1CD-378

FOR
8051
USER’'S MIANUAL

1ICD-378
R

FO

8051
USER’'S VMIANUAL

Copyright © 1986, U.S. ZAX CORPORATION. All Rights Reserved.
Part No. ZTP-111-XX, Rev. A. Printed: April 1986

Limitation on Warranties and Liability

ZAX Corporation warrants this equipment to be free from defects in materials and
workmanship for a period of 1 (one) year from the original shipment date from
ZAX. This warranty is limited to the repair and replacement of parts and the
necessary labor and services required to repair this equipment.

During the l-year warranty period, ZAX will repair or replace, at its option,
any defective equipment or parts at no additional charge, provided that the
equipment is returned, shipping prepaid, to ZAX. The purchaser is responsible
fgr insuring any equipment returned, and assumes the risk of loss during
shipment.

Except as specified below, the ZAX Warranty covers all defects in material and
workmanship. The following are not covered: Damaged as a result of accident,
misuse, abuse, or as a result of installation, operation, modification, or
service on the equipment; damage resulting from failure to follow instruction
contained in the User's Manual; damage resulting from the performance of repairs
by someone not authorized by ZAX; any ZAX equipment on which the serial number
has been defaced, modified, or removed.

Limitation of Implied Warranties

ALL IMPLIED WARRANTIES, INCLUDING WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
PARTICULAR PURPOSE, ARE LIMITED IN DURATION TO THE LENGTH OF THIS WARRANTY.

Exclusion of Certain Damages

IN NO EVENT WILL ZAX BE LIABLE TO THE PURCHASER OR ANY USER FOR ANY DAMAGES,
INCLUDING ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES, EXPENSES, LOST PROFITS, LOST
SAVINGS, OR OTHER DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THIS
EQUIPMENT. THIS EXCEPTION INCLUDES DAMAGES THAT RESULT FROM ANY DEFECT IN THE
SOFTWARE OR MANUAL, EVEN IF THEY HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF IMPLIED WARRANTIES OR
LIABILITY FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE LIMITATION OR
EXCLUSION MAY NOT APPLY TO YOU. THIS WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS,
AND YOU MAY ALSO HAVE OTHER RIGHTS WHICH VARY FROM STATE TO STATE.

Disclaimer

Although every effort has been made to make this User's Manual technically

accurate, ZAX assumes no responsibility for any errors, omissions, 1ncons1stenc1es,
or misprints within this document.

Copyright

This manual and the software described in it are copyrighted with all
rights reserved. No part of this manual or the programs may be copied,
in whole or in part, without written consent from ZAX, except in the
normal use of software or to make a backup copy for use with the same
system. This exception does not allow copies to be made for other
persons.

TABLE OF CONTENTS

1. INTRODUCTION .iuivieieeeeneacenesasaacscanscsoacsnacsnas Cetecesescsssans 1-1
1.1. What is an In Circuit Emulator?
2. GETTING STARTED tiuveveeeacrancocasssecososssasocssosssnscsasascssssnss 2-1
2.1 Hardware Installationecieeeevenenanaans Cecetetetescsesaseaans 2-1
2.1.1 RS-232C Interface Board Insta]]at1on 2-1
2.1.2 RS-232C Cable INStallation eeeeeeeeeeeeeeeeeeeneenseannenns 2-3
2.1.3 Emulator Module Power Supply Cable Assembly .c.iceeveeeennn. 2-3
2.1.4 Powering Up the Emulator Module ..ceveeveecenrencasconcnnns 2-4
2.2 Software Installation ...cieeieeeeeeeceoccescencncassnsassonannes 2-5
2.3 Warm Start Featureiciceereerieeeecenenaessenseacnsessasansnes 2-6
2.4 Getting Oriented .iviieeeeeesecoesescocsssssensscescssaancansassns 2-6
3. USER INTERFACE OVERVIEW teuveeveeeeoenocrosncsecncnoansrsnosncssancnnans 3-1
3.1 Menu Organization Ceteeeesceseseesesaosctscscrscesaanes 3-1
3.2 USinNg MenUS .iuieieeieieereeesessceacaesccsnsosssesssascscnsasnsnss 3-2
3.3 User Options, Errors and Warningsecececicececencecaescacncans 3-3
3.4 Directory Facility ceeeeeseecsconscacans Cetececetesecatntnteansaas 3-3
4. MAIN MENU .iuieieenenceseaoaonosonesansosscneosasssssssasoeascasasansnss 4-1
4.1 Main Menu OVerview ...iceeceeceessscessescacnsessasesssscnssasannos 4-1
4,2 Main Menu SCreeNn t.ieiieeeeeeeoscscrassscsascacssssscssssnsascasas 4-1
4.3 Load Command ...ceeveeececnccncsnaccanenes ceeseessesersercnsentnas 4-2
4.4 Upload Command ...eeecieereasecscscocasscsascaoasasnsssssncnsasnas 4-4
4.5 Download COMMANA «uievereeeevensaconososconsossseaascansassscncnas 4-5
4.6 Config Command ..veeveeaeecescrseescsacscsscssessosossascoscoscnans 4-6
4.7 Restore ComMmand ...eevveeeeecensnsecaecnosssncansascannnans e 4-7
4.8 Store Command ..veeeeceeececeaoscesoscacsssossascacsascscssscnsassss 4-8
4.9 Map COMMANA 4ieerureoaosensoscoaossoaccsasosssssnsassossasossasans 4-9
4.10 % (Macro) Command +...eeeeeeveccsoceasseceoaccasssssnsscascasanans 4-11
4.11 Interrogate Command ...cecececesncoseccscsoascssoasscsnsasssonnnns 4-11
4.12 Help COMMANd «uevevereeeoececeeosoccsoasssasansossansssassscncnsoas 4-12
4.13 Exit Command .v.veveeereenncecncscscesesossassssssssssssnsasonsnne 4-12
5. CONFIGURATION MENU ..ivuvuenrrecnonecnenecncaessesnsnenscnsnssassascones 5-1
5.1 Configuration Menu OVerview ...e.eeececeecsececosctcacscacnsoansnas 5-1
5.2 Configuration Menu SCreenieeivereescencsencssssesscansocannns 5-1
5.3 Execute Commandcoveeereeeceeencanacacacacsnscssscncssssnannas 5-1
5.4 Change CoOmMANd ..uveeveveserensscacsescssssscsossscssscsssascannnes 5-2
5.4.1 Mode 1 - ROMless part / 16 bit ext addr busccvvuennnns 5-4
5.4.2 Mode 2 - ROM part / NO ext address bUS ..ceeveeeenerccancans 5-4
5.4.3 Mode 3 - ROM part / 8 but ext address buscceveeevennens 5-5
5.4.4 Mode 4 - ROM part / 16 bit ext address bus ...evveeeeneannns 5-7
6. INTERROGATE MENU i uivireenreoenonesoaanssesossosnscasscncasanososnsnns 6-1
6.1 Interrogate Menu OVErVIEW ..eceeeeerececrcencrocscaosocncsasnannsas 6-1
6.2 Interrogate Menu SCreenceieeeeerecescosensesoscassascacoconoans 6-2
6.3 GO COMMANA +ivuvuienroeeneeocossocaonsasssasacassassasscacsnssssnsnns 6-5
6.4 S-Step Command ..vuieeerrereeenereeetotasesscasasesccsscscasscoannas 6-9
6.5 Reset Command ...cveeeeneoeenececocsocosnssacaassosaosscscancananans 6-11
6.6 Fantom (Phantom) COMMANA «..eeeeeeeeneeroaaeennaasoneesnnaascaaanan 6-13
6.7 Brk-cnt (Break-Count) Commandceeeeneeeeeeoeeeeeeannnnnneas 6-18
6.8 Break/Trace-Trigger Points «.iiiieeeeeeeeeeeeneeeecacaneeccncaaeans 6-19

iii

o . .
. o e o e o o & e o & o° o & & e e e

(Yo lVe Vo]
. .

Increment Pass-Count POINES .eveveeeeccocecccsscaconscesssnsssonsne 6-21

Loop-cnt (Loop-Count) Commandccoeeeeveecncenans eeeeseens e 6-24
Trace-trig (Trace-Trigger) Commandcoeveeenenacns eeesetataeaas 6-25
Help Commandc.ceeeeeeennecananacnes Ceeectetersettatcetteaneoans 6-26
Quit Command ...eveeeeesecoccanscscasancnnnns cesecsavsssusncs veees - 6-26
Modify-Regs Commandcceeeecececcacscccscscsscancasnses ceeseanas 6-26
Data-Mem Command ...ceceaecerccsscrcoscacsaccscoscensnscsnsssancas 6-31
Xdata-Mem Commandccccense Ceescecessesccscesessacanansonsans 6-31
Code-Mem Commandccececoeeceacaccnces Ceecescessacasassaancsans 6-31
View-trace Commandceoeeeeennns I 6-32
START Trace-Trigger .cceeeeeseseocessscsssncsnans cecesesssesesoane 6-33
CENTER Trace-Trigger cc.iieeseececsesccccsccoccscsesncnnnnns cesens 6-35
END Trace-Trigger cuieeeeecesecesesescssososacsosasssasesesascsanss 6-37
Experiment Commandeeecececescecasecosocncesosncscscoccsancnne 6-39
I/0 Command ..eeeeeeeeeseaeaceescscscocssescseasassassscsascnnnses 6-39
Pass-cnt (Pass-Count) COMMandceeeeeeeccsoccsocccncccancananas 6-39
XAMINE / MODIFY PROGRAM CODE MEMORY ...cvevececncecns cececssesessaseans 7-1
Examine / Modify Program Code Memory Overviewceeeececcecccses 7-1
Examine / Modify Program Code Memory Screenceceeeceececens 7-1
Dissassemble COMMANd «.vveeeecoesceneaccacnosssscanssasanscceacacs 7-2
Assemble Command tececescscsesencacesescsesetesesessesennns 7-6
Table Command tesesaevsvseserestsrevatsnatsessenssnenstee 7-12
Help ComMand cveveeecenenencecncosososososasesssassssnsssscannsnas 7-12
Quit COmMANd viveeereeeesoacsesasossososcacsossoscansossossnsansnsnas 7-12
MINE/MODIFY INTERNAL DATA MEMORY ..viveieeconnooncnnncsscscannnacanns 8-1
Examine/Modify Memory Data Overviewceeeeeeccecssnescsnscannns 8-1
Examine/Modify Memory Data Screencicecevercrencrccenceneccnns 8-1
Dump Command ..eveeiecaoeecesecaascoscossssceaceansnsasassessassnsaes 8-3
Enter Commandccoeveevenennnnnnnn.. eessesssccssccaavresceree 8-5
Fill Command ...ceeececesecoscsoscsesesas N 8-8
Move COmmandcvieeieeenincencancecenacenocacseasccnanccaasanns 8-13
Search Command ...ieeeeeeeencesececoscccesesoscscssscssssscsasccaes 8-16
Compare Command ...ececeeocesceccososcoseasscsosocassonsossonsosncse 8-20
RAM=Bits Command ...cceeeecececoceocsococescscacsansrscscacsecsnsas 8-23
O Help Command ...veeeeecceenecosscacscoscsoansscacascsnsanccssannss 8-25
1 Quit Command ..uiveineeeeneeeeneenceseosessnssocassoscscosanssnans 8-25
EXPERIMENT ..vvevrievenennnnnnns Ceesecscaceetsercanttctctsetcsnennns 9-1
What is an Exper1ment? ... 9-1
Specifying Breakpointsccvueuens Ceetescssersettsscseranasanas 9-2
9.2.1 PC Address Breakpoints ...cieeeeieeeeeeeeceeecececcnnsnnens 9-3
9.2.2 PC Address Range Breakpoints ..civeveeiieeeecnnecncoannnnns 9-3
9.2.3 Opcode Value Breakpoints c.eeeeeececreceeseencsecnncecnnnes 9-4
9.2.4 Opcode Class Breakpoints ...ceeeececeeccscesesesnccncacanns 9-5
9.2.5 Direct Byte Address Breakpointsceeeevvenennnn ceeenane 9-5
9.2.6 Direct Byte Address Range Breakpointsceeveecencenceses 9-6
9.2.7 Direct Bit Address Breakpoints ...ceicerereerencecanccnnenas 9-7
9.2.8 Direct Bit address Range Breakpoints ...ceceveeieeeeennnnns 9-8
9.2.9 Immediate Operand Value Breakpointsevececeecceccannces 9-9
3 Complex Conditional Statementsviviieriirieiririinenenencncnncans 9-9
.4 Constructing An Experimentcciviiiieieieeeeecescncreencananas 9-10
5 Experiment Language Syntax SUMMArY ...ceeeeeececrcooccccocscananns 9-11

iv

" 10.

11.

12.

13.

14.

EMAMINE/MODIFY EXPERIMENT MENU ..vurinniieiiiiinenenneenernececenaanns |

10-1

10.1 Examine/Modify Experiment Menu Overviewceiceieeneenecnnens 10-1
10.2 Examine/Modify Experiment Menu Screencciciieeeecosceccncanas 10-1
10.3 Edit Commandceuieecesenencncacosscssscscsascncenes testsescnse 10-1
10.4 Compile COMMANA ieveeeeresesocensecancssassscnoanansnnns Yesreeas - 10-1
10.5 Load Command ..ceveeeeaeeeneeeeancoocoeceencsacoasocsnacncnnncnns 10-6
10.6 Store Command ...eiecevececcscncecscacsosescaccascsscacncnas eeee 10-7
10.7 Delete Commandcccececeecencoscssosesconcanas tecerseccesances 10-8
10.8 Opcode Command «eeeeeeseseocnsssoasssasssasossssascasscsssasansas 10-8
10.9 Help COmMANd .ueeuenereeeceeneecocesessosscssossonscasessasananns 10-8
10.10 Quit Commandceeeeeennnnnnncnnannn eeecavecaseavecsisnsevans 10-8
EXPERIMENT EDITOR .vuvuivininnneeeeensoesossccossoscaosnasssaansnnans 11-1
11.1 Experiment Editor overviewiceciceeceececescceconcescesonnense 11-1
11.2 Experiment Editor SCreen ..uiciiieieeceeceecececacaseccesnsncosans 11-1
11.3 Using the Experiment Editor ...c.civivieiriciecrennececncnsnnanans 11-2
11.4 Line Entry Mode .c.veeiiieneenreeoeseencrosncsesocoanssesscsnanans 11-2
11.5 Edit Mode ..ivieinininnieensncecassensncsoscasssssocaanscansasaans 11-3
11.5.1 Edit-Replace Mode ...cieciierineeneecencocncoceaccocanans 11-5
11.5.2 Edit-Insert Mode «.iiviiveererncrecececnsrcansnosnsncnnans 11-5

11.6 Edit Command MOde ...uiveeeieeeiiaceeecnctnscecssoseasacnssascnans 11-5
11.6.1 Edit Command +..evieieeneecncnnocncncocsacscscscnsacncnns 11-6
11.6.2 Save Command ...ivieineneeeacesecoacssscosoanaacasaasanss 11-6
11.6.3 QUit Command ..euiieeeeeeeeeeeeeeeoeeccoasaanccnnannannas 11-7
OPCODE CLASS MENU +ivevieeeeeneneseransnsscsesescssscasesesasancncnas 12-1
12.1 Opcode Class Menu OVErview ...eeeeeecsccsosecscsascasascsasaanans 12-1
12.2 What is an Opcode ClasSS? cueieieinerececeancencacssccaacanansnnnans 12-1
12.3 Opcide C1ass Menu SCreen ...eiieeesreceecnsosnesecocsssnsacscanas 12-2
12.4 Load Command e e eacesesesaesceacacttseteesenstnteaseanna 12-2
12.5 Edit Command :.ueeeececuerecencseacacocsscnssasscosocsasasssnnanns 12-4
12.5.1 File Prompt Mode ..c.vevevecnecncnnns seesesesesasassnsane 12-4
12.5.2 Class Selection Mode .iveveeenereneenenncncnccsanasonanns 12-5
12.5.2.1 Edit-Class Command ...ceveveeencncnccacacancnnns 12-7

12.5.2.2 Delete-Class Commandeevvereneeenacnananens 12-7

12.5.2.3 Create-Class Commandcecvvevencnns A 12-8

12.5.2.4 Rename-Class Command ...cecevvncncecnvoncananas 12-9
12.5.2.5 Quit Command ...eivuiiveeeensnerennsroanancnanns 12-10

12.5.3 Class Edit Mode ..ievveineinenenreseenencsecncnonesncanne 12-11
12.6 Help Command «...eeueueneneeosreceenessesncssssseansassacnccannas 12-18
12.7 Quit Command c.eveeeeneeeenenesscossosacossascssscsoascnssaannnas 12-18
MACRO MENU tivitiinitnnneeeeeeeeresosnsaesnesnossesossasocossasasnsnans 13-1
13.1 Macro Menu OVerview c.ieeeeeeeeteseeesssocetesesencososoaoscaaans 13-1
13.2 Macro Menu SCreen ..i.iceiiecesreceeseeossesacsssesacassosacananns 13-1
13.3 Execute COMMANd «.vieeenereneancsearesnsoncossssoscascaasosasanss 13-1
13.4 Learn Command ..vueueeeeeeooeeessnoasearonsseaasesssscconasaannes 13-3
13.5 Help Command ...eeeeeneeeeoeseescsssscnscsassoscsasssscnnsssncans 13-5
13.6 Quit CommANnd +.vveuieneeneeoeeeusoneeocasscosanssssscsasasnseannns 13-5
A TUTORIAL EXAMPLE . tutiuitnenueeaneensesoessscseasassoesacsasannannns 14-1
14,1 IntroduCtion .uiveieeiiiieeneeeeeneesoeeassocoascsoaoaocacancananns 14-1
14,2 Getting Started sveveeereeieeeeieoeeeeeeecoeenecacessacancananans 14-1
14.3 The Programcececececeenens Ctetecececososesescsaasasacacncas 14-2
14.4 @ Sample SeSSTON tuiveiteieoeceseeoeeanssesseoncansacsannasacnanens 14-4

15. SYSTEM REQUIREMENTS tiveuriiennierneeecnecenseaoecacccsanscnassanccnnas . 15-1

15.1 Hardware Requirementsceeeeeceesescescenscaoscsnccsasscsnsase 15-1
15.2 Software Requirementsccveecereeceeeeccesccscecesscecscncannes 15-1
TROUBLE SHOOTING +iveveceeeacanacscscscocessscncscosnsscscsannnns ceaes - A-1
A.1 Cannot Establish Communicationccecececvceseccssaceacaccaccns A-1

A.1.1 Red LED is NOT GIOWING ceveeececccococossococsoscnsacnccss A-2
A.1.2 Green LED is NOT GIOWING +ccceeececoceccscococvscsoncnscns A-3
A.1.3 Baud Rate SeleCtion c..ceeeeeeaceccccscsersccsaconssnccacs A-4
A.1.4 RS-232C Hardware CheCK c.ciecccccecescnsecocscscocsscscanas A-4

A.2 Excessive Number of Communication Errorsceieeececcesescconee A-4
ERROR MESSAGE SUMMARY ... iieveeeoescceesocoasacosssssscascscacsencnanns B-1
B.1 PLINK86 Overlay Loader Errors c.ececececescesscecascsccncasansans B-1
B.2 Errors MeSSA0ES scecessescescssescossesaossscossesasssacanscnnaas B-1
B.3 DOS Errors MeSSA0ES cceeeseececesescacssescsossssscesssossnsaacscs B-9
SIGNAL SPECIFICATIONS AND DIFFERENCES .vieievencncscaceascocasocacaces C-1
C.1 Signal Specifications ...ciceeeceencesessessececacancncssccnccnnns C-1
C.2 Probe Cable CharacteristiCs .ececeecececeaceesescecssssscascscans C-4
C.3 Signal Differences ..eceecececceccensescosssosscsscscsscnsossasnnss C-4
‘OTHER DIFFERENCES +.ivieiiieieieeececceceacaoacocnsssncncasancacnnnnns D-1
D.1 Timer0 and Timerl Valu@S ...ccieseecsescccescenscsessassasannsane D-1
D.2 Serial Port ..iieiiiiiiiiiiedieiereeeececoscscscnsscosoccsnscnnnns D-1
D.3 POrt Registers tuiveeeeeereeeersecreoscsscesssccsacscesosoaascnnnas D-1
CHARACTER SETS AND RESERVED SYMBOLS ..ceiiceieceeccsocscoccanccccacanse E-1
E.1 Single Line Code Assembler Character Set ...cciicevceccescencncas E-1
E.2 Experiment Compiler Character Set ...ciiiiiieiiiieiencncecncannns E-1
E.3 Fill and Search Pattern Character Setccviveeiniiinninannenn, E-1
E.4 Experiment Compiler Reserved Keywords ..c.eeeeeesescecoccansancns E-1
PREDEFINED BYTE AND BIT ADDRESSES ..vivieeieterencasacocssncsccncnanans F-1
F.1 8031 Predefined AddresSeS ...ceeeecececeneoesssesaccacssncencacsns F-1
F.1.1 Predefined Byte AddresSsSes ...cceeeeeccasececocaccconns weess F-1
F.1.2 Predefined Bit AddressSesS «..ecicececceeecenocococccocancnns F-1

F.2 8032 Predefined AdAresSSeS «.ieeeercececeosesresssnsssccascececens F-2
F.2.1 Predefined Byte AddresSses ..ceeeeiececscosecesoscanacacnans F-2
F.2.2 Predefined Bit AddresSSeS c.ececeececscscececesncasnscncnans F-3
PREDEFINED OPCODE CLASSES 1 veiivieececncnesecocscnosscnocscsccccnanans G-1
G.1 OPCODE CTass PGMFLOW ..vivieinreneansencncacocecoacsaseaonsnanans G-1
G.2 Opcode C1ass STACK tivevnnnneeennnonecencancacannns cevesccsravans G-2

vi

CHAPTER 1
INTRODUCTION

1.1 What is an
In-Circuit
Emulator?

The ICD-378 for 8051 emulator is an in-circuit emulator
which is designed for use in developing and debugging
circuits based on an Intel single chip microcontroller. The
ICD-series emulators currently support the following Intel
single chip microcontrollers:

ICD-378 for the 8051
8052
8031
8032

An In-circuit Emulator is a tool which enhances the
productivity of system design engineers. It is used by
engineers who are designing a system which incorporates a
microcontroller. It provides for the engineers, the ability
to interactively control and examine the state of the system
at any chosen time. This is essential for speeding

up the debugging process.

As the name implies, this capability is provided by removing
the microcontroller from the system and replacing it with
the emulator's probe. Thus the emulator's probe is In the
Circuit in place of the microcontroller. The emulator probe
is in turn connected to the host computer. It is through the
computer (and through the probe) that the system can be
completely controlled.

You may ask 'why is this important?'. It is not enough for
the emulator to simply behave as if it were the target
processor (although this is a requirement also). The
emulator must also provide read/write access to all signals
and all data to which the microcontroller itself has access.
This includes information which resides inside the micro-
controller itself. Without this access, the engineer may NOT
be able to completely control and debug the system.

1-1

The many uses of the emulator can be easily visualized after
we examine a typical system design cycle.

DESIGN CYCLE

Phase: Tools Used:
conception RTL simulator
architecture logic simulator
software/hardware prototype ~emulator/simulator
CAD/CAM
integration emulator
manufacturing testing emulator/testor
field testing emulator/testor

The first use of an emulator in the design cycle is in the
software development phase. In this phase, the software
which is going to run on the microcontroller is being
developed. The emulator provides an ideal environment in
which to debug the software. It executes the program exactly
as the target would (in real time) and it provides all of
the interactive debugging capabilities. By utilizing the
emulator to develop the software, it can be completely
debugged (except for the hardware interface) before it is
integrated with the system hardware.

The second use of the emulator in the design cycle is in the
integration of the target software and the system hardware.
This constitutes the major use of the emulator. Even when
the hardware and software have each been individually
debugged, new problems can surface when they are joined
together. The emulator is used in this case to find and
debug these interface problems.

After a prototype has been completely debugged, the emulator
can then be used to test the specs of the system. Worst case
parametric tests can be developed and tested on the
prototype. This provides the designer with valuable
information about the 1imitiation of the system. It also
provides test programs which can be used in the
manufacturing process.

1-2

The third use of an emulator is in the manufacturing phase
of the product. The same test routines which were used to
develop and debug the prototype (or even more comprehensive
test routines) can be used to test the finished products
after manufacturing. Any non-functioning units can be easily
debugged using the emulator's full range of debugging
capabilities.

The fourth use of an emulator is in the field service phase
. of the product. The ICD can run on any IBM PC or PC
compatible host computer (including the PC compatible
portables). If the field location already has a host
computer, the field service team need only carry with them,
the emulator module itself (which can easily fit in a
briefcase) and some floppy disks. If a host computer isn't
available, a portable host can also be easily brought along.
This eliminates the need for carrying around bulky and heavy
test equipment, while still providing the power of

an emulator debugging environment.

CHAPTER 2
GETTING STARTED

2.1 Hardware Installation

The following is a step by step procedure for the
installation of the ICD hardware.

2.1.1 RS-232C Interface -Board Installation

The following signals are used in a standard RS-232C

interface:
TxD - transmit data DSR - data set ready
RxD - receive data DCD - data carrier detect

RTS - request to send DTR
CTS - clear to send

data terminal ready

A standard RS-232C interface is configured as follows:

HOST PERIPHERAL
Signal Pin Cable Pin Signal
Ground 1 R Tt 1 Ground
TxD 2 mememmmeeeeeeee- > 2 RxD
RxD 3 G e L L L L 3 TxD
RTS T > 4 RTS
CTS I 5 CTS
DSR 6 {emmmmmmemmec e 6 DSR
Ground 7 mmmmmmmmmmmeeee 7 Ground
DCD 8 {rmmmmmmmcecm e 8 DCD
DTR 20 mmmmmmmmmmeeeee- > 20 DTR
Figure 1.

Notice that the cable connects each of the pins on the host
side to its counterpart on the peripheral side. It is
important that this 1:1 correspondence is maintained.

2-1

The ICD utilizes a 3 wire version of this configuration.

It is configured as follows:

HOST 1CD
Signal Pin Cable Pin’
Ground 1

TxD 2 emcemccmmcm———en > 2
RxD 3 {ommmmmmmc e m—mm 3
RTS 4

CTS 5

DSR 6

Ground 7 oo 7
DCD 8

DTR 20

Figure 2.

Ground

Pins 1, 4, 5, 6, 8 and 20 of a standard RS-232C interface

are not used. The common ground is provided through pin 7.
The RTS, CTS, DRS, DTR and DCD are not required in the ICD
communication protocol. The configuration will actually be

as follows:

HOST ICD
Signal Pin Cable Pin
TxD 2 ——————————————)> 2
RxD 3 LG 3
Ground /A 7
Figure 3

TxD
Ground

2.1.2 RS-232C Cable

The ICD RS-232C cable is a 3 wire cable which is shown in
Figure 3. A standard RS-232C cable (shown in Figure 1.)
can also be used to connect the host with the emulator
module provided the emulator end of the cable has a male
connector.

If you have purchased the RS-232C interface board from ZAX,
the instructions for installing the board in the host
computer are packaged with the board.

The RS-232C interface board which is used with the ICD
MUST be configured as COM1.

Installation

Attach the RS-232C cable to both the RS-232C connector on
the interface card (in the card slot at the back of the
host) and to the connector on the ICD module. Be

sure that both ends are seated firmly and securely.

2.1.3 ICD Module Power Supply Cable Assembly

If you have purchased the ICD Power Supply, you can
skip this section because your power supply cable comes
preassembled.

If you are using your own power supply to power the ICD
module, please ensure that it meets the following
specifications:

+ 5VDC +- 5%
2.0A
50mV ripple peak to peak

+ 12VDC +- 3V
150mA

- 12VDC +- 3V
150mA

A 5 wire connector is supplied with the ICD which

you can use to supply power to the ICD module. The

wires themselves are not provided. The connector accepts
wire gage #18 A.W.G. Figure 4 shows the order in which the
power lines should be supplied.

2-3

Power Supply cable key:

Pin #1 = Ground
Pin #2 = Ground
Pin #3 = +12VDC
Pin #4 = -12VDC
Pin #5 = +5VDC

2.1.4. Powering Up the Emulator Module

The ICD module can be powered up by first inserting

the power cable into the power connector on the side of the
module. The ICD is shipped with the emulator probe

inserted in the DIP socket on the Simulator board. Be sure
that the probe is still inserted in that socket and that

it is in the correct orientation. This can be determined by
matching pin 1 on the emulator probe with pin 1 on the DIP
connector.

Next turn on the power supply. If you look into the air
vents on the side of the emulator module toward the end of
the RS-232 connector, you can see two LEDs. If the red LED
is on, the power is supplied properly to the emulator
module. If the green LED is on, the oscillator in the
emulator is running and the emulator is ready to establish
communication with the host.

If the LEDs were not on as described above, see Appendix A
for the trouble shooting guide.

Turn off the power supply until you are ready to begin an
emulation session.

2-4

2.2 Software Installation

The ICD user interface software is supplied on 1 5-1/4"
double sided double density floppy disk. It is formatted
under PC DOS with 9 sectors per track. The first thing you
should do is to make a backup copy of the software. You can
copy the program a file at a time or with the DOS
'diskcopy' command. The files which are included with the
ICD system are:

@.exe
$model
$hipfile
$config
demo.dbg
demo. hex
demo.asm
demo.exp
opclass.opc

Be sure that your working copy of the ICD software is not
write protected. This enables the ICD system software to
update the $config file when you change the system

~ configuration of your ICD environment.

When running the ICD user interface software, ALWAYS be
sure that the ICD floppy disk is in the DEFAULT disk drive. -
The program will not run properly if it is not in the
DEFAULT drive.

During the course of debugging a product, you will most
1ikely create many different test files. The following is a
listing of the different types of files which are used

with the ICD. '

File Types Formats
assembly language source code text
assembled hex files Intel hex object format
assembled symbolic debug code ICD object format
experiment files text
macro command files ICD command format
opcode class files ICD opcode class format
system status files ICD system status format
macro command files ICD macro command format

2-5

It is suggested that you adopt a naming strategy which will
avoid confusing these files with each other. ICD file
formats are NOT interchangable with each other. If you try
to use a file in a context other than that for which it was
created, you will get a FILE FORMAT error.

If you want to use the opcode class file 'opclass.opc' in
your experiments, it is suggested that you copy it onto the
disk with your other working files. This is because opcode
class files are opened in the read/write mode (so you can
delete opcode classes, edit opcode classes and create new
opcode classes). If you used the opcode class file on the
system disk (which should be write protected), you would
encounter an error when you tried to update the file.

2.3 Warm Start Features

The ICD system provides a warm start feature. A warm start
is achieved through the following sequence:

1) Enter the ICD environment.

2) While in the ICD environment, execute the system
configuration command.

3) Leave the ICD environment.

4) At some later time, re-enter the ICD environment.

The reentering of the ICD environment is called a warm
start. Communication with the emulator will automatically
be reestablished and the map settings (see chapter 4.9) for
code and external data memories will be reset to their
prior values. The register values will also be initialized
to the actual values read from the emulator. This assumes
of course that the emulator module's power has been
maintained in between ICD debugging sessions.

2.4, Getting Oriented

The ICD User's Manual provides a detailed description of
the use and capabilities of the ICD system. It is

strongly recommended that you read through the manual to
familiarize yourself with the system. After having read the
manual (not as an alternative to reading it) it is
suggested that you work through the tutorial example which
is presented in Chapter 14.

CHAPTER 3.
USER INTERFACE OVERVIEW

3.1 Menu Organization

The menu organization of the ICD user interface software is
shown below. Under each menu item can be found the chapter

or sub-chapter in which that menu item is described.

MAIN
(Chap.4)

| l I
CONFIG L&AD UPEOAD DNLOAD INTERROGATE RES{ORE ST&&E MLP %-macro

(Chap.5) (4.3) (4.4) (4.5) (6) (4.7) (4.8) (4.9) (12)
---- EXECUTE (5.3) EXECUTE (12.3) ----
'_____ CHANGE (5.4) LEARN (12.4) I

|] | | - ' I | I I |
GO S-STEP RESET PHANTOM | BRK-POINT LOOP-COUNT INTERRUPT MODIFY-REGS EXPERIMENT
(6.3) (6.4) (6.5) (6.6) (6.7) (6.8) (6.9) (6.10) (1?)

CODEIMEM DATL-MEM XDATAlMEM ED{T COMAILE OPéODE LOAD ST&RE DELElE
(7) (8) (8) (11) (10.4) (12) (10.5) (10.6) (10.7)

- DISASSEMBLE (7.3) L

- ASSEMBLE (7.4 A $

_ TABLE (8)---==---- > LOAD EDIT
(12.4) (12.5)

~— ~d

I I I | I l
DUMP ENTER FILL MOVE SEARCH COMPARE RAM-BITS (Data-Mem only)
(8.3) (8.4) (8.5) (8.6) (8.7) (8.8) (8.9)

3.2 Using Menus

A menu screen is structured as follows:

Command1l Command2 Command3
Quick help description of Command]

MENU NAME

Errors, warnings or messages

The first line of the screen will contain a list of the
command options available for that menu. The second line
will contain a one line description of the highlighted
command (see below). The middle of the screen will contain
the men's name. The line at the bottom of the screen will
contain any errors, warnings or messages encountered during
the execution of a command.

Menu commands may be selected for execution by either of
the following two methods. The first method is to move the
highlight to the desired menu command and then hit the
RETURN key. Upon first entering a menu, the first command
on the left is always highlighted. The highlight may be
moved through the use of the cursor control keys on the
numeric keypad at the right of the keyboard. The cursor
control keys cursor right (-->) and cursor down (y) will
move the highlight one command to the right. The cursor
control keys cursor left (<--) and cursor up (4) will move
the highlight one command to the Teft. In either case wrap-
around occurs when the end of the command Tist is
encountered.

The second method of executing menu item is to type the
first letter of the desired item in either upper or lower
case. Only the first character of the item name is required
since no two items in any given menu begin with the same
letter.

3-2

Any other character will be ignored with the exception of
CTRL-C. Typing CTRL-C at any time will abort the program
with the ensuing loss of any information which was not
previously stored. The preferred method of exiting the
program is by executing the Exit command in the Main Menu.

3.3 User Options, Errors and Warnings

The system software was designed to be user friendly and
fault tolerant. A1l menus are operated as described above.
A11 tasks other than menus will prompt you for the required
information. Any options open to you will be presented at
the bottom of the screen. Thus you will always know what
your choice of actions is.

When you are prompted for addresses or data by the system,
it will always inform you of the required radix. When
responding to these prompts, only the numeric value in the
required radix should be provided. A radix indicator is not
necessary since the system expects the information to be in
the specified radix.

Any errors or warnings will also be displayed at the bottom
of the screen as they occur. These messages are in English
text and are explicit enough to determine the nature of the
error. A fuller description of all error and warning
messages can be found in Appendix B.

Whenever a command is executed which will take some time to
perform, the WORKING sign will appear at the bottom of the
screen. It will be flashing. As long as the display is
flashing, the system is busy and will not accept commands.

3.4 Directory Facility

The ICD provides a directory facility through which you can
get a listing of the entries in any directory. The facility
can be invoked any time the system prompts you for a file
name. Responding to the prompt which appears as follows:

Enter file name > ?
Enter disk or directory name > _

MENU NAME

The response can be a disk drive specification, a directory
pathname, or a [RETURN] which selects the current default
directory.

A disk drive is specified by its drive designator. The
valid drive designators are A through P. when specifying a
drive, you do not need to specify the ':' suffix. Any one
letter response is assumed to be a drive specification.

A directory pathname specification can consist of a drive
specification and/or a path of directory names to the
desired directory. Directory names are separated by
backslashes (\).

Examples of valid responses are:

[RETURN] default directory

a top directory on A: disk

a: top directory on A: disk
\dirT\subdirl subdirectory on on default disk

c:\dirl\subdirl\subdir2 subdirectory on C: disk

The files in the directory will be in alphabetical order.
The directory display will appear as follows:

Enter file name > ?
Enter disk or directory name > _

Directory for <disk or directory pathname>

filel.ext file2.ext file3.ext filed.ext file5.ext
fileb.ext file7.ext file8.ext file9.ext filel0.ext

The number of files in a directory may exceed the display
area of one screen. In this case, the screen fills up from
top to bottom until the display area is full. As more names
are listed, the display area is scrolled upward one line
and a new line with five names appears on the bottom of the
display area.

3-4

You can halt the scrolling action at any time by hitting
the [SPACE BAR] key. This puts the system in the single
step display mode. After entering the single step display
mode, one new line of five names is displayed each time you
hit the [SPACE BAR] key. Normal display scrolling can be
resumed by hitting ANY key other than the [SPACE BAR] key.
The single step display mode is automatically terminated
when the directory listing is completed. Once the directory
Tisting has begun, it can be aborted at any time by hitting
the [ESC] key.

If the specified directory contains no files, the following
message is displayed: ,

Directory is empty

_ Error messages which may be encountered when specifying the
disk drive or directory name include:

I11egal drive specification - the specified drive
designator is not between A and P.

Directory not found - a directory was specified which did
not exist or couldn't be reached.

CHAPTER 4
MAIN MENU

4.1 Main Menu Overview

The Main Menu is used to initialize system parameters prior
to running an emulation experiment, to call the Interrogate
Menu and to terminate a session. In this menu you can:

) Tload program code memory from disk files

) upload program code memory from your target system
board

) download user board external data memory from disk
files

) call the system Configuration Menu

) restore a previously saved system status

g store the system status in a disk file
)

)

0

w N

setup the mapping for the code and external data
memories
create or execute a macro command file
call the Interrogate Menu
) terminate a session.

NOoOYO

8
9
1
4.2. Main Menu Screen

The Main Menu screen appears as follows:

Load Upload Dnload Config Restore Store Map % Interrogate
Help Quit (Quick help line for highlighted command)

MAIN MENU

Upon entering, the Load command will be highlighted.

G-1

4.3 Load Command

The Load command is used to load the program code memory
with object code from a disk file. You will be prompted to
supply the name of the disk file. The Load screen appears
as follows:

Enter file name > _

LOAD CODE MEMORY FROM A FILE

The name should be a complete file name specification
including a drive specification. Hitting the '?' key in
response to the prompt will call the directory facility
(see Chapter 3) through which you can get a listing of the
entries in any specified directory. Hitting the [RETURN]
key in response to the prompt will abort execution of the
command. If the file cannot be opened or cannot be found,
you will be notified of the error. :

Three different object file formats are accepted: standard
Intel hex file format, Intel obsolute object module format
and ZLINK obsolute object file format. Standard Intel hex
files can be created by assembling your program code with
most of the currently available 8051 cross assemblers. Intel
object module files can be created by linking/locating
modules with Intel's RL51 program. These source modules can
be either asembled Intel ASM51 object modules.or compiled
PLM object modules. ZLINK absolute object files are created
by the ZLINK 8051 family cross assembler.

The difference between the file formats is that the Intel
hex format contains only the object code. The Intel object
module format and ZLINK format contain, along with object code,
the symbols used in the assembly language file (of PLM
file) and can thus be used for symbolic debugging. In
addition, ONLY the ZLINK file contains information which
allows the use of the more sophisticated breakpoint
triggering conditions. These include: opcode values, opcode
classes, direct byte addresses, direct byte address ranges,
direct bit addresses, direct bit address ranges and
immediate operand values. (See chapter 9 for details).

4-2

You need not specify which format your object file
contains. The system will make that determination. If while
reading in the file, an error is encountered, an error
message will be displayed. Because these object files are
created by computer programs, please ensure that our object
file is in an acceptable format.

If you wish to utilize the symbolic debugging capabilities
of the system, you may use the ZLINK 8051 family cross -
assembler with the debug switch to create your object code
file. (See the ZLINK 8051 Family Assembler User's Manual for
details). The symbolic debugging capability is automatically
enabled when you load the ZLINK absolute object code file

or an Intel obsolute object code file into the system.

A warning message which may be encountered when executing
this command is:

Program memory overflow: the specified file contains code
at an address beyond the address limits of the emulator's
code memory.

Error messages which may be encountered when executing this
command include:

Must establish communication first - the code cannot be
downloaded to the emulator before communication with the
emulator has been established.

File not found - the specified file could not be found on
the specified drive, the default drive, or the A: drive.

File is not proper Intel hex format- the file was being
processed as an Intel hex formatted file but some
formatting error was encountered while records were being
read.

File is not proper absolute object format- the file was
being processed as a ZLINK absolute object formatted file
but some formatting error was encountered while records were
being read.

4-3

4.4 Upload Command

The Upload command is used to load the program code memory
with object code from your target system board. It is
assumed that you have memory in the external code memory
space and that this memory contains your program object
code. You will be prompted to supply the starting address
of your code that you wish to upload. (The normal response
is 0). The Upload screen appears as follows:

UPLOAD PROGRAM CODE MEMORY FROM TARGET BOARD

Enter starting address (in hex) > _

Hitting the [RETURN] key in response to the prompt will
abort execution of the command. Execution of this command
copies program code, starting at the address specified,
into the emulator program code memory. The amount of code
copied is determined by the size of the program code memory
option you have purchased.

PLEASE NOTE that code uploaded from any starting location
other than 0 can ONLY be examined in the raw memory mode
(see Chapter 10). It cannot be assembled, disassembled or
used to run an experiment. '

Error messages which may be encountered when executing
this command include:

Number is too large- the starting address specified exceeds
64K

IT1egal number specification- the address contains an
illegal hexadecimal digit.

Symbolic debug not enabled- the symbolic debugging
capability is not enabled. Symbolic addresses are therefore
not allowed.

Must establish communication first- an attempt was made to

issue a command to the emulator module before
communication was established.

b4

Communication error - reset comm link- a non-recoverable
error occurred. Communication must be reestablished via the
Execute command in the Configuration Menu.

RS232 transmission problem - check board- the RS 232 board
could not perform a transmission. Check your RS232 board.

4.5 Download Command

The Download command is used to download data from a disk

file to the user board's external data memory. This command
can be used when the external data memory is to be initialized
or when the user board's external memory is configured as a
Von Neumann type memory. (I.E. both code and data reside in
the same memory). If the latter is true, the Download

command can be used to write the code into the memory.

You will be prompted to supply the name of the disk file.
The Download screen appears as follows:

Enter file name > _
Are you downloading code memory? (Y/N) _

DOWNLOAD MEMORY FROM A FILE

The name should be a complete file name specification
including a drive specification. Hitting the '?' key in
response to the prompt will call the directory facility
(see Chapter 3) through which you can get a listing of the
entries in any specified directory. Hitting the [RETURN]
key in response to the prompt will abort execution of the
command. If the file cannot be opened or cannot be found,
you will be notified of the error.

Three different object file formats are accepted: standard
Intel hex file format, Intel absolute object module format
and ZLINK absolute object file format. You need not specify
which format your file contains. The system will make that
determination. If while reading the file, an error is
encountered, an error message will be displayed.

After entering a valid file name, you will be asked whether
or not you are downloading code memory. This is to
determine if the external memory on your user board is a
Von Neumann type memory. Only a Y or N response will be
accepted as a response to this prompt.

4-5

4.6 Config Command

A negative response (N) indicates that the data will be
used as external data memory only. The emulator's code
memory will not be affected by this command. A positive
response (Y) indicates that the data is the code for a Von
Neumann type memory. In this case, the code will also be
loaded into the emulator's code memory and any symbology
(if a debug file is loaded) will be loaded into the
system's symbol table.

A Warning message which may be encountered when downloading
code with this command is:

Program memory overflow- the specified file contains code
at an address beyond the address limits of the emulator's
code memory.

This message informs you that the emulator's code memory is
not big enough to contain the entire code. In any event,
ALL code is downloaded to the user board memory, even when

this message is encountered.

Error messages which may be encountered when executing this
command include:

Must establish communication first- the code cannot be
downloaded to the emulator before communication with the
emulator has been established.

File not found- the specified file could not be found on
the specified drive, the default drive, or the A: drive.

File is not proper Intel hex format- the file was being
processed as an Intel hex formatted file but some
formatting error was encountered while records were being
read. '

File is not proper absolute object format- the file was
being processed as a ZLINK absolute object formatted file
but some formatting error was encountered while records were
being read.

The Config command calls up the system Configuration menu
which allows you to set up the system's configuration as
specified by the system configuration file. It also allows
you to change the configuration specification in the
configuration file. The system configuration specification

4-6

includes the baud rate used for communication between the
emulator and the host compputer. For the ICD-51 and ICD-52
emulators, it also includes the mode of operation and the
configuration of the external data bus (if any).

(See Chapter 5 for a complete description of the
Configuration Menu.)

4.7 Restore Command
The Restore command is used to restore the system status to
some previously saved state. You will be prompted to supply
the name of the disk file which contains the saved status.
The Restore screen appears as follows:

Enter file name > _

RESTORE SYSTEM STATUS FROM A DISK FILE

The name should be a complete file name specification
including a drive specification. Hitting the '?' key in
response to the prompt will call the directory facility
(see Chapter 3) through which you can get a listing of the
entries in any specified directory. Hitting the [RETURN]
key in response to the prompt will abort execution of the
command. If the file cannot be opened or cannot be found,
you will be notified of the error. The status file has a
file format which is recognizable to the system. If the
specified file's format is not that of a status file, an
error message will be displayed.

Error messages which may be encountered when executing this
command include:

File not found- the specified file could not be found on
the specified drive, the default drive, or the A: drive.

I11egal System Status File Format- the file specified was
not the proper format for a system status file.

Must establish communication first- an attempt was made to

issue a command to the emulator module before communication
was established.

4=7

4.8 Store Command

Communication error - reset commm link- ‘a non-recoverable
error occurred. Communication must be reestablished via the
Execute command in the Configuration Menu.

RS232 transmission problem - check board- the RS232 board
could not perform a transmission. Check your RS232 board.

The Store command is used to save the current status of the
system in a disk file. You will be prompted to supply the
name of the disk file in which you want the status saved,
whether or not you want the contents of the emulator's
program code memory saved and whether or not you want the
contents of the external data memory saved. The Store
screen appears as follows:

Enter File name > _

STORE SYSTEM STATUS IN A DISK FILE

Save program code memory [Y/N]? > _
Save external data memory [Y/N] > _
Enter memory size in KBytes > _

The file name should be a complete file name specification
including a drive specification. Hitting the '?' key
response to the prompt will call the directory facility
(see Chapter 3) through which you can get a listing of the
entries in any specified directory. Hitting the (RETURN)
key in response to the file name prompt will abort
execution of the command. If the file cannot be opened, you
will be notified of the error. Parameters which are always
stored include:

Special function registers

Internal data memory

The current mappings of the code and external data
memories

The current emulation experiment

The current PC value

The name of the OPcode class file being used (if any)

Any opcode classes which are currently loaded

4.9 Map Command

If you choose to save the program code memory, the
parameters which are stored are:

The contents of the emulator's program code memory
A11 user defined symbols (if symbolic debug is enabled)

If you choose to save the external data memory, you will be
prompted for the size of the external data memory in your
system. This number should reflect the size of the
emulator's external data memory PLUS any external data
memory which resides on your target system board. You can
therefore save the contents of the entire external data
memory space up to 64 KBytes.

Error messages which may be encountered when executing this
command include:

Cannot open file- a file could not be opened in the write
mode on the specified disk.

I17egal integer value- the number used to specify the size
of the external data memory contained an illegal digit.

Number is too large- the number specified for the size of
the external data memory in KBytes is greater than 64.

Must establish communication first- communication was never
established with the emulator module or was not
reestablished after a communications error occurred.

Communication error - reset comm link- a non-recoverable
error occurred. Communication must be reestablished via the
Execute command in the Configuration Menu.

RS232 transmission problem - check board- the RS232 board
could not perform a transmission. Check your RS232 board.

The Map command is used to select where the program code
memory and/or the external data memory will be accessed
during an emulation. Each of these memories can be mapped
to either the Emulator or to the User Board. The mappings
indicates where the emulator module expects to access the
memory in question. When the Emulator is selected as the
mapping, all memory accesses will be made to the memory
supplied as part of the emulator. When the User Board is

selected, all memory accesses will be made to the memory on
the user's board regardless of whatever memory is supplied
in the emulator. The Map screen appears as follows:

Code External-Data Help Quit ,
(Quick help description for lighlighted command)

MEMORY MAP MENU
MEMORY MAPPING

Program Code Memory Tmapping)
External Data Memory (mapping)

The mapping displayed for each of the memories indicates

the current mapping selected. Both memories are mapped into
the Emulator upon a cold system startup. The code and
External-Data commands are toggle switches which will switch
the mappings alternately between the Emulator and the User
Board upon each execution of the command.

Please Note that when these memories are mapped to the
Emulator, any accesses to addresses beyond the range of the
memory options which you have purchased will

automatically wrap around onto your user board.

Error messages which may be encountered when executing this
command include:

Must establish communication first- communication was never
established with the emulator module or was not
reestablished after a communications error occurred.

Communication error - reset comm link- a non-recoverable
error occurred. Communication must be reestablished via the
execute command in the Configuration Menu.

RS232 transmission problem - check board- the RS232 board
could not perform a transmission. Check you RS232 board.

The Help command is used to display the detailed

description of the function of each of the commands in the
Map Menu.

4-10

Error messages which may be encountered when executing the
Help command include:

Help file not found- the file "HLPFILE" could not be found
on either the default or A: drives.

The Quit command is used to return to the Main Menu.
4.10 % (Macro) Command

The % (Macro) command calls up the Macro Menu which allows
you to create or execute a macro command file.

(see Chapter 12 for a complete description of the Macro
Menu.)

Error messages which may be encountered when executing this
command include:

A macro function is currently invoked- macro commands may
not be nested. It is therefore illegal to enter the macro
menu while in the macro-learn mode.

Must establish communication first- communication must be
established before the macro facility can be invoked.

4.11 Interrogate Command

The Interrogate command calls up the Interrogate Menu which
allows you to run an emulation experiment and inspect and
modify the system status. It allows:

Running an emulation experiment

Single stepping the target

Reseting the target

Setting a phantom breakpoint then running an emulation
Setting simple breakpoints

Setting the repetition counter

Enabling and disabling interrupts

Examination and modification of registers
Examination and modification of internal data memory
Examination and modification of external data memory
Examination and modification of code memory
Examination and modification of emulation experiment

(See Chapter 6 for a complete description of the
Interrogate Menu.)

4-11

4,12 Help Command

4,13 Exit Command

Error messages which may be encountered when executing this
command include:

Must Establish Communication First-- the Interrogate menu
cannot be invoked before communcation with the emulator has
been established. '

The Help command is used to display a detailed description
of the function of each of the commands in the Main Menu.

Error messages which may be encountered when executing this
command include:

Help file not found- the file "$HLPFILE" could not be found
on either the default or A: drives.

The exit command is used to terminate a working session.
Upon exiting the system, control of the host is returned to
the operating system.

When this command is executed, the following prompt will
appear at the bottom of the screen:

Are you sure you want to exit [Y/N]?
A 'Y' response exits the system while a 'N' response aborts

the exit command. This insures that you can never
accidentally exit the system and lose your system status.

CHAPTER 5
CONFIGURATION MENU

5.1 Configuration Menu Overview

The Configuration Menu is used to configure the system as
specified by the system configuration file. A system
configuration file is included as part of the ZLINK system
software. The system configuration file is used by the
system software to determine how to configure the ICD.

Once you specify a configuration (via the Change

command), the new system copnfiguration specification
becomes the default until it is changed again. You must
execute the configuration file when you first enter the ICD
environment or whenever you want to change the system's
configuration. This is accomplished via the Execute command.
the system configuration specification includes the baud
rate used for communication specification includes the baud
rate used for communication between the ICD emulation module
and the host computer. For the ICD-51 and ICD-52 emulators,
it also includes the mode of operation and the configuration
of the external data bus (if any).

5.2 Configuration Menu Screen
The Configuration Menu screen appears as follows:

Execute Change Help Quit
(Quick help line for highlighted command)

CONFIGURATION MENU

Upon entering, the Execute command will be highlighted.
5.3 Execute Command

The Execute command is used to set up the system's

configuration according to the specification in the sytem

configuration file. This includes establishing a
communications 1ink-up between the host and the ICD

5-1

5.4 Change Command

module. This only needs to be performed once at the
beginning of the session. If no system configuration file
exists, the following default specifications are used:

ICD-31 ICD-51
I1CD-32 ICD-52
9600 baud 9600 baud
single chip mode with NO external bus.

(See below for a detailed description of the available
modes).

Successful execution of this command will establish a
communications 1ink-up between the host and the ICD
module, set the mode of operation, and return you to the

Main Menu.

Error messages which may be encountered when executing this
command include:

Must reset emulator to change baud rate- an attempt was made
to reconfigure the system's baud rate when communication

had already been established at a different baud rate. In
this case, reset the emulator module and try again.

RS232 transmission problem - check board - the RS232 board
could not perform a transmission. Check your RS232 board.

Emulator not ready - the emulator module did not respond to
the host's request to establish communication. Check that
power is applied to the emulator module, that it has been

reset and that the emulator probe has been supplied with a
crystal oscillator.

Communication NOT established - try again - the emulator
module responded to the host's request to establish
communication but it's response was incorrect. Reset the
emulator module and try again.

The Change command is used to examine and/or change the
specification of the system configuration in the system
configuration file. The system configuration specification
includes the baud rate used for communication between the
ICD module and the host computer. For the ICD-51 and ICD-

52 emulators, it also includes the mode of operation and the
configuration of the external data bus (if any).

5-2

PLEASE NOTE that only the system configuration file is
affected by the Change command. The system itself is not
reconfigurated to the new configuration specification until
the Execute command is executed. :

Error messages which may be encountered when executing this
command include:

Cannot open file - the sytem configuration file could not
be opened in the update mode on the default drive.

The system configuration screen appears as follows for the
ICD-31 and ICD-32 emulators:

CHANGE CONFIGURATION

SELECT BAUD RATE
BUAD RATE TARGET CRYSTAL FREQUENCY

- o - - - - - - o - - - -

9600 8MHz and up
4800 4MHz and up
2400 2MHz and up
1200 1IMHz and up
600 -all
300 all
150 all
110 all

Move cursor to desired baud rate then hit [RET] to save it.

Along with each baud rate, the minimum required crystal
frequency of the target is displayed. The baud rate which is
currently selected as the default in the system
configuration file will be highlighted. (If no system
configuration file exists, 9600 will be selected as the
default).

Along with each operation mode, a brief description of that
mode is displayed. The mode which is currently selected as
the default in the system configuration file will be
highlighted. (If no system configuration file exists, Mode
2 will be selected as the default.) If Mode 3 is selected,

the current default for the Port 2 address mask will also
be displayed. If Mode 4 is selected, the current rollover

5-3

5.4.1 Mode 1 - 8031

boundary for code memory accesses will be displayed (in the
ICD emulator only). (See below for a detailed description
of the available modes).

The Change configuration screen allows you to change the
default system configuration simply by moving the
highlights via the cursor up (4) or cursor down (§) keys on
the numeric keypad at the right of the keyboard. You must
first select which specification (buad rate or mode of
operation) you want to change. This is determined by the
highlight on the selection titles. Either the SELECT BAUD
RATE or the SELECT MODE OF OPERATION will be highlighted to
indicate which specification is currently enabled for
modification. The selected specification can be changed via
the cursor left (=) or cursor right (=) keys on the

numeric keypad at the right of the keyboard.

When the correct specification title is selected, you can
change that specification by moving the highlight up or
down.

PLEASE NOTE that the microcontroller part number in the
Mode Description will actually reflect the part number for
the ICD you have purchased.

The available modes of operation are described below:
or 8032 Operation

In this mode of operation, the ICD is configured to
operate as a ROMless version of the microcontroller. All
code accesses are made to external code memory. Port 0 is
used as the multiplexed Tow order address/data bus. Port 2
is used as the high order address bus.

5.4.2 Mode 2 - 8051 or 8052 with NO external address bus

In this mode of operation, the ICD is configured to

operate as a ROM version of the microcontroller. All code
memory accesses are made to internal code memory. Port 0 and
port 2 are used as I/0 ports. In this mode, external code
memory and external data memory accesses are not permitted.

5.4.3 Mode 3 - 8051 or 8052 with an 8 bit external address bus

In this mode of operation, the ICD is configured to

operate as a ROM version of the microcontroller. All code
memory accesses are made to internal code memory. Port 0 is
used as the multiplexed address/data bus. Port 2 is used as
an I/0 port. .

5-4

In this mode of operation, the ICD is configured to

operate as a ROM version of the microcontroller. All code
memory accesses are made to internal code memory. Port O is
used as the multiplexed address/data bus. Port 2 is used as
an I/0 port.

The ICD also provides another capability when

configured in this mode. If the external data memory is
mapped to the emulator (see chapter 4.9), the Port 2 pins
can be individually configured as I/0 pins or as address
lines for the emulator's external data memory. When Mode 3
is selected, the Change configuration screen appears as

follows:
CHANGE CONFIGURATION

SELECT BAUD RATE SELECT MODE OF OPERATION
BAUD RATE TARGET XTAL FREQ. MODE MODE DESCRIPTION

9600 8MHZ and up Mode 1 8031 Operation

4800 4MHz and up Mode 2 8051 W/0 ext addr bus

2400 2MHz and up ‘Mode 3 8051 W/8 bit ext addr bus
1200 1IMHz and up Mode 4 8051 W/16 bit ext addr bus
600 all

300 all

150 all

110 all

Port 2 address mask = xx

Enter new addr mask > _
(in hex)

Move cursor to set up configuration hit [RET] to save Jt.

The Port 2 address mask is provided with this mode in order
to specify which Port 2 pins are to be used as address
lines and which are to be used as I/0 pins.

The individual bits of the address mask register have a 1:1
relationship with the bits of Port 2 as shown below:

MSB » LSB
Mask Bit7 Bit6 Bit5 Bit4 Bit3 Bit2z Bitl Bit0
Port 2 P2.7 P2.6 P2.5 P2.4 P2.3 P2.2 P2.1 P2.0

A 0 in the address mask register configures the
corresponding Port 2 bit as an I/0 T1ine. A 1 in the address
mask configures it as an address line.

For example: suppose you are running a program which
requires 4K of external data memory. In addition you would
like to use 4 bits of Port 2 as I/0 lines. This can be
accomplished by setting the Port 2 address mask to Ofh. The
0 in the upper nibble configures the four MSBs of Port 2 to
be I/0 Tines. The F in the lower nibble configures the four
LSBs of Port 2 to be upper four bits of the 12 bit address
bus.

PLEASE NOTE that care must be taken when specifying which
bits of Port 2 are to be used as address lines. In an ICD
with an 8k external data memory option, bits P2.0

through P2.4 may be used as address lines. In an ICD
with a 16K external data memory option, bits P2.0 through
P2.5 may be used as address lines.

When Mode 3 is selected, you will be prompted for a new
Port 2 address mask. Entering a new value will update the
Port 2 address mask to the new value. When a new value has
been accepted, you will again be prompted for a new mask
value. If the updated value is correct, you may change the
specification selection to SELECT BAUD RATE, or you

may enter [RETURN]. This will save the new configuration
specification in the system configuration file.

Error messages which may be encountered when enter1ng a new
Port 2 address mask include:

Number is too large- the number specified was greater 64K.

I11egal number specification- a non-hexadeciamal character
was found in the mask specification

I1legal Port 2 address mask- the mask specification was too
large to fit in a byte wide register or the mask
specification began with non-numeric character.

5-6

5.4.4 Mode 4 - 8051 or 8052 with a 16 bit External Address Bus

In this mode of operation, the ICD is configured to
operate as a ROM version of the microcontroller. Any code
memory accesses for addresses 0 up to 4K (ICD-51) or 8K
(ICD-52) are made to internal code memory. Any code memory
accesses above those values are made to external code
memory. Port O is used as the multiplexed low order
gddress/data bus. Port 2 is used as the high order address
us.

The ICD-52 emulator also provides another capability when
configured in this mode. The rollover boundary can be

changed from 8K to 4K to allow emulation of an 8051. When
Mode 4 is selected in a ICD-52 emulator, the Change
configuration screen appears as follows:

CHANGE CONFIGURATION

SELECT BAUD RATE SELECT MODE OF OPERATION
BAUD RATE TARGET XTAL FREQ. MODE MODE DESCRIPTION

9600 8MHz and up Mode 1 8032 Operation
4800 4MHz and up Mode 2 8052 w/ NO ext address bus
2400 2MHz and up Mode 3 8052 w/ 8 bit ext addr bus
1200 1MHz and up Mode 4 8052 w/ 16 bit ext addr bus
600 all
300 all
150 all
110 all

Rollover boundary = 8K
Enter rollover boundary in K > _
(4 or 8)

Move cursor to set up configuration hit [RET] to save it

You will be prompted for a new rollover boundary. Entering
a new value will update the rollover boundary display to
the new value. Only 4 or 8 (the K is implied) will be
accepted. When a new value has been accepted, you will
again be prompted for a new rollover boundary. If the
updated boundary is correct, you may change the
specification selection to SELECT BAUD RATE, or you may
enter [RETURN]. This will save the new configuration
specification in the system configuration file.

5-7

Error messages which may be encountered when entering a new
rollover boundary include:

Number is too large- the number specified was greater 64K.

I1legal number specification- a non-hexadecimal character
was found in the boundary specification.

I17egal rollover boundary- the rollover boundary was not 4K

or 8K or the rollover boundary specification began with
non-numeric character.

5-8

CHAPTER 6
INTERROGATE MENU

NOTE: This Chapter 6 applies to ICD units that have the
optional ICD-CHEST feature installed.

6.1 Interrogate Menu Overview

The Interrogate Menu is used to run emulation experiments
and to examine the status of the system. This menu allows:

Running an emulation experiment

Single stepping the target

Resetting the target

Setting a phantom breakpoint then running an emulation
Setting simple breakpoint or trace

Setting the repetition counter

Setting the trace trigger type

Calling the help menu

Returning to the main menu

Examination and modification of registers

Examination and modification of internal data memory
Examination and modification of code memory

Viewing the trace buffer

Examination and modification of the emulation experimen
Selecting the I/0 port for trace

Setting the increment pass-count number

6-~1

6.2 Interrogate Menu Screen

The Interrogate Menu screen appears as follows for the ICD-
8031, ICD-8031A, and ICD-8051 emulators:

Go S-Step Reset Fantom Brk-trace Loop-cnt Trace-Trig Help Quit
Modify-Regs Data Xdata Code View-Trace Experiment I/0 Pass-cnt
(Quick help Tine for highlighted command)

Repetition Counter: (#) Trace Irigger: (Point)
Pass Count: (#) INTERROGATE MENU Port Selected: Port (#)
GPR
xx ACC Xx B xx DPH xx DPL xx IE Bank (#)
xx IP xx PO xx P1 xx P2 XX P3 eeeeeee-
xx PCON XX PSW xx SBUF xx SCON xx SP xx RO
xx TCON xx THO xx TLO xx TH1 xx TL1 xx Rl
xx TMOD xx R2
xx R3
xx R4
xx R5
xX R6

PC Address = XXXX DPTR = xxxx Break Address = xxxx

Next Instruction: (Disassembled instruction)
Target Address= (address hex);

6-2

For the ICD-8032 and ICD-8052 emulators, it appears as
follows:

Go S-Step Reset Fantom Brk-trace Loop-cnt Trace-Trig Help Quit
Modify-Regs Data Xdata Code View-Trace Experiment I/O Pass-cnt
(Quick help Tine for highlighted command)

Repetition Counter: (#) Trace Trigger: (Point)
Pass Count: (#) INTERROGATE MENU Port Se1ectgg§ Port (#)
xx ACC xx B xx DPH xx DPL xx IE Bank (#)

xx IP xx PO xx Pl xx P2 XX P33 memeeeee

xx PCON XX PSW xx RCAPZH xx RCAP2L xx SBUF xx RO
xX SCON xx SP xx T2CON xx TCON xx THO xx R1
xx TLO xx TH1 xx TL1 xx TH2 xx TL2 xx R2
XX TMOD , XX R3

PC Address = xxxx DPTR = xxxx Break Address = xxxx

Next Instruction: (Disassembled instruction)
Target Address= (address hex);

For the ICD-8051 emulator, it appears as follows:

Go S-Step Reset Fantom Brk-trace Loop-cnt Trace-Trig Help Quit
Modify-Regs Data Xdata Code View-Trace Experiment I/0 Pass-cnt

(Quick help line for highlighted command)

Repetition Counter: (#) Trace Trigger: (Point)
Pass Count: (#) INTERROGATE MENU Port Selected: Port (#)

xx ACC xx ADCON xx ADDAT XX B xx CCEN xx CCH1 Bank (#)
xx CC1l xx CCH2 xx CCL2 xx CCH3 xx CCL3 XX CRCH ==-ee--

xXx CRCL xx DAPR xx- DPH xx DPL xx IENO xx IEN1 xx RO
xx IPO xx IP1 xx TRCON xx PO xx P1 xx P2 xx R1
xx P3 xx P4 xx P5 xx PCON xx PSW xx SBUF xx R2
xx SCON xx SP xx T2CON xX TCON xx THO xx TLO xx R3
xx TH1 xx TL1 xx TH2 xx TL2 xx TMOD xx R4
xX R5

XX R6

PC Address = xxxx - DPTR = Xxxxx Break Address = xxxx xx R7

Next Instruction: (Disassembled instruction)
Target Address = (address hex);

Upon entering, the Go command will be highlighted.

The Interrogate menu is different from other menus in that
it has two lines of command options available rather than
Just one.

The Loop Count is the number of times the Go or Single Step
commands will execute. (See the Loop-Count command below
for details.)

The special functions registers (SFRs) are displayed in the
middle of the screen in alphabetic order. The value
contained in each register is displayed followed by the
register name. :

The two byte registers are displayed below the SFRs. These
~ include the current PC address, the data pointer (DPTR)

and the break address. The PC Address is the address of the
next instruction to be executed. The DPTR is the
concatenation of the DPH and DPL registers.

The Next Instruction is the diassembled assembly language
mnemonic of the next instruction to be executed when
emulation continues. The disassembled instruction will be
displayed with all symbolic replacements made if you are

using the symbolic debugging capabilities.

The lines directly below each of the disassembled
instructions will display any information referred to by
the instruction which is not already displayed on the
screen. A1l registers and memories referred to will have

their contents displayed. Examples are presented below:

Next Instruction: INC 90H (direct address)
90H-24H ‘
Next Instruction: CPL 91H (bit address)
| 91H=1;
Next Instruction: DEC @RO (indirect address)

data mem[3]=45;
Note: The value of RO (03H) is displayed on the screen
under the GPRs.

Next Instruction: MOVX A,@DPTR (ext. data address)
xdata mem[245]=33H;
Note: The value of DPTR (0245H) is displayed on the
screen with the two byte registers.

6-4

6.3 Go Command

Next Instruction: MOVC A,@A+PC (code mem address)
code mem[123]=FDH;
Note: The values of A and DPTR are already displayed
' on the screen. :

Next Instruction: LJMP LABEL (code targets)
target address=1234H;

Next Instruction: CLR C 0 (carry flag)
cy=0;

Next Instruction: JZ LABEL (zero flag)
zr-1; target address=55H;

The target address will appear when the next instruction is
a conditional jump instruction and the condition is true or
has been met. The target address is equal to where the jump
instruction is going to in a memory.

The Go command is used to run an emulation experiment. It
can be used to start the target emulation. It can also
restart the target emulation after a breakpoint or trace-
trigger has been reached. Emulation begins at the program
code memory location indicated by the program counter (PC).

Prior to running an experiment, the following conditions
must be met:

Communication must be established with the ICD
emulator.

If an experiment exists within the environment, it
must be compiled.

The PC must contain a legal value.

If any of these conditions are not met, an .error message
will be displayed and the command will be aborted.

Once emulation has begun, the bottom portion of the screen

is cleared, the GO command is displayed and the WORKING
- sign appears at the bottom of the screen. It appears as
follows:

Go S-Step Reset Féntom Brk-trace Loop-cnt Trace-Trig Help Quit
Modify-Regs Data Xdata Code View-Trace Experiment I/0 Pass-cnt
(Quick help 1ine for highlighted command)

Repetition Counter: (#) _ Trace Trigger: (Point)

Pass Count: (#) INTERROGATE MENU Port Selected: Port (#)
GPR

xx ACC XX B xx DPH xx DPL xx IE Bank (#)

xx IP xx PO xx P1 xx P2 xx P3 =eeee—-

xx PCON xx PSW xX SBUF xx SCON xx SP xX RO

xx TCON xx THO xx TLO xx TH1 xx TL1 xx R1

xx TMOD xX R2
xxX R3

PC ADDRESS = xxxx DPTR = xxxx Break Address = xxxx xxX R7

GO
WORKING

When a breakpoint or in particular a trace-trigger is
reached by the ICD emulator, control will be returned to
the host and the Interrogate Menu will be repainted. The
condition and time frame by which this control is returned
to the host is based on the trace-trigger type chosen.

There are three (3) trace-trigger types available. (See the
Trace-trigger command in this chapter.) Depending on which
is choosen will determine the point in time when an actual
break occurs.

If the START trace-trigger type is choosen it will result
in the break occuring when the address is equal to the

trace-trigger address plus 4,096 ALE cycles.

If the CENTER trace-trigger type is choosen it will result
in the break occurring when the address is equal to the
trace-trigger address plus 2,048 ALE cycles.

If the END trace-trigger type is choosen it will result in
the break occurring when the address is equal to the trace-
trigger address and it will break emulation BEFORE the

instruction at the address is executed.

6-6

You may wish at some point to force the emulator to break
emulation. This may happen if the emulation takes longer
than expected to reach a breakpoint and you suspect that
emulator is executing code other than what you

anticipated; if you realize that you made a mistake and the
experiment will emulate forever; or if you simply want to
break a very long emulation. In any case, a break condition
may be forced on the emulator by pressing the [ESC] key
while the emulation is running. When this is done, the
emulator breaks and a message is displayed. The message
indicates that the break was caused by a host interrupt.

The repetition counter is used with the Go command to
execute N breaks before stopping (where N is the repetition
count). This is especially useful where a break resides in
a loop and you wish to execute N cycles of the Toop before
stopping. When the repetition counter is used, the count
value in the display will decrement each time the break is
encountered until its value is 0. At that point the
emulation will stop and the Interrrogate Menu will be
repainted.

The [ESC] key can be used to abort emulation before the
repetition counter has decremented to 0. As described
above, the host interrupt message will be displayed.

Two modes of operation are possible when using the
repetition counter. They are the Non-Update mode and the
Update mode. In the Non-update mode, the register values are
updated only AFTER the repetition counter has decremented

to 0. In the Update mode, the register display is updated
after each breakpoint has been encountered. The update mode
slows down the execution of the repetition Toop because the
screen must be repainted after each breakpoint has been
encountered. The Update mode therefore takes about twice as
long to execute as the Non-update mode.

CTRL-U is used as a toggle switch to alternate between the
Non-update and the Update modes of operation. The system is
initialized to the Non-Update mode. The CTRL-U switch can
be executed from any menu and remains in effect until it is
toggled again or the emulation session is terminated.

The Go command can restart an experiment from the last
break. The system automatically performs a single step (see
Single Step command below) to get past the break instruction
and then executes until a break or trace-trigger is
encountered. The single step is performed automatically so
that you don't manually have to single step past the break
instruction before restarting an experiment.

6-7

Error messages which may be encountered when executing this
command include:

Must establish communication first- communication was never
established with the emulator module or was not
reestablished after a communications error occurred.

Cannot execute offset uploaded code- the code in the
emulator's program code memory was uploaded with an offset
value. Code uploaded in this manner cannot be executed.

Must compile experiment first- an experiment was loaded but
the experiment compiler was not executed prior to running
the experiment. This is an error because it is the
experiment compiler which sets the breakpoints in the
emulator.

Must reload code memory first- the experiment was deleted
but the breakpoints set by that experiment are still
resident and active in the emulator.

Must reinitialize PC value first- the PC value was not
reinitialized after halting an emulation via a host
interrupt.

Cannot restart - instruction jumps on self- the next
instruction is a jump which has itself as the target
address.

Cannot restart- instruction calls itself- the next
instruction is a call which calls itself.

Code jumps out of range- an attempt was made to restart an
experiment at an instruction which may cause the program
counter to jump outside the range of the emulator's code
memory. -

Communication error - reset comm 1link- a non-recoverable
error occurred. Communication must be reestablished via the
Comm command in the Main Menu.

RS232 transmission problem - check board- the RS232 board
could not perform a transmission. Check your RS232 board.

BREAK CAUSED BY HOST INTERRUPT - an abnormal break
condition was caused by a host generated interrupt. If you
have not pressed the [ESC] key to cause this break
condition then it was caused by noise on the RS232 link.

6.4 S-STEP COMMAND

The Single Step command is used to execute one instruction
from the program code and then stop. The instruction
executed is the one which the program counter (PC) points
to in code memory.) '

Prior to running and experiment, the following conditions
must be met:

Communication must be established with the ICD
emulator. The PC must contain a legal value.

If either of these conditions are not met, an error message
will be displayed and the command will be aborted. It is
not necessary to have compiled an experiment to single step

through program code because a break is automatically set
to stop after each instruction is executed.

Once emulation has begun, the center of the display screen
is cleared, the S-STEP command is displayed and the WORKING
sign appears at the bottom of the screen. It appears as
follows:

Go S-Step Reset Fantom Brk-trace Loop-cnt Trace-Trig Help Quit
Modify-Regs Data Xdata Code View-Trace Experiment I/0 Pass-cnt
(Quick help line for highlighted command)

Repetition Counter: (#) Trace Trigger: (Point)
Pass Count: (#) INTERROGATE MENU PORT SELECTED: PORT (#)
GPR
xx ACC xx B xx DPH xx DPL xx IE Bank (#)
xx IP xx PO xx Pl xx P2 xx P3
xXx PCON xx PSW xx SBUF xx SCON xx SP xx RO
xx TCON xx THO xx TLO xx TH1 xx TL1 xx R1
. XX TMGD xx R2
xX R3
xx R4
xX R5
XX R6
PC Address = xxxx DPTR = xxxx Break Address = xxxx xXx R7
S-STEP
WURKING

6-9

When a breakpoint or trace-trigger instruction is reached
by the ICD emulator, control will be returned to the host
and the Interrogate menu will be repainted.

The repetition counter is used with the S-STEP command to
execute N instructions before stopping (where N is the
repetition count). When the repetition counter is used, the
count value in the display will decrement each time an
instruction is executed until its value is 0. At that point
the emulation will stop and the Interrogate Menu will be
repainted. The [ESC] key can be used to abort the S-STEP
command before the repetition counter has decremented to O.

Error messages which may be encountered when executing this
command include:

Must establish communication first- communciation was never
established with the emulator moqule or was not .
reestablished after a communications error occurred.

Cannot execute offset uploaded code- the code in the
emulator's program code memory was uploaded with an offset
value. Code uploaded in this manner cannot be executed.

Must reinitialize PC value first- the PC value was not
reinitialized after halting an emulation via a host
interrupt.

Cannot restart - instruction calls itself- the next
instruction is a call which calls itself.

Code jumps out of range- an attempt was made to execute an
instruction which may cause the program counter to jump
outside the range of the emulator's code memory.

Communication error - reset comm link- a non-recoverable
error occurred. Communication must be reestablished®*via the
Comm command in the Main Menu.

RS232 transmission problem - check board- the RS232 board
could not perform a transmission. Check your RS232 board.

6-10

6.5 Reset Command :
The Reset command is used to emulate the target starting
from a reset condition. Prior to running an experiment, the
following conditions must be met:

Communication must be established with the ICD
emulator. If an experiment exists in the environment,

it must be compiled.

If either of these conditions are not met, an error message
will be displayed and the command will be aborted.

When this command is executed, you will be queried whether
or not the reset comes from your target system board. The
screen appears as follows:

Go S-Step Reset Fantom Brk-trace Loop-cnt Trace-Trig Help Quit
Modify-Regs Data Xdata Code View-Trace Experiment I/0 Pass-cnt
(Quick help Tine for highlighted command)

Repetition Counter: (#) Trace Trigger: (Point)
Pass Count: (#) INTERROGATE MENU Port Selected: Port (#)
GPR
xx ACC XX B xx DPH xx DPL xx IE Bank (#)
xx IP xx PO xx Pl xx P2 XX P3 memeee-
xX PCON xx PSW xx SBUF xx SCON xx SP xx RO
xx TCON xx THO XX TLO xX TH1 xx TL1 xX R1
xx TMOD xx R2
xXx R3
xx R4
xx R5
xX R6

PC Address = xxxx DPTR = xxxx Break Address = xxxx xx R7

Will RESET come from target board [Y/NI? > _

An affirmative response to this question ('Y' or 'y')
indicates that the reset will come from your target system
board. This means that the emulator will remain in an
'idle' condition until a reset is received from your
system. At that time the emulator performs just as the
target would under reset conditions and emulation continues
from there. A negative response ('N' or 'n') indicates that
you wish for the emulator itself to supply the reset. This
would be used primarily in the case where the emulator is
being used in the stand alone mode as full speed simulator.

Pressing the [RETURN] key in response to the question will
abort execution of the command.

If you have selected the reset to come from your target
system board, the following message will be displayed on
the screen:

Hit RESET on target board to begin emulation

This is your prompt that it is time to execute the reset on
your target system board. Doing so will begin emulation.

If the reset is supplied by the emulator, the RESET command
will be displayed on the screen.

For either type of reset, once control has been transferred
from the host to the emulator, the WORKING sign will appear
and it will continue to flash until a breakpoint or trace-
trigger is encountered. It appears as follows:

Go S-Step Reset Fantom Brk-trace Loop-cnt Trace-Trig Help Quit
Modify-Regs Data Xdata Code View-Trace Experiment I/0 Pass-cnt
(Quick help 1ine for highlighted command)

- - - . " O o - . - - " " . - . " . G G e S SO G . S G S S G W0 e O e 0 R S .

Repetition Counter: (#) Trace Trigger: (Point)
Pass Count: (#) INTERROGATED MENU Port Selected: Port (#)
_ GPR
xx ACC xx B xx DPH xx DPL xx IE Bank (#)
xx IP xx PO xx P1 xx P2 xx P3 eeeeee-
xX PCON xx PSW xx SBUF xx SCON xx SP xX RO
xXx TCON xx THO xx TLO xx TH1 xx TL1 xx R1
xx TMOD XX R2
xx R3
xx R4
xx RS
XX R6
PC Address = xxxx DPTR = xxxx Break Address = Xxxxx XX R7

(Reset type indicator)

WORKING
When a breakpoint or trace-trigger instruction is reached by
the ICD emulator, control will be returned to the host and
the Interrogate Menu will be repainted.

The repetition counter is not used with the Reset command.

6-12

Error messages which may be encountered when executing this
command include:

Must establish communication first- communication was never
~established with the emulator module or was not
reestablished after a communications error occurred.

Cannot execute offset uploaded code- the code in the
emulator's program code memory was uploaded with an offset
value. Code uploaded in this manner cannot be executed.

Must compile experiment first- an experiment was loaded but
the experiment compiler was not executed prior to running
the experiment. This is an error because it is the
experiment compiler which sets the breakpoints in the
emulator.

Must reloade code memory first- the experiment was deleted
but the breakpoints set by that experiment are still
resident and active in the emulator. :

Communication error - reset comm link- a non-recoverable
error occurred. Communication must be reestablished via the
Comm command in the Main Menu.

RS232 transmission problem - check board- the RS232 board
could not perform a transmission. Check your RS232 board.

BREAK CAUSED BY HOST INTERRUPT- an abnormal break condition
was caused by a host generated interrupt. If you have not
pressed the fESC] key to cause this break condition then it
was caused by noise on the RS232 1ink.

6.6 Fantom (Phanton) Command

The Phantom command is used to set a phantom breakpoint or
trace-trigger and then run an emulation experiment. The
phantom break is so named because it remains in effect for
only one emulation cycle then it disappears.

Prior to running an experiment, the following conditions
must be met:

Communication must be established with the ICD
emulator.

If an experiment exists in the environment, it must be
compiled.

The PC must contain a Tegal value.

If any of these conditions are not met, an error message
will be displayed and the command will be aborted.

When this command is executed, you will be queried for the
address where you want the break to be set. The screen
appears as follows:

Go S-Step Reset Fantom Brk-trace Loop-cnt Trace-Trig Help Quit
Modify-Regs Data Xdata Code View-Trace Experiment I/0 Pass-cnt
(Quick help line for highlighted command)

Repetition Counter: (#) Trace Trigger: (Point)
Pass Count: (#) INTERROGATE MENU Port Selected: Port (#)
GPR
xx ACC xx B xx DPH xx DPL xx IE Bank (#)
xx IP xx PO xx Pl xx P2 xx P3 ——————
xx PCON xx PSW xx SBUF xx SCON xx SP xx RO
xx TCON xx THO xx TLO xx TH1 xx TL1 xx R1
xx TMOD ' XX R2
xx R3
XX R4
xx R5

PC Address = xxxx DPTR = xxxx Break Address = xxxx xx R7

Enter Phantom breakpoint address (in hex) or label > _

e e e ek e e e L L L b L T T R —

Pressing the [RETURN] key in response to the prompt will
abort execution of the command. The breakpoint address can
be supplied as a hexadecimal numeric address or as a
program code label (if symbolic debug is enabled).

The Phantom breakpoint capability is used to cause an
emulation break at some breakpoint which is NOT a
breakpoint in the current experiment. The scope of the
Phantom breakpoint is for one emulation cycle only. After a
break occurs, (even if it was not the phantom breakpoint
which caused the break), the Phantom breakpoint is removed.

6-14

An example of the use of the Phantom breakpoint follows:
Suppose you have a loop in your program in which no
breakpoints have been set by the current experiment.

You are here > instruction < current breakpoint
loop: instruction '
instruction

JMP ioop
after: instruction
instruction

.

instruction < next breakpoint

After an emulation, the PC is at the instruction before the
start of the loop. You now want to emulate the target until

you are at the first PC Tocation after the loop (i.e. at PC
location "after:").

One method of achieving this is to continually single step
the target until it gets to the desired PC location. If the
loop is repeated many times before it terminates, this could

take a long time.

An alternative method is to set the Repetition counter with
the, number of instructions which will be executed before
the desired PC location is achieved and then execute the
Single Step command. For an intricate program, it may be
difficult to determine how many instructions this entails.

The preferred method is to set a Phantom breakpoint at PC
location "after:". This achieves the desired results with
the least effort.

PLEASE NOTE that the breakpoints which are set by the
current experiment are still in effect. If you set a
Phantom breakpoint but an experiment breakpoint is reached
before the Phantom breakpoint, the Phantom breakpoint has
no effect. It is as if you executed the Go command.
Remember also that the Phantom breakpoint is removed after
the emulation cycle so it cannot be used twice.

- After a valid breakpoint address has been supplied, the
PHANTOM command will be displayed on the screen. Once
control has been trasferred from the host to the emulator,
the WORKING sign will appear and it will continue to flash
until a breakpoint is encountered. It appears as follows:

Go S-Step Reset Fantom Brk-trace Loop-cnt Trace-Trig Help Quit
Modify-Regs Data Xdata Code View-Trace Experiment I/0 Pass-cnt
(Quick help 1ine for highlighted command)

e e e L T e T

Repetition Counter: (#) Trace Trigger: (Point)
Pass Count: (#) INTERROGATE MENU Port Selected: Port (#)
GPR
xx ACC XX B xx DPH xx DPL xx IE ‘ Bank (#)
xx IP xx PO xx Pl xx P2 xx P3
xx PCON xx PSW xx SBUF xx SCON xx SP xX RO
xx TCON xx THO xx TLO xx TH1 xx TL1 xx Rl
xx TMOD xX R2
xx R3
xx R4
xX Rb5
xXx R6

PC Address = xxxx DPTR = xxxx Break Address = xxxx xx R7
~Enter Phantom breakpoint address (in hex) or label > _

PHANTOM

WORKING

When a breakpoint instruction is reached by the ICD
emulator, control will be returned to the host and the
Interrogate Menu will be repainted.

The repetition counter is not used witﬁ the Phantom
command.

The Phantom command can be used to restart an
experiment from the last breakpoint.

Error messages which may be encountered when executing this
command include:

Must establish communication first- communication was never

established with the emulator module or was not
reestablished after a communications error occurred.

6-16

Cannot execute offset uploaded code- the code in the
emulator's program code memory was uploaded with an offset
value. Code uploaded in this manner cannot be executed.

Must compile experiment first- an experiment was loaded but
the experiment compiler was not executed prior to running
the experiment. This is an error because it is the
experiment compiler which sets the breakpoints in the
emulator.

Must reload code memory first- the experiment was deleted
but the breakpoints set by that experiment are still
resident and active in the emulator.

Must reinitialize PC value first- the PC value was not
reinitialized after halting an emulation via a host
interrupt.

Number is too large- the address specified was greater than
64K.

IT1Tegal number specification- a non-hexidecimal character
was found in the address specification.

Symbolic debug not enabled- the symbolic debugging
capability is not enabled. Symbolic addresses are therefore
not allowed.

Improper address segment- the specified symbol was not an
address symbol for program code memory.

Undefined symbol- the symbol specified doesn't exist.
Address is out of range- the specified address was outside

the valid address range for the ICD emulator's program code
memory.

Cannot restart - instruction jumps on self- the next
instruction is a jump which has itself as the target
address.

Cannot restart - instruction calls itself- the next
instruction is a call which calls itself.

Code jumps out of range- an attempt was made to restart an
experiment at an instruction which may cause the program

~counter to jump outside the range of the emulator's code
memory.

6-17

Communication error - reset comm link- a non-recoverable
error occurred. Communication must be reestablished via the
Comm command in the Main Menu.

RS232 transmission problem - check board- the RS232 board
could not perform a transmission. Check your RS232 board.

BREAK CAUSED BY HOST INTERRUPT- an abnormal break condition
was caused by a host generated interrupt. If you have not
pressed the fESC] key to cause this break condition then it

was caused by noise on the RS232 Tink.

6.7 Brk-cnt (Break-Count) Command.

The Break-Count command is used to set and reset eight
simple break or trace-triggers and eight simple increment
pass count addresses. They are called simple break / trace-
triggers and increment pass-count addresses because they
can be used without having to compile an experiment. These
simple break / trace-triggers and increment pass-count
conditions are, however, restricted to PC addresses.

When a simple break / trace-trigger address is encountered
the system will start tracing and depending on the trace-
trigger type choosen, will break emulation then (END
trigger choosen) or after 2,048 ALE cycles (CENTER trigger
choosen) or after 4,096 ALE cycles (START trigger choosen).

When a increment pass-count address is encountered the
system will increment the pass-count internally. When the
internal pass-count equals the value the user assigned to
it, the system will start tracing and depending on the
trace-trigger type choosen, will break emulation then (END
trigger choosen) or after 2,048 ALE cycles (CENTER trigger
choosen) or after 4,096 ALE cycles (START trigger choosen).

When the Break-Count command is executed the system will
initia]]y_enter into the Break / Trace-trigger points.

6-18

6.8 Break/Trace-Trigger Points
The Break / Trace-trigger points screen appears as follows:
Trace-Trigger Type= (Pointer)

Break address = Trace-Trigger address

- - - - - " " = " % e - S e . e G S e N e S G S G 0 Gu SN e G G o - e G - -

SET SIMPLE BREAK / TRACE-TRIGGER POINTS

BREAK /
TRACE-TRIGGER ADDRESS (HEX)

1 0033

2 0001

3

4 00FO

5

6

7 0120

8

Enter Address > _
(in Hex or label)

L}]-down [T]-up [DEL]-DELETE [RETJ-Exit [ESC]-Toggle Inc/Break

The top of the screen is used to display the trace-trigger
type pointer choosen, either START, CENTER or END and the
break address is equal to statement. If the START trace-
trigger type was choosen then the break address is equal to
the trace-trigger address plus 4,096 ALE cycles.

If the CENTER trace-trigger type was choosen then the break
address is equal to the trace-trigger address plus 2,048
ALE cylces.

If the END trace-trigger type was choosen then the break
address is equal to the trace-trigger address.

The center of the screen is used to display the status of
the eight simple breaks. If any of the breaks are set, the
break address is displayed as a hexadecimal number. Any
break which are not set, are displayed as a 'blank' field
on the screen.

6-19

The highlight is used to identify which break is to be
operated on. Only one break can be operated on at a time.
When the Break-Count command is first 1nvoked the first
break address is highlighted.

A different break can be selected for modification by
moving the highlight to the desired break. The highlight is
moved through the use of the cursor control keys on the
numeric keypad at the right of the keyboard. The cursor
movement control keys operate as follows:

i
1) - down

The upward movement of the highlight is limited by the
first break address. The downward movement of the highlight

is restricted by the last break address.

Break addresses are modified by moving the highlight to the
desired break and then entering a new address. When you
begin to enter a new address, it will appear in the address
field following the prompt. The new address will not be
entered into the selected break until the [RETURN] key is
pressed. This allows you to correct any errors in the new
address before it is entered into the break address field.
Use the backspace key to erase characters from the newly
entered address.

New break addresses can be entered as hexadecimal numbers
or as labels which have been defined as code memory address
symbols.

When the [RETURN] key is entered, the new address is
examined to determine if it is a valid address. If it is
not a valid address, an error message will be displayed and
the ol1d value of the break will remain unchanged. After the
new address has been processed; the break setting will be
updated with the new address and the highlight will be
moved down to the next break address field.

Pressing the DELETE key alone will delete the break address
at the selected break.

Pressing the [RETURN] key alone will exit the break / trace
trigger screen and return to the interrogate menu.

6-20

Pressing the ESCAPE key will toggle the system between the
break / trace-trigger points and the simple increment pass-
count points.

6.9 Increment Pass-Count Points

The Increment Pass-count points screen appears as follows:

- - - - - - - - - " . - " - " - - - O - G - - - - " - - -

SET SIMPLE INCREMENT COUNT POINTS
INCREMENT COUNT ADDRESS (HEX)

1 0033
2 0001
3
4 00F0
5
6
7 0120
8

Enter Address >
(in Hex or label)

[1]-down [1]-up [DEL]-DELETE [RET]-Exit [ESC]-Toggle Inc/Break

The center of the screen is used to display the status of
the eight simple increment pass-counts. If any of the
increment passcounts are set, the increment pass-count
address is displayed as a hexadecimal number. Any increment
pass-counts which are not set, are displayed as a 'blank'
field on the screen.

The highlight is used to identify which increment pass-
count is to be operated on. Only one increment pass-count
can be operated on at a time. When the Break-count command
is first invoked and the ESCAPE key pressed, the first
increment passcount address is highlighted.

A different increment pass-count can be selected for
modification by moving the highlight to the desired

increment pass-count. The highlight is moved through the
use of the cursor control keys on the numeric keypad at
the right of the keyboard. The cursor movement control

keys operate as follows:

(T) - up
(1) - down

6-21

The upward movement of the highlight is 1limited by the
first increment pass-count address. The downward movement
of the highlight is restricted by the last increment pass-
count address. :

Increment pass-count addresses are modified by moving the
highlight to the desired increment pass-count and then
entering a new address. When you begin to enter a new
address, it will appear in the address field following the
prompt. The new address will not be entered into the
selected increment pass- count until the [RETURN] key is
pressed. This allows you to correct any errors in the new
address before it is entered into the increment pass-count
address field. Use the backspace key to erase characters
from the newly entered address.

New increment pass-count addresses can be entered as
hexadecimal numbers or as labels which have been defined as
code memory address symbols.

When the [RETURN] key is entered, the new address is
examined to determine if it is a valid address. If it is
not a valid address, an error message will be displayed and
the old value of the break will remain unchanged. After the
new address has been processed; the increment pass-count
setting will be updated with the new address and the
highlight will be moved down to the next increment pass-
count address field.

Pressing the DELETE key alone will delete the increment
pass-count address at the selected increment pass-count.

Pressing the [RETURN] key alone will exit the increment
pass-count screen and return to the interrogate menu.

Pressing the ESCAPE key will toggle the system between the
break / trace-trigger points and the simple increment pass-
count points.

PLEASE NOTE that when symbolic addresses are entered as the
address of a breakpoint, the symbol is replaced by the
represented hexadecimal address.

Error messages which may be encountered when executing this
command include:

Must establish communication first - communication was
never established with the emulator module or was not
reestablished after a communicant error occurred.

Error messages which may be encountered when specifying a
new breakpoint address include:

6-22

Number is too large- the address specified was greater
than 64K.

I1legal number specification- a non-hexadecimal character
was found in the address specification.

Symbolic debug not enabled- the symbolic debugging
capability is not enabled. Symbolic addresses are therefore
not allowed. ‘

Improper address segment- the specified symbol was not an
address symbol for code memory.

Undefined symbol- the symbol specified doesn't exist.

Address is out of range- an address was specified which is
outside the addressable range of the program code memory.

Error messages which may be encountered when exiting from
the Break Point screen include:

Communication error - reset comm link- a non-recoverable
error occurred. Communication must be reestablished via the
Comm command in the Main Menu.

RS232 transmission problem - check board- the RS232 board
could not perform a tranmission. Check your RS232 board.

6-23

6.10 Loop-cnt (Loop-Count) Command

The Loop-count command is used to set the value of the
repetition counter. The repetion counter is used to

- determine how many times the Go or S-Step commands are
executed before emulation stops. You will be prompted to
supply the count value. The Loop-count screen appears as

follows:

Go S-Step Reset Fantom Brk-trace Loop-cnt Trace-Trig Help Quit
Modify-Regs Data Xdata Code View-Trace Experiment I/0 Pass-cnt
(Quick help line for highlighted command)

Repetition Counter: (#) Trace Trigger: (Point)

Pass Count: (#) INTERROGATE MENU Port Selected: Port (#)
‘ GPR
xx ACC xx B xx DPH xx DPL xx IE Bank
xx IP xx PO xx P1 xx P2 xx P3 emeee-
xX PCON xx PSW xx SBUF xx SCON xx SP xx RO
xX TCON xx THO xx TLO xx TH1 xx TL1 xXx R1
xx TMOD xx R2
xX R3
XX R4
XX R5
xX R6
PC Address = xxxx DPTR = xxxx Break Address = xxxx xx R7

Enter count (in decimal) > _

B e e b e e e e e e L e

The count should be decimal number between 1 and 32,767.
Pressing the [RETURN] key in response to the count prompt
will abort exection of the command and retain the current

value of the counter.

Error messages which may be encountered when executing this
command include:

I11egal integer value- the number used to specify the count
contained an illegal decimal digit.

Number is too large- a count value greater 32,767 was
requested.

6-24

6.11 Trace-trig (Trace-Trigger) Command

The trace-trigger command is used to select which of the
three trace-trigger types the user would 1like to implement
and thus a view of the trace buffer and its contents.
Pressing the trace-trigger command will toggle the trace
trigger portion of the interrogate menu screen from START
to CENTER to END.

If the START trace-trigger type is choosen it will result
in a break occurring when the address is equal to the
trace-trigger address plus 4,096 ALE cycles. This will
allow the user to view the next 4,096 memory locations and
their contents. The system will NOT execute those
instructions and therefore any program path alterations
(e.g. JUMPS) will not be performed.

If the CENTER trace-trigger type is choosen it will result
in a break occurring when the address is equal to the
trace-trigger address plus 2,047 ALE cycles. This will
allow the user to view the last 2,047 memory locations and
their contents. This will enable the user to determine the
instruction path the program has just taken and therefore
determine if the correct instructions and conditions are
being met. In addition, it will allow the user to view the
next 2,048 memory locations and their contents. The sytem
will NOT execute those instructions and their contents. The
system will NOT execute those instructions and therefore
any program path alterations (e.g. JUMPS) will not.be
performed.

If the END trace-trigger type is choosen it will result in
a break occurring when the address is equal to the trace-
trigger address and it will break emulation BEFORE the
instruction at the address is executed. This will allow the
user to view the last 4,096 memory locations and their
contents. This will enable the user to determine the in-
struction path the program has just taken and therefore
determine if the correct instructions and conditions are
being met.

6-25

6.12 Help Command

6.13 Quit Command

The Help command is used to display a detailed description
of the function of each of the commands in the Interrogate
Menu. :

Error messages which may be encountered when executing this
command include:

Help file not found- the file "&HLPFILE" could not be found
on either the default or A: drives.

The Quit command is used to return to the main menu.

6.14 Modify-Regs Command

The Modify-Regs command is used to examine and/or modify the
contents of the target's special function registers (SFRs)
and general purpose registers (GPRs). When this command is
executed, the register screen will be displayed.

EXAMINE / MODIFY REGISTERS

Register name or hex address > _ Bit Display OFF

GPR

xx ACC XX B xx DPH xx DPL xx IE Bank (#)

xx IP xx PO xx P1 xx P2 xx P3 eeeaa-

xx PCON xx PSW xx SBUF xx SCON xx SP xXx RO

xXx TCON xx THO xx TLO xx TH1 xx TL1 xx R1.

xx TMOD xx R2
xx R3
xx R4
xx R5
XX R6

PC Address = xxxx DPTR = xxxx Break Address = xxxx xx R7
Value (in hex) > xx

New Value (in hex) > _

o o - - - o T S " - - . . S . S S - - . G - S S . . - - -

A11 SFRs and GPRs are displayed in the middle of the
screen. The value contained in each register is displayed
followed by the register name. Two 2-byte registers are
displayed: the PC and the DPTR. (The DPTR is a read only
register. It is actually the concatenation of the DPH and
DPL register. It's value can be changed only by changing
the values in the DPH or DPL registers.)

6-26

When emulation of an exper1ment is halted by manual
intervention (i.e. pressing the [ESC] key - see section
5.3), the PC value will show its value as xxxx. The PC
value remains indeterminate until a new value is assigned
to it.

At the top of the display, you are prompted for the name or
address of the register you wish to change. Pressing the
[RETURN] key in response to the prompt will abort the
register screen and return you to the Interrogate Menu.
Pressing the [ESCAPE] key in response to the prompt will
toggle the Bit Display status between ON and OFF (see Bit
Display below). When the Bit Display status is OFF, you are
in the byte register mode.

In the byte register mode, register specification can be
supplied as hexadecimal addresses or the name of the
register. This includes the general purpose registers in
the selected bank (i.e. RO through R7). When a valid
register specification has been supplied, its current value
is displayed as a hexadecimal value. Pressing the [RETURN]
key in response to the prompt retains the current value and
returns you to the register specification prompt. Entering
a new value will change the contents of the specified
register to the new value.

When a new value has been accepted, you are again prompted
for a register specification.

PLEASE NOTE that the values for the ports which are
displayed represent the actual values at the port pins and
not the value in the port registers. Care must be taken
when changing the values of the ports. If any changes are
made to the port values, all input pins which are to remain
inputs must have their corresponding bits set to 1. This
restriction comes about because the ICD emulator must write
to the port register in order to change the value of any
port output pins.

PLEASE NOTE that although the Port0 register is provided
for completeness in the 8031 and 8032 emulator, changing
it's contents is not meaningful when using these emulators.
The actual Port0 register is destroyed when Port0 is used

as the external address/data bus.

6-27

If the Bit Display status is ON, you are in the bit
register mode. This mode is used to modify individual bits
within bit addressable registers. If the name or address of
a non-bit addressable register is supplied while in the bit
register mode, the register is displayed as descr1bed in
the byte register mode.

Bit addressable register specifications may be supplied as
a hexadecimal address or the name of the register. In
addition, specifying the name of any bit in a bit
addressable register will also serve to specify that
¥e?;ster. A bit addressable register display appears as
ollows:

EXAMINE / MODIFY REGISTERS

Register name or hex address > scon Bit Display ON
GPR

xx ACC xx B xx DPH xx DPL xx IE Bank (#)

xx IP xx PO xx Pl xx P2 xxP3 =mmee-

xx PCON xx PSW xx SBUF xx SCON xx SP xx RO

xx TCON xx THO xx TLO xx TH1 xx TL1 xx R1

xx TMOD xx R2
xx R3
xx R4
XX RS
xx R6

PC Address = xxxx DPTR = xxxx Break Address = xxxx xx R7

SMO SM1 SM2 REN TB8 RB8 TI RI
Value > 0 0 1 0 1 0 1 0

New Bit Value > _

When a valid bit addressable register specification has
been supplied, its current value is displayed as individual
bits. If the bits of the register have symbolic names,
these names will be displayed along with the bit values.

You are then prompted for a new bit value. This bit value

is actually a specification of the bit you wish to modify,
and whether you wish to set or reset the bit. Pressing the
[RETURN] key in response to the prompt retains the current
value and returns you to the register specification prompt.

6-28

Bits can be specified as a bit name or as a bit number.
Valid bit numbers are O through 7 and apply to the bit :
display as the rightmost bit being bit 0 and the leftmost
bit being bit 7. ?E.G. for the SCON register in the figure
above, RI is bit 0 and SMO is bit 7).

Specifying a bit will set its value to 1. Specifying a bit
with-a '/' before it will reset its value to 0. (E.G. RI
will set the RI bit while /SM2 will reset the SM2 bit).

When a new bit value has beeen accepted, you are again
prompted for a new bit value.

Error messages which may be encountered when executing the
Registers command include:

Must establish communication first- communication with the
ICD emulator module must be established before the register
can be examined.

Error messages which may be encountered when specifying a
register include:

Number is too large- the number specified was greater than
64K.

I11egal number specification- a non-hexadecimal character
was found in the address specification.

Address is out of range- the address specified was greater
than 255.

I11egal symbol type- the name specified was not that of a
tspec1a1 function register.

Undefined symbol- the name specified doesn't exist.

I1legal register address- the hexadeciamal address provided
does not correspond to a special function register.

Error messages which may be encountered when specifying a
PC value include:

Number is too large- the number specified was greater than
64K.

I11egal number specification- a non-hexadecimal character
was found in the value specification. "

6-29

I1legal symbol type- the symbol specified was not a numeric
symbol.

Undefined symbol- the symbol specified doesn't exist.

Error messages which may be encountered when specifying a
value in the byte register mode include:

I1legal number specification- a non-hexadecimal character
was found in the number specification.

gggber is too large- the value specified was greater than

I11egal symbol type- the symbol specified was not a
numeric symbol.

Undefined symbol- the symbol specified doesn't exist.

Error messages which may be encountered when specifying a
value in the bit addressable register mode include:

Number is too large- the number specified was greater than
64K.

I11egal number specification- a non-hexadecimal character
was found in the number specification.

I11egal bit designator- the value specified was greater
than 7. ’

or
the symbol specified was not a bit symbol.

Undefined symbol- the symbol specified doesn't exist.

I11egal bit for specified register- the symbolic bit
specified is not a bit in the specified bit addressable
register.

Error messages which may be encountered when reading or
writing GPRs include:

Communication error - reset comm link- a non-recoverable
error occurred. Communication must be reestablished via the.
Comm command in the Main Menu.

RS232 transmission problem - check board- the RS232 board
could not perform a transmission. Check your RS232 board.

6-30

6.15 Data-Mem Command

The Data-mem command calls up the Examine/Modify Internal
Data Menu which allows you to examine and/or modify the
contents of the target's internal data memory. It allows:

Dumping a block of the memory's contents

Scanning and modifying the memory a byte at a time

Fi11ing a block of the memory with data

Moving a block of the memory's contents from one
location to another.

Searching the memory for a data pattern

Verify/Compare one block of memory data with another

Examine and modifying the directly addressable bits
which are mapped to the internal-data memory space.

(See Chapter 8 for a complete description of the
Examine/Modify Internal-Data Menu.)

6.16 Xdata-Mem Command

The Xdata-Mem command calls up the Examine/Modify External-
Data Menu which allows you to examine and/or modify the
contents of the target's external data memory. It allows:

Dumping a block of the memory's contents

Scanning and modifying the memory a byte at a time

Filling a block of the memory with data

Moving a block of the memory's contents from one
lTocation to another.

Searching the memory for a data pattern

Verify/Compare one block of memory data with another.

Mapping the external-data memory to the user system,

the emulator or to both in varying 16-byte block

addresses.

(See Chapter 8 for a complete description of the
Examine/Modify External-Data Menu.)

6.17 Code-Mem Command
The Code-Mem command calls up the Examine/Modify Program
Code Memory Menu which allows you to examine and modify the
ICD's program code memory, wish to examine. It allows:

Disassembly of the program code
Single 1ine assembly of the program code

6-31

Examination and modification of raw program code memory
data.

Mapping the external-data memory to the user sytem,

the emulator or to both in varying 16-byte block addresses.

(See Chapter 7 for a éomp]ete description of the
Examine/Modify Program Code Memory Menu.)

6.18 View-trace Command

The View-trace command is used to examine the contents of
the 4,096 frames of the trace buffer. The trace can be
examined in two possible modes; the Code mode and the Raw
mode. Pressing the view-trace command calls the trace
buffer in from the emulator and displays it on the screen,
as such there is a time elaspe before the screen is updated
with the trace buffer. This time elaspe is based on the
communication transfer rate (baud rate).

Before entering into a discussion about the trace buffer
display it will be necessary to define some terms and
contents of the display screen.

Code Mode- The mode of trace display when the content
of the trace buffer is fully disassembled including user
supplied labels.

Raw Mode- the mode of trace display when the content of
the trace buffer is the binary content of the
data/address bus for each bus cycle in the Hex format.

Rel Address- Relative Address in the 4k trace buffer.
The value can range from 0 (zero) to 4,096. The +
(plus) and - (minus) sign before the number indicate
either forward, +, into the trace buffer and as such
what is the memory content of what the next N Tocations
in memory. Or backward, -, into the trace buffer and as
such the audit trail of what instructions the
microcontroller has just executed. In the Code Mode

the relative address will increment or decrement its
count according to the start address of an instruction.
In the Raw Mode the relative address will increment or
decrement its count by one to correspond to the data
content.

Abs Address- Absolute Address of the microcontroller
instruction, address or data in the program flow.

6-32

Label- the label for that particular instruction,
address or data that was assigned to it in the program
development.

Mnemonic Instruction- the mnemonic instruction
breakdown of that particular absolute address in the
program flow.

Port- The Hex display of the activity on the port
selected by the I/0 command in the interrogate menu.

Data- the Hex display of the data content of the
absolute address in the program flow.

Asteriks- A single asterik (*) indicates when an
instruction was executed (Raw Mode only).
- A double asterik (**) indicates when an
interrupt occurred (Both Modes).

Where the trace buffer begins to display the data is based
on the trace-trigger type choosen. The trace buffer will
always enter trace display in the Code Mode.

6.19 START Trace-Trigger

If the START trace-trigger type was choosen it will result
in the break occurring when the address is equal to the
trace-trigger address plus 4,096 ALE cycles. The screen
will display relative address O and forward (+) addresses.
The user may move forward in the trace buffer up to 4,096
relative addresses. The display will always start halfway
down.

If the break was set to occur on address 30H the Code Mode
would appear as follows:

: Trace Menu
Trigger Type: Start Trace Mode: Code
Rel Abs

Address Address Label Mnemonic Instruction Port
0000 0030 start: MOV DPTR,#0 FF
+0003 0033 outerloop: CLR outbit FF
+0005 0035 MOV tempcount, #10 FF
+0008 0038 innerloop: CALL wastetime FF
+000B 0038 CPL outbit FF

[1]- scroll up [}]- scroll down [ESC]- change mode [RET]- Exit

6-33

The highlight appears to the left of the relative address 0
(zero) and over the port Hex activity for relative address
0.

Pressing the [RETURN] key will return the user to the
interrogate menu.

Pressing the scroll down [}] key moves the user a single
relative address at a time down into the trace buffer.
Pressing the scroll up [T] key moves the user a single
relative address at a time into the trace buffer.

A faster method of moving in the trace buffer is by entering
the relative address desired to be viewed in the highlight
area. This is done by pressing a + (p]us% or - (minus) sign
and an address and then pressing [RETURN]. The trace buffer
will then advance or retreat to the address choosen and
display the contents. If the address choosen is greater than
the valid contents of the trace buffer the buffer will
terminate the address at the last valid data location and
display that data.

Pressing the [ESC] key will change the mode of display of
the trace buffer from Code mode to Raw mode or vice versa.
The Raw Mode display of the same program flow appears as
follows:

Trace Menu

Trigger Type: Start . Trace Mode: Raw

Rel Address Abs Address Data Port

0000 0030 90* FF
+0001 0031 00 FF
+0002 0032 00 FF
+0003 0033 c2* FF
+0004 0034 90 FF

[1]- scroll up [}]- scroll down [ESC]- change mode [RET]- Exit

The scroll up, scroll down, change mode and exit functions
perform the same as in the Code mode.

6-34

6.20 CENTER Trace-Trigger

If the CENTER trace-trigger type is choosen it will result
in the break occurring when the address is equal to the
trace-trigger address plus 2,048 ALE cylces. The screen will
display relative address 0 and forward (+) and backward (-)
addresses. The user moves forward up to 2,048 relative
addresses or backwards up to 2,047 relative addresses. The
display will always start with relative address 0 (zero) in
the middle.

If the break was set to occur on address 38H the Code Mode
would appear as follows:

Trace Menu
Trigger Type: Center Trace Mode: Code
Rel Abs

Address Address Label Mnemonic Instruction Port
-0008 0030 start: MOV DPTR,#0 FF
-0005 0033 outerloop: CLR outbit FF
-0003 0035 MOV tempcount,#10 FF

0000 0038 innerloop: CALL wastetime ' FF
+0003 003B CPL outbit FF
+0005 003D CLR A - FF
+0006 003E JNB outbit, skipover FF

[1]- scroll up [J]- scroll down [ESC]- change mode [RET]- Exit

The highlight appears to the left of the relative address o
(zero) and over the port Hex activity for relative address

0.

Pressing the [RETURN] key will return the user to the
interrogate menu.

Pressing the scroll down [l] key moves the user a single
relative address at a time down into the trace buffer.

Pressing the scroll up [T] key moves the user a single
relative address at a time into the trace buffer.

A faster method of moving in the trace buffer is by

entering the relative address desired to be viewed in the
highlight area. This is done by pressing a + (plus) or -

6-35

(minus) sign and an address and then pressing [RETURN]. The
trace buffer will then advance or retreat to the address
choosen and display the contents. If the address choosen is
greater than the valid contents of the trace buffer the
buffer will terminate the address at the last valid data
location and display that data. '

Pressing the [ESC] key will change the mode of display of
the trace buffer from Code mode to Raw mode or vice versa.
The Raw Mode display fo the same program flow appears as
follows:

Trace Menu
Trigger Type: Center ~ Trace Mode: Raw
Rel Address Abs Address Data Port
-0003 0035 75% FF
-0002 0036 64 FF
-0001 0037 0A FF
0000 0038 12* FF
+0001 0039 00 FF
+0002 003A 50 FF
+0003 003B B2* FF
+0004 003C 90 FF

[T]- Scroll up [JL- Scroll down [ESC]- change mode [RET]- Exit

The scroll up, scroll down, change mode and exit functions
perform the same as in the Code mode.

6-36

6.21 END Trace-Trigger

If the END trace-trigger type is choosen it will result in
the break occurring when the address is equal to the trace-
trigger address and it will break emulation BEFORE the
instruction at the address is executed. The screen will
display relative address O and backward (-) addresses. The
user may move backwards up to 4,096 relative addresses. The
display will always start with relative address 0 (zero) at
the bottom.

The END trace-trigger type will also be entered if the user
presses the [ESC] key during instruction execution and

therefore, causes a host interrupt condition to occur.

If the break was set to occur on address 41H Code Mode would
appear as follows:

Trace Menu
Trigger Type: End Trace Mode: Code
Rel Abs
. Address Address Label Mnemonic Instruction Port

-0017 0030 start: MOV DPTR,#0 FF
-0014 0033 outerloop: CLR outbit FF
-0012 0035 MOV tempcount,#10 FF
-0009 0038 innerloop: -CALL wastetime FF
-0006 003B CPL outbit FF
-0004 003D CLR A FF
-0003 003E JNB outbit,skipover FF

- - - - 5 S . - - - - = e T G W= W0 . = G " = G S = - - -

[1]- scroll up [L]- scroll down [ESC]- change mode [RET]- Exit

The highlight appears to the left of the relative address 0
(zero) and over the port hex activity for relative address
0.

Pressing the [RETURN] key will return the user to the
interrogate menu.

Pressing the scroll down [J] key moves the user a single
relative address at a time down into the trace buffer.
Pressing the scroll up [T] key moves the user a single

relative address at a time into the trace buffer.

6-37

A faster method of moving in the trace buffer is by entering
the relative address desired to be viewed in the highlight
area. This is done by pressing a + (plus} or - (minus) sign
and an address and then pressing [RETURN]. The trace buffer
will then advance or retreat to the address choosen and
display the contents. If the address choosen is greater than
the valid contents of the trace buffer the buffer will

terminate the address at the last valid data location and
display that data.

Pressing the [ESC] key will change the mode of display of
the trace buffer from Code mode to Raw mode or vice versa.
The Raw Mode display of the same program flow appears as

follows:
Trace Menu

Trigger Type: Center Trace Mode: Raw

Rel Address Abs Address Data Port

-0007 0039 00 FF
-0006 _ 003A 50 FF
-0005 0038 B2* FF
-0004 003C 90 FF
-0003 003D E4* FF
-0002 003E 30* FF
-0001 003F 90 FF
0000 0040 01 FF

o - - 0 - G 0 - G o T G S o Sn S T W S S G S e S G S e S0 W S G S W e e G S Ge Mo S . - e - o -

[T]- scroll up [L]- scroll down [ESC]- change mode [RET]- Exit

The scroll up, scroll down, change mode and exit functions
preform the same as in the Code mode.

6-38

6.22 Experiment Command

6.23 I/0 Command

The Experiment command calls up the Exam1ne Experiment Menu
which allows you to examine and/or modify an emulation
experiment. In this menu you can:

Edit an experiment

Compile an experiment to set break points
Load an experiment from a disk file

Store an experiment in a disk file

Reset the current experiment

Delete the current experiment

Call the Opcode Class Menu

(See Chapter 10 for a complete description of the Examine
Experiment Menu.)

The I/0 command allows the user to select which I/0 port
activity in the emulator is to be used in the trace buffer.
The activity on the selected port will be traced during
execution of an experiment and can be viewed using the view-
trace command. Pressing the I/0 command sequencially toggles
the port selected number on the interrogate menu screen.

6.24 Pass-cnt (Pass-Count) Command

The Pass-count command is used to set the pass counter. The
pass counter is used to trigger the tracing capability,
which in turn triggers a break condition. The pass-count is
initialized to zero (0) and the user must insure that some
condition in either the experiment or the program code is
incrementing the pass-counter before the pass-count can be
set to some other number.

The Brk-cnt command (see break-count section) can be used to
set a simple pass-count or the users experiment must contain
a pass-count increment statement. Both conditions will
enable the. pass-count to increment. If no condition exists
the pass-counter cannot be set to any value and an error
message will appear.

6-39

If the conditions are met the pass-count screen will appear
as follows:

Go S-Step Reset Fantom Brk-trace Loop-cnt Trace-Trig Help Quit
Modify-Regs Data Xdata Code View-Trace Experiment I/0 Pass-cnt
(Quick help 1ine for highlighted command)

Repetition Counter: (#) Trace Trigger: (Point)
Pass Count: (#) INTERROGATE MENU Port Selected: Port (#)
GPR
xx ACC xx B xX DPH xx DPL xx IE Bank (#)
xx IP xXx PO xx P1 xx P2 xx P3 eeeea-
xX PCON xx PSW xx SBUF xx SCON xx SP xX RO
‘xx TCON xx THO xx TLO xx TH1 xx TL1 xx R1
xx TMOD xXx R2
xx R3
xx R4
xx R5
XX R6
PC Address = xxxx DPTR = xxxx Break Address = xxxx XX R7

Enter count (in decimal) > _

e e bk R e L L R AR

The count should be a decimal number between 1 and 65,534.
Entering a number and the pressing the [RETURN] will update
the pass count number on the interrogate menu screen.
Pressing the [RETURN] key in response to the count prompt
will abort execution of the command and retain the current

value of the counter.

Error messages which could be encountered when executing
this command include:

IT1egal integer value- the number used to specify the count
contained illegal decimal digit.

Number is too large- a count value greater 32,767 was
requested.

Count not incremented- Pass counter was attempted to be set

to some value other than zero (0) and the user has not
provided for an increment to the pass-counter.

6-40

CHAPTER 7
EXAMINE / MODIFY PROGRAM CODE MEMORY

7.1 Examine / Modify Program Code Memory Overview

The Examine / Modify Program Code Memory Menu is used to
examine and/or modify the contents of the ICD's program code
memory. It allows:

1) disassembly of the program code,
2) single line assembly of the program code,
3) examination and modification of raw code memory data.

7.2 Examine / Modify Program Code Memory Screen

The Examine / Modify Program Code Memory screen appears as
follows:

Disassemble Assemble Table Help Quit
(Quick help 1ine for highlighted command)

- - - - - . - " o " - = - = W= - . W R S G 0 Gm S - - - -

- - -~ . " - " . - - " - - . S % G = . G = . = . n e S - -

Upon entering, the Disassemble command will be
highlighted.

7.3 Disassemble Command

The Disassemble command is used to display the contents

of the ICD's program code memory as 8051 assembly language
mnemonic instructions. You will be prompted to supply the
address of the instruction in program code memory where you
desire the disassembly to begin. You will alsoc be prompted
to supply the number of instructions to disassemble. The -
disassembly screen will appear differently depending on
whether or not you are using the symbolic debugging
capability. The Disassembly screen appears as follows for
the non-symbolic mode:

Enter starting address (in hex) or label > 0 DISASSEMBLER
Enter number of instructions (in decimal) > 8

Address code Mnemonic Instuction
0000 03 RR A

0001 F3 MOVX G@R1,A

0002 020055 LJMP 0055H

0005 74CD MOV A,#CDH

0007 120055 LCALL 0055H

000A 753620 MOV 36H ,#20H
000D E3 MOVX A,GR1

000E 7603 MOV @RO,#03H

The Disassembly screen appears as follows for the symbolic
mode:

Enter starting address (in hex) or label > 0 DISASSEMBLER
Enter number of instructions (in decimal) > 8

Addr Code Label Mnemonic Instruction
0000 03 START: RR A

0001 F3 MOVS G@R1,A

0002 020055 LJMP ENDPFPROG

0005 74CD MoV A,#CDH

0007 120055 LABEL1: LCALL ENDOFPROG

000A 753620 MOV NOTE ,#20H

000D E3 MOVX A,GR1

000E 7603 MoV ©QRO,#03H

- - o G o G S G G - = s S S0 S n S T e . . G . - T e G S T wn G = -

7-2

The first prompt in the disassembly screen is for the
starting address. Hitting the [RETURN] key in response to
this prompt will abort the Disassembly command. The starting
address can be supplied as a hexadecimal numberic address or
as an instruction label (if symbolic debug is enabled). If
the address is supplied as a number, it is important to

ensure that the address corresponds to an instruction
boundary. Specifying an address which is in the middle of an
instruction will cause erroneous code disassembly.

The second prompt in the disassembly screen is for the
number of instructions to disassemble. Hitting the [RETURN]
key in response to this prompt will abort the Disassembly
command. The number of instructions must be supplied as a
decimal number.

Three checks are made prior to displaying the disassembled
code. The first check ensures that the ICD's program.code
memory has been loaded. If code has not been loaded into the
memory then the code memory mapping must be mapped to the
user board. If neither of these conditions are true, an
error message is displayed and the Disassembly command is
aborted. In this case, return to the Main Menu to load your
program code memory or to change the mapping of the code
memory.

The second check is only used when the code memory is mapped
to the emulator's code memory. It ensures that the starting
address you have specified is within the address range of
the emulator code memory. If the address is outside the
range of the emulator code memory, an error message is
displayed and the disassembly command is aborted. (e.g. the
starting address is at 16K and the emulator only contains 8K
code memory).

The third check is only used when the code memory is mapped
to the emulator's code memory. It ensures that code has been
loaded at the starting address you have specified. If code
has been loaded but does not exist at the starting address
you have specified, an error message is displayed and the
disassembly command is aborted. (e.g. your program consumes
2K of memory from 0 to 3FFh and you have asked to
disassemble code starting at address 500h.)

7-3

If you are using the symbolic debugging capability of the
system, symbols will replace numbers in the mnemonic
instruction whenever applicable. To be specific, all program
code addresses, direct byte addresses and direct bit
addresses which have symbolic representations will be
displayed as symbols rather than numbers. '

The number of instructions specified for disassembly can
exceed the display area of one screen. In this case the
screen fills up from top to bottom until the display is
full. As more instructions are disassembled, the display
area is scrolled upward one line and the newest instruction
appears on the bottom line of the display area.

You can halt the scrolling action at any time by hitting the
[SPACE BAR] key. This puts the system in the single step
display mode. After entering the single step display mode,
one new disassembled instruction is displayed each time you
hit the [SPACE BAR] key. Normal display scrolling can be
resumed by hitting ANY key other than the [SPACE BAR] key.
The single step display mode is automatically terminated
when the Disassembly execution is completed.

Once the disassembly has begun, it can be aborted at any
time by hitting the [ESC] key.

If the number of instructions specified takes us beyond the
end of the valid program code, the disassembly terminates
and the message

*** and of valid code ***

is displayed beneath the disassembly of the last valid
instruction. This end of valid code can be determined ONLY
when code is mapped to the emulator's code memory.

Upon completion of the disassembly, the top of the screen
returns to the Examine / Modify Program Code memory command
Tist while the disassembly in the center of the screen
remains.

Error messages which may be encountered when specifying the
starting address include:

gzﬂber is too large- the address specified was greater than

I11egal number specification- a non-hexadecimal character
was found in the address specification.

Symbolic debug not enabled- the symbolic debugging
capability is not enabled. Symbolic addresses are therefore
not allowed.

Improper address segment- the specified symbol was not a
code address symbol.

Undefined symbol- the symbol specified doesn't exist.

Error messages which may be encountered when specifying the
number of instructions to disassemble include:

IT17egal integer value- the number specified contained non-
decimal characters.

Error messages which may be encountered during the code
disassembly include:

Code memory is not loaded; the ICD's program code memory has
not been loaded with program code and the code memory is
mapped to the emulator. Return to the Main Menu to load the
code.

Address is outside Toaded range- the specified starting
address is not within the address range of the emulator code

memory.

No code at specified memory location- the specified starting
address does not contain valid code.

Sync - possible table disassembly- this error only applies
when in the symbolic debug mode. Advantage is taken of the
fact that the instruction labels must 1ie on instruction
boundaries. If the disassembly passes a known label without
displaying it, then an address synchronization problem
exists. Either the starting address was not at an instruction
boundry or the disassembly process passed through a non-
instruction portion of code memory (i.e. a data table that
lies in code memory space).

Communication error - reset comm link- a non-recoverable
error occurred. Qommunication must be reestablished via the
Execute command in the Configuration menu.

RS232 transmission problem - check board- the RS232 board
could not perform a transmission. Check your RS232 board.

7=5

7.4 Assemble Command

The Assemble command is used to overwrite an 8051 instuction
in the program code memory with a new instruction, to add a
label at a specified PC address or both.. You will be
prompted to supply the address at which you want to start
overwritting code. The Assembly screen will appear as

follows:

Enter starting address (in hex) or label > _ 'ASSEMBLER

If the code memory is mapped to the user board, the warning
message

WARNING: CODE MEMORY IS MAPPED TO USER BOARD

will be displayed. If this message appears, the Assembly
command should be continued ONLY if the memory on your user
board is configured as a Von Neumann type memory. (i.e. code
and data reside in the same memory).

The prompt is for the address at which you want to start
overwriting code or adding a label. Hitting the [RETURN] key
in response to this prompt will abort the Assembly command.
The address can be supplied as a hexadecimal numeric address
or as an instruction label (if symbolic debug is enabled).
If the address is supplied as a number, it is important to
ensure that the address corresponds to an instruction
boundary. Specifying an address which is in the middle of an
instruction will cause erroneous code assembly.

Once a starting address has been supplied, you will be
prompted to supply the instruction. In addition, the address

7-6

of the next instruction to be assembled is displayed. The
assembly screen will appear as follows:

Next instruction address: (address) ASSEMBLER
Enter next instruction > _

Hitting the [RETURN] key in response to this prompt will
return you to the first prompt which allows you to specify a
new starting address. The new instruction must be supplied
in the form of an 8051 assembly language mnemonic
instruction. Any errors in the mnemonic instruction will be
reported.

The mnemonic instruction can contain a symbolic
representations. This includes the ability to define a new
label at the address specified as the Next Instruction
Address. A symbol can be added as a label to the current
instruction by entering a label in response to the prompt
with no instruction following it.

Enter next instruction: (address) ASSEMBLER
Enter next instuction > _)

Hitting the [RETURN] key in response to this prompt will
return you to the first prompt which allows you to specify a
new starting address. The new instruction must be supplied
in the form of an 8051 assembly language mnemonic
instuction. Any errors in the mnemonic instruction will be
reported.

The mnemonic instruction can contain symbolic
representations. This includes the ability to define a new
label at the address specified as the Next Instruction
Address. A symbol can be added as a label to

the current instruction by entering a label in response

to the prompt with no instruction following it.

Enter next instruction > Label:

7-7

Labels can even be added when symbolic debug is not enabled.
When this occurs however, the symbolic debug capability
becomes enabled.

If the assembled mnemonic instruction does not contain the
same number of bytes as the original instruction at the
specified location, you will be warned by the message:

New instruction length <> original length - Replace (Y/N)?

If this situation occurs, you have the option to either
continue with the instruction replacement (a 'Y' or 'y'
response) or to abort the replacement and retain the
original instuction (a 'N' or 'n' response).

Please note that it is highly recommended that you inspect
our program code carefully before running an experiment if
you get this warning message. It is informing you that your
code is not contiguous.

Single line assembly is permitted even when the code memory
is mapped to the user board. In this case, it is assumed
that the memory on the user board is used as a Von Neumann
type memory. (i.e. code and data reside in the same memory).
This allows you to change the code which resides in the RAM
on your board. If however, it is determined that the code
memory on the user board is READ ONLY, an error message will
be displayed and the Assembly command will be aborted. This
error message is: .

User board code memory is READ ONLY - could not modify code
memory on the user board.

Upon completion of the single line assembly, the Next
Instruction Address is incremented to the next location in
code memory following the instruction which was just
assembled. This allows you to enter a number of continous

instuctions in memory without having to specify the address
for each instruction.

7-8

Error messages which may be encountered when executing the
Assemble command include:

-Cannot assemble offset uploaded code- code was uploaded from
the target system at some starting address other than O.
Th{s gode can ONLY be examined using the Table command (see
below).

Error messages which may .be encountered when specifying the
address include:

gumber is too large- the address specified was greater than
4K.

I11egal number specification- a non-hexadecimal character
was found in the address specification.

Symbolic debug not enabled- the symbolic debugging
capability is not enabled. Symbolic addresses are therefore

not allowed.

Improper address segment- the specified symbol was not a
code address symbol.

Undefined symbol- the symbol specified doesn't exist.

Error messages which may be encountered when specifying the
new assembly language mnemonic instruction include:

I1legal character- a character was encountered which is not.
part of the legal character set. (See Appendix E for the
single line assembler's character set).

Undefined symbol- use was made of a symbol which hasn't been
defined.

Duplicate symbol- a label was used in the mnemonic
instruction which has a differrent code address value than
the address specified in the first prompt.

I17egal opcode after label- the symbol after a label wasn't
an opcode.

7-9

I1legal assembly line- the assembly line doesn't begin with
a label or instruction mnemonic.

I11egal or missing expression- a number, symbol, or
arithmetic expression was expected but was either missing or
could not be evaluated properly.

I1legal or missing expression operator- an arithmetic
operator was expected but was either missing or was not a
legal operator. (See Appendix E for the single line
assembler's legal operators.)

Unbalanced parenthesis- in evaluating an expression, the
parenthesis in the expression were found not to balance.

I1legal or missing expression value- in evaluating an
expression, an expected number or symbol was either missing
or illegal.

I1legal literal expression- a null ASCII Titeral string
('') was found.

Expression stack overflow- the expression stack has a depth
of 32 values. The expression being evaluated exceeds this
depth.

Division by zero- the expression being eva]uated includes an
attempt to divide by zero.

I1legal bit designator- an illegal bit designator address
was specified. A bit designator contains a byte address,
followed by a PERIOD, followed by the bit index into the
byte address (e.g. ACC.7). This error can be caused by two
errors. First, the specification of the byte address part of
the bit designator was not a legal bit addressable address.
Second, the bit index into the byte address exceeds 7.

Target address exceeds relative address range- a relative
jump was specified with the target exceeding 127 bytes
forward or 128 bytes backward.

I11egal operand- the operand specified is not a legal
operand for the instruction.

7-10

I17egal indirect register- the indirect addressing mode
designator (@) was followed by something other than RO and
Rl. This error can also occur in the MOVC A,@A+DPTR, MOVX
A,@GDPTR,MOVX @DPTR,A and the JMP @A+DPTR instructions if the
operands after the indirect addressing mode designator are
not specified properly. ' ’

Missing operand delimiter- a COMMA operand delimiter
was missing from the operand fields of the instruction.

Expecting an EOL- the assembly language mnemonic
instruction supplied contains too many operands.

Communication error - reset comm 1ink- a non-
recoverable error occurred. Communication must be
reestablished via the Execute command in the
Configuration Menu.

RS232 transmission problem - check board- the RS232
board could not perform a transmission. Check your
RS232 board.

7-11

7.5 Table Command

The Table command calls up the Examine / Modify Program-Code
Menu which allows you to examine and/or modify the contents
of the ICD's program code memory as raw data. This mode is
useful when working with tables which reside in program code
memory. This menu allows:

) dumping a block of the code memory's contents,

) scanning and modifying the code memory a byte at a time,
g fi1ling a block of the code memory,
)

PWNE

moving a block of the code memory's contents from one
location to another,

5) searching the code memory for a data pattern,

6) comparing one block of code memory data with another.

(See Chapter 8 for a complete description of the
Examine/Modify Program-Code Menu.)

7.6 Help Command
The HELP command is used to display a detailed description
of the function of each of the commands in the Examine/Modify
Program Code Memory Menu.

Error messages which may be encountered when executing this
command include:

Help file not found- the file "HLPFILE" could not be found
on either the default or A: drives.

7.7 Quit Command

The quit command is used to return to the previous menu.

7-12

CHAPTER 8
EXAMINE/MODIFY INTERNAL DATA MEMORY

8.1 Examine/Modify Memory Data Overview

The Examine/Modify Memory Data Menu is used to examine
and/or modify the contents of the ICD internal data memory,
the target system's external data memory and the ICD's

program code memory. It allows:

1) dumping a block of the memory's contents,
2) scanning and modifying the memory a byte at a time,
33 filling a block of the memory with data,

moving a block of the memory's contents from one
location to another,
43 searching the memory for a data pattern,

comparing one block of memory data with another,

) examining and modifying the directly addressable bits

which are mapped to the internal data memory space
(Internal Data Memory ONLY).

8.2 Examine/Modify Memory Data Screen
The Examine/Modify Memory Data screen appears as follows for
the External Data Memory and the Program Code Table
Memories:

Dump Enter Fill Move Search Compare Help Quit
(Quick help line for highlighted command)

EXAMINE / MODIFY (Memory Name) MEMORY

The Examine/Modify Internal Data Memory screen appears as
follows: :

Dump Enter Fill Move Search Compare RAM-Bits Help Quit
(Quick help 1ine for highlighted command)

EXAMINE/MODIFY INTERNAL DATA MEMORY

Upon entering, the Dump command will be highlighted.

The Examine/Modify Memory Data Menu can be used with
internal data memory, external data memory and program code
memory. The commands function similarly for all three memory
spaces. The memory space being operated on is always
displayed on the screen. This will avoid any confusion
concerning which memory space is being manipulated.

A11 of the commands in this menu perform address range
checks before performing their functions. These checks
ensure that the addresses specified are valid for the

selected memory.

For internal data memory, the address range is the entire
internal data memory.

Component Address Range

8031 0 - 7Fh
8032 0 - OFFh
8344 0 - 0COh

For external data memory the address range is the entire
external data memory (i.e. addresses 0 - FFFFh).

For program code memory, the range is dependent on how the
Program Code Memory is mapped (see chapter 4.9). If mapped
to the ICD, the range is determined by the starting
address of the program code memory and the size of the ICD
program code memory option you have purchased.

When mapped to the emulator, the starting address of
the program code memory is determined by the method of
loading the memory. If the memory was loaded via the

Load command (see Main Menu), then the starting address

8-2

8.3 Dump Command

is automatically set to 0. If however, the program
code memory is loaded via the Uploaded command (see
Main Menu), then the starting address is whatever
address was specified in the Upload command.

The range of addressability in the program code memory thus
begins at the above described starting address, and
continues up to the size of the program code memory option.

For example: Suppose you have uploaded code from your
system starting at address 400h (1K) and you have purchased

the 8K program code memory oEtion. The addressable range of
the program code memory in this case is 400h - 23FFh (1 -

9K).

If mapped externally, the range is the entire program code
memory (i.e. addresses 1 - FFFFh).

The Dump command is used to display a block of memory data.
You will be prompted to supply the starting address of the
block and the number of bytes you want to display. The dump
screen appears as follows:

Enter starting address (in hex) > 0 DUMP
Enter number of bytes (in decimal) > 24 (Memory Name)

Address Memory Data ASCII
0000 41 42 43 44 45 46 47 48 ABCDEFGH
0008 CoO C1 C2 30 C4C5¢Ch 35 ...1...5
0010 61 62 63 64 65 66 67 68 abcdefgh

The first prompt in the Dump screen is for the starting
address. Hitting the [RETURN] key in response to this prompt
will abort the Dump command. The starting address can be
supplied as a hexadecimal numeric address or as a symbolic
address (if symbolic debug is enabled).

The second prompt in the Dump screen is for the number of
bytes to dump. Hitting the [RETURN] key in response

to this prompt will abort the Dump command. The number of
bytes must be supplied as a decimal number.

8-3

The number of bytes specified for the dump can exceed the
display area of one screen. In this case the screen fills up
from the top to bottom until the display area is full. As
more bytes are dumped, the display area is scrolled upward
one line and a new line of 8 bytes appears on the bottom
T1ine of the display area. ‘

You can halt the scrolling action at any time by hitting the
[SPACE BAR] key. This puts the system in the single step
display mode. After entering the single step display mode,
one new group of 8 bytes is displayed each time you hit the
[SPACE BAR] key. Normal display scrolling can be resumed by
hitting ANY key other than the [SPACE BAR] key. The single
step display mode is automatically terminated when execution
of the Dump command is completed.

Once the Dump command has begun execution, it can be aborted
at any time by hitting the [ESC] key.

If the number of bytes specified goes beyond the end of the
addressable range of the memory, all valid data bytes are
dumped and then the dump terminates.

Upon completion of the Dump command, you are prompted for
another starting address for another dump.

Error messages which may be encountered when specifying the
starting address include:

szber is too large- the address specified was greater than
64K.

I1legal number specification- a non-hexadecimal character
was found in the address specification.

Symbolic debug not enabled- the symbolic debugging
capability is not enabled. Symbolic addresses are therefore
not allowed.

Improper address segment- the specified symbol was not an
address symbol for the selected memory space.

Undefined symbol- the symbol specified doesn't exist.
Address is out of range- a program code memory address was

specified which is below the program code memory's starting
address.

8-4

8.4 Enter Command

SFR not in internal memory- the special function register
specified does not reside in the internal data memory space.

Error messages which may be encountered when specifying the
number of bytes to dump include:

I11egal integer value- the number specified contained non-
decimal characters.

Error messages which may be encountered during the data dump
include:

Address is out of range- the address specified is outside
the valid address range of the selected memory.

Communication error - reset comm link- a non-recoverable
error occurred. Communication must be reestablished via the
Execute command in the Configuration Menu.

RS232 transmission problem - check board- the RS232 board
could not perform a transmission. Check your RS232 board.

The Enter command is used to examine and/or modify memory
one byte at a time. It allows you to step through memory in
either incrementing or decrementing address locations. You
will be prompted to supply the starting address to examine.

The Enter screen appears as follows:

. ENTER
Enter starting address (in hex) > 0 (Memory Name)

Address Data New Data

0000 41 -

Ly] - Forward [4] - Backward LESC] - Exat
If the memory space being operated on is program code memory

and the code memory is mapped to the user board, the warning
message:

WARNING: CODE MEMORY IS MAPPED TO USER BOARD

will be displayed. If this message appears, the contents of

8-5

the memory should be changed ONLY if the memory on your user
board is configured as a Von Neumann type memory. (i.e. code
and data reside in the same memory).

The first prompt in the Enter screen is for the starting
address. Hitting the [RETURN] key in response to this prompt
will abort the Enter command. The starting address can be
supplied as a hexadecimal numeric address or as a symbolic
address (if symbolic debug is enabled).

When a valid starting address has been specified, the
address and current value of the memory at that address are
displayed. You are then prompted to enter new data. This is
called the entry command mode.

Hitting the [§] cursor control key on the numeric keypad at
the right of the keyboard key in response to this prompt
will retain the current value, increment the address to the
next location and display the address and value of the new
Tocation.

Hitting the [4] cursor control key on the numeric keypad at
the right of the keyboard in response to this prompt will
retain the current value, decrement the address to the
previous location and display the address and value of the
new location. :

Hitting the [ESCAPE] key will terminate the entry command
mode and you will again be prompted for a starting address.

This allows you to examine another area of memory.

In addition, while in the Entry command mode, you may supply
a new value in response to the prompt. In this case the new

data value must be supplied as a hexadecimal number. When a
valid data value has been supplied, the address and value

will be displayed again to ensure that the value was updated
correctly.

Changing data in the program code memory is permitted even
when the code memory is mapped to the user board. In this
case, it is assumed that the memory on the user board is
used as a Von Neumann type memory. (i.e. code and data
reside in the same memory). This allows you to change the
code which resides in the RAM on your board. If however, it
is determined that the code memory on the user board is READ

8-6

ONLY, an error message will be displayed and the following
error message will be displayed:

User board code memory is READ ONLY

The Enter screen fills up from top to bottom until the
display area is full. As more locations are examined, the

display area is scrolled upward one line and a address and
value appear on the bottom line of the display area.

If incrementing or decrementing the location takes us
outside the valid address range of the memory, the address
will remain unchanged and the last valid location will be
displayed over again.

Error messages which may be encountered when specifying the
starting address include:

Number is too large- the address specified was greater than
64k.

I11egal number specification- a non-hexadecimal character
was found in the address specification.

Symbolic debug not enabled- the symbolic debugging
capability is not enabled. Symbolic addresses are therefore
not allowed.

Improper address segment- the specified symbol was not an
address symbol for the selected memory space.

Undefined symbol- the symbol specified doesn't exist.

Address is out of range- a program code memory address was
specified which is below the program code memory's starting
address.

SFR not in internal memory- the special function register
specified does not reside in the internal data memeory
space.

Error messages which may be encountered when entering a new
data value include:

Too many characters- the new data value contained more than

two hexadecimal degits. It can not therefore represent a
byte value.

8-7

I11egal number specification- the new data value contained
digits which were non-hexadecimal characters.

User board code memory is READ ONLY- could not modify the
code memory on the user board.

Communication error - reset comm 1ink- a non-recoverable
error occured. Communication must be reestablished via the
Execute command in the Configuration Menu.

RS232 transmission problem - check board- the RS232 board
could not perform a transmission. Check your RS232 board.

8.5 Fill Command

The Fi11l command is used to fill a block of memory with a
specified data pattern. You will be prompted to supply the
starting address of the block and the number of bytes in
memory you want filled with data. The Fill screen appears as

follows:

Enter starting address (in hex) > FILL

Enter number of bytes (in decimal) > _ (Memory Name)
Enter Fill Pattern

> ,

If the memory space being operated on is program code memory
and the code memroy is mapped to the user board, the warning
message

WARNING: CODE MEMORY IS MAPPED TO USER BOARD

Will be displayed. If this message appears, the contents of
the memory should be changed ONLY if the memory on your user

board is configured as a Von Neumann type memory. (i.e. code
and data reside in the same memory).

The first prompt in the Fill screen is for the starting
address. Hitting the [RETURN] key in response to this prompt
will abort the Fill command. The starting address can be
supplied as a hexadecimal numeric address or as a symbolic
address (if symbolic debug is enabled).

8~8

The second prompt in the Fill screen is for the number of
bytes of memory to be filled with data. Hitting the [RETURN]
key in response to his prompt will abort the Fill command.
The number of bytes must be supplied as a decimal number.

The third prompt in the Fill screen is for the Fill pattern.
Hitting the [RETURN] key in response to this prompt will
abort the Fill command. The fill pattern is the pattern of
data you want to put into memory. The fill pattern data can
be specified as numbers, symbolic numbers, character
strings, or any combination of the above. A pattern can
contain up to 32 bytes of data.

Numbers may be specified as numeric values in any radix.
Valid radix specifiers include: h - hexadecimal, d -
decimal, o or q - octal and b - binary. No default radix is
provided. Specifying a number without a radix specifier
will result in an error message.

Symbolic numbers are symbols which have been defined in the
currently loaded program to represent numbers. In order to
use symbolic number specifications, you must assemble your
program with the 8051 Family Cross Assembler with the

debug switch on. (See the 8051 Cross Assembler User's
Manual for details.)

Character strings are simply strings of characters
delineated by an apostrophe ('). In order to include the
apostrophe itself in the character string, the double
apostrophe ('') is used. Character strings are entered in
memory as the ASCII representation of the characters in the
string.

Below is an example of a fill patern specification:
Enter Fill Pattern
> 23h 64d symnum 'String’

Assuming that symnum is defined to represent the value 10h,
the fill pattern specified is:

23 40 10 53 74 72 69 6E 67 (all numbers are in hex)

8-9

Any error s encountered while processing the fill pattern
will result in an error message being displayed and an arrow
pointing to the offending entry in the fill pattern. Below
is an example of a fill patern specification with an error:

Enter Fill Pattern

> 2rh 64d symnum 'String'

ERROR> Illegal number specification - Hit [ESC] to return

If the fi1l pattern specified contains more bytes than was
requested by the number of bytes prompt (the second prompt)
then the warning message:

WARNING> Fill pattern has been truncated

will be displayed. This indicates that the entire fill
pattern could not be used to fill the block of memory with
data.

If the number of bytes specified exceeds the number of bytes
supplied in the fill pattern specification, then the fill
pattern will be used over again repeatedly until the
requested number of bytes have been filled with data. No
warning message will be given in this case.

. If the number of bytes specified takes the address beyond
the end of the addressable range of the memory, an error
message is displayed and the Fill command is aborted without
changing data in the memory. You will again be prompted for
the starting address so that you can start over.

Changing data in the program code memory is permitted even
when the code memory is mapped to the user board. In this
case, it is assumed that the memory on the user board is
used as a Von Neumann type memory. (i.e. code and data
reside in the same memory). This allows you to change the
code which resides in the RAM on your board. If however, it
is determined that the code memory on the user board is READ
ONLY, the following error message will be displayed:

User board code memory is READ ONLY

Upon completion of the Fill command, you are prompted for
another starting address for another fill.

8-10

Error messages which may be encountered when specifying the
starting address include:

Number is too large- the address specified was greater than
64K.

I11egal number specification- a non-hexadecimal character
was found in the address specification.

Symbolic debug not enabled- the symbolic debugging
capability is not enabled. Symbolic addresses are therefore
not allowed.

Improper address segment- the specified symbol was not an
address symbol for the selected memory space.

Undefined symbol- the symbol specified doesn't exist.
Address is out of range- é program code memory address was
specified which is below the program code memory's starting
address.

SFR not in internal memory- the special function register
specified does not reside in the internal data memory space.

Error messages which may be encountered when specifying the
number of bytes to fill include:

I11egal integer value- the number specified contained non-
decimal characters.

Error messages which may be encountered when specifying the
fill pattern include:

Too many bytes in pattern- the fill pattern contained more
than 32 bytes of data.

‘I11egal entry found- an entry was found in the fill pattern
which could not be identified as a number, a symbol, or a
character string.

IT11egal number specification- a non-hexadecimal digit was
encountered in the specification of a number.

I1legal digit for specified radix- an illegal digit for the
specified radix of a number was encountered.

No default radix provided- a number was specified without a
radix specifier.

8-11

Number is too large- a number specified either by a numberic
value or a symbolic number is greater than OFFh. The value
cannot be represented as a data byte.

Undefined symbol- the specified symbol doesn't exist.

IT1egal symbol type- the symbol specified was not a numeric
symbol.

Symbolic debug not enabled- the symbolic debugging
capability is not enabled. Symbolic numbers are therefore
not allowed. :

I1legal end of string- the end of the fill pattern was
encountered before a terminating character string delimiter
was found.

ITlegal string character- an apostrophe was found in a
character string which was followed neither by another
apostrophe nor a space. Such use of an apostrophe within a
character string is illegal.

Error messages which may be encountered during the fill
process include:

Address is out of range- the address specified is outside
the valid address range of the selected memory.

Byte count causes address out of range- the sum of the
specified starting address and the specified number of bytes
causes an illegal memory address to be generated.

User board code memory is READ ONLY- could not modify the
code memory on the user board.

Communication error - reset comm 1ink- a