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Abstract: 1In the context of a capability-based
protection system, the term "transfer" is used
(here) to refer to the situation where a user
receives information when he does not initially
have a direct "right" to it. Two transfer methods
are identified: de Jure transfer refers to the
case when the user acquires the direct authority
to read the information; de faéto transfer refers
to the case when the user acquires the information
(usually in the form of a copy and with the assis-
tance of others), without necessarily being able
to get the direct authority to read the informa-
tion. The Take-Grant Protection Model, which al-
ready models de jure transfers, is extended with
four rewriting rules to model de facto transfer.
The configurations under which de facto transfer
can arise are characterized. Considerable motiva-
tional discussion is included.

1. Introduction

Recall that a capability-based protection
system [1,2] is a mechanism which limits access to
information to those entities, e.g. users, that
have the "right" to access it. The "rights" are
usually represented as tokens and the system keeps
a complete record of which entities have which

"rights." All references to information are
validated to insure that only rightful access is
permitted.

In this context there are two distin:t means
by which a user that does not have the "right" to
read a file can acquire the information. The first

*
will be called de jure acquisition:

de jure acquisition means that the authority
or "right" to read the information is

*Our use of de jure, "rightful, by right" [3]1, and
de facto, "(existing) in fact, whether by right or
not" [3], is intended to avoid pejorative names
such as authorized/unauthorized, legal/nonlegal,
etc.
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transferred to the user.

For example, another user that has the read 'right™
can grant it to the user whereupon he invokes

the "right" and reads the information. Of course,
it may be necessary to "pass" the "right" along
through several users before it can reach the end
user.

The second method is called de facto
acquisition:

de facto acquisition means that the user
acquires the "information" in the file
without necessarily acquiring the direct
authority to access the file.

For example, the user may be given a copy of the
file from another user who does have the "right"

to read it. The copy. could be passed via a "mail~
box" file common to both users. It may be neces-
sary for several users to pass copies of the file
along. We may also include other methods of trans-
fer such as a user writing directly into another
user's address space. Lampson considered some of
these issues in his discussion of the confinement
problem [4].

These acquisitions are illustrated diagramma-
tically inFigures 1 and 2. The letters represent
"rights" where r,w and g abbreviate read, write
and grant, respectively. In Figure 1, the protec-
tion state is changed when Baker performs a
de jure transfer by granting Abel the read
"right" to File 2. Figure 2 illustrates that there
is a potential for a de facto transfer of File 3
to Baker since Charlie could copy the
contents of File 3 into the "mailbox." A dashed
line is used to emphasize that no change in the
protection state has taken place -- we have only
illustrated one potential de facto transfer.

Although de Jure and de facto transfers
accomplish the same objectives —-- movement of
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information -- they are quite different.

« De jure transfer implies de facto transfer,
but not vice versa. That is, a de jure
transfer can be thought of as a de facto
transfer where the authority happens to be
acquired. But the recipient of a de facto
transfer may not be able to get the "read
rights” to the source version of the file and
thus no de jure transfer is possible.

« De jure transfer always gives the right to
obtain an up-to-date version of the informa-
tion whereas a de facto transfer will not
reflect any changes made to the original
file since the copy was created. This means
that de facto transfer is inferior to de
Jjure transfer for frequently changed files.

+ De facto transfer relies on the agents trans-
mitting a complete and accurate copy of the
file. Any errors introduced either inten-
tionally or accidentally during transmission
may degrade the “"quality" of the information.

Finally, and perhaps most importantly, currently
available formal models of capability-based pro-
tection systems [5,6,7) have focused only on de
Jure transfer -- de facto transfers have not been
studied in the context of these models. The pur-
pose of this paper is to present a formal model to
aid in understanding de facto information transfers.

since de jure transfers may assist in accom-
plishing a de facto transfer (Figure 3), it will be
helpful to cast our study of de facto transfers in
a context where de jure transfers are already under-
stood. The Take-Grant Model [6} is appropriate for
these purposes and so we shall extend it to in-
clude de facto transfers as well as de jure trans-
fers. (No knowledge of the Take-Grant Model is
presumed; this paper is self-contained.)

Our plan is to give in Section 2 a separate
model ( compatible with the Take-Grant Model) of
just unaided de facto transfers. After a brief
philosophical discussion in Section 3, we proceed
in Section 4 with a characterization of potential
de facto transfers. In Section 5 we review known
results concerning de facto transfers. Then, in
Section 6 we permit both types of transfer and
characterize the general de facto transfer case.
We present conclusions and open problems in Sec-
tion 7.
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2. De Facto Information Transfers

A capability-based protection system will be
modeled by a finite, directed graph called a pro-
tection graph, analogous to the protection graphs
used in earlier versions of the Take-Grant Model
[6]. The protection graph is intended to abstract
the protection state of the system, i.e. that in-
formation recorded in the protection system concern-—
ing which entities have which "rights" to other
entities.

The vertices of the graph will be of two types:
subjects (denoted by @) will represent "active"
entities such as users, and objects (denoted by ©O)
will denote "passive" entities such as files.

(There are usually many other entities in a system,
e.g. load modules, directories, etc., that are hard
to categorize by such vague terms as "active" or
"passive." For example, one might arqgue that a
load module is "active" in the sense that it could,
when executed, cause information to move. Alter-
natively, if one knows that the module is "secure,"
i.e. doesn't disseminate information, it might be
called “"passive.” These and other interpretations
depend upon the particular system being modeled,
and because of our general approach, they are beyond
the scope of this study. We simply provide two
classes of entities and depend on the reader to
make the appropriate classification for his system.)

The edges between the vertices are labeled
with elements from a finite alphabet R corresponding
to "rights." 1In order to develop our theory, we
assume that R contains the letters r,w,t,g mnemonic
for read, write, take and grant. The interpreta-
tion of an edge from vertex x to vertex y labeled
by « € R

;——(x-‘_)o
is that within the protection system, x has all and
only the a rights to y. We call these edges
explicit since they represent authority that is for-
mally recorded in the protection system. Clearly,
every de Jure transfer will cause a change in the
protection graph. But when we identify the poten-
tial for a de facto acquisition by user x of the
information in file y we cannot indicate this fact
by adding an explicit x-to-y edge labeled r in the
protection graph. This is because the protection
graph records the authority relationships and a

3
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Figure 1: A de jure acquisition: Baker grants to Abel
the read authority to File 2.

*Our use of the phrase "movement of information"
should not be confused with "information flow" as
used in, say, [11,12]

potential de facto transfer, regardless of whether
it occurs, does not change the authority. Thus, we
permit a second kind of edge, labeled with an r and
denoted by a dashed line that will represent
potential de facto acquisition. These edges will
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Pigure 2:
the mailbox from which Baker

be called implicit edges.

With the protection state thus abstracted as a
directed graph, it remains to explain how to iden-
tify potential de facto acquisitions. In order to
be compatible with the Take-Grant Model we present
four graph rewriting rules that abstract some of
the basic methods of de facto information acquisi-
tion. (Note in the following definitions, the un-
modified use of "edge" refers to either implicit or
explicit edges. In the diagrams, ® denotes a ver-
tex that can be either a subject or an object and
set braces are elided.)

Post: Let x, y and z be distinct vertices in a pro-
tection graph G such that x and z are subjects.
Let there be an edge from x to y labeled a,
r-¢ o, and an edge from z to y labeled B,
w € B. Then post defines a new graph G' with
an implicit edge from x to z labeled {r}.
Graphically,

r

x Y

Let x, y and z be distinct vertices in a pro-
tection graph G such that y is a subject. Let
there be an edge from y to x labeled by o,

w € o, and an edge from y to z labeled by 8,

r € B. Then pass defines a new graph G' with an
implicit edge from x to z labeled {r}.
Graphically,

Pass

x Y

Let x, y and z be distinct vertices in a pro-
tection graph G such that x and y are subjects.
Let there be an edge from x to y labeled a,

r € o, and an edge from y to z labeled 8,

r € B. Then the spy rule defines a new graph
G' with an implicit edge from x to z labeled
{r}. Graphically, :

Spy :

X

Find:

Y

Let x, y and z be distinct vertices - in a pro-
tection graph G such that y and z are subjects.
Let there be an edge from y to x labeled q,

w € o, and an edge from z to y labeled 8,

w € B. Then find defines a new graph G' with
an implicit edge from x to z labeled {r}.
Graphically,

~
-

o W s

Charlie Baker

A potential de facto acquisition:

Charlie

file 2

(b)

Charlie could copy file 3 into
could read the information.

We will refer to these rules, collectively, as the
DF rules.

The rules are intended to abstract possible
ways in which information may be read by vertex x
with the cooperative effort of ome or more subjects.
The subjects invoke authority that they own within
the system in order to effect de facto transfer.
This transfer, or more accurately, the potential for
this transfer, is summarized by the implicit edge
from x to z, labeled {r}. We can then apply these
rules to a protection graph (see example below) to
summarize the de facto transfer in the entire system.

The Post rule abstracts parts of the operation
described in the Introduction of  transfer via a
mailbox. In the Pass rule y acts as a conduit
through which information travels from z to x. The
Spy rule abstracts the case where y reads information
from z and x "watches" y read the information. More
often, however, it is used to "compose" transfers
(see graph G4.in'the example below). The Find rule

abstracts the case where z deposits data into the
address space of y and y 'in turn deposits it into x.

The rewriting rules enable us to illustrate
the potential de facto transfers by augmenting a
given protection graph G with new implicit edges.
Let G0 be the protection graph

G0‘
and consider whether or not p can read g. We note
that the Post transfer rule
- T~ -~ r
r w -r w >
r———I————@ = .
X y z X y z

matches so it can be applied where the variables of
the rule definitiom (x,y,z,a and B) match p,a,b,{r}
and {w}, respectively. Thus, we summarize the

potential for this transfer by adding an implicit

The result is Gl

edge from p to b labeled r.
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Figure 3: Given the protection state (a),
a de jure transfer (b) is used to
enable a de facto transfer (c).

Usually, we denoté such a rule application by
w 1 3 "
GOPESEE-Gl, and read G0 vields Gl via Post.

The sequence of rule applications that illus-
trate that p could acquire the contents of g are
illustrated below.

Le-==.r _- ~.r
. <

P ‘Y >, w r W
Gl a b c ~
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So we conclude that there is a potential for de
facto transfer to p. Note that all of these added
edges are implicit -~ they do not represent added
authority, only potential de facto access.

Tortuous though the example may be, it illus-
trates that rather complex transfer can be realized.
It is just as important (perhaps more important) to
know what de facto transfers cannot be realized.
For example, it is 7ot possible for p' to read g
by a transfer along the "lower" path in GO. This

is because of the two consecutive objects which
form a "barrier" to indirect transfer. (See
Theorem 4.1.)

To illustrate another subtlety, note that b
plays a pivotal role in the transfer. We might

have tried to skip past b by applying the Find

le to G,.
rule to G,

But g is an object, and our rule definitions
do not permit the application of a Spy to define a
read edge from p to ¢. One might argue that a Spy
should be allowed here because the a-to-c¢ read edge
is implicit and thus a receives the information
passively. Subjecthood appears restrictive. Our
decision to force the second vertex in a Spy rule
to be a subject Guarantees the existence of an
agent when needed. It will be clear from our
results that this limitation is not serious.

3. Discussion

We have introduced a considerable amount of
mechanism with only the briefest motivational re-
marks. It is appropriate to pause and discuss what
we have and have not done, and why.

We emphasize that we are basing our study of
de facto transfer on the protection graph -- an
abstraction of the authority relations in the
system. Since de facto transfers involve the move-
ment of information rather than authority, one
cannot tell by observing the protection graph whether
or not a de facto transfer has occurred. One can
only tell if it could occur in any particular
arrangement of authority relations. Accordingly,
we have spoken of "potential de facto transfer."




It may seem curious that the protection graph
is used for studying de facto transfers when it
doesn't even provide a means of witnessing such
transfers. But there appears to be little alterna-
tive. First, de facto transfers must operate
within the extant authority relations of the system
together with those changes that could be achieved
via de jure transfers. Since the de jure transfers
are visible in the protection graph, it is needed
to understand those changes. Second, it appears
unlikely that we will ever be able to determine
when or if a de facto transfer has occurred. Ob-
serving that some bits have been transmitted is
not enough. For example, in Figure 2 when Charlie
copies "information" from File 3 into the mailbox
and Baker reads the contents of the mailbox, does
Baker receive "information?" Certainly, if Charlie
exactly copies File 3, the answer is probably
"yes." The answer should also be "yes" if Charlie
copies a scrambled version of File 3 that Baker can
decode, but this would be hard to distinguish from
the case where Charlie only transmits garbage.

If Charlie only reports that File 3 "is an ASCII
file with 107,261 bits, 26,889 of which are 1,"
then it is unlikely, though not impossible that this
is "information" to Baker. Aand if Charlie reports
that "File 3, if it exists, contains the contents of
File 3, if any" then no "information" is trans-
ferred, provided this response is not some clever
encoding scheme. In short, "information" transfer
has very little to do with transmitting bits and
very much to do with semantic and logical issues
that are well beyond the state-of-the-art.

We regard the four DF rules defined in the
previous section as a representative sample of the
potential de facto acquisitions that might arise
in a protection system. In some actual systems
only a subset of these methods might be achievable.
In others, there may be acquisitions not captured
by these rules, e.g. if there is an explicit
"update right." In either case, the development
that follows may have to be modified. Our purpose
in this paper is to illustrate the methodology
used to access the potential de facto transfers of
a protection system.

To be explicit, this methodology is to
define a set of rewriting rules that add implicit
edges to a protection graph and then to character-
ize (Sections 4-6) the conditions under which these
rules permit de facto transfer.

As has already been noted, this methodology
has the advantage that it is compatible with (and
thus allows us to build upon) the Take-Grant Model.
A more compelling advantage, perhaps, is that our
"three-place" rewriting rule schemata, i.e. three
vertices and two connecting edges, encapsulate all
of the required components of an "information

transfer."” 1In particular, if we distinguish*

between the conveyance of information (i.e. reading
the information when the read authority exists) and
transfer of information (i.e. reading the information
when the read authority doesn't originally exist),
then a transfer obviously requires (1) an informa-—
tion source, (2) a receiver, (3) at least one agent,
since the information and receiver aren't presumed

" *We are not trying to split hairs over the semantics
of "conveyance" and "transfer"; we are only assign-
ing suggestive names to the two concepts.

be connected, (4) a "right" or a chain of "rights"
connecting the agent to the information and (5) a
"right" or a chain of "rights” connecting the

agent to the receiver. 1In our rules the "middle
vertex," y, is the agent. It plays either an active
or a passive role. The other four components of a
transfer are also explicitly represented.

Our approach has explicitly abstracted the
notion of de facto transfer as the composition of
two conveyance operations. But it has come to our
attention [8,9] that an alternative approach can
be based on conveyance alone. The suggestion [9]
is to use "two place" rules, i.e. two vertices
connected by an edge, that describe the circum-
stances under which a "token" (corresponding to the
information) can be moved along an edge from one
vertex to another. Although this approach does not
fulfill our original goal of explicitly abstracting
de facto information transfer, it does have an
appealing technical simplicity. Whether this bene-
fit is offset by difficulties in interfacing with
de jure transfer remains an open question that will
not be pursued here.

Finally, we must make one cautionary remark
concerning the interpretation of protection graphs.
This is a general study that will be applicable
(we hope) to a wide class. of protection systems.

As such we must consider all protection graphs even
if they do not have a sensible interpretation in the
context of a particular protection system. For
example, we allow such comnstructs as

r X .
g—————-*$ in our protection graphs. If one inter-

prets objects as files, this may be meaningless.
But if objects include "secure" processes, then
this is more reascnable. We cannot limit a priori
the class of interpretations, so we allow for any
protection graph consistent with our original
definitions.

4. The Conditions of De Facto Transfer

Having abstracted potential de facto transfers
as a set of four rewriting rules and having illus-
trated that these rules compose in complex ways,
we now formulate an exact statement of what it
means for a potential de facto transfer to exist
within the model. This will be done by defining a
predicate can-know-f(p,q,G) of three parameters.
The predicate is true if vertex p of protection
graph G can acquire the information from vertex gq
of G by some sequence of rule applications. Then,
we define conditions on G that determine when the
predicate is true.

Define for a protection graph G, and arbitrary

0

distinct vertices p and q of G0

can-know-f(p,q,Go) to be true if and only if
there exists a sequence of graphs
G, re..,G_ (n20) such that G, . follows
1 n i+l
from Gi(OSi<n) by one of the DF rules and
in Gn either a p-to-q edge labeled r

exists or a g-to-p edge labeled w exists
and if the edge is explicit, its source
is a subject.

Thus, the predicate can-know'f(p,q,Go) is true if

and only if the authority already exists in GO or




an implicit edge from p-to-q can be added by means
of the four DF rules.

Now, we formulate conditions under which
can+know+f holds. To aid in this endeavor, define an
rw-path in a protection graph G as a sequence of ver-

tices VO'vl""'v? (k21) such that vy is connected to

vi+l by an edge (in either direction) labeled with
r or w (or both) for all i, 0<i<k.
rw-path is between v_ and v. .

0 k
graph

We say that the
For example, in the

s t u v
the sequence s,t,u,v is an rw-path.

Not all rw-paths will permit de facto transfer
of information. (For example, s,t,u,v above does
not!) So we limit our attention to a certain subset
of them. To do this, we associate with each rw-path

> + > o+ A
one or more words over the alphabet {r,r,w,wl} in
the obvious way; for example, the sequence s,t,u,v
given above has two associated words, namely

> S>>
rrw and rww.

Define an rw-path vo,vl,...,vk (k=1) to be an
admissible rw-path if and only if

e.e. a in

(i) it has an associated word aa, X

-+ “« *
the regular language (r u w) and

>
(ii) if a, = r then v is a subject and if

1

< .
a, =w then v, is a subject.

There are two immediate consequences of this defini-
tion. First, since k21, there is always at least

one letter in the word associated with any admissible
path. Second, there cannot be two consecutive ob-
jects on any admissible path.

The first result concerning de facto trans-
fers can now be stated.

Theorem 4.1: Let p and g be vertices in a
protection graph G. Then
eansknowf(p,q,G) is true if and only if
there is an admissible rw-path between p
and g.

The proof of this result is a rather routine induc-
tion and a closely related variant of the proof can
be found in [10]. We emphasize that this condition
is both necessary and sufficient; it exactly charac-
terizes the de facto transfers in the entire system.

In the definition of rw-path we permitted cycles
It is easy to prove that these cycles are redundant,
i.e. an admissible path with no cycles can be found
from any admissible path by "snipping off" the cycles
Thus, it is easy to test the conditions of the
theorem for any pair of vertices by using standard
breadth-first graph traversal techniques.

Corollary 4.2: For vertices p and q of a pro-
tection graph G, there 'is a linear-time
(in vertices plus edges), algorithm for
testing cancknow+f(p,q,G).

The reader is encouraged to return to the graph
G0 in Section 2 to verify our claim that there can

be no transfer along the "lower" path; that is,
can-know-f(p',q,Go) is false.
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5. Review of De Jure Transfer

Up to this point we have concentrated on the
four rules that implement de facto transfers. Al-
though these rules specify the addition of an edge
in the graph, we have agreed that these are only
implied edges -~ no new access authority has been
created. Now, we review the way in which de jure
acquisition takes place in the Take/Grant Model.

Recall that in addition to r and w, there are
two other rights: t and g. 1In [6] the following
rules were introduced for changing access authority.
All edges referred to in these rules are explicit.

Take:

*

Let x, y and z be three distinct vertices in
a protection graph G such that x is a subject.
Let there be an explicit edge from x to y
labeled y such that t € y, an explicit edge from
y to z labeled 8 and o c 8. Then the take rule
defines a new graph G' by adding an explicit
edge to the protection graph from x to z labeled
o. Graphically,

X y z X y z

The rule can be read: "x takes (a to z

from y." .

Grant: Let x, y and z be three distinct vertices in
a protection graph G such that x is a subject.
Let there be an explicit edge from x to y
labeled vy such that g € Yy, an explicit edge from
x to z labeled 8, and acB. The grant rule
defines a new graph G' by adding an explicit

edge from y to z labeled a. Graphically,

8 Illll B
ég b = %
X y z X y z °

The rule can be read: "x grants (o to z) to y."

Create: Let x be any subject vertex in a protection
graph G and let a be a subset of R. Create
defines a new graph G' by adding a new vertex
n to the graph and an explicit edge from x to

n labeled o. Graphically,
a

¢ = &—B .,

X X n

“"x créates (a to) new
subject "
{object } n.

The rule can be read:

Remove: Let x and y be any distinct vertices in a
protection graph G such that x is a subject.
Let theré be an explicit edge from x to y
labeled B, and let o be any subset of rights.
Then remove defines a new graph G' by deleting
the o labels from B. If B becomes empty as a

result, the edge itself is deleted. Graphically,
—F o - e B o .
X y X y

The rule can be read: "x removes (a to) y."

We refer to these four rules collectively as the
DJ rules.

The edges added by these rules represent expli-
cit changes in the access authority, Thus, when
vy takes (r to z) from y," x only acquires the read

*In [6] these rules were labeled with different letters.

vt et i



rights to the information. It must invoke the
right to read the information. In addition to add-

ing edges, Create allows the addition of new vertices.

*
As Figure 4 illustrates, Create adds an important
dimension to the model since withdut Create one can-
not add g to the ag-to-b edge in this example.

In order to report on previous results [6,7]
we define tg-path (analogous to an rw-path) as a non-
empty sequence v_,...,v. of vertices such that for

0 k
all i, 0<i<k, v, is connected to v,

i+l
(in either direction) with a label containing a "t"
or "g" (or both). Vertices are tg-comnected if
there is a tg-path between them and we call any max-
imal, tg-connected subject-only subgraph an island.

by an edge

Associate with tg-paths words over the alphabet

> 4
{t,t,g,9} analogous to the words associated with rw-
paths. (If k = 0 in the tg-path, then the associated

t b b

a }-———- a
g create 8
g c tg (S

a

rant a

g

,grant a

il

.
.
.

Figure 4: Vertex a acquires g rights to b, i.e.
g is added to the label on the a-to-b edge.
The rule applications may be read:
a creates (tg to) new object. d,
a grants (g to 4) to ¢,
¢ grants (g to b) to d,

a takes (g to b) from d.

*Note, even though there is only one directed edge
from any vertex & to any vertex b, we occasionally
draw two to emphasize changes in labelling.

51

word is €.) ,V. with v

k 0
subject is an initial span if it has an associated

A tg-path VO"" being a

* .
word in the language { gl v {e}; it is a terminal

>%
span if it has an associated word in {t }; and it

is a bridge if v, is a subject and it has an asso-

. . >* ek A pek Sk
ciated word in {t ,t ,t gt ,t gt }. Note that

initial and terminal spans have orientation, i.e.

s is the source of the spans. We say Yo initially

or terminally spans to vk,

Restricting cur attention only to Take, Grant,
Create and Remove, we define for a right o and dis-
tinct vertices p and q of a protection graph GO’
the predicate

can-share(a,p,q,co)= there, are protection
*
graphs Gy,...,G such that G, — G,
using only DJ rules and in Gn there is a
p-to-q edge labeled a.

Note that a can be any right in R, including
{r,w,t,g}.

We may now state when the cansshare predicate
is true. Let p and q be arbitrary, distinct vertices
in protection graph GO and let a€R.

Theorem 5.1{6]: The predicate
aan-share(a,p,q,Go) is true if and only
if the following hold simultaneously:
(i) there is a vertex s ¢ G0 with an

s~to—-q edge labeled o,

(ii) there exist subject vertices p' and

s' such that

(a)
(b)
there exist islands Il""'Iv'

s' € Iv' and there is a

p' initially spans to p,
s' terminally spans to s,
(iii)
p' € Ill
i .<j<v) .
bridge from Ij to Ij+1(l j<v)
Figure 5 illustrates the conditions of the theorem.
Although these conditions appear to be complicated,

we can test a protection graph in linear time to see
if it satisfies the conditions.

Clearly, if one is restricted to the DJ rules,
then p canget de jure access to q in'G0 if and only

if aan'share(r,p,q,Go) is true. The crucial gquestion
is: how do the DJ and DF rules interact? We de-
scribe that in the next section.

6, Combined Transfers

We begin by illustrating a simple case where
both de jure and de facto transfers are needed to

share information. Consider the protection graph G:
S,P—'-—’qu
g t
G
r W
X! bz
y

and notice that can-share(r,p,q,G) is false since s
(the only owner of the "read right" to q) is not
tg-connected to p. Also, cansknow *f(p,q,G) is false




Islands:

Il.= {p,u}, 12 = {w}, I3 = {y,s'}.
Bridges: uw,v,w and W,X,Y.
Initial span: p; associated word: €.

. -
Terminal span: s',s; associated word: t.

Cun-share(r,p,q,Go) is true as the following

derivatives attest:

1. s' takes (r to q) from s.
2. s' grants (r to q) to y.
3. y takes (g to w) from x.
4. u takes (g to w) from v.
5. u grants (g to p) to w.
6. y grants (r to q) to w.
7. w grants (r to q) to p.

The resultiné graph appears as follows:

Figure 5: Illustration of the conditions of
eans-share.

since there is no admissible rw-path between p and
g. Furthermore, by our Theorem 5.1, no matter what
changes we make to G using Take, Grant, Create and
Remove alone, cansshare(r,p,q,G) remains false, and
by our Theorem 4.1 no matter what changes we make

to G using Spy, Post, Pass and Find alone,
caneknow+f(p,q,G) remains false. But it 18 possible
using DJ and DF rules to construct a graph G' in
which ean<krnow+f(p,q,G) is true. '

In fact, there are two ways to change the
graph that are conceptually different. First, x
can grant (r to y) to p and z can take (r to q)
from s. This results in graph G'.

which now contains an admissible rw-path. Alterna-
tively, in G vertices x and s can create r,w rights
to new objects and "read rights" to these objects
can be acquired by p and z to "straddle" the t and g
edges., The result is G''

which contains an admissible rw-path. Thus, we can
either transmit existing rights or create new rights

to build an rw-path.

We refer to the use of any combination of the
DJ and DF rules as combined transfer, even though
it is implementing a de facto transfer. (Recall
that the DJ rules can only match explicit edges
while the DF rules can match explicit or implicit
edges.)

Following our paradigm, we define a predicate
that introduces an "r" edge by any of the combined
transfers. Let p and g be arbitrary, distinct ver-
tices in a protection graph GO, then

can-know(p,q,co) is true if and only if there
is a sequence of protection graphs

| * .
Gl""’Gn such that Gor——— Gn and in Gn
either a p-to-q edge labeled r exists, or
a g-to-p edge labeled w exists and if the

edge is explicit, its source is a subject.
Note that can-know(p,q,GO) is simply

can-knaw-f(p,q,GO) without restrictions on the rule
types. '

Define rwtg-path in the obvious way and asso-

. e e
ciate words over the alphabet {t,t,g,9,r,r.w,w}

as usual. We define a second class of spans. Let

vo,...,vk (k>0) be an rwtg-path where s is a sub-

ject. This path-is an rw-initial span if its asso-

>Ry
ciated word is in the regular language {t w}
and it is an rw-terminal span if its associated word

R
is in {t r}. Again we observe that spans have
orientation and we say that v, ru-initially (or
rw-terminally) spans to Vi

Define the reqgular lanuages:
. >* + % &Kk >Rtk
Bridges: B = {t U t U t gt v t gt },

. >k % >R >k
Connections: C={t r u wt U t rwt }.
Note that the bridges language is the same set
defined in Section 5.

We can now characterize the can-know predicate.
Let p and q be arbitrary, distinct vertices in a
protection graph G.-

Theorem 6.1: can+know(p,q,G) is true if and
only if there exists a sequence of sub-
jects ul,...,un in G (n2l) such that the

following conditions hold:

(a) p = u or uy rw-initially spans to p,

(b) q= u, or u, rw-terminally spans to q,
and
(¢c) for all i, 1Si<n there is an rwtg-path

between u, and u, with an associated
i i+l

word in B U C.

Although the proof is quite detailed, we can
easily outline the overall flow of the argument.
showing that can*know(p,q,G) implies the conditions
involves separating the rule applications of a
witness into two classes: (i) those using only DJ
rules, (ii) those using both DJ and DF rules. Thése
latter types of applications are reordered so that
(a) Creates are performed first, (b) the other DJ
rules are performed next and (c) the DF rules are
performed last. Then we observe that before the




step (c) rule applications begin, an admissible
rw-path must exist. The subjects of the admissible
path are shown to satisfy the required conditions

in the original graph, provided they exist in the
original graph. If they do not exist, surrogates
for them are found in the original graph and the
surrogates are shown, to have the required properties.
The converse of the theorem is proved constructively.
Details can be found in [10].

Although the proof is quite involved, the con-
ditions are quite straight-forward. The reader is
encouraged to return to the graph presentéd at the
beginning of the section to verify that they do apply-
Also, with some careful study of the set B U C we’

can prove the following corollary.

Corollary 6.2: For arbitrary, distinct vertices
p and q in a protection graph G, the
predicate cans<know(p,q,G) can be tested
in linear time in the size of the graph.

7. Concluding RemarKs

As the reader reviews the conditions of
Theorem 6.1 for de facto transfer, he will note that
in the graph G,

t X

G

the predicate can-know(p,q,G) is true, since a
witness can be found by applying Take. But in
the related graph G',

t F"; W “a
P q
Gl

ean~know (p,q,G') is false, since DJ rules cannot be
applied to implicit edges. 1Is this inconsistent?

Not at all. In fact the similarity of the two
graphs is based simply on the fact that de facto
transfers are being recorded by "r" labeled edges.
If we remove the implicit edge, the graphical
similarity is lost. One might continue to argue,
though, by observing that "information" can be
"deposited" in the object and p should be allowed
to take it. But Take isn't an operation on infor-
mation, it is an operation on "rights" and the ob-
ject has no rights to be Taken. Moreover, there
is no edge labeled "r" from p to the object. So
what appeared to be an inconsistency turns out to
be quite consistent with our proposed interpreta-
tion. We should emphasize that even if inconsis-
tencies do arise in this particular development,
the methodology could be reapplied to a different
set of rules to realize a more pleasing formulation.

In the foregoing sections we have concerned
ourselves with de facto transfers in which p can
receive information firom g -—- a one-way transfer.
Suppose p would like to communicate back to g, i.e.
establish two-way communication. Must we repeat
this entire development for the write right? Not
at all.

Observe that by interchanging the r and w label
on our DF rule schemata we obtain the following:
w

-
-
- ~

w W W W
spy-w *~———e—0 = ———o—%
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- w
w r W x>
post-w r————@ = d————»@*———\*
r w “r w>
pass-w ——o—® = FE o
P T
. r X °r r™
find-w G — S “EF—e—N .

These new DF rules reflect the symmetry of read

*
and write and are intuitively consistent. Moreover,
the directionality of the edges and the subject/
object distinctions are all preserved. Thus, by
interchanging r and w in the foregoing section, all
substantive aspects of the arguments are preserved.

To emphasize this symmetry, define for arbitrary,
distinct vertices p and q of a protection graph G

can+tell (p,q,6) to be true if and oﬁlj if there
is a sequence of protection graphs

Gl""'Gn such that Gi+l follows from Gi

by ‘application of one of these new rules
or the DJ rules (0<i<n) and in Gn

a p-to-q edge iabeled w exists or a g-to-p
edge labeled r exists and if the edge is
explicit the source is a subject.

Then we have from Theorem 6.1:

Corollary 7.1: can-tell(p,q,G) is true if and
only if there exists a sequence of sub-

jects ul,...,un in G (n2l1) such that the

following conditions hold:

() p=u oru wr-initially spans to P,

(b) q= un or un wr-terminally spans to
q, and

(¢) fot all i, 1si<n there is an rwtg-
path between u, and u, with
3 i+l

associated word in B u C',

where wr-initial or wr-terminal spans are defined
by interchanging r and w in the definitions of rw-
ipitial and rw-terminal spans respectively and C' =

>H <% B e
{t w urt u t wrt }. Of course,

can+tell+f{p,q,G) can be similarly defined.
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