
BESSY 1

VXI-11 and HP E2050A
A Programmer’s Guide

B. Franksen
BESSY GmbH
Lentzeallee 100
14195 Berlin
Germany

Table of Contents

1 Introduction. 1

1.1 Scope .1
1.2 The VXI-11 Standard. .2
1.3 The HP E2050A LAN-GPIB Gateway. .2

2 Some Remarks on VXI-11 . 2

2.1 General Observations. .2
2.2 Channels. .3
2.3 Core Channel .3
2.4 Abort and Intr Channel. .3

3 Using the Generated Protocol . 4

3.1 General. .4
3.2 Under UNIX. .6
3.3 Under VxWorks .7

4 The Example Program vxidemo . 8

1 Introduction

1.1 Scope

This document contains additional information about a standard, specified by the
VXIbus Consortium, called

• ‘TCP/IP Instrument Protocol and Interface Mapping Specifications’

and how this specification can be used to implement simple access to GPIB devices
via the LAN-GPIB gateway manufactured by Hewlett-Packard, called

2 Some Remarks on VXI-11

2 Document Revision: 1.1

• HP E2050A.

It is planned to use this gateway in the BESSY II control system wherever GPIB
devices need to be accessed. The driver and device support for EPICS will be
discussed in another document (‘LanGpib Driver Support for HP E2050A’).

��� � ������� 	��
�
In no way should the reader expect this document to give complete information about
the above mentioned items. It is rather meant as an additional exposure and to gain
complete understanding without the lecture of the original VXI documents (see next
section for a reference) is not possible. Also, installation of the HP gateway requires
reading the ‘HP E2050 LAN/HP-IB Gateway, Installation and Configuration Guide’.
A good introduction into RPC programming as well as a reference for the standard
RPC libraries is John Blumer’s ‘Power Programming with RPC’, published 1992 by
O’Reilly & Associates.

1.2 The VXI-11 Standard

The VXI-11 standard specifies a protocol for communication with (test or
measurement) devices over a network (LAN) via a so callednetwork instrument
server (we will abbreviate ‘network instrument’ with ‘NI’). This protocol uses the
ONC/RPC (Open Network Computing/Remote Procedure Call) standard which in
turn is based on TCP/IP and is described in a document named ‘VXI-11: TCP/IP
Instrument Protocol Specification’.

A network instrument server is (in the above document) defined as an interface
between the LAN on the one hand, and one or morenetwork instrument devices on the
other hand. If the connection between the devices and the server is a GPIB (IEEE488)
connection, then the behavior of the network instrument servers is defined more
specifically. This is done in ‘VXI-11.2: TCP/IP-IEEE488.1 Interface Specification’.
No other part of VXI-11 will be of interest here.

1.3 The HP E2050A LAN-GPIB Gateway

The Hewlett-Packard HP E2050A is a gateway between a local area network (LAN)
and a GPIB network. On the GPIB side it acts as the bus controller, whereas on the
LAN side it acts as an RPC (Remote Procedure Call) server and claims to conform to
VXI-11. Besides its GPIB connector it has an interface to RS232. On the LAN side it
has a BNC and a 10 Base-T connection. It needs an external power supply.

2 Some Remarks on VXI-11

2.1 General Observations

Because the VXI-11 specification (freely available by the VXIbus Consortium)
contains an RPCL (RPC Language) description of the protocol, it is possible to use a
protocol generator (rpcgen) to generate client and server stubs (in C) which makes
application development much easier. Unfortunately parts of the generated code are
not reentrant, and so are not usable under VxWorks.

2 Some Remarks on VXI-11

BESSY 3

Anyway, I wrote a demo program (vxidemo) that runs under HP-UX and uses the
generated code without any changes. The main reason for this was to test the VXI-11
conformance of the HP E2050A. It can now be used as a programming example for
people who want to write applications that directly communicate with such an
interface.

2.2 Channels

Channels are a feature of ONC/RPC: an RPC server implements a set of RPC
protocols (in RPC language they are called programs) and these can exist in different
versions. If a client and a server agree on a certain program in a certain version, they
as a result establish a so calledchannel. This channel then allows the client to request
of the server the execution of channel-specific set of remote procedure calls. Programs
and versions are identified by a unique number.

The VXI-11 standard states that a network instrument host has to implement a certain
set of RPC functions on three different channels. These are the

• Core Channel: send commands from the NI client to the NI server,

• Abort Channel: abort from a previously sent (core channel) command,

• Intr Channel: send an interrupt from the NI server to the NI client.

All three channels have a registered unique program number.

2.3 Core Channel

The core channels is used to establish so called links to devices on the bus and to give
commands to them like read or write.

� � � �

According to VXI-11, a NI server supplies an abstract view of the connected devices
by giving the client the possibility to create and destroy so calledlinks to these
devices. Thecreate_link call takes an identifying string as parameter and returnes, if
successful, a handle (of typeDevice_Link), which is to be used in following calls like
device_read or device_write. All addressing of the devices is hidden behind this
handle. Additionally one may callcreate_link with an identification string of the NI
server itself (no special device). The resulting link can then be used to perform
operations that affect all connected devices or change some state inside the server.

In the special situation of the GPIB server HP E2050A, the identifying string is “hpib”
for the server and “hpib,<n>” for devices, where <n> is to be the GPIB address of the
device. Some calls like device_docmd work only with the server link, and not with
devices. For others like device_read anddevice_write it is the other way around.

� � � �

Since the NI server resides in a network it is possible for more than one client to
establish a connection to the server.

To avoid concurrent access to devices, links can be locked by the client. The
device_lock and device_unlock calls are used for this purpose. It is possible to specify
a lock_timeout in most core channel calls to wait a certain number of milliseconds for
a lock to be released.

2.4 Abort and Intr Channel

The intr and abort channels both support only one call (device_intr_srq and
device_abort). With thedevice_abort call the client can abort a previously given (core
channel) call. The intr channel is used to implement GPIB service requests (SRQ).
The intr channel effectively reverses the rolls of NI server (becoming an RPC client)

3 Using the Generated Protocol

4 Document Revision: 1.1

and the NI client (becoming an RPC server). If the client supplies an SRQ server, it
must ask the NI server to create an intr channel by calling the (core channel) call
create_intr_chan, giving his IP address, the port number, and the RPC program
number and version.

������� ������� � ���
If the intr channel server (on the NI client host) is called by the NI server it is not
known which device has asserted the SRQ line. This information must be retrieved by
the client program using thedevice_readstb (read status byte) call. Every device on
the bus must be sent this call (a process called ‘serial polling’ in GPIB terminology).
The returned status byte gives information about the state of the devices including the
information ‘has this device asserted the SRQ line?’ (yes if bit 6 is set).

3 Using the Generated Protocol

3.1 General

The UNIX utility program rpcgen creates a number of files if given a protocol
description written in RPCL (RPC Language, based on C). For every file xxx.rpcl it
generates (see also corresponding manual page)

• a header file xxx.h, containing the type definitions, the function numbers and
the prototypes for the generated functions

• a C source file xxx_clnt.c containing client side functions

• a C source file xxx_svc.c containing server side code and

• a C source file xxx_xdr.c containing data type conversion functions for the data
types declared in xxx.rpcl.

The VXI-11 RPCL protocol description consists of two files: vxi11core.rpcl
(containing core and abort channel) and vxi11intr.rpcl (containing the intr channel).
Of course, not all of the generated files are needed to implement the protocol
completely, bu only the client side of the core/abort channel and the server side of the
intr channel. Furthermore, the abort and intr channel are optional in a NI client.

To illustrate how rpcgen transforms an RPCL declaration into C source code, consider
the following simple example:

� � � � � � � � � � � ! �
This is the RPCL declaration of a function taking two integers as parameter and
returning two floats together with the type declaration of its parameters and return
values (file simple.rpcl):

struct Parms
{
 int p1;
 int p2;
};
struct Resp
{
 float a;
 float b;
};
program SIMPLE
{
 version SIMPLE_VERSION
 {
 Resp simple_func (Parms) = 1;
 } = 1;
} = 0x0607AF;

This is transformed by rpcgen to the C declarations (simple.h):

3 Using the Generated Protocol

BESSY 5

#include <rpc/types.h>

struct Parms {
 int p1;
 int p2;
};
typedef struct Parms Parms;
bool_t xdr_Parms();

struct Resp {
 float a;
 float b;
};
typedef struct Resp Resp;
bool_t xdr_Resp();

#define SIMPLE ((u_long)0x444)
#define SIMPLE_VERSION ((u_long)1)
#define simple_func ((u_long)1)
extern Resp *simple_func_1();

The last declared function is the one the user is actually going to call. NOTE: the
generated function prototypes do not contain parameter declarations. If you want to be
shure, read the correspondingxxx_clnt.c file. The general rule is: first argument is
a pointer to the (user allocated) parameter; second argument is the CLIENT handle as
obtained fromclnt_create (declared in rpc/rpc.h).

� � � ����� � �����
The client side call of the remote procedure could look like this:

 Parms parms;
 Resp *resp;

 /* Fill parms structure */
 parms.p1 = 1;
 parms.p2 = 2;

 /* Do the call; rpcClient is the RPC CLIENT handle */
 resp = simple_func_1(&parms, rpcClient);

 /* Evaluate result */
 if (resp == NULL)
 {
 clnt_perror(rpcClient, “<name of the server>”);
 return;
 }
 /* resp now points to a (static) structure holding the
 result values
 */� ���#"$��� � �����
The server side only has to define the function:

Resp *simple_func_1(Parms *parms)
{
 ...
}

The file simple_svc.c contains a main function that starts a server routine
automatically which int turn callssimple_func_1 as soon as a request arrives
from a client.

3 Using the Generated Protocol

6 Document Revision: 1.1

3.2 Under UNIX

The protocol generator rpcgen is a UNIX tool and one can expect that the generated
source code is directly usable under UNIX. We present the main steps here. Many of
the things presented here remain the same under VxWorks. The differences are stated
in the next section.

% � � � 	 � � & � � �

The following header files must be included:

#include <rpc/rpc.h>

#include “vxi11core.h”
#include “vxi11.h”

' � � � � � � � � � � � � � � � �
To start, we must open an RPC connection. The client handlerpcClient is used in
all subsequent RPCs.

 CLIENT *rpcClient;
 static char *svName = “box10.acc”;

 /* open rpc connection */
 rpcClient = clnt_create(svName,DEVICE_CORE,
 DEVICE_CORE_VERSION, “tcp”);
 if (rpcClient == NULL)
 {
 clnt_pcreateerror(svName);
 return 1;
 }

� � � � � � (� " � � � � � � �
Before sending any data to our device we must create a link:

 /* fill Create_LinkParms structure */
 crlp.clientId = rpcClient;
 crlp.lockDevice = 0;
 crlp.lock_timeout = 10000;
 crlp.device = “hpib,28”;

 /* call create_link on instrument server */
 crlr = create_link_1(&crlp, rpcClient);
 if (crlr == NULL)
 {
 clnt_perror(rpcClient, svName);
 return 1;
 };

� � � � � � �)
 � � �
 � � � � �
To send a string (e.g. a command) to our device we do the following:

 Device_WriteParms dwrp;
 Device_WriteResp *dwrr;

 dwrp.lid = crlr->lid;
 dwrp.io_timeout = IO_TIMEOUT;
 dwrp.lock_timeout = LOCK_TIMEOUT;
 dwrp.flags = VXI_ENDW;
 dwrp.data.data_len = strlen(dval);
 dwrp.data.data_val = dval;

 dwrr = device_write_1(&dwrp, cl);
 ...
 /* error test here like above */

The principle should be clear now.
(�
 � � � * (� " � � � � � � �

If the link to the device is no longer used destroy it:

 Device_Error *derr;

3 Using the Generated Protocol

BESSY 7

 derr = destroy_link_1(&(crlr->lid), rpcClient);

� � ��
+� ���,�-� ���������+� � ���
At the and of the program the client handle must be destroyed.

 clnt_destroy(rpcClient);

3.3 Under VxWorks

As mentioned in the introduction, the source code generated by rpcgen partly uses
static variables (e.g. for the returned structures) and is therefore not reentrant. Of
interest are the following generated files:

• vxi11core_clnt.c: client side functions for the core and abort channel

• vxi11intr_svc.c: server side functions for the intr channel

The functions provided in these files cannot be used under VxWorks, at least not as
library functions (which may be used by different tasks). They may be used on a
UNIX workstation but only when statically linked to the program. This is the way in
which vxidemo uses these functions.

Under VxWorks, we must use the rpc library functions directly. On the client side this
looks like:

% � � � 	 � � & � � �

#include <rpcLib.h>
#include <rpc/rpc.h>

� � � . �
 � % � � �
/* every task that wants to use RPC must call rpcTaskInit */
if(rpcTaskInit() != OK)
{
 logMsg(“Can’t init RPC for this task\n”);
 return ERROR;
}
...
struct timeval rpcTimeout = {10, 0};
/* timeout for rpc calls (10 sec) */

CLIENT *rpcClient;
/* link creation/destruction is identical to UNIX */
...
 Create_LinkParms crLinkP;
 Create_LinkResp crLinkR;
 enum clnt_stat clntStat;

� � � � � � �) � � � � � � � � � � �
 crLinkP.clientId = rpcClient;
 crLinkP.lockDevice = 0;
 crLinkP.lock_timeout = 10000;
 crLinkP.device = “hpib,28”;

 /* initialize crLinkR */
 bzero((char*)&crLinkR, sizeof(Create_LinkResp));

 /* call create_link on instrument server */
 clntStat = clnt_call(rpcClient, create_link,
 xdr_Create_LinkParms, &crLinkP,
 xdr_Create_LinkResp, &crLinkR, rpcTimeout);
 if(clntStat != RPC_SUCCESS)
 {
 printf(“RPC error”);
 return ERROR;
 }
 if(crLinkR.error != 0)
 {

4 The Example Program vxidemo

8 Document Revision: 1.1

 printf(“VXI error”);
 return ERROR;
 }

Remarks:

• The generated XDR functions can and should be used without change.

• Following changes must/may be made in the generated header files:

• change the included file<rpc/types.h> to <rpc/rpctypes.h>
and

• delete thexxx_1 function prototypes.

• Error messages in the above examples should be more informative.

So far we have considered only client code. To write a server under VxWorks is more
difficult.

4 The Example Program vxidemo

Vxidemo is a very simple UNIX command line program for accessing GPIB devices
via the HP E2050A. It accepts exactly one parameter which is the so calleddevice
name resp.interface name. The syntax is:

� * � � � �
vxidemo <interfacename>[,<address>]

where <interfacename> is any name you have programmed into the gateway, by
default ‘hpib’. If the optional ‘,<address>’ is omitted you are directly connected with
the interface. This enables you to send commands like, for example, IFC (InterFace
Clear) and even to control single lines (like ATN or REM).

If you supply the ‘,<address>’ (no whitespace between the arguments) then you are
connected with the device on the bus that has the GPIB address <address>. Every
command you are sending now goes to the specified device.

After startup the program shows you a few lines like this:

create_link result = 0 (no error)
device link = 537382552
abort port = 897
max receive size = 32768

This tells you if a link to the interface or device was successfully created or not. (The
other three values are returned by the create_link RPC and not very interesting).

/ � � � / � � 	
Thereafter (and every time a command is executed) you see the following ‘menu’:

 s send string
 a send string and receive answer
 r receive only
 c do special command
 v clear device
 b read status byte
 t trigger device
 le go to local
 ld local lockout
 dl device lock
 du device unlock
 qe enable srq’s
 qd disable srq’s
 pe serial poll enable
 pd serial poll disable
 x exit

4 The Example Program vxidemo

BESSY 9

Some of these commands need arguments. You are prompted for them after you have
typed in the command. When you have given the arguments, the command is executed
and you get a message like

� ��
0������
+�
device_local result = 8 (operation not supported)

or

device_docmd result = 0 (no error)

which tells you

1. which RPC has been called and

2. the error status of the command.

If the command was a query for some information from the device or interface, the
result is shown in the next line.

� ���1���2�+

It should be noted that vxidemo only uses the core channel (and not the abort and intr
channel) of the VXI-11 protocol.

Again, without knowledge of the VXI papers some things about this program may
seem very mysterious.

4 The Example Program vxidemo

10 Document Revision: 1.1

	VXI-11 and HP E2050A A Programmer’s Guide
	1 Introduction
	1.1 Scope
	Literature

	1.2 The VXI-11 Standard
	1.3 The HP E2050A LAN-GPIB Gateway

	2 Some Remarks on VXI-11
	2.1 General Observations
	2.2 Channels
	2.3 Core Channel
	Links
	Locks

	2.4 Abort and Intr Channel
	SRQ Handling

	3 Using the Generated Protocol
	3.1 General
	Example RPCL -> C
	Client Code
	Server Code

	3.2 Under UNIX
	Include Files
	Open RPC Connection
	Create Device Link
	Example: send string
	Destroy Device Link
	Close RPC Connection

	3.3 Under VxWorks
	Include Files
	RPC Task Init
	Example: Create a Link

	4 The Example Program vxidemo
	Syntax
	Main Menu
	Response
	Remarks

