“ 8000 MUNCHEN 82 Stahigruberring 12

7257 DITZINGEN SiemensstraBe 1
6000 FRANKFURT 90 Langer Weg 18
4006 ERKRATH Heinrich-Hertz-Str. 34
22000 HAMBURG 60 Uberseering 25

~ 1000 BERLIN 10 Otto-Suhr-Allee 9

e

Digital
Signal
Processing
Applications

with the TMS320 Family

1986

Theory, Algorléhms,

and Implcmcntmmns
di g
i+

*ip

TeExas
INSTRUMENTS

S Tel. 089/42 001-0 Tx. 522 561
8500 NORNBERG 20 AuBere Sulzbacher Str. 37 Tel. 0911/595058 Tx. 626 495

Tel.07156/7083 Tx.7 245265
Tel.069/78 0087 Tx.4189 486
Tel.0211/20 40 91 Tx. 8 586 810
Tel. 040/6304081 Tx. 2164 921

Tel. 030/3417081 Tx.185323

Digital Signal Processing
Applications with the
TMS320 Family

Digital Signal Processing
Semiconductor Group

U
TeExas
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (Tl) reserves the right to make changes in the
devices or the device specifications identified in this publication
without notice. Tl advises its customers to obtain the latest version
of device specifications to verify, before placing orders, that the
information being relied upon by the customer is current.

In the absence of written agreement to the contrary, Tl assumes no
liability for Tl applications assistance, customer’s product design, or
infringement of patents or copyrights of third parties by or arising from
use of semiconductor devices described herein. Nor does Tl warrant
or represent that any license, either express or implied, is granted
under any patent right, copyright, or other intellectual property right
of Tl covering or relating to any combination, machine, or process in
which such semiconductor device might be or are used.

The software code contained in this book is copyrighted and all rights
are reserved by Texas Instruments, Inc. This code is intended for use
on a Texas Instruments digital signal processor (TMS32010,
TMS32020 . . .). No other use is authorized.

Copyright © 1986, Texas Instruments Incorporated
Copyright © 1986, Texas Instruments

ISBN 2-86886-009-5 - Dépdt légal : Mai 1986
Printed in France

TRADEMARKS

The trademarks that have been mentioned in this book are credited to the respective corporations
in the listing below.

Monolithic Memories,

IBM Corporation

Digital Equipment Corp.
Tektronix Corporation
Bell Laboratories

Digital Equipment Corp.

TRADEMARK CORPORATION TRADEMARK CORPORATION
Apple Apple Computers, Inc. Microstuf Microstuf, Inc.
CP/M Digital Research, Inc. MS-DOS Microsoft, Inc.
CROSSTALK Microstuf, Inc. PAL

Inc.
DEC, DECtalk Digital Equipment Corp. PC-DOS
DFDP Atlanta Signal Processors Inc. PDP-11,Q-Bus
Eclipse Data General Corp. TEKTRONIX
EZ-PRO American Automation UNIX
I1BM IBM Corporation VAX,VMS
ILS Signal Technology, Inc. VMEBUS Motorola, Inc.
Intel Intel Corporation

ELECTRONIC PRODUCTS 1983
PRODUCT OF THE YEAR AWARD
TMS320 DIGITAL SIGNAL PROCESSOR

TEXAS INSTRUMENTS

R NI NN BRSO 0 3¢ o 82 3 !:!-!:!:!:::!:!‘.z’ n

Contents

PREFACE e vii
PART I DIGITAL SIGNAL PROCESSING AND THE TMS320 FAMILY

LINtroduction 3

2. The TMS320 Family i e e s 7

PART II FUNDAMENTAL DIGITAL SIGNAL PROCESSING OPERATIONS

DIGITAL SIGNAL PROCESSING ROUTINES

3. Implementation of FIR/IIR Filters with the TMS32010/TMS32020 27
(Al Lovrich and Ray Simar, Jr.)

4. Implementation of Fast Fourier Transform Algorithms with the TMS32020 69
(Panos Papamichalis and John So)

5. Companding Routines for the TMS32010/TMS32020 i 171
(Lou Pagnucco and Cole Erskine)

6. Floating-Point Arithmetic with the TMS32010 e 213
(Ray Simar, Jr.)

7. Floating-Point Arithmetic with the TMS32020 i, 245
(Charles Crowell)

8. Precision Digital Sine-Wave Generation with the TMS32010 269
(Domingo Garcia)

9. Matrix Multiplication with the TMS32010 and TMS32020 i, 291
(Charles Crowell)

\

DSP INTERFACE TECHNIQUES

10. Interfacing to Asynchronous Inputs with the TMS32010 i, 307
(Jon Bradley)

11. Interfacing External Memory to the TMS32010ottt ittt e 315
(Jon Bradley)

/

12. Hardware Interfacing to the TMS32020 i 347
(Jack Borninski, Jon Bradley, Charles Crowell, and Domingo Garcia)

13. TMS32020 and MC68000 Interfacettt ittt 369

(Charles Crowell)

PART III DIGITAL SIGNAL PROCESSING APPLICATIONS

TELECOMMUNICATIONS

14. Telecommunications Interfacing to the TMS32010 383
(Jeff Robillard)

15. Digital Voice Echo Canceller with a TMS32020. i 415

(David Messerschmitt, David Hedberg, Christopher Cole, Amine Haoui, and Peter Winship)

16. Implementation of the Data Encryption Standard Using the TMS32010. 455
" (Panos Papamichalis and Jay Reimer)

17. 32-kbit/s ADPCM with the TMS32010 e e 469
(Jay Reimer, Mike McMahan, and Masud Arjmand)

18. A Real Time Speech Subband Coder Using the TMS32010 531
(T. Barnwell, R. Schafer, R. Mersereau, and D. Smith, Reprinted Article from IEEE Southcon, 1984)

19. Add DTMF Generation and Decoding to DSP-uP Designso .. 543
(Pat Mock, Reprinted Article from Electronic Design News, 1985)

COMPUTERS AND PERIPHERALS
Speech Coding/Recognition

20. A Single-Processor LPC VOcoder i s 559
(Andrew Holck and Wallace Anderson, Reprinted Article from ICASSP, 1984)

21. The Design of an Adaptive Predictive Coder Using a Single-Chip Digital Signal Processor 565
(M. Randolph, Reprinted Technical Report from MIT Lincoln Laboratory, 1985)

22. Firmware-Programmable pC Aids Speech Recognition. 597
(Tom Schalk and Mike McMahan, Reprinted Article from Electronic Design, 1982)

Image/Graphics

23. A Graphics Implementation Using the TMS32020 and TMS34061 603
(Jay Reimer and Charles Crowell)

Digital Control

24. Control System Compensation and Implementation with the TMS32010 689
(Charles Slivinsky and Jack Borninski)

APPENDIX: TMS320 BIBLIOGRAPHY e e 717

INDEX . o e 723

vi

PREFACE

Digital Signal Processing (DSP) involves the representation, transmission, and manipulation of
signals using numerical techniques and digital processors. It has been an exciting and growing
technology during the past few years. Its applications have also been expanded vigorously to
encompass not only the traditional radar signal processing but also today’s digital audio processing
(for consumer laser disc players).

In designing a DSP application, the designer faces the following immediate technical challenges:

o Selecting digital signal processors powerful enough to perform the task,

® Obtaining technical support as well as development tools from the semiconductor vendor,
® Creating DSP algorithms to execute the application, and

* Implementing these algorithms on the processors.

These difficult but not impossible tasks challenge design engineers. Each of these problems must
be resolved before a successful DSP product can be introduced. The purpose of this applications
book is to serve as a reference guide for engineers who seek solutions to the above design problems
in DSP applications. Readers will benefit from the DSP devices/tools introduced and the fundamental
DSP operations and application examples presented in the book for either instant solutions or ideas
for solutions to the above challenges.

This book consists of three major parts. The first part briefly introduces the device architectures,
characteristics, support, and development tools for the first two generations of the Texas Instruments
TMS320 digital signal processors. Readers who are not familiar with these processors should begin
their reading with this part of the book. The second part of the book covers some of the common
DSP routines, such as Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) filters
and Fast Fourier Transforms (FFT), implemented using the TMS320 devices. Hardware interfacing
and multiprocessing with these devices are also included. The last part of the book is applications
specific. Some typical DSP applications are selected and thoroughly discussed. These applications
are divided into two categories: telecommunications, and computers and peripherals (including
speech coding/recognition, image/graphics, and digital control).

The materials included in this book are primarily application reports, which have been generated
by the digital signal processing engineering staff of the Texas Instruments Semiconductor Group.
Some published articles and a technical report from MIT Lincoln Laboratory have also been reprinted
herein to supplement the application reports in order to provide completeness of the subject matter.
The application reports contain more complete theory and implementations (consisting of algorithms,
TMS320 code, and/or schematics) than the reprinted articles.

Readers who desire to obtain more information regarding the device characteristics and programming
of the TMS320 digital signal processors should refer to other publications, such as the appropriate
device User’s Guide or Data Sheet. References are usually included at the end of each report.
A comprehensive list of literature published since 1982 on the TMS320 digital signal processors
is provided in the appendix for interested readers to gain further knowledge on various aspects
of the TI processors.

The editor would like to credit the authors who contributed the application reports and articles
included in the book. A special thanks and note of appreciation go to Maridene Lemmon for a
thorough review of the entire manuscript. Many comments from members of the TI Semiconductor
Digital Signal Processing staff, especially Maridene Lemmon and Mike Hames, have also greatly
improved the structure of the book.

Kun-Shan Lin, Ph.D.

vii

1. Introduction

1. Introduction

A brief overview of digital signal processing and its major application areas is presented
in this section. A guide to how the book is organized and can be used is also provided.

Overview of Digital Signal Processing

In the last decade, Digital Signal Processing (DSP) has made tremendous progress in
both the theoretical and practical aspects of the field.1-5 While more DSP algorithms
are being discovered, better tools are also being developed to implement these algorithms.
One of the most important breakthroughs in electronic technology is the high-speed
digital signal processors. These single-chip processors are now commercially available
in Very Large-Scale Integrated (VLSI) circuits from semiconductor vendors. Digital
signal processors are essentially high-speed microprocessors/microcomputers, designed
specifically to perform computation-intensive digital signal processing algorithms. By
taking advantage of the advanced architecture, parallel processing, and dedicated DSP
instruction sets, these devices can execute millions of DSP operations per second. This
capability allows complicated DSP algorithms to be implemented in a tiny silicon chip,
which previously required the use of a minicomputer and an array processor.

With this VLSI advancement, innovative engineers in industry are discovering more
and more applications where digital signal processors can provide a better solution than
their analog counterparts for reasons of reliability, reproducibility, compactness, and
efficiency. These digital signal processors are also highly programmable, which makes
them very attractive for (1) system upgrades, in the case of advancements in DSP
algorithms, and (2) multitasking where different tasks can be performed with the same
device by simply changing its program. Because of these and many other advantages,
digital signal processors are becoming more prevalent in areas of general-purpose digital
signal processing, telecommunications, voice/speech, graphics/imaging, control,
instrumentation, and the military. Table 1 lists some applications in these areas.

Table 1. Typical Applications of the TMS320 Family

Hilbert Transforms

Fast Fourier Transforms
Adaptive Filtering
Windowing

Waveform Generation

Compression
Pattern Recognition
image Enhancement
Homomorphic Processing
Workstations
Animation/Digital Map

GENERAL-PURPOSE DSP GRAPHICS/IMAGING INSTRUMENTATION
Digital Filtering 3-D Rotation Spectrum Analysis
Convolution Robot Vision Function Generation
Correlation Image Transmission/ Pattern Matching

Seismic Processing
Transient Analysis
Digital Filtering
Phase-Locked Loops

VOICE/SPEECH

CONTROL

MILITARY

Voice Mail

Speech Vocoding
Speech Recognition
Speaker Verification
Speech Enhancement
Speech Synthesis
Text to Speech

Disk Control

Servo Control

Robot Control

Laser Printer Control
Engine Control
Motor Control

Secure Communications
Radar Processing

Sonar Processing

Image Processing
Navigation

Missile Guidance

Radio Frequency Modems

TELECOMMUNICATIONS

AUTOMOTIVE

Echo Cancellation

ADPCM Transcoders

Digital PBXs

Line Repeaters

Channel Multiplexing

1200 to 19200-bps Modems
Adaptive Equalizers

DTMF Encoding/Decoding
Data Encryption

FAX

Cellular Telephones

Speaker Phones

Digital Speech
Interpolation (DSI)

X.25 Packet Switching

Engine Control
Vibration Analysis
Antiskid Brakes
Adaptive Ride Control
Global Positioning

Video Conferencing
Spread Spectrum
Communications

gation
Voice Commands
Digital Radio
Cellular Telephones

CONSUMER

INDUSTRIAL

MEDICAL

Radar Detectors
Power Tools
Digital Audio/TV
Music Synthesizer
Educational Toys

Robotics

Numeric Control
Security Access
Power Line Monitors

Hearing Aids

Patient Monitoring
Ultrasound Equipment
Diagnostic Tools
Prosthetics

Fetal Monitors

Organization of the Book

This book is organized into three major parts. Part I contains a brief introduction to
digital signal processing and a cursory review of the first two generations of the TMS320
digital signal processors, their characteristics, and the support available from Texas
Instruments and third parties.

Part II consists of a collection of common DSP routines and interfaces for implementing

DSP algorithms using the TMS320 processors. These DSP routines are: Finite Impulse
Response (FIR)/Infinite Impulse Response (IIR) filters, Fast Fourier Transforms (FFT),

1. Introduction

1. Introduction

Pulse Code Modulation (PCM) companding, floating-point arithmetic, precision digital
sine-wave generation, and matrix operations. Interfacing the TMS320 to external memory
devices and microprocessors, and using the TMS320 in a multiprocessing environment
are also included. These DSP routines and interfaces serve as the basis for developing
DSP applications.

Part III is applications specific. Some typical DSP applications are encompassed and
catagorized into two areas: telecommunications and computers and peripherals. In the
telecommunications area, six applications are selected: telecommunications interfacing
using the TMS32010, a single-chip TMS32020 echo canceller, implementation of the
Data Encryption Standard (DES) algorithm using the TMS32010, 32-kbit/s Adaptive
Differential Pulse Code Modulation (ADPCM) transcoders using the TMS32010,
TMS32010 16-kbit/s subband coders, and a Dual-Tone MultiFrequency (DTMF)
encoder/decoder using the TMS32010. For computers/peripherals, which has become
a fast expanding area for numerous DSP applications, reprints of a series of articles
on speech vocoding at 2.4-kbit/s and 9.6-kbit/s and speech recognition with the
TMS32010 are included. An application report on the TMS32020 for image/graphics
applications is also presented. A detailed report on the design of a digital control system
with the TMS32010 digital signal processor concludes Part III.

Readers are encouraged to adapt these DSP routines, algorithms, and implementations
to their applications using the TMS320. It is important to bear in mind that the materials
given in each report and article only serve as examples. Further optimization of either
the code or the circuit to meet specific performance/cost goals is possible. These goals
are usually application-dependent. Readers need to make the appropriate tradeoffs to
fit their specific design criteria.

In summary, even with & book of this size, it is impossible to cover all'the DSP routines
and applications. Because of the TMS320 family’s excellent computation power, high
programmability, and complete development tools, more applications will be created
in the future. These applications will extend beyond the two areas selected for this volume.
The TMS320 family of processors will continue to provide cost-/performance-effective
solutions in the dynamic field of digital signal processing.

References

The following references in digital signal processing may be helpful to the reader of
this book:

1. A. Oppenheim and R. Schafer, Digital Signal Processing, Prentice-Hall (1975).

2. L. Rabiner and B. Gold, Theory and Application of Digital Signal Processing, Prentice-
Hall (1975).

3. A. Oppenheim (editor), Applications of Digital Signal Processing, Prentice-Hall,
(1978).

4. Issues of IEEE Transactions on Acoustics, Speech, and Signal Processing.

5. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal
Processing.

1. Introduction

2. The TMS320 Family

2. The TMS320 Family

This section provides a brief description of the TMS320 digital signal processing family.
The family’s device architectures, characteristics, and features suitable for digital signal
processing applications are discussed. To succeed in designing a DSP application,
comprehensive development and support tools are required. Texas Instruments provides
a whole family of tools to help DSP engineers. These tools are summarized in this section.
Extensive publications produced by Texas Instruments include device specifications,
device user’s guides, and development tools reference guides. A comprehensive list

of these publications is also included. Please see page 19 for RTC addresses and
phone numbers.

TMS320 Digital Signal Processing Family

The Texas Instruments TMS320 product line contains a family of digital signal processors,
designed to support a wide range of high-speed or numeric-intensive DSP applications.
These 16/32-bit single-chip microprocessors/microcomputers combine the flexibility
of a high-speed controller with the numerical capability of an array processor, thereby
offering an inexpensive alternative to a multichip bit-slice processor or an expensive
commercial array processor.

The TMS320 family contains the first MOS microprocessor capable of executing five
million instructions per second. This high throughput is the result of the comprehensive,
efficient, and easily programmed instruction set and of the highly pipelined architecture.
Special instructions, such as multiply/accumulate with fast data move, have been
incorporated to speed the execution of DSP algorithms. A comprehensive set of general-
purpose microprocessor instructions is also included. For example, the branch instructions
encompass all the various conditions of the accumulator. Three different addressing
modes are provided: direct, indirect, and immediate. A full set of Boolean instructions
is included for testing bits. Bit extractions and interrupt capabilities are also part of
the features of the TMS320 processors.

Architecturally, the TMS320 utilizes a modified Harvard architecture for speed and
flexibility. In a strict Harvard architecture, the program and data memories lie in two
separate spaces, permitting a full overlap of the instruction fetch and execution. The
TMS320 family’s modification of the Harvard architecture allows transfer between
program and data spaces, thereby increasing the flexibility of the device. This architectural
modification eliminates the need for a separate coefficient ROM and also maximizes
processing power by maintaining two separate bus structures (program and data) for
full-speed execution.

The Texas Instruments TMS320 family consists of two generations of digital signal
processors. The first generation contains the TMS32010 and its offspring: TMS320C10,
TMS32011, and TMS32010-25. The TMS32020 and TMS320C25 are the second-
generation processors. The features described thus far are common among the processors
in the family. Some specific features are added in each processor to provide different
cost/performance tradeoffs. These features will be covered in the remaining part of this
section. The flexibility of the TMS320 family gives a DSP designer alternatives in
selecting a device in the family that can best serve his applications.

The two generations of digital signal processors can be plotted on a hypothetical
performance and time scale, as shown in Figure 1. Several trends in digital signal
processors can be observed from the figure. Offspring of the first two generations of

PERFORMANCE

processors are becoming available to provide better DSP system integration and
cost/performance tradeoffs. Specifically, peripheral circuits are being integrated into
the DSF device to reduce chip counts, board space, power consumption, and system
cost. Because of the low-power and high-speed advantages of CMOS circuits, DSP
devices are also being introduced in CMOS in addition to their NMOS counterparts.
In the future, newer generations of DSP processors will also be needed to meet higher
performance requirements for some applications and further expand the DSP horizon.

TMS320C25

TMS32020

TMS32010-25

TMS32011
TMS32010

I { =]l TIME

1983 1984 19856 1986

TMS320C10

Figure 1. The Generations of Digital Signal Processors
TMS32010 Digital Signal Processor

The TMS32010! is the first-generation digital signal processor. Its hardware implements
many functions that other processors typically perform in software. For example, this
device contains a hardware multiplier that performs a 16 x 16-bit multiplication with .
a 32-bit result in a single 200-ns cycle. A hardware barrel shifter is used to shift data
on its way into the ALU. Extra hardwarehas been included so that auxiliary registers,
which provide indirect data RAM addresses, can be configured in an auto-
increment/decrement mode for single-cycle manipulation of data tables. This hardware-
intensive approach gives the design engineer the type of power previously unavailable
on a single chip.

The TMS32010 has both microprocessor and microcomputer modes selectable via the
device MC/MP pin. When used in the microcomputer mode, the TMS32010 is equipped
with a 1536-word ROM, which is mask-programmed at the factory with a customer’s
program. It can also execute from an additional 2560 words of off-chip program memory
at full speed. This memory expansion capability is especially useful for applications
sharing the same subroutines. In this case, the common subroutines can be stored on-
chip while the application-specific code is stored off-chip. When used in the
microprocessor mode, the TMS32010 can execute full-speed 4096-word off-chip
instructions. Figure 2 shows the functional block diagram of the TMS32010 processor.
The device is fabricated in a 2.4y NMOS technology and has a chip area of 51K square
mil. It is produced in a 40-pin dual-in-line package and a 44-pin plastic-leadless-chip-
carrier (PLCC) dissipating 950 mW (typically). The maximum clock frequency is 20.5
MHz for an instruction rate of five million instructions per second.

2. The TMS320 Family

Some of the key features of the TMS32010 are:

200-ns instruction cycle

1.5K words (3K
144 words (288

bytes) of program ROM
bytes) of data RAM

16 x 16-bit parallel multiplier
External memory expansion to 4K words (8K bytes) at full speed
Interrupt with context save :

Barrel shifter
On-chip clock

Single 5-volt supply, NMOS technology, 40-pin DIP and 44-pin PLCC.

X1
CLKOUT | X2/CLKIN
Z
f,e 12 LSB
WE —a—] 2
oeN—e & 1
Wi —e 3 £z
(3
Bo—»— 2 [Trcaa] INSTRUCTION
MC/MP —p— 8
4
NT ——] 12 1o
RS —— v g ROM
1536 x 16)
\—Fm l el
A11-A0/ - 4x12
PA2-PAO = 16
3
l PROGRAM BUS 015-00
pa
p A
16 16
% Ty "y {
T
ARO (16) y Ti18)
ARP :) 2
AR1 (16)
N SHIFTER MULTIPLIER -4,(-16
0-15)
P(32)
ADDRESS
DATA RAM
(144 x 18)
LEGEND:
ACC= Accumulator DATA
ARP = Auxiliary register pointer
ARO = Auxiliary register O +
AR1 = Auxiliary register 1
DP = Data page pointer
PC = Program counter //
P = P register 16
T = T register

4

Figure 2. Functional Block Diagram of the TMS32010

2. The TMS320 Family

TMS320C10 Digital Signal Processor

The TMS320C102 is essentially a CMOS replica of the TMS32010. The device is both
plug-in and object-code compatible to its NMOS counterpart, the TMS32010. The
TMS320C10 also has an instruction cycle time of 200 ns. The device is fabricated in
a 2p CMOS technology with power consumption of 100 mW (typically) at 20-MHz
operation. Because of the low-power consumption, the CMOS TMS32010 is very useful
for power-sensitive applications, such as digital telephony and portable consumer
products.

TMS32011 Digital Signal Processor

The TMS320113 is a dedicated microcomputer with 1.5K words of on-chip program
ROM (and no external memory expansion) intended for high-volume applications. The
TMS32011 is essentially a TMS32010 with the address bus stripped off and two serial
ports integrated on-chip. In addition, PCM companding (u/A-law to and from linear
PCM) functions and a timer have been implemented in hardware to reduce the program
memory size and increase the CPU utilization for applications using codecs. The device
has all the TMS32010 hardware features, such as a 200-ns instruction cycle time, 16
x 16-bit multiplier, and 32-bit ALU/accumulator. The instruction sets are fully
compatible, enabling existing TMS32010 development tools to be used in TMS32011
applications.

The following key features distinguish the TMS32011 microcomputer:

Dual-channel serial port for full-duplex serial communication

Direct interface to combo-codec and PCM highway systems
Serial-port timer

Internal framing-pulse generation

On-chip companding hardware for u-law and A-law PCM conversions
Object-code compatible with the TMS32010 instruction set
Compatible with TMS32010 development support tools

Peripheral mode to TMS32010 for application development

1.5K words (3K bytes) of program ROM

144 words (288 bytes) of data RAM.

TMS32010-25 Digita! Signal Processor

The TMS32010-25 is a 160-ns instruction cycle time version of the TMS32010. This
microprocessor is intended for higher performance applications using off-chip memory,
which require 25 percent greater processor throughput (6.25 million instructions per
second) than the TMS32010. Existing TMS32010 designs can simply speed up the system
clock to 25 MHz to take advantage of the increased processor throughput without any
software redesign. The device is capable of accessing 4K words of external program
memory. Other key features of the TMS32010-25 are the same as the ones in the 20-MHz
version of the TMS32010.

TMS32020 Digital Signal Processor
The TMS320204 digital signal processor is the second-generation member of the
TMS320 family of VLSI processors. The TMS32020 architecture is based upon that

of the TMS32010, the first member of the TMS320 family. The TMS32020 greatly
enhances the memory spaces of the processor, providing 544 words of on-chip data

2. The TMS320 Family

2. The TMS320 Family

and program memory. Increased throughput is accomplished by means of single-cycle
multiply/accumulate instructions with a data move option, five auxiliary registers with
a dedicated arithmetic unit, and faster 1/O necessary for data-intensive applications.
The TMS32020 has a comprehensive instruction set of 109 instructions to increase
software throughput and ease of development. The processor contains special repeat
instructions for streamlining program space and execution time.

The architectural design of the TMS32020 emphasizes overall system speed,
communication, and flexibility in processor configuration. Control signals and software
instructions provide block memory transfer, communication to slower off-chip devices,
multiprocessing implementations, and floating-point support. Peripheral functions, such
as the hardware timer and serial port, have been integrated on-chip to reduce overall
system cost. The combination of increased memory (both on-chip and off-chip), expanded
instruction set (for example, single-cycle multiply/accumulate), and additional hardware
features give the TMS32020 two to three times the performance over the TMS32010
in DSP applications.

Figure 3 shows the functional block diagram of the TMS32020. The TMS32010 source
code is upward-compatible with the TMS32020 source code, and can be assembled using
the TMS32020 Macro Assembler. The TMS32020 is fabricated in a /4p NMOS
technology and has a chip area of 119K square mil. It is produced in a 68-pin grid array
package and has a typical power consumption of 1.2 W. The maximum clock frequency
is 20.5 MHz for an instruction rate of five million instructions per second.

Some of the key features of the TMS32020 are:

® 544 words of on-chip data RAM (256 words configurable as either data or
program memory)

128K words of memory space (64K words program and 64K words data)
Single-cycle multiply/accumulate instructions

Repeat instructions

200-ns instruction cycle

Serial port for multiprocessing or codec interface

Sixteen input and sixteen output channels

16-bit parallel interface

Directly accessible external data memory space

Global data memory interface

Block moves for data/program memory

TMS32010 software-upward compatibility

Instruction set support for floating-point operations

On-chip clock

Single 5-volt supply, NMOS technology, 68-pin grid array package.

® © @ o o o o o & 0o 0o o o o

FE
255
I K]
r3 13 ¥ X
|w|'h|,,, > =]
alol?ls xX33 / PROGRAM BUS /
16 £16 1‘6
IR(16)
AW —_—] STO(16)
STRB «— " ST1(16)
READY —- ——————————— RPTC(8)
Be— = el IFR(B)_
xFe— <2 1 DR
Fob—- 2 te cur
HOLDAe—] 2 FSR
MSCe—] © ——— DX
810 ~—» CLKX
RS —p FSX
1ACK +— 16 ad
— 3 ’ STACK 76 DRR(16)
INT(2-0) (ax16) 6 DXR(16)
16 m TIM(16)
18 5 PRD(16)
A15-A0 y IMR(6)
16) GREG(8)
16 x - >
15 S PROGRAM BUS
D15-00 s %] 16
\ A3
DATA BUS /
7 16 6 1¢
) o 16 16 11
3 16)16 I [sHiFTER(O-16) TR(16) MUX
r ARO(16) DP(9) | J
b AR1(16) 16
L 3 MULTIPLIER
[Arpi3) o< AR2(16) }o Zﬁlg’:l
AR3(16) R - e
3t AR4(16) {
16 1
ARB(3)
ARAU(16) MUX7
3 V.
16 11e
MUX 16
16
MUX
BLOCK B2 16
(32 x 16)
DAT RAM DATA/PROG
BLOCK B1 RAM (256 x 16)
(256 x 16) BLOCK BO
be 16 |_sHiFTERs(0,1.4) |
4 16 *° A
16 4
DATA BUS ~

Figure 3. Functional Block Diagram of the TMS32020

2. The TMS320 Family

2. The TMS320 Family

TMS320C25 Digital Signal Processor

The TMS320C25 is a pin-compatible CMOS version of the TMS32020 with additional
features to further enhance the processor speed, system integration, and ease of application
development. The TMS320C25’s faster instruction cycle time of 100 ns, additional
instructions, and additional on-chip hardware such as an 8-deep hardware stack and
8 auxiliary registers result in two to three times the throughput of its predecessor, the
TMS32020. The inclusion of a large on-chip masked ROM (4K words) makes the
TMS320C25 ideal for single-chip DSP applications, thus reducing the power, cost, and
board space of many applications. All 109 TMS32020 instructions are implemented
on the device with object-code compatibility. Two new instructions (MPYA and ZALR)
on the device allow an LMS adaptive filter tap and update to be performed in 4 machine
cycles. A 256-tap adaptive filter can thus be sampled at 8 kHz to be executed on a single
chip (with no external memory) in real time. The device is fabricated in 1.8 CMOS
technology and is packaged in a 68-pin PLCC. Figure 4 shows the functional block
diagram of the TMS320C25.

The following outlines the major enhancements of the TMS320C2S over the TMS32020:

® Two versions: 100-ns instruction cycle time
125-ns instruction cycle time
® 4K x 16-bit on-chip masked ROM
Object-code compatible with TMS32020
MAC/MACD operation with external program memory
Double-buffered static serial port
T1/G.711 transmission interface
Unsigned multiply and carry bit for complex arithmetic
Bit-reversed addressing for FFTs
Powerdown mode
Eight auxiliary registers
Eight-deep hardware stack
® MPYA and rounding for adaptive filtering
® Concurrent DMA via redefined HOLD mode
* 1.8 CMOS, 68-pin PLCC.

~ ”
S

X2/CLKIN
CLKOUT1
CLKOUT2

X1

RIW ¢—
STRE4—
READY —- L
BR ¢— 118

XF ¢—
HOLD —
HOLDA ¢

MSC ¢— ("
BI0O —¥ 16 .

_Rs— —{sTACK >
IACK ¢ 16) ADDRESS B x 16) 6 DXR(16) A v W
LaaLdi VALEN RSR(16)

/ 3
J— , PROGRAM - T
5 XSR(16)
oo i ow || | =
INT(2-0) (4096 x 16) y— M(16)

DR
CLKR
FSR
— DX
— CLKX
—» FSX

CONTROLLER

YYY

DRR(16)

16
D(1
16 16 INSTRUCTION TR L]
A15-A0 — IMR(6)
{16
16 , 18
D15-D0 E} 7
3le 18 16
T e DATA BUS
A 4 16 9
& y
2 AKG’ 16 ARO(16) DPO)
s AR1(16) SHIFTER(0-16) TR(16) MUX,
ARP(3) } £ »{ " AR2(16) 6
AR3(16) Ao 7LsB MULTIPLIER
3 ARATIE) FROM IR
pr— pr————
AR5(16) 32 PR(32)
AR6(16)
ARB(3) ART(16)_| L,
2 L r 416
ﬂ 3
9
L
MUX "
16
e BLOCK B2
, (32 x 16)
: DATA RAM DATA/PROG
i BLOCK B1 RAM (256 x 16)
(256 x 16) BLOCK BO
: 16
)7
16 UX .
416
16 7 p

Figure 4. Functional Block Diagram of the TMS320C25

14 2. The TMS320 Family

The TMS320 family’s unique versatility, computational power, and high I/O throughput
give the DSP designer a new powerful solution to a variety of complicated applications.
Some of these applications are discussed in Part III of this book.

Development and Support Tools

In developing an application, problems are usually encountered, and questions must
be answered before funding to start the project, or to continue it, is granted. Oftentimes
the tools and vendor support provided to the designer are the difference between the
success and failure of the project. This is especially true when using state-of-the-art
electronic devices, such as digital signal processing ICs.

The TMS320 family of digital signal processors has a wide range of development tools
available (see Figure 5). These tools range from very inexpensive evaluation modules
for application evaluation and benchmarking purposes, assembler/linkers, and software
simulators to full-capability hardware emulators. For a complete listing of the support
available from TI, DSP text/reference books, design services and support offered by
TI Regional Technology Centers and third parties, please refer to the Development
Support Reference Guide.5 A brief summary of them is provided in the succeeding
subsections.

2. The TMS320 Family

Figure 5. TMS320 Product Development Tools

15

Software Tools

Assembler/linkers and software simulators are available on PC and VAX for users to
develop and debug TMS320 DSP algorithms. Their features are described as follows:

ASSEMBLER/LINKER4-9: The TMS320 Macro Assembler translates TMS320
assembly language source code into executable object code. The assembler allows the
programmer to work with mnemonics rather than hexadecimal machine instructions and
to reference memory locations with symbolic addresses. The macro assembler supports
macro calls and definitions along with conditional assembly. The TMS320 Linker permits
a program to be designed and implemented in separate modules that will later be linked
together to form the complete program. The linker resolves external definitions and
references for relocatable code, creating an object file that can be executed by the TMS320
Simulator, TMS320 Emulator, or the TMS320 processor. The TMS320 Macro
Assembler/Linker is currently available for the VAX/VMS, TI PC/MS-DOS, and IBM
PC/PC-DOS operating systems for both generations of DSP processors.

SIMULATORS.,9: The TMS320 Simulator is a software program that simulates
operations of the TMS320 digital signal processor to allow program verification. The
debug mode enables the user to monitor the state of the simulated TMS320 while the
program is executing. The simulator uses the TMS320 object code produced by the
TMS320 Macro Assembler/Linker. During program execution, the internal registers
and memory of the simulated TMS320 are modified as each instruction is interpreted
by the host computer. Once program execution is suspended, the internal registers and
both program and data memories can be inspected and/or modified. The TMS320
Simulator is currently available for the VAX/VMS, TI PC/MS-DOS, and IBM PC/PC-
DOS operating systems for both generations of DSP devices.

Hardware Tools

Powerful TMS320 evaluation and emulation tools provide in-circuit emulation and
hardware program debugging (such as hardware breakpoint/trace) for developing and
testing DSP algorithms in a real product environment. The following paragraphs provide
a brief description of these tools.

EVALUATION MODULE (EVM)11: The EVM allows the designer to determine at
minimal cost if the TMS320 meets the timing requirements of an application. It is a
standalone single-board module that contains all of the tools necessary to evaluate the
device as well as provide in-circuit emulation. The powerful firmware package on the
EVM contains a debug monitor, editor, assembler, reverse assembler, EPROM
programmer, software communication to two EIA ports, and an audio cassette interface.
Communication to a host computer and several peripherals is provided on the TMS320
EVM. Dual EIA ports allow the EVM to be connected to a terminal and either a host
computer or a line printer. The EVM accepts either source or object code downloaded
from the host computer. The resident assembler converts incoming source text into
executable code in just one pass by automatically resolving labels after the first assembly
pass is completed. When a session is finished, code is saved via the host computer,
audio cassette recorder, or EPROM programmer. The EVM is currently available for
the evaluation of the TMS32010.

EMULATOR (XDS)12: The TMS320 XDS Emulator is a powerful, sophisticated

development tool providing full-speed in-circuit emulation with real-time hardware
breakpoint/trace and program execution capability from target memory. The XDS allows

2. The TMS320 Family

integration of the hardware and software modules in the debug mode. By setting
breakpoints based on internal conditions or external events, execution of the program
can be suspended and control given to the debug mode. In the debug mode, all registers
and memory locations can be inspected and modified. Single-step execution is available.
Full-trace capabilities at full speed and a reverse assembler that translates machine code
back into assembly instructions also increase debugging productivity. The XDS system
is designed to interface with either a terminal or a host computer. The object code
generated by the assembler/linker can be downloaded to the XDS and then controlled
through a terminal. The XDS is available for both the TMS32010 and TMS32020.

ANALOG INTERFACE BOARD (AIB)13: The AIB is an analog-to-digital and digital-

to-analog conversion board that can be used in conjunction with the EVM or XDS.
It can also be used in an educational environment to aid in familiarizing the student
with digital signal processing techniques. Analog-to-digital and digital-to-analog
converters with 12-bit resolution and anti-aliasing and smoothing filters with cutoff
frequency programmable from 4.7 kHz to 20 kHz are included on-board. The AIB is
designed to adapt to either the TMS32010 or the TMS32020.

A summary of these tools and their TI part numbers is shown in Tables 2 and 3 for
the TMS32010 and TMS32020, respectively.

Table 2. TMS32010 Family Hardware and Software Support Tools

HOST COMPUTER OPERATING SYSTEM PART NUMBER
MACRO ASSEMBLERS/LINKERS
DEC VAX VMS TMDS3240210-08
TI/IBM PC MS/PC-DOS TMDS3240810-02
SIMULATORS

DEC VAX VMS TMDS3240211-08

TI/IBM PC MS/PC-DOS TMDS3240811-02
HARDWARE TOOL PART NUMBER

Evaluation Module (EVM) TMDS3268811-03

Analog Interface Board (AIB) TMDS3268812-06

Emulator (XDS/22) __TMDS3262281

2. The TMS320 Family 17

Table 3. TMS32020 Family Hardware and Software Support Tools

HOST COMPUTER OPERATING SYSTEM PART NUMBER
MACRO ASSEMBLERS/LINKERS
DEC VAX VMS TMDS3241210-08
TI/IBM PC MS/PC-DOS TMDS3241810-02
SIMULATORS

DEC VAX VMS TMDS3241211-08

TI/IBM PC MS/PC-DOS TMDS3241811-02
HARDWARE TOOL PART NUMBER

Analog Interface Board (AIB) Adaptor RTC/ADP320A-06

Emulator (XDS/11) TMDS3261122

Emulator (XDS/22) TMDS3262291

Digital Filter Design Package

In addition to the above design tools, Texas Instruments has also made available a Digital
Filter Design Package (DFDP)3, developed by Atlanta Signal Processors Inc. (ASPI).
The package runs on both TI and IBM PCs. The DFDP allows the user to design a
digital filter (lowpass, highpass, bandpass, and bandstop types) using a menu-driven
approach. A filter can be designed by simply specifying its characteristics. After the
filter design, the DFDP can automatically generate the TMS320 code, which later can
be integrated into a designer’s application. The DFDP can be ordered through TI or
ASPI using TI part number DFDP-IBM0O1 for the IBM PC version and DFDP-TI001
for the TI PC.

RTC and Third-Party Support

The TI Regional Technology Centers (RTC) are staffed with qualified engineers to provide
technical support to the TMS320 customers. TMS320 hands-on workshops are also
offered by professional instructors in the RTC to give engineers a quick start designing
with the TMS320 digital signal processors. Hands-on exercises are included in the
workshop to familiarize students with various hardware and software design tools. Many
design examples are given throughout the course, which allows students to learn and

2. The TMS320 Family

2. The TMS320 Family

practice essential TMS320/DSP design skills. For further information, please contact
the nearest RTC through the following phone numbers:

GERMANY HOLLAND
8050 Freising - Tel. : 08161/80-4002 1100 AZ Amsterdam-Zuidoost - Tel. : (020) 5602911
3000 Hannover 51 - Tel. : 0511/64 80 21
4300 Essen 1 - Tel. : 0201/24 25-0 ITALY i,
7302 Ostfildern 2/Nellingen - Stuttgart 02015 Cittaducale (Rieti) - Tel. : (0746) 6941
Tel. : 0711/34 03-0 SWEDEN
FRANCE 100 54 Stockholm - Tel. : (08) 235480
78141 Vélizy-Villacoublay Cedex - Tél. (1) 39 46 97 12 UNITED KINGDOM
06270 Villeneuve-Loubet - Tel. : 93 20 01 01 Bedford, MK41 7PA - Tel. : (0234) 67466

TI also provides a team of third parties> with DSP expertise to support customer design.
An extensive list of their names, phone numbers, and areas of support is given as follows:

COMPANY PHONE NUMBER TMS320 SUPPORT
Alembic Computer (213) 306-2865 IBM PC Speech Development
System Inc.

Allen Ashley (818) 793-5748 MS-DOS/PC-DOS, CP/M-80
Assemblers

American (714) 731-1661 EZ-PRO In-Circuit Emulator

Automation

Atlanta Signal (404) 892-7265 Digital Filter Design Package,

Processors Inc. Algorithm Development

(ASPI) Package

Bedford Research (617) 275-7246 PDP and VAX Interactive
Signal Processing Software

Burr Brown (602) 746-1111 VMEBUS Board

Computalker (213) 828-6546 IBM PC, CP/M, Apple II
Assemblers, Simulators

Digital Signal (613) 825-5476 PDP-11, VAX, TI/IBM PC

Processing Software Inc.

Digital Sound Corp. (805) 569-0700 Audio Data Conversion
System for Speech
Development

DSP Technology (214) 247-8831 Four-Channel DTMF
Detectors

Gas Light Software (713) 729-1257 PC Digital Filter Software

Hewlett-Packard Contact the Local HP Logic Development

HP Sales Office System Assembler/Linker

Kontron Electronics (800) 227-8834 Logic Analyzer, Disassembler

Lawrence Livermore

Lab. Livermore, CA Signal Processing Software

COMPANY

Microstuf, Inc.

Pacific Microcircuits

Pratika SRL

PH Associates

Signal Technology, Inc.

Signix Corporation

SKY Computers, Inc.

Televic

Texas Instruments Inc.

Thorn EMI Elec.
TIAC Corp.

Voice Control Systems
Inc.

Votan

Whitman Engineering

DSP Text/Reference Books

PHONE NUMBER

(404) 952-0267

(604) 536-1886

Torino, Italy

(703) 281-5762

(800) 235-5787

(617) 358-5955

(617) 454-6200

Belgium

(512) 250-7474

Australia

(604) 461-0120
(214) 248-8244

(415) 490-7600

(305) 628-4516

TMS320 SUPPOK{

TI/IBM PC Data
Communications Software
(CROSSTALK XVI)

TMS32010 Peripheral
Interface Chip

Olivetti PC Assembler, Linker
Loader

IBM PC, CP/M, PDP-11,
UNIX, TEKTRONIX
Assemblers

Speech/DSP Software (ILS)

IBM PC Digital Filter
Design/Evaluation

PDP-11 Q-Bus/IBM PC-Bus
Real-Time Processor Boards,
Assembler, C Compiler

_SPL Compiler for VAX and
PDP-11

TI/IBM PC Speech Cards
for Speech Vocoding

and Recognition

S/W Support for Eclipse
DSP Hardware for IBM PC
Speech Recognition

IBM PC Speech .Cards
Speech Chip Sets

DSP Development System

A series of DSP books have been or are being written by experts in the field to help
both university students and practicing engineers. These books feature DSP theory,
algorithms, applications, and TMS320 implementations, and are available from
publishers, John Wiley & Sons and Prentice-Hall. The first book in the series, DFT/FFT
and Convolution Algorithms, is now available from John Wiley & Sons. Since these
books cover both the theoretical and practical aspects of DSP, they can be used by
universities as textbooks or DSP engineers as reference guides. The titles, authors,
publishers, and availability of these books are provided as follows:

2. The TMS320 Family

2. The TMS320 Family

TITLE AUTHOR PUBLISHER AVAILABILITY

DFT/FFT and C. S. Burrus and John Wiley now
Convolution Algorithms T. W. Parks & Sons

Digital Filter Design ~ T. W. Parks and John Wiley 1986
C. S. Burrus & Sons

Adaptive Filter Design R. Johnson, Jr. John Wiley 1986
et al & Sons

Digital Control -W. Kohn John Wiley 1986
& Sons

Practical Approaches to P. Papamichalis Prentice- 1986

Speech Coding Hall

For ordering information from publishers, please write or call:

John Wiley & Sons, Inc. Prentice-Hall,Inc.

605 Third Avenue Route 9W

New York, NY 10158 Englewood Cliffs, NJ 07632
1-800-526-5368 201-767-9520

TMS320 Documentation Support

Extensive publications are produced by Texas Instruments to support the TMS320 digital
signal processing family. A list of these publications is given below.

1. TMS32010 User’s Guide (SPRU001B).

2. TMS320C10 Data Sheet (SPRS006).

3. TMS32011 User’s Guide (SPRU010).

4. TMS32020 User’s Guide (SPRUOO4A).

5. TMS320C25 User’s Guide (SPRU012).

6. TMS320 Development Support Reference Guide (SPRU007A).
7. TMS32010 Assembly Language Programmer’s Guide (SPRU002B).
8. Link Editor User’s Guide (SPDU037C).

9. TMS32010 Crossware Installation Guide (SPDU049).

10. TMS320 Family Simulator User’s Guide (SPRU009).

11. TMS32010 Evaluation Module User’s Guide (SPRUOOSA).
12. XDS/22 TMS32010 Emulator User’s Guide (SPDUO15).

13. TMS32010 Analog Interface Board User’s Guide (SPRU006).

21

22

2. The TMS320 Family

PART II

FUNDAMENTAL DIGITAL SIGNAL
PROCESSING OPERATIONS

DIGITAL SIGNAL PROCESSING ROUTINES

3. Implementation of FIR/IIR Filters with the TMS32010/TMS32020
(Al Lovrich and Ray Simar, Jr.)

4. Implementation of Fast Fourier Transform Algorithms with the TMS32020
(Panos Papamichalis and John So)

5. Companding Routines for the TMS32010/TMS32020
(Lou Pagnucco and Cole Erskine)

6. Floating-Point Arithmetic with the TMS32010
(Ray Simar, Jr.)

7. Floating-Point Arithmetic with the TMS32020
(Charles Crowell)

8. Precision Digital Sine-Wave Generation with the TMS32010
(Domingo Garcia)

9. Matrix Multiplication with the TMS32010 and TMS32020
(Charles Crowell)

DSP INTERFACE TECHNIQUES

10. Interfacing to Asynchronous Inputs with the TMS32010
(Jon Bradley)

11. Interfacing External Memory to the TMS32010
(Jon Bradley)

12. Hardware Interfacing to the TMS32020
(Jack Borninski, Jon Bradley, Charles Crowell, and Domingo Garcia)

13. TMS32020 and MC68000 Interface
(Charles Crowell)

Some common digital signal processing routines and interface circuits are frequently
used in DSP applications. For example, the same structure of a digital filter used for
audio signal processing may also be used for a modem in data communications. A Fast
Fourier Transform (FFT) routine can be used for analyzing signals both in
instrumentations and in speech coding. Another example is the interface of a digital
signal processor to external memory devices in a standalone system or in a multiprocessing
environment. A collection of application reports containing these routines and interfaces
is included in Part II. Theory, block diagrams, algorithms, and TMS320 implementations
are provided in these reports. The DSP Software Library includes code for the major
DSP routines and applications.

Part II begins with a series of reports containing DSP routines. The first report discusses
the implementation of Finite Impulse Response (FIR)/Infinite Impulse Response (IIR)
filters using the TMS32010 and TMS32020. Filters designed with digital processors,
such as the TMS320, are superior over their analog counterparts for better specifications,
stability, performance, and reproducability. The report describes a variety of methods
for implementing FIR/IIR filters using the TMS320. The TMS320 algorithm execution
time and data memory requirements are considered. Tradeoffs between several different
filter structures are also discussed. This application report complements the Digital Filter
Design Package (DFDP) discussed in Section 2.

Fast Fourier Transforms (FFT), containing a class of computationally efficient algorithms
implementing the Discrete Fourier Transforms (DFT), are widely used in DSP
applications. In the report on FFT, the development of the FFT from the continuous
Fourier Transform and DFT is first presented. Issues regarding the implementation of
the FFT with the TMS32020 processor are then discussed, such as scaling, special FFT
structures, and system memory and I/O considerations. The report also includes the
TMS32020 code for 256-point and 1024-point FFT algorithms. The next report discusses
companding routines. Companding is required for applications that use codec devices,
such as in public and private telephone networks. With the speed and the versatility
of the TMS320, companding can be performed in either software or hardware. The
report describes both the A-law and p-law software companding methods. Programs
are also provided to show how the software companding can be performed using the
computational power of the TMS32010 and the TMS32020. An example of the hardware
companding is presented in Section 14 of Part III.

Although The TMS32010 and TMS32020 are fixed-point 16/32-bit digital signal
processors, they can also perform floating-point computations at a speed comparable
to dedicated floating-point processors. The next two reports present algorithms and code
implementing floating-point addition, subtraction, multiplication, and division with the
TMS320. The support of floating-point operations by the TI processors has made possible
some applications, such as the implementation of the CCITT Adaptive Differential Pulse
Code Modulation (ADPCM) algorithm and image/graphics operations.

Sine-wave or waveform generations are used in instrumentations and communications.
Both speed and accuracy are major concerns for these applications. The report in Section
8 presents two methods of sine-wave generation. The first method is a fast direct table
lookup scheme suitable for applications where speed is critical. The second approach,
an enhancement of the first, includes linear interpolation to provide higher accurate
waveforms. The last report in the DSP routines portion of Part II is on matrix
multiplication with the TMS32010 and TMS32020. Matrix multiplication is useful in
applications, such as graphics, numerical analysis, or high-speed control. Because of
the high speed of the multiply/accumulate operations and fast data I/O, both processors

25

26

can multiply in microseconds large matrices with their sizes only limited by the internal
data memory. Programs are included in the report to illustrate matrix multiplication
on both processors.

The second half of Part II encompasses various hardware interface techniques useful
for integrating systems using the TMS320 digital signal processors. The first two reports
describe interface circuits for the TMS32010 to asynchronous inputs and to external
memory devices, such as external ROM or RAM. A description of a hardware peripheral
interface device produced by Pacific Microcircuits is also included, which eases the
TMS32010 interface to both external memory and codec devices. The report in Section
12 suggests hardware design techniques for interfacing memory devices and peripherals
to the TMS32020. Examples of PROM, EPROM, static RAM, and dynamic RAM
circuits built around the TMS32020 are demonstrated, with the timing requirements
given for the processor and external devices. Interfaces to a combo-codec and a host
computer through UART are also presented. The last report of Part II shows a scheme
where the TMS32020 can be used as a numeric coprocessor to a host processor for
numeric-intensive applications, such as image/graphics processing. The host processor
selected for the example is the MC68000. The interface and communication techniques
presented in the report are generic and directly applicable to other host processors.

Digital Signal Processing Routines

3. Implementation of FIR/IIR Filters with the
TMS32010/TMS32020

Al Lovrich and Ray Simar, Jr.
Digital Signal Processing - Semiconductor Group
Texas Instruments

27

28

INTRODUCTION

In many signal processing applications, it is advantageous
to use digital filters in place of analog filters. Digital filters
can meet tight specifications on magnitude and phase
characteristics and eliminate voltage drift, temperature drift,
and noise problems associated with analog filter components.

This application report describes a variety of methods
for implementing Finite Impulse Response (FIR) and Infinite
Impulse Response (IIR) digital filters with the TMS320
family of digital signal processors. Emphasis is on
minimizing both the execution time and the number of data
memory locations required. Tradeoffs between several
different structures of the two classes of digital filters are
also discussed.

In this report, TMS320 source code examples are
included for the implementation of two FIR filters and three
IIR filters based on the techniques presented. Plots of
magnitude response, log-magnitude response, unit-sample
response, and other pertinent data accompany each of the
filter implementations. Important performance considerations
in digital filter design are also included. The methods
presented for implementing the different types of filters can
be readily extended to any desired order of filters.

Readers are assumed to have some familiarity with the
basic concepts of digital signal processing theory.! The
notation used in this report is consistent with that used in
reference [1].

FILTERING WITH THE TMS320 FAMILY

Almost every field of science and engineering, such
as acoustics, physics, telecommunications, data
communications, control systems, and radar, deal with
signals. In many applications, it is desirable that the
frequency spectrum of a signal be modified, reshaped, or
manipulated according to a desired specification. The process
may include attenuating a range of frequency components
and rejecting or isolating one specific frequency component.

Any system or network that exhibits such frequency-
selective characteristics is called a filter. Several types of
filters can be identified: lowpass filter (LPF) that passes only
““low”” frequencies, highpass filter (HPF) that passes ‘‘high”’
frequencies, bandpass filter (BPF) that passes a “‘band’’ of
frequencies, and band-reject filter that rejects certain
frequencies. Filters are used in a variety of applications, such
as removing noise from a signal, removing signal distortion
due to the transmission channel, separating two or more
distinct signals that were mixed in order to maximize
communication channe] utilization, demodulating signals, and
converting discrete-time signals into continuous-time signals.

3. Implementation of FIR/IIR Filters with the TMS32010/TMS32020

Advantages of Digital Filtering

The term *“digital filter’” refers to the computational
process or algorithm by which a digital signal or sequence
of numbers (acting as input) is transformed into a second
sequence of numbers termed the output digital signal. Digital
filters involve signals in the digital domain (discrete-time
signals), whereas analog filters relate signals in the analog
domain (continuous-time signals). Digital filters are used
extensively in applications, such as digital image processing,
pattern recognition, and spectrum analysis. A band-limited
continuous-time signal can be converted to a discrete-time
signal by means of sampling. After processing, the discrete-
time signal can be converted back to a continuous-time
signal.Some of the advantages of using digital filters over
their analog counterparts are:

1. High reliability

2. High accuracy

3. No effect of component drift on system
performance

4. Component tolerances not critical.

Another important advantage of digital filters when
implemented with a programmable processor such as the
TMS320 is the ease of changing filter parameters to modify
the filter characteristics. This feature allows the design
engineer to effectively and easily upgrade or update the
characteristics of the designed filter due to changes in the
application environment.

Design of Digital Filters
The design of digital filters involves execution of the
following steps:
1. Approximation
2. Realization
3. Study of arithmetic errors
4. Implementation.

Approximation is the process of generating a transfer
function that satisfies a set of desired specifications, which
may involve the time-domain response, frequency-domain
response, or some combination of both responses of the filter.

Realization consists of the conversion of the desired
transfer function into filter networks. Realization can be
accomplished by using several network structures,2.3 as
listed below. Some of these structures are covered in detail
in this report.

1. Direct
2. Direct canonic (direct-form II)
3. Cascade
4. Parallel
5. Wave4
6. Ladder.

Approximation and realization assume an infinite-

precision device for implementation. However,

29

implementation is concerned with the actual hardware circuit
or software coding of the filter using a programmable
processor. Since practical devices are of finite precision, it
is necessary to study the effects of arithmetic errors on the
filter response.

TMS320 Digital Signal Processors

Digital Signal Processing (DSP) is concerned with the
representation of signals (and the information they contain)
by sequences of numbers and with the transformation or
processing of such signal representations by numeric-
computational procedures. In the past, digital filters were
implemented in software using mini- or main-frame
computers for non-realtime operation or on specialized
dedicated digital hardware for realtime processing of signals.

The recent advances in VLSI technology have resulted
in the integration of these digital signal processing systems
into small integrated circuits (ICs), such as the TMS320
family of digital signal processors from Texas Instruments.
The TMS320 implementation of digital filters allows the filter
to operate on realtime signals. This method combines the
ease and flexibility of the software implemention of filters
with reliable digital hardware. To further ease the design
task, it is now possible for engineers to design and test filters
using any one of the commercially available filter design
packages, some of which create TMS320 code and decrease
the design time.

The Texas Instruments TMS320 digital signal
processing family contains two generations of digital signal
processors. The TMS32010, the first-generation digital signal
processor, implements in hardware many functions that
other processors typically perform in software. Some of the
key features of the TMS32010 are:

® 200-ns instruction cycle
* 1.5K words (3K bytes) program ROM
® 144 words (288 bytes) data RAM
* External memory expansion to 4K words
(8K bytes) at full speed
16 x 16-bit parallel multiplier
Interrupt with context save
Two parallel shifters
On-chip clock
Single 5-volt supply, NMOS technology,
40-pin DIP.

The TMS32020 is the second-generation processorS in
the TMS320 DSP family. To maintain device compatibility,
the TMS32020 architecture is based upon that of the
TMS32010, the first member of the family, with emphasis
on overall speed, communication, and flexibility in processor
configuration. Some of the key features of the TMS32020
are:

e o o o o

® 544 words of on-chip data RAM, 256
words of which may be programmed as
either data or program memory

® 128K words of data/program space

* Single-cycle multiply/accumulate
‘instructions

TMS32010 software upward compatibility
200-ns instruction cycle
Sixteen input and sixteen output channels
16-bit parallel interface
Directly accessible external data memory
space
® Global data memory interface for
multiprocessing
Instruction set support for floating-point
operations
* Block moves for data/program memory
Serial port for multiprocessing or codec
interface

® On-chip clock

® Single 5-volt supply, NMOS technology,

68-pin grid array package.

Because of their computational power, high 1/0
throughput, and realtime programming, the TMS320
processors have been widely adapted in telecommunication,
data communication, and computer applications. In addition
to the above features, the TMS320 has efficient DSP-oriented
instructions and complete hardware/software development
tools, thus making the TMS320 highly suitable for DSP
applications.

DIGITAL FILTER IMPLEMENTATION ON THE
TMS320

For a large variety of applications, digital filters are
usually based on the following relationship between the filter
input sequence x(n) and the filter output sequence y(n):

N M
ym = y aylm-k + y bk x(n-k (6]
k=0 k=0

Equation (1) is referred to as a linear constant-
coefficient difference equation. Two classes of filters can be
represented by linear constant-coefficient difference
equations:

1. Finite Impulse Response (FIR) filters, and
2. Infinite Impulse Response (IIR) filters.

The following sections describe the implementation of

these classes of filters on the TMS32010 and TMS32020.

FIR Filters
For FIR filters, all of the ay in (1) are zero. Therefore,
(1) reduces to

M
ym= y bk xtn-k @
k=0

where (M + 1) is the length of the filter.

As a result, the output of the FIR filter is simply a finite-
length weighted sum of the present and previous inputs to
the filter. If the unit-sample response of the filter is denoted

30 3. Implementation of FIR/IIR Filters with the TMS32010/TMS32020

as h(n), then from (2), it is seen that h(n) = b(n). Therefore,
(2) is sometimes written as

M
ym =y hxn-k) (€)

k=0

From (3), it can be seen that an FIR filter has, as the
name implies, a finite-length response to a unit sample.
Denoting the z transforms of x(n), y(n), and h(n) as X(z),
Y(z), and H(z), respectively, then

Ygy M
H(z)—x—— = E

bez—1 M k
=1 = h(k)z -
@ h))

k=0 k=0

@

Equations (3) and (4) may also be represented by the
network structure shown in Figure 1. This structure is
referred to as a direct-form realization of an FIR filter,
because the filter coefficients can be identified directly from
the difference equation (3). The branches labeled with z— 1
in Figure 1 correspond to the delays in (3) and the
multiplications by z—1 in (4). Equation (3) may be
implemented in a straightforward and efficient manner on
a TMS320 processor.

TMS32010 Implementation of FIR Filters

Figure 2 gives an example of a length-5 direct-form
FIR filter, and Figure 3 shows a portion of the TMS32010
code for implementing this filter.)

The notation developed in this section will be used
throughout this application report. XN corresponds to
x(n), XNM1 corresponds to x(n—1), etc.

In the above implementation, the following three basic
and important concepts for the implementation of FIR filters
on the TMS320 should be undérstood:

1. The relationship between the unit-sample
response of an FIR filter and the filter
structure,

2. The power of the LTD and MPY
instruction pair for this implementation, and

3. The ordering of the input samples in the
data memory of the TMS320, which is
critical for realtime signal processing.

The input sequence x(n) is stored as shown in Figure
4.In general, each of the multiplies and shifts of x(n) in (3)
is implemented with an instruction pair of the form

LTD XNMl1
MPY HI

The instruction LTD XNMI1 loads the T register with
the contents of address XNM1, adds the result of the previous
multiply to the accumulator, and shifts the data at address
XNMI1 to the next higher address in data memory. Using
the storage scheme in Figure 4, this corresponds to shifting
the data at address XNM1 to address XNM2. The instruction
MPY H1 multiplies the contents of the T register with the
contents of address H1. The shifting is the reason for the
storage scheme used in Figure 4. This scheme, critical for
realtime digital signal processing, makes certain that the input
sequence x(n) is in the correct location for the next pass
through the filter.

By comparing (3) with the code in Figure 3, the reason
for the ordering of the data and the importance of the shift
implemented by the LTD instruction can be seen. To better

2-1 2-1 2-1
x(n) o
Y hio h{1) hi2) Y him-2) h(M-1)
yin)
Figurel. Direct-Form FIR Filter
z—1 z-1 2-1 2-1
x(n}
Y hi0) Yhi1) y h(2) Y h(3) Y hi4)
yin)

Figure 2. Length-5 Direct-Form FIR Filter

3. Implementation of FIR/IIR Filters with the TMS32010/TMS32020

31

32

* THIS SECTION OF CODE IMPLEMENTS THE FOLLOWING EQUATION: *
* x(n-4)h(4) + x(n-3)h(3) + x(n-2)h(2) + x(n-1)h(1) + x(n)h(0) = y(n) *
*

NXTPT IN XN,PA2 * GET THE NEW INPUT VALUE XN FROM PORT PAO *
*
ZAC * ZERO THE ACCUMULATOR *
*
LT XNM4 * x(n-4)h(4) *
MPY H4
*
LTD XNM3 * x(n-4)h(4) + x(n=3)h(3) *
MPY H3
*
LTD XNM2 * SIMILAR TO THE PREVIOUS STEPS *
MPY H2
*
LTD XNM1
MPY H1
*
LTD XN
MPY HO
*
APAC * ADD THE RESULT OF THE LAST MULTIPLY TO *
* * THE ACCUMULATOR *
*
SACH ¥N,1 * STORE THE RESULT IN YN *
*
OUT YN,PA2 * QUTPUT THE RESPONSE TO PORT PAl *
*
B NXTPT * GO GET THE NEXT POINT *

Figure 3. TMS32010 Code for Implementing a Length-5 FIR Filter

LOW DATA
ADDRESS

x(n)

XNM1 x(n-1)

XNMm2 xin-2) > INPUT SAMPLES

[o] |

HIGH DATA
ADDRESS

Figure 4. TMS32010 Input Sample Storage for a
Length-N FIR Filter

understand the algorithm, the relationship between the input
and output of the filter must be considered. Evaluating (3)
for a particular value of n, for example, ng, yields
N-1
yo) =y~ h(k) x(ng—k) ()]
k=0

If the next sample of the filter response y(ng+ 1) is
needed, it is seen from (3) that

yip+1) =y hk) x(no+1-k) 6)
k=0

3. Implementation of FIR/IIR Filters with the TMS32010/TMS$32020

Equations (5) and (6) show that the samples of x(n)
associated with particular values of h(k) in (5) have been
shifted to the left (i.e., to a higher data address) by one in
(6). This shifting of the input data, illustrated in Figure 5,
corresponds to the shifting of the flipped input sequence in
relation to the unit-sample response.

Depending on the system constraints, the designer may
choose to reduce program memory size by taking advantage
of indirect addressing capability provided by the TMS32010.
Using either of the auxiliary registers along with the
autoincrement or autodecrement feature, the FIR filter
program can be rewritten in looped form as shown in Figure
6.

The input sequence x(n) is stored as shown in Figure
4, and the impulse response h(n) is stored as shown in Figure
7. In the looped version, the indirect addressing mode is used
with the autodecrement feature and BANZ instruction to
control the looping and address generation for data access.
While the looped code requires less program memory than
the straightline version, the straightline version runs more
quickly than the looped code because of the overhead
associated with loop control. This design tradeoff should be
carefully considered by the design engineer.

Relationship between h(n) and
x(n) for y(ng)

It is also possible to use the LTD/MPYK instruction
pair to implement each filter tap in straightline code. The
MPYK instruction is used to multiply the contents of the T
register by a signed 13-bit constant stored in the MPYK
instruction word. For many applications, a 13-bit coefficient
can adequately implement the filter without significant
changes to the filter response. An advantage of using this
approach is that the coefficients are stored in program
memory and there is no need to transfer them to data
memory. This reduces the amount of data memory locations
required per filter tap from two to one.

The length-80 FIR filter program in Appendix A
implements a linear-phase FIR filter in straightline code. The
unit-sample response of the filter is symmetric in order to
achieve linear phase. Because of the symmetry, it is necessary
to store only 40 (rather than 80) of the samples of the impulse
response. This symmetry can often be used to a designer’s
advantage since it significantly reduces the amount of storage
space required to implement the filter.

In summary, by taking advantage of the TMS32010
features, a designer can implement a direct-form FIR filter,
optimized for execution time, data memory, or program
memory.

Relationship between h(n) and
x(n) fory(ng + 1)

LOW DATA ADDRESS
h(0) x(ng) h(0) xing+1)
h(1) x(ng-1) h(1) x(ng)
h(2) x{ng-2) h(2) xing-1)
B . . .
. . . .
. . . .
h(N-2) x[ng ~(N-2)] h(N-2) x[ng — (N-3)]
hiN-1) x[ng—(N-1)] hiN-1) x[ng —(N-2)]
HIGH DATA ADDRESS

Figure 5. Relationship Between the C

3. Implementation of FIR/IIR Filters with the TMS32010/TMS32020

of Data Registers

33

* THIS SECTION OF CODE IMPLEMENTS THE EQUTION: *
* x(n-(N-1))h(N-1) + x(n-(N-2))h(N-2) + ... + x(n)h(0) = y(n) *
*

LARP ARO * AUXILIARY REGISTER POINTER SET TO ARQO *
*
NXTPT IN XN,PA2 * PULL IN NEW INPUT FROM PORT PAO *
*

LARK ARO,XNMNM1 * ARO POINTS TO X(n-(N-1)) *

LARK AR1,HNM1 * ARl POINTS TO H(N-1) *
*

ZAC * ZERO THE ACCUMULATOR *
*

LT *-,ARl * x(n-(N-1))h(N-1) *

MPY *-,AR0O
*
LOOP LTD *,ARl * x(n-(N-1))h(N-1)+x(n-(N-2))h(N-2)+...+x(n)h(0)=y(n)*

. MPY *-,AR0O

*

BANZ LOOP * IF ARO DOES NOT EQUAL ZERO, *
* * THEN DECREMENT ARO AND BRANCH TO LOOP *
*

APAC * ADD THE P REGISTER TO THE ACCUMULATOR *
*

SACH YN,1 * STORE THE RESULT IN YN *
*

OUT YN,PA2 * OUTPUT THE RESPONSE TO PORT PAl *
*

B NXTPT * GO GET THE NEXT INPUT POINT *

Figure 6. TMS32010 Code for Implementing a Looped FIR Filter

LOW DATA
ADDRESS

h(0)

h(1)

UNIT-SAMPLE
: RESPONSE

HIGH DATA
ADDRESS

Figure 7. TMS32010 Unit-Sample Response
Storage for a Looped FIR Filter

TMS32020 Implementation of FIR Filters

In many DSP applications, realtime processing of
signals is very critical. Important choices must be made in
selecting a DSP device capable of realtime filtering, For
example, in a speech application, a sampling rate of 8 kHz
is common, which corresponds to an interval of 125 us
between consecutive samples. This interval is the maximum

allowable time for realtime operation, corresponding to 625
cycles on the TMS32010. In order to perform the required
signal processing tasks in that interval, it is essential to reduce
filter execution time. This can be accomplished by a single-
cycle multiply/accumulate instruction. The TMS32020, the
second-generation DSP device, is a processor with such a
capability. A single-cycle multiply/accumulate with data-
move instruction and larger on-chip RAM make it possible
to implement each filter tap in approximately 200 ns.
The TMS32020 provides a total of 544 16-bit words
of on-chip RAM, divided into three separate blocks of BO,
B1, and B2. Of the 544 words, 288 words (blocks B1 and
B2) are always data memory, and 256 words (block B0) are
programmable as either data or program memory. The
CNFD (configure block BO as data memory) and CNFP
(configure block BO as program memory) instructions allow
dynamic configuration of the memory maps through
software, as illustrated in Figure 8. After execution of the
CNFP instruction, block BO is mapped into program
memory, beginning with address 65280. To take advantage
of the MACD (multiply and accumulate with data move)
instruction, block BO must be configured as program memory
using the CNFP instruction. MACD only works with on-
chip RAM. The use of the MACD instruction helps to speed

34 3. Implementation of FIR/IIR Filters with the TMS32010/TMS32020

PROGRAM DATA
0(>0000) 0(>0000)
INTERRUPTS ON-CHIP
AND RESERVED MEMORY-MAPPED
31(>001F) (EXTERNAL) 5(>0005) REGISTERS
32(>0020) 6(>0006) [a." o PAGE 0
RESERVED
95(>005F) .
96(>0060) ON-CHIP
127(>007F) BLOCK B2
128(>0080)
RESERVED r PAGES 1-3
511(>01FF)
EXTERNAL 512(>0200) ON-CHIP
BLOCK BO PAGES 4-5
767(>02FF)
768(>0300)
B?.g-(?l:‘ IBP1 PAGES 6-7
1023(>03FF)
1024(>0400)
EXTERNAL ™ PAGES 8-511
65,535(>FFFF) 65,535(> FFFF)

(a) ADDRESS MAPS AFTER A CNFD INSTRUCTION

PROGRAM DATA
0(>0000) 0(>0000)
INTERRUPTS ON-CHIP
AND RESERVED MEMORY-MAPPED
(EXTERNAL) REGISTERS
31(>001F) 5(>0005)
32(>0020) 6(>0006) > PAGE 0
RESERVED
95(>005F)
96(>0060) ON.CHIP
127(>007F) Brock s2
EXTERNAL 128(>0080)
RESERVED ~ PAGES 1-3
511(>01FF)
512(>0200)
DOES NOT b~ PAGES 4-5
767(>02FF) EXIST
' 768(>0300) ON-CHIP
g = PAGES 6-7
65,279(>FEFF) 1023(>03FF)
65,280(>FF00) P 1024(>0400)
BLOCK BO EXTERNAL ™ PAGES 8-511
65,535(> FFFF) 65,535(> FFFF)

{b) ADDRESS MAPS AFTER A CNFP INSTRUCTION

Figure 8. TMS32020 Memory Maps

the filter execution and allows the size of the FIR filter to
expand to 256 taps.6

The TMS32020 implementation of (3) is made even
more efficient with a repeat instruction, RPTK. It forms a
useful instruction pair with MACD, such as

RPTK NM1
MACD (PMA),(DMA)

3. Implementation of FIR/IIR Filters with the TMS32010/TMS32020

The RPTK NMI instruction loads an immediate 8-bit
value N-1 into the repeat counter. This causes the next
instruction to be executed N times (N = the length of the
filter). The instruction MACD (PMA),(DMA) performs the
following functions:

1. Loads the program counter with PMA,
2. Multiplies the value in data memory
location DMA (on-chip, block B1) by the

35

value in program memory location PMA
(on-chip, block B0),

‘3. Adds the previous product to the
accumulator,

4. Copies the data memory value (block BO)
to the next higher on-chip RAM location.
The data move is the mechanism by which
the z— 1 delay can be implemented, and

5. Increments the program counter with each
multiply/accumulate to point to the next
sample of the unit-sample response.

In other words, the MACD instruction combines the
LTD/MPY instruction pair into one. With the proper storage
of the input samples and the filter unit-sample response, one
can take advantage of the power of the MACD instruction.
Figure 9 is a data storage scheme that provides the correct
sequence of inputs for the next pass through the filter.

In the TMS32020 code example of Figure 10, data
memory values are accessed indirectly through auxiliary
register 1 (AR1) when the MACD instruction is
implemented. For low-order filters (second-order), using the
MACD instruction in conjunction with the RPTK instruction
is less effective due to the overhead associated with the
MACD instruction in setting up the repeat construct. To take
advantage of the MACD instruction, the filter order must
be greater than three. For lower-order filters, it is
recommended to use the LTD/MPY instruction pair in place
of RPT/MACD.

Writing looped code for the TMS32020 implementation
of an FIR filter gives no further advantage. Since the MACD
instruction already uses less program memory, looped code
in this case does not reduce program memory size.
Implementing FIR filters of length-3 or higher requires the
same amount of program memory (excluding coefficient

BLOCK BO

LOW ADDRESS

storage). For example, an F]R filter of length-256 takes the
same amount of program memory space as a FIR filter of
length-4.

Since the "TMS32020 instruction set is upward-
compatible with the TMS32010 instruction set, it is possible
to use the LTD/MPYK instruction pair to implement the
filter. With the TMS32020, the designer can use either
RPTK/MACD or LTD/MPY(K) where appropriate.
Depending on the application and the data memory
constraints, the use of the LTD/MPYK instruction pair
results in less data memory usage at the cost of increasing
the program memory storage.

The FIR filter program of Appendix A is an
implementation of the same length-80 FIR filter used in the
TMS32010 example. In this implementation, it can be seen
that the TMS32020 uses less program memory than the
TMS32010 with the tradeoff of using more data memory
words. The increase in data memory size is indirectly related
to the MACD instruction; i.e., in order to take full advantage
of the instruction, it is necessary to keep the multiplier
pipeline as busy as possible. Therefore, the filter will execute
faster when all 80 coefficients are provided in block BO.

The TMS32020 provides a solution for the faster
execution of FIR filters. The combination of the
RPTK/MACD instructions provides for a minimum program
memory and high-speed execution of an FIR filter. If data
memory is a concern, the designer can use the LTD/MPYK
instruction pair at the cost of increasing program memory
and using 13-bit filter coefficients.

IIR Filters

The concepts introduced for the implementation of FIR
filters can be extended to the implementation of IIR filters.
However, for an IIR filter, at least one of the ay in (1) is

BLOCK B1

LOW ADDRESS

>FFOO :
(6s280) | "NV x(n)
: n-1)
. M, x(n -
. %,
4 .
.
h(1) .
>3FF
hio) xln=(N=111 | (3023
HIGH ADDRESS HIGH ADDRESS
UNIT-SAMPLE RESPONSE INPUT-SAMPLE STORAGE

STORAGE FOR
LENGTH-N FIR FILTER

FOR LENGTH-N FIR FILTER

Figure 9. TMS32020 Memory Storage Scheme

36 3. Implementation of FIR/IIR Filters with the TMS32010/TMS32020

* THIS SECTION OF CODE IMPLEMENTS THE EQUATION:

*
*
CNFP *
*
NXTPT IN XN, PAO *
*
LRLK AR1,>3FF *
LARP AR1
*
MPYK 0 *
ZAC *
*
RPTK NM1 *
MACD >FF00, *- *
*
APAC
SACH YN, 1
*
ouT ¥YN,PAl *
*
8 NXTPNT *

x(n=-(N-1))h(N-1) + x(n-(N-2))h(N-2) + ... + x(n)h(0) = y(n)

USE BLOCK BO AS PROGRAM AREA
BRING IN THE NEW SAMPLE XN
POINT TO THE BOTTOM OF BLOCK Bl
SET P REGISTER TO ZERO

CLEAR THE ACCUMULATOR

REPEAT N-1 TIMES
MULTIPLY/ACCUMULATE

OUTPUT THE FILTER RESPONSE y(n)

GET THE NEXT POINT

Figure 10. TMS32020 Code for Implementing a Length-5 FIR Filter

nonzero. It has been shown! that the z transform of the unit-
sample response of an IIR filter corresponding to (1) is

M
r byz -k
k=0
Hoy - Y@ _ X0 ™
X(z) N
- X agz—k
k=1

where H(z), Y(z), and X(z) are the z transforms of h(n), y(n),
and x(n), respectively. Three different network structures
often used to implement (7) are the direct form, the cascade
form, and the parallel form. Implementation of these
structures is discussed in the following sections.

Direct-Form IIR Filter

Equations (1) and (7) may also be represented by the
network structure shown in Figure 11. For convenience, it
is assumed that M = N. This network structure is referred
to as the direct-form I realization of an Nth-order difference
equation. As was the case for the direct-form FIR filter, the
structure in Figure 11 is called direct-form since the
coefficients of the network can be obtained directly from the
difference equation describing the network. Again, the
branches associated with the z 1 correspond to the delays
in (1) and the multiplications in (7).

The following difference equation:

N M
y(n) = Y oA y(n-k) + v b x(n—k) (8)
k=1 k=0

shows that the output of the filter is a weighted sum of past
values of the input to the filter and of the output of the filter.
Using techniques similar to those for an FIR filter, this
realization can be implemented in a straightforward and
efficient way on the TMS32010 and TMS32020.

A network flowgraph equivalent to that in Figure 11
is shown in Figure 12. This system is referred to as the direct-
form II structure. Since the direct-form II has the minimum
number of delays (branches labeled z—1), it requires the
minimum number of storage registers for computation. This
structure is advantageous for minimizing the amount of data
memory used in the implementation of IIR filters.

In Figures 13 through 17, a second-order direct-form
II IR filter is used as an example for the TMS320
implementation of the IIR filter. The network structure is
shown in Figure 13.

The difference equation for this network is

d(n)
y(n)

x(n) + a;d(n—1) + a3 d(n—2) ()
bg d(n) + by d(n—1) + by d(n—2)

[

In this case, d(n), shown in (9) and Figure 13,
corresponds to the network value at the different delay nodes.
The zero-delay register corresponds to d(n); d(n — 1) is the
register for the delay of one; and d(n —2) is the register for
the delay of two. A portion of the TMS32010 code necessary
to implement (9) is shown in Figure 14. Initially all d(n - i)
for i=0,1,2 are set to zero.

The delay-node values of the filter are stored in
data memory as shown in Figure 15. At each major step of
the algorithm, a multiply is done, and the result from the
previous multiply is added to the accumulator. Also, the past
delay-node values are shifted to the next higher location in

3. Implementation of FIR/IIR Filters with the TMS32010/TMS32020 37

y(n)
3 pz-1
al
- yin-1)
2-1
a2
yin-2)
aN-1 !
yin-N+1)
3 21
aN
y(n-N)

Figure 11. Direct-Form I IIR Filter

x(n)
z- 1Y
bq
x(n-1) >-
z- 19 }
b2
x(n-2) ——
| b1 !
x(n-N+1)
z2-14¢
by
x(n-N)
bo
x(n) y(n)
¥2-1 *
aq bq
o1
a2 ba
I oan-q b oeyog !
. Yz-1 b
an by

Figure 12. Direct-Form II IIR Filter

o d(n) bo R
x;-) v('n)
yz!
aldin-1) bq
| PR [
a2 din—2) bz

Figure 13. Second-Order Direct-Form II IIR Filter

data memory, thus placing them in the correct position for
the next pass through the filter. All of these operations are
carried out with instruction pairs, such as

LTD DNMI1
MPY BI1

where DNM1 corresponds to d(n— 1) and B1 corresponds
to by as in (9).

When the last multiplication is performed and the result
is added to the accumulator, the accumulator contains the
result of (9), which is y(n). From (9) and Figure 13, it is
evident that the delay-node value d(n) depends on several
of the previous delay-node values. This feedback is illustrated
by the instruction

SACH DN,1
and the use of the statements

LTD DNMI

LTD DN

The ordering of the delay-node values, shown in Figure
15, allows for a simple program structure with minimal
computations and minimal data locations. It also
accommodates the shifting of the delay-node values in a
straightforward way. The feedback of DN makes apparent
the underlying structure of the direct-form II filter and (10).
This form of the algorithm is flexible and can be extended
to higher-order direct-form filters in a straightforward way.

38 3. Implementation of FIR/IIR Filters with the TMS32010/TMS32020

* THIS SECTION OF CODE IMPLEMENTS THE EQUATIONS: *
* d(n) = x(n) + d(n-1)a + d(n-2)a *
* 1 2 *
* y(n) = d(n)b + d(n-1)b + d(n-2)b *
* 0 1 2 *
*
*
IN XN,PAO * NEW INPUT VALUE XN *
*
LAC XN,15 * LOAD ACCUMULATOR WITH XN *
*
LT DNM1
MPY Al
*
LTA DNM2
MPY A2
*
APAC
*
SACH DN,1 * d(n) = x(n) + d(n-1)a + d(n-2)a *
* * 1 2 *
ZAC
*
MPY B2
*
LTD DNM1
MPY Bl
*
LTD DN
MPY BO
*
APAC
*
SACH ¥YN,1 * y(n) = d(n)b + d(n-1)b + d(n-2)b *
* * 0 1 2 *
*
OUT YN,PAl * YN IS THE OUTPUT OF THE FILTER *
Figure 14. TMS32010 Code for Implementing a Second-Order Direct-Form II IR Filter
LOW DATA LOW DATA
ADDRESS ADDRESS
d(n) d(n)
DE
din—1) R din-1)
DELAY-NODE
din-2) M VALUES
LJ
HIGH DATA
Figure 15. Delay-Node Value Storage for a HIGH DATA
Second-Order Direct-Form IIR Filter ADDRESS
Figure 16 shows the necessary ordering of the delay-node Figure 16. Delay-Node Value Storage for a
values for a general direct-form II structure for the case Direct-Form II IIR Filter
M= N. Filter order is determined by M or N, whichever)
is greater.

3. Implementation of FIR/IIR Filters with the TMS32010/TMS32020

Figure 17 shows a portion of the TMS32020 code for
implementing the same second-order direct-form II IR filter
using the MACD instruction. As discussed in the section on
FIR filters, using the RPTK/MACD instruction pair is most
effective when the filter order is three or higher. The use
of the MACD instruction allows the designer to save one
word of program memory over the LTD/MPY
implementation. The TMS32020 code in Figure 17 is
provided only as an example. For a biquad implementation
(second-order direct-form II IIR filter), the TMS32010 code
and TMS32020 code for the filter implementation are
identical. Note that due to larger on-chip RAM of the
TMS32020, higher-order IIR filters or sections of IIR filters
can be implemented. For the rest of the IIR filter structures,
the same discussion applies to both processors.

An example of a TMS32010/TMS32020 program
implementing a fourth-order direct-form II structure can be
found in Appendix C.

Cascade-Form IR Filter

In this section, the realization and implementation of
cascade-form IIR filters are discussed. The implementation
of a cascade-form IIR filter is an extension of the results of
the implementation of the direct-form IIR filter.

The z transform of the unit-sample response of an IIR
filter

byz —k
0

TME

H@ = (10)
agz—k

1

1-
k

[o -

THIS SECTION OF CODE IMPLEMENTS A SECOND-ORDER DIRECT-FORM II IIR FILTER

* NEW INPUT VALUE XN

* CLEAR P REGISTER

* USE BLOCK BO AS PROGRAM AREA

* CLEAR P REGISTER

* SAVE FILTERED OUTPUT

* YN IS THE OUTPUT OF THE FILTER

*
* d(n) = x(n) + d(n-1)a + d(n-2)a
* 1 2
* y(n) = d(n)b + d(n-1)b + d(n-2)b
* 0 1 2
*
NEXT IN XN,PA2
*

LAC XN

MPYK O
*

LARP ARl

LRLK AR1,>03FF

CNFP
*
* d(n) = x(n) + d(n-1)a + d(n-2)a
* 1 2
*

RPTK 1 * REPEAT 2 TIMES

MACD >FF00,*+
*

APAC

SACH DN,1 * d(n)
*
* y(n) = d(n)b + d(n-1)b + d(n-10)b
* 0 1 2
*

ZAC

MPYK O
*

MPY >FF02
*

RPTK 1

MACD >FF03,*-
*

APAC

SACH Y¥N,1
*

ouTt YN,PA2

B NEXT

Figure 17. TMS32020 Code for Implementing a Second-Order Direct-Form IIR Filter with MACD

3. Implementation of FIR/IIR Filters with the TMS32010/TM$32020

may also be written in the equivalent form

N2 gy + Buz—1 + Baa~2

Hez) = II
k=1

1y
1—apz—1—agz—2

where the filter is realized as a series of biquads. Therefore,
this realization is referred to as the cascade form. Figure 18
shows a fourth-order IIR filter implemented in cascade
structure, where the subsections are implemented as direct-
form II sections. Each subsection corresponds to one of the
terms in the product in (11). Note that any single cascade
section is identical to the second-order direct-form II IIR filter
described previously.

The difference equation for cascade section i can be
written as

di(n) = yi-1(m) + «j diin—1) + a; di(n-2) (12)

yi) = PBoj di(n) + By diln—1) + B2 di(n—2)

LOW DATA
ADDRESS
da(n) 7
SECTION 2
da(n-1) ~ DELAY-NODE
VALUES
d2(n-2)
- <-
dq(n)
SECTION 1
dqin-1) > DELAY-NODE
VALUES
dqin-2)
! §
HIGH DATA
ADDRESS

Figure 19. Delay-Node Storage for Cascaded
IIR Filter Subsections

is used here (i.e., from the higher address in data memory
to the lower address in data memory). In this case, the

where algorithm can be structured so that the 32-bit accumulator
i = 1,2,...,N/2. of the TMS320 acts as a storage register and carries the
output of one of the second-order subsections to the input
yi—1(n) = input to section i. of the next second-order subsection. This avoids unnecessary
truncation of the intermediate filter values into 16-bit words,
di(n) = value at a particular delay and therefore provides better accuracy in the final output.
node in section 1. The implementation of the cascaded fourth-order IIR
filter can be summarized as follows:
yi(n) = output of section i. 1. Load the new input value x(n).
2. Operate on the first section as outlined in
yo(n) = x(n) = sample input to the filter. Figure 12.
3. Leave the output of the first section in the
yN/2 = y(n) = output of the filter. accumulator (i.e., the SACH YN can be
omitted for the first-section implementation
For the IIR filter consisting of the two cascaded sections since the accumulator links the output of
shown in Figure 18, there are two sets of equations describing one section to the input of the following
the relationship between the input and output of the filter. section).
The delay-node values for each section are stored as shown 4. Operate on the second section in the same
in Figure 19. The same indexing scheme used previously way as the first section, remembering that
£o1 viin) 802 L
x(n) y(n)
¥z-1 3 9z-1 3
a1 B11 @12 812
[| 3l 4 z2—1
21 821 22 822
SECTION 1 SECTION 2

Figure 18. Fourth-Order Cascaded IIR Filter

3. Implementation of FIR/IR Filters with the TMS32010/TM$32020

41

the accumulator already contains the output
of the previous section.

5. The output of the second section is the
filter output y(n).

The above procedures can be applied to the IIR filter
implementation of higher orders. It can be shown3 that with
proper ordering of the second-order cascades, the resulting
filter has better immunity to quantization noise than the
direct-form implementation, as will be discussed later.

An example of a TMS32010/TMS32020 program that
implements a fourth-order IIR cascaded structure is contained
in Appendix C.

Parallel-Form IIR Filter
The third form of an IIR filter is referred to as the
parallel form. In this case, H(z) is written as

(13)

M)_:N . r}/:z Yok + Yz~ 1
H(@) = Cz—k + —_—
@ K=o ¥ k=1 l-akz~l-azz—2

If M < N, then the term (Cxz —k) = 0. The network
form is shown in Figure 20, where it is assumed that M =
N = 4. The multiplication of the input by C (a constant)
is trivial. However, for one of the parallel branches of this
structure, the difference equation is

di(n) = x(n) + oj di(n—1) + o di(n—2) 14

pi(n) = Yoi di(n) + M ditn—1)

where i = 1,2,...,N/ 2, and pj(n) = the present output of
a parallel branch.

The similarity to the second-order direct-form II
network and the single parallel section is apparent. However,
in this case, the outputs of all sections are summed to give
the output y(n), i.e.,

N2
ym = Cxm + X pitm) 15)

i=1

if M = N. For the parallel implementation, the delay-node
values are also structured in data memory, as shown in Figure
21, thus allowing for an implementation similar to that used
previously. After the output of each section stored in the
32-bit accumulator is determined, these outputs are summed
to yield the filter output y(n). An example of a
TMS32010/TMS32020 program to implement a parallel
structure can be found in Appendix C.

PERFORMANCE CONSIDERATIONS IN
DIGITAL FILTER DESIGN

In the previous sections, different realizations of the
FIR and IIR digital filters were discussed. This section is
mainly concerned with the effects of finite wordlength on
filter performance.

Some features of FIR and IIR filters, which distinguish
them from each other and need special considerations when
they are implemented, include phase characteristics, stability,
and coefficient quantization effects.

[o > > e p&’ ®
x(n) y(n)
! -1 !
a1 711

¢z-1 4
21
702 ptin)
-1 3
12 712
. y 21
a22

Figure 20. Parallel-Form IIR Filter

42 3. Implementation of FIR/IR Filters with the TMS32010/TMS32020

LOW DATA
ADDRESS
~
da(n)
SECTION 2
da(n-1) > DELAY-NODE
VALUES
d2(n-2)
- — c— ‘— -
S
d4(n)
SECTION 1
dq(n-1) DELAY-NODE
VALUES
dqin-2)
HIGH DATA
ADDRESS

Figure 21. Delay-Node Value Storage
for a Parallel IIR Filter

Given a set of frequency-response characteristics,
typically a higher-order FIR filter is required to match these
characteristics to a corresponding IIR filter. However, this
does not imply that IIR filters should be used in all cases.
In some applications, it is important that the filter have linear
phase, and only FIR filters can be designed to have linear
phase.

Another important consideration is the stability of the
filter. Since the unit-sample response of an FIR filter is of
finite length, FIR filters are inherently stable (i.e., a bounded
input always produces a bounded output). This can be seen
from (5) where the output of an FIR filter is a weighted finite
sum of previous inputs. On the other hand, IIR filters may
or may not be stable, depending on the locations of the poles
of the filter.

Digital filters are designed with the assumption that the
filter will be implemented on an infinite precision device.
However, since all processors are of finite precision, it is
necessary to approximate the *‘ideal’ filter coefficients. This
approximation introduces coefficient quantization error. The
net result due to imprecise coefficient representations is a
deviation of the resultant filter frequency response from the
ideal one. For narrowband IIR filters with poles close to the
unit circle, longer wordlengths may be required. The worst
effect of coefficient quantization is instability resulting from
poles being moved outside the unit circle.

The effect of coefficient quantization is highly
dependent on the structure of the filter and the wordlength
of the implementation hardware. Since the poles and zeroes
for a filter implemented with finite wordlength arithmetic
are not necessarily the same as the poles and zeroes of a filter
implemented on an infinite precision device, the difference
may affect the performance of the filter.

In the IIR filter, the cascade and parallel forms
implement each pair of complex-conjugate poles separately.
As a result, the coefficient quantization effect for each pair
of complex-conjugate poles is independent of the other pairs

e

3. Implementation of FIR/IIR Filters with the TMS32010/TMS32020

of complex-conjugate poles. This is generally not true for
direct-form filters. Therefore, the cascade and parallel forms
of IIR filters are more commonly used than the direct form.

Another problem in implementing a digital filter is the
quantization error due to the finite wordlength effect in the
hardware. Sources of error arising from the use of finite
wordlength include the following:

1/0 signal quantization

Filter coefficient quantization

Uncorrelated roundoff (or truncation) noise
Correlated roundoff (or truncation) noise
Dynamic range constraints.

These problems are addressed in the following
paragraphs in more detail.

Representing instantaneous values of a continuous-time
signal in digital form introduces errors that are associated
with I/O quantization. Input signals are subjected to A/D
quantization noise while output signals are subjected to D/A
quantization noise. Although output D/A noise is less
detrimental, input A/D quantization noise is the more
dominant factor in most systems. This is due to the fact that
input noise ‘‘circulates’’ within IIR filters and can be
‘‘regenerative’’ while output noise normally just
‘‘propagates’’ off-stage.

The filter coefficients in all of the routines described
in this report are initially stored in program memory, and
then moved to data memory. These coefficients are
represented in Q15 format; i.e., the binary point (represented
in two’s-complement form) is assumed to follow the most-
significant bit. This gives a coefficient range of 0.999969
to -1.0 with increments of 0.000031. The input is also in
Q15 format so that when two Q15 numbers are multiplied,
the result is a number in Q30 format. When the Q30 number
resides in the 32-bit accumulator of the TMS320, the binary
point follows the second most-significant bit. Since the output
of the filter is assumed to be in Q15 format, the Q30 number
must be adjusted by left-shifting by one while maintaining
the most-significant 16 bits of the result. This is accomplished
with the step SACH YN, 1, which shifts the Q30 number to
the left by one and stores the upper sixteen bits of the
accumulator following the shift. The result YN is in Q15
format. Note that it is important to keep intermediate values
in the accumulator as long as possible to maintain the 32-bit
accuracy.

Uncorrelated roundoff (or truncation) noise may occur
in multiplications. Even though the input to the digital filter
is represented with finite wordlength, the result of processing
leads to values requiring additional bits for their
representation. For example, a b-bit data sample, multiplied
by a b-bit coefficient, results in a product that is 2b bits long.
In a recursive filter realization, 2b bits are required after the
first iteration, 3b bits after the second iteration, and so on.
The fact that multiplication results have to be truncated means
that every ‘‘multiplier’’ in a digital structure can be regarded
as a noise source. The combined effects of various noise
sources degrade system performance.

R E

43

Truncation or rounding off the products formed within
the digital filter is referred to as correlated roundoff noise.
The result of correlated roundoff (or truncation) noise,
including overflow oscillations, is that filters suffer from
“‘limit-cycle effect’’ (small-amplitude oscillations). For
systems with adequate coefficient wordlength and dynamic
range, this problem is usually negligible. Overflows are
generated by additions resulting in undesirable large-
amplitude oscillations. Both limit cycles and overflow
oscillations force the digital filter into nonlinear operations.
Although limit cycles are difficult to eliminate, saturation
arithmetic can be used to reduce overflow oscillations. The
overflow mode of operation on the TMS320 family is
accomplished with the SOVM (set overflow mode)
instruction, which sets the accumulator to the largest
representable 32-bit positive (> 7FFFFFFF hex) or negative
(>80000000 hex) number according to the direction of
overflow.

Dynamic range constraints, such as scaling of
parameters, can be used to prevent overflows and underflows
of the finite wordlength registers. The dynamic range is the
ratio between the largest and smallest signals that can be
represented in a filter. For an FIR filter, an overflow of the
output results in an error in the output sample. If the input
sample has a maximum magnitude of unity, then the
worstcase output is

N-1
ym) = X hm) =s (16)
n=0

To guarantee y(n) to be a fraction, either the filter gain
or the input x(n) has to be scaled down by a factor “‘s’.
Reducing the filter gain implies scaling down the filter
coefficients so that the 16-bit coefficient is no longer used
effectively. An implication of this scaling is a degradation
of the filter frequency response due to higher quantization
errors. As an alternative, the input signal may be scaled,
resulting in a reduction in signal-to-noise ratio (SNR). In
practice, the second approach is preferred since the scaling
factor is normally less than two and does not change the SNR
drastically. The required scaling on a TMS32020 is achieved
by using the SPM (set P register output shift mode)
instruction to invoke a right-shift by six bits to implement
up to 128 multiply/accumulates without overflow occurring.

For an IIR filter, an overflow can cause an oscillation
with full-scale amplitude, thus rendering the filter useless.
In general, if the input signal x(n) is sinusoidal, the reciprocal
of the gain ‘‘s”’ of the IIR filter is used to prevent output
overflows.

For the TMS320 implementation with its double-
precision accumulator and P register, scaling down the input
sequence by the scaling factor ‘‘s”* while maintaining a 16-bit
accuracy for the coefficients can accomplish the task. For
this reason, use of the MPYK instruction for IIR filter
implementation is not recommended. Scaling the input signal
by a factor “‘s’’ results in a degradation in the overall system
SNR. Therefore, for IR filters, it is important to keep the

coefficient quantization errors as small as possible since less
accurate coefficients may cause an unstable filter if the poles
are moved outside the unit circle. The LAC (load
accumulator with shift) instruction on the TMS320 processors
easily accomplishes input signal scaling.

In the previous paragraphs, finite wordlength problems
associated with digital filter implementation on
programmable devices were discussed. The 16-bit
coefficients and the 32-bit accumulator of the TMS320
processor help minimize the quantization effects. Special
instructions also help overcome problems in the accumulator.
These features, in addition to a powerful instruction set, make
the TMS32010 and TMS32020 ideal programmable
processors for filtering applications.

SOURCE CODE USING THE TMS320

Examples of TMS320 source code for the
implementation of two FIR filters and three IIR filters, based
on the techniques described in this application report, are
contained in the appendixes. Plots of the magnitude response,
log-magnitude response, unit-sample response, and other
pertinent data precede the filter programs.

Five filter types are presented in the three appendixes
as follows:

Appendix A Length-80 bandpass FIR filter
(TMS32010 and TMS32020)

Appendix B Length-60 FIR differentiator
(TMS32010/TMS32020)

Appendix C Fourth-order lowpass IIR filters:
direct-form, cascade, and parallel
types (TMS32010/TMS32020)

The purpose of the source code is to further illustrate
the use of the TMS320 devices for filtering applications and
to allow implemention and analysis of these filters. The code
is based on the programming techniques discussed earlier
in this report.

TMS32020 source code is listed in the appendix for
a length-80 FIR filter. The TMS32020 source code for the
rest of the filter programs is identical to the TMS32010 code,
as explained earlier. TMS32010 and TMS32020 instructions
are compatible only at the mnemonic level. TMS32010
source programs should be reassembled using a TMS32020
assembler before execution. For more detail about code
migration, refer to the TMS32020 User’s Guide appendix,
““TMS32010/TMS32020 System Migration,”’ for detailed
information.6

These filters were designed using the Digital Filter
Design Package (DFDP) developed by Atlanta Signal
Processors Incorporated (ASPI).7 This package runs on
either a Texas Instruments Professional Computer or an IBM
Personal Computer and can generate TMS320 code for the
filter designed. DFDP was used to design the FIR filters with
the Remez exchange algorithm developed by Parks and
McClellan, and to design the IR filters by bilinear
transformation of an elliptic analog prototype. All plots
supplied with the filter programs were produced by DFDP.

Filter design packages, such as DFDP, make the design

44 3. Implementation of FIR/IIR Filters with the TMS32010/TMS$32020

and implementation of digital filters straightforward. They
allow the DSP engineer to quickly examine a variety of filters
and understand the tradeoffs involved in. varying the
characteristics of the filters. Several digital filter design
packages and other useful software support from third parties
are described in the TMS32010 Development Support
Reference Guide.8

All of the TMS320 source code examples have several
features in common that depend on the implementation and
application. These features include the moving of filter
coefficients from storage in program memory to data
memory, their representation in Q15 format, and the
instructions that control the analog interface used for testing.

The hardware configuration that was used to test these
filters included a Texas Instruments analog interface board
(AIB) to provide an analog-to-digital and digital-to-analog
interface. The sampling rate was 10 kHz in all cases. The
filters were driven by a white-noise source, and the frequency
response was estimated by a spectrum analyzer. Each filter
routine contains several lines of code to initialize the analog
interface board. The AIB signals the TMS320 that another
input sample is available by pulling the BIO pin low. The
TMS320 polls this pin using the BIOZ instruction. The AIB
houses a TMS32010 device. In order to use the TMS32020
with the AIB (PN: RTC/EVM320C-06), a specially designed
adaptor (PN: RTC/ADP320A-06) must be inserted to convert
TMS32020 signals to TMS32010 signals. All of these
implementation- and application-dependent sections of code
are labeled.

Appendix A provides programs for the implementation
of a length-80 linear-phase bandpass FIR filter on the
TMS32010 and the TMS32020. The filter has been designed
using the Parks-McClellan algorithm. Pertinent data for this
filter is as follows:

Passband 1.375 - 3.625 kHz
Stopbands 00 - 1.0 KkHz
40 - 50 KkHz
Attenuation in stopbands -684 dB
Transition regions 1.0 - 1.375 kHz

3.625 - 40 KkHz

The figures preceding the program show the magnitude
response using a linear scale, the log-magnitude response,
and the unit-sample response. Both the magnitude response
and the log-magnitude response illustrate the equiripple
response expected from using the Parks-McClellan
algorithm. The unit-sample response possesses the symmetry
that is characteristic of linear-phase FIR filters.

A length-60 FIR differentiator, shown in Appendix B,
is also designed using the Parks-McClellan algorithm.
Characteristics for the FIR differentiator are listed below.

Lower band edge 0.0 kHz
Upper band edge 50 kHz

3. Implementation of FIR/IIR Filters with the TMS32010/TMS32020

Desired slope
Maximum deviation

0.4800
0.3172 percent

The log-magnitude resonse is illustrated as well as the
unit-sample response, which is antisymmetric for an FIR
differentiator. Because the code is written in looped form,
there is a dramatic reduction in the amount of program space
necessary to implement this filter.

The three filters in Appendix C are fourth-order
lowpass IIR filters, designed using the bilinear-transform
technique. The first filter is based on a direct-form II
structure, the second filter is based on a cascade structure
with two second-order direct-form II subsections, and the
third filter is based on a parallel structure. These three IIR
filters are identical in terms of their frequency response and
have the following characteristics:

Passband 00 - 25 KkHz
Transition region 25 - 275 kHz
Stopband 275 - 50 kHz
Attenuation in stopband -25.17 dB

The figures that show the magnitude response, log-
magnitude response, phase response, group delay, and the
unit-sample response for the three IIR filters are treated as
a group and precede the three programs for filter
implementation.

Table 1 is a summary of information about the five
digital filters that are implemented in the appendixes.

An examination of the length-80 FIR filter
implementation reveals the advantages of using a TMS32020
over the TMS32010. The program memory size is reduced
by a factor of 15 (11 words vs. 163 words) while execution
speed is improved by a factor of 1.8. Since the other filter
types do not take advantage of the RPTK/MACD instruction
pair, the performance results are the same. For example, a
fourth-order cascade-form IIR filter executes at 5.4 us using
only 27 program memory words.

When implementing linear-phase FIR filters, the
designer must choose the right device for the application.
If fast execution time and less program memory are essential,
then the TMS32020 is the right choice.

The IIR filters are direct transformations of analog
filters, exhibiting the same amplitude and phase
characteristics as their analog counterparts. IIR filters tend
to be more efficient than FIR filters with respect to
transitionband sharpness and filter orders required. Although
they require less code for implementation than the FIR filters
(TMS32010 straightline code), they show great nonlinearity
in phase, which limits their use in some applications.

By far the most commonly used IIR structure is the
cascade-form realization. It has been shown that proper
ordering of the poles and zeroes results in less .ensitivity
to quantization noise. The Digital Filter Design Package
designs IIR filters in cascade form only.

By using a TMS32020 for both FIR and IIR filter
implementations, it is possible to design a higher-order filter

45

Table 1. Summary Table of Filter Programs

LENGTH-80 LINEAR-PHASE BANDPASS FIR (STRAIGHT-LINE CODE)
CODE CYCLES EXECUTION TIME PROGRAM MEMORY DATA MEMORY
(MICROSECONDS) (WORDS) (WORDS)
Straight Line:
TMS32010 163 32.6 163 120
TMS32020 90 18 1 161
(with RPTK)
LENGTH-60 FIR DIFFERENTIATOR (LOOPED CODE)
CODE CYCLES EXECUTION TIME PROGRAM MEMORY DATA MEMORY
(MICROSECONDS) (WORDS) (WORDS)
Looped:
TMS32010/20 243 48.6 1" 120
FOURTH-ORDER LOWPASS IIR FILTERS
STRUCTURE CYCLES EXECUTION TIME PROGRAM MEMORY DATA MEMORY
(MICROSECONDS) (WORDS) (WORDS)
Direct-Form I
TMS32010/20 . 24 4.8 24 16
Cascade:
TMS32010/20 27 5.4 27 18
Parallel:
TMS3210/20 28 5.6 28 18

NOTE: The above performance figures are only given as a reference. They should not be taken as
benchmarks since programs can always be improved for better speed and memory efficiency.

than with the TMS32010. The TMS32020 is also ideal for
higher-order FIR filters that require single-cycle
multiply/accumulate operations.

SUMMARY

A brief review of FIR and IIR digital filters has been
given to assist in understanding the fundamentals of digital

46

filter structure and their implementations using a digital signal
processor. Many design examples have also been included
to show the tradeoffs between FIR and IIR structures.

This application report has also described methods for
implementing FIR and IIR filters with the TMS32010 and
TMS32020. The design engineer can now choose between
the two devices, depending on the application.

3. Implementation of FIR/IIR Filters with the TMS32010/TMS32020

REFERENCES

A.V. Oppenheim and R.W. Schafer, Digital Signal
Processing, Prentice-Hall (1975).

Andreas Antoniou, Digital Filters: Analysis and Design,
McGraw-Hill (1979).

C.S. Burrus and T.W. Parks, Digital Filter Design, John
Wiley & Sons (1986).

U. Kaiser, ‘‘Wave Digital Filters and Their Significance
for Customized Digital Signal Processing,”” Texas
Instruments Engineering Journal, Vol 2, No. 5, 29-44
(September - October 1985).

3. Implementation of FIR/IR Filters with the TMS32010/TMS32020

5.

6.

TMS32010 User’s Guide (SPRU001B), Texas
Instruments (1985).

TMS32020 User’s Guide (SPRUQ004A), Texas
Instruments (1985).

Digital Filter Design Package (DFDP), Atlanta Signal
Processors Inc. (ASPI), 770 Spring St. NW, Suite 208,
Atlanta, GA 30308, 404/892-7265 (1984).
TMS32010 Development Support Reference Guide
(SPRUO0Q7), Texas Instruments (1984).

47

48

3. Implementation of FIR/IIR Filters with the TMS32010/TMS$32020

APPENDIX A
LENGTH-80 LINEAR-PHASE PASSBAND FIR FILTER

MAGNITUDE RESPONSE

@.000 1.0000 2.0000 3.0000 4.0000 5.2000
FREQUENCY IN KILOHERTZ

LOG MAGNITUDE RESPONSE

208.00

8.08 |t
—20.0@ | oo AN

- 40.08 |- -

DECIBELS

_e8.00 S B DS SN N S

mm’m

-100.00

@-9@6 1.0080 2.0000 3.0000 4.0000 5.0000
FREQUENCY IN KILOHERTZ

UNIT SAMPLE RESPONSE

-a.10

-8.20

-8.38

2.000 1.5808 3.160@ 4.7400 6.3200 7.9000
TIME IN MILISECONDS

3. Implementation of FIR/IIR Filters with the TMS32010/TMS3202C 49

oS

0TOZESW.L/OTOZESIALL 3 WM SIN[Y II/YIL JO uopejuswalduy ‘¢

FIRBPASS

0001
0002
0003
0004
0005
0006
0007

0000
0000
0001

0020
0020
0021

32020 FAMILY MACRO ASSEMBLER PC 1.0 85.157 16:55:56 08-15-85
PAGE 0001
LTy
LINEAR-PHASE FIR FILTER
LENGTH-80 BANDPASS FILTER
SAMPLING FREQUENCY = 10 KHZ
FILTER CHARACTERISTICS
BAND 1 BAND 2 BAND 3
LOWER BAND EDGE 0.0000 1.3750 4.0000
UPPER BAND EDGE 1.0000 3.6250 5.0000
NOMINAL GAIN 0.0000 1.0000 0.0000
NOMINAL RIPPLE 0.0010 0.0200 0.0010
MAXIMUM RIPPLE 0.0004 0.0076 0.0004
RIPPLE IN DB -68.3965 0.0657 -68.3997

002D
002E
002F
0030

FF80
0072

FFDC
001F

FILTER STRUCTURE

P I R e I T S S

o =0===)>===0===> = = ~0====)>---0
x(n) | 1 | | !
1 | 1 | |
v h(0) v h(1l) v h(2) v h(N-2) v h(N-1)
| | | | |
|
o - -
rrR EEERRRRRARR
CYCLES | EXECUTION TIME | PROGRAM MEMORY | DATA MEMORY
| (MICROSECONDS) | (WORDS)] (WORDS)
| I !
90 | 18 ! 10 | 161

(EXCLUDING INITIALIZATION AND I/0)

»

YN
MODE
CLOCK

*
CTABLE

CHO
CH1

IDT 'FIRBPASS'

EQU 45

EQU 46

EQU 47

EQU 48

AORG 0

B START

AORG 32

DATA >FFDC * -0.107251E-02 *
DATA >001F * 0.973976E-03 *

FIRBPASS

0022
0023
0024
0025
0026
0027
0028
0029
002A
002B
002C
002D
002E
002F
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
003A
0038
003C
003D
003E
003F
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
004A
004B
004C
004D
004E
004F
0050
0051

0052
0053

0054

0055

0056

0057
0058

0059
005A

32020 FAMILY MACRO ASSEMBLER

>0051
>FFE9
>FFE6
>FFBA
>FFB4
>004B
>FFF9
>0069
>00A2
>FF6F
>FFFE
>FF70
>FEF4
>00CB
>000B
>00E6
>0187
>FEES
>0008B
>FETF
>FDBF
>0192
>FFBS
>026A
>0368
>FDC2
>00C0
>FCOA
>FAA3
>0347
>FE3D
>0747
>09BB
>FA3D
>052B
>EB59
>DC2A
>2D57
>2D57
>DC2A
>EBS9
>0528B
>FA3D
>09BB
>0747
>FE3D
>0347
>FAA3
>FCOA
>00C0
>FDC2
>0368
>026A
>FFB5S
>0192
>FDBF
>FE7TF

B R N RN R R R R R R R R R R R R R R RN R R R RN

PC 1.0 85.157

0.249065E-02
-0.675043E-03
.771385E-03
-0.212256E-03
-0.229530E-02
0.231021E-02
-0.194902E-03
0.322896E-02
0.496452E-02
-0.440419E-02
-0.314831E-04
-0.438169E-02
-0.815474E-02
0.621682E-02
0.342216E-03
0.704627E-02
0.119391E-01
-0.860811E-02
0.346738E-03
-0.117293E-01
-0.175964E-01
0.122947E-01
-0.227426E-02
0.188796E-01
0.266148E-01
-0.175126E-01
0.586574E-02
-0.309240E-01
-0.418954E-01
0.256315E-01
-0.137498E-01
0.568720E-01
0.760286E-01
-0.450011E-01
0.403853E-01
-0.161339E+00
~0.279963E+00
0.352454E+00
0.352454E+00
-0.279963E+00
-0.161339E+00
0.403853E-01
-0.450011E-01
0.760286E-01
0.568720E-01
-0.137498E-01
0.256315E-01
-0.418954E-01
-0.309240E-01
0.586574E-02
-0.175126E-01
0.266148E~01

-0.175964E-01
-0.117293E-01

R R R O

16:55:56 08-15-85
PAGE 0002

0ZOZESWL/OTOZESILL U Wit s JII/YIA Jo uonewswoaduy ‘¢

15

FIRBPASS

0165

0058
005C
005D
005E
005F
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
006A
0068
006C
006D
006E
006F

0070
0071

0072
0073
0074
0075
0076
0077
0078

c807
CA70
582E
E02E
CA71
582F

-0.675043E-03
0.249065E-02
0.973976E-03

0181
NO ERRORS, NO WARNINGS

PC 1.0 85.157 16:55:56 08-15-85 FIRBPASS 32020 PAMILY MACRO ASSEMBLER PC 1.0 85.157 16:55:56 08-15-85
PAGE 0003 PAGE 0004
0.346738E-03 * 0166 0087 5589 LARP ARl
-0.860811E-02 * 0167 .
0.119391E-01 * 0168 0088 A00O MPYK ()]
0.704627E-02 * 0169 0089 CA0O 2AC
0.342216E-03 * 0170 .
0.621682E-02 * 0171 008A CB4P RPTK >4P
-0.815474E-02 * 0172 008B 5C90 MACD >FF00,*-
-0.438169E-02 * 008C FFOO
-0.314831E-04 * 0173 *
-0.440419E-02 * 0174 008D CE1S APAC
0.496452E-02 * 0175 00BE 692D SACH ¥N,1
0.322896E-02 * 0176 .
-0.194902E-03 * 0177 008F E22D out YN, PA2 ; OUTPUT THE FILTER RESPONSE y(n)
0.231021E-02 * 0178 .
-0.229530E-02 * 0179 0090 FF80 B WAIT ; GO GET THE NEXT POINT
-0.212256E-03 * 0091 0080
-0.771385E-03 * 0180 .
*
*
*
*

-0.107251E-02

; SAMPLING RATE OF 10 KHZ *

* INITIALIZATION OF THE ANALOG INTERFACE BOARD
-

32020 FAMILY MACRO ASSEMBLER
CH59 DATA >0008 *
CH60 DATA >FEE5 *
CH61 DATA >0187 *
CH62 DATA >00E6 *
CH63 DATA >0008 *
CH64 DATA >00CB M
CH65 DATA >FEF4 *
CH66 DATA >FF70 *
CH67 DATA >FFFE *
CH68 DATA >FF6F *
CH69 DATA >00A2 *
CH70 DATA >0069 *
CH71 DATA >FFF9 *
CH72 DATA >0048 *
CH73 DATA >FFB4 *
CH74 DATA >FFBA *
CH7S DATA >FFE6 *
CH76 DATA >FFE9 *
CH77 DATA >0051 *
CH78 DATA >001F *
CH79 DATA >FFDC *
MD DATA >000A
SMP DATA >01F3
»

START EQU $
.
LDPK 7
LACK MD
TBLR MODE
ouT MODE, PAO
LACK SMP
TBLR CLOCK
our CLOCK, PAl

E12F

*
* LOAD FILTER COEFFICIENTS
-

LARP
LRLK

RPTK
BLKP
CNFP
WAIT BIOZ

NXTPT IN
-
LRLK

ARO
AR0,>200

>4F
CTABLE, *+

NXTPT

WAIT

XN, PA2
AR1,>3FF

USE ARO FOR INDIRECT ADDRESSING
POINT TO BLOCK BO

80 COEFFICIENTS

USE BLOCK BO AS PROGRAM AREA

BIO PIN GOES LOW WHEN A

NEW SAMPLE IS AVAILABLE

BRING IN THE NEW SAMPLE XN

; POINT TO THE BOTTOM OF BLOCK Bl

s

0ZOZES.L/OTOZESILL 9 Wim SIL] AI1/AL Jo uoneuswalduyy ¢

FIRBPASS

32010 FAMILY MACRO ASSEMBLER PC2.1 84.107

20:41:39 08-29-85
PAGE 0001

o~
x

B I

ARRRES KRR ARAN

LINEAR-PHASE FIR FILTER
LENGTH-80 BANDPASS FILTER

SAMPLING FREQUENCY = 10 KHZ

FILTER CHARACTERISTICS

BAND 1
LOWER BAND EDGE 0.0000
UPPER BAND EDGE 1.0000
NOMINAL GAIN 0.0000
NOMINAL RIPPLE 0.0010
MAXIMUM RIPPLE 0.0004
RIPPLE IN DB -68.3965

FILTER STRU

-1 -1
2z 2z
—=>===0===)===0===3==-0===> - -

@
\'/ h(0) ‘II h(1) \I/ h(2)
| I I

BAND 2 BAND 3
1.3750 4.0000
3.6250 5.0000
1.0000 0.0000
0.0200 0.0010
0.0076 0.0004
0.0657 -68.3997
ICTURE

-1

z
=0====>===0

| |
v h(N-2) v h(N-1)
| |

|

0===>===0===>===0===> = = =Q===D>=-==0-==>=-==0
y(n)
23 * ERRARRN

*

* CYCLES | EXECUTION TIME | PROGRAM MEMORY | DATA MEMORY

* | (MICROSECONDS) | (WORDS) | (WORDS)

* | t |

* | 1 1

* 163 | 32.6 | 163 | 120

* | 1 |

*

*

“ (EXCLUDING INITIALIZATION AND I/O

*

* ey

*

IDT 'FIRBPASS'

XN EQU 0

XNM1 EQU 1

XNM2 EQU 2

XNM3 EQU 3

XNM4 EQU 4

XNMS EQU 5

XNM6 EQU 6

XNM7 EQU 7

XNM8 EQU 8

XNM9 EQU 9

FIRBPASS

32010 FAMILY MACRO ASSEMBLER

XNM10
XNM11
XNM12
XNM13
XNM14
XNM15
XNM16
XNM17
XNM18
XNM19
XNM20
XNM21
XNM22
XNM23
XNM24
XNM25
XNM26
XNM27
XNM28
XNM29
XNM30
XNM31
XNM32
XNM33
XNM34
XNM35
XNM36
XNM37
XNM38
XNM39
XNM40
XNM41
XNM42
XNM43
XNM44
XNM45
XNM46
XNM47
XNM48
XNM49
XNMS50
XNM51
XNM52
XNM53
XNM54
XNMS5
XNM56
XNM57
XNM58
XNM59
XNM60
XNM61
XNM62
XNM63
XNM64
XNM65
XNM66

10
11

PC2.1 84.107

20:41:39 08-29-85
PAGE 0002

0Z0ZESINL/OTOZESINLL 3 Wim SINLY YII/AIH Jo uoneuswdidwy ¢

39

PIRBPASS

0115
0116
0117

32010 FAMILY MACRO ASSEMBLER

0043
0044

XNM67
XNM68
XNM69
XNM70
XNM71
XNM72
XNM73
XNM74
XNM75
XNM76
XNM77
XNM78
XNM79
*

MODE
CLOCK

EQU
EQU

EQU

67
68

PC2.1 84.107

20:41:39 08-29-85
PAGE 0003

FIRBPASS

0172
0173
0174
0175
0176
0177

0178
0179

0000

0000
0001

32010 FAMILY MACRO ASSEMBLER

007A
0078

F900
002C

FFDC
001F
0051
FFE9
FFE6
FFBA
FFB4
004B

0069
00A2

YN
ONE
*

EE IR

CHO
CHL
CH2
CH3
CH4
CH5
CH6
CH7
CH8
CHY
CH10
CH11l
CH12

EQU 122
EQU 123

AORG 0
B START

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

>FFDC
>001F
>0051
>FFE9
>FFE6
>FFBA
>FFB4
>004B
>FFF9
>0069
>00A2
>FF6F
>FFFE
>FF70
>FEF4
>00CB
>000B
>00E6
>0187
>FEES
>0008
>FE7F
>FDBF
>0192
>FFBS5
>026A
>0368
>FDC2
>00C0
>FCOA
>FAA3
>0347
>FE3D
>0747
>098B
>FA3D
>0528B
>EBS9
>DC2A
>2D57

PC2.1 84.107

COEFFICIENTS ARE INITIALLY *
STORED IN PROGRAM MEMORY *

THIS MEANS THAT

B R R AR R R R R R R R R R R R R R R R R R AR R AR AR N A R AR NN

-0.107251E-02
0.973976€E-03
0.249065E-02

-0.675043E-03

-0.771385E-03

-0.212256E-03

-0.229530E-02
0.231021E-02

-0.194902E-03
0.322896E-02
0.496452E-02

-0.440419€-02

-0.314831E-04

-0.438169E-02

~-0.815474E-02
0.621682E-02
0.342216E-03
0.704627E-02
0.119391E-01

-0.860811E-02
0.346738E-03

-0.117293E-01

-0.175964E-01
0.122947E-01

-0.227426E-02
0.188796E-01
0.266148E-01

-0.175126E-01
0.586574E-02

-0.309240E-01

-0.418954E-01
0.256315E-01

-0.137498E-01
0.568720E-01
0.760286E-01

-0.450011E-01
0.403853E-01

-0.161339E+00

-0.279963E+00
0.352454E+00

I I I T I T IS A S Y

20:41:39 08-29-85

DUE TO THE SYMMETRY OF THE IMPULSE RESPONSE *
ONLY HALF OF THE SAMPLES OF THE IMPULSE *
RESPONSE ARE STORED.
h(N-1-n) = h(n).

*

PAGE 0004

0ZOZESIW.L/OTOZESIALL 2 Yim SILY JIIALA JO uoneuswsdwy ¢

PIRBPASS

002A
0028

002C

002D
002E

002P
0030
0031
0032
0033
0034
0035
0036

0037
0038

0039
003A
0038
003¢C
003D
003E

003F
0040

0041
0042

0043
0044

0045
0046

0047
0048

0049
004A

004B
004C

004D
004E

004F
0050

0051

32010 PAMILY MACRO ASSEMBLER

000A
01F3

6E00

7e01
5078

7079
7129
728
6880
6791
1078
F400
0032

4878
4979

F600
003D
F900
0039
4200
7F89

6A4F
6D50

6B4E
6D51

684D
6D52

6B4C
6D53

6B4B
6D54

6B4A
6D55

6849
6D56

6848
6D57

6B47
6D58

6B46

MD
SMP
-

START
*

LOAD

DATA >000A
DATA >01F3

LDPK 0

LACK 1
SACL ONE

LARK ARO,CLOCK

LARK
LACK

AR1,>29
MP

®

LARP ARO
TBLR *-,ARLl

sus

ONE

BANZ LOAD

ouT
out

MODE, PAO
CLOCK, PAL

BIOZ NXTPT

B WAIT

IN XN,PA2

ZAC

LT XNM79

MPY

LTD
MPY

LTD
MPY

LTD
MPY

LTD
MPY

LTD
MPY

LTD
MPY

LTD

MPY H

LTD
MPY

LTD

HO
XNM78
H1l
XNM77
H2
XNM76
H3
XNM75
H4

XNM74
HS

XNM73

H6

XNM72
7

XNM71
H8

XNM70

»

e

.

.

»

PC2.1 84.107 20:41:39 08-29-85

PAGE 0005

SAMPLING RATE OF 10 KHZ *

CONTENT OF ONE IS 1 *
THIS SECTION OF CODE LOADS
THE FILTER COEFFICIENTS AND

OTHER VALUES FROM PROGRAM
MEMORY TO DATA MEMORY

INITIALIZATION OF ANALOG *
INTERFACE BOARD *

BIO PIN GOES LOW WHEN A *
NEW SAMPLE IS AVAILABLE *

BRING IN THE NEW SAMPLE XN *

DUE TO SYMMETRY h(0) = h(79) *
x(n=79) * h(79) *

(1) = n(78) *

FIRBPASS

0052

0053
0054

0055
0056

0057
0058

0059
005A

0058
005C

005D
005E

00SF
0060

0061
0062

0063
0064

0065
0066

0067
0068

0069
006A

0068
006C

006D
006E

006F
0070

8
0071

0072

0073
0074

0075
0076

0077

32010 FAMILY MACRO ASSEMBLER

6D59

6B45
6DSA

6844
6D5B

6B43
6D5C

6B42
6D5D

6B41
6DSE

6840
6DSF

6B3F
6D60

6B3E
6D61

6B3D
6D62

6B3C
6D63

6838
6D64

6B3A
6D65

6839
6D66

6838
6D67

6837
6D68

6B36
6D69

6835
6D6A

6B34
6D6B

6B33

MPY

LTD
MPY

LTD
MPY

LTD
MPY

LTD
MPY

LTD
MPY

LTD
MPY

LTD
MPY

LTD
MPY

LTD
MPY

LTD
MPY
LTD
MPY

LTD
MPY

LTD
MPY

LTD
MPY

LTD
MPY

LTD
MPY

LTD
MPY

LTD
MPY

a9

XNM69
H10

XNM68
H1l

XNM67
H12

XNM66
H13

XNM65
H14

XNM64
H15

XNM63
H16

XNM62
H17

XNM61
H18

XNM60
H19

XNM59
H20

XNM58
H21

XNM57
H22

XNM56
H23

XNM55
H24

XNM54
H25

XNMS3
H26

XNM52
H27

XNM51

PC2.1 84.107

20:41:39 08-29-85
PAGE 0006

OTOZESILL/OTOZESINLL oW WIm st WIINYIA Jo uoneawa(duy ¢

59

FIRBPASS

0339
0340

0078

0079
007A

007B
007C

007D
007E

007F
0080

0081
0082

0083
0084

0085
0086

0087
0088

0089
008A

008B
008C

008D
008E

008F
0090

0091
0092

0093
0094

0095
0096

0097
0098

0099
009A

0098
009C

009D

32010 FAMILY MACRO ASSEMBLER

6D6C

6832
6D6D

6831
6D6E

6B30
6D6F

6B2F
6D70

6B2E
6D71

6B2D
6D72

6B2C
6D73

6B2B
6D74

6B2A
6D75

6B29
6D76

6B28
6D77

6B27
6D77

6B26
6D76

6B25
6D75

6B24
6D74

6B23
6D73

6B22
6D72

6B21
6D71

6B20

MPY

LTD
MPY

LTD

MPY

LTD
MPY

LTD
MPY

LTD
MPY

LTD
MPY

LTD
MPY

LTD
MPY

LTD
MPY

LTD
MPY

LTD
MPY

LTD
MPY

LTD
MPY

LTD
MPY

LTD
MPY

LTD
MPY

LTD
MPY

LTD
MPY

H28

XNM50
H29

XNM49
H30

XNM48
H31

XNM47
H32

XNM46
H33

XNM45
H34

XNM44
H35

XNM43
H36

XNM42
H37

XNM41
H38

XNM40
H39

XNM39
H39

XNM38
H38

XNM37
H37

XNM36
H36

XNM35
H3S

XNM34
H34

XNM33
H33

XNM32

PC2.1 84.107 20:41:39 08-29-85
PAGE 0007

FIRBPASS

0396
0397
0398
0399
0400
0401
0402
0403
0404
0405

009E

009F
00A0

00AL
00A2

00A3
00A4

00AS
00A6

00A7
00A8

00A9
00AA

00AB
00AC

00AD
00AE

00AF
00BO

00B1
00B2

00B3
00B4

0085
00B6

00B7
0088

00B9
00BA

00BB
00BC

00BD
00BE

00BF
00CO

00Cl
00C2

00C3

32010 FAMILY MACRO ASSEMBLER

6D70

6B1F
6D6F

6B1E
6D6E

6B1D
6D6D

6B1C
6D6C

6B1B
6D6B

6B1A
6D6A

6819
6D69

6B18
6D68

6B17
6D67

6B16
6D66

6B15S
6D65

6B14
6D64

6B13
6D63

6B12
6D62

6B11
6D61

6810
6D60

6BOF
6DSF

6BOE
6DSE

6B0D

MPY

LTD
MPY

LTD
MPY

LTD
MPY

LTD
MPY

LTD
MPY

LTD
MPY

LTD
MPY

LTD
MPY

LTD
MPY

LTD
MPY

LTD
MPY

LTD
MPY

LTD
MPY

LTD
MPY

LTD
MPY

LTD
MPY

LTD
MPY

LTD
MPY

LTD

H32

XNM31
H31

XNM30
H30

XNM29
H29

XNM28
H28

XNM27
H27

XNM26
H26

XNM25
H25
XNM24
H24

XNM23
H23

XNM22
H22

XNM21
H21

XNM20
H20

XNM19
H19

XNM18
H18

XNM17
H17

XNM16
H16

XNM15
H15

XNM14
H1l4

XNM13

PC2.1 84.107

20:41:39 08-29-85
PAGE 0008

9¢

0Z0ZESWL/OTOTESILL o Yiim SN JII/AIA JO uonewswaduy ‘¢

FIRBPASS

0453
0454
0455
0456
0457
0458
0459
0460

0500

0501
0502

00c4

00C5
00C6

00C7
oocs

00C9
00CA

oocs
oocc

00CD
00CE

00CF
00D0

00D1
00D2

00D3
00D4

00DS
00D6

00D7
00D8

00D9
00DA

00DB
00DC

00DD
00DE

00DF
00E0
00E1

00E2
00E3

NO ERRORS,

32010 FAMILY MACRO ASSEMBLER

6D5D

6B0C
6D5C

6808
6D5B

6BOA
6DSA

6809
6D59

6B08
6D58

6B07
6D57

6B06
6D56

6B0S
6D55

6804
6D54

6B03
6D53

6B02
6D52

6801
6D51

6B00
6D50

7TF8F
597A
4ATA

F300
0039

NO WARNINGS

*

MPY

LTD
MPY

LTD
MPY

LTD
MPY

LTD
MPY

LTD
MPY

LTD
MPY

LTD
MPY

LTD
MPY

LTD
MPY

LTD
MPY

LTD
MPY

LTD
MPY

LTD
MPY

APAC

H13

XNM12
H12

XNM11
H1l

XNM10
H10

XNM9
H9

XNM8
H8

XNM7
H7

XNM6
H6

XNMS
H5
XNM4
H4

XNM3
H3

XNM2
H2

XNM1
H1

XN
HO

SACH ¥N,1

OUT YN,PA2

B WAIT

END

PC2.1 84.107

20:41:39 08-29-85
PAGE 0009

* QUTPUT THE FILTER RESPONSE y(n) *

* GO GET THE NEXT POINT *

APPENDIX B
LENGTH-60 FIR DIFFERENTIATOR

MAGNITUDE RESPONSE MAGNITUDE RESPONSE

2.48 =z
""" 2.30
2.26 A -
2.10 > &
2.00 L
0.0 ©.2000 0. 4000 ©.6000 ©.8000 Toeee P cee 4.2000 4. c.;eea 4.8000 5. 0000
FREQUENCY IN KILOHERTZ FREQUENCY IN KILOHERTZ
MAGNITUDE RESPONSE LOG MAGNITUDE RESPONSE
- 20.00
..... 0.00
-20.00
g-qa‘ea E TR
g -608.90
-ge. 00 e
§ -100.00
°.000 1.0008 2.0000 3.0000 4.0000 5. 0000 . 000 1.0000 2.0000 3. 0000 4.0000 5.0000
FREQUENCY IN KILOHERTZ FREQUENCY IN KILOHERTZ
UNIT SAMPLE RESPONSE
1.0 .
6.5
2.¢ iV ass
S | S
-1.0 - .
a.e0@ 1. 1800 4.7200 5.9000

2.3600 3.5400
TINE IN MILISECONDS

3. Implementation of FIR/IIR Filters with the TMS32010/TMS32020 57

8S

0ZOZES.L/OTOZESINL oW Yim s1aLd YII/ALA Jo uoneuowaduy “¢

FIRDIF

32010 FAMILY MACRO ASSEMBLER PC2.1 84.107 20:43:03 08-29-85

PAGE 0001

L R R R I A A N A S

FIR FILTER
LENGTH-60 DIFFERENTIATOR

FILTER CHARACTERISTICS
SAMPLING FREQUENCY = 10 KHZ

LOWER BAND EDGE 0.0000
UPPER BAND EDGE 5.0000
DESIRED SLOPE 0.4800
MAX § DEVIATION 0.3171

FILTER STRUCTURE

-1
z

0===>=--0=-=>-=-0- Q-=-=> - -
x(n) | | |
| | I i |
\'r h(0) VII h(1) ‘Il h(2) \II h(N-2) ‘Il h(N-1)
| ! | | |
Q===>===Q===d===0===> = = =Q--==)>--=Q0=-->---0
y(n)
*
* CYCLES | EXECUTION TIME | PROGRAM MEMORY | DATA MEMORY
: : (MICROSECONDS) | (WORDS) | (WORDS)
| |
* | | |
* 243 | 48.6 | 1 | 120
* ! | !
.
*
* (EXCLUDING I/O AND INITIALIZATION)
*
*
IDT 'FIRDIF'
XN EQU 0
XNM1 EQU 1
XNM2 EQU 2
XNM3 EQU 3
XNM4 EQU 4
XNM5 EQU 5
XNM6 EQU 6
XNM7 EQU 7
XNM8 EQU 8
XNM9 EQU 9
XNM10 EQU 10
XNM11 EQU 11
XNM12 EQU 12
XNM13 EQU 13

FPIRDIF

0058
0059

32010 FAMILY MACRO ASSEMBLER

000E
000F
0010
0011

XNM14
XNM15
XNM16
XNM17
XNM18
XNM19
XNM20
XNM21
XNM22
XNM23
XNM24
XNM25
XNM26
XNM27
XNM28
XNM29
XNM30
XNM31
XNM32
XNM33
XNM34
XNM35
XNM36
XNM37
XNM38
XNM39
XNM40
XNM41
XNM42

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
E£QU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQu
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

PC2.1 84.107

20:43:03 08-29-85
PAGE 000

0TOTESILL/OTOZESIALL 9 Wim SINL] ALI/YLA JO uoneuswadu "¢

6S

FIRDIF

0170
0171 0000

32010 FAMILY MACRO ASSEMBLER

0046

EQU
EQU

119

120
121
122
123

AORG 0

PC2.1 84.107 20:43:03 08-29-85 FIRDIF
PAG.

E 0003

0172

0173 0000
0001

0174

0178 0002
0179 0003
0180 0004
0181 0005
0182 0006
0183 0007
0184 0008
0185 0009
0186 000A
0187 0008
0188 000C
0189 000D
0190 O000E
0191 000F
0192 0010
0193 0011
0194 0012
0195 0013
0196 0014
0197 0015
0198 0016
0199 0017
0200 0018
0201 0019
0202 001A
0203 001B
0204 001C
0205 001D
0206 O00lE
0207 001F
0208 0020
0209 0021
0210 0022
0211 0023
0212 0024
0213 0025
0214 0026
0215 0027
0216 0028
0217 0029
0218 002A
0219 0028
0220 002C
0221 002D
0222 002E
0223 002F
0224 0030
0225 0031
0226 0032
0227 0033

32010 FAMILY MACRO ASSEMBLER

F900
0040

»

B START

PC2.1 84.107

* COEFFICIENTS ARE INITIALLY *
* STORED IN PROGRAM MEMORY *
-

CHO

DATA
DATA

>0030
>FFC2
>0015
>FFEF
>000F
>FFFO
>0010
>FFEE
>0012
>FFEB
>0016
>FFE7
>001B
>FFEl
>0022
>FFD8
>002C
>FFCB
>003D
>FFB6
>0059
>FF90
>008E
>FF42
>0108
>FE75
>028B
>FB04
>0DD6
>B37E
>7C81
>F229
>04FB
>FD74
>018A
>FEF7
>008D
>FF71
>006F
>FFA6
>0049
>FFC2
>0034
>FFD3
>0027
>FFDD
>001E
>FFE4
>0018
>FFE9

P R R R e R e

0.146547E-02
-0.186717E-02

0.670857E-03
-0.507893E-03

0.476907E-03
-0.482679E-03

0.505055E-03
-0.536698E-03

0.576256E-03
~0.624602E-03

0.681939E-03
-0.750338E-03

0.831878E-03
~0.929373E-03

0.104702E-02
-0.119041E-02
.136731E-02
-0.158880E-02

0.187070E-02
-0.223732E-02

0.272579E-02
-0.339682E-02

0.435422E-02
-0.578642E-02

0.806880E-02
-0.120382E-01

0.198777E-01
-0.389339E-01

0.108105E+00
-0.972714E+00
-CH29
-CH28
-CH27
-CH26
-CH25
-CH24
-CH23
-CH22
-CH21
-CH20
-CH19
-CH18
-CH17
-CH16
-CH15
~-CH14
-CH13
-CH12
-CH11
-CH10

»

P N A I

I I L I i S

20:43:03 o
PAG

8-29-85

E 0004

0ZOZESWL/OTOZESIALL o Yim sI1d JII/AL Jo uoneuswoaduy ‘¢

<« FIRDIF

0034
0035
0036
0037
0038
0039
003A
0038
003C
003D

003E
003F

0040

0041
0042

0043
0044
0045
0046
0047
0048
0049
004A

004B
004cC

004D
004E
004F
0050
0051
0052

0053
0054

0055

0056
0057

0058
0059

005A
0058

005C
005D

32010 FAMILY MACRO ASSEMBLER

LOAD

DATA
DATA

DATA

DATA
DATA

LDPK 0

LACK 1
SACL ONE

LARK ARO,CLOCK

LARK ARl
LACK SMP
LARP ARO

>0014
>FFED
>0011
>FFEF
>000F
>FFF0
>0010
>FFEA
>003D
>FFCF

>000A
499

/60

TBLR *-,ARl

SUB ONE
BANZ LOAI

OUT MODE
OUT CLOC
LARP ARO
BIOZ NXT!

B WAIT

IN XN,PA

LARK ARO,XNM59

LARK ARl
ZAC

LT *-,AR
MPY *-,Al

LTD *,AR
MPY *-,Al

BANZ LOOI

APAC

SACH YN,

D

+PAO
K,PAl

PT

2

+H59

1
RO

1
RO

P

1

PC2.1 84.107 20:43:03 08-29-85 FIRDIF 32010 FAMILY MACRO ASSEMBLER
PAGE 0005
* -CHY * 0281 *
* -CH8 * 0282 005E 4A7A OUT YN,PA2
* -CH7 * 0283 *
* _CHG * 0284 005F F900 B WAIT
% -CHS * 0060 004E
* —CH4 * 0285
* -CH3 * 0286 END
* _CH2 * NO ERRORS, NO WARNINGS
* —CHL *
* —CHO *

*

SAMPLING RATE OF 10 KHZ *

»

CONTENT OF ONE IS 1 *

THIS SECTION OF CODE LOADS *
THE FILTER COEFFICIENTS AND *
OTHER VALUES FROM PROGRAM *
MEMORY TO DATA MEMORY *

R

»

INITIALIZATION OF ANALOG *
INTERFACE BOARD *

»

*

SET ARP TO ARO *

»

BI0 PIN GOES LOW WHEN A *

»

NEW SAMPLE IS AVAILABLE *

BRING IN THE NEW SAMPLE XN *

»

ARO POINTS TO THE INPUT SEQUENCE *
ARl POINTS TO THE IMPULSE RESPONSE *

*

* ACCUMULATE LAST MULTIPLY *

PC2.1 84.107 20:43:03 08-29-85
PAGE 0006

* OUTPUT THE FILTER RESPONSE y(n) *

* GO GET THE NEXT POINT *

APPENDIX C
FOURTH-ORDER LOWPASS IIR FILTERS

MAGNITUDE RESPONSE

1.0000 3.0000

e.000 2.0000 +.0000 5.0000
FREQUENCY IN KILOHERTZ
LOG MAGNITUDE

RESPONSE

0. 400 1.0000 3. @0

2.0000 - 0000 4.0000
FREQUENCY IN KILOHERTZ

(RADIENS)

HiLl ISECONDS

IMPULSE RESPONSE

PHASE RESPONSE

2.0000 3. o 4.0000

-e.1@

-0.20

e.000 1.0000

2.0000 - 0000
TIME IN HILLISECONDS

3. Implementation of FIR/IIR Filters with the TMS32010/TMS32020

@.000 1.0000 000 5.0000
FREQUENCY IN KILOMERTZ
°.a00 1.0000 2.0000 3.0000 4.0000 5.0000
FREQUENCY IN KILOHERTZ
4.0000 5.0000
61

9

0TZOTESL/OTOTESILL 24} Yiim s1d)id YII/AId Jo uoneudwalduy "¢

IIR4DIR 32010 FAMILY MACRO ASSEMBLER PC2.1 84.107 20:44:36 08-29-85 IIR4DIR 32010 FAMILY MACRO ASSEMBLER PC2.1 84.107 20:44:36 08-29-85
PAGE 0001 PAGE 0002

0001 RARRRRARRRRRARRRRRRARRRRRA KA RRAR nxn 0058 *

0002 * 0059 R

0003 * FOURTH-ORDER IIR 0060 *

0004 * ELLIPTIC LOWPASS FILTER 0061 IDT 'IIR4DIR'

0005 * 0062 0000 DN EQU 0

0006 * DIRECT-FORM II STRUCTURE 0063 0001 DNMl EQU 1

0007 * 0064 0002 DNM2 EQU 2

0008 * FILTER CHARACTERISTICS 0065 0003 DNM3 EQU 3

0009 * 0066 0004 DNM4 EQU 4

0010 * SAMPLING FREQUENCY = 10 KHZ 0067 *

0011 * 0068 0005 Al EQU 5

0012 * BAND 1 BAND 2 0069 0006 A2 EQU 6

0013 * 0070 0007 A3 EQU 7

0014 * LOWER BAND EDGE 0.00000 2.75000 0071 0008 A4 EQU 8

0015 * UPPER BAND EDGE 2.50000 5.00000 0072 .

0016 * NOMINAL GAIN 1.00000 0.00000 0073 0009 BO EQU 9

0017 * NOMINAL RIPPLE 0.06000 0.06000 0074 000A B1 EQU 10

0018 * MAXIMUM RIPPLE 0.05617 0.05514 0075 0008 B2 EQU 11

0019 * RIPPLE IN DB 0.47469 -25.17089 0076 000C B3 EQU 12

0020 * 0077 000D B4 EQU 13

0021 * 0078 *

0022 * FILTER STRUCTURE 0079 000E MODE EQU 14

0023 * 0080 000F CLOCK EQU 15

0024 * 0081 0010 YN EQU 16

0025 * b 0082 0011 XN EQU 17

0026 * 0 0083 0012 ONE EQU 18

0027 * 0=-- > >---0 0084 »

0028 * x(n) | -1 | y(n) 0085 0000 AORG 0

0029 * - v 0086 »

0030 * | 0087 0000 F900 B START

0031 * o 0001 000D

0032 * | 0088 *

0033 M v 0089 * COEFFICIENTS ARE INITIALLY *

0034 * | 0090 * STORED IN PROGRAM MEMORY *

0035 *