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Abstract

Flaws due to race conditions in which the binding of a name to an object changes
between repeated references occur in many programs. We examine one type of this
flaw in the UNIX operating system, and describe a semantic method for detecting
possible instances of this problem. We present the results of one such analysis in
which a previously undiscovered race condition flaw was found.

 

1. Introduction

 

Ordinary bugs and misconfigurations prevent applications or systems from functioning cor-

rectly. By contrast, security holes or vulnerabilities enable a user (called an 

 

attacker

 

) to gain priv-

ileges, access to data, or the ability to interfere with others’ work via by exploitation. Much

research, especially in the field of intrusion detection [5][9], draws on characteristics of these

attacks [12]. But many attacks can exploit a single vulnerability, implying that the characteristics

of the flaws themselves are more fundemental and should be of interest.

This work focuses on a semantic characteristic of one class of the time-of-check-to-time-of-

use (TOCTTOU) flaws. A TOCTTOU flaw occurs when a program checks for a particular charac-

teristic of an object, and then takes some action that assumes the characteristic still holds when in

fact it does not. This particular flaw has a distinguished lineage, being described by both the Pro-

gram Analysis (PA) project [3] and the Research Into Secure Operating Systems (RISOS) project

[1] as a subclass of the class of timing or synchronization flaws.

A subclass of TOCTTOU flaws, which we call

 

 TOCTTOU binding flaws

 

, arise when object

identifiers are fallaciously assumed to remain bound to an object. The results in this paper demon-

strate the effectiveness of a semantic approach to detecting TOCTTOU binding flaws. The next

section shows that this problem is severe enough to be worthy of examination. Section 3 describes

two characteristics of TOCTTOU binding flaws, and section 4 presents a tool that detects some

TOCTTOU binding flaws. Section 5 demonstrates the unsolvable nature of the general problem,

and discusses the approximate relative power of different types of analyzers. The final section
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offers some comments on checking for these flaws dynamically, and using logs.

 

2. Demonstration of the Problem

 

The analysis in this paper focuses on application-level programs rather than on the operating

system. Many operating systems allow some trusted user complete control over the system.

Although such a privileged user violates basic security design principles [15], it eases problems of

administration. Access to these users requires either a password or use of a mechanism by which

the privileged user delegates privilege to a set of utilities. The UNIX operating system [14] is one

of the better-known, and most widely-used, systems to use this scheme.

 As the delegation of rights creates potential security problems, analyzing these utilities to

which rights have been delegated will provide insight into vulnerabilities on the systems where

they appear. Few attacks exploit specific operating system kernel flaws; most exploit flaws in

these utilities. A method of locating these flaws would enable these attacks to be detected or pre-

vented. As privileged UNIX programs are available either commercially or on the World Wide

Web, such a method would allow sites to  verify software before  installation.

The archetypal TOCTTOU binding flaw in a privileged program on the UNIX operating sys-

tem arises when a setuid to 

 

root

 

 program is to save data in a file owned by the user executing the

program. The program should not alter the file unless the user could alter the file without any spe-

cial privileges. Code to do so typically looks like this:

 

if (access(filename, W_OK) == 0){
if ((fd = open(filename, O_WRONLY)) == NULL){

perror(filename);
return(0);

}
/* now write to the file */

 

If the program were to omit the 

 

access

 

(2) system call, the 

 

open

 

(2) system call would always

succeed, because the effective UID of the process is 

 

root

 

. If the user executing the program could

not write to the file, the 

 

access

 

 system call would return -1 and the open would never be

attempted. So this fragment allows the process to write to the file if, and only if, the user execut-

ing the program could do so.

If the object referred to by 

 

filename

 

 changes between the two system calls, though, the second

object will be opened even though its access was never checked (access to the first object was
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checked).

The scenario in Figure 1 is an example of the TOCTTOU binding flaw. Figure 1a shows the

state of the system at the time of the 

 

access

 

 system call; the solid arrow indicates the 

 

access

 

 refers

to “/tmp/X”. Both “/tmp/X” and “/etc/passwd” name distinct objects. However, before the process

makes its 

 

open

 

 system call, “/tmp/X” is deleted and a direct alias (hard link) for “/etc/passwd” is

created, and is named “/tmp/X”. Then the 

 

open

 

 accesses the data associated with “/etc/passwd”

when it opens “/tmp/X”, since “/tmp/X” and “/etc/passwd” now refer to the same file. Figure 1b

shows this, with the dashed arrow indicating which data is actually read and the solid arrow indi-

cating the name given to 

 

open

 

. The unprivileged process can then write to the protected password

file. Several versions of the terminal emulation program 

 

xterm

 

(1) [16] suffer from this flaw, which

arises when logging sessions to a file.

Another instance of this flaw occurs on SunOS and HP/UX systems. The program 

 

passwd

 

(1)

allows the user to name the password file as a parameter. An attacker can gain access to any other

user’s accounts using a variant of the attack presented above [6]. Under normal conditions, the

 

passwd

 

 program takes the following steps:

1. opens and reads the password file to get the entry for the user; then closes the password file;

2. creates and opens a temporary file called “ptmp” in the directory of the password file;

3. opens the password file again, and copies the contents to “ptmp”, updating the changed infor-

mation; and

4. closes the password file and “ptmp” and renames “ptmp” to be the password file.

Figure 1. Example of the TOCTTOU binding flaw.

/

etc

passwd

tmp

X

open(“/tmp/X”, O_WRITE)

passwd data

/

etc

passwd

tmp

X

access(“/tmp/X”, W_OK)

X datapasswd data
X data

Figure 1a. Figure 1b.
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The attack works as follows. Suppose the attacker can write to directory “pwd.”   The attacker

creates a bogus password file named “pwd/.rhosts” with the following as the first entry:

 

localhost 

 

attacker

 

 :::::

 

and the remainder of the file a copy of the real password file. The attacker specifies this file to be

the password file when calling 

 

passwd

 

.   During steps 1 and 3, the attacker wants the directory

containing the password file to be “pwd”; during steps 2 and 4, the attacker wants the directory

containing the password file to be the 

 

target

 

’s home directory (belonging to the user being

attacked). The following steps create a “.rhosts” that allows the attacker to log into the target’s

account without authentication. As the 

 

passwd

 

 program is setuid to 

 

root

 

, lack of privileges over

 

target

 

’s home directory is irrelevant.

All references to the password file’s directory will be made through an indirect alias (symbolic

link) called “link” to enable the referent of that directory name to be changed. The sequence of

events, augmented by the attacker’s actions (A, B, and C), follows:

1. The 

 

passwd

 

 process opens and reads “link/.rhosts” to get the entry for the user; then it closes

that password file (see Figure 2a).

A. The attacker changes the symbolic link “link” to point to the 

 

target

 

’s home directory “target”.

2. The process creates and opens a temporary file called “ptmp” in the directory of the password

file, which in this case is “link”, and also “target” (see Figure 2b).

B. The attacker switches “link” back to “pwd”.

3. The process opens “link/.rhosts” again (which is the password file named in the command

line), and copies the contents to “ptmp”, updating the changed information. Note that “ptmp”

is still in “target” as it was opened in step 2 (see Figure 2c).

C. The attacker switches “link” back to “target”.

4. The process closes “link/.rhosts” (which involves no interaction with the file name “link” as

only file descriptors are involved) and “ptmp” and renames “ptmp” to be “link/.rhosts”; as

“link” is now “target”, this makes the password file into the victim’s “.rhosts” file (see Figure

2d).

At this point the attacker can 

 

rlogin

 

(1) to the victim’s account. Figure 2 summarizes this attack.
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Another attack, called the 

 

binmail race condition

 

 [7], lets the attacker write to any file on the

system. The 

 

binmail

 

 program delivers mail by writing it into the recipient’s mailbox. As a security

check, 

 

binmail

 

 requires the mailbox to be a regular file, and not a symbolic link. But in this check

lies a TOCTTOU binding flaw.  The following two steps consitiute the check:

1. Use the 

 

lstat(

 

2) system call to get information (file type, protection mode, 

 

etc

 

.) about the mail-

box.

2. If the mailbox is a regular file, append the letter to the mailbox, as 

 

root

 

.

The TOCTTOU binding flaw lies between these steps. Figure 3a shows the state of the system

at the time of the 

 

lstat

 

 system call. The mailbox file “/usr/spool/mail/bishop” is a regular file, so

 

binmail

 

 continues. But before 

 

binmail

 

 can open the mailbox file, that file is deleted (by the

attacker_home

pwd link

.rhosts

target

.rhosts

passwd
open

Figure 2a.

attacker_home

pwd link

.rhosts

target

ptmp

passwd
open

Figure 2b.

.rhosts

attacker_home

pwd link

.rhosts

target

.rhosts

passwd
write

Figure 2c.

ptmp

read

attacker_home

pwd link

.rhosts

target

.rhosts

passwd
move

Figure 2d.

ptmp

Figure 2. An example of the TOCTTOU binding flaw using passwd.

/

/usr/spool/mail

bishop

etc

passwd

lstat(“/usr/spool/mail/bishop”, stbuf)

password databishop’s email

Figure 3a. Figure 3b.

/

/usr/spool/mail

bishop

etc

passwd

open(“/usr/spool/mail/bishop”, O_WRITE)

password data

Figure 3. The binmail race condition attack.
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attacker) and a new file with the same name is created. This file is a link to the system password

file. Figure 3b shows the state of the system after 

 

binmail

 

 opens the mailbox file; it is actually

opening the link, and hence the password file. Now the letter will be appended to the password

file; if it contains the appropriate contents, the attacker can now log in as the superuser without

any password. Note that 

 

binmail

 

 appends as 

 

root

 

, so the file can be created if it does not exist, and

is altered if it does exist.

 

3. A Semantic Characterization of TOCTTOU Binding Flaws

 

A TOCTTOU flaw occurs when two events occur and the second depends upon the first. Dur-

ing the interval between the two events (see Figure 4), certain assumptions from the results of the

first system call influence the second. If some action during that interval invalidates those assump-

tions, the results of the second action may not be what was intended. (Exploiting this situation

requires an attacker to act during the interval. The more general term “race condition” captures

the race between the attacker’s trying to invalidate assumptions before the second action occurs.)

Call the existence of such an interval the 

 

programming condition

 

 and the interval itself the

 

programming interval

 

. Having found this condition holds, the attacker must be able to affect the

assumptions created by the program’s first action. That condition is the 

 

environmental condition

 

.

Both conditions must hold for there to be an exploitable TOCTTOU binding flaw.

In the initial example, the 

 

access

 

 system call creates the assumption that the user is authorized

to alter the file “/tmp/X”. The 

 

open

 

 acts upon that assumption. So the programming condition

holds. If the attacker can alter the referent of the name “/tmp/X”, then the environmental condi-

tion also holds and an exploitable TOCTTOU binding flaw exists (and given the semantics of “/

tmp”, Figure 1 shows it does indeed hold). Were the file in a directory that the attacker could not

alter, the environmental condition would not hold and no exploitable TOCTTOU binding flaw

would exist. The other two examples have similar conditions.

syscall-0 syscall-1

I N T E R V A L

Figure 4. Graphical diagram of programming interval. Syscall-0 begins the interval, and syscall-1
ends it.
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3.1. Programming Condition

 

The UNIX system provides two different forms of naming, with different semantics [2][13].

The first form is a file path name. The UNIX file system is conceptually a tree, with interior nodes

being directories and leaf nodes being files, devices, or other entities. The path name specifies the

path through the tree from the root to the target node. To access the object from a path name, the

kernel begins at the beginning of the path name, and accesses each component named in the path.

Each interior node contains the location (or address) of the next node in the path. The penultimate

node in the path contains the location of the object; from this the object may be retrieved.

 

1

 

 Con-

ceptually, no caching of names to addresses is done; the name is mapped into the object each time.

The second form of file naming is  the file descriptor. File descriptors are assigned to a file on

a per-process basis, and bind  directly to the object. When a process requests that a file descriptor

be assigned to an object, it provides the file path name of the object. The system maps this address

to an object, and returns a reference (the file descriptor) to the object. References using the file

descriptor do not involve the system-wide object name (path name) but  instead, the kernel uses a

file descriptor local to the process to access the object directly.

Notice the difference in the way the addresses resolve to objects. File path names are resolved

by indirection, requiring the naming and accessing of at least one object other than the file being

addressed. File descriptors are resolved by accessing the file being addressed. The former corre-

spond to (multiply) indirect pointers to the object, the latter to pointers to the object.

The difference in binding determines which pairs of file system calls can bind the interval in

the programming condition. If the calls refer to files through descriptors, the binding of the file

descriptor to the file cannot be changed by a second process. But if either refers to the file by a

path name, then another process can alter the binding between name and file if the environment

allows it. This observation defines pairs of system calls that allow TOCTTOU binding flaws to

occur.

If two sequential system calls refer to the same object using a file path name, the possibility of

a TOCTTOU binding flaw arises. If one uses a name and the second a file descriptor, and the first

is 

 

not

 

 a call that maps a file path name to a descriptor, a TOCTTOU binding flaw may arise. If

 

1. If the file path name has exactly one component, the parent node is implicitly added to the path as the first 
component. The single exception is the root node, which is its own parent.
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both use file descriptors, or one maps a name to a file descriptor that the second uses, the possibil-

ity of a TOCTTOU binding flaw does not arise. Path names are indirect pointers, so one of the

interior pointers may be switched. File descriptors are direct pointers and hence not subject to

such fiddling.

 

3.2. Environmental Condition

 

The goal of analyzing the environmental condition is to present an algorithmic technique to

determine if the assumptions implied by the first call will hold during the interval created by the

programming condition. If so, the race condition cannot be exploited. If not, it can. The object

may change in one of two ways: alteration of the binding between the name and the object, or

alteration of the object itself.

Consider a file 

 

F

 

 that occurs in two system calls causing the programming condition to hold.

At the first system call, 

 

F

 

 refers to object 

 

O

 

1

 

 and at the second, 

 

F

 

 refers to object 

 

O

 

2. Partition the

set of all users into two subsets: T is the set of trusted users who will not alter the binding of F in

the interval (that is, O1 = O2), and U is all other, untrusted users. The binding of the file F to the

object O1 is trustworthy if and only if no member of U can change the binding of F within the

interval.

Define the Boolean function w(I, o):

In what follows, di, l, and f refer to path components.

Lemma 1. Let di be a directory object and f an arbitrary object. Then

w(I, d1/d2/.../dn/f) = w(I, d1) ∨  w(I, d2) ∨  ... ∨  w(I, dn) ∨  w(I, f)

Proof: By induction on n.

BASIS: n = 1. If the binding of the name d1 to the directory object is altered, then d1/f refers to a

new object and so the binding of the name d1/f is also altered. If the binding of the name f to the

object is altered, then the binding of d1/f is also altered. Hence w(I, d1/f) = w(I, d1) ∨  w(I, f).

HYPOTHESIS: For k = 1, ..., m–1, w(I, d1/d2/.../dk/f) = w(I, d1) ∨  w(I, d2) ∨  ... ∨  w(I, dk) ∨  w(I, f).

w I o,( )
true if some u U  can alter  the binding of object o in the interval I∈

false otherwise



=
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INDUCTION STEP. Consider w(I, d1/d2/.../dm/f). If the binding of d1 changes, so will the binding for

the object d2/.../dm/f. Hence w(I, d1/d2/.../dm/f) = w(I, d1) ∨  w(I, d2/.../dm/f) and so by the induction

hypothesis, w(I, d1/d2/.../dm/f) = w(I, d1) ∨  w(I, d2) ∨  ... ∨  w(I, dk) ∨  w(I, f), proving the claim. ■

Lemma 2. Let l be an indirect alias of the path d1/.../da. Then

w(I, l) = w(I, d1) ∨  ... ∨  w(I, da).

Proof: An indirect alias is semantically equivalent to the path it contains. The result follows

immediately from this observation and lemma 1. ■

The significance of these lemmata is the implications for the binding over an interval. Let I be

the programming interval, and f the name of the object referenced by the two system calls delim-

iting I. Then if w(I, f) is true, an exploitable TOCTTOU binding flaw exists.

The lemmata also suggest how to determine the value of w for a given object o. Under the

UNIX model of files, the owner of the object must be trusted, and the object must not be world

writable. Further, if the group contains any members who are not trusted, the object must not be

group writable either.2 So, to test the trustworthiness of a binding, simply check those conditions

for each component in the path name of the file.

If the object is being written, then the current contents of the object are irrelevant as they will

be deleted. In this case, the trailing component of the object need not be checked3. However, if the

object is being read, then altering the current contents of the file is sufficient to exploit a race con-

dition. In this case, the object itself must be trustworthy.

4. A Prototype Implementation of the Analysis

A static analysis tool scans a given program’s source code looking for potential TOCTTOU

binding flaws. Because different computer systems have different environments, if the analysis

program used one system’s environment, that result might be invalid on a different system. The

2. System specific semantics may modify this rule; for example, on a SunOS, Solaris, IRIX, or HP/UX system, 
if the object is a directory, the sticky bit is set, and the next component of the path name exists, then the 
directory may be world writable. The semantics of the sticky bit in this context is that only the owner of an 
object may delete it from the directory.

3. Again, system constraints may require some checking. If the parent directory has the sticky bit set, and the 
sticky bit semantics are as described in the previous footnote, ownership (but not permissions) must be 
checked.
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static tool should report only intervals (by line numbers) on which the programming condition

holds. The (human) analyst would then check whether the environmental condition hold during

that interval, for each specific system upon which the software is installed.

The static analyzer parses the input C program, and builds a control dependency graph and a

data flow graph. From the control dependency graph, the analyzer determines potential program-

ming intervals; from the data flow graph, the analyzer determines if the arguments to the system

calls create such an interval. Specifically, if both system calls use file names, the static analyzer

determines if the argument are the same; if one uses a file name and the other a file descriptor, the

analyzer determines if the file name were bound to the descriptor when the descriptor is created.

Pointer aliasing complicates the data flow analysis. If the pointers are well-behaved, then the

initialization identifies the variable to which the pointer refers; but if the pointers are ill-behaved,

determining the referent requires complete knowledge of memory as well as specific data values.

In essence, it requires the pointer to be evaluated when the program executes.

An even more complex problem is how the program will interact with the environment. For

example, suppose one system call access the file “/tmp/X” and a second refers to “../tmp/X”. If

these refer to the same object, a programming interval exists. However, that cannot be determined

without knowledge of the process’ current working directory. Adding direct and indirect aliases

complicates matters even more.

A prototype tool checks programs written for the SunOS and Solaris versions of the UNIX

operating system. The availability of those systems in our environment dictated this choice. Sev-

eral simplifying assumptions sped the development of the prototype (which is a proof-of-concept

program only).

The bounds of the programming intervals constitute the first simplifying assumption. The

analysis in Section 3.1 show three types of bounds: both system calls use file names; the initial

system call uses a file name and the terminal one a descriptor; and the initial system call uses a file

descriptor and the terminal one a name. Because of the complexities of tracking the path names

associated with objects assigned file descriptors, the analyzer assumes both system calls bounding

the programming interval involve path names.

Selecting only the most common library functions is the second simplification. The use of
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library functions conceals the underlying system calls bounding the programming intervals. Since

most interaction with file oriented system calls uses the standard I/O library, the list of functions

includes the functions in that library which take a path name as an argument and invoke file-ori-

ented system calls4. 

The prototype analysis tool is a Perl script which understands function boundaries but not

local blocks, C language dependencies, nor interprocedural analysis. The prototype analyzer uses

pattern matching over the source code to approximate generating and scanning a call dependency

graph. It does no data flow analysis, but assumes that the file path name arguments are lexically

identical in the system calls. That is, the prototype detects:

char tempfile[1024];
 ...
creat(tempfile, 0600);
chown(tempfile, 0, 0);

but not:

char tempfile[1024], *newfile = tempfile;
 ...
creat(tempfile, 0600);
chown(newfile, 0, 0);

as in the latter, the arguments are lexically different.

This analyzer was run on sendmail version 8.6.10, because sendmail has been successfully

attacked in the past [16–21]. The output is in Appendix 1. The analyzer reported 24 possible pro-

gramming intervals; after manual analysis, 5 met the programming condition. Given appropriate

environmental conditions and appropriate security policy elements, all 5 allow unauthorized

actions (see Appendix 2). Of the 5, one in particular allows users to violate a common element of

most site security policies by adding permission, allowing the attacker to read other users’ confi-

dential files or mail. Appendix 3 shows the typescript of a sample attack.

5. Analysis Limits

Given an arbitrary program, consider the existence of exploitable TOCTTOU binding flaws in

a program to be a property. Then this property holds for at least one computable program. By

Rice’s theorem [10], the set of programs for which this property holds is undecidable, so no

4. The command nm(1) lists the system calls in object files, among other externally defined labels.
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generic decision procedure exists to determine if all programs have this type of exploitable

TOCTTOU binding flaw.

 Consider those UNIX programs which exhibit the programming condition and the environ-

mental condition. Let E be the set of exploitable TOCTTOU binding flaws in one such program,

and let R be the set of exploitable TOCTTOU binding flaws that the analyzer reports for that pro-

gram. Let E’ = E ∩ R. If E’ = E = R, then the analyzer is precise with respect to the program. If

E’ = E ≠ R, then some exploitable TOCTTOU binding flaws are not reported, so the analyzer is

deficient with respect to the program. If E’ = R ≠ E, then all exploitable TOCTTOU binding flaws

are reported, as well as some conditions which are not really exploitable race conditions; the ana-

lyzer is excessive with respect to the program. Finally, if E’ ≠ R and E’ ≠ E, then the analyzer is

incomplete.

Deficient and excessive analyzers exist (trivial examples are the analyzer which always

reports no exploitable TOCTTOU binding flaws and the analyzer which reports that every pair of

system calls causes an exploitable TOCTTOU binding flaw). Determining whether an analyzer is

precise or incomplete requires examining each of the two conditions in detail.

The programming condition requires detection of sequential system calls, the first of which

must check for some property and the second of which must act on that property. In fact, the first

system call may simply gather information which is then checked. The precise nature of the check

depends upon the needs of the action and the programmer; for example, access permission may be

checked using access (which performs the check) or stat (which obtains file information that can

then be checked). Further, the distinction between system calls which “check” and system calls

which “use” is a product of the program; for example, a program which lists file attributes might

call stat to obtain the information, whereas another program might call stat to check authorization

to access. Thus a precise analyzer would require some means of determining which calls were

“checks” and which were “uses.”

The environmental condition complicates this. Given a set of system calls which could bound

the programming interval, the analyzer can report all possible programming intervals in a pro-

gram. The interaction of the environment with those potential intervals creates problems beyond

the trustworthiness of the file being accessed. The environment controls the interpretation of the

name of the file used in the system calls. File aliases (both direct and indirect) and the low-level
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representation of secondary storage add more complexity. The analyzer must have this informa-

tion available.

In short, a precise analyzer requires a complete representation of the environment induced by

the file system, and knowledge of the pairs of system calls required for checks and uses. All of

this information is unlikely to be available in practise.

An analyzer is incomplete when it fails to report exploitable TOCTTOU binding flaws, and

exploitable TOCTTOU binding flaws are reported erroneously. The manner in which the former

can occur is clear; the latter occurs when (for example) data flows are not adequately traced. The

prototype analyzer described in the previous section is an example of an incomplete analyzer.

6. Conclusion

As static analyzers cannot be precise, can dynamic (run-time) analyzers be precise? A

dynamic analyzer tests the environment during execution, and warns when an exploitable TOCT-

TOU binding flaw occurs. Basically, the system call interfaces are modified to track the arguments

and the association of file descriptors and names. Two successive system calls meeting the pro-

gramming condition constitute a programming interval, and the trustworthiness of the object is

tested at both system calls. If the object is untrustworthy at either point, either an exploitable

TOCTTOU binding flaw exists or a trusted user has made an error. Further, the test does not intro-

duce any new TOCTTOU binding flaws.

To elaborate, four combinations of trustworthiness are possible:

1. The object is trustworthy at both system calls. Then the object could not be changed during 

the interval, and no exploitable TOCTTOU binding flaw occurs.

2. The object is untrustworthy at both system calls. An exploitable TOCTTOU binding flaw 

exists.

3. The object is untrustworthy at the initial system call but trustworthy at the terminal system 

call. Then a trusted user changed those components of the object’s name that were untrustwor-

thy at some time T in the interval. But from the initial system call to time T, an exploitable 

TOCTTOU binding flaw existed.

4. The object is trustworthy at the initial system call but untrustworthy at the terminal system 
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call. Then a trusted user altered a component in the object’s path to make it untrustworthy. By 

assumption (specifically, the definition of “trusted user”) no trusted user will alter a compo-

nent to make a trustworthy object untrustworthy; if such a user does, that should not have 

been trusted.

Dynamic analysis takes run-time environment into account and so provides a more precise

testing of the program. It may not be precise, since references to disk block numbers will bypass

virtually all reasonable checks. It could be made precise by having the modified system calls emu-

late the actions of the kernel in resolving file names, but only at considerable expense. Further,

dynamic analysis does not prevent the TOCTTOU binding flaws from being exploited.

Many systems provide detailed audit capabilities. Assuming the log includes entries for the

expansion of every indirect alias, an analysis of the log entries for file accesses would detect pro-

gramming intervals and, given an initial environment, could also check that the environmental

condition holds. From this, exploitable race conditions can be detected. Further, as the name of

the object is known, analysis of other logs could indicate if the condition was in fact exploited.

The detection of security problems arising from race conditions is amenable to testing based

on desired properties [8][11]. One such property is that the programming and environmental con-

ditions not exist simultaneously; the precise statement of this property will vary from program to

program, but if both conditions hold, a race condition may be exploited. Conversely, if the pro-

gram contains portions of code for which the programming condition holds, the analyst can deter-

mine under what conditions an exploitable race condition will arise. The precise specifications

needed to detect these problems varies from program to program, but a generalized template

would ameliorate the difficulty of writing such a property for each program tested. This area is

under active research.

This work studied TOCTTOU binding flaws arising from file system accesses. Processes

interact, as do network objects, and their representation is often as objects other than files.

Whether a similar technique will work in that case, and if so what the programming and environ-

mental conditions should be, is an area for future work.
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Appendix 1. Analyzer Output

This appendix shows the output of the analyzer run on the source code to sendmail version

8.6.10. Only those files with possible problems are shown; the analyzer actually prints the name

of each file it analyzes, whether or not the file contains a potential problem. The lines beginning

with numbers list the potential race conditions; each lists the line number and system (library) call

that may cause the condition, and the common argument follows both.

alias.c:
429:fopen, 432:fopen, map->map_file
conf.c:
714:nlist, 721:nlist, %s
deliver.c:
2186:stat, 2262:chmod, filename
main.c:
708:stat, 784:chdir, QueueDir
1325:freopen, 1336:open, "/dev/null"
queue.c:
118:open, 144:rename, tf
118:open, 364:rename, tf
144:rename, 364:rename, tf
694:rename, 702:fopen, d->d_name
977:fopen, 1028:rename, qf
977:fopen, 1149:rename, qf
1028:rename, 1149:rename, qf
1036:unlink, 1149:rename, qf
readcf.c:
612:stat, 625:access, filename
612:stat, 630:fopen, filename
625:access, 630:fopen, filename
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recipient.c:
645:lstat, 646:stat, filename
645:lstat, 648:stat, filename
646:stat, 648:stat, filename
util.c:
462:stat, 505:stat, fn
504:lstat, 505:stat, fn
462:stat, 507:stat, fn
504:lstat, 507:stat, fn
505:stat, 507:stat, fn

Appendix 2. Analysis of Output

This appendix describes the analysis of the race conditions identified by the human analyst

after looking at the causes of the output in Appendix 1. In the following, the analyst assumes that

the security policy of the site includes the following elements:

1. A user can change the protection modes of the files he or she owns, and no others.

2. If a user cannot read or search a directory, he or she should not be able to discover anything 

about the files or file names in that directory.

3. If a regular file is to be read, a terminal (or other non-regular file) may not be substituted for 

that regular file.

4. The definition of a sendmail configuration file macro class is set by the system administrators 

and not by unprivileged users.

The analyst also assumes that sendmail runs with system privileges, usually root. The race condi-

tions are listed first; the analysis of the other reported intervals follows.

deliver.c, 2186:stat, 2262:chmod, filename

The routine mailfile sends mail to a named file. If the mail were to be written to a file in a

directory writable by the attacker (the environmental condition), a race condition exists. The

attacker links to that file any object with the desired permissions (which must allow the sender

to write to the object). Then, between the stat (2186) and the chmod (2262), the attacker

changes the file name to be the target file name. At line 2262 the protection mode of the target

file is set to the protection mode of the original file. This action violates policy element 1.

main.c, 708:stat, 784:chdir, QueueDir

The stat to determine ownership of the queue directory occurs before the chdir to prevent the
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user from running sendmail and switching into a protected directory. But if an attacker can

switch the referent of the name of the directory to a protected (unreadable and unsearchable)

directory between the stat and the chdir, sendmail will list the names of files beginning with qf

in that directory, violating policy element 2. The environmental condition is that the config-

ured mail queue directory (usually “/usr/spool/mqueue”) be untrustworthy.

readcf.c, 612:stat, 625:access, filename
readcf.c, 612:stat, 630:fopen, filename

Given a line in sendmail.cf that defines a class from the contents of a file, stat checks that the

file is a regular file. If the object named in stat is a symbolic link, stat reports on the object to

which the link refers. If that link, or the object to which it is linked, is untrustworthy (the envi-

ronmental condition), then immediately after the stat the link or object can be replaced by a

link to a non-regular file, such as a terminal. The file is read using fgets(3), which also accepts

input from a terminal. This action violates policy element 3.

readcf.c, 625:access, 630:fopen, filename

This race condition is a modification of the previous two, the only change being that the

attacker changes the untrustworthy object after access is checked but before the object is

opened. This action violates policy condition 4.

The following reports appeared to the scanner to be programming intervals but upon further

analysis were not:

alias.c, 429:fopen, 432:fopen, map->map_file

The second function is in a conditional entered only when the first function fails

conf.c, 714:nlist, 721:nlist, %s

They are in a string argument to printf

main.c, 1325:freopen, 1336:open, "/dev/null"

The first function opens to read from it, and the second function to write to it, so the second

function would make any reads return EOF — which is exactly what reads from /dev/null do.

queue.c, 118:open, 144:rename, tf
queue.c, 118:open, 364:rename, tf
queue.c, 144:rename, 364:rename, tf

These functions open temporary files, and if the open fails or the file is locked, the temporary

file is renamed so a new one can be tried

queue.c, 694:rename, 702:fopen, d->d_name
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If the rename is reached, the next statement moves the flow of control to the top of the loop

and a new file name is read; so the two functions will never be executed sequentially

queue.c, 977:fopen, 1028:rename, qf
queue.c, 977:fopen, 1149:rename, qf
queue.c, 1028:rename, 1149:rename, qf

The rename is executed only when the effective UID and the owner of the file are different or

the file contains an invalid line. In both cases, the name is reset to a constrained queue file

name which will be different than any other file name.

queue.c, 1036:unlink, 1149:rename, qf

The routine returns after the unlink, so at most one of these functions will be executed.

recipient.c, 645:lstat, 646:stat, filename
recipient.c, 645:lstat, 648:stat, filename
recipient.c, 646:stat, 648:stat, filename

Only one of the functions is ever executed.

util.c, 462:stat, 505:stat, fn
util.c, 504:lstat, 505:stat, fn
util.c, 462:stat, 507:stat, fn
util.c, 504:lstat, 507:stat, fn
util.c, 505:stat, 507:stat, fn

The functions have different arguments in the same variable on each call.

Appendix 3. Sample Exploitation of the Vulnerability

What would an exploitation of the first vulnerability in Appendix 2 look like? This shows the

hypothetical result of one such exploitation.

1 % cat /.forward
sysadmins,/usr/spool/rootlog
2 % ls -ld /usr/spool
drwxrwxrwx   1  root    512 Dec  5 21:13 /usr/spool
3 % ls -ld /usr/spool/rootlog
-rw-r--r--   1  root    526 Dec 10 11:34 /usr/spool/rootlog
4% ls -sail /etc/pwd/shadow
-r--------   1  root   1329 Nov 16 16:58 /etc/pwd/shadow
5 % runrace /etc/pwd/shadow
won: /etc/pwd/shadow protection modes changed
-rw-r--r--   1  root   1329 Nov 16 16:58 /etc/pwd/shadow

1. The letter will be appended to the named file. An alternative is to look for bounced mail,

which is appended to the file “dead.letter” using the same delivery mechanisms.



Computing Systems 9(2) pp. 131–152 (Spring 1996). Page 20 of 20

2. The mail file “/usr/spool/rootlog” is in a world writable directory and so can be deleted.

3. The mail file is world readable.

4. The shadow password file (which holds hashed passwords) is protected to prevent users

from copying the hashed passwords and launching dictionary attacks [4].

5. The attack tool “runrace” sends mail to root, and as that mail is being delivered tries to

replace “/usr/spool/rootlog” with “/etc/pwd/shadow”. If the replacement succeeds, the

protection modes of “/etc/pwd/shadow” are reset to those of “/usr/spool/rootlog”.

We reported this security problem to the author of sendmail, and the sendmail 8.7 base distri-

bution fixes the problem on all systems with a fchmod(2) system call. 


