
ICD-37B
FOR

~B051

USER'S MANUAL

ICD-37B
FOR

B051
USER'S MANUAL

Copyright © 1986, Us. ZAX CORPORATION. All Rights Reserved.
Part No. ZTP-Ill-XX, Rev. A. Printed: April 1986

Limitation on Warranties and Liability

lAX Corporation warrants this equipment to be free from defects in materials and
workmanship for a period of 1 (one) year from the original shipment date from
lAX. This warranty ;s limited to the repair and replacement of parts and the
necessary labor and services required to repair this equipment.

During the I-year warranty period, ZAX will repair or replace, at its option,
any defective equipment or parts at no additional charge, provided that the
equipment is returned, shipping prepaid, to lAX. The purchaser is responsible
for insuring any equipment returned, and assumes the risk of .loss during
shipment.

Except as specified below, the lAX Warranty covers all defects in material and
workmanship. The following are not covered: Damaged as a result of accident,
misuse, abuse, or as a result of installation, operation, modification, or
service on the equipment; damage resulting from failure to follow instruction
contained in the User's Manual; damage resulting from the performance of repairs
by someone not authorized by lAX; any lAX equipment on which the serial number
has been defaced, modified, or removed.

Limitation of Implied Warranties

ALL IMPLIED WARRANTIES, INCLUDING WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
PARTICULAR PURPOSE, ARE LIMITED IN DURATION TO THE LENGTH OF THIS WARRANTY.

Exclusion of Certain Damages

IN NO EVENT WILL ZAX BE LIABLE TO THE PURCHASER OR ANY USER FOR ANY DAMAGES,
INCLUDING ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES, EXPENSES, LOST PROFITS, LOST
SAVINGS, OR OTHER DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THIS
EQUIPMENT. THIS EXCEPTION INCLUDES DAMAGES THAT RESULT FROM ANY DEFECT IN THE
SOFTWARE OR MANUAL, EVEN IF THEY HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF IMPLIED WARRANTIES OR
LIABILITY FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE LIMITATION OR
EXCLUSION MAY NOT APPLY TO YOU. THIS WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS,
AND YOU MAY ALSO HAVE OTHER RIGHTS WHICH VARY FROM STATE TO STATE.

Disclaimer

Although every effort has been made to make this User's Manual technically
accurate, lAX assumes no responsibility for any errors, omissions, inconsistencies,
or misprints within this document.

Copyright

This manual and the software described in it are copyrighted with all
rights reserved. No part of this manual or the programs may be copied,
in whole or in part, without written consent from lAX, except in the
normal use of software or to make a backup copy for use with the same
system. This exception does not allow copies to be made for other
persons.

TABLE OF CONTENTS

1.

2.

.. INTRODUCTION
1.1. What is an In Circuit Emulator?

GETTING STARTED
2.1

2.2
2.3
2.4

Hardware Installation
2.1.1 RS-232C Interface Board Installation
2.1.2 RS-232C Cable Installation
2.1.3 Emulator Module Power Supply Cable Assembly
2.1.4 Powering Up the Emulator Module
Software Installation
Warm Start Feature
Getting Oriented

..

3. USER INTERFACE OVERVIEW
3.1 Menu Organization
3.2 Using Menus
3.3 User Options, Errors and Warnings
3.4 Directory Facil ity .. .

4. MAIN MENU

5.

6.

4.1 Main Menu Overview •..•....•..••..•...•••..•••••..•.•.•.•.•••..•••
4.2 Main Menu Screen
4.3 Load Conmand •••••••.•••••.••••••••••••••• " •••••••.•..••••••••••••
4.4 Upload Command
4.5 Download Command
4.6 Config Command
4.7 Restore Command
4.8 Store Command
4.9 Map Command ... 4.10 % (Macro) Command
4.11 Interrogate Command
4.12 Help Command
4.13 Exit Command ...
CONFIGURATION MENU
5.1 Configuration Menu Overview
5.2 Configuration Menu Screen
5.3 Execute Command
5.4 Change Command

..
5.4.1 Mode 1
5.4.2 Mode 2
5.4.3 Mode 3
5.4.4 Mode 4

ROMless part / 16 bit ext addr bus •.••.•...•••..•.
ROM part / NO ext address bus •••••••.•••••••.•.•••
ROM part / 8 but ext address bus •....••••..•...•••
ROM part / 16 bit ext address bus ••••..••••••••.•.

INTERROGATE MENU
6.1 Interrogate Menu Overview
6.2 Interrogate Menu Screen
6.3 Go Command
6.4 S-Step Command
6.5 Reset Command
6.6 Fantom (Phantom) Command •..•.•.•••••••.•••..•.••.•....•••••••..•..
6.7 Brk-cnt (Break-Count) Command
6.8 Break/Trace-Trigger Points

iii

1-1

2-1
2-1
2-1
2-3
2-3
2-4
2-5
2-6
2-6

3-1
3-1
3-2
3-3
3-3

4-1
4-1
4-1
4-2
4-4
4-5
4-6
4-7
4-8
4-9
4-11
4-11
4-12
4-12

5-1
5-1
5-1
5-1
5-2
5-4
5-4
5-5
5-7

6-1
6-1
6-2
6-5
6-9
6-11
6-13
6-18
6-19

7.

8.

6.9 Increment Pass-Count Points
6.10 Loop-cnt (Loop-Count) Command
6.11 Trace-trig . (Trace-Trigger) Command
6.12 Help Command
6.13 Quit Command

· · · 6.14 Modify-Regs Command
6.15 Data-Mem Command
6.16 Xdata-Mem Command
6.17 Code-Mem Command
6.18 View-trace Command

.. ·
• ' •••••••••• e •• e .••••••••••• e ••••••••••••••••••••

6.19 START Trace-Tri gg.er .•.•.....•.••..•.•....••.•..•.........•..•....
6.20 CENTER Trace-Trigger ••• ~.
6.21 END Trace-Trigger
6.22 Experiment Command

... ...
6.23 I/O Cornrnand ••••••••••••••••••••••• e.* •••••••••••••••••••••••••••••

6.24 Pass-cnt (Pass-Count) Command

EXAMINE / MODIFY PROGRAM CODE MEMORy ••••••.•••••.•••.••..••••••••••••••
7.1 Examine / Modify Program Code Memory Overview ••••••••••••••••••••
7.2 Examine / Modify Program Code Memory Screen
7.3 Dissassemble Command · .. . 7.4 Assemble Command
7.5 Table Command
7.6 Help Command

..
7.7 Quit Command ·
EXAMINE/MODIFY INTERNAL DATA MEMORY
8.1 Examine/Modify Memory Data Overview •••••••••••••••••••••••••.••••
8.2 Examine/Modify Memory Data Screen
8.3 Dump Command
8.4 Enter Command
8.5 Fill Command
8.6 Move Command

.. ,

... 8.7 Search Command
8.8 Compare Command
8.9 RAM-Bits Command
8.10 Help Command
8.11 Quit Command

... ·

9. THE EXPERIMENT
9.1 What is an Experiment?
9.2 Specifying Breakpoints ...

9.3
9.4
9.5

9.2.1 PC Address Breakpoints
9.2.2 PC Address Range Breakpoints
9.2.3 Opcode Value Breakpoints
9.2.4 Opcode Class Breakpoints
9.2.5 Direct Byte Address Breakpoints
9.2.6 Direct Byte Address Range Breakpoints •••••.•••••••••••••••
9.2.7 Direct Bit Address Breakpoints
9.2.8 Direct Bit address Range Breakpoints
9.2.9 Immediate Operand Value Breakpoints
Complex Conditional Statements
Constructing An Experiment ,
Experiment Language Syntax Summary ••••.•••••••••••••••.••••••••••

iv

6-21
6-24
6-25
6-26
6-26
6-26
6-31
6-31
6-31
6-32
6-33
6-35
6-37
6-39
6-39
6-39

7-1
7-1
7-1
7-2
7-6
7-12
7-12
7-12

8-1
8-1
8-1
8-3
8-5
8-8
8-13
8-16
8-20
8-23
8-25
8-25

9-1
9-1
9-2
9-3
9-3
9-4
9-5
9-5
9-6
9-7
9-8
9-9
9-9
9-10
9-11

10. EMAMINE/MODIFY EXPERIMENT MENU
10.1 Examine/Modify Experiment Menu Overview
10.2 Examine/Modify Experiment Menu Screen
10.3 Edit Command
10.4 Compile Command
10.S Load Command
10.6 Store Command .•...•.•.....•.••.•
10.7 Delete Command .•...•.•.•..•••...
10.8 Opcode Command •..•...•..•...••••
10.9 Help Command
10.10 Quit Command

11. EXPERIMENT EDITOR
11.1 Experiment Editor overview
11.2 Experiment Editor Screen
11.3 Using the Experiment Editor
11.4 Line Entry Mode
11.5 Edit Mode

11.6

11.S.1 Edit-Replace Mode
11.5.2 Edit-Insert Mode
Edit Command Mode
11.6.1 Edit Command
11.6.2 Save Command
11.6.3 Quit Command

Overview
12. OPCODE CLASS MENU

12.1 Opcode Class Menu
12.2 What is an Opcode
12.3 Opcide Class Menu
12.4 Load Command

Class?
Screen

12.S Edit Command ..
12.5.1 File Prompt Mode -................... .

12.6
12.7

12.5.2 Class Selection Mode
12.5.2.1 Edit-Class Command
12.5.2.2 Delete-Class Command
12.S.2.3 Create-Class Command
12.5.2.4 Rename-Class Command
12.5.2.5 Quit Command

12.5.3 Class Edit Mode
Help Command
Qu it Command

13. MACRO MENU •......•..•...•..•....
13.1 Macro Menu Overview ...•....

........................

13.2 Macro Menu Screen
13.3 Execute Command
13.4 Learn Command

........................ ~

13.5 Help Command
13.6 Quit Command

14. A TUTORIAL EXAMPLE .•.......•........
14.1 Introduction
14.2 Getting Started•......•....
14.3 The Program
14.4 a Sample Session .•.........•...

v

10-1
10-1
10-1
10-1
10-1
10-6
10-7
10-8
10-8
10-8
10-8

11-1
11-1
11-1
11-2
11-2
11-3
11-5
l1-S
l1-S
11-6
11-6
11-7

12-1
12-1
12-1
12-2
12-2
12-4
12-4
12-S
12-7
12-7
12-8
12-9
12-10
12-11
12-18
12-18

13-1
13-1
13-1
13-1
13-3
13-5
13-5

14-1
14-1
14-1
14-2
14-4

15. SYSTEM REQUIREMENTS .••..•••..••••....••••..••.•..•..•••.•...•.....•.• 15-1
15.1 Hardware Requirements e •••••••••••.••••••••••••••••••••• 15-1
15.2 Software Requirements .•... 15-1

A. TROUBLE SHOOTING •...••••..•.•••••••••••••..••.••••.....••.•.•..• ~ •.• ; A-I
A.1 Cannot Establish Communication .••••••••••...•...•••..••••.•.•••• A-I

A.I.! Red LED is NOT Glowing•.........••........ A-2
A.1.2 Green LEO ;s NOT Glowing ..••••••••••••..••••.•••••••..••• A-3
A.l.3 Baud Rate Selection ...•......•.••.•.•..•..•••.••..•...... A-4
A.1.4 RS-232C Hardware Check ..•.•.••••••••••...•.••.•••••..••.• A-4

A.2 Excessive Number of Communication Errors ...••..••...••••••••••.• A-4

B. ERROR MESSAGE SUMMARY ... 8-1
B.1 PLINK86 Overlay Loader Errors ••••.•.••.••••.•...........•••••••• 8-1
B.2 Errors Messages ... 8-1
B.3 DOS Errors Messages ..••••..••...•..•••••..••...••••••.•••.••.... B-9

C. SIGNAL SPECIFICATIONS AND DIFFERENCES ••.•...•....•......••..•..•.•••. C-1
C.l Signal Specifications •...........••........•..•......••......... C-l
C.2 Probe Cable Characteristics •..•.••••...•••.•.•.•••.•.•••.....••. C-4
C.3 Signal Differences .. C-4

D. ·OTHER DIFFERENCES ... 0-1
0.1 TimerO and Timer1 Values••••••••••.••......•.......•....... 0-1
D .. 2 Serial Port ... D-1
0.3 Port Registers ..•....•...••••....•.•.••..••••••.••...••.....••.. 0-1

E. CHARACTER SETS AND RESERVED SYMBOLS•..•••••..•..•.•......•.••. E-1
E.1 Single Line Code Assembler Character Set ..••..•...•••••.••...... E-1
E.2 Experiment Compiler Character Set ••..•..•.••.•..•....••••••..... E-1
E.3 Fill and Search Pattern Character Set •.•..•..••.•..••••••.•..... E-1
E.4 Experiment Compiler Reserved Keywords E-1

F. PREDEFINED BYTE AND BIT ADDRESSES ..•••....••.•.•...•...•.••...••..... F-1
F.1 8031 Predefined Addresses ..••.•.••...•.....•..•......•...•.•.... F-1

F.1.1 Predefined Byte Addresses•••••..•.....•..•.•.. ~ F-1
F.1.2 Predefined Bit Addresses •..••...•.•..•..•.....••.......... F-1

F.2 8032 Predefined Addresses •.....•••..••.•.......•................ F-2
F.2.1 Predefined Byte Addresses ..•.•.......•..•....•.•••........ F-2
F.2.2 Predefined Bit Addresses•.•...•••••••••..••.•.•.•..... F-3

G. PREDEFINED OPCODE CLASSES •.......•.••••..•.••.....•.•••..•.....•••..• G-1
G.1 OPCODE Class PGMFLOW•.••..•••......................... G-1
G.2 Opcode Class STACK ••••••••••••••.•••••••.•••••••.•.••••.•••••••.• G-2

vi

CHAPTER 1
INTRODUCTION

1.1 What is an
In-Circuit
Emulator?

The ICD-378 for 8051 emulator is an in-circuit emulator
which is designed for use in developing and debugging
circuits based on an Intel single chip microcontroller. The
lCD-series emulators currently support the following Intel
single chip microcontrollers:

ICD-378 for the 8051
8052
8031
8032

An In-circuit Emulator is a tool which enhances the
productivity of system design engineers. It is used by
engineers who are designing a system which incorporates a
microcontroller. It provides for the engineers, the ability
to interactively control and examine the state of the system
at any chosen time. This is essential for speeding
up the debugging process.

As the name implies, this capability is provided by removing
the microcontroller from the system and replacing it with
the emulator's probe. Thus the emulator's probe is In the
Circuit in place of the microcontroller. The emulator probe
is in turn connected to the host computer. It is through the
computer (and through the probe) that the system can be
completely controlled.

You may ask 'why is this important?'. It is not enough for
the emulator to simply behave as if it were the target
processor (although this is a requirement also). The
emulator must also provide read/write access to all signals
and all data to which the microcontroller itself has access.
This includes information which resides inside the micro­
controller itself. Without this access, the engineer may NOT
be able to completely control and debug the system.

1-1

The many uses of the emulator can be easily visualized after
we examine a typical system design cycle.

Phase:

conception
architecture

DESIGN CYCLE

software/hardware prototype

integration
manufacturing testing
field testing

Tools Used:

RTL simulator
logic simulator

emulator/simulator
CAD/CAM

emulator
emulator/testor
emulator/testor

The first use of an emulator in the design cycle is in the
software development phase. In this phase, the software
which is going to run on the microcontroller ;s being
developed. The emulator provides an ideal environment in
which to debug the software. It executes the program exactly
as the target would (in real timel and it provides all of
the interactive debugging capabilities. By utilizing the
emulator to develop the software, it can be completely
debugged (except for the hardware interface) before it is
integrated with the system hardware.

The second use of the emulator in the design cycle is in the
integration of the target software and the system hardware.
This constitutes the major use of the emulator. Even when
the hardware and software have each been individually
debugOged, new probl ems can surface when they are joi ned
together. The emulator ;s used in this case to find and
debug these interface problems.

After a prototype has been completely debugged, the emulator
can then be used to test the specs of the system. Worst case
parametric tests can be developed and tested on the
prototype. This provides the designer with valuable
information about the limitiation of the system. It also
provides test programs which can be used in the
manufacturing process.

1-2

The third use of an emulator is in the manufacturing phase
of the product. The same test routines which were used to
develop and debug the prototype (or even more comprehensive
test routines) can be used to test the finished products
after manufacturing. Any non-functioning units can be. easily
debugged using the emulator's full range of debugging
capabilities.

The fourth use of an emulator is in the field service phase
of the product. The ICD can run on any IBM PC or PC
compatible host computer (including the PC compatible
portables). If the field location already has a host
computer, the field service team need only carry with them,
the emulator module itself (which can easily fit in a
briefcase) and some floppy disks. If a host computer isn't
available, a portable host can also be easily brought along.
This eliminates the need for carrying around bulky and heavy
test equipment, while still providing the power of
an emulator debugging environment.

1-3

CHAPTER 2
GETTING STARTED

2.1 Hardware Installation

The following is a step by step procedure for the
installation of the ICD hardware.

2.1.1 RS-232C Interface ,Board Installation

The following signals are used in a standard RS-232C
interface:

TxD - transmit data
RxD - receive data
RTS - request to send
CTS - clear to send

DSR - data set ready
DCD - data carrier detect
DTR - data terminal ready

A standard RS-232C interface is configured as follows:

HOST PERIPHERAL

Signal Pin Cable Pin Signal
------ ------
Ground 1 ----------------- 1 Ground
TxD 2 ----------------) 2 RxD
RxD 3 <---------------- 3 TxD
RTS 4 ----------------) 4 RTS
CTS 5 <---------------- 5 CTS
DSR 6 <---------------- 6 DSR
Ground 7 ----------------- 7 Ground
DCD 8 <---------------- 8 DCD
DTR 20 ----------------) 20 DTR

Figure 1.

Notice that the cable connects each of the pins on the host
side to its counterpart on the peripheral side. It is
important that this 1:1 correspondence is maintained.

2-1

The ICD utilizes a 3 wire version of this configuration.
It is configured as follows:

HOST ICD

Signal Pin Cable Pin Si gna'
------ ------
Ground 1
TxD 2 ----------------> 2 RxD
RxD 3 <----------~----- 3 TxD
RTS 4
CTS 5
DSR 6
Ground 7 ----------------- 7 Ground
DCD 8
OTR 20

Figure 2.

Pins 1, 4, 5, 6, 8 and 20 of a standard RS-232C interface
are not used. The common ground is provided through pin 7.
The RTS, CTS, DRS, OTR and OCD are not required in the ICD
communication protocol. The configuration will actually be
as follows:

HOST ICO

Signal

TxO
RxO
Ground

Pin

2
3
7

Cable Pin Signal

----------------> 2
<---------------- 3
----------------- 7

Fi gure 3.

2-2

RxD
TxD
Ground

The ICD RS-232C cable is a 3 wire cable which is shown in
Figure 3. A standard RS-232C cable (shown in Figure 1.)
can also be used to connect the host with the emulator
module provided the emulator end of the cable has a male
connector.

If you have purchased the RS-232C interface board from ZAX,
the instructions for installing the board in the host
computer are packaged with the board.

The RS-232C interface board which is used with the ICD
MUST be configured as COMI.

2.1.2 RS-232C Cable Installation

Attach the RS-232C cable to both the RS-232C connector on
the interface card (in the card slot at the back of the
host) and to the connector on the ICD module. Be
sure that both ends are seated firmly and securely.

2.1.3 ICD Module Power Supply Cable Assembly

If you have purchased the ICD Power Supply, you can
skip this section because your power supply cable comes
preassembled.

If you are using your own power supply to power the ICD
module, please ensure that it meets the following
specifi cati ons:

+ 5VDC +- 5%
2.0A
50mV ripple peak to peak

+ 12VDC +- 3V
150mA

- 12VDC +- 3V
150mA

A 5 wire connector is supplied with the ICD which
you can use to supply power to the ICD module. The
wires themselves are not provided. The connector accepts
wire gage #18 A.W.G. Figure 4 shows the order in which the
power lines should be supplied.

2-3

2.1.4. Powering Up

Power Supply cable key:

Pin #1 = Ground

Pin #2 = Ground

Pin #3 = +12VOC

Pin #4 = -12VDC

Pin #5 = +5VDC

the Emulator Module

The ICD module can be powered up by first inserting
the power cable into the power connector on the side of the
module. The lCO is shipped with the emulator probe
inserted in the DIP socket on the Simulator board. Be sure
that the probe is still inserted in that socket and that
it is in the correct orientation. This can be determined by
matching pin 1 on the emulator probe with pin 1 on the DIP
connector.

Next turn on the power supply. If you look into the air
vents on the side of the emulator module toward the end of
the RS-232 connector, you can see two LEOs. If the red LED
is on, the power is supplied properly to the emulator
module. If the green LED is on, the oscillator in the
emulator is running and the emulator is ready to establish
communication with the host.

If the LEOs were not on as described above, see Appendix A
for the trouble shooting guide.

Turn off the power supply until you are ready to begin an
emulation session.

2-4

2.2 Software Installation

The ICD user interface software is supplied on 1 5-1/4"
double sided double density floppy disk. It is formatted
under PC DOS with 9 sectors per track. The first thing you
should do is to make a backup copy of the software. You can
copy the program a file at a time or with the DOS
'd~skcopy' command. The files which are included with the
ICD system are:

@.exe
$mode 1
$hl pfil e
$confi g
demo.dbg
demo. hex
demo.asm
demo~exp
opclass.opc

Be sure that your working copy of the rCD software ;s not
write protected. This enables the rCD system software to
update the $config file when you change the system
configuration of your ICD environment.

When running the rCD user interface software, ALWAYS be
sure that the ICD floppy disk is in the DEFAULT disk drive.
The program will not run properly if it is not in the
DEFAULT drive.

During the course of debugging a product, you will most
likely create many different test files. The following is a
listing of the different types of files which are used
with the ICD.

File Types

assembly language source code
assembled hex files
assembled symbolic debug code
experiment files
macro command files
opcode class files
system status files
macro command files

2-5

Formats

text
Intel hex object format
ICD object format
text
ICD command format
ICD opcode class format
ICD system status format
ICD macro command format

It is suggested that you adopt a naming strategy which will
avoid confusing these files with each other. ICD file
formats are NOT interchangable with each other. If you try
to use a file in a context other than that for which it was
created, you will get a FILE FORMAT error.

If you want to use the opcode class file 'opclass.opc' in
your experiments, it is suggested that you copy it onto the
disk with your other working files. This is because opcode
class files are opened in the read/write mode (so you can
delete opcode classes, edit opcode classes and create new
opcode classes). If you used the opcode class file on the
system disk (which should be write protected), you would
encounter an error when you tried to update the file.

2.3 Warm Start Features

The ICD system provides a warm start feature. A warm start
is achieved through the following sequence:

1) Enter the ICD environment.
2) While in the ICD environment, execute the system

configuration command.
43) Leave the lCD environment.

) At some later time, re-enter the ICD environment.

The reentering of the ICD environment is called a warm
start. Communication with the emulator will automatically
be reestablished and the map settings (see chapter 4.9) for
code and external data memories will be reset to their
prior values. The register values will also be initialized
to the actual values read from the emulator. This assumes
of course that the emulator module's power has been
maintained in between ICD debugging sessions.

2.4. Getting Oriented

The ICD User's Manual provides a detailed description of
the use and capabilities of the ICD system. It is
strongly recommended that you read through the manual to
familiarize yourself with the system. After having read the
manual (not as an alternative to reading it) it is
suggested that you work through the tutorial example which
is presented in Chapter 14.

2-6

CHAPTER 3.
USER INTERFACE OVERVIEW

3.1 Menu Organization

The menu organization of the ICD user interface software is
shown below. Under each menu item can be found the chapter
or sub-chapter in which that menu item is described.

CO~FIG L6AD UplOAD
(Chap.5) (4.3) (4.4)

1---- EXECUTE (5.3)

1 ____ CHANGE (5.4)

MAIN
(Chap.4)

I
INTERiOGATE

(6)

I
REstORE ST6RE Mlp %-~acro
(4.7) (4.8) (4.9) (12)

EXECUTE (12.3) ----I
LEARN (12.4) I

1 1-..-----,.--...------.----.----I.----~I ------,.1---'
GO S-STEP RESET PHANTOM BRK-POINT LOOP-COUNT INTERRUPT MODIFY-REGS EXPERIMENT

(6.3) (6.4) (6.5) (6.6) (6.7) (6.8) (6.9) (6.10) (10)
1

OATI-HEM XO!TA!MEH EOIT COMJlLE OP[ODE loID ST6RE DELEt
(8) (8) (11) (10.4) (12) (10.5) (10.6) (10.7)

1 1---------->1 I
- DISASSEMBLE (7.3) _'_._.
- ASSEMBLE (7.4) 1"1

TABLE (8)----------> LoAD EDIT
- (12.4) (12.5)

I I I' DUMP ENTER FILL MOVE SEARCH COMPARE RAM-BITS (Data~Mem only)
(8.3) (8.4) (8.5) (8.6) (8.7) (8.8) (8.9)

3-1

3.2 Using Menus

A menu screen is structured as follows:

Commandl Command2 Command3 •.••
Quick help description of Commandl

MENU NAME

Errors, warnings or messages

The first line of the screen will contain a list of the
command options available for that menu. The second line
will contain a one line description of the highlighted
command (see below). The middle of the screen will contain
the men's name. The line at the bottom of the screen will
contain any errors, warnings or messages encountered during
the execution of a command.

Menu commands may be selected for execution by either of
the following two methods. The first method is to move the
highlight to the desired menu command and then hit the
RETURN key. Upon first entering a menu, the first command
on the left is always highlighted. The highlight may be
moved through the use of the cursor control keys on the
numeric keypad at the right of the keyboard. The cursor
control keys cursor right (--» and cursor down (+) will
move the highlight one command to the right. The cursor
control keys cursor left «--) and cursor up ,t) will move
the highlight one command to the left. In either case wrap­
around occurs when the end of the command list is
encountered.

The second method of executing menu item is to type the
first letter of the desired item in either upper or lower
case. Only the first character of the item name is required
since no two items in any given menu begin with the same
letter.

3-2

Any other character will be ignored with the exception of
CTRL-C. Typing CTRL-C at any time will abort the program
with the ensuing loss of any information which was not
previously stored. The preferred method of exiting the
program is by executing the Exit command in the Main Menu.

3.3 User Options, Errors and Warnings

The system software was designed to be user friendly and
fault tolerant. All menus are operated as described above.
All tasks other than menus will prompt you for the required
information. Any options open to you will be presented at
the bottom of the screen. Thus you will always know what
your choice of actions is.

When you are prompted for addresses or data by the system,
it will always inform you of the required radix. When
responding to these prompts, only the numeric value in the
required radix should be provided. A radix indicator is not
necessary since the system expects the information to be in
the specified radix.

Any errors or warnings will also be displayed at the bottom
of the screen as they occur. These messages are in English
text and are explicit enough to determine the nature of the
error. A fuller description of all error and warning
messages can be found in Appendix B.

Whenever a command is executed which will take some time to
perform, the WORKING sign will appear at the bottom of the
screen. It will be flashing. As long as the display is
flashing, the system is busy and will not accept commands.

3.4 Directory Facility

The ICD provides a directory facility through which you can
get a listing of the entries in any directory. The facility
can be invoked any time the system prompts you for a file
name. Responding to the prompt which appears as follows:

Enter file name> ?
Enter disk or directory name>

MENU NAME

3-3

The response can be a disk drive specification, a directory
pathname, or a [RETURN] which selects the current default
directory.

A disk drive is specified by its drive designator. The
valid drive designators are A through P. when specifying a
drive, you do not need to specify the 1:1 suffix. Anyone
letter response is assumed to be a drive specification.

A directory path name specification can consist of a drive
specification and/or a path of directory names to the
desired directory. Directory names are separated by
backslashes (\).

Examples of valid responses are:

[RETURN]
a
a:
\dirl\subdirl
c:\dirl\subdirl\subdir2

default directory
top directory o~ A: disk
top directory on A: disk
subdirectory on on default disk
subdirectory on C: disk

The files in the directory will be in alphabetical order.
The directory display will appear as follows:

Enter file name> ?
Enter disk or directory name> _

Directory for <disk or directory pathname>

filel.ext file2.ext file3.ext file4.ext file5.ext
file6.ext file7.ext file8.ext file9.ext filelO.ext

The number of files in a directory may exceed the display
area of one screen. In this case, the screen fills up from
top to bottom until the display area is full. As more names
are listed, the display area is scrolled upward one line
and a new line with five names appears on the bottom of the
display area.

3-4

You can halt the scrolling action at any time by hitting
the [SPACE BAR] key. This puts the system in the single
step display mode. After entering the single step display
mode, one new line of five names is displayed each time you
hit the [SPACE BAR] key. Normal display scrolling can be
resumed by hitting ANY key other than the [SPACE BAR] key.
The single step display mode ;s automatically terminated
when the directory listing ;s completed. Once the di~ectory
listing has begun, it can be aborted at any time by hitting
the [ESC] key.

If the specified directory contains no files, the following
message is displayed:

Directory is empty

Error messages which may be encountered when specifying the
disk drive or directory name include:

Illegal drive specification - the specified drive
designator is not between A and P.

Directory not found - a directory was specified which did
not exist or couldn't be reached.

3-5

CHAPTER 4
MAIN MENU

4.1 Main Menu Overview

The Main Menu is used to initialize system parameters prior
to running an emulation experiment, to call the Interrogate
Menu and to terminate a session. In this menu you can:

1)
2)

3)

4)
5)
6)
7)

8)
9)
10)

4.2. Main Menu Screen

load program code memory from disk files
upload program code memory from your target system
board
download user board external data memory from disk
files
call the system Configuration Menu
restore.a previously saved system status
store the system status in a disk file
setup the mapping for the code and external data
memories
create or execute a macro command file
call the Interrogate Menu
terminate a session.

The Main Menu screen appears as follows:

Load Upload Dnload Config Restore Store Map % Interrogate
Help Quit (Quick help line for highlighted command)

MAIN MENU

Upon entering, the Load command will be highlighted.

;~-l

4.3 Load Command

The Load command is used to load the pro~ram code memory
with object cod~ from a disk file. You wlll be prompted to
supply the name of the disk file. The Load screen appears
as follows: .

Enter file name>

LOAD CODE MEMORY FROM A FILE

The name should be a complete file name specification
including a drive specification. Hitting the I?I key in
response to the prompt will call the directory facility
(see Chapter 3) through which you can get a listing of the
entries in any specified directory. Hitting the [RETURN]
key in response to the prompt will abort execution of the
command. If the file cannot be opened or cannot be found,
you will be notified of the error.

Three different object file formats are accepted: standard
Intel hex file format, Intel obsolute object module format
and ZLINK obsolute object file format. Standard Intel hex
files can be created by assembling your program code with
most of the currently available 8051 cross assemblers. Intel
object module files can be created by linking/locating
modules with Intel's RL51 program. These source modules can
be either asembled Intel ASM51 object modules or compiled
PLM object modules. ZLINK absolute object files are created
by the ZLINK 8051 fam; ly cross assembler.

The difference between the file formats is that the Intel
hex format contains only the object code. The Intel object
module format and ZLINK format contain, along with object code,
the symbols used in the assembly language file (of PLM
file) and can thus be used for symbolic debugging. In
addition, ONLY the ZLINK file contains information which
allows the use of the more sophisticated breakpoint
triggering conditions. These include: opcode values, opcode
classes, direct byte addresses, direct byte address ranges,
direct bit addresses, direct bit address ranges and
immediate operand values. (See chapter 9 for details).

4-2

You need not specify which format your object file
contains. The system will make that determination. If while
reading in the file, an error is encountered, an error
message will be displayed. Because these object files are
created by computer programs, please ensure that our object
file is in an acceptable format.

If you wish to utilize the symbolic debugging capabilities
of the system, you may use the ZLINK 8051 family cross·
assembler with the debug switch to create your object code
file. (See the ZLINK 8051 Family Assembler User's Manual for
details). The symbolic debugging capability is automatically
enabled when you load the ZLINK absolute object code file
or an Intel obsolute object code file into the system.

A warning message which may be encountered when executing
this command is:

Program memory overflow: the specified file contains code
at an address beyond the address limits of the emulator's
code memory.

Error messages which may be encountered when executing this
command include:

Must establish communication first - the code cannot be
downloaded to the emulator before communication with the
emulator has been e~tablished.

File not found - the specified file could not be found on
the specified drive, the default drive, or the A: drive.

File is not proper Intel hex format- the file was being
processed as an Intel hex formatted file but some
formatting error was encountered while records were being
read.

File is not proper absolute object format- the file was
being processed as a ZLINK absolute object formatted file
but some formatting error was encountered while records were
being read.

4-3

4.4 Upload Command

The Upload command is used to load the program code memory
with object code from your target system board. It is
assumed that you have memory in the external code memory
space and that this memory contains your program object
code. You will be prompted to supply the starting address
of your code that you wish to upload. (The normal response
is 0). The Upload screen appears as follows:

UPLOAD PROGRAM CODE MEMORY FROM TARGET BOARD

Enter starting address (in hex) > _

Hitting the [RETURN] key in response to the prompt will
abort execution of the command. Execution of this command
copies program code, starting at the address specified,
into the emulator program code memory. The amount of code
copied is determined by the size of the program code memory
option you have purchased.

PLEASE NOTE that code uploaded from any starting location
other than 0 can ONLY be examined in the raw memory mode
(see Chapter 10). It cannot be assembled, disassembled or
used to run an experiment.

Error messages which may be encountered when executing
this command include:

Number is too large- the starting address specified exceeds
64K

Illegal number specification- the address contains an
illegal hexadecimal digit.

Symbolic debug not enabled- the symbolic debugging
capability is not enabled. Symbolic addresses are therefore
not allowed.

Must establish communication first- an attempt was made to
issue a command to the emulator module before
communication was established.

4-4

Communication error - reset comm link- a non-recoverable
error occurred. Communication must be reestablished via the
Execute command in the Configuration Menu.

RS232 transmjssion problem - check board- the RS232 board
could not perform a transmission. Check your RS232 board.

4.5 Download Command

The Download command· is used to download data from a disk
file to the user board1s external data memory: This command
can be used when the external data memory is to be initialized
or.when the user board1s external memory is configured as a
Von Neumann type memory. (I.E. both code and data reside in
the same memory). If the latter is true, the Download
command can be used to write the code into the memory.

You will be prompted to supply the name of the disk file.
The Download screen appears as follows:

Enter file name>
Are you downloading code memory? (YIN) _

DOWNLOAD MEMORY FROM A FILE

The name should be a complete file name specification
including a drive specification. Hitting the I?I key in
response to the prompt will call the directory facility
(see Chapter 3) through which you can get a listing of the
entries in any specified directory. Hitting the [RETURN]
key in response to the prompt will abort execution of the
command. If the file cannot be opened or cannot be found,
you will be notified of the error.

Three different object file formats are accepted: standard
Intel hex file format, Intel absolute object module format
and ZLINK absolute object file format. You need not specify
which format your file contains. The system will make that
determination. If while reading the file, an error is
encountered, an error message will be displayed.

After entering a valid file name, you will be asked whether
or not you are downloading code memory. This is to
determine if the external memory on your user board is a
Von Neumann type memory. Only a Y or N response will be
accepted as a response to this prompt.

4-5

4.6 Config Command

A negative response (N) indicates that the data will be
used as external data memory only. The emulator's code
memory will not be affected by this command. A positive
response (Y) indicates that the data is the code for a Von
Neumann type memory. In this case, the code will _also be
loaded into the emulator's code memory and any symbology
(if a debug file is loaded) will be loaded into the
system's symbol table.

A Warning message which may be encountered when downloading
code with this command is:

Program memory overflow- the specified file contains code
at an address beyond" the address limits of the emulator's
code memory.

This message informs you that the emulator's code memory is
not big enough to contain the entire code. In any event,
ALL code is downloaded to the user board memory, even when
this message is encountered.

Error messages which may be encountered when executing this
command include:

Must establish conmunication first- the code cannot be
downloaded to the emulator before communication with the
emulator has been established.

File not found- the specified file could not be found on
the specified drive, the default drive, or the A: drive.

File is not proper Intel hex format- the file was being
processed as an Intel hex formatted file but some
formatting error was encountered while records were being
read. .

File is not proper absolute object format- the file was
being processed as a ZLINK absolute object formatted file
but some formatting error was encountered while records were
being read.

The Config command calls up the system Configuration menu
which allows you to set up the system's configuration as
specified by the system configuration file. It also allows
you to change the configuration specification in the
configuration file. The system configuration specification

4-6

4.7 Restore Command

includes the baud rate used for communication between the
emulator and the host compputer. For the lCD-51 and.ICD-52
emulators, it also includes the mode of operation and the
configuration of the external data bus (if any).

(See Chapter 5 for a complete description of the
Configuration Menu.)

The Restore command is used to restore the system status to
some previously saved state. You will be prompted to supply
the name of the disk file which contains the saved status.
The Restore screen appears as follows:

Enter file name>

RESTORE SYSTEM STATUS FROM A DISK FILE

The name should be a complete file name specification
including a drive specification. Hitting the '?'-key in
response to the prompt will call the directory facility
(see Chapter 3) through which you can get a listing of the
entries in any specified directory. Hitting the [RETURN]
key in response to the prompt will abort execution of the
command. If the file cannot be opened or cannot be found,
you will be notified of the error. The status file has a
file format which is recognizable to the system. If the
specified file's format is not that of a status file, an
error message will be displayed.

Error messages which ma·y be encountered when executing this
command include:

File not found- the specified file could not be found on
the specified drive, the default drive, or the A: drive.

Illegal System Status File Format- the file specified was
not the proper format for a system status file.

Must establish communication first- an attempt was made to
issue a command to the emulator module before communication
was established.

4-7

4.8 Store Command

Communication error - reset commm link-a non-recoverable
error occurred. Communication must be reestablished via the
Execute command in the Configuration Menu.

RS232 transmission problem - check board- the RS232 board
could not perform a transmission. Check your RS232 board.

The Store command is used to save the current status of the
system in a disk file. You will be prompted to supply the
name of the disk file ;n which you want the status saved,
whether or not you want the contents of the emulator's
program code memory saved and whether or not you want the
contents of the external data memory saved. The Store
screen appears as follows:

Enter File name>

STORE SYSTEM STATUS IN A DISK FILE

Save program code memory [YIN]? >
Save external data memory [YIN] > -
Enter memory size in KBytes > _ -

The file name should be a complete file name specification
including a drive specification. Hitting the I?I key
response to the prompt will call the directory facility
(see Chapter 3) through which you can get a listing of the
entries in any specified directory. Hitting the (RETURN)
key in response to the file name prompt will abort
execution of the command. If the file cannot be opened, you
will be notified of the error. Parameters which are always
stored include:

Special function registers
Internal data memory
The current mappings of the code and external data

memories
The current emulation experiment
The current PC value
The name of the OPcode class file being used (if any)
Any opcode classes which are currently loaded

4-8

4.9 Map Command

If you choose to save the program code m~mory, the
parameters which are stored are:

The contents of the emul ator' s pro-gram code memory
All user defined symbols (if symbolic debug. is enableQ)

If you choose to save the external data memory, you will be
prompted for the size of the external data memory in your
system. This number should reflect the size of the
emulator's external data memory PLUS any external data
memory which resides on your target system board. You can
therefore save the contents of the entire external data
memory space up to 64 KBytes.

Error messages which may be encountered when executing this
command include:

Cannot open file- a file could not be opened in the write
mode on the specified disk.

Illegal integer value- the number used to specify the size
of the external data memory contained an ill egal digit.

Number is too large- the number specified for the size of
the external data memory in KBytes is greater than 64.

Must establish communication first- communication was never
established with the emulator module or was not
reestablished after a communications error occurred.

Communication error - reset comm link- a non-recoverable
error occurred. Communication must be reestablished via the
Execute command in the Configuration Menu.

RS232 transmission problem - check board- the RS232 board
could not perform a transmission. Check your RS232 board.

The Map command is used to select where the program code
memory and/or the external data memory will be accessed
during an emulation. Each of these memories can be mapped
to either the Emulator or to the User Board. The mappings
indicates where the emulator module expects to access the
memory in question. When the Emulator is selected as the
mapping, all memory accesses will be made to the memory
supplied as part of the emulator. When the User Board is

4-9

selected, all memory accesses will be made to the memory on
the user1s board regardless of whatever memory is supplied
in the emulator. The Map screen appears as follows:

Code External-Data Help Quit
(Quick hel p description for 1 i ghl ighted command)-

ME~iORY MAP MENU

MEMORY MAPPING

Program Code Memory (mapplng)
External Data Memory (mapping)

The mapping displayed for each of the memories indicates
the current mapping selected. Both memories are mapped into
the Emulator upon a cold system startup. The code and
External-Data commands are toggle switches which will switch
the mappings alternately between the Emulator and the User
Board upon each execution of the command.

Please Note that when these memories are mapped to the
Emulator, any accesses to addresses beyond the range of the
memory options which you have purchased will
automatically wrap around onto your user board.

Error messages which may be encountered when executing this
command include:

Must establish communication first- communication was never
established with the emulator module or was not
reestablished after a communications error occurred.

Communication error - reset comm link- a non-recoverable
error occurred. Communication must be reestablished via the
execute command in the Configuration Menu.

RS232 transmission problem - check board- the RS232 board
could not perform a transmission. Check you RS232 board.

The Help command is used to display the detailed
description of the function of each of the commands in the
Map Menu.

4-10

Error messages which may be encountered when executing the
Help command include:

Help file not found- the file "HLPFILE" could not be found
on either the default or A: drives.

The Quit command is used to return to the Main Menu •

. 4.10 % (Macro) Command

The % (Macro) command calls up the Macro Menu which allows
you to create or execute a macro command file.

(see Chapter 12 for a complete description of the Macro
Menu.)

Error messages which may be encountered when executing this
command include:

A macro function is currently invoked- macro commands may
not be nested. It is therefore illegal to enter the macro
menu while in the macro-learn mode.

Must establish communication first- communication must be
established before the macro faciltty can be invoked.

4.11 Interrogate Command

The Interrogate command calls up the Interrogate Menu which
allows you to run an emulation experiment and inspect and
modify the system status. It allows:

Running an emulation experiment
Single stepping the target
Reseting the target
Setting a phantom breakpoint then running an emulation
Setting simple breakpoints
Setting the repetition counter
Enabling and disabling interrupts
Examination and modification of registers
Examination and modification of internal data memory
Examination and modification of external data memory
Examination and modification of code memory
Examination and modification of emulation experiment

(See Chapter 6 for a complete description of the
Interrogate Menu.)

4-11

4.12 Help Command

4.13 Exit Command

Error messages which may be encountered when executing this
command include:

Must Establish Communication First-· the Interrogate menu
cannot be invoked before communcation with the emulator has
been established.

The Help command is used to display a detailed description
of the function of each of the commands in the Main Menu.

Error messages which may be encountered when executing this
command include:

Help file not found- the file "$HLPFILE" could not be found
on either the default or A: drives.

The exit command is used to terminate a working session.
Upon exiting the system, control of the host is returned to
the operating system.

When this command ;s executed, the following prompt will
appear at the bottom of the screen:

Are you sure you want to exit [YIN]?

A 'V' response exits the system while a 'N' response aborts
the exit command. This insures that you can never
aCCidentally exit the system and lose your system status.

4-12

CHAPTER 5
CONFIGURATION MENU

5.1 Configuration Menu Overview

The Configuration Menu is used to configure the system as
specified by the system configuration file. A system
configuration file is included as part of the ZLINK system
software. The system configuration file is used by the
system software to determine how to configure the ICD.
Once you specify a configuration (via the Change
command), the new system copnfiguration specification
becomes the default until it is changed again. You must
execute the configuration file when you first enter the ICD
environment or whenever you want to change the system's
configuration. This is accomplished via the Execute command.
the system configuration specification includes the baud
rate used for communication specification includes· the baud
rate used for communication between the ICD emulation module
and the host computer. For the lCD-51 and lCD-52 emulators,
it also includes the mode of operation and the configuration
of the external data bus (if any).

-5.2 Configuration Menu Screen

5.3 Execute Command

The Configuration Menu screen appears as follows:

Execute Change Help Quit
(Quick help line for highlighted command)

CONFIGURATION MENU

Upon entering, the Execute command will be highlighted.

The Execute command is used to set up the system's
configuration according to the specification in the sytem
configuration file. This includes establishing a
communications llnk-up between the host and the ICD

5-1

5.4 Change Command

module. This only needs to be performed once at the
beginning of the session. If no system configuration file
exists, the following default specifications are used:

ICo-31 lC~-51
ICo-32 lC~-52

9600 baud 9600 baud
single chip mode with NO external bus.

(See below for a detailed description of the available
modes) •

Successful execution of this command will establish a
communications link-up between the host and the ICo
module, set the mode of operation, and return you to the
Main Menu.

Error messages which may be encountered when executing this
command include:

Must reset emulator to change baud rate- an attempt was made
to reconfigure the system's baud rate when communication
had already been established at a different baud rate. In
this case, reset the emulator module and try again.

RS232 transmission problem - check board - the RS232 board
could not perform a transmission. Check your RS232 board.

Emulator not ready - the emulator module did not respond to
the host's request to establish communication. Check that
power is applied to the emulator module, that it has been
reset and that the emulator probe has been supplied with a
crystal oscillator.

Communication NOT established - try again - the emulator
module responded to the host's request to establish
communication but it's response was incorrect. Reset the
emulator module and try again.

The Change command is used to examine and/or change the
specification of the system configuration in the system
configuration file. The system configuration specification
includes the baud rate used for communication between the
ICo module and the host computer. For the lC~-51 and ICD-
52 emulators, it also includes the mode of operation and the
configuration of the·external data bus (if any).

5-2

PLEASE NOTE that only the system configuration file is
affected by the Change command. The system itself is not
reconfigurated to the new configuration specification until
the Execute command is executed.

Error messages which may be encountered when executing this
command include:

Cannot open file - the sytem configuration file could not
be opened in the update mode on the default drive.

The system configuration screen appears as follows for the
ICD-31 and ICD-32 emulators:

CHANGE CONFIGURATION

BUAD RATE

9600
4800
2400
1200

600
300
150
110

SELECT BAUD RATE

TARGET CRYSTAL FREQUENCY

8MHz and up
4MHz and up
2MHz and up
1MHz and up

all
all
all
all

Move cursor to desired baud rate then hit [RET] to save it.

Along with each baud rate, the minimum required crystal
frequency of the target is displayed. The baud rate which is
currently selected as the default in the system
configuration file will be highlighted. (If no system
configuration file exists, 9600 will be selected as the
default).

Along with each operation mode, a brief description of that
mode is displayed. The mode which is currently selected as
the default in the system confi~uration file will be
highlighted. (If no system conflguration file exists, Mode
2 will be selected as the default.) If Mode 3 is selected,
the current default for the Port 2 address mask will also
be displayed. If Mode 4 is selected, the current rollover

5-3

boundary for code memory accesses will be displayed (in the
ICD emulator only). (See below for a detailed description
of the available modes).

The Change configuration screen allows you to change the
default system configuration simply by moving the
highlights via the cursor up (+) or cursor down (+) keys on
the numeric keypad at the right of the keyboard. You must
first select which specification (buad rate or mode of
operation) you want to change. This is determined by the
highlight on the selection titles. Either the SELECT BAUD
RATE or the SELECT MODE OF OPERATION will be highlighted to
indicate which specification is currently enabled for
modification. The selected specification can be changed via
the cursor left (~) or cursor right (~) keys on the
numeric keypad at the right of the keyboard.

When the correct specification title is selected, you can
change that specification by moving the highlight up or
down.

PLEASE NOTE that the microcontroller part number in the
Mode Description will actually reflect the part number for
the ICD you have purchased.

The available modes of operation are described below:

5.4.1 Mode 1 - 8031 or 8032 Operation

In this mode of operation, the rCD is configured to
operate as a ROMless version of the microcontroller. All
code accesses are made to external code memory. Port 0 ;s
used as the multiplexed low order address/data bus. Port 2
is used as the high order address bus.

5.4.2 Mode 2 - 8051 or 8052 with NO external address bus

In this mode of operation, the ICD is configured to
operate as a ROM version of the microcontroller. All code
memory accesses are made to internal code memory. Port 0 and
port 2 are used as I/O ports. In this mode,external code
memory and external data memory accesses are not permitted.

5.4.3 Mode 3 - 8051 or 8052 with an 8 bit external address bus

In this mode of operation, the leO is configured to
operate as a ROM version of the microcontroller. All code
memory accesses are made to internal code memory. Port 0 is
used as the multiplexed address/data bus. Port 2 is used as
an I/O port.

5-4

In this mode of operation, the ICD is configured to
operate as a ROM version of the microcontroller. All code
memory accesses are made to internal code memory. Port 0 is
used as the multiplexed address/data bus. Port 2 is used as
an I/O port.

The ICD also provides another capability when
configured in this mode. If the external data memory is
mapped to the emulator (see chapter 4.9), the Port 2 pins
can be individually configured as I/O pins or as address
lines for the emulator's external data memory. When Mode 3
is selected, the Change configuration screen appears as
follows:

CHANGE CONFIGURATION

SELECT BAUD RATE SELECT MODE OF OPERATION

BAUD RATE TARGET XTAL FREQ. MODE MODE DESCRIPTION

9600
4800
2400
1200

600
300
150
110

8MHZ and up
4MHz and up
2MHz and up
1MHz and up

all
all
all
all

Mode 1 8031 Operation
Mode 2 8051 W/O ext addr bus
Mode 3 8051 W/8 bit ext addr bus
Mode 4 8051 W/l£ bit ext addr bus

Port 2 address mask = xx

Enter new addr mask>
(in hex)

Move cursor to set up conflguratlon hlt [REI] to save It.

The Port 2 address mask is provided with this mode in order
to specify which Port 2 pins are to be used as address
lines and which are to be used as I/O pins.

5-5

The individual bits of the address mask register have a 1:1
relationship with the bits of Port 2 as shown below:

MSB LSB

Mask Bit7 Bit6 BitS Bit4 Bit3 Bit2 Bit1 BitO

Port 2 P2.7 P2.6 P2.S P2.4 P2.3 P2.2 P2.1 P2.0

A 0 in the address mask register configures the
corresponding Port 2 bit as an I/O line. A 1 in the address
mask configures it as an address line.

For exampl e: suppose you are running a program which
requires 4K of external data memory. In addition you would
like to use 4 bits of Port 2 as I/O lines. This can be
accomplished by setting the Port 2 address mask to Ofh. The
o in the upper nibble configures the four MSBs of Port 2 to
be I/O lines. The F in the lower nibble configures the four
LSBs of Port 2 to be upper four bits of the 12 bit address
bus. .

PLEASE NOTE that care must be taken when specifying which
bits of Port 2 are to be used as address lines. In an ICD
with an 8k external data memory option, bitsP2.0
through P2.4 may be used as address lines. In an ICD
with a 16K external data memory option, bits P2.0 through
P2.S may be used as address lines.

When Mode 3 is selected, you will be prompted for a new
Port 2 address mask. Entering a new value will update the
Port 2 address mask to the new value. When a new value has
been accepted, you will again be prompted for a new mask
value. If the updated value is correct, you may change the
specification selection to SELECT BAUD RATE, or you
may enter [RETURN]. This will save the new configuration
specification in the system configuration file.

Error messages which may be encountered when entering a new
Port 2 address mask include:

Number is too large- the number specified was greater 64K.

Illegal number specification- a non-hexadeciamal character
was found in the mask specification

Illegal Port 2 address mask- the mask specification ~as too
large to fit in a byte wide register or the mask
specification began with non-numeric character.

5-6

5.4.4 Mode 4 - 8051 or 8052 with a 16 bit External Address Bus

In this mode of operation, the ICD is configured to
operate as a ROM version of the microcontroller. Any code
memory accesses for addresses 0 up to 4K (lCD-51) or 8K
(lCD-52) are made to internal code memory. Any code memory
accesses above those values are made to external code
memory. Port 0 is used as the multiplexed low order
address/data bus. Port 2 is used as the high order address
bus.

The lCD-52 emulator also provides another capability when
configured in this mode. The rollover boundary can be
changed from 8K to 4K to allow emulation of an 8051. When
Mode 4 is selected in a lCD-52 emulator, the Change
configuration screen appears as follows:

CHANGE CONF1GURATION

SELECT BAUD RATE SELECT MODE OF OPERATION

BAUD RATE TARGET XTAL FREQ. MODE MODE DESCRIPTION

9600
4800
2400
1200
600
300
150
110

8MHz and up
4MHz and up
2MHz and up
1MH~ and up

all
all
all
all

Mode 1 8032 Operation
Mode 2 8052 w/ NO ext address bus
Mode 3 8052 w/ 8 bit ext addr bus
Mode 4 8052 w/ 16 bit ext addr bus

Rollover boundary = 8K
Enter rollover boundary in K >

(4 or 8)

Move cursor to set up configuration hit [RET] to save it

You will be prompted for a new rollover boundary. Entering
a new value will update the rollover boundary display to
the new value. Only 4 or 8 (the K ;s implied) will be
accepted. When a new value has been accepted, you will
again be prompted for a new rollover boundary. If the
updated boundary is correct, you may change the
specification selection to SELECT BAUD RATE, or you may
enter [RETURN]. This will save the new configuration
specification in the system configuration file.

5-7

Error messages which may be encountered when entering a new
rollover boundary include:

Number is too large- the number specified was greater 64K.

Illegal number specification- a non-hexadecimal character
was found in the boundary specification.

Illegal rollover boundary- the rollover boundary was not 4K
or 8K or the rollover boundary specification began with
non-numeric character.

5-8

CHAPTER 6
INTERROGATE MENU

NOTE: This Chapter 6 applies to ICD units that have the
optional lCD-CHEST feature installed.

6.1 Interrogate Menu Overview

The Interrogate Menu is used to run emulation experiments
and to examine the status of the system. This menu allows:

Running an emulation experiment
Single stepping the target
Resetting the target
Setting a phantom breakpoint then running an emulation
Setting simple breakpoint or trace
Setting the repetition counter
Setting the trace trigger type
Calling the help menu
Returning to the main menu
Examination and modification of registers
Examination and modification of internal data memory
Examination and modification of code memory
Viewing the trace buffer
Examination and modification of the emulation experiment
Selecting the I/O port for trace
Setting the increment pass-count number

6-1

6.2 Interrogate Menu Screen

The Interrogate Menu screen appears as follows for the ICO-
8031, ICO-8031A, and ICO-8051 emulators:

Go S-Step Reset Fantom Brk-trace Loop-cnt Trace-Trig Help Quit
Modify-Regs Data Xdata Code View-Trace Experiment I/O Pass-cnt
(Quick help line for highlighted command)

Repetltl0n Counter: (I)
Pass Count: (') INTERROGATE MENU

Trace Trlgger: {Polnt}
Port Selected: Port (')

xx ACC
xx IP
xx PCON
xx TCON
xx TMOD

xx B
xx PO
xx PSW
xx THO

xx DPH
xx PI
xx SBUF
xx TLO

xx DPL
xx P2
xx SCON
xx THI

xx IE
xx P3
xx SP
xx TLl

PC Address = xxx x DPTR = xxxx Break Address = xxxx

Next Instruction: (Disassembled instruction)
Target Address= (address hex);

6-2

GPR
Bank (')

xx RO
xx Rl
xx R2
xx R3
xx R4
xx R5
xx R6

For the ICD-8032 and ICD-8052 emulators, it appears as
follows:

Go S-Step Reset Fantom Brk-trace Loop-cnt Trace-Trig Help Quit
Modify-Regs Data Xdata Code View-Trace Experiment I/O Pass-cnt
(Quick help line for highlighted command)

Repetition Counter: (#) Trace Trigger: (Point)
Pass Count: (#) INTERROGATE MENU Port Selected: Port (#l

xx ACC
xx IP
xx PCON
xx SCON
xx TLO
XX TMOD

xx B
xx PO
xx PSW
xx SP
xx THl

xx DPH
xx Pl
xx RCAP2H
·xx T2CON
xx TLl

xx DPL
xx P2
xx RCAP2L
xx TCON
xx TH2

xx IE
xx P3
xx SBUF
xx THO
xx TL2

PC Address = xxxx DPTR = xxxx Break Address = xxxx

GPR
Bank (#)

xx RO
xx Rl
xx R2
xx R3
xx R4
xx R5
xx R6
xx R7

Next Instruction: (Disassembled instruction)
. Target Address= (address hex);

For the ICD-805l emulator, it appears as follows:

Go S-Step Reset Fantom Brk-trace Loop-cnt Trace-Trig Help Quit
Modify-Regs Data Xdata Code View-Trace Experiment I/O Pass-cnt
(Quick help line for highlighted command)

Repetltlon Counter: (#) frace frlgger: (Polnt)
Pass Count: (#) INTERROGATE MENU Port Selected: Port (#)

xx ACC xx ADCON xx ADOAT xx B xx CCEN xx CCHl
xx CCll xx CCH2 xx ·CCL2 xx CCH3 xx CCL3 xx CRCH
xx CRCL xx DAPR xx· DPH xx DPL xx IENO xx IENl
xx IPO xx IPl xx IRCON xx PO xx Pl xx P2
xx P3 xx P4 xx P5 xx PCON xx PSW xx SBUF
xx SCON xx SP xx T2CON xx TCON xx THO xx TLO
xx THl xx TLl xx TH2 xx TL2 xx TMOD

PC Address = xxxx DPTR = xxxx Break Address = xxxx

Next Instruction: (Disassembled instruction)
Target Address = (address hex);

6-3

GPR
Bank (#j

xx RO
xx Rl
xx R2
xx R3
xx R4
xx R5
xx R6
xx R7

Upon entering, the Go command will be highlighted.

The Interrogate menu is different from other menus in that
it has two lines of command options available rather than
just one.

The Loop Count is the number of times the Go or Single Step
commands will execute. (See the Loop-Count command below
for details.)

The special functions registers (SFRs) are displayed in the
middle of the screen in alphabetic order. The value
contained in each register is displayed followed by the
register name.

The two byte registers are displayed below the SFRs. These
include the current PC address, the data pointer (DPTR)
and the break address. The PC Address is the address of the
next instruction to be executed. The DPTR is the
concatenation of the DPH and DPL registers.

The Next Instruction is the diassembled assembly language
mnemonic of the next instruction to be executed when
emulation continues. The disassembled instruction will be
displayed with all symbolic replacements made if you are
using the symbolic debugging capabilities.

The lines directly below each of the disassembled
instructions will display any information referred to by
the instruction which is not already displayed on the
screen. All registers and memories referred to will have
their contents displayed. Examples are presented below:

Next Instruction: INC 90H (direct address)
90H-24H

Next Instruction: CPL 91H (bit address)
91H=1;

Next Instruction: DEC @RO (indirect address)
data mem[3]=45;

Note: The value of RO (03H) is displayed on the screen
under the GPRs.

Next Instruction: MOVX A,@DPTR (ext. data address)
xdata mem[245]=33H;

Note: The value of DPTR (0245H) is displayed on the
screen with the two byte registers.

6-4

6.3 Go Command

Next Instruction: MOVC A,@A+PC (code mem address)
code mem[123J=FDH;

Next

Next

Next

Note: The values of A and DPTR are already displayed
on the screen.

Instruction: LJMP LABEL (code targets)
target address=1234H;

Instruction: CLR C (carry flag)
cy=O;

Instruction: JZ LABEL (zero flag)
zr-l; target address=55H;

The target address will appear when the next instruction is
a conditional jump instruction and the condition is true or
has been met. The target address is equal to where the jump
instruction is going to in a memory.

The Go command is used to run an emulation experiment. It
can be used to start the target emulation. It can also
restart the target emulation after a breakpoint or trace­
trigger has been reached. Emulation begins at the program
code memory location indicated by the program counter (PC).

Prior to running an experiment, the following conditions
must be met:

Communication must be established with the ICD
emulator.
If an experiment exists withi~ the environment, it
must be compiled.
The PC must contain a legal value.

If any of these conditions are not met, an ·error message
will be displayed and the command will be aborted.

Once emulation has begun, the bottom portion of the screen

6-5

is cleared, the GO command is displayed and the WORKING
sign appears at the bottom of the screen. It appears as
foll ows:

Go S-Step Reset Fantom Brk-trace Loop-cnt Trace-Trig Help Quit
Modify-Regs Data Xdata Code View-Trace Experiment I/O Pass-cnt
(Quick help line for highlighted command)

Repetition Counter: (#)
Pass Count: (#) INTERROGATE MENU

Trace Trigger: (Point)
Port Selected: Port (#)

xx ACC xx B xx DPH xx DPL xx IE
xx IP xx PO xx PI xx P2 xx P3
xx PCON xx PSW xx SBUF xx SCON xx SP
xx TCON xx THO xx TLO xx THI xx TLl
xx TMOD

PC ADDRESS = xxxx DPTR = xxx x Break Address = xxxx

GO

WORKING

When a breakpoint or in particular a trace-trigger is
reached by the ICD emulator, control will be returned to
the host and the Interrogate Menu will be repainted. The
condition and time frame by which this control is returned
to the host is based on the trace-trigger type chosen.

There are three (3) trace-trigger types available. (See the
Trace-trigger command in this chapter.) Depending on which
is choosen will determine the point in time when an actual
break occurs.

If the START trace-trigger type is choosen it will result
in the break occuring when the address is equal to the
trace-trigger address plus 4,096 ALE cycles.

If the CENTER trace-trigger type is choosen it will result
in the break occurring when the address is equal to the
trace-trigger address plus 2,048 ALE cycles.

If the END trace-trigger type is choosen it will result in
the break occurring when the address is equal to the trace­
trigger address and it will break em,ulation BEFORE the
instruction at the address is executed.

6-6

GPR
Bank (#)

xx RO
xx RI
xx R2
xx R3
xx R7

You may wish at some point to force the emulator to break
emulation. This may happen if the emulation takes longer
than expected to reach a breakpoint and you suspect that
emulator is executing code other than what you
anticipated; if you realize that you made a mistake and the
experiment will emulate forever; or if you simply want to
break a very long emulation. In any case, a break condition
may be forced on the emulator by pressing the [ESC] key
while the emulation is running. When this is done, the
emulator breaks and a message is displayed. The message
indicates that the break was caused by a host interrupt.

The repetition counter is used with the Go command to
execute N breaks before stopping (where N is the repetition
count). This is especially useful where a break resides in
a loop and you wish to execute N cycles of the loop before
stopping. When the repetition counter is used, the count
value in the display will decrement each time the break is
encountered until its value is O. At that point the
emulation will stop and the Interrrogate Menu will be
repainted.

The [ESC] key can be used to abort emulation before the
repetition counter has decremented to O. As described
above, the host interrupt message will be displayed.

Two modes of operation are possible when using the
repetition counter. They are the Non-Update mode and the
Update mode. In the Non-update mode, the register values are
updated only AFTER the repetition counter has decremented
to O. In the Update mode, the register display is updated
after each breakpoint has been encountered. The update mode
slows down the execution of the repetition loop because the
screen must be repainted after each breakpoint has been
encountered. The Update mode therefore takes about twice as
long to execute as the Non-update mode.

CTRL-U is used as a toggle switch to alternate between the
Non-update and the Update modes of operation. The system is
initialized to the Non-Update mode. The CTRL-U switch can
be executed from any menu and remains in effect until it is
toggled again or the emUlation session is terminated.

The Go command can restart an experiment from the last
break. The system automatically performs a single step (see
Single Step command below) to get past the break instruction
and then executes until a break or trace-trigger is
encountered. The single step is performed automatically so
that you don1t manually have to single step past the break
instruction before restarting an experiment.

6-7

Error messages which may be encountered when executing this
command include:

Must establish communication first- communication was never
established with the emulator module or was not
"reestablished after a communications error occurred.

Cannot execute offset uploaded code- the code in the
emulator's program code memory was ~ploaded with an offset
value. Code uploaded in this manner cannot be executed.

Must compile experiment first- an experiment was loaded but
the experiment compiler was not executed prior to running
the experiment. This is an error because it i£ the
experiment compiler which sets the breakpoints in the
emulator.

Must reload code memory first- the experiment was deleted
but the breakpoints set by that experiment are still
resident and active in the emulator.

Must reinitialize PC value first- the PC value was not
reinitialized after halting an emulation via a host
interrupt.

Cannot restart - instruction jumps on self- the next
instruction is a jump which has itself as the target
address.

Cannot restart- instruction calls itself- the next
instruction is a call which calls itself.

Code jumps out of range- an attempt was made to restart an
experiment at an instruction which may cause the program
counter to jump outside the range of the emulator's code
memory.

Communication error - reset comm link- a non-recoverable
error occurred. Communication must be reestablished via the
Comm command in the Main Menu.

RS232 transmission problem - check board- the RS232 board
could not perform a transmission. Check your RS232 board.

BREAK CAUSED BY HOST INTERRUPT - an abnormal break
condition was caused by a host generated interrupt. If you
have not pressed the [ESC] key to cause this break
condition then it was caused by noise on the RS232 link.

6-8

6.4 S-STEP COMMAND

•

The Single Step command is used to execute one instruction
from the program code and then stop. The instruction
executed is the one which the program counter (PC) points
to in code memory.

Prior to running and experiment, the following conditions
must be met:

Communication must be established with the ICD
emulator. The PC must contain a legal value.

If either of these conditions are not met, an err.or message
will be displayed and the command will be aborted. It is
not necessary to have compiled an experiment to single step
through program code because a break is automatically set
to stop after each instruction is executed.

Once emulation has begun, the center of the display screen
is cleared, the S-STEP command is displayed and the WORKING
sign appears at the bottom of the screen. It appears as
follows:

Go S-Step Reset Fantom Brk-trace Loop-cnt Trace-Trig Help Quit
Modify-Regs Data Xdata Code View-Trace Experiment I/O Pass-cnt
(Quick help line for highlighted command)

Repetition Counter: (#)
Pass Count: (#) INTERROGATE MENU

xx ACe
xx IP
xx PCON
xx TCON
xx TMOD

xx B
xx PO
xx'PSW
xx THO

xx DPH
xx PI
xx SBUF
xx TLO

xx DPL
xx P2
xx SeON
xx THI

Trace Trigger: (Point)
PORT SELECTED: PORT (#)

xx IE
xx P3
xx SP
xx Tll

GPR
Bank (#)

xx RO
xx Rl
xx R2
xx R3
xx R4
xx R5
xx R6

PC Address = xxxx DPTR = xxxx Break Address = xxx x xx R7

S-STEP

wORRING

When a breakpoint or trace-trigger instruction is reached
by the ICD emulator, control will be returned to the host
and the Interrogate menu will be repainted.

The repetition counter is used with the S-STEP command to
execute N instructions before stopping (where N is the
repetition count). When the repetition counter is used, the
count value in the display will decrement each time an
instruction is executed until its value is O. At that point
the emulation will stop and the Interrogate Menu will be
repainted. The [ESC] key can be used to abort the S-STEP
command before the repetition counter has decremented to O.

Error messages which may be encountered when executing this
command include:

Must establish communication first- communciation was never
established with the emulator module or was not
reestablished after a communications error occurred.

Cannot execute offset uploaded code- the code in the
emulator's program code memory was uploaded with an offset
value. Code uploaded in this manner cannot be executed.

Must reinitialize PC value first- the PC value was not
reinitialized after halting an emulation via a host
interrupt.

Cannot restart - instruction calls itself- the next
instruction ;s a call which calls itself.

Code jumps out of range- an attempt was made to execute an
instruction which may cause the program counter to jump
outside the range of the emulator's code memory.

Communication error - reset comm link- a non-recoverable
error occurred. Communication must be reestablished·via the
Comm command in the Main Menu.

RS232 transmission problem - check board- the RS232 board
could not perform a transmission. Check your RS232 board.

6-10

6.S Reset Command
The Reset command is used to emulate the target starting
from a reset condition. Prior to running an experiment, the
following conditions must be met:

Communication must be established with the lCD
emulator. If an experiment exists in the environment,
it must be compiled.

If either of "these conditions are not met, an error message
will be displayed and the command will be aborted.

When this command is executed, you will be queried whether
or not the reset comes from your target system board. The
screen appears as follows:

Go S-Step Reset Fantom Brk-trace Loop-cnt Trace-Trig Help Quit
Modify-Regs Data Xdata Code View-Trace Experiment I/O Pass-cnt
(Quick help line for highlighted command)

Repetition Counter:
Pass Count: (#)

xx ACC xx B
xx IP xx PO
xx PCON xx PSW
xx TCON xx THO
xx TMOD

(#)
INTERROGATE MENU

xx DPH xx DPL xx IE
xx PI xx P2 xx P3
xx SBUF xx SCON xx SP
XX TLO xx THI xx TLI

Trace Trigger: (Point)
Port Selected: Port (#)

GPR
Bank (#)

xx RO
xx RI
xx R2
xx R3
xx R4
xx RS
xx R6

PC Address = xxxx DPTR = xxxx Break Address = xxxx xx R7

Will RESET come from target board [YIN]? >

An affirmative response to this question (IVI or Iyl)
indicates that the reset will come from your target system
board. This means that the emulator will remain in an
'idle l condition until a reset is received from your
system. At that time the emulator performs just as the
target would under reset conditions and emulation continues
from there. A negative response (INI or Inl) indicates that
you wi?h for the emulator itself to supply the reset. This
would be used primarily in the case where the emulator is
being used in the stand alone mode as full speed simulator.

Pressing the [RETURN] key in response to the question will
abort execution of the command.

6-11

If you have selected the reset to come from your target
system board, the following message will be displayed on
the screen:

Hit RESET on target board to begin emulation

This is your prompt that it is time to execute the reset on
your target system board. Doing so will begin emulation.

If the reset is supplied by the emulator, the RESET command
will be displayed on the screen.

For either type of reset, once control has been transferred
from the host to the emulator, the WORKING sign will appear
and it will continue to flash until a breakpoint or trace­
trigger is encountered. It appears as follows:

Go S-Step Reset Fantom Brk-trace Loop-cnt Trace-Trig Help Quit
Modify-Regs Data Xdata Code View-Trace Experiment I/O Pass-cnt
(Quick help line for highlighted command)

Repetition Counter: (#)
Pass Count: (#) INTERROGATED MENU

Trace Trigger: (Point)
Port Selected: Port (#)

xx ACC
xx IP
xx PC ON
xx TCON
xx TMOD

xx B
xx PO
xx PSW
xx THO

xx DPH
xx PI
xx SBUF
xx TLO

xx DPL
xx P2
xx SCaN
xx THI

xx IE
xx P3
xx SP
xx TLl

PC Address = xxxx DPTR = xxxx Break Address = xxxx

(Reset type indicator)

WORKING

When a breakpoint or trace-trigger instruction is reached by
the ICD emulator, control will be returned to the host and
the Interrogate Menu will be repainted.

The repetition counter is not used with the Reset command.

6-12

GPR
Bank (#)

xx RO
xx Rl
xx R2
xx R3
xx R4
xx R5
xx R6
xx R7

Error messages which may be encountered when executing this
command include:

Must establish communication first- communication was never
established with the emulator module or was not
reestablished after a communications error occurred.

Cannot execute offset uploaded code- the code in the
emulator's program code memory was uploaded with an offset
value. Code uploaded in this manner cannot be executed.

Must compile experiment first- an experiment was loaded but
the experiment compiler was not executed prior to running
the experiment. This is an error because it is the
experiment compiler which sets the breakpoints in the
emulator.

Must reloade code memory first- the experiment was deleted
but the breakpoints set by that experiment are still
resident and active in the emulator.

Communication error - reset comm link- a non-recoverable
error occurred. Communication must be reestablished via the
Comm command in the Main Menu.

RS232 transmission problem - check board- the RS232 board
could not perform a transmission. Check your RS232 board.

BREAK CAUSED BY HOST lNTERRUPT- an abnormal break condition
was caused b~ a host generated interrupt. If you have not
pressed the LESC] key to cause this break condition then it
was caused by noise on the RS232 link.

6.6 Fantom (Phanton) Command

The Phantom command is used to set a phantom breakpoint or
trace-trigger and then run an emulation experiment. The
phantom break is so named because it remains in effect for
only one emulation cycle then it disappears.

Prior to running an experiment, the following conditions
must be met:

Communication must be established with the leo
emulator.
If an experiment exists in the environment, it must be
compiled.
The PC must contain a legal value.

6-13

If any of these conditions are not met, an error message
will be displayed and the command will b~ aborted.

When this command is executed. you will be queried for the
address where you want the break to be set. The screen
appears as follows:

Go S-Step Reset Fantom Brk-trace Loop-cnt Trace-Trig Help Quit
Modify-Regs Data Xdata Code View-Trace Experiment I/O Pass-cnt
(Quick help line for highlighted command)

Repetition Counter: (#) Trace Trigger: (Point)
Pass Count: (#) INTERROGATE MENU Port Selected: Port (#)

GPR
Bank (#) xx ACC

xx IP
xx PCON
xx TCON
xx TMOD

xx B
xx PO
xx PSW
xx THO

xx DPH
xx PI
xx SBUF
xx TLO

xx DPL
xx P2
xx SCON
xx THI

xx IE
xx P3
xx SP
xx TLl

xx RO
xx Rl
xx R2
xx R3
xx R4
xx R5

PC Address = xxxx DPTR = xxxx Break Address = xxxx xx R7

Enter Phantom breakpoint address (in hex) or label>

Pressing the [RETURN] key in response to the prompt will
abort execution of the command. The breakpoint address can
be supplied as a hexadecimal numeric address or as a
program code label (if symbolic debug is enabled).

The Phantom breakpoint capability is used to cause an
emulation break at some breakpoint which is NOT a
breakpoint in the current experiment. The scope of the
Phantom breakpoint is for one emulation cycle only. After a
break occurs, (even if it was not the phantom breakpoint
which caused the break), the Phantom breakpoint is removed.

6-14

An example of the use of the Phantom breakpoint follows:
Suppose you have a loop in your program in which no
breakpoints have been set by the current experiment.

You are here> instruction
loop: instruction

instruction

.
JMP loop

after: instruction
instruction

instruction

< current breakpoint

< next breakpoint

After an emulation, the PC is at the instruction before the
start of the loop. You now want to emulate the target until
you are at the first PC location after the loop (i.e. at PC
location lIafter:II).

One method of achieving this is to continually single step
the target until it gets to the desired PC location. If the
loop is repeated many times before it terminates, this could
take a long time.

An alternative method is to set the Repetition counter with
the number of instructions which will be executed before
thi desired PC location is achieved and then execute the
Single Step command. For an intricate program, it may be
difficult to determine how many instructions this entails.

The preferred method is to set a Phantom breakpoint at PC
location lIafter:lI. This achieves the desired results with
the least effort.

PLEASE NOTE that the breakpoints which are set by the
current experiment are still in effect. If you set a
Phantom breakpoint but an experiment breakpoint is reached
before the Phantom breakpoint, the Phantom breakpoint has
no effect. It is as if you executed the Go command.
Remember also that the Phantom breakpoint is removed after
the emulation cycle so it cannot be used twice.

6-15

After a valid breakpoint address has been supplied, the
PHANTOM command will be displayed on the screen. Once
control has been trasferred from the host to the emulator,
the WORKING sign will appear and it will continue to flash
until a breakpoint is encountered. It appears as follows:

Go S-Step Reset Fantom Brk-trace Loop-cnt Trace-Trig Help Quit
Modify-Regs Data Xdata Code View-Trace ExperimE'nt I/O Pass-cnt
(Quick help line for highlighted command)

Repetition Counter: (#)
Pass Count: (#) INTERROGATE MENU

Trace Trigger: (Point)
Port Selected: Port (#)

xx ACe
xx IP
xx PCON
xx TeON
xx TMOD

xx B
xx PO
xx PSW
xx THO

PC Address = xxxx

xx DPH
xx PI
xx SBUF
xx TLO

xx DPL
xx P2
xx SCON
xx THI

xx IE
xx P3
xx SP
xx TLl

DPTR = xxxx Break Address = xxxx

Enter Phantom breakpoint address (in hex) or label >
PHANTOM

WORKING

When a breakpoint instruction is reached by the ICD
emulator, control will be returned to the host and the
Interrogate Menu will be repainted.

The repetition counter is not used with the Phantom
command.

The Phantom command can be used to restart an
experiment from the last breakpoint.

GPR
Bank (#)

xx RO
xx RI
xx R2
xx R3
xx R4
xx R5
xx R6
xx R7

Error messages which may be encountered when executing this
command include:

Must establish communication first- communication was never
established with the emulator module or was not
reestablished after a communications error occurred.

6-16

Cannot execute riffset uploaded code- the code in the
emulator's program code memory was uploaded with an offset
value. Code uploaded in this manner cannot be executed.

Must· compile experiment first- an experiment was loaded but
the experiment compiler was not executed prior to running
the experiment. This is an error because it is the
experiment compiler which sets the breakpoints in the
emulator.

Must reload code memory first- the experiment was deleted
but the breakpoints set by that experiment are still
resident and active in the emulator.

Must reinitialize PC value first- the PC value was not
reinitialized after halting an emulation via a host
interrupt.

Number is too large- the address specified was greater than
64K.

Illegal number specification- a non-hexidecimal character
was found in the address specification.

Symbolic debug not enabled- the symbolic debugging
capability is not enabled. Symbolic addresses are therefore
not a 11 owed.

Improper address segment- the specified symbol was not an
address symbol for program code memory.

Undefined symbol- the symbol specified doesn't exist.

Address is out of range- the specified address was outside
the valid address range for the ICD emulator's program code
memory.

Cannot restart - instruction jumps on self- the next
instruction is a jump which has its.el f as the target
address.

Cannot restart - instruction calls itself- the next
instruction is a call which calls itself.

Code jumps out of range- an attempt was made to restart an
experiment at an instruction which may cause the program
counter to jump outsi~e the range of the emulator's code
memory.

6-17

Communication error - reset comm link- a non-recoverable
error occurred. Communication must be reestablished via the
Comm command in the Main Menu.

RS232 transmission problem - check board- the R$232 board
could not perform a transmission. Check your RS232 board.

BREAK CAUSED BY HOST INTERRUPT- an abnormal break condition
was caused bi' a host generated interrupt. If you have not
pressed the LESC] key to cause this break condition then it
was caused by noise on the RS232 link.

6.7 Brk-cnt (Break-Count) Command

The Break-Count command is used to set and reset eight
simple break or trace-triggers and eight simple increment
pass count addresses. They are called simple break / trace­
triggers and increment pass-count addresses because they
can be used without having to compile an experiment. These
simple break / trace-triggers and increment pass-count
conditions are, however, restricted to PC addresses.

When a simple break / trace-trigger address is encountered
the system will start tracing and depending on the trace­
trigger type choosen, will break emulation then (END
trigger choosen) or after 2,048 ALE cycles (CENTER trigger
choosen) or after 4,096 ALE cycles (START trigger choosen).

When a increment pass-count address is encountered the
system will increment the pass-count internally. When the
internal pass-count equals the value the user assigned to
it, the system will start tracing and depending on the
trace-trigger type choosen, will break emulation then (END
trigger choosen) or after 2,048 ALE cycles (CENTER trigger
choosen) or after 4,096 ALE cycles (START trigger choosen).

When the Break-Count command is executed the system will
initially enter into the Break / Trace-trigger points.

6-18

6.8 Break/Trace-Trigger Points

The Break / Trace-trigger points screen appears as follows:

Trace-Trigger Type= (Pointer)

Break address = Trace-Trigger address

SET SIMPLE BREAK / TRACE-TRIGGER POINTS

BREAK /
TRACE-TRIGGER ADDRESS (HEX)

1 0033
2 0001
3
4 OOFO
5
6
7 0120
8

Enter Address >
(in Hex or label)

[~]-down til-up [DEL]-DELETE [RET]-Exit [ESC]-Toggle Inc/Break

The top of the screen is used to display the trace-trigger
type pointer choosen, either START, CENTER or END and the
break address is equal to statement. If the START trace­
trigger type was choosen then the break address is equal to
the trace-trigger address plus 4,096 ALE cycles.

If the CENTER trace-trigger type was choosen then the break <

address is equal to the trace-trigger address plus 2,048
ALE cylces.

If the END trace-trigger type was choosen then the break
address is equal to the trace-trigger address.

The center of the screen is used to display the status of
the eight simple breaks. If any of the breaks are set, the
break address ;s displayed as a hexadecimal number. Any
break which are not set, are displayed as a Iblank l field
on the screen.

6-19

The highlight is used to identify which break is to be
operated on. Only one break can be operated on at a time.
When the Break-Count command is first invoked, the first
break address is highlighted.

A different break can be selected for modification by .
moving the highlight to the desired break. The highlight is
moved through the use of the cursor control keys on the
numeric keypad at the right of the keyboard. The cursor
movement control keys operate as follows:

- up
- down

The upward movement of the highlight is limited by the
first break address. The downward movement of the highlight
is restricted by the last break address.

Break addresses are modified by moving the highlight to the
desired break and then entering a new address. When you
begin to enter a new address, it will appear in the address
field following the prompt. The new address will not be
entered into the selected break until the [RETURN] key is
pressed. This allows you to correct any errors ;n the new
address before it is entered into the break address field.
Use the backspace key to erase characters from the newly
entered address.

New break addresses can be entered as hexadecimal numbers
or as labels which have been defined as code memory address
symbols.

When the [RETURN] key is entered, the new address is
examined to determine if it is a valid address. If it is
not a valid address, an error message will be displayed and
the old value of the break will remain unchanged. After the
new address has been processed; the break setting will be
updated with the new address and the highlight will be
moved down to the next break address field.

Pressing the DELETE key alone will delete the break address
at the selected break.

Pressing the [RETURN] key alone will exit the break / trace
trigger screen and return to the interrogate menu.

6-20

Pressing the ESCAPE key will toggle the system between the
break / trace-trigger points and the simple increment pass­
count points.

6.9 Increment Pass-Count Points

The Increment Pass-count points screen appears as follows:

SET SIMPLE INCREMENT COUNT POINTS

INCREMENT COUNT ADDRESS (HEX)

1 0033
2 0001
3
4 OOFO
5
6
7 0120
8

Enter Address >
(in Hex or label) -

[!]-down [f]-up [DEL]-DELETE [RET]-Exit [ESC]-Toggle Inc/Break

The center of the screen "is used to display the status of
the eight simple increment pass-counts. If any of the
increment passcounts are set, the increment pass-count
address is displayed as a hexadecimal number. Any increment
pass-counts which are not set, are displayed as a 'blank'
field on the screen.

The highlight is used to identify which increment pass­
count is to be operated on. Only one increment pass-count
can be operated on at a time. When the Break-count command
is first invoked and the ESCAPE key pressed, the first
increment passcount address is highlighted.

A different increment pass-count can be selected for
modification by moving the highlight to the desired
increment pass-count. The highlight is moved through the
use of the cursor control keys on the numeric keypad at
the right of the keyboard. The cursor movement control
keys operate as follows:

(f) - up
(!) - down

6-21

The upward movement of the highlight is limited by the
first increment pass-count address. The downward movement
of the highlight is restricted by the last increment pass­
count address.

Increment pass-count addresses are modified by moving the
highlight to the desired increment pass-count and then
entering a new address. When you begin to enter a new
address, it will appear in the address field following the
prompt. The new address will not be entered into the
selected increment pass- count until the [RETURN] key ;s
pressed. This allows you to correct any errors in the new
address before it is entered into the increment pass-count
address field. Use the backspace key to erase characters
from the newly entered address.

New increment pass-count addresses can be entered as
hexadecimal numbers or as labels which have been defined as
code memory address symbols.

When the [RETURN] key is entered, the new address is
examined to determine if it is a valid address. If it is
not a valid address, an error message will be displayed and
the old value of the break will remain unchanged. After the
new address has been processed; the increment pass-count
setting will be updated with the new address and the
highlight will be moved down to the next increment pass­
count address field.

Pressing the DELETE key alone will delete the increment
pass-count address at the selected increment pass-count.

Pressing the [RETURN] key alone will exit the increment
pass-count screen and return to the interrogate menu.

Pressing the ESCAPE key will toggle the system between the
break I trace-trigger points and the simple increment pass­
count points.

PLEASE NOTE that when symbolic addresses are entered as the
address of a breakpoint, the symbol is replaced by the
represented hexadecimal address.

Error messages which may be encountered when executing this
command include:

Must establish communication first - communication was
never established with the emulator module or was not
reestablished after a communicant error occurred.
Error messages which may be encountered when specifying a
new breakpoint address include:

6-22

Number is too large- the address specified was greater
than 64K.

Illegal number specification- a non-hexadecimal character
was found in the ~ddress specification.

Symbolic debug not enabled- the symbolic debugging
capability is not enabled. Symbolic addresses are therefore
not allowed.

Improper address segment- the specified symbol was not an
address symbol for code memory.

Undefined symbol- the symbol specified doesn't exist.

Address is out of range- an address was specified which is
outside the addressable range of the program code memory.

Error messages which may be encountered when exiting from
the Break Point screen include:

Communication error - reset comm .link- a non-recoverable
error occurred. Communication must be reestablished via the
Comm command in the Main Menu.

RS232 transmission problem - check board- the RS232 board
could not perform a tranmission. Check your RS232 board.

6-23

6.10 Loop-cnt (Loop-Count) Command

The Loop-count command is used to set the value of the
repetition counter. The repetion counter is used to

. determine how many times the Go or S-Step commands are
executed before emulation stops. You will be pro~pted to
supply the count value. The Loop-count screen appears as
foll ows:

Go S-Step Reset Fantom Brk-trace Loop-cnt Trace-Trig Help Quit
Modify-Regs Data Xdata Code View-Trace Experiment I/O Pass-cnt
(Quick help line for highlighted command)

Repetition Counter: (#)
Pass Count: (#) INTERROGATE MENU

Trace Trigger: (Point)
Port Selected: Port (#)

xx ACC xx B xx DPH xx DPL xx IE
xx IP xx PO xx P1 xx P2 xx P3
xx PCON xx PSW xx SBUF xx SCON xx SP
xx TCON xx THO xx TLO xx THl xx TLl
xx TMOD

PC Address = xxxx DPTR = xxxx Break Address = xxxx

Enter count (in decimal) >

The count should be decimal number between 1 and 32,767.
Pressing the [RETURN] key in response to the count prompt
will abort exection of the command and retain the current
value of the counter.

Error messages which may be encountered when executing this
command include:

Illegal integer value- the number used to specify the count
contained an illegal decimal digit.

Number is too large- a count value greater 32,767 was
requested.

6-24

GPR
Bank

xx RO
xx R1
xx R2
xx R3
XX R4
XX R5
xx R6
xx R7

6.11 Trace-trig (Trace-Trigger) Command

The trace-trigger command is used to select which of the
three trace-trigger types the user would like to implement
and thus a view of the trace buffer and its contents.
Pressing the trace-trig~er command will toggle the trace
trigger portion of the lnterrogate menu screen from START
to CENTER to END.

If the START trace-trigger type is choosen it will result
in a break occurring when the address is equal to the
trace-trigger address plus 4,096 ALE cycles. This will
allow the user to view the next 4,096 memory locations and
their contents. The system will NOT execute those
instructions and therefore any program path alterations
(e.g. JUMPS) will not be performed.

If the CENTER trace-trigger type is choosen it will result
in a break occurring when the address is equal to the
trace-trigger address plus 2,047 ALE cycles. This will
allow the user to view the last 2,047 memory locations and
their contents. This will enable the user to determine the
instruction path the program has just taken and therefore
determine if the correct instructions and conditions are
being met. In addition, it will allow the user to view· the
next 2,048 memory locations and their contents. The sytem
will NOT execute those instructions and their contents. The
system will NOT execute those instructions and therefore
any program path alterations (e.g. JUMPS) will not.be
performed.

If the END trace-trigger type is choosen it will result in
a break occurring when the address is equal to the trace­
trigger address and it will break emulation BEFORE the
instruction at the address is executed. This will allow the
user to view the last 4,096 memory locations and their
contents. This will enable the user to determine the in­
struction path the program has just taken and therefore
determine if the correct instructions and conditions are
being met.

6-25

6.12 Help Command
The Help command is used to display a detailed description
of the function of each of the commands in the Interrogate
Menu.

Error messages which may be encountered when executing this
command include:

Help file not found- the file "&HLPFILE" could not be found
on either the default or A: drives.

6.13 Quit Command The Quit command is used to return to the main menu.

6.14 Modify-Regs Command

The Modify-Regs command is used to examine and/or modify the
contents of the target's special function registers (SFRs)
and general purpose registers (GPRs). When this command is
executed, the register screen will be displayed.

EXAMINE / MODIFY REGISTERS

Register name or hex address> _ Bit Display OFF

xx ACC
xx IP
xx PCON
xx TCON
xx TMOD

xx B
xx PO
xx PSW
xx THO

xx DPH
xx PI
xx SBUF
xx TLO

xx DPL
xx P2
xx SCON
xx THI

xx IE
xx P3
xx SP
xx TLl

PC Address = xxx x DPTR = xxxx Break Address = xxxx

Value (in hex) > xx

New Value (in hex) > _

All SFRs and GPRs are displayed in the middle of the
screen. The value contained in each register is displayed
followed by the register name. Two 2-byte registers are
displayed: the PC and the DPTR. (The OPTR is a read only
register. It is actually the concatenation of the DPH and
DPL register. It's value can be changed only by changing
the values in the DPH or DPL registers.)

6-26

GPR
Bank (#)

xx RO
xx Rl
xx R2
xx R3
xx R4
xx R5
xx R6
xx R7

When emulation of an experiment is halted by m~nual
intervention (i.e. pressing the [ESC] key - see section
5.3), the PC value will show its value as xxxx. The PC
value remains indeterminate until a new value is assigned
to it.

At the top of the display, you are prompted for the name or
address of the register you wish to change. Pressing the
[RETURN] key in response to the prompt will abort the
register screen and return you to the Interrogate Menu.
Pressing the [ESCAPE] key in response to the prompt will
toggle the Bit Display status between ON and OFF (see Bit
Display below). When the Bit Display status is OFF, you are
in the byte register mode.

In the byte register mode, register specification can be
supplied as hexadecimal addresses or the name of the
register. This includes the general purpose registers in
the selected bank (i.e. RO through R7). When a valid
register specification has been supplied, its current value
is displayed as a hexadecimal value. Pressing the [RETURN]
key in response to the prompt retains the current value and
returns you to the register specification prompt. Entering
a new value will change the contents of the specified
register to the new value.

When a new value has been accepted, you are again prompted
for a register specification.

PLEASE NOTE that the values for the ports which are
displayed represent the actual values at the port pins and
not the value in the port registers. Care must be taken
when changing the values of the ports. If any changes are
made to the port values, all input pins which are to remain
inputs must have their corresponding bits set to 1. This
restriction comes about because the ICD emulator must write
to the port register in order to change the value of any
port output pins.

PLEASE NOTE that although the PortO register is provided
for completeness in the 8031 and 8032 emulator, changing
it's contents is not meaningful when using these emulators.
The actual PortO register is destroyed when PortO is used
as the external address/data bus.

6-27

If the Bit Display status is ON, you are in the bit
register mode. This mode is used to modify individual bits
within bit addressable registers. If the name or address of
a non-bit addressable register is supplied while in the bit
register mode, the register is displayed as described in
the byteoregister mode.

Bit addressable register specifications may be supplied as
a hexadecimal address or the name of the register. In
addition, specifying the name of any bit in a bit
addressable register will also serve to specify that
register. A bit addressable register display appears as
foll ows:

EXAMINE / MODIFY REGISTERS

Register name or hex address> scon Bit Display ON

GPR
xx ACC
xx IP
xx PCON
xx TCON
xx TMOD

xx B
xx PO
xx PSW
xx THO

xx DPH
xx PI
xx SBUF
xx TLO

xx DPL
xx P2
xx SCON
xx THI

xx IE
xx P3
xx SP
xx TLl

Bank (#)

PC Address = xxxx DPTR = xxxx Break Address = xxxx

SMO
Value> 0

SMI
o

New Bit Value>

SM2
I

REN
o

TB8
1

RB8
o

TI
1

xx RO
xx RI
xx R2
xx R3
xx R4
xx R5
xx R6
xx R7

RI
0

---------~---

When a valid bit addressable register specification has
been supplied, its current value ;s displayed as individual
bits. If the bits of the register have symbolic names,
these names will be displayed along with the bit values.

You are then prompted for a new bit value. This bit value
is actually a specification of the bit you wish to modify,
and whether you wish to set or reset the bit. Pressing the
[RETURN] key in response to the prompt retains the current
value and returns you to the register specification prompt.

6-28

Bits can be specified as a bit name or as a bit number.
Valid bit numbers are a through 7 and apply to the bit
display as the rightmost bit being bit a and the leftmost
bit being bit 7. (E.G. for the SCON register in the figure
above, RI is bit a and SMa is bit 7).

Specifying a bit will set its value to 1. Specifying a bit
with·a 1/1 before it will reset its value to O. (E~G. RI
will set the RI bit while /SM2 will reset the SM2 bit).

When a new bit value has beeen accepted, you are again
prompted for a new bit valu~.

Error messages which may be encountered when executing the
Registers command include:

Must establish communication first- communication with the
ICD emulator module must be established before the register
can be examined.

Error messages which may be encountered when specifying a
register include:

Number is too large- the number specified was greater than
64K.

Illegal number specification- a non-hexadecimal character
was found in the address specification.

Address is out of range- the address specified was greater
than 255.

Illegal symbol type- the name specified was not that of a
special function register.

Undefined symbol- the name specified doesnlt exist.

Illegal register address- the hexadeciamal address provided
does not correspond to a special function register.

Error messages which may be encountered when specifying a
PC value include:

Number is too large- the number specified was greater than
64K.

Illegal number specification- a non-hexadecimal character
was found in the value specification.

6-29

Illegal symbol type- the symbol specified was not a numeric
symbol.

Undefined symbol- the symbol specified doesn't exist.

Error messages which may be encountered when specifying a
value in the byte register mode include:

Illegal number specification- a non-hexadecimal character
was found in the number specification.

Number is too large- the value specified was greater than
255.

Illegal symbol type- the symbol specified was not a
numeric symbol.

Undefined symbol- the symbol specified doesn't exist.

Error messages which may be encountered when specifying a
value in the bit addressable register mode include:

Number is too large- the number specified was greater than
64K.

Illegal number specification- a non-hexadecimal character
was found in the number specification.

Illegal bit designator- the value specified was greater
than 7.

or
the symbol specified was not a bit symbol.

Undefined symbol- the symbol specified doesn't exist.

Illegal bit for specified register- the symbolic bit
specified is not a bit in the specified bit addressable
register.

Error messages which may be encountered when reading or
writing GPRs include:

Communication error - reset comm link- a non-recoverable
error occurred. Communication must be reestablished via the
Comm command in the Main Menu.

RS232 transmission problem - check board- the RS232 board
could not perform a transmission. Check your RS232 board.

6-30

6.15 Data-Mem Command

The Data-mem command calls up the Examine/Modify Internal
Data Menu which allows you to examine and/or modify the
contents of the target's internal data memory. It allows:

Dumping a block of the memory's contents
Scanning and modifying the memory a byte at a time
Filling a block of the memorr with data
Moving a block of the memory s contents from one

location to another.
Searching the memory for a data pattern
Verify/Compare one block of memory data with another
Examine and modifying the directly addressable bits

which are mapped to the internal-data memory space.

(See Chapter 8 for a complete description of the
Examine/Modify Internal-Data Menu.)

6.16 Xdata-Mem Command

The Xdata-Mem command calls up the Examine/Modify External­
Data Menu which allows you to examine and/or modify the
contents of the target's external data memory. It allows:

Dumping a block of the memory's contents
Scanning and modifying the memory a byte at a time
Filling a block of the memory with data
Moving a block of the memory's contents from one

location to another.
Searching the memory for a data pattern
Verify/Compare one block of memory data with another.
Mapping the external-data memory to the user system,
the emulator or to both in varying 16-byte block
addresses.

(See Chapter 8 for a complete description of the
Examine/Modify External-Data Menu.)

6.17 Code-Mem Command

The Code-Mem command calls up the Examine/Modify Pro~ram
Code Memory Menu which allows you to examine and modlfy the
lCD's program code memory, wish to examine. It allows:

Disassembly of the program code
Single line assembly of the program code

6-31

Examination and modification of raw program code memory
data.

Mapping the external-data memory to the user sytem,
the emulator or to both in varying 16-byte block addresses.

(See Chapter 7 for a complete description of the
Examine/Modify Program Code Memory Menu.)

6.18 View-trace Command

The View-trace command is used to examine the contents of
the 4,096 frames of the trace buffer. The trace can be
examined in two possible modes; the Code mode and the Raw
mode. Pressing the view-trace command calls the trace
buffer in from the emulator and displays it on the screen,
as such there is a time elaspe before the screen is updated
with the trace buffer. This time elaspe is based on the
communication transfer rate (baud rate).

Before entering into a discussion about the trace buffer
display it will be necessary to define some terms and
contents of the display screen.

Code Mode- The mode of trace display when the content
of the trace buffer is fully disassembled including user
supplied labels.

Raw Mode- the mode of trace display when the content of
the trace buffer is the binary content of the
data/address bus for each bus cycle in the Hex format.

Rel Address- Relative Address in the 4k trace buffer.
The value can range from ° (zero) to 4,096. The +
(plus) and - (minus) sign before the number indicate
either forward, +, into the trace buffer and as such
what is the memory content of what the next N locations
in memory_ Or backward, -, into the trace buffer and as
such the audit trail of what instructions the
microcontroller has just executed. In the Code Mode
the relative address will increment or decrement its
count according to the start address of an instruction.
In the Raw Mode the relative address will increment or
decrement its count by one to correspond to the data
content.

Abs Address- Absolute Address of the microcontroller
instruction, address or data in the program flow.

6-32

Label- the label for that particular instruction,
address or data that was assigned to it in the program
development.

Mnemonic Instruction- the mnemonic instruction
breakdown of that particular absolute address in the
program flow.

Port- The Hex display of the activity on the port
selected by the I/O command in the interrogate menu.

Data- the Hex display of the data content of the
absolute address in the program flow.

Asteriks- A single asterik (*) indicates when an
instruction was executed (Raw Mode only).

- A double asterik (**) indicates when an
interrupt occurred (Both Modes).

Where the trace buffer begins to display the data is based
on the trace-trigger type choosen. The trace buffer will
always enter trace display in the Code Mode.

6.19 START Trace-Trigger

If the START trace-trigger type was choosen it will result
in the break occurring when the address is equal to the
trace-trigger address plus 4,096 ALE cycles. The screen
will display relative address a and forward (+) addresses.
The user may move forward in the trace buffer up to 4,096
relative addresses. The display will always start halfway
down.

If the break was set to occur on address 30H the Code Mode
would appear as follows:

Trace Menu
Trigger Type: Start Trace Mode: Code

Rel Abs
Address Address Label Mnemonic Instruction Port

0000 0030 start: MOV DPTR,#O FF
+0003 0033 outerloop: CLR outbit FF
+0005 0035 MOV tempcount, #10 FF
+0008 0038 innerloop: CALL wastetime FF
+OOOB 003B CPL outbi t FF

[tJ- scroll up [IJ- scroll down [ESCJ- change mode [RETJ- Exit

6-33

The highlight appears to the left of the relative address 0
(zero) and over the port Hex activity for relative address
O.

Pressing the [RETURNJ key will return the user to the
interrogate menu.

Pressing the scroll down [lJ key moveS the user a single
relative address at a time down into the trace buffer.
Pressing the scroll up [IJ key moves the user a single
relative address at a time into the trace buffer.

A faster method of moving in the trace buffer is by entering
the relative address desired to be viewed in the highlight
area. This is done by pressing a + (plus) or - (minus) sign
and an address and then pressing [RETURN]. The trace buffer
will then advance or retreat to the address choosen and
display the contents. If the address choosen is greater than
the valid contents of the trace buffer the buffer will
terminate the address at the last valid data location and
display that data.

Pressing the [ESC] key will change the mode of display of
the trace buffer from Code mode to Raw mode or vice versa.
The Raw Mode display of the same program flow appears as
follows:

Trace Menu

Trigger Type: Start Trace Mode: Raw

Rel Address Abs Address Data Port
----------- -----------

0000 0030 90* FF
+0001 0031 00 FF
+0002 0032 00 FF
+0003 0033 C2* FF
+0004 0034 90 FF

[tJ- scroll up [l]- scroll down [ESCJ- change mode [RET]- Exit

The scroll up, scroll down, change mode and exit functions
perform the same as in the Code mode.

6-34

6.20 CENTER Trace-Trigger

If the CENTER trace-trigger type is choosen it will result
in the break occurring when the address is equal to the
trace-trigger address plus 2,048 ALE cylces. The screen will
display relative address 0 and forward (+) and backward (-)
addresses. The user moves forward up to 2,048 relative
addresses or backwards up to 2,047 relative addresses. The
display will always start with relative address 0 (zero) in
the middle.

If the break was set to occur on address 38H the Code Mode
would appear as follows:

Trace Menu

Trigger Type: Center Trace Mode: Code

Rel Abs
Address Address Label Mnemonic Instruction Port

-0008
-0005
-0003

start:
outerloop:

innerloop:

DPTR,#O
outbit
tempcount,#l0
wastetime
outbit
A

FF
FF
FF
FF
FF
FF

0000
+0003
+0005
+0006

0030
0033
0035
0038
0038
003D
003E

MOV
CLR
MOV
CALL
CPL
CLR
JNB outbit, skipover FF

[tJ- scroll up [IJ- scroll down [ESCJ- change mode [RETJ- Exit

The highlight appears to the left of the relative address 0
(zero) and over the port Hex activity for relative address
O.

Pressing the [RETURNJ key will return the user to the
interrogate menu.

Pressing the scroll down [~J key moves the user a single
relative address at a time down into the trace buffer.
Pressing the scroll up CfJ key moves the user a single
relative address at a tlme into the trace buffer.

A faster method of moving in the trace buffer is by
entering the relative address desired to be viewed in the
highlight area. This is done by pressing a + (plus) or -

6-35

(minus) sign and an address and then pressing [RETURNJ. The
trace buffer will then advance or retreat to the address
choosen and display the contents. If the address choosen is
greater than the valid contents of the trace buffer the
buffer will terminate the address at the last valid data
location and display that data.

Pressing the [ESC] key will change the mode of display of
the trace buffer from Code mode to Raw mode or vice versa.
The Raw Mode display fo the same program flow appears as
foll ows:

Trace Menu

Trigger Type: Center Trace Mode: Raw

Rel Address Abs Address Data Port
----------- -----------

-0003 0035 75* FF
-0002 0036 64 FF
-0001 0037 OA FF
0000 0038 12* FF

+0001 0039 00 FF
+0002 003A 50 FF
+0003 0038 82* FF
+0004 003C 90 FF

[1J- Scroll up [J.[- Scroll down [ESCJ- change mode [RETJ-

The scroll up, scroll down, change mode and exit functions
perform the same as in the Code mode.

6-36

Exit

6.21 END Trace-Trigger

If the END trace-trigger type is choosen it will result in
the break occurring when the address is equal to the trace­
trigger address and it will break emulation BEFORE the
instruction at the address is executed. The screen will
display relative address 0 and backward (-) addresses. The
user may move backwards up to 4,096 relative addresses. The
display will always start with relative address 0 (zero) at
the bottom.

The END trace-trigger type will also be entered if the user
presses the [ESCJ key during instruction execution and
therefore, causes a host interrupt condition to occur. .

If the break was set to occur on address 41H Code Mode would
appear as follows:

Trace Menu

Trigger Type: End Trace Mode: Code

Rel Abs
Address Address Label Mnemonic Instruction
------- ------- --------- --------------------
-0017 0030 start: MOV DPTR,#O
-0014 0033 outerloop: CLR outbit
-0012 0035 MOV tempcount,#10
-0009 0038 innerloop: ·CALL wastetime
-0006 0038 CPL outbit
-0004 0030 CLR A
-0003 003E JNB outbit,skipover

Port

FF
FF
FF
FF
FF
FF
FF

--
[tJ- scroll up [~J- scroll down [ESCJ- change mode [RETJ- Exit

The highlight appears to the left of the relative address 0
(zero) and over the port hex activity for relative address
O.

Pressing the [RETURNJ key will return the user to the
interrogate menu.

Pressing the scroll down [~J key moves the user a single
relative address at a time down into the trace buffer.
Pressing the scroll up [tJ key moves the user a single
relative address at a time into the trace buffer.

6-37

A faster method of moving in the trace buffer is by entering.
the relative address desired to be viewed in the highlight
area. This is done by pressing a + (plus) or - (minus) sign
and an address and then pressing [RETURN]. The trace buffer
will then advance or retreat to the address choosen and
display the contents. If the address choosen is greater than
the valid contents of the trace buffer the buffer will
terminate the address at the last valid data location and
display that data.

Pressing the [ESCJ key will change the mode of display of
the trace buffer from Code mode to Raw mode or vice versa.
The Raw Mode display of the same program flow appears as
follows:

Trace Menu

Trigger Type: Center Trace Mode: Raw

Rel Address Abs Address Data Port
----------- -----------
-0007 0039 00 FF
-0006 003A 50 FF
-0005 003B B2* FF
-0004 003C 90 FF
-0003 0030 E4* FF
-0002 003E 30* FF
-0001 003F 90 FF
0000 0040 01 FF

[tJ- scroll up [~J- scroll down [ESCJ- change mode [RET]- Exit

The scroll up, scroll down, change mode and exit functions
preform the same as in the Code mode.

6-38

6.22 Experiment Command

6.23 I/O Command

The Experiment command calls up the Examine Experiment Menu
which allows you to examine and/or modify an emulation
experiment. In this menu you can:

Edit an experiment
Compile an experiment to set break points
Load an experiment from a disk file
Store an experiment in a disk file
Reset the current experiment
Delete the current experiment
Call the Opcode Class Menu

(See Chapter 10 for a complete description of the Examine
Experiment Menu.)

The I/O command allows the user to select which I/O port
activity in the emulator is to be used in the trace buffer.
The activity on the selected port will be traced during
execution of an experiment and can be viewed using the view­
trace command. Pressing the I/O command sequencially toggles
the port selected number on the interrogate menu screen.

6.24 Pass-cnt (Pass-Count) Command

The Pass-count command is used to set the pass counter. The
pass counter is used to trigger the tracing capability,
which in turn triggers a break condition. The pass-count is
initialized to zero (0) and the user must insure that some
condition in either the experiment or the program code is
incrementing the pass-counter before the pass-count can be
set to some other number.

The Brk-cnt command (see break-count section) can be used to
set a simple pass-count or the users experiment must contain
a pass-count increment statement. Both conditions will
enable the· pass-count to increment. If no condition exists
the pass-counter cannot be set to any value and an error
message will appear.

6-39

If the conditions are met the pass-count screen will appear
as follows:

Go S-Step Reset Fantom Brk-trace Loop-cnt Trace-Trig Help Quit
Modify-Regs Data Xdata Code View-Trace Experiment I/O Pass-cnt
(Quick help line for highlighted command) --

Repetition Counter: (#)
Pass Count: (#) INTERROGATE MENU

Trace Trigger: (Point)
Port Selected: Port (#)

xx ACC
xx IP
xx PCON
'xx TCON
xx TMOD

xx B
xx PO
xx PSW
xx THO

xx DPH
xx PI
xx SBUF
xx TLO

xx DPL
xx P2
xx SCON
xx THI

xx IE
xx P3
xx SP
xx TLl

PC Address = xxxx DPTR = xxxx Break Address = xxx x

Enter count (in decimal) > _

The count should be a decimal number between 1 and 65,534.
Entering a number and the pressing the [RETURN] will update
the pass count number on the interrogate menu screen.
Pressing the [RETURN] key in response to the count prompt
will abort execution of the command and retain the current
value of the counter.

Error messages which could be encountered when executing
this command include:

Illegal integer value- the number used to specify the count
contained illegal decimal digit.

Number is too large- a count value greater 32,767 was
requested.

Count not incremented- Pass counter was attempted to be set
to some value other than zero (0) and the user has not
provided for an increment to the pass-counter.

6-40

GPR
Bank (#)

xx RO
xx RI
xx R2
xx R3
xx R4
xx R5
xx R6
xx R7

CHAPTER 7
EXAMINE / MODIFY PROGRAM CODE MEMORY

7.1 Examine / Modify ?rogram Code Memory Overview

The Examine / Modify Program Code Memory Menu is·used to
examine and/or modify the contents of the ICDls program code
memory. It allows:

1) disassembly of the program code,
2) single line assembly of the program code,
3) examination and modification of raw code memory data.

7.2 Examine / Modify Program Code Memory Screen

The Examine / Modify Program Code Memory screen appears as
fo 11 ows:

Disassemble Assemble Table Help Quit
(Quick help line for highlighted command)

EXAMINE / MODIFY PROGRAM CODE MEMORY

Upon entering, the Disassemble command will be
highlighted.

7-1

7.3 Disassemble Command

The Disassemble command is used to display the contents
of the lCD's program code memory as 8051 assembly language
mnemonic instructions. You will be prompted to supply the
address of the instruction in program code memory where you
desire the disassembly to begin. You will also be prompted
to supply the number of instructions to disassemble; The
disassembly screen will appear differently depending on
whether or not you are using the symbolic debugging
capability. The Disassembly screen appears as follows for
the non-symbolic mode:

Enter starting address (in hex) or label> 0 DISASSEMBLER
Enter number of instructions (in decimal) > 8

Address

0000
0001
0002
0005
0007
OOOA
0000
OOOE

code

03
F3
020055
74CD
120055
753620
E3
7603

Mnemonic Instuction

RR
MOVX
LJMP
MOV
LCALL
MOV
MOVX
MOV

A
@R1,A
0055H
A,#COH
0055H
36H,#20H
A,@R1
@RO,#03H

The Disassembly screen appears as follows for the symbolic
mode:

Enter starting address (in hex) or label > 0 DISASSEMBLER
Enter number of instructions (in decimal) > 8

Addr Code Label Mnemonic Instruction
-------- ------------- ---------------------

0000 03 START: RR A
0001 F3 MOVS @R1,A
0002 020055 LJMP ENDPFPROG
0005 74CD MOV A,#CDH
0007 120055 LABEll : LCALL ENDOFPROG
OOOA 753620 MOV NOTE,#20H
0000 E3 MOVX A,@R1
OOOE 7603 MOV @RO,#03H
--

7-2

The first prompt in the disassembly screen is for the
starting address. Hitting the [RETURN] key in response to
this prompt wil.l abort the Disassembly command. The starting
address can be supplied as a hexadecimal numberic address or
as an instruction label (if symbolic debug is enabled). If
the address is supplied as a number, it is important to

ensure that the address corresponds to an instruction
boundary. Specifying an address which is in the middle of an
instruction will cause erroneous code disassembly.

The second prompt in the disassembly screen is for the
number of instructions to disassemble. Hitting the [RETURN]
key in response to this prompt will abort the Disassembly
command. The number of instructions must be supplied as a
decimal number.

Three checks are made prior to displaying the disassembled
code. The first check ensures that the lCD's program. code
memory has been loaded. If code has not been loaded into the
memory then the code memory mapping must be mapped to the
user board. If neither of these conditions are true, an
error message is displayed and the Disassembly command is
aborted. In this case, return to the Main Menu to load your
program code memory or to change the mapping of the code
memory_

The second check is only used when the code memory is mapped
to the emulator's code memory. It ensures that the starting
address you have specified is within the address range of
the emulator code memory. If the address is outside the
range of the emulator code memory, an error message is
displayed and the disassembly command is aborted. (e.g. the
starting address is at 16K and the emulator only contains 8K
code memory).

The third check is only used when the code memory is mapped
to the emulator's code memory. It ensures that code has been
loaded at the starting address you have specified. If code
has been loaded but does not exist at the starting address
you have specified, an error message ;s displayed and the
disassembly command is aborted. (e.g. your program consumes
2K of memory from a to 3FFh and you have asked to
disassemble code starting at address 500h.)

7-3

If you are using the symbolic debugging capability of the
system, symbols will replace numbers in the mnemonic
instruction whenever applicable. To be specific, all program
code addresses, direct byte addresses and direct bit
addresses which have symbolic representations will be
displayed as symbols rather than numbers. ..

The number of instructions specified for disassembly can
exceed the display area of one screen. In this case the
screen fills up from top to bottom until the display is
full. As more instructions are disassembled, the display
area is scrolled upward one line and the newest instruction
appears on the bottom line of the display area.

You can halt the scrolling action at any time by hitting the
[SPACE BAR] key. This puts the system in the single step
display mode. After entering the single step display mode,
one new disassembled instruction is displayed each time you
hit the [SPACE BAR] key. Normal display scrolling can be
resumed by hitting ANY key other than the [SPACE BAR] key.
The single step display mode is automatically terminated
when the Disassembly execution is completed.

Once the disassembly has begun, it can be aborted at any
time by hitting the [ESC] key.

If the number of instructions specified takes us beyond the
end of the valid program code, the disassembly terminates
and the message

*** end of valid code ***

is displayed beneath the disassembly of the last valid
instruction. This end of valid code can be determined ONLY
when code is mapped to the emulator's code memory_

Upon completion of the disassembly, the top of the screen
returns to the Examine / Modify Program Code memory command
list while the disassembly in the center of the screen
remains.

Error messages which may be encountered when specifying the
starting address include:

Number is too large- the address specified was greater than
64K.

7-4

Illegal number specification- a non-hexadecimal character
was found in the address specification.

Symbolic debug not enabled- the symbolic debugging
capability is not enabled. Symbolic addresses are therefore
not allowed.

Improper address segment- the specified symbol was not a
code address symbol.

Undefined symbol- the symbol specified doesn't exist.

Error messages which may be encountered when specifying the
number of instructions to disassemble include:

Illegal integer value- the number specified contained non­
decimal characters.

Error messages which may be encountered during the code
disassembly include:

Code memory ;s not loaded; the rCD's program code memory has
not been loaded with program code and the code memory is
mapped to the emulator. Return to the Main Menu to load the
code.

Address is outside loaded range- the specified starting
address is not within the address range of the emulator code
memory.

No code at specified memory location- the specified starting
address does not contain valid code.

Sync - possible table disassembly- this error only applies
when in the symbolic debug mode. Advantage is taken of the
fact that the instruction labels must lie on instruction
boundaries. If the disassembly passes a known label without
displaying it, then an address synchronization problem
exists. Either the starting address was not at an instruction
boundry or the disassembly process passed through a non­
instruction portion of code memory (i.e. a data table that
lies in code memory space).

Communication error - reset comm link- a non-recoverable
error occurred. Communication must be reestablished via the
Execute command in the Configuration menu.

RS232 transmission problem - check board- the RS232 board
could not perform a transmission. Check your RS232 board.

7-5

7.4 Assemble Command

The Assemble command is used to overwrite an 8051 instuction
in the program code memory with a new instruction, to add a
label at a ~pecified PC address or both. You will be
prompted to supply the address at .which you want to start
overwritting code. The Assembly screen will appear as
follows:

Enter starting address (in hex) or label > ASSEMBLER

If the code memory is mapped to the user board, the warning
message

WARNING: CODE MEMORY IS MAPPED TO USER BOARD

will be displayed. If this message appears, the Assembly
command should be continue~ ONLY if the memory on your user
board is configured as a Von Neumann type memory. (i.e. code
and data reside in the same memory).

The prompt ;s for the address at which you want to start
overwriting code or adding a label. Hitting the rRETURN] key
in response to this prompt will abort the Assembiy command.
The address can be supplied as a hexadecimal numeric address
or as an instruction label (if symbolic debug is enabled).
If the address is supplied as a number, it is important to
ensure that the address corresponds to an instruction
boundary. Specifying an address which is in the middle of an
instruction will cause erroneous code assembly.

Once a starting address has been supplied, you will be
prompted to supply the instruction. In addition, the address

7-6

of the' next instruction to be assembled is displayed. The
assembly screen will appear as follows:

Next instruction address: (address)
Enter next instruction>

ASSEMBLER

Hitting the [RETURN] key in response to this prompt will
return you to the first prompt which allows you to specify a
new starting address. The new instruction must be supplied
in the form of an 8051 assembly language mnemonic
instruction. Any errors in the mnemonic instruction will be
reported.

The mnemonic instruction can contain a symbolic
representations. This includes the ability to define a new
label at the address specified as the Next Instruction
Address. A symbol can be added as a label to the current
instruction by entering a label in response to the prompt
with no instruction following it.

Enter next i nstructi on: (address)
Enter next instuction >

ASSEMBLER

Hitting the [RETURN] key in response to this prompt will
return you to the first prompt which allows you to specify a
new starting address. The new instruction must be suppli~d
in the form of an 8051 a'ssembly language mnemonic
instuction. Any errors in the mnemonic instruction will be
reported.

The mnemonic instruction can contain symbolic
representations. This includes the ability to define a new
label at the address specified as the Next Instruction
Address. A symbol can be added as a label to
the current instruction by entering a label in response
to the prompt with no instruction following it.

Enter next instruction> Label:

7-7

Labels can even be added when symbolic debug is not enabled.
When this occurs however, the symbolic debug capabil,ity
becomes enabled.

If the assembled mnemonic instruction does not contain the
same number of bytes as the original instruction-at the
specified location, you will be warned by the message:

New instruction length <> original length - Replace (YIN)?

If this situation occurs, you have the option to either
continue with the instruction replacement (a 'Y' or 'y'
response) or to abort the replacement and retain the
original instuction (a 'N' or 'n' response).

Please note that it is highly recommended that you inspect
our program code carefully before running an experiment if
you get this warning message. It is informing you that your
code is not contiguous.

Single line assembly is permitted even when the code memory
is mapped to the user board. In this case, it is assumed
that the memory on the user board is used as a Von Neumann
type memory. (i.e. code and data reside in the same memory).
This allows you to change the code which resides-in the RAM
on your board. If however, it is determined that the code
memory on the user board is READ ONLY, an error message will
be displayed and the Assembly command will be aborted. This
error message is:

User board code memory is READ ONLY - could not modify code
memory on the user board.

Upon completion of the single line assembly, the Next
Instruction Address is incremented to the next location in
code memory following the instruction which was just
assembled. This allows you to enter a number of continous
instuctions in memory without having to specify the address
for each instruction.

7-8

Error messages which may be encountered when executing the
Assemble command include:

Cannot assemble offset uploaded code- ~ode was uploaded from
the target system at some starting address other than O.
This code can ONLY be examined using the Table command (see
below).

Error messages which maYobe encountered when specifying the
address include:

Number is too large- the address specified was greater than
64K.

Illegal number specification- a non-hexadecimal character
was found in the address specification.

Symbolic debug not enabled- the symbolic debugging
capability ;s not enabled. Symbolic addresses are therefore
not allowed.

Improper address segment- the specified symbol was not a
code address symbol.

Undefined symbol- the symbol specified doesn't exist.

Error messages which may be encountered when specifying the
new assembly language mnemonic instruction include:

Illegal character- a character was encountered which is not
part of the legal character set. (See Appendix E for the
single line assembler's character set).

Undefined symbol- use was made of a symbol which hasn't been
defined.

Duplicate symbol- a label was used in the mnemonic
instruction which has a differrent code address value than
the address specified in the first prompt.

Illegal opcode after label- the symbol after a label wasn't
an opcode.

7-9

Illegal assembly line- the assembly line doesn't begin with
a label or instruction mnemonic. .

Illegal or missing expression- a number, symbol, or
arithmetic expression was expected but was either missing pr
could not be evaluated properly. . .

Illegal or missing expression operator- an arithmetic
operator was expected but was either missing or was not a
legal operator. (See Appendix E for the single line
assembler's legal operators.)

Unbalanced parenthesis- in evaluating an expression, the
parenthesis in the expression were found not to balance.

Illegal or missing expression value- in evaluating an
expression, an expected number or symbol was either missing
or illegal.

Illegal literal expression- a null ASCII literal string
(' I) was found.

Expression stack overflow- the expression stack has a depth
of 32 values. The expression being evaluated exceeds this
depth.

Division by zero- the expression being evaluated includes an
attempt to divide by zero.

Illegal bit designator- an illegal bit designator address
was specified. A bit designator contains a byte address,
followed by a PERIOD, followed by the bit index into the
byte address (e.g. ACC.7). This error can be caused by two
errors. First, the specification of the byte address part of
the bit designator was not a legal bit addressable address.
Second, the bit index into the byte address exceeds 7.

Target address exceeds relative address range- a relative
jump was specified with the target exceeding 127 bytes
forward or 128 bytes backward.

Illegal operand- the operand specified ;s not a legal
operand for the instruction.

7-10

Illegal indirect register- the indirect addressing mode
designator (@) was followed by something other than RO and
Rl. This error can also occur in the MOVC A,@A+DPTR, MOVX
A,@DPTR,MOVX @DPTR,A and the JMP @A+DPTR instructions if the
operands after the indirect addressing mode designator are
not $pecified properly.

Missing operand delimiter- a COMMA operand delimiter
was missing from the operand fields of the instruction.

Expecting an EOL- the assembly language mnemonic
instruction supplied contains too many operands.

Communication error - reset comm link- a non­
recoverable error occurred. Communication must be
reestablished via the Execute command in the
Configuration Menu.

RS232 transmission problem - check board- the RS232
board could not perform a transmission. Check your
RS232 board.

7-11

7.5 Table Command

7.6 Help Command

7.7 Quit Command

The Table command calls up the Examine / Modify Program-Code
Menu which allows you to examine and/or modify the contents
of the ICD's program code memory as raw data. This mode is
useful when working with tables which reside in program code
memory. This menu allows:

1) dumping a block of the code memory's contents,
2) scanning and modifying the code memory a byte at a time,
3) filling a block of the code memory,
4) moving a block of the code memory's contents from one

location to another~
5) searching the code memory fer a data pattern,
6) comparing one block of code memory data with another.

(See Chapter 8 for a complete description of the
Examine/Modify Program-Code Menu.)

The HELP command is used to display a detailed description
of the function of each of the commands in the Examine/Modify
Program Code Memory Menu.

Error messages which may be encountered when executing this
command include:

Help file not found- th~ file "HLPFILE" could not be found
on either the default or A: drives.

The quit command ;s used to return to the previous menu.

7-12

CHAPTER 8
EXAMINE/MODIFY INTERNAL DATA MEMORY

8.1 Examine/Modify Memory Data Overview

The Examine/Modify Memory Data Menu is used to examine
and/or modify the contents of the ICD internal data memory,
the target system's external data memory and the lCD's
program code memory. It allows:

1) dumping a block of the memory's contents,
2) scanning and modifying the memory a byte at a time,
34) filling a block of the memory with data,

) moving a block of the memory's contents from one
location to another,

45) searching the memory for a data pattern,
) comparing one block of memory data with another,

6) examining and modifying the directly addressable bits
which are mapped to the internal data memory space
(Internal Data Memory ONLY).

8.2 Examine/Modify Memory Data Screen

The Examine/Modify Memory Data screen appears as follows for
the External Data Memory and the Program Code Table
Memories:

Dump Enter Fill Move Search Compare Help Quit
(Quick help line for highlighted command)

EXAMINE / MODIFY (Memory Name) MEMORY

8-1

The Examine/Modify Internal Data Memory screen appears as
follows:

Dump Enter Fill Move Search Compare RAM-Bits Help Quit
(Quick help line for highlighted command)

EXAMINE/MODIFY INTERNAL DATA MEMORY

Upon entering, the Dump command will be highlighted.

The Examine/Modify Memory Data Menu can be used with
internal data memory, external data memory and program code
memory. The commands function similarly for all three memory
spaces. The memory space being operated on is always
displayed on the screen. This will avoid any confusion
concerning which memory space is being manipulated.

All of the commands in this menu perform address range
checks before performing their functions. These checks
ensure that the addresses specified are valid for the
selected memory.

For internal data memory, the address range is the entire
internal data memory.

Component Address Range

8031
8032
8344

o - 7Fh
o - OFFh
o - OCOh

For external data memory the address range ;s the entire
external data memory (i.e. addresses 0 - FFFFh).

For program code memory, the range ;s dependent on how the
Program Code Memory is mapped (see chapter 4.9). If mapped
to the lCD, the range is determined by the starting
address of the program code memory and the size of the ICD
program code memory option you have purchased.

When mapped to the emulator, the starting address of
the program code memory is determined by the method of
loading the memory. If the memory was loaded via the
Load command (see Main Menu), then the starting address

8-2

B.3 Dump Command

;s automatically set to O. If however, the program
code memory is loaded via the Uploaded command (see
Main Menu), then the starting address is whatever
address was specified in the Upload command.

The range of addressability in the program code memory thus
begins at the above described starting address, and
continues up to the size of the program code memory option.

For example: Suppose you have uploaded code from your
system starting at address 400h (lK) and you have purchased
the BK program code memory option. The addressable range of
the program code memory in this case is 400h - 23FFh (1 -
9K) •

If mapped externally, the range is the entire program code
memory (i.e. addresses 1 - FFFFh).

The Dump command is used to display a block of memory data.
You will be prompted to supply the starting address of the
block and the number of bytes you want to display. The dump
screen appears as follows:

Enter starting address (in hex)) a
Enter number of bytes (in decimal) > 24

DUMP
(Memory Name)

Address Memory Data ASCII

0000 41 42 43 44 45 46 47 48 ABCDEFGH
OOOB CO C1 C2 30 C4 C5 C6 35 ••. 1 •.. 5
0010 61 62 63 64 65 66 67 68 abcdefgh

The first prompt in the Dump screen is for the starting
address. Hitting the [RETURN] key in response to this prompt
will abort the Dump command. The starting address can be
supplied as a hexadecimal numeric address or as a symbolic
address (if symbolic debug is enabled).

The second prompt in the Dump screen is for the number of
bytes to dump. Hitting the [RETURN] key in response
to this prompt will abort the Dump command. The number of
bytes must be supplied as a decimal number.

8-3

The number of bytes specified for the dump can exceed the
display area of one screen. In this case the screen fills up
from the top to bottom until the display area is full. As
more bytes are dumped, the display area is scrolled upward
one line and a new line of 8 bytes appears on the bottom
line of the display area.

You can halt the scrolling action at any time by hitting the
[SPACE BAR] key_ This puts the system in the single step
display mode. After entering the single step display mode,
one new group of 8 bytes is displayed each time you hit the
[SPACE BAR] key. Normal display scrolling can be resumed by
hitting ANY key other than the [SPACE BAR] key. The single
step display mode is automatically terminated when execution
of the Dump command ;s completed.

Once the Dump command has begun execution, it can be aborted
at any time by hitting the [ESC] key.

If the number of bytes specified goes beyond the end of the
addressable range of the memory, all valid data bytes are
dumped and then the dump terminates.

Upon completion of the Dump command, you are prompted for
another starting address for another dump.

Error messages which may be encountered when specifying the
starting address include:

Number is too large- the address specified was greater than
64K.

Illegal number specification- a non-hexadecimal character
was found in the address specification.

Symbolic debug not enabled- the symbolic debugging
capability is not enabled. Symbolic addresses are therefore
not allowed.

Improper address segment- the specified symbol was not an
address symbol for the selected memory space.

Undefined symbol- the symbol specified doesn't exist.

Address is out of range- a program code memory address was
specified which is below the program code memory's starting
address.

8-4

8.4 Enter Command

SFR not in internal memory- the special function register
specified does not reside in the internal data memory space.

Error messages which may be encountered when specifying the
number of bytes to dump include:

Illegal integer value- the number specified contained non­
decimal characters.

Error messages which may be encountered during the data dump
include:

Address is out of range- the address specified is outside
the valid address range of the selected memory.

Communication error - reset comm link- a non-recoverable
error occurred. Communication must be reestablished via the
Execute command in the Configuration Menu.

RS232 transmission problem - check board- the RS232 board
could not perform a transmission. Check your RS232 board.

The Enter command is used to examine and/or modify memory
one byte at a time. It allows you to step through memory in
either incrementing or decrementing address locations. You
will be prompted to supply the starting address to examine.
The Enter screen appears as follows:

ENTER
Enter starting address (in hex) > a (Memory Name)

Address ~n New Data
------- --------

0000 41

l+] - Forward l+] - Backward lESC] - Exit

If the memory space being operated on is program code memory
and the code memory is mapped to the user board, the warning
message:

WARNING: CODE MEMORY IS MAPPED TO USER BOARD

will be displayed. If this message appears, the contents of

8-5

the memory should be changed ONLY if the memory on your user
board is configured as a Von Neumann type memory_ (i.e~ code
and data reside in the same memory).

The first prompt in the Enter screen is for the starting
address. Hitting the [RETURN] key in response to this prompt
will abort the Enter command. The starting address can be
supplied as a hexadecimal numeric address or as a symbolic
address (if symbolic debug is enabled).

When a valid starting address has been specified, the
address and current value of the memory at that address are
displayed. You are then prompted to enter new data. This is
called the entry command mode.

Hitting the [,] cursor control key on the numeric keypad at
the right of the keyboard key in response to this prompt
will retain the current value, increment the address to the
next location and display the address and value of the new
location.

Hitting the ['] cursor control key on the numeric keypad at
ther;ght of the keyboard in response to this prompt will
retain the current value, decrement the address to the
previous location and display the address and value of the
new location.
Hitting the [ESCAPE] key will terminate the entry command
mode and you will again be prompted for a starting address.
This allows you to examine another area of memory.

In addition, while in the Entry command mode, you may supply
a new value in response to the prompt. In this case the new
data value must be supplied as a hexadecimal number. When a
valid data value has been supplied, the address and value
will be displayed again to ensure that the value was updated
correctly.

Changing data in the program code memory is permitted even
when the code memory is mapped to the user board. In this
case, it ;s assumed that the memory on the user board is
used as a Von Neumann type memory. (i.e. code and data
reside in the same memory). This allows you to change the
code which resides in the RAM on your board. If however, it
is determined that the code memory on the user board is READ

8-6

ONLY, an error message will be displayed and the following
error message will be displayed:

User board code memory is READ ONLY

The Enter screen fills up from top to bottom until the
display area is full. As more locations are examined, the
display area is scrolled upward one line and a address and
value appear on the bottom line of the display area.

If incrementing or decrementing the location takes us
outside the valid address range of the memory, the address
will remain unchanged and the last valid location will be
displayed over again.

Error messages which may be encountered when specifying the
starting address include:

Number is too large- the address specified was greater than
64k.

Illegal number specification- a non-hexadecimal character
was found in the address specification.

Symbolic debug not enabled- the symbolic debugging
capability is not enabled. Symbolic addresses are therefore
not allowed.

Improper address segment- the specified symbol was not an
address symbol for the selected memory space.

Undefined symbol- the symbol specified doesn't exist.

Address is out of range- a program code memory address was
specified which is below the program code memory's starting
address.

SFR not in internal memory- the special function register
specified does not reside in the internal data memeory
space.

Error messages which may be encountered when entering a new
data value include:

Too many characters- the new data value contained more than
two hexadecimal degits. It can not therefore represent a
byte value.

8-7

8.5 Fill Command

Illegal number specification- the new data value contained
digits which were non-hexadecimal characters.

User board code memory is READ ONLY- could not modify the
code memory on the user board. .

Communication error - reset comm link- a non-recoverable
error occured. Communication must be reestablished via the
Execute command in the Configuration Menu.

RS232 transmission problem - check board- the RS232 board
could not perform a transmission. Check your RS232 board.

The Fill command is used to fill a block of memory with a
specified data pattern. You will be prompted to supply the
starting address of the block and the number of bytes in
memory you want filled with data. The Fill screen appears as
follows:

Enter starting address (in hex) >
Enter number of bytes (in decimal) >

Enter Fill Pattern
>

FILL
(Memory Name)

If the memory space being operated on is program code memory
and the code memroy is mapped to the user board, the warning
message

WARNING: CODE MEMORY IS MAPPED TO USER BOARD

Will be displayed. If this message appears, the contents of
the memory should be changed ONLY if the memory on your user
board is configured as a Von Neumann type memory. (i.e. code
and data res i de in the same memory).

The first prompt in the Fill screen is for the starting
address. Hitting the [RETURN] key in response to this prompt
will abort the Fill command. The starting address can be
supplied as a hexadecimal numeric address or as a symbolic
address (if symbolic debug is enabled).

8-8

The second prompt in the Fill screen is for the number of
bytes of memory to be filled with data. Hitting the [RETURN]
key in response to his prompt will abort the Fill command.
The number of bytes must be supplied as a decimal number.

The third prompt in the Fill screen is for the Fill pattern.
Hitting the [RETURN] key in response to this prompt will
abort the Fill command. The fill pattern is the pattern of
data you want to put into memory. The fill pattern data can
be specified as numbers, symbolic numbers, character
strings, or any combination of the above. A pattern can
contain up to 32 bytes of data.

Numbers may be specified as numeric values in any radix.
Valid radix specifiers include: h - hexadecimal, d -
decimal, 0 or q - octal and b - binary. No default radix is
provided. Specifying a number without a radix specifier
will result in an error message.

Symbolic numbers are symbols which have been defined in the
currently loaded program to represent numbers. In order to
use symbolic number specifications, you must assemble your
program with the 8051 Family Cross Assembler with the
debug switch on. (See the 8051 Cross Assembler User1s
Manual for details.)

Character strings are simply strings of characters
delineated by an apostrophe (I). In order to include the
apostrophe itself in the character string, the double
apostrophe (I I) is used. Character strings are entered in
memory as the ASCII representation of the characters in the
string.

Below ;s an example of a fill patern specification:

Enter Fill Pattern

> 23h 64d symnum IStringl

Assuming that symnum is defined to represent the value 10h,
the fill pattern specified is:

23 40 10 53 74 72 69 6E 67 (all numbers are in hex)

8-9

Any error s encountered while processing the fill pattern
will result in an error message being displayed and an arrow
pointing to the offending entry in the fill pattern. Below
is an example of a fill patern specifi~ation ~ith an error:

Enter Fill Pattern

> 2rh 64d symnum 'String'

ERROR> Illegal number specification - Hit [ESC] to return

If the fill pattern specified contains more bytes than was
requested by the number of bytes prompt (the second prompt)
then the warning message: ,

WARNING> Fill pattern has been truncated

will be displayed. This indicates that the entire fill
pattern could not be used to fill the block of memory with
data.

If the number of bytes specified exceeds the number of bytes
supplied in the fill pattern specification, then the fill
pattern will be used over again repeatedly until the
requested number of bytes have been filled with data. No
warning message will be given in this case.

If the number of bytes specified takes the address beyond
the end of the addressable range of the memory, an error
message is displayed and the Fill command ;s aborted without
changing data in the memory. You will again be prompted for
the starting address so that you can start over.

Changing data in the program code memory is permitted even
when the code memory is mapped to the user board. In this
case, it is assumed that the memory on the user board is
used as a Von Neumann type memory. (i.e. code and data
reside in the same memory). This allows you to change the
code which resides in the RAM on your board. If however, it
is determined that the code memory on the user board is READ
ONLY, the following error message will be displayed:

User board code memory is READ ONLY

Upon completion of the Fill command. you are prompted for
another starting address for another fill.

8-10

Error messages which may be encountered when specifying the
starting address include:'

Number is too large- the address specified was greater than·
64K.

Illegal number specification- a non-hexadecimal character
was found in the address specification.

Symbolic debug not enabled- the symbolic debugging
capability is not enabled. Symbolic addresses are therefore
not a 11 owed.

Improper address segment- the specified symbol was not an
address symbol for the selected memory space.

Undefined symbol- the symbol specified doesn't exist.

Address is out of range- a program code memory address was
specified which is below the program code memory's starting
address.

SFR not in internal memory- the special function register
specified does not reside in the internal data memory space.

Error messages which may be encountered when specifying the
number of bytes to fill include:

Illegal integer value- the number specified conta1ned non­
decimal characters.

Error messages which may be encountered when specifying the
fill pattern include:

Too many bytes in pattern- the fill pattern contained more
than 32 bytes of data.

Illegal entry found- an entry was found in the fill pattern
which could not be identified as a number t a symbol t or a
character string.

Illegal number specification- a non-hexadecimal digit was
encountered in the specification of a number.

Illegal digit for specified radix- an illegal digit for the
specified radix of a number was encountered.

No default radix provided- a number was specified without a
radix specifier.

8-11

Number is too large- a number specified either by a numberic
value or a symbolic number is greater than OFFh. The value
cannot be represented as a data byte.

Undefined symbol- the specified symbol doesn't exist.

Illegal symbol type- the symbol specified was not a numeric
symbol.

Symbolic debug not enabled- the symbolic debugging
capability is not enabled. Symbolic numbers are therefore
not a 11 owed.

Illegal end of string- the end of the fill pattern was
encountered before a terminating character string delimiter
was found.

Illegal string character- an apostrophe was found in a
character string which was followed neither by another
apostrophe nor a space. Such use of an apostrophe within a
character string is illegal.

Error messages which may be encountered during the fill
process include:

Address is out of range- the address specified is outside
the valid address range of the selected memory.

Byte count causes address out of range- the sum of the
specified starting address and the specified number of bytes
causes an illegal memory address to be generated.

User board code memory is READ ONLY- could not modify the
code memory on the user board.

Communication error - reset comm link- a non-recoverable
error occurred. Communication must be reestablished via the
Execute command in the Configuration Menu.

RS232 transmission problem - check board- the RS232 board
could not perform a transmission. Check your RS232 board.

8-12

8.6 Move Command

The Move command is used to move a block of memory from one
location in memory to another. You will be prompted to
su~ply the address of the source block, th~ destination
address and the number of bytes you want moved. The Move
screen appears as follows:

MOVE
(Memory Name)

Enter Source addres$ (in hex)

Enter destination address (in hex) >

Enter number of bytes (in decimal) >

If the memory space being operated on is program code memory
and the code memory is mapped to the user board, the warning
message

MESSAGE: CODE MEMORY IS MAPPED TO USER BOARD

wil' be displayed. If this message appears, the contents of
the memory should be changed only if the memory on your user
board is configured as a Von Neuman type memory. (i.e. code
and data reside in the same memory).

The first prompt in the Move screen is for the source
address. Hitting the [RETURN] key in response to this prompt
will abort the Move command. The source address can be
supplied as a hexadecimal numeric address or as a symbolic
address (if symbolic debug is enabled).

The second prompt in the Move screen is for the destination
address. Hitting the [RETURN] key in response to this prompt
will abort the Move command. The source address can be
supplied as a hexadecimal numeric address or as a symbolic
address (if symbolic debug is enabled).

The third prompt in the Move screen is for the number of
bytes to move. Hitting the [RETURN] key in response to this
prompt will abort the Move command. The number of bytes must
be supplied as a decimal number.

8-13

If the number of bytes specified to move takes either the
source address or destination address beyond the end of the
addressable range of the memory, an error message is
displayed and the Move command is aborted wihout moving any
data in the memory. You will again be prompted for the
source address so that you can start over. ..

Changing data in the program code memroy is permitted even
when the code memory is mapped to the user board. In this
case, it ;s assumed that the memory on the user board is
used as a Von Neumann type memory. (i.e. code and data
reside in the same memory). This allows you to change the
code which resides in the RAM on your board. If however, it
is determined that the code memory on the user board is READ
ONLY, the following error message will be displayed:

User board code memory is READ ONLY

Upon completion of the Move command, you are prompted for
another source address for another move.

Error messages which may be encountered when specifying the
source and destination addresses include:

Number is too large- the address specified was greater than
64K.

Illegal number specification- a non-hexadecimal character
was found in the address specification.

Symbolic debug not enabled- the symbolic debugging
capability is not enabled. Symbolic addresses are therefore
not a 11 owed.

Improper address segment- the specified symbol was not' an
address symbol for the selected memory space.

Undefined symbol- the symbol specified doesn't exist.

Address ;s out of range- a program code memory address was
specified which is below the program code memory's starting
address.

SFR not in internal memory- the special function register
specified does not reside in the internal data memory space.

8-14

Error messages which may be encountered when specifying the
number of bytes to move include:

Illegal integer"value- the number specified contained non­
decimal characters.

Error messages which may be encountered during the move
process include:

Source address is out of range- the address specified is
outside the valid address range of the selected memory.

Destination address is out of range- the address specified
is outside the valid address range of the selected memory.

Byte count causes address out of range- the sum of the
specified source or destination address and the specified
number of bytes causes an illegal memory address to be
generated.

User board code memory is READ ONLY- could not modify the
code memory on the user board.

Communication error - reset comm link- a non-recoverable
error occurred. Communication must be reestablished via the
Execute command in the Configuration Menu.

RS232 transmission problem - check board- the RS232 board
could not perform a transmission. Check your RS232 board.

8-15

8.7 Search Command

The Search command is used to search the memory for a
specified data pattern. You will be prompted to supply the
starting address for the search and the number of bytes in
memory you want to search. The Search screen appears as
follows:

Enter starting address (in hex) >
Enter number of bytes (in decimal)~

Enter Search Pattern
>

SEARCH
(Memory Name)

The first prompt in the Search screen is for the starting
address. Hitting the [RETURN] key in response to this prompt
will abort the Search command. The starting address can be
supplied as a hexadecimal numeric address or as a symbolic
address (if symbolic debug is enabled).

The second prompt in the Search screen is for the number of
bytes to search. Hitting the [RETURN] key in response to
this prompt will abort the Search command. The number of
bytes must be supplied as a decimal number.

The third prompt in the Search screen is for the search
pattern. Hitting the [RETURN] key in response to this prompt
will abort the Search command. The search pattern is the
pattern of data you want to find in memory. The search
pattern is specified in exactly the same manner as the fill
pattern for the Fill command (see Fill command in this
menu).

If the search pattern specified contains more bytes than was
requested by the number of bytes prompt (the second prompt)
then an error message will be displayed and the Search
command is aborted without searching the memory. You will
again be prompted for the starting address so that you can
start over.

If the number of bytes specified to search takes the address
beyond the end of the addressable range of the memory, an
error message is displayed and the Search command ;s aborted
without searching the memory. You will again be prompted for
the starting addres so that you can start over.

8-16

After all prompts have been successfully entered, the search
results are displayed. The search results screen appears as
follows:

Enter starting address (in hex) >
Enter number of bytes (in decimal) >
(Search pattern)

String found at location(s)

007E
0081
0084

SEARCH
(Memory Name)

The search pattern is copied to the first line of the
display area. The addresses in memory where the matched
pattern have been located are displayed one per line. The
address corresponds to the location in memory of the first
byte of the pattern. If no matches can be found, the message

*** String Not Found ***

is displayed to inform you of the results of the search.

The number of matching locations can exceed the display area
of one screen. In this case the screen fills up from top to
bottom until the display area is full. As more matches are
found, the display area is scrolled upward one line and a
new location appears on the bottom line of the display area.

You can halt the scrolling action at any time by hitting the
[SPACE BAR] key. This puts the system in the single step
display mode. After entering the single step display mode,
one new match location is displayed each time you hit the
[SPACE BAR] key. Normal display scrolling can be resumed by
hitting ANY key other than the [SPACE BAR] key. The single
step display mode is automatically terminated when execution
of the Search command is completed.

Once the Search command has begun execution, it can be
aborted at any time by hitting the [ESC] key.

Upon completion of the Search command, you are prompted for
another starting address for another search.

8-17

Error messages which may be encountered when specifying the
starting address include:

Number is too large- the address specified was greater than
64K.

Illegal number specification - a non-hexadecimal character
was found in the address specification.

Symbolic debug not enabled- the symbolic debugging
capability is not enabled. Symbolic addresses are therefore
not allowed.

Improper address segment- the specified symbol was not an
address symbol for the selected memory space.

Undefined symbol- the symbol specified doesn't exist.

Address is out of range- a program code memory address was
specified which is below the program code memory's starting
address.

SFR not in internal memory- the special function register
specified does not reside in the internal data memory space.

Error messages which may be encountered when specifying the
number of bytes to search include:

Illegal integer value- the number specified contained non­
decimal characters.

Error messages which may be encountered when specifying the
search pattern include:

Search pattern is larger than search area- there are more
bytes in the search pattern than in ·the specified search
area.

Too many bytes in pattern- the search pattern contained more
than 32 bytes of data.

Illegal entry found- an entry was found in the search
pattern which could not be identified as a number, a symbol,
or a character string.

Illegal number specification- a non-hexadecimal digit was
encountered in the specification of a number.

8-18

Illegal-digit for specified radix- an illegal digit for the
specified radix of a number was encountered.

No default radix provided- a number was specified without a
radix specifier.

Number is too large- a number specified either by a numberic
value or a symbolic number is g-reater than OFFh. The value
cannot be represented as a data byte.

Undefined symbol- the specified symbol doesn1t exist.

Illegal symbol type- the symbol specified was not a numeric
symbol.

Symbolic debug not enabled- the symbolic debugging
capability is not enabled. Symbolic numbers are therefore
not a 11 owed.

Illegal end of string- the end of the search pattern was
encountered before a terminating character string delimiter
was found.

Illegal string character- an apostrophe was found in a
character string which was followed neither by apostrophe
nor a space. Such use of an apostrophe within a character
string is illegal.

Error messages which may be encountered during the search
process include:

Address is out of range- the address specified is outside
the valid address range of the selected memory.

Byte count causes address· out of range- the sum of the
specified starting address and the specified number of bytes
causes an illegal memory address to be generated.

Communication error - reset comm link- a non-recoverable
error occurred. Communication must be reestablished via the
Execute command in the Configuration Menu.

RS232 transmission problem - check board- the RS232 board
could not perform a transmission. Check your RS232 board.

8-19

8.8 Compare Command

The Compare command is used to compare the data in one block
of memory with the data in another block of memory. You
will be prompted to supply the starting address of the
first block, the starting address of the second block, and
the number of bytes in each block you want to compare. The
Comparison is performed byte by byte, starting at the
beginning of each block and continuing until the specified
number of bytes has been compared. The Compare screen
appears as follows:

Enter block 1 starting address (in hex) > 0
Enter block 2 starting address (in hex) > 10

Enter number of bytes (in decimal) > 3

COMPARE
(Memory Name)

The first prompt in the Compare screen is for the starting
address of block 1. Hitting the [RETURN] key in response to
this prompt will abort the Compare command. The starting
address can be supplied as a hexadecimal numeric address or
as a symbolic address (if symbolic debug is enabled).
The second prompt in the Compare screen is for the starting
address of block 2. Hitting the [RETURN] key in response to
this prompt will abort the compare command. The starting
address can be supplied as a hexadecimal numeric address or
as a symbolic address (if symbolic debug is enabled).

The third prompt in the Compare screen is for the number of
bytes to compare. Hitting the [RETURN] key in response to
this prompt will abort the Compare command. The number of
bytes must be supplied as a decimal number.

After all prompts have been successfully entered, the

8-20

comparison results are displayed. The comparison results
screen appears as follows:

Enter block 1 starting address (in hex) > a
Enter block 2 starting address (in hex) > 10

MISMAICHED BylES

COMPARE
(Memory Name)

Block 1 Address Data Data Address Block 2

0000
0001
0002

43 63
44 64
45 65

0010
0011
0012

All data which does not match in the byte by byte comparison
between the two blocks are displayed. The addresses where
the mismatched data was found are also displayed. If all
data matched, the message

*** All Bytes Match ***

is displayed to inform you of the results of the comparison

The number of mismatched data bytes can exceed the display
area of one screen. In this case the screen fills up from
top to bottom until the display area is full. As more
mismatches are found, the display area is scrolled upward
one line and the new mismatched data bytes appear on the
bottom line of the display area.

You can halt the scrolling action at any time by hitting the
[SPACE BAR] key. This puts the system in the single step
display mode. After entering the single step display mode,
one new mismatch location is displayed each time you hit the
[SPACE BAR] key. Normal display acrolling can be resumed by
hitting ANY key other than the [SPACE BAR] key. The single
step display mode is automatically terminated when execution
of the Compare command is completed.

Once the Compare command has begun execution, it can be
aborted at any time by hitting the [ESC] key.

Upon completion of the Compare command, you are prompted for
another starting address for another comparison.

8-21

Error messages which may be encountered when specifying the
starting addresses include:

Number is too large- the address specified was greater than
64K.

Illegal number specification- the symbolic debugging
capabilty is not enabled. Symbolic addresses are therefore
not allowed.

Improper address segment- the specified symbol was not an
address symbol for the selected memory space.

Undefined symbol- the symbol specified doesn't exist.

Address is out of range- a program code memory address was
specified which is below the program code memory's starting
address.

SFR not in internal memory- the special function register
specified does not reside in the internal data memory space.

Error messages which may be encountered when specifying the
number of bytes to compare include:

Illegal integer value- the number specified contained non­
decimal characters.

Error messages which may be encountered during the comparison process

Block 1 address is out of range- the address specified is
outside the valid address range of the selected memory.

Block 2 address is out of range- the sum of either of the
specified starting addresses and the specified number of
bytes cuases an illegal memory address to be generated.

Communication error- reset comm link- a non-recoverable
error occurred. Communication must be reestablished via the
Execute command in the Configuration Menu.

RS232 transmission problem - check board- the RS232 board
could not perform a transmission. Check your RS232 board.

8-22

8.9 RAM-Bits Command (Internal Data Memory Only)

The RAM-Bits command is used to examine and modify the 128
directly addressable bits whose addresses are a subset of
the Internal Data Memory's address space. The RAM-Bits
appears as follows: . .

Address

High

Nibble

RAM BIT MEMORY

. Address Low Nibbl e

o 1 2 345 6 7 8 9 ABC D E F
\

01 I--x~x~x-x~x~x-x~x~x-x~x~x-x~x~x~x':"'""
x x X x x x x x x x x x x x x x

2 x x x x x x x x x x x x x x x x
3 x x x x x x x x x x x x x x x x
4 x x x x x x x x x x x x x x x x
5 x x xx x x x x x x xx x x x x
6 x x x x x x x x x x x x x x x x
7 x x x x x x x x x x x x x x x x

Bit name or hex address >

Value = x

New Value>

All RAM bits are displayed in the middle of the screen. The
address of any bit can be determined by reading the high
order nibble of the address on the left and the low order
nibble of the address at the top.

At the bottom of the display, you are prompted for the name
or address of the bit you wish to change. Hitting the
[RETURN] key in response to the prompt will abort the RAM­
Bit screen and return you to the Examine / Modify Internal
Data Memory menu.

Bit specifications can be supplied as hexadecimal addresses
or the name (symbolic representation) of a bit. When a valid
bit specification has been supplied, its current value is
displayed. You are then prompted for a new bit value.
Hitting the [RETURN] key in response to this prompt retains
the current value and returns you to the bit specification

8-23

prompt. Entering a new value will change the contents of the
specified bit to the new value. Only 0 and 1 are accepted as
the new value for a bit.

When a new value has been accepted, you are again prompted
for a bit specification.

Error messages which may be encountered when specifying a
bit to examine include:

Address is out of range-a bit address was specified which
is greater than 7Fh.

Symbolic debug not enabled- the symbolic debugging
capability is not enabled. Symbolic bit addresses are
therefore not allowed.

Illegal symbol type- the name specified was not that of a
bit.

Undefined symbol- the name specified doesn't exist.

Error messages which may be encountered when specifying a
new bit value include:

Illegal binary value- the new value supplied was not a a or
1.

Communication error - reset comm link- a non-recoverable
error occurred. Communication must be reestablished via the
Execute command in the Configuration Menu.

RS232 transmission problem - check board- the RS232 board
could not perform a transmission. Check your RS232 board.

8-24

8.10 Help Command

8.11 Quit Command

The Help command is used' to display a detailed description
of the function of each of the commands in the Examine /
Modify Memory Data Menu

Error messages which may be encountered when executing this
command include:

Help file not found- the file "$HLPFILE" could not be found
on either the default or A: drives.

The quit command is used to return to the previous menu.

8-25

CHAPTER 9
THE EXPERIMENT

9.1 What is an experiment?

Before explaining the concept of an experiment, it is
important to first understand the function and use of an in­
circuit emulator (ICE). Novice readers are advised to review
the ICE concept presented in Chapter 1 before reading
further in this chapter.

Below are some definitions which will aid in
understanding the concept of an experiment:

Experiment- the specification of where and when in the
execution of the program the processor is to stop.

Program Counter- (PC) the pointer to the location in
program code memory which will be accessed on the next
memory fetch.

Breakpoint- a specific PC location where the processor
is to stop executing its program.

Opcode- the first byte (the opcode byte) of an
instruction

Direct Byte Address- the address of a special function
register or internal data memory location which ;s
accessed via an instruction which contains the address.

Direct Bit Address- the address of a bit which is
accessed via an instruction which contains the bit
address as one of the operands.

Immediate Value- an operand of an instruction whose
value is taken directly from the instruction stream.

The main advantage of using an ICE to debug your design is
its ability to stop the execution of the target processor in
mid-execution of your program. This allows you to examine
the state of your system at any point you specify. This
ability can only be utilized to its fullest potential,
however, when the mechanism by which you specify breakpoints
is flexible and easy to use.

9-1

The specification of where breakpoints are to occur is
called an experiment. The lCD software allows you to
describe an experiment in a high level language (the
Experiment Language). An experiment is simply the Experiment
Language test which describes ~here the breakpoints are to
occur.

An experiment can be created outside the @ environment
by using any available text editor to create an
experiment text file. This file can then be read into
the lCD system (see Chaper 10 for more details). For your
convenience, a full screen experiment editor has been
provided as part of the lCD software which allows you to
create and modify experiments without leaving the lCD
environment. (See Chapter 11 for a full description of the
experiment editor.)

9.2 Specifying Breakpoints

The'Experiment Language uses the if-then conditional
statement as its basic construct. Experiment statements
will be of the form:

if (condition) then break.

The condition represents a breakpoint specification.
Breakpoints can be specified by any of the following
methods:

A PC address
A PC address range
An opcode value
An opcode class
A direct byte address
A direct byte address range
A direct bit address
A direct bit address range
An immediate operand value

Each of these methods for specifying breakpoints will
be discussed in detail below. The lCD will break
emulation BEFORE the instruction at the breakpoint
address is executed.

9-2

9.2.1 PC Address Breakpoints

A breakpoint can be set at a particular PC address
through the use of the following experiment statement:

if pc = xx then break

This statement will cause an emulation break to occur
if the next instruction to be executed resides at
location xx in program code memory. The address can be
specifed as a numeric address in any radix or as a
symbolic code memory address (if symbolic debug is
enabled). The address must reside in the lCD's program code
memory.

PLEASE NOTE that setting a breakpoint at a PC address which
does not contain the opcode of an instruction (i.e. in the
middle of an instruction) will cause erroneous and
unpredictable operation.

PLEASE NOTE that if you are using the PC address breakpoints
to set individual breakpoints irregardless of any other
conditions, a Simpler method of achieving the same result is
to use the simple breakpoint capability via the Brk-Point
command in the Interrogate Menu (see chapter 6.7 for
detail s).

9.2.2 PC Address Range Breakpoints

A series of breakpoints can be set within a range of PC
address through the use of the following experiment
statement:

if pc comparator xx then break

where comparator can be any of the following relational
operators: < (less than),) (greater than), <= (less
than or equal to) or)= (greater than or equal to).
This statement will cause an emulation break to occur
if the next instruction to be executed resides within
the specified range of locations in program code memory.
The address can be speciifed as a numeric address in
any radix or as a symbolic code memory address (if
symbolic debug is enabled). The address range must
reside in the lCD's program code memory.

9-3

Bounded ranges may be created by ANDing together two
range conditions with the & (logical AND) operator. For
example, the experiment statement

if pc)= 10h & pc <= 40h then break

will cause an emulation break to occur if the next
instruction to be executed r€sides within locations 10h
and 40h inclusive in program code memory. (See Section
9.3 for a full description of a complex conditional
statement.)

PLEASE NOTE that care must be taken to ensure that the
beginning address of a PC address range must fallon an
instruction opcode. Beginning a breakpoint range at a
PC address which does not contain the operand of an
instruction (i.e. in the middle of an instruction) will
cause erroneous and unpredictable operation.

9.2.3 Opcode Value Breakpoints

A breakpoint can be set for all occurrences of a
particular instruction through the use of the following
experiment statement:

if opcode = xx then break

This statement will cause an emulation break to occur
every time the instruction with the opcode value xx is
the next instruction to be executed. The opcode can be
specified as a numeric value in the radix. Only
instances of the opcode which reside in the lCD's
program code memory will cause emulation breaks to occur.

PLEASE NOTE that if your program code memory contains
tables, the lCD's program code memory MUST be loaded with
the leO object code file (see ICD 8051 Cross Assembler
User's Manual for details) in order to use the opcode class
breakpoint capability. If your code contains tables, using
the opcode class breakpoint with any other cross assembler
may cause erroneous and unpredictable operation.

WARNING: the opcode class breakpoint capability WILL
NOT operate properly on code loaded from Intel absolute
object module file.

9-4

9.2.4 Opcode Class Breakpoints

A breakpoint can be set for all occurrences of a class of
instructions through the use of the following experiment
statement:

if opcode class (name) then break

This statement will cause an emulation break to occur every
time an instruction defined in the opcode class (name) is
the next instruction to be executed. The opcode classes can
be defined to encompass as many or as few instructions as
desired. Examples of opcode classes could include: any
instruction which affects the stack, any instruction which
moves data to the accumulator, or any instruction which
changes the flow of the program. (See Chapter 12 for a full
description of the opcode calss capability.) Only instances
of instuctions in the opcode class which reside in the ICD
emulator's program code memory will cause emulation breaks
to occur.

PLEASE NOTE that if your program code memory contains
tables, the ICD emulator's program code memory MUST be
loaded with a ZLINK object code file (see ZLINK 8051 Cross
Assembler User's Manual for details) in order to use the
opcode class breakpoint capability. If your code contains
tables, using the opcode class breakpoint with any other
cross assembler may cause erroneous and unpredictable
operation. .

WARNING: The opcode class breakpoint capability WILL NOT
operate properly on code loaded from Intel absolute object
module file.

9.2.5 Direct Byte Address Breakpoints

A breakpoint can be set for all occurrences of instructions
which access (either read or write) a directly addressable
register or internal memory location. This is accomplished
through the use of the following experiment statement:

if daddr = xx then break

where 'daddr' stands for 'Direct Address ' • This statement
will cause an emulation break to occur every time an
instruction which accesses the specified direct address is
the next instruction to be executed. The address may be
specified as a numeric value in any radix or as a symbolic
direct address (if symbolic debug is enabled). Only
instances of the direct address instuctions which reside in
the ICD's code memory will cause emulation breaks to occur.

9-5

It is also possible to limit breakpoints to only reads
from or only writes to a direct address. This is
accomplished by creating a complex conditional (see the
section on complex conditionals below) with a direct
address specification and an opcode class specification
(see Chapter 12 for full details on opcode classes) ..
The direct address specification determines the address
and the opcode class specification determines whether
read or write access will set a breakpoint. The
experiment statement would appear as follows:

If daddr - xx & opcode class (class name) then break

This will limit breakpoints to only read or only write
accesses to the specified register except for the move
direct address to direct address instruction (MOV
daddr,daddr). This instruction accesses two direct
addresses either of which can set a breakpoint for
either read or write accesses.

PLEASE NOTE that if your program code memory contains
tables, the rCD's program code memory MUST be loaded with a
ICD object code file (see ICD 8051 Cross Assembler User's
Manual for details) in order to use the direct address
breakpoint capability. If your code contains tables, using
the direct address breakpoint with any other cross assembler
may cause erroneous and unpredictable operation.

WARNING: The direct address breakpoint capability WILL
NOT operate properly on code loaded from Intel absolute
object module file.

9.2.6 Direct Byte Address Range Breakpoints

A breakpoint can be set for al~ occurrances of instructions
which access (either read or write) a range of directly
addressable register or internal memory location. This is
accomplished through the use of the. following experiment
statement:

if daddr comparator xx then break

where 'daddr' stands for 'Direct Address I and the comparator
can be any of the following relational operators: < (less
than), > (greater than), <= (less than or equal to). This
statement will cause an emulation break to occur every time
an instruction which accesses a direct address (within the
specified range) is the next instruction to be executed. The

9-6

address may be specified as a numeric value in any radix or
as a symbolic direct address (if symbolic debug ;s enabled).
Only instances of the direct address instructions which
reside in the lCD's program code memory will cause emulation
breaks to occur.

Bounded ranges may be created by ANDing together two range
conditions with the & (logical AND) operator as described ;n
the PC range breakpoint section.

PLEASE NOTE that if your program code memory contains
tables, the lCD's program code memory MUST be loaded with an
ICD object code file (see ICD 8051 Cross Assembler User's
Manual for details) in order to use the direct address r~nge
breakpoint capability. If your code contains tables, using
the direct address range breakpoint with any other cross
assembler may cause erroneous and unpredictable operation.

WARNING: The direct address range breakpoint capability
WILL NOT operate properly on code loaded from Intel absolute
object module file.

9.2.7 Direct Bit Address Breakpoints

A breakpoint can be set for all occurances of instructions
which access (either read or write) a directly addressable
bit. This is accomplished through the use of the following
experiment statement:

if baddr = xx then .break

where 'baddr' stands for 'Bit Address'. This statement will
cause an emulation break to occur every time an instruction
which accesses the specified bit address is the next
instruction to be executed. The address may be specified as
a numeric value in any radix or as a symbolic bit address
(if symbolic debug is enabled). Only instances of the bit
address instructions which reside in the lCD's program code
memory will cause emulation breaks to occur.

PLEASE NOTE that if your program code memory contains
tables, the lCD's program code memory MUST be loaded with an
ICD object code file (see ICD 8051 Cross Assembler User's
Manual for details) in order to use the bit address
breakpoint capability. If your code contains tables, using
the bit address breakpoint with any other cross assembler
may cause erroneous and unpredictable operation.

9-7

WARNING: The bit address breakpoint capability WILL NOT
operate properly on code loaded from Intel absolute object
module file.

9.2.8 Direct Bit Address Range Breakpoints

A breakpoint can be set for all occurrances of instructions
which access (either read or write) a range of directly
addressable bits. This is accomplished through the use of
the following experiment statement:

if baddr comparator xx then break

where 'baddr' stands for 'Bit Address 1 and the comparator
can be any of the following relational operators: < (less
than),) (greater than, <= (less than or equal to) or)=
(greater than or equal to). This statement will cause an
emulation break to occur every time an instruction which
accesses bit address (within the specified range) is the
next instruction to be executed. The address may be
specified as a numeric value in any radix or as a symbolic
bit address (if symbolic debug is enabled). Only instances
of the bit address instructions which reside in the ICD's
program code memory will cause emulation breaks to occur.

Bounded ranges may be created by ANDing together two range
conditions with the & (logical AND) operator as described in
the PC range breakpoint section.

PLEASE NOTE that if your program code memory contains
tables, the ICD's program code memory MUST be loaded with an
ICD object code file (see ICD 8051 Cross Assembler User's
Manual for details) in order to use the bit address range
breakpoint capability. If your code contains tables, using
the bit address range breakpoint with any other cross
assembler may cause erroneous and unpredictable operation.

WARNING: The bit address range breakpoint capability WILL
NOT operate properly on code loaded from Intel absolute
object module file.

9-8

9.2.9 Immediate Operand Value Breakpoints

A breakpoint can be set for all occurrences of a particular
immediate operand value through the use of the following
experiment statement:

if immed = xx then break

This statement will cause" an emulation break to occur every
time an instruction with the immediate operand value xx is
the next instruction to executed. The immediate value can be
specified as a numeric value in any radix. Only instances of
these instructions which reside in the lCD's program code
memory will cause emulation breaks to occur.

PLEASE NOTE that if your program code memory contains
tables, the lCD's program code memory MUST be loaded with an
ICD object code file (see ICD 8051 Cross Assembler User's
Manual for details) in order to use the immediate operand
value breakpoint capability. If your code contains tables,
using the immediate operand breakpoint with any other cross
assembler may cause erroneous and unpredictable operation.

WARNING: The immediate operand breakpoint capability WILL
NOT operate properly on code loaded from Intel absolute
object module file.

9.3 Complex Conditional Statements

In the above discussion of address ranges, mention was made
of the ability to link together simple conditional
statements in order to form more complex ones. This section
will explore complex conditionals in more detail.

As discussed above, the & operator (logical AND) is used to
join together two conditionals (simple or complex) both of
which must be met before an emulation break will occur. For
example:

if pc < 40h & opcode = 20h then break

will cause an emulation break only if an instruction whose
opcode value is 20h is executed at any PC location between 0
and 3Fh.

As might be expected, the! operator (logical OR) is also
provided. This operator is used to join together two
conditionals (simple or complex) either of which must be met
before an emulation break will occur.

9-9

The ! and & operators are of equal precedence. Conditional
expressions are evaluated from left to right.

Very complex conditionals can be created with the use of the
! and & operators. You may, therefore; use parenthesis to
make a conditional expression more readable. The parenthesis
are ONLY for readability and do not override the natural
precedence of the expression.

9.4 Constructing An Experiment

The specification of an experiment can contain as many
experiment statements as desired. Each statement specifies
its' own set of break conditions. The net effect of
specifying an experiment with more than one experiment
statement is to logically OR together the break conditions
specified by each of the statements. In the following
experiment for example: .

if (condit~on 1) then break
if (condition 2) then break
if (condition 3) then break

anyone of the three conditions could cause an emulation
break. This is the same as specifying:

if (condition 1) ! (condition 2) ! (condition 3) then break

Both experiments have the same results. Readability
considerations and personal preference will determine how
you construct an experiment.

Experiment statements are parsed in free form. Extra spaces
and new lines are ignored by the experimerit compiler (see
chapter '10.4). Experiment statements, therefore, need not be
contianed on one line of the experiment file. Statements may
take any visual form as long as they are syntactically
correct. The only constraint is that the entire experiment
be limited to 32 lines of 76 characters. The leo experiment
editor enforces these limitations automatically. If another
editor is used to create the experiment, care must be taken
to keep the experiment within the required limits.

9-10

9.5 Experiment Language Syntax Summary

This section presents a summary of the experiment language1s
syntax.

The experiment language

statement :: = If condition THEN result I EOF

condition :: = simp cond I comp cond

simp cond = address I opcode I immediate

comp cond

address

pcaddr

addr

= simp cond & simp cond simp cond & comp cond

simp cond simp cond simp cond ! comp cond

= PC compare pcaddr I DADDR compare addr I

BADDR compare addr

= number symbolic-address laddress expression

= number symbolic-address

compare .• = 1=1 I 1)1 I ')=1 I 1)='

opcode = OPCODE = number I OPCODE CLASS symbolic-class

immediate .• = IMMED = number

result :: = BREAK

9-11

CHAPTER 10
EXAMINE/MODIFY EXPERIMENT MENU

10.1 Examine/Modify Experiment Menu Overview

The Examine/Modify Experiment Menu is used to examine and/or
modify an experiment specification. In this menu you can:

21) edit an experiment,
) compile an experiment to set the breakpoints,

3) load an experiment from a disk file,
45) store an experiment in a disk file,

) delete the current experiment,
6) call the Opcode class Menu.

10.2 Examine/Modify Experiment Menu Screen

10.3 Edit Command

The Examine/Modify Experiment Menu screen appears as
follows:

Edit Compile Load Store Delete Opcode Help Quit
(Quick help line for highlighted command)

EXAMINE/MODIFY EXPERIMENT

Upon entering, the Edit command will be highlighted.

The Edit command calls up the full ICD screen Experiment
Editor. This editor allows you to create experiments or
edit existing experiments within the ICD environment.

(See Chapter 11 for a complete description of the
Experiment Editor.)

10.4 Compile Command

The Compile command is used to compile an experiment
and to down-load the breakpoints (which are the output
of the compilation) to the lCD. The compiler conducts the
experiment in two passes. On the first pass, the experiment
is checked for syntax errors. On the second pass, the
breakpoints are generated and sent to the ICD.

10-1

Prior to running the compiler, ~he following conditions
must be met:

1) The program code memory must be loaded with the program
to execute.

23) An experiment must exist,
) If an opcode class ;s used in the experiment, the

opcode class file must be loaded into the system and
the disk containing the opcode class file must be in
the dirve form which it was originally loaded (the
compiler will read the opcode class file).

4) Communication must be established with the ICD.

When the compiler ;s executed, the compiler screen is
displayed. It appears as follows:

EXPERIMENT COMPILER

(Experiment Text)

The middle of the screen is cleared. As the experiment ;s
parsed during the first pass, the experiment text will begin
appearing on the screen. If a syntax error is found during
this pass, the offending item will be highlighted, an error
message will be displayed and the parsing will stop. The
error message will specifically explain the error .
encountered. You will be prompted to hit the [ESCAPE] key to
continue parsing. When parsing continues, the errors thus
far encountered remain highlighted.

In the course of parsing an experiment with serious errors,
the compiler may become so lost that it must resynchronize
itself. In this case it may skip a portion of a statement
without checking the syntax of that portion. When this
happens, the entire portion will become highlighted and will
remain highlighted. This serves to inform that a
resynchronization took place.

10-2

If any errors were detected on the first pass, the number of
errors is reported by the following message:

RESULT> x errors detected

When errors are detected on the first pass, the second pass
is aborted so that the errors can be corrected with the
Experiment Editor.

If no errors are detected on the first pass, the screen ;s
again cleared and the second pass begins. The experiment
test will again appear on the screen as the experiment ;s
parsed.

The second pass generates the breakpoints. After parsing the
experiment for the second time, the WORKING sign will
appear. This indicates that the breakpoints are being down­
loaded to the ICD. If no errors are encountered on the
second pass, the message:

RESULT> 0 errors detected

will be displayed. This indicates that the experiment was
compiled correctly and that the breakpoints have been
properly loaded into the emulator.

Error messages which may be encountered while compiling an
experiment include:

Must load experiment first- an attempt has been made to
compile an experiment before it has been loaded or created.

Must load program code memory first- an attempt has been
made to compile an experiment before the program code has
been loaded into the lCD's code memory (see Chapter 4 for
details about loading the program code memory).

lif' expected- an experiment statement did not begin with
, if' .

Illegal end of experiment- the end of the experiment file
was encountered in the middle of parsing an experiment
statement.

'then' expected- the conditional portion of an experiment
statement was not terminated by a 'then'.

10-3

Illegal conditional- a simple conditional was encountered
which was not part of the legal conditional set.

Unbalanced parenthesis- there are an unequal number of
opening and closing parenthesis used in the conditional
protion of a statement.

Number expected-, something other than a numeric value was
encountered where a number was expected.

Code address expected- a symbol other than a code address
symbol was used in the specification of a code address
value.

Comparator expected- something other than a comparator was
encountered where a comparator was expected.

Number or address symbol expected- something other than a
numeric address or a symbolic address was encountered where
an address was expected.

PC value is out of range- the pc address specified in a PC
type conditional was outside the addressability range of the
lCD's program code memory. (i.e. a breakpoint could not be
set at the requested address.)

Address value is too large- an address was specified for a
direct byte or direct bit conditional which exceeds OFFh.

'=' or 'class' expected- something other than an '=' or
'class' was used in an opcode type conditional.

Number is too large- the opcode value specified exceeds
OFFh.

Undefined opcode class- the symbol used to specify an
opcode class was not a valid opcode class syniboL

Could not open opcode class file xxxxx- the opcode class
file could not be opened. This is most likely caused by the
removal of the disk between the time the opocde class file
was loaded and the time the experiment was compiled.

Class xxxxx not found in file xxxxx- the specified opcode
class could not be found in the expected opcode class file.
This is most likely caused by edjting a 2nd opcode class
file between the time the 1st opcode class file was loaded
and the experiment was compiled.

10-4

Illegal result statement- a result other than break was
encountered.

Illegal character- a character was encountered which is not
part of the legal character set. (See Appendix E for the
experiment compiler's character sit.)

or
a non-hexadecimal number was found in the specification of
a numeric value.

Undefined symbol- use was made of a symbol which hasn't
been defined.

No default radix provided- a number value was specified
without a radix specifier.

Illegal digit for specified radix- an illegal digit was
encountered for the specified radix of a number.

Number ;s too large- the number spec;fed exceeds 64K.

Illegal or missing expression- a number, symbol or
arithmetic expression was expected but was missing or could
not be evaluated properly.

Code address expected- a symbol other than a code address
symbol was used in the specification of a code address
value.

Direct byte address expected- a, symbol other than a direct
byte address symbol was used in the specification of a
direct byte address value.

Direct bit address expected- a symbol other than a direct
bit address symbol was used in the specification of a
direct bit address value.

Operator stack overflow- the operator stack has a depth of
32 values. The expression being evaluated exceeds this
value.

Illegal operator- the arithmetic operator specified is not
a legal operator.

Illegal bit designator- a illegal bit designator address
was specified. A bit designator contains a byte address,
followed by a PERIOD, followed by the bit index into the

10-5

10.5 Load Command

byte address (e.g. ACC.7). This error can be caused by two
errors. First, the specification fo the byte address part
of the bit designator was not a legal bit addressable
address. Second, the bit index into the byte address
exceeds 7.

Communication error - reset comm link- a non-recoverable
error occurred. Communication must be reestablished via the
Execute command in the Configuration Menu.

RS232 transmission problem - check board- the RS232 board
could not perform a trnasmission. Check your RS232 board.

The Load command is used to laod a predefined experiment
from a disk file. You will be prompted to supply the name
of the disk file. The Load screen appears as follows:

Enter file name>

LOAD EXPERIMENT FROM A FILE

The name should be complete file name specification
including a drive specification. Hitting the I?I key in
response to the prompt will call the directory facility
(see Chapter 3) through which you can get a listing of the
entries in any specified directory. Hitting the [RETURN]
key in response to the prompt will abort execution of the
command. If the file cannot be opened or cannot be found,
you will be notified of the error.

The experiment files can be created either by a foreign
editor or by executing the Store command in this menu (see
below). Any errors encountered while reading an experiment
file will be reported. If errors are encountered while
reading file, the Load command is aborted.

If an experiment currently exists within the system, you
will be prompted whether or not you want to overwrite the

10-6

10.6 Store Command

current exper~ment. (Only one experiment can exist within
the system at a time.) The prompt will appear as follows:

Overwrite current experiment (YIN)? _

A positive response ~o this pr6mpt ('Y' or 'y') ~ill ~ead
the new experiment into the system thereby destroying the
current experiment. A negative response ('N' or 'nIl will
abort the Load command thereby giving you the opportunity
to save the current ~xperiment before loading a new one.

Error messages which may be encountered when executing this
command include:

File not found- the specified file could not be found on
the specified drive, the default drive, or the A: drive.

Illegal character- a non-printable character was encuntered
while reading the file.

Line greater than 76 characters found- a line was found in
the file which is longer than the legal length.

File has more than 32 lines- the file contains more than the
legal number of lines.

The Store command is used to store the current experiment in
a disk file. You will be prompted to supply the name of the
disk file. The Store screen appears as follows:

Enter file name>

STORE EXPERIMENT IN A FILE

The name shoula be a complete file name specification
including a drive specification. Hitting the I?' key in
response to the prompt will call the directory facility
(see Chapter #) through which you can get a listing of the
entries in any specified directory. Hitting the [RETURN]
key in response to the prompt will abort execution of the
command. If the file cannot be opened, you will be notified
of the error.

10-7

10.7 Delete Command

10.8 Opcode Command

10.9 Help Command

10.10 Quit Command

Error messages which may be encountered when executing this
command include:

Cannot open file- the specified file could not be opened on
the specified drive.

The Delete command is used to delete the current experiment
from the system. You will be prompted to ensure that you
actually wanted to delete the experiment from the system.
(If the experiment is deleted from the system before it is
saved in a file via the Store command, it is permanently
lost). The Delete screen appears as follows:

DELETE CURRENT EXPERIMENT

Are you sure you want to delete the experiment [YIN]? > _
A INI response aborts the command without affecting the
experiment. A IY' response deletes the experiment and
resets all breakpoints which were set by the experiment.

The Opcode command calls up the Opcode Class Menu which
allows you to load, create, examine and modify Opcode Class
files. (See Chapter 12 for a complete description of the
Opcode Class Menu.)

The Help command is used to display a detailed description
fo the function of each of the commands in the Examine I
Modify Experiment Menu.

Error messages which may be encountered when executing this
command include:

Help file not found- the file "$HLPFILE" could not be found
on either the default of A: drives.

The Quit command is used to return to the previous menu.

10-8

CHAPTER 11
EXPERIMENT EDITOR

11.1 Experiment Editor Overview

The Experiment Editor is used to create, examine and/or
modigy an experiment. The Experiment Editor has three modes
of operation. These three modes are: the Line Entry mode,
the Edit mode and the Edit Command mode. Each of these is
discussed in detail below.

11.2 Experime~t Editor Screen

The Experiment Editor screen appears as follows:

EXPERIMENT EDITOR

Experiment status: (Status)

1 (line 1 of text)
2 (line 2 of text)

(Command options)

(Insert status)

The experiment status display is always present to inform
you of the current status of the experiment being edited.
The status can be one of the following:

NULL - no experiment exists (default when
editor is invoked and there is no
current experiment)

UNMODIFIED - the experiment has not been changed
(default when editor is first invoked
and there ;s a current experiment).

MODIFIED - the experiment has been modified during
the edit session.

The Insert status display informs you whether or not you
are in the Edit-Insert mode (see Edit mode for details).
The display is blank when in the Edit-Replace mode. The
display says INSERT when in the Edit-Insert mode.

Line numbers for the lines in the experiment are displayed
on the left side of the Edit display.

The command options which are valid for the current mode
are displayed at the bottom of the screen.

11-1

11.3 Using the Experiment Editor

The Experiment Editor ;s designed for use as a text editor
for experiment statements. The legal set of keys which may
be used with the editor consists of:

Any of the printable character keys
The [RETURN] key
The [ESCAPE] key
The four cursor control keys on the numberic

keypad at the right of the keypad
(.)

The [INSERT] key
The [DELETE] key

Use of any other keys (especially CTRL keys and other
cursor control keys) will cause strange and unpredictable
results.

11.4 Line Entry Mode

The Line Entry mode is usde to create a new experiment. It
is invoked automatically when the editor ;s called and no
experiment exists. The Edit screen appears as follows in
the Line Entry mode:

EXPERIMENT EDITOR

Experiment status: NULL

1

Hit [RET] to terminate line entry mode

When the Line Entry mode is entered, the line number 1 is
displayed and the cursor is positioned at the beginning of
the line. The command option is displayed at the bottom of
the screen. As printable characters are entered, they will
appear as text on the line. Line Entry mode is terminated
when a [RETURN] key is hit at the beginning of a new line.

11-2

11.5 Edit Mode

The maximum number of characters permitted on a line is 76.
Exceeding that amount will cause another new line to be
displayed and any excess characters from the previous line
to be entered on the new line. After completing entry of a
line, simply hit [RETURN] to advance to the next line.

Line Entry mode will continue until the [RETURN] key is hit
at the beginning of a new line or until 32 lines have been
entered. If 32 lines have been entered, the Line Entry mode
is automatically terminated.

When the Line Entry mode is terminated, the Edit mode is
automatically invoked.

The Edit mode provides the full screen editing capability.
It is used to examine and modify an existing experiment.
Edit mode is invoked automatically when the editor is
called and an experiment exists or when the Line Entry mode
is terminated. The Edit screen appears as follows in the
Edit mode:

EXPERIMENT EDITOR
Experiment status: (Status) (Insert Status)

1 (line lof text)
2 (1ine 2 of text)

Hit [ESC] to exit edit mode

Movement of the cursor on the,screen is provided through
the use of the cursor control keys on the numeric keypad at
the right of the keyboard. The cursor movement control keys
operate as follows:

i-up
,- down
'4- 1 eft
~- right

Wrap around is provided if the cursor is moved past the
beginning or end of a line. If at the beginning of a line,
a cursor left movement will move the cursor to the end of

11-3

the previous line. If at the end of a line, a cursor right
movement will move the cursor to the beginning of the next
line.

1he [DELETE] key is used to delete the character at the
cursor position. All subsequent characters will be shifted
left one character position. Hitting the [DELETE] key when
the curosr is at the end of a line has no effect.

A line can be deleted by hitting the [DELETE] key when
the cursor is positioned at an empty line (i.e. a newly
created line with no characters or a line which has had
all of its characters deleted). This is the only
mechanism provided for deleting lines in the Experiment
Editor. When a line is deleted, all subsequent lines are
shifted upward one line.

The full screen editor operates ;n two modes: the Edit­
Replace mode (default) and the Edit-Insert mode. Both
of these modes are discussed below.

The [INSERT] key is a toggle switch which toggles the
Edit mode between the Edit-Replace mode and the Edit­
Insert mode. When the Edit-Insert mode is selected, the
INSERT sign appears at the top right of the Editor
display screen.

11.5.1 Edit-Replace Mode

The Edit-Replace mode is the default mode for the full
screen editor. It is. used to overwrite the character at
the cursor position. When a character ;s entered in
this mode, it replaces whatever character was originally
present. The cursor is then advanced to the next character
position. The net effect is to overwrite the old text with
new text. .

The effect of entering a [RETURN] key in the Edit-Replace
mode is to write an end-of-line mark at the cursor
position. The previous character at the cursor position and
all subsequent characters in the line are deleted. Hitting
the [RETURN] key when characters in the line are deleted.
Hitting the [RETURN] key when the cursor is at the end of a
line has no effect. Hitting the [RETURN] key when the
cursor is at the beginning of a line has the effect of
deleting all characters from the line (i.e. creating an
empty line). This empty line can be deleted if desired by
hitting the [DELETE] key.

11-4

11.5.2 Edit-Insert Mode

The Edit-Insert mode is entered by hitting the [INSERT]
key. This mode is active when the insert sign is displayed
at the top right of the Edit screen. It is used to insert a
new character in front of the character at the cursor
position. When a character is entered in this mode, it is
placed at the cursor position. The original character at
the cursor position and all subsequent characters in the
line are shifted one character position to the right. The
cursor is then advanced to the next character position.

If the line is full (i.e. contains 76 characters) when an
insert is attempted, an error message will be displayed
indicating that the line is full.

The effect of entering a [RETURN] key in the Edit-Insert
mode is to insert an end-of-line mark at the cursor
position. A new line is created following the current line.
The original character at the cursor position and all
subsequent characters in the original line are moved to the
beginning of the newly created line. All lines which follow
the original line are shifted downward one line.
If the edit buffer is full (i.e. the experiment contains 32
lines) when a line insertion is attempted, an error message
will be displayed indicating that the edit buffer is full.

Error messages which may be encountered while editing in
the Edit-Insert mode include:

Line is full- an attempt was mde to insert a character in a
line which already contains 76 characters.

Experiment buffer is full- an attempt was made to insert a
line in an experiment which already contains 32 lines.

11.6 Edit Command Mode

The Edit Command mode is entered by hitting the [ESCAPE]
key while in the Edit mode. The Edit Command mode is used
to exit from the edit session, abort an edit session or

11-5

11.6.1 Edit Command

11.6.2 Save Command

save an edited experiment without leaving the edit
environment. The Edit screen appears as follows in the Edit
command mode:

EXPERIMENT EDITOR
Experiment status: (status (Insert st~tus)

1 (line 1 of text)
2 (line 2 of text)

E - edit S - save Q - quit

The commands available in the Edit Command mode are Edit,
Save and Quit. Each is discussed in detail below.

The Edit command is selected by hitting Ie' or 'E' while in
the Edit Command mode. Execution of this command returns
control to the Edit mode (described above).

The Save command is selected by hitting's' or'S' while in
the Edit Command mode. Execution of this command saves the
current state of the experiment in the system's experiment
buffer. This has the effect of overwriting the previous
buffer. This has the effect of overwriting the previous
(uneditied) veri son of the experiment status display at the
upper left of the Edit screen is changed to UNMODIFIED.
This indicates that the experiment in the edit buffer has
not been changed during the current edit session.

11-6

11.6.3 Quit Command

The Quit command is selected by hitting Iql or IQI while in
the Edit Command mode. Execution of this command terminates
the edit session. If the experiment has not been modified
during the edit session, control will be returned to the
Examine I Modify Experiment Menu. If, however, the
experiment has been changed during the edit session, you
will be prompted whether or not you want to save the
editied version of the experiment. The prompt will appear
as follows:

Save edited experiment? (YIN)

A positive reponse (Iyl or lyl) will save the experiment
. before exiting. A negative response (Inl or 'N') will
terminate the edit session without saving the edited
experiment (the old pre-edited version will remain intact).

11-7

CHAPTER 12
OPCODE CLASS MENU

12.1 Opcode Class Menu Overview

The Opcode Class Menu is used to create, examine and/or
modify Opcode Class files. In this menu you can:

1) load an Opcode Class file from a disk file,
2) edit an Opcode class disk file.

12.2 What;s an Opcode Class?

An opcode class is a collection of 8051/8031 instructions
which, taken collectively, comprise a set. You define
opcode classes for the needs of your particular experiment.
Some examples of opcode classes are the predefined opcode
classes provided in the file "OPCLASS.OPC" on the @ system
disk.

These classes include:

STACK - all instructions which affect the state of the
stack (PUSH, POP, ACALL, LCALL, RET, RET!)

PGMFLOW - all instructions which change the normal
flow. of a program (AJMP, SHMP, LJMP, ACALL, LCALL, RET,
RET!, JBC, JB, JNB, JC, JNC, JZ, JNZ, CJNE, DJNZ, JMP
@A+DPTR)

The method by which opcode classs are defined is described
later in this chapter.

The use of opcode classes is best illustrated by an
example. Suppose in debugging your program, you find that
the program counter is getting corrupted. An obvious
debugging strategy is to break emulation on every
instruction which can change the contents of the program
counter. You can therefore define the experiment:

if opcode = 01h then break
if opcode = 02h then break
if opcode = 10h then break
if opcode = 11h then break

;AJMP
;LJMP
;JBC
;ACALL

A much easier method of setting the same breakpoints is by

12-1

using opcode classes. The same breakpoints are set by the
experiment.

if opcode class PGMFLOW then break.

As will be discussed below, the Opcode Class Editor
provides shorthand methods of specifying instruction
attributes so that all instructions with similar attribute~
can easily be joined together to form an opcode class.

An Opcode Class file is a file containing up to 72 opcode
class definitions. All classes in this file need not
pertain to anyone experiment. It may contain classes which
are used for other experiments or even other projects.

The purpose of collecting opcode class definitions together
in a file is to encourage the sharing and reuse of opcode
classes and to reduce disk file clutter.

12.3 Opcode Class Menu Screen

12.4 Load Command

The Opcode Class Menu screen appears as follows:

Load Edit Help Quit
(Quick help line for highlighted command)

OPCODE CLASS MENU

Upon entering, the Load command will be highlighted.

The Load command is used to load the names of opcode classes
defined in a specified Opcode Calss file into the system.
You will be prompted to supply the name of the disk file.

The prompt will differ slightly depending on whether or not
the system is 1 remembering 1 an Opcode Class file which was
specified previously.

If no file name is 1 remembered 1 , no default exists and the
prompt screen appears as shown below. In this case, the
filename should be complete file name specification
including a drive specification. Hitting the I?I key in
response to the prompt will call a listing of the entries
in any specified directory. Hitting the [RETURN] key in

12-2

If the file cannot be opened or cannot be found, you will
be notified of the error. The Load screen will appear as
follows:

Enter file name>

LOAD OPCODE CLASS FILE

When a file name is 'remembered', the default is presented
as part of the prompt as shown below. In this case, you can
hit the [RETURN] key to select the default file or you can
enter a complete file name specification including a drive
specification. If the file cannot be opened or cannot be
found, you will be notified of the error. The Load screen
will appear as follows:

Enter file name [(default file name)] > _

LOAD OPCODE CLASS FILE

The names of the defined opcode classes must be loaded into
the system because they are required by the first pass of
the experiment compiler. They are used to determine whether
or not an opcode class which is used in an experiment has
been defined.

The second pass of the experiment compiler then opens the
Opcode Class file and reads the class definitions when it
is determining where to set the breakpoints.

PLEASE NOTE it is extremely important that when you are
running an experiment compilation, the Opcode Class file's
disk MUST be present in the same disk drive from which it
was originally loaded. This is because the system
'remembers' where the Opcode Class file was read from and
returns there to read the opcode class definitions.

Error messages which may be encountered when executing this
command include:

Could not open file - the specified file could not be
found on the specified drive, the default drive, or the
A: drive.

12-3

12.5 Edit Command

Illegal opcode class file format - the file specified is
not the proper format for an Opcode Cl ass fil e.

Duplicate symbol - xxxxx- the symbol for an opcode class
name has been previously defined.

The Edit command calls the Opcode Class Editor. This editor
is used to edit the contents of an Opcode Class file •. It
allows you to: create a new opcode class, edit an e opcode
class or delete an existing opcode class. The Opcode class
Editor operates in three distinct modes: the File Prompt
mode, the Class Selection mode and the Class Edit mode.
Each of these will be discussed in detail below.

12.5.1 File Prompt Mode

The File Prompt mode is used to supply the name of the
Opcode Class file which is to be manipulated. You will be
prompted to supply the name of the disk file.

The prompt will differ slightly depending on whether or not
the system is 1 remembering 1 an Opcode class file which was
specified previously.

If no file name is 1 remembered 1 , no default exists and the
file Prompt screen appears as shown below. In this case,
the file name should be a complete file name specification
including a drive specification. Hitting the I?I key in
response to the prompt will call the directory facility
(see Chapter 3) through which you can get a listing of the
entries in any specified directory. Hitting the [RETURN]
key in response to the prompt will abort execution of the
command. If the file cannot be opened or cannot be found,
you will be notified of the error. The File Prompt screen
will appear as follows:

Enter file name>

OPCODE CLASS EDITOR

When a file name is 1 remembered 1 , the default is presented
as part of the prompt as shown below. In this case, you can
hit the [RETURN] key select the default file or you can

12-4

specification. If the file cannot be opened or cannot be
found, you will be notified of the error. The File prompt
screen will appear as follows:

Enter file name [(default file name)] > _

OPCODE CLASS EDITOR

Error messages which may be encountered when executing this
command include:

Could not open file - the specified file could not be found
on the specified drive, the default drive, or the A: drive.

Illegal opcode class file format - the file specified is
not the proper format for an Opcode Class file.

Opcode class table is full - more than 72 opcode classes
are defined in the specified file.

Once all of the opcode class names have been read into the
Opcode Class Editor, the Class Selection mode is
automatically invoked.

12.5.2 Class Selection Mode

The Class Selection mode performs two functions. It is
first used to select which opcode class from the specified
Opcode Class file will be manipulated. Its second function
is to select the operation which will be performed on the
selected opcode class. The operations available are: Edit
the selected opcode class, delete the selected opcode
class, create a new opcode class, or rename the selected
opcode class. The class Selection screen appears as
follows:

OPCODE CLASS EDITOR
Opcode Class: (Class Name) File: (File name)

(name!)
(nameS)

(name2) (name3)
(name6) •••

(name4)

E - edit D - delete C - Create R - Rename Q - quit

12-5

The Opcode Class status display in the upper left corner of
the Opcode Class Editor screen indicates which opcode class
will be manipulated. Upon entry into the Class Selection
screen, the opcode class name in the (namel) position is
always sele~ted.

The file status display in the upper right corner of the
Opcode Class Editor screen indicates which Opcode class
file is currently being edited.

The File status display in the upper right corner of the
opcode Class Editor screen indicates which Opcode Class
fjle is currently being edited.

The center of the display contains the names of all of the
opcode classes defined in the current Opcode Class file.
These are displayed in alphabetical order.

The currently selected opcode class is always presented in
the Opcode class status display. In addition, the
occurrance of the selected class name in the center display
will also be highlighted. ~ different Opcode Class can be
selected for manipulated by moving the highlight to the
desired opcode class name. The highlight is moved through
the use of the cursor control keys on the numeric keypad at
the right of the keyboard. The cursor movement control keys
operate as follows:

- up
- down
- left
- right

Wrap around is provided if the highlight is moved past the
beginning or end of a line. If the first class name on a
line is selected, a cursor left movement will move the
highlight to the last class name onthe previous line. If
the last class name on the line is selected, a cursor right
movement will move the highlight to the first class name on
the next line.

The command option part of the diplay at the bottom of the
screen indicates what commands are available. The legal
command set includes the Edit-class command, the Delete­
Class command, the Create-Class command, the Rename-Class,
and the Quit command. Each of these will be discussed
below.

12-6

12.5.2.1 Edit-class Command

The Edit-Class command is used to invoke the Class Edit
mode. This mode allows you to examine and/or modify the
definition of the selected opcode class. The selected
opcode class is the one displayed in the Opcode Class
status display when the Edit-Class command if executed. See
section 12.5.3 for a detailed description of the Class Edit
mode.

Error messages which may be encountered when executing this
command include:

Could not open temporary workfile - because the file is
being editedd, a backup copy is required. In the attempt to
open a backup file on the same disk as the Opcode Class
file, an error was encountered.

12.5.2.2 Delete-Class Command

The Delete-Class command is used to delete the currently
selected opcode class from the Opcode class file. When this
command is executed, a prompt will appear at the bottom of
the screen. The prompt will display the currently selected
opcode class and will ask you if you still want to delete
it. The prompt will appear as follows:

Delete opcode class (Class Name) (Y/N)?

A positive response ('y' or 'V') will delete the selected
opcode class from the Opcode Class file and the screen will
be repainted with the selected class deleted. A negative
response ('n' or 'N') will abort the Delete-Class command.

Error messages which may be encountered when executing this
command include:

Could not open temporary workfile - because the file is
being edited, a backup copy is required. In the attempt to
open a backup file on the same disk as the opcode Class
file, an error was encountered.

12-7

12.5.2.3 Create-Class Command

The Create-Class command is used to add a new opcode class
to the Opcode Class file. When this command is executed,
you will be prompted for the name of the new opcode class.
The prompt will appear as follows:

OPCODE CLASS EDITOR

Opcode Class: (Class Name) File: (File Name)

Enter opcode class name>

Alt [REl] to eXlt

Opcode class names are limited to 16 characters. Any name
supplied which is longer than 16 characters will be
truncated. Any leading spaces in the specification of the
name will be ignored.

If the class name provided is anme which is already defined
in the Opcode Class file, then an error message is
displayed to inform you fo the error. If the class name
provided is a name which is already defined in the symbol
table and is a symbol for something other than an opcode
class name, then an error message is display~d to inform
you of the error.

After a valid opcode class name has been supplied, the
Class Edit mode is automatically invoked so that you can
define the new opcode class.

Error messages which may be encountered when executing this
command include:

Duplicate opcode class name - the ocode class name
specified has already been defined.

Duplicate symbol - the opcode class name specified is a
symbol which is already used.

Could not open temporary workfile - because the file is
being edited, a backup copy is required. In the attempt to
open a backup file on the same disk as the Opcode Class
file, an error was encountered.

12-8

12.5.2.4 Rename-Class Command

The Rename-Class command is used to rename the selected
opcode class. You may want to rename an opcode class if you
are using symbolic debug and an opcode class name is a
symbol which is also defined (differently) in your assembly
language program. When this command ;s executed, you will
be prompted to be certian that you want to rename the
selected opcode class. The prompt will appear as follows:

OPCODE CLASS EDITOR
Opcode Class: (Class Name) File: (File name)

Rename opcode class (class name) (V/N)? >

E - edit 0 - delete C - Create R - Rename Q - quit

A negative response to the prompt ('N' or In') will abort
the rename command and return control to the Class
Selection Mode. A positive response ('VI or 'y') will cause
the Rename screen to appear. No other responses are
accepted.

The rename screen is displayed when you have indicated that
you want to rename the selected opcode class. The Rename
screen appears as follows:

OPCODE CLASS EDITOR
Opcode Class: (Class Name) File: (File name)

Enter new class name>

Hlt [RET] to eXlt

Opcode class names are limited to 16 characters. Any name
supplied which is longer than 16 characters will be
truncated. Any leading spaces in the specification of the
name will be ignored.

If the class name provided is a name which already defined
in the Opcode Class file, then an error message is
displayed to inform you of the error. If the class name
provided is a name which is already defined in the symbol
table and is a symbol for something other than an opcode

12-9

class name, then an error message is displayed to inform
you of the error.

After a valid opcode class name has been supplied, control
is returned to the Class Selection mode.

Error messages which may be encountered when executing this
command include:

Duplicate opcade class name - the opcade class name
specified has already been defined.

Duplicate symbol - the opcode class name is a symbol which
is already used.

Could nat open temporary workfile - because the file is
being edited, a backup copy is required. In the attempt to
apen a backup file on the same disk as the Opcade class
file, an error was encountered.

12.5.2.5 Quit Command

The Quit command is used to exit fram the Opcode class
Editor and return control to the Opcode Class Menu.

12-10

12.5.3 Class Edit Mode

The Class Edit mode is used to examine and/or modify the
instructions which define an opcode class. Before
explaining the method of defining opcode classes, however,
a few definitions are required. .

An 8051/8031 assembly language instru~tion can be broken
down into components which together make up the
instruction. The three basic components of an instruction
are:

Instruction mnemonic: The basic operation of the
instuction i.e. JMP,MOV, ADD,
ETC. The instruction mnemonic
is always the first symbol in
a mnemonic instruction (i.e.
opcode).

Operand 1: The first operand of the instruction (i.e.
the destination).

Operand 2: The second operand of the instruction (i.e.
the source).

Not all instuctions will contain both operands. Some will
consist of 0 or 1 operand. All, however, must have an
instruction mnemonic component. The set of valid operands
consist of:

DADDR

BADDR
/BADDR
CADDR

A
C

DPTR
PC
AB
Rn

@Rn

- immediate data
- direct on-chip memory or special

function register address
- direct on-chip bit address
- complemented contents of bit address
- code address can be: full 16-bit

address, II-bit page address or 8-
bit relative offset.

- accumulator
- carry flag
- data pointer
- program counter
- register pair
- general purpose register (n = 0 through 7)

indirect register address (n = 0 of 1)

The last two operand types (the register operands) can be
broken down into sub-components. These consist of the

12-11

register addressing mechanism R or @R, and the register
number. any 8051/8031 instruction can therefore be
completely specified through the 5 instruction components:
the instruction mnemonic, the first operand (if any), the
register number of the first operand (if any), the second
operand (if any), and the register number of the second
operand (if any).

PLEASE NOTE that in the following discussion and on the
opcode class editor display itself, the Instruction
Menmonic field is labeled simply Instruction for the sake
of brevity.

Classes of instuctions can be specified by NOT specifying a
particular component of the instuction. As an example,
suppose you wish to specify a class of instruction which
includes all MOV instructions with the accumulator as the
destination. This is specified by:

Instruction Operandl Register Operand2 Register

MOV A

Any instuction which moves data to the implicitly addressed
accumulator from anywhere else is specified. Notice that
operand2 is not speciffed. An instruction component which
is not specified is taken as a 'wild card' (i.e. it matches
anything). Therefore any instruction of the form MOV
A,xxxxx will be specified.

This includes:

MOV A,#
MOV A,@R1
MOV A,R2
MOV A,R5

MOV A,daddr
MOV A,RO
MOV A,R3
MOV A,R6

MOV A,@RO
MOV A.R1
MOV A,R4
MOV A,R7

The class can be further restricted to all instruction
which move data to the accumulator from general purpose
registers. This is specified by:

Instruction Operandl Register Operand2 Register

MOV A R

The R in operand 2 restricts the source of the data to a
general purpose register. because the register number of
operand 2 is not specified, any valid "register number is

12-12

specified. The class of instuctions thus specified
includes:

MOV A,RO
MOV A,R3
MOV A,R6

MOV A,Rl
MOV A,R4
MOV A,R7

. MOV A,R2
MOV A,R5

The class can be further restricted to a single instruction
by specifying which general purpose register is to be the
source. This is specified by :

Instruction OperandI Register Operand2 Register

MOV A R 4

The only instruction thus specified is MOV A,R4

PLEASE NOTE that the register fields are used ONLY when an
operand specification field is R or @R. Use of this field
in any other case is illegal. When the operand is R, the
valid set of entries in the register field is the numbers 0
through 7. When the operand ;s @R, the valid set of entries
in the register field is 0 or 1.

PLEASE NOTE that an instruction specification with all of
its component fields left empty is ignored. It DOES NOT
specify every possible instruction.

PLEASE NOTE that one class of 8051/8031 instructions
actually contains three operands. These are the CJNE
instructions. These, however, can still be uniquely
specified through the use of the Instruction Mnemonic,
OperandI and Operand2 fields.

12-13

When the Class Edit mode is invoked, the following screen
appears:

OPCODE CLASS EDITOR
Opcode Class:(Name) Status: (Status) File:(File name)

Instruction OperandI Register Operand2 Register

(instruction specification I)
(instruction specification 2)
(instruction specification 3)

Hit [ESC] to exit edit mode

The Opcode class status display in the upper left corner of
the Edit Command indicates which opcode class is being
manipulated.

The Edit status display at the top center indicates the
current status of the opcode class being edited. The status
can be one of the following:

UNMODIFIED - the opcode class definition has not
changed (default when editor is first
invoked).

MODIFIED - the opcode ~lass has been modified
during the edit session.

The File status display in the upper right corner of the
Opcode class Editor screen indicates which Opcode class
file is currently being edited.

The center of the display contains specifications of the
instructions which define the opcode class. Each
specification is on a a separate line. The Opcode class
Editor can accommodate up to 50 lines of instruction
specifications for each opcode class.

The highlight is used to identify which field of which
instruction specification is to be editied. Only one field
can be manipulated at a time. When the editor is first
invoked, the instruction field of the first instruction
specification is highlighted.

12-14

A different.field can be selected for editing by editing by
moving the highlight to the desired field. The highlight is
moved thorugh the use of the cursor control keys on the
numeric keypad at the right of the keyboard. The cursor
movement control keys operat~ as follows:

(A) - up
(Y) - down
(~) - left
(~) - right

The right and left movements of the highlight are limited
to the fields of the current instruction specification. No
wrap around is provided. The upward movement of the
highlight is limited by the first instruction specifica­
tion. The downward movement of the highlight ;s restricted
to one line below the last instruction specification. This
allows you to add a new specification at the bottom.

Field entries are modified by moving the highlight to the
desired field and then entering the new data. When you
begin to enter the new data, the New field data display
will appear at the upper left -of the center screen. The
data entered will appear there as well (converted to upper
case). It will appear as. follows:

OPCODE CLASS EDITOR
Opcode Class: (Name) Status: (Status) File:{File name)

New field data> (new data)

Instruction OperandI Register Operand2 Register

(instruction specification 1)
(instruction specification 2)
(instruction specification 3)

The new data will not be entered into the selected field
until the [RETURN] key is hit. This allows you to correct
any errors in the new data before it is entered into the
field. The backspace key allows you to erase characters
from the New field data display.

12-15

The number of characters permitted in the New field data
display depends on which field is being modified. Below is
listed the number of characters permittted for each of the
fields.

Instruction Mnemonic field - 5 characters
Operand field - 7 characters
Register field - 1 character

Within these limitations, you can completely specify the
instuctions. If more characters are entered than the field
can hold, the bell rings and the character is ignored •

. PLEASE NOTE that no check is made when you enter data into
a field that the data is a legitimate entry for that field.
That function is performed when you try to exit the Class
Edit mode (see below).

The field data replacement can be aborted by simply moving
the highlight to another field BEFORE the [RETURN] key has
been hit. This aborts the field data replacement, erases
the New field data display and moves the highlight to the
new field.

The data in a field may be deleted by simply'hitting the
[DELETE] key while that field is highlighted. More than one
field can be deleted through the use of the [RETURN] key.
When the [RETURN] key is hit (and you are not in the New
field data entry mode) the data at the highlighted field
and all subsequent fields of the current instruction
specification are deleted. All fields of an instruction
specification can be deleted by hitting the [RETURN] key
when the instruction field is highlighted.

A line can be deleted from the opcode class definition only
when all of its fields have been deleted. In this case,
hitting the [DELETE] key will delete the entire line. It
does not matter which field was highlighted when you hit
the [DELETE] key. All subsequent lines will be moved upward
one line.

A new line can only be inserted in the opcode class
definition when the Insert mode has been selected. the.
Insert mode is entered by hitting the [INSERT] key. The
[INSERT] key is a toggle switch which alternately turns the
Insert mode on and off. The Insert mode is active when the
INSERT sign is displayed at the top right of the center
screen. When the [RETURN] key is hit while in the Insert
mode, a new line is inserted before the current instruction

12-16

specification (the one whose field is highlighted). The
current instruction specification and all subsequent lines
are moved downward one line. A NULL instruction
specification replaces the original line.

The [ESCAPE] key is used to exit from the Class Edit mode.
When the [ESCAPE] key is hit, the Class Edit command
options are displayed at the bottom of the screen. The
display will appear as follows:

OPCODE CLASS EDITOR
Opcode Class:(Name) . Status: (Status) File:(file name)

Instruction Operandl Register Operand2 Register

(instruction specification 1)
(instruction specification 2)
(instruction specification 3)

E - edit Q - quit

The options available are to return to the Class Edit mode
(the lei or 'E' response) or to return to the Class
Selection mode (the 'q' or 'Q; repsonse). Executing the
Edit command will reinvoke the Class Edit mode. Executing
the Quit command will cause one of two things to occur. If
the opcode class definition has not been modified, control
will return immediately to the Class Selection mode. If
however, the opcode class definition has been modified, you
will be prompted as to whether or not you want to save the
edited opcode class. The prompt will appear as follows:

Save edited opcode class? (YIN)

A negative response ('n' or 'N') will cause the editied
version of the opcode class definition to be discarded. The
original (pre-edit) version of the opcode class defintion
will remain intact. Control will be returned to the Class
Selection mode.

A positive response (Iyl or Iyl) indicates that you want to
save the edited version of the opcode class definition. In
this case, the validity of the instruction specifications
must be checked before we can continue.

12-17

12.6 Help Command

12.7 Quit Command

The instruction specification verification causes the
middle of the screen is cleared. The instruction
specifications are then examined one at a time. As each is
examined, it is displayed on the screen. If an instruction
specification is found which does not correspond to any of
the 8051/8031 instruction, an error message will be .
displayed and the verification halts. You will be prompted
to hit the [ESCAPE] key to continue the verification.

When all instuction specifications have been checked, one
of two actions can occur. If no errors were encountered,
control is returned to the Class Selection mode. If
however, an error was encountered, the Class Edit command
options (E - edit Q - quit) are again displayed at the
bottom of the screen. This allows you the opportunity to
re-enter the Class Edit mode in order to correct the
errors.

Error messages which may be encountered while in the class
Edit mode include:

Could not match instruction - the instruction specification
does not correspond to any 8051/8031 instructions.

The Help command is used to display a detailed description
of the function of each of the commands in the Opcode Class
menu.

Error messages which may be encountered when executing this
command include:

Help file not found - the file "HLPFILE" could not be found
on either the default or a: disks.

The Quit command ;s used to return to the previous menu.

12-18

CHAPTER 13
MACRO MENU

13.1 Macro Menu Overview

The Macro menu is used to create macro command files and
execute macro command ·files. A macro command file is a file
which contains groupings of ICD commands which, when
executed together, perform a macro function. These macro
functions are typically repetitious tasks which are done
over and over again in one or many debugging sessions. The
macro command facility allows you to define the macro
command file ONCE and they execute it anytime later in the
same or even another debugging session. In this menu you
can:

1) execute from a macro command file,
2) define a macro command file.

13.2 Macro Menu Screen

The Macro Menu screen appears as follows:

Execute Learn Help Quit
(Quick help line for highlighted command)

MACRO MENU

Upon entering, the Execute command will be highlighted.

13.3 Execute Command

The Execute command is used to begin execution from a macro
command file. You will be prompted to supply the name of
the macro command disk file. In addition, you will be
prompted for any parameters to pass to the macro command
file. The Execute screen appears as follows:

Enter file name>
Enter parameters >-_

EXECUTE FROM A MACRO DISK FILE

13-1

The name should be a complete file name specification
including a drive specification. Hitting the I?I key in
response to the prompt will call the directory facility
(see Chapter 3) through which you can ~et a listing of the
entries in any specified directory. Hitting the [RETURN]
~ey in response to the prompt will abort execution of the
command. If a file cannot be opened or cannot be found, you
will be notified of the error. If the specified file1s
format is not that of a macro command file, an error
message will be displayed.

Once the command file has been properly opened, you will be
prompted for the parameters to pass to the macro command.
All parameters should be listed in the order they are used
in the macro command. The parameters must be separated by
either COMMAs (,) of SPACEs. Entering a [RETURN] in
response to this prompt will cause the macro command to be
executed with NO parameters passed to it.

For example, suppose you have defined a macro command file
called IMYMACRO.MAC 1• Within this macro, you have defined
three parameters. The order in which they are called is:

1) a code file
2) an experiment file
3) an opcode class file

For the current execution of this macro, you wish these
parameters to be:

1) (default):test.hex
2) /test.exp
3) a:opcode.opc

(the code file)
(the experiment file)
(the opcode class file)

These parameters could then be specified by:

Enter file name> mymacro.mac
Enter parameters> test.hex,\test.exp,a:opclass.opc

or

Enter file name> mymacro.mac
Enter parameters> test.hex\test.exp a:opclass.opc

13-2

13.4 Learn Command

The parameter parser will accept up to 8 parameters. Eight
is the maximum number of parameters allowed in a macro
command. An attempt to enter more than 8 parameters will
result in a error message being displayed.

Once the macro command file and the parameters (if any)
have been specified, the system returns to the Main menu
and execution of the macro command begins.

If the macro command file contains more parameter
specifications than were passed in th parameter list i.e.
we will run out of parameters) then execution of the macro
is aborted at the first unmatched macro file parameter. At
this point the system reverts to the normal mode of taking
manuallly entered system commands.

Error messages which may be encountered when executing this
command include:

Must establish communication first - a macro command cannot
be executed before communication with the emulator has been
established.

Cannot open file - the specified file could not be found on
the specified drive, the default drive, or the A: drive.

File is not proper macro file format - the macor command
file specified was not the proper format for a macro
command file.

Too many macro parameters - more than 8 macro parameters
were specifi ed.

The Learn command is used to create a macro command file.
You will be prompted to supply the name for the new file.
The Learn screen appears as follows:

Enter file name>

CREATE A MACRO DISK FILE

The name should be a complete file name specification
including a drive specification. Hitting the I?I key in
response to the prompt will call the directory facility

13-3

(see Chapter 3) through which you can get a listing of the
entries in any specified directory. Hitting the [RETURN]
key in response to the prompt will abort execution of the
command. If the fil e cannot be opened or cannot be found,
you will be notified of the error. Any existing file of the
same name will be overwritten. .

The Learn mode is a means of creating complex macro command
files by teaching the sytem (in a step by step manner) what
you want it to do. Once the Learn mode is invoked, you are
returned to the Main menu. From there, every keystroke
entered into the system is also entered into the macro
command file. You can go from menu to menu entering
commands as you like. They will all be collected in the
macro file.

The Learn mode can be terminated by entering the macro sign
[%] in response to any command which is executed via a
single keystroke; or by entering the macro sign [%]
followed by [RETURN] in response to any command which
accepts a string.

REMEMBER: Although you are creating a macro command
file, you are also exercising the emulator in the normal
manner. All conditions which are required for normal
operation of the emulator are therefore also required for
creating a macro command file (i.e. establish
communications, load program memory, etc.).

Parameters may be entered into the macro command file by
prefacing any string which you want to be a parameter with
the macro sign [%]. This has the effect of entering a
parameter SUbstitution instead of the actual string into
the macro command file. I.e. suppose you want ot laod code
into the sytem but you want the code file name to be a
parameter. When the system prompts for the file name you
respond:

Enter file name> %demo.dbg.

In addition to putting the parameter substitution in the
macro command ile, it also has the effect of loading the
code file 'demo.dbg' into the program code memory. This
allows to continue creating the macro command file via the
learn mode in the normal manner.

A macro command file may contain up to 8 parameters. An
attempt to define more than 8 parameters will result in an
error message being displayed and the Learn mode being

l3-4

13.5 Help Command

13.6 Quit Command

terminated. The macro command file will be closed normally
and will be valid up to but not including the offending
parameter.

Error messages which may be encountered when executing this
commadn include: - -

Must establish communication first - a macro command cannot
be created before communication with the emulator has been
established.

Cannot open file - the specified file could not be opened.

Too many macro parameters - more than 8 macro parameters
were specified~

The Help command is used to display a detailed description
of the function of each of the commands in the Macro Menu.

Error messages which may be encountered when executing this
command include:

Help file not found - the file n$HLPFILE II could not be
found on either the default or A: drives._

The quit command is used to return to the previous menu.

13-5

CHAPTER 14
A TUTORIAL EXAMPLE

14.1 Introduction

This chapter presents a sample debugging session using the
ICD. Throughout the session you will be issuing commands to
the system and it will be responding.

When you see this:

You Enter >

it is the signal for you to type something into th~ system.
If you find that at some point in the tutorial you are not
in the menu you should be, refer to the menu organization
at the beginning of Chapter 3 to find out how to get back
to the proper menu.

14.2 Getting Started

This sample session will be run in the full speed simulator
mode. This means that a target system board is not
required. All that is required is that the ICD probe be
inserted into the simulator board which is provided as part
of the lCD system. This is the mode which would normally be
used when developing and debugging software for the
microcontroller. The lCD, in effect, acts like a full speed
microcontroller simulator.

The first thing you must do is to boot up your host's
operating system. Next, the ICD system software disk MUST
be placed in the default disk drive.

You enter> zlink {RETURN]

This calls the lCD system's user interface program. At
first the Zlink logo will be displayed, then the Main Menu
screen will appear.

Now we must establish communication with the lCD. First of
all, be sure that the RS232 cable ;s connected at both the
host and emulator module ends. Next plug in the power
supply to the emulator module (this serves to reset the
ernul ator) •

You Enter> E

14.3 The Program

This executes the system configuration file which
establishes communication with the emulator. The
default baud rate in the configuration file supplied
with the Zlink software is 9600 baud. The Simulator" board
supplies a crystal frequency which will support the maximum
baud rate. "

If the system has been configured properly, the system
should have returned to the Main Menu. If communication
has not been established, see the troubleshooting
section in Appendix A.

Before g01ng further, let's take a look at the program
we are 901n9 to be working with. It is important that
you understand how this program works before we go on
with the tutorial.

The purpose of this program is to output a pulse train
on Port1-PinO. The pulse train is: a series of 5
positive going pulses of equal duration; a skipped
pulse; then a continual repetition of the cycle. The
pulse train will appear as follows:

14-2

The following program generates the pulse train:

1 $debug
2 $mod51
3

0090 4 outbit BIT 90h
5

0064 6 deg at 64h
0064 7 tempcount: OS 1

8
9 cseg

0000 020030 10 LJMP start
11

0030 12 cseg at 30h
0030 900000 13 start: MOV OPTR,#O
0033 C290 14 outerloop: CLR outbit
0035 75640A 15 MOV tempcount,#10
0038 120050 16 innerloop CALL wastetime
003B B290 17 CPL outbit
0030 E4 18 CLR A
003E 309001 19 JNB outbit,skipover
0041 F4 20 CPL A
0042 0564F3 21 skipover: OJNZ tempcount,innerloop
0045 A3 22 INC OPTR
0046 120050 23 CALL wastetime
0049 120050 24 CALL wastetime
004C 80E5 25 JMP outerloop
004E 80EO 26 endofprogram: JMP start

27
28

0050 78FF 29 wastetime MOV RO,#OFFh
0052 08FE 30 OJNZ RO,$
0054 22 31 RET

32 END

14-3

14.4 A Sample
Session

There are three loops in this program. The first is a
subroutine called "wastetime." This loop executes five
hundred and eleven 8051 machine cycles before exiting.

The second loop is in the main program and begins at the
label "innerloop.1I It is responsible for generating the 5
pulses. It accomplishes this by calling the IIwastetime ll
routine to polarity of the output pin. Notice that the
accumulator is used to reflect the state of the output pin.

The third loop is also in the main program and begins at
the label lIouterloop.1I It is responsible for calling
lIinnerloopll to generate the 5 pulses and then calling
IIwastetime ll twice to the generate the blank pulse between
sets of 5 pulses. Notice that the data pointer (DPTR) ;s
used to·count the number of sets of 5 pulses which have
been transmitted.

When you feel comfortable with the program, go on to the
next section.

First we must load the program into the program code
memory.

You Enter> L to begin the load command.

When the system prompts you for the file name,

You Enter> demo.dbg [RET] to read in the desired file.

After the file has been read into the system, (the WORKING
sign has disappeared, we go on. The next thing we want to
do is to define the experiment. We therefore must call up
the Examine Experiment menu.

You Enter> I to call the Interrogate menu.

You Enter> E to call the Examine/Modify Experiment menu.

We are now ready to define the experiment. The first
experiment we will preform is a predefined experiment which
will be loaded into the system.

You Enter> L to begin the Load command.

The system wi 11 prompt you for the fi 1 e name of the
experiment file.

14-4

You Enter> demo.exp [RET] to load the desired experiment.

After the file has been read into the system, we will
examine the experiment.

You Enter > E to enter the Experiment Editor.

The following experiment will appear:

if pc = innerloop then break

This experiment sets a breakpoint at PC location 38h
('innerloop'). Every time the inner loop is entered, the
emulation will break.

Now we will exit from the editor.

You Enter> [ESC] to exit the Edit mode.

You Enter > Q to exit from the editor.

Next we want to compile the experiment. Compiling the
experiment does two things. First, it makes sure that the
experiment definition is legal. Second, it downloads the
breakpoints to the emulator module.

You Enter > C to compile the experiment

When the compilation is completed, the results will be
displayed at the bottom of the screen.

You Enter > [RET] to continue.

We are now ready to execute the experiment. We must first
return to the Interrogate Menu.

You Enter > Q to return to the Interrogate
menu.

Let's take a look at the program we have loaded.

You Enter > C to call the Examine Program
Code Memory menu.

We have a choice of examining the memory in raw data mode
(Table) or as disassembled mnemonic instructions. We will
choose the latter.

You Enter > D
disassembler.

14-5

to call the code

The system will prompt you for the starting" address of the
disassembly.

You Enter> start [RET] to start at -PC location 30h.

The system will next prompt you for the number of
instructions you want to disassemble.

You Enter > 14 [RET] to disassemble the main
program

Notice that all of the symbolic references have been
preserved. This occurs automatically when you assemble your
code with the @ 8051 Cross assembler with the debug switch.

To disassemble the 'wastetime ' subroutine,

You Enter > D to call the code disassembler

You Enter> wastetime [RET] to start at PC location 50h.

The system will next prompt you for the number of
instructions you want to disassemble.

You Enter > 3 [RET] to disassemble the subroutine.

Now we will return to the Interrogate menu.

You Enter > Q to return to the Interrogate
menu.

Now we can begin the emulation. Notice that the PC is
initialized to O. Following a cold system startup, the
registers are automatically initialized to their RESET
values. It is, therefore, NOT necessary to begin the
experiment by executing a Reset command.

You Enter > G to execute until a breakpoint.

Let's see that has occurred. The PC value is now at 38h.
This is where we set the breakpoint (at 'innerloop'). The
next instruction to be executed will be:

LCALL wastetime

Notice that the accumulator and data pointer values have
not yet been modified. We would next like to single step
through the program and watch the accumulator value get
updated to reflect the state of the output pin.

14-6

You Enter > S to execute a single
instuction.

The program made the c~ll to 'wastetime ' . Notice that the
PC value is now at SOh. The instruction to be executed will
be

MOV RO,#OFFh

which is the first instruction of the 'wastetime ' routine.

You enter> S to execute a single
instruction.

The PC value is now S2h. The next instruction to be
executed will be

DJNZ RO,OOS2h

You Enter> S to execute a single
instruction.

Notice that the RO register in the GPR bank has been
decremented by 1. Let's try that again.

You Enter > S

And again.

You Enter > S

to execute a single instruction

to execute a single instruction.

You will remain in this tight loop until the value in RO is
decremented to 0. Instead of continually hitting the Single
Step command lets change the value in RO.

You Enter> M to call the examine register menu.

The system will prompt you for the register you wish to
examine.

You Enter > RO [RET] to examine the RO register.

The system then displays the value contained in RD. The
value is FCh just as we could expect after 3 decrement
cycles. The system next prompts you for the new register
value.

You Enter > 3 [RET] to change the value of RO.

The system will again prompt you for another register to
examine.

14-7

You, Enter > [RET] to return to the
Interrogate menu.

Now we want to continue our experiment. We should only have
to execute single step 3 times before we decrement RO to 0
and exit the loop.

You Enter > S

You Enter > S

You Enter> S

to execute a single instruction

to execute a single instruction.

to execute a single instruction.

The PC value is now 54h. The next instruction to be
executed will be

RET

don't forget that a breakpoint is still set at location
38h. If we begin execution again, emulation will break at
the beginning of the next pass through the inner loop.

You Enter > G to execute until a breakpoint

Notice that we are again at PC location 38h. Also notice
that the value of the accumulator is now FFh. This means
that the output pin is currently outputting a 1. We did,
however, miss the instruction which updated the accumulator
which is what we were trying to watch in the first place.

If we execute a single step, as we did last time, we will
again enter the 'wastetime'· routine. What we sould really
like to do is to skip over the 'wastetime' routine and stop
at location 3Bh. This can be accomplished by setting
phantom breakpoint at that location. A phantom breakpoint
exists only until the next break in emulation. After that
time, it no longer exists.

You Enter > P to set a phantom breakpoint

The system will prompt you for the address of the
breakpoint.

You Enter > 3B [RET] to set the address

Once the address has been supplied, the execution begins.
The PC value is now at the breakpoint we set, namely 3Bh.
Now we can single step until the accumulator gets updated.

14-8

You Enter > S to execute a single instuction.

The next instuction is

CLR A

You Enter > S to execute a single isntruction.

The accumulator has now been cleared. The next instruction
will check the state of the output bit. If the output bit
is a a (as it should be on this pass through linnerloopl),
the program should jump to the PC location 42h (Iskipoverl)
because the accumulator already reflects the state of the
output pin.

You Enter > S to execute a single instruction.

Notice that we did indeed make the jump and that the
accumulator does reflect the state of the output pin. One
more single step and we will be back at the beginning of
the inner loop again.

You Enter > S to execute a single instruction.

We have just completed 2 passes through the inner loop.
Notice that the value of the data pointer (DPTR) is still
O. It will not change until we have completed 10 passes
through the inner loop. We should, therefore, be able to
watch the value of DPTR change if we complete 8 more passes
through the inner loop. Remembering that breakpoint is
still set at the beginning of the inner loop, executing a
Go command 8 times should change the data pointer.

1) You Enter > G to execute unti 1 a breakpoint.

2) You Enter > G to execute unti 1 a breakpoint.

3) You Enter > G to execute until a breakpoint.

4) You Enter > G to execute until a breakpoint.

The data pointer should now contain the value 1. There is
an easier method of repeating the Go command. It is with
the use of the repetition counter. Let1s try to increment
the data pointer again, this time using the repetition
counter. In order to increment the data pointer, we must
execute 10 passes through the inner loop.

14-9

You Enter > L to call the repetition counter.

the system will prompt you for the number of repetitions
you desire.

You Enter > 10 [RET]· to set the rep.etition counter.

Now we can execute the Go command. it will automatically
repeat 10 times.

You Enter > G to execute until 10 breakpoints

Notice that the data pointer has been incremented to 2.

Enough of this. Let's go back to the experiment definition
and change it.

You Enter > E

You Enter > E

to call the Examine Experiment
menu.

to call Experiment Editor.

The following experiment will appear:

if pc = innerloop then break

We want to change the breakpoint from 'innerloop' to
lendofprogram ' • This ;s accomplished by moving the cursor
to the right until it is on top of the first character (the
i) of 'innerloop'. This will require 8 move cursor right (­
) commands.
1) You Enter> [->] to move the cursor to the right.

2) You Enter > [->] to move the cursor to the right.

3) You Enter > [->] to move the cursor to the right.

4) You Enter > [->] to move the cursor to the right.

5) You Enter > [->] to move the cursor to the right.

6) You Enter > [->] to move the cursor to the ri ght.

7) You Enter > [->] to move the cursor to the right.

8) You Enter > [->] to move the cursor to the right.

14-10

Next we will repl ace the

You Enter > endofprog

You Enter > [INS]

You Enter > ram

Now we .will exit

You Enter> [ESC]

You Enter < Q

from the

breakpoint specification.

to begin replacing the text.

to enter the insert mode.

to complete the text replacement:

editor.

to exit from the edit mode.

to exit from the editor.

You will be questioned as to whether or not you want to
save the edited experiment.

You Enter > Y to save the edited experiment.

Now we want to compile the new experiment.

You Enter > C to compile the experiment.

When the results are displayed

You Enter > [RET] to continue.

Now we are ready to execute the new experiment. We must
first return to the Interrogate menu.

You Enter > Q to return to the Interrogate
menu.

Notice the PC value. It is still at 38h. We want to begin
the new experiment. Starting at location O. The Reset
command will accomplish this. The Reset command resets the
target proce~soi then executes the experiment until a
breakpoint ;s encountered.

You Enter > R to execute the Reset command.

The system will ask you if the reset pulse will be coming
from your system board. If you are debugging your system
board, the reset will probably come from your board.
Because we are executing in the simulator mode, the
emulator must supply its own reset pulse.

14-11

You Enter > N to make the emulator reset
itself.

Now the emulator is running, and running, and running ••.
What happened? The breakpoint was set at locaion 4Eh.
Why didn1t it stop? Notice that the instruction before
the breakpoint instruction is an unconditional jump back to
louterloopl. Therefore the program never reaches the
breakpoint instr"uction and will loop forever. A runaway
emulation can be stopped by executing a host interrupt.

You Enter> [ESC] to stop the emulator.

The system will respond with an error condition stating
that the emulation was stopped by host interrupt. This is
an error condition becuase the PC value is indeterminate
after a host interrupt has occured. Notice that the value
of the PC is xxxx. The Break address however can be used to
determine the approximate value of the PC when the forced
break occurred. We cannot continue with this experiment
until the PC value is initialized.

You Enter > M to call the Modify Register menu.

You Enter > PCxxxET] to select the PC register.

You Enter > a [RET] to reset the PC value to O.

Notice the PC value now has the value O. We can now continue
with the experiment.

You Enter > [RET] to return to the Interrogate.

As we have just demonstrated, the experiment will run
forever if we execute a Go command. Let1s set a phantom
breakpoint at location 33h (Iouterloopl) and see if
execution stops.

You Enter > P to set a phantom breakpoint.

The system will prompt you for toe address of the
breakpoint.

You Enter > 33 [RET] to set the address.

Once the address has been supplied, the execution begins.
The PC value is now at the phantom breakpoint address 33h.
To demonstrate that phantom breakpoints are valid for only
one execution cycle, we will execute a Go command.

14-12

You Enter > G to execute until a breakpoint

As expected, the emulation runs forever because the
breakpoint at location 33h no longer exists.

This concludes the sample session~ To exit from the system:

You Enter > [ESC] to stop the emulator.

You Enter > Q to return to the Main
menu.

YQu Enter > E to exit the system.

You Enter > Y to indicate that you really
want to exit.

14-13

CHAPTER 15
SYSTEM REQUIREMENTS

This chapter lists the minimum system requirements which
must be met in order to use a lCD.

15.1 Hardware Requirements

- IBM PC or a compatible PC

- 1 5 1/4 inch double sided/double density floppy disk drive
(2 are recommended)

- 256K bytes of memor·y

- RS232C interface board

- RS232 cable with a male connector at the emulator end.

- Emulator power supply

2.0A + 5VDC +-5%

150mA +- 9-15VDC

15.2 Software Requirements

- PC DOS version 2.0 or later

15-1

APPENDIX A
TROUBLESHOOTING GUIDE

This section is provided to help you work through problems
which prevent the ICD from operating properly. Please refer
to this section FIRST when any problems arise. If, however,
after using this guide, the emulator is still not operating
properly, call ZAX between 8AM and 5PM Pacific Standard
time. Our phone number is: (714) 474-1170 and 800 421-0982.

If you need to report a problem, please have the following
information available:

- The ICD model
- The version number of the Zlink system software
- The emulator options you have purchased
- The manufacturer and model of the host you are using
- The manufacturer and model of the RS-232C interface

card you are using (also it is important to know how the
card is configured if options are available)

- The name and version of the operating system you are using

If you do call, try to have your system available and near
the phone. Often, some simple tests can determine the cause
of the problem.

PLEASE NOTE that we cannot return your calls if we have the
wrong phone number or your phone doesn't answe~. If we are
supposed to call you back and you haven't heard from us in 2
days, please call us again.

A.1 Cannot Establish Communication

One very common problem is the failure to establish
communication between the host computer and the emulator
module. There can be many causes for this and we will cover
each one separately.

In order for the emulator to communicate, it must have both
power applied to it and a frequency source for its on-board
oscillator. (Remember that the emulator uses the frequency
source from your system board to generate its clock.)

You can easily check that these two fundamental requirements
are met. By looking into the vents on the side of the
emulator module nearest the OB25 connector, you can see two
LEOs. The red LED will be glowing when power is applied to

A-I

the emulator module. The green LED will be glowing when
power is applied AND the on-board oscillator is running.

A.I.l Red LED is NOT Gl owi ng

If the red LED is not glowing, the emulator module is NOT
getting its power properly. Check the following:

- Is the emulator's power. supply plugged in?
- Is the emulator's power supply turned on?

If both of these are true then disconnect the power supply
from the emulator module. Check to be sure that the proper
voltages are coming from the proper pins in the power supply
connector. The correct voltage for each of the pins is shown
below:

Pin 1 ground

Pin 2 ground

Pin 3 +12VDC

Pin 4 -12VDC

Pin 5 +5VDC

A-2

If the voltages are correct and areosupplied through the
proper pins, try to reseat the connector with the emulator
header. If the red LED still doesn't come °on, call ZAX.

If the voltages are not correct and you have supplied your
own emulator power supply, check your power supply and
wiring to the connector.

A.l.2 Green LED is NOT Glowing

If the green LED is not glowing, be sure that the red LED is
glowing. If it is not, see the previous section.

The green LED indicates that the emulator's on-board
oscillator is running. In order to run, the oscillator
requires a frequency source.

If you are debugging your system board, ensure first of all
that the emulator probe is oriented properly in the DIP
socket on your board. Once you have checked this, ensure
that you have a crystal connected to the XTALI and XTAL2
pins of the emulator probe or that you are supplying a
constant frequency source to the XTAL2 pin. If the frequency
source on your board seems to be in order (i.e. Voh > 2.5V, °
Vol < O.8V and XTALI = Gnd), then remove the emulator probe
from our board and insert it in the DIP socket on the
Simulator board (being careful to orient it properly). °If
the green LED is now glowing, then the problem is in the
oscillator circuitry on your board.

If you are using the ICD in the full speed simulator mode
(i.e. the ICD probe is inserted in the DIP socket on the
Simulator board then ensure the following:

- The emulator probe is oriented correctly in the DIP
socket. Correct orientation can be determined by
alining pin 1 on the probe with pin 1 on the socket.

- The Simulator board has not been physically damaged.

If these have been checked and the green LED is not glowing
then call ZAX.

A-3

A.l.3 Baud Rate Selection

If both the green and red LEOs are glowing but communication
cannot be established, you may have selected an illegal Baud
Rate for the frequency you are supplying to the emulator.
Remember that the emulator derives its operating frequency
from the frequency source you supply. Below is a table which
shows" the minimum frequency source required for each Baud
Rate:

Baud Rate

9600
4800
2400
1200
600
300
150
110

Minimum Frequency Source

8MHz
4MHz
2M Hz
IMHz
any
any
any
any

Selecting a Baud Rate for a supplied frequency which is
below the required minimum can cause a communication
failure.

A.1.4 RS-232C Hardware Check

If both the green and red LEOs are glowing and the Baud Rate
is correct for the supplied frequency but communication has
not been established, do the following:

- Check that the RS-232C interface card has been configured
correctly for the number of wires in your RS-232C cable.

- Check the pins of the RS-232C cable for continuity.
(Which pins you check depends on how many wires are in your
RS-232C cable. See Chapter 2 for details.

If both the above items have been checked, ensure that the
cable is seated properly at both the host and emulator ends.
If you still cannot establish communication, call ZAX.

A.2 Excessive Number of Communication Errors

This section is used ONLY after communication has initially
been established. When you have established communication
with the emulator, communication errors can come from a
number of sources. These will each be discussed below.

A-4

One major cause of an excessive number of communication
errors that a Baud Rate has been selected which cannot be
supported by the operating frequency of the emulator. See
the Baud Rate Selection section (above) to ensure that you
have selected a legal Baud Rate.

If the Baud Rate has been checked and is legal, do the
foll owing:

- Ensure that the supplied frequency source is stable.
- Ensure that the RS-232C cable is seated properly at both

the host and emulator ends.
- Ensure that the power supply connector is seated properly

in the emulator module.

If none of the above alleviates the problem then read on.

The ICD communication protocol was designed to provide
transparent recovery from small random bursts of noise.
It CANNOT however provide recovery from large or frequent
bursts of noise.

If you are operating in a noisy environment you may want to
lower the communication Baud Rate. This will provide some
extra noise margin. Another alternative is to use shielded
RS-232C cable.

If you are not operating in a noisy environment, have
checked all of the above and are still getting an excessive
number of communication errors, call ZAX.

A-5

APPENDIX B
ERROR MESSAGE SUMMARY

This Appendix provides a· complete listing of all error
messages which can be encountered while in an rCD debugging
session. There are actually 3 classes of errors which can be
encountered. Each will be discussed individually~

B.1 PLINK86 Overlay Loader Errors

There is a class of errors which can occur when the lCD
system disk ;s removed from the default drive during a
debugging session or when the disk is not running in the
DEFAULT drive. In either case you will get PLlNK86 Overlay
Loader errors. They will appear as follows:

PLINK86 Overlay Loader - (error description)
Enter file name prefix (X: or path name/) or '.' to
quit=>

To recover from this class of error, reinsert the Zlink disk
in the default drive. Next type the drive designator of the
default drive. (E.g. if the default is drive A: you would
enter a:).

B.2. lCD Errors Messages

The second class of errors are the user interface error
messages which the lCD system provides. These are all
nonfatal errors and can be exited by entering [ESC]. The
error messages are listed alphabetically.

'=' expected - something other than an '=' was used in an
immediate type conditional.

'=' or 'class' expected - something other than an '=' or
'class' was used in an opcode type conditional.

Address is out of range - the specified address was outside
the valid address range in the given context.

Address value is too large - an address was specified for a
direct byte or direct bit conditional which exceeds OFFh.

Block 1 address is out of range - the address specified is
outside the valid address range of the selected memory.

Block 2 address is out of range - the address specified is
outside the valid address range of the selected memory.

B-1

BREAK CAUSED BY HOST INTERRUPT - an abnormal break condition
was caused by a host generated interrupt. If you have not
hit the [ESC] key to cause this break condition, then it was
caused by noise on the RS232 link.

Byte count causes address out of range - the sum of the
specified address and the specified number of bytes causes
an illegal memory address to be generated.

Cannot assemble offset uploaded code - code was uploaded
from the target system at some starting address other than
O. This code can only be examined using the table command.

Cannot execute offset uploaded code - the code in the
emulator's program code memory was uploaded with an offset
value. Code uploaded in this manner cannot be executed.

Cannot open file - a file could not be opened in the write
mode on the specified disk.

Cannot restart - instruction calls itself- an experiment
cannot be restarted from a jump instruction which calls
itself.

Cannot restart - instuction jumps on self- an experiment
cannot be restarted from a jump instruction which specifies
itself as the jump target.

Class xxxxx not found in file xxxxx- the specified opcode
class could not be found in the expected opcode class file.
This is most likely caused by editing a 2nd opcode class
file between the time the 1st opcode class file was loaded
and the experiment was compiled.

Code address expected- a symbol other than a code address
symbol was used in the specification of a code address
value.

Code jumps out of range- an attempt was made to restart an
experiment at an instruction which may cause the PC value to
jump outside the range of the emulator's code memory.

Code memory is not loaded- the ICD's program code memory has
not been loaded with program code. Return to the Main menu
to load code.

Communication error - reset comm link- a non-recoverable
error occured. Communication must be reestablished via the
Execute command in the Configuration menu.

B-2

Communication NOT established - try again- the emulator
module responded to the host's request to establish
communication -but it's response was incorrect. Reset the
emulator module and try again.

Comparator expected - something other than a comparator was
encountered where a comparator was expected.

Could not match instruction - the instruction specification
does not correspond to any 8051/8031 instructions.
Could not open opcode class file xxxxx - the opcode class
file could not be opened. This is most likely caused by the
removal of the disk between the time the opcode class file
was loaded and the time the experiment was compiled.

Could not open temporary work file - because the file is
being edited, a backup copy is required. In the attempt to
open a backup file on the same disk as the Opcode Class
file, an error was encountered.

Destination address is out of range - the address specified
is outside the valid address range of the selected memory.

Direct bit address expected - a symbol other than a direct
bit address symbol was used in the specification of a direct
bit address value.

Direct byte address expected - a symbol other than a direct
byte address symbol was used in the specification of a
direct byte address value.

Directory not found - a directory was specified which did
not exist or couldn't be reached.

Division by zero - the expression being evaluated includes
an attempt to divide by zero.

Duplicateopcode class name - the opcode class name
specified has already been defined.

Duplicate symbol - a label was specified which has
previously been defined.

Emulator not ready - the emulator module did not respond to
the host's request to establish communication. Check that
power is applied to the emulator module, that it has been
reset, and that the emulator probe has been supplied with a
frequency source.

B-3

Expecting an EOl - the assembly language mnemonic
instruction supplied contains too many operands.

Experiment buffer is full an attempt was made to insert a
line in an experiment which already contains 32 lines.

Expression stack overflow - the expression stack has a depth
of 32 values. The expression being evaluated exceeds this
depth.

File has more than 32 lines - the experiment file contains
more than the legal number of lines.

File is not proper absolute object format - a file was being
processed as a Zlink absolute object formatted file but some
formatting error was encountered while records were being
read.

File is not proper Intel hex format - a file was being
processed as an Intel hex formatted file but some formatting
error was encountered while records were being read.

File is not proper macro file format - the macro command file
specified was not the proper format for a macro command
file.

File not found - the specified file could not be found on the
specified drive, the default drive, or the A: Drive.

Help file not found - the file I$HlPFILE" could not be found
on either the default drive or the A: drive.

'if' expected - an experiment statement did not begin with
I if I •

Illegal assembly line - The line doesn't begin with a label
or instruction mnemonic.

Illegal binary value - the new value supplied was not a 0 or
1.

Illegal bit designator - the value specified was greater
than 7 or the symbol specified was not a bit type symbol
(Modify-Regs) •

Illegal bit designator - an illegal bit designator address
was specified. A bit designator contains a byte address,

B-4

followed by a PERIOD, followed by the bit index into the
byte. First, the specification of the byte address part of
the bit designator was not a legal bit addressable address.
Second, the bit index into the byte address exceeds 7. (Code
assembler).

Illegal bit for specified register - the symbolic bit
specified is not a bit in the specified bit addressable
register.

Illegal character - a character was encountered which is not
part of the legal character set. (See Appendix D).

Illegal conditional - a simple conditional was encountered
which was not part of the legal conditional set.

Illegal digit for specified radix - an illegal digit was
encountered for the specified radix of a number.

Illegal drive specification - the specified drive designator
is not between A and P.
Illegal end of experiment - the end of the experiment file
was encountered in the middle of parsing an experiment
statement.

Illegal end of string - the end of the pattern was
encountered before a terminating character string delimiter
was found.

Illegal entry found - an entry was found in the pattern
which could not be identified as a number, a symbol, or a
character string.

Illegal indirect register - the indirect addressing mode
designator (@) was followed by something other than RO or
Rl. This error can also occur in the MOVC A,@A+DPTR, MOVX
A,@DPTR, MOVX @DPTR,A and the JMP @A+DPTR instructions if
the operands after the indirect addressing mode designator
are not specified properly.

Illegal integer value - the number specified contains an
illegal decimal digit.

lllegal literal expression - a null ASCII literal string
(II) was found.

Illegal number specification - the number contains an non­
hexadecimal digit.

B-S

Illegal opcode after label - the symbol after a label wasn't
an opcode.

Illegal opcode class file format - the file specified is not
the proper format for an Opcode Class file.

Illegal operand - the operand specified is not a legal
operand for the instruction.

Illegal operator - the arithmetic operator specified is not
a legal operator.

Illegal or missing expression - a number, symbol, or
arithmetic expression was expected but was either missing or
could not be evaluated properly.

Illegal or missing expression operator - and arithmetic
operator was expected but was either missing or was not a
legal operator. (See Appendix 0 for the single line
assembler's legal operators.)

Illegal or missing expression value - in evaluating an'
expression, an expected number or symbol was either missing
or illegal.

Illegal Port 2 address mask - the mask specified was too
large to fit in a byte wide register or the mask
specification began with non-numeric character.

Illegal register address - the address specified does not
correspond to a special function register.

Illegal register specification - the register name began
with a non-alphanumeric character.

Illegal result statement - a result other than break was
encountered.

Illegal rollover boundary - the rollover boundary was not 4K
or 8K or the rollover boundary specification began with non­
numeric character.

Illegal string character - an apostrophe was found in a
character string which was followed neither by another
apostrophe nor a space. Such use of an apostrophe within a
character string is illegal.

Illegal symbol type - the symbol specified was of the
correct type in the given context.

B-6

Illegal system status file format - the file specified was
not the proper format for a system status file.

Improper address segment - the specified symbol was not an
address for the selected memory space.

Line greater than 76 characters found - a line was found in
an experiment file which, was longer than the legal length.

Line is full - an attempt was made to insert a character in
a line which already contains 76 characters.

Missing operand delimiter - a COMMA operand delimiter was
missing from the operand fields of the instruction.

Must compile experiment first - an experiment was loaded but
the experiment compiler was not executed prior to running
the experiment. This is an error because it is the
experiment compiler which sets the breakpoints in the
emulator.

Must establish communication first - an attempt was made to
issue a command to the emulator module before communication
was established.

Must load experiment first - an attempt has been made to
compile an experiment before it has been loaded or created.

Must load program code memory first - the program code
memory was not loaded prior to executing a single step
instruction.

Must reinitialize PC value first - the PC value was not
reintialized after halting an emulation with host interrupt.

Must reset emulator to change baud rate - an attempt was
made to reconfigure the systemis baud rate when
communication had already been established at a different
baud rate. In this case t reset the emulator module and try
again.

No code at the specified memory location - the specified
starting address does not contain valid code.

Must reload code memory first - the experiment was deleted
but the breakpoints set by that experiment are still
resident and active in the emulator.

B-7

No default radix provided - a number was specified without a
radix specifier.

Number expected - something other than a numeric value was
enocuntered where a number was expected.

Number is too large - the number specified exceeds 64K.

Number or address symbol expected - some thing other than a
numeric address or a symbolic address was encountered where
an address was expected.

Opcode class table is full - more than 72 opcode classes are­
defined in the specified file.

Operator stack overflow - the operator stack has a depth of
32 values. The expression being evaluated exceeds this
value.

PC value is out of range - the PC address specified file
contains code at an address beyond the address limits of the
emulator's code memory.

RS23~ transmission problem - check board - the RS232 board
could not perform a transmission. Check your RS232 board.

Search pattern is larger than search area - there are more
bytes in the search pattern than in the specified search
area.

SFR not in internal memory - a special function register was
specified which does not reside within the internal data
memory.

Source address is out of range - the address specified is
outside the valid address range of the selected memory.

Symbolic debug not enabled - the symbolic debugging
capability is not enabled. Symbolic addresses are therefore
not allowed.

Sync - possible table disassembly - this error only applies
when symbolic debug is enabled. Advantage is taken of the
effect that the instruction labels must lie on instruction
boundaries. If the disassembly passes a known instruction
label without displaying it, then an address synchronization
problem exists. Either the starting address was not at an
instruction boundary or the disassembly process passed
through a non-instruction portion of the code memory (i.e. a
data table that lies in code memory space).

B-3

Target address exceeds relative address range - a relative
jump was specified with the target address exceeding 127
bytes forward or 128 bytes backward.

'then' expected - the conditional portion of an experiment
statement was not terminated by a 'then'.

Too many bytes in pattern - the pattern contained more than
32 bytes of data.

Too many characters - the new data value contained more than
two hexadecimal digits. It can not therefore represent a
byte value.

Too many macro parameters - more than 8 macro parameters
were specified.

Unbalanced parenthesis - in evaluating an expression, the
parenthesis in the expression were found not to balance.
(Code Assembler). .

Unbalanced parenthesis - there are an unequal number of
opening and closing parenthesis used in the conditional
portion of a statement. (Experiment compiler).

Undefined opcode class - the symbol used to specify an
opcode class was not a valid opcode class symbol. .

Undefined symbol - the symbol specified doesn't exist.

B.3 DOS Errors Messages

The third class of errors which may be encountered are DOS
operating system error messages. Refer to your DOS manual
for details of the specific error messages.

B-9

APPENDIX C
SIGNAL SPECIFICATIONS AND DIFFERENCES

C.l Signal Specifications

Table 1 lists the signal specifications for the ICD 8031,
8032 and 8344 emulators. In addition, the specifications for
Port 0 and Port 2 apply to the ICD 8051, 8052 and 8044
emulators when those ports are configured as address lines.

Table 2 lists the signal specifications for the ICD 8051,
8052 and 8044 emulators. The Port 0 and Port 2
specifications only apply when those ports are configured as
I/O lines.

NOTES:

1. When not in the emulation mode, the PSEN RD (Port 3.7),
WR (Port 3.6), and Port a pins are normally in
the state listed in the tables. When an access is
made to program code memory or external data memory
which resides on your system board, these signals
become active. They will exhibit their normal
characteristics for the duration of the memory access
before returning to the state listed in the tables.

2. Port 3.6 and Port 3.7 signals do not contain an
active pullup when used as be-directional port pins.
In that mode, they have a resistive pullup with 10K
ohm impedence.

3. N.C. means not connected.

4. The Port 0 and Port 2 pins change values one state
later than specified in the Intel Microcontrol1er
Handbook when used as I/O pins.

C-l

TABLE 1

Pin Signal Buffer Output Input Delay I Non-emulation
No. Name Type Drive Load 1 Status

I High Low I High Low I nSec.
1 (mA) (mA) 1 (mA) (mA) I Typo

ort . none .8 1. . 0 norma
2 PortI.l none .8 1.6 .08 .8 2 normal
3 PortI.2 none .8 1.6 .08 .8 2 normal
4 Portl.3 none .8 1.6 .08 .8 2 norma 1
5 PortI.4 none .8 1.6 .08 .8 2 normal
6 Portl.5 none .8 1.6 .08 .8 2 normal
7 PortI.6 none .8 1.6 .08 .8 2 normal
8 PortI.7 none .8 1.6 .08 .8 2 normal
9 Reset LS14 .02 .4 17 inactive
10 Port3.0 none .8 1.6 .08 .8 2 normal
11 Port3.1 none .8 1.6 .08 .8 2 normal
12 Port3.2 none .8 1.6 .08 .8 2 normal
13 Port3.3 none .8 1.6 .08 .8 2 normal
14 Port3.4 none .8 1.6 .08 .8

I 2 normal
15 Port3.5 none .8 1.6 .08 .8 2 normal
16 Port3.6 LS05 O.C. 24.0 1 .02 .4 J 32 normal
17 Port3.7 LS05 0.C·124.0 1 .02 I .4 I 32 normal
18 XTAL2 none - 1 - 1 - 3.2 I 2 normal
19 XTALl none - 1 - I - normal
20 VSS none - 1 - 1 - n.c.
21 Port2.0 LS244 15.0 24.0 14 normal
22 Port2.1 LS244 15.0 24.0 14 normal
23 Port2.2 LS244 15.0 24.0 14 normal
24 Port2.3 LS244 15.0 24.0 -

I
14 normal

25 Port2.4 LS244 15.0124.0 I - I - 14 normal
26 Port2.5 LS244 15.0124.0 1 - 1 - I 14 normal
27 Port2.6 LS244 15.0124.0 1 - 1 - 14 normal
28 Port2.7 LS244 15.0124.0 I - 1 - 1 14 normal
29 PSEN LS04 .4 8.0 1 - 1 17 high
30 ALE LS04 .4 8.0 17 normal
31 EA none Vss
32 PortO.7 LS245 15.0 24.0 .02 .4 10 3-state
33 PortO.6 LS245 15.0 24.0 .02 .4 10 3-state
34 PortO.5 LS245 15.0 24.0 .02 .4 10 3-state
35 PortO.4 LS245 15.0 24.0 .02 .4 10 3-state
36 PortO.3 LS245 15.0124.0 .02 .4 10 3-state
37 PortO.2 LS245 15.0124.0 .02 1 .4 10 3-state
38 PortO.l LS245 15.0124.0 .02 1 .4 10 3-state
39 PortO.O LS245 15.0124.0 .02 1 .4 10 3-state
40 vce none - I - I - n.c.

C-2

TABLE 2

Pin Si gnal Buffer 1 Output Input Delay 1 Non-emulation
No. Name Type 1 Drive Load 1 Status

I High Low I High Low !
nSec. 1

(mA) (mA) 1 (mA) (mA) Typ .

ort . none . 8 . . norma
2 PortI.l none .8 .08 .8 2 normal
3' Portl.2 none .8 .08 .8 2 norma 1
4 Port1. 3 none .8 .08 .8 2 normal
5 Portl.4 none .8 .08 .8 2 norma 1
6 Port1. 5 none .8 .08 .8 2 normal
7 Port1. 6 none .8 .08 .8 2 normal
8 PortI.7 none .8 .08 .8 2 normal
9 Reset LS14 .02 .4 17 inactive
10 Port3.0 none .8 1.6 .08 .8 2 normal
11 Port3.1 none .8 1.6 .08 .8 2 normal
12 Port3.2 none .8 1.6 .08 .8 2 normal
13 Port3.3 none 1 ' .8 1.6

1
.08 .8 2 normal

14 Port3.4 none .8 1.6 .08 .8 2 normal
15 Port3.5 none 1 .8 1 1.6 1 .08 .8 1 2 normal
16 Port3.6 LS05 1 0.C·124.0 1 .02 .4 1 32 1 normal
17 Port3.7 LS05 0:C'124:0 I .02 .4 I 32 1 normal
18 XTAL2 none 1 - 3.2 1 2 I normal
19 XTALl none - 1 - - 1 normal
20 VSS none -

/
- -

/
1 Vss

21 Port2.0 LS05 O.C. 24.0 .1 .5 note 4/ normal
22 Port2.1 LS05 D.C. 24.0 .1 .5

1
note 4 normal

23 Port2.2 LS05 0,C·124.0 .1 .5 note 41 normal
24 Port2.3 LS05 O.C. 24.0 .1 .5 1 note 4 normal
25 Port2.4 LS05 0.C·124.0 .1 .5 I note 41 normal
26 Port2.5 LS05 0.C·124.0 .1 .5 note 41 normal
27 Port2.6 LS05 0.C·124.0 .1 .5 1 note 41 normal
28 Port2.7 LS05 D.C·124.D .1 .5 1 note 41 normal
29 PSEN LS04 .4 8.0 17 high
30 ALE LS04 .4 8.0 17 normal
31 EA none Vcc
32 PortO.7 LS05 D.C. 24.0 .1 .1 note 4 normal
33 PortO.6 LS05 D.C. 24.0 .1 .1 note 4 normal
34 PortO.5 LS05 O.C. 24.0 .1 .1 note 4 normal
35 PortO.4 LS05 O.C. 24.0 .1 .1 note 4 normal
36 PortO.3 LS05 D.C. 24.0 .1 .1 note 41 normal
37 PortO.2 LS05 D.C·124.0 .1 .1 1 note 41 normal
38 PortO.l LS05 O.C·124.0 .1 .1 1 note 41 normal
39 PortO.O LS05 0:C'124:0 .1 .1 1 no~e 41 normal
40 VCC none - 1 n.c.

C-3

C.2 Probe Cable Characteristics

The probe cable adds the following electrical properties to
the pins as seen at the emulator probe:

+ 20pF / pin
+ 30uH / pin
+ 2nS / pin (the extra delay introduced by the·

cable has already been factored into
the table above.)

C.3 Signal Differences

Signal Voltage Levels

PSEN, ALE, RD, WR, PortO, and Port2 all appear as TTL
level signals rather than MOS level signals.

The standard voltage levels for the XTAL2 input when
an external frequency source is supplied is:

Vah > 2.5V Vol < .BV (XTALl = Vss)

Reset Pulses

The Reset from the system board should supply only one
reset pulse. Any further reset pulses after the first
has been accepted will be ignored for the rest of the
emulation cycle.

Power

The lCD does not draw its power from the system board. The
electrical power requirements on your board will differ
slightly after you replace the emulator probe with the
actual target component.

C-4

APPENDIX 0
OTHER DIFFERENCES

0.1 TimerO and Timer1 Values

0.2 Serial Port

0.3 Port Registers

The ICD automatically turns off all timer/counters when
emulation stops. If a timer/counter is running when a
breakpoint is encountered, it is stopped 8 machine cycles
after the breakpoint.

If a timer/counter is turned on before running an experiment
for the first time (by setting the appropriate bits in the
TCON register via the Modify Registers command), it will
actually be turned on 4 machine cycles before the first
instruction of the experiment is executed.

If a timer/counter is turned on for an experiment which must
be restarted (i.e. it has already executed until a
breakpoint), it will be turned on 16 machine cycles before
full speed emulation begins. Remember that when an
experiment is restarted, a single step is automatically
executed to move one instruction past the breakpoint
instruction (See the Go command in chapter 6 for more
details).

The serial port is not stopped when a breakpoint is
encountered. After a breakpoint, the interrupts are
disabled. A serial port transmit or receive interrupt which
occurs after the breakpoint has been encountered will be
ignored.

The values for the ports which are displayed the Modify
Register menu represent the actual values at the port pins
and not the value in the port registers. If you wish to
change the value of one of the output pins, care must be
taken to ensure that a 1 is written to any input pins in the
same port (otherwise they will become output pins).

D-l

APPENDIX E
CHARACTER SETS AND RESERVED SYMBOLS

E.l Single Line Code Assembler Character Set

The legal character set for the single line code assembler
is made up of the following characters (1 isted in ascending
ASCII order):

$ I () * + , _ • j 0-9 : ? , A-Z a-z

E.2 Experiment Compiler Character Set

The legal character set for the experiment compiler is made
up of the following characters (listed in ascending ASCII
order) :

I & () * + - • / 0-9 < = > ? A-Z a-z

E.3 Fill and Search Pattern Character Set

The legal character set for the fill and search pattern
specification is made up of the following characters (listed
in ascending ASCII order):

I 0-9 ? A-Z a-z

E.4 Experiment Compiler Reserved Keywords

The following is an alphabetical listing of the reserved
experiment compiler keywords:

AND, BADDR, BREAK, CLASS, DADDR, HIGH, IF, IMMED,
LOW, MOD, NOT, OPCODE, OR, PC, SHL, SHR, THEN, XOR

Some of these keywords are operators which can be used in an
expression which specifies an address or.a number. These
operators are:

AND Bitwise logical AND
HIGH High order 8 bits
LOW Low order 8 bits
MOD Modulus
NOT Bitwise logical negation

(lIs complement)
OR Bitwise logical inclusive OR
SHL Shift left
SHR Shift right
XOR Bitwise logical exclusive OR

E-l

Below is a listing of the precedence of all of the
expression operators in descending order. Operations with
higher precedence are performed first.

Operator Precedence

(,) Highest
HIGH,LOW
*,/,MOD,SHR,SHL
+,-
NOT
AND
OR,XOR Lowest

The following are examples of all the available operations
and their result.

HIGH(OAADDh)
LOW(OAADDh)
7*4
7/4

7 MOD 4
1000b SHR 2
1010b SHL 2
10+5
+72
25-17
-1
NOT 1
llOlb AND 0101b
llOlb OR 0101b
llOlb XOR 0101b

E-2

will return a result of OAAh
will return a result of OODh
will return a result of 28
will return a result of 1

(integer division)
will return a result of 3
will return a result of C010b
will return a result of 101000b
will return a result of 15
will return a result of 72
will return a result of 8
will return a result of I111111111111111b
will return a result of lll111111l111110b
will return a result of OlOlb
will return a result of ll01b
will return a result of 1000b

APPENDIX F
PREDEFINED BYTE AND BIT ADDRESSES

F.l 8031 and 8051 Predefined Addresses

F .1.1 Predefined Byte Addresses

PO DATA 080H ;PORT 0
SPl DATA 081H ;STACK POINTER
DPL DATA 082H ;DATA POINTER - LOW BYTE
DPH DATA 083H ;DATA POINTER - HIGH BYTE
PC ON DATA 087H ;POWER CONTROL
TCON DATA 088H ;TIMER CONTROL
TMOD DATA 089H ;TIMER MODE
TLO DATA 08AH ;TIMER 0 - LOW BYTE
TLl DATA 08BH ;TIMER 1 - LOW BYTE
THO DATA 08CH ;TIMER 0 - HIGH BYTE
THl DATA 08DH ;TIMER 1 - HIGH BYTE
Pl DATA 090H ;PORT 1
SCON DATA 098H ;SERIAL PORT CONTROL
SBUF DATA 099H ;SERIAL PORT BUFFER
P2 DATA OAOH ;PORT 2
IE DATA OA8H ;INTERRUPT ENABLE
P3 DATA OBOH ;PORT 3
IP DATA OB8H ;INTERRUPT PRIORITY
PSW DATA ODOH ;PROGRAM STATUS WORD
ACC DATA OEOH ;ACCUMULATOR
B DATA OFOH ;MULTIPLICATION REGISTER

F .1.2 Predefined Bit Addresses

ITO BIT 088H ;TCON.O - EXT. INTERRUPT 0 TYPE
lEO BIT 089H ;TCON.l - EXT. INTERRUPT 0 EDGE FLAG
ITl BIT ·08AH ;TCON.2 - EXT. INTERRUPT 1 TYPE
1£1 BIT 08BH ;TCON.3 - EXT. INTERRUPT 1 EDGE FLAG
TRO BIT 08CH ;TCON.4 - TIMER 0 ON/OFF CONTROL
TFO BIT 08DH ;TCON.5 - TIMER 0 OVERFLOW FLAG
TRl BIT 08EH ;TCON.6 - TIMER lON/OFF CONTROL
TFl BIT 08FH ;TCON.7 - TIMER 1 OVERFLOW FLAG
RI BIT 098H ;SCON.O - RECEIVE INTERRUPT FLAG
TI BIT 099H ;SCON.l - TRANSMIT INTERRUPT FLAG
RB8 BIT 09AH ;SCON.2 - RECEIVE BIT 8
TB8 BIT 09BH ;SCON.3 - TRANSMIT BIT 8
REN BIT 09CH ;SCON.4 - RECEIVE ENABLE
SM2 BIT 09DH ;SCON.S - SERIAL MODE CONTROL BIT 2
SMl BIT 09EH ;SCON.6 - SERIAL MODE CONTROL BIT 1
SMO BIT 09FH ;SCON.7 - SERILA MODE CONTROL BIT 0
EXO BIT OA8H ; lE.O - EXTERNAL INTERRUPT 0 ENABLE
ETO BIT OA9H ; IE.l - TIMER 0 INTERRUPT ENABLE

F-I

EXI BIT OAAH ; IE.2 - EXTERNAL INTERRUPT I ENABLE
ETl BIT OABH ;IE.3 - TIMER I INTERRUPT ENABLE
ES BIT OACH ;IE.4 - SERIAL PORT INTERUPT ENABLE
EA BIT OAFH ;IE.7 - GLOBAL INTERRUPT ENABLE
RXD BIT OBOH ;P3.0 - SERIAL PORT RECEIVE INPUT
TXD BIT OBIH ;P3.1 - SERIAL PORT TRANSMIT OUTPUT
INTO BIT OB2H ;P3.2 - EXTERNAL INTERRUPT 0 INPUT
INTl BIT OB3H' ;P3.3 - EXTERNAL INTERRUPT I INPUT
TO BIT OB4H ;P3.4 - TIMER a COUNT INPUT
Tl BIT OBSH ;P3.S - TIMER I COUNT INPUT
WR BIT OB6H ;P3.6 ~ WRITE CONTROL FOR EXT. MEMORY
RD BIT OB7H ;P3.7· - READ CONTROL FOR EXT. MEMORY
PXO BIT OB8H ;IP.O - EXTERNAL INTERRUPT 0 PRIORITY
PTO BIT OB9H ;IP.I - TIMER 0 PRIORITY
PXI BIT OBAH ;IP.2 - EXTERNAL .INTERRUPT I PRIORITY
PTl BIT OBBH ;IP,3 - TIMER I PRIORITY
PS BIT OBCH ;IP.4 - SERIAL PORT PRIORITY
P BIT ODOH ;PSW.O - ACCUMULATOR PARITY FLAG
OV BIT OD2H ;PSW.2 - OVERFLOW FLAG
RSO BIT OD3H ;PWS.3 - REGISTER BANK SELECT 0
RSI BIT OD4H ;PSW.4 - REGISTER BANK SELECT I
Fa BIT ODSH ;PSW.S - FLAG a
AC BIT OD6H ;PSW.6 - AUXILIARY CARRY FLAG
CY BIT OD7H ;PSW.7 - CARRY FLAG

F.2 8032 AND 80S2 Predefined Addresses

F.2.1 Predefined Byte Addresses

PO DATA 080H ;PORT 0
SP DATA 08lH ;STACK POINTER
DPL DATA 082H ;DATA POINTER - LOW BYTE
DPH DATA 083H ;DATA POINTER - HIGH BYTE
PC ON DATA 087H ;POWER CONTROL
TCON DATA 088H ; TIMER CONTROL
TMOD DATA 089H ;TIMER MODE
TLO DATA 08AH ;TIMER 0 - LOW BYTE
TLl DATA 08BH ;TIMER I - LOW BYTE
THO DATA 08CH ;TIMER 0 - HIGH BYTE
THl DATA 08DH ;TIMER I - HIGH BYTE
PI DATA 090H ;PORT I
SCON DATA 098H ;SERIAL PORT CONTROL
SBUF DATA 099H ;SERIAL PORT BUFFER
P2 DATA OAOH ;PORT 2
IE DATA OA8H ;INTERRUPT ENABLE
P3 DATA OBOH ;PORT 3
IP DATA OB8H ;INTERRUPT PRIORITY
T2CON DATA OC8H ;TIMER 2 CONTROL

F-2

RCAP2L DATA OCAH ;TIMER 2 CAPTURE REGISTER - LOW BYTE
RCAP2H DATA OCBH ;TIMER 2 CAPTURE REGISTER - HIGH BYTE
TL2 DATA OCCH ;TIMER 2 - LOW BYTE
TH2 DATA OCDH ;TIMER 2 - HIGH BYTE
PSW DATA ODOH ; PROGRAM STATUS WORD
ACC DATA OEOH ;ACCUMULATOR
B DATA OFOH ;MULTIPLICATION REGISTER

F.2.2 Predefined Bit Addresses

ITO BIT 088H ;TCON.O - EXT. INTERRUPT 0 TYPE
lEO BIT 089H ;TCON.l - EXT. INTERRUPT 0 EDGE FLAG
IT1 BIT 08AH ;TCON.2 - EXT. INTERRUPT 1 TYPE
lEI BIT 08BH ;TCON.3 - EXL INTERRUPT 1 EDGE FLAG
TRO BIT 08CH ;TCON.4 - TIMER 0 ON/OFF CONTROL
TFO BIT 08DH ;TCON.5 - TIMER 0 OVERFLOW FLAG
TR1 BIT 08EH ;TCON.6 - TIMER ION/OFF CONTROL
TFl BIT 08FH ;TCON.7 - TIMER 1 OVERFLOW FLAG
Rl BIT 098H ;SCON.O - RECEIVE INTERRUPT FLAG
TI BIT 099H ;SCON.1 - TRANSMIT INTERRUPT FLAG
RB8 BIT 09AH ;SCON.2 - RECEIVE BIT 8
TB8 BIT 09BH ;SCON.3 - TRANSMIT BIT 8
REN BIT 09CH ;SCON.4 - RECEIVE ENABLE
SM2 BIT 09DH ;SCON.5 - SERIAL MODE CONTROL BIT 2
SMI BIT 09EH ;SCON.6 - SERIAL MODE CONTROL BIT 1
SMO BIT 09FH ;SCON.7 - SERIAL MODE CONTROL BIT 0
EXO BIT OASH ;IE.O - EXTERNAL INTERRUPT 0 ENABLE
ETO BIT OA9H ;1E.1 - TIMER 0 INTERRUPT ENABLE
EXl BIT OAAH ; IE.2 - EXTERNAL INTERRUPT 1 ENABLE
ETl BIT OABH ;IE.3 - TIMER 1 INTERRUPT ENABLE
ES BIT OACH ; IE.4 - SERIAL PORT INTERRUPT ENABLE
EA BIT OAFH ; IE. 7 - GLOBAL INTERRUPT ENABLE
RXD BIT OBOH ;P3.0 - SERIAL PORT RECEIVE INPUT
TXD BIT OB1H ;P3.1 - SERIAL PORT TRANSMIT OUTPUT
INTO BIT OB2H ;P3.2 - EXTERNAL INTERRUPT 0 INPUT
INTl BIT ' OB3H ;P3.3 - EXTERNAL INTERRUPT 1 INPUT
TO BIT OB4H ;P3.4 - TIMER 0 COUNT INPUT
Tl BIT OBSH ;P3.5 - TIMER 1 COUNT INPUT
WR BIT OB6H ;P3.6 - WRITE CONTROL FOR EXT. MEMORY
RD BIT OB7H ;P3.7 - READ CONTROL FOR EXT. MEMORY
PXO BIT OB8H ;IP.O - EXTERNAL INTERRUPT 0 PRIORITY
PTO BIT OB9H ;IP.l - TIMER 0 PRIORITY
PX1 BIT OBAH ;IP.2 - EXTERNAL INTERRUPT 1 PRIORITY
PTl BIT OBBH ;IP.3 - TIMER 1 PRIORITY
PS BIT OBCH ;IP.4 - SERIAL PORT PRIORITY
CAP2 BIT OCOH ;T2CON.0- CAPTURE OR RELAOD SELECT
CNT2 BIT OC1H ;T2CON.l- TIMER OR COUNTER SELECT
TR2 BIT OCAH ;T2CON.2- TIMER 2 ON/OFF CONTROL

F-3

EXEN2 BIT OCBH ;T2CON.3- TIMER 2 EXTERNAL ENABLE FLAG
TCLK BIT OCCH ;T2CON.4- TRANSMIT CLOCK SELECT
RCLK BIT OCDH ;T2CON.5- RECEIVE CLOCK SELCTT
EXF2 BIT OCEH ;T2CON.6- EXTERNAL TRANSITION FLAG
TF2 BIT OCFH ;T2CON.7- TIMER 2 OVERFLOW FLAG
P BIT ODDOH ;PSW.O - ACCUMULATOR PARITY FLAG
OV BIT OD2H ;PSW.2 - OVERFLOW FLAG
RSO BIT OD3H ;PWS.3 - REGISTER BANK SELECT 0
RSI BIT OD4H ;PSW.4 - REGISTER BANK SELECT 1
FO BIT OD5H ;PSW.5 - FLAG 0
AC BIT OD6H ;PSW.6 - AUXILIARY CARRY FLAG
CY BIT OD7H ;PSW.7 - CARRY FLAG

F-4

APPENDIX G
PREDEFINED OPCODE CLASSES

The predefined opcode classes described here are contained
in the file "OPCLASS.OPC" on the Zlink system disk.

G.I Opcode Class PGMFLOW

The opcode class PGMFLOW is used to set breakpoints on all
instructions which can change the normal sequential flow of
the program. Tnese instructions include:

AJMP, SJMP, LJMP, ACALL, LCALL, RET, RETI, JBC, JB,
JNB, JC, JNC, JZ, JNZ, CJNE, DJNZ, AND JMP @A+DPTR.

The following is the opcode class specification which
defines this class:

Instruction OperandI Register Operand2 Register
----------- -------- -------- -------- --------

1) CADDR
2) CADDR
3) CJNE
4) RET
5) RET!
6) JMP

Instruction specification 1 specifies the following
instructions which have a code address as the first operand:

All AJMPs, LJMP, all ACALLs, LCALL, JC, JNC, JZ,
JNZ, and SJMP.

Instruction specification 2 specifies the following
instructions which have a code address as the second
operand:

JBC, JB, JNB, and all DJNZs.

Instruction specification 3 specifies all of the CJNE
instructions.

Instruction specification 4 specifies the RET instuction.

Instruction specification 5 specifies the RETl instruction.

Instruction specification 6 specifies the JMP @A+DPTR
i nstructi on.

G-l

G.2 Opcode Class STACK

The opcode class STACK is used to set breakpoints on all
instructions which can change the target's internal stack.
These instructions include:

PUSH, POP, ACALL, LCALL, RET, and RETI.

The following is the opcode class specification which
defines this class:

Instruction Operand1 Register Operand2 Register

1) PUSH
2) POP
3) ACALL
4) LCALL
5) RET
6) RET1

Each instruction specification specifies one of the required
instructions.

G-2

ZAX
Zax Corp.oratl"on 2572 W. hite Road, Irvine, calif .. ornia 92714

(714) 474-1170.800-421-0982. TlX 183829

	000
	001
	002
	003
	004
	005
	006
	01-01
	01-02
	01-03
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	03-01
	03-02
	03-03
	03-04
	03-05
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	06-31
	06-32
	06-33
	06-34
	06-35
	06-36
	06-37
	06-38
	06-39
	06-40
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	13-01
	13-02
	13-03
	13-04
	13-05
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	14-12
	14-13
	15-01
	A-01
	A-02
	A-03
	A-04
	A-05
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	C-01
	C-02
	C-03
	C-04
	D-01
	E-01
	E-02
	F-01
	F-02
	F-03
	F-04
	G-01
	G-02
	xBack

