Network File System Version 4 C. Lever
I nternet-Draft Oracl e
I ntended status: |nformational May 12, 2016
Expi res: Novenber 13, 2016

RPC- over - RDMA Versi on One | npl enentation Experience
draft-ietf-nfsv4-rfc5666-inpl enentati on-experience-03

Abst r act

Thi s docunent details experiences and chal |l enges inplenenting the
RPC- over - RDMA Version One protocol. Specification changes are
recomended to address avoi dable interoperability failures.

Status of This Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunments of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
wor ki ng docunents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft docunments valid for a maxi num of six nonths
and may be updated, replaced, or obsol eted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress."

This Internet-Draft will expire on Novenber 13, 2016
Copyright Notice

Copyright (c) 2016 | ETF Trust and the persons identified as the
docunment authors. All rights reserved.

This docunment is subject to BCP 78 and the | ETF Trust’s Lega
Provisions Relating to | ETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunment. Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD Li cense.

Lever Expi res Novenber 13, 2016 [Page 1]

Internet-Draft RFC 5666 | npl enent ati on Experience May 2016

Tabl e of Contents

1. Introduction . 3
1.1. Purpose O Thi s Docurrent 3
1.2. Updating RFC 5666 . 3
1.3. Requirenents Language . 4

2. RPC-Over-RDVA Essentials . 4
2.1. Argunents And Results . . 4
2.2. Remote Direct Menory Access . 5
2.3. Transfer Mdels . . 6
2. 4. Upper Layer Binding SpeC| f| catl ons 7
2.5. On-The-Wre Protocol e 8

3. Specification |Issues . 14
3.1. Extensibility Consider atl ons 14
3.2. XDR darifications . . . 15
3.3. Additional XDR Issues . 18
3.4. The Position Zero Read Chunk 19
3.5. RDVA NOVSG Call Messages . . . 21
3.6. RDVA MSG Call with Position Zero Read Chunk . 22
3.7. Padding Inline Content After A Chunk 23
3.8. Wite Chunk XDR Roundup . - 25
3.9. Wite List Error Cases 27

4., Qperational Considerations e 30
4.1. Conputing Request Buffer Requirenents . 30
4.2. Default Inline Buffer Size .. 31
4.3. Wen To Use Reply Chunks 31
4.4. Conputing Credit Val ues . 32
4.5. Race W ndows . Coe e 33
4.6. Detection O Unsupported Pr ot ocoI Ver si ons 33

5 Pre- reqU| sites For NFSv4 34
5. 1. -directional Operation Ce e e e 34

6. Oonsi der ations For Upper Layer Binding Specifications . 35
6.1. Organization O Binding Specification Requirenents 35
6. 2. RDI\/AEIlglblIlty . 35
6.3 Inline Threshol d Requi renent s . 37
6.4. Violations O Binding Rules . 38
6.5. Binding Specification Conpletion Assessmant 39

7. Uninplenmented Protocol Features . .o 39
7.1. Uninplemented Features To Be Rem)ved 39
7.2. Uninplemented Features To Be Retained . 41

8. Security Considerations . 43

9. | ANA Considerations . . . 43

10. Appendi x A: XDR Language Descrl ptl on 43

11. Appendi x B: Bindi ng Reqw r enent Summry . 46

12. Acknow edgenents - 48

13. References . 48
13.1. Normative Ref erences . 48
13.2. Informative References . 49

Lever Expi res Novenber 13, 2016 [Page 2]

Internet-Draft RFC 5666 | npl enent ati on Experience May 2016

1.

1.

1.

Author’s Address ... 49

I ntroduction

Thi s docunment summarizes inplenentation experience with the RPC over-
RDVA Ver si on One protocol [RFC5666], and proposes inprovenents to the
protocol specification based on inplenmenter experience, frequently-
asked questions, and interviews with a co-author of RFC 5666.
1. Purpose O This Docunent

A key contribution of this docunment is to highlight areas of RFC 5666
wher e i ndependent good faith readings could result in distinct

i mpl ement ations that do not interoperate with each other. Correcting
these specification issues is critical: fresh inplenmentations of RPC
over - RDMA Version One continue to arise.

Recommendations are linited to the follow ng areas:

0 Repairing specification anbiguities

0 Codifying successful inplenentation practices and conventions

o Cdarifying the role of Upper Layer Binding specifications

0 Exploring protocol enhancenments that m ght be added while all ow ng

extant inplenentations to interoperate with enhanced
i mpl enent ati ons

2. Updating RFC 5666

During | ETF 92, several alternatives for updating RFC 5666 were

di scussed with the RFC Editor and with the assenbl ed nenbers of the
nfsv4 Working Group. Anpbng them were:

o Filing individual errata for each issue

0 Introducing a new RFC t hat updates but does not obsol ete RFC 5666,
but makes no change to the protocol

0 |Introducing an RFC 5666bis that replaces and thus obsol etes RFC
5666, but nakes no change to the protocol

0 Introducing a new RFC that specifies RPC over-RDVA Version Two
An additional possibility which is sonetines chosen by ot her Wrking

Groups would be to update RFC 5666 as it transitions from Proposed
Standard to Draft Standard.

Lever Expi res Novenber 13, 2016 [Page 3]

Internet-Draft RFC 5666 | npl enent ati on Experience May 2016

There was general agreenent during the nmeeting regarding the need to
updat e and obsol ete RFC 5666 while retaining a high degree of
interoperability with current RPC over-RDVA Version One

i npl ementations. This approach would avoid changes to on-the-wire
behavi or wi t hout burdening inplenenters, who could continue to
reference a single specification of the protocol. In addition, this
alternative extends the life of current interoperable RPC over- RDVA
Version One inplenmentations in the field.

Subsequent di scussion within the nfsv4d Wrking Goup has focused on
resol ving specification anbiguities that nake the construction of

i nteroperable inplenentations unduly difficult. Subsequent Versions
of RPC-over-RDMA, where deeper changes can be made and new
functionality introduced, remain a possibility.

1.3. Requirenents Language

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "NOT RECOMMVENDED', "MAY", and
"OPTIONAL" in this document are to be interpreted as described in

[RFC2119] .

2. RPC Over-RDVA Essentials
The foll owi ng sections sunmarize the state of affairs defined in RFC
5666. This is a distillation of text from RFC 5666, dialog with a
co- aut hor of RFC 5666, and inplenenter experience. The XDR
definitions are copied from RFC 5666 Section 4. 3.

2.1. Arguments And Results

Li ke a local function call, every Renote Procedure Call (RPC)
operation has a set of one or nore "argunents” and a set of one or
nore "results.” The calling context is not allowed to proceed unti

the function's results are available. Unlike a | ocal function call
the called function is executed renotely rather than in the |oca
application’s context.

A client endpoint, or "requester", serializes an RPC call’s arguments
into a byte streamusing XDR [RFC4506]. This "XDR streant is
conveyed to a server endpoint via an RPC call nessage (sonetines
referred to as an "RPC request").

The server endpoint, or "responder”, deserializes the argunents and
processes the requested operation. It then serializes the
operation’s results into another XDR stream This streamis conveyed
back to the client endpoint via an RPC reply nessage. The client
deserializes the results and allows the original caller to proceed.

Lever Expi res Novenber 13, 2016 [Page 4]

Internet-Draft RFC 5666 | npl enent ati on Experience May 2016

The remai nder of this docunent assunmes a working know edge of the RPC
prot ocol [RFC5531] and especially XDR [RFC4506] .

2.2. Renote Direct Menory Access

RPC nessages nay be very large. For exanple, NFS READ and WRI TE
operations are often 100KB or | arger.

An RPC client system can be nmade nore efficient if RPC nessages are
transferred by a third party such as intelligent network interface
hardware. Renote Direct Menory Access (RDMA) and Direct Data

Pl acenent (DDP) enabl es of fl oadi ng data novenent to avoid the
negative performance effects of using traditional host CPU based
networ k operations to nove bul k dat a.

RFC 5666 describes how to use only the Send, Receive, RDVA Read, and
RDVA Wite operations described in [RFC5040] and [RFC5041] to nove
RPC calls and replies between requesters and responders.

2.2.1. Direct Data Pl acenent

RFC 5666 nakes an inportant distinction between RDVA and Direct Data
Pl acenent (DDP).

Very often, RPC inplenentations copy the contents of RPC nessages
into a buffer before being sent. A good RPC inplenmentation may be
able to send bul k data without having to copy it into a separate send
buffer first.

However, socket-based RPC i npl enentations are often unable to receive
data directly into its final place in nmenory. Receivers often need
to copy incoming data to finish an RPC operati on.

In RFC 5666, "RDVA" refers to the physical nechani sman RDVA
transport utilizes when noving data. Though it nay not be optinal,
before an RDVA transfer, the sender may still copy data into place.
After an RDMA transfer, the receiver nay copy that data again to its
final destination.

RFC 5666 uses the term"direct data placenent"” to refer to an
optinization that nakes it unnecessary for a host CPU to copy data to
be transferred. RPC-over-RDMA Version One utilizes RDVMA Read and
Wite operations to enable DDP. Not every RDMA-based transfer in
RPC- over - RDMA Version One i s DDP, however.

Lever Expi res Novenber 13, 2016 [Page 5]

Internet-Draft RFC 5666 | npl enent ati on Experience May 2016

2.2.2. Channel Qperation

A Send operation initiates the transfer of a nessage froma | oca
endpoint to a renpte endpoint, simlar to a datagram send operation

The renote endpoint pre-posts Receive operations to catch inconing
nmessages. Send operations are flowcontrolled to prevent overrunning
recei ve resources. To reduce the amount of nmenory that nust remnain
pi nned awaiting i ncom ng nessages, receive buffers are limted in

si ze and nunber.

This transfer node is utilized to convey size-limted RPC operations,
and advertisenments of buffer coordinates for explicit RDMVA data
transfer. Buffers involved in Send and Receive operations are
usual Iy I eft unexposed.

2.2.3. Explicit RDVA Qperation

A local endpoint tags nenory areas to be involved in RDVA, exposes
the areas, then advertises the coordinates of those areas to a renote
endpoint via a Send operation

The renote endpoint transfers data into or out of those areas using
RDMA Read and Wite operations. The renote registers |large sink
buffers as needed, and invalidates them when data transfer is

conpl ete

Finally the renpte endpoint signals that its work is done, and the
| ocal endpoint ensures renbte access to the nenory areas is no |onger
al | owed.

This transfer node can be utilized to convey | arge whol e RPC
messages, although typically only one data itemwi thin a nessage is
large. Explicit RDMA is nost often used to nove |arge argunent or
result data itens directly into place. The renaining portions of the
nmessage are conveyed via a channel operation

2.3. Transfer Models
A "transfer nodel" describes which endpoint is responsible for
perform ng RDMA Read and Wite operations. The opposite endpoint

must expose part or all of its nenory, and advertise the coordinates
of that menory.

Lever Expi res Novenber 13, 2016 [Page 6]

Internet-Draft RFC 5666 | npl enent ati on Experience May 2016

2.3.1. Read-Read

Request ers expose their nmenory to the responder, and the responder
exposes its nenory to requesters. The responder enpl oys RDVA Read
operations to convey RPC argunents or whole RPC calls. Requesters
enpl oy RDMA Read operations to convey RPC results or whole RPC
relies.

Al t hough this nodel is specified in RFC 5666, no current RPC-over-
RDVA Version One inplenentation uses the Read-Read transfer nodel.

2.3.2. Wite-Wite

Request ers expose their nenory to the responder, and the responder
exposes its nmenory to requesters. Requesters enploy RDVA Wite
operations to convey RPC argunents or whole RPC calls. The responder
enpl oys RDMA Wite operations to convey RPC results or whol e RPC
relies.

The Wite-Wite transfer nodel is not considered in RFC 5666.
2.3.3. Read-Wite

Request ers expose their nenory to the responder, but the responder
does not expose its nenory. The responder enpl oys RDVA Read
operations to convey RPC argunments or whole RPC calls. The responder
enpl oys RDMA Wite operations to convey RPC results or whol e RPC
relies.

This nodel is specified in RFC 5666. All known RPC-over- RDMA Version
One inplenentations enploy this nodel. For clarity, the remainder of
this docunment considers only the Read-Wite transfer nodel.

2. 4. Upper Layer Binding Specifications

RFC 5666 provides a framework for conveying RPC requests and replies
on RDMVA transports. By itself this is insufficient to enable an RPC
program referred to as an "Upper Layer Protocol” or ULP, to operate
over an RDMA transport.

Argunments and results cone in different sizes and have different
serialization requirements, all depending on the Upper Layer

Protocol. Sone argunments and results are appropriate for Direct Data
Pl acenent, while others are not. Thus RFC 5666 requires additional
separate specifications that describe how each ULP may use explicit
RDVA operations to enable Direct Data Placenent. The set of
requirenents for a ULP to use an RDVA transport is known as an " Upper
Layer Bi ndi ng" specification, or ULB.

Lever Expi res Novenber 13, 2016 [Page 7]

Internet-Draft RFC 5666 | npl enent ati on Experience May 2016

An Upper Layer Binding states which specific individual RPC argunents
and results are permitted to be transferred via RDVA Read and Wite
for the purpose of Direct Data Placenent. RFC 5666 refers to such
argunents and results as "RDMA-eligible." RDVA-eligibility
restrictions do not apply when a whole RPC call or reply is
transferred via an RDVA Read or Wite (long nessages).

A ULB is required for each RPC program and version tuple that may
operate on an RDVA transport. A ULB may be part of another
specification, or it may be a stand-al one docunent, simlar to

[RFC5667] .

2.5. On-The-Wre Protoco

2.5.1. Inline Operation
Each RPC call or reply nessage conveyed on an RDMA transport starts
with an RPC-over- RDMA header, which is encoded into an XDR stream A
requester uses a Send operation to convey the RPC-over-RDVA header to
a responder. A responder does likewi se to convey RPC replies back to
a requester. Al nmessage contents sent via Send, including the RPC
over - RDMA header and possibly an RPC nessage proper, are referred to
as "inline content."
The RPC-over-RDMA header starts with three uint32 fields
<CODE BEG NS>

struct rdnma_nsg {

ui nt 32 rdme_xi d; /* Mrrors the RPC header xid */
ui nt 32 rdme_vers; /* Version of this protocol */
ui nt 32 rdma_credit; /* Buffers requested/granted */
rdma_body rdnma_body;
b
<CODE ENDS>

Fol I owi ng these three fields is a union

Lever Expi res Novenber 13, 2016 [Page 8]

Internet-Draft RFC 5666 | npl enent ati on Experience May 2016

<CCODE BEG NS>

enum rdma_proc {
RDVA MBG=0, /[* An RPC call or reply nsg */
RDVA NOVBG=1, /* An RPC call or reply nsg -
separate body */

RDMA_ERROR=4 /* An RPC RDMA encoding error */
b

uni on rdma_body switch (rdma_proc proc) {
case RDVA MG
rpc_rdma_header rdnma_nsg;
case RDMA NOVBG
rpc_rdma_header _nonsg rdnma_nonsg

case RDMA ERROR
rpc_rdma_error rdna_error;

H

struct rpc_rdma_header {
struct xdr _read |ist *rdma_reads;
struct xdr_ wite list *rdma_wites;
struct xdr_write_chunk *rdma_reply;
/* rpc body follows */

b

struct rpc_rdnma_header _nonsg {
struct xdr_read |ist *rdma_reads;
struct xdr wite list *rdma_wites;
struct xdr_write_chunk *rdnma_reply;

b
<CODE ENDS>

In either the RDMA_MSG or RDMA_NOVSG case, the RPC-over- RDMA header
may advertise menory coordinates to be used for RDVA data transfers
associated with this RPC

The difference between these two cases is whether or not the
traditional RPC header itself is included in this Send operation
(RDVMA_MSG), or not (RDMA_NOMSG . In the former case, the RPC header
follows imedi ately after the rdna_reply field. |In the latter case,
the RPC header is transfered via another mechanism (typically a
separate RDVA Read operation).

A requester nmay use either type of nmessage to send an RPC cal
message, depending on the requirenents of the RPC call nessage being

Lever Expi res Novenber 13, 2016 [Page 9]

Internet-Draft RFC 5666 | npl enent ati on Experience May 2016

conveyed. A responder may use RDVMA NOMSG only when the requester
provides a Reply chunk (see Section 4.3). A responder is free to use
RDMA M5G instead in that case, depending on the requirenents of the
RPC reply nessage

2.5.2. RDVA Segnent

An "RDVA segment”, or just "segment", is a part of the RPC over- RDVA
header that contains the co-ordinates of a contiguous nenory region
that is to be conveyed via an RDVA Read or RDVA Wite operation.

The region defined by a segment is advertised in an RPC- over- RDVA
header to enable the receiving endpoint to drive subsequent RDVA
access of the data in that nenory region. The RPC over-RDVA Version
One XDR represents an RDVA segnent with the xdr_rdma_segnent struct:

<CODE BEG NS>

struct xdr_rdma_segnent {
ui nt 32 handl e;
ui nt 32 | engt h;
ui nt 64 of fset;

H
<CODE ENDS>

See [RFC5040] for a discussion of what the content of these fields
neans.

2.5.3. Chunk

A "chunk" refers to XDR stream data that is noved via an RDVMA Read or
Wite operation. Chunk data is renoved fromthe sender’s XDR stream
is transferred by a separate RDVA operation, and is re-inserted into
the XDR stream by the receiver.

Each chunk is made up of one or nmore segments. Each segnent
represents a single contiguous piece of that chunk

If a chunk is to nove a whol e counted array, the count of array
elements is left in the XDR stream while the array el enents appear
in the chunk. Individual array elenents appear in the chunk in their
entirety.

Lever Expi res Novenber 13, 2016 [Page 10]

Internet-Draft RFC 5666 | npl enent ati on Experience May 2016

2.5.4. Read Chunk

One or nore "read chunks"” are used to advertise the coordi nates of
XDR stream data to be transferred via RDVA Read operations

Each read chunk is represented by the xdr_read_chunk struct:
<CODE BEQ NS>

struct xdr_read chunk {
ui nt 32 position;
struct xdr_rdme_segnent target;

b
<CODE ENDS>

RFC 5666 defines a read chunk as one RDVA segnent with a Position
field. The Position field indicates the location in the XDR stream
where the transferred object’s data would appear if it was not being
moved in a chunk

The transferred data m ght be contained in one contiguous nenory
region. That data can be represented by a single read chunk
(segnent).

Alternately, the transferred data mght reside in nultiple

di sconti guous nenory regions. The data is represented by a list of
read chunks (segnents). The Position field in each segnent in this
list contains the same val ue.

The receiver reconstructs the transferred data by concatenating the
contents of each segnment in list order into the receiver’s XDR
stream The first segnent begins at the XDR position in the Position
field, and subsequent segnents are concatenated afterwards unti

there are no nore segnents left at that XDR Position. This enables
gathering data frommnultiple buffers on the sender

2.5.5. Wite Chunk

A "Wite chunk"” advertises the coordi nates of XDR stream data to be
transferred via RDVA Wite operations.

A wite chunk is represented by the xdr_write_chunk struct:

Lever Expi res Novenber 13, 2016 [Page 11]

Internet-Draft RFC 5666 | npl enent ati on Experience May 2016

<CCODE BEG NS>

struct xdr_wite_chunk {
struct xdr_rdnma_segnent target<>
b

<CODE ENDS>

The sender fills each segment on the receiver, in array order, with
the transferred data. This enables scattering data into nmultiple
buffers on the receiver.

Typically the exact size of the data cannot be predicted before the
responder has forned its reply. Thus the requester nust provide
enough space in the wite chunk for the |largest result the responder
m ght generate for this RPC operation. The responder updates the
size field of each segnent in the Wite chunk when it returns the

Wite list to the requester via a matching RPC reply nessage. |If a
segrment is not used, the responder sets the segnment size field to
zero.

Because the requester nust pre-allocate the area in which the
responder writes the result before the responder has forned the
reply, giving a position and size to the data, the requester cannot
know the XDR stream position of the result data. Thus wite chunks
do not have a Position field.

2.5.6. Read List

Each RPC-over-RDVA Version One call has one "Read list," provided by
the requester. A requester provides the locations of RDMA-eligible
argunent data via read chunks. Via a Position Zero read chunk, a
requester may provide an entire RPC request nessage as a chunk in
this list.

A Read list is represented by the xdr_read |list struct:
<CODE BEGQ NS>
struct xdr _read list {

struct xdr_read chunk entry;
struct xdr _read list *next;

b
<CODE ENDS>

Lever Expi res Novenber 13, 2016 [Page 12]

Internet-Draft RFC 5666 | npl enent ati on Experience May 2016

RFC 5666 does not restrict the order of read chunks in the Read |ist,
but read chunks with the sane value in their Position fields are
ordered (see above).

The Read list may be enpty if the RPC call has no argunent data that
is ROMA-eligible and the Position Zero Read chunk is not being used

2.5.7. Wite List

Each RPC-over-RDVA Version One call has one "Wite list," provided by
the requester. A requester provides wite chunks in this list as
receptacles for RDMA-eligible result data

A Wite list is represented by the xdr_wite list struct:
<CODE BEG NS>

struct xdr_wite list {
struct xdr_write_chunk entry;
struct xdr_wite list *next;

b
<CODE ENDS>

Note that this looks similar to a Read list, but because an
xdr_write_chunk is an array and not an RDVA segnment, the two data
structures are not the sane.

The Wite list may be enpty if there is no RDVMA-eligible result data
to return.

The requester provides as many Wite chunks as the Upper Layer

Bi nding allows for the particular operation. The responder fills in
each Wite chunk with an RDMA-eligible result until the Wite list is
exhausted or there are no nore RDVA-eligible results.

2.5.8. Position Zero Read Chunk

A requester may use a "Position Zero read chunk” to convey part or

all of an entire RPC call, rather than including the RPC call nessage
inline. A Position Zero read chunk is necessary if the RPC call
message is too large to fit inline. RFC 5666 Section 5.1 defines the
operation of a "Position Zero read chunk."

To support gathering a large RPC call message frommultiple |ocations
on the requester, a Position Zero read chunk may be conprised of nore
than one xdr _read chunk. Each read chunk that belongs to the
Position Zero read chunk has the value zero in its Position field.

Lever Expi res Novenber 13, 2016 [Page 13]

Internet-Draft RFC 5666 | npl enent ati on Experience May 2016

2.5.9. Reply Chunk

3.

3.

Each RPC-over-RDVA Version One call may have one "Reply chunk,”
provi ded by the requester. A responder nay convey an entire RPC
reply nmessage in this chunk

A Reply chunk is a wite chunk, thus it is an array of one or nore
RDVA segnents. This enables a requester to control where the
responder scatters the parts of an RPC reply nessage. |n current

i npl ementations, there is only one RDVA segnent in a Reply chunk

A requester provides the Reply chunk whenever it predicts the
responder’s reply might not fit inline. It may choose to provide the
Reply chunk even when the responder can return only a small reply. A
responder may use a "Reply chunk” to convey nost or all of an entire
RPC reply, rather than including the RPC reply nessage inline.

Speci fication | ssues
1. Extensibility Considerations

RPC- based protocols are defined solely by their XDR definitions.
They are independent of the transport mechani smused to convey base
RPC nessages. Protocols defined this way often have signifcant
extensibility restrictions placed on them

Not all restrictions on RPC based Upper Layer Protocols may be
appropriate for an RPC transport protocol, however. TCP [RFC0793],
for exanple, is an RPC transport protocol that has been extended nany
times i ndependently of the RPC and XDR st andards.

RPC-over-RDMA is partially specified by XDR, and it provides a
version field in its headers. However, it is distinct from other
RPC- and XDR-based protocols in sone key ways:

o0 Although it uses XDR encodi ng, RPC-over-RDVA is not an RPC
program nor is it an Upper Layer Protocol

0 XDR objects in RPC over-RDVA headers exi st near to but outside the
enbrace of an RPC nessage

0 RPC-over-RDVA relies on a nore sophisticated set of base transport
operations than traditional socket-based transports

o The RDMA operations generated by verbs are not part of any XDR
definition; however interoperability depends on RPC- over- RDVA
i npl ementations using these verbs in a particular way

Lever Expi res Novenber 13, 2016 [Page 14]

Internet-Draft RFC 5666 | npl enent ati on Experience May 2016

There are still reasonable restrictions, of course, that are
necessary to maintain interoperability within a single Version of
RPC-over-RDVA. But they are left largely unstated in RFC 5666

3.1.1. Recommendati ons

RFC 5666bi s should not alter the basic physical operations that are
in use by current inplenentations. 1t should not alter the on-the-

wi re appearance of RPC-over-RDVA Version One headers, and never by an
explicit RDVA operations

Al'though it is inplied, RFC 5666bis should state explicitly that all
items in an RPC-over-RDVA Version One header nust be conveyed via
Send and Receive operations (ie, none of these items is ever RDVA-
eligible).

RFC 5666bi s shoul d di scuss when a Version bunp is required. Any
significant changes to the way RDVA operations are used shoul d
require a Version bunmp, for instance. Certain linited XDR changes
m ght be allowed, as |ong as the standards-specified set of wire
behavi ors remai ns intact.

3.2. XDR darifications

Even seasoned NFS/ RDMA inplenenters have had difficulty agreeing on
preci sely what a "chunk" is, and had chal | enges di stinguishing the
structure of the Read list fromstructure of the Wite list.

On occasion, the text of RFC 5666 uses the term "chunk" to represent
ei ther read chunks or wite chunks, even though these are different
data types and have different senmantics

For exanple, RFC 5666 Section 3.4 uses the term"chunk list entry”
even though the discussion is referring to an array elenent (a
segrment). It inplies all chunk types have a Position field, even
t hough only read chunks have this field.

Near the end of Section 3.4, it says:
Therefore, read chunks are encoded into a read chunk list as a
single array, with each entry tagged by its (known) size and its
argument’s or result’s position in the XDR stream

The Read list is not an XDR array, it is always an XDR list. A Wite
chunk is an XDR array.

RFC 5666 Section 3.7, third paragraph uses the terns "chunked
el ement” and "chunk segnment."” Neither termis defined or used

Lever Expi res Novenber 13, 2016 [Page 15]

Internet-Draft RFC 5666 | npl enent ati on Experience May 2016

anywhere el se. The fourth paragraph refers to a "sequence of chunks"
but likely means a sequence of RDMA segments.

The XDR definition for a read chunk is an RDVA segnent with a
position field. RFC 5666 Section 3.4 states that nultiple

xdr _read_chunk structs can make up a single RPC argunment if they
share the same Position in the XDR stream Sone inpl enentations
depend on using multiple RDVA segnents in the sane XDR Position
particularly for sending Position Zero read chunks efficiently by
gathering an RPC call nessage fromnultiple discontiguous nenory

| ocations. Oher inplenentations do not support sending or receiving
mul ti ple Read chunks with the sanme Position

An Upper Layer Binding may limt the nunmber of Read list entries

all owed for a particular operation. |In that case, the Upper Layer
Binding is not restricting the total nunber of read chunks in the
list, but rather the nunber of distinct Positions that appear in the
list.

RFC 5666 does not restrict the boundaries of a chunk other than to
inmply that a chunk’s starting position and its length is a nultiple
of an XDR data unit. However, inplenmentations have observed a
practical restriction to facilitate straightforward integration of
RDVA support into existing XDR infrastructure: A chunk contai ning
RDMVA- el i gi bl e data must be encoded or decoded as a single XDR object.

In addition, Upper Layer Bindings nake RDMA-eligibility statements
about specific argunents and results (or portions thereof which stil
are whole XDR objects). The inplication is that chunks contain only
whol e XDR obj ects, even though RFC 5666 is not explicit about this.

A Position Zero read chunk typically contains an entire RPC request
message, and a Reply chunk contains an entire RPC reply nessage.
These are exceptions to the above restriction

The Wite list is especially confusing because it is a list of arrays
of RDMA segnents, rather than a sinple list of xdr_read_chunk
objects. Wiat is referred to as a Read list entry often means one
xdr _read_chunk, or one segnent. That segnent can be either a portion
of or a whole XDR object. A Wite list entry is an array, and al ways
represents a single XDR object inits entirety.

An Upper Layer Binding may linmt the nunber of chunks in a Wite |ist
all owed for a particular operation. That strictly limts the nunber
of Wite list entries.

Not having a firm one-to-one correspondence between read chunks and
XDR obj ects is sonetinmes awkward. The two chunk types should be nore

Lever Expi res Novenber 13, 2016 [Page 16]

Internet-Draft RFC 5666 | npl enent ati on Experience May 2016

symretrical to avoid confusion, although that night be difficult to
pull off without altering the RPC over-RDMA Version One XDR
definition. As we will see later, the XDR roundup rul es al so appear
to apply asymmetrically to read chunks and wite chunks.

I mpl ement ers have been aided by the ASCII art block commrents in the
Li nux kernel in net/sunrpc/xprtrdma/rpcrdma.c, excerpted here. This
di agram shows exactly how the Read list and Wite list are
constructed in an XDR stream

<CODE BEG NS>

/*
* Encodi ng key for single-list chunks
* (HLOO = Handl e32 Length32 O fset 64):
*
* Read chunklist (a linked list):
* N el ements, position P (same P for all chunks of same arg!):
* 1- PHOO- 1- PHLOO- ... - 1 - PHLOO- O
*
* Wite chunklist (a list of (one) counted array):
* N el ement s:
* 1- N- HO- HOO- ... - HOO- 0
*
* Reply chunk (a counted array):
* N el enent s:
* 1- N- HOO- HOO- ... - HLOO
*
/
<CODE ENDS>

3.2.1. Recommendat i ons

To aid in reader understandi ng, RFC 5666bis shoul d expand the

gl ossary that explains and distinguishes the various elenents in the
protocol. Upper Layer Binding specifications refer to these terns.
RFC 5666bi s should utilize and capitalize these glossary terns

consi stently.

RFC 5666bi s shoul d i ntroduce additional diagranms that suppl enent the
XDR definition in RFC 5666 Section 4.3. RFC 5666bis should explain
the structure of the XDR and how it is used. RFC 5666bis should
contain an explicit but brief rationalization for the structura

di fferences between the Read list and the Wite list.

RFC 5666bi s should explicitly restrict chunks contai ni ng RDVA-

eligible data so that a chunk represents exactly a single XDR object
inits entirety.

Lever Expi res Novenber 13, 2016 [Page 17]

Internet-Draft RFC 5666 | npl enent ati on Experience May 2016

RFC 5666bi s shoul d use a consistent naming convention for all XDR
definitions. For exanple, all structures and uni on nanes shoul d use
an "rpcrdmal_" prefix.

To address conflation of a read chunk that is a single xdr_read_chunk
and a read chunk that is a list of xdr_read_chunk el ements with
identical Position field values, the follow ng specification changes
shoul d be made:

0 The XDR definition should renane the xdr_read_chunk struct as
rpcrdmal_read _segnent.

0 RFC 5666bis should redefine a "read chunk"” as an ordered list of
one or nore rpcrdmal_read_segment structs that have identica
Posi ti on val ues.

0 RFC 5666bis should redefine the "Read list" as a list of zero or
nmore read chunks, expressed as an ordered |ist of
rpcrdmal_read_segnent structs whose Position value may vary.
Segnment positions in the Iist are non-descendi ng.

Wth these changes, there would no | onger be a sinple XDR object that
explicitly represents a read chunk, but a read chunk and a wite
chunk are now equival ent objects that both nap to a whol e XDR obj ect.
Al'l discussion should take care to use the ternms "segnent" and "read
segrment" instead of the term "read chunk"” where appropriate.

As a clean up, RFC 5666bis should renove the rpc_rdma_header nonsg
struct, and use the rpc_rdnma_header struct in its place. Since
rpc_rdma_header does not conprise the entire RPC-over- RDMA header, it
shoul d be renaned rpcrdmal_chunks to avoi d confusion
XDR definitions should be enclosed in CODE BEA NS and CODE ENDS
delimters. An appropriate copyright block should acconpany the XDR
definitions in RFC 5666bis. An XDR extraction shell script should be
provided in the text.
See Section 10 for a full listing of the proposed XDR definitions.
3.3. Additional XDR |ssues
3.3.1. Mechanical |ssues

There are some mechani cal problens with the XDR | anguage definition
of RPC-over-RDVA Version One provided in Section 4.3 of [RFC5666]:

0 No copyright boilerplate is provided

Lever Expi res Novenber 13, 2016 [Page 18]

Internet-Draft RFC 5666 | npl enent ati on Experience May 2016

0 An extraction script is not provided, and there is no escape
sequence around the code

o0 There is at |l east one XDR definition error that prevents the
extracted XDR from conpiling

3.3.2. XDR Definition Recursiveness

The usual practice when defining an XDR-based protocol is that there
is one enconpassing data type that represents one nessage in the
pr ot ocol

This is not true for RPC-over-RDVA. The header is defined by one
data type (struct rdma_msg) but the RPC nessage payload is not
formally represented in the XDR definition in Section 4.3. The
presence or absence of the RPC nessage payload is indicated by the
message type, and the body of that payload is noted only with a code
conment .

3.3.3. Recommendat i ons

The XDR presented in RFC5666bi s should correct the deficiencies
descri bed above.

To correct the lack of formal recursiveness issue w thout forcing an
on-t he-w re behavi or change, RFC5666bis shoul d place the RPC-over-
RDVA header and the RPC message payl oad in separate XDR streans.

3.4. The Position Zero Read Chunk

RFC 5666 Section 5.1 defines the operation of the Position Zero read
chunk. A requester uses the Position Zero read chunk in place of
inline content. A requester is required to use the Position Zero
read chunk when the total size of an RPC call nessage exceeds the
size of the responder’s receive buffers, and RDMA-eligi bl e data has
al ready been renoved from the nessage.

RFC 5666 Section 3.4 says:

Senmantical |y speaking, the protocol has no restriction regarding
data types that may or nmay not be represented by a read or wite
chunk. In practice however, efficiency considerations lead to the
conclusion that certain data types are not generally "chunkabl e".
Typically, only those opaque and aggregate data types that may
attain substantial size are considered to be eligible. Wth
today’s hardware, this size may be a kilobyte or nore. However,
any object MAY be chosen for chunking in any given nessage.

Lever Expi res Novenber 13, 2016 [Page 19]

Internet-Draft RFC 5666 | npl enent ati on Experience May 2016

The eligibility of XDR data itens to be candi dates for being noved
as data chunks (as opposed to being marshaled inline) is not
specified by the RPC over-RDVA protocol. Chunk eligibility
criteria MUST be determ ned by each upper-layer in order to
provide for an interoperable specification.

The intention of this text is to spell out that RDMA-eligibility
applies only to individual XDR data objects in the Upper Layer
Protocol. RDMA-eligibility criteria are specified within a separate
specification, rather than in RFC 5666

The Position Zero read chunk is an exception to both of these
guidelines. The Position Zero read chunk, by virtue of the fact that
it typically conveys an entire RPC call message, may contain multiple
argunent s, independent of whether any particular argunent in the RPC
call is RDMA-eligible

Unli ke the read chunks described in the RFC 5666 excerpt above, the
content of a Position Zero read chunk is typically marshal ed and
copi ed on both ends of the transport, so it cannot benefit from
Direct Data Placenent. |In particular, the Position Zero read chunk
is not for conveying performance critical Upper Layer operations.

Thus the requirenents for what may or may not appear in the Position
Zero read chunk are indeed specified by RFC 5666, in contradiction to
the second paragraph quoted above. Upper Layer Binding
specifications may have sonething to say about what nmay appear in the
Position Zero read chunk, but the basic definition of Position Zero
shoul d be nade clear in RFC 5666bis as distinct froma read chunk
whose Position field is non-zero.

Because a read chunk is defined as one RDVA segnent with a Position
field, at least one inplementation allows only a single chunk segnent
in Position zero read chunks. This is a problemfor two reasons:

0 Some RPCs are constructed in nultiple non-contiguous buffers.
Al'lowing only one read segnent in Position Zero would nmean a
single large contiguous buffer would be have to be allocated and
regi stered, and then the conponents of the XDR stream woul d have
to be copied into that buffer

0 Sone requesters mght not be able to register nmenory regions
| arger than the platfornis physical page size. Allow ng only one
read segment in Position Zero would limt the maxi mum size of RPC
over - RDMA nmessages to a single page. Allowing nmultiple read
segnents neans the nessage size can be as large as the maxi num
number of read chunks that can be sent in an RPC-over- RDVA header

Lever Expi res Novenber 13, 2016 [Page 20]

Internet-Draft RFC 5666 | npl enent ati on Experience May 2016

RFC 5666 does not linmt the number of read segnments in a read chunk
nor does it limt the nunber of chunks that can appear in the Read
list. The Position Zero read chunk, despite its nane, is not limted
to a single xdr_read _chunk

3.4.1. Recommendati ons

RFC 5666bi s should state that the guidelines in RFC 5666 Section 3.4
apply only to RDVA MSG type calls. Wen the Position Zero read chunk
is introduced in RFC 5666 Section 5.1, enunerate the differences
between it and the read chunks previously described in RFC 5666
Section 3.4.

RFC 5666bi s shoul d descri be what restrictions an Upper Layer Bi nding
may make on Position Zero read chunks.

3.5. RDVA NOVBG Cal | Messages

The second paragraph of RFC 5667 Section 4 says, in reference to
NFSv2 and NFSv3 WRI TE and SYM.I NK oper ati ons:

. a single RDVA Read list entry MAY be posted by the client to
supply the opaque file data for a WRI TE request or t he pat hnane
for a SYMLINK request. The server MJST ignore any Read list for
ot her NFS procedures, as well as additional Read list entries
beyond the first in the list.

However, large non-wite NFS operations are conveyed via a Read |i st
containing at |east a Position Zero read chunk. Strictly speaking,

t he above requirenent neans |arge non-wite NFS operations may never
be conveyed because the responder MJST ignore the read chunk in such
requests.

It is likely the authors of RFC 5667 intended this linmt to apply
only to RDMA M5G type calls. If that is true, however, an NFS

i mpl ementation could legally skirt the stated restriction sinply by
usi ng an RDMA_NOVSG type call that conveys both a Position Zero and a
non-zero position read chunk to send a non-wite NFS operation

Unl ess either RFC 5666 or the protocol’s Upper Layer Binding
explicitly prohibits it, allowing a read chunk in a non-zero Position
in an RDMA NOVSG type call nmeans an Upper Layer Protocol may ignore
Bi nding requirements |ike the above.

Typically there is no benefit to allowing nultiple read chunks for

RDVA NOVBG type calls. Any non-zero Position read segnents can
al ways be conveyed as part of the Position Zero read chunk

Lever Expi res Novenber 13, 2016 [Page 21]

Internet-Draft RFC 5666 | npl enent ati on Experience May 2016

However, there is a class of RPC operations where RDVMA NOVSG with
multiple read chunks is useful: when the body of an RPC call nessage
is larger than the inline buffer size, even after RDMA-eligible
argunent data has been noved to read chunks.

A similar discussion applies to RDMA_NOVSG replies with large reply
bodi es and RDMA-eligible result data. Such replies would use both
the Wite list and the Reply chunk sinultaneously. However, wite
chunks do not have Position fields.

3.5.1. Recommendati ons

RFC 5666bi s shoul d continue to all ow RDOMA_ NOMSG type calls with
addi tional read chunks. The rules about RDMA-eligibility in RFC
5666bi s shoul d di scuss when the use of this construction is
beneficial, and when it shoul d be avoi ded.

Aut hors of Upper Layer Bi ndings should be warned about ignoring these
cases. RPC 5666bis should provide a default behavior that applies
when Upper Layer Bindings onit this discussion

3.6. RDVA MBG Call with Position Zero Read Chunk

The first itemin the header of both RPC calls and RPC replies is the
XID field [RFC5531]. RFC 5666 Section 4.1 says:

A header of message type RDVA MSG or RDVA MSGP MUST be fol |l owed by
the RPC call or RPC reply nessage body, beginning with the XID

This is a strong inplication that the RPC header in an RDMA MSG type
message starts at XDR position zero. Assune for a nonment that, by
definition, the RPC header in an RPC-over-RDVA XDR stream starts at
XDR position zero.

An RDVA MSG type call nessage includes the RPC header and zero or
nore read chunks. Recall the definition of a read chunk as a l|ist of
read segnments whose Position field contains the same value. The

val ue of the Position field determ nes where the read chunk appears
in the XDR streamthat conprises an RPC call nessage

A Position Zero read chunk, therefore, starts at XDR position zero,
just like RPC header does. In an RDVA NOVSG type call message, which
does not include an RPC header, a Position Zero read chunk conveys

t he RPC header.

There is no prohibition in RFC 5666 agai nst an RDVMA MSG type cal

messsage with a Position Zero read chunk. However, it’'s not clear
how a responder should interpret such a nessage. RFC 5666 requires

Lever Expi res Novenber 13, 2016 [Page 22]

Internet-Draft RFC 5666 | npl enent ati on Experience May 2016

the RPC header to start at XDR position zero, but there is a Position
Zero read chunk, which also starts at XDR position zero.

3.6.1. Recommendati ons

RPC 5666bi s should clearly define what is neant by an XDR stream

RFC 5666bi s should state that the value in the xdr_read_chunk
"position" field is nmeasured relative to the start of the RPC header,
which is the first byte of the header’s XD field.

RFC 5666bi s shoul d prohibit requesters fromproviding a Position Zero
read chunk in RDMA_MSG type calls. Likew se, RFC 5666bis shoul d
prohi bit responders fromutilizing a Reply chunk in RDMA MSG type
replies.

The diagrams in RFC 5666 Section 3.8 which nunber chunks starting
with 1 should be revised. Readers confuse this nunber with an XDR
position.

3.7. Padding Inline Content After A Chunk

To help clarify the discussion in this section, the term"read chunk"”
here al ways neans the new definition where one or nore read segnents
that have identical values in their Position fields represents
exactly one RDMVA-eligi bl e XDR obj ect.

A read chunk conveys a | arge argument payl oad via one or nore RDVA
transfers. For instance, the data payl oad of an NFS WRI TE operation
may be be transferred using a read chunk [RFC5667].

NFSv3 WRI TE operations place the data payload at the end of an RPC
call message [RFC1813]. The RPC call’s XDR stream starts in an
inline buffer, continues in a read chunk, then ends there.

An NFSv4 WRI TE operation may occur as a niddle operation in an NFSv4
COVPOUND [RFC5661] . The read chunk containing the data payl oad
argunent of the WRI TE operation m ght finish before the RPC call’s
XDR stream does. In this case, the RPC call’'s XDR streamstarts in
an inline buffer, continues in the Read list, then finishes back in
the inline buffer.

The length of a chunk is the sumof the I engths of the segnents that
make up that chunk. The data payload in a chunk nmay have a |l ength
that is not evenly divisible by four. One or nore of the segnents
may have an unaligned | ength.

RFC 5666 Section 3.7 describes how to manage XDR roundup in a read
chunk when its length is not XDR-aligned. The sender is not required

Lever Expi res Novenber 13, 2016 [Page 23]

Internet-Draft RFC 5666 | npl enent ati on Experience May 2016

to send the extra pad bytes at the end of a chunk because a) the
recei ver never references their content, therefore it is wasteful to
transmt them and b) each read chunk has a Position field and | ength
that determ nes exactly where that chunk starts and ends in the XDR
stream

A question arises, however, when considering where the next XDR
object after a read chunk should appear. XDR requires each object to
begin on 4-byte alignment [RFC4506]. But a read chunk’s XDR paddi ng
is optional (see above) and thus may not appear in the chunk as
actual zero bytes.

The next read chunk’s position field deternines where it is placed in
the XDR stream so in that case there is no anbiguity. Inline
content follow ng a read chunk does not have a Position field to
gui de the receiver in the reassenbly of the XDR stream however.

Par agraph 4 of RFC 5666 Section 3.7 says:

When roundup is present at the end of a sequence of chunks, the

I ength of the sequence will terminate it at a non-4-byte XDR
position. Wen the receiver proceeds to decode the renaining part
of the XDR stream it inspects the XDR position indicated by the
next chunk. Because this position will not match (el se roundup
woul d not have occurred), the receiver decoding will fall back to
i nspecting the remaining inline portion. |If in turn, no data
remains to be decoded fromthe inline portion, then the receiver
MUST concl ude that roundup is present, and therefore it advances
the XDR decode position to that indicated by the next chunk (if
any). In this way, roundup is passed w thout ever actually
transferring additional XDR bytes.

Thi s paragraph adequately descri bes XDR paddi ng requirenents when a
read chunk is followed by another read chunk. But it |eaves unspoken
any requirenents for XDR paddi ng and alignment when a read chunk is
followed in the XDR stream by nore inline content.

Applying the rules of XDR, the XDR pad for the read chunk nust not
appear in the inline content, even if it was also not included in the
chunk itself. This is because the inline content that preceded the
read chunk will have been padded to 4-byte alignnment. The next
position in the inline buffer is already on a 4-byte boundary, thus
no padding i s necessary.

Lever Expi res Novenber 13, 2016 [Page 24]

Internet-Draft RFC 5666 | npl enent ati on Experience May 2016

3.7.1. Recommendati ons

State the above requirenent in RFC 5666bis in its equival ent of RFC
5666 Section 3.7. \Wien a responder forns a reply, the sane
restriction applies to inline content interleaved with wite chunks.

Because all XDR objects nust start on an XDR alignnment boundary, all
read and wite chunks and all inline XDR objects in any XDR stream
must start on an XDR alignnment boundary. This has inplications for
the values allowed in read chunk Position fields, for how XDR roundup
wor ks for chunks, and for how XDR objects are placed in inline
buffers. XDR alignnent in inline buffers is always relative to
Position Zero (or, where the RPC header starts).

3.8. Wite Chunk XDR Roundup
The final paragraph of RFC 5666 Section 3.7 says:

For RDMA Wite Chunks, a sinpler encoding nethod applies. Again
roundup bytes are not transferred, instead the chunk |ength sent
to the receiver in the reply is sinply increased to include any

r oundup.

A responder should avoid witing XDR pad bytes, as the requester’s
upper |ayer does not reference them though the | anguage does not
fully prohibit witing these bytes. A requester always provides the
extra space for XDR paddi ng anyway.

A problemarises if the data itemwitten into a Wite chunk is
shorter than the chunk and requires an XDR pad. A responder nay
wite the XDR pad past the end of the data content. For a short
directly-placed wite, the pad bytes are then exposed in the RPC
consumer’ s data buffer

In addition, for the chunk Il ength to be rounded up as described, the
requester nust provide adequate extra space in the chunk for the XDR
pad. A requester can provide space for the XDR pad using one of two
appr oaches:

1. It can extend the last segnent in the chunk

2. It can provide another segnent after the segnents that receive
RDVA Wite payl oads.

Case 1 is adequate when there is no danger that the responder’s RDVA

Wite operations will overwite existing data on the requester in
menory followi ng the advertised receive buffers.

Lever Expi res Novenber 13, 2016 [Page 25]

Internet-Draft RFC 5666 | npl enent ati on Experience May 2016

In Direct Data Placenment scenarios, an extra segnment mnust be provided
separately to avoid overwiting existing data that foll ows the sink
buffer (case 2). Thus, an extra registration is needed for just a
handful of bytes that may not be witten by the responder, and are

i gnored by the requester. Even so, this does not force the responder
to direct the XDR pad bytes into this extra segnent, should the data
itemin that chunk be shorter than the chunk itself.

Regi stering the extra buffer is a needless cost. It would be nore
efficient if the XDR pad at the end of a wite chunk were treated the
same as it is for Read chunks. Because RPC result data nust begin on
an XDR al i gnnent boundary, the result following the wite chunk in
the reply’s XDR stream nmust begin on an XDR al i gnment boundary.

There is no need for a XDR pad to be present for the receiver to re-
assenble the RPC reply’s XDR stream properly.

One responder inplenentation requires the requester to provide the
extra buffer space in the Wite chunk, but does not wite to it.
This follows the letter of the |last paragraph of Section 3.7 of

[RFC5666] .

Anot her responder inplenentation does not rely on having the extra
space (operation proceeds if it is mssing) but when the extra space
is present, this responder does wite zeroes to it. Wile the
intention of Section 3.7 is that the responder does not wite the
pad, it is not strictly forbidden.

Client inplenentations all appear to provide the extra buffer space
needed to accomvpdate the XDR pad. However, one inplenentation does
not register this extra buffer, since the responder is not expected
to wite into it, while another inplenentation does.

These inpl enentati ons may not be 100% i nt eroperable. The | anguage of
Section 3.7 of [RFC5666] appears to allow all of this behavior (in
particular, it does not prohibit a responder fromwiting the XDR pad
usi ng RFC2119-styl e keywords, and does not require that requesters
regi ster the extra space to accommodate the XDR pad).

Not e that because the Reply chunk is a wite chunk, these roundup
rules also apply to it.

3.8.1. Recommendati ons
The current specification allows XDR pad bytes to | eak into user
buffers, and none of the current inplenentations prevent this |eak

There nay be roomto adjust the protocol specification independently
of current inplenentation behavior

Lever Expi res Novenber 13, 2016 [Page 26]

Internet-Draft RFC 5666 | npl enent ati on Experience May 2016

RFC 5666bi s should explicitly discuss the requirenents around wite
chunk roundup separately fromthe discussion of read chunk roundup

Explicit RFC2119-style interoperability requirenents should be
provided for wite chunks. Responders MJST NOT wite XDR pad bytes
at the end of a Wite chunk

Al'l ocating and registering extra space for XDR pad bytes that are
never witten is wasteful. RFC 5666bis should forbid it. Responders
shoul d not expect requesters to provide space for XDR pad bytes.

3.9. Wite List Error Cases
RFC 5666 Section 3.6 says:

When a wite chunk list is provided for the results of the RPC
call, the RPC server MJST provide any correspondi ng data via RDVA
Wite to the nenory referenced in the chunk list entries.

This requires the responder to use the Wite list when it is
provided. Another way to say it is a responder is not permitted to
return bulk data inline or in the Reply chunk when the requester has
provided a Wite list.

This requirement is less clear when it cones to situations where a
particular RPC reply is allowed to use a provided Wite list, but
does not have a bulk data payload to return. For exanple, RFC 5667
Section 4 permts requester to provide a Wite list for NFS READ
operations. However, NFSv3 READ operations have a union reply

[RFC1813] :

Lever Expi res Novenber 13, 2016 [Page 27]

Internet-Draft RFC 5666 | npl enent ati on Experience May 2016

<CCODE BEG NS>

struct READ3resok {
post _op_attr file_ attributes;

count 3 count ;
bool eof ;
opaque dat a<>;

H

struct READ3resfail {
post _op_attr file_ attributes;
b

uni on READ3res switch (nfsstat3 status) {
case NFS3_K
READ3r esok resok;
def aul t:
READ3resfail resfail;
b

<CODE ENDS>

When an NFS READ operation fails, no data is returned. The arm of
t he READ3res union which is used when a read error occurs does not
have a bul k data argunent.

RFC 5666 does not prescribe how a responder shoul d behave when RDVA-
eligible result data for which the Wite list is provided does not
appear in the reply. RFC 5666 Section 3.4 says:

I ndividual wite chunk list elements MAY thereby result in being
partially or fully filled, or in fact not being filled at all.
Unused wite chunks, or unused bytes in wite chunk buffer lists,
are not returned as results, and their nenory is returned to the
upper layer as part of RPC conpletion.

It al so says:
The RPC reply conveys this by returning the wite chunk list to
the client with the lengths rewitten to match the actual
transfer.
The di sposition of the advertised wite buffers is therefore clear.
The requirenents for how the Wite list nust appear in an RPC reply
are sonewhat |ess than clear.

Here we are concerned with two cases:

Lever Expi res Novenber 13, 2016 [Page 28]

Internet-Draft RFC 5666 | npl enent ati on Experience May 2016

0 When a result consunes fewer RDVA segnents than the requester
provided in the Wite chunk for that result, what values are
provi ded for the chunk’s segnent count and the | engths of the
unused segnents

0 Wien a result is not used (say, the reply uses the armof an XDR
uni on that does not contain the result corresponding to a Wite
chunk provided for that result), what values are provided for the
chunk’ s segnent count and the | engths of the unused segnents

The | anguage above suggests the proper value for the Wite chunk’s
segment count is always the sane value that the requester sent, even
when the chunk is not used in the reply. The proper value for the

I ength of an unused segnent in a Wite chunk is always zero.

I nspection of one existing server inplenentation shows that when an
NFS READ operation fails, the returned Wite |ist contains one entry:
a chunk array containing zero el enents. Another server

i mpl ementation returns the original Wite list chunk in this case.

In either case, requesters appear to ignore the Wite |list when no
bul k data payl oad is expected. Thus it appears that, currently,
responders nmay put whatever they like in the Wite |ist.

Current NFSv4 client inplenentations behave |ike | egacy NFS

i npl ementations in the sense that each READ COVPOUND requests only
one contiguous data payl oad that is never larger than the rsize
setting of the nount. However it is legal for an NFSv4 COVPOUND to
contain nore than one READ operation. Each READ request in a
COVPOUND may have an RDMA-eligible result in the COVMPOUND reply.

In general, a conplex Upper Layer Binding nay wish to return nore
than one RDMA-eligible result in a single RPC reply. Dependi ng on
the RPC program there may be nested or sequential switched unions in
the reply. There is no Position field in the segnents nmaking up a
Wite chunk, so both sender and receiver nust be careful about how
the reply nmessage is re-assenbl ed.

It should al ways be unanbi guous which Wite chunk matches w th which
result. To ensure interoperability, the responder associates the
first RDMA-eligible result with the first chunk in the Wite |ist,
and so on, until either results or Wite chunks are exhausted. The
recei ver nmakes the sanme associations while parsing the XDR stream of
the reply. 1t should be the responsibility of the Upper Layer

Bi nding to avoi d anbi guous situations by appropriately restricting
RDVA- el igible data itens.

Lever Expi res Novenber 13, 2016 [Page 29]

Internet-Draft RFC 5666 | npl enent ati on Experience May 2016

Remenber that a responder MJST use the Wite list if the requester
provided it and the responder has RDVA-eligible result data. If the
requester has not provided enough Wite chunks in the Wite list, the
responder nay have to use a |ong nessage as well, depending on the
remai ning size of the RPC reply.

3.9.1. Recommendati ons

4.

4.

RFC 5666bi s should explicitly discuss responder behavi or when an RPC
reply does not need to use a Wite list entry provided by a
requester. This is generic behavior, independent of any Upper Layer
Bi nding. The explanation can be partially or wholly copied from RFC
5667 Section 5 s discussion of NFSv4 COVPOUND

A nunber of places in RFC 5666 Section 3.6 hint at how a responder
behaves when it is to return data that does not use every byte of
every provided Wite chunk segnent. RFC 5666bis should state
specific requirenments about how a responder should formthe Wite
list in RPCreplies, and/or it should explicitly require requesters
to ignore the Wite list in these cases. RFC 5666bis should require
that the responder not alter the count of segnents in the Wite
chunk. One or nore explicit exanples should be provided in RFC
5666bi s.

RFC 5666bi s shoul d provide clear instructions on how Upper Layer
Bi ndings are to be witten to take care of sw tched unions.

Qper ati onal Consi derations
1. Conputing Request Buffer Requirenents

The size maxi mum of a single Send operation includes both the RPC
over - RDVA header and the RPC header. Conbi ned, those two headers
nmust not exceed the size of one receive buffer

Senders often construct the RPC-over-RDVA header and the RPC call or
reply nmessage in separate buffers, then conbine themvia an iovec
into a single Send. This does not nmean each el ement of that iovec
can be as large as the inline threshol d.

An HCA or RNIC may have a snall limt on the size of a registered
menory region. |In that case, RDMA-eligible data nay be conprised of
many chunk segments.

This has inplications for the size of the Read and Wite lists, which
take up a variabl e anount of space in the RPC over-RDVA header. The
sum of the size of the RPC-over-RDVA header, including the Read and

Lever Expi res Novenber 13, 2016 [Page 30]

Internet-Draft RFC 5666 | npl enent ati on Experience May 2016

Wite lists, and the size of the RPC header nust not exceed the
inline threshold. This limts the maxi num Upper Layer payl oad size.

4.1.1. Recommendati ons

RFC 5666bi s shoul d provide inplementation gui dance on how the inline
threshold (the maxi num send size) is conputed.

4. 2. Default Inline Buffer Size

Section 6 of RFC 5666 specifies an out-of-band protocol that allows
an endpoint to discover a peer endpoint’s receive buffer size, to
avoi d overrunning the receiving buffer, causing a connection |oss.

Not all RPC-over-RDVA Version One inplenentations also inplenent CCP
as it is optional. Gven the inportance of know ng the receiving
end’ s receive buffer size, there should be sone way that a sender can
choose a size that is guaranteed to work with no CCP interaction

RFC 5666 Section 6.1 describes a 1KB receive buffer limt for the
first operation on a connection with an unfamliar responder. |In the
absence of CCP, the client cannot discover that responder’s true
limt without risking the loss of the transport connection

4.2.1. Recommendati ons

RFC 5666bi s should specify a fixed send/receive buffer size as part
of the RPC-over-RDVA Version One protocol, to use when CCP is not
avai l abl e. For exanple, the follow ng could be added to the RFC
5666bi s equi val ent of RFC 5666 Section 6.1: "In the absence of CCP
requesters and responders MJST assune 1KB receive buffers for al
Send operations.”

It should be safe for Upper Layer Binding specifications to provide a
different default inline threshold. Care nust be taken when an
endpoint is associated with nmultiple RPC prograns that have different
default inline thresholds.
4.3. Wen To Use Reply Chunks
RFC 5666 Section 3.6 says:
When a wite chunk list is provided for the results of the RPC

call, the RPC server MJST provide any corresponding data via RDVA
Wite to the nenory referenced in the chunk list entries.

Lever Expi res Novenber 13, 2016 [Page 31]

Internet-Draft RFC 5666 | npl enent ati on Experience May 2016

It is not clear whether the authors of RFC 5666 intended the above
requirenent to apply only to the Wite list, or to both the Wite
list and to the Reply chunk, which is not a |ist.

| npl enent ati on experience has shown that setting up an explicit RDVA
operation to nove a few hundred bytes of data is inefficient,
especially if there is no DDP opportunity. Channel operations are
nearly always the best choice when handling a small RPC reply.

0 To reduce nenory registration and invalidation costs, a requester
m ght prefer to provide a Reply chunk only when a reply could be
|arger than the inline threshold. To make that judgenent,
however, a requester nust know the size of the responder’s send
buffers, which mght be smaller than its own receive buffers

o0 Even when a requester has provided a Reply chunk, to reduce round
trip costs, a responder might prefer to RDMA Wite a Reply chunk
only when a reply is actually larger than the inline threshold.
To nake that judgenment, however, the responder nust know the size
of the requester’s receive buffers, which mght be smaller than
its send buffers.

If a requester does not provide a Reply chunk when one is needed, the
responder nust reply with ERR CHUNK (see RFC 5666, Section 4.2). The
requester sinply has to send the request again, this tinme with a
Reply chunk. However ERR CHUNK a generic failure node. The
requester may have some difficulty identifying the problemas a

m ssing Reply chunk

To maintain 100% i nteroperability, a requester should al ways provide
a Reply chunk, and the responder should always use it. However, as
noted, this is likely to be inefficient.

4.3.1. Recomendations
To provide a stronger guarantee of interoperation while ensuring
efficient operation, RFC 5666bis should explicitly specify when a
requester nust offer a Reply chunk, and when the responder nust use
an offered Reply chunk.

Mandating a default buffer size would all ow both sides to choose
correctly with an in-advance CCP exchange.

4.4. Conputing Credit Val ues
The third paragraph of Section 3.3 of RFC 5666 | eaves open the exact

mechani sm of how often the requested and granted credit linits are
supposed to be adjusted. A reader m ght believe that these val ues

Lever Expi res Novenber 13, 2016 [Page 32]

Internet-Draft RFC 5666 | npl enent ati on Experience May 2016

are adj usted whenever an RPC call or reply is received, to reflect
the nunber of posted receive buffers on each side.

Al t hough adjustnents are allowed by RFC 5666 due to changing
availability of resources on either endpoint, current inplenentations
use a fixed value. Advertised credit values are always the sum of
the in-process receive buffers and the ready-to-use receive buffers.

4.4. 1. Recommendat i ons

RFC 5666bi s should clarify the nethod used to cal cul ate these val ues.
RFC 5666bi s m ght al so discuss how flow control is inpacted when a
server endpoint utilizes a shared receive queue.

4.5. Race W ndows
The second paragraph of RFC 5666 Section 3.3 says:

Additionally, for protocol correctness, the RPC server nust always
be able to reply to client requests, whether or not new buffers
have been posted to accept future receives.

It is true that the RPC server nust always be able to reply, and that
therefore the client nust provide an adequate nunber of receive
buffers. The dependent clause "whether or not new buffers have been
posted to accept future receives" is problematic, however.

It’s not clear whether this clause refers to a server |eaving even a
smal | wi ndow where the sum of posted and in-process receive buffers
is less than the credit limt; or refers to a client |eaving a w ndow
where the sum of posted and in-process receive buffers is |less than
its advertised credit limt. |In either case, such a w ndow coul d
result in | ost nessages or be catastrophic for the transport
connecti on.

4.5.1. Recommendati ons

Clarify or renmove the dependent clause in the section in RFC 5666bis
that is equivalent to RFC 5666 Section 3. 3.

4.6. Detection O Unsupported Protocol Versions
Section 4.2 of [RFC5666] is explicit about how a responder nust
handl e RPC-over- RDVMA nmessages that carry an unrecogni zed RPC- over -

RDVA pr ot ocol version

When a peer receives an RPC RDVMA nessage, it MJST performthe
followi ng basic validity checks on the header and chunk contents.

Lever Expi res Novenber 13, 2016 [Page 33]

Internet-Draft RFC 5666 | npl enent ati on Experience May 2016

If such errors are detected in the request, an RDVMA ERRCR reply
MUST be gener at ed.

When the peer detects an RPC-over-RDVA header version that it does
not support (currently this docunent defines only version 1), it
replies with an error code of ERR VERS, and provides the | ow and
hi gh inclusive version nunbers it does, in fact, support. The
versi on nunber in this reply MIST be any val ue otherwi se valid at
the receiver.

However, one wi dely depl oyed RPC-over-RDVA Version One server

i mpl ementation is known to discard requests that do not contain the
val ue one (1) in their rdnma_vers field. This server inplenmentation
does not reply with RDMA ERROR / RDMA ERR VERS in this case

W thout a proper protocol version detection nmechanism it is not
possi bl e for RPC-over-RDVA Version One inplenentations to
interoperate with inplenentations that support newer protoco
versi ons.

4.6.1. Recommendat i ons

RPC- over - RDMA Version One inplenentations that discard non-Version
One requests without an error response are consi dered non-conpli ant
with [RFC5666]. No changes to the specification are needed.

5. Pre-requisites For NFSv4
5.1. Bi-directional Operation

NFSv4. 1 noves the backchannel onto the sane transport as forward
requests [RFC5661]. Typically RPC client endpoints do not expect to
receive RPC call nessages. To support NFSv4.1 cal | back operati ons,
client and server inplenentations nust be updated to support bi-
directional operation

Because of RDMA' s requirenment to pre-post unadvertised receive
buffers, special considerations are needed for bi-directiona
operation. Conventions have been provided to allow bi-direction

with a limt on backchannel nessage size, such that no changes to the
RPC- over - RDMA Ver si on One protocol are needed
[I-D.ietf-nfsv4-rpcrdma-bidirection].

5 1.1. Recommendat i ons

RFC 5666bi s should cite or include the bul k of
[I-D.ietf-nfsvd-rpcrdma-bidirection].

Lever Expi res Novenber 13, 2016 [Page 34]

Internet-Draft RFC 5666 | npl enent ati on Experience May 2016

6. Considerations For Upper Layer Binding Specifications

RFC 5666 requires a Binding specification for any RPC program wanti ng
to use RPC-over-RDVA. The requirenent appears in two separate

pl aces: The fourth paragraph of Section 3.4, and the final paragraph
of Section 3.6. As critical as it is to have a Binding
specification, RFC 5666's text regarding these specifications is
sparse and not easy to find.

6.1. Oganization O Binding Specification Requirenents
Thr oughout RPC 5666, various Binding requirenents appear, such as:

The mapping of wite chunk list entries to procedure argunents
MUST be deternmined for each protocol

A simlar specific requirenent for read list entries is m ssing.

Usual |y these statenments are followed by a reference to the NFS
Bi ndi ng specification [RFC5667]. There is no summary of these
requi renents, however.

Addi tional advice appears in the nmiddle of Section 3.4:

It is NOT RECOMVENDED t hat upper-layer RPC client protoco
specifications omt wite chunk lists for eligible replies,

This requirenent, being in the mddle of a dense paragraph about how
wite lists are forned, is easy for an author of Upper Layer Binding
specifications to miss.

6.1.1. Recommendat i ons

RFC 5666bi s shoul d sunmarize explicit generic requirenents for the
contents of an Upper Layer Binding specification in one separate
section, perhaps in an Appendix. |n particular, nove the third,
fourth and fifth paragraph of RFC 5666 Section 3.4 to this new
section discussing Binding specification requirenents.

6.2. RDMA-Eligibility

Any RPC nmessage that fits in an inline buffer is conveyed via a Send
operation. Any RPC nessage that is too large to fit in an inline
buffer is conveyed by transferring the whol e RPC nessage via an RDVA
Read (i.e., a Position Zero Read chunk) or an RDVA Wite (i.e., a
Reply chunk).

Lever Expi res Novenber 13, 2016 [Page 35]

Internet-Draft RFC 5666 | npl enent ati on Experience May 2016

RPC- over - RDVA al so allows a nmixture of these two nechani sns, where
argunent or result data is removed fromthe XDR stream and conveyed
via a separate RDVA transfer. The receiving end assenbl es the

di sparate buffers into a single XDR streamthat represents the whole
RPC nmessage

RFC 5666 uses the term"RDMA eligibility" to mean that an particul ar
argunent or result object is allowed to be noved as a separate chunk
for the purpose of Direct Data Placenent. The RPC program s Upper
Layer Binding nakes eligibility statements permitting particular RPC
argunent or result objects to be directly placed.

The third paragraph of Section 3.4 states that any XDR object MAY be
RDMVA-eligible in any given nmessage, but that:

Typically, only those opaque and aggregate data types that may
attain substantial size are considered to be eligible.

Any | arge XDR object that can benefit fromDi rect Data Placenent is a
good candi date for being noved in a chunk. Wen data alignnent
matters, or when the NFS stack on either end of the connection does
not need to mani pul ate the transferred data, the Upper Layer Binding
shoul d nmake that object eligible for Direct Data Pl acenent.

Section 3.4 is specifically not discussing | ong messages, where a
whol e RPC nessage is noved via RDMA. Wien an RPC nessage is too
large to fit inline, even after RDVA-eligible argunments or results
are renoved, the nessage is always noved via a |ong nessage. Al
argunents or results in the nmessage are noved via RDMA in this case.

For instance, an NFSv3 READDI R result can be large. However, an NFS
server assenbles this result in place, encoding each section
individually. The NFS client nmust performthe converse actions.
Though there is potentially a | arge anount of data, the benefit of
direct data placenent is |ost because of the need for both host CPUs
to be involved in marshaling and decodi ng.

Thus the NFSv3 Upper Layer Binding [RFC5667] does not make any part

of an NFSv3 READDI R reply RDMA-eligible. However, any NFS READDI R
reply that is larger than an inline buffer is still noved via RDVA (a
Reply chunk, in this case).

6.2.1. Recommendati ons
RFC 5666bi s shoul d define the term "Upper Layer Binding", and explain

what it specifies. RFC 5666bis should explicitly require an Upper
Layer Binding for every RPC programthat may operate on RDVA

Lever Expi res Novenber 13, 2016 [Page 36]

Internet-Draft RFC 5666 | npl enent ati on Experience May 2016
transports. Separate bindings may be required for different versions
of that program

The term "RDVA eligibility" should be retired. 1t is easy to confuse
the use of RDVA for Direct Data Placenent with the use of RDVA in

| ong messages. |Instead, RFC 5666bis should use a nore precise term
such as DDP-eligibility, which should be clearly defined before it is
used.

RFC 5666bi s shoul d provi de generic gui dance about what nakes an XDR
object or data type eligible for Direct Data Placenent. RFC 5666bis
shoul d state that the DDP-eligibility of any XDR object not mentioned
explicitly in an Upper Layer Binding is "not eligible."

RFC 5666bi s should note that Position Zero read chunks and Reply
chunks may contain any and all argunent and results regardl ess of
their DDP-eligibility. RFC 5666bis should renind authors of Upper
Layer Bindings that the Reply chunk and Position Zero read chunks are
expressly not for performance-critical Upper Layer operations.

It is the responsibility of the Upper Layer Binding to specify RDVA-
eligibity rules so that if an RDMA-eligible XDR object is enbedded

wi thin another, only one of these two objects is to be represented by
a chunk. This ensures that the mapping from XDR position to the XDR
obj ect represented i s unanbi guous.

6.3. Inline Threshold Requirenents

An RPC-over- RDVA connection has two connection paraneters that affect
the operation of Upper Layer Protocols: The credit Iimt, which is
how many out standing RPCs are allowed on that connection; and the
inline threshold, which is the maxi mum payl oad size of an RDVMA Send
on that connection. Al ULPs sharing a connection also share the
sane credits and inline threshold val ues.

The inline threshold is set when a connection is established. The
base RPC-over-RDVA protocol does not provide a mechanismfor altering
the inline threshold of a connection once it has been established.

[RFC5667] places normative requirenments on the inline threshold val ue
for a connection. There is no guidance provided on how

i mpl enent ati ons shoul d behave when two ULPs that have different
inline threshold requirenents share the same connection

Further, current NFS inplenentations ignore the inline threshold
requirenents stated in [RFC5667]. It is unlikely that they woul d

i nteroperate successfully with any new i npl enentation that followed
the letter of [RFC5667].

Lever Expi res Novenber 13, 2016 [Page 37]

Internet-Draft RFC 5666 | npl enent ati on Experience May 2016

6.3.1. Recommendati ons

Upper Layer Protocols should be able to operate no matter what inline
threshold is in use.

An Upper Layer Binding night provide informative gui dance about

opti mal values of an inline threshold, but normative requirenments are
difficult to enforce unl ess connection sharing is explicitly not
permtted.

6.4. Violations O Binding Rules

Section 3.4 of RFC 5666 introduces the idea of an Upper Layer Binding
specification to state which Upper Layer operations are allowed to
use explicit RDMA to transfer a bul k payload item

The fifth paragraph of this section states:

The interface by which an upper-1layer inplenmentation conmmunicates
the eligibility of a data itemlocally to RPC for chunking is out
of scope for this specification. |In many inplenentations, it is
possible to inplenent a transparent RPC chunking facility.

I f the Upper Layer on a receiver is not aware of the presence and
operation of an RPC-over-RDMA transport under it, it could be
chal l enging to di scover when a sender has violated an Upper Layer
Bi ndi ng rul e.

If a violation does occur, RFC 5666 does not define an unanbi guous
mechani sm for reporting the violation. The violation of Binding
rules is an Upper Layer Protocol issue, but it is likely that there
i s nothing the Upper Layer can do but reply with the equival ent of
BAD XDR

When an erroneously-constructed reply reaches a requester, there is
no recourse but to drop the reply, and perhaps the transport
connection as well.

6.4.1. Recommendat i ons

Policing DDP-eligibility must be done in co-operation with the Upper
Layer Protocol by its receive endpoint inplenentation

It is the Upper Layer Binding' s responsibility to specify how a
responder nust reply if a requester violates a DDP-eligibilty rule.
The Bi ndi ng specification should provide simlar guidance for
requesters about handling invalid RPC over-RDVA replies.

Lever Expi res Novenber 13, 2016 [Page 38]

Internet-Draft RFC 5666 | npl enent ati on Experience May 2016

6.5. Binding Specification Conpletion Assessnent
RFC 5666 Section 3.4 states:

Typically, only those opaque and aggregate data types that may
attain substantial size are considered to be eligible. However
any object MAY be chosen for chunking in any given nessage.

Chunk eligibility criteria MIST be determ ned by each upper-Iayer
in order to provide for an interoperable specification

Aut hors of Upper Layer Binding specifications shoul d consider each
data type in the Upper Layer’'s XDR definition, in particular conpound
types such as arrays and lists, when restricting what XDR objects are
eligible for Direct Data Pl acenent.

In addition, there are requirenents related to using NFS with RPC
over-RDMA in [RFC5667], and there are some in [RFC5661]. It could be
hel pful to have gui dance about what kind of requirenents belong in an
Upper Layer Binding specification versus what belong in the Upper
Layer Protocol specification

6.5.1. Recommendati ons

RFC 5666bi s shoul d descri be what makes a Bi ndi ng specification
complete (i.e. ready for publication).

7. Uninplenented Protocol Features

There are features of RPC-over-RDVA Version One that remain

uni npl enented in current inplenentations. Sonme are candi dates to be
renoved fromthe protocol because they have proven unnecessary or
were not properly specified.

O her features are uninpl enented, unspecified, or have only one
i mpl ementation (thus interoperability remains unproven). These are
candi dates to be retained and properly specifi ed.

7.1. Uninplemented Features To Be Renoved
7.1.1. Connection Configuration Protoco

No i npl enentati on has seen fit to support the Connection
Configuration Protocol. While a need to exchange pertinent
connection information remains, the preference is to exchange that
information as part of the set up of each connection, rather than as
settings that apply to all connections (and thus all ULPs) between
two peers.

Lever Expi res Novenber 13, 2016 [Page 39]

Internet-Draft RFC 5666 | npl enent ati on Experience May 2016

7.1.1.1. Recommendati ons
CCP shoul d be renoved from RFC 5666bi s.
7.1.2. Read-Read Transfer Mbdel

Al'l existing RPC-over-RDVA Version One inplenentations use a Read-
Wite data transfer nodel. The server endpoint is responsible for
initiating all RDVA data transfers. The Read-Read transfer nodel has
been deprecated, but because it appears in RFC 5666, inplenentations
are still responsible for supporting it. By renoving the

speci fication and di scussi on of Read-Read, the protocol and

speci fication can be nmade sinpler and nore cl ear

Once the Read-Read transfer nodel is no | onger supported, a responder
woul d no | onger be allowed to send a Read list to a requester.
Sending a Read |ist would be needed if a requester has not provided
enough nmenory space in the formof a Reply chunk or Wite list to
receive a large RPC Reply.

There is currently no nmechanismin the RPC over-RDVA Version One
protocol for a responder to indicate that inadequate reply buffer
resources were provided by a requester. Therefore, requesters should
be fully responsible for providing all necessary nmenory resources to
receive each RPC reply, including a properly populated Wite |ist
and/ or a Reply chunk.

7.1.2.1. Recommendati ons

Renmove Read- Read from RFC 5666bis, in particular fromits equival ent
of RFC 5666 Section 3.8. RFC 5666bis should require inplenentations
not to send RDVA DONE;, an inplenmentation receiving it should ignore
it. The XDR definition should reserve RDMA DONE. RFC 5666bi s shoul d
explicitly state requirenents for requesters to allocate and prepare
reply buffer resources for each RPC-over- RDVA nessage.

7.1.3. RDVA_MBGP

It has been observed that the current specification of RDMA MSGP is
not clear enough to result in interoperable inplenentations.

Possibly as a result, current receive endpoints do recogni ze and
process RDVA MSGP nessages, though they do not take advantage of the
passed alignnent paranmeters. Receivers treat RDVMA MSGP nessages |ike
RDVA_MSG nessages.

Currently senders do not use RDVA MSGP nessages. RDMA MSGP depends
on bul k payl oad occurring at the end of RPC nessages, which is often

Lever Expi res Novenber 13, 2016 [Page 40]

Internet-Draft RFC 5666 | npl enent ati on Experience May 2016

not true of NFSv4 COVPOUND requests. Mst NFSv3 requests are snall
enough not to need RDVA MSGP

To be effective, RDVMA MSGP depends on getting alignnent preferences
in advance via CCP. There are no CCP inplenentations to date.
Wthout CCP, there is no way for peers to discover a receiver
endpoint’s preferred alignnent parameters, unless the inplenmentation
provi des an administrative interface for specifying a renote’s

al i gnment paraneters. RDMA MSGP is useless wthout that know edge

7.1.3.1. Recommendati ons

To mai ntain backward-conpatibility, RDMA MSGP nust remain in the
protocol. RFC 5666bis should require inplenmentations to not send
RDVA_ MSGP nessages. |If an RDMA MSGP nessage i s seen by a receiver
it should ignore the alignnment paraneters and treat RDVA NMSGP
messages as RDVA MSG nmessages. The XDR definition should reserve
RDVA_VBGP.

7.2. Uninplemented Features To Be Retained
7.2.1. RDVA _ERROR Type Messages

Server inplenentations the author is famliar with can send
RDVA_ERROR type nessages, but only when an RPC-over- RDVA version

m smat ch occurs. There is no facility to return the ERR CHUNK error.
These inpl enentations treat unrecogni zed nmessage types and ot her
parsing errors as an RDVA MSG type nessage. Cbviously this behavior
does not conply with RFC 5666, but it is also recognized that this
behavior is not an inprovenent over the specification

7.2.1.1. Recommendat i ons

RFC 5666bi s shoul d provi de stronger gui dance for error checking, and
in particular, when a connection nust be broken

| mpl enent ati ons that do not adequately check incom ng RPC- over- RDVA
headers must be updat ed.

7.2.2. RPCSEC_GSS On RPC-over - RDVA
The second paragraph of RFC 5666 Section 11 says:
For efficiency, a nore appropriate security nechani smfor RDVA
links may be link-Ievel protection, such as certain configurations
of I Psec, which may be co-located in the RDVA hardware. The use

of link-level protection MAY be negotiated through the use of the
new RPCSEC_GSS nechani sm defined in [RFC5403] in conjunction with

Lever Expi res Novenber 13, 2016 [Page 41]

Internet-Draft RFC 5666 | npl enent ati on Experience May 2016

t he Channel Bi ndi ng mechani sm [RFC5056] and | Psec Channe
Connection Latching [RFC5660]. Use of such mechani snms i s REQU RED
where integrity and/or privacy is desired, and where efficiency is
required.

However, consi der

0o As of this witing, no inplenmentation of RPCSEC GSS v2 Channe
Bi ndi ng or Connection Latching exist. Thus, though it is
sensible, this part of RFC 5666 has never been inpl enent ed.

o Not all fabrics and RNICs support a |link-layer protection
mechani smthat includes a privacy service

o0 When nultiple users access a storage service fromthe sanme client,
it is appropriate to deploy a nessage authentication service
concurrently with link-1ayer protection

Therefore, despite its performance inpact, RPCSEC GSS can add
i mportant function to RPC- over- RDVA depl oynment s

Currently there is an InfiniBand-only client and server

i mpl ement ati on of RPCSEC GSS on RPC-over-RDVA that supports the

aut hentication, integrity, and privacy services. This pair of

i mpl emrent ati ons was created w thout the benefit of normative gui dance
fromRFC 5666. This client and server pair interoperates with each
other, but there are no independent inplenmentations to test wth.

RPC- over - RDMA requesters are responsi ble for providing adequate reply
resources to responders. These resources require special treatnent
when an integrity or privacy service is in use. Direct data

pl acenent cannot be used with software integrity checking or
encryption. Thus standards guidance is inperative to ensure that

i ndependent RPCSEC GSS i npl enentati ons can interoperate on RPC over-
RDVA transports.

7.2.2.1. Recommendati ons

RFC 5666bi s should continue to require the use of link |ayer
protection when facilities are available to support it.

At the least, RPCSEC GSS per-nessage authentiction is valuable, even
if link layer protection is in use. |Integrity and privacy should

al so be made avail able even if they do not performwell, because
there is no link |ayer protection for sone fabrics.

Lever Expi res Novenber 13, 2016 [Page 42]

Internet-Draft RFC 5666 | npl enent ati on Experience May 2016

10.

Theref ore, RFC 5666bi s should provide a specification for RPCSEC GSS
on RPC-over-RDMA, codifying the one existing inplenentation so that
others may interoperate with it.

Security Considerations

To enabl e RDMA Read and Wite operations, an RPC-over-RDVA Version
One requester exposes sone or all of its menory to other hosts. RFC
5666bi s shoul d suggest best inplenmentation practices to mnimze
exposure to careless or potentially malicious inplenentations that
share the sane fabric. |Inportant considerations include:

0 The use of Protection Domains to limt the exposure of nenory
regions to a single connection is critical. Any attenpt by a host
not participating in that connection to re-use R keys will result
in a connection failure. Because ULP security relies on this
behavi or of Reliable Connections, strong authentication of the
renmote i s recomended.

0 Unpredictable R keys should be used for any operation requiring
advertised nmenory regions. Advertising a continuously registered
menory region allows a renote host to read or wite its contents
even when an RPC involving that nenory is not under way.
Therefore this practice should be avoi ded.

0 Advertised nenory regions should be invalidated as soon as rel ated
RPC operations are conplete. Invalidation and DVMA unmappi ng of
regi ons should be conplete before an RPC application is allowed to
continue execution and use the contents of a nenory region

| ANA Consi derati ons
Thi s docunment does not require actions by | ANA

Appendi x A: XDR Language Description

Revi sed XDR definition of RPC over-RDVA Version One. The origina
definition is in Section 4.3 of RFC 5666

The XDR stream position of the fields and their use are not altered
by this revision. The significant changes are:

1. Copyright boilerplate has been provided

2. The structure, field, and enum nanes have been nmade consi stent
with ot her standard XDR definitions

Lever Expi res Novenber 13, 2016 [Page 43]

Internet-Draft RFC 5666 | npl enent ati on Experience May 2016

3. The xdr_read_chunk structure is now called an
rpcrdmal_read_segnent because that structure functions the sane
way that an rpcrdmal_segnent elenent in a Wite chunk array does

4. Duplicate definitions of the chunk list fields have been renoved

5. As the Read-Read transfer nodel is deprecated, RDMA DONE i s now a
reserved val ue

6. As RDVA MSGP nessages are deprecated, RDVA MSGP is now a reserved
val ue

Code conponents extracted fromthis document rust include the
followi ng license

<CODE BEG NS>

/
Copyright (c) 2010, 2015 | ETF Trust and the persons
identified as authors of the code. All rights reserved.

The aut hors of the code are:
B. Callaghan, T. Tal pey, and C. Lever

Redi stribution and use in source and binary fornms, with
or without nodification, are permtted provided that the
followi ng conditions are net:

- Redistributions of source code nust retain the above
copyright notice, this list of conditions and the
foll owi ng di scl ai ner.

- Redistributions in binary form nust reproduce the above
copyright notice, this list of conditions and the
foll owi ng disclainmer in the docunentati on and/or other
materials provided with the distribution

- Neither the name of Internet Society, |ETF or |ETF
Trust, nor the names of specific contributors, may be
used to endorse or pronote products derived fromthis
software wi thout specific prior witten perm ssion

THI' S SOFTWARE | S PROVI DED BY THE COPYRI GHT HOLDERS
AND CONTRI BUTORS "AS |'S" AND ANY EXPRESS OR | MPLI ED
WARRANTI ES, | NCLUDI NG BUT NOT LIMTED TO, THE

| MPLI ED WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS
FOR A PARTI CULAR PURPOSE ARE DI SCLAI MED. | N NO
EVENT SHALL THE COPYRI GHT OWNER OR CONTRI BUTORS BE

LR S . . T T R R S S R N N N

Lever Expi res Novenber 13, 2016 [Page 44]

I nt er net

L S T T R I R

~

72}
—

-Draft RFC 5666 | npl enent ati on Experience

LI ABLE FOR ANY DI RECT, | NDI RECT, | NCI DENTAL, SPECI AL
EXEMPLARY, OR CONSEQUENTI AL DAMAGES (| NCLUDI NG, BUT
NOT LIM TED TGO, PROCUREMENT OF SUBSTI TUTE GOODS OR
SERVI CES; LCSS OF USE, DATA, OR PROFITS; OR BUSI NESS
| NTERRUPTI ON) HOWEVER CAUSED AND ON ANY THEORY OF

LI ABI LI TY, WHETHER | N CONTRACT, STRICT LI ABILITY,

OR TORT (1 NCLUDI NG NEGLI GENCE OR OTHERW SE) ARI SI NG
IN ANY WAY OQUT OF THE USE OF TH S SOFTWARE, EVEN I F
ADVI SED OF THE PGSSI BI LI TY OF SUCH DAMAGE

ruct rpcrdmal_segnent {
ui nt 32 rdma_handl e;
ui nt 32 rdma_| engt h;
ui nt 64 rdna_of f set;

ruct rpcrdmal _read segnent {
ui nt 32 rdme_posi tion;
struct rpcrdmal_segnent rdme_target;

ruct rpcrdnmal _read list {
struct rpcrdmal_read segnent rdrme_entry;
struct rpcrdmal_read_li st *rdma_next;

ruct rpcrdmal wite chunk {
struct rpcrdmal_segnent rdne_target <>

ruct rpcrdmal wite_ list {
struct rpcrdmal_wite_chunk rdma_entry;
struct rpcrdmal wite |list *rdma_next;

b
struct rpcrdmal_nsg {
ui nt 32 rdma_xi d;
ui nt 32 rdma_vers
ui nt 32 rdma_credit;
rpcrdmal_body rdma_body;
b
enum rpcrdmal_proc {
RDVA MSG = 0
RDVA_NOVBG = 1,
RDVA MBGP , I|* Reserved */

Lever

2
RDVA DONE = 3, /* Reserved */

Expi res Novenber 13, 2016

May 2016

[Page 45]

Internet-Draft RFC 5666 | npl enent ati on Experience May 2016

RDVA_ERROR = 4
b

struct rpcrdmal _chunks {
struct rpcrdnal_read |i st *rdma_reads;
struct rpcrdmal wite list *rdma_wites;
struct rpcrdmal_wite_chunk *rdma_reply;

H

enum rpcrdnmal_errcode {
RDVMA_ERR VERS = 1,
RDMA ERR CHUNK = 2
b

union rpcrdmal_error switch (rpcrdmal_errcode err) {
case RDVA_ERR VERS:
uint32 rdma_vers_| ow,
ui nt 32 rdma_ver s_hi gh;
case RDMA_ERR CHUNK:
voi d;

H

uni on rdma_body switch (rpcrdmal_proc proc) {
case RDVA _MSG
case RDMA_NOVBG
rpcrdmal_chunks rdma_chunks;
case RDVA MSGP:
ui nt 32 rdma_al i gn;
ui nt 32 rdma_t hresh;
rpcrdmal_chunks rdma_achunks;
case RDMA_DONE:
voi d;
case RDVA ERROR
rpcrdmal_error rdma_error;

b
<CCDE ENDS>
11. Appendi x B: Bindi ng Requirement Sunmary
Thi s appendi x coll ects the known generic Binding Requirenents from
RFC 5666 and this docunent. This night not be an exhaustive list.
Note that RFC 5666 uses RFC 2119-style ternms to specify binding

requi renents, even though the requirenment statements apply to
protocol specifications rather than to a particul ar protocol.

Lever Expi res Novenber 13, 2016 [Page 46]

Internet-Draft RFC 5666 | npl enent ati on Experience May 2016

10.

Lever

"Chunk eligibility criteria MIST be determ ned by each upper-
layer in order to provide for an interoperable specification.”
(RFC 5666 Section 3.4)

More specifically, an Upper Layer Binding is required for every
RPC programinterested in using RPC over-RDVA. Separate
bi ndi ngs may be required for different versions of that program

Upper Layer Bindings nake DDP-eligibility statenments about
specific argunents and results (or portions thereof which stil
are whol e XDR objects). A chunk nust contain only one whol e XDR
obj ect.

DDP-eligibility of any XDR object not mentioned explicitly in an
Upper Layer Binding is "not eligible.”

Any XDR object nmay appear in a Position Zero read chunk or a
Reply chunk regardl ess of its DDP-eligibility.

An Upper Layer Binding may limt the nunber of unique read chunk
Positions allowed for a particul ar operation. An Upper Layer
Binding may limt the nunber of chunks in a Wite list allowed
for a particular operation.

An Upper Layer Binding nust take care not to allow abuses of the
Position Zero read chunk to avoid DDP-eligibility restrictions.

"I't is NOT RECOMVENDED that upper-layer RPC client protoco
specifications omit wite chunk lists for eligible replies, due
to the |l ower perfornmance of the additional handshaking to
performdata transfer, and the requirenent that the RPC server
must expose (and preserve) the reply data for a period of time."
(RFC 5666 Section 3.4)

"The mapping of wite chunk Iist entries to procedure argunents
MUST be determ ned for each protocol." (RFC 5666 Section 3.6)

More specifically: by default, the requester provides as many
Wite chunks as the Upper Layer Binding allows for the
particul ar operation. The responder fills in each Wite chunk
with an RDMA-eligible result until the Wite list is exhausted
or there are no nore RDMA-eligible results. If this default
behavi or | eads to anbi guity when the requester re-assenbles the
XDR stream the Binding nmust explain howto resolve the
anbiguity, or restrict DDP-eligibility to ensure confusion
cannot occur.

Expi res Novenber 13, 2016 [Page 47]

Internet-Draft RFC 5666 | npl enent ati on Experience May 2016

12.

13.

13.

11. It is the responsibility of the Upper Layer Binding to specify
DDP-eligibity rules so that if an DDP-eligible XDR object is
enbedded wi thin another, only one of these two objects is to be
represented by a chunk.

12. The Upper Layer Binding nust specify how a responder shoul d
reply if a requester violates a DDP-eligibilty rule. The
Bi ndi ng specification should provide guidance for requesters
about handling invalid RPC over-RDVA replies.

Acknowl edgenent s

The aut hor gratefully acknow edges the contributions of Dai Ngo,
Karen Deitke, Chunli Zhang, Mahesh Siddheshwar, Doni ni que Marti net,
and W1 Iiam Si npson.

The aut hor al so wi shes to thank Dave Noveck and Bill Baker for their
support of this work. Special thanks go to nfsv4 Wirking Goup Chair
Spencer Shepl er and nfsv4 Wrking G oup Secretary Tom Haynes for
their support.

Ref er ences
1. Nornmtive References

[RFCO793] Postel, J., "Transmi ssion Control Protocol", STD 7, RFC
793, DA 10.17487/ RFCO793, Septenber 1981,
<http://ww.rfc-editor.org/info/rfc793>.

[RFC1813] Call aghan, B., Pawl owski, B., and P. Staubach, "NFS
Version 3 Protocol Specification", RFC 1813, DO 10.17487/
RFC1813, June 1995,
<http://ww. rfc-editor.org/info/rfcl813>.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Level s, BCP 14, RFC 2119, DA 10.17487/
RFC2119, March 1997,
<http://ww. rfc-editor.org/info/rfc2119>.

[RFCA506] Eisler, M, Ed., "XDR External Data Representation
Standard", STD 67, RFC 4506, DO 10.17487/ RFCA506, May
2006, <http://ww. rfc-editor.org/info/rfc4506>.

[RFC5040] Recio, R, Metzler, B., Culley, P., Hlland, J., and D
Garcia, "A Renote Direct Menory Access Protocol
Speci fication", RFC 5040, DO 10.17487/ RFC5040, Cctober
2007, <http://ww.rfc-editor.org/info/rfc5040>.

Lever Expi res Novenber 13, 2016 [Page 48]

Internet-Draft RFC 5666 | npl enent ati on Experience May 2016

[RFC5041] sShah, H., Pinkerton, J., Recio, R, and P. Culley, "D rect
Data Pl acenent over Reliable Transports", RFC 5041, DO
10. 17487/ RFC5041, Cctober 2007,
<http://ww.rfc-editor.org/info/rfc5041>.

[RFC5056] W lliams, N, "On the Use of Channel Bindings to Secure
Channel s", RFC 5056, DO 10.17487/ RFC5056, Novenber 2007,
<http://ww. rfc-editor.org/info/rfc5056>.

[RFC5403] Eisler, M, "RPCSEC_GSS Version 2", RFC 5403, DO
10. 17487/ RFC5403, February 2009,
<http://wwmv rfc-editor.org/info/rfc5403>.

[RFC5531] Thurlow, R, "RPC. Renote Procedure Call Protocol
Speci fication Version 2", RFC 5531, DO 10.17487/ RFC5531,
May 2009, <http://ww.rfc-editor.org/info/rfc5531>.

[RFC5660] W lliams, N., "IPsec Channels: Connection Latching", RFC
5660, DO 10. 17487/ RFC5660, Cctober 2009,
<http://ww. rfc-editor.org/info/rfc5660>.

[RFC5661] Shepler, S., Ed., Eisler, M, Ed., and D. Noveck, Ed.,
"Network File System (NFS) Version 4 Mnor Version 1
Protocol ", RFC 5661, DO 10.17487/ RFC5661, January 2010,
<http://wwv. rfc-editor.org/info/rfc5661>.

[RFC5666] Tal pey, T. and B. Callaghan, "Renote Direct Menory Access
Transport for Renote Procedure Call", RFC 5666, DO
10. 17487/ RFC5666, January 2010,
<http://wwmv. rfc-editor.org/info/rfc5666>.

[RFC5667] Tal pey, T. and B. Callaghan, "Network File System (NFS)
Direct Data Placenment", RFC 5667, DA 10.17487/ RFC5667,
January 2010, <http://ww.rfc-editor.org/info/rfc5667>.

13.2. Informative References
[I-D.ietf-nfsv4-rpcrdma-bidirection]
Lever, C., "Size-Limted Bi-directional Renote Procedure
Call On Renote Direct Menory Access Transports", draft-
i etf-nfsv4-rpcrdnma-bidirection-01 (work in progress),
Sept enber 2015.

Aut hor’' s Address

Lever Expi res Novenber 13, 2016 [Page 49]

Internet-Draft RFC 5666 | npl enent ati on Experience May 2016

Charl es Lever

Oracl e Corporation
1015 G anger Avenue
Ann Arbor, M 48104
us

Phone: +1 734 274 2396
Emai | : chuck. | ever @r acl e. com

Lever Expi res Novenber 13, 2016 [Page 50]

