
CORE C. Bormann
Internet-Draft Universitaet Bremen TZI
Intended status: Standards Track S. Lemay
Expires: February 25, 2017 Zebra Technologies
 H. Tschofenig
 ARM Ltd.
 K. Hartke
 Universitaet Bremen TZI
 B. Silverajan
 Tampere University of Technology
 B. Raymor, Ed.
 Microsoft
 August 24, 2016

 CoAP (Constrained Application Protocol) over TCP, TLS, and WebSockets
 draft-ietf-core-coap-tcp-tls-04

Abstract

 The Constrained Application Protocol (CoAP), although inspired by
 HTTP, was designed to use UDP instead of TCP. The message layer of
 the CoAP over UDP protocol includes support for reliable delivery,
 simple congestion control, and flow control.

 Some environments benefit from the availability of CoAP carried over
 reliable transports such as TCP or TLS. This document outlines the
 changes required to use CoAP over TCP, TLS, and WebSockets
 transports.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on February 25, 2017.

Bormann, et al. Expires February 25, 2017 [Page 1]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP August 2016

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Terminology . 5
 2. CoAP over TCP . 5
 2.1. Messaging Model . 5
 2.2. UDP-to-TCP gateways 6
 2.3. Opening Handshake . 6
 2.4. Message Format . 6
 2.5. Message Transmission 10
 3. CoAP over WebSockets . 10
 3.1. Opening Handshake . 12
 3.2. Message Format . 13
 3.3. Message Transmission 14
 3.4. Connection Health . 14
 3.5. Closing the Connection 15
 4. Signaling . 15
 4.1. Signaling Codes . 15
 4.2. Signaling Option Numbers 16
 4.3. Capability and Settings Messages (CSM) 16
 4.4. Ping and Pong Messages 18
 4.5. Release Messages . 19
 4.6. Abort Messages . 20
 4.7. Capability and Settings examples 21
 5. Block-wise Transfer and Reliable Transports 21
 5.1. Example: GET with BERT Blocks 23
 5.2. Example: PUT with BERT Blocks 23
 6. CoAP URIs . 24
 6.1. CoAP over TCP and TLS URIs 24
 6.2. CoAP over WebSockets URIs 25
 7. Security Considerations 26
 7.1. Signaling Messages 27
 8. IANA Considerations . 27

Bormann, et al. Expires February 25, 2017 [Page 2]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP August 2016

 8.1. Signaling Codes . 27
 8.2. CoAP Signaling Option Numbers Registry 28
 8.3. Service Name and Port Number Registration 29
 8.4. Secure Service Name and Port Number Registration 30
 8.5. URI Scheme Registration 30
 8.6. Well-Known URI Suffix Registration 33
 8.7. ALPN Protocol Identifier 33
 8.8. WebSocket Subprotocol Registration 33
 9. References . 34
 9.1. Normative References 34
 9.2. Informative References 35
 Appendix A. Negotiating Protocol Versions 36
 Appendix B. CoAP over WebSocket Examples 36
 Appendix C. Change Log . 40
 C.1. Since draft-core-coap-tcp-tls-02 40
 C.2. Since draft-core-coap-tcp-tls-03 40
 Acknowledgements . 40
 Contributors . 40
 Authors’ Addresses . 41

1. Introduction

 The Constrained Application Protocol (CoAP) [RFC7252] was designed
 for Internet of Things (IoT) deployments, assuming that UDP [RFC0768]
 or DTLS [RFC6347] over UDP can be used unimpeded. UDP is a good
 choice for transferring small amounts of data across networks that
 follow the IP architecture.

 Some CoAP deployments need to integrate well with existing enterprise
 infrastructures, where UDP-based protocols may not be well-received
 or may even be blocked by firewalls. Middleboxes that are unaware of
 CoAP usage for IoT can make the use of UDP brittle, resulting in lost
 or malformed packets.

 Emerging standards such as Lightweight Machine to Machine [LWM2M]
 currently use CoAP over UDP as a transport and require support for
 CoAP over TCP to address the issues above and to protect investments
 in existing CoAP implementations and deployments. Although HTTP/2
 could also potentially address these requirements, there would be
 additional costs and delays introduced by such a transition.
 Currently, there are also fewer HTTP/2 implementations available for
 constrained devices in comparison to CoAP.

 To address these requirements, this document defines how to transport
 CoAP over TCP, CoAP over TLS, and CoAP over WebSockets. Figure 1
 illustrates the layering:

Bormann, et al. Expires February 25, 2017 [Page 3]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP August 2016

 +--------------------------------+
 | Application |
 +--------------------------------+
 +--------------------------------+
 | Requests/Responses/Signaling | CoAP (RFC 7252) / This Document
 |--------------------------------|
 | Message Framing | This Document
 +--------------------------------+
 | Reliable Transport |
 +--------------------------------+

 Figure 1: Layering of CoAP over Reliable Transports

 Where NATs are present, CoAP over TCP can help with their traversal.
 NATs often calculate expiration timers based on the transport layer
 protocol being used by application protocols. Many NATs maintain
 TCP-based NAT bindings for longer periods based on the assumption
 that a transport layer protocol, such as TCP, offers additional
 information about the session life cycle. UDP, on the other hand,
 does not provide such information to a NAT and timeouts tend to be
 much shorter [HomeGateway].

 Some environments may also benefit from the ability of TCP to
 exchange larger payloads, such as firmware images, without
 application layer segmentation and to utilize the more sophisticated
 congestion control capabilities provided by many TCP implementations.

 CoAP may be integrated into a Web environment where the front-end
 uses CoAP over UDP from IoT devices to a cloud infrastructure and
 then CoAP over TCP between the back-end services. A TCP-to-UDP
 gateway can be used at the cloud boundary to communicate with the
 UDP-based IoT device.

 To allow IoT devices to better communicate in these demanding
 environments, CoAP needs to support different transport protocols,
 namely TCP [RFC0793], in some situations secured by TLS [RFC5246].

 In addition, some corporate networks only allow Internet access via a
 HTTP proxy. In this case, the best transport for CoAP would be the
 WebSocket Protocol [RFC6455]. The WebSocket protocol provides two-
 way communication between a client and a server after upgrading an
 HTTP/1.1 [RFC7230] connection and may be available in an environment
 that blocks CoAP over UDP. Another scenario for CoAP over WebSockets
 is a CoAP application running inside a web browser without access to
 connectivity other than HTTP and WebSockets.

 This document specifies how to access resources using CoAP requests
 and responses over the TCP/TLS and WebSocket protocols. This allows

Bormann, et al. Expires February 25, 2017 [Page 4]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP August 2016

 connectivity-limited applications to obtain end-to-end CoAP
 connectivity either by communicating CoAP directly with a CoAP server
 accessible over a TCP/TLS or WebSocket connection or via a CoAP
 intermediary that proxies CoAP requests and responses between
 different transports, such as between WebSockets and UDP.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

 This document assumes that readers are familiar with the terms and
 concepts that are used in [RFC6455] and [RFC7252].

 The term "reliable transport" only refers to stream-based transport
 protocols such as TCP.

 BERT Option:
 A Block1 or Block2 option that includes an SZX value of 7.

 BERT Block:
 The payload of a CoAP message that is affected by a BERT Option in
 descriptive usage (Section 2.1 of [I-D.ietf-core-block]).

2. CoAP over TCP

 The request/response interaction model of CoAP over TCP is the same
 as CoAP over UDP. The primary differences are in the message layer.
 CoAP over UDP supports optional reliability by defining four types of
 messages: Confirmable, Non-confirmable, Acknowledgement, and Reset.
 TCP eliminates the need for the message layer to support reliability.
 As a result, message types are not defined in CoAP over TCP.

2.1. Messaging Model

 Conceptually, CoAP over TCP replaces most of the CoAP over UDP
 message layer with a framing mechanism on top of the byte stream
 provided by TCP/TLS, conveying the length information for each
 message that on datagram transports is provided by the UDP/DTLS
 datagram layer.

 TCP ensures reliable message transmission, so the CoAP over TCP
 messaging layer is not required to support acknowledgements or
 detection of duplicate messages. As a result, both the Type and
 Message ID fields are no longer required and are removed from the
 CoAP over TCP message format. All messages are also untyped.

Bormann, et al. Expires February 25, 2017 [Page 5]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP August 2016

 Figure 2 illustrates the difference between CoAP over UDP and CoAP
 over reliable transport. The removed Type and Message ID fields are
 indicated by dashes.

 Client Server Client Server
 | | | |
 | CON [0xbc90] | | (-------) [------] |
 | GET /temperature | | GET /temperature |
 | (Token 0x71) | | (Token 0x71) |
 +------------------->| +------------------->|
 | | | |
 | ACK [0xbc90] | | (-------) [------] |
 | 2.05 Content | | 2.05 Content |
 | (Token 0x71) | | (Token 0x71) |
 | "22.5 C" | | "22.5 C" |
 |<-------------------+ |<-------------------+
 | | | |

 CoAP over UDP CoAP over reliable
 transport

 Figure 2: Comparison between CoAP over unreliable and reliable
 transport.

2.2. UDP-to-TCP gateways

 A UDP-to-TCP gateway MUST discard all Empty messages (Code 0.00)
 after processing at the message layer. For Confirmable (CON), Non-
 Confirmable (NOM), and Acknowledgement (ACK) messages that are not
 Empty, their contents are repackaged into untyped messages.

2.3. Opening Handshake

 Both the client and the server MUST send a Capability and Settings
 message (CSM see Section 4.3) as its first message on the connection.
 This message establishes the initial settings and capabilities for
 the endpoint such as maximum message size or support for block-wise
 transfers. The absence of options in the CSM indicates that base
 values are assumed.

 Clients and servers MUST treat a missing or invalid CSM as a
 connection error and abort the connection (see Section 4.6).

2.4. Message Format

 The CoAP message format defined in [RFC7252], as shown in Figure 3,
 relies on the datagram transport (UDP, or DTLS over UDP) for keeping

Bormann, et al. Expires February 25, 2017 [Page 6]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP August 2016

 the individual messages separate and for providing length
 information.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |Ver| T | TKL | Code | Message ID |
 +-+
 | Token (if any, TKL bytes) ...
 +-+
 | Options (if any) ...
 +-+
 |1 1 1 1 1 1 1 1| Payload (if any) ...
 +-+

 Figure 3: RFC 7252 defined CoAP Message Format.

 The CoAP over TCP message format is very similar to the format
 specified for CoAP over UDP. The differences are as follows:

 o Since the underlying TCP connection provides retransmissions and
 deduplication, there is no need for the reliability mechanisms
 provided by CoAP over UDP. The "T" and "Message ID" fields in the
 CoAP message header are elided.

 o The "Ver" field is elided as well. In constrast to the UDP
 message layer for UDP and DTLS, the CoAP over TCP message layer
 does not send a version number in each message. If required in
 the future, a new Capability and Settings Option (See Appendix A)
 could be defined to support version negotiation.

 o In a stream oriented transport protocol such as TCP, a form of
 message delimitation is needed. For this purpose, CoAP over TCP
 introduces a length field with variable size. Figure 4 shows the
 adjusted CoAP message format with a modified structure for the
 fixed header (first 4 bytes of the CoAP over UDP header), which
 includes the length information of variable size, shown here as an
 8-bit length.

Bormann, et al. Expires February 25, 2017 [Page 7]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP August 2016

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |Len=13 | TKL |Extended Length| Code | TKL bytes ...
 +-+
 | Options (if any) ...
 +-+
 |1 1 1 1 1 1 1 1| Payload (if any) ...
 +-+

 Figure 4: CoAP frame with 8-bit Extended Length field.

 Length (Len): 4-bit unsigned integer. A value between 0 and 12
 directly indicates the length of the message in bytes starting
 with the first bit of the Options field. Three values are
 reserved for special constructs:

 13: An 8-bit unsigned integer (Extended Length) follows the
 initial byte and indicates the length of options/payload minus
 13.

 14: A 16-bit unsigned integer (Extended Length) in network byte
 order follows the initial byte and indicates the length of
 options/payload minus 269.

 15: A 32-bit unsigned integer (Extended Length) in network byte
 order follows the initial byte and indicates the length of
 options/payload minus 65805.

 The encoding of the Length field is modeled on CoAP Options (see
 section 3.1 of [RFC7252]).

 The following figures show the message format for the 0-bit, 16-bit,
 and the 32-bit variable length cases.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Len | TKL | Code | Token (if any, TKL bytes) ...
 +-+
 | Options (if any) ...
 +-+
 |1 1 1 1 1 1 1 1| Payload (if any) ...
 +-+

 Figure 5: CoAP message format without an Extended Length field.

Bormann, et al. Expires February 25, 2017 [Page 8]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP August 2016

 For example: A CoAP message just containing a 2.03 code with the
 token 7f and no options or payload would be encoded as shown in
 Figure 6.

 0 1 2
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
 +-+
 | 0x01 | 0x43 | 0x7f |
 +-+

 Len = 0 ------> 0x01
 TKL = 1 ___/
 Code = 2.03 --> 0x43
 Token = 0x7f

 Figure 6: CoAP message with no options or payload.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |Len=14 | TKL | Extended Length (16 bits) | Code |
 +-+
 | Token (if any, TKL bytes) ...
 +-+
 | Options (if any) ...
 +-+
 |1 1 1 1 1 1 1 1| Payload (if any) ...
 +-+

 Figure 7: CoAP message format with 16-bit Extended Length field.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |Len=15 | TKL | Extended Length (32 bits)
 +-+
 | | Code | Token (if any, TKL bytes) ...
 +-+
 | Options (if any) ...
 +-+
 |1 1 1 1 1 1 1 1| Payload (if any) ...
 +-+

 Figure 8: CoAP message format with 32-bit Extended Length field.

 The semantics of the other CoAP header fields are left unchanged.

Bormann, et al. Expires February 25, 2017 [Page 9]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP August 2016

2.5. Message Transmission

 CoAP requests and responses are exchanged asynchronously over the
 TCP/TLS connection. A CoAP client can send multiple requests without
 waiting for a response and the CoAP server can return responses in
 any order. Responses MUST be returned over the same connection as
 the originating request. Concurrent requests are differentiated by
 their Token, which is scoped locally to the connection.

 The connection is bi-directional, so requests can be sent both by the
 entity that established the connection and the remote host.

 Retransmission and deduplication of messages is provided by the TCP/
 TLS protocol.

 Since the TCP protocol provides ordered delivery of messages, the
 mechanism for reordering detection when observing resources [RFC7641]
 is not needed. The value of the Observe Option in notifications MAY
 be empty on transmission and MUST be ignored on reception.

3. CoAP over WebSockets

 CoAP over WebSockets can be used in a number of configurations. The
 most basic configuration is a CoAP client retrieving or updating a
 CoAP resource located at a CoAP server that exposes a WebSocket
 endpoint (Figure 9). The CoAP client acts as the WebSocket client,
 establishes a WebSocket connection, and sends a CoAP request, to
 which the CoAP server returns a CoAP response. The WebSocket
 connection can be used for any number of requests.

 ___________ ___________
 | | | |
 | _|___ requests ___|_ |
 | CoAP / \ \ -------------> / / \ CoAP |
 | Client __/__/ <------------- ____/ Server |
 | | responses | |
 |___________| |___________|
 WebSocket =============> WebSocket
 Client Connection Server

 Figure 9: CoAP Client (WebSocket client) accesses CoAP Server
 (WebSocket server)

 The challenge with this configuration is how to identify a resource
 in the namespace of the CoAP server. When the WebSocket protocol is
 used by a dedicated client directly (i.e., not from a web page
 through a web browser), the client can connect to any WebSocket
 endpoint. This means it is necessary for the client to identify both

Bormann, et al. Expires February 25, 2017 [Page 10]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP August 2016

 the WebSocket endpoint (identified by a "ws" or "wss" URI) and the
 path and query of the CoAP resource within that endpoint from the
 same URI. When the WebSocket protocol is used from a web page, the
 choices are more limited [RFC6454], but the challenge persists.

 Section 6.2 defines a new "coap+ws" URI scheme that identifies both a
 WebSocket endpoint and a resource within that endpoint as follows:

 coap+ws://example.org/sensors/temperature?u=Cel
 ______ ______/___________ ___________/
 \/ \/
 Uri-Path: "sensors"
 ws://example.org/.well-known/coap Uri-Path: "temperature"
 Uri-Query: "u=Cel"

 Figure 10: The "coap+ws" URI Scheme

 Another possible configuration is to set up a CoAP forward proxy at
 the WebSocket endpoint. Depending on what transports are available
 to the proxy, it could forward the request to a CoAP server with a
 CoAP UDP endpoint (Figure 11), an SMS endpoint (a.k.a. mobile phone),
 or even another WebSocket endpoint. The client specifies the
 resource to be updated or retrieved in the Proxy-URI Option.

 ___________ ___________ ___________
 | | | | | |
 | _|___ ___|_ _|___ ___|_ |
 | CoAP / \ \ ---> / / \ CoAP / \ \ ---> / / \ CoAP |
 | Client __/__/ <--- ____/ Proxy __/__/ <--- ____/ Server |
 | | | | | |
 |___________| |___________| |___________|
 WebSocket ===> WebSocket UDP UDP
 Client Server Client Server

 Figure 11: CoAP Client (WebSocket client) accesses CoAP Server (UDP
 server) via a CoAP proxy (WebSocket server/UDP client)

 A third possible configuration is a CoAP server running inside a web
 browser (Figure 12). The web browser initially connects to a
 WebSocket endpoint and is then reachable through the WebSocket
 server. When no connection exists, the CoAP server is unreachable.
 Because the WebSocket server is the only way to reach the CoAP
 server, the CoAP proxy should be a Reverse Proxy.

Bormann, et al. Expires February 25, 2017 [Page 11]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP August 2016

 ___________ ___________ ___________
 | | | | | |
 | _|___ ___|_ _|___ ___|_ |
 | CoAP / \ \ ---> / / \ CoAP / / \ ---> / \ \ CoAP |
 | Client __/__/ <--- ____/ Proxy ____/ <--- __/__/ Server |
 | | | | | |
 |___________| |___________| |___________|
 UDP UDP WebSocket <=== WebSocket
 Client Server Server Client

 Figure 12: CoAP Client (UDP client) accesses sleepy CoAP Server
 (WebSocket client) via a CoAP proxy (UDP server/WebSocket server)

 Further configurations are possible, including those where a
 WebSocket connection is established through an HTTP proxy.

 CoAP over WebSockets is intentionally very similar to CoAP over UDP.
 Therefore, instead of presenting CoAP over WebSockets as a new
 protocol, this document specifies it as a series of deltas from
 [RFC7252].

3.1. Opening Handshake

 Before CoAP requests and responses are exchanged, a WebSocket
 connection is established as defined in Section 4 of [RFC6455].
 Figure 13 shows an example.

 The WebSocket client MUST include the subprotocol name "coap" in the
 list of protocols, which indicates support for the protocol defined
 in this document. Any later, incompatible versions of CoAP or CoAP
 over WebSockets will use a different subprotocol name.

 The WebSocket client includes the hostname of the WebSocket server in
 the Host header field of its handshake as per [RFC6455]. The Host
 header field also indicates the default value of the Uri-Host Option
 in requests from the WebSocket client to the WebSocket server.

Bormann, et al. Expires February 25, 2017 [Page 12]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP August 2016

 GET /.well-known/coap HTTP/1.1
 Host: example.org
 Upgrade: websocket
 Connection: Upgrade
 Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==
 Sec-WebSocket-Protocol: coap
 Sec-WebSocket-Version: 13

 HTTP/1.1 101 Switching Protocols
 Upgrade: websocket
 Connection: Upgrade
 Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=
 Sec-WebSocket-Protocol: coap

 Figure 13: Example of an Opening Handshake

3.2. Message Format

 Once a WebSocket connection is established, CoAP requests and
 responses can be exchanged as WebSocket messages. Since CoAP uses a
 binary message format, the messages are transmitted in binary data
 frames as specified in Sections 5 and 6 of [RFC6455].

 The message format shown in Figure 14 is the same as the CoAP over
 TCP message format (see Section 2.4) with one restriction. The
 Length (Len) field MUST be set to zero because the WebSockets frame
 contains the length.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Len | TKL | Code | Token (TKL bytes) ...
 +-+
 | Options (if any) ...
 +-+
 |1 1 1 1 1 1 1 1| Payload (if any) ...
 +-+

 Figure 14: CoAP Message Format over WebSockets

 The CoAP over TCP message format eliminates the Version field defined
 in CoAP over UDP. If CoAP version negotiation is required in the
 future, CoAP over WebSockets can address the requirement by the
 definition of a new subprotocol identifier that is negotiated during
 the opening handshake.

 Requests and response messages can be fragmented as specified in
 Section 5.4 of [RFC6455], though typically they are sent unfragmented

Bormann, et al. Expires February 25, 2017 [Page 13]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP August 2016

 as they tend to be small and fully buffered before transmission. The
 WebSocket protocol does not provide means for multiplexing. If it is
 not desirable for a large message to monopolize the connection,
 requests and responses can be transferred in a block-wise fashion as
 defined in [I-D.ietf-core-block].

 Empty messages (Code 0.00) MUST be ignored by the recipient (see also
 Section 4.4).

3.3. Message Transmission

 CoAP requests and responses are exchanged asynchronously over the
 WebSocket connection. A CoAP client can send multiple requests
 without waiting for a response and the CoAP server can return
 responses in any order. Responses MUST be returned over the same
 connection as the originating request. Concurrent requests are
 differentiated by their Token, which is scoped locally to the
 connection.

 The connection is bi-directional, so requests can be sent both by the
 entity that established the connection and the remote host.

 Retransmission and deduplication of messages is provided by the
 WebSocket protocol. CoAP over WebSockets therefore does not make a
 distinction between Confirmable or Non-Confirmable messages, and does
 not provide Acknowledgement or Reset messages.

 Since the WebSocket protocol provides ordered delivery of messages,
 the mechanism for reordering detection when observing resources
 [RFC7641] is not needed. The value of the Observe Option in
 notifications MAY be empty on transmission and MUST be ignored on
 reception.

3.4. Connection Health

 When a client does not receive any response for some time after
 sending a CoAP request (or, similarly, when a client observes a
 resource and it does not receive any notification for some time), the
 connection between the WebSocket client and the WebSocket server may
 be lost or temporarily disrupted without the client being aware of
 it.

 To check the health of the WebSocket connection (and thereby of all
 active requests, if any), a client can send a CoAP Ping Signaling
 message (Section 4.4). WebSocket Ping and unsolicited Pong frames as
 specified in Section 5.5 of [RFC6455] SHOULD NOT be used to ensure
 that redundant maintenance traffic is not transmitted.

Bormann, et al. Expires February 25, 2017 [Page 14]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP August 2016

 There is no way to retransmit a request without creating a new one.
 Re-registering interest in a resource is permitted, but entirely
 unnecessary.

3.5. Closing the Connection

 The WebSocket connection is closed as specified in Section 7 of
 [RFC6455].

 All requests for which the CoAP client has not received a response
 yet are cancelled when the connection is closed. If the client
 observes one or more resources over the WebSocket connection, then
 the CoAP server (or intermediary in the role of the CoAP server) MUST
 remove all entries associated with the client from the lists of
 observers when the connection is closed.

4. Signaling

 Signaling messages are introduced to allow peers to:

 o Share characteristics such as maximum message size for the
 connection

 o Shutdown the connection in an ordered fashion

 o Terminate the connection in response to a serious error condition

 Signaling is a third basic kind of message in CoAP, after requests
 and responses. Signaling messages share a common structure with the
 existing CoAP messages. There is a code, a token, options, and an
 optional payload.

 (See Section 3 of [RFC7252] for the overall structure, as adapted to
 the specific transport.)

4.1. Signaling Codes

 A code in the 7.01-7.31 range indicates a Signaling message. Values
 in this range are assigned by the "CoAP Signaling Codes" sub-registry
 (see Section 8.1).

 For each message, there is a sender and a peer receiving the message.

 Payloads in Signaling messages are diagnostic payloads (see
 Section 5.5.2 of [RFC7252]), unless otherwise defined by a Signaling
 message option.

Bormann, et al. Expires February 25, 2017 [Page 15]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP August 2016

4.2. Signaling Option Numbers

 Option numbers for Signaling messages are specific to the message
 code. They do not share the number space with CoAP options for
 request/response messages or with Signaling messages using other
 codes.

 Option numbers are assigned by the "CoAP Signaling Option Numbers"
 sub-registry (see Section 8.2).

 Signaling options are elective or critical as defined in
 Section 5.4.1 of [RFC7252]). If a Signaling option is critical and
 not understood by the receiver, it MUST abort the connection (see
 Section 4.6). If the option is understood but cannot be processed,
 the option documents the behavior.

4.3. Capability and Settings Messages (CSM)

 Capability and Settings messages (CSM) are used for two purposes:

 o Each capability option advertises one capability of the sender to
 the recipient.

 o Setting options indicate a setting that will be applied by the
 sender.

 A Capability and Settings message MUST be sent by both endpoints at
 the start of the connection and MAY be sent at any other time by
 either endpoint over the lifetime of the connection.

 Both capability and settings options are cumulative. A Capability
 and Settings message does not invalidate a previously sent capability
 indication or setting even if it is not repeated. A capability
 message without any option is a no-operation (and can be used as
 such). An option that is sent might override a previous value for
 the same option. The option defines how to handle this case if
 needed.

 Base values are listed below for CSM Options. These are the values
 for the Capability and Setting before any Capability and Settings
 messages send a modified value.

 These are not default values for the option as defined in
 Section 5.4.4 in [RFC7252]. A default value would mean that an empty
 Capability and Settings message would result in the option being set
 to its default value.

Bormann, et al. Expires February 25, 2017 [Page 16]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP August 2016

 Capability and Settings messages are indicated by the 7.01 code
 (CSM).

4.3.1. Server-Name Setting Option

 +--------+------------+-------------+--------+--------+-------------+
 | Number | Applies to | Name | Format | Length | Base Value |
 +--------+------------+-------------+--------+--------+-------------+
 | 1 | CSM | Server-Name | string | 1-255 | (see below) |
 +--------+------------+-------------+--------+--------+-------------+

 A client can use the Server-Name critical option to indicate the
 default value for the Uri-Host Options in the messages that it sends
 to the server. It has the same restrictions as the Uri-Host Option
 (Section 5.10 of [RFC7252].

 For TLS, the initial value for the Server-Name Option is given by the
 SNI value.

 For Websockets, the initial value for the Server-Name Option is given
 by the HTTP Host header field.

4.3.2. Max-Message-Size Capability Option

 The sender can use the Max-Message-Size elective option to indicate
 the maximum message size in bytes that it can receive.

 +--------+-----------+------------------+--------+--------+---------+
 | Number | Applies | Name | Format | Length | Base |
 | | to | | | | Value |
 +--------+-----------+------------------+--------+--------+---------+
 | 2 | CSM | Max-Message-Size | uint | 0-4 | 1152 |
 +--------+-----------+------------------+--------+--------+---------+

 As per Section 4.6 of [RFC7252], the base value (and the value used
 when this option is not implemented) is 1152. A peer that relies on
 this option being indicated with a certain minimum value will enjoy
 limited interoperability.

4.3.3. Block-wise Transfer Capability Option

 +--------+-----------+----------------+--------+--------+-----------+
 | Number | Applies | Name | Format | Length | Base |
 | | to | | | | Value |
 +--------+-----------+----------------+--------+--------+-----------+
 | 4 | CSM | Block-wise | empty | 0 | (none) |
 | | | Transfer | | | |
 +--------+-----------+----------------+--------+--------+-----------+

Bormann, et al. Expires February 25, 2017 [Page 17]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP August 2016

 A sender can use the Block-wise Transfer elective Option to indicate
 that it supports the block-wise transfer protocol
 [I-D.ietf-core-block].

 If the option is not given, the peer has no information about whether
 block-wise transfers are supported by the sender or not. An
 implementation that supports block-wise transfers SHOULD indicate the
 Block-wise Transfer Option. If a Max-Message-Size Option is
 indicated with a value that is greater than 1152 (in the same or a
 different CSM message), the Block-wise Transfer Option also indicates
 support for BERT (see Section 5).

4.4. Ping and Pong Messages

 In CoAP over TCP, Empty messages (Code 0.00) can always be sent and
 MUST be ignored by the recipient. This provides a basic keep-alive
 function that can refresh NAT bindings. In contrast, Ping and Pong
 messages are a bidirectional exchange.

 Upon receipt of a Ping message, a single Pong message is returned
 with the identical token. As with all Signaling messages, the
 recipient of a Ping or Pong message MUST ignore elective options it
 does not understand.

 Ping and Pong messages are indicated by the 7.02 code (Ping) and the
 7.03 code (Pong).

4.4.1. Custody Option

 +--------+------------+---------+--------+--------+------------+
 | Number | Applies to | Name | Format | Length | Base Value |
 +--------+------------+---------+--------+--------+------------+
 | 2 | Ping, Pong | Custody | empty | 0 | (none) |
 +--------+------------+---------+--------+--------+------------+

 A peer replying to a Ping message can add a Custody elective option
 to the Pong message it returns. This option indicates that the
 application has processed all request/response messages that it has
 received in the present connection ahead of the Ping message that
 prompted the Pong message. (Note that there is no definition of
 specific application semantics of "processed", but there is an
 expectation that the sender of the Ping leading to the Pong with a
 Custody Option should be able to free buffers based on this
 indication.)

 A Custody elective option can also be sent in a Ping message to
 explicitly request the return of a Custody Option in the Pong
 message. A peer is always free to indicate that it has finished

Bormann, et al. Expires February 25, 2017 [Page 18]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP August 2016

 processing all previous request/response messages by sending a
 Custody Option in a Pong message. A peer is also free NOT to send a
 Custody Option in case it is still processing previous request/
 response messages; however, it SHOULD delay its response to a Ping
 with a Custody Option until it can also return one.

4.5. Release Messages

 A release message indicates that the sender does not want to continue
 maintaining the connection and opts for an orderly shutdown; the
 details are in the options. A diagnostic payload MAY be included. A
 release message will normally be replied to by the peer by closing
 the TCP/TLS connection. Messages may be in flight when the sender
 decides to send a Release message. The general expectation is that
 these will still be processed.

 Release messages are indicated by the 7.04 code (Release).

 Release messages can indicate one or more reasons using elective
 options. The following options are defined:

 +--------+-----------+-----------------+--------+--------+----------+
 | Number | Applies | Name | Format | Length | Base |
 | | to | | | | Value |
 +--------+-----------+-----------------+--------+--------+----------+
 | 2 | Release | Bad-Server-Name | empty | 0 | (none) |
 +--------+-----------+-----------------+--------+--------+----------+

 The Bad-Server-Name elective option indicates that the default
 indicated by the CSM Server-Name Option is unlikely to be useful for
 this server.

 +--------+----------+-------------------+--------+--------+---------+
 | Number | Applies | Name | Format | Length | Base |
 | | to | | | | Value |
 +--------+----------+-------------------+--------+--------+---------+
 | 4 | Release | Alternate-Address | string | 1-255 | (none) |
 +--------+----------+-------------------+--------+--------+---------+

 The Alternative-Address elective option requests the peer to instead
 open a connection of the same kind as the present connection to the
 alternative transport address given. Its value is in the form
 "authority" as defined in Section 3.2 of [RFC3986].

Bormann, et al. Expires February 25, 2017 [Page 19]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP August 2016

 +--------+------------+----------+--------+--------+------------+
 | Number | Applies to | Name | Format | Length | Base Value |
 +--------+------------+----------+--------+--------+------------+
 | 6 | Release | Hold-Off | uint | 0-3 | (none) |
 +--------+------------+----------+--------+--------+------------+

 The Hold-Off elective option indicates that the server is requesting
 that the peer not reconnect to it for the number of seconds given in
 the value.

4.6. Abort Messages

 An abort message indicates that the sender is unable to continue
 maintaining the connection and cannot even wait for an orderly
 release. The sender shuts down the connection immediately after the
 abort (and may or may not wait for a release or abort message or
 connection shutdown in the inverse direction). A diagnostic payload
 SHOULD be included in the Abort message. Messages may be in flight
 when the sender decides to send an abort message. The general
 expectation is that these will NOT be processed.

 Abort messages are indicated by the 7.05 code (Abort).

 Abort messages can indicate one or more reasons using elective
 options. The following option is defined:

 +--------+-----------+----------------+--------+--------+-----------+
 | Number | Applies | Name | Format | Length | Base |
 | | to | | | | Value |
 +--------+-----------+----------------+--------+--------+-----------+
 | 2 | Abort | Bad-CSM-Option | uint | 0-2 | (none) |
 +--------+-----------+----------------+--------+--------+-----------+

 The Bad-CSM-Option Option indicates that the sender is unable to
 process the CSM option identified by its option number, e.g. when it
 is critical and the option number is unknown by the sender, or when
 there is parameter problem with the value of an elective option.
 More detailed information SHOULD be included as a diagnostic payload.

 One reason for an sender to generate an abort message is a general
 syntax error in the byte stream received. No specific option has
 been defined for this, as the details of that syntax error are best
 left to a diagnostic payload.

Bormann, et al. Expires February 25, 2017 [Page 20]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP August 2016

4.7. Capability and Settings examples

 An encoded example of a Ping message with a non-empty token is shown
 in Figure 15.

 0 1 2
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
 +-+
 | 0x01 | 0xe2 | 0x42 |
 +-+

 Len = 0 -------> 0x01
 TKL = 1 ___/
 Code = 7.02 Ping --> 0xe2
 Token = 0x42

 Figure 15: Ping Message Example

 An encoded example of the corresponding Pong message is shown in
 Figure 16.

 0 1 2
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
 +-+
 | 0x01 | 0xe3 | 0x42 |
 +-+

 Len = 0 -------> 0x01
 TKL = 1 ___/
 Code = 7.03 Pong --> 0xe3
 Token = 0x42

 Figure 16: Pong Message Example

5. Block-wise Transfer and Reliable Transports

 The message size restrictions defined in Section 4.6 of CoAP
 [RFC7252] to avoid IP fragmentation are not necessary when CoAP is
 used over a reliable byte stream transport. While this suggests that
 the Block-wise transfer protocol [I-D.ietf-core-block] is also no
 longer needed, it remains applicable for a number of cases:

 o large messages, such as firmware downloads, may cause undesired
 head-of-line blocking when a single TCP connection is used

 o a UDP-to-TCP gateway may simply not have the context to convert a
 message with a Block Option into the equivalent exchange without

Bormann, et al. Expires February 25, 2017 [Page 21]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP August 2016

 any use of a Block Option (it would need to convert the entire
 blockwise exchange from start to end into a single exchange)

 The ’Block-wise Extension for Reliable Transport (BERT)’ extends the
 Block protocol to enable the use of larger messages over a reliable
 transport.

 The use of this new extension is signaled by sending Block1 or Block2
 Options with SZX == 7 (a "BERT option"). SZX == 7 is a reserved
 value in [I-D.ietf-core-block].

 In control usage, a BERT option is interpreted in the same way as the
 equivalent Option with SZX == 6, except that it also indicates the
 capability to process BERT blocks. As with the basic Block protocol,
 the recipient of a CoAP request with a BERT option in control usage
 is allowed to respond with a different SZX value, e.g. to send a non-
 BERT block instead.

 In descriptive usage, a BERT Option is interpreted in the same way as
 the equivalent Option with SZX == 6, except that the payload is
 allowed to contain a multiple of 1024 bytes (non-final BERT block) or
 more than 1024 bytes (final BERT block).

 The recipient of a non-final BERT block (M=1) conceptually partitions
 the payload into a sequence of 1024-byte blocks and acts exactly as
 if it had received this sequence in conjunction with block numbers
 starting at, and sequentially increasing from, the block number given
 in the Block Option. In other words, the entire BERT block is
 positioned at the byte position that results from multiplying the
 block number with 1024. The position of further blocks to be
 transferred is indicated by incrementing the block number by the
 number of elements in this sequence (i.e., the size of the payload
 divided by 1024 bytes).

 As with SZX == 6, the recipient of a final BERT block (M=0) simply
 appends the payload at the byte position that is indicated by the
 block number multiplied with 1024.

 The following examples illustrate BERT options. A value of SZX == 7
 is labeled as "BERT" or as "BERT(nnn)" to indicate a payload of size
 nnn.

 In all these examples, a Block Option is decomposed to indicate the
 kind of Block Option (1 or 2) followed by a colon, the block number
 (NUM), more bit (M), and block size exponent (2**(SZX+4)) separated
 by slashes. E.g., a Block2 Option value of 33 would be shown as
 2:2/0/32), or a Block1 Option value of 59 would be shown as
 1:3/1/128.

Bormann, et al. Expires February 25, 2017 [Page 22]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP August 2016

5.1. Example: GET with BERT Blocks

 Figure 17 shows a GET request with a response that is split into
 three BERT blocks. The first response contains 3072 bytes of
 payload; the second, 5120; and the third, 4711. Note how the block
 number increments to move the position inside the response body
 forward.

 CLIENT SERVER
 | |
 | GET, /status ------> |
 | |
 | <------ 2.05 Content, 2:0/1/BERT(3072) |
 | |
 | GET, /status, 2:3/0/BERT ------> |
 | |
 | <------ 2.05 Content, 2:3/1/BERT(5120) |
 | |
 | GET, /status, 2:8/0/BERT ------> |
 | |
 | <------ 2.05 Content, 2:8/0/BERT(4711) |

 Figure 17: GET with BERT blocks.

5.2. Example: PUT with BERT Blocks

 Figure 18 demonstrates a PUT exchange with BERT blocks.

 CLIENT SERVER
 | |
 | PUT, /options, 1:0/1/BERT(8192) ------> |
 | |
 | <------ 2.31 Continue, 1:0/1/BERT |
 | |
 | PUT, /options, 1:8/1/BERT(16384) ------> |
 | |
 | <------ 2.31 Continue, 1:8/1/BERT |
 | |
 | PUT, /options, 1:24/0/BERT(5683) ------> |
 | |
 | <------ 2.04 Changed, 1:24/0/BERT |
 | |

 Figure 18: PUT with BERT blocks.

Bormann, et al. Expires February 25, 2017 [Page 23]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP August 2016

6. CoAP URIs

 CoAP over UDP [RFC7252] defines the "coap" and "coaps" URI schemes
 for identifying CoAP resources and providing a means of locating the
 resource.

6.1. CoAP over TCP and TLS URIs

 CoAP over TCP uses the "coap+tcp" URI scheme. CoAP over TLS uses the
 "coaps+tcp" scheme. The rules from Section 6 of [RFC7252] apply to
 both of these URI schemes.

 [RFC7252], Section 8 (Multicast CoAP) is not applicable to these
 schemes.

 Resources made available via one of the "coap+tcp" or "coaps+tcp"
 schemes have no shared identity with the other scheme or with the
 "coap" or "coaps" scheme, even if their resource identifiers indicate
 the same authority (the same host listening to the same port). The
 schemes constitute distinct namespaces and, in combination with the
 authority, are considered to be distinct origin servers.

6.1.1. coap+tcp URI scheme

 coap-tcp-URI = "coap+tcp:" "//" host [":" port] path-abempty
 ["?" query]

 The semantics defined in [RFC7252], Section 6.1, apply to this URI
 scheme, with the following changes:

 o The port subcomponent indicates the TCP port at which the CoAP
 server is located. (If it is empty or not given, then the default
 port 5683 is assumed, as with UDP.)

6.1.2. coaps+tcp URI scheme

 coaps-tcp-URI = "coaps+tcp:" "//" host [":" port] path-abempty
 ["?" query]

 The semantics defined in [RFC7252], Section 6.2, apply to this URI
 scheme, with the following changes:

 o The port subcomponent indicates the TCP port at which the TLS
 server for the CoAP server is located. If it is empty or not
 given, then the default port 443 is assumed (this is different
 from the default port for "coaps", i.e., CoAP over DTLS over UDP).

Bormann, et al. Expires February 25, 2017 [Page 24]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP August 2016

 o If a server does not support the Application-Layer Protocol
 Negotiation Extension (ALPN) [RFC7301] or wishes to accommodate
 clients that do not support ALPN, it MAY offer a coaps+tcp
 endpoint on TCP port 5684. This endpoint MAY also be ALPN
 enabled. A server MAY offer coaps+tcp endpoints on ports other
 than TCP port 5684, which MUST be ALPN enabled.

 o For TCP ports other than port 5684, the client MUST use the ALPN
 extension to advertise the "coap" protocol identifier (see
 Section 8.7) in the list of protocols in its ClientHello. If the
 server selects and returns the "coap" protocol identifier using
 the ALPN extension in its ServerHello, then the connection
 succeeds. If the server either does not negotiate the ALPN
 extension or returns a no_application_protocol alert, the client
 MUST close the connection.

 o For TCP port 5684, a client MAY use the ALPN extension to
 advertise the "coap" protocol identifier in the list of protocols
 in its ClientHello. If the server selects and returns the "coap"
 protocol identifier using the ALPN extension in its ServerHello,
 then the connection succeeds. If the server returns a
 no_application_protocol alert, then the client MUST close the
 connection. If the server does not negotiate the ALPN extension,
 then coaps+tcp is implicitly selected.

 o For TCP port 5684, if the client does not use the ALPN extension
 to negotiate the protocol, then coaps+tcp is implicitly selected.

6.2. CoAP over WebSockets URIs

 For the first configuration discussed in Section 3, this document
 defines two new URIs schemes that can be used for identifying CoAP
 resources and providing a means of locating these resources:
 "coap+ws" and "coap+wss".

 Similar to the "coap" and "coaps" schemes, the "coap+ws" and
 "coap+wss" schemes organize resources hierarchically under a CoAP
 origin server. The key difference is that the server is potentially
 reachable on a WebSocket endpoint instead of a UDP endpoint.

 The WebSocket endpoint is identified by a "ws" or "wss" URI that is
 composed of the authority part of the "coap+ws" or "coap+wss" URI,
 respectively, and the well-known path "/.well-known/coap" [RFC5785].
 The path and query parts of a "coap+ws" or "coap+wss" URI identify a
 resource within the specified endpoint which can be operated on by
 the methods defined by CoAP.

Bormann, et al. Expires February 25, 2017 [Page 25]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP August 2016

 The syntax of the "coap+ws" and "coap+wss" URI schemes is specified
 below in Augmented Backus-Naur Form (ABNF) [RFC5234]. The
 definitions of "host", "port", "path-abempty" and "query" are the
 same as in [RFC3986].

 coap-ws-URI =
 "coap+ws:" "//" host [":" port] path-abempty ["?" query]

 coap-wss-URI =
 "coap+wss:" "//" host [":" port] path-abempty ["?" query]

 The port component is OPTIONAL; the default for "coap+ws" is port 80,
 while the default for "coap+wss" is port 443.

 Fragment identifiers are not part of the request URI and thus MUST
 NOT be transmitted in a WebSocket handshake or in the URI options of
 a CoAP request.

6.2.1. Decomposing and Composing URIs

 The steps for decomposing a "coap+ws" or "coap+wss" URI into CoAP
 options are the same as specified in Section 6.4 of [RFC7252] with
 the following changes:

 o The <scheme> component MUST be "coap+ws" or "coap+wss" when
 converted to ASCII lowercase.

 o A Uri-Host Option MUST only be included in a request when the
 <host> component does not equal the uri-host component in the Host
 header field in the WebSocket handshake.

 o A Uri-Port Option MUST only be included in a request if |port|
 does not equal the port component in the Host header field in the
 WebSocket handshake.

 The steps to construct a URI from a request’s options are changed
 accordingly.

7. Security Considerations

 The security considerations of [RFC7252] apply.

 TLS version 1.2 or higher is mandatory-to-implement and MUST be
 enabled by default. An endpoint MAY immediately abort a CoAP over
 TLS connection that does not meet this requirement (see Section 4.6)
 and SHOULD include a diagnostic payload.

 The TLS usage guidance in [RFC7925] SHOULD be followed.

Bormann, et al. Expires February 25, 2017 [Page 26]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP August 2016

 TLS does not protect the TCP header. This may, for example, allow an
 on-path adversary to terminate a TCP connection prematurely by
 spoofing a TCP reset message.

 CoAP over WebSockets and CoAP over TLS-secured WebSockets do not
 introduce additional security issues beyond CoAP and DTLS-secured
 CoAP respectively [RFC7252]. The security considerations of
 [RFC6455] apply.

7.1. Signaling Messages

 o The guidance given by an Alternative-Address Option cannot be
 followed blindly. In particular, a peer MUST NOT assume that a
 successful connection to the Alternative-Address inherits all the
 security properties of the current connection.

 o SNI vs. Server-Name: Any security negotiated in the TLS handshake
 is for the SNI name exchanged in the TLS handshake and checked
 against the certificate provided by the server. The Server-Name
 Option cannot be used to extend these security properties to the
 additional server name.

8. IANA Considerations

8.1. Signaling Codes

 IANA is requested to create a third sub-registry for values of the
 Code field in the CoAP header (Section 12.1 of [RFC7252]). The name
 of this sub-registry is "CoAP Signaling Codes".

 Each entry in the sub-registry must include the Signaling Code in the
 range 7.01-7.31, its name, and a reference to its documentation.

 Initial entries in this sub-registry are as follows:

Bormann, et al. Expires February 25, 2017 [Page 27]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP August 2016

 +------+---------+-----------+
 | Code | Name | Reference |
 +------+---------+-----------+
 | 7.01 | CSM | [RFCthis] |
 | | | |
 | 7.02 | Ping | [RFCthis] |
 | | | |
 | 7.03 | Pong | [RFCthis] |
 | | | |
 | 7.04 | Release | [RFCthis] |
 | | | |
 | 7.05 | Abort | [RFCthis] |
 +------+---------+-----------+

 Table 1: CoAP Signal Codes

 All other Signaling Codes are Unassigned.

 The IANA policy for future additions to this sub-registry is "IETF
 Review or IESG Approval" as described in [RFC5226].

8.2. CoAP Signaling Option Numbers Registry

 IANA is requested to create a sub-registry for signaling options
 similar to the CoAP Option Numbers Registry (Section 12.2 of
 [RFC7252]), with the single change that a fourth column is added to
 the sub-registry that is one of the codes in the Signaling Codes
 subregistry (Section 8.1).

 The name of this sub-registry is "CoAP Signaling Option Numbers".

 Initial entries in this sub-registry are as follows:

Bormann, et al. Expires February 25, 2017 [Page 28]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP August 2016

 +--------+------------+---------------------+-----------+
 | Number | Applies to | Name | Reference |
 +--------+------------+---------------------+-----------+
 | 1 | CSM | Server-Name | [RFCthis] |
 | | | | |
 | 2 | CSM | Max-Message-Size | [RFCthis] |
 | | | | |
 | 4 | CSM | Block-wise-Transfer | [RFCthis] |
 | | | | |
 | 2 | Ping, Pong | Custody | [RFCthis] |
 | | | | |
 | 2 | Release | Bad-Server-Name | [RFCthis] |
 | | | | |
 | 4 | Release | Alternative-Address | [RFCthis] |
 | | | | |
 | 6 | Release | Hold-Off | [RFCthis] |
 | | | | |
 | 2 | Abort | Bad-CSM-Option | [RFCthis] |
 +--------+------------+---------------------+-----------+

 Table 2: CoAP Signal Option Codes

 The IANA policy for future additions to this sub-registry is based on
 number ranges for the option numbers, analogous to the policy defined
 in Section 12.2 of [RFC7252].

8.3. Service Name and Port Number Registration

 IANA is requested to assign the port number 5683 and the service name
 "coap+tcp", in accordance with [RFC6335].

 Service Name.
 coap+tcp

 Transport Protocol.
 tcp

 Assignee.
 IESG <iesg@ietf.org>

 Contact.
 IETF Chair <chair@ietf.org>

 Description.
 Constrained Application Protocol (CoAP)

 Reference.
 [RFCthis]

Bormann, et al. Expires February 25, 2017 [Page 29]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP August 2016

 Port Number.
 5683

8.4. Secure Service Name and Port Number Registration

 IANA is requested to assign the port number 5684 and the service name
 "coaps+tcp", in accordance with [RFC6335]. The port number is
 requested to address the exceptional case of TLS implementations that
 do not support the "Application-Layer Protocol Negotiation Extension"
 [RFC7301].

 Service Name.
 coaps+tcp

 Transport Protocol.
 tcp

 Assignee.
 IESG <iesg@ietf.org>

 Contact.
 IETF Chair <chair@ietf.org>

 Description.
 Constrained Application Protocol (CoAP)

 Reference.
 [RFC7301], [RFCthis]

 Port Number.
 5684

8.5. URI Scheme Registration

 This document registers two new URI schemes, namely "coap+tcp" and
 "coaps+tcp", for the use of CoAP over TCP and for CoAP over TLS over
 TCP, respectively. The "coap+tcp" and "coaps+tcp" URI schemes can
 thus be compared to the "http" and "https" URI schemes.

 The syntax of the "coap" and "coaps" URI schemes is specified in
 Section 6 of [RFC7252] and the present document re-uses their
 semantics for "coap+tcp" and "coaps+tcp", respectively, with the
 exception that TCP, or TLS over TCP is used as a transport protocol.

 IANA is requested to add these new URI schemes to the registry
 established with [RFC7595].

Bormann, et al. Expires February 25, 2017 [Page 30]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP August 2016

8.5.1. coap+ws

 This document requests the registration of the Uniform Resource
 Identifier (URI) scheme "coap+ws". The registration request complies
 with [RFC4395].

 URL scheme name.
 coap+ws

 Status.
 Permanent

 URI scheme syntax.
 Defined in Section N of [RFCthis]

 URI scheme semantics.
 The "coap+ws" URI scheme provides a way to identify resources that
 are potentially accessible over the Constrained Application
 Protocol (CoAP) using the WebSocket protocol.

 Encoding considerations.
 The scheme encoding conforms to the encoding rules established for
 URIs in [RFC3986], i.e., internationalized and reserved characters
 are expressed using UTF-8-based percent-encoding.

 Applications/protocols that use this URI scheme name.
 The scheme is used by CoAP endpoints to access CoAP resources
 using the WebSocket protocol.

 Interoperability considerations.
 None.

 Security Considerations.
 See Section N of [RFCthis]

 Contact.
 IETF chair <chair@ietf.org>

 Author/Change controller.
 IESG <iesg@ietf.org>

 References.
 [RFCthis]

Bormann, et al. Expires February 25, 2017 [Page 31]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP August 2016

8.5.2. coap+wss

 This document requests the registration of the Uniform Resource
 Identifier (URI) scheme "coap+wss". The registration request
 complies with [RFC4395].

 URL scheme name.
 coap+wss

 Status.
 Permanent

 URI scheme syntax.
 Defined in Section N of [RFCthis]

 URI scheme semantics.
 The "coap+ws" URI scheme provides a way to identify resources that
 are potentially accessible over the Constrained Application
 Protocol (CoAP) using the WebSocket protocol secured with
 Transport Layer Security (TLS).

 Encoding considerations.
 The scheme encoding conforms to the encoding rules established for
 URIs in [RFC3986], i.e., internationalized and reserved characters
 are expressed using UTF-8-based percent-encoding.

 Applications/protocols that use this URI scheme name.
 The scheme is used by CoAP endpoints to access CoAP resources
 using the WebSocket protocol secured with TLS.

 Interoperability considerations.
 None.

 Security Considerations.
 See Section N of [RFCthis]

 Contact.
 IETF chair <chair@ietf.org>

 Author/Change controller.
 IESG <iesg@ietf.org>

 References.
 [RFCthis]

Bormann, et al. Expires February 25, 2017 [Page 32]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP August 2016

8.6. Well-Known URI Suffix Registration

 IANA is requested to register the ’coap’ well-known URI in the "Well-
 Known URIs" registry. This registration request complies with
 [RFC5785]:

 URI Suffix.
 coap

 Change controller.
 IETF

 Specification document(s).
 [RFCthis]

 Related information.
 None.

8.7. ALPN Protocol Identifier

 IANA is requested to assign the following value in the registry
 "Application Layer Protocol Negotiation (ALPN) Protocol IDs" created
 by [RFC7301]. The "coap" string identifies CoAP when used over TLS.

 Protocol.
 CoAP

 Identification Sequence.
 0x63 0x6f 0x61 0x70 ("coap")

 Reference.
 [RFCthis]

8.8. WebSocket Subprotocol Registration

 IANA is requested to register the WebSocket CoAP subprotocol under
 the "WebSocket Subprotocol Name Registry":

 Subprotocol Identifier.
 coap

 Subprotocol Common Name.
 Constrained Application Protocol (CoAP)

 Subprotocol Definition.
 [RFCthis]

Bormann, et al. Expires February 25, 2017 [Page 33]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP August 2016

9. References

9.1. Normative References

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
 RFC 793, DOI 10.17487/RFC0793, September 1981,
 <http://www.rfc-editor.org/info/rfc793>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <http://www.rfc-editor.org/info/rfc3986>.

 [RFC4395] Hansen, T., Hardie, T., and L. Masinter, "Guidelines and
 Registration Procedures for New URI Schemes", RFC 4395,
 DOI 10.17487/RFC4395, February 2006,
 <http://www.rfc-editor.org/info/rfc4395>.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 DOI 10.17487/RFC5226, May 2008,
 <http://www.rfc-editor.org/info/rfc5226>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

 [RFC5785] Nottingham, M. and E. Hammer-Lahav, "Defining Well-Known
 Uniform Resource Identifiers (URIs)", RFC 5785,
 DOI 10.17487/RFC5785, April 2010,
 <http://www.rfc-editor.org/info/rfc5785>.

 [RFC6455] Fette, I. and A. Melnikov, "The WebSocket Protocol",
 RFC 6455, DOI 10.17487/RFC6455, December 2011,
 <http://www.rfc-editor.org/info/rfc6455>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <http://www.rfc-editor.org/info/rfc7252>.

Bormann, et al. Expires February 25, 2017 [Page 34]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP August 2016

 [RFC7301] Friedl, S., Popov, A., Langley, A., and E. Stephan,
 "Transport Layer Security (TLS) Application-Layer Protocol
 Negotiation Extension", RFC 7301, DOI 10.17487/RFC7301,
 July 2014, <http://www.rfc-editor.org/info/rfc7301>.

 [RFC7595] Thaler, D., Ed., Hansen, T., and T. Hardie, "Guidelines
 and Registration Procedures for URI Schemes", BCP 35,
 RFC 7595, DOI 10.17487/RFC7595, June 2015,
 <http://www.rfc-editor.org/info/rfc7595>.

 [RFC7641] Hartke, K., "Observing Resources in the Constrained
 Application Protocol (CoAP)", RFC 7641,
 DOI 10.17487/RFC7641, September 2015,
 <http://www.rfc-editor.org/info/rfc7641>.

 [RFC7925] Tschofenig, H., Ed. and T. Fossati, "Transport Layer
 Security (TLS) / Datagram Transport Layer Security (DTLS)
 Profiles for the Internet of Things", RFC 7925,
 DOI 10.17487/RFC7925, July 2016,
 <http://www.rfc-editor.org/info/rfc7925>.

9.2. Informative References

 [HomeGateway]
 Eggert, L., "An experimental study of home gateway
 characteristics", Proceedings of the 10th annual
 conference on Internet measurement, 2010.

 [I-D.becker-core-coap-sms-gprs]
 Becker, M., Li, K., Kuladinithi, K., and T. Poetsch,
 "Transport of CoAP over SMS", draft-becker-core-coap-sms-
 gprs-05 (work in progress), August 2014.

 [I-D.ietf-core-block]
 Bormann, C. and Z. Shelby, "Block-wise transfers in CoAP",
 draft-ietf-core-block-21 (work in progress), July 2016.

 [LWM2M] Open Mobile Alliance, "Lightweight Machine to Machine
 Technical Specification Candidate Version 1.0", April
 2016, <http://technical.openmobilealliance.org/Technical/R
 elease_Program/docs/LightweightM2M/V1_0-20160407-C/
 OMA-TS-LightweightM2M-V1_0-20160407-C.pdf>.

 [RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 DOI 10.17487/RFC0768, August 1980,
 <http://www.rfc-editor.org/info/rfc768>.

Bormann, et al. Expires February 25, 2017 [Page 35]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP August 2016

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <http://www.rfc-editor.org/info/rfc5234>.

 [RFC6335] Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S.
 Cheshire, "Internet Assigned Numbers Authority (IANA)
 Procedures for the Management of the Service Name and
 Transport Protocol Port Number Registry", BCP 165,
 RFC 6335, DOI 10.17487/RFC6335, August 2011,
 <http://www.rfc-editor.org/info/rfc6335>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <http://www.rfc-editor.org/info/rfc6347>.

 [RFC6454] Barth, A., "The Web Origin Concept", RFC 6454,
 DOI 10.17487/RFC6454, December 2011,
 <http://www.rfc-editor.org/info/rfc6454>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",
 RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <http://www.rfc-editor.org/info/rfc7230>.

Appendix A. Negotiating Protocol Versions

 CoAP is defined in [RFC7252] with a version number of 1. At this
 time, there is no known reason to support version numbers different
 from 1.

 In contrast to the message layer for UDP and DTLS, the CoAP over TCP
 message format does not include a version number. If version
 negotiation needs to be addressed in the future, then Capability and
 Settings have been specifically designed to enable such a potential
 feature.

Appendix B. CoAP over WebSocket Examples

 This section gives examples for the first two configurations
 discussed in Section 3.

 An example of the process followed by a CoAP client to retrieve the
 representation of a resource identified by a "coap+ws" URI might be
 as follows. Figure 19 below illustrates the WebSocket and CoAP
 messages exchanged in detail.

Bormann, et al. Expires February 25, 2017 [Page 36]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP August 2016

 1. The CoAP client obtains the URI <coap+ws://example.org/sensors/
 temperature?u=Cel>, for example, from a resource representation
 that it retrieved previously.

 2. It establishes a WebSocket connection to the endpoint URI
 composed of the authority "example.org" and the well-known path
 "/.well-known/coap", <ws://example.org/.well-known/coap>.

 3. It sends a single-frame, masked, binary message containing a CoAP
 request. The request indicates the target resource with the Uri-
 Path ("sensors", "temperature") and Uri-Query ("u=Cel") options.

 4. It waits for the server to return a response.

 5. The CoAP client uses the connection for further requests, or the
 connection is closed.

Bormann, et al. Expires February 25, 2017 [Page 37]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP August 2016

 CoAP CoAP
 Client Server
 (WebSocket (WebSocket
 Client) Server)

 | |
 | |
 +=========>| GET /.well-known/coap HTTP/1.1
 | | Host: example.org
 | | Upgrade: websocket
 | | Connection: Upgrade
 | | Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==
 | | Sec-WebSocket-Protocol: coap
 | | Sec-WebSocket-Version: 13
 | |
 |<=========+ HTTP/1.1 101 Switching Protocols
 | | Upgrade: websocket
 | | Connection: Upgrade
 | | Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=
 | | Sec-WebSocket-Protocol: coap
 | |
 | |
 +--------->| Binary frame (opcode=%x2, FIN=1, MASK=1)
 | | +-------------------------+
 | | | GET |
 | | | Token: 0x53 |
 | | | Uri-Path: "sensors" |
 | | | Uri-Path: "temperature" |
 | | | Uri-Query: "u=Cel" |
 | | +-------------------------+
 | |
 |<---------+ Binary frame (opcode=%x2, FIN=1, MASK=0)
 | | +-------------------------+
 | | | 2.05 Content |
 | | | Token: 0x53 |
 | | | Payload: "22.3 Cel" |
 | | +-------------------------+
 : :
 : :
 | |
 +--------->| Close frame (opcode=%x8, FIN=1, MASK=1)
 | |
 |<---------+ Close frame (opcode=%x8, FIN=1, MASK=0)
 | |

 Figure 19: A CoAP client retrieves the representation of a resource
 identified by a "coap+ws" URI

Bormann, et al. Expires February 25, 2017 [Page 38]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP August 2016

 Figure 20 shows how a CoAP client uses a CoAP forward proxy with a
 WebSocket endpoint to retrieve the representation of the resource
 "coap://[2001:DB8::1]/". The use of the forward proxy and the
 address of the WebSocket endpoint are determined by the client from
 local configuration rules. The request URI is specified in the
 Proxy-Uri Option. Since the request URI uses the "coap" URI scheme,
 the proxy fulfills the request by issuing a Confirmable GET request
 over UDP to the CoAP server and returning the response over the
 WebSocket connection to the client.

 CoAP CoAP CoAP
 Client Proxy Server
 (WebSocket (WebSocket (UDP
 Client) Server) Endpoint)

 | | |
 +--------->| | Binary frame (opcode=%x2, FIN=1, MASK=1)
 | | | +------------------------------------+
 | | | | GET |
 | | | | Token: 0x7d |
 | | | | Proxy-Uri: "coap://[2001:DB8::1]/" |
 | | | +------------------------------------+
 | | |
 | +--------->| CoAP message (Ver=1, T=Con, MID=0x8f54)
 | | | +------------------------------------+
 | | | | GET |
 | | | | Token: 0x0a15 |
 | | | +------------------------------------+
 | | |
 | |<---------+ CoAP message (Ver=1, T=Ack, MID=0x8f54)
 | | | +------------------------------------+
 | | | | 2.05 Content |
 | | | | Token: 0x0a15 |
 | | | | Payload: "ready" |
 | | | +------------------------------------+
 | | |
 |<---------+ | Binary frame (opcode=%x2, FIN=1, MASK=0)
 | | | +------------------------------------+
 | | | | 2.05 Content |
 | | | | Token: 0x7d |
 | | | | Payload: "ready" |
 | | | +------------------------------------+
 | | |

 Figure 20: A CoAP client retrieves the representation of a resource
 identified by a "coap" URI via a WebSockets-enabled CoAP proxy

Bormann, et al. Expires February 25, 2017 [Page 39]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP August 2016

Appendix C. Change Log

 The RFC Editor is requested to remove this section at publication.

C.1. Since draft-core-coap-tcp-tls-02

 Merged draft-savolainen-core-coap-websockets-07 Merged draft-bormann-
 core-block-bert-01 Merged draft-bormann-core-coap-sig-02

C.2. Since draft-core-coap-tcp-tls-03

 Editorial updates

 Added mandatory exchange of Capabilities and Settings messages after
 connecting

 Added support for coaps+tcp port 5684 and more details on
 Application-Layer Protocol Negotiation (ALPN)

 Added guidance on CoAP Signaling Ping-Pong versus WebSocket Ping-Pong

 Updated references and requirements for TLS security considerations

Acknowledgements

 We would like to thank Stephen Berard, Geoffrey Cristallo, Olivier
 Delaby, Christian Groves, Nadir Javed, Michael Koster, Matthias
 Kovatsch, Achim Kraus, David Navarro, Szymon Sasin, Zach Shelby,
 Andrew Summers, Julien Vermillard, and Gengyu Wei for their feedback.

Contributors

 Valik Solorzano Barboza
 Zebra Technologies
 820 W. Jackson Blvd. Suite 700
 Chicago 60607
 United States of America

 Phone: +1-847-634-6700
 Email: vsolorzanobarboza@zebra.com

 Teemu Savolainen
 Nokia Technologies
 Hatanpaan valtatie 30
 Tampere FI-33100
 Finland

 Email: teemu.savolainen@nokia.com

Bormann, et al. Expires February 25, 2017 [Page 40]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP August 2016

Authors’ Addresses

 Carsten Bormann
 Universitaet Bremen TZI
 Postfach 330440
 Bremen D-28359
 Germany

 Phone: +49-421-218-63921
 Email: cabo@tzi.org

 Simon Lemay
 Zebra Technologies
 820 W. Jackson Blvd. Suite 700
 Chicago 60607
 United States of America

 Phone: +1-847-634-6700
 Email: slemay@zebra.com

 Hannes Tschofenig
 ARM Ltd.
 110 Fulbourn Rd
 Cambridge CB1 9NJ
 Great Britain

 Email: Hannes.tschofenig@gmx.net
 URI: http://www.tschofenig.priv.at

 Klaus Hartke
 Universitaet Bremen TZI
 Postfach 330440
 Bremen D-28359
 Germany

 Phone: +49-421-218-63905
 Email: hartke@tzi.org

Bormann, et al. Expires February 25, 2017 [Page 41]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP August 2016

 Bilhanan Silverajan
 Tampere University of Technology
 Korkeakoulunkatu 10
 Tampere FI-33720
 Finland

 Email: bilhanan.silverajan@tut.fi

 Brian Raymor (editor)
 Microsoft
 One Microsoft Way
 Redmond 98052
 United States of America

 Email: brian.raymor@microsoft.com

Bormann, et al. Expires February 25, 2017 [Page 42]

