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1. An Introduction to Glide

The 3Dfx Interactive family of graphics accelerators enables personal computers and low cost video
game platforms to host true 3D entertainment applications. Optimized for real-time texture-mapped 3D
images, the graphics subsystem provides acceleration for advanced 3D features including true-
perspective texture mapping with trilinear mipmapping and lighting, detail and projected texture
mapping, texture anti-aliasing, and high precision subpixel correction. In addition, it supports genera
purpose 3D pixe processing functions, including triangle-based Gouraud shading, depth buffering,
alpha blending, and dithering.

The Glide Rasterization Library is a set of low level rendering functions that serve as a software
“micro-layer” to the graphics hardware, including the 3Dfx Interactive Texelfx ™ and the Pixelfx™
special purpose chips. Glide permits easy and efficient implementation of 3D rendering libraries,
games, and drivers.

Why Glide?
Glide serves three primary purposes.

It relieves programmers from hardware specific issues such as timing, maintaining register
shadows, and working with hard-coded register constants and offsets.

It defines an abstraction of the graphics hardware to facilitate ease of software porting.

It acts as adelivery vehicle for sample source code providing in-depth hardware-specific
optimizations for the graphics hardware.

By abstracting the low level details of interfacing with the graphics hardware into a set of C-callable
functions, Glide allows developers to avoid working with hardware registers and memory directly,
enabling faster development and lower probability of bugs. Glide aso handles mundane and error
prone chores such as initialization and shutdown.

Glide 2.x was designed for up to about 1 million triangles per second. Glide 3.0 is designed for the
next order of magnitude: 1-10 million triangles per second. With the addition of vertex arrays, only one
call need be made to draw a group of triangles. Tight inner loops, command packets, full triangle
setup, and packed RGBA al contribute to being able to transfer and process millions of triangles per
second.

Performance is one of Glide' stop priorities. When decisions are made, performance is always one of
the criteria taken into account, and is aways an important criteria. The god for Glide isto do aslittle
aspossible - it isavery thin API layer above the hardware. One rule of thumb is that Glide should
impose no more than 5% to 10% overhead on an application when compared to what the application
could do if it wrote hardware registers directly.

Copyright © 1995- 1998 3Dfx Interactive, Inc. 1
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Glideis but one part of the 3Dfx Interactive Software Developer’s Kit (SDK), which is designed to
assist developersin creating tools and titles that are optimized for the graphics hardware. The SDK
also includes the Texture Utility Software (TexUS™).

The Glide Utility Library contains utility routines that create fog tables, extensions that do significant
pre-processing before calling Glide routines to access the graphics system, and obsolete routines that
are provided for interim compatibility as Glide devel opment continues.

VVoodoo

The 3Dfx graphics accelerator subsystem, which may be called Voodoo Graphics, Voodoo Rush, or
Voodoo?, depending on it’s age and functionality, sits on the PCI system bus of the host computer. The
entry-level system configuration consists of two 3Dfx Interactive proprietary ASICs, Texelfx and
Pixelfx, and memory. Figure 1.1 shows the entry level configuration as well as several waysto expand
the system and enhance graphics performance. Increasing the number of Texelfx ASICs decreases the
number of passes required to perform various texture mapping techniques. Systems with more than one
3Dfx Interactive graphics subsystem can utilize scanline interleaving to achieve the highest possible
rendering performance.

Glide and the 3Dfx Interactive graphics hardware supports arich set of rendering techniques,
including:

Gouraud shading. The programmer providesinitia red, green, blue, and apha values for each
vertex. Glide calculates the associated gradients and the hardware automatically iterates the color
across the defined triangle.

Texture mapping. The programmer provides initia texture values s'w, t/w, and 1/w for each vertex
and Glide computes the gradients. The hardware performs the proper iteration and perspective
correction for true-perspective texture mapping. During each iteration of row/column walking, a
divison is performed by 1/w to correct for perspective distortion.

Texture mapping with lighting. Texture-mapped rendering can be combined with Gouraud shading
to introduce lighting effects during the texture mapping process. The programmer suppliesinitial
color and texture values, Glide calculates the appropriate gradients, and the hardware performs the
proper calculations to implement the lighting models and texture lookups. A texel is either
modulated (multiplied by), added, or blended to the Gouraud shaded color. The selection of color
modulation or addition is programmable.

Texture space decompression. Texture map compression uses a patent-pending “ narrow channel”
Y AB compression scheme that maps 24-bit RGB values to an 8-bit YAB format with little lossin
precision.

Depth buffering. 3Dfx Interactive graphics accelerators support hardware-accelerated, depth-
buffered rendering with no performance penalty. The depth buffer is implemented in frame buffer
memory: 2 Mbyte systems can utilize a 640x480 double buffered display buffer and a 16-hit z
buffer. To eliminate many of the z aliasing problems typically encountered with 16-bit z buffer
systems, the graphics subsystem allows a floating point representation of the 1/w parameter to be
used as the depth component.

2 Copyright O 1995- 1998 3Dfx Interactive,
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Figure 1.1 System configurations.

The Pixelfx chip interfaces with the host computer, the linear frame buffer, and the display monitor. It
implements basic 3D primitives including Gouraud shading, alpha blending, depth buffering, dithering, and

fog. The TMU (located on the Texelfx chip) implements true-per spective, detail, and projected texture
mapping, bilinear and trilinear filtering, and level-of-detail mipmapping.

(@ The basic configuration has one Pixelfx chip and one TMU. The advanced texture mapping techniques of detail

texture mapping, projected texture mapping, and trilinear texture filtering are two-pass operations, but thereis no
performance penalty for point-sampled or bilinear-filtered texture mapping with mipmapping.

(b) Atwo TMU configuration allows single pass detail texture mapping, projected texture mapping, or trilinear filtering.

(c) Three TMUs can be chained together to provide single pass rendering of all supported advanced texture mapping

features, including projected texture mapping.

(d) For the highest possible rendering performance, multiple 3Dfx Interactive graphics accelerator subsystems can be

chained together utilizing scanline interleaving to effectively double the rendering rate of a single subsystem.
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Pixel blending. The hardware supports alpha blending functions that blend incoming source pixels
with current destination pixels with no performance penaty. Alpha buffering is supported, but it is
mutually exclusive with depth buffering and triple buffering. Note that alpha buffering is required
only if destination aphais used in alpha blending; apha blending modes that do not use destination
alpha can be used with depth buffering and triple buffering.

Fog. The 3Dfx Interactive graphics accelerator subsystem supports a 64-entry lookup table to
support atmospheric effects such as fog and haze. When enabled, a 14-hit floating point
representation of 1/wis used to index into the 64-entry lookup table and interpol ate between
entries. The output of the lookup table is a value that represents the level of blending to be
performed between a reference fog color and the incoming pixel.

Chroma-keying. 3Dfx Interactive graphics accelerator supports a chroma-key operation used for
transparent object effects. When enabled, an outgoing pixd is compared with the chroma-key
register. If amatch is detected, the outgoing pixel isinvalidated in the pixel pipeline, and the frame
buffer is not updated.

Color dithering. Numeric operations are performed on 24-bit colors within the graphics
subsystem. However, the final stage of the pixel pipeline dithers the color from 24 bits to 16 bits
before storing it in the display buffer. The 16-bit color dithering alows for the generation of photo-
realistic images without the additional cost of atrue color frame buffer storage area.

The Rendering Engine

The graphics hardware has a very flexible lighting and texture mapping pipeline to support al of the
features described above. Glide abstracts it into three distinct units: the texture combine unit, the color
and alpha combine units, and the special effects unit. The basic architecture isillustrated in Figure 1.2.

4
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Figure 1.2 The pixel pipeline.

The rendering engine is structured as a pipeline through which each pixel drawn to the screen must pass. The
individual stages of the pixel pipeline modify or invalidate individual pixels based on mode settings. The input
to the pixel pipeline can come from one of four sources: a texture value, an iterated RGBA value, a constant
RGBA value, or data for a frame buffer write. Pixels that pass the chroma-key test go to the color combine
unit where a user-specified lighting function is applied. The special effects unit further modifies the pixel with
alpha and depth testing, fog, and alpha blending operations. The final 24-bit color value is then dithered to
16 bits and written to the frame buffer.
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About This Manual

The Glide Programming Guide attempits to introduce a knowledgeable graphics programmer to the
capabilities of the hardware through the Glide interface. The subroutines are introduced in alogical
progression: initialization and termination requirements are first, then simple rendering capabilities,
followed by more and more complex functions. The audience for this manual is the application
programmer who just took delivery on 3Dfx Interactive graphics accelerator and wants to port existing
applications or develop new applications in Glide. The experienced Glide programmer will use the
Glide Reference Manual to research specific Glide functions, but will reach for this manua when
trying out new features.
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Chapter 2, Glide in Style, describes data types, data formats, and the programming model used in
Glide and the graphics subsystem.

Chapter 3, Getting Started, describes the display buffers and the initiaization and termination
requirements for Glide and the graphics hardware. It aso includes a very smple but complete program
that clears the screen.

Chapter 4, Rendering Primitives, describes the functions that draw points, lines, triangles, and convex
polygons in both aliased and anti-aliased forms. In addition, clipping and backface culling are
discussed.

Chapter 5, Color and Lighting, describes the functions that control the color and alpha combine unit,
which can produce effects that run the gamut from ssimple Gouraud shading to diffuse ambient lighting
with specular highlights and other complex lighting models.

Chapter 6, Using the Alpha Component, describes the various ways to utilize the alpha channel: alpha
blending, apha buffering, and apha testing.

Chapter 7, Depth Buffering, presents two techniques for depth buffering.

Chapter 8, Special Effects, describes other special rendering effects that can be produced in the pixel
pipeline: atmospheric effects like fog, haze, and smoke; multi-pass alpha-blended fog; transparent
objects implemented with chroma-keying; and alpha masking.

Chapter 9, Texture Mapping, describes the texture pipeline and texture mapping while Chapter 10,
Managing Texture Memory, describes the process of downloading textures into texture memory.

Chapter 11, Accessing the Linear Frame Buffer, describes the Glide functions that provide a path
for reading and writing the frame buffer directly.

Chapter 12, Housekeeping Routines, and Chapter 13, Glide Extensions, describes the routinesin Glide
and the Glide Utilities Library that haven't been discussed already.

Chapter 14, Programming Tips and Techniques, give some hints about how to head off trouble and get
the best performance from your 3Dfx Interactive graphics accelerator.

The Glide Programming Guide concludes with two appendices, one containing a non-trivial example,
and the other summarizing the Glide constants used to set state variables. Thereis also a Glossary of
frequently used terms and a comprehensive Index.

6 Copyright O 1995- 1998 3Dfx Interactive,
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2. Glidein Style

In this Chapter

You will learn about:
V¥ the naming conventions for functions, types, and constants.

V¥ the notationa conventions that designate functions, types, variables, parameters, and constantsin
this manual.

V¥ the state machine model that Glide uses to minimize bandwidth to the hardware and increase
graphics performance.

V¥ the functions that save and restore Glide state.

<

the functions that establish aformat for vertex information.

V¥ the congtraints and properties of numerical data representing geometric, color, and texture
coordinates.

Naming and Notational Conventions

Functions are divided into families consisting of routines related in their duties. All Glide functions are
prefixed with gr; al Glide Utility functions use gu as the prefix. The Glide prefix isimmediately
followed by the family name, for example gr DrawTriangle() and gr DrawL ine() are both members of
the gr Draw family. Glide uses the mixed caps convention for function names. When function names
appear in the text of this manual, they are shown in bold face type. Actual function names end with
‘()’; function family names do not.

The internal name for the graphics subsystem is“ SST”. Some function names, type definitions, and
congtants within Glide reflect thisinternal name, which is easier to type than Voodoo Graphics, Voodoo
Rush, or Voodoo®. For example, gr SstWinOpen() initializes the hardware.

Constants are named values that are defined in gl i de.h. The names of constants use al uppercase
letters, asin MAX_NUM SST and GR_TEXTUREFI LTER Bl LI NEAR and are shown in Couri er font when
they appear in the text of this manual.

C specifications for functions and data types are displayed in shaded rectangles throughout this
manual. Glide type definitions are shown in Helvetica type to distinguish them from the C keywords and
primitive types. Glide makes use of enumerated types for function arguments in order to restrict them
to the defined set of values. Enumerated types end with _t, as in GrColorFormat_t.

Glide variable names and function arguments are italicized in both the C specifications and the text.

Code segments use Couri er font.

Copyright © 1995- 1998 3Dfx Interactive, Inc. 9
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The State Machine M od€l

Glide is state based: rendering “modes’ can be set once and then remain in effect until reset. Parameter
values like areference value for depth comparisons and a specific depth test are set once and are used
whenever depth testing is enabled (until they are given new values). The state machine model alows
users to set modes and reference values only when they change, minimizing the host-to-hardware
transfers.

For example, one of the state variables Glide maintainsis the “current mipmap”, used during texture
mapping. A mipmap is a collection of hierarchically defined texture maps that are loaded into the
texture memory that supports the TMUSs. A stateless model would not retain information about the
contents of the texture memory, so each rendering operation would have to include a texture memory
address.

Sending redundant state information can lead to noticeable performance degradation. For example, if a
system is attempting to render 200,000 triangles per second and the “current mipmap” is sent as a 4-
byte address, bandwidth associated with updating this single state variable can amount to 800K B/sec.
Compound thiswith al of the other state information necessary and the amount of unnecessary data
sent across the system bus can become overwhelming.

Two library functions are used to save and restore state. Use grGet(GR_GLI DE_STATE_SI ZE, ..) to
determine the size of the buffer in which the state will be saved (see Chapter 13).

void gr GlideGet State(void * state )
void gr GlideSetState( const void * state )

orGlideGetState() makes a copy of the current state of Glide in a buffer, state, provided by the user.
The saved state can be restored at some later time with gr GlideSetState(). These routines save and
restore al Glide state, and therefore are expensive to use. If only a small subset of Glide state needsto
be saved and restored, these routines should not be used.

Coordinate Spaces

Glide 3.0 supports two different coordinate spaces: native hardware device coordinates (the only option
in previous versions of Glide), or clip coordinates. The choice is made with the gr Coor dinateSpace()
command.

void gr Coor dinateSpace( GrCoordinateSpaceMode_t mode)

The argument, mode, is either GR_CLI P_COORDS or GR_W NDOW COORDS. Window coordinates are
relative to the origin of the window. Clip coordinates are relative to a viewport defined with the new
command grViewport().

void grViewport( FxI32 x, FxI32 Yy, FxI32 width, FxI32 height )

grViewport() specifies the viewport transformation. The current gr SstOrigin() setting determines
whether x and y specify the upper left corner or the lower left corner. Negative width and height are
alowed and mirror the image about the x or y axis. If (Xaip/W, Yaip/W) represent normalized device
coordinates, then the window coordinates (Xyin, Ywin) &€ computed as:

Xoin = (Xeip/WAL)(Width/2) + x and Y = (Yei/w+1)(height/2) + y

10 Copyright O 1995- 1998 3Dfx Interactive,
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When using clip coordinates, the gr DepthRange() command specifies the viewport parameters for the
depth component.

void gr DepthRange( FxFloat near, FxFloat far )

If zbuffering, clip-space zisin the range [-w..+w]. After division by w, zisin therange[-1..1] whichis
mapped to the depth buffer according to [near.. far], where [near=0.. far=1] represents the entire range
of the depth buffer. gr DepthRange() isignored unless clip coordinates are being used and z buffering is
enabled.

Choosing a Coor dinate Space

When window coordinates are used, the application performs the coordinate divisions by w, providing
xiw, yiw, ziw, 1w, sw, t/w, and g/w as necessary in the vertex structure (only x/w and y/w are
mandatory). Window coordinates may be less than optimal on future hardware that can perform
perspective division and viewport transformations.

When clip coordinates are used, the division by wis performed automatically. The minimal vertex
specifies x, y, and w. If z buffering is enabled, z should be in the range [- w..+w]; otherwise, z data need
not be given. Glide will automatically compute x/w, y/w, z/w, and L/w, perform vertex snapping on the
results, and then apply the viewport transformation to get window coordinates. Texture coordinates s
andt arein therange [0..1] for all texture sizes and aspect ratios. Glide automatically computes s/w,
t/w, and g/w.

Clip space coordinates are recommended for al new applications. It islikely that future hardware will
perform the viewport transformation and depth range computations to further off-load the CPU.

[} Window coordinate space was the only available option in previous releases of Glide. The
w component should be ported to Glide 3.0 vertices as GR_PARAM Qand stored as 1/w.
All %, y, s, and t components should be multiplied by L/w, asin Glide 2.x.

The GR_PARAM Qvalue is used when using fog mode GR_FOG W TH_TABLE_ON_Q
(formerly GR_FOG W TH_TABLE and GR_FOG W TH_TABLE_ON_ W and when w
buffering (which should properly be renamed to q buffering, but won't be).

PORTING
NOTE

Specifying Vertices

The 3Dfx Interactive graphics accelerator is arendering engine. The user configures the texture and
pixel pipelines (see Figure 1.2) and then sends streams of vertices representing points, lines, triangles,
and convex polygons. (In fact, the hardware renders only triangles; Glide converts points and lines to
triangles and triangul ates polygons as needed.)

Vertices are specified as a collection of parametric values, chosen from the following:
the geometric coordinates (X, v);
the color components (r, g, b, a);
the depth indicator z (for window coordinators), or g (for clip coordinates);

the homogenous coordinates w (distance from the eye, required for clip coordinates) and q (distance
from the projected source);

Copyright © 1995-1998 3Dfx Interactive, Inc. 11
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the TMU-specific texture coordinates (s, t;), wherei isthe TMU the texel residesin;
the TMU-specific homogeneous coordinate g;, wherei isthe TMU where the value will be used;
if supported, a separate fog table index (q may aso be used to index afog table).

Every vertex must specify values for x and y, but the other parameters are optional and need only be set
if the rendering configuration requires them.

Syntactically, avertex is astructure containing al the parameter values that apply. The vertex

structure may hold additional information of interest to the application as well. The vertex layout is
communicated semantically to Glide by issuing a series of grVertexL ayout() commands, one each of the
parameters included in the vertex structure.

void grVertexL ayout (FxU32param, FxI32offset, FxU32 mode)
grVertexLayout() is called once for each value of param, chosen from the values in the first column of
Table 2.1 or Table 2.2 (there is atable for each coordinate space option).

offset is either the offset in bytes of the parameter data from the vertex pointer. The offset can be either
positive or negative. Align data on word boundaries for optimal performance.

mode is either GR_PARAM ENABLE Or GR_PARAM DI SABLE. Disabling a parameter will potentially cause
it to inherit the last known value. When a parameter is disabled, the offset argument isignored.
Disabling a mandatory parameter like GR_PARAM XY will cause afatal Glide error.

[} The Grvertex structure is no longer necessary, since gr VertexL ayout() alows arbitrary
layouts. Therefore Grvertex structure has been removed. To facilitate porting Glide 2.x
applications, the old vertex structure needs to be defined in the application, and the vertex
layout set accordingly. Example 2.2 shows you how.

PORTING
NOTE

Glide determines whether or not color and texture parameters are required based on other mode settings
such as gr Color Combine(). In addition, s, t, and g values can be inherited in order to reduce gradient
calculations on older hardware. This situation is handled in Glide 3.0 by the addition of the mode
argument to gr VertexL ayout(). If an application wants a TMU-specific value for s, t, or g, the
appropriate parameter will be enabled (GR_PARAM ENABLE ) in the vertex layout. Alternatively, if the
application wantsan s, t, or g value to be inherited, it will specify GR_PARAM DI SABLE instead.

The GR_HI NT_STWHI NT hint is obsolete in Glide 3.0: it’s functionality isimplemented
within grVertexLayout() as follows:

[ &

Glide2.x: grHints(GR_HI NT_STWH NT, GR_STWH NT_W DI FF_TMJ0);
Glide3.0: grVertexLayout(GR_PARAM Q0,..., GR_PARAM ENABLE);

PORTING  Glide 2.x: grHints(GR_HI NT_STVHI NT, GR_STWHI NT_ST_DI FF_TMJ1);
Glide3.0: grVertexLayout(GR_PARAM ST1,..., GR_PARAM ENABLE);
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Table 2.1 Specifying clip coordinate space vertices.
The grVertexLayout() command is called once for each value of param, chosen from the table below.

(if FOGCOORD
extension is supported)

param type sizein |description values usage
bytes
GR_PARAM XY FxFloat 8 xandy In the range Required. Must be at offset 0.
coordinates. [-w.w].
Vertex snapping is no
longer required.
GR_PARAM Z FxFloat 4 z coordinate. In the range When z buffering is enabled.
[- w.w].
GR_PARAM W FxFloat 4 w coordinate. In the range Required.
[1..64K].
GR_PARAM Q FxFloat 4  |Usage dependson |Depth/fog When using fog mode
choice of iterator. RFGWTHTABLE ONQ or w
coordinate space. buffering is enabled. Defaultsto 1
if not defined.
GR_PARAM STn FxFloat 8 sand t coordinates [s, tinrange[0,1] |When texture mapping.
for TMU n. for one repeat of
the texture.
Independent of
aspect ratio.
GR_PARAM On FxFloat 4 q coordinate for When texture mapping with
TMU n. projected textures. Defaults to
GR_PARAM_Q if not defined.
GR_PARAM_A FxFloat 4  lalphavalue. In the range [0..1] | When using alpha blending, alpha
testing, or anti-aliasing.
GR_PARAM RGB FxFloat 12 |RGBtriplet. In the range [0..1] | Choose one of the two color formats.
GR_PARAM_PARGB Fxu32 4 Packed ARGB, one | Each component
byte per isan integer in
component. the range [0..255]
GR_PARAM FOG_EXT |FxFloat 4 Fog table index. flwintherange |When using fog mode

[0..255]

@R FOG WTH TABLE ON FOBOOCRD EXT

Copyright © 1995-1998 3Dfx Interactive, Inc.
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Table 2.2 Specifying window coordinate space vertices.
The grVertexLayout() command is called once for each value of param, chosen from the table below. Note
that GR_PARAM Wis not valid for window coordinate space.

param type sizein |description values usage
bytes
GR_PARAM_XY FxFloat 8 [xandy x/w, y/w in the Required. Must be at offset 0.
coordinates. range
Vertex snappingisno |[- 2048..2047]
longer required.
GR_PARAM Z FxFloat 4 |z coordinate. Stored as 1/z. In | When z buffering is enabled.
the range [0..64K]
GR_PARAM Q FxFloat 4 Usage dependson | L/w Required.
choice of
coordinate space.
GR_PARAM STn FxFloat 8 sand t coordinates |Stored as §/q, t/q | When texture mapping.
for TMU n. in the range
[0..256] for one
repesat of the
texture. Therange
of the smaller

dimensionislimited
by the aspect ratio.

See Chapter 9.
GR_PARAM On FxFloat 4 g coordinate for In the range When texture mapping with
TMU n. [0..255] projected textures. Defaults to
GR_PARAM_Q if not defined or if
disabled.
GR_PARAM_A FxFloat 4 |alphavalue. In the range When using alpha blending, alpha
[0..255] testing, or anti-aliasing.
GR_PARAM RGB FxFloat 12 |RGB triplet. In the range Choose one of the two color formats.
[0..255].
GR_PARAM_PARGB FxuU32 4 Packed ARGB, one | Each component
byte per isan integer in
component. the range
[0..255].
CGR_PARAM FOG _EXT |FxFloat 4 Fog table index. In the range When using fog mode
(if FOGCOORD [0_ _255] . R FOG WTH TABLE ON FOBOCRD EXT

extension is supported)

The application program has control over the order in which the selected parameters occur in the vertex
array. For example, the code segment in Example 2.1 defines a vertex structure that has an (X,y,2)
position and an RGB color. Other examples follow.
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Example 2.1 Defining a vertex layout.
The code fragment below defines a vertex structure as an (x,y,2) position and an RGB color. It continues on to
establish the layout semantically by calling gr\VertexLayout().

Typedef struct {
FxFl oat x, v;
FxFl oat o0o0z;
FxFloat r, g, b;

} nyVertex;

gr Coor di nat eSpace( GR_W NDOW COORDS ) ;

gr Vert exLayout ( GR_PARAM XY, 0, GR_PARAM ENABLE );
gr Vert exLayout ( GR_PARAM Z, 8, GR_PARAM ENABLE );

gr Vert exLayout ( GR_PARAM RGB, 12, GR_PARAM ENABLE );
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Example 2.2 Re-creating GrVertex in Glide 3.0.
The code segment below defines the vertex structure from previous versions of Glide and shows the
gr\ertexLayout() that may be used to

t ypedef struct{
float x, y, z; /1* X Y, Z*/
float r, g, b; /I* R G B */
fl oat ooz; /* 65535/Z (used for Z-buffering) */
float a; /* Al pha */
fl oat oow; /* 1/ W (used for Whuffering, texturing) */
G TnuVer tex tnuvt x[ GLI DE_NUM TMJ] ;
} nyVertex; /* old GVertex */

gr Coor di nat eSpace( GR_W NDOW COORDS) ;

gr Ver t exLayout (GR_PARAM XY, 0, GR_PARAM ENABLE);

gr Vert exLayout ( GR_PARAM RGB, 12, GR_PARAM ENABLE)
gr Vert exLayout (GR_PARAM Z, 24, GR_PARAM ENABLE) ;

gr Vert exLayout (GR_PARAM A, 28, GR_PARAM ENABLE) ;

gr Vert exLayout (GR_PARAM W 32, GR_PARAM ENABLE) ;

gr Ver t exLayout ( GR_PARAM STO, 36, GR_PARAM_ENABLE) ;

Example 2.3 Creating a vertex definition using clip coordinates, a z buffer, and a fog table indexed by q.
The code fragment below creates a vertex layout that includes x, y, z, w; g, and a packed color.

t ypedef struct{

FxFl oat x, vy, z; /1* X Y, Z*/

FxFl oat w, q; /I W Q*/

FxU32 pCol or; /* packed ARGB */
} nyVertex;

gr Coor di nat eSpace( GR_CLI P_COORDS) ;

gr Ver t exLayout (GR_PARAM XY, 0, GR_PARAM ENABLE);

gr Vert exLayout (GR_PARAM Z, 8, GR_PARAM ENABLE);

gr Vert exLayout (GR_PARAM W 12, GR_PARAM ENABLE)

gr Vert exLayout (GR_PARAM Q 16, GR_PARAM ENABLE) ;

gr Vert exLayout ( GR_PARAM PARGB, 20, GR_PARAM_ENABLE) ;

Example 2.4 Creating a vertex definition using window coordinates and the FOGCOORD extension.
The code fragment below creates a vertex layout that includes x, y, g, f, and a packed color.

t ypedef struct{

FxFl oat x, v; /* X, Y */
FxFl oat q; [* Q*/
FxFl oat f; /* fog table index */
FxU32 pCol or; /* packed ARGB */
} nyVertex;

gr Coor di nat eSpace( GR_CLI P_COORDS) ;

gr Ver t exLayout (GR_PARAM XY, 0, GR_PARAM ENABLE);

gr Vert exLayout (GR_PARAM Q 8, GR_PARAM ENABLE) ;

gr Ver t exLayout (GR_PARAM FOG_EXT, 12, GR_PARAM_ENABLE) ;
gr Ver t exLayout ( GR_PARAM PARGB, 20, GR_PARAM_ENABLE) ;
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Example 2.5 Creating a vertex definition for projected texture mapping.
The code fragments below creates a vertex layout that includes x, y, w or g (depending on the coordinate
space), a packed color, sand t values for two TMUs and a separate g for TMU L.

t ypedef struct{

FxFl oat x, v; /* X, Y */
FxFl oat q; /* Q*/
FxFl oat f; /* fog table index */
FxU32 pCol or; /* packed ARGB */
} nyVertex;

gr Coor di nat eSpace( GR_CLI P_COORDS) ;

gr Ver t exLayout (GR_PARAM XY, 0, GR_PARAM ENABLE);

gr Ver t exLayout (GR_PARAM Q, 8, GR_PARAM ENABLE);

gr Ver t exLayout ( GR_PARAM FOG _EXT, 12, GR_PARAM ENABLE);
gr Ver t exLayout (GR_PARAM PARGB, 20, GR_PARAM ENABLE) ;

Using Morethan One Vertex Layout
Some applications may find it useful to use several vertex layouts during the course of the program.

While only one layout is current at atime, you can save the current one, define and use a new one, then
restore the saved one.

void gr GlideGetVertexL ayout( void *layout )
void gr GlideSetVertexL ayout( void *layout )

grGlideGetVertexL ayout() makes a copy of the current vertex layout established by callsto
grVertexL ayout(). The application can restore the saved layout by calling gr GlideSetVertexL ayout ().
Use gr Get(GR_GLI DE_VERTEXLAYOUT_SI ZE, ..) to determine how much space is needed (and hence,
how big the layout buffer should be).

[} In Glide 3.0, vertices no longer need to be snapped to sub-pixel precision. The newer
platforms perform snapping in hardware; Glide will do it for the older ones. There may be
a dlight performance degradation on platforms (e.g. SST-1 and SST-96) that don’t have
atriangle setup unit.

PORTING
NOTE
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3. Getting Started

In This Chapter

You will learn how to:

initialize Glide.

configure and initialize the hardware.

manage multiple 3Dfx Interactive graphics accelerators.
terminate cleanly.

manage the display buffers.

4 4 4 € <4 <«

detect and respond to errors.

Starting Up

Glide provides severa functions to initialize Glide and to detect and configure a 3Dfx Interactive
graphics subsystem. Three functions, gr Glidel nit(), gr SstSelect(), and gr SssWinOpen(), initialize Glide
and the hardware and must be called, in the order listed, before calling any other Glide routines (except
the grGet() and gr GetString() calls that detect the presence of 3Dfx Interactive graphics subsystems).
Failing to do thiswill cause the system to operate in an undefined (and, most likely, undesirable) state.

Thefirg initialization function, gr Glidel nit(), sets up the Glide library and thus must be called before
any other Glide functions are executed (with one exception, noted below). It alocates memory, sets up
pointers, and initializes library variables and counters. There are no arguments, and no value is
returned.

void gr Glidel nit( void )

Their is one exception to the rule stated above that gr Glidel nit()must be called before all other Glide
routines. gr Get(GR_NUM _BQARDS, ..) may be caled before gr Glidel nit() to determine the presence or
absence of a graphics subsystem.

The next function caled to initialize the system is gr SstSelect(), which makes a specific graphics
subsystem “current”. It must be called after gr Glidel nit() but before gr SstwinOpen().

void gr SstSelect( int whichSST )

The argument is the ordinal number of the subsystem that will be made active and must be in the range
[0..numBoards], where numBoards is the value returned when gr Get() is called with argument

GR_NUM _BOARDS. If whichSST is outside the proper range of values and the debugging version of Glide
isused, arun-time error is generated. If the release version of Glideis loaded, use of an inappropriate
value for whichSST will result in undefined behavior.
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Thefina initiaization function, gr SstWinOpen(), initializes the currently active graphics subsystem,
specified by the most recent call to gr SstSelect(), to the default state. All hardware specia effects
(depth buffering, fog, chroma-key, alpha blending, alphatesting, etc.) are disabled. All globa state
congtants (the chroma-key reference value, the apha test reference, the constant depth value, the
constant alpha value, the constant color value, etc.) and pixel rendering statistic counters are initialized

to zero.

[ &

Significant changes in Glide 3.0 pave the way for full support for windowed
environments, including multiple windows. These changes are because resources are

shared in awindowed environment. When programming a full screen Glide application,
developers assume they have complete ownership of the graphics hardware, when in
reality, it may be shared. Other processes (or the Window system) can appropriate
PORTING  resources owned by the Glide application at any time. Maintaining thisillusion of
NOTE  complete ownership isimpossible without severe performance penalties. So, instead of
hiding the fact that 2D/3D resources are shared, Glide 3.0 ensures that applications can
endure asynchronous reallocation of 2D/3D resources yet recover completely and

gracefully.

gr SstWinOpen() should be called once per installed graphics subsystem (note that scanline interleaved
subsystems are treated as a single subsystem) and must be executed after gr Glidel nit() and

or SstSelect(). It returns an opague context handle if the initialization was successful and zero
otherwise. Only one context at atime may bein usein Glide 3.0.

GrContext_t gr SstWinOpen( Fxu32

hWin,

GrScreenResolution_t res,
GrScreenRefresh_t  refresh,

GrColorFormat_t
GrOriginLocation_t
int

int

)

cFormat,
locateOrigin,
numBuffers,

numAuxBuffers

The arguments to gr SstWinOpen() configure the frame buffer. The first argument, hWin, specifies a
handle for the window in which the graphics will be displayed. The interpretation of hWin depends on
the system environment. DOS applications must specify NULL. Applications run on SST-1 graphics
hardware must specify NULL aswell. Win32 full screen applications running on a SST-96 system must
specify awindow handle; aNULL value for hWin will cause the application’s real window handle (i.e.,
what is returned by Microsoft’s Get Act i veW ndow API) to be used. Since Win32 pure console
applications do not have a window handle, they can be used only with SST-1 and a NULL window
handleisrequired. Finally, Glide Win32 applications that run in awindow may either specify NuLL (if

there is only one window), or the correct hWin, cast to Fxu32.

Table 3.1 Specifying a window handle in gr SstWinOpen().
The interpretation of the hWin argument to gr SstWinOpen() depends on the system environment, as shown

below.
system environment hwin value
DOS NULL
20 Copyright O 1995- 1998 3Dfx Interactive,
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Win32, full screen NULL or hWin
Win32, pure console NULL (SST-1 only)
Win32 Glide application NULL or hWin (SST-96 only)

The screen resolution and refresh rate are specified in the next two arguments, res and refresh. Both
variables are given values chosen from enumerated types defined in the sst 1vi d.h header file. A
typical application might set resto GR_RESOLUTI ON_640x480 and refresh to GR_REFRESH_60HZ.

While not recommended, the screen resolution may be specified as GR_RESOLUTI ON_NONE on an SST-

96 system. If so, Glide will use the user specified window (see the hWin parameter). The ref parameter
isignored when a Win32 application is running in awindow. Specifying GR_RESOLUTI ON_NONE oOn an

SST-1 system will cause the call to fail.

The fourth argument, cFormat, specifies the packed color RGBA ordering in the frame buffer.
Different software systems assume different byte ordering formats for pixel color data. For the widest
possible compatibility across a wide range of software, Glide provides * byte swizzling,” meaning that
incoming pixels can have their color values interpreted in one of four different formats that are defined
in the enumerated type GrColorFormat_t and are shown in Table 3.2. The color format affects data
written to the linear frame buffer (the subject of Chapter 11) and parameters for the following Glide
functions: grBuffer Clear () (described later in this chapter), gr ChromakeyValue() (described in Chapter
8), grConstantColor Value() (see Chapter 5), and gr FogColor Value() (see Chapter 8).

Table 3.2 Frame buffer color formats.

Glide supports four different color byte orderings: RGBA, ARGB, BGRA, and ABGR. Color byte ordering
determines how user-supplied color values are interpreted. The first column in the table shows the name of the
format, as defined in the enumerated type GrColorFormat_t. The second column in the table shows the byte
ordering of the color components within a 32-bit word.

color format byte ordering

GR_COLORFORNMAT_RGBA red areen blue alpha
GR_COLORFORVAT_ARGB alpha red green blue
GR_COLORFORNMAT_BGRA blue areen red alpha
GR_COLORFORVAT_ABGR alpha blue green red

The fifth parameter to gr SstWinOpen() specifies the location of the screen space origin. If locateOrigin
iISGR_ORI G N_UPPER_LEFT, the screen space origin is in the upper left corner with positive y going
down. GR_ORI G N_LOWER_LEFT places the screen space origin at the lower left corner with positive y
going up. Figure 3.1 shows the two possibilities for locating the origin.
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Figure3.1 Locating theorigin.
The 3Dfx Interactive graphics accelerator allows the origin to be in the upper left or lower left corner of the
screen. The choice of coordinate system is be made by passing the appropriate parameter to gr SstWinOpen().

GR_ ORI G N_UPPER_LEFT GR_ ORI G N_LOAER LEFT
(0,0) +X +y t
Y ¢ (0,0) +X

The fina two arguments to gr SstWinOpen() select the buffering options. The first one, numBuffers,
specifies double or triple buffering and is an integer value, either 2 or 3. The other argument,
numAuxBuffers, specifies the number of auxiliary buffers required by an application. The auxiliary
buffers are used for depth or apha buffering. Permitted values are O or 1. For full screen applications,
this parameter allows both SST-1 and SST-96 to validate whether the available video memory will
support the application’s requirements for color and auxiliary buffers at a specified screen resolution.
For awindowed application running on SST-96, this parameter allows an application to run in alarger
3D window if a depth buffer is not necessary (depth and back buffers share the same off-screen video
memory).

If there is not enough memory to support the desired resolution and buffering options, an error will
occur.

Querying for Screen Parameters

Applications that are written to run on avariety of hardware configurations can query for available
resolutions before calling gr SstWinOpen().

typedef struct {
GrScreenResolution_t  resolution;
GrScreenRefresh_t refresh;
int numCol or Buffers;
int numAuxBuffers;

} GrResolution;

FxI32 grQueryResolutions( const GrResolution *resTemplate,
GrResolution * output

)

gr QueryResolutions() returns al available frame buffer configurations that match the constraints
specified in the template resTemplate. The congtraints are specified as either GR_QUERY_ANY or a
specific value in each of the four fields in the GrResolution structure. If output is NULL,
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gr QueryResolutions() returns the number of bytes required to contain the available resolution
information. The application can then allocate space and call gr QueryResolutions() again to return the
information. This process is demonstrated in Example 3.1.

Example 3.1 Querying for possible frame buffer configurations.
The code fragment below calls grQueryResolutions() twice, the first time to establish the amount of space
required for all the possible configurations, and the second time to actually return the data.

G Resol ution query;
G Resolution *list;
i nt listSize;

/* find all possible nodes that include a z-buffer */
query.resol ution GR_QUERY_ANY;
query.refresh GR_QUERY_ANY;
query. nunCol or Buf fers = GR_QUERY_ANY;

query. numAuxBuf fers 1,

listSize = grQueryResol utions( &query, NULL );
list = malloc( listSize );
gr Quer yResol utions( &query, list );

Example 3.2 The Glide initialization sequence.

This code fragment calls the three Glide functions, in the required order, that initialize the software and the
hardware subsystems. The parameters to gr SstWinOpen() establish a double buffered full-screen frame buffer
with 640" 480 screen resolution and a 60Hz refresh rate. Colors are stored as RGBA, the origin isin the lower
left corner, and there is no auxiliary buffer.

G Cont ext _t gcon;

grdidelnit(void);
gr Sst Sel ect (0);
if ((gcon=(grSst W nOpen(NULL, GR_RESCLUTI ON_640x480, GR_REFRESH_60HZ,
GR_COLORFORMAT_RGBA, GR_ ORI G N_LOVER_LEFT, 2, 0))==0)
printf(“ERROR failed to open graphics context!\n");

When programming afull screen Glide application, the developer has complete ownership of the 3D
hardware and texture ram. Many applications will be developed to run under Windows 95, however,
and must be prepared to restore the graphics state after a period of inactivity.

To gracefully handle the loss of resources (e.g. to another 3D application being scheduled by the
Windows 95 operating system), an application is required to periodically (typically once per frame)
query with gr SelectContext() to determine if Glide' s resources have be reallocated by the system.
context is a context handle returned from a successful call to grwinOpen().

FxBool gr SelectContext( GrContext_t context )

If none of the rendering context’s state and resources have been disturbed since the last call,

gr SelectContext() will return FXTRUE. In this case no special actions by the application are required. If
it returns FXFAL SE, then the application must assume that the rendering state has changed and must be
reestablished (by re-downloading textures, explicitly resetting the rendering state, etc.) before further
rendering commands are issued.
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Driving Multiple Systems
Glide supports two forms of multiple graphics subsystem support: multiple subsystems driving
multiple displays and two subsystems driving a single display.

Selecting a Graphics Subsystem

At any given moment, only a single 3Dfx Interactive graphics accelerator is active. The gr SstSelect(),
presented above, activates a specific unit. All Glide functions, with the exception of the gr Glide family
and gr SstSelect(), operate on only the currently active subsystem. Note that the global Glide state is
bound to each graphics subsystem independently. So, to set the constant color in each unit to the same
value, for example, you must write aloop that selects each onein turn and sets the color, as shown in
Example 3.3.

Example 3.3 Setting a state variable in all graphics subsystems.

Each graphics subsystem has its own version of the Glide state variables, including a constant color value
that is used to clear the screen. The constant color is zero by default. The code fragment below cycles through
all the units found by a previous call to grGet(), setting the constant color to black.

int i, n;

= gr Get (GR_NUM BOARDS, sizeof (n), &n)
or (i =0; 0 <n; i++)

~—~ .

grSstSelect( i );
gr Const ant Col orValue( ~0 ); /* only affects SST “i” */

Opening Multiple Graphics Subsystems

gr SstWinOpen() must be called once for each graphics subsystem that will be used. In Glide 3.0, the
current graphics context must be closed (by calling gr SstwinClose(), described below) before

gr SstWinOpen() can be called to open a context for another subsystem. Note that two graphics
subsystems linked together in a scanline interleaving configuration are treated in software asasingle
unit.

Scanline Interleaved Graphics Subsystems

Two 3Dfx Interactive graphics accelerators can be wired together in a configuration known as scanline
interleaving, which effectively doubles rasterization performance. From an application’s perspective,
two graphics subsystems in a scanline-interleaved configuration are treated as if a single subsystem is
installed in the system, including during unit selection, initialization, state management, texture
download, etc.
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Shutting Down

Before a new graphics context can be created, the previous one must be closed by calling
gr SstWinClos().

FxBool gr SstWinClose( GrContext_t context )

gr SstWinClose() will fail, returning FXFALSE, if context is not a valid handle to a graphics context.
Otherwise, it returns the state of Glide to the one following gr Glidel nit(), so that gr SstWinOpen() can
be cdlled to open a new context.

After an application has completed using Glide and the graphics subsystem, proper shutdown must be
performed. This alows Glide to de-allocate system resources like memory, timers, address space, and
file handles that were used during program execution.

The function gr GlideShutdown() shuts down Glide and all graphics contexts previousy opened with
gr SstWinOpen(). It should be called only when an application is finished using Glide, and should not be
executed unless gr Glidel nit() and gr SstWinOpen() have aready been called.

void gr GlideShutdown( void )

Example 3.4 shows aminimal Glide program: it executes the four function calls that initialize the
graphics subsystem and then terminates.

Example 3.4 A minimal Glide program.
The complete program below includes the Glide initialization and termination procedure and nothing else.

#i ncl ude <glide. h>
int n;

voi d mai n(voi d)
{ G Context_t context;
grdidelnit(void);
if (! grGet(GR_NUM BOARDS, sizeof(n), &n))
printf(“ERROR. no 3Dfx Interactive G aphics Accelerator!\n”);
gr Sst Sel ect (0) ;
context = grSstWnOpen( NULL, GR_RESCLUTI ON_640x480, GR_REFRESH 60HZ,
GR_COLORFORMAT_RGBA, GR ORI G N_LOWER LEFT, 2, 0);
gr Sst W nCl ose(cont ext);
gr d i deShut down() ;

The Display Buffer

Glide manages severa logica hardware graphics buffers, all of which are based out of the same area of
memory known as the “frame buffer”. Depending on the amount of memory installed on the hardware,
the frame buffer istypically arranged as three logical units: the front buffer, the back buffer, and,
optionally, the auxiliary buffer.

void gr Render Buffer ( GrBuffer_t buffer )
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grRender Buffer () selects the buffer for primitive drawing and buffer clears. Valid values are
CGR_BUFFER_FRONTBUFFER and GR_BUFFER_BACKBUFFER,; the default is GR_ BUFFER_BACKBUFFER.

The auxiliary buffer in a 3Dfx Interactive graphics accel erator subsystem can be used either as a depth
buffer, an alpha buffer, or as athird rendering buffer for triple buffering. The auxiliary buffer is not
available on systems with 2MB of frame buffer DRAM running at 800" 600. However, it is always
available on systems with 4MB of frame buffer DRAM installed or with the screen resolution set to
640" 480.

Triple buffering alows an application to continue rendering even when a swap buffer command is
pending. When triple buffering is enabled an application can act asif the hardware is operating in
double buffer mode; intricacies of dealing with the third buffer are hidden from the application by the
hardware. Since the auxiliary buffer can serve only asingle use, depth buffering, alpha buffering, and
triple buffering are mutually exclusive.

An application selects the purpose of the auxiliary buffer implicitly whenever depth buffering, alpha
buffering, or triple buffering are enabled. For example, if gr DepthBuffer M ode() is called with a
parameter other than GR_DEPTHBUFFER_DI SABLE (see Chapter 7), it is assumed that the auxiliary
buffer will be used for depth buffering. Similarly, gr SstWinOpen() enables triple buffering; alpha
buffering is enabled if gr AlphaBlendFunction() selects a destination alpha blending factor (see Chapter
6) or gr ColorMask() enables writes to the alpha buffer. The release build of Glide does not check for
contention of the auxiliary buffer. Unexpected results may occur if the auxiliary buffer is used for more
that one function (e.g., both depth buffering and triple buffering are enabled). The debugging version of
the library will report the contention.

Note that source alpha blending can coexist with depth or triple buffering, but destination alpha
blending cannot.

Table 3.3 Frame buffer resolution and configuration.
The frame buffer can be configured with two or three rendering buffers. In double buffer modes, an alpha or
depth buffer can also be used. The available resolution depends on the amount of installed memory.

frame buffer memory | double buffer mode double buffer mode with | triple buffer mode
16-bit alpha/depth
buffer
2 Mbytes 800 by 600 by 16 640 by 480 by 16 640 by 480 by 16
4 Mbytes 800 by 600 by 16 800 by 600 by 16 800 by 600 by 16

Logical Layout of the Linear Frame Buffer

The frame buffer islogically organized as 1024 scanlines of 16 or 32-bit values, regardless of the
amount of memory installed on the board, and is shown in Figure 3.2. Scanline length, or stride, is
independent of screen resolution and dependent on the graphics hardware. The stride is returned in the
GrLfbinfo_t structure, as described in Chapter 11. The data format within the frame buffer is
programmable and is also described in detail in Chapter 11.
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Figure 3.2 Logical layout of the linear frame buffer.

The frame buffer is logically organized as 1024 scanlines of 16 or 32-bit values, regardless of the amount of
memory installed on the board and the screen resolution. The drawable area is a rectangular subset of the
frame buffer; its location depends on the location of the y origin. The remainder of the board’'s memory
(shaded area) is used as an auxiliary buffer that can be utilized as an alpha/depth buffer or as a third display
buffer (triple buffering). Thislogical layout is independent of the user-specified origin location.

stride > < stride

00 )

drawable area

1024 1024
pixels pixels

drawable area

©0) M
(@) y originin upper left corner (b) y originin lower Ieft corner

Masking Writesto the Frame Buffer

Writes to the frame buffer and depth buffer can be selectively disabled and enabled. The Glide
functions gr Color M ask() and gr DepthMask() control buffer masking: FXTRUE values alow writes to the
associated buffer, and FXFALSE values disable writes to the associated buffer. Writes to the color and
alpha buffers are controlled by gr Color Mask() whereas writes to the depth buffer are controlled by
grDepthMask() (described in Chapter 7). Note that disabling writes to the alpha planes is the same as
disabling writes to the depth planes, since they both share the same memory.

void gr Color M ask( FxBool rgh, FxBool alpha )
void gr DepthM ask( FxBool enable )

grColorMask() specifies whether the color and/or apha buffers can or cannot be written to during
rendering operations. If rgb is FXFALSE, for example, no change is made to the color buffer regardless
of the drawing operation attempted. The alpha parameter isignored if depth buffering is enabled since
the alpha and depth buffers share memory.

gr DepthM ask() enables writes to the depth buffer.

The value of grColorMask() and gr DepthMask() are ignored during linear frame buffer writesif the
pixel pipdineis disabled (see Chapter 11). The default values are FXTRUE, indicating that the
associated buffers are writable.

Swapping Buffers

In adouble or triple buffered frame buffer, the next scene is rendered in a back buffer while the front
buffer is being displayed. After an image has been rendered, it is displayed with acall to
gr Buffer Swap(), which exchanges the front and back buffers every swaplnterval vertical retraces. If the
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swaplnterval is 0, then the buffer swap does not wait for vertical retrace. If the monitor frequency is 60
Hz, for example, a swaplnterval of 3 results in a maximum frame rate of 20 Hz.

void gr Buffer Swap( int swaplnterval )

A swaplnterval of O may result in visual artifacts, such as ‘tearing’, since a buffer swap can occur
during the middle of a screen refresh cycle. This setting is very useful in performance monitoring
situations, as true rendering performance can be measured without including the time buffer swaps
spend waiting for vertical retrace.

gr Buffer Swap() does not wait for the specified vertical blanking period; instead, it queues the buffer
swap command and returns immediately. If the application is double buffering, the graphics subsystem
will stop rendering and wait until the swap occurs before executing more commands. If the application
istriple buffering and the third rendering buffer is available, then rendering commands will take place
immediately in the third buffer.

A Glide application can poll the hardware using the gr Get() function, described in Chapter 12, with
argument GR_PENDI NG_BUFFERSWAPS, to determine the number of buffers waiting to be viewed,
although thisis generally not necessary.

The maximum value returned is 7, even though there may be more buffer swap requests in the queue.
To minimize rendering latency in response to interactive input, gr Get(GR_PENDI NG_BUFFERSWAPS, ..)
should be called in aloop once per frame until the returned value is less than some small number such
asl, 2, or3.

Synchronizing with Vertical Retrace

Synchronization to vertical retrace is supported with the gr Get() function with argument
GR_VI DEO_POsI TI oN, which returns the vertical and horizontal beam location. Vertical retraceis
indicated by returning O for the vertical position.

Note that an application does not need to explicitly synchronize to vertical retrace if it only wishesto
remove tearing artifacts. gr Buffer Swap() will automatically synchronize to verticd retrace if desired.

Monitoring Swapping Behavior

An application program can examine a history of swapping behavior: each entry shows the number of
vertical retraces that occurred between the display of aframe and its predecessor. A call to
grGet(GR_NUM_SWAP_HI STORY_BUFFER, ..) returns the number of bytes of swapping history
available. A call to grGet(GR_SWAP_HI STORY, ..) returns the 4-byte entries and resets the recording
buffer. Example 3.5shows and example.

Example 3.5 Retrieving the swapping history.
The code fragment below retrieves the swap history since the last time it was retrieved.

FxU32 si zeSwapHst, buff SwapHst [ MAXBUFF] ;

gr Get (GR_NUM SWAP_HI STORY_BUFFER, 4, &sizeSwapHst);
gr Get (GR_SWAP_HI STORY, sizeSwapHst << 2, buff SwapHst);
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Clearing Buffers

The ability to clear adisplay buffer is fundamental to animation, since the remnants of a previoudly
rendered scene must be reset before a new scene can be rendered. The hardware alows the back buffer
and apha or depth buffer to be cleared smultaneoudly.

A buffer clear fills pixels at twice the rate of triangle rendering or better. Therefore, the performance
cost of clearing the buffer is, worse case, haf the cost of rendering a rectangle. Clearing the buffer is
not necessary when the scene paints a background that covers the entire area.

Buffers are cleared by caling grBuffer Clear (). The area within the buffer to be cleared is defined by

gr ClipWindow(), described in the next chapter. The three parameters specify the values that are used to
clear the display buffer (color), the alpha buffer (alpha), and the depth buffer (depth). Although the
color, alpha, and depth parameters are always specified, the parameters actually used will depend on
the current configuration of the hardware; the irrelevant parameters are ignored.

The depth parameter can be one of the depth constants found by calling gr Get() with argument
GR_ZDEPTH_M N_MAX Or GR_WDEPTH_M N_MAX, or adirect representation of avalue in the depth buffer.
See Chapter 7 for more details.

void gr Buffer Clear ( GrColor_t color, GrAlpha_t alpha, FxU32 depth )

Any buffersthat are enabled are automatically and smultaneously cleared by grBuffer Clear (). For
example, if depth buffering is enabled (with gr DepthBuffer M ode(), described in Chapter 7), the depth
buffer is cleared to depth. If alpha buffering is enabled (with gr AlphaBlendFunction(), described in
Chapter 6), the alpha buffer is cleared to alpha. And if writes to the display buffer are enabled (with

gr ColorMask(), described in Chapter 5), then it is cleared to color. If an application does not want a
buffer to be cleared, it should mask off writes to the buffer using gr DepthMask() and gr Color Mask() as

appropriate.

Error Handling

Glide provides afamily of error management functions to assist a devel oper with application
debugging. This family of routines consists of Glide related error management (errors generated by
Glide) and application level error management (errors generated by an application).

The debug build of Glide performs extensive parameter validation and resource checking. When an
error condition is detected, a user-supplied callback function may be executed. This callback function
isinstalled by calling grError SetCallback(). If no callback function is specified, a default error
function that prints an error message to st der r is used.

typedef void (* GrErrorCallbackFnc_t) (const char *string, FxBool fatal)
void grError SetCallback(GrErrorCallbackFnc_t fnc))

The callback function accepts a string describing the error and a flag indicating if the error isfatal or
recoverable. grError SetCallback() is relevant only when using the debugging version of Glide; the
release build of Glide removes all interna parameter validation and error checking so the callback
function will never be called.
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4. Rendering Primitives

In This Chapter

You will learn how to:

establish a clipping window.

draw apoint, aline, atriangle, or a convex polygon on the screen.
draw sets of points, lines, and trianglesin a single operation.

draw sets of connected lines and trianglesin a single operation.

cull back-facing polygons from the scene.

4 4 4 € <4 <«

draw anti-aliased points, lines, triangles, and convex polygons.

Clipping

The graphics hardware supports per-pixel clipping to an arbitrary rectangle that is defined with the
Glide function gr Clipwindow(). Any pixels outside the clipping window are rejected. Values are
inclusive for minimum x and y values and exclusive for maximum x and y values, as shown in Figure
4.1. The clipping window also specifies the area gr Buffer Clear () will clear. (See Chapter 3.)

Figure4.1 Specifying a clipping window.
The clipping window is defined by two pairs of integers in the range [0..1024) specifying the left and right
edges and the top and bottom edges of the rectangle.

+y t (0,0) +X
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the upper left corner
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|
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the lower left corner i
I

of the screen ‘ of the screen
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The gr Clipwindow() routine has four parameters that define the clipping rectangle. The values must be
less than or equal to the current screen resolution and greater than or equal to O; otherwise, they are
ignored. Glide does not perform any geometric clipping outside of supporting a hardware clipping
window. For optimal performance, an application should perform proper geometric clipping before
passing any primitives to Glide. The clipping window should not be used in place of true geometric

clipping.
void gr ClipWindow( FxU32 minX, FxU32 minY, FxU32 maxX, FxU32 maxyY )

The default values for the clip window are the full size of the screen: (0,0,640,480) for 640" 480 mode
and (0,0,800,600) for 800" 600 mode. To disable clipping, smply set the size of the clip window to the
screen size. The clipping window should not be used for genera purpose primitive clipping; since
clipped pixels are processed but discarded, proper geometric clipping should be done by the application
for best performance. The clip window should be used to prevent stray pixels that appear from
imprecise geometric clipping. Note that if pixel pipelineis disabled, clipping is not performed on linear
frame buffer writes (see Chapter 11 for more information).

Triangles
Thetriangle is the basic Glide rendering primitive. The Glide function gr DrawTriangle() renders an

arbitrarily oriented triangle. The arguments, a, b, and ¢, are pointers to vertices whose layout has been
determined by the most recent call to grVertexL ayout(), as described in Chapter 2.

void gr DrawTriangle( const void *a, const void *b, const void *c )

Triangles are rendered with the following filling rules:
Zero areatriangles render zero pixels.
Pixels are rendered if and only if their center lies within the triangle.

A pixel center iswithin atriangleif it isinside al three of the edges. When a pixel center lies exactly
on an edge, it isingde the triangle if the edge is considered to be inside, and outside otherwise. Left
edges are in; right edges are out. Horizontal edges with the smaller y value are in; those with alarger y
value are out.

Figure 4.2 gives an example. Eight triangles are shown, al sharing a common vertex. Only one of the
triangles renders the pixel whose center is the shared vertex. Can you guess which one?

The shared vertex is part of the “right edge” of triangles A, H, G, and F, and hence outside. It is part
of the “top edge” (since the origin isin the lower left) of triangles G, F, E and D, and thus outside them
aswadll. In triangle B, the vertex is on one inside edge and one outside edge and hence is considered to
be outside the triangle. Only in triangle C does the vertex lie on two “inside” edges and thuslies insde
the triangle.
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Figure4.2 Pixel rendering.

Which of the eight triangles shown in diagram (a) will render the pixel at the common vertex? In diagram (b),
solid edges are considered to be inside the triangle while dotted edges are outside. The top two diagrams are

drawn with the origin in the lower left corner. The bottom row represents the other possibility: the originisin
the upper left corner. The two pairs of diagrams are mirror images of each other.

ty

>
+X
(a) Which triangles will render the pixel in the
center of the square? (If you like to think of the
origininthe lower left corner, use the top row of
diagrams; if you prefer an origin in the upper
left corner, use the bottom row.)

+X

v

ty

(b) Pixelson solid edges lie inside the triangl€;

pixels on dotted lines do not. A vertex isinside
the triangle (and hence, rendered) if both edges
that radiate fromit are inside the triangle. Thus,

only triangle C will render the center point.
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Points

The Glide function gr DrawPoint() renders a single point to the screen. The point is treated as atriangle
with nearly coincident vertices (that is, avery small triangle) for rendering purposes. If many points
will be rendered, noticeable performance improvement can be achieved by writing pixels directly to the
frame buffer. (gr DrawPoint() sends three vertices per point to the hardware and iterates along three
edges; only one linear frame buffer write per point is required.)

void gr DrawPoint( const void *a)

The argument, a, is a pointer to a vertex whose layout has been determined by the most recent cal to
orVertexL ayout().

Example 4.1 A thousand points of light.

This code fragment clears the screen to black and then draws a thousand random points. By default, the
rendering buffer is set to GR_BUFFER_BACKBUFFER and the color buffer iswritable. The color white is made
by specifying maximal values for red, green, and blue, and a quick way to do that is ~0. Some of the points
will be clipped out: the random number generator selects points with coordinates in the range [0..1024]; the
screen resolution is less than that. By default, the clipping window is set to the screen size.

typedef struct { float x, y; } nyVertex;

int n;
myVertex p;

gr Ver t exLayout (GR_PARAM XY, 0, GR_PARAM ENABLE);

/* clear the back buffer to black */
grBufferCear(0, 0, 0);

/* set color to white */
gr Col or Conbi ne( GR_COMVBI NE_FUNCTI ON_LOCAL, GR_COMBI NE_FACTOR_NONE,

GR_COVBI NE_LOCAL_CONSTANT, GR_COMBI NE_OTHER NONE, FXFALSE ) ;
gr Const ant Col or Val ue( ~0)

/* generate and draw 1000 random points */
for (n=0; n<1000; n++) {

p.x = (float) (rand() % 1024);

p.y = (float) (rand() % 1024);

gr Dr awPoi nt ( &p) ;
}

Lines

The Glide function gr DrawL ing() renders an arbitrarily oriented line segment. Enabled specia effects
(e.g., fog, blending, chroma-key, dithering, etc.) will affect aline’s appearance. The arguments, a and
b, are pointers to vertices whose layout has been determined by the most recent cal to

orVertexL ayout().

void gr DrawL ing( const void *a, const void *b )
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Drawing Sets of Digoint Points, Lines, and Triangles

So far, we have talked about rendering commands that take one, two, or three vertex pointers as
arguments and draw a single point, line, or triangle. Two more commands, gr DrawVertexArray() and
gr DrawVertexArrayContiguous(), take an array of vertex pointers or of vertices and draw them
according to a mode argument.

void gr DrawVertexArray(FxU32 mode, FxU32 count, void *pointers[] )
void gr DrawVertexArrayContiguous(FxU32 mode, FxU32 count, void *vertex, FxU32 stride)

The first argument, mode, tells how to interpret the list of vertices. Valid values are GR_PO NTS,
GR_LI NES, GR_TRI ANGLES, GR_LI NE_STRI P, GR_TRI ANGLE_STRI P, GR_TRI ANGLE_FAN, Or
GR_POLYGON, or two continuation modes, GR_TRI ANGLE_FAN_CONTI NUE and

GR_TRI ANGLE_FAN_CONTI NUE. In this section, we will discuss the first three modes, which draw
digoint points, lines, and triangles. The other modes are discussed in later sections.

The second argument, count, gives the number of verticesto draw, and the final argument, pointers, is
apointer to an array of pointers to vertices. gr DrawVertexArrayContiguous() assumes that all the
vertices are stored in alinear array addressed by vertex, and that each vertex in the array is stride bytes
long. In both cases, the count vertices are processed in the order given, according to mode.

Figure 4.3 gives a set of points and draws them with six of the modes.

Drawing Sets of Connected Linesand Triangles

A line strip is a sequence of line segments in which each line segment shares an endpoint with the
previous one. A triangle strip is a sequence of triangles in which each triangle (after the first one)
shares two vertices with its predecessor. A triangle fan isastrip in which all triangles have one vertex
in common. (See Figure 4.4.)
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Figure4.3 Vertex arrays.
Suppose we have the following points:

Be

Ee

Co

They are stored in alphabetic order in a contiguous array of vertices and drawn with each of the possible
modes, yielding the shapes below:

.

N A Ay

GR_POINTS GR_LINES GR_TRIANGLES
L]
w GR_TRIANGLE_STRIP j GR_TRIANGLE_FAN f

This set of points cannot be drawn in GR_PCOL YGON mode as the resulting polygon would not be convex. An

example later in the chapter uses the indirection of grDraw\VertexArray() to draw a polygon by discarding
points C and E. GR_TRI ANGLE_FAN_CONTI NUE and GR_TRI ANGLE_STRI P_CONTI NUE are
continuation modes and are described |ater.
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Figure4.4 Linestrips, triangle strips, and triangle fans.
Thefirst line segment in a line strip provides two vertices. Subsequent line segments require only one new
vertex, since their starting point is the endpoint of the previous one.

Thefirst trianglein a triangle strip provides three vertices. Subsequent trianglesin the strip share two
vertices with their predecessor. All the triangles in a fan share one vertex, the first onein the list.
Furthermore, each triangle shares a second vertex with its predecessor.

When grDrawVertexArray() or grDrawVertexArrayContiguous() is used to draw the triangle aggregate, the
mode argument identifiesit as a strip or fan: the distinction is important because the shared vertices are
handled differently. In a strip, each new vertex replaces the oldest of the previous three vertices. In a fan, the
first vertex remains in use for the whole fan, and each new vertex replaces the oldest of the other two.

V5 V3
V3 VZ
\Y
Vi v s
\%1
V, Ve
VZ Ve
Vo triangle strip triangle fan
linestrip
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Two additiona drawing modes, GR_TRI ANGLE_FAN_CONTI NUE, and

GR_TRI ANGLE_STRI P_CONTI NUE, allow you to interrupt the rendering of atriangle strip or fan to do
computations, then resume where you left off. The use of the continuation modes is subject to the
following restrictions:

grDrawVertexArray(GR_TRI ANGLE_STRI P_CONTI NUE, ..) must follow either a
grDrawVertexArray(GR_TRI ANGLE_STRI P, ..) or

grDrawVertexArray(GR_TRI ANGLE_STRI P_CONTI NUE, ..) command. Similarly,
grDrawVertexArray(GR_TRI ANGLE_FAN_CONTI NUE, ..) must be preceded by either
grDrawVertexArray(GR_TRI ANGLE_FAN, .)) or

grDrawVertexArray(GR_TRI ANGLE_FAN_CONTI NUE, ..).

Intervening commands may not change Glide state. For example, the following sequence is not
valid:

grEnable(GR_AA ORDERED);

grDrawVertexArray(GR_TRI ANGLE_FAN, ..);

grDisable(GR_AA ORDERED); /* Wrong! No state changes between continuations */
grDrawVertexArray(GR_TRI ANGLE_FAN_CONTI NUE, ..);

No intervening rendering commands are alowed. For example, the following sequence is not vaid:

grDrawVertexArray(GR_TRI ANGLE_FAN, ..);
grDrawVertexArray(GR_PO NTS, ..); /* Wrong! No other rendering between continuations */
grDrawVertexArray(GR_TRI ANGLE_FAN_CONTI NUE, ..);

Example 4.2 Using triangle continuation.
The code fragment below draws a triangle strip in three stages.

/* draw two triangles */

gr DrawVer t exArray( GR_TRI ANGLE_STRI P, 4, pointers);

/* continue to draw a triangle strip, using the last two vertices in the
* previous one
*/

gr DrawVer t exArray( GR_TRI ANGLE_STRI P_CONTI NUE, 1, pointers+4);

/* continue to draw one triangle using the last two vertices in the

previous triangle */

gr Dr awVer t exArray( GR_TRI ANGLE_STRI P_CONTI NUE, 1, pointers+5);

This code fragment uses continuation to draw a triangle fan.

/* draw two triangles */

gr DrawVer t exArray( GR_TRI ANGLE_FAN, 4, pointers);

/* continue to draw one triangle using the first vertex and |last vertex
in the previous triangle */

gr Dr awMer t exArray( GR_TRI ANGLE_FAN_CONTI NUE, 1, pointers+4);

/* continue to draw one triangle using the first vertex and |last vertex
in the previous triangle */

gr Dr awMer t exArray( GR_TRI ANGLE_FAN_CONTI NUE, 1, pointers+5);
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Convex Polygons

A polygon is a planar area enclosed by a closed loop of line segments, specified by their endpoints.
While the hardware does not render polygons directly, Glide provides a set of polygon rendering
functions that are optimized for the hardware. The polygons rendered by the Glide functions are subject
to some strong restrictions:

The edges of the polygon cannot intersect.

The polygon must be convex, that is, have no indentations. (The glossary at the end of this manual
gives a precise definition of convexity.)

Figure 4.5 shows some examples of both valid and invalid polygons.

Figure4.5 Polygons.
Valid polygons are convex and planar. Invalid polygons have intersecting edges,

indentations, or non-planar coordinates.
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Example 4.3 Drawing a convex polygon in Glide 3.0.

The code fragment below assumes that the seven vertices shown below and in Figure 4.3 have been defined in
an array of myVer t ex structures called ver t s. By creating an array of myVer t ex pointers that drop out the
C and E vertices, a convex polygon can be drawn.

B D

T

typedef struct { ...} myVertex;
nyVertex verts[7];

static struct myVertex *vlist[5] = {
verts[0], verts[1],
verts[3].

Verts[5], verts[6] };

gr DrawVer t exArray( GR_POLYGON, 5, vlist);

So why not draw a polygon using all seven vertices? Because the resulting polygon is not convex. Polygons
are rendered as a triangle fan. The illustration below demonstrates the fact that drawing a polygon that is not
convex may yield unexpected results!

Thisisthe polygon created by Glide renders a polygon as a

connecting all seven verticesin order. triangular fan. The shaded areais
The deep indentations of the crown are what is drawn; the lines outline
not convex. what was desired.

[ &

Convex polygons are defined by an ordered set of vertices and drawn by calling
grDrawVertexArray(GR_POLYQQON, ..) or
gr DrawVertexArrayContiguous(GR_POLYQQN, ..) in Glide 3.0. Table 4.1 provides

PORTING guidance for porting the polygon rendering routines from Glide 2.x to the new regime.

NOTE
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Table4.1 Porting obsolete gr DrawPolygon() commands to Glide 3.0.

Glide 3.0 isthe first release to support grDrawVertexArray(). Sx old routines for drawing polygons have been
made obsolete by grDrawVertexArray(): grDrawPolygon(), gr DrawPlanarPolygon(),
grDrawPolygonVertexList(), grDrawPlanarPolygonVertexList(), grAADrawPolygon(), and
grAADrawPolygonVertexList(). The table below shows how to convert calls to the obsolete routines with calls
to grDrawVertexArray(). It assumes that the old GrVertex structure has been defined both syntactically and
with callsto grVertexLayout().

old new

gr Dr awPl anar Pol ygon( nVerts, ilist, vlist) gr Drawver t exAr r ay ( GR_POYGON, nVerts, vlist sorted
according to ilist)

gr Dr awPol ygon( nVerts, ilist, vlist) gr Drawver t exAr r ay ( GR_POLYGON, nVerts, vlist sorted

according to ilist)
gr Dr awPl anar Pol ygonVer t exLi st (nVerts, vlist) | gr Dr awVer t exAr r ayCont i guous( GR_POLYGON, nVerts, vlist,
si zeof (G Vertex))

gr Dr awPol ygonVer t exLi st ( nVerts, vlist) gr Drawver t exAr r ayCont i guous( GR_POLYGON, nVerts, vlist,
si zeof (G Vertex))
gr AADr awPol ygon( nVerts, vlist) gr Enabl e( AA_ORDERED);

gr Drawver t exAr ray ( GR_POLYGON, nVerts, vlist sorted
according to ilist)
gr AADr awPol ygonVer t exLi st ( nVerts, vlist) gr Enabl e( AA_ORDERED);

gr Drawver t exAr r ayCont i guous( GR_POLYGON, nVerts, vlist,
si zeof (G Vertex))
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Example 4.4 L’embarras desrichesses: The more alternatives, the more difficult the choice.

(Abbé D’ Allainval, 1726). The code fragment below draw three triangles, It initializes an array of eight
vertices, vpool [ 8], and an array of pointers to them, verts. Veertex vpool[ 1] is shared by all three of the
triangles; and two of them use vpool[2].

struct vert {
FxFl oat x,y,z,w
FxFl oat s, t;

} vpool [8];

/1 y, z(unused), 1/ w
/1 t/

X,
s/w, t/w

static struct vert *verts[9] = {
vpool +0, vpool +1, vpool +2,
vpool +1, vpool +2, vpool +3,
vpool +7, vpool +1, vpool +5};

N R LR PR
/'l set the scene

gr Coor di nat eSpace( GR_W NDOW COORDS) ;

gr Ver t exLayout (GR_PARAM XY, 0, GR_PARAM ENABLE);

gr Ver t exLayout (GR_PARAM 0, 12, GR_PARAM ENABLE);

gr Ver t exLayout ( GR_PARAM STO, 16, GR_PARAM ENABLE);

/'l transform and deposit vertices into vpool
vpool [0] . x = Xx;

vpool [0].y = vy;

vpool [0] .w = oow = 1. 0F/ w;

vpool [0] . s = s*oow,

vpool [0] .t = t*oow,

/1 simlar for other vertices...

Here are three different ways to draw the same three triangles. Method 1: Draw them as three independent
triangles.

static struct vert *verts[9] = {
vpool +0, vpool +1, vpool +2,
vpool +1, vpool +2, vpool +3,
vpool +7, vpool +1, vpool +5};

gr DrawVer t exArray( GR_TRI ANGLES, 9, verts);

Method 2: Draw them as a two triangle strip (remember the shared vertices?) and an independent triangle.

/1 2 meshed triangles and 1 i ndependent traingle
static struct vert *verts[7] = {
vpool +0, vpool +1, vpool +2, vpool +3
vpool +7, vpool +1, vpool +5};

gr Drawer t exArray( GR_TRI ANGLE_STRI P, 4, verts);
gr DrawVer t exArray( GR_TRI ANGLES, 3, verts+4);

Method 3: Draw them using the grDrawTriangle() command.

gr DrawTri angl e(vpool +0, vpool +1, vpool +2);
gr DrawTri angl e(vpool +1, vpool +2, vpool +3);
gr DrawTri angl e(vpool +7, vpool +1, vpool +5);

Method 4: Draw them as a contiguous triangle strip and an independent triangle.

gr Dr awMer t exArr ayCont i guous(GR_TRI ANGLE_STRI P, 4, vpool, sizeof(struct
vert));

gr DrawTri angl e(vpool +7, vpool +1, vpool +5);
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Backface Culling

Glide supports backface culling based on the signed area of a polygon. When Glide renders a polygon,
the first step isto divide the polygon into triangles, the hardware rendering primitive. Figure 4.6 shows
apair of triangles whose vertices have been labeled according to the rule given above.
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Figure 4.6 Polygon orientation and the sign of the area.

The polygons on the |eft are defined relative to an origin in the upper left corner; the ones on the right have
the origin in the lower left corner. Clockwise and counter-clockwise refer to the direction that the vertices are
traversed in alphabetical order.

(0,0 .
v A b
A counter-clockwise orientation / &
positive area
counter-clockwi
orientation
e \ negativearea | p
a clockwise orientation
positive area B clockwise orientation
negative area
B A
C
v (0,0)

The sign of the area of the triangle can be used for backface culling (quickly discarding triangles that
won't be visible on the screen before they are rendered). Because the area must be computed anyway,
thisis a cheap way to cull. However, removing back-facing triangles earlier may be advantageous. For
example, if back face remova is performed before lighting, then the computationally expensive lighting
calculations for invisible triangles can be skipped.

The Glide function gr CullM ode() has one parameter, a mode that can be set to GR_CULL_NONE,
GR_CULL_NEGATI VE, or GR_CULL_P0osI TI VE. When the culling mode is GR_CULL_NONE, the default
value, al polygons are rendered to the screen regardless of their signed area. Otherwise, if the sign of
the area matches the mode, then the triangle is rejected. gr CullM ode() assumes that

GR_CULL_POCSI TI VE corresponds to a counter-clockwise orientation when the origin isin the lower left
corner of the screen, and a clockwise oriented triangle when the origin isin the upper left corner, as
shown in Table4.2.

void gr CullM ode( GrCullMode_t mode )

Note that gr CullM ode() has no effect on points and lines, but does effect the rendering of triangles and
polygons.
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Table4.2 Thelocation of the origin affects triangle orientation and the sign of its area.

if the origin location is and the triangle orientation is then the sign of the area is

GR_ ORI G N_LOWNERLEFT clockwise negative

GR_ORI G N_LONERLEFT counter-clockwise positive

GR_ORI G N_UPPERLEFT clockwise positive

GR_ORI G N_UPPERLEFT counter-clockwise negative
Anti-aliasing

If you look closely and critically at lines drawn on the screen, particularly lines that are nearly
horizontal or nearly vertical, they may appear to be jagged. The screen isagrid of pixelsand thelineis
approximated by lighting spans of pixels on that grid. The jaggednessis called aliasing; examples of
aliased lines are shown in Figure 4.7(a). Anti-aliasing techniques reduce the jaggedness, as shown in
Figure 4.7(b), by partially coloring neighboring pixels to smulate partial pixel coverage.

Figure4.7 Aliased and anti-aliased lines.

These lines are drawn at a resolution of 50 pixels/inch in order to exaggerate the jagged edges of the aliased
lines and highlight the widening and blending in the anti-aliased lines. These lines are examples of the
general concepts; if you replicate this drawing on the screen, the results may be different in detail.

L £ et

(a) aliased lines have jagged (b) anti-aliased lines soften the edges
edges by shading surrounding pixels

Figure 4.8 shows an angled line segment one pixel wide, superimposed on a pixel grid. Some pixels are
almost completely covered by the line, while others have only asmall corner involved. Glide' s anti-
aliasing routines compute a coverage value for each pixel and uses that in combination with the source
and destination alpha values to blend the pixel color.

Figure 4.8 Pixel coverage and lines.
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|:| 25-30%
|:| 15-20%
|:|5-10%
|:|O%

(a) Thisangled one-pixel wide line segment (b) The shaded squares are touched by the line segment at
doesn’t cover any pixel completely. the left; the shade of gray filling each sguare represents
the area covered by the line.

Glide draws anti-aliased points, lines, triangles, and polygons by setting up the alphaiterator so that it
represents pixel coverage. You must correctly configure the alpha combine unit (discussed in detail in
Chapter 6) and enable apha blending before using any of the anti-aliased drawing commands. The
code segment in

Previous versions of Glide contained a set of commands to draw anti-aliased primitives.
Only one of these has been retained in Glide 3: grAADrawTriangle(). It operates
independently of the GR_AA_ORDERED mechanism. A description follows.

PORTING
NOTE

Example 4.5 details the proper sequence of Glide commands that must precede the actual anti-aliased
drawing commands. Briefly, you must:

Set the apha combine unit to produce iterated alpha.

Set the alpha blending function. Blending functions are specified for source and destination color
components and for source and destination a pha values, and the choice of function depends on
whether the sceneis rendered front to back or back to front.

Set the alpha value for each vertex. The chosen apha value should represent the transparency of
the object being rendered, with opague objects setting aphato 255. This alphavalue is multiplied
by the pixel coverage to obtain the final apha vaue used for apha blending.

Call grEnable(GR_AA_ ORDERED) to enable anti-aliasing.

Sort the vertices by depth and draw with a gr Draw routine. You cannot draw anti-aliased strips
and fans.
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[ &
Previous versions of Glide contained a set of commands to draw anti-aliased primitives.
Only one of these has been retained in Glide 3: grAADrawTriangle(). It operates
independently of the GR_AA_ORDERED mechanism. A description follows.
PORTING
NOTE
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Example 4.5 Drawing an anti-aliased triangle.

The alpha combine unit must be configured to produce an iterated alpha value in order to use the Glide anti-
aliasing drawing functions. Consider the following code segment a recipe for success in this chapter; the
alpha combine unit, alpha buffering, and alpha blending are the subject of Chapter 6.

The objects in the picture must be pre-sorted on depth. The alpha blending factors depend on whether the
scene is drawn from front to back or back to front. The first code shows the alpha blending factors if the scene
is drawn from front to back.

/* set al pha conbine unit to produce an iterated al pha */
gr Al phaConbi ne( GR_COMBI NE_SCALE_OTHER, GR_COMVBI NE_FACTOR ONE, GR_LOCAL_NONE,
GR_LOCAL_| NTERATED, FXFALSE);

/* blend col ors based on al pha */
gr Al phaBl endFuncti on( GR_BLEND ALPHA SATURATE, GR BLEND ONE, GR BLEND_
SATURATE, GR_BLEND_ONE) ;

gr Enabl e( GR_AA_ORDERED) ;
/* draw t he scene using the grDraw routines */

Substitute the alpha blending factors shown below if the scene is drawn from back to front.

gr Al phaBl endFuncti on( GR_BLEND_SRC ALPHA, GR_BLEND ONE_M NUS_SRC_ALPHA,
GR_BLEND_ZERO, GR BLEND ZERO);

void grAADrawTriangle ( GrVertex *va, GrVertex *vb, GrVertex *\vc,
FxBool aaAB, FxBool aaBC, FxBool aaCA

)

grAADrawTriangle() has three more arguments than its aliased counterpart gr DrawTriangle(). The
arguments, aaAB, aaBC, and aaBC are Boolean vaues that alow the edges of the triangle to be
selectively anti-aliased.

Glide draws atriangle with the specified edges anti-aliased by setting up the aphaiterator so that it
represents pixel coverage. gr AlphaCombine() must select iterated alpha and gr AlphaBlendFunction()
should select GR BLEND SRC_ALPHA, GR_BLEND ONE_M NUS_SCR _ALPHA as the RGB blend functions
and GR_BLEND_ZERO, GR _BLEND_zERO as the apha blend functions if sorting from back to front and
GR BLEND ALPHA SATURATE, GR_BLEND_ONE asthe RGB blend functions and GR_BLEND SATURATE,
GR_BLEND_ONE as the alpha blend functions if sorting from front to back. Opaque anti-aliased
primitives must set alpha=255 in the vertex data. Transparent anti-aliased primitives are drawn by
setting aphato values less than 255; this alpha vaue is multiplied by the pixel coverage to obtain the
final alphavalue for apha blending.

If thereis a steep gradient in a particular color space (i.e., green goes from 255.0 to 0.0 in asmall
number of pixels), then there will be visual anomalies at the edges of the resultant anti-aliased triangle.
The workaround for this ‘feature’ is to reduce the gradient by increasing small color components and
decreasing large ones. This can be demonstrated by changing the values of maxColor and minColor in
t est 25 of the Glide distribution. Note that this ‘feature’ is only present when the color combine mode
includes iterated RGB or apha as one of the parametersin the final color.
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In This Chapter

You will learn about:

V¥ specifying colors.

configuring the color combine unit that produces shading and lighting effects.
drawing aflat-shaded object.

drawing a smooth-shaded object.

4 4 < 4«

simulating various lighting effects.

Specifying Colors

A color consists of three or four color components: red, green, blue, and optionaly, alpha. The color
component values should be clamped to the range [0..255] where 0 is black and 255 is maximum
intengity.

The color components are packed together into aword to form a color. Glide supports four different
color byte orderings, defined in the enumerated type GrColorFormat_t (See Figure 3.1 for a pictoria
representation). Color byte ordering determines how linear frame buffer writes and color arguments are

interpreted and is established in the call to gr SstWinOpen() when Glide and the graphics hardware are
initialized (see Chapter 3).

The GrColor_t type definition represents a packed color value and is used in routines that set a constant
color: grBuffer Clear () (see Chapter 3), gr ConstantColor Value() (described below), gr FogColorValue()
and gr ChromakeyValue() (both described in Chapter 8).

void gr ConstantColor Value( GrColor_t color )

Glide refersto agloba constant color when performing flat-shaded primitive rendering, set with
gr ConstantColor Value(). The default value is 0x FFFFFFFF.

Vertex colors are specified as individua color components, each stored as an FxFloat value, or as four
bytes packed into a word.

Dithering

The graphics hardware represents color internally as 32-bit quadrupletsin a format specified by the
color format argument passed to gr SstWinOpen() (see Chapter 3). This color is eventually dithered to
16-bit RGB for storage in the frame buffer, then expanded and (optionally) filtered up to 24-bits for
final display. From an application’s perspective, the 32-to-16-bit RGB dithering operation is
transparent.
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Dithering is atechnique for increasing the perceived range of colorsin an image by applying a pattern
to surrounding pixels to modify their color vaues. When viewed from a distance, these colors appear to
blend into an intermediate color that can’t be represented directly. Dithering is similar to the haf-toning
used in black and white publications to produce shades of gray.

void gr Dither M ode( GrDitherMode_t mode )

gr Dither M ode() selects the form of dithering the hardware uses when converting 24-bit RGB values to
the 16-bit RGB color buffer format. Valid values are GR_DI THER DI SABLE, GR_DI THER 2x2, and
GR_DI THER_4x4. GR_DI THER_DI SABLE forces a simple truncation that may result in noticeable

banding. GR_DI THER 2x2 uses a 2x2 ordered dither matrix, and GR_DI THER 4x4 uses a4x4 ordered
dither matrix.

The default dithering mode isGR_DI THER_4x4.

The Color Combine Unit

2 Control of high level rendering functions is managed by three functions, grColor Combineg(),
grAlphaCombine() (see Chapter 6), and grTexCombine() (described in Chapter 9). While the
three routines will be presented individually, settings for one function can potentially affect the

TAKE inputs to the other routines.

NOTE

The color combine unit computes an RGB color for each pixel asit is rendered. User-selected inputs
are added, blended, and/or scaled to produce flat or smooth (Gouraud) shading with optional lighting
effects. The color combine unit computes each RGB color component separately, but all three are
computed using the same formula. The alpha combine unit computes the alpha component and is
discussed in the next chapter.

The color combine unit computes a color component as
c=f*a+b

where c isthe red, green, or blue color component, f is a scale factor, and a and b are sums and
differences of the variousinput choices.

The Glide routine that configures the color combine unit is gr Color Combing(). It specifies the function
that computes the color and selects the inputs.

void gr Color Combine( GrCombineFunction_t  func,
GrCombineFactor_t factor,

GrCombineLocal_t local,
GrCombineOther_t other,
FxBool invert

)

Fourteen combining functions are defined in the GrCombineFunction_t enumerated type; one is selected
with func, the first argument to gr Color Combine(). Table 5.1 gives the symbolic names and formulas
for each color combine function.
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Thef variable in the combining formulasis defined by factor, the second argument to
gr Color Combine(). The choices for this scale factor are given in Table 5.2. Note that apha values from

the texture combine unit (atequre) OF SPecified by gr AlphaCombine() arguments (& oca @Nd aotner) appEAr
in some of the scale factors.
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Table5.1 Configuring the color combine unit.

The first argument to grColorCombine(), func, specifies the color combine function; its value is chosen from
among the symbols list in the left hand column of the table below. The right hand column gives the combining
function that corresponds to each symbolic name. F is a scale factor and is defined by the factor argument to
grColorCombineg(). Cioca @Nd Corner are specified by the third and fourth arguments. Some of the formulas
specify an alpha value, aqcal, that is defined in the grAlphaCombine() function described in the next chapter.

color combine function

computed color

GR_COVBI NE_FUNCTI ON_ZERO 0

GR_COVBI NE_FUNCTT ON_LOCAL Coca

GR_COVBI NE_FUNCTI ON_LOCAL_ALPHA Ao

GR_COVBI NE_FUNCTI ON_SCALE_OTHER F* o
GR_COMBI NE_FUNCTI ON_BLEND OTHER e’
GR_COVBI NE_FUNCTI ON_SCALE_OTHER_ADD_LOCAL % Core + Cous
GR_COVBI NE_FUNCTI ON_SCALE_OTHER_ADD_LOCAL_ALPHA F* Corr + Ao
GR_COVBI NE_FUNCTI ON_SCALE_OTHER_M NUS_LOCAL f* (Comer — Clocal)

GR_COVBI NE_FUNCTT ON_SCALE_OTHER M NUS_LOCAL_ADD_LOCAL
GR_COVBI NE_FUNCTI ON_BLEND

f* (Cother — Ciocat) + Ciocal
0 f* Cother + (1_f) * Clocal

GR_COVBI NE_FUNCTT ON_SCALE_OTHER M NUS_LOCAL_ADD_LOCAL_ALPH
A

f* (Cother — Ciocar) + Aloca

GR_COVBI NE_FUNCTT ON_SCALE_M NUS_LOCAL_ADD LOCAL
GR_COVBI NE_FUNCTI ON_BLEND_LOCAL

f* (— Ciocar) + Cioca
© (1) * Coun

GR_COVBI NE_FUNCTT ON_SCALE_M NUS_LOCAL_ADD LOCAL_ALPHA

f* (= Ciocar) + Qoca

Table 5.2 The color combine function scale factor.

The second argument to grColor Combine(), factor, specifies a scale factor, called f in the formulas delineated
in Table 5.1; its value is chosen from among the symbols listed in the left hand column of the table below. The
right hand column gives the scale factor that corresponds to each symbolic name. Ciocy is Specified by the
third argument to grColorCombine(), aoca and aoiher are defined in the gr AlphaCombine() function
described in the next chapter, and aewure COMes from the texture combine unit, described in Chapter 9.

combine factor scale factor (f)
GR_COMBI NE_FACTOR_NONE unspecified
GR_COVBI NE_FACTOR_ZERO 0
GR_COVBI NE_FACTOR_LOCAL Cocat | 255
GR_COVBI NE_FACTOR_OTHER_ALPHA Aure | 255
GR_COVBI NE_FACTOR_LOCAL_ALPHA A / 255
GR_COVBI NE_FACTOR_TEXTURE_ALPHA Ao/ 255
GR_COVBI NE_FACTOR_ONE 1
GR_COVBI NE_FACTOR_ONE_M NUS_LOCAL 1—Cowm / 255
GR_COVBI NE_FACTOR_ONE_M NUS_OTHER_ALPHA 1—aue / 255
GR_COVBI NE_FACTOR_ONE_M NUS_LOCAL_ALPHA 1— a1 | 255
GR_COVBI NE_FACTOR_ONE_M NUS_TEXTURE_ALPHA 1 — e/ 255
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The third and fourth arguments to gr Color Combine() set values for the Cioea @nd Cotner Variables that
appear in the combining functions; the choices are shown in Table 5.3. Iterated colors are computed by
iterating the colors specified in the vertices passed to drawing functions. The texture color comes from
the texture combine unit (see Chapter 9), and the constant color is set by gr ConstantColor Value()
(described earlier in this chapter).

The func formula computes the red, green, and blue color components. The result of the computation is
clamped to [0..255] and may be bit-wise inverted, based on the final argument to gr Color Combine(),
invert. Inverting the bitsin a color component c is the same as computing (1.0 — ¢) for floating point
valuesin therange [0..1] or (255 — ¢) for 8-bit valuesin the range [0..255].

Table 5.3 Choosing local and other colorsfor the color combine unit.

The third and fourth arguments to gr ColorCombine(), local and other, specify the sources for the ¢,y and
Cother Values that appear in the color combine formulas delineated in Table 5.1; their values are chosen from
among the symbols in the tables below. Iterated colors are computed by iterating the colors specified in the
vertices passed to drawing functions. The texture color comes from the texture combine unit, and the constant
color is set by grConstantColorValue().

local combine source local color (Ciocal)

GR_COVBI NE_LOCAL _NONE unspecified color

GR_COMBI NE_LOCAL _| TERATED iterated vertex color (Gouraud shading)
GR_COVBI NE_LOCAL _CONSTANT constant color

other combine source other color (Cother)

GR_COVBI NE_OTHER_NONE unspecified color

GR_COMBI NE_OTHER_| TERATED iterated vertex color (Gouraud shading)
GR_COMBI NE_OTHER_TEXTURE color from texture map

GR_COVBI NE_OTHER_CONSTANT constant color

The color combine unit computes the source color for the remainder of the rendering pipeine. The
default color combine modeis

gr Color Combine( GR_COVBI NE_FUNCTI ON_SCALE_OTHER,

GR_COVBI NE_FACTOR ONE,

GR_COVBI NE_LOCAL_| TERATED,
GR_COMBI NE_OTHER_| TERATED

FXFALSE ); -

A series of examples follows.
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Example 5.1 Drawing a constant color triangle.
The code segment below draws a teal colored triangle by setting the constant color and directing the color
combine unit to use it as Cyner- The code assumes that the vertex layout has already been established.

nyVertex a, b, c;

/* set color to teal (assunes ARGB format) */
gr Const ant Col or Val ue( (100<<8) + 150 );

/* configure color conbine unit for constant color */
gr Col or Conbi ne( GR_COVBI NE_FUNCTI ON_SCALE_OTHER, GR_COVBI NE_FACTOR_ONE,
GR_COVBI NE_LOCAL _ NONE, GR_ COMVBI NE_ OTt HER CONSTANT, FXFALSE)

/* assunes that sone coordinates have been assigned to a, b, and ¢ */
gr DrawTri angl e(&a, &b, &c);

The code segment below will produce the same result as the one above, but it points ¢y t0 the constant color.

nyVertex a, b, c;

/* set color to teal (assunes ARGB format) */
gr Const ant Col or Val ue( (100<<8) + 150);

/* configure color conbine unit for constant color */
gr Col or Conbi ne( GR_COVBI NE_FUNCTI ON_LOCAL, GR_COWBI NE_FACTOR_NONE,
GR_COVBI NE_LOCAL _ CONSTANT, GR_ “CovBI NE_ OTt HER_ NONE, FXFALSE)

/* assunes that sone coordinates have been assigned to a, b, and c¢ */
gr DrawTri angl e(&a, &b, &c);

Example 5.2 Drawing a flat-shaded triangle.

The code segment below draws a flat-shaded triangle using the color for vertex A. It sets the constant color to
the vertex color and proceeds as in the previous example. The code assumes that the vertex layout has already
been established.

nyVertex A, B, C

/* set constant color to color of vertex A (assunes ARGB format) */
gr Const ant Col orVal ue((((int)A a)<<24)| | (((int)A r)<<16)||(((int)A g)<<8)|]|(int)
A b);

/* configure color conbine unit for constant color */
gr Col or Conbi ne( GR_COVBI NE_FUNCTI ON_LOCAL, GR_COWBI NE_FACTOR_NONE,
GR_COVBI NE_LOCAL _ CONSTANT, GR_ “CovBI NE_ OTt HER_ NONE, FXFALSE)

/* assunes that sone coordinates have been assigned to a, b, and c¢ */
gr DrawTri angl e( &A, &B, &OC);

Alternatively, you could set the colors of all three vertices to the colorsin Vertex A and proceed as in the next
example.

nyVertex A, B, C

/* set all vertices to sanme color */

1

1

t
a;
r;
g;
b;

e
A
A
A
A

/* configure color conbine unit for iterated colors */
gr Col or Conbi ne( GR_COVBI NE_FUNCTI ON_LOCAL, GR_COWBI NE_FACTOR_NONE,
GR_COVBI NE_LOCAL _ | TERATED, GR_ “CovBI NE_ OTHER NONE, FXFALSE)

/* assunes that sone coordinates have been assigned to a, b, and ¢ */
gr DrawTri angl e( &A, &B, &C);
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Example 5.3 Drawing a smooth-shaded triangle.

In this example, a Gouraud-shaded triangle is drawn, with the color blending smoothly from vertex to vertex.
The hardware automatically iterates the colors to achieve the smooth shading. The color combine unit is
configured with ¢y Set to the iterated color components. The code assumes that the vertex layout has already

been established.
nyVertex a, b, c;

/* configure color conbine unit for iterated color */
gr Col or Conbi ne( GR_COVBI NE_FUNCTI ON_LOCAL, GR_COWBI NE_FACTOR_NONE,
GR_COVBI NE_LOCAL _ | TERATED, GR_ “COovBI NE_ OTHER NONE, FXFALSE)

/* assunes that sone coordinates have been assigned to a, b, and c¢ */
gr DrawTri angl e(&a, &b, &c);

Alternatively, cqner Can be directed at the iterated color components.
nyVertex a, b, c;

/* configure color conbine unit for iterated color */
gr Col or Conbi ne( GR_COVBI NE_FUNCTI ON_SCALE_OTHER, GR_COVBI NE_FACTOR_ONE,
GR_COVBI NE_LOCAL _ NONE, GR_ COMVBI NE_ OTHER | TERATED, FXFALSE)

/* assunes that sone coordinates have been assigned to a, b, and c¢ */
gr DrawTri angl e(&a, &b, &c);

Example 5.4 Drawing a flat-shaded textured triangle.
The following code produces a textured flat-shaded triangle using the constant color. The code assumes that

the vertex layout has already been established.
nyVertex a, b, c;

/* set color to teal (assunes ARGB format) */
gr Const ant Col or Val ue( (100<<8) + 150);

/* configure color conbine unit for iterated color */
gr Col or Conbi ne( GR_COVBI NE_FUNCTI ON_SCALE_OTHER, GR_COVBI NE_FACTOR_LCOCAL,
GR_COVBI NE_LOCAL _ CONSTANT, GR_ COMBI NE OTHER _ TEXTURE, FXFALSE)

/* assunes that sone coordinates have been assigned to a, b, and ¢ */
gr DrawTri angl e(&a, &b, &c);

Example 5.5 Drawing a smooth-shaded textured triangle.

This example configures the color combine unit for a smoothly shaded textured triangle by directing Cjoca t0
the iterated color and Coher t0 the output from the texture combine unit. The code assumes that the vertex
layout has already been established.

nyVertex a, b, c;
/* configure color conbine unit for iterated color */

gr Col or Conbi ne( GR_COVBI NE_FUNCTI ON_SCALE_OTHER, GR_COWVBI NE_FACTOR_LOCAL,
GR_COVBI NE_LOCAL_| TERATED, GR _COMBI NE_OTHER TEXTURE, FXFALSE);

/* assunes that sone coordinates have been assigned to a, b, and c¢ */
gr DrawTri angl e(&a, &b, &c);
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Example 5.6 Drawing a smooth-shaded triangle with specular lighting.
This example produces a textured triangle with specular lighting provided by iterating the RGB color. The
code assumes that the vertex layout has already been established.

nyVertex a, b, c;

/* configure color conbine unit for iterated color */

gr Col or Conbi ne( GR_COVBI NE_FUNCTI ON_SCALE_OTHER_ADD_LOCAL,

GR_COVBI NE_FACTOR_ONE, GR COMVBI NE L(XAL | TERATED, GR_COVBI NE_OTHER_TEXTURE,
FXFALSE) ;

/* assunes that sone coordinates have been assigned to a, b, and c */
gr DrawTri angl e(&a, &b, &c);

Example 5.7 Drawing a smooth-shaded textured triangle with specular highlights.

By using the alpha component to model monochrome specular highlights, you can produce shiny, textured,
smooth-shaded triangles ((texture RGB * iterated RGB) + iterated a). The code assumes that the vertex layout
has already been established.

nyVertex a, b, c;

/* configure color conbine unit for iterated color */

gr Col or Conbi ne( GR_COVBI NE_FUNCTI ON_SCALE_OTHER_ADD_LOCAL_ALPHA,
GR_COVBI NE_FACTOR _ LOCAL, GR_ COMVBI NE_ L(XAL | TERATED,

GR_ COVBI NE_ OTH HER TEXTURE, FXFALSE) ;

/* assunes that sone coordinates have been assigned to a, b, and c¢ */
gr DrawTri angl e(&a, &b, &c);

Example 5.8 Drawing a smooth-shaded triangle with monochrome diffuse and colored specular lighting.
Alternatively, monochrome diffuse lighting and colored specular lighting can be produced by using the alpha
component to model monochrome diffuse lighting and iterated RGB to model colored specular lighting
((texture RGB * iterated a) + iterated RGB). Iterated alpha is chosen to be either @ oy Or agme With a call to
grAlphaCombine() that is not shown here. In the first code segment, iterated alpha is assumed to be available
asaca- The code assumes that the vertex layout has already been established.

nyVertex a, b, c;

/* configure color conbine unit for iterated color */

gr Col or Conbi ne( GR_COVBI NE_FUNCTI ON_SCALE_OTHER_ADD_LOCAL,
GR_COVBI NE_FACTOR _ LOCAL _ALPHA, GR COMVBI NE_ L(XAL | TERATED,
GR COMVBI NE OTHER _ TEXTURE, FXFALSE)

/* assunes that sone coordinates have been assigned to a, b, and c¢ */
gr DrawTri angl e(&a, &b, &c);

Alternatively, iterated alpha can be specified for aqme in grAlphaCombing(). In that case the following
grColorCombine() configuration is needed.

nyVertex a, b, c;

/* configure color conbine unit for iterated color */

gr Col or Conbi ne( GR_COVBI NE_FUNCTI ON_SCALE_OTHER_ADD_LOCAL,
GR_COVBI NE_FACTOR OTHER ALPHA, GR COMVBI NE_ L(XAL | TERATED,
GR COmVBI NE OTHER _ TEXTURE, FXFALSE)

/* assunes that sone coordinates have been assigned to a, b, and ¢ */
gr DrawTri angl e(&a, &b, &c);
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Other Color Combine Options

The routine gr AlphaControlsl TRGBL ighting() can be used to specify that if the high order bit of aexure
is 1, then the constant color set by grConstantColor Value() is used instead of the iterated RGB values.
Thisisuseful if aportion of atexture isto appear to be illuminated from behind the surface, instead of
by an external light source.

void gr AlphaControlsl TRGBL ighting( FxBool enable )

When enabled, the normal color combine controls for local color (Ce.a) are overridden, and the most
significant bit of texture alpha (ae«wr) Selects between iterated vertex RGB and the constant color set
by grConstantColorValue(). By default, this apha controlled lighting mode is disabled. Table 5.4 shows
how Cioeq 1S determined.

Table 5.4 Overriding the local color when the high order bit of & eure iS Set.

You can get hybrid effect between smooth and flat shading by using grAlphaControlsl TRGBLighting() to
enable a technique whereby the high order bit of aequre IS USed to switch ¢ between iterated RGB and the
constant color. The state table below shows how the ¢,ocy Value is determined.

when enable is and the high order bit of atequre IS the local color Cioea Will be
FXTRUE 0 iterated RGB

FXTRUE 1 gr ConstantColor Valug()
FXFALSE 0 set by gr Color Combine()
FXFALSE 1 set by gr Color Combine()

Some possible uses for this mode are self-lit texels and specular paint. If atexture contains texels that
represent self-luminous areas, such as windows, then multiplicative lighting can be disabled for these
texels as follows. Choose a texture format that contains one bit of alpha and set the alphafor each texel
to 1if the texd is self-lit. Set the Glide constant color to white and enable alpha-controlled lighting
mode. Finally, set up texture lighting by multiplying the texture color by iterated RGB, where iterated
RGB isthelocal color in the color combine unit. When atexel’s adphais O, the texture color will be
multiplied by the local color, which isiterated RGB. This applies lighting to the texture. When atexel’s
alphais 1, the texture color will be multiplied by the Glide constant color that was previously set to
white, so no lighting is applied.

If the color combine unit is configured to add iterated RGB to atexture for the purpose of a specular
highlight, then texture alpha can be used as specular paint. In this example, the Glide constant color is
set to black and iterated RGB iterates the specular lighting. Where atexel’ s alphais O, the texture color
will be added to iterated RGB and specular lighting is applied to the texture. Where atexel’saphais 1,
the texture color will be added to the Glide constant color that was previously set to black, so no
lighting is applied. The result is that the alpha channel in the texture controls where specular lighting is
applied to the texture and specularity can be painted onto the texture in the alpha channel.

Gamma Correction

By default, Glide does not perform gamma correction (i.e., alinear ramp is used). However, gamma
correction is available. The guGammaCorrectionRGB() function computes a hardware-dependent
gamma correction table.
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void guGammacCorrectionRGB( FxFloat red, FxFloat green, FxFloat blue)

guGammacCorrectionRGB() computes a gamma correction curve for each color component using the
following formula:

Cyarmma = [(Cr/255)V% ™) * 255

The red, green, and blue gamma values are positive floating point numbersin the range [0.0..20.0].
Typica valuesare 1.3t0 2.2. The default valueis 1.0 (i.e. alinear ramp is used).

Whileit is not recommended, an application can cook up its own gamma correction table and download
it to the hardware using grL oadGammarT able&().

void grLoadGammaT able( FxU32 nEntries, const FxU32 *red, const FxU32 *green, const FxU32 *blue )

The first argument, nEntries, is the number of elementsin each of the three arrays of color values. The
other three arguments are pointers to arrays of red, green, and blue values, respectively, that will be
interpolated to generate an output gamma value.

If nEntriesisless than the size of the hardware-dependent gamma table, the first part of the tableis
overwritten by the new values; if nEntriesis greater than the gamma table size, the excess elements are
discarded. The size of the gamma table may be obtained by calling gr Get(GR_GAMVA_TABLE_ENTRI ES).
The entries in the gamma table must be monotonically increasing in each color component or the results
are undefined. It is strongly recommended that guGammaCorrectionRGB() be used instead of
grLoadGammaT able().

[ & guGammacCorrectionRGB() is new to Glide 3.0, replacing
grGammaCorrectionValue().grL oadGammaTable() is aso new, and alows an application
to use a customized gamma correction table. However, it is strongly recommended that
guGammacCorrectionRGB() be used instead.

PORTING
NOTE
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In This Chapter

Several different rendering techniques using the alpha component of the color are discussed. You will
learn about:

V¥ specifying adphavalues.
V¥ configuring the alpha combine unit that produces apha values for pixels being rendered.
V¥ using the auxiliary buffer to store alpha values.

V¥ adphablending, atechnique for creating transucent objects in a scene.

V¥ aphatesting, atechnique for accepting or rejecting pixels based on their alpha vaue.

Specifying Alpha

Alphavalues, like the red, green, and blue components of a color, are 8-bit valuesin the range [0..255].
Glide maintains a constant alpha value as part of the constant color described in the previous chapter
that is set with gr ConstantColor Value(). Alphavalues, if used, are part of the user-defined vertex layout
defined with callsto gr VertexL ayout(), as described in Chapters 2 and 4.

The Alpha Combine Unit

2 Control of high level rendering functions is managed by three functions, grColor Combineg(),
grAlphaCombine() (see Chapter 6), and grTexCombine() (described in Chapter 9). While the
three routines are presented individually, settings for one function can potentially affect the

TAKE inputs to the other routines.
NOTE

The apha combine unit is similar to the color combine unit that produces RGB values for the pixel
being rendered. A user-selectable combining function specifies a scale factor, and local and other alpha
values, and aformulafor combining them to produce a new alphavalue. The aoca and aoner iNPULS
selected by the arguments to gr AlphaCombine() can aso be used in the scale factor chosen by

gr Color Combine(), described in the previous chapter.

void gr AlphaCombine( GrCombineFunction_t func,
GrCombineFactor_t factor,
GrCombineLocal_t local,
GrCombineOther _t other,
FxBool invert
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)

Table 6.1 lists the possible values for func, the first argument to gr AlphaCombine(). The f that appears
inthe formulasin Table 6.1 is ascale factor that is chosen by the second argument, factor. Table 6.2
lists the possible scale factors. ajocq @and aomer are chosen by the third and fourth arguments, local and
other; the candidates are listed in Table 6.3. Aswith gr Color Combine(), the final argument, invert, isa
Boolean that is set if a bit-wise inversion of the computed aphavalue is desired. Inverting the bitsin a
color component c is the same as computing (1.0 — ¢) for floating point color values in the range [0..1]
or (255 —c) for 8-bit color valuesin the range [0..255].

The default a pha combine unit configuration is
gr Al phaConbi ne( GR_COVBI NE_FUNCTI ON_SCALE_OTHER,

GR_COMBI NE_FACTOR_ONE,

GR_COMBI NE_LOCAL_ NONE,

GR_COVBI NE_OTHER_CONSTANT,
FXFALSE

);

Two examples in the previous chapter, Example 5.7 and Example 5.8, use the aoca Or @other ValuE.

Table 6.1 Combining functions for alpha.

The first argument to gr AlphaCombine(), func, specifies the alpha combine function; its value is chosen from
among the symbols list in the left hand column of the table below. The right hand column gives the combining
function that corresponds to each symbolic name. f is a scale factor and is defined by the factor argument to
grAlphaCombine(). aqca @and aqmer are specified by the third and fourth arguments.

combine function computed alpha
GR_COVBI NE_FUNCTI ON_ZERO 0

GR_COVBI NE_FUNCTI ON_LOCAL Alocal

GR_COVBI NE_FUNCTI ON_LOCAL_ALPHA Alocal

GR_COVBI NE_FUNCTI ON_SCALE_OTHER F* Ao
GR_COVBI NE_FUNCTI ON_BLEND_OTHER

GR_COVBI NE_FUNCTT ON_SCALE_OTHER ADD_LOCAL Aore + Ao

GR_COVBI NE_FUNCTT ON_SCALE_OTHER ADD_LOCAL_ALPHA

GR_COVBI NE_FUNCTT ON_SCALE_OTHER M NUS_LOCAL (ot — A1ocm)

f*
f* other T @ocal
f*
f*

GR_COVBI NE_FUNCTT ON_SCALE_OTHER M NUS_LOCAL_ADD_LOCAL

- a —a +a
GR_COVBI NE_FUNCTI ON_BLEND (Bother = Atocar) + Aloca

° f* Aother + (L —F) *

Aocal

GR_COVBI NE_FUNCTT ON_SCALE_OTHER_M NUS_LOCAL_ADD_LOCAL_ALPH [ f * (2 e — Broca) + Arocm
A

GR_COVBI NE_FUNCTI ON_SCALE_M NUS_LOCAL_ADD _LOCAL f* (= @oca) + Atoca
GR_COVBI NE_FUNCTI ON_BLEND_LOCAL o (1-f)*a
_ local
GR_COVBI NE_FUNCTI ON_SCALE_M NUS_LOCAL_ADD _LOCAL_ALPHA f* (= Alocat) + Atoca
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Table 6.2 Scalefactorsfor the alpha combine function.

The second argument to gr AlphaCombineg(), factor, specifies a scale factor, called f in the formulas
delineated in Table 6.1; its value is chosen from among the symbols listed in the left hand column of the table
below. The right hand column gives the scale factor that corresponds to each symbolic name. a oy and agther
are defined by the third and fourth arguments to gr AlphaCombine() and a exture COMes from the texture
combine unit, described in Chapter 9.

combine factor scale factor (f)
GR_COVBI NE_FACTOR_NONE unspecified
GR_COMVBI NE_FACTOR_ZERO 0

GR_COVBI NE_FACTOR _LOCAL Alocal | 255
GR_COVBI NE_FACTOR _OTHER_ALPHA Aot | 255
GR_COVBI NE_FACTOR LOCAL_ALPHA Qjoc | 255
GR_COVBI NE_FACTOR _TEXTURE_ALPHA Ao | 255
GR_COVBI NE_FACTOR_ONE 1

GR_COVBI NE_FACTOR_ONE_M NUS_LOCAL 1— e | 255
GR_COVBI NE_FACTOR_ONE_M NUS_OTHER_ALPHA 1—agme / 255
GR_COVBI NE_FACTOR_ONE_M NUS_LOCAL_ALPHA 1—ajoa ! 255
GR_COVBI NE_FACTOR_ONE_M NUS_TEXTURE_ALPHA 1 — Atexure | 255

Table 6.3 Specifying local and other alpha values.

The third and fourth arguments to gr AlphaCombine(), local and other, specify the sources for the a ..y and
ather Values that appear in the alpha combine formulas delineated in Table 6.1 and in the color combine
formulas shown in Table 5.1 and Table 5.2; their values are chosen from among the symbols in the tables
below. Iterated alpha values are computed by iterating the alpha specified in the vertex structures passed to
drawing functions. The texture alpha comes from the texture combine unit, and the constant alpha is set by
grConstantColorValue().

local combine source local alpha (&oca)

GR_COVBI NE_LOCAL_NONE unspecified a

GR_COMBI NE_LOCAL_| TERATED iterated vertex a

GR_COMBI NE_LOCAL_ CONSTANT constant a

GR_COVBI NE_LOCAL_DEPTH high 8 bits from iterated vertex z
other combine source other alpha (ather)

GR_COVBI NE_OTHER_NONE unspecified a

GR_COMBI NE_OTHER | TERATED iterated vertex a

GR_COMBI NE_OTHER_TEXTURE a from texture map

GR_COMBI NE_OTHER _CONSTANT constant a

Alpha Buffering

As pixels are rendered, afull 32-bit RGBA color is maintained internally. At the end of the rendering
pipeling, the 24-bit RGB portion is dithered to 16 bits and stored in the display buffer. The alpha value
component is discarded, unless the auxiliary buffer is being used as an apha buffer.

With apha buffering enabled, the graphics hardware stores an 8-bit alpha value for each pixel in the
auxiliary buffer. To enable apha buffering, set the alpha parameter of gr ColorMask() or blend using a
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function that calls for a destination apha (see the following section for a discussion of alpha blending).
Since the auxiliary buffer can only serve asingle use at atime, depth buffering, apha buffering, and
triple buffering are mutually exclusive. If depth buffering is currently enabled (by calling

gr DepthM ask() with argument FXTRUE), the alpha parameter specified in agrColorMask() call is
ignored.

void gr Color M ask( FxBool rgh, FxBool alpha )

The apha buffer is cleared by calling grBuffer Clear (). If alpha buffering is enabled, then the apha
buffer is cleared using the alpha parameter. The graphics display buffer and apha buffer can be
cleared simultaneoudly.

void gr Buffer Clear ( GrColor_t color, GrAlpha_t alpha, FxU32 depth )

In the anti-aliasing discussion in Chapter 4, alphawas used as a pixel coverage value for objects being
rendered. Alpha blending is then used to blur the edge color with the background color and reduce
unsightly “jaggies’.

The fina example in this chapter, Example 6.3, shows another way to use the apha buffer. In this
case, a background scene is drawn with one alpha value, a polygonal cropping window is drawn with a
second alphavalue, and aforeground is mapped into the cropping window by discarding parts of the
new scene that fall outside the cropping window. The example uses the apha combine unit, alpha
buffering, and alpha blending.

Alpha Blending

In Chapter 4, routines to draw anti-aliased points, lines, triangles and polygons were presented. They
use alpha blending to smooth the jagged edges.

[ &
Previous versions of Glide contained a set of commands to draw anti-aliased primitives.
Only one of these has been retained in Glide 3: grAADrawTriangle(). It operates
independently of the GR_AA_ORDERED mechanism. A description follows.
PORTING
NOTE

Example 4.5 calls gr AlphaBlendFunction() to configure a pha blending to accomplish anti-aliasing.

Another use for apha blending is to create trand ucent objects in a scene. Without blending, a newly
calculated color value will overwrite any color value already computed for that pixel and stored in the
frame buffer. With blending, the alpha value is used to combine the new color value with the previous
one so that the previous color “ shows through”.

Think of the RGB values of apixel asits color, and the A, or alpha, value as its opacity. Transparent
or tranducent objects have lower opacity values than opague objects. For example, objects seen
through awindow are less defined than those viewed directly, but are still visible (unlike objects behind
asolid wall). The window glass has a color and a small apha vaue that is used to scale the window
color before adding it to the existing color.
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The graphics hardware supports alpha blending of pixels. When alpha blending is enabled, the alpha
value of apixel isused to combine the color vaue of the pixel being processed with that of the pixel
already stored in the frame buffer.

Alphablending alows an application to control the degree to which the two pixels have their colors
blended, i.e., apha blending allows translucent surfaces. The alpha component of a pixel representsits
opacity; transparent or translucent surfaces have lower opacity than opagque ones. An aphavalue of
0x00 corresponds to absolute transparency and an apha value of 0xFF corresponds to absolute

opacity.

When using apha blending for translucency/transparency, a scene must be sorted so that
translucent/transparent surfaces are rendered correctly.

Just as with the color combine and a pha combine functions, the color components can be blended
differently than the alpha component. The blending functions are defined as follows:

Cast ™ (Cgc xfgc) + (Cdst ><fdst)
gt 7 (Qsc XOsc) + (Adst XQust)

where cy¢ iSthe RGB color of the destination pixel, ¢y is the incoming source pixel RGB, and 4. and
fae a@re the source and destination blending factors for the RGB components. Similarly, aqy isthe alpha
value of the destination pixel, aq. is the incoming alpha vaue, and g« and gq are the source and
destination blending factors for the alpha component. Note that the current value of the destination
pixd is used to compute the blended value that will overwrite it. The source of incoming a pha and
color are determined by gr AlphaCombine() and gr Color Combine() respectively. Cqg and a 44 are
clamped to the range [0..255].

The manner in which incoming pixels (source) are combined with the existing pixel (destination) is
defined by two blending factors. These factors are controlled by the Glide function
gr AlphaBlendFunction().

void gr AlphaBlendFunction( GrAlphaBlendFnc_t rgbS cFactor,
GrAlphaBlendFnc_t rgbDestFactor,
GrAlphaBlendFnc_t alphaS cFactor,
GrAlphaBlendFnc_t alphaDestFactor

)

The first two arguments specify blending factors for the RGB components while the third and fourth
arguments give the blending factors for the alpha component. The choices for all source and destination
blending factors are shown in Table 6.4.

Alphablending that requires a destination alphais mutually exclusive of either depth buffering or triple
buffering. Attempting to use GR_BLEND DST_ALPHA, GR_ BLEND ONE_M NUS_DST_ALPHA, or
GR_BLEND_ALPHA_SATURATE when depth buffering or triple buffering are enabled will have undefined
results.
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Example 6.1 Blending two images, part I.
In this example, two images are blended so that the final color of each pixel isthe sum of colors from the two

images.

gr Al phaBl endFuncti on( GR_BLEND ONE, GR BLEND ZERO, GR _BLEND_ONE,
GR_BLEND_ZERO) ;
/* draw the first inmage */

gr Al phaBl endFuncti on( GR_BLEND ONE, GR BLEND ONE, GR _BLEND_ONE,
GR_BLEND_ZERO) ;

/* draw t he second i mage */

Example 6.2 Blending two images, part I1.

In this example, two images are blending so that the final color of each pixel is 75% of the first image and
25% of the second. When the second image is drawn, alpha is given a constant value of ¥ by setting the
constant color and pointing the a e in the alpha combine unit to it.

gr Al phaBl endFuncti on( GR_BLEND _ONE, GR BLEND ZERO, GR _BLEND_ ONE,
GR_BLEND_ZERO) ;

/* draw the first inmage */
/* assunes R@&BA format for colors */

gr Const ant Col or Val ue( 64) ;

gr Al phaConbi ne( GR_COVBI NE_FUNCTI ON_BLEND OTHER, GR_COMBI NE_FACTOR_ONE,
GR COVBI NE_LOCAL_NONE, GR COMBI NE_OTHER CONSTANT, FXFALSE)

gr Al phaBl endFuncti on( GR_BLEND_SRC ALPHA, GR_BLEND ONE_M NUS_SRC_ALPHA,
GR_BLEND ONE, GR BLEND ZERO);

/* draw t he second i mage */
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Table 6.4 Alpha blending factors.

Four blending factors are specified in the grAlphaBlendFunction(). The rgbSrcFactor and alphaSrcFactor

choices are given in thefirst table. The specified factors are multiplied by the incoming RGBA values from the
color and alpha combine units and added to the product of the destination factors and the alpha values stored
in the alpha buffer. The possible destination factors are shown in the second table.

For alpha source and destination blend function factor parameters, only GR_BLEND ZEROand

GR_BLEND_ONE are supported.

if rgbSrcFactor or alphaSrcFactor is

the source blending factor fg. Or ggc IS

GR_BLEND ZERO

0

GR BLEND ONE 1

GR BLEND DST_COLOR Cosl 255
GR_BLEND_ONE_M NUS_DST_COLOR | 1— uq/255
GR_BLEND_SRC_ALPHA 24255
GR_BLEND_ONE_M NUS_SRC_ALPFA | 1_a_/255
GR BLEND DST_ALPHA a44/255
GR_BLEND_ONE_M NUS_DST_ALPHA [ 1_a__ /255

GR BLEND_ALPHA_SATURATE

Min( ag/255, 1— a44/255)

if rgbDestFactor or alphaDestFactor is

the destination blending factor fdgt Or Jast is

GR_BLEND ZERO

0

GR BLEND ONE 1
GR_BLEND_SRC_COLOR Cyo/255
GR_BLEND_ONE_M NUS_SRC COLOR | 1— ¢, /255
GR_BLEND_SRC_ALPHA a4/255
GR_BLEND_ONE_M NUS_SRC_ALPHA | 1_4__/255
GR BLEND DST_ALPHA a44/255
GR_BLEND_ONE_M NUS_DST_ALPFA | 1_ g /255

GR BLEND_PREFOG COLOR

Cyc before fog is applied. See the Multi-Pass Fog section in

Chapter 8.
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Example 6.3 A compositing example.

A background scene is drawn with one alpha value, a polygonal cropping window is drawn with a second
alpha value, and a foreground is mapped into the cropping window by discarding parts of the new scene that
fall outside the cropping window. This example uses the alpha combine unit, alpha buffering, and alpha
blending.

/* enabl e the al pha buffer */
gr Col or Mask( FXTRUE, FXTRUE) ;

/* set al pha conbine to generate zero al pha */
gr Al phaConbi ne( GR_COMVBI NE_FUNCTI ON_ZERO, GR_COMBI NE_FACTOR_NONE,
GR_COVBI NE_LOCAL_NONE,  GR_COWVBI NE_OTHER NONE, FXFALSE) ;

/* draw background scene */

/* clear out the cropping polygon */

gr Col or Conbi ne( GR_COVBI NE_FUNCTI ON_ZERO, GR_COVBI NE_FACTOR_NONE,
GR_COVBI NE_LOCAL _NONE, GR COMVBI NE OTHER _ NONE, FXFALSE)

gr Al phaConbi ne( GR_COVBI NE_FUNCTI ON_ZERO, GR_COMBI NE_FACTOR_NONE,
GR_COVBI NE_LOCAL _NONE, GR COmVBI NE OTHER _ NONE, FXFALSE)

/* draw croppi ng wi ndow */

/* set alpha blend unit to use destination alpha to select */

/* new pixel or old one */

gr Al phaBl endFunct i on( GR_BLEND DST_ALPHA, GR _BLEND ONE_M NUS_DST_ALPHA,
GR_BLEND_ZERO, GR _BLEND ONE);

/* set color conbine and al pha conbi ne back to defaults */

gr Col or Conbi ne( GR_COVBI NE_FUNCTI ON_SCALE_OTHER, GR_COVBI NE_FACTOR_ONE,
GR_COVBI NE_LOCAL _ | TERATED, GR_ COVBI NE OTHER _ | TERATED, FXFALSE)

gr Al phaConbl ne(GR COMVBI NE_FUNCTI O\l SCALE OTHER, GR_COVBI NE_FACTOR_ONE,
GR_COVBI NE_LOCAL _NONE, GR COMVBI NE or HER CONSTANT, FXFALSE)

/*draw t he foreground scene */
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In This Chapter

One potential use of the auxiliary buffer is as a 16-bit depth buffer. Each pixel may have an associated
zor g vaue and either one may be used to represent the distance between the pixel and the viewer. A
user-selectable depth test determines when an incoming pixel replaces one previously stored in the
frame buffer. One common use for a depth buffer is pixel-accurate hidden surface removal, allowing
nearer surfaces to obscure surfaces further away regardless of the order they are drawn in.

You will learn how to:

V¥ enable depth buffering.

specify a depth test.

implement a fixed point z buffer.

4 4 <

implement afloating point w buffer.. (It' srealy a*“q buffer” in Glide 3.0 but history demands that
we gtick with the old name.)

V¥ use adepth bias to reduce poke-through artifacts introduced by coplanar polygons.

The type of depth buffering in use is controlled using gr DepthBuffer M ode(). The comparison function
is selected with the function gr DepthBuffer Function(). Writes to the depth buffer are controlled by

gr DepthMask(). Since the auxiliary buffer can serve only asingle use, depth buffering, apha buffering,
and triple buffering are mutually exclusive.

Enabling Depth Buffering
The Glide function gr DepthBuffer M ode() enables and disables depth buffering.

void gr DepthBuffer M ode( GrDepthBufferMode_t mode )

The mode argument specifies the type of depth buffering to be performed. Valid modes are
GR_DEPTHBUFFER_DI SABLE, GR_DEPTHBUFFER_ZBUFFER, GR_DEPTHBUFFER VBUFFER,
GR_DEPTHBUFFER_ZBUFFER_COVPARE_TO Bl AS, OF GR_DEPTHBUFFER_WBUFFER_COVPARE_TO Bl AS.
If GR_DEPTHBUFFER ZBUFFER Of GR_DEPTHBUFFER_ZBUFFER COVPARE_TO BI AS is selected, the depth
buffer is a 16-hit fixed point z buffer. A 16-bit floating point w buffer isused if mode is
GR_DEPTHBUFFER_WBUFFER Or GR_DEPTHBUFFER_WBUFFER_COMPARE_TO BI AS. By default, the depth
buffer mode is GR_DEPTHBUFFER_DI SABLE.

Since apha, depth, and triple buffering are mutually exclusive of each other, enabling depth buffering
when using either the alpha or triple buffer will have undefined resuilts.

If GR_DEPTHBUFFER_ZBUFFER_COMPARE_TO Bl AS Of GR_DEPTHBUFFER_WBUFFER_COVPARE_TO BI AS
is selected, then the bias specified with grDepthBiasL evel() isused as apixel’s depth value for
comparison purposes only. Depth buffer values are compared against the depth bias level, and if the

Copyright © 1995- 1998 3Dfx Interactive, Inc. 67
Proprietary and Confidential Printed 08/05/98 10:30



Glide 3.0 Programming Guide

compare passes and the depth buffer mask is enabled, the pixel’ s unbiased depth value is written to the
depth buffer. This mode is useful for clearing beneath cockpits and other types of overlays without
affecting either the color or depth values for the cockpit or overlay.

Consider the following example: the depth buffer is cleared to oxFFFF and a cockpit is drawn with a
depth value of zero. Next, the scene beneath the cockpit is drawn with depth buffer compare function of
GR_CMP_LESS, rendering pixels only where the cockpit is not drawn. To render the next frame, you
need to clear the last scene. If you use grBuffer Clear (), you will remove everything, including the
cockpit. To clear the color and depth buffers underneath the cockpit without disturbing the cockpit, the
areato be cleared is rendered using triangles with the depth bias level set to zero, a depth buffer
compare function of GR_CVP_NOTEQUAL, and a depth buffer mode of
GR_DEPTHBUFFER_ZBUFFER_COVPARE_TO Bl AS Of GR_DEPTHBUFFER WBUFFER_COVPARE_TO BI AS.
All pixels with non-zero depth buffer values will be rendered and the depth buffer will be set to either
unbiased z or g, depending on the mode. Using this method, the color and depth buffers can be cleared
to any desired value beneath a cockpit or overlay without affecting the cockpit or overlay. Sorted
background polygons that cover the visible area can be rendered in this manner, eliminating the need to
clear the whole buffer and then redraw the overlay for each frame. Once the depth buffer is cleared
beneath the cockpit, the depth buffer mode is returned to either GR_DEPTHBUFFER _ZBUFFER Of
GR_DEPTHBUFFER_WBUFFER by calling gr DepthBuffer M ode() and the depth comparison function is
returned to its normal setting (GR_CMP_LESS in this example) by calling gr DepthBuffer Function().

Note that since this mode of clearing is performed using triangle rendering, the fill rate is about one
half that of arectangular clear using gr Buffer Clear (). In the case where sorted background polygons
are used to clear beneath the cockpit, this method should always be faster than the alternative of caling
grBuffer Clear () and then drawing the background polygons. In the case where background polygons
are not used, the two methods:

clearing the buffers with gr Buffer Clear () and then repainting the cockpit, or
clearing beneath the cockpit with triangles and not repainting the cockpit

should be compared and the faster method chosen. Avoiding a cockpit repaint is important: cockpits are
typically rendered with linear frame buffer writes and while the writes are individually fast, the process
can be lengthy if the cockpit covers many pixels.

GR_DEPTHBUFFER_ZBUFFER_COMPARE_TO Bl AS and GR_DEPTHBUFFER _WBUFFER_COMPARE_TO Bl AS
modes are not available in revision 1 of the Pixelfx chip (use gr Get() to obtain the revision number).

When depth buffering is enabled, the gr DepthM ask() routine enables writes to the depth buffer.
void gr DepthM ask ( FxBool enable )

If enable is FXFALSE, depth buffer writing is disabled. Otherwise, it is enabled. Initially, writing to the
depth buffer is disabled. Since the apha, depth, and triple buffers share the same memory,
grDepthMask() should be called only if depth buffering is being used.

The depth buffer can be cleared to a specific value with grBuffer Clear (), as described in Chapter 3.
The depth buffer is typically cleared to avaue that is further away from the viewpoint than any object
in the scene.

The Depth Test

gr DepthBuffer Function() specifies the function used to compare each rendered pixel’s depth value with
the depth value present in the depth buffer. The comparison is performed only if depth testing is
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enabled with gr DepthBuffer M ode(). The choice of depth buffer function is typically dependent upon the
depth buffer mode currently active. The default comparison function is GR_CMVP_LESS.

The single argument, func, specifies the depth comparison function. Table 7.1 lists the valid
comparison functions and the conditions under which a pixel will “pass’ the test and overwrite the
pixd in the frame buffer and depth buffer.

Table 7.1 The depth test.

The func argument to grDepthBuffer Function() can take on any of the values listed in the first column of the
table below. The second column specifies the depth test, and the third column describes the conditions under
which an incoming pixel will “ pass’ the test and overwrite the appropriate location in the frame buffer and
depth buffer.

if funcis the depth comparison is | and the pixel

GR_CMP_NEVER FALSE never passes

GR_CWP_LESS depthpey < depthog passes if the pixel’s depth value is less than the stored
depth value

GR_CVP_EQUAL depthpe, = depthyg passes if the pixel’s depth value is equal to the stored
depth value

GR_CMP_LEQUAL depthay £ depthyg passes if the pixel’s depth value is less than or equal to the
stored depth value

CR_CWP_GREATER | depth,, > depthyq passes if the pixel’s depth value is greater than the stored
depth value

CR_CWP_NOTEQUAL | depthpe, ! depthyq passes if the pixel’s depth value is not equal to the stored
depth value

GR_CMP_GEQUAL depthe, 3 depthyg passes if the pixel’s depth value is greater than or equal to
the stored depth value

GR_CVP_ALVAYS TRUE always passes

Fixed Point z Buffering

When 16-bit linear z buffering is enabled, z values for each pixel are linearly interpolated across a
polygon’s face. Since observer space z values are not linear in screen space, the graphics hardware
must instead interpolate 1/z values, which are linear in screen space. When linear z buffering is
enabled, the graphics hardware interpolates a high precision fixed point 1/z value (provided by the
application), but it stores only the 16-bit integer portion of the 1/z value. This can lead to some
precision problems, and thus an application’s objects and database must be constructed and scaled
carefully to minimize z aliasing. Linear z buffering is enabled by calling gr DepthBuffer M ode() with the
constant GR_DEPTHBUFFER_ZBUFFER.
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Example 7.1 Configuring a z buffer.
The following code sequence configures Glide for z buffering:

gr Dept hBuf f er Mode( GR_DEPTHBUFFER ZBUFFER ) ;

gr Dept hBuf f er Functi on( GR_CMPFNC _GREATER ); // 1/Z decreases as Z
i ncreases!

gr Dept hMask( FXTRUE );

grBufferC ear(0, 0, 0);

Floating Point w Buffering

The graphics hardware can also derive a depth value from the g/w factor computed for texture mapping
and fog. Such an approach has many advantages over linear z buffering, including much greater
dynamic range and less aliasing and accuracy artifacts. The graphics hardware uses a proprietary 16-
bit floating point format for w buffering, however, an application typically does not need to manipulate
this data directly, except when an application must read data directly from the depth buffer and then
convert this depth value to an application dependent format. Floating point w buffering is enabled by
calling gr DepthBuffer M ode() with the constant GR_DEPTHBUFFER_WBUFFER.

Example 7.2 Configuring a w buffer.
The following code sequence configures Glide for w buffering. The depth buffer isinitially cleared to a value
representing the farthest point, so that all objects in the scene are closer to the viewer than empty spaceis.

FxU8 wLi m ts[2];

gr Get (GR_WDEPTH_M N_MAX, 2, *wLi mi t s) ;

gr Dept hBuf f er Mode( GR_DEPTHBUFFER WBUFFER ) ;

gr Dept hBuf f er Functi on( GR_ CMP_LESS ); // larger Wvalues are farther
away

gr Dept hMask( FXTRUE );

grBufferClear(0, 0, whLimts[1]);
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Establishing a Depth Bias

When depth buffering coplanar polygons (e.g. when one polygon is used as a “detail” polygon on
another), precision problems with coplanar polygons may result in “poke through” artifactsif the
vertices of the two polygons are not the same. To eliminate the artifacts, an application should apply a
“depth bias” when it renders two coplanar polygons, so that Glide understands which polygon is on top
of the other. gr DepthBiasL evel() alows an application to specify a depth bias.

void gr DepthBiasL evel( FxU32 level )

Specificaly, if two polygons are coplanar but do not share vertices (e.g., a surface detail polygon sits
on top of alarger polygon), the depth bias level should be incremented or decremented as appropriate
for the depth buffer mode and function, per coplanar polygon. For left-handed coordinate systems,
where 0x0000 corresponds to “nearest to viewer” and OxFFFF corresponds “farthest from viewer”,
depth bias levels should be decremented on successive renderings of coplanar polygons. When the
coplanar polygons have been rendered, the depth bias mode should be reset to O.

Example 7.3 Using a depth bias.
In this code segment, an underlying triangle is rendered, a depth biasis established, and then another triangle
isrendered on top of the first one.

/* Render the underlying polygon */
grDrawTri angl e( /* base polygon’'s paraneters */ );

/* Render the conposite polygon by first enabling depth bias */
gr Dept hBi asLevel ( -1 );
grDrawTriangl e( /* conposite polygon's paraneters */ );

/* Disable depth bias */
gr Dept hBi asLevel ( 0 );

An Example: Hidden Surface Removal

When a scene is rendered, some of the objects will undoubtedly obscure other objects. If the viewpoint
never changes, you can sort the polygons on z, and draw the scene from back to front.

But what if the viewpoint can change from one frame to the next? Say it’s tracking a cursor controlled
by a mouse. The computation cost of re-sorting the scene for each frame can be prohi