
only mode, the interrupt will not occur until after the 
character with the special condition is read. In the case 
of Receive interrupt on First character or Special condi­
tion mode, the interrupt is generated on every charac­
ter whether or not it has a special condition. 

Q: What is the function of the Error FIFO? 
A: The Error FIFO buffers the error conditions status bits for 

each of the received characters. 

Q: When should the status in RR1 be checked? 
A: Always read RR1 before reading the data. 

Q: What information is contained in the Error FIFO? 
A: End offrame, CRC/Framing error, Receive overrun error 

and Parity error. These are all contained in RR1 as well. 
The other status offered in RR1 is not part of an Error 
FIFO. 
The Overrun and Parity error bits are held in the FIFO 
until they are reset by issuing the Error Reset Com­
mand. They will not be overwritten by new error informa­
tion. 

Q: How many register pointers does the SIO have? 
A: The SIO has one for each channel. So it's possible to set 

the pointers for each channel first, then accessing each 
channel's register afterward. But it's not recommended, 
since program readability gets worse. 

Interrupt 

Q: What are the various Interrupting conditions? 
A: The SIO can generate interrupts from the receiver, 

Transmitter and External/status for each channel (6 
sources). This is a list of all conditions that could 
possibly generate an interrupt (one channel only listed): 

Transmitter: 

Receiver: 

External/Status: 
(Transition on 
DCD) 

Transmit Buffer Empty 

Receiver Character Available, 
Parity Error, Framing Error, 
Receive Overrun Error 

CTS, Sync/Hunt, Transmit, 
Underrun/EOM, Break/Abort 
Detection 



0: Can the IP bits be set while the SIO is servicing other 
interrupts? 

A: Yes. If the interrupting condition has a higher priority than 
the interrupt currently being serviced it will cause an­
other interrupt, thus nesting the interrupt service. 

Q: How many levels of pending interrupts are there and 
how does the internal daisy chain operate? 

A: Each possible source of an interrupt (6 possible) has one 
level of pending interrupts. The internal daisy chain 
operates in the same manner as would an external 
daisy chain. 

0: Does the RETI Instruction reset any status register? 
A:No. 

Q: If the CPU does not have the Return From Interrupt 
sequence (RETI instruction on the Z80 CPU), how may 
the SIO be informed of the completion of interrupt 
handling? 

A: This may be done by writing the Return From Interrupt 
command (38h) to WRO in Channel A of the SIO. 

Q: Can the IUS bits be accessed? 
A:No. 

Q: When do IUS bits get set? 
A: The IUS bits will be set during an interrupt acknowledge 

cycle on the falling edge of RD. 

Q: When responding to an Interrupt, can you have the 
following sequence: 

Int Ack, Disable INT, RETI, Clear interrupt 
condition? 

A: No. The correct sequence is : Int Ack, Disable INT., 
Reset. 

Q: Will enabling Interrupt after a transition on the Sync/Hunt 
bit cause Interrupt to occur? 

A: No. External/Status Interrupt should be enabled before 
the transition occurs. 

Note: It is advisable to execute the Reset Ext/Status 
Interrupt command- in advance, so that the status of 
RRO, bit 04 reflects the current condition. 

Q: Why is the Reset/Status Interrupt command recom­
mended to be used several times in SIO setup? 

A: Because many of the status bits that reflect interrupting 
conditions are latched bits and need to be reset to reflect 
current status rather than what may have occurred due 
to earlier Interrupts (changes in state). 

Q: Will the SIO continue to request interrupt if the condition 
has not been satisfied? 

A: Yes. There are several methods that can be used to clear 
the interrupt conditions. If ii is a transmitter interrupt, 
then the transmitter must either be loaded with data or 
the Reset Transmit Interrupt Pending command must 
be issued. If the interrupt is for External/Status, then the 
Reset External/Status Interrupt command must be 
issued. If the interrupt is for a receive character being 
available, then the receive character must be read. If the 
interrupt is for an error condition, then the Error Reset 
command must be given. 

Q: What conditions cause the transmit IP to be set? 
A: Either the buffer empty or the flag after CRC is being 

loaded. 

Q: How do the external/status bits affect the interrupts? 
A: The external/status interrupt structure is affected by bits 

D7-D3 of RRO. These bits can be "reset" by either a 
hardware reset, a channel reset, or by the Reset Exter­
nal/Status command. The first status change on any 
one of the five bits after the reset will cause an interrupt 
lo be issued and also will cause all five status bits to be 
latched. The latching effect is caused whether or not 
External/Status interrupts are enabled. If the current 
status at the time of reset is different than the latched 
status, then another Interrupt request is generated 
immediately. To clear the interrupt structure, two resets 
are necessary. The configuration of the SIO can change 
the definition of some of these signals. If the stale of tho 
bit changes across definition boundaries, an interrupt 
can be generated. Issue the Reset External/Status 
Interrupts command after definition. To process an 
e><temal/Status interrupt, the Reset External/Status 
Interrupts command must be issued after reading these 
status bits and before the RETI. 

Q: Can you use the SIO without an interrupt acknowledge 
cycle sequence (Z80 CPU)? 

A: Resetthe responsible interrupt pending bit (IP). The INT 
line will follow-the IP bit. 

Q: If the CPU can be interrupted but cannot be used with 
vectored interrupts, how should processing be done? 

A: Immediately after being interrupted, proceed in a man­
ner similar to polling the SIO for both receive and 
transmit. Alternatively, the Status affects vector bit (Bil 
D2 in WR1) may be set and a 0 byte placed into the 
interrupt vector register(WR2 in channel B). Then, the 
contents of the interrupt vector register can be used to 
determine the cause of the interrupt and the channel on 
which the interrupt occurred. This is queried by reading 
register RR1 of channel B. Also, IEI is tied high and M1 
is tied high. No equivalent to an interrupt acknowledge 
is issued. 

419 



Q: When interfacing the SIO to the CPU other than the Z80 
CPU, is it possible to assert M1 and IORQ at the same 
time as the Interrupt acknowledge cycle to simulate Z80 
timing? 

A: The SIO requires "Internal daisy chain settle time" even 
if you don't have devices other than the SIO on the 
interrupt daisy chain. The period for that purpose is "M1 
is active but IORQ is inactive", and is at least 1 OOnS (for 
4MHz clock; Parameter# 16, IEl-IEO delay time). 

Modem control signals 

- Q: What is the state of the transmitter output when data is 
no longer available in the following modes? 

a) Asynchronous? 
b) Synchronous 
c) SDLC? 

A: a) In asynchronous modes, the transmitter goes into a 
marking state whenever all data has been sent. 

b) In the synchronous mode, the SIO will send out 16 bits 
of CRC (2 bytes; if programmed and the Transmitter 
underrun/EOM Latch has been reset) followed by the 
appropriate number of Sync character. The line will 
then continue to idle sync characters. 

c) In the SDLC mode, the SIO will send out 16 bits of 
CRC (2 bytes ; if programmed and the Transmitter 
underrun/EOM Latch has been reset) followed by the 
SDLC Hag character (7Eh). The line will then continue 
to idle SDLC flag characters. 

0: What is' the delay time for ATS/ to TxD? 

no maximum specs on the RxC period, and the edges 
are used to sample the data. If there are no edges, no 
data is sampled. 

Enable&Disable Tx&Rx, Auto enable mode 

Q: What happens to the character being assembled if the 
receiver becomes disabled? 

A: Assembly of a character stops immediately and the 
character is lost. 

Q: What happens to the characters already in the receive 
FIFO if the receiver becomes disabled? 

A: They will remain in the FIFO until they are either read by 
the CPU or OMA, or until the channel is reset. 

Q: When Auto enable bit is set, will DCD & CTS going true 
cause an Interrupt? 

A: Interrupt will occur only on transition of DCD & CTS since 
both are edge triggered if WR1 ,DO is set for Ext. Int 
enable. 
However, since these are latched conditions in Status 
Register RRO (03 & 05), current status must only read 
after issuing Reset Ext/Status Interrupt command. 

Q: In the auto enable mode, what happens when CTS goes 
inactive (High) in the middle of transferring a byte? 

A: If the Auto Enable mode is selected, the CTS pin is an 
enable for transmitter (Ideally, Transmitter enable bit is 
ANDed with the status of CTS). So when CTS is 
inactive, transmit stops immediately. (The data being 
shifted out will be sending out completely, however). 

A: Two Tx clocks for asynchronous and synchronous, 7 Tx 
clocks for SDLC. Questions around OMA 

0: What is the delay time for the transmit buffer empty to 
RTS/? 

A: Two Tx docks for asynchronous gate delays for synchro­
nous and SDLC. 

Q: Does the frequency of the CTS or DCD signals have any 
adverse affects on the External/Status Interrupt? (even 
if auto enable is not programmed)? 

A: Since every transition locks the External/Status latches, 
you could get constant interrupts (if External/Status 
Interrupt are enabled) or constant status latches. 

0: Is it possible to deactivate the DTR output without repro-
gramming WR5? 

A: Only by resetting the channel or chip. 

0: Can you gate data ~Y stretching the receive clock? 
A: You can hold the clock until you have valid data. There are 

420 

Q: Can the SIO operate with a DMA in full duplex on each 
channel? 

A: No. The SIO has only one ready line per channel and can 
only operate in half duplex mode. 

If full duplex operation is required under OMA control, 
both channels A & B need to be used ; One for transmit 
and one for receive. 

0: Can both channels make simultaneous OMA requests? 
A: Yes. 

Q: What happens when you program the SIO to interrupt on 
Buffer Empty and the OMA to act on Buffer Empty? 

A: This would not be a wise thing to do. However the 
Interrupt occurs, the OMA will take over the bus before 
Interrupt has acknowledged. The buffer will be filled by 
the DMA and the Interrupt Request will go away due to 
a Buffer Full condition and the Interrupt Acknowledge will 



occur causing bus confusion. The same thing occurs on 
Receive buffer empty interrupt and OMA on Receive 
character. 

Q: How can the SIO/DMA combination be used for syn­
chronous communications and ensure that the CRC 
characters are also transmitted? 

A: Try the following procedure: 

1. Initialize the SIO for use of the READY function with 
a OMA controller and then poll (or interrupt on) exter­
nal/status (not transmit buffer empty). 

2. Initialize DMA controller for data transfer and bus 
release at end-of-block. DO NOT ENABLE OMA 
YET! 

3. Send first byte of data to SIO for transmission fol­
lowed by a Reset Transmit Underrun/EOM Latch 
command. 

4. Enable the OMA controller now (ii should take control 
of the bus). 

5. When the end-of-block is reached, the OMA control­
ler should release the bus back to the CPU. 

Q: When does the SIO terminate the READY signal? 
A: The rising edge of the system clock that samples IORQ 

low causes READY to go inactive. The delay is speci­
fied by parameter 19 in the data sheet. 

Q: When does the READY signal become active after an 
access to the SIO? 

A: The READY signal will be inactive for a minimum of 5 
clock cycles and will become active again 700 nS after 
CE goes inactive. 

Internal timing 

Q: When the transmitter is disabled, when does the TxD 
line go to a marking state? 

A: One bit time after the last bit of the data leaves the 
transmit shift register. 

Q: When the transmitter is empty, does status register 
RAO, bit 02 indicate that the buffer is now empty or that 
the last data in the buffer is in the process of being 
shifted out? 

A: It indicates the buffer is now empty. The status register 
has nothing to do with the transmit shift register. 

Q: Does the Transmit interrupt occur when Transmit Buffer 
is empty or Transmitter itself is empty? 

A: Interrupt occurs when the Transmit Buffer is empty. 

Q: How many bit times from external clock is the Transmit 
Buffer Empty Interrupt delayed? 

A: The interrupt occurs a maximum of 9 clock periods from 
the Txc clock edge that causes the buffer to become 
empty. The exact time is highly dependent upon the 
mode of operation and is transparent to the user. 

Q: When is the data available at the top of the FIFO? 
A: Data is available after a maximum of 13 clock periods 

from the rising edge of RxC. 

Q: What is the delay time between transmit shift register to 
the TxD pin? 

A: Two Tx clocks for asynchronous and synchronous, 
Seven Tx clocks (five for zero inserter. two for internal 
delay) for SDLC. 

Q: Does an Interrupt occur on RxC for last data bit as­
sembled or does it occur relative to the RxC, but de­
layed? 

A: Interrupt occurs when data is moved from the receive 
shift register to FIFO. The relationship of this event is 
relative to an external clock edge. This relationship 
however, is of no concern to the user. There is, however 
a specific delay from the external clock edge to the 
interrupt, caused by internal SIO logic. 

External interface 

Q: Can a sloppy system clock cause problems in SIO 
operation? 

A: Yes. The specs on this system clock are very tight and 
must be met to prevent SIO malfunction. The specifica­
tions are: 

Symbol Description Min Max Unit 

VIHC Clock "H" Vcc-0.6 5.5 
VIHL Clock "L" -0.3 0.45 

Clock rise/Fall time = 30nS each edge 
(For N-MOS, 4MHz device). 

Volt 
Volt 

Should there be any ringing or undershoot/overshoot on 
the clock input, the SIO could behalf in any number of 
indeterminable ways. 

Q: Must the system clock, fed to the SIO, have a 50% duty 
cycle? 

A: The duty cycle doesn't have to be 50% as long as the 
minimum specification is met. 

Q: Are input control lines to the SIO synchronized to system 
clocks so that garbage may exist on the buses anytime 
before setup requirements are satisfied? 

A: Yes. 

421 



Q: Since setup time for CE and IORQ may be satisfied 
during T2, is time T1 required? 

A: If the Z80 CPU is being used, then T1 timing state is 
required in order to utilize the interrupt structure. (inter­
rupt request, acknowledge, and RETI). 
No, if not using the Z80. 

Q: Do wait states have to be added to provide 1/0 response 
. to the SIO in non-Z80 based systems? (The Z80 adds 

wait states automatically) 
A: No. As long as setup times as specified for the SIO are 

met. The SIO does not know about wait states inserted 
by the Z80. The Z80 puts in wait states in order to match 
the Z80 SIO setup times. 

Q: What pins are noise sensitive and should be strapped to 
avoid strange interrupts? 

A: The Ext Sync pin, and any Ext status pin that is not used. 
Also, all inputs are sensitive to signal ringing and 
undershoot problems. 

Q: Is M1 required if no Interrupts are used in the SIO? 
A: No. M1 should then be tied high. 

0: Can you use the Ready output for an Interrupt request? 
A: Yes, for byte move action in or out and Respond to Inter­

rupt. However, it is not recommended to use Ready for 
Interrupt with the CPU. 

. Q: How long must RD and the other control signals remain 
active? 

A: Although RD and IORQ are latched internally, they must 
remain active for a minimum of two system clock 
periods. 

0: Are there any timing specifications for "Access recovery 
time"? 

A:No. 

Asynchronous Mode 

Q: Why are there different Clock factors? 
A: These clock factors enable the SIOto sample the center 

ofthedatacell. lntheX16mode, theSIOdividesthebit 
cell into 16 counts and samples on count 8. 

Q: For asynchronous mode of operation, must the clock 
rates selected be the same for Receiver and Transmit­
ter? 

A: No. However, the multiplier for both RxC & TxC must be 
the same because of internal logic. 

Q: When running in the Async mode, is it necessary to use 
the X16 clock scalar? 

422 

A: No, X1 synchronization can be selected but the user 
must maintain data synchronization with the clock. The 
start bit detection logic does not work in X1 mode and 
the 1.5stopbitcannotbe used inX1. In other words, X1 
Mode for Async mode is NOT asynchronous mode, its 
a "clocked serial channel". 

Q: What does the SIO recognize as the Break character ? 
A: A character of all zeros including stop bits (indicating a 

framing error). 

Q: When attempting to detect a break condition by sensing 
the break/abort status bit, is it necessary to enable 
External/Status interrupts? 

A: No. The External/Status latches work regardless of 
whether or not the external/status interrupts are en­
abled. This can be confusing because once the latches 
are strobed, the status in RRO is frozen until a Reset 
External/Status Interrupt command is issued. If you 
desire the true current status, issue this command 
before reading RRO. 

Q: Can a break sequence be sent for a fixed number of 
· character periods? 

A: Yes. Break is continuously transmitted as logic 1 by 
setting bit 4 of WR5. You can then send characters to 
the transmitter as long as the break level persists. A 
Break signal ratherthan the characters sent is transmit­
ted, but each bit of each character sent will be clocked 
as if it were transmitted. The All sent bit, bit 0 of RRO, is 
set to 1 when.the last bit of a character is clocked for 
transmission. This may be used to determine when to 
reset bit 4 of WRS and stop the Break signal. 

Q: If a Break sequence is initiated by setting bit 4 of WR5, 
will any character in the process of being transmitted, be 
completed? 

A: No. Break is effective immediately when bit 4 of WR5 is 
set. The "all sent" bit in RR1 should be monitored to 
determine when it is safe to initiate a Break sequence. 

Q: When using the SIO only in Asynchronous mode, can 
the SYNC pin have any use? 

A: It may be used as a general purpose input. For example, 
by connecting it to a modem ring indicator, the status of 
that ring indicator can be monitored by the CPU. 

Q: How can the SIO be used to transmit charactera contain­
ing fewer than 5 bits? 

A: First, set bit 6 and 5 in WR5 to indicate that live or fewer 
bits per character will be transmitted. The SIO then 
determines the number of bits to actually transmit from 
the data byte itself. The data byte should consist of zero 
or more 1 s, three zeros, and the data to be transmitted. 
Thus, beginning the data byte with 1111001 will cause 
only the last bit to be transmitted. 



Contents of data bytes(D=arbilrary value) 
D7 06 05 04 03 02 01 DO 

11111000d 
2111000dd 
3 11 OOOddd 
41000dddd 
5 OOOddddd 

Synchronous Mode 

0: Can you cause interrupts on CRC error bit (RR1 ;D6) 
chang~s? 

A: No. The CRC error status is not one of the special 
receive conditions. Perhaps, explanation of cyclic re­
dundancy block checking and how the SIO operates for 
CRC is relevant. 

CRC 

Cyclic Redundancy Checking is a method of checking 
for errors in serial data transmission. It is also known as 
the polynomial error code check. The polynomial is an 
algebraic function used to create a constant from the 
message bit pattern. This constant, generated and 
accumulated in both the Transmitter and Receiver, is 
used to divide the binary numeric value of the character. 
The quotient is discarded and the remainder added to 
the next character, which again is divided. This contin­
ues until the last character, when the remainder is trans­
mitted to the receiver for comparison with the Re­
ceiver's remainder. An equal comparison indicated no 
errors, while an unequal comparison indicates an error 
in transmission. 

510-CRC 

The SIO contains CRC generation and checking in the 
Transmitter and Receiver. 
It allows for either of two polynomials to be used. 

a) X'6+X15+X2+ 1: CalledCRC-16, generally used in syn­
chronous communication. 

b) X16+X12+X5+ 1: Called CRC-CCITI, generally used in 
SDLC communication and also recommended by 
theCCITI. 

CRC Error Check 

Status register RR1 which contains error conditions al­
locates bit D6 for CRC error status. Since CRC ch~ck­
ing is a continuous process and takes place character 

by character and intermediate results are shifted into 
the Receive Error FIFO continuously, bit 06 of RR1 is 
continuously updated because ii is not latched. 

However, checking the status of this bit at any interme­
diate point in time in the middle of a transmission is 
meaningless. It must be remembered that the result of 
a CRC check is valid only on completion of a message. 
Also, in most cases, bit D6 will usually be a "1" in the 
middle of a message since most serial bit combinations 
result in a non-zero CRC. Unless it is at completion of 
a message transmission. 

The SIO does not generate an Interrupt for CRC Error 
Status. 

0: Suggest a hardware way to count or determine when the 
16 or 20 bit times have passed before the CRC check 
is valid in BiSync mode? 

A: Allow two "buffer full" interrupts to occur to determine 
that 16 bit times have elapsed, or have an external clock 
count 20 bit times. 

0: How do you read the CRC error status bit when receiv­
ing data in the bisync mode? 

A: This is one possible method. 
After two CRC bytes have been received and read, wail 
for the next receive character interrupted and stop CRC 
accumulation, then read the next received character. 
After the next character is interrupted, disable the re­
ceiver and read the status byte. 

Q: In switched carrier Bisync application, the clock may go 
away before CRC calculate is complete since only one 
pad will be received. How can valid CRC be ensured? 

A: SIO spec requires at least two pads for a valid CRC 
check in Bisync mode. 

Q: Is CRC enabled automatically after first data in a non­
SDLC node? 

A: Only if it is programmed to be so. 

Q: Are Sync patterns (or flags) included in CRC? 
A: SDLC-No. 

Yes for Bisync- CRC must be turned on/off as required 
or Sync will be included in CRC. 

Q: In synchronous mode, does CRC get stripped from 
data? 

A: Not normally, but it is possible if the CRC byte happens 
to match the contents of WR6 and the sync character 
load inhibit feature is enabled. 
Otherwise, SIO won't delete the CRC bytes from the 
data stream. 

423 



Q: What is the proper sequence for a valid reading of the 
CRC error status bit? 

A: To check the CRC error status and read the CRC bytes. 
The following sequence is recommended !>ecause of 
delays in Receive logic and the time at which EOM 
Interrupt occurs. 

1. Interrupt, read and discard - 1st CRC byte. 
2. Interrupt, read and discard - 2nd CRC byte. 
3. Interrupt, read 1st pad character and discard. 
4. Disable CRC 
5. Interrupt, read CRC status then read 2nd pad 

and discard. 

Q: In Monosync, is the Sync Comparison done in the 
Receive shift register or the Sync register? 

A: Sync comparison is done in the Sync Register against 
the contents of WR7. 

Q: For Monosync, which register contains the Sync char­
acter for comparison? 

A: Write Register 7. Comparison is done in the Receive 
Sync Register. 

Q: How does the SIO avoid losing a single sync character 
in the case of back-to-back Bisync messages that are 
separated by a single sync pad? 

A: It does not. The SIO loses sync.characters because the 
Bisync spec requires a minimum of two pad characters. 

Q: Do Sync patterns (or flags) in data get stripped and still 
cause Interrupts? 

A: All leading sync patterns (and all flags) are stripped 
automatically. In SDLC, sync characters (flags) will 
cause Interrupts if programmed to. Sync characters 
may or may not be stripped in Bisync depending on the 
state of the Sync Character Load Inhibit Bit (WR3,D1 ). 
Any data stripped from the data stream cannot cause a 
receive character available interrupt but may cause 
other interrupts (such as ExternaVstatus for Sync/Hunt 
and special receive condition for EOM). In SDLC, 
programming Sync Character Load Inhibit will cause 
stripping of the address field and not cause Interrupts. 

Q: Do interrupts occur after each Sync pattern? 
A: Yes, H programmed to do so (ExternavStatus inter­

rupts). 

Q: Do sync patterns automatically get transmitted in Bisync 
mode when Transmit Buffer becomes empty? 

A: Yes, but the CRC bytes may be allowed to precede those 
sync characters. 

Q: How does the SIO handle synchronous protocols which 
!.!Se less than 8-bit sync characters? 

A: The sync character match logic within the SIO only 
makes comparison on 8-bit boundaries (8-bits for 

424 

monosync and 16-bits for bisync). In order to match on 
patterns that are not integer multiples of 8-bits, the sync 
character must overlay the pattern stored in the sync 
register, or use "External Sync mode". 

Q: Are sync characters $Ubject to parity? 
A:No. 

Q: Assuming that there are characters available in the 
FIFO, what happens to them if the receiver goes into the 
hunt mode? 

A: They will remain in the FIFO until they are either read by 
the CPU or OMA, or until the channel is reset. 

Q: Is sync character transmission suppressed when the 
SIO is programmed for external sync operation? 

A: Yes. 

Q: How is it possible for the SIOto achieve synchronization 
on erroneous sync patterns (in monosync and bisync 
modes)? 

A: The design of the SIO is such that the sync register 
serves as the CRC delay register after synchronization 
has been achieved. If the SIO goes out of synchroniza­
tion or is placed into the hunt mode, the CRC delay 
register again becomes the sync register but it's con­
tents are not cleared. Any data in it can be used by the 
comparison logic for synchronization. The best solution 
is to disable the receiver each time you place it in hunt 
mode and theri re-enable it. This sequence will reset the 
contents of the sync register. 

SDLCmode 

Q: How does the SIO send CRC? 
A: The SIO can be programmed to automatically send the 

CRC. First, writethefirstbyteofthemessagetobesent. 
This guarantees the transmitter is full. Then, reset the 
Transmit Underrun/EOM latch (WR0;10h). Write the 
rest of the data frame. When the transmit buffer under­
, runs, the CRC will be sent. The following table describes 
the action taken by the SIOforthe bit oriented protocols. 

Tx Underrun Action Comment 

EOM Latch Bit Upon Tx Underrun 
o Send CRC+Flags Valid Frame 
1 Send Rags Software CRC 

Q: In SDLC mode, when do you get the End of Message 
(EOM) interrupt? 

A: The EOF interrupt occurs after the 1st CRC is loaded to 
the transmit buffer and 2 bit times before the 2nd CRC 
is loaded to the buffer. 



Q: How can you make sure that a flag is transmitted after 
CRC? 

A: Use the external status End of Message (EOM) interrupt 
to start the CRC transmission, then enable the transmit 
buffer empty interrupt. When you get the interrupt, it 
means that the buffer is empty, a flag is loaded in the 
shift register, and you can send the next packet of 
information. 

Q: When using the SIO in the SDLC mode of operation, the 
transmitter loses two data bits (gets shifted by two bit 
positions) when the last character before the closing 
flag is transmitted. Transmit data is looped to the 
receiver and CRC is not enabled? 

A: The transmitter is working. The receiver actually causes 
the shift of two bits upon recognition of the closing flag. 

Q: Why is the second CRC byte in the receiver FIFO not the 
full CRC byte? 

A: The 2nd CRC byte read from the FIFO is not the full 8 bit 
byte. The transmitted byte is made up of the last two bits 
of the 1st CRC byte and the first 6 bits of the 2nd CRC 
byte. This is because of the delay in the Receive path 
and the point in time when the EOM Interrupt occurs 
causing transfer of contents of the Receive Shift Regis­
ter into the FIFO. 
However, since the above 2 bytes are to be discarded 
by the user, it does not matter. 
Except in cases where users may want to include two 
bytes of data in place of CRC, ii is important to note that 
the last byte will be off by two bits. 

Q: In SDLC, when do you reset the CRC generator and 
checker? 

A: The reset T x CRC generator command should be issued 
when transmitter is enabled and idling (WRO). This 
needs to be done only once at initialization time for 
SDLCmode. 

Q: If the SIO is idling flags and a byte of data is loaded into 
the transmit buffer, what will be transmitted? 

A: Data takes priority over flags, and will be loaded into the 
shift register and transmitted. 

Q: What does the SEND ABORT command do to theSDLC 
transmit sequence? 

A: The transmission of the current character is aborted and 
a sequence of 8-one's are inserted into the data stream. 
This means that the user may see between 8 and 13 
one's in the data stream because of the zero inserter. If 
there is data in the transmit buffer, it is destroyed and a 
Transmit Buffer Empty interrupt is pended. 

Q: Can the SIO detect multiple aborts? 
A: The SIO searches for seven consecutive 1 's on the 

receive data line for the abort detection. This condition 
may be allowed to cause an external status interrupt. 
After these seven 1 's are received, the receiver auto­
matically enters Hunt mode, where it looks for flags. So 
even if more than seven 1 's are received in case of 
multiple aborts, only the first sequence of 1 's is signifi­
cant. 

Q: In the SDLC mode of operation, what is the relationship 
between the TxD output and transmitter interrupts? 

A: Transmitter interrupts occur when the data from the 
transmit buffer is loaded into the transmit shift register. 
The output to the TxD pin is delayed by 6 bit times (five 
for the zero inserter and one for the pin delay) from the 
last bit leaving the shift register. 

Q: Is it possible to monitor all received characters, includ­
ing flags, in the SDLC mode? 

A: No. if you want to monitor everything, then use the SIO 
in another mode of operation where the sync pattern 
has no special meaning. 

Q: Can interrupts be generated on the idle line flag 'in 
SDLC? 

A: Upon receipt of seven continuous ones, the break/abort 
bit will be set to indicate the abort condition. This bit will 
remain set until the SIO receives a zero. 

Q: Does Hunt in SDLC continue until the Address Field has 
been recognized? 

A: It does if the address search mode feature has been 
programmed. 

Q: Does IBM SDLC specify parity? 
A:No. 

Q: Can the SIO include parity in SDLC mode? 
A: Yes. It is appended at the end of the character. 

425 



426 



Zilog 
January 1989 

ZILOG'S QUALITY AND RELIABILITY 
PROGRAM 

Introduction 
The Zilog corporation is fortunate to have an excellent 
reputation for quality and reliability in Hs products. We 
recognize that the expectations of our customers is accept­
able. 

Zilog's Quality and Reliability Program is based on careful 
study of the principles laid down by such pioneers as W.E. 
Seming and J.M. Jurna and, perhaps even more important, 
observation of the practical implementation of those prin­
ciples in Japanese, European and American manufactur­
ing facilities. 

The Zilog program begins with employee involvement. 
Whether the judgement of our per1onnance is based on 
per1ection in incoming inspection, trouble-free service in 
the field or timely and accurate customer service, we 
recongnize that our employees ultimately control these 
factors. Hence, our Quality Program is broadly shared 
throughout the organization. 

1. Hannony Between Design and Process 
High product quality and reliability in VLSI products is 
possible only if there is structural harmony between prod­
uct design and the manufacturing process. Great care is 
taken to assure that the statistical process control limHs 
observed wHhin the manufacturing plants properly guard­
band the design technology used to configure the circuH 
and layout in Zilog's automated design methodology. 

By use of a technique which we call Process Templating, 
the technology file in the automated design system periodi­
cally is updated to assure that product design parameters 
fall wHhin the statistical control limits wHh which the process 
is actually operated. 

In simple terms, the Process Template is the profile dis­
played by the process evaluation parameters which are 
automatically recorded from the test patterns on wafers as 
they proceed through th~ production line. These parame­
ters are translated into the design technology file attributes 
such that the product design bears a key and lock relation­
ship wHh the process. 

Zilog Quality and Reliability 

2. Training 
Product Design and Processing are people-dependent. 
Zilog training emphasizes the fundamentals involved in 
design for quality and reliability. 

Customer Service, an important aspect of Zilog's quality 
performance as a vendor, also depends upon our people 
clearly understanding their jobs, and our obligations to our 
customers. This too is part of the curriculum administered 
by Zilog. 

3. Order Acknowledgement Policy 
One definition of vendor quality performance is that the 
vendor "does what he promises or acknowledges". Relia­
bility and quality warranties can be met only if Zilog and the 
customer agree on product and delivery specifications. 
Zilog makes an extra effort by providing a series of docu­
ments as part of Hs purchase order acknowledgements. 
These clearly state what Zilog unc;lerstands the specifica­
tions to be. 

4. Test Guardbanding 
No physical attribute is absolute. Customers' test methods 
may differ from Zilog's due to variations in test equipment, 
temperature or specification interpretation. To assure that 
every Zilog product perfonns to full customer expectations, 
Zilog uses a "waterfall" methodology in its testing. The 
earliest electrical tests made on the circuit, at the wafer 
probe operations, are guardbanded to the final test speci­
fications. Final test specifications are guardbanded to the 
quality control outgoing sample. The quality control outgo­
ing sample is guardbanded to the customer procurement or 
data sheet specifications. This technique of "waterfall" 
guardbanding assures that circuits which may be marginal 
to the customer's expectations are eliminated in the manu­
facturing process long before they get to the shipping 
container. 

5. Probe at Temperature 
Semiconductor devices tend to exhibit their most limHed 
per1ormance at the highest operating temperature. There­
fore, H is Zilog's policy that all chips are tested at high 
temperature the very first time they are electrically screened, 
at the wafer probe station. The circuits are tested again at 
their upper operating temperature limit in the 100% final 
test operation. 

427 



6. Process Characterization 
Before release to production, every process is thoroughly 
characterized by an exhaustive series of pilot production 
runs and tests which identify the statistical, electrical, and 
mechanical limits of which that particular process regime is 
capable. This documentation, which fills a large looseleaf 
binder for each process, is maintained as the historical 
record or "footprint" for that particular regime. 

Process recharacterization is done any time there is a 
major process or manufacturing site change, and that 
documentation is added to the characterization history. 
The daily test site evaluation work recorded in the process 
template noted earlier in this presentation, demonstrates 
that the process remains in specification between times of 
formal characterization. · 

7. Product Characterization 
Every Zilog product design is evaluated over extremes of 
operating temperature, supply voltage and clock frequency, 
prior to release to production. This information permits the 
proper guardbanding of the test program waterfall and 
identification of any marginal "comers" in design toler­
ances. 

A product characterization report, which summarizes the 
more important tolerances identified in the process of this 
exhaustive product design evaluation, is available to Zilog's 
customers. 

8. Process Qualification 
Just as Zilog measures the robustness and reliability of its 
products by a qualification process separate from the 
performance characterization process, Zilog also qualifies 
every process prior to production by an exhaustive stress 
sequence performed on test chips and on representative 
products. Once a process regime is qualified, a process 
requalification is performed any time there is a major 
process change, or whenever the process template statis­
tic81 quality limits are significantly exceeded or adjusted. 

9. Product Qualification 
In addition to characterization, every new Zilog product 
design is fully qualified by a comprehensive series of life, 
electrical, and environmental tests before release to pro­
duction. Again, a qualification report is available to our 
customers which summarizes certain key life and environ­
mental data taken in the course of these evaluations. 
Whenever possible, industry standard environmental and 
life tests are employed. 

10. PPM Measurement, Direct.and Indirect 
It is frequently said that if you want to improve something, 
you need to put a measure on H. Therefore, Zilog measures 
its outgoing quality "parts per million" by the maintenance 
of careful records on the statistical sampling of production 
lots prepared for shipment. This information is then trans-

428 

lated by our statisticians to a statement of our parts per 
million (or parts per billion) outgoing quality performance. 

Of course, it is one thing for Zilog to think it is doing a good 
job in outgoing product quality and it is another for a 
customer to agree. Therefore, we ask certain key custom­
ers to provide us with their incoming inspection data which 
helps us calibrate .our own outgoing performance in terms 
of the actual results in the field. The fact that Zilog has been 
awarded "ship to stock" status by many customers testifies 
to our success in this area. 

11. Field Quality Engineers 
It is also frequently said that "The customer is always right". 
If the customer has an application quality or reliability 
problem while using a Zilog product, whether it is Zilog's 
responsibility or not, we believe that we have a responsibil­
ity to resolve it. Therefore, Zilog maintains a force of skilled 
Applications E;ngineers who are also trained as field quality 
engineers and are available on immediate call to consult at 

. the customers' locations on any problems they may be 
experiencing with Zilog product performance. 

12. Product Analysis 
As noted earlier, we feel that a customer problem is a Zilog 
problem. Accordingly, Product Analysis facilities, staffed 
by experienced professionals, exist at each Zilog site to 
provide rapid evaluation of in-process and in-field rejects to 
determine the cause and provide corrective action through 
a feedback loop into the production, design, and applica­
tions process. Zilog is pleased to share product analysis 
reports on specific products with the customer upon re­
quest .. 

13. FIT Measurement Direct and Indirect 
Just as Zilog records its outgoing quality in terms of parts 
per million, it also measures its outgoing product reliability 
in terms of "FITS" or failures per billion device hours, using 
the results of weekly operating life test measurements on 
the circuits, performed in accordance with the standard 
specifications. 

14. Test Site Step-Stress 
The process evaluation test sites on the wafer are pack­
aged and subjected to step-stress testing. Any drift in 
parameters under severe conditions of stress outside the 
norm is taken as an indication of possible process contami­
nation or variation. 

15. Statistical Process, Control 
Zilog employs statistical Process Control at all critical 
process steps. Deviations from norms must be evaluated 
by a Q/R review board. 

16. Document Control 
Skilled quality control professionals maintain careful and 
up-to-date specifications on all aspects of Zilog's products 



and processes in an elaborate document control system 
administered and controlled from the Zilog headquarters 
site. Specification changes and updates are electronically 
transmitted to the factory floor in order to assure that 
processing operations are being performed to the most up­
to-date specifications. We are pleased to have a customer 
audit of this system at any time. 

ZILOG'S QUALITY AND RELIABILITY SUMMARY 

Zilog's Quality and Reliability program employs effective 
controls and gates. All quality control monitors are docu­
mented to ensure consistency of test methods, testing 

frequency, sample selection, sampling plan, reject disposi­
tion, and reporting format. Statistical Quality Control 
(SOC) charts are used to record the monitor results. This 
form of record keeping is used to ensure minimum process 
variation in such operations as ion-implant, diffusion, de­
lineation, wire bonding, and plastic molding. 

Zilog subjects each lot of finished goods to an independent 
electrical and mechanical quality control audit prior to 
shipment. The Quality Monitor Data in the next section is 
typical of the information gathered at this point. This 
quality monitor data is summarized in Figure I as an 
indicator of the company's progress on this report. 

429 



430 



LITERATURE GUIDE 

Z8/Super8 Microcomputer Family Part No Unit cost Z80/Z280 Microprocessor Family Part No Unit cost 

Z8 DESIGN HANDBOOK 03-8275-02 12.50 Z80 FAMILY DATA BOOK 00-2480-01 10.00 

ZB NMOS MCU MICROCOMPUTERS 
Z8600 Z8 MCU 2K 28-pin Product Spec 
Z8601/03/11/13 Z8 MCU 2K/4K Product Spec 
Z8671 MCU with Basic/Debug Interpreter 
Z8681/82 Z8 MCU ROMless Product Spec 
Z8691 Z8 MCU ROMless Product Spec 
Supers MCU ROMless Product Spec 

ZB CMOS MICROCOMPUTERS 
Z86C08 MCU 2K 18-pin Product Spec 
Z86COO/C10/C20 MCU 4K/8K 28-pln OTP Pd Spec 
Z86C11/ MCU 4K 
Z86C21/Z86E21/C12 BK/OTP Product Spec 
Z86C91 MCU ROMless 

ZB APP NOTES AND TECHNICAL ARTICLES 
Memory Space and Register Org App Note 
A Programmer's Guide to the Z8 MCU 
Z8 Subroutine Library 
A Comparison of MCU Units 
Z86xx Interrupt Request Registers 
Z8 Family Framing 

Z8 MCU Technical Manual 

SUPERB MCU MICROCOMPUTER 
Z8800/01 MCU ROMless 
Z8820 MCU BK 
Z8822 MCU BK Protopak 

SUPERB APP NOTES AND TECHNICAL ARTICLES 
Getting Started with the Zilog Supers 
Polled Async Serial Operations with the Supers 
Using the Supers Interrupt Driven Communications 
Using the Supers Serial Port with DMA 
Generating Sine Waves with Supers 
Generating DTMF Tones with Supers 
A Simple Serial Parallel Converter Using the Supers 

Other ZS Literature Part No Unit Cost 

Z8 Basic/Debug Software Manual 03-3149-02 5.00 
Univ Obj File Utilities User's Mnl 00-8236-03 5.00 
ASM 8 Cross Assembler User's Gde 00-8267-03 5.00 

ZBO NMOS!CMOS MICROCOMPUTERS 
Z84COO NMOS/CMOS Z80 CPU Prelimin Product Spec 
Z84C01 zao CPU w/CTC 
Z84C10 NMOS/CMOS ZBO DMA Product Spec 
Z84C20 NMOS/CMOS Z80 PIO Product Spec 
Z84C30 NMOSCMOS ZBO CTC Product Spec 
Z84C40 NMOS/CMOS Z80 SIO Product Spec 
lB410 DART 
Z84C80 Product Spec 
Z84C90 CMOS Z80 KIO Product Spec 
Z80180 Z180 MPU 
Z280 MPU Preliminary Product Spec 

ZBO APP NOTES AND TECHNICAL ARTICLES 
ZBO Interrupt Structure 
Using the ZBO SIO in Async Communications 
Using the zao SIO with SDLC 
Binary Synchronous Comm Using the ZBO SIO 
Timing in Interrupt-Based System with Z80 CTC 
Interfacing Z80 CPU's to the Z8500 Periph Family 
A Z80 Based System Using the DMA with SIO 
zao O&A's 
Package Information 
Literature List 
PSI List 
Ordering Information 

Z80 Technical Manuals Part No Unit Cost 

Z80 CPU Technical Manual 
Z80 CPU Programmer's Ref Guide 
Z80 OMA Technical Manual 
Z80 PIO Technical Manual 
Z80 CTC Technical Manual 
Z80 SIO Technical Manual 
Z180 Technical Manual 
Z280 Technical Manual 

03-0029-02 15.00 
03-0012-04 7.00 
00-2013-02 6.00 
03-0008-02 9.00 
03-0036-02 5.00 
03-3033-01 7.50 
03-8276-01 12.00 
03-8224-02 15.00 

431 



LITERATURE GUIDE (Continued) 

Z8000/80,000 Microprocessor Family Part No Unit cost 

Z8000 FAMILY DATA BOOK 00-2488-01 10.00 

ZB000/80,000 NMOS/CMOS MICROS 
Z160 CPU Product Spec 
Z320 CPU Product Spec 
Z328 ICE 
Z5380 CMOS SCSI Product Spec 
Z7220A HPGD Product Spec 
Z765A FDC Product Spec 
Z8001/Z80Q2 CPU Product Spec 
Z8010 MMU Product Spec 
Z8016 Z-DTC Product Spec 
Z16C20 CMOS Z-BUS GLU 
Z80C30/Z85C30 CMOS sec Product Spec 
Z8030/8530 sec Product Spec 
Z8036/Z8535 CIO Technical Manual 
Z8536 CIO Product Spec 
Z8038/8538 FIO FIFO Product Spec 
Z8060/8560 FIFO Product Spec 
Z8068 Z-DCP Product Spec 
Z8516 OMA (OTC) Product Spec 
Z8581 Clock Generator Product Spec 
ZB0,000 CPU Product Spec 

APP NOTES AND TECHNICAL ARTICLES 
Interfacing Z80 CPUs to Z8500 Peripheral Family 
Interfacing the Z8500 Peripheral to 68000 
Design Considerations Using Quartz Crystals 
Using Z8581 Clock Stretches In Z80 CPU Apps 
Interfacing Z-BUS Perlph. to the V20N30/8086/8088 
Interfacing the Z-BUS Peripherals Articles Reprint 
Using SCC with Z8000 In SDLC Protocol 
SCC In Binary Synchronous Communications 
Z8000 Development Support 
Zilog Quality and Reliability 
Literature Gulde 
Ordering Information 

Z8000180,000 Technical Manuals Part No· Unit Cost 

Z8000 CPU Technical Manual 
Z8000 Programmer's Pocket Gulde 
Z8010 MMU Technical Manual 
Z8030/Z8530 SCC Technical Manual 
Z8036128536 CIO Technical Manual 
Z8038 Z-FIO Technical Manual 
Using Z8581 Clock Stretches In 

280 CPU Applications Apps Note 
ZS0,000 Technical Manual 
Memory Management 

w/ZS0,000 Apps Note 

432 

00-2010-06 
03-0122-03 
00-2015-AO 
00-2057-05 
00-2091-02 
00-2051-01 
00-2807-01 

12.00· 
7.00 
4.00 
6.00 
8.50 
8.50 
1.00 

03-8225-01 17.50 

00-2324-01 1.00 

Components Military Literature PartNo UnltCost 

ZILOG MILITARY PRODUCTS BINDER 00-5498-01 N/C 

Z8681 ROMless Military Spec 00-2392-02 
Z800 1/2 CPU Miiitary Spec 00-2342-03 
Z851 CGC Military Spec 00-2346-01 
Z8030 Z-SCC Military Spec 00-2388-01 
Z8530 sec Military Spec oo-2397-01 
Z8036 Z-CIO Military Spec 00-2389-01 
Z8038/8538 FIO FIFO Military Spec 00-2463-02 
Z8536 CIO Military Spec 00-2396-01 
Z8400 Z80 CPU Miiitary Spec 00-2351-02 
Z84COO Military Spec 00-2441-03 . 
Z8420 PIO Military· Spec 00-2384-01 
Z8430 CTC Miiitary Spec 00-2385-01 
Z8440/1/2/4 Military Spec 00-2386-01 
Z80C30/85C30 Miiitary Product Spec 00-2478-01 
Z84C20 PIO CMOS Military Spec 00-2384-02 
Z84C30 CTC CMOS Military Spec 00-2481-01 
Z84C40/1/2/4 SIO CMOS Military Spec 00-2482-01 

Nata: Military Spacs may b9 ord9md lndlvldually 

General Literature, 

Component Short Form Catalog 
Reliablllty Handbook 
Corporate Profile 

New Product Preliminary Specs 

Z86E21 OTP 
Z16C30 USC 

Part No Unit Cost 

00-54 72-04 N/C 
00-24 75-02 N/C 
00-3124-00 N/C 

Part No Unit Cost 

00-2487-01 
Jan'89 



ORDERING INFORMATION 

Z80 CPU NMOS/CMOS 

NMOS4MHz 
40pin DIP 44pin PLCC 
Z0840004DSE Z0840004VSC 
Z0840004PSC 

CMOS4MHz 
40pin DIP 44pin PLCC 44pin QFP 
Z84C0004DEE Z84C0004VEC Z84C0004FEC• 
Z84C0004PSC Z84C0004VSC 
Z84C0004PEC 

NMOS6MHz 
40pin DIP 44pin PLCC 
Z0840006DSE Z0840006VSC 
Z0840006PSC 

CMOS6MHz 
40pin DIP 44pin PLCC 44pin QFP 
Z84C0006DEE Z84C0006VEC Z84C0006FEC• 
Z84C0006PSC Z84C0006VSC 
Z84C0006PEC 

NMOS8MHz 
40pin DIP 44pin PLCC 
Z0840008PSC Z0840008VSC 

CMOS8MHz 
40pin DIP 44pin PLCC 44pin QFP 
Z84C0008PSC Z84C0008VEC Z84C0008FEC• 
Z84C0008PEC Z84C0008VSC 

CMOS10MHz 
40pin DIP 44pin PLCC 44pin QFP 
Z84C0010PEC Z84C001 OVEC Z84C0010FEC• 

Z80 OMA NMOS/CMOS: 

NMOS4MHz 
40pin DIP 44pin PLCC 
Z0841004PSC Z0841004VSC 
Z0841004DSE 

CMOS4MHz 
40pin DIP 
Z84C1004PEC 
Z84C1004DEE 

44pin PLCC 
Z84C1004VEC 

Z80 OMA NMOS/CMOS: (Continued) 

CMOS6MHz 
40pin DIP 44pin PLCC 
Z84C1006PEC Z84C1006VEC 
Z84C1006DEE 

CMOS8MHz 
40pin DIP 44pin PLCC 
Z84C1008PEC Z84C1008VEC 
Z84C1008DEE 

Z80 PIO NMOS/CMOS: 

NMOS4MHz 
40pin DIP 44pin PLCC 
Z0842004DSE Z0842004VSC 
Z0842004PSC 

CMOS4MHz 
40pin DIP 44pin PLCC 44pin QFP 
Z84C2004DEE Z84C2004VEC Z84C2004FEc• 
Z84C2004PSC Z84C2004VSC 
Z84C2004PEC 

NMOS6MHz 
40pin DIP 44pin PLCC 
Z0842006DSE Z0842006VSC 
Z0842006PSC. 

CMOS6MHz 
40pin DIP 44pin PLCC 44pin QFP 
Z84C2006DEE Z84C2006VEC Z84C2006FEC• 
Z84C2006PSC Z84C2006VSC 
Z84C2006PEC 

CMOS8MHz 
40pin DIP 44pin PLCC 44pin QFP 
Z84C2008PSC Z84C2008VEC Z84C2008FEC• 
Z84C2008PEC Z84C2008VSC 

433 



ORDERING INFORMATION (Continued) 

Z80 CTC NMOS/CMOS: 

NMOS4MHz 
40pin DIP 44pin PLCC 
Z0843004DSE Z0843004VSC 
Z0843004PSC 

CMOS4MHz 
40pin DIP 44pin PLCC 44pin QFP 
Z84C3004DEE Z84C3004VEC Z84C3004FEC• 
Z84C3004PSC Z84C3004VSC 
Z84C3004PEC 

NMOSSMHz 
40pin DIP 44pin PLCC 
Z0843006DSE Z0843006VSC 
Z0843006PSC 

CMOSSMHz 
40pin DIP 44pin PLCC 44pin QFP 
Z84C3006DEE Z84C3006VEC Z84C3006FEC• 
Z84C3006PSC Z84C3006VSC 
Z84C3006PEC 

CMOS8MHz 
40pin DIP 44pin PLCC 44pin QFP 
Z84C3008PSC Z84C3008VEC Z84C3008FEC• 
Z84C3008PEC Z84C3008VSC 

Z80 SIO NMOS/CMOS: 

4 MHzSIO/O 
NMOS CMOS 
40pin DIP 40pin DIP 
Z0844004DSE Z84C4004DEE 
Z0844004PSC Z84C4004PEC 

Z84C4004PSC 

4 MHz SI0/1 
NMOS CMOS 
40pin DIP 40pin DIP 
Z0844104DSE Z84C4104DEE 
Z0844104PSC Z84C4104PEC 

Z84C4104PSC 

434 

Z80 SIO NMOS/CMOS: (Continued) 

4 MHzSI0/2 
NMOS CMOS 
40pin DIP 40pin DIP 
Z0844204DSE Z84C4204DEE 
Z0844204PSC Z84C4204PEC 

Z84C4204PSC 

4MHzSI0/3 
CMOS 44pin QFP 
Z84C4304FEC• 

4MHzSI0/4 
NMOS 44pin PLCC CMOS 44pin PLCC 
Z0844404VSC Z84C4404VEC 

6 MHzSIO/O 
NMOS 40pin DIP 
Z0844006DSE 
Z0844006PSC 

6 MHz SI0/1 
NMOS 40pin DIP 
Z0844106DSE 
Z0844106PSC 

6 MHzSI0/2 
NMOS 40pin DIP 
Z0844206DSE 
Z0844206PSC 

6 MHzSI0/3 
CMOS 44pin QFP 
Z84C4306FEC• 

6 MHzSI0/4 

Z84C4404VSC 

CMOS 40pin DIP 
Z84C4006DEE 
Z84C4006PEC 
Z84C4006PSC 

CMOS 40pin DIP 
Z84C4106PEC 
Z84C4106PSC 

CMOS 40pin DIP 
Z84C4206DEE 
Z84C4206PEC 
Z84C4206PSC 

NMOS 44pin PLCC CMOS 44pin PLCC 
Z0844406VSC Z84C4406VEC 

8 MHzSIO/O 
CMOS 40pin DIP 
Z84C4008DEE 
Z84C4008PEC 
Z84C4008PSC 

Z84C4406VSC 



ORDERING INFORMATION (Continued) 

ZBO SIO NMOS/CMOS: (Continued) 

BMHzSI0/2 
CMOS 40pin DIP 
Z84C4208DEE 
Z84C4208PEC 
Z84C4208PSC 

BMHzSI0/3 
CMOS 44pin QFP 
Z84C4308FEC• 

8MHzSI0/4 
CMOS 44pin PLCC 
Z84C4408VEC 
Z84C4408VSC 

ZBO DART NMOS: 

4MHz 
40pin DIP 
Z0847004PSC 

6MHz 
40pin DIP 
Z0847006PSC 

Z180 MPU: 

6MHz64pin 
shrink DIP 68pin PLCC 80pin QFP 
Z8018006PSC Z8018006VEC Z8018006FEC• 
Z8018006PEC Z8018006VSC 

8MHz64pin 
shrink DIP 68pin PLCC 80pin QFP 
Z8018008PSC Z8018008VEC Z8018008FEC• 
Z8018008PEC Z8018008VSC 

10 MHz64pin 
shrink DIP 68pin PLCC 80pin QFP 
Z8018010PSC Z8018010VEC Z8018010FEC• 
Z8018010PEC Z8018010VSC 

Z280 MPU: 

10MHz 
68pin PLCC 
Z802801 ovsc 

Z84C01 CPU: 

10MHz 
44pin PLCC 
Z84C011 OVEC 

Z80GLU: 

6MHz 
68pin PLCC 
Z84C8006VSC 

Z84C90KIO: 

8MHz 
84pin PLCC 
Z84C9008VSC · 
Z84C9008VEC 

• QFP package (package designator : F) will be available 
in02'89. 

• For military grade devices and the package types 
other than listed above, please contact your local Zilog 
sales office. 

• Please check the availability before placing order. 

435 



ORDERING INFORMATION 

CODES 

PACKAGE 
Preferred 
D = Cerdip 
P = Plastic 
V = Plastic Chip Carrier 

Longer Lead Time 
C =Ceramic 
F = Plastic Quad Flat Pack 

TEMPERATURE 
S = 0°C to + 700C 
E = -40°C to 100"C 
M = -55°C to+ 125°C 

Example: 

ENVIRONMENTAL 
Prellered 
C = Plastic Standard 
E = Hermetic Standard 

Longer Lead Time 
A = Hermetic Stressed 
B = 833 Class B Military 
D = Plastic Stressed 
J =JAN 38510 Military 

Z84C0010PEC is a CMOS 8400, 10 MHz, Plastic, -40°C to 100°C, Plastic Standard Flow. 

z 84COO 10 p 

436 

E c xxxx 

Special Lot Number (Optional) 

Environmental Flow 
Temperature 

Package 
Speed 

Product Number 
Zilog Prefix 



PACKAGE INFORMATION 

28 15 

T 
0.560 
0.540 " 

0.062 1 RAD 

.r.~~231 
___ 0.625-

•,025 
-.015 

14 

0.180 --11· -or~io MAX 

~~~r,-~-r~0071~nl : :··~ 
0.125
MIN

~

0.100
TYP

0.018
:.003 TYP

28-Pin Dual-in-Line Package (DIP),
Plastic

0.050
TYP

,i!!!~r-"u~~~~~~~~~~~~~~1-5,__,
0.550

l~~~~~~~~
14

,.._ _______ 1.480 ______ _

0.230 MAX 0.056 !

Mlt~i~if~
O :::l-1--0.100MAX --1 I- ·0.100 --Ii 0.018
M BOTH ENDS "'f~~ r--: f$~

28-Pin Cerdip Package

NOTE. Package dimensions are given 1n inches. To convert to millimeters. multiply by 25 4

437

PACKAGE INFORMATION (Continued)

438

0.620 I
0.600 ---1

'._ __ 0.820----I

,-· MAX I

r-·- ! 0.010

... 002 -
TYP

,o---~-~-__I

0.565
MAX

GLASS

40 21

20

r-----·-----~°I~--------·------:
I

0.180
I -! ~~~~o MAX
=---------------~+------., 0.020

40-Pin Dual-in-Line Package (DIP),
Plastic

i MIN
_L_J_

0.125
MIN

I
0.550
MAX

t !':MMMMMOMMM"J

vvvvvvvvvvvvvvvvvvv
1 20

~
r
·----------·~c:i?

::=--i ~ I

~~(ff~ ft~
°y,~5 I --i ~~6'rH'l.~s

0.040
%.020

I 0.1QO
1--,..010

TYP

40-Pin Dual-in-Line Package (DIP),
Cerdip

0.018
-~-:!::.003

TYP

PACKAGING INFORMATION (Continued)

PIN1

45 0 >< 0.045 MAX~·'°, -*-'1===>4-=IDLE""N=T=IF;=IC~AT_l_DTN_·

0.025_1_ , .. ,, -t I
NOMINAL T I

45° >< 0.010 MAX_,.J"'
3PLACES

o.650
±.002

I
0.690

±.008

.. _j j
I 1--J l-- OJJ23 ± _oo~

1
-1 · 1- 0.1050.005
---+o.11h.005

44-Pin Plastic Chip Carrier (PCC)

23

34 22

0
44

(.551 ± .012)
~-------- 14 !_.3 --------~

(.039 :!: .rot)
l;t.l

(.002 to .010) •

• _·r·d-~-~~·~:_1.~, .. '141

(O~) t -1 1-
Nominal

44-Pin Quad Flat Pack (QFP)

NOTE: QFP package dimensions are in millimeters
Units with () are in inches.

(.039 :!: .008)
1 t .2

439

PACKAGE INFORMATION {Continued)

440

.s• x 0.04SMAX

0.02&_L
NOMINALT

68~Pin Plastic Chip Carrier (PCC)

1905

~ ~ . j I <O 7501 • I
~..---.----gJh 1· -l\ ·•''

I I 1 11:to 2s o_,, to 12.J__ : ~ \\ o.if»-C:,~,
~010±00101 1001t±0004l ~ O" ~ts· .-\\'foo,o':.oooi

64-Pin Dual-In-Line Package (DIP)

PACKAGE INFORMATION (Continued)

25.6 ± 4 (1 000 ± 016) •

1

\ fiWi!ltlMllfM'llMllmlllfUll~'
r:--200±61 (787±.004) 41 ~=~ 1..- 2 .8 J L---J°0

-
12°

IJIJlllllI --- .15 ±.05 (.110) [-- 1 f (006 ± .002) 1.5 ± .3
19.6 ± 4 (.059 ± .012)

(772 ± 016)

(551 ± 004)

!!!il!!!!!!!!!!!!!!!I!~
.8±.1 'l- JL.35±1

(.031 ± .o04\ (.014 ± .004

80-PIN QFP

-1 r--.O!>O 1,001 1 r·~;~ NOMINAL 45'> .045 MA>

,:' qnnnnnnirmncu.=-o=c 12-=1~ll l
II I '·"o

PIN I INDE.X ! 00~

I U50
_,.___ __ - --+ --- :!".005

I
I

~5" ~INAL I 8 PLC

.021

84-Pin PLCC

J 2.7 ± 0.1
(.106 ± .004)

''--...- UECTOR Plt<i LOCATION
4 PLC

441

Notes

