GNAT Reference Manual

GNAT, The GNU Ada 95 Compiler
GCC version 4.0.1

Ada Core Technologies, Inc.

Copyright (©) 1995-2004, Free Software Foundation

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.2 or any later version published by
the Free Software Foundation; with the Invariant Sections being “GNU Free Documenta-
tion License”, with the Front-Cover Texts being “GNAT Reference Manual”, and with no
Back-Cover Texts. A copy of the license is included in the section entitled “GNU Free
Documentation License”.

About This Guide

This manual contains useful information in writing programs using the GNAT compiler. It
includes information on implementation dependent characteristics of GNAT, including all
the information required by Annex M of the standard.

Ada 95 is designed to be highly portable. In general, a program will have the same effect
even when compiled by different compilers on different platforms. However, since Ada 95
is designed to be used in a wide variety of applications, it also contains a number of system
dependent features to be used in interfacing to the external world.

Note: Any program that makes use of implementation-dependent features may be non-
portable. You should follow good programming practice and isolate and clearly document
any sections of your program that make use of these features in a non-portable manner.

What This Reference Manual Contains

This reference manual contains the following chapters:

e Chapter 1 [Implementation Defined Pragmas|, page 3, lists GNAT implementation-
dependent pragmas, which can be used to extend and enhance the functionality of the
compiler.

e Chapter 2 [Implementation Defined Attributes|, page 47, lists GNAT implementation-
dependent attributes which can be used to extend and enhance the functionality of the
compiler.

e Chapter 3 [Implementation Advice], page 57, provides information on generally desir-
able behavior which are not requirements that all compilers must follow since it cannot
be provided on all systems, or which may be undesirable on some systems.

e Chapter 4 [Implementation Defined Characteristics], page 83, provides a guide to min-
imizing implementation dependent features.

e Chapter 5 [Intrinsic Subprograms], page 109, describes the intrinsic subprograms im-
plemented by GNAT, and how they can be imported into user application programs.

e Chapter 6 [Representation Clauses and Pragmas], page 113, describes in detail the way
that GNAT represents data, and in particular the exact set of representation clauses
and pragmas that is accepted.

e Chapter 7 [Standard Library Routines|, page 137, provides a listing of packages and a
brief description of the functionality that is provided by Ada’s extensive set of standard
library routines as implemented by GNAT.

e Chapter 8 [The Implementation of Standard I/0], page 147, details how the GNAT
implementation of the input-output facilities.

e Chapter 9 [The GNAT Library], page 163, is a catalog of packages that complement
the Ada predefined library.

e Chapter 10 [Interfacing to Other Languages|, page 175, describes how programs written
in Ada using GNAT can be interfaced to other programming languages.

Chapter 11 [Specialized Needs Annexes], page 177, describes the GNAT implementation
of all of the specialized needs annexes.

2 GNAT Reference Manual

e Chapter 12 [Implementation of Specific Ada Features|, page 179, discusses issues re-
lated to GNAT’s implementation of machine code insertions, tasking, and several other
features.

e Chapter 13 [Project File Reference], page 187, presents the syntax and semantics of
project files.

e Chapter 14 [Obsolescent Features|, page 201 documents implementation dependent
features, including pragmas and attributes, which are considered obsolescent, since
there are other preferred ways of achieving the same results. These obsolescent forms
are retained for backwards compatibilty.

This reference manual assumes that you are familiar with Ada 95 language, as described in
the International Standard ANSI/ISO/IEC-8652:1995, Jan 1995.

Conventions

Following are examples of the typographical and graphic conventions used in this guide:
e Functions, utility program names, standard names, and classes.
e Option flags
e ‘File Names’, ‘button names’, and ‘field names’.
e Variables.
e Emphasis.

[optional information or parameters]
e Examples are described by text

and then shown this way.

Commands that are entered by the user are preceded in this manual by the characters ‘$
" (dollar sign followed by space). If your system uses this sequence as a prompt, then the
commands will appear exactly as you see them in the manual. If your system uses some
other prompt, then the command will appear with the ‘¢’ replaced by whatever prompt
character you are using.

Related Information

See the following documents for further information on GNAT:

e GNAT User’s Guide, which provides information on how to use the GNAT compiler
system.

e Ada 95 Reference Manual, which contains all reference material for the Ada 95 pro-
gramming language.

e Ada 95 Annotated Reference Manual, which is an annotated version of the standard
reference manual cited above. The annotations describe detailed aspects of the design
decision, and in particular contain useful sections on Ada 83 compatibility.

e DEC Ada, Technical Overview and Comparison on DIGITAL Platforms, which contains
specific information on compatibility between GNAT and DEC Ada 83 systems.

e DEC Ada, Language Reference Manual, part number AA-PYZAB-TK which describes
in detail the pragmas and attributes provided by the DEC Ada 83 compiler system.

Chapter 1: Implementation Defined Pragmas 3

1 Implementation Defined Pragmas

Ada 95 defines a set of pragmas that can be used to supply additional information to the
compiler. These language defined pragmas are implemented in GNAT and work as described
in the Ada 95 Reference Manual.

In addition, Ada 95 allows implementations to define additional pragmas whose meaning
is defined by the implementation. GNAT provides a number of these implementation-
dependent pragmas which can be used to extend and enhance the functionality of the
compiler. This section of the GNAT Reference Manual describes these additional pragmas.

Note that any program using these pragmas may not be portable to other compilers
(although GNAT implements this set of pragmas on all platforms). Therefore if portabil-
ity to other compilers is an important consideration, the use of these pragmas should be
minimized.

Pragma Abort_Defer

Syntax:
pragma Abort_Defer;

This pragma must appear at the start of the statement sequence of a handled sequence of
statements (right after the begin). It has the effect of deferring aborts for the sequence of
statements (but not for the declarations or handlers, if any, associated with this statement
sequence).

Pragma Ada_83

Syntax:
pragma Ada_83;

A configuration pragma that establishes Ada 83 mode for the unit to which it applies, re-
gardless of the mode set by the command line switches. In Ada 83 mode, GNAT attempts
to be as compatible with the syntax and semantics of Ada 83, as defined in the original
Ada 83 Reference Manual as possible. In particular, the new Ada 95 keywords are not
recognized, optional package bodies are allowed, and generics may name types with un-
known discriminants without using the (<>) notation. In addition, some but not all of the
additional restrictions of Ada 83 are enforced.

Ada 83 mode is intended for two purposes. Firstly, it allows existing legacy Ada 83
code to be compiled and adapted to GNAT with less effort. Secondly, it aids in keeping
code backwards compatible with Ada 83. However, there is no guarantee that code that is
processed correctly by GNAT in Ada 83 mode will in fact compile and execute with an Ada
83 compiler, since GNAT does not enforce all the additional checks required by Ada 83.

Pragma Ada_95

Syntax:

pragma Ada_95;
A configuration pragma that establishes Ada 95 mode for the unit to which it applies,
regardless of the mode set by the command line switches. This mode is set automatically
for the Ada and System packages and their children, so you need not specify it in these

4 GNAT Reference Manual

contexts. This pragma is useful when writing a reusable component that itself uses Ada 95
features, but which is intended to be usable from either Ada 83 or Ada 95 programs.

Pragma Annotate

Syntax:
pragma Annotate (IDENTIFIER {, ARG});

ARG ::= NAME | EXPRESSION

This pragma is used to annotate programs. identifier identifies the type of annotation.
GNAT verifies this is an identifier, but does not otherwise analyze it. The arg argument
can be either a string literal or an expression. String literals are assumed to be of type
Standard.String. Names of entities are simply analyzed as entity names. All other ex-
pressions are analyzed as expressions, and must be unambiguous.

The analyzed pragma is retained in the tree, but not otherwise processed by any part of
the GNAT compiler. This pragma is intended for use by external tools, including ASIS.

Pragma Assert

Syntax:
pragma Assert (
boolean_EXPRESSION
[, static_string EXPRESSION]);
The effect of this pragma depends on whether the corresponding command line switch is
set to activate assertions. The pragma expands into code equivalent to the following:
if assertions-enabled then
if not boolean_EXPRESSION then
System.Assertions.Raise_Assert_Failure
(string_EXPRESSION) ;
end if;
end if;
The string argument, if given, is the message that will be associated with the exception
occurrence if the exception is raised. If no second argument is given, the default message is
‘file:nnn’, where file is the name of the source file containing the assert, and nnn is the
line number of the assert. A pragma is not a statement, so if a statement sequence contains
nothing but a pragma assert, then a null statement is required in addition, as in:

if J > 3 then
pragma Assert (K > 3, "Bad value for K");
null;
end if;
Note that, as with the if statement to which it is equivalent, the type of the expression is
either Standard.Boolean, or any type derived from this standard type.

If assertions are disabled (switch -gnata not used), then there is no effect (and in
particular, any side effects from the expression are suppressed). More precisely it is not
quite true that the pragma has no effect, since the expression is analyzed, and may cause
types to be frozen if they are mentioned here for the first time.

If assertions are enabled, then the given expression is tested, and if it is False then
System.Assertions.Raise_Assert_Failure is called which results in the raising of
Assert_Failure with the given message.

Chapter 1: Implementation Defined Pragmas 5

If the boolean expression has side effects, these side effects will turn on and off with the
setting of the assertions mode, resulting in assertions that have an effect on the program.
You should generally avoid side effects in the expression arguments of this pragma. However,
the expressions are analyzed for semantic correctness whether or not assertions are enabled,
so turning assertions on and off cannot affect the legality of a program.

Pragma Ast_Entry

Syntax:
pragma AST_Entry (entry_IDENTIFIER);

This pragma is implemented only in the OpenVMS implementation of GNAT. The argu-
ment is the simple name of a single entry; at most one AST_Entry pragma is allowed for any
given entry. This pragma must be used in conjunction with the AST_Entry attribute, and
is only allowed after the entry declaration and in the same task type specification or single
task as the entry to which it applies. This pragma specifies that the given entry may be
used to handle an OpenVMS asynchronous system trap (AST) resulting from an OpenVMS
system service call. The pragma does not affect normal use of the entry. For further details
on this pragma, see the DEC Ada Language Reference Manual, section 9.12a.

Pragma C_Pass_By_Copy

Syntax:
pragma C_Pass_By_Copy
([Max_Size =>] static_integer_ EXPRESSION);
Normally the default mechanism for passing C convention records to C convention subpro-
grams is to pass them by reference, as suggested by RM B.3(69). Use the configuration
pragma C_Pass_By_Copy to change this default, by requiring that record formal parameters
be passed by copy if all of the following conditions are met:

e The size of the record type does not exceed
static_integer_expression.
e The record type has Convention C.

e The formal parameter has this record type, and the subprogram has a foreign (non-Ada)
convention.

If these conditions are met the argument is passed by copy, i.e. in a manner consistent with
what C expects if the corresponding formal in the C prototype is a struct (rather than a
pointer to a struct).

You can also pass records by copy by specifying the convention C_Pass_By_Copy for the
record type, or by using the extended Import and Export pragmas, which allow specification
of passing mechanisms on a parameter by parameter basis.

Pragma Comment

Syntax:

pragma Comment (static_string EXPRESSION);
This is almost identical in effect to pragma Ident. It allows the placement of a comment
into the object file and hence into the executable file if the operating system permits such
usage. The difference is that Comment, unlike Ident, has no limitations on placement of the

6 GNAT Reference Manual

pragma (it can be placed anywhere in the main source unit), and if more than one pragma
is used, all comments are retained.

Pragma Common_Object

Syntax:

pragma Common_Object (
[Internal =>] LOCAL_NAME,
[, [External =>] EXTERNAL_SYMBOL]
[, [Size =>] EXTERNAL_SYMBOL]);

EXTERNAL_SYMBOL ::=
IDENTIFIER
| static_string_ EXPRESSION
This pragma enables the shared use of variables stored in overlaid linker areas corresponding
to the use of COMMON in Fortran. The single object local_name is assigned to the area
designated by the External argument. You may define a record to correspond to a series of
fields. The size argument is syntax checked in GNAT, but otherwise ignored.

Common_0bject is not supported on all platforms. If no support is available, then the
code generator will issue a message indicating that the necessary attribute for implementa-
tion of this pragma is not available.

Pragma Compile_Time_Warning

Syntax:
pragma Compile_Time_Warning
(boolean_EXPRESSION, static_string EXPRESSION) ;

This pragma can be used to generate additional compile time warnings. It is particularly
useful in generics, where warnings can be issued for specific problematic instantiations. The
first parameter is a boolean expression. The pragma is effective only if the value of this
expression is known at compile time, and has the value True. The set of expressions whose
values are known at compile time includes all static boolean expressions, and also other
values which the compiler can determine at compile time (e.g. the size of a record type set
by an explicit size representation clause, or the value of a variable which was initialized to
a constant and is known not to have been modified). If these conditions are met, a warning
message is generated using the value given as the second argument. This string value may
contain embedded ASCIL.LF characters to break the message into multiple lines.

Pragma Complex_Representation

Syntax:
pragma Complex_Representation
([Entity =>] LOCAL_NAME);

The Entity argument must be the name of a record type which has two fields of the same
floating-point type. The effect of this pragma is to force gcc to use the special internal
complex representation form for this record, which may be more efficient. Note that this
may result in the code for this type not conforming to standard ABI (application binary
interface) requirements for the handling of record types. For example, in some environments,
there is a requirement for passing records by pointer, and the use of this pragma may result
in passing this type in floating-point registers.

Chapter 1: Implementation Defined Pragmas 7

Pragma Component_Alignment

Syntax:

pragma Component_Alignment (
[Form =>] ALIGNMENT_CHOICE
[, [Name =>] type_LOCAL_NAME]);

ALIGNMENT_CHOICE ::=
Component_Size
| Component_Size_4
| Storage_Unit
| Default
Specifies the alignment of components in array or record types. The meaning of the Form

argument is as follows:

Component_Size
Aligns scalar components and subcomponents of the array or record type on
boundaries appropriate to their inherent size (naturally aligned). For example,
1-byte components are aligned on byte boundaries, 2-byte integer components
are aligned on 2-byte boundaries, 4-byte integer components are aligned on 4-
byte boundaries and so on. These alignment rules correspond to the normal
rules for C compilers on all machines except the VAX.

Component_Size_4
Naturally aligns components with a size of four or fewer bytes. Components
that are larger than 4 bytes are placed on the next 4-byte boundary.

Storage_Unit
Specifies that array or record components are byte aligned, i.e. aligned on
boundaries determined by the value of the constant System.Storage_Unit.

Default Specifies that array or record components are aligned on default boundaries,
appropriate to the underlying hardware or operating system or both. For Open-
VMS VAX systems, the Default choice is the same as the Storage_Unit choice
(byte alignment). For all other systems, the Default choice is the same as
Component_Size (natural alignment).

If the Name parameter is present, type_local_name must refer to a local record or array type,
and the specified alignment choice applies to the specified type. The use of Component_
Alignment together with a pragma Pack causes the Component_Alignment pragma to be
ignored. The use of Component_Alignment together with a record representation clause is
only effective for fields not specified by the representation clause.

If the Name parameter is absent, the pragma can be used as either a configuration pragma,
in which case it applies to one or more units in accordance with the normal rules for
configuration pragmas, or it can be used within a declarative part, in which case it applies
to types that are declared within this declarative part, or within any nested scope within
this declarative part. In either case it specifies the alignment to be applied to any record
or array type which has otherwise standard representation.

If the alignment for a record or array type is not specified (using pragma Pack, pragma
Component_Alignment, or a record rep clause), the GNAT uses the default alignment as
described previously.

8 GNAT Reference Manual

Pragma Convention_Identifier

Syntax:
pragma Convention_Identifier (

[Name =>] IDENTIFIER,

[Convention =>] convention_IDENTIFIER);
This pragma provides a mechanism for supplying synonyms for existing convention identi-
fiers. The Name identifier can subsequently be used as a synonym for the given convention in
other pragmas (including for example pragma Import or another Convention_Identifier
pragma). As an example of the use of this, suppose you had legacy code which used For-
tran77 as the identifier for Fortran. Then the pragma:

pragma Convention_Identifier (Fortran77, Fortran);

would allow the use of the convention identifier Fortran77 in subsequent code, avoiding
the need to modify the sources. As another example, you could use this to parametrize
convention requirements according to systems. Suppose you needed to use Stdcall on
windows systems, and C on some other system, then you could define a convention identifier
Library and use a single Convention_Identifier pragma to specify which convention
would be used system-wide.

Pragma CPP_Class

Syntax:
pragma CPP_Class ([Entity =>] LOCAL_NAME);

The argument denotes an entity in the current declarative region that is declared as a tagged
or untagged record type. It indicates that the type corresponds to an externally declared
C++ class type, and is to be laid out the same way that C++ would lay out the type.

If (and only if) the type is tagged, at least one component in the record must be of type
Interfaces.CPP.Vtable_Ptr, corresponding to the C++ Vtable (or Vtables in the case of
multiple inheritance) used for dispatching.

Types for which CPP_Class is specified do not have assignment or equality operators
defined (such operations can be imported or declared as subprograms as required). Initial-
ization is allowed only by constructor functions (see pragma CPP_Constructor).

Pragma CPP_Class is intended primarily for automatic generation using an automatic
binding generator tool. See Section 10.2 [Interfacing to C++|, page 176 for related informa-
tion.

Pragma CPP _Constructor
Syntax:
pragma CPP_Constructor ([Entity =>] LOCAL_NAME);

This pragma identifies an imported function (imported in the usual way with pragma
Import) as corresponding to a C++ constructor. The argument is a name that must have
been previously mentioned in a pragma Import with Convention = CPP, and must be of
one of the following forms:

o function Fname return T’Class

e function Fname (...) return T’Class

Chapter 1: Implementation Defined Pragmas 9

where T is a tagged type to which the pragma CPP_Class applies.

The first form is the default constructor, used when an object of type T is created on the
Ada side with no explicit constructor. Other constructors (including the copy constructor,
which is simply a special case of the second form in which the one and only argument is of
type T), can only appear in two contexts:

e On the right side of an initialization of an object of type T.

e In an extension aggregate for an object of a type derived from T.

Although the constructor is described as a function that returns a value on the Ada side,
it is typically a procedure with an extra implicit argument (the object being initialized)
at the implementation level. GNAT issues the appropriate call, whatever it is, to get the
object properly initialized.

In the case of derived objects, you may use one of two possible forms for declaring and
creating an object:

e New_0Object : Derived_T

e New_Object : Derived_T := (constructor-call with ...)

In the first case the default constructor is called and extension fields if any are initialized
according to the default initialization expressions in the Ada declaration. In the second case,
the given constructor is called and the extension aggregate indicates the explicit values of
the extension fields.

If no constructors are imported, it is impossible to create any objects on the Ada side.
If no default constructor is imported, only the initialization forms using an explicit call to
a constructor are permitted.

Pragma CPP_Constructor is intended primarily for automatic generation using an au-
tomatic binding generator tool. See Section 10.2 [Interfacing to C++|, page 176 for more
related information.

Pragma CPP_Virtual

Syntax:

pragma CPP_Virtual
[Entity =>] ENTITY,

[, [Vtable_Ptr =>] vtable_ENTITY,]

[, [Position =>] static_integer_EXPRESSION]);
This pragma serves the same function as pragma Import in that case of a virtual function
imported from C++. The Entity argument must be a primitive subprogram of a tagged type
to which pragma CPP_Class applies. The Vtable_Ptr argument specifies the Vtable_Ptr
component which contains the entry for this virtual function. The Position argument is the
sequential number counting virtual functions for this Vtable starting at 1.

The Vtable_Ptr and Position arguments may be omitted if there is one Vtable_Ptr
present (single inheritance case) and all virtual functions are imported. In that case the
compiler can deduce both these values.

No External_Name or Link_Name arguments are required for a virtual function, since it
is always accessed indirectly via the appropriate Vtable entry.

10 GNAT Reference Manual

Pragma CPP_Virtual is intended primarily for automatic generation using an automatic
binding generator tool. See Section 10.2 [Interfacing to C++|, page 176 for related informa-
tion.

Pragma CPP_Vtable
Syntax:

pragma CPP_Vtable (
[Entity =>] ENTITY,
[Vtable_Ptr =>] vtable_ENTITY,
[Entry_Count =>] static_integer_ EXPRESSION);

Given a record to which the pragma CPP_Class applies, this pragma can be specified for each
component of type CPP.Interfaces.Vtable_Ptr. Entity is the tagged type, Vtable_Ptr is
the record field of type Vtable_Ptr, and Entry_Count is the number of virtual functions
on the C++ side. Not all of these functions need to be imported on the Ada side.

You may omit the CPP_Vtable pragma if there is only one Vtable_Ptr component in
the record and all virtual functions are imported on the Ada side (the default value for the
entry count in this case is simply the total number of virtual functions).

Pragma CPP_Vtable is intended primarily for automatic generation using an automatic
binding generator tool. See Section 10.2 [Interfacing to C++], page 176 for related informa-
tion.

Pragma Debug
Syntax:

pragma Debug (PROCEDURE_CALL_WITHOUT_SEMICOLON) ;

PROCEDURE_CALL_WITHOUT_SEMICOLON ::=
PROCEDURE_NAME
| PROCEDURE_PREFIX ACTUAL_PARAMETER_PART

The argument has the syntactic form of an expression, meeting the syntactic requirements
for pragmas.

If assertions are not enabled on the command line, this pragma has no effect. If asserts
are enabled, the semantics of the pragma is exactly equivalent to the procedure call state-
ment corresponding to the argument with a terminating semicolon. Pragmas are permitted
in sequences of declarations, so you can use pragma Debug to intersperse calls to debug
procedures in the middle of declarations.

Pragma Detect_Blocking
Syntax:

pragma Detect_Blocking;

This is a configuration pragma that forces the detection of potentially blocking operations
within a protected operation, and to raise Program_Error if that happens.

Chapter 1: Implementation Defined Pragmas 11

Pragma Elaboration_Checks

Syntax:
pragma Elaboration_Checks (Dynamic | Static);

This is a configuration pragma that provides control over the elaboration model used by
the compilation affected by the pragma. If the parameter is Dynamic, then the dynamic
elaboration model described in the Ada Reference Manual is used, as though the -gnatE
switch had been specified on the command line. If the parameter is Static, then the
default GNAT static model is used. This configuration pragma overrides the setting of the
command line. For full details on the elaboration models used by the GNAT compiler, see
section “Elaboration Order Handling in GNAT” in the GNAT User’s Guide.

Pragma Eliminate

Syntax:

pragma Eliminate (
[Unit_Name =>] IDENTIFIER |
SELECTED_COMPONENT) ;

pragma Eliminate (

[Unit_Name =>] IDENTIFIER |
SELECTED_COMPONENT,
[Entity =>] IDENTIFIER |

SELECTED_COMPONENT |
STRING_LITERAL
[,OVERLOADING_RESOLUTION]) ;

OVERLOADING_RESOLUTION ::= PARAMETER_AND_RESULT_TYPE_PROFILE |
SOURCE_LOCATION

PARAMETER_AND_RESULT_TYPE_PROFILE ::= PROCEDURE_PROFILE |
FUNCTION_PROFILE

PROCEDURE_PROFILE ::= Parameter_Types => PARAMETER_TYPES

FUNCTION_PROFILE ::= [Parameter_Types => PARAMETER_TYPES,]
Result_Type => result_SUBTYPE_NAME]

PARAMETER_TYPES ::= (SUBTYPE_NAME {, SUBTYPE_NAME})
SUBTYPE_NAME STRING_VALUE

SOURCE_LOCATION ::
SOURCE_TRACE

Source_Location => SOURCE_TRACE
STRING_VALUE

STRING_VALUE ::= STRING_LITERAL {& STRING_LITERAL}

This pragma indicates that the given entity is not used outside the compilation unit it is
defined in. The entity must be an explicitly declared subprogram; this includes generic
subprogram instances and subprograms declared in generic package instances.

If the entity to be eliminated is a library level subprogram, then the first form of pragma
Eliminate is used with only a single argument. In this form, the Unit_Name argument
specifies the name of the library level unit to be eliminated.

In all other cases, both Unit_Name and Entity arguments are required. If item is an
entity of a library package, then the first argument specifies the unit name, and the second

12 GNAT Reference Manual

argument specifies the particular entity. If the second argument is in string form, it must
correspond to the internal manner in which GNAT stores entity names (see compilation
unit Namet in the compiler sources for details).

The remaining parameters (OVERLOADING_RESOLUTION) are optionally used to
distinguish between overloaded subprograms. If a pragma does not contain the OVER-
LOADING_RESOLUTION parameter(s), it is applied to all the overloaded subprograms
denoted by the first two parameters.

Use PARAMETER_AND_RESULT_TYPE_PROFILE to specify the profile of the sub-
program to be eliminated in a manner similar to that used for the extended Import and
Export pragmas, except that the subtype names are always given as strings. At the mo-
ment, this form of distinguishing overloaded subprograms is implemented only partially, so
we do not recommend using it for practical subprogram elimination.

Note, that in case of a parameterless procedure its profile is represented as Parameter_
Types => ("")

Alternatively, the Source_Location parameter is used to specify which
overloaded alternative is to be eliminated by pointing to the location of the DEFIN-
ING_.PROGRAM_UNIT_NAME of this subprogram in the source text. The string literal
(or concatenation of string literals) given as SOURCE_TRACE must have the following
format:

SOURCE_TRACE ::= SOURCE_LOCATION{LBRACKET SOURCE_LOCATION RBRACKET}

LBRACKET ::
RBRACKET ::

[
]

SOURCE_LOCATION : :
FILE_NAME STRING_LITERAL
LINE_NUMBER DIGIT {DIGIT}
SOURCE_TRACE should be the short name of the source file (with no directory infor-
mation), and LINE_NUMBER is supposed to point to the line where the defining name of
the subprogram is located.

FILE_NAME:LINE_NUMBER

For the subprograms that are not a part of generic instantiations, only one
SOURCE_LOCATION is used. If a subprogram is declared in a package instantiation,
SOURCE_TRACE contains two SOURCE_LOCATIONS, the first one is the location of the
(DEFINING_PROGRAM_UNIT_NAME of the) instantiation, and the second one denotes
the declaration of the corresponding subprogram in the generic package. This approach is
recursively used to create SOURCE_LOCATIONS in case of nested instantiations.

The effect of the pragma is to allow the compiler to eliminate the code or data associated
with the named entity. Any reference to an eliminated entity outside the compilation unit
it is defined in, causes a compile time or link time error.

The intention of pragma Eliminate is to allow a program to be compiled in a system
independent manner, with unused entities eliminated, without the requirement of modifying
the source text. Normally the required set of Eliminate pragmas is constructed automati-
cally using the gnatelim tool. Elimination of unused entities local to a compilation unit is
automatic, without requiring the use of pragma Eliminate.

Note that the reason this pragma takes string literals where names might be expected is
that a pragma Eliminate can appear in a context where the relevant names are not visible.

Chapter 1: Implementation Defined Pragmas 13

Note that any change in the source files that includes removing, splitting of adding lines
may make the set of Eliminate pragmas using SOURCE_LOCATION parameter illegal.

Pragma Export_Exception

Syntax:

pragma Export_Exception (
[Internal =>] LOCAL_NAME,
[, [External =>] EXTERNAL_SYMBOL,]
[, [Form =>] Ada | VMS]
[, [Code =>] static_integer_ EXPRESSION]);

EXTERNAL_SYMBOL ::=
IDENTIFIER

| static_string EXPRESSION
This pragma is implemented only in the OpenVMS implementation of GNAT. It causes the
specified exception to be propagated outside of the Ada program, so that it can be handled
by programs written in other OpenVMS languages. This pragma establishes an external
name for an Ada exception and makes the name available to the OpenVMS Linker as a
global symbol. For further details on this pragma, see the DEC Ada Language Reference
Manual, section 13.9a3.2.

Pragma Export_Function

Syntax:
pragma Export_Function (
[Internal =>] LOCAL_NAME,
[, [External =>] EXTERNAL_SYMBOL]
[, [Parameter_Types =>] PARAMETER_TYPES]
[, [Result_Type =>] result_SUBTYPE_MARK]
[, [Mechanism =>] MECHANISM]
[, [Result_Mechanism =>] MECHANISM_NAME]);

EXTERNAL_SYMBOL ::=
IDENTIFIER
| static_string EXPRESSION

PARAMETER_TYPES ::
null
| TYPE_DESIGNATOR {, TYPE_DESIGNATOR}

TYPE_DESIGNATOR ::
subtype_NAME
| subtype_Name ’ Access

MECHANISM ::=
MECHANISM_NAME
| (MECHANISM_ASSOCIATION {, MECHANISM_ASSOCIATION})

MECHANISM_ASSOCIATION ::=
[formal_parameter_NAME =>] MECHANISM_NAME

MECHANISM_NAME ::=
Value

14 GNAT Reference Manual

| Reference

Use this pragma to make a function externally callable and optionally provide information
on mechanisms to be used for passing parameter and result values. We recommend, for the
purposes of improving portability, this pragma always be used in conjunction with a separate
pragma Export, which must precede the pragma Export_Function. GNAT does not require
a separate pragma Export, but if none is present, Convention Ada is assumed, which is
usually not what is wanted, so it is usually appropriate to use this pragma in conjunction
with a Export or Convention pragma that specifies the desired foreign convention. Pragma
Export_Function (and Export, if present) must appear in the same declarative region as
the function to which they apply.

internal_name must uniquely designate the function to which the pragma applies. If
more than one function name exists of this name in the declarative part you must use
the Parameter_Types and Result_Type parameters is mandatory to achieve the required
unique designation. subtype_ marks in these parameters must exactly match the subtypes in
the corresponding function specification, using positional notation to match parameters with
subtype marks. The form with an ’Access attribute can be used to match an anonymous
access parameter.

Note that passing by descriptor is not supported, even on the OpenVMS ports of GNAT.

Special treatment is given if the EXTERNAL is an explicit null string or a static string
expressions that evaluates to the null string. In this case, no external name is generated.
This form still allows the specification of parameter mechanisms.

Pragma Export_Object

Syntax:

pragma Export_0Object
[Internal =>] LOCAL_NAME,
[, [External =>] EXTERNAL_SYMBOL]
[, [Size =>] EXTERNAL_SYMBOL]

EXTERNAL_SYMBOL : :=
IDENTIFIER

| static_string EXPRESSION
This pragma designates an object as exported, and apart from the extended rules for ex-
ternal symbols, is identical in effect to the use of the normal Export pragma applied to an
object. You may use a separate Export pragma (and you probably should from the point
of view of portability), but it is not required. Size is syntax checked, but otherwise ignored
by GNAT.

Pragma Export_Procedure

Syntax:
pragma Export_Procedure (
[Internal =>] LOCAL_NAME
[, [External =>] EXTERNAL_SYMBOL]
[, [Parameter_Types =>] PARAMETER_TYPES]
[, [Mechanism =>] MECHANISMI]);

EXTERNAL_SYMBOL ::=

Chapter 1: Implementation Defined Pragmas 15

IDENTIFIER
| static_string EXPRESSION

PARAMETER_TYPES ::
null
| TYPE_DESIGNATOR {, TYPE_DESIGNATOR}

TYPE_DESIGNATOR ::
subtype_NAME
| subtype_Name ’ Access

MECHANISM ::=
MECHANISM_NAME
| (MECHANISM_ASSOCIATION {, MECHANISM_ASSOCIATION})

MECHANISM_ASSOCIATION ::=
[formal_parameter_ NAME =>] MECHANISM_NAME

MECHANISM_NAME ::=
Value

| Reference
This pragma is identical to Export_Function except that it applies to a procedure rather
than a function and the parameters Result_Type and Result_Mechanism are not permitted.
GNAT does not require a separate pragma Export, but if none is present, Convention Ada
is assumed, which is usually not what is wanted, so it is usually appropriate to use this
pragma in conjunction with a Export or Convention pragma that specifies the desired
foreign convention.

Note that passing by descriptor is not supported, even on the OpenVMS ports of GNAT.

Special treatment is given if the EXTERNAL is an explicit null string or a static string
expressions that evaluates to the null string. In this case, no external name is generated.
This form still allows the specification of parameter mechanisms.

Pragma Export_Value

Syntax:
pragma Export_Value (

[Value =>] static_integer_ EXPRESSION,

[Link_Name =>] static_string_EXPRESSION);
This pragma serves to export a static integer value for external use. The first argument
specifies the value to be exported. The Link_Name argument specifies the symbolic name to
be associated with the integer value. This pragma is useful for defining a named static value
in Ada that can be referenced in assembly language units to be linked with the application.
This pragma is currently supported only for the AAMP target and is ignored for other
targets.

Pragma Export_Valued_Procedure

Syntax:

pragma Export_Valued_Procedure (
[Internal =>] LOCAL_NAME
[, [External =>] EXTERNAL_SYMBOL]

16 GNAT Reference Manual

[, [Parameter_Types =>] PARAMETER_TYPES]
[, [Mechanism =>] MECHANISM]);

EXTERNAL_SYMBOL ::=
IDENTIFIER
| static_string_EXPRESSION

PARAMETER_TYPES ::
null
| TYPE_DESIGNATOR {, TYPE_DESIGNATOR}

TYPE_DESIGNATOR ::
subtype_NAME
| subtype_Name ’ Access

MECHANISM ::=
MECHANISM_NAME
| (MECHANISM_ASSOCIATION {, MECHANISM_ASSOCIATION})

MECHANISM_ASSOCIATION ::=
[formal_parameter_NAME =>] MECHANISM_NAME

MECHANISM_NAME ::=
Value

| Reference
This pragma is identical to Export_Procedure except that the first parameter of
local_name, which must be present, must be of mode 0OUT, and externally the subprogram
is treated as a function with this parameter as the result of the function. GNAT provides
for this capability to allow the use of OUT and IN OUT parameters in interfacing to external
functions (which are not permitted in Ada functions). GNAT does not require a separate
pragma Export, but if none is present, Convention Ada is assumed, which is almost
certainly not what is wanted since the whole point of this pragma is to interface with
foreign language functions, so it is usually appropriate to use this pragma in conjunction
with a Export or Convention pragma that specifies the desired foreign convention.

Note that passing by descriptor is not supported, even on the OpenVMS ports of GNAT.
Special treatment is given if the EXTERNAL is an explicit null string or a static string

expressions that evaluates to the null string. In this case, no external name is generated.
This form still allows the specification of parameter mechanisms.

Pragma Extend_System

Syntax:
pragma Extend_System ([Name =>] IDENTIFIER);

This pragma is used to provide backwards compatibility with other implementations that
extend the facilities of package System. In GNAT, System contains only the definitions that
are present in the Ada 95 RM. However, other implementations, notably the DEC Ada 83
implementation, provide many extensions to package System.

For each such implementation accommodated by this pragma, GNAT provides a package
Aux_xxx, e.g. Aux_DEC for the DEC Ada 83 implementation, which provides the required
additional definitions. You can use this package in two ways. You can with it in the normal

Chapter 1: Implementation Defined Pragmas 17

way and access entities either by selection or using a use clause. In this case no special
processing is required.

However, if existing code contains references such as System.xxx where xxx is an entity
in the extended definitions provided in package System, you may use this pragma to extend
visibility in System in a non-standard way that provides greater compatibility with the
existing code. Pragma Extend_System is a configuration pragma whose single argument
is the name of the package containing the extended definition (e.g. Aux_DEC for the DEC
Ada case). A unit compiled under control of this pragma will be processed using special
visibility processing that looks in package System.Aux_xxx where Aux_xxx is the pragma
argument for any entity referenced in package System, but not found in package System.

You can use this pragma either to access a predefined System extension supplied with
the compiler, for example Aux_DEC or you can construct your own extension unit following
the above definition. Note that such a package is a child of System and thus is considered
part of the implementation. To compile it you will have to use the appropriate switch for
compiling system units. See the GNAT User’s Guide for details.

Pragma External

Syntax:
pragma External (
[Convention =>] convention_IDENTIFIER,
[Entity =>] local_NAME
[, [External_Name =>] static_string_ EXPRESSION]
[, [Link_Name =>] static_string_ EXPRESSION]);

This pragma is identical in syntax and semantics to pragma Export as defined in the
Ada Reference Manual. It is provided for compatibility with some Ada 83 compilers that
used this pragma for exactly the same purposes as pragma Export before the latter was
standardized.

Pragma External_Name_Casing

Syntax:
pragma External_Name_Casing (
Uppercase | Lowercase
[, Uppercase | Lowercase | As_Is]);
This pragma provides control over the casing of external names associated with Import and
Export pragmas. There are two cases to consider:

Implicit external names
Implicit external names are derived from identifiers. The most common case
arises when a standard Ada 95 Import or Export pragma is used with only two
arguments, as in:
pragma Import (C, C_Routine);

Since Ada is a case insensitive language, the spelling of the identifier in the Ada
source program does not provide any information on the desired casing of the
external name, and so a convention is needed. In GNAT the default treatment
is that such names are converted to all lower case letters. This corresponds
to the normal C style in many environments. The first argument of pragma

18

GNAT Reference Manual

External_Name_Casing can be used to control this treatment. If Uppercase is
specified, then the name will be forced to all uppercase letters. If Lowercase is
specified, then the normal default of all lower case letters will be used.

This same implicit treatment is also used in the case of extended DEC Ada 83
compatible Import and Export pragmas where an external name is explicitly
specified using an identifier rather than a string.

Explicit external names

Explicit external names are given as string literals. The most common case
arises when a standard Ada 95 Import or Export pragma is used with three
arguments, as in:

pragma Import (C, C_Routine, "C_routine");

In this case, the string literal normally provides the exact casing required for
the external name. The second argument of pragma External_Name_Casing
may be used to modify this behavior. If Uppercase is specified, then the name
will be forced to all uppercase letters. If Lowercase is specified, then the name
will be forced to all lowercase letters. A specification of As_Is provides the
normal default behavior in which the casing is taken from the string provided.

This pragma may appear anywhere that a pragma is valid. In particular, it can be used
as a configuration pragma in the ‘gnat.adc’ file, in which case it applies to all subsequent
compilations, or it can be used as a program unit pragma, in which case it only applies
to the current unit, or it can be used more locally to control individual Import/Export

pragmas.

It is primarily intended for use with OpenVMS systems, where many compilers convert
all symbols to upper case by default. For interfacing to such compilers (e.g. the DEC C
compiler), it may be convenient to use the pragma:

pragma External_Name_Casing (Uppercase, Uppercase);

to enforce the upper casing of all external symbols.

Pragma Finalize_Storage_Only

Syntax:

pragma Finalize_Storage_Only (first_subtype_LOCAL_NAME) ;

This pragma allows the compiler not to emit a Finalize call for objects defined at the library
level. This is mostly useful for types where finalization is only used to deal with storage
reclamation since in most environments it is not necessary to reclaim memory just before
terminating execution, hence the name.

Pragma Float_Representation

Syntax:

pragma Float_Representation (FLOAT_REP);

FLOAT_REP ::= VAX_Float | IEEE_Float

This pragma allows control over the internal representation chosen for the predefined floating
point types declared in the packages Standard and System. On all systems other than
OpenVMS, the argument must be IEEE_Float and the pragma has no effect. On OpenVMS,

Chapter 1: Implementation Defined Pragmas 19

the argument may be VAX_Float to specify the use of the VAX float format for the floating-
point types in Standard. This requires that the standard runtime libraries be recompiled.
See the description of the GNAT LIBRARY command in the OpenVMS version of the GNAT
Users Guide for details on the use of this command.

Pragma Ident

Syntax:
pragma Ident (static_string EXPRESSION);

This pragma provides a string identification in the generated object file, if the system
supports the concept of this kind of identification string. This pragma is allowed only in
the outermost declarative part or declarative items of a compilation unit. If more than one
Ident pragma is given, only the last one processed is effective. On OpenVMS systems,
the effect of the pragma is identical to the effect of the DEC Ada 83 pragma of the same
name. Note that in DEC Ada 83, the maximum allowed length is 31 characters, so if it is
important to maintain compatibility with this compiler, you should obey this length limit.

Pragma Import_Exception

Syntax:

pragma Import_Exception (
[Internal =>] LOCAL_NAME,
[, [External =>] EXTERNAL_SYMBOL,]
[, [Form =>] Ada | VMS]
[, [Code =>] static_integer_EXPRESSION]);

EXTERNAL_SYMBOL ::=
IDENTIFIER

| static_string EXPRESSION
This pragma is implemented only in the OpenVMS implementation of GNAT. It allows
OpenVMS conditions (for example, from OpenVMS system services or other OpenVMS lan-
guages) to be propagated to Ada programs as Ada exceptions. The pragma specifies that
the exception associated with an exception declaration in an Ada program be defined ex-
ternally (in non-Ada code). For further details on this pragma, see the DEC Ada Language
Reference Manual, section 13.9a.3.1.

Pragma Import_Function

Syntax:
pragma Import_Function (
[Internal =>] LOCAL_NAME,

[, [External =>] EXTERNAL_SYMBOL]
[, [Parameter_Types =>] PARAMETER_TYPES]
[, [Result_Type =>] SUBTYPE_MARK]

[, [Mechanism =>] MECHANISM]

[, [Result_Mechanism =>] MECHANISM_NAME]
[, [First_Optional_Parameter =>] IDENTIFIER]);

EXTERNAL_SYMBOL ::=
IDENTIFIER
| static_string_ EXPRESSION

20 GNAT Reference Manual

PARAMETER_TYPES ::
null
| TYPE_DESIGNATOR {, TYPE_DESIGNATOR}

TYPE_DESIGNATOR ::
subtype_NAME
| subtype_Name ’ Access

MECHANISM ::=
MECHANISM_NAME
| (MECHANISM_ASSOCIATION {, MECHANISM_ASSOCIATION})

MECHANISM_ASSOCIATION ::=
[formal_parameter_NAME =>] MECHANISM_NAME

MECHANISM_NAME ::=
Value
| Reference
| Descriptor [([Class =>] CLASS_NAME)]

CLASS_NAME ::= ubs | ubsb | uba | s | sb | a | nca

This pragma is used in conjunction with a pragma Import to specify additional information
for an imported function. The pragma Import (or equivalent pragma Interface) must
precede the Import_Function pragma and both must appear in the same declarative part
as the function specification.

The Internal argument must uniquely designate the function to which the pragma ap-
plies. If more than one function name exists of this name in the declarative part you must
use the Parameter_Types and Result_Type parameters to achieve the required unique des-
ignation. Subtype marks in these parameters must exactly match the subtypes in the
corresponding function specification, using positional notation to match parameters with
subtype marks. The form with an ’Access attribute can be used to match an anonymous
access parameter.

You may optionally use the Mechanism and Result_Mechanism parameters to specify
passing mechanisms for the parameters and result. If you specify a single mechanism name,
it applies to all parameters. Otherwise you may specify a mechanism on a parameter by
parameter basis using either positional or named notation. If the mechanism is not specified,
the default mechanism is used.

Passing by descriptor is supported only on the OpenVMS ports of GNAT.

First_Optional_Parameter applies only to OpenVMS ports of GNAT. It specifies that
the designated parameter and all following parameters are optional, meaning that they are
not passed at the generated code level (this is distinct from the notion of optional parameters
in Ada where the parameters are passed anyway with the designated optional parameters).
All optional parameters must be of mode IN and have default parameter values that are
either known at compile time expressions, or uses of the >Null_Parameter attribute.

Pragma Import_Object

Syntax:

pragma Import_Object
[Internal =>] LOCAL_NAME,
[, [External =>] EXTERNAL_SYMBOL],

Chapter 1: Implementation Defined Pragmas 21

[, [Size =>] EXTERNAL_SYMBOL]) ;

EXTERNAL_SYMBOL ::=
IDENTIFIER

| static_string EXPRESSION
This pragma designates an object as imported, and apart from the extended rules for
external symbols, is identical in effect to the use of the normal Import pragma applied
to an object. Unlike the subprogram case, you need not use a separate Import pragma,
although you may do so (and probably should do so from a portability point of view). size
is syntax checked, but otherwise ignored by GNAT.

Pragma Import_Procedure

Syntax:
pragma Import_Procedure (
[Internal =>] LOCAL_NAME,
[, [External =>] EXTERNAL_SYMBOL]
[, [Parameter_Types =>] PARAMETER_TYPES]
[, [Mechanism =>] MECHANISM]
[, [First_Optional_Parameter =>] IDENTIFIER]);

EXTERNAL_SYMBOL ::=
IDENTIFIER
| static_string EXPRESSION

PARAMETER_TYPES ::
null
| TYPE_DESIGNATOR {, TYPE_DESIGNATOR}

TYPE_DESIGNATOR ::
subtype_NAME
| subtype_Name ’ Access

MECHANISM ::=
MECHANISM_NAME
| (MECHANISM_ASSOCIATION {, MECHANISM_ASSOCIATION})

MECHANISM_ASSOCIATION ::=
[formal_parameter_NAME =>] MECHANISM_NAME

MECHANISM_NAME ::=
Value
| Reference
| Descriptor [([Class =>] CLASS_NAME)]

CLASS_NAME ::= ubs | ubsb | uba | s | sb | a | nca

This pragma is identical to Import_Function except that it applies to a procedure rather
than a function and the parameters Result_Type and Result_Mechanism are not permitted.

Pragma Import_Valued_Procedure

Syntax:

pragma Import_Valued_Procedure (
[Internal =>] LOCAL_NAME,
[, [External =>] EXTERNAL_SYMBOL]

22 GNAT Reference Manual

[, [Parameter_Types =>] PARAMETER_TYPES]
[, [Mechanism =>] MECHANISM]
[, [First_Optional_Parameter =>] IDENTIFIER]);

EXTERNAL_SYMBOL ::=
IDENTIFIER
| static_string EXPRESSION

PARAMETER_TYPES ::
null
| TYPE_DESIGNATOR {, TYPE_DESIGNATOR}

TYPE_DESIGNATOR ::
subtype_NAME
| subtype_Name ’ Access

MECHANISM ::=
MECHANISM_NAME
| (MECHANISM_ASSOCIATION {, MECHANISM_ASSOCIATION})

MECHANISM_ASSOCIATION ::=
[formal_parameter_NAME =>] MECHANISM_NAME

MECHANISM_NAME ::=
Value
| Reference
| Descriptor [([Class =>] CLASS_NAME)]

CLASS_NAME ::= ubs | ubsb | uba | s | sb | a | nca

This pragma is identical to Import_Procedure except that the first parameter of
local_name, which must be present, must be of mode OUT, and externally the subprogram
is treated as a function with this parameter as the result of the function. The purpose
of this capability is to allow the use of OUT and IN OUT parameters in interfacing to
external functions (which are not permitted in Ada functions). You may optionally use the
Mechanism parameters to specify passing mechanisms for the parameters. If you specify
a single mechanism name, it applies to all parameters. Otherwise you may specify a
mechanism on a parameter by parameter basis using either positional or named notation.
If the mechanism is not specified, the default mechanism is used.

Note that it is important to use this pragma in conjunction with a separate pragma

Import that specifies the desired convention, since otherwise the default convention is Ada,
which is almost certainly not what is required.

Pragma Initialize_Scalars

Syntax:

pragma Initialize_Scalars;

This pragma is similar to Normalize_Scalars conceptually but has two important differ-
ences. First, there is no requirement for the pragma to be used uniformly in all units of a
partition, in particular, it is fine to use this just for some or all of the application units of
a partition, without needing to recompile the run-time library.

In the case where some units are compiled with the pragma, and some without, then
a declaration of a variable where the type is defined in package Standard or is locally

Chapter 1: Implementation Defined Pragmas 23

declared will always be subject to initialization, as will any declaration of a scalar variable.
For composite variables, whether the variable is initialized may also depend on whether the
package in which the type of the variable is declared is compiled with the pragma.

The other important difference is that you can control the value used for initializing
scalar objects. At bind time, you can select several options for initialization. You can
initialize with invalid values (similar to Normalize_Scalars, though for Initialize_Scalars it is
not always possible to determine the invalid values in complex cases like signed component
fields with non-standard sizes). You can also initialize with high or low values, or with a
specified bit pattern. See the users guide for binder options for specifying these cases.

This means that you can compile a program, and then without having to recompile the
program, you can run it with different values being used for initializing otherwise uninitial-
ized values, to test if your program behavior depends on the choice. Of course the behavior
should not change, and if it does, then most likely you have an erroneous reference to an
uninitialized value.

It is even possible to change the value at execution time eliminating even the need to
rebind with a different switch using an environment variable. See the GNAT users guide
for details.

Note that pragma Initialize_Scalars is particularly useful in conjunction with the
enhanced validity checking that is now provided in GNAT, which checks for invalid values
under more conditions. Using this feature (see description of the -gnatV flag in the users
guide) in conjunction with pragma Initialize_Scalars provides a powerful new tool to
assist in the detection of problems caused by uninitialized variables.

Note: the use of Initialize_Scalars has a fairly extensive effect on the generated
code. This may cause your code to be substantially larger. It may also cause an increase in
the amount of stack required, so it is probably a good idea to turn on stack checking (see
description of stack checking in the GNAT users guide) when using this pragma.

Pragma Inline_Always
Syntax:
pragma Inline_Always (NAME [, NAME]);

Similar to pragma Inline except that inlining is not subject to the use of option -gnatn
and the inlining happens regardless of whether this option is used.

Pragma Inline_Generic

Syntax:

pragma Inline_Generic (generic_package_NAME) ;
This is implemented for compatibility with DEC Ada 83 and is recognized, but otherwise
ignored, by GNAT. All generic instantiations are inlined by default when using GNAT.

Pragma Interface

Syntax:

pragma Interface (
[Convention =>] convention_identifier,
[Entity =>] local_name

24 GNAT Reference Manual

[, [External_Name =>] static_string_expression],

[, [Link_Name =>] static_string_expression]);
This pragma is identical in syntax and semantics to the standard Ada 95 pragma Import.
It is provided for compatibility with Ada 83. The definition is upwards compatible both
with pragma Interface as defined in the Ada 83 Reference Manual, and also with some
extended implementations of this pragma in certain Ada 83 implementations.

Pragma Interface_Name

Syntax:
pragma Interface_Name (
[Entity =>] LOCAL_NAME
[, [External_Name =>] static_string EXPRESSION]
[, [Link_Name =>] static_string_ EXPRESSION]);

This pragma provides an alternative way of specifying the interface name for an interfaced
subprogram, and is provided for compatibility with Ada 83 compilers that use the pragma
for this purpose. You must provide at least one of External_Name or Link_Name.

Pragma Interrupt_Handler

Syntax:
pragma Interrupt_Handler (procedure_LOCAL_NAME);

This program unit pragma is supported for parameterless protected procedures as described
in Annex C of the Ada Reference Manual. On the AAMP target the pragma can also be
specified for nonprotected parameterless procedures that are declared at the library level
(which includes procedures declared at the top level of a library package). In the case of
AAMP, when this pragma is applied to a nonprotected procedure, the instruction IERET
is generated for returns from the procedure, enabling maskable interrupts, in place of the
normal return instruction.

Pragma Interrupt_State

Syntax:
pragma Interrupt_State (Name => value, State => SYSTEM | RUNTIME | USER);

Normally certain interrupts are reserved to the implementation. Any attempt to attach
an interrupt causes Program_Error to be raised, as described in RM C.3.2(22). A typical
example is the SIGINT interrupt used in many systems for an Ctrl-C interrupt. Normally
this interrupt is reserved to the implementation, so that Ctrl1-C can be used to interrupt
execution. Additionally, signals such as SIGSEGV, SIGABRT, SIGFPE and SIGILL are often
mapped to specific Ada exceptions, or used to implement run-time functions such as the
abort statement and stack overflow checking.

Pragma Interrupt_State provides a general mechanism for overriding such uses of
interrupts. It subsumes the functionality of pragma Unreserve_All_Interrupts. Pragma
Interrupt_State is not available on OS/2, Windows or VMS. On all other platforms than
VxWorks, it applies to signals; on VxWorks, it applies to vectored hardware interrupts and
may be used to mark interrupts required by the board support package as reserved.

Interrupts can be in one of three states:

Chapter 1: Implementation Defined Pragmas 25

e System

The interrupt is reserved (no Ada handler can be installed), and the Ada run-time may
not install a handler. As a result you are guaranteed standard system default action if
this interrupt is raised.

e Runtime

The interrupt is reserved (no Ada handler can be installed). The run time is allowed
to install a handler for internal control purposes, but is not required to do so.

e User

The interrupt is unreserved. The user may install a handler to provide some other
action.

These states are the allowed values of the State parameter of the pragma. The Name
parameter is a value of the type Ada.Interrupts.Interrupt_ID. Typically, it is a name
declared in Ada.Interrupts.Names.

This is a configuration pragma, and the binder will check that there are no inconsistencies
between different units in a partition in how a given interrupt is specified. It may appear
anywhere a pragma is legal.

The effect is to move the interrupt to the specified state.

By declaring interrupts to be SYSTEM, you guarantee the standard system action, such
as a core dump.

By declaring interrupts to be USER, you guarantee that you can install a handler.

Note that certain signals on many operating systems cannot be caught and handled by
applications. In such cases, the pragma is ignored. See the operating system documentation,
or the value of the array Reserved declared in the specification of package System.0S_
Interface.

Overriding the default state of signals used by the Ada runtime may interfere with an
application’s runtime behavior in the cases of the synchronous signals, and in the case of
the signal used to implement the abort statement.

Pragma Keep_Names

Syntax:
pragma Keep_Names ([On =>] enumeration_first_subtype_LOCAL_NAME) ;

The LOCAL_NAME argument must refer to an enumeration first subtype in the current
declarative part. The effect is to retain the enumeration literal names for use by Image and
Value even if a global Discard_Names pragma applies. This is useful when you want to
generally suppress enumeration literal names and for example you therefore use a Discard_
Names pragma in the ‘gnat.adc’ file, but you want to retain the names for specific enumer-
ation types.

Pragma License

Syntax:

pragma License (Unrestricted | GPL | Modified_GPL | Restricted);
This pragma is provided to allow automated checking for appropriate license conditions with
respect to the standard and modified GPL. A pragma License, which is a configuration

26 GNAT Reference Manual

pragma that typically appears at the start of a source file or in a separate ‘gnat.adc’ file,
specifies the licensing conditions of a unit as follows:

e Unrestricted This is used for a unit that can be freely used with no license restrictions.
Examples of such units are public domain units, and units from the Ada Reference
Manual.

e GPL This is used for a unit that is licensed under the unmodified GPL, and which
therefore cannot be with’ed by a restricted unit.

e Modified_GPL This is used for a unit licensed under the GNAT modified GPL that
includes a special exception paragraph that specifically permits the inclusion of the
unit in programs without requiring the entire program to be released under the GPL.
This is the license used for the GNAT run-time which ensures that the run-time can
be used freely in any program without GPL concerns.

e Restricted This is used for a unit that is restricted in that it is not permitted to depend
on units that are licensed under the GPL. Typical examples are proprietary code that
is to be released under more restrictive license conditions. Note that restricted units
are permitted to with units which are licensed under the modified GPL (this is the
whole point of the modified GPL).

Normally a unit with no License pragma is considered to have an unknown license, and no
checking is done. However, standard GNAT headers are recognized, and license information
is derived from them as follows.

A GNAT license header starts with a line containing 78 hyphens. The following com-
ment text is searched for the appearance of any of the following strings.

If the string “GNU General Public License” is found, then the unit is assumed to have
GPL license, unless the string “As a special exception” follows, in which case the license
is assumed to be modified GPL.

If one of the strings “This specification is adapted from the Ada Semantic Interface” or
“This specification is derived from the Ada Reference Manual” is found then the unit
is assumed to be unrestricted.

These default actions means that a program with a restricted license pragma will automat-
ically get warnings if a GPL unit is inappropriately with’ed. For example, the program:

with Sem_Ch3;
with GNAT.Sockets;
procedure Secret_Stuff is

end Secret_Stuff

if compiled with pragma License (Restricted) in a ‘gnat.adc’ file will generate the warn-
ing:
1. with Sem_Ch3;
|

>>> license of withed unit "Sem_Ch3" is incompatible

2. with GNAT.Sockets;

3. procedure Secret_Stuff is
Here we get a warning on Sem_Ch3 since it is part of the GNAT compiler and is licensed
under the GPL, but no warning for GNAT.Sockets which is part of the GNAT run time,
and is therefore licensed under the modified GPL.

Chapter 1: Implementation Defined Pragmas 27

Pragma Link_With

Syntax:
pragma Link_With (static_string EXPRESSION {,static_string EXPRESSION});

This pragma is provided for compatibility with certain Ada 83 compilers. It has exactly
the same effect as pragma Linker_Options except that spaces occurring within one of the
string expressions are treated as separators. For example, in the following case:

pragma Link _With ("-labc -1ldef");
results in passing the strings -labc and -1def as two separate arguments to the linker. In
addition pragma Link_With allows multiple arguments, with the same effect as successive
pragmas.

Pragma Linker_Alias

Syntax:
pragma Linker_Alias (
[Entity =>] LOCAL_NAME
[Alias =>] static_string EXPRESSION);
This pragma establishes a linker alias for the given named entity. For further details on the
exact effect, consult the GCC manual.

Pragma Linker_Section

Syntax:
pragma Linker_Section (
[Entity =>] LOCAL_NAME
[Section =>] static_string EXPRESSION);
This pragma specifies the name of the linker section for the given entity. For further details
on the exact effect, consult the GCC manual.

Pragma Long_Float

Syntax:
pragma Long_Float (FLOAT_FORMAT);

FLOAT_FORMAT ::= D_Float | G_Float

This pragma is implemented only in the OpenVMS implementation of GNAT. It allows
control over the internal representation chosen for the predefined type Long_Float and
for floating point type representations with digits specified in the range 7 through 15.
For further details on this pragma, see the DEC Ada Language Reference Manual, section
3.5.7b. Note that to use this pragma, the standard runtime libraries must be recompiled.
See the description of the GNAT LIBRARY command in the OpenVMS version of the GNAT
User’s Guide for details on the use of this command.

Pragma Machine_Attribute

Syntax:

pragma Machine_Attribute (
[Attribute_Name =>] string EXPRESSION,

28 GNAT Reference Manual

[Entity =>] LOCAL_NAME);

Machine dependent attributes can be specified for types and/or declarations. Currently
only subprogram entities are supported. This pragma is semantically equivalent to _
_attribute__((string_expression)) in GNU C, where string_expression is recog-
nized by the GNU C macros VALID_MACHINE_TYPE_ATTRIBUTE and VALID_MACHINE_DECL_
ATTRIBUTE which are defined in the configuration header file ‘tm.h’ for each machine. See
the GCC manual for further information.

Pragma Main_Storage

Syntax:

pragma Main_Storage
(MAIN_STORAGE_OPTION [, MAIN_STORAGE_OPTION]);

MAIN_STORAGE_OPTION ::=
[WORKING_STORAGE =>] static_SIMPLE_EXPRESSION
| [TOP_GUARD =>] static_SIMPLE_EXPRESSION

This pragma is provided for compatibility with OpenVMS VAX Systems. It has no effect in
GNAT, other than being syntax checked. Note that the pragma also has no effect in DEC
Ada 83 for OpenVMS Alpha Systems.

Pragma No_Return

Syntax:
pragma No_Return (procedure_LOCAL_NAME) ;

procedure_local_ NAME must refer to one or more procedure declarations in the current
declarative part. A procedure to which this pragma is applied may not contain any explicit
return statements, and also may not contain any implicit return statements from falling
off the end of a statement sequence. One use of this pragma is to identify procedures whose
only purpose is to raise an exception.

Another use of this pragma is to suppress incorrect warnings about missing returns in
functions, where the last statement of a function statement sequence is a call to such a
procedure.

Pragma Normalize_Scalars

Syntax:

pragma Normalize_Scalars;

This is a language defined pragma which is fully implemented in GNAT. The effect is to
cause all scalar objects that are not otherwise initialized to be initialized. The initial values
are implementation dependent and are as follows:

Standard.Character
Objects whose root type is Standard.Character are initialized to Character’Last
unless the subtype range excludes NUL (in which case NUL is used). This choice
will always generate an invalid value if one exists.

Chapter 1: Implementation Defined Pragmas 29

Standard.Wide_Character
Objects whose root type is Standard.Wide_Character are initialized to
Wide_Character’Last unless the subtype range excludes NUL (in which case
NUL is used). This choice will always generate an invalid value if one exists.

Standard.Wide_Wide_Character
Objects whose root type is Standard.Wide_Wide_Character are initialized to
the invalid value 16#FFFF_FFFF# unless the subtype range excludes NUL
(in which case NUL is used). This choice will always generate an invalid value
if one exists.

Integer types
Objects of an integer type are treated differently depending on whether negative
values are present in the subtype. If no negative values are present, then all one
bits is used as the initial value except in the special case where zero is excluded
from the subtype, in which case all zero bits are used. This choice will always
generate an invalid value if one exists.

For subtypes with negative values present, the largest negative number is used,
except in the unusual case where this largest negative number is in the subtype,
and the largest positive number is not, in which case the largest positive value
is used. This choice will always generate an invalid value if one exists.

Floating-Point Types
Objects of all floating-point types are initialized to all 1-bits. For standard
IEEE format, this corresponds to a NaN (not a number) which is indeed an
invalid value.

Fixed-Point Types
Objects of all fixed-point types are treated as described above for integers,
with the rules applying to the underlying integer value used to represent the
fixed-point value.

Modular types
Objects of a modular type are initialized to all one bits, except in the special
case where zero is excluded from the subtype, in which case all zero bits are
used. This choice will always generate an invalid value if one exists.

Enumeration types
Objects of an enumeration type are initialized to all one-bits, i.e. to the value
2 ** typ’Size - 1 unless the subtype excludes the literal whose Pos value is
zero, in which case a code of zero is used. This choice will always generate an
invalid value if one exists.

Pragma Obsolescent

Syntax:
pragma Obsolescent [(static_string_ EXPRESSION)];

This pragma must occur immediately following a subprogram declaration. It indicates that
the associated function or procedure is considered obsolescent and should not be used.

30 GNAT Reference Manual

Typically this is used when an API must be modified by eventually removing or modi-
fying existing subprograms. The pragma can be used at an intermediate stage when the
subprogram is still present, but will be removed later.

The effect of this pragma is to output a warning message that the subprogram is ob-
solescent if the appropriate warning option in the compiler is activated. If a parameter is
present, then a second warning message is given containing this text.

Pragma Passive

Syntax:
pragma Passive ([Semaphore | Nol);

Syntax checked, but otherwise ignored by GNAT. This is recognized for compatibility with
DEC Ada 83 implementations, where it is used within a task definition to request that a
task be made passive. If the argument Semaphore is present, or the argument is omitted,
then DEC Ada 83 treats the pragma as an assertion that the containing task is passive and
that optimization of context switch with this task is permitted and desired. If the argument
No is present, the task must not be optimized. GNAT does not attempt to optimize any
tasks in this manner (since protected objects are available in place of passive tasks).

Pragma Polling

Syntax:
pragma Polling (ON | OFF);

This pragma controls the generation of polling code. This is normally off. If pragma Polling
(ON) is used then periodic calls are generated to the routine Ada.Exceptions.Poll. This
routine is a separate unit in the runtime library, and can be found in file ‘a-excpol.adb’.

Pragma Polling can appear as a configuration pragma (for example it can be placed
in the ‘gnat.adc’ file) to enable polling globally, or it can be used in the statement or
declaration sequence to control polling more locally.

A call to the polling routine is generated at the start of every loop and at the start
of every subprogram call. This guarantees that the Poll routine is called frequently, and
places an upper bound (determined by the complexity of the code) on the period between
two Poll calls.

The primary purpose of the polling interface is to enable asynchronous aborts on targets
that cannot otherwise support it (for example Windows NT), but it may be used for any
other purpose requiring periodic polling. The standard version is null, and can be replaced
by a user program. This will require re-compilation of the Ada.Exceptions package that
can be found in files ‘a-except.ads’ and ‘a-except.adb’.

A standard alternative unit (in file ‘4wexcpol.adb’ in the standard GNAT distribution)
is used to enable the asynchronous abort capability on targets that do not normally support
the capability. The version of Poll in this file makes a call to the appropriate runtime routine
to test for an abort condition.

Note that polling can also be enabled by use of the —gnatP switch. See the GNAT User’s
Guide for details.

Chapter 1: Implementation Defined Pragmas 31

Pragma Profile (Ravenscar)

Syntax:

pragma Profile (Ravenscar);

A configuration pragma that establishes the following set of configuration pragmas:

Task_Dispatching Policy (FIFO_Within_Priorities)
[RM D.2.2] Tasks are dispatched following a preemptive priority-ordered
scheduling policy.

Locking_Policy (Ceiling_Locking)
[RM D.3] While tasks and interrupts execute a protected action, they inherit
the ceiling priority of the corresponding protected object.

plus the following set of restrictions:

Max_Entry_Queue_Length =1
Defines the maximum number of calls that are queued on a (protected) entry.
Note that this restrictions is checked at run time. Violation of this restriction
results in the raising of Program_Error exception at the point of the call. For
the Profile (Ravenscar) the value of Max_Entry_Queue_Length is always 1 and
hence no task can be queued on a protected entry.

Max_Protected_Entries =1
[RM D.7] Specifies the maximum number of entries per protected type. The
bounds of every entry family of a protected unit shall be static, or shall be
defined by a discriminant of a subtype whose corresponding bound is static.
For the Profile (Ravenscar) the value of Max_Protected_Entries is always 1.

Max_Task_Entries =0
[RM D.7] Specifies the maximum number of entries per task. The bounds
of every entry family of a task unit shall be static, or shall be defined by a
discriminant of a subtype whose corresponding bound is static. A value of zero
indicates that no rendezvous are possible. For the Profile (Ravenscar), the value
of Max_Task_Entries is always 0 (zero).

No_Abort_Statements
[RM D.7] There are no abort_statements, and there are no calls to
Task_Identification. Abort_Task.

No_Asynchronous_Control
[RM D.7] There are no semantic dependences on the package Asyn-
chronous_Task_Control.

No_Calendar
There are no semantic dependencies on the package Ada.Calendar.

No_Dynamic_Attachment
There is no call to any of the operations defined in package Ada.Interrupts
(Is_Reserved, Is_Attached, Current_Handler, = Attach_Handler, Ex-
change_Handler, Detach_Handler, and Reference).

32 GNAT Reference Manual

No_Dynamic_Priorities
[RM D.7] There are no semantic dependencies on the package Dy-
namic_Priorities.

No_Implicit_Heap_Allocations
[RM D.7] No constructs are allowed to cause implicit heap allocation.

No_Local_Protected_QObjects
Protected objects and access types that designate such objects shall be declared
only at library level.

No_Protected_Type_Allocators
There are no allocators for protected types or types containing protected sub-
components.

No_Relative_Delay
There are no delay_relative statements.

No_Requeue_Statements
Requeue statements are not allowed.

No_Select_Statements
There are no select_statements.

No_Task_Allocators
[RM D.7] There are no allocators for task types or types containing task sub-
components.

No_Task_Attributes_Package
There are no semantic dependencies on the Ada.Task_Attributes package.

No_Task_Hierarchy
[RM D.7] All (non-environment) tasks depend directly on the environment task
of the partition.

No_Task_Termination
Tasks which terminate are erroneous.

Simple_Barriers
Entry barrier condition expressions shall be either static boolean expressions
or boolean objects which are declared in the protected type which contains the
entry.

This set of configuration pragmas and restrictions correspond to the definition of the
“Ravenscar Profile” for limited tasking, devised and published by the International
Real-Time Ada Workshop, 1997, and whose most recent description is available at
ftp://ftp.openravenscar.org/openravenscar/ravenscar00.pdf.

The original definition of the profile was revised at subsequent IRTAW meetings. It
has been included in the ISO Guide for the Use of the Ada Programming Language
in High Integrity Systems, and has been approved by ISO/IEC/SC22/WG9 for
inclusion in the next revision of the standard. The formal definition given by the
Ada Rapporteur Group (ARG) can be found in two Ada Issues (AI-249 and AI-305)
available at http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00249.TXT and
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00305.TXT respectively.

Chapter 1: Implementation Defined Pragmas 33

The above set is a superset of the restrictions provided by pragma Profile
(Restricted), it includes six additional restrictions (Simple_Barriers, No_Select_
Statements, No_Calendar, No_Implicit_Heap_Allocations, No_Relative_Delay and
No_Task_Termination). This means that pragma Profile (Ravenscar), like the pragma
Profile (Restricted), automatically causes the use of a simplified, more efficient version
of the tasking run-time system.

Pragma Profile (Restricted)

Syntax:
pragma Profile (Restricted);

A configuration pragma that establishes the following set of restrictions:
e No_Abort_Statements
e No_Entry_Queue
o No_Task_Hierarchy
e No_Task_Allocators
e No_Dynamic_Priorities
e No_Terminate_Alternatives
e No_Dynamic_Attachment
e No_Protected_Type_Allocators
e No_Local_Protected_Objects
e No_Requeue_Statements
e No_Task_Attributes_Package
e Max_Asynchronous_Select_Nesting = 0
e Max_Task_Entries = 0
e Max_Protected_Entries = 1
e Max_Select_Alternatives = 0
This set of restrictions causes the automatic selection of a simplified version of the run time

that provides improved performance for the limited set of tasking functionality permitted
by this set of restrictions.

Pragma Propagate_Exceptions

Syntax:
pragma Propagate_Exceptions (subprogram_LOCAL_NAME) ;

This pragma indicates that the given entity, which is the name of an imported foreign-
language subprogram may receive an Ada exception, and that the exception should be
propagated. It is relevant only if zero cost exception handling is in use, and is thus never
needed if the alternative longjmp / setjmp implementation of exceptions is used (although
it is harmless to use it in such cases).

The implementation of fast exceptions always properly propagates exceptions through
Ada code, as described in the Ada Reference Manual. However, this manual is silent about
the propagation of exceptions through foreign code. For example, consider the situation

34 GNAT Reference Manual

where P1 calls P2, and P2 calls P3, where P1 and P3 are in Ada, but P2 is in C. P3 raises an
Ada exception. The question is whether or not it will be propagated through P2 and can
be handled in P1.

For the longjmp / setjmp implementation of exceptions, the answer is always yes. For
some targets on which zero cost exception handling is implemented, the answer is also always
yes. However, there are some targets, notably in the current version all x86 architecture
targets, in which the answer is that such propagation does not happen automatically. If such
propagation is required on these targets, it is mandatory to use Propagate_Exceptions to
name all foreign language routines through which Ada exceptions may be propagated.

Pragma Psect_Object

Syntax:

pragma Psect_Object (
[Internal =>] LOCAL_NAME,
[, [External =>] EXTERNAL_SYMBOL]
[, [Size =>] EXTERNAL_SYMBOL]) ;

EXTERNAL_SYMBOL ::=
IDENTIFIER
| static_string EXPRESSION

This pragma is identical in effect to pragma Common_Object.

Pragma Pure_Function

Syntax:
pragma Pure_Function ([Entity =>] function_LOCAL_NAME);

This pragma appears in the same declarative part as a function declaration (or a set of
function declarations if more than one overloaded declaration exists, in which case the
pragma applies to all entities). It specifies that the function Entity is to be considered
pure for the purposes of code generation. This means that the compiler can assume that
there are no side effects, and in particular that two calls with identical arguments produce
the same result. It also means that the function can be used in an address clause.

Note that, quite deliberately, there are no static checks to try to ensure that this promise
is met, so Pure_Function can be used with functions that are conceptually pure, even if
they do modify global variables. For example, a square root function that is instrumented
to count the number of times it is called is still conceptually pure, and can still be optimized,
even though it modifies a global variable (the count). Memo functions are another example
(where a table of previous calls is kept and consulted to avoid re-computation).

Note: Most functions in a Pure package are automatically pure, and there is no need to
use pragma Pure_Function for such functions. One exception is any function that has at
least one formal of type System.Address or a type derived from it. Such functions are not
considered pure by default, since the compiler assumes that the Address parameter may
be functioning as a pointer and that the referenced data may change even if the address
value does not. Similarly, imported functions are not considered to be pure by default, since
there is no way of checking that they are in fact pure. The use of pragma Pure_Function
for such a function will override these default assumption, and cause the compiler to treat
a designated subprogram as pure in these cases.

Chapter 1: Implementation Defined Pragmas 35

Note: If pragma Pure_Function is applied to a renamed function, it applies to the
underlying renamed function. This can be used to disambiguate cases of overloading where
some but not all functions in a set of overloaded functions are to be designated as pure.

Pragma Restriction_Warnings

Syntax:
pragma Restriction_Warnings
(restriction_IDENTIFIER {, restriction_IDENTIFIER});
This pragma allows a series of restriction identifiers to be specified (the list of allowed
identifiers is the same as for pragma Restrictions). For each of these identifiers the
compiler checks for violations of the restriction, but generates a warning message rather
than an error message if the restriction is violated.

Pragma Source_File_Name

Syntax:

pragma Source_File_Name (
[Unit_Name =>] unit_NAME,
Spec_File_Name => STRING_LITERAL);

pragma Source_File_Name (

[Unit_Name =>] unit_NAME,

Body_File_Name => STRING_LITERAL);
Use this to override the normal naming convention. It is a configuration pragma, and so has
the usual applicability of configuration pragmas (i.e. it applies to either an entire partition,
or to all units in a compilation, or to a single unit, depending on how it is used. unit_name
is mapped to file_name_literal. The identifier for the second argument is required, and
indicates whether this is the file name for the spec or for the body.

Another form of the Source_File_Name pragma allows the specification of patterns
defining alternative file naming schemes to apply to all files.

pragma Source_File_Name
(Spec_File_Name => STRING_LITERAL
[,Casing => CASING_SPEC]
[,Dot_Replacement => STRING_LITERAL]);

pragma Source_File_Name
(Body_File_Name => STRING_LITERAL
[,Casing => CASING_SPEC]
[,Dot_Replacement => STRING_LITERAL]);

pragma Source_File_Name
(Subunit_File_Name => STRING_LITERAL
[,Casing => CASING_SPEC]
[,Dot_Replacement => STRING_LITERAL]);

CASING_SPEC ::= Lowercase | Uppercase | Mixedcase

The first argument is a pattern that contains a single asterisk indicating the point at which
the unit name is to be inserted in the pattern string to form the file name. The second
argument is optional. If present it specifies the casing of the unit name in the resulting file
name string. The default is lower case. Finally the third argument allows for systematic
replacement of any dots in the unit name by the specified string literal.

36 GNAT Reference Manual

A pragma Source_File_Name cannot appear after a [Pragma Source_File_Name_Project],
page 36.

For more details on the use of the Source_File_Name pragma, see the sections “Using
Other File Names” and “Alternative File Naming Schemes” in the GNAT User’s Guide.

Pragma Source_File_Name_Project

This pragma has the same syntax and semantics as pragma Source_File_Name. It is
only allowed as a stand alone configuration pragma. It cannot appear after a [Pragma
Source_File_Name], page 35, and most importantly, once pragma Source_File_Name_Project
appears, no further Source_File_Name pragmas are allowed.

The intention is that Source_File_Name_Project pragmas are always generated by the
Project Manager in a manner consistent with the naming specified in a project file, and
when naming is controlled in this manner, it is not permissible to attempt to modify this
naming scheme using Source_File_Name pragmas (which would not be known to the project
manager).

Pragma Source_Reference

Syntax:
pragma Source_Reference (INTEGER_LITERAL, STRING_LITERAL);

This pragma must appear as the first line of a source file. integer_literal is the logical
line number of the line following the pragma line (for use in error messages and debugging
information). string_literal is a static string constant that specifies the file name to be used
in error messages and debugging information. This is most notably used for the output of
gnatchop with the -r switch, to make sure that the original unchopped source file is the
one referred to.

The second argument must be a string literal, it cannot be a static string expression
other than a string literal. This is because its value is needed for error messages issued by
all phases of the compiler.

Pragma Stream_Convert

Syntax:

pragma Stream_Convert (

[Entity =>] type_LOCAL_NAME,

[Read =>] function_NAME,

[Write =>] function_NAME);
This pragma provides an efficient way of providing stream functions for types defined in
packages. Not only is it simpler to use than declaring the necessary functions with attribute
representation clauses, but more significantly, it allows the declaration to made in such a
way that the stream packages are not loaded unless they are needed. The use of the
Stream_Convert pragma adds no overhead at all, unless the stream attributes are actually
used on the designated type.

The first argument specifies the type for which stream functions are provided. The
second parameter provides a function used to read values of this type. It must name a

Chapter 1: Implementation Defined Pragmas 37

function whose argument type may be any subtype, and whose returned type must be the
type given as the first argument to the pragma.

The meaning of the Read parameter is that if a stream attribute directly or indirectly
specifies reading of the type given as the first parameter, then a value of the type given as
the argument to the Read function is read from the stream, and then the Read function is
used to convert this to the required target type.

Similarly the Write parameter specifies how to treat write attributes that directly or
indirectly apply to the type given as the first parameter. It must have an input parameter
of the type specified by the first parameter, and the return type must be the same as the
input type of the Read function. The effect is to first call the Write function to convert to
the given stream type, and then write the result type to the stream.

The Read and Write functions must not be overloaded subprograms. If necessary
renamings can be supplied to meet this requirement. The usage of this attribute is
best illustrated by a simple example, taken from the GNAT implementation of package

Ada.Strings.Unbounded:

function To_Unbounded (S : String)
return Unbounded_String
renames To_Unbounded_String;

pragma Stream_Convert
(Unbounded_String, To_Unbounded, To_String);
The specifications of the referenced functions, as given in the Ada 95 Reference Manual are:

function To_Unbounded_String (Source : String)
return Unbounded_String;

function To_String (Source : Unbounded_String)
return String;
The effect is that if the value of an unbounded string is written to a stream, then the
representation of the item in the stream is in the same format used for Standard.String,
and this same representation is expected when a value of this type is read from the stream.

Pragma Style_Checks

Syntax:
pragma Style_Checks (string LITERAL | ALL_CHECKS |
On | 0ff [, LOCAL_NAME]);

This pragma is used in conjunction with compiler switches to control the built in style
checking provided by GNAT. The compiler switches, if set, provide an initial setting for
the switches, and this pragma may be used to modify these settings, or the settings may
be provided entirely by the use of the pragma. This pragma can be used anywhere that a
pragma is legal, including use as a configuration pragma (including use in the ‘gnat.adc’
file).

The form with a string literal specifies which style options are to be activated. These
are additive, so they apply in addition to any previously set style check options. The codes
for the options are the same as those used in the -gnaty switch to gcc or gnatmake. For
example the following two methods can be used to enable layout checking;:

[]

pragma Style_Checks ("1");

38 GNAT Reference Manual

gcc -c -gnatyl ...
The form ALL_CHECKS activates all standard checks (its use is equivalent to the use of
the gnaty switch with no options. See GNAT User’s Guide for details.

The forms with 0ff and On can be used to temporarily disable style checks as shown in
the following example:

pragma Style_Checks ("k"); -- requires keywords in lower case

pragma Style_Checks (0ff); -- turn off style checks

NULL; -- this will not generate an error message
pragma Style_Checks (On); -- turn style checks back on

NULL; -- this will generate an error message

Finally the two argument form is allowed only if the first argument is On or 0ff. The effect
is to turn of semantic style checks for the specified entity, as shown in the following example:

pragma Style_Checks ("r"); -- require consistency of identifier casing
Arg : Integer;

Rf1 : Integer := ARG; -- incorrect, wrong case

pragma Style_Checks (0ff, Arg);

Rf2 : Integer := ARG; -- 0K, no error

Pragma Subtitle

Syntax:
pragma Subtitle ([Subtitle =>] STRING_LITERAL);

This pragma is recognized for compatibility with other Ada compilers but is ignored by
GNAT.

Pragma Suppress_All

Syntax:
pragma Suppress_All;

This pragma can only appear immediately following a compilation unit. The effect is to
apply Suppress (All_Checks) to the unit which it follows. This pragma is implemented
for compatibility with DEC Ada 83 usage. The use of pragma Suppress (A1l_Checks) as
a normal configuration pragma is the preferred usage in GNAT.

Pragma Suppress_Exception_Locations

Syntax:

pragma Suppress_Exception_Locations;

In normal mode, a raise statement for an exception by default generates an exception
message giving the file name and line number for the location of the raise. This is useful for
debugging and logging purposes, but this entails extra space for the strings for the messages.
The configuration pragma Suppress_Exception_Locations can be used to suppress the
generation of these strings, with the result that space is saved, but the exception message for
such raises is null. This configuration pragma may appear in a global configuration pragma

Chapter 1: Implementation Defined Pragmas 39

file, or in a specific unit as usual. It is not required that this pragma be used consistently
within a partition, so it is fine to have some units within a partition compiled with this
pragma and others compiled in normal mode without it.

Pragma Suppress_Initialization

Syntax:
pragma Suppress_Initialization ([Entity =>] type_Name);

This pragma suppresses any implicit or explicit initialization associated with the given type
name for all variables of this type.

Pragma Task_Info

Syntax
pragma Task_Info (EXPRESSION);

This pragma appears within a task definition (like pragma Priority) and applies to the
task in which it appears. The argument must be of type System.Task_Info.Task_Info_
Type. The Task_Info pragma provides system dependent control over aspects of tasking
implementation, for example, the ability to map tasks to specific processors. For details on
the facilities available for the version of GNAT that you are using, see the documentation
in the specification of package System.Task_Info in the runtime library.

Pragma Task_Name

Syntax
pragma Task_Name (string EXPRESSION);

This pragma appears within a task definition (like pragma Priority) and applies to the
task in which it appears. The argument must be of type String, and provides a name to be
used for the task instance when the task is created. Note that this expression is not required
to be static, and in particular, it can contain references to task discriminants. This facility
can be used to provide different names for different tasks as they are created, as illustrated
in the example below.

The task name is recorded internally in the run-time structures and is accessible to tools
like the debugger. In addition the routine Ada.Task_Identification.Image will return
this string, with a unique task address appended.

-- Example of the use of pragma Task_Name

with Ada.Task_Identification;
use Ada.Task_Identification;
with Text_I0; use Text_I0;
procedure t3 is

type Astring is access String;
task type Task_Typ (Name : access String) is
pragma Task_Name (Name.all);

end Task_Typ;

task body Task_Typ is
Nam : constant String := Image (Current_Task);

40 GNAT Reference Manual

begin
Put_Line ("-->" & Nam (1 .. 14) & "<--");
end Task_Typ;

type Ptr_Task is access Task_Typ;
Task_Var : Ptr_Task;

begin
Task_Var :=
new Task_Typ (new String’("This is task 1"));
Task_Var :=
new Task_Typ (new String’("This is task 2"));
end;

Pragma Task_Storage

Syntax:
pragma Task_Storage (

[Task_Type =>] LOCAL_NAME,

[Top_Guard =>] static_integer_EXPRESSION) ;
This pragma specifies the length of the guard area for tasks. The guard area is an additional
storage area allocated to a task. A value of zero means that either no guard area is created
or a minimal guard area is created, depending on the target. This pragma can appear
anywhere a Storage_Size attribute definition clause is allowed for a task type.

Pragma Thread_Body

Syntax:
pragma Thread_Body (

[Entity =>] LOCAL_NAME,

[[Secondary_Stack_Size =>] static_integer _EXPRESSION)];
This pragma specifies that the subprogram whose name is given as the Entity argument
is a thread body, which will be activated by being called via its Address from foreign code.
The purpose is to allow execution and registration of the foreign thread within the Ada
run-time system.

See the library unit System.Threads for details on the expansion of a thread body
subprogram, including the calls made to subprograms within System.Threads to register
the task. This unit also lists the targets and runtime systems for which this pragma is
supported.

A thread body subprogram may not be called directly from Ada code, and it is not
permitted to apply the Access (or Unrestricted_Access) attributes to such a subprogram.
The only legitimate way of calling such a subprogram is to pass its Address to foreign code
and then make the call from the foreign code.

A thread body subprogram may have any parameters, and it may be a function returning
a result. The convention of the thread body subprogram may be set in the usual manner
using pragma Convention.

The secondary stack size parameter, if given, is used to set the size of secondary stack
for the thread. The secondary stack is allocated as a local variable of the expanded thread
body subprogram, and thus is allocated out of the main thread stack size. If no secondary

Chapter 1: Implementation Defined Pragmas 41

stack size parameter is present, the default size (from the declaration in System.Secondary_
Stack is used.

Pragma Time_Slice
Syntax:
pragma Time_Slice (static_duration_EXPRESSION);

For implementations of GNAT on operating systems where it is possible to supply a time
slice value, this pragma may be used for this purpose. It is ignored if it is used in a system
that does not allow this control, or if it appears in other than the main program unit. Note
that the effect of this pragma is identical to the effect of the DEC Ada 83 pragma of the
same name when operating under OpenVMS systems.

Pragma Title

Syntax:
pragma Title (TITLING_OPTION [, TITLING OPTION]);

TITLING_OPTION ::=
[Title =>] STRING_LITERAL,
| [Subtitle =>] STRING_LITERAL

Syntax checked but otherwise ignored by GNAT. This is a listing control pragma used in
DEC Ada 83 implementations to provide a title and/or subtitle for the program listing.
The program listing generated by GNAT does not have titles or subtitles.

Unlike other pragmas, the full flexibility of named notation is allowed for this pragma,
i.e. the parameters may be given in any order if named notation is used, and named and
positional notation can be mixed following the normal rules for procedure calls in Ada.

Pragma Unchecked_Union
Syntax:
pragma Unchecked_Union (first_subtype_LOCAL_NAME);

This pragma is used to declare that the specified type should be represented in a manner
equivalent to a C union type, and is intended only for use in interfacing with C code that
uses union types. In Ada terms, the named type must obey the following rules:

e It is a non-tagged non-limited record type.

e It has a single discrete discriminant with a default value.

e The component list consists of a single variant part.

e Each variant has a component list with a single component.

e No nested variants are allowed.

e No component has an explicit default value.

e No component has a non-static constraint.
In addition, given a type that meets the above requirements, the following restrictions apply
to its use throughout the program:

e The discriminant name can be mentioned only in an aggregate.

e No subtypes may be created of this type.

42 GNAT Reference Manual

e The type may not be constrained by giving a discriminant value.
e The type cannot be passed as the actual for a generic formal with a discriminant.

Equality and inequality operations on unchecked_unions are not available, since there is no
discriminant to compare and the compiler does not even know how many bits to compare.
It is implementation dependent whether this is detected at compile time as an illegality or
whether it is undetected and considered to be an erroneous construct. In GNAT, a direct
comparison is illegal, but GNAT does not attempt to catch the composite case (where two
composites are compared that contain an unchecked union component), so such comparisons
are simply considered erroneous.

The layout of the resulting type corresponds exactly to a C union, where each branch
of the union corresponds to a single variant in the Ada record. The semantics of the Ada
program is not changed in any way by the pragma, i.e. provided the above restrictions are
followed, and no erroneous incorrect references to fields or erroneous comparisons occur,
the semantics is exactly as described by the Ada reference manual. Pragma Suppress
(Discriminant_Check) applies implicitly to the type and the default convention is C.

Pragma Unimplemented_Unit

Syntax:
pragma Unimplemented_Unit;

If this pragma occurs in a unit that is processed by the compiler, GNAT aborts with the
message ‘xxx not implemented’, where xxx is the name of the current compilation unit.
This pragma is intended to allow the compiler to handle unimplemented library units in a
clean manner.

The abort only happens if code is being generated. Thus you can use specs of unimple-
mented packages in syntax or semantic checking mode.

Pragma Universal_Data

Syntax:

pragma Universal_Data [(library_unit_Name)];

This pragma is supported only for the AAMP target and is ignored for other targets.
The pragma specifies that all library-level objects (Counter 0 data) associated with the
library unit are to be accessed and updated using universal addressing (24-bit addresses for
AAMPS5) rather than the default of 16-bit Data Environment (DENV) addressing. Use of
this pragma will generally result in less efficient code for references to global data associated
with the library unit, but allows such data to be located anywhere in memory. This pragma
is a library unit pragma, but can also be used as a configuration pragma (including use in
the ‘gnat.adc’ file). The functionality of this pragma is also available by applying the -univ
switch on the compilations of units where universal addressing of the data is desired.

Pragma Unreferenced

Syntax:

pragma Unreferenced (local_Name {, local_Namel);
This pragma signals that the entities whose names are listed are deliberately not referenced
in the current source unit. This suppresses warnings about the entities being unreferenced,

Chapter 1: Implementation Defined Pragmas 43

and in addition a warning will be generated if one of these entities is in fact referenced in
the same unit as the pragma (or in the corresponding body, or one of its subunits).

This is particularly useful for clearly signaling that a particular parameter is not ref-
erenced in some particular subprogram implementation and that this is deliberate. It can
also be useful in the case of objects declared only for their initialization or finalization side
effects.

If local_Name identifies more than one matching homonym in the current scope, then
the entity most recently declared is the one to which the pragma applies.

The left hand side of an assignment does not count as a reference for the purpose of this
pragma. Thus it is fine to assign to an entity for which pragma Unreferenced is given.

Pragma Unreserve_All_Interrupts

Syntax:

pragma Unreserve_All_Interrupts;

Normally certain interrupts are reserved to the implementation. Any attempt to attach
an interrupt causes Program_Error to be raised, as described in RM C.3.2(22). A typical
example is the SIGINT interrupt used in many systems for a Ctrl-C interrupt. Normally
this interrupt is reserved to the implementation, so that Ctrl-C can be used to interrupt
execution.

If the pragma Unreserve_All_Interrupts appears anywhere in any unit in a program,
then all such interrupts are unreserved. This allows the program to handle these interrupts,
but disables their standard functions. For example, if this pragma is used, then pressing
Ctrl-C will not automatically interrupt execution. However, a program can then handle
the SIGINT interrupt as it chooses.

For a full list of the interrupts handled in a specific implementation, see the source
code for the specification of Ada.Interrupts.Names in file ‘a-intnam.ads’. This is a tar-
get dependent file that contains the list of interrupts recognized for a given target. The
documentation in this file also specifies what interrupts are affected by the use of the
Unreserve_All_Interrupts pragma.

For a more general facility for controlling what interrupts can be handled, see pragma
Interrupt_State, which subsumes the functionality of the Unreserve_All_Interrupts
pragma.

Pragma Unsuppress

Syntax:
pragma Unsuppress (IDENTIFIER [, [On =>] NAME]);

This pragma undoes the effect of a previous pragma Suppress. If there is no corresponding
pragma Suppress in effect, it has no effect. The range of the effect is the same as for pragma
Suppress. The meaning of the arguments is identical to that used in pragma Suppress.

One important application is to ensure that checks are on in cases where code depends
on the checks for its correct functioning, so that the code will compile correctly even if the
compiler switches are set to suppress checks.

44 GNAT Reference Manual

Pragma Use_VADS_Size

Syntax:
pragma Use_VADS_Size;

This is a configuration pragma. In a unit to which it applies, any use of the 'Size attribute
is automatically interpreted as a use of the "VADS_Size attribute. Note that this may result
in incorrect semantic processing of valid Ada 95 programs. This is intended to aid in the
handling of legacy code which depends on the interpretation of Size as implemented in the
VADS compiler. See description of the VADS_Size attribute for further details.

Pragma Validity_Checks

Syntax:
pragma Validity_Checks (string LITERAL | ALL_CHECKS | On | 0ff);

This pragma is used in conjunction with compiler switches to control the built-in validity
checking provided by GNAT. The compiler switches, if set provide an initial setting for
the switches, and this pragma may be used to modify these settings, or the settings may
be provided entirely by the use of the pragma. This pragma can be used anywhere that a
pragma is legal, including use as a configuration pragma (including use in the ‘gnat.adc’
file).

The form with a string literal specifies which validity options are to be activated. The
validity checks are first set to include only the default reference manual settings, and then
a string of letters in the string specifies the exact set of options required. The form of this
string is exactly as described for the -gnatVx compiler switch (see the GNAT users guide
for details). For example the following two methods can be used to enable validity checking
for mode in and in out subprogram parameters:

[]

pragma Validity_Checks ("im");

gcc -c -gnatVim ...
The form ALL_CHECKS activates all standard checks (its use is equivalent to the use of
the gnatva switch.

The forms with 0ff and On can be used to temporarily disable validity checks as shown
in the following example:

pragma Validity_Checks ("c"); -- validity checks for copies
pragma Validity_Checks (0ff); -- turn off validity checks

A := B; -- B will not be validity checked
pragma Validity_Checks (On); -- turn validity checks back on

A :=C; -- C will be validity checked

Pragma Volatile
Syntax:
pragma Volatile (local_NAME);

This pragma is defined by the Ada 95 Reference Manual, and the GNAT implementation
is fully conformant with this definition. The reason it is mentioned in this section is that a

Chapter 1: Implementation Defined Pragmas 45

pragma of the same name was supplied in some Ada 83 compilers, including DEC Ada 83.
The Ada 95 implementation of pragma Volatile is upwards compatible with the implemen-
tation in Dec Ada 83.

Pragma Warnings

Syntax:
pragma Warnings (On | Off [, LOCAL_NAME]);

Normally warnings are enabled, with the output being controlled by the command line
switch. Warnings (0££) turns off generation of warnings until a Warnings (On) is encountered
or the end of the current unit. If generation of warnings is turned off using this pragma, then
no warning messages are output, regardless of the setting of the command line switches.

The form with a single argument is a configuration pragma.

If the local_name parameter is present, warnings are suppressed for the specified entity.
This suppression is effective from the point where it occurs till the end of the extended
scope of the variable (similar to the scope of Suppress).

Pragma Weak_External
Syntax:
pragma Weak_External ([Entity =>] LOCAL_NAME);

This pragma specifies that the given entity should be marked as a weak external (one that
does not have to be resolved) for the linker. For further details, consult the GCC manual.

46

GNAT Reference Manual

Chapter 2: Implementation Defined Attributes 47

2 Implementation Defined Attributes

Ada 95 defines (throughout the Ada 95 reference manual, summarized in annex K), a set
of attributes that provide useful additional functionality in all areas of the language. These
language defined attributes are implemented in GNAT and work as described in the Ada
95 Reference Manual.

In addition, Ada 95 allows implementations to define additional attributes whose mean-
ing is defined by the implementation. GNAT provides a number of these implementation-
dependent attributes which can be used to extend and enhance the functionality of the
compiler. This section of the GNAT reference manual describes these additional attributes.

Note that any program using these attributes may not be portable to other compilers
(although GNAT implements this set of attributes on all platforms). Therefore if portability
to other compilers is an important consideration, you should minimize the use of these
attributes.

Abort_Signal

Standard’Abort_Signal (Standard is the only allowed prefix) provides the entity for the
special exception used to signal task abort or asynchronous transfer of control. Normally this
attribute should only be used in the tasking runtime (it is highly peculiar, and completely
outside the normal semantics of Ada, for a user program to intercept the abort exception).

Address_Size

Standard’Address_Size (Standard is the only allowed prefix) is a static constant giving
the number of bits in an Address. It is the same value as System.Address’Size, but has
the advantage of being static, while a direct reference to System.Address’Size is non-static
because Address is a private type.

Asm_Input

The Asm_Input attribute denotes a function that takes two parameters. The first is a
string, the second is an expression of the type designated by the prefix. The first (string)
argument is required to be a static expression, and is the constraint for the parameter, (e.g.
what kind of register is required). The second argument is the value to be used as the input
argument. The possible values for the constant are the same as those used in the RTL,
and are dependent on the configuration file used to built the GCC back end. Section 12.1
[Machine Code Insertions|, page 179

Asm_QOutput

The Asm_Output attribute denotes a function that takes two parameters. The first is a
string, the second is the name of a variable of the type designated by the attribute prefix.
The first (string) argument is required to be a static expression and designates the constraint
for the parameter (e.g. what kind of register is required). The second argument is the
variable to be updated with the result. The possible values for constraint are the same as
those used in the RTL, and are dependent on the configuration file used to build the GCC
back end. If there are no output operands, then this argument may either be omitted, or
explicitly given as No_Output_Operands. Section 12.1 [Machine Code Insertions|, page 179

48 GNAT Reference Manual

AST_Entry

This attribute is implemented only in OpenVMS versions of GNAT. Applied to the name
of an entry, it yields a value of the predefined type AST_Handler (declared in the predefined
package System, as extended by the use of pragma Extend_System (Aux_DEC)). This value
enables the given entry to be called when an AST occurs. For further details, refer to the
DEC Ada Language Reference Manual, section 9.12a.

Bit
obj ’Bit, where obj is any object, yields the bit offset within the storage unit (byte) that
contains the first bit of storage allocated for the object. The value of this attribute is of the

type Universal_Integer, and is always a non-negative number not exceeding the value of
System.Storage_Unit.

For an object that is a variable or a constant allocated in a register, the value is zero.
(The use of this attribute does not force the allocation of a variable to memory).

For an object that is a formal parameter, this attribute applies to either the matching
actual parameter or to a copy of the matching actual parameter.

For an access object the value is zero. Note that obj.all’Bit is subject to an Access_
Check for the designated object. Similarly for a record component X.C’Bit is subject to a
discriminant check and X (I).Bit and X(I1..I2)’Bit are subject to index checks.

This attribute is designed to be compatible with the DEC Ada 83 definition and imple-
mentation of the Bit attribute.

Bit_Position

R.C’Bit, where R is a record object and C is one of the fields of the record type, yields the
bit offset within the record contains the first bit of storage allocated for the object. The
value of this attribute is of the type Universal_Integer. The value depends only on the
field C and is independent of the alignment of the containing record R.

Code_Address

The ’Address attribute may be applied to subprograms in Ada 95, but the intended effect
from the Ada 95 reference manual seems to be to provide an address value which can be
used to call the subprogram by means of an address clause as in the following example:

procedure K is ...

procedure L;

for L’Address use K’Address;

pragma Import (Ada, L);
A call to L is then expected to result in a call to K. In Ada 83, where there were no access-
to-subprogram values, this was a common work around for getting the effect of an indirect
call. GNAT implements the above use of Address and the technique illustrated by the
example code works correctly.

However, for some purposes, it is useful to have the address of the start of the gen-
erated code for the subprogram. On some architectures, this is not necessarily the same

Chapter 2: Implementation Defined Attributes 49

as the Address value described above. For example, the Address value may reference a
subprogram descriptor rather than the subprogram itself.

The ’Code_Address attribute, which can only be applied to subprogram entities, always
returns the address of the start of the generated code of the specified subprogram, which
may or may not be the same value as is returned by the corresponding ’Address attribute.

Default_Bit_Order

Standard’Default_Bit_Order (Standard is the only permissible prefix), provides the value
System.Default_Bit_Order as a Pos value (0 for High_Order_First, 1 for Low_Order_
First). This is used to construct the definition of Default_Bit_Order in package System.

Elaborated

The prefix of the Elaborated attribute must be a unit name. The value is a Boolean which
indicates whether or not the given unit has been elaborated. This attribute is primarily
intended for internal use by the generated code for dynamic elaboration checking, but it
can also be used in user programs. The value will always be True once elaboration of all
units has been completed. An exception is for units which need no elaboration, the value
is always False for such units.

Elab_Body

This attribute can only be applied to a program unit name. It returns the entity for the
corresponding elaboration procedure for elaborating the body of the referenced unit. This
is used in the main generated elaboration procedure by the binder and is not normally used
in any other context. However, there may be specialized situations in which it is useful
to be able to call this elaboration procedure from Ada code, e.g. if it is necessary to do
selective re-elaboration to fix some error.

Elab_Spec

This attribute can only be applied to a program unit name. It returns the entity for the
corresponding elaboration procedure for elaborating the specification of the referenced unit.
This is used in the main generated elaboration procedure by the binder and is not normally
used in any other context. However, there may be specialized situations in which it is
useful to be able to call this elaboration procedure from Ada code, e.g. if it is necessary to
do selective re-elaboration to fix some error.

Emax

The Emax attribute is provided for compatibility with Ada 83. See the Ada 83 reference
manual for an exact description of the semantics of this attribute.

Enum_Rep

For every enumeration subtype S, S’Enum_Rep denotes a function with the following spec:

function S’Enum_Rep (Arg : S’Base)
return Universal_Integer;

50 GNAT Reference Manual

It is also allowable to apply Enum_Rep directly to an object of an enumeration type or to
a non-overloaded enumeration literal. In this case S’Enum_Rep is equivalent to typ ’Enum_
Rep(S) where typ is the type of the enumeration literal or object.

The function returns the representation value for the given enumeration value. This
will be equal to value of the Pos attribute in the absence of an enumeration representation
clause. This is a static attribute (i.e. the result is static if the argument is static).

S’Enum_Rep can also be used with integer types and objects, in which case it simply
returns the integer value. The reason for this is to allow it to be used for (<>) discrete
formal arguments in a generic unit that can be instantiated with either enumeration types
or integer types. Note that if Enum_Rep is used on a modular type whose upper bound
exceeds the upper bound of the largest signed integer type, and the argument is a variable,
so that the universal integer calculation is done at run-time, then the call to Enum_Rep may
raise Constraint_Error.

Epsilon

The Epsilon attribute is provided for compatibility with Ada 83. See the Ada 83 reference
manual for an exact description of the semantics of this attribute.

Fixed_Value

For every fixed-point type S, S’Fixed_Value denotes a function with the following specifi-
cation:
function S’Fixed_Value (Arg : Universal_Integer)
return S;
The value returned is the fixed-point value V such that
V = Arg * S’Small

The effect is thus similar to first converting the argument to the integer type used to
represent S, and then doing an unchecked conversion to the fixed-point type. The difference
is that there are full range checks, to ensure that the result is in range. This attribute is
primarily intended for use in implementation of the input-output functions for fixed-point
values.

Has_Access_Values

The prefix of the Has_Access_Values attribute is a type. The result is a Boolean value
which is True if the is an access type, or is a composite type with a component (at any
nesting depth) that is an access type, and is False otherwise. The intended use of this
attribute is in conjunction with generic definitions. If the attribute is applied to a generic
private type, it indicates whether or not the corresponding actual type has access values.

Has_Discriminants

The prefix of the Has_Discriminants attribute is a type. The result is a Boolean value
which is True if the type has discriminants, and False otherwise. The intended use of this
attribute is in conjunction with generic definitions. If the attribute is applied to a generic
private type, it indicates whether or not the corresponding actual type has discriminants.

Chapter 2: Implementation Defined Attributes 51

Img

The Img attribute differs from Image in that it may be applied to objects as well as types, in
which case it gives the Image for the subtype of the object. This is convenient for debugging:

Put_Line ("X = " & X’Img);

has the same meaning as the more verbose:

Put_Line ("X = " & T’Image (X));

where T is the (sub)type of the object X.

Integer_Value

For every integer type S, S’ Integer_Value denotes a function with the following spec:

function S’Integer_Value (Arg : Universal_Fixed)
return S;

The value returned is the integer value V| such that

Arg = V * T’Small

where T is the type of Arg. The effect is thus similar to first doing an unchecked conversion
from the fixed-point type to its corresponding implementation type, and then converting the
result to the target integer type. The difference is that there are full range checks, to ensure
that the result is in range. This attribute is primarily intended for use in implementation
of the standard input-output functions for fixed-point values.

Large

The Large attribute is provided for compatibility with Ada 83. See the Ada 83 reference
manual for an exact description of the semantics of this attribute.

Machine_Size

This attribute is identical to the Object_Size attribute. It is provided for compatibility
with the DEC Ada 83 attribute of this name.

Mantissa

The Mantissa attribute is provided for compatibility with Ada 83. See the Ada 83 reference
manual for an exact description of the semantics of this attribute.

Max_Interrupt_Priority

Standard’Max_Interrupt_Priority (Standard is the only permissible prefix), provides
the same value as System.Max_Interrupt_Priority.

Max_Priority

Standard’Max_Priority (Standard is the only permissible prefix) provides the same value
as System.Max_Priority.

52 GNAT Reference Manual

Maximum_Alignment

Standard’Maximum_Alignment (Standard is the only permissible prefix) provides the max-
imum useful alignment value for the target. This is a static value that can be used to specify
the alignment for an object, guaranteeing that it is properly aligned in all cases.

Mechanism_Code

function’Mechanism_Code yields an integer code for the mechanism used for the result of
function, and subprogram’Mechanism_Code (n) yields the mechanism used for formal pa-
rameter number n (a static integer value with 1 meaning the first parameter) of subprogram.
The code returned is:

by copy (value)

by reference

by descriptor (default descriptor class)

by descriptor (UBS: unaligned bit string)

by descriptor (UBSB: aligned bit string with arbitrary bounds)

by descriptor (S: string, also scalar access type parameter)

by descriptor (SB: string with arbitrary bounds)

© 0 N O Ot ke W N

(
(
(
by descriptor (UBA: unaligned bit array)
(
(
(

by descriptor (A: contiguous array)

—_
]

by descriptor (NCA: non-contiguous array)
Values from 3 through 10 are only relevant to Digital OpenVMS implementations.

Null_Parameter

A reference T’Null_Parameter denotes an imaginary object of type or subtype T allocated
at machine address zero. The attribute is allowed only as the default expression of a formal
parameter, or as an actual expression of a subprogram call. In either case, the subprogram
must be imported.

The identity of the object is represented by the address zero in the argument list, inde-
pendent of the passing mechanism (explicit or default).

This capability is needed to specify that a zero address should be passed for a record or
other composite object passed by reference. There is no way of indicating this without the
Null_Parameter attribute.

Object_Size

The size of an object is not necessarily the same as the size of the type of an object. This is
because by default object sizes are increased to be a multiple of the alignment of the object.
For example, Natural’Size is 31, but by default objects of type Natural will have a size
of 32 bits. Similarly, a record containing an integer and a character:

Chapter 2: Implementation Defined Attributes 53

type Rec is record
I : Integer;
C : Character;
end record;

will have a size of 40 (that is Rec’Size will be 40. The alignment will be 4, because of the
integer field, and so the default size of record objects for this type will be 64 (8 bytes).

The type’0bject_Size attribute has been added to GNAT to allow the default object
size of a type to be easily determined. For example, Natural’Object_Size is 32, and
Rec’0Object_Size (for the record type in the above example) will be 64. Note also that,
unlike the situation with the Size attribute as defined in the Ada RM, the Object_Size
attribute can be specified individually for different subtypes. For example:

type R is new Integer;

subtype R1 is R range 1 .. 10;
subtype R2 is R range 1 .. 10;
for R2’0Object_Size use 8;

In this example, R’0bject_Size and R1’0bject_Size are both 32 since the default object
size for a subtype is the same as the object size for the parent subtype. This means that
objects of type R or R1 will by default be 32 bits (four bytes). But objects of type R2 will
be only 8 bits (one byte), since R2’0bject_Size has been set to 8.

Passed_By_Reference

type ’Passed_By_Reference for any subtype type returns a value of type Boolean value
that is True if the type is normally passed by reference and False if the type is normally
passed by copy in calls. For scalar types, the result is always False and is static. For
non-scalar types, the result is non-static.

Range_Length

type ’Range_Length for any discrete type type yields the number of values represented by
the subtype (zero for a null range). The result is static for static subtypes. Range_Length
applied to the index subtype of a one dimensional array always gives the same result as
Range applied to the array itself.

Safe_Emax

The Safe_Emax attribute is provided for compatibility with Ada 83. See the Ada 83 reference
manual for an exact description of the semantics of this attribute.

Safe_Large

The Safe_Large attribute is provided for compatibility with Ada 83. See the Ada 83
reference manual for an exact description of the semantics of this attribute.

Small

The Small attribute is defined in Ada 95 only for fixed-point types. GNAT also allows this
attribute to be applied to floating-point types for compatibility with Ada 83. See the Ada
83 reference manual for an exact description of the semantics of this attribute when applied
to floating-point types.

54 GNAT Reference Manual

Storage_Unit

Standard’Storage_Unit (Standard is the only permissible prefix) provides the same value
as System.Storage_Unit.

Target_Name

Standard’Target_Name (Standard is the only permissible prefix) provides a static string
value that identifies the target for the current compilation. For GCC implementations, this
is the standard gcc target name without the terminating slash (for example, GNAT 5.0 on
windows yields "i586-pc-mingw32msv").

Tick

Standard’Tick (Standard is the only permissible prefix) provides the same value as
System.Tick,

To_Address

The System’To_Address (System is the only permissible prefix) denotes a function iden-
tical to System.Storage_Elements.To_Address except that it is a static attribute. This
means that if its argument is a static expression, then the result of the attribute is a static
expression. The result is that such an expression can be used in contexts (e.g. preelaborable
packages) which require a static expression and where the function call could not be used
(since the function call is always non-static, even if its argument is static).

Type_Class

type’ Type_Class for any type or subtype type yields the value of the type class for the full
type of type. If type is a generic formal type, the value is the value for the corresponding
actual subtype. The value of this attribute is of type System.Aux_DEC.Type_Class, which
has the following definition:

type Type_Class is
(Type_Class_Enumeration,
Type_Class_Integer,
Type_Class_Fixed_Point,
Type_Class_Floating_Point,
Type_Class_Array,
Type_Class_Record,
Type_Class_Access,
Type_Class_Task,
Type_Class_Address);

Protected types yield the value Type_Class_Task, which thus applies to all concurrent
types. This attribute is designed to be compatible with the DEC Ada 83 attribute of the
same name.

UET _Address

The UET_Address attribute can only be used for a prefix which denotes a library pack-
age. It yields the address of the unit exception table when zero cost exception handling is
used. This attribute is intended only for use within the GNAT implementation. See the

Chapter 2: Implementation Defined Attributes 55

unit Ada.Exceptions in files ‘a-except.ads’ and ‘a-except.adb’ for details on how this
attribute is used in the implementation.

Unconstrained_Array

The Unconstrained_Array attribute can be used with a prefix that denotes any type or
subtype. It is a static attribute that yields True if the prefix designates an unconstrained
array, and False otherwise. In a generic instance, the result is still static, and yields the
result of applying this test to the generic actual.

Universal_Literal_String

The prefix of Universal_Literal_String must be a named number. The static result is
the string consisting of the characters of the number as defined in the original source. This
allows the user program to access the actual text of named numbers without intermediate
conversions and without the need to enclose the strings in quotes (which would preclude
their use as numbers). This is used internally for the construction of values of the floating-
point attributes from the file ‘ttypef.ads’, but may also be used by user programs.

Unrestricted_Access

The Unrestricted_Access attribute is similar to Access except that all accessibility and
aliased view checks are omitted. This is a user-beware attribute. It is similar to Address, for
which it is a desirable replacement where the value desired is an access type. In other words,
its effect is identical to first applying the Address attribute and then doing an unchecked
conversion to a desired access type. In GNAT, but not necessarily in other implementations,
the use of static chains for inner level subprograms means that Unrestricted_Access
applied to a subprogram yields a value that can be called as long as the subprogram is in
scope (normal Ada 95 accessibility rules restrict this usage).

It is possible to use Unrestricted_Access for any type, but care must be excercised if
it is used to create pointers to unconstrained objects. In this case, the resulting pointer has
the same scope as the context of the attribute, and may not be returned to some enclosing
scope. For instance, a function cannot use Unrestricted_Access to create a unconstrained
pointer and then return that value to the caller.

VADS_Size

The ’VADS_Size attribute is intended to make it easier to port legacy code which relies
on the semantics of ’Size as implemented by the VADS Ada 83 compiler. GNAT makes
a best effort at duplicating the same semantic interpretation. In particular, >VADS_Size
applied to a predefined or other primitive type with no Size clause yields the Object_Size
(for example, Natural’Size is 32 rather than 31 on typical machines). In addition ’VADS_
Size applied to an object gives the result that would be obtained by applying the attribute
to the corresponding type.

Value_Size

type ’Value_Size is the number of bits required to represent a value of the given subtype.
It is the same as type ’Size, but, unlike Size, may be set for non-first subtypes.

56 GNAT Reference Manual

Wchar_T_Size

Standard’Wchar_T_Size (Standard is the only permissible prefix) provides the size in bits
of the C wchar_t type primarily for constructing the definition of this type in package
Interfaces.C.

Word_Size

Standard’Word_Size (Standard is the only permissible prefix) provides the value
System.Word_Size.

Chapter 3: Implementation Advice 57

3 Implementation Advice

The main text of the Ada 95 Reference Manual describes the required behavior of all Ada
95 compilers, and the GNAT compiler conforms to these requirements.

In addition, there are sections throughout the Ada 95 reference manual headed by the
phrase “implementation advice”. These sections are not normative, i.e. they do not specify
requirements that all compilers must follow. Rather they provide advice on generally desir-
able behavior. You may wonder why they are not requirements. The most typical answer
is that they describe behavior that seems generally desirable, but cannot be provided on all
systems, or which may be undesirable on some systems.

As far as practical, GNAT follows the implementation advice sections in the Ada 95 Ref-
erence Manual. This chapter contains a table giving the reference manual section number,
paragraph number and several keywords for each advice. Each entry consists of the text of
the advice followed by the GNAT interpretation of this advice. Most often, this simply says
“followed”, which means that GNAT follows the advice. However, in a number of cases,
GNAT deliberately deviates from this advice, in which case the text describes what GNAT
does and why.

1.1.3(20): Error Detection

If an implementation detects the use of an unsupported Specialized Needs Annex feature
at run time, it should raise Program_Error if feasible.

Not relevant. All specialized needs annex features are either supported, or diagnosed at
compile time.

1.1.3(31): Child Units

If an implementation wishes to provide implementation-defined extensions to the function-
ality of a language-defined library unit, it should normally do so by adding children to the
library unit.

Followed.

1.1.5(12): Bounded Errors

If an implementation detects a bounded error or erroneous execution, it should raise
Program_Error.

Followed in all cases in which the implementation detects a bounded error or erroneous
execution. Not all such situations are detected at runtime.

58 GNAT Reference Manual

2.8(16): Pragmas

Normally, implementation-defined pragmas should have no semantic effect for error-free
programs; that is, if the implementation-defined pragmas are removed from a working
program, the program should still be legal, and should still have the same semantics.

The following implementation defined pragmas are exceptions to this rule:

Abort_Defer
Affects semantics

Ada_83 Affects legality
Assert Affects semantics

CPP_Class
Affects semantics

CPP_Constructor
Affects semantics

CPP_Virtual
Affects semantics

CPP_Vtable
Affects semantics

Debug Affects semantics

Interface_Name
Affects semantics

Machine_Attribute
Affects semantics

Unimplemented_Unit
Affects legality

Unchecked_Union
Affects semantics

In each of the above cases, it is essential to the purpose of the pragma that this advice not
be followed. For details see the separate section on implementation defined pragmas.

2.8(17-19): Pragmas

Normally, an implementation should not define pragmas that can make an illegal program
legal, except as follows:

[A pragma used to complete a declaration, such as a pragma Import; J

Chapter 3: Implementation Advice 59

A pragma used to configure the environment by adding, removing, or replacing library_
items.

See response to paragraph 16 of this same section.

3.5.2(5): Alternative Character Sets

(N
If an implementation supports a mode with alternative interpretations for Character and

Wide_Character, the set of graphic characters of Character should nevertheless remain
a proper subset of the set of graphic characters of Wide_Character. Any character set
“localizations” should be reflected in the results of the subprograms defined in the language-
defined package Characters.Handling (see A.3) available in such a mode. In a mode
with an alternative interpretation of Character, the implementation should also support a

corresponding change in what is a legal identifier_letter.
- /

Not all wide character modes follow this advice, in particular the JIS and TEC modes
reflect standard usage in Japan, and in these encoding, the upper half of the Latin-1 set
is not part of the wide-character subset, since the most significant bit is used for wide
character encoding. However, this only applies to the external forms. Internally there is no
such restriction.

3.5.4(28): Integer Types

An implementation should support Long_Integer in addition to Integer if the target
machine supports 32-bit (or longer) arithmetic. No other named integer subtypes are rec-
ommended for package Standard. Instead, appropriate named integer subtypes should be
provided in the library package Interfaces (see B.2).

Long_Integer is supported. Other standard integer types are supported so this advice
is not fully followed. These types are supported for convenient interface to C, and so that

all hardware types of the machine are easily available.

3.5.4(29): Integer Types

An implementation for a two’s complement machine should support modular types with
a binary modulus up to System.Max_Int*2+2. An implementation should support a non-
binary modules up to Integer’Last.

Followed.

60 GNAT Reference Manual

3.5.5(8): Enumeration Values

For the evaluation of a call on S’Pos for an enumeration subtype, if the value of the operand
does not correspond to the internal code for any enumeration literal of its type (perhaps due
to an un-initialized variable), then the implementation should raise Program_Error. This
is particularly important for enumeration types with noncontiguous internal codes specified
by an enumeration_representation_clause.

Followed.

3.5.7(17): Float Types

An implementation should support Long_Float in addition to Float if the target machine
supports 11 or more digits of precision. No other named floating point subtypes are recom-
mended for package Standard. Instead, appropriate named floating point subtypes should
be provided in the library package Interfaces (see B.2).

Short_Float and Long_Long_Float are also provided. The former provides improved
compatibility with other implementations supporting this type. The latter corresponds to
the highest precision floating-point type supported by the hardware. On most machines,
this will be the same as Long_Float, but on some machines, it will correspond to the IEEE
extended form. The notable case is all ia32 (x86) implementations, where Long_Long_
Float corresponds to the 80-bit extended precision format supported in hardware on this
processor. Note that the 128-bit format on SPARC is not supported, since this is a software
rather than a hardware format.

3.6.2(11): Multidimensional Arrays

An implementation should normally represent multidimensional arrays in row-major order,
consistent with the notation used for multidimensional array aggregates (see 4.3.3). How-
ever, if a pragma Convention (Fortran, ...) applies to a multidimensional array type,
then column-major order should be used instead (see B.5, “Interfacing with Fortran”).

Followed.

9.6(30-31): Duration’Small

Whenever possible in an implementation, the value of Duration’Small should be no greater
than 100 microseconds.

Followed. (Duration’Small = 10**(-9)).

Chapter 3: Implementation Advice 61

The time base for delay_relative_statements should be monotonic; it need not be
the same time base as used for Calendar.Clock.

Followed.

10.2.1(12): Consistent Representation

In an implementation, a type declared in a pre-elaborated package should have the same
representation in every elaboration of a given version of the package, whether the elabora-
tions occur in distinct executions of the same program, or in executions of distinct programs
or partitions that include the given version.

Followed, except in the case of tagged types. Tagged types involve implicit pointers to
a local copy of a dispatch table, and these pointers have representations which thus depend
on a particular elaboration of the package. It is not easy to see how it would be possible to
follow this advice without severely impacting efficiency of execution.

11.4.1(19): Exception Information

Exception_Message by default and Exception_Information should produce information
useful for debugging. Exception_Message should be short, about one line. Exception_
Information can be long. Exception_Message should not include the Exception_Name.
Exception_Information should include both the Exception_Name and the Exception_
Message.

Followed. For each exception that doesn’t have a specified Exception_Message, the
compiler generates one containing the location of the raise statement. This location has the
form “file:line”, where file is the short file name (without path information) and line is the
line number in the file. Note that in the case of the Zero Cost Exception mechanism, these
messages become redundant with the Exception_Information that contains a full backtrace
of the calling sequence, so they are disabled. To disable explicitly the generation of the
source location message, use the Pragma Discard_Names.

11.5(28): Suppression of Checks

The implementation should minimize the code executed for checks that have been sup-
pressed.

Followed.

62 GNAT Reference Manual

13.1 (21-24): Representation Clauses

-/

[The recommended level of support for all representation items is qualified as follows:

An implementation need not support representation items containing non-static expres-
sions, except that an implementation should support a representation item for a given entity
if each non-static expression in the representation item is a name that statically denotes a
constant declared before the entity.

Followed. GNAT does not support non-static expressions in representation clauses unless
they are constants declared before the entity. For example:

X : Some_Type;
for X’Address use To_address (16#2000%#);

will be rejected, since the To_Address expression is non-static. Instead write:

X_Address : constant Address : = To_Address (16#2000#);
X : Some_Type;
for X’Address use X_Address;

An implementation need not support a specification for the Size for a given composite
subtype, nor the size or storage place for an object (including a component) of a given
composite subtype, unless the constraints on the subtype and its composite subcomponents
(if any) are all static constraints.

Followed. Size Clauses are not permitted on non-static components, as described above.

An aliased component, or a component whose type is by-reference, should always be
allocated at an addressable location.

Followed.

13.2(6-8): Packed Types

If a type is packed, then the implementation should try to minimize storage allocated to
objects of the type, possibly at the expense of speed of accessing components, subject to
reasonable complexity in addressing calculations.

Chapter 3: Implementation Advice 63

(N

The recommended level of support pragma Pack is:

For a packed record type, the components should be packed as tightly as possible subject
to the Sizes of the component subtypes, and subject to any record_representation_
clause that applies to the type; the implementation may, but need not, reorder components
or cross aligned word boundaries to improve the packing. A component whose Size is

greater than the word size may be allocated an integral number of words.
N J

Followed. Tight packing of arrays is supported for all component sizes up to 64-bits.
If the array component size is 1 (that is to say, if the component is a boolean type or an
enumeration type with two values) then values of the type are implicitly initialized to zero.
This happens both for objects of the packed type, and for objects that have a subcomponent
of the packed type.

[An implementation should support Address clauses for imported subprograms. }

Followed.

13.3(14-19): Address Clauses

For an array X, X’Address should point at the first component of the array, and not at the
array bounds.

Followed.

The recommended level of support for the Address attribute is:

X’Address should produce a useful result if X is an object that is aliased or of a by-
reference type, or is an entity whose Address has been specified.

Followed. A valid address will be produced even if none of those conditions have been
met. If necessary, the object is forced into memory to ensure the address is valid.

[An implementation should support Address clauses for imported subprograms. }

Followed.

Objects (including subcomponents) that are aliased or of a by-reference type should be
allocated on storage element boundaries.

Followed.

64 GNAT Reference Manual

If the Address of an object is specified, or it is imported or exported, then the imple-
mentation should not perform optimizations based on assumptions of no aliases.

Followed.

13.3(29-35): Alignment Clauses

The recommended level of support for the Alignment attribute for subtypes is:

An implementation should support specified Alignments that are factors and multiples
of the number of storage elements per word, subject to the following:

Followed.

An implementation need not support specified Alignments for combinations of Sizes
and Alignments that cannot be easily loaded and stored by available machine instructions.

Followed.

An implementation need not support specified Alignments that are greater than the
maximum Alignment the implementation ever returns by default.

Followed.

The recommended level of support for the Alignment attribute for objects is:

Same as above, for subtypes, but in addition:

Followed.

For stand-alone library-level objects of statically constrained subtypes, the implemen-
tation should support all Alignments supported by the target linker. For example, page
alignment is likely to be supported for such objects, but not for subtypes.

Followed.

Chapter 3: Implementation Advice 65

13.3(42-43): Size Clauses

The recommended level of support for the Size attribute of objects is:

A Size clause should be supported for an object if the specified Size is at least as large
as its subtype’s Size, and corresponds to a size in storage elements that is a multiple of the
object’s Alignment (if the Alignment is nonzero).

Followed.

13.3(50-56): Size Clauses

If the Size of a subtype is specified, and allows for efficient independent addressability (see
9.10) on the target architecture, then the Size of the following objects of the subtype should
equal the Size of the subtype:

Aliased objects (including components).

Followed.

{ Size clause on a composite subtype should not affect the internal layout of components}

Followed.

[The recommended level of support for the Size attribute of subtypes is: }

The Size (if not specified) of a static discrete or fixed point subtype should be the
number of bits needed to represent each value belonging to the subtype using an unbiased
representation, leaving space for a sign bit only if the subtype contains negative values. If
such a subtype is a first subtype, then an implementation should support a specified Size
for it that reflects this representation.

Followed.

For a subtype implemented with levels of indirection, the Size should include the size
of the pointers, but not the size of what they point at.

Followed.

66 GNAT Reference Manual

13.3(71-73): Component Size Clauses

[The recommended level of support for the Component_Size attribute is:

N
An implementation need not support specified Component_Sizes that are less than the

Size of the component subtype.

J

Followed.

An implementation should support specified Component_Sizes that are factors and mul-
tiples of the word size. For such Component_Sizes, the array should contain no gaps between
components. For other Component_Sizes (if supported), the array should contain no gaps
between components when packing is also specified; the implementation should forbid this
combination in cases where it cannot support a no-gaps representation.

Followed.

13.4(9-10): Enumeration Representation Clauses

The recommended level of support for enumeration representation clauses is:

An implementation need mnot support enumeration representation clauses for
boolean types, but should at minimum support the internal codes in the range
System.Min_Int.System.Max_Int.

Followed.

13.5.1(17-22): Record Representation Clauses

(N
The recommended level of support for

record_representation_clauses is:

An implementation should support storage places that can be extracted with a load,
mask, shift sequence of machine code, and set with a load, shift, mask, store sequence,

given the available machine instructions and run-time model.
N

Followed.

Chapter 3: Implementation Advice 67

A storage place should be supported if its size is equal to the Size of the component
subtype, and it starts and ends on a boundary that obeys the Alignment of the component
subtype.

Followed.

If the default bit ordering applies to the declaration of a given type, then for a component
whose subtype’s Size is less than the word size, any storage place that does not cross an
aligned word boundary should be supported.

Followed.

An implementation may reserve a storage place for the tag field of a tagged type, and
disallow other components from overlapping that place.

Followed. The storage place for the tag field is the beginning of the tagged record, and
its size is Address’Size. GNAT will reject an explicit component clause for the tag field.

An implementation need not support a component_clause for a component of an exten-
sion part if the storage place is not after the storage places of all components of the parent
type, whether or not those storage places had been specified.

Followed. The above advice on record representation clauses is followed, and all men-
tioned features are implemented.

13.5.2(5): Storage Place Attributes

~
If a component is represented using some form of pointer (such as an offset) to the actual

data of the component, and this data is contiguous with the rest of the object, then the
storage place attributes should reflect the place of the actual data, not the pointer. If a
component is allocated discontinuously from the rest of the object, then a warning should
be generated upon reference to one of its storage place attributes.

J

Followed. There are no such components in GNAT.

13.5.3(7-8): Bit Ordering

[The recommended level of support for the non-default bit ordering is: }

68 GNAT Reference Manual

If Word_Size = Storage_Unit, then the implementation should support the non-default
bit ordering in addition to the default bit ordering.

Followed. Word size does not equal storage size in this implementation. Thus non-default
bit ordering is not supported.

13.7(37): Address as Private

[Address should be of a private type. }

Followed.

13.7.1(16): Address Operations

Operations in System and its children should reflect the target environment semantics as
closely as is reasonable. For example, on most machines, it makes sense for address arith-
metic to “wrap around”. Operations that do not make sense should raise Program_Error.

Followed. Address arithmetic is modular arithmetic that wraps around. No operation
raises Program_Error, since all operations make sense.

13.9(14-17): Unchecked Conversion

The Size of an array object should not include its bounds; hence, the bounds should not
be part of the converted data.

Followed.

The implementation should not generate unnecessary run-time checks to ensure that the
representation of S is a representation of the target type. It should take advantage of the
permission to return by reference when possible. Restrictions on unchecked conversions
should be avoided unless required by the target environment.

Followed. There are no restrictions on unchecked conversion. A warning is generated if
the source and target types do not have the same size since the semantics in this case may
be target dependent.

[The recommended level of support for unchecked conversions is: }

Chapter 3: Implementation Advice 69

(N
Unchecked conversions should be supported and should be reversible in the cases where

this clause defines the result. To enable meaningful use of unchecked conversion, a contigu-
ous representation should be used for elementary subtypes, for statically constrained array
subtypes whose component subtype is one of the subtypes described in this paragraph, and
for record subtypes without discriminants whose component subtypes are described in this
paragraph.

N J

Followed.

13.11(23-25): Implicit Heap Usage

An implementation should document any cases in which it dynamically allocates heap stor-
age for a purpose other than the evaluation of an allocator.

Followed, the only other points at which heap storage is dynamically allocated are as
follows:

e At initial elaboration time, to allocate dynamically sized global objects.
e To allocate space for a task when a task is created.

e To extend the secondary stack dynamically when needed. The secondary stack is used
for returning variable length results.

A default (implementation-provided) storage pool for an access-to-constant type should
not have overhead to support deallocation of individual objects.

Followed.

A storage pool for an anonymous access type should be created at the point of an
allocator for the type, and be reclaimed when the designated object becomes inaccessible.

Followed.

13.11.2(17): Unchecked De-allocation

{For a standard storage pool, Free should actually reclaim the storage.]

Followed.

70 GNAT Reference Manual

13.13.2(17): Stream Oriented Attributes

If a stream element is the same size as a storage element, then the normal in-memory
representation should be used by Read and Write for scalar objects. Otherwise, Read and
Write should use the smallest number of stream elements needed to represent all values in
the base range of the scalar type.

Followed. By default, GNAT uses the interpretation suggested by AI-195, which
specifies using the size of the first subtype. However, such an implementation is based on
direct binary representations and is therefore target- and endianness-dependent. To address
this issue, GNAT also supplies an alternate implementation of the stream attributes
Read and Write, which uses the target-independent XDR standard representation
for scalar types. The XDR implementation is provided as an alternative body of the
System.Stream_Attributes package, in the file ‘s-strxdr.adb’ in the GNAT library.
There is no ‘s-strxdr.ads’ file. In order to install the XDR implementation, do the
following:

1. Replace the default implementation of the System.Stream_Attributes package with
the XDR implementation. For example on a Unix platform issue the commands:

$ mv s-stratt.adb s-strold.adb
$ mv s-strxdr.adb s-stratt.adb

2. Rebuild the GNAT run-time library as documented in the GNAT User’s Guide

A.1(52): Names of Predefined Numeric Types

If an implementation provides additional named predefined integer types, then the names
should end with ‘Integer’ as in ‘Long_Integer’. If an implementation provides addi-
tional named predefined floating point types, then the names should end with ‘Float’ as in
‘Long_Float’.

Followed.

A.3.2(49): Ada.Characters.Handling

If an implementation provides a localized definition of Character or Wide_Character, then
the effects of the subprograms in Characters.Handling should reflect the localizations.
See also 3.5.2.

Followed. GNAT provides no such localized definitions.

Chapter 3: Implementation Advice 71

A.4.4(106): Bounded-Length String Handling

Bounded string objects should not be implemented by implicit pointers and dynamic allo-
cation.

Followed. No implicit pointers or dynamic allocation are used.

A.5.2(46-47): Random Number Generation

Any storage associated with an object of type Generator should be reclaimed on exit from
the scope of the object.

Followed.

If the generator period is sufficiently long in relation to the number of distinct initiator
values, then each possible value of Initiator passed to Reset should initiate a sequence of
random numbers that does not, in a practical sense, overlap the sequence initiated by any
other value. If this is not possible, then the mapping between initiator values and generator
states should be a rapidly varying function of the initiator value.

Followed. The generator period is sufficiently long for the first condition here to hold
true.

A.10.7(23): Get_Immediate

The Get_Immediate procedures should be implemented with unbuffered input. For a device
such as a keyboard, input should be available if a key has already been typed, whereas for
a disk file, input should always be available except at end of file. For a file associated with
a keyboard-like device, any line-editing features of the underlying operating system should
be disabled during the execution of Get_Immediate.

Followed on all targets except VxWorks. For VxWorks, there is no way to provide this
functionality that does not result in the input buffer being flushed before the Get_Immediate
call. A special unit Interfaces.Vxworks.IO0 is provided that contains routines to enable
this functionality.

72 GNAT Reference Manual

B.1(39-41): Pragma Export

-
If an implementation supports pragma Export to a given language, then it should also allow

the main subprogram to be written in that language. It should support some mechanism for
invoking the elaboration of the Ada library units included in the system, and for invoking the
finalization of the environment task. On typical systems, the recommended mechanism is
to provide two subprograms whose link names are adainit and adafinal. adainit should
contain the elaboration code for library units. adafinal should contain the finalization
code. These subprograms should have no effect the second and subsequent time they are

called.
L

Followed.

Automatic elaboration of pre-elaborated packages should be provided when pragma
Export is supported.

Followed when the main program is in Ada. If the main program is in a foreign language,
then adainit must be called to elaborate pre-elaborated packages.

For each supported convention L other than Intrinsic, an implementation should sup-
port Import and Export pragmas for objects of L-compatible types and for subprograms,
and pragma Convention for L-eligible types and for subprograms, presuming the other lan-
guage has corresponding features. Pragma Convention need not be supported for scalar

types.

Followed.

B.2(12-13): Package Interfaces

For each implementation-defined convention identifier, there should be a child package of
package Interfaces with the corresponding name. This package should contain any decla-
rations that would be useful for interfacing to the language (implementation) represented
by the convention. Any declarations useful for interfacing to any language on the given
hardware architecture should be provided directly in Interfaces.

Followed. An additional package not defined in the Ada 95 Reference Manual is
Interfaces.CPP, used for interfacing to C++.

An implementation supporting an interface to C, COBOL, or Fortran should provide
the corresponding package or packages described in the following clauses.

Chapter 3: Implementation Advice 73

Followed. GNAT provides all the packages described in this section.

B.3(63-71): Interfacing with C

An implementation should support the following interface correspondences between Ada
and C.

Followed.

[An Ada procedure corresponds to a void-returning C function. }

Followed.

[An Ada function corresponds to a non-void C function. }

Followed.

[An Ada in scalar parameter is passed as a scalar argument to a C function. j

Followed.

An Ada in parameter of an access-to-object type with designated type T is passed as a
t* argument to a C function, where ¢t is the C type corresponding to the Ada type T.

- = J

Followed.

An Ada access T parameter, or an Ada out or in out parameter of an elementary type
T, is passed as a t* argument to a C function, where t is the C type corresponding to the
Ada type T. In the case of an elementary out or in out parameter, a pointer to a temporary
copy is used to preserve by-copy semantics.

= >~ J

Followed.

An Ada parameter of a record type T, of any mode, is passed as a t* argument to a C
function, where t is the C structure corresponding to the Ada type T.

- <)

Followed. This convention may be overridden by the use of the C_Pass_By_Copy pragma,
or Convention, or by explicitly specifying the mechanism for a given call using an extended
import or export pragma.

74 GNAT Reference Manual

An Ada parameter of an array type with component type T, of any mode, is passed as
a t* argument to a C function, where t is the C type corresponding to the Ada type T.

Followed.

An Ada parameter of an access-to-subprogram type is passed as a pointer to a C function
whose prototype corresponds to the designated subprogram’s specification.

Followed.

B.4(95-98): Interfacing with COBOL

An Ada implementation should support the following interface correspondences between
Ada and COBOL.

Followed.

An Ada access T parameter is passed as a ‘BY REFERENCE’ data item of the COBOL type
corresponding to T.

Followed.

An Ada in scalar parameter is passed as a ‘BY CONTENT’ data item of the corresponding
COBOL type.

Followed.

Any other Ada parameter is passed as a ‘BY REFERENCE’ data item of the COBOL type
corresponding to the Ada parameter type; for scalars, a local copy is used if necessary to
ensure by-copy semantics.

Followed.

B.5(22-26): Interfacing with Fortran

An Ada implementation should support the following interface correspondences between
Ada and Fortran:

Followed.

Chapter 3: Implementation Advice 75

[An Ada procedure corresponds to a Fortran subroutine. }
Followed.

[An Ada function corresponds to a Fortran function. j
Followed.

An Ada parameter of an elementary, array, or record type T is passed as a T" argument
to a Fortran procedure, where T is the Fortran type corresponding to the Ada type T,
and where the INTENT attribute of the corresponding dummy argument matches the Ada
formal parameter mode; the Fortran implementation’s parameter passing conventions are
used. For elementary types, a local copy is used if necessary to ensure by-copy semantics.

Followed.

An Ada parameter of an access-to-subprogram type is passed as a reference to a Fortran
procedure whose interface corresponds to the designated subprogram’s specification.

Followed.

C.1(3-5): Access to Machine Operations

The machine code or intrinsic support should allow access to all operations normally avail-
able to assembly language programmers for the target environment, including privileged
instructions, if any.

Followed.

The interfacing pragmas (see Annex B) should support interface to assembler; the default
assembler should be associated with the convention identifier Assembler.

Followed.

If an entity is exported to assembly language, then the implementation should allocate
it at an addressable location, and should ensure that it is retained by the linking process,
even if not otherwise referenced from the Ada code. The implementation should assume
that any call to a machine code or assembler subprogram is allowed to read or update every
object that is specified as exported.

Followed.

76 GNAT Reference Manual

C.1(10-16): Access to Machine Operations

The implementation should ensure that little or no overhead is associated with calling
intrinsic and machine-code subprograms.

Followed for both intrinsics and machine-code subprograms.

It is recommended that intrinsic subprograms be provided for convenient access to any
machine operations that provide special capabilities or efficiency and that are not otherwise
available through the language constructs.

Followed. A full set of machine operation intrinsic subprograms is provided.

Atomic read-modify-write operations—e.g., test and set, compare and swap, decrement
and test, enqueue/dequeue.

Followed on any target supporting such operations.

[Standard numeric functions—e.g., sin, log. }

Followed on any target supporting such operations.

[String manipulation operations—e.g., translate and test. }

Followed on any target supporting such operations.

[Vector operations—e.g., compare vector against thresholds. }

Followed on any target supporting such operations.

[Direct operations on I/O ports. }

Followed on any target supporting such operations.

Chapter 3: Implementation Advice 7

C.3(28): Interrupt Support

If the Ceiling_Locking policy is not in effect, the implementation should provide means
for the application to specify which interrupts are to be blocked during protected actions,
if the underlying system allows for a finer-grain control of interrupt blocking.

Followed. The underlying system does not allow for finer-grain control of interrupt
blocking.

C.3.1(20-21): Protected Procedure Handlers

Whenever possible, the implementation should allow interrupt handlers to be called directly
by the hardware.

Followed on any target where the underlying operating system permits such direct calls.

Whenever practical, violations of any implementation-defined restrictions should be de-
tected before run time.

Followed. Compile time warnings are given when possible.

C.3.2(25): Package Interrupts

If implementation-defined forms of interrupt handler procedures are supported, such as pro-
tected procedures with parameters, then for each such form of a handler, a type analogous
to Parameterless_Handler should be specified in a child package of Interrupts, with the
same operations as in the predefined package Interrupts.

Followed.

C.4(14): Pre-elaboration Requirements

It is recommended that pre-elaborated packages be implemented in such a way that there
should be little or no code executed at run time for the elaboration of entities not already
covered by the Implementation Requirements.

Followed. Executable code is generated in some cases, e.g. loops to initialize large arrays.

78 GNAT Reference Manual

C.5(8): Pragma Discard_Names

If the pragma applies to an entity, then the implementation should reduce the amount of
storage used for storing names associated with that entity.

Followed.

C.7.2(30): The Package Task_Attributes

(7
Some implementations are targeted to domains in which memory use at run time must be

completely deterministic. For such implementations, it is recommended that the storage for
task attributes will be pre-allocated statically and not from the heap. This can be accom-
plished by either placing restrictions on the number and the size of the task’s attributes,
or by using the pre-allocated storage for the first N attribute objects, and the heap for the

others. In the latter case, N should be documented.
N

Not followed. This implementation is not targeted to such a domain.

D.3(17): Locking Policies

The implementation should use names that end with ‘_Locking’ for locking policies defined
by the implementation.

Followed. A single implementation-defined locking policy is defined, whose name
(Inheritance_Locking) follows this suggestion.

D.4(16): Entry Queuing Policies

Names that end with ‘_Queuing’ should be used for all implementation-defined queuing
policies.

Followed. No such implementation-defined queuing policies exist.

D.6(9-10): Preemptive Abort

Even though the abort_statement is included in the list of potentially blocking operations
(see 9.5.1), it is recommended that this statement be implemented in a way that never
requires the task executing the abort_statement to block.

Chapter 3: Implementation Advice 79

Followed.

On a multi-processor, the delay associated with aborting a task on another processor
should be bounded; the implementation should use periodic polling, if necessary, to achieve
this.

Followed.

D.7(21): Tasking Restrictions

When feasible, the implementation should take advantage of the specified restrictions to
produce a more efficient implementation.

GNAT currently takes advantage of these restrictions by providing an optimized run
time when the Ravenscar profile and the GNAT restricted run time set of restrictions are
specified. See pragma Profile (Ravenscar) and pragma Profile (Restricted) for more
details.

D.8(47-49): Monotonic Time

When appropriate, implementations should provide configuration mechanisms to change
the value of Tick.

Such configuration mechanisms are not appropriate to this implementation and are thus
not supported.

It is recommended that Calendar.Clock and Real_Time.Clock be implemented as
transformations of the same time base.

Followed.

It is recommended that the best time base which exists in the underlying system be
available to the application through Clock. Best may mean highest accuracy or largest
range.

Followed.

80 GNAT Reference Manual

E.5(28-29): Partition Communication Subsystem

Whenever possible, the PCS on the called partition should allow for multiple tasks to
call the RPC-receiver with different messages and should allow them to block until the
corresponding subprogram body returns.

Followed by GLADE, a separately supplied PCS that can be used with GNAT.

The Write operation on a stream of type Params_Stream_Type should raise Storage_
Error if it runs out of space trying to write the Item into the stream.

Followed by GLADE, a separately supplied PCS that can be used with GNAT.

F(7): COBOL Support

(N
If COBOL (respectively, C) is widely supported in the target environment, implemen-
tations supporting the Information Systems Annex should provide the child package
Interfaces.COBOL (respectively, Interfaces.C) specified in Annex B and should support
a convention_identifier of COBOL (respectively, C) in the interfacing pragmas (see
Annex B), thus allowing Ada programs to interface with programs written in that
language.

- J

Followed.

F.1(2): Decimal Radix Support

Packed decimal should be used as the internal representation for objects of subtype S when
S’Machine_Radix = 10.

Not followed. GNAT ignores S’Machine_Radix and always uses binary representations.

G: Numerics

~
If Fortran (respectively, C) is widely supported in the target environment, implementations
supporting the Numerics Annex should provide the child package Interfaces.Fortran
(respectively, Interfaces.C) specified in Annex B and should support a convention_
identifier of Fortran (respectively, C) in the interfacing pragmas (see Annex B), thus
allowing Ada programs to interface with programs written in that language.

J

Chapter 3: Implementation Advice 81

Followed.

G.1.1(56-58): Complex Types

()
Because the usual mathematical meaning of multiplication of a complex operand and a

real operand is that of the scaling of both components of the former by the latter, an
implementation should not perform this operation by first promoting the real operand to
complex type and then performing a full complex multiplication. In systems that, in the
future, support an Ada binding to IEC 559:1989, the latter technique will not generate the
required result when one of the components of the complex operand is infinite. (Explicit
multiplication of the infinite component by the zero component obtained during promotion
yields a NaN that propagates into the final result.) Analogous advice applies in the case
of multiplication of a complex operand and a pure-imaginary operand, and in the case of

division of a complex operand by a real or pure-imaginary operand.
N J

Not followed.

(7
Similarly, because the usual mathematical meaning of addition of a complex operand

and a real operand is that the imaginary operand remains unchanged, an implementation
should not perform this operation by first promoting the real operand to complex type and
then performing a full complex addition. In implementations in which the Signed_Zeros
attribute of the component type is True (and which therefore conform to IEC 559:1989
in regard to the handling of the sign of zero in predefined arithmetic operations), the
latter technique will not generate the required result when the imaginary component of the
complex operand is a negatively signed zero. (Explicit addition of the negative zero to the
zero obtained during promotion yields a positive zero.) Analogous advice applies in the
case of addition of a complex operand and a pure-imaginary operand, and in the case of

subtraction of a complex operand and a real or pure-imaginary operand.
N

Not followed.

(7
Implementations in which Real’Signed_Zeros is True should attempt to provide a

rational treatment of the signs of zero results and result components. As one example, the
result of the Argument function should have the sign of the imaginary component of the
parameter X when the point represented by that parameter lies on the positive real axis; as
another, the sign of the imaginary component of the Compose_From_Polar function should
be the same as (respectively, the opposite of) that of the Argument parameter when that
parameter has a value of zero and the Modulus parameter has a nonnegative (respectively,

negative) value.
-)

Followed.

82 GNAT Reference Manual

G.1.2(49): Complex Elementary Functions

(7
Implementations in which Complex_Types.Real’Signed_Zeros is True should attempt to

provide a rational treatment of the signs of zero results and result components. For example,
many of the complex elementary functions have components that are odd functions of one
of the parameter components; in these cases, the result component should have the sign
of the parameter component at the origin. Other complex elementary functions have zero
components whose sign is opposite that of a parameter component at the origin, or is always

positive or always negative.
N J

Followed.

G.2.4(19): Accuracy Requirements

The versions of the forward trigonometric functions without a Cycle parameter should
not be implemented by calling the corresponding version with a Cycle parameter of
2.0*Numerics.Pi, since this will not provide the required accuracy in some portions of the
domain. For the same reason, the version of Log without a Base parameter should not be
implemented by calling the corresponding version with a Base parameter of Numerics.e.

Followed.

G.2.6(15): Complex Arithmetic Accuracy

The version of the Compose_From_Polar function without a Cycle parameter should
not be implemented by calling the corresponding version with a Cycle parameter of
2.0*Numerics.Pi, since this will not provide the required accuracy in some portions of
the domain.

Followed.

Chapter 4: Implementation Defined Characteristics 83

4 Implementation Defined Characteristics

In addition to the implementation dependent pragmas and attributes, and the implementa-
tion advice, there are a number of other features of Ada 95 that are potentially implemen-
tation dependent. These are mentioned throughout the Ada 95 Reference Manual, and are
summarized in annex M.

A requirement for conforming Ada compilers is that they provide documentation de-
scribing how the implementation deals with each of these issues. In this chapter, you will
find each point in annex M listed followed by a description in italic font of how GNAT
handles the implementation dependence.

You can use this chapter as a guide to minimizing implementation dependent features in
your programs if portability to other compilers and other operating systems is an important
consideration. The numbers in each section below correspond to the paragraph number in
the Ada 95 Reference Manual.

2. Whether or not each recommendation given in Implementation Advice is followed. See
1.1.2(37).

See Chapter 3 [Implementation Advice], page 57.

&’). Capacity limitations of the implementation. See 1.1.3(3). j

The complexity of programs that can be processed is limited only by the total amount of
available virtual memory, and disk space for the generated object files.

4. Variations from the standard that are impractical to avoid given the implementation’s
execution environment. See 1.1.3(6).

There are no variations from the standard.

[5. Which code_statements cause external interactions. See 1.1.3(10). }

Any code_statement can potentially cause external interactions.

ﬁ%. The coded representation for the text of an Ada program. See 2.1(4). j

See separate section on source representation.

{7. The control functions allowed in comments. See 2.1(14). j

84 GNAT Reference Manual

See separate section on source representation.

[8. The representation for an end of line. See 2.2(2). }

See separate section on source representation.

[9. Maximum supported line length and lexical element length. See 2.2(15). j

The maximum line length is 255 characters an the maximum length of a lexical element is
also 255 characters.

[10. Implementation defined pragmas. See 2.8(14). }

See Chapter 1 [Implementation Defined Pragmas], page 3.

[11. Effect of pragma Optimize. See 2.8(27). j

Pragma Optimize, if given with a Time or Space parameter, checks that the optimization
flag is set, and aborts if it is not.

12. The sequence of characters of the value returned by S’Image when some of the graphic
characters of S’Wide_Image are not defined in Character. See 3.5(37).

The sequence of characters is as defined by the wide character encoding method used for
the source. See section on source representation for further details.

[13. The predefined integer types declared in Standard. See 3.5.4(25). }

Short_Short_Integer
8 bit signed

Short_Integer
(Short) 16 bit signed

Integer 32 bit signed

Long_Integer
64 bit signed (Alpha OpenVMS only) 32 bit signed (all other targets)

Long_Long_Integer
64 bit signed

Chapter 4: Implementation Defined Characteristics 85

[14. Any nonstandard integer types and the operators defined for them. See 3.5.4(26). j

There are no nonstandard integer types.

[15. Any nonstandard real types and the operators defined for them. See 3.5.6(8). }

There are no nonstandard real types.

16. What combinations of requested decimal precision and range are supported for floating
point types. See 3.5.7(7).

The precision and range is as defined by the IEEE standard.

{17 . The predefined floating point types declared in Standard. See 3.5.7(16). }

Short_Float
32 bit IEEE short

Float (Short) 32 bit IEEE short

Long_Float
64 bit IEEE long

Long_Long_Float
64 bit IEEE long (80 bit IEEE long on x86 processors)

[18. The small of an ordinary fixed point type. See 3.5.9(8). }

Fine_Delta is 2**(—63)

19. What combinations of small, range, and digits are supported for fixed point types. See
3.5.9(10).

Any combinations are permitted that do not result in a small less than Fine_Delta and
do not result in a mantissa larger than 63 bits. If the mantissa is larger than 53 bits on
machines where Long_Long_Float is 64 bits (true of all architectures except ia32), then the
output from Text_IO is accurate to only 53 bits, rather than the full mantissa. This is
because floating-point conversions are used to convert fixed point.

20. The result of Tags.Expanded_Name for types declared within an unnamed block_
statement. See 3.9(10).

86 GNAT Reference Manual

Block numbers of the form Bnnn, where nnn is a decimal integer are allocated.

{21. Implementation-defined attributes. See 4.1.4(12). }

See Chapter 2 [Implementation Defined Attributes], page 47.

[22. Any implementation-defined time types. See 9.6(6). }

There are no implementation-defined time types.

[23. The time base associated with relative delays. }

See 9.6(20). The time base used is that provided by the C library function gettimeofday.

@4. The time base of the type Calendar.Time. See 9.6(23). }

The time base used is that provided by the C library function gettimeofday.

[25. The time zone used for package Calendar operations. See 9.6(24). }

The time zone used by package Calendar is the current system time zone setting for local
time, as accessed by the C library function localtime.

EZG. Any limit on delay_until_statements of select_statements. See 9.6(29). }

There are no such limits.

27. Whether or not two non overlapping parts of a composite object are independently
addressable, in the case where packing, record layout, or Component_Size is specified for
the object. See 9.10(1).

Separate components are independently addressable if they do not share overlapping storage
units.

{28. The representation for a compilation. See 10.1(2). j

Chapter 4: Implementation Defined Characteristics 87

A compilation is represented by a sequence of files presented to the compiler in a single
invocation of the gcc command.

[29. Any restrictions on compilations that contain multiple compilation_units. See 10.1(4).}

No single file can contain more than one compilation unit, but any sequence of files can be
presented to the compiler as a single compilation.

30. The mechanisms for creating an environment and for adding and replacing compilation
units. See 10.1.4(3).

See separate section on compilation model.

E&l. The manner of explicitly assigning library units to a partition. See 10.2(2). J

If a unit contains an Ada main program, then the Ada units for the partition are determined
by recursive application of the rules in the Ada Reference Manual section 10.2(2-6). In
other words, the Ada units will be those that are needed by the main program, and then
this definition of need is applied recursively to those units, and the partition contains the
transitive closure determined by this relationship. In short, all the necessary units are
included, with no need to explicitly specify the list. If additional units are required, e.g. by
foreign language units, then all units must be mentioned in the context clause of one of the
needed Ada units.

If the partition contains no main program, or if the main program is in a language other
than Ada, then GNAT provides the binder options -z and -n respectively, and in this case
a list of units can be explicitly supplied to the binder for inclusion in the partition (all units
needed by these units will also be included automatically). For full details on the use of
these options, refer to the GNAT User’s Guide sections on Binding and Linking.

32. The implementation-defined means, if any, of specifying which compilation units are
needed by a given compilation unit. See 10.2(2).

The units needed by a given compilation unit are as defined in the Ada Reference Manual
section 10.2(2-6). There are no implementation-defined pragmas or other implementation-
defined means for specifying needed units.

&’)3. The manner of designating the main subprogram of a partition. See 10.2(7). j

The main program is designated by providing the name of the corresponding ‘ALI’ file as
the input parameter to the binder.

88 GNAT Reference Manual

&34. The order of elaboration of library_items. See 10.2(18). j

The first constraint on ordering is that it meets the requirements of chapter 10 of the Ada
95 Reference Manual. This still leaves some implementation dependent choices, which are
resolved by first elaborating bodies as early as possible (i.e. in preference to specs where there
is a choice), and second by evaluating the immediate with clauses of a unit to determine the
probably best choice, and third by elaborating in alphabetical order of unit names where a
choice still remains.

&’)5. Parameter passing and function return for the main subprogram. See 10.2(21). j

The main program has no parameters. It may be a procedure, or a function returning an
integer type. In the latter case, the returned integer value is the return code of the program
(overriding any value that may have been set by a call to Ada.Command_Line.Set_Exit_
Status).

[36. The mechanisms for building and running partitions. See 10.2(24).]

GNAT itself supports programs with only a single partition. The GNATDIST tool provided
with the GLADE package (which also includes an implementation of the PCS) provides a
completely flexible method for building and running programs consisting of multiple parti-
tions. See the separate GLADE manual for details.

EW . The details of program execution, including program termination. See 10.2(25). }

See separate section on compilation model.

38. The semantics of any non-active partitions supported by the implementation. See
10.2(28).

Passive partitions are supported on targets where shared memory is provided by the oper-
ating system. See the GLADE reference manual for further details.

{39. The information returned by Exception_Message. See 11.4.1(10). }

Exception message returns the null string unless a specific message has been passed by the
program.

40. The result of Exceptions.Exception_Name for types declared within an unnamed
block_statement. See 11.4.1(12).

Chapter 4: Implementation Defined Characteristics 89

Blocks have implementation defined names of the form Bnnn where nnn is an integer.

&11. The information returned by Exception_Information. See 11.4.1(13).

Exception_Information returns a string in the following format:

Exception_Name: nnnnn
Message: mmmmm

PID: ppp

Call stack traceback locations:

Oxhhhh Oxhhhh Oxhhhh ... Oxhhh
where

e nnnn is the fully qualified name of the exception in all upper case letters. This line is
always present.

e mmmnm is the message (this line present only if message is non-null)

e ppp is the Process Id value as a decimal integer (this line is present only if the Process
Id is non-zero). Currently we are not making use of this field.

e The Call stack traceback locations line and the following values are present only if at
least one traceback location was recorded. The values are given in C style format, with
lower case letters for a-f, and only as many digits present as are necessary.

The line terminator sequence at the end of each line, including the last line is a single LF
character (16#0A#).

&12. Implementation-defined check names. See 11.5(27).

No implementation-defined check names are supported.

&13. The interpretation of each aspect of representation. See 13.1(20).

See separate section on data representations.

@4. Any restrictions placed upon representation items. See 13.1(20).

See separate section on data representations.

[45. The meaning of Size for indefinite subtypes. See 13.3(48).

Size for an indefinite subtype is the maximum possible size, except that for the case of a
subprogram parameter, the size of the parameter object is the actual size.

90 GNAT Reference Manual

&16. The default external representation for a type tag. See 13.3(75). j

The default external representation for a type tag is the fully expanded name of the type
in upper case letters.

47. What determines whether a compilation unit is the same in two different partitions.
See 13.3(76).

A compilation unit is the same in two different partitions if and only if it derives from the
same source file.

ELS. Implementation-defined components. See 13.5.1(15). j

The only implementation defined component is the tag for a tagged type, which contains a
pointer to the dispatching table.

[49. If Word_Size = Storage_Unit, the default bit ordering. See 13.5.3(5). }

Word_Size (32) is not the same as Storage_Unit (8) for this implementation, so no non-
default bit ordering is supported. The default bit ordering corresponds to the natural
endianness of the target architecture.

50. The contents of the visible part of package System and its language-defined children.
See 13.7(2).

See the definition of these packages in files ‘system.ads’ and ‘s-stoele.ads’.

51. The contents of the visible part of package System.Machine_Code, and the meaning of
code_statements. See 13.8(7).

See the definition and documentation in file ‘s-maccod.ads’.

[52. The effect of unchecked conversion. See 13.9(11). }

Unchecked conversion between types of the same size and results in an uninterpreted trans-
mission of the bits from one type to the other. If the types are of unequal sizes, then in
the case of discrete types, a shorter source is first zero or sign extended as necessary, and a
shorter target is simply truncated on the left. For all non-discrete types, the source is first
copied if necessary to ensure that the alignment requirements of the target are met, then a
pointer is constructed to the source value, and the result is obtained by dereferencing this
pointer after converting it to be a pointer to the target type.

Chapter 4: Implementation Defined Characteristics 91

53. The manner of choosing a storage pool for an access type when Storage_Pool is not
specified for the type. See 13.11(17).

There are 3 different standard pools used by the compiler when Storage_Pool is not
specified depending whether the type is local to a subprogram or defined at the library
level and whether Storage_Sizeis specified or not. See documentation in the runtime
library units System.Pool_Global, System.Pool_Size and System.Pool_Local in files
‘s—poosiz.ads’, ‘s-pooglo.ads’ and ‘s-pooloc.ads’ for full details on the default pools
used.

54. Whether or not the implementation provides user-accessible names for the standard
pool type(s). See 13.11(17).

See documentation in the sources of the run time mentioned in paragraph 53 . All these
pools are accessible by means of with’ing these units.

[’35. The meaning of Storage_Size. See 13.11(18). }

Storage_Size is measured in storage units, and refers to the total space available for an
access type collection, or to the primary stack space for a task.

Eiﬁ. Implementation-defined aspects of storage pools. See 13.11(22). }

See documentation in the sources of the run time mentioned in paragraph 53 for details on
GNAT-defined aspects of storage pools.

&57. The set of restrictions allowed in a pragma Restrictions. See 13.12(7). j

All RM defined Restriction identifiers are implemented. The following additional restric-
tion identifiers are provided. There are two separate lists of implementation dependent
restriction identifiers. The first set requires consistency throughout a partition (in other
words, if the restriction identifier is used for any compilation unit in the partition, then all
compilation units in the partition must obey the restriction.

Simple_Barriers
This restriction ensures at compile time that barriers in entry declarations for
protected types are restricted to either static boolean expressions or references
to simple boolean variables defined in the private part of the protected type. No
other form of entry barriers is permitted. This is one of the restrictions of the
Ravenscar profile for limited tasking (see also pragma Profile (Ravenscar)).

Max_Entry_Queue_Length => Expr
This restriction is a declaration that any protected entry compiled in the scope
of the restriction has at most the specified number of tasks waiting on the entry

92

GNAT Reference Manual

at any one time, and so no queue is required. This restriction is not checked
at compile time. A program execution is erroneous if an attempt is made to
queue more than the specified number of tasks on such an entry.

No_Calendar

This restriction ensures at compile time that there is no implicit or explicit
dependence on the package Ada.Calendar.

No_Direct_Boolean_Operators

This restriction ensures that no logical (and/or/xor) or comparison operators
are used on operands of type Boolean (or any type derived from Boolean). This
is intended for use in safety critical programs where the certification protocol
requires the use of short-circuit (and then, or else) forms for all composite
boolean operations.

No_Dynamic_Attachment

This restriction ensures that there is no call to any of the operations defined in
package Ada.Interrupts.

No_Enumeration_Maps

This restriction ensures at compile time that no operations requiring enumera-
tion maps are used (that is Image and Value attributes applied to enumeration

types).

No_Entry_Calls_In_Elaboration_Code

This restriction ensures at compile time that no task or protected entry calls
are made during elaboration code. As a result of the use of this restriction, the
compiler can assume that no code past an accept statement in a task can be
executed at elaboration time.

No_Exception_Handlers

This restriction ensures at compile time that there are no explicit exception
handlers. It also indicates that no exception propagation will be provided. In
this mode, exceptions may be raised but will result in an immediate call to
the last chance handler, a routine that the user must define with the following
profile:

procedure Last_Chance_Handler (Source_Location System.Address;
Line : Integer); pragma Export (C, Last_Chance_Handler,
"__gnat_last_chance_handler");

The parameter is a C null-terminated string representing a message to be asso-
ciated with the exception (typically the source location of the raise statement
generated by the compiler). The Line parameter when non-zero represents the
line number in the source program where the raise occurs.

No_Exception_Streams

This restriction ensures at compile time that no stream operations for types
Exception_Id or Exception_Occurrence are used. This also makes it impossible
to pass exceptions to or from a partition with this restriction in a distributed
environment. If this exception is active, then the generated code is simplified
by omitting the otherwise-required global registration of exceptions when they
are declared.

Chapter 4: Implementation Defined Characteristics 93

No_Implicit_Conditionals
This restriction ensures that the generated code does not contain any implicit
conditionals, either by modifying the generated code where possible, or by re-
jecting any construct that would otherwise generate an implicit conditional.
Note that this check does not include run time constraint checks, which on
some targets may generate implicit conditionals as well. To control the latter,
constraint checks can be suppressed in the normal manner.

No_Implicit_Dynamic_Code
This restriction prevents the compiler from building “trampolines”. This is a
structure that is built on the stack and contains dynamic code to be executed
at run time. A trampoline is needed to indirectly address a nested subprogram
(that is a subprogram that is not at the library level). The restriction prevents
the use of any of the attributes Address, Access or Unrestricted_Access
being applied to a subprogram that is not at the library level.

No_Implicit_Loops
This restriction ensures that the generated code does not contain any implicit
for loops, either by modifying the generated code where possible, or by rejecting
any construct that would otherwise generate an implicit for loop.

No_Initialize_Scalars
This restriction ensures that no unit in the partition is compiled with pragma
Initialize_Scalars. This allows the generation of more efficient code, and in
particular eliminates dummy null initialization routines that are otherwise gen-
erated for some record and array types.

No_Local_Protected_QObjects
This restriction ensures at compile time that protected objects are only declared
at the library level.

No_Protected_Type_Allocators
This restriction ensures at compile time that there are no allocator expressions
that attempt to allocate protected objects.

No_Secondary_Stack
This restriction ensures at compile time that the generated code does not con-
tain any reference to the secondary stack. The secondary stack is used to im-
plement functions returning unconstrained objects (arrays or records) on some
targets.

No_Select_Statements
This restriction ensures at compile time no select statements of any kind are
permitted, that is the keyword select may not appear. This is one of the re-
strictions of the Ravenscar profile for limited tasking (see also pragma Profile
(Ravenscar)).

No_Standard_Storage_Pools
This restriction ensures at compile time that no access types use the standard
default storage pool. Any access type declared must have an explicit Stor-
age_Pool attribute defined specifying a user-defined storage pool.

94 GNAT Reference Manual

No_Streams
This restriction ensures at compile/bind time that there are no stream objects
created (and therefore no actual stream operations). This restriction does not
forbid dependences on the package Ada.Streams. So it is permissible to with
Ada.Streams (or another package that does so itself) as long as no actual stream
objects are created.

No_Task_Attributes_Package
This restriction ensures at compile time that there are no implicit or explicit
dependencies on the package Ada.Task_Attributes.

No_Task_Termination
This restriction ensures at compile time that no terminate alternatives appear
in any task body.

No_Tasking
This restriction prevents the declaration of tasks or task types throughout the
partition. It is similar in effect to the use of Max_Tasks => 0 except that vi-
olations are caught at compile time and cause an error message to be output
either by the compiler or binder.

No_Wide_Characters
This restriction ensures at compile time that no uses of the types
Wide_Character or Wide_String or corresponding wide wide types appear,
and that no wide or wide wide string or character literals appear in the
program (that is literals representing characters not in type Character.

Static_Priorities
This restriction ensures at compile time that all priority expressions are static,
and that there are no dependencies on the package Ada.Dynamic_Priorities.

Static_Storage_Size
This restriction ensures at compile time that any expression appearing in a
Storage_Size pragma or attribute definition clause is static.

The second set of implementation dependent restriction identifiers does not require
partition-wide consistency. The restriction may be enforced for a single compilation unit
without any effect on any of the other compilation units in the partition.

No_Elaboration_Code
This restriction ensures at compile time that no elaboration code is generated.
Note that this is not the same condition as is enforced by pragma Preelaborate.
There are cases in which pragma Preelaborate still permits code to be gener-
ated (e.g. code to initialize a large array to all zeroes), and there are cases of
units which do not meet the requirements for pragma Preelaborate, but for
which no elaboration code is generated. Generally, it is the case that preelab-
orable units will meet the restrictions, with the exception of large aggregates
initialized with an others_clause, and exception declarations (which generate
calls to a run-time registry procedure). Note that this restriction is enforced on
a unit by unit basis, it need not be obeyed consistently throughout a partition.

Chapter 4: Implementation Defined Characteristics 95

No_Entry_Queue
This restriction is a declaration that any protected entry compiled in the scope
of the restriction has at most one task waiting on the entry at any one time,
and so no queue is required. This restriction is not checked at compile time. A
program execution is erroneous if an attempt is made to queue a second task
on such an entry.

No_Implementation_Attributes
This restriction checks at compile time that no GNAT-defined attributes are
present. With this restriction, the only attributes that can be used are those
defined in the Ada 95 Reference Manual.

No_Implementation_Pragmas
This restriction checks at compile time that no GNAT-defined pragmas are
present. With this restriction, the only pragmas that can be used are those
defined in the Ada 95 Reference Manual.

No_Implementation_Restrictions
This restriction checks at compile time that no GNAT-defined restriction identi-
fiers (other than No_Implementation_Restrictionms itself) are present. With
this restriction, the only other restriction identifiers that can be used are those
defined in the Ada 95 Reference Manual.

&58. The consequences of violating limitations on Restrictions pragmas. See 13.12(9). j

Restrictions that can be checked at compile time result in illegalities if violated. Currently
there are no other consequences of violating restrictions.

59. The representation used by the Read and Write attributes of elementary types in terms
of stream elements. See 13.13.2(9).

The representation is the in-memory representation of the base type of the type, using
the number of bits corresponding to the type ’Size value, and the natural ordering of the
machine.

60. The names and characteristics of the numeric subtypes declared in the visible part of
package Standard. See A.1(3).

See items describing the integer and floating-point types supported.

[61. The accuracy actually achieved by the elementary functions. See A.5.1(1). }

The elementary functions correspond to the functions available in the C library. Only fast
math mode is implemented.

96 GNAT Reference Manual

62. The sign of a zero result from some of the operators or functions in Numerics.Generic_
Elementary_Functions, when Float_Type’Signed_Zeros is True. See A.5.1(46).

The sign of zeroes follows the requirements of the IEEE 754 standard on floating-point.

@3. The value of Numerics.Float_Random.Max_Image_Width. See A.5.2(27). j

Maximum image width is 649, see library file ‘a-numran.ads’.

[64. The value of Numerics.Discrete_Random.Max_Image_Width. See A.5.2(27). J

Maximum image width is 80, see library file ‘a-nudira.ads’.

{65. The algorithms for random number generation. See A.5.2(32). }

The algorithm is documented in the source files ‘a-numran.ads’ and ‘a-numran.adb’.

[66. The string representation of a random number generator’s state. See A.5.2(38). }

See the documentation contained in the file ‘a-numran.adb’.

67. The minimum time interval between calls to the time-dependent Reset procedure that
are guaranteed to initiate different random number sequences. See A.5.2(45).

The minimum period between reset calls to guarantee distinct series of random numbers is
one microsecond.

68. The values of the Model_Mantissa, Model_Emin, Model_Epsilon, Model, Safe_First,
and Safe_Last attributes, if the Numerics Annex is not supported. See A.5.3(72).

See the source file ‘ttypef.ads’ for the values of all numeric attributes.

&39. Any implementation-defined characteristics of the input-output packages. See A.7(14) j

There are no special implementation defined characteristics for these packages.

{70. The value of Buffer_Size in Storage_I0. See A.9(10). j

Chapter 4: Implementation Defined Characteristics 97

All type representations are contiguous, and the Buffer_Size is the value of type’Size
rounded up to the next storage unit boundary.

{71. External files for standard input, standard output, and standard error See A.10(5). j

These files are mapped onto the files provided by the C streams libraries. See source file
‘i-cstrea.ads’ for further details.

{72. The accuracy of the value produced by Put. See A.10.9(36). }

If more digits are requested in the output than are represented by the precision of the value,
zeroes are output in the corresponding least significant digit positions.

{73. The meaning of Argument_Count, Argument, and Command_Name. See A.15(1). j

These are mapped onto the argv and argc parameters of the main program in the natural
manner.

[74. Implementation-defined convention names. See B.1(11). j

The following convention names are supported
Ada Ada

Assembler
Assembly language

Asm Synonym for Assembler
Assembly Synonym for Assembler
C C

C_Pass_By_Copy
Allowed only for record types, like C, but also notes that record is to be passed
by copy rather than reference.

COBOL COBOL

CPP C++

Default Treated the same as C
External Treated the same as C
Fortran Fortran

Intrinsic
For support of pragma Import with convention Intrinsic, see separate section
on Intrinsic Subprograms.

98 GNAT Reference Manual

Stdcall Stdcall (used for Windows implementations only). This convention correspond
to the WINAPI (previously called Pascal convention) C/C++ convention under
Windows. A function with this convention cleans the stack before exit.

DLL Synonym for Stdcall
Win32 Synonym for Stdcall

Stubbed Stubbed is a special convention used to indicate that the body of the subpro-
gram will be entirely ignored. Any call to the subprogram is converted into a
raise of the Program_Error exception. If a pragma Import specifies convention
stubbed then no body need be present at all. This convention is useful during
development for the inclusion of subprograms whose body has not yet been
written.

In addition, all otherwise unrecognized convention names are also treated as being synony-
mous with convention C. In all implementations except for VMS, use of such other names
results in a warning. In VMS implementations, these names are accepted silently.

{75. The meaning of link names. See B.1(36). j

Link names are the actual names used by the linker.

76. The manner of choosing link names when neither the link name nor the address of an
imported or exported entity is specified. See B.1(36).

The default linker name is that which would be assigned by the relevant external language,
interpreting the Ada name as being in all lower case letters.

[77. The effect of pragma Linker_Options. See B.1(37). }

The string passed to Linker_Options is presented uninterpreted as an argument to the link
command, unless it contains Ascii. NUL characters. NUL characters if they appear act as
argument separators, so for example

pragma Linker_Options ("-labc" & ASCII.Nul & "-1ldef");

causes two separate arguments -labc and -1def to be passed to the linker. The order of
linker options is preserved for a given unit. The final list of options passed to the linker
is in reverse order of the elaboration order. For example, linker options fo a body always
appear before the options from the corresponding package spec.

78. The contents of the visible part of package Interfaces and its language-defined de-
scendants. See B.2(1).

See files with prefix ‘i-’ in the distributed library.

Chapter 4: Implementation Defined Characteristics 99

79. Implementation-defined children of package Interfaces. The contents of the visible
part of package Interfaces. See B.2(11).

See files with prefix ‘i-’ in the distributed library.

80. The types Floating, Long_Floating, Binary, Long_Binary, Decimal_ Element, and
COBOL_Character; and the initialization of the variables Ada_To_COBOL and COBOL_To_Ada,
in Interfaces.COBOL. See B.4(50).

Floating Float

Long_Floating
(Floating) Long_Float

Binary Integer

Long_Binary
Long_Long_Integer

Decimal_Element
Character

COBOL_Character
Character

For initialization, see the file ‘i-cobol.ads’ in the distributed library.

[81. Support for access to machine instructions. See C.1(1).]

See documentation in file ‘s-maccod.ads’ in the distributed library.

[82. Implementation-defined aspects of access to machine operations. See C.1(9). }

See documentation in file ‘s-maccod.ads’ in the distributed library.

[83. Implementation-defined aspects of interrupts. See C.3(2). }

Interrupts are mapped to signals or conditions as appropriate. See definition of unit
Ada.Interrupt_Names in source file ‘a-intnam.ads’ for details on the interrupts supported
on a particular target.

[84. Implementation-defined aspects of pre-elaboration. See C.4(13). j

GNAT does not permit a partition to be restarted without reloading, except under control
of the debugger.

100 GNAT Reference Manual

[85. The semantics of pragma Discard_Names. See C.5(7). j

Pragma Discard_Names causes names of enumeration literals to be suppressed. In the
presence of this pragma, the Image attribute provides the image of the Pos of the literal,
and Value accepts Pos values.

[86. The result of the Task_Identification.Image attribute. See C.7.1(7). j

The result of this attribute is an 8-digit hexadecimal string representing the virtual address
of the task control block.

87. The value of Current_Task when in a protected entry or interrupt handler. See
C.7.1(17).

Protected entries or interrupt handlers can be executed by any convenient thread, so the
value of Current_Task is undefined.

88. The effect of calling Current_Task from an entry body or interrupt handler. See
C.7.1(19).

The effect of calling Current_Task from an entry body or interrupt handler is to return the
identification of the task currently executing the code.

{89. Implementation-defined aspects of Task_Attributes. See C.7.2(19). }

There are no implementation-defined aspects of Task_Attributes.

@0. Values of all Metrics. See D(2). j

The metrics information for GNAT depends on the performance of the underlying operating
system. The sources of the run-time for tasking implementation, together with the output
from -gnatG can be used to determine the exact sequence of operating systems calls made
to implement various tasking constructs. Together with appropriate information on the
performance of the underlying operating system, on the exact target in use, this information
can be used to determine the required metrics.

{91. The declarations of Any_Priority and Priority. See D.1(11). j

See declarations in file ‘system.ads’.

Chapter 4: Implementation Defined Characteristics 101

[92. Implementation-defined execution resources. See D.1(15). j

There are no implementation-defined execution resources.

93. Whether, on a multiprocessor, a task that is waiting for access to a protected object
keeps its processor busy. See D.2.1(3).

On a multi-processor, a task that is waiting for access to a protected object does not keep
its processor busy.

94. The affect of implementation defined execution resources on task dispatching. See
D.2.1(9).

Tasks map to threads in the threads package used by GNAT. Where possible and appro-
priate, these threads correspond to native threads of the underlying operating system.

95. Implementation-defined policy_identifiers allowed in a pragma Task_Dispatching_
Policy. See D.2.2(3).

There are no implementation-defined policy-identifiers allowed in this pragma.

[96. Implementation-defined aspects of priority inversion. See D.2.2(16). }

Execution of a task cannot be preempted by the implementation processing of delay expi-
rations for lower priority tasks.

[97 . Implementation defined task dispatching. See D.2.2(18). }

The policy is the same as that of the underlying threads implementation.

98. Implementation-defined policy_identifiers allowed in a pragma Locking_Policy.

See D.3(4).

The only implementation defined policy permitted in GNAT is Inheritance_Locking. On
targets that support this policy, locking is implemented by inheritance, i.e. the task owning
the lock operates at a priority equal to the highest priority of any task currently requesting
the lock.

[99. Default ceiling priorities. See D.3(10). j

102 GNAT Reference Manual

The ceiling priority of protected objects of the type System.Interrupt_Priority’Last as
described in the Ada 95 Reference Manual D.3(10),

[100. The ceiling of any protected object used internally by the implementation. See D.3(16)}

The ceiling priority of internal protected objects is System.Priority’Last.

[101. Implementation-defined queuing policies. See D.4(1). }

There are no implementation-defined queueing policies.

102. On a multiprocessor, any conditions that cause the completion of an aborted construct
to be delayed later than what is specified for a single processor. See D.6(3).

The semantics for abort on a multi-processor is the same as on a single processor, there are
no further delays.

[103. Any operations that implicitly require heap storage allocation. See D.7(8). }

The only operation that implicitly requires heap storage allocation is task creation.

[104. Implementation-defined aspects of pragma Restrictions. See D.7(20). J

There are no such implementation-defined aspects.

{105. Implementation-defined aspects of package Real_Time. See D.8(17). }

There are no implementation defined aspects of package Real_Time.

[106. Implementation-defined aspects of delay_statements. See D.9(8). }

Any difference greater than one microsecond will cause the task to be delayed (see D.9(7)).

107. The upper bound on the duration of interrupt blocking caused by the implementation.
See D.12(5).

Chapter 4: Implementation Defined Characteristics 103

The upper bound is determined by the underlying operating system. In no cases is it more
than 10 milliseconds.

[108. The means for creating and executing distributed programs. See E(5). J

The GLADE package provides a utility GNATDIST for creating and executing distributed
programs. See the GLADE reference manual for further details.

[109. Any events that can result in a partition becoming inaccessible. See E.1(7). j

See the GLADE reference manual for full details on such events.

110. The scheduling policies, treatment of priorities, and management of shared resources
between partitions in certain cases. See E.1(11).

See the GLADE reference manual for full details on these aspects of multi-partition execu-
tion.

[111. Events that cause the version of a compilation unit to change. See E.3(5). }

Editing the source file of a compilation unit, or the source files of any units on which it
is dependent in a significant way cause the version to change. No other actions cause the
version number to change. All changes are significant except those which affect only layout,
capitalization or comments.

112. Whether the execution of the remote subprogram is immediately aborted as a result
of cancellation. See E.4(13).

See the GLADE reference manual for details on the effect of abort in a distributed appli-
cation.

[113. Implementation-defined aspects of the PCS. See E.5(25). J

See the GLADE reference manual for a full description of all implementation defined aspects
of the PCS.

[114. Implementation-defined interfaces in the PCS. See E.5(26). j

104 GNAT Reference Manual

See the GLADE reference manual for a full description of all implementation defined inter-
faces.

[115. The values of named numbers in the package Decimal. See F.2(7). J

Max_Scale
+18

Min_Scale
-18

Min_Delta
1.0E-18

Max_Delta
1.0E+18

Max_Decimal_Digits
18

{116. The value of Max_Picture_Length in the package Text_I0.Editing. See F.3.3(16). }

64

117. The value of Max_Picture_Length in the package Wide_Text_IO.Editing. See
F.3.4(5).

64

118. The accuracy actually achieved by the complex elementary functions and by other
complex arithmetic operations. See G.1(1).

Standard library functions are used for the complex arithmetic operations. Only fast math
mode is currently supported.

119. The sign of a zero result (or a component thereof) from any operator or function in
Numerics.Generic_Complex_Types, when Real’Signed_Zeros is True. See G.1.1(53).

The signs of zero values are as recommended by the relevant implementation advice.

Chapter 4: Implementation Defined Characteristics 105

120. The sign of a zero result (or a component thereof) from any operator or function in
Numerics.Generic_Complex_Elementary_Functions, when Real’Signed_Zeros is True.

See G.1.2(45).

The signs of zero values are as recommended by the relevant implementation advice.

[121. Whether the strict mode or the relaxed mode is the default. See G.2(2). }

The strict mode is the default. There is no separate relaxed mode. GNAT provides a highly
efficient implementation of strict mode.

[122. The result interval in certain cases of fixed-to-float conversion. See G.2.1(10). }

For cases where the result interval is implementation dependent, the accuracy is that pro-
vided by performing all operations in 64-bit IEEE floating-point format.

123. The result of a floating point arithmetic operation in overflow situations, when the
Machine_Overflows attribute of the result type is False. See G.2.1(13).

Infinite and Nan values are produced as dictated by the IEEE floating-point standard.

124. The result interval for division (or exponentiation by a negative exponent), when the
floating point hardware implements division as multiplication by a reciprocal. See G.2.1(16).

Not relevant, division is IEEE exact.

125. The definition of close result set, which determines the accuracy of certain fixed point
multiplications and divisions. See G.2.3(5).

Operations in the close result set are performed using IEEE long format floating-point
arithmetic. The input operands are converted to floating-point, the operation is done in
floating-point, and the result is converted to the target type.

126. Conditions on a universal_real operand of a fixed point multiplication or division
for which the result shall be in the perfect result set. See G.2.3(22).

The result is only defined to be in the perfect result set if the result can be computed by a
single scaling operation involving a scale factor representable in 64-bits.

106 GNAT Reference Manual

127. The result of a fixed point arithmetic operation in overflow situations, when the
Machine_Overflows attribute of the result type is False. See G.2.3(27).

Not relevant, Machine_0Overflows is True for fixed-point types.

128. The result of an elementary function reference in overflow situations, when the
Machine_Overflows attribute of the result type is False. See G.2.4(4).

IEEE infinite and Nan values are produced as appropriate.

129. The value of the angle threshold, within which certain elementary functions, com-
plex arithmetic operations, and complex elementary functions yield results conforming to a
maximum relative error bound. See G.2.4(10).

Information on this subject is not yet available.

130. The accuracy of certain elementary functions for parameters beyond the angle thresh-
old. See G.2.4(10).

Information on this subject is not yet available.

131. The result of a complex arithmetic operation or complex elementary function reference
in overflow situations, when the Machine_Overflows attribute of the corresponding real
type is False. See G.2.6(5).

IEEE infinite and Nan values are produced as appropriate.

132. The accuracy of certain complex arithmetic operations and certain complex elementary
functions for parameters (or components thereof) beyond the angle threshold. See G.2.6(8).

Information on those subjects is not yet available.

[133. Information regarding bounded errors and erroneous execution. See H.2(1). j

Information on this subject is not yet available.

[134. Implementation-defined aspects of pragma Inspection_Point. See H.3.2(8). j

Chapter 4: Implementation Defined Characteristics 107

Pragma Inspection_Point ensures that the variable is live and can be examined by the
debugger at the inspection point.

[135. Implementation-defined aspects of pragma Restrictions. See H.4(25). j

There are no implementation-defined aspects of pragma Restrictions. The use of pragma
Restrictions [No_Exceptions] has no effect on the generated code. Checks must sup-
pressed by use of pragma Suppress.

[136. Any restrictions on pragma Restrictions. See H.4(27).]

There are no restrictions on pragma Restrictions.

108 GNAT Reference Manual

Chapter 5: Intrinsic Subprograms 109

5 Intrinsic Subprograms

GNAT allows a user application program to write the declaration:

pragma Import (Intrinsic, name);

providing that the name corresponds to one of the implemented intrinsic subprograms in
GNAT, and that the parameter profile of the referenced subprogram meets the requirements.
This chapter describes the set of implemented intrinsic subprograms, and the requirements
on parameter profiles. Note that no body is supplied; as with other uses of pragma Import,
the body is supplied elsewhere (in this case by the compiler itself). Note that any use of this
feature is potentially non-portable, since the Ada standard does not require Ada compilers
to implement this feature.

5.1 Intrinsic Operators

All the predefined numeric operators in package Standard in pragma Import
(Intrinsic,..) declarations. In the binary operator case, the operands must have the
same size. The operand or operands must also be appropriate for the operator. For
example, for addition, the operands must both be floating-point or both be fixed-point,
and the right operand for "**" must have a root type of Standard.Integer’Base. You
can use an intrinsic operator declaration as in the following example:

type Intl is new Integer;
type Int2 is new Integer;

function "+" (X1 : Intl; X2 : Int2) return Inti;
function "+" (X1 : Intl; X2 : Int2) return Int2;
pragma Import (Intrinsic, "+");

This declaration would permit “mixed mode” arithmetic on items of the differing types
Intl and Int2. It is also possible to specify such operators for private types, if the full
views are appropriate arithmetic types.

5.2 Enclosing_Entity

This intrinsic subprogram is used in the implementation of the library routine GNAT . Source_
Info. The only useful use of the intrinsic import in this case is the one in this unit, so
an application program should simply call the function GNAT.Source_Info.Enclosing_
Entity to obtain the name of the current subprogram, package, task, entry, or protected
subprogram.

5.3 Exception_Information

This intrinsic subprogram is used in the implementation of the library routine
GNAT.Current_Exception. The only useful use of the intrinsic import in this case
is the one in this unit, so an application program should simply call the function
GNAT.Current_Exception.Exception_Information to obtain the exception information
associated with the current exception.

110 GNAT Reference Manual

5.4 Exception_Message

This intrinsic subprogram is used in the implementation of the library routine
GNAT.Current_Exception. The only useful use of the intrinsic import in this case
is the one in this unit, so an application program should simply call the function
GNAT.Current_Exception.Exception_Message to obtain the message associated with the
current exception.

5.5 Exception_Name

This intrinsic subprogram is used in the implementation of the library routine
GNAT.Current_Exception. The only useful use of the intrinsic import in this case
is the one in this unit, so an application program should simply call the function
GNAT.Current_Exception.Exception_Name to obtain the name of the current exception.

5.6 File

This intrinsic subprogram is used in the implementation of the library routine GNAT. Source_
Info. The only useful use of the intrinsic import in this case is the one in this unit, so an
application program should simply call the function GNAT.Source_Info.File to obtain the
name of the current file.

5.7 Line

This intrinsic subprogram is used in the implementation of the library routine GNAT . Source_
Info. The only useful use of the intrinsic import in this case is the one in this unit, so an
application program should simply call the function GNAT.Source_Info.Line to obtain the
number of the current source line.

5.8 Rotate_Left

In standard Ada 95, the Rotate_Left function is available only for the predefined modular
types in package Interfaces. However, in GNAT it is possible to define a Rotate_Left
function for a user defined modular type or any signed integer type as in this example:
function Shift_Left
(Value : My_Modular_Type;

Amount : Natural)
return My_Modular_Type;

The requirements are that the profile be exactly as in the example above. The only modifi-
cations allowed are in the formal parameter names, and in the type of Value and the return
type, which must be the same, and must be either a signed integer type, or a modular
integer type with a binary modulus, and the size must be 8. 16, 32 or 64 bits.

5.9 Rotate_Right

A Rotate_Right function can be defined for any user defined binary modular integer type,
or signed integer type, as described above for Rotate_Left.

Chapter 5: Intrinsic Subprograms 111

5.10 Shift_Left

A Shift_Left function can be defined for any user defined binary modular integer type, or
signed integer type, as described above for Rotate_Left.

5.11 Shift_Right

A Shift_Right function can be defined for any user defined binary modular integer type,
or signed integer type, as described above for Rotate_Left.

5.12 Shift_Right_Arithmetic

A Shift_Right_Arithmetic function can be defined for any user defined binary modular
integer type, or signed integer type, as described above for Rotate_Left.

5.13 Source_Location

This intrinsic subprogram is used in the implementation of the library routine GNAT. Source_
Info. The only useful use of the intrinsic import in this case is the one in this unit, so an
application program should simply call the function GNAT.Source_Info.Source_Location
to obtain the current source file location.

112 GNAT Reference Manual

Chapter 6: Representation Clauses and Pragmas 113

6 Representation Clauses and Pragmas

This section describes the representation clauses accepted by GNAT, and their effect on the
representation of corresponding data objects.

GNAT fully implements Annex C (Systems Programming). This means that all the
implementation advice sections in chapter 13 are fully implemented. However, these sections
only require a minimal level of support for representation clauses. GNAT provides much
more extensive capabilities, and this section describes the additional capabilities provided.

6.1 Alignment Clauses

GNAT requires that all alignment clauses specify a power of 2, and all default alignments
are always a power of 2. The default alignment values are as follows:

e Primitive Types. For primitive types, the alignment is the minimum of the actual
size of objects of the type divided by Storage_Unit, and the maximum alignment
supported by the target. (This maximum alignment is given by the GNAT-specific
attribute Standard’Maximum_Alignment; see [Maximum_Alignment|, page 52.) For
example, for type Long_Float, the object size is 8 bytes, and the default alignment
will be 8 on any target that supports alignments this large, but on some targets, the
maximum alignment may be smaller than 8, in which case objects of type Long_Float
will be maximally aligned.

e Arrays. For arrays, the alignment is equal to the alignment of the component type for
the normal case where no packing or component size is given. If the array is packed,
and the packing is effective (see separate section on packed arrays), then the alignment
will be one for long packed arrays, or arrays whose length is not known at compile time.
For short packed arrays, which are handled internally as modular types, the alignment
will be as described for primitive types, e.g. a packed array of length 31 bits will have
an object size of four bytes, and an alignment of 4.

e Records. For the normal non-packed case, the alignment of a record is equal to the
maximum alignment of any of its components. For tagged records, this includes the
implicit access type used for the tag. If a pragma Pack is used and all fields are packable
(see separate section on pragma Pack), then the resulting alignment is 1.

A special case is when:

e the size of the record is given explicitly, or a full record representation clause is
given, and

e the size of the record is 2, 4, or 8 bytes.

In this case, an alignment is chosen to match the size of the record. For example, if we
have:

type Small is record
A, B : Character;
end record;
for Small’Size use 16;
then the default alignment of the record type Small is 2, not 1. This leads to more
efficient code when the record is treated as a unit, and also allows the type to specified
as Atomic on architectures requiring strict alignment.

114 GNAT Reference Manual

An alignment clause may always specify a larger alignment than the default value, up to
some maximum value dependent on the target (obtainable by using the attribute reference
Standard’Maximum_Alignment). The only case where it is permissible to specify a smaller
alignment than the default value is for a record with a record representation clause. In this
case, packable fields for which a component clause is given still result in a default alignment
corresponding to the original type, but this may be overridden, since these components in
fact only require an alignment of one byte. For example, given

type V is record
A : Integer;
end record;

for V use record
A at 0 range O .. 31;
end record;

for V’alignment use 1;

The default alignment for the type V is 4, as a result of the Integer field in the record, but
since this field is placed with a component clause, it is permissible, as shown, to override
the default alignment of the record with a smaller value.

6.2 Size Clauses

The default size for a type T is obtainable through the language-defined attribute T’ Size and
also through the equivalent GNAT-defined attribute T’Value_Size. For objects of type T,
GNAT will generally increase the type size so that the object size (obtainable through the
GNAT-defined attribute T’Object_Size) is a multiple of T’Alignment * Storage_Unit.
For example

type Smallint is range 1 .. 6;

type Rec is record
Y1 : integer;
Y2 : boolean;
end record;
In this example, Smallint’Size = Smallint’Value_Size = 3, as specified by the RM
rules, but objects of this type will have a size of 8 (Smallint’Object_Size = 8), since
objects by default occupy an integral number of storage units. On some targets, notably
older versions of the Digital Alpha, the size of stand alone objects of this type may be 32,
reflecting the inability of the hardware to do byte load/stores.

Similarly, the size of type Rec is 40 bits (Rec’Size = Rec’Value_Size = 40), but the
alignment is 4, so objects of this type will have their size increased to 64 bits so that it
is a multiple of the alignment (in bits). This decision is in accordance with the specific
Implementation Advice in RM 13.3(43):

A Size clause should be supported for an object if the specified Size is at least
as large as its subtype’s Size, and corresponds to a size in storage elements
that is a multiple of the object’s Alignment (if the Alignment is nonzero).

An explicit size clause may be used to override the default size by increasing it. For example,
if we have:

type My_Boolean is new Boolean;
for My_Boolean’Size use 32;

Chapter 6: Representation Clauses and Pragmas 115

then values of this type will always be 32 bits long. In the case of discrete types, the size can
be increased up to 64 bits, with the effect that the entire specified field is used to hold the
value, sign- or zero-extended as appropriate. If more than 64 bits is specified, then padding
space is allocated after the value, and a warning is issued that there are unused bits.

Similarly the size of records and arrays may be increased, and the effect is to add padding
bits after the value. This also causes a warning message to be generated.

The largest Size value permitted in GNAT is 2**31—1. Since this is a Size in bits, this
corresponds to an object of size 256 megabytes (minus one). This limitation is true on all
targets. The reason for this limitation is that it improves the quality of the code in many
cases if it is known that a Size value can be accommodated in an object of type Integer.

6.3 Storage_Size Clauses

For tasks, the Storage_Size clause specifies the amount of space to be allocated for the
task stack. This cannot be extended, and if the stack is exhausted, then Storage_Error
will be raised (if stack checking is enabled). Use a Storage_Size attribute definition clause,
or a Storage_Size pragma in the task definition to set the appropriate required size. A
useful technique is to include in every task definition a pragma of the form:

pragma Storage_Size (Default_Stack_Size);

Then Default_Stack_Size can be defined in a global package, and modified as required.
Any tasks requiring stack sizes different from the default can have an appropriate alternative
reference in the pragma.

For access types, the Storage_Size clause specifies the maximum space available for
allocation of objects of the type. If this space is exceeded then Storage_Error will be
raised by an allocation attempt. In the case where the access type is declared local to a
subprogram, the use of a Storage_Size clause triggers automatic use of a special predefined
storage pool (System.Pool_Size) that ensures that all space for the pool is automatically
reclaimed on exit from the scope in which the type is declared.

A special case recognized by the compiler is the specification of a Storage_Size of zero
for an access type. This means that no items can be allocated from the pool, and this is
recognized at compile time, and all the overhead normally associated with maintaining a
fixed size storage pool is eliminated. Consider the following example:

procedure p is
type R is array (Natural) of Character;
type P is access all R;
for P’Storage_Size use O;
-- Above access type intended only for interfacing purposes

y : P;

procedure g (m : P);
pragma Import (C, g);

begin

y := new R;
end;

116 GNAT Reference Manual

As indicated in this example, these dummy storage pools are often useful in connection
with interfacing where no object will ever be allocated. If you compile the above example,
you get the warning:

p-adb:16:09: warning: allocation from empty storage pool

p.adb:16:09: warning: Storage_Error will be raised at run time
Of course in practice, there will not be any explicit allocators in the case of such an access
declaration.

6.4 Size of Variant Record Objects

In the case of variant record objects, there is a question whether Size gives information
about a particular variant, or the maximum size required for any variant. Consider the
following program

with Text_I0; use Text_IO;
procedure q is
type R1 (A : Boolean := False) is record
case A is
when True => X : Character;
when False => null;
end case;
end record;

Vi : R1 (False);
V2 : Ri;

begin
Put_Line (Integer’Image (V1’Size));
Put_Line (Integer’Image (V2’Size));
end q;
Here we are dealing with a variant record, where the True variant requires 16 bits, and
the False variant requires 8 bits. In the above example, both V1 and V2 contain the False
variant, which is only 8 bits long. However, the result of running the program is:
8
16
The reason for the difference here is that the discriminant value of V1 is fixed, and will
always be False. It is not possible to assign a True variant value to V1, therefore 8 bits is
sufficient. On the other hand, in the case of V2, the initial discriminant value is False (from
the